
Tanzu Application
Platform v1.5

VMware Tanzu Application Platform 1.5

You can find the most up-to-date technical documentation on the VMware by Broadcom website at:

https://docs.vmware.com/

VMware by Broadcom
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright © 2024 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its

subsidiaries. For more information, go to https://www.broadcom.com. All trademarks, trade names, service

marks, and logos referenced herein belong to their respective companies. Copyright and trademark

information.

Tanzu Application Platform v1.5

VMware by Broadcom 2

https://docs.vmware.com/copyright-trademark.html

Contents

Tanzu Application Platform v1.5 125
Tanzu Application Platform overview 125

Simplified workflows 125

Notice of telemetry collection for Tanzu Application Platform 127

Tanzu Application Platform release notes 128
v1.5.12 128

v1.5.12 Security fixes 128

v1.5.12 Known issues 129

v1.5.11 129

v1.5.11 Security fixes 129

v1.5.11 Known issues 137

v1.5.10 137

v1.5.10 Security fixes 137

v1.5.10 Resolved issues 141

v1.5.10 Resolved issues: Application Single Sign-On 141

v1.5.10 Resolved issues: Contour 142

v1.5.10 Known issues 142

v1.5.9 142

v1.5.9 Security fixes 142

v1.5.9 Known issues 144

v1.5.9 Known issues: Supply Chain Security Tools - Scan 144

v1.5.8 144

v1.5.8 Security fixes 144

v1.5.8 Known issues 150

v1.5.7 150

v1.5.7 Security fixes 150

v1.5.7 Known issues 151

v1.5.7 Known issues: Tanzu Application Platform 151

v1.5.6 151

v1.5.6 Breaking changes 151

v1.5.6 Breaking changes: Services Toolkit 151

v1.5.6 Security fixes 151

v1.5.6 Resolved issues 154

v1.5.6 Resolved issues: Application Configuration Service 154

v1.5.6 Known issues 154

v1.5.6 Known issues: Tanzu Application Platform 154

Tanzu Application Platform v1.5

VMware by Broadcom 3

v1.5.5 154

v1.5.5 Security fixes 154

v1.5.5 Resolved issues 156

v1.5.5 Resolved issues: Application Configuration Service 156

v1.5.5 Resolved issues: Tanzu CLI and plugins 156

v1.5.5 Known issues 156

v1.5.5 Known issues: Tanzu Application Platform 156

v1.5.4 156

v1.5.4 Security fixes 157

v1.5.4 Known issues 161

v1.5.4 Known issues: Tanzu Application Platform 161

v1.5.3 161

v1.5.3 Security fixes 161

v1.5.3 Known issues 162

v1.5.2 162

v1.5.2 Security fixes 162

v1.5.2 Resolved issues 162

v1.5.2 Resolved issues: Supply Chain Security Tools (SCST) - Scan 162

v1.5.2 Resolved issues: Tanzu Application Platform GUI 163

v1.5.2 Resolved issues: Tanzu Application Platform GUI plug-ins 163

v1.5.2 Resolved issues: Tanzu Developer Tools for IntelliJ 163

v1.5.2 Resolved issues: Tanzu Developer Tools for Visual Studio 163

v1.5.2 Resolved issues: Tanzu Developer Tools for VS Code 163

v1.5.2 Known issues 163

v1.5.1 163

v1.5.1 Security fixes 163

v1.5.1 Resolved issues 165

v1.5.1 Resolved issues: Application Accelerator 165

v1.5.1 Resolved issues: External Secrets CLI (beta) 165

v1.5.1 Resolved issues: Tanzu Developer Tools for IntelliJ 165

v1.5.1 Resolved issues: Tanzu Developer Tools for Visual Studio 165

v1.5.1 Known issues 165

v1.5.1 Known issues: Supply Chain Security Tools (SCST) - Scan 166

v1.5.1 Known issues: Tanzu Application Platform GUI 166

v1.5.0 166

What’s new in Tanzu Application Platform 166

v1.5.0 New components 166

v1.5.0 New features by component and area 166

v1.5.0 Features: Application Accelerator 166

v1.5.0 Features: Application Live View 167

v1.5.0 Features: Application Single Sign-On (AppSSO) 167

v1.5.0 Features: Bitnami Services 167

Tanzu Application Platform v1.5

VMware by Broadcom 4

v1.5.0 Features: cert-manager 168

v1.5.0 Features: Crossplane 168

v1.5.0 Features: External Secrets CLI (Beta) 168

v1.5.0 Features: Namespace Provisioner 168

v1.5.0 Features: Services Toolkit 169

v1.5.0 Features: Supply Chain Choreographer 170

v1.5.0 Features: Supply Chain Security Tools (SCST) - Policy Controller 170

v1.5.0 Features: Supply Chain Security Tools (SCST) - Scan 170

v1.5.0 Features: Tanzu Application Platform GUI 171

v1.5.0 Features: Tanzu Application Platform GUI plug-ins 171

v1.5.0 Features: Tanzu CLI Apps plug-in 172

v1.5.0 Features: Tanzu Developer Tools for IntelliJ 172

v1.5.0 Features: Tanzu Developer Tools for Visual Studio 172

v1.5.0 Features: Tanzu Developer Tools for VS Code 172

v1.5.0 Breaking changes 173

v1.5.0 Breaking changes: Convention Controller 173

v1.5.0 Breaking changes: Supply Chain Security Tools (SCST) - Scan 173

v1.5.0 Breaking changes: Tanzu Build Service 173

v1.5.0 Security fixes 173

v1.5.0 Resolved issues 175

v1.5.0 Resolved issues: Application Accelerator 175

v1.5.0 Resolved issues: Application Single Sign-On (AppSSO) 175

v1.5.0 Resolved issues: Cloud Native Runtimes 175

v1.5.0 Resolved issues: Namespace Provisioner 175

v1.5.0 Resolved issues: Tanzu Application Platform GUI plug-ins 175

v1.5.0 Resolved issues: Tanzu Build Service 175

v1.5.0 Resolved issues: Tanzu CLI Apps plug-in 175

v1.5.0 Resolved issues: Tanzu Developer Tools for IntelliJ 176

v1.5.0 Known issues 176

v1.5.0 Known issues: API Auto Registration 176

v1.5.0 Known issues: Application Configuration Service 176

v1.5.0 Known issues: Bitnami Services 176

v1.5.0 Known issues: Crossplane 176

v1.5.0 Known issues: Eventing 176

v1.5.0 Known issues: External Secrets CLI (beta) 176

v1.5.0 Known issues: Grype scanner 176

v1.5.0 Known issues: Services Toolkit 177

v1.5.0 Known issues: Supply Chain Choreographer 177

v1.5.0 Known issues: Tanzu Application Platform GUI 177

v1.5.0 Known issues: Tanzu CLI Apps plug-in 177

v1.5.0 Known issues: Tanzu Developer Tools for IntelliJ 177

v1.5.0 Known issues: Tanzu Developer Tools for Visual Studio 178

Tanzu Application Platform v1.5

VMware by Broadcom 5

v1.5.0 Known issues: Tanzu Developer Tools for VS Code 178

v1.5.0 Known issues: Tanzu Source Controller 178

Deprecations 178

Application Live View deprecations 178

Application Single Sign-On (AppSSO) deprecations 178

Services Toolkit deprecations 179

Supply Chain Security Tools (SCST) - Scan deprecations 179

Tanzu Build Service deprecations 179

Tanzu CLI Apps plug-in deprecations 179

Linux Kernel CVEs 179

Components and installation profiles for Tanzu Application Platform 180
Tanzu Application Platform components 180

Installation profiles in Tanzu Application Platform v1.5 184

Packages: A to C 185

Packages: D to R 185

Packages: S to Z 186

Language and framework support in Tanzu Application Platform 186

Installing Tanzu Application Platform 187

Install Tanzu Application Platform 188

Install Tanzu Application Platform 188

Prerequisites for installing Tanzu Application Platform 188
VMware Tanzu Network and container image registry requirements 188

DNS Records 189

Tanzu Application Platform GUI 190

Kubernetes cluster requirements 190

Resource requirements 191

Tools and CLI requirements 192

Next steps 192

Kubernetes version support for Tanzu Application Platform 192

Install Tanzu CLI 193
Accept the End User License Agreements 193

Example of accepting the Tanzu Application Platform EULA 193

Set the Kubernetes cluster context 195

Install or update the Tanzu CLI and plug-ins 196

Install the Tanzu CLI 196

Install Tanzu CLI Plug-ins 198

List the versions of each plug-in group available across Tanzu 199

List the versions of the Tanzu Application Platform specific plug-in group 199

Tanzu Application Platform v1.5

VMware by Broadcom 6

Install the version of the Tanzu Application Platform specific plug-in group matching

your target environment
199

Verify the plugin group list against the plug-ins that were installed 199

Next steps 199

Install Tanzu Application Platform (online) 199

Install Tanzu Application Platform (online) 200

Install Tanzu Application Platform package and profiles 200

Relocate images to a registry 201

Add the Tanzu Application Platform package repository 202

Install your Tanzu Application Platform profile 205

Full profile 205

CEIP policy disclosure 208

(Optional) Additional Build Service configurations 209

(Optional) Configure your profile with full dependencies 209

(Optional) Configure your profile with the Jammy stack only 209

Install your Tanzu Application Platform package 209

Install the full dependencies package 210

Access Tanzu Application Platform GUI 211

Exclude packages from a Tanzu Application Platform profile 211

Next steps 211

View possible configuration settings for your package 211

Install individual packages 213
Install pages for individual Tanzu Application Platform packages 214

Verify the installed packages 214

Next steps 215

Set up developer namespaces to use your installed packages 215
Additional configuration for testing and scanning 216

Legacy namespace setup 216

Next steps 216

Provision namespaces manually 216

Enable single user access 216

Enable additional users with Kubernetes RBAC 218

Additional configuration for testing and scanning 220

Install Tanzu Developer Tools for your VS Code 220
Prerequisites 220

Install 220

Configure 221

Tanzu Application Platform v1.5

VMware by Broadcom 7

Uninstall 221

Next steps 222

Install Tanzu Application Platform (offline) 222

Install Tanzu Application Platform (offline) 222

Install Tanzu Application Platform in your air-gapped environment 223
Relocate images to a registry 223

Prepare Sigstore Stack for air-gapped policy controller 227

Install your Tanzu Application Platform profile 227

Full Profile 228

Install your Tanzu Application Platform package 232

Next steps 232

Install the Tanzu Build Service dependencies 232
Next steps 233

Configure custom certificate authorities for Tanzu Application Platform
GUI

233

Next steps 234

Configure Application Accelerator 234

Using a Git-Ops style configuration for deploying a set of managed accelerators 235

Functional and Organizational Considerations 235

Examples for creating accelerators 235

A minimal example for creating an accelerator 235

An example for creating an accelerator with customized properties 236

Creating a manifest with multiple accelerators and fragments 237

Configure tap-values.yaml with Git credentials secret 238

Using non-public repositories 239

Examples for a private Git repository 239

Example using http credentials 239

Example using http credentials with self-signed certificate 240

Example using SSH credentials 241

Examples for a private source-image repository 242

Example using image-pull credentials 242

Configure ingress timeouts when some accelerators take longer to generate 243

Configure an ingress timeout overlay secret for each HTTPProxy 243

Apply the timeout overlay secrets in tap-values.yaml 244

Configuring skipping TLS verification for access to Source Controller 244

Enabling TLS for Accelerator Server 244

Configuring skipping TLS verification of Engine calls for Accelerator Server 245

Enabling TLS for Accelerator Engine 245

Tanzu Application Platform v1.5

VMware by Broadcom 8

Next steps 246

Use Grype in offline and air-gapped environments 246
Host the Grype vulnerability database 246

To enable Grype in offline air-gapped environments 247

Configure Grype environmental variables 248

Troubleshooting 248

ERROR failed to fetch latest cli version 248

Solution 248

Database is too old 249

Solution 249

Vulnerability database is invalid 250

Solution 250

Debug Grype database in a cluster 252

Grype package overlays are not applied to scantemplates created by Namespace

Provisioner
253

Set up developer namespaces to use your installed packages 253
Additional configuration for testing and scanning 253

Legacy namespace setup 253

Next steps 253

Install Tanzu Application Platform (AWS) 253

Install Tanzu Application Platform (AWS) 254

Create AWS Resources for Tanzu Application Platform 254
Prerequisites 255

Export environment variables 255

Create an EKS cluster 255

Install EBS CSI driver 256

Create the container repositories 256

Create the workload container repositories 256

Create IAM roles 257

Install Tanzu Application Platform package and profiles on AWS 261

Relocate images to a registry 261

Install your Tanzu Application Platform profile 264

Full profile (AWS) 265

(Optional) Configure your profile with full dependencies 267

Install your Tanzu Application Platform package 267

Install the full dependencies package 268

Access Tanzu Application Platform GUI 269

Exclude packages from a Tanzu Application Platform profile 269

Tanzu Application Platform v1.5

VMware by Broadcom 9

Next steps 269

View possible configuration settings for your package 269

Install individual packages 271

Install pages for individual Tanzu Application Platform packages 271

Verify the installed packages 272

Next steps 273

Set up developer namespaces to use your installed packages 273
Enable single user access 273

Enable additional users access with Kubernetes RBAC 274

Next steps 276

Install Tanzu Developer Tools for your VS Code 276
Prerequisites 277

Install 277

Configure 278

Uninstall 278

Next steps 278

Install Tanzu Application Platform (Azure) 278

Install Tanzu Application Platform (Azure) 279

Create Azure Resources for Tanzu Application Platform 279

Prerequisites 279

Create Azure Resource Group 280

Create an AKS cluster 280

Connect to the AKS cluster 280

Create the container repositories 281

Enable registry admin account 281

Next steps 281

Install Tanzu Application Platform package and profiles on Azure 281
Relocate images to a registry 282

Install your Tanzu Application Platform profile 285

Full profile (Azure) 286

(Optional) Additional Build Service configurations 288

(Optional) Configure your profile with full dependencies 288

(Optional) Configure your profile with the Jammy stack only 288

Install your Tanzu Application Platform package 288

Install the full dependencies package 289

Access Tanzu Application Platform GUI 289

Next steps 290

Tanzu Application Platform v1.5

VMware by Broadcom 10

View possible configuration settings for your package 290

Install individual packages 292
Install pages for individual Tanzu Application Platform packages 292

Verify the installed packages 293

Next steps 294

Set up developer namespaces to use your installed packages 294

Additional configuration for testing and scanning 294

Legacy namespace setup 294

Enable single user access 294

Enable additional users access with Kubernetes RBAC 296

Next steps 297

Install Tanzu Developer Tools for your VS Code 298
Prerequisites 298

Install 298

Configure 299

Uninstall 299

Next steps 299

Install Tanzu Application Platform (OpenShift) 299

Install Tanzu Application Platform (OpenShift) 300

Install Tanzu Application Platform on your OpenShift clusters 300
Relocate images to a registry 301

Install your Tanzu Application Platform profile 305

Full profile 305

(Optional) Additional Build Service configurations 308

(Optional) Configure your profile with full dependencies 308

(Optional) Configure your profile with the Jammy stack only 308

Security Context Constraints 308

(Optional) Exclude components that require RedHat OpenShift privileged SCC 308

Install your Tanzu Application Platform package 309

Install the full dependencies package 309

Access Tanzu Application Platform GUI 310

Exclude packages from a Tanzu Application Platform profile 310

View possible configuration settings for your package 311

Install individual packages 313
Install pages for individual Tanzu Application Platform packages 313

Verify the installed packages 314

Next steps 315

Tanzu Application Platform v1.5

VMware by Broadcom 11

Set up developer namespaces to use your installed packages 315
Additional configuration for testing and scanning 315

Legacy namespace setup 315

Next steps 315

Install Tanzu Developer Tools for your VS Code 315
Prerequisites 315

Install 316

Configure 316

Uninstall 317

Next steps 317

Custom Security Context Constraint details for Tanzu Application
Platform

317

Application Accelerator on OpenShift 317

Application Live View on OpenShift 318

Application Single Sign-On for OpenShift cluster 319

Contour for OpenShift cluster 320

Developer Conventions for OpenShift cluster 321

Tanzu Build Service for OpenShift cluster 322

Install Tanzu Application Platform (GitOps) 324
How Tanzu RI supports GitOps 324

GitOps benefits 324

GitOps install paths 325

Install Tanzu Application Platform (GitOps) 326

How Tanzu RI supports GitOps 326

GitOps benefits 326

GitOps install paths 327

Install Tanzu Application Platform through GitOps with External Secrets
Operator (ESO)

328

Prerequisites 328

Relocate images to a registry 328

(Optional) Install Tanzu Application Platform in an air-gapped environment 329

Create a new Git repository 330

Download and unpack Tanzu GitOps Reference Implementation (RI) 330

Create cluster configuration 330

Customize cluster configuration 331

Grant read access to secret data 331

Generate default configuration 332

Review and store Tanzu Sync config 332

Review and store Tanzu Application Platform installation config 335

Tanzu Application Platform v1.5

VMware by Broadcom 12

Configure and push the Tanzu Application Platform values 336

Deploy Tanzu Sync 338

Install Tanzu Application Platform through Gitops with Secrets
OPerationS (SOPS)

339

Prerequisites 339

Relocate images to a registry 340

(Optional) Install Tanzu Application Platform in an air-gapped environment 341

Create a new Git repository 341

Download and unpack Tanzu GitOps Reference Implementation (RI) 341

Create cluster configuration 342

Configure Tanzu Application Platform 342

Preparing sensitive Tanzu Application Platform values 342

Preparing non-sensitive Tanzu Application Platform values 344

Updating sensitive Tanzu Application Platform values 344

Generate Tanzu Application Platform installation and Tanzu Sync configuration 345

Deploy Tanzu Sync 346

Install individual packages 347

Install pages for individual Tanzu Application Platform packages 347

Verify the installed packages 348

Next steps 349

Set up developer namespaces to use your installed packages 349
Additional configuration for testing and scanning 349

Legacy namespace setup 349

Next steps 349

Install Tanzu Developer Tools for your VS Code 349
Prerequisites 349

Install 350

Configure 350

Uninstall 351

Next steps 351

Tanzu GitOps RI Reference Documentation 351
Tanzu Sync Carvel Application 352

Choosing SOPS or ESO 352

Git Repository structure 353

Configuration of Tanzu Sync without helper scripts 354

Tanzu Sync Scripts 355

Customize your package installation 355
Customize a package that was manually installed 356

Tanzu Application Platform v1.5

VMware by Broadcom 13

Customize a package that was installed by using a profile 356

Upgrade your Tanzu Application Platform 357
Prerequisites 357

Update the new package repository 357

Perform the upgrade of Tanzu Application Platform 358

Upgrade instructions for Profile-based installation 358

Upgrade the full dependencies package 359

Multicluster upgrade order 359

Upgrade instructions for component-specific installation 359

Verify the upgrade 360

Opt out of telemetry collection 361
Turn off standard CEIP telemetry collection 361

Turn off Pendo telemetry collection 362

Opt in or opt out of Pendo telemetry for Tanzu Application Platform GUI 362
Opt in or opt out of Pendo telemetry from Tanzu Application Platform GUI 363

Request to delete your anonymized data 364

Overview of security and compliance in Tanzu Application Platform 365

Overview of TLS and certificates in Tanzu Application Platform 365

Secure Ingress certificates in Tanzu Application Platform 365

A shared ingress issuer 365

Component-level configuration 366

Shared Ingress issuer in Tanzu Application Platform 366

Prerequisites 366

Default 367

Limitations of the default, self-signed issuer 367

Trusting the default, self-signed issuer 367

Replacing the default ingress issuer 367

Deactivating TLS for ingress 370

Overriding TLS for components 371

Use wildcard certificates in Tanzu Application Platform 371

Plan Ingress certificates inventory in Tanzu Application Platform 371

Use custom CA certificates in Tanzu Application Platform 372

Use External Secrets Operator in Tanzu Application Platform (beta) 373
Where to start 373

Tanzu Application Platform v1.5

VMware by Broadcom 14

Install External Secrets Operator in Tanzu Application Platform 373
Prerequisites 374

Install 374

Integrate External Secrets Operator with HashiCorp Vault in Tanzu
Application Platform

375

Prerequisites 375

Set up the integration 375

Assess Tanzu Application Platform against the NIST 800-53 Moderate
Assessment

377

Harden Tanzu Application Platform 384
Objective 384

Scope 384

Identity and Access Management 385

Tanzu Application Platform GUI 385

Tanzu Application Platform GUI to Remote Kubernetes Cluster Authentication 385

Kubernetes Cluster Authentication and Authorization 386

Cryptographic Protections 386

Encryption of Data in Transit 386

Internal TLS Configuration 386

External TLS Configuration 386

Configuring TLS for Contour 387

Ingress Certificates 387

Encryption of Data At Rest 387

Ports and Protocols 387

Networking 388

Key Management 388

Logging 388

Deployment Architecture 388

Overview of multicluster Tanzu Application Platform 389
Next steps 389

Overview of multicluster Tanzu Application Platform 390

Next steps 390

Install multicluster Tanzu Application Platform profiles 390
Prerequisites 390

Multicluster Installation Order of Operations 391

Install View cluster 391

Install Build clusters 391

Install Run clusters 391

Tanzu Application Platform v1.5

VMware by Broadcom 15

Install Iterate clusters 392

Add Build, Run and Iterate clusters to Tanzu Application Platform GUI 392

Next steps 392

Get started with multicluster Tanzu Application Platform 392
Prerequisites 392

Start the workload on the Build profile cluster 393

Install Tanzu Application Platform Build profile 395
Prerequisites 395

Example values.yaml 395

Install Tanzu Application Platform Run profile 397

Install Tanzu Application Platform View profile 398

Install Tanzu Application Platform Iterate profile 399

Get started with Tanzu Application Platform 402

Prerequisites 402

Next steps 402

Get started with Tanzu Application Platform 403

Prerequisites 403

Next steps 403

Add testing and scanning to your application 404

What you will do 404

Overview 404

Install OOTB Supply Chain with Testing 404

Tekton pipeline config example 405

Workload update 406

Install OOTB Supply Chain with Testing and Scanning 406

Prerequisites 407

Workload update 409

Query for vulnerabilities 410

Next steps 410

Add testing and scanning to your application 410
What you will do 410

Overview 411

Install OOTB Supply Chain with Testing 411

Tekton pipeline config example 411

Workload update 412

Install OOTB Supply Chain with Testing and Scanning 413

Tanzu Application Platform v1.5

VMware by Broadcom 16

Prerequisites 413

Workload update 415

Query for vulnerabilities 417

Next steps 417

Configure image signing and verification in your supply chain 417
What you will do 417

Configure your supply chain to sign and verify your image builds 417

Next steps 419

Generate an application with Application Accelerator 419
Prerequisites 419

Generate a project using an Application Accelerator 419

Learn more about Application Accelerator 426

Next Steps 427

Generate an application with Application Accelerator 427
Prerequisites 427

Generate a project using an Application Accelerator 427

Learn more about Application Accelerator 433

Next Steps 434

Deploy an app on Tanzu Application Platform 434

What you will do 434

Prerequisites 434

Deploy your application using the Tanzu CLI 434

Prerequisites 434

Procedure 435

Add your application to Tanzu Application Platform GUI software catalog 437

Next steps 438

Iterate on your new app using Tanzu Developer Tools for IntelliJ 439
What you will do 439

Prepare your IDE to iterate on your application 439

Apply your application to the cluster 440

Enable Live Update for your application 440

Debug your application 442

Delete your application from the cluster 444

Next steps 444

Iterate on your new app using Tanzu Developer Tools for Visual Studio 444

What you will do 445

Prepare to iterate on your application 445

Prepare your project to support Live Update 445

Tanzu Application Platform v1.5

VMware by Broadcom 17

Set up the IDE 446

Apply your application to the cluster 446

Enable Live Update for your application 447

Debug your application 447

Delete your application from the cluster 448

Next steps 448

Iterate on your new app using Tanzu Developer Tools for VS Code 448
What you will do 448

Prepare your IDE to iterate on your application 448

Apply your application to the cluster 450

Enable Live Update for your application 450

Debug your application 451

Monitor your running application 452

Delete your application from the cluster 452

Next steps 453

Claim services on Tanzu Application Platform 453

What you will do 453

Overview 453

Prerequisites 454

Discover available services 454

Create a claim for a service instance 455

Learn more 456

Next steps 456

Consume services on Tanzu Application Platform 456
What you will do 456

Overview 456

Prerequisites 457

Discovering existing claims 457

Binding application workloads to the service instance 458

Learn more 459

Next steps 459

Deploy an air-gapped workload on Tanzu Application Platform 459

What you will do 459

Prerequisites 459

Create a workload from Git 459

Create a basic supply chain workload 460

Create a testing supply chain workload 461

Create a testing scanning supply chain workload 461

Tanzu Application Platform v1.5

VMware by Broadcom 18

Deploy Spring Cloud applications to Tanzu Application Platform 462

Deploy Spring Cloud applications to Tanzu Application Platform 462

Deploy Spring Cloud Config applications to Tanzu Application Platform 462

Identify Spring Cloud Config applications 462

Prerequisites 463

Configure workloads 463

Deploy Spring Cloud DiscoveryClient applications to Tanzu Application
Platform

463

Identify Spring Cloud DiscoveryClient applications 463

Prerequisites 464

Example: The Greeting application 464

Create a properties file in your configuration repository 464

Create Application Configuration Service resources 464

Create application workload resources 465

Using Spring Cloud Gateway for Kubernetes with Tanzu Application
Platform

467

Create a new application accelerator 467
What you will do 467

Set up Visual Studio Code 467

Create a simple project 468

Set up the project directory 468

Prepare the README.md and accelerator.yaml 468

Test the accelerator 469

Upload the project to a Git repository 470

Register the accelerator to the Tanzu Application Platform and verify project generation

output
470

Verify project generation output by using Tanzu Application Platform GUI 471

Learn more about Application Accelerator 473

Learn about Tanzu Application Platform 473

Application accelerators on Tanzu Application Platform 473
What are application accelerators 473

Working with accelerators 473

Next steps 474

Supply chains on Tanzu Application Platform 474
What are supply chains 474

A path to production 474

Available supply chains 474

Tanzu Application Platform v1.5

VMware by Broadcom 19

1: OOTB Basic (default) 474

2: OOTB Testing 475

3: OOTB Testing+Scanning 475

Next steps 476

Vulnerability scanning, storing, and viewing for your supply chain 476
Features 476

Components 477

Next steps 477

Troubleshooting 477

About consuming services on Tanzu Application Platform 477

Key concepts 477

Service instances 477

Service bindings 478

Resource claims 478

Services you can use with Tanzu Application Platform 478

User roles and responsibilities 478

Next steps 479

Set up Tanzu Service Mesh 480
Prerequisites 480

Activate your Tanzu Service Mesh subscription 480

Set up Tanzu Application Platform 481

End-to-end workload build and deployment scenario 481

Apply a workload resource to a build cluster 481

Configure egress for Tanzu Build Service 482

Create a global namespace 482

Run cluster deployment 482

Deployment use case: Hungryman 483

Create an initial set of configuration files from the accelerator 483

Apply the workload resources to your build cluster 483

Install service claim resources on the cluster 484

Run cluster deployment 485

Create a global namespace 486

Deployment use case: ACME Fitness Store 486

Deploy AppSSO 487

Apply the workload resources to your build cluster 488

Create the Istio ingress resources 488

Deploy Redis 488

Run cluster deployment 489

Deploy Spring Cloud Gateway 490

Install the Spring Cloud Gateway package 490

Tanzu Application Platform v1.5

VMware by Broadcom 20

Configure the Spring Cloud Gateway instance and route 490

Create a global namespace 491

Set up Tanzu Service Mesh 491

Prerequisites 491

Activate your Tanzu Service Mesh subscription 492

Set up Tanzu Application Platform 492

End-to-end workload build and deployment scenario 492

Apply a workload resource to a build cluster 492

Configure egress for Tanzu Build Service 493

Create a global namespace 494

Run cluster deployment 494

Deployment use case: Hungryman 494

Create an initial set of configuration files from the accelerator 495

Apply the workload resources to your build cluster 495

Install service claim resources on the cluster 495

Run cluster deployment 496

Create a global namespace 497

Deployment use case: ACME Fitness Store 498

Deploy AppSSO 498

Apply the workload resources to your build cluster 499

Create the Istio ingress resources 500

Deploy Redis 500

Run cluster deployment 500

Deploy Spring Cloud Gateway 501

Install the Spring Cloud Gateway package 501

Configure the Spring Cloud Gateway instance and route 502

Create a global namespace 502

Overview of workloads 504
Workload features 504

Available workload types 504

Overview of workloads 505
Workload features 505

Available workload types 505

Use web workloads 506
Overview 506

Use the web workload type 507

Calling web workloads within a cluster 507

Example of service to service communication for web and server workloads 507

Tanzu Application Platform v1.5

VMware by Broadcom 21

Use server workloads 508
Overview 508

Use the server workload type 508

server-specific workload parameters 509

Expose server workloads outside the cluster 509

Use server workloads 510

Overview 510

Use the server workload type 510

server-specific workload parameters 511

Expose server workloads outside the cluster 512

Expose HTTP server workloads outside the cluster manually 512

Define a workload type that exposes server workloads outside the
cluster

513

Expose workloads outside the cluster using AVI L4/L7 516

Use worker workloads 517
Overview 517

Use the worker workload type 517

Parameter reference 517
Workload Parameter Reference 518

List of Supply Chain Resources for Workload Object 518

source-provider 518

GitRepository 518

ImageRepository 519

MavenArtifact 520

source-tester 520

source-scanner 521

image-provider 521

Kpack Image 522

Runnable (TaskRuns for Dockerfile-based builds) 523

Pre-built image (ImageRepository) 523

image-scanner 523

config-provider 524

app-config 525

service-bindings 525

api-descriptors 526

config-writer (git or registry) 526

deliverable 527

Deliverable Parameters Reference 527

Tanzu Application Platform v1.5

VMware by Broadcom 22

List of Cluster Delivery Resources for Deliverable Object 527

source-provider 528

GitRepository 528

ImageRepository 528

app deployer 529

App 529

Use functions (Beta) 529
Overview 530

Supported languages and frameworks 530

Prerequisites 530

Create a function project from an accelerator 531

Create a function project using the Tanzu CLI 532

Deploy your function 532

Use functions (Beta) 533
Overview 534

Supported languages and frameworks 534

Prerequisites 534

Create a function project from an accelerator 535

Create a function project using the Tanzu CLI 536

Deploy your function 536

Troubleshoot Tanzu Application Platform 538

Troubleshoot Tanzu Application Platform 538

Troubleshoot installing Tanzu Application Platform 538
Developer cannot be verified when installing Tanzu CLI on macOS 538

Access .status.usefulErrorMessage details 539

“Unauthorized to access” error 539

“Serviceaccounts already exists” error 540

After package installation, one or more packages fails to reconcile 540

Failure to accept an End User License Agreement error 544

Ingress is broken on Kind cluster 544

Troubleshoot using Tanzu Application Platform 544
Use events to find possible causes 544

Missing build logs after creating a workload 544

Explanation 545

Solution 545

Workload creation stops responding with “Builder default is not ready” message 545

Explanation 545

Solution 545

Tanzu Application Platform v1.5

VMware by Broadcom 23

“Workload already exists” error after updating the workload 546

Explanation 546

Solution 546

Workload creation fails due to authentication failure in Docker Registry 546

Explanation 546

Solution 546

Telemetry component logs show errors fetching the “reg-creds” secret 547

Explanation 547

Solution 547

Debug convention might not apply 547

Explanation 547

Solution 547

Execute bit not set for App Accelerator build scripts 547

Explanation 547

Solution 547

“No live information for pod with ID” error 548

Explanation 548

Solution 548

“image-policy-webhook-service not found” error 548

Explanation 548

Solution 548

“Increase your cluster resources” error 548

Explanation 548

Solution 549

MutatingWebhookConfiguration prevents pod admission 549

Explanation 549

Solution 549

Priority class of webhook’s pods preempts less privileged pods 550

Explanation 550

Solution 550

CrashLoopBackOff from password authentication fails 550

Explanation 551

Solution 551

Password authentication fails 551

Explanation 551

Solution 551

metadata-store-db pod fails to start 552

Explanation 552

Solution 552

Missing persistent volume 552

Explanation 552

Solution 553

Tanzu Application Platform v1.5

VMware by Broadcom 24

Failure to connect Tanzu CLI to AWS EKS clusters 553

Explanation 553

Solution 553

Invalid repository paths are propagated 553

Explanation 553

Solution 554

x509: certificate signed by unknown authority 554

Explanation 554

Solution 554

Option 1: Configure the Shared Ingress Issuer’s Certificate Authority as a trusted

Certificate Authority
554

Option 2: Deactivate the shared ingress issuer 554

Troubleshoot Tanzu Application Platform components 555

Troubleshoot Tanzu GitOps Reference Implementation (RI) 555

Tanzu Sync application error 555

Tanzu Application Platform install error 556

Common errors 556

Given data value is not declared in schema 556

Uninstall your Tanzu Application Platform by using Tanzu CLI 557
Delete the packages 557

Delete the Tanzu Application Platform package repository 558

Remove Tanzu CLI, plug-ins, and associated files 558

Remove Cluster Essentials 558

Uninstall Tanzu Application Platform by using GitOps 559
Delete Tanzu Sync Application 559

Delete external resources (ESO installation only) 559

Remove the Tanzu CLI, plug-ins, and associated files 559

Remove Cluster Essentials 560

Component documentation for Tanzu Application Platform 561

Component documentation for Tanzu Application Platform 561

Overview of Tanzu CLI 561
Tanzu CLI 561

Tanzu CLI Architecture 561

Tanzu CLI Installation 561

Tanzu CLI Command Groups 562

Install New Plug-ins 562

Install Local Plug-ins 562

Tanzu Application Platform v1.5

VMware by Broadcom 25

Overview of Tanzu CLI 563
Tanzu CLI 563

Tanzu CLI Architecture 563

Tanzu CLI Installation 563

Tanzu CLI Command Groups 564

Install New Plug-ins 564

Install Local Plug-ins 564

Overview of Tanzu CLI plug-ins 565

Overview of Tanzu CLI plug-ins 565

Tanzu Apps CLI overview 565

About workloads 566

Tanzu Apps CLI overview 566
About workloads 566

Install Tanzu Apps CLI plug-in 566
Prerequisites 566

Install Tanzu Apps CLI plug-in 566

Uninstall Apps CLI plug-in 567

Change clusters 567

Override the default kubeconfig 567

Autocompletion 567

Bash 567

Zsh 568

Create workloads 568

Debug and troubleshoot workloads 568

Create a workload 568
Prerequisites 568

Get started with an example workload 568

Create a workload from GitHub repository 569

Create a workload from local source code 569

Exclude Files 570

Create workload from an existing image 570

Create a workload from Maven repository artifact 570

Working with YAML files 570

Bind a service to a workload 571

Next steps 572

Workload Examples 572
Custom registry credentials 572

Tanzu Application Platform v1.5

VMware by Broadcom 26

–live-update and –debug 573

Spring Boot application example 573

–export 574

–output 575

–sub-path 578

.tanzuignore file 579

Example of a .tanzuignore file 579

–dry-run 580

–update-strategy 580

Output workload after create/apply 582

Un-setting Git fields 587

Remove color from output 589

Debug workloads 590

Verify build logs 590

Check build logs 590

Get the workload status and details 590

Common workload errors 591

Local Path Development Error Cases 591

WorkloadLabelsMissing/SupplyChainNotFound 591

MissingValueAtPath 591

TemplateRejectedByAPIServer 592

Review supply chain steps 592

Additional Troubleshooting References 593

Tanzu Apps CLI commands 593

Tanzu Apps CLI commands 593

tanzu apps cluster-supply-chain 594

Tanzu apps cluster supply chain list 594

Default view 594

Tanzu apps cluster supply chain get 594

Default view 594

tanzu apps workload apply 595
Default view 595

Workload Apply flags 596

--annotation 596

--app / -a 597

--build-env 597

--debug 598

--dry-run 598

Tanzu Application Platform v1.5

VMware by Broadcom 27

--env / -e 599

--file, -f 600

--git-repo 600

--git-branch 600

--git-tag 601

--git-commit 601

--image / -i 601

--label / -l 602

--limit-cpu 603

--limit-memory 603

--live-update 604

--local-path 605

--maven-artifact 605

--maven-group 606

--maven-type 606

--maven-version 606

--source-image, -s 606

--namespace, -n 607

--output, -o 607

--param / -p 608

--param-yaml 609

--registry-ca-cert 610

--registry-password 610

--registry-token 610

--registry-username 610

--request-cpu 610

--request-memory 611

--service-account 611

--service-ref 612

--sub-path 613

--tail 614

--tail-timestamp 615

--type / -t 616

--update-strategy 616

--wait 617

--wait-timeout 617

--yes, -y 618

tanzu apps workload delete 618

Default view 618

Workload Delete flags 619

--all 619

Tanzu Application Platform v1.5

VMware by Broadcom 28

--file, -f 619

--namespace, -n 619

wait 619

--wait-timeout 619

--yes, -f 620

tanzu apps workload get 620

Default view 620

--export 622

--output/-o 622

--namespace/-n 624

tanzu apps workload list 625
Default view 625

>Workload List flags 625

--all-namespaces, -A 626

--app 626

--namespace, -n 626

--output, -o 626

tanzu apps workload tail 628
Default view 628

>Workload Tail flags 629

--component 629

--namespace, -n 629

--since 630

--timestamp, -t 631

Tanzu Accelerator CLI overview 632
Server API connections for operators and developers 632

Using TAP-GUI URL 632

Using Application Accelerator Server URL 632

Using “ACC_SERVER_URL” environment variable 633

Installation 633

Command reference 633

Tanzu Accelerator CLI overview 633

Server API connections for operators and developers 633

Using TAP-GUI URL 633

Using Application Accelerator Server URL 634

Using “ACC_SERVER_URL” environment variable 634

Installation 634

Command reference 634

Tanzu Application Platform v1.5

VMware by Broadcom 29

Install Tanzu Accelerator CLI 634
Prerequisites 635

Install 635

Command reference 635

Command reference 636

tanzu accelerator 636

Options 636

SEE ALSO 636

tanzu accelerator 637
Options 637

SEE ALSO 637

tanzu accelerator apply 637
tanzu accelerator apply 637

Synopsis 637

Examples 637

Options 638

Options inherited from parent commands 638

SEE ALSO 638

tanzu accelerator create 638

Synopsis 638

Examples 638

Options 638

Options inherited from parent commands 639

SEE ALSO 639

tanzu accelerator delete 639
Synopsis 639

Examples 639

Options 639

Options inherited from parent commands 639

SEE ALSO 639

tanzu accelerator fragment 639
Synopsis 639

Examples 640

Options 640

Options inherited from parent commands 640

SEE ALSO 640

Tanzu Application Platform v1.5

VMware by Broadcom 30

tanzu accelerator fragment create 640
Synopsis 640

Example 640

Options 641

Options inherited from parent commands 641

SEE ALSO 641

tanzu accelerator fragment delete 641
Synopsis 641

Examples 641

Options 641

Options inherited from parent commands 641

SEE ALSO 642

tanzu accelerator fragment get 642

Synopsis 642

Examples 642

Options 642

Options inherited from parent commands 642

SEE ALSO 642

tanzu accelerator fragment list 642

Synopsis 642

Examples 642

Options 643

Options inherited from parent commands 643

SEE ALSO 643

tanzu accelerator fragment update 643
Synopsis 643

Examples 643

Options 643

Options inherited from parent commands 644

SEE ALSO 644

tanzu accelerator generate 644
tanzu accelerator generate 644

Synopsis 644

Examples 644

Options 644

Options inherited from parent commands 644

SEE ALSO 645

tanzu accelerator generate-from-local 645

Tanzu Application Platform v1.5

VMware by Broadcom 31

Synopsis 645

Examples 645

Options 645

Options inherited from parent commands 646

SEE ALSO 646

tanzu accelerator get 646

Synopsis 646

Examples 646

Options 646

Options inherited from parent commands 646

SEE ALSO 646

tanzu accelerator list 647
Synopsis 647

Examples 647

Options 647

Options inherited from parent commands 647

SEE ALSO 647

tanzu accelerator push 647
tanzu accelerator push 647

Synopsis 647

Examples 648

Options 648

Options inherited from parent commands 648

SEE ALSO 648

tanzu accelerator update 648
Synopsis 648

Examples 648

Options 648

Options inherited from parent commands 649

SEE ALSO 649

Overview of the Tanzu Insight plug-in 649

Overview of the Tanzu Insight plug-in 649

Install your Tanzu Insight CLI plug-in 649

Configure your Tanzu Insight CLI plug-in 650
Set the target and certificate authority (CA) certificate 650

Single Cluster setup 650

Tanzu Application Platform v1.5

VMware by Broadcom 32

Set Target 650
Set the access token 651

Verify the connection 651

Query vulnerabilities, images, and packages 651
Supported use cases 651

Query using the Tanzu Insight CLI plug-in 652

Example 1: What packages and CVEs does a specific image contain? 652

Find the image digest using Supply Chain Tools - Scan 2.0 652

Find the image digest using Supply Chain Tools - Scan Pre-2.0 652

Query an image using the image digest value 653

Example 2: What packages and CVEs does my source code contain? 653

Find the source code organization, repository, and commit SHA 654

Query the source code using the repository and organization values 654

Query the source code using the commit SHA value 654

Example 3: What dependencies are affected by a specific CVE? 655

Add data 655

Add data to your Supply Chain Security Tools - Store 655
Supported formats and file types 655

Generate a CycloneDX file 656

Add data with the Tanzu Insight plug-in 656

Example #1: Add an image report 656

Example #2: Add a source report 657

Tanzu insight CLI plug-in command reference 657
Synopsis 657

Options 657

See also 657

tanzu insight config set-target 658
tanzu insight config set-target 658

Synopsis 658

Examples 658

Options 658

See also 658

tanzu insight config 658
Options 658

See also 658

tanzu insight health 659
tanzu insight health 659

Synopsis 659

Tanzu Application Platform v1.5

VMware by Broadcom 33

Examples 659

Options 659

See also 659

tanzu insight image 659
Options 659

See also 659

tanzu insight image add 659
Examples 660

Options 660

See also 660

tanzu insight image get 660
Synopsis 660

Examples 660

Options 660

See Also 660

tanzu insight image packages 660

Synopsis 660

Examples 661

Options 661

See also 661

tanzu insight image vulnerabilities 661
Examples 661

Options 661

See also 661

tanzu insight package 661
Options 661

See also 662

tanzu insight package get 662
Synopsis 662

Examples 662

Options 662

See also 662

tanzu insight package images 662
Synopsis 662

Examples 662

Options 663

See also 663

Tanzu Application Platform v1.5

VMware by Broadcom 34

tanzu insight package sources 663
Synopsis 663

Examples 663

Options 663

See also 663

tanzu insight package vulnerabilities 663

Synopsis 663

Examples 664

Options 664

See also 664

tanzu insight source 664
Options 664

See also 664

tanzu insight source add 664
Examples 664

Options 664

See also 665

tanzu insight source get 665
Synopsis 665

Examples 665

Options 665

See also 665

tanzu insight source packages 665
Synopsis 665

Examples 665

Options 666

See also 666

tanzu insight source vulnerabilities 666
Synopsis 666

Examples 666

Options 666

See also 666

tanzu insight version 666
Options 666

See also 666

tanzu insight vulnerabilities 667
Options 667

Tanzu Application Platform v1.5

VMware by Broadcom 35

See also 667

tanzu insight vulnerabilities get 667
Synopsis 667

Examples 667

Options 667

See also 667

tanzu insight vulnerabilities images 667
Synopsis 668

Examples 668

Options 668

See also 668

tanzu insight vulnerabilities packages 668
Synopsis 668

Examples 668

Options 668

See also 668

tanzu insight vulnerabilities sources 668
Synopsis 669

Examples 669

Options 669

See also 669

Overview of API Auto Registration 669

Overview 669

Getting started 669

Overview of API Auto Registration 670
Overview 670

Getting started 670

Key Concepts for API Auto Registration 670
API Auto Registration Architecture 670

APIDescriptor Custom Resource Explained 671

With an Absolute URL 672

With an Object Ref 672

With an HTTPPRoxy Object Ref 672

With a Knative Service Object Ref 672

With an Ingress Object Ref 673

APIDescriptor Status Fields 673

Install API Auto Registration 673

Tanzu Application Platform v1.5

VMware by Broadcom 36

Tanzu Application Platform prerequisites 673

Using with TLS 673

Install 674

Use API Auto Registration 676
Generate OpenAPI Spec 677

Using a Spring Boot app with a REST service 677

Using App Accelerator Template 677

Using an existing Spring Boot project using springdoc 677

Create APIDescriptor Custom Resource 677

Use Out-Of-The-Box (OOTB) supply chains 677

Using Custom Supply Chains 679

Using other GitOps processes or Manually 679

Additional configuration 679

Setting up CORS for OpenAPI specifications 679

Troubleshoot API Auto Registration 679
Debug API Auto Registration 680

APIDescriptor CRD shows message of connection refused but service is up and running 680

Configure CA Cert Data 680

APIDescriptor CRD shows message of x509: certificate signed by unknown authority but

service is running
681

Overview of API portal for VMware Tanzu 681
Getting started 681

Overview of API portal for VMware Tanzu 682

Getting started 682

Install API portal for VMware Tanzu 682
Prerequisites 682

Install 682

Update the installation values for the api-portal package 683

Overview of API Validation and Scoring 684

Overview of API Validation and Scoring 685

Install API Validation and Scoring 685
Prerequisites 685

Resource requirements 685

Relocate images to a registry 685

Add the API Validation and Scoring package repository 686

Install 687

Uninstall 688

Tanzu Application Platform v1.5

VMware by Broadcom 37

Use API Validation and Scoring to score your auto-registered API 688
Use API Validation and Scoring to score your auto-registered API 688

Application Accelerator Overview 689

Overview 689

Architecture 690

How does Application Accelerator work? 690

Next steps 690

Application Accelerator Overview 690
Overview 691

Architecture 691

How does Application Accelerator work? 691

Next steps 692

Install Application Accelerator 692

Prerequisites 692

Install 692

Configure properties and resource use 694

Configure Application Accelerator 695
Overview 695

Using a Git-Ops style configuration for deploying a set of managed accelerators 696

Functional and Organizational Considerations 696

Examples for creating accelerators 696

A minimal example for creating an accelerator 696

An example for creating an accelerator with customized properties 697

Creating a manifest with multiple accelerators and fragments 698

Configure tap-values.yaml with Git credentials secret 698

Using non-public repositories 699

Examples for a private Git repository 700

Example using http credentials 700

Example using http credentials with self-signed certificate 701

Example using SSH credentials 702

Examples for a private source-image repository 703

Example using image-pull credentials 703

Configure ingress timeouts when some accelerators take longer to generate 704

Configure an ingress timeout overlay secret for each HTTPProxy 704

Apply the timeout overlay secrets in tap-values.yaml 705

Configuring skipping TLS verification for access to Source Controller 705

Enabling TLS for Accelerator Server 705

Configuring skipping TLS verification of Engine calls for Accelerator Server 706

Enabling TLS for Accelerator Engine 706

Tanzu Application Platform v1.5

VMware by Broadcom 38

Next steps 706

Create accelerators 707
Prerequisites 707

Getting started 707

Publishing the new accelerator 707

Using local-path for publishing accelerators 708

Using accelerator fragments 709

Deploying accelerator fragments 710

Next steps 711

Create accelerators 711

Prerequisites 711

Getting started 712

Publishing the new accelerator 712

Using local-path for publishing accelerators 713

Using accelerator fragments 714

Deploying accelerator fragments 715

Next steps 716

Create an accelerator.yaml file in Application Accelerator 716
Accelerator 716

Accelerator metadata 717

Accelerator options 717

DependsOn and multi-value dataType 718

Examples 719

Engine 721

Engine example 721

Engine notation descriptions 722

Advanced accelerator use 722

Application Accelerator sample accelerator.yaml file 722

Use transforms in Application Accelerator 725

Why transforms? 726

Combining transforms 726

Chain 727

Merge 727

Shortened notation 728

A Combo of one? 729

A common pattern with merge transforms 730

Conditional transforms 730

Conditional ‘Merge’ transform 731

Tanzu Application Platform v1.5

VMware by Broadcom 39

Conditional ‘Chain’ transform 731

A small gotcha with using conditionals in merge transforms 732

Merge conflict 733

Resolving merge conflicts 733

File ordering 734

Next steps 734

Use custom types in Application Accelerator 734
Limitations 736

Interaction with SpEL 737

Interaction with Composition 737

Use fragments in Application Accelerator 737
Introduction 737

Introducing fragments 737

| The imports section explained 738

Using the InvokeFragment Transform 739

Back to the imports section 739

Using dependsOn in the imports section 740

Discovering fragments using Tanzu CLI accelerator plug-in 741

Transforms reference 744

Available transforms 744

See also 745

Transforms reference 745

Available transforms 745

See also 745

Combo transform 745
Syntax reference 746

Behavior 746

Examples 748

Example 1 748

Example 2 748

Include transform 749
Syntax reference 749

Examples 749

See also 749

Exclude transform 749

Syntax reference 750

Examples 750

Tanzu Application Platform v1.5

VMware by Broadcom 40

See also 750

Merge transform 750
Syntax reference 751

See also 751

Chain transform 751
Syntax reference 751

Behavior 752

Let transform 752
Syntax reference 752

Execution 752

See also 753

Loop transform 753
Syntax reference 753

Behavior 753

Examples 753

Example 1 754

Example 2 754

Example 3 755

InvokeFragment transform 755

Syntax reference 755

Behavior 755

Variables 756

Files 756

Examples 756

See also 758

ReplaceText transform 758

Syntax reference 758

Examples 759

Example 1 759

Example 2 759

Example 3 759

Example 4 759

See also 760

RewritePath transform 760
Syntax reference 760

Examples 760

Example 1 761

Tanzu Application Platform v1.5

VMware by Broadcom 41

Example 2 761

Example 3 761

Interaction with Chain and Include 761

See also 761

OpenRewriteRecipe transform 761
Syntax reference 762

Example 762

YTT transform 762
Syntax reference 762

Execution 763

Examples 763

Basic invocation 763

Using extraArgs 764

UseEncoding transform 764
Syntax reference 764

Example use 764

See also 765

UniquePath transform 765
Syntax reference 765

Examples 765

See also 765

Conflict resolution 765

Syntax reference 766

Combo 766

Chain 766

Available strategies 767

See also 767

Provenance transform 767
Syntax reference 767

Behavior 767

Use SpEL with Application Accelerator 768
Variables 768

Implicit variables 769

Conditionals 769

Rewrite path concatenation 769

Regular expressions 770

Dealing with string arrays 770

Tanzu Application Platform v1.5

VMware by Broadcom 42

Accelerator custom resource definition 770
Overview 770

API definitions 771

Accelerator CRD Spec 771

Fragment CRD Spec 772

Excluding files 773

Test accelerators in Application Accelerator 773
Generating a project from local sources 773

CI/CD Pipeline 774

(Optional) Getting the Tanzu CLI in a CI/CD pipeline 774

Use the Provenance transform in Application Accelerator 775

Use the Application Accelerator Visual Studio Code extension 775
Dependencies 776

Installation 776

Configure the extension 776

Using the extension 777

Retrieving the URL for the Tanzu Application Platform GUI 778

Download and Install Self-Signed Certificates from the Tanzu Application Platform GUI 778

Prerequisites 778

Procedure 778

Use the Application Accelerator IntelliJ plug-in 779
Dependencies 779

Installation 779

Configure the plug-in 780

Using the plug-in 781

Retrieving the URL for the Tanzu Application Platform GUI 783

Download and Install Self-Signed Certificates 783

Prerequisites 783

Application Accelerator best practices 784

Best practices for using accelerators 784
Benefits of using an accelerator 785

Design considerations 785

Housekeeping rules 785

Tests 786

Application skeleton 786

Best practices for using fragments 786
Benefits of using Fragment 786

Tanzu Application Platform v1.5

VMware by Broadcom 43

Design considerations 786

Housekeeping rules 787

Troubleshoot Application Accelerator 787

Installation issues 787

Verify installed packages 787

Look at resource events 788

Development issues 788

Failure to generate a new project 788

URI is not absolute error 788

Accelerator authorship issues 789

General tips 789

Speed up the reconciliation of the accelerator 789

Use a source image with local accelerator source directory 789

Expression evaluation errors 790

Operations issues 790

Accelerator persists in Tanzu Application Platform GUI after deletion 790

Check status of accelerator resources 790

When Accelerator ready column is blank 791

When Accelerator ready column is false 791

REASON: GitRepositoryResolutionFailed 791

REASON: GitRepositoryResolutionPending 792

REASON: ImageRepositoryResolutionPending 793

Overview of Application Configuration Service for VMware Tanzu 794

Overview of Application Configuration Service for VMware Tanzu 794

Install Application Configuration Service for VMware Tanzu 795
Prerequisites 795

Install 795

Overview of Application Live View 796
Value proposition 796

Intended audience 796

Supported application platforms 797

Multicloud compatibility 797

Deployment 797

Overview of Application Live View 797
Value proposition 797

Intended audience 797

Supported application platforms 797

Multicloud compatibility 797

Tanzu Application Platform v1.5

VMware by Broadcom 44

Deployment 798

Install Application Live View 798
Overview 798

Prerequisites 798

Install Application Live View 799

Install Application Live View back end 799

Install Application Live View connector 803

Install Application Live View conventions 806

Install Application Live View APIServer 808

Deprecation notice for the sslDisabled key 810

Configure security and access control in Application Live View 810
Security and access control overview 810

Prerequisites 811

Configure improved security 812

Application Live View connector 812

Application Live View UI plug-in 814

Enabling Spring Boot apps for Application Live View 815
Enable Spring Boot apps 815

Enable Spring Boot 3 apps 816

Enable Spring Cloud Gateway apps 817

Workload image NOT built with Tanzu Build Service 817

Enabling Spring Boot apps for Application Live View 818

Enable Spring Boot apps 818

Enable Spring Boot 3 apps 818

Enable Spring Cloud Gateway apps 819

Workload image NOT built with Tanzu Build Service 820

Enable Steeltoe apps for Application Live View 820
Extend .NET Core Apps to Steeltoe Apps 820

Enable Application Live View on Steeltoe Tanzu Application Platform workload 821

Application Live View convention server 822
Role of Application Live View convention 822

Description of metadata labels 823

Verify the applied labels and annotations 823

Custom configuration for the connector 825
Configure the developer workload in Tanzu Application Platform 825

Deploy the workload 826

Verify the label has propagated through the Supply Chain 826

Tanzu Application Platform v1.5

VMware by Broadcom 45

Custom configuration for application actuator endpoints 828

Scaling Knative apps in Tanzu Application Platform 830
Configure the developer workload in Tanzu Application Platform 831

Deploy the workload 831

Verify the annotation has propagated through the Supply Chain 831

Application Live View on OpenShift 833

Support for polyglot apps with Application Live View 833

Application Live View internal architecture 834
Component overview 834

Design flow 835

Troubleshoot Application Live View 835
App is not visible in Application Live View UI 835

App is not visible in Application Live View UI with actuator endpoints enabled 836

The UI does not show any information for an app with actuator endpoints exposed at root 837

No information shown on the Health page 837

Stale information in Application Live View 837

Unable to find CertificateRequests in Application Live View convention 837

No live information for pod with ID 838

Cannot override the actuator path in the labels 838

Cannot configure SSL in appliveview-connector 838

Verify the labels in your workload YAML file 838

Override labels set by the Application Live View convention service 839

Configure labels when management.endpoints.web.base-path and

management.server.port are set
839

Uninstall Application Live View 840

Overview of Application Single Sign-On for VMware Tanzu® 3.1 840

Overview of Application Single Sign-On for VMware Tanzu® 3.1 840

Get started with Application Single Sign-On 841
Prerequisites 841

Key concepts 841

Next steps 842

Get started with Application Single Sign-On 842
Prerequisites 842

Key concepts 843

Next steps 844

Tanzu Application Platform v1.5

VMware by Broadcom 46

Provision an AuthServer 844
Prerequisites 844

Provision an AuthServer 844

The AuthServer spec in detail 846

Metadata 846

TLS & issuer URI 846

Token Signature 847

Identity providers 847

Configuring storage 848

Provision a client registration 848

Prerequisites 848

Creating the ClientRegistration 848

Validating that the credentials are working 849

Deploy an application with Application Single Sign-On 850
Prerequisites 850

Deploy a minimal application 850

Deployment manifest 853

OAuth2-Proxy 853

Application Single Sign-On for Platform Operators 853

Application Single Sign-On for Platform Operators 853

Install Application Single Sign-On 854
What’s inside 854

Prerequisites 854

Installation 854

Configure Application Single Sign-On 854
TAP values 854

domain_name 855

domain_template 855

default_authserver_clusterissuer 855

ca_cert_data 855

kubernetes_distribution 856

Configuration schema 856

RBAC for Application Single Sign-On 857

Application Single Sign-On for OpenShift clusters 859

Upgrade Application Single Sign-On 860

Migration guides 860

Tanzu Application Platform v1.5

VMware by Broadcom 47

v3.0.0 to v3.1.0 860

v2.0.0 to v3.0.0 861

v1.0.0 to v2.0.0 861

Uninstall Application Single Sign-On 862

Application Single Sign-On for Service Operators 862

Application Single Sign-On for Service Operators 863

Annotations and labels for AppSSO 863
Labels 863

Allowing client namespaces 864

Unsafe configuration 864

Unsafe identity provider 864

Unsafe issuer URI 865

Issuer URI and TLS for AppSSO 865

Overview 865

Configure TLS by using a (Cluster)Issuer 866

Configure TLS by using a Certificate 867

Configure TLS by using a Secret 868

Deactivate TLS (unsafe) 868

Allow Workloads to trust a custom CA AuthServer 868

TLS scenario guides for AppSSO 869
Overview 869

Prerequisites 869

Using a default issuer 870

Using a ClusterIssuer 871

Using an Issuer 872

Using an existing Certificate 873

Using an existing TLS certificate 876

Using an existing wildcard TLS certificate 878

CA certificates for AppSSO 882

Configure workloads to trust a custom CA 883
Overview 883

Exporting custom CA certificate Secret 883

Importing custom CA certificate Secret 884

Appending custom CA certificate Secret reference to Workload 884

Identity providers for AppSSO 884

OpenID Connect providers 885

Tanzu Application Platform v1.5

VMware by Broadcom 48

OpenID external groups mapping 886

Note for registering a client with the identity provider 887

Supported token signing algorithms 887

LDAP 888

LDAP external groups mapping 889

ActiveDirectory group search 890

“Classic” group search 891

Direct group search only 891

Groups in sub-trees 892

Nested group search 893

SAML (experimental) 894

SAML external groups mapping 895

Note for registering a client with the identity provider 895

Internal users 895

Generating a bcrypt hash from a plain-text password 896

Roles claim filtering 896

Roles claim filters 897

Roles claim filter examples 897

Roles claim mapping and filtering explained 898

Restrictions 899

Configure authorization for AppSSO 899
Overview 899

Retrieving external groups or roles 900

Mapping individual roles into authorization scopes 900

Default authorization scopes 901

Public clients and CORS for AppSSO 902

Overview 902

CORS configuration 903

Client authentication 903

References 904

Token settings for Application Single Sign-On 904
Token expiry 904

Constraints 905

Verify token settings 905

Token signatures for AppSSO 909

Overview 909

Token signature 101 909

Token signature of an AuthServer 909

Creating keys 910

Tanzu Application Platform v1.5

VMware by Broadcom 49

Using secretgen-controller 911

Using OpenSSL 912

Rotating keys 913

Revoking keys 913

References and further reading 914

Storage for AppSSO 914

Overview 914

Securing Data at rest 915

Configuring Redis 915

Configuring Redis Server CA certificate 915

Configuring a Redis Secret 915

Attaching storage to an AuthServer 916

Inspecting storage of an AuthServer 916

Storage provided by default 916

Data types 917

Known limitations of storage providers 917

Redis Cluster 917

AuthServer readiness for AppSSO 918
Client registration check 918

Prerequisites 918

Define and apply a test client 918

Get an access token 919

Scale AuthServer for AppSSO 919

AuthServer audit logs for AppSSO 920
Overview 920

Authentication 920

Token flows 920

Application Single Sign-On for App Operators 921

Application Single Sign-On for App Operators 921

Configure AppSSO for workloads 921
The ClientRegistration resource 922

Redirect URIs 922

Authorization grant types 923

Client authentication method 923

Scopes 923

Requiring user consent 924

Claim a ClientRegistration 924

Tanzu Application Platform v1.5

VMware by Broadcom 50

Connecting a Workload to an AuthServer 925

Secure a Spring Boot workload 926
Get the sample application 926

Create a namespace for workloads 927

Create a ClientRegistration 927

Claim the ClientRegistration 928

Ensure Workload trusts AuthServer 928

Deploy the Workload 928

Cleaning up 929

Secure a single-page app workload 930

Get the sample application 930

Create a namespace for workloads 931

Create a ClientRegistration 931

Verify application authentication settings 932

Start a sample back end 932

Deploy the Workload 932

Clean up 933

Custom resource definitions (CRDs) 933

AuthServer API for AppSSO 934

Spec 934

Status & conditions 938

RBAC 940

Example 940

ClientRegistration API for AppSSO 941
Spec 942

Client authentication methods 942

Status & conditions 943

Example 944

Troubleshoot Application Single Sign-on 945

Why is my AuthServer not working? 945

Find all AuthServer related Kubernetes resources 945

Logs of all AuthServers 945

Change propagation 945

Misconfigured clientSecret 945

Problem: 945

Solution: 945

Misconfigured redirect URI 945

Problem: 946

Tanzu Application Platform v1.5

VMware by Broadcom 51

Solution: 946

Unsupported id_token_signed_response_alg with openid identityProviders 946

Problem: 946

Solution: 946

Misconfigured identity provider clientSecret 946

Problem: 946

Solution: 946

Missing scopes 946

Problem: 946

Solution: 946

Misconfigured sub claim 947

Problem: 947

Solution: 947

Known Issues 947
Unregistration by deletion 947

Limited number of ClientRegistrations per AuthServer 947

LetsEncrypt: domain name for Issuer URI limited to 64 characters maximum 947

Spring Boot 3 based Workloads and ClientRegistration resources 948

Overview of Default roles for Tanzu Application Platform 948

Default roles 948

Working with roles using the RBAC CLI plug-in 948

Disclaimer 949

Overview of Default roles for Tanzu Application Platform 949
Default roles 949

Working with roles using the RBAC CLI plug-in 949

Disclaimer 949

Set up authentication for your Tanzu Application Platform deployment 950
Tanzu Kubernetes Grid 950

Set up authentication for your Tanzu Application Platform deployment 950

Tanzu Kubernetes Grid 950

Install Pinniped on Tanzu Application Platform 950
Prerequisites 951

Environment planning 951

Install Pinniped Supervisor by using Let’s Encrypt 952

Create Certificates (letsencrypt or cert-manager) 952

Create Ingress resources 953

Create the pinniped-supervisor configuration 954

Apply the resources 955

Tanzu Application Platform v1.5

VMware by Broadcom 52

Switch to production issuer (letsencrypt or cert-manager) 955

Install Pinniped Supervisor Private CA 956

Create Certificate Secret 956

Create Ingress resources 957

Create the pinniped-supervisor configuration 958

Apply the resources 959

Install Pinniped Concierge 959

Log in to the cluster 960

Integrate your Azure Active Directory 960
Integrate Azure AD with a new or existing AKS without Pinniped 960

Prerequisites 960

Set up a platform operator 960

Set up a Tanzu Application Platform default role group 961

Set up kubeconfig 962

Integrate Azure AD with Pinniped 962

Prerequisites 962

Set up the Azure AD app 962

Set up the Tanzu Application Platform default role group 964

Set up kubeconfig 964

Role descriptions for Tanzu Application Platform 964
app-editor 964

app-viewer 965

app-operator 965

service-operator 965

workload 965

deliverable 965

Role descriptions for Tanzu Application Platform 966
app-editor 966

app-viewer 966

app-operator 966

service-operator 966

workload 967

deliverable 967

Detailed role permissions for Tanzu Application Platform 967
Native Kubernetes Resources 967

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true" 967

apps.tanzu.vmware.com/aggregate-to-app-operator: "true" 967

App Accelerator 967

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true" 967

Tanzu Application Platform v1.5

VMware by Broadcom 53

apps.tanzu.vmware.com/aggregate-to-app-operator: "true" 967

Cartographer 968

apps.tanzu.vmware.com/aggregate-to-app-editor: "true" 968

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true" 968

apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access: "true" 968

apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access 968

Cloud Native Runtimes 968

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true" 968

apps.tanzu.vmware.com/aggregate-to-app-operator: "true" 968

Convention Service 969

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true" 969

apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access: "true" 969

apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access 969

Developer Conventions 969

apps.tanzu.vmware.com/aggregate-to-app-editor: "true" 969

OOTB Templates 969

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true" 969

apps.tanzu.vmware.com/aggregate-to-workload: "true" 970

apps.tanzu.vmware.com/aggregate-to-deliverable: "true" 971

Service Bindings 971

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true" 971

Services Toolkit 971

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true" 971

apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access: "true" 971

apps.tanzu.vmware.com/aggregate-to-app-operator: "true" 971

apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access 971

Source Controller 972

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true" 972

Supply Chain Security Tools — Scan 972

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true" 972

apps.tanzu.vmware.com/aggregate-to-app-operator: "true" 972

Tanzu Build Service 972

apps.tanzu.vmware.com/aggregate-to-app-editor: "true" 972

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true" 972

apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access: "true" 972

apps.tanzu.vmware.com/aggregate-to-app-operator: "true" 972

apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access 972

Tekton 973

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true" 973

apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access: "true" 973

apps.tanzu.vmware.com/aggregate-to-app-operator: "true" 973

apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access 973

Tanzu Application Platform v1.5

VMware by Broadcom 54

Bind a user or group to a default role 973
Prerequisites 973

Install the Tanzu Application Platform RBAC CLI plug-in 974

(Optional) Use a different kubeconfig location 974

Add the specified user or group to a role 974

Get a list of users and groups from a role 975

Remove the specified user or group from a role 975

Error logs 975

Troubleshooting 976

Log in to Tanzu Application Platform by using Pinniped 977

Download the Pinniped CLI 977

Generate and distribute kubeconfig to users 977

Login with the provided kubeconfig 977

Additional resources about Tanzu Application Platform authentication
and authorization

978

Install 978

Additional resources about Tanzu Application Platform authentication
and authorization

978

Install 978

Install default roles independently for your Tanzu Application Platform 979
Prerequisites 979

Install 979

Overview of Bitnami Services 979
Getting started 980

Overview of Bitnami Services 980
Getting started 980

Install Bitnami Services 980
Prerequisites 981

Install Bitnami Services 981

Bitnami Services tutorials 982

Working with Bitnami Services 982

About this tutorial 982

Prerequisites 982

Concepts 982

Procedure 983

Step 1: Discover services 983

Tanzu Application Platform v1.5

VMware by Broadcom 55

Step 2: Claim services 983

Step 3: Bind the claim to a workload 984

Bitnami Services how-to guides 985

Configure private registry and VMware Tanzu Application Catalog
integration for Bitnami Services

985

Prerequisites 985

Procedure 985

Known issue 986

Workaround 987

Obtain credentials for VMware Tanzu Application Catalog integration
with Bitnami Services

987

Prerequisites 987

Obtain the Helm chart repository for VMware Tanzu Application Catalog 987

Obtain pull credentials for VMware Tanzu Application Catalog 988

Troubleshoot Bitnami Services 988

Private registry or VMware Tanzu Application Catalog configuration does not take effect 989

Bitnami Services reference 989

Dependencies for Bitnami Services 989

Package values for Bitnami Services 989
Globals 990

MySQL 990

PostgreSQL 991

RabbitMQ 992

Redis 992

Version matrix for Bitnami Services 993

Overview of Cartographer Conventions 994
Overview 994

About applying conventions 994

Applying conventions by using image metadata 994

Applying conventions without using image metadata 994

Overview of Cartographer Conventions 995

Overview 995

About applying conventions 995

Applying conventions by using image metadata 995

Applying conventions without using image metadata 996

Tanzu Application Platform v1.5

VMware by Broadcom 56

Install Cartographer Conventions 996

Create conventions with Cartographer Conventions 996
Introduction 996

Convention server 997

How the convention server works 997

Convention controller 997

How the convention services’s controller works 998

Getting started 998

Prerequisites 999

Define convention criteria 999

Define the convention behavior 1002

Matching criteria by labels or annotations 1002

Matching criteria by environment variables 1003

Matching criteria by image metadata 1003

Configure and install the convention server 1003

Deploy a convention server 1006

Next Steps 1008

Troubleshoot Cartographer Conventions 1008
No server in the cluster 1008

Symptoms 1009

Cause 1009

Solution 1009

Server with wrong certificates configured 1009

Symptoms 1009

Cause 1009

Solution 1009

Server fails when processing a request 1010

Symptoms 1010

Cause 1010

Solution 1010

Connection refused due to unsecured connection 1011

Symptoms 1011

Cause 1012

Solution 1012

Self-signed certificate authority (CA) not propagated to the Convention Service 1012

Symptoms 1012

Cause 1012

Solution 1012

No imagePullSecrets configured 1012

Symptoms 1013

Tanzu Application Platform v1.5

VMware by Broadcom 57

Cause 1013

Solution 1013

Convention Service Resources for Cartographer Conventions 1013

Overview 1013

Collecting Logs from the Controller 1015

Convention Service Resources for Cartographer Conventions 1015

Overview 1016

Collecting Logs from the Controller 1017

ImageConfig for Cartographer Conventions 1018
Overview 1018

PodConventionContextSpec for Cartographer Conventions 1019
Overview 1019

PodConventionContextStatus for Cartographer Conventions 1020

Overview 1020

PodConventionContext for Cartographer Conventions 1021
Overview 1021

PodConventionContext Objects 1021

PodConventionContext Structure 1022

ClusterPodConvention for Cartographer Conventions 1022

Overview 1022

Define conventions 1022

PodIntent for Cartographer Conventions 1022

Overview 1022

BOM for Cartographer Conventions 1023
Overview 1023

Structure 1023

Overview of cert-manager 1023

Overview of cert-manager 1024

Install cert-manager 1024

ACME challenges 1027
HTTP01 challenges can fail 1027

Overview of Cloud Native Runtimes 1028

Tanzu Application Platform v1.5

VMware by Broadcom 58

Overview of Cloud Native Runtimes 1028

Install Cloud Native Runtimes 1028
Prerequisites 1029

Install 1029

Overview of Contour 1032

Overview of Contour 1032

Install Contour 1033

Configure Cipher Suites and TLS version in Contour 1037

Configure Contour 1038
Smaller Clusters 1038

Larger Clusters 1038

Configuring Envoy as a Deployment 1038

Overview of Crossplane 1038

Crossplane with Tanzu Application Platform 1038

Getting started 1039

Overview of Crossplane 1039

Crossplane with Tanzu Application Platform 1039

Getting started 1039

Install Crossplane 1039

Prerequisites 1040

Install Crossplane 1040

Crossplane reference 1040

Package values for Crossplane 1041
Tanzu Application Platform configuration 1041

Standard Crossplane configuration 1041

Version matrix for Crossplane 1045

Crossplane limitations 1046
Cluster performance degradation due to large number of CRDs 1046

Troubleshoot Crossplane 1046

Crossplane Providers do not transition to HEALTHY=True if using a custom certificate for

your registry
1046

Crossplane Providers cannot communicate with systems using a custom CA 1047

Tanzu Application Platform v1.5

VMware by Broadcom 59

Developer Conventions overview 1048
Prerequisites 1048

Features 1048

Enabling Live Updates 1048

Enabling debugging 1049

Next steps 1050

Developer Conventions overview 1050
Prerequisites 1050

Features 1050

Enabling Live Updates 1050

Enabling debugging 1050

Next steps 1051

Install Developer Conventions 1051

Prerequisites 1051

Install 1051

Resource limits 1052

Uninstall 1052

Run Developer Conventions on an OpenShift cluster 1052

Eventing Overview 1053

Eventing Overview 1053

Install Eventing 1053
Prerequisites 1053

Install 1054

Overview of Flux CD Source Controller 1055

Overview of Flux CD Source Controller 1055

Install Flux CD Source Controller 1055

Prerequisites 1056

Configuration 1056

Installation 1056

Try fluxcd-source-controller 1057

Documentation 1058

Overview of Learning Center for Tanzu Application Platform 1058

Use cases 1059

Use case requirements 1059

Platform architectural overview 1060

Tanzu Application Platform v1.5

VMware by Broadcom 60

Next steps 1061

Overview of Learning Center for Tanzu Application Platform 1061
Use cases 1061

Use case requirements 1062

Platform architectural overview 1063

Next steps 1064

Install Learning Center 1064
Prerequisites 1064

Install Learning Center 1065

Install the Self-Guided Tour Training Portal and Workshop 1067

Supported Learning Center Values Configuration 1067

About Learning Center workshops 1068

Get started with Learning Center 1071

Installing Learning Center 1071

Get started 1071

Get started with Learning Center 1071

Installing Learning Center 1071

Get started 1072

Install and configure the Learning Center operator 1072

Installing and setting up Learning Center operator 1072

Cluster pod security policies 1073

Specifying the ingress domain 1073

Set the environment variable manually 1074

Enforcing secure connections 1074

Configuration YAML 1074

Create the TLS secret manually 1075

Specifying the ingress class 1075

Configuration YAML 1075

Set the environment variable manually 1075

Trusting unsecured registries 1076

Get started with Learning Center workshops 1076
Creating the workshop environment 1076

Requesting a workshop instance 1077

Deleting the workshop instance 1078

Deleting the workshop environment 1078

Get started with Learning Center training portals 1078
Working with multiple workshops 1079

Tanzu Application Platform v1.5

VMware by Broadcom 61

Loading the workshop definition 1079

Creating the workshop training portal 1080

Accessing workshops via the web portal 1081

Deleting the workshop training portal 1083

Delete Learning Center 1083

Local install guides 1084

Local install guides 1084

Install Learning Center on Kind 1084
Prerequisites 1084

Kind cluster creation 1085

Ingress controller with DNS 1085

Install carvel tools 1086

Install Tanzu package repository 1086

Create a configuration YAML file for Learning Center package 1087

Using a nip.io DNS address 1087

Install Learning Center package onto a Kubernetes cluster 1088

Install workshop tutorial package onto a Kubernetes cluster 1088

Run the workshop 1088

Trusting insecure registries 1088

Install Learning Center on Minikube 1089
Trusting insecure registries 1090

Prerequisites 1090

Ingress controller with DNS 1090

Install carvel tools 1091

Install Tanzu package repository 1091

Create a configuration YAML file for the Learning Center package 1092

Using a nip.io DNS address 1092

Install Learning Center package onto a minikube cluster 1093

Install workshop tutorial package onto a minikube cluster 1093

Run the workshop 1093

Working with large images 1093

Limited resource availability 1093

Storage provisioner issue 1094

Create workshops for Learning Center 1094

Create workshops for Learning Center 1094

Configure your Learning Center workshop 1095
Specifying structure of the content 1095

Tanzu Application Platform v1.5

VMware by Broadcom 62

Specifying the runtime configuration 1096

Next steps 1097

Create the image for your Learning Center workshop 1097

Templates for creating a workshop 1097

Workshop content directory layout 1098

Directory for workshop exercises 1099

Working on your Learning Center workshop content 1099
Deactivating reserved sessions 1099

Live updates to the content 1100

Custom workshop image changes 1101

Custom workshop image overlay 1101

Changes to workshop definition 1102

Local build of workshop image 1102

Build an image for your Learning Center workshop 1103
Structure of the Dockerfile 1103

Custom workshop base images 1103

Installing extra system packages 1104

Installing third-party packages 1104

Writing instructions for your Learning Center workshop 1105

Annotation of executable commands 1105

Annotation of text to be copied 1106

Extensible clickable actions 1107

Supported workshop editor 1109

Clickable actions for the dashboard 1109

Clickable actions for the editor 1110

Clickable actions for file download 1112

Clickable actions for the examiner 1113

Clickable actions for sections 1115

Overriding title and description 1116

Escaping of code block content 1116

Interpolation of data variables 1116

Adding custom data variables 1117

Passing environment variables 1118

Handling embedded URL links 1118

Conditional rendering of content 1119

Embedding custom HTML content 1119

Automate your Learning Center workshop runtime 1120
Predefined environment variables 1120

Tanzu Application Platform v1.5

VMware by Broadcom 63

Running steps on container start 1121

Running background applications 1121

Terminal user shell environment 1122

Overriding terminal shell command 1122

Add presenter slides to your Learning Center workshop 1123
Use reveal.js presentation tool 1123

Use a PDF file for presenter slides 1123

Requirements for Learning Center in an air-gapped environment 1123
Workshop yaml changes 1123

Self-signed certificates 1124

Internet dependencies 1124

Define custom resources for Learning Center 1124
Workshop definition resource 1124

Workshop environment resource 1125

Workshop request resource 1125

Workshop session resource 1126

Training portal resource 1126

System profile resource 1126

Loading the workshop CRDs 1127

Define custom resources for Learning Center 1127
Workshop definition resource 1127

Workshop environment resource 1128

Workshop request resource 1129

Workshop session resource 1129

Training portal resource 1129

System profile resource 1130

Loading the workshop CRDs 1130

Configure the Workshop resource 1130
Workshop title and description 1131

Downloading workshop content 1132

Container image for the workshop 1134

Setting environment variables 1135

Overriding the memory available 1136

Mounting a persistent volume 1136

Resource budget for namespaces 1137

Patching workshop deployment 1139

Creation of session resources 1140

Overriding default role-based access control (RBAC) rules 1141

Tanzu Application Platform v1.5

VMware by Broadcom 64

Running user containers as root 1143

Creating additional namespaces 1143

Shared workshop resources 1146

Workshop pod security policy 1147

Custom security policies for user containers 1149

Defining additional ingress points 1150

External workshop instructions 1152

Deactivating workshop instructions 1153

Enabling the Kubernetes console 1153

Enabling the integrated editor 1154

Enabling workshop downloads 1155

Enabling the test examiner 1155

Enabling session image registry 1156

Enabling ability to use Docker 1158

Enabling WebDAV access to files 1159

Customizing the terminal layout 1160

Adding custom dashboard tabs 1160

Configure the WorkshopEnvironment resource 1161
Specifying the workshop definition 1162

Overriding environment variables 1162

Overriding the ingress domain 1163

Controlling access to the workshop 1164

Overriding the login credentials 1165

Additional workshop resources 1165

Creation of workshop instances 1166

Configure the WorkshopRequest resource 1167

Specifying workshop environment 1167

Specifying required access token 1168

Configure the TrainingPortal resource 1168

Specifying the workshop definitions 1168

Limit the number of sessions 1169

Capacity of individual workshops 1169

Set reserved workshop instances 1170

Override initial number of sessions 1170

Setting defaults for all workshops 1171

Set caps on individual users 1171

Expiration of workshop sessions 1172

Updates to workshop environments 1173

Override the ingress domain 1174

Override the portal host name 1175

Tanzu Application Platform v1.5

VMware by Broadcom 65

Set extra environment variables 1176

Override portal credentials 1176

Control registration type 1177

Specify an event access code 1178

Make a list of workshops public 1178

Use an external list of workshops 1179

Override portal title and logo 1179

Allow the portal in an iframe 1180

Collect analytics on workshops 1180

Track using Google Analytics 1182

Configure the SystemProfile resource 1183
Operator default system profile 1183

Defining configuration for ingress 1183

Defining container image registry pull secrets 1184

Defining storage class for volumes 1184

Defining storage group for volumes 1185

Restricting network access 1186

Running Docker daemon rootless 1186

Overriding network packet size 1187

Image registry pull through cache 1188

Setting default access credentials 1189

Overriding the workshop images 1189

Tracking using Google Analytics 1190

Overriding styling of the workshop 1191

Additional custom system profiles 1192

Configure the WorkshopSession resource 1192

Specifying the session identity 1192

Specifying the login credentials 1193

Specifying the ingress domain 1193

Setting the environment variables 1194

Enable anonymous access to a Learning Center training portal 1195
Enabling anonymous access 1195

Triggering workshop creation 1196

Enable anonymous access to a Learning Center training portal 1196
Enabling anonymous access 1197

Triggering workshop creation 1197

Use the Learning Center workshop catalog 1198
Listing available workshops 1198

Tanzu Application Platform v1.5

VMware by Broadcom 66

Use session management for your Learning Center workshops 1199
Deactivating portal user registration 1200

Requesting a workshop session 1200

Associating sessions with a user 1201

Listing all workshop sessions 1202

Use client authentication for Learning Center 1203

Querying the credentials 1203

Requesting an access token 1204

Refreshing the access token 1204

Troubleshoot Learning Center 1205

Training portal stays in pending state 1205

image-policy-webhook-service not found 1205

Updates to Tanzu Application Platform values file not reflected in Learning Center Training

Portal
1205

Increase your cluster’s resources 1206

Kubernetes Api Timeout error 1206

No URL returned to your trainingportal 1207

Overview of Namespace Provisioner 1207
Description 1207

Modes 1207

Provisioner Carvel application 1209

Desired namespaces 1209

Namespace Provisioner controller 1210

Overview of Namespace Provisioner 1210
Description 1210

Modes 1210

Provisioner Carvel application 1212

Desired namespaces 1212

Namespace Provisioner controller 1213

Get started with Namespace Provisioner 1213

Provision developer namespaces in Namespace Provisioner 1213
Prerequisite 1213

Manage a list of developer namespaces 1213

Enable additional users with Kubernetes RBAC 1216

Customize Namespace Provisioner installation 1216

Set up Out of the Box Supply Chains in Namespace Provisioner 1225

Out of the Box Supply Chain Basic 1225

Tanzu Application Platform v1.5

VMware by Broadcom 67

Out of the Box Supply Chain with Testing 1225

Add a Java Tekton Pipeline to your developer namespace 1226

Out of the Box Supply Chain with Testing and Scanning 1228

Add a Java Tekton Pipeline & Grype Scan Policy to your developer namespace 1228

Namespace Provisioner use cases and examples 1230

Use multiple Tekton pipelines and scan policies in the same namespace
in Namespace Provisioner

1230

Add Tekton pipelines and scan policies using namespace parameters in
Namespace Provisioner

1233

Work with private Git repositories in Namespace Provisioner 1236
Git Authentication for using a private Git repository 1236

Create the Git Authentication secret in tap-namespace-provisioning namespace 1236

Import from another namespace 1238

Git Authentication for Private Repository for Workloads and Supply chain 1239

Customize default resources in Namespace Provisioner 1242

Disable Grype install 1243

Customize service accounts 1244

Customize Limit Range defaults 1246

Update LimitRange defaults for all namespaces 1246

Update LimitRange defaults for a specific namespace 1246

Install multiple scanners in the developer namespace in Namespace
Provisioner

1248

Work with Git repositories in air-gapped environments with Namespace
Provisioner

1250

Git authentication 1250

Create the Git authentication secret in tap-namespace-provisioning namespace 1250

Import from another namespace 1252

Git authentication for workloads and supply chain 1253

Troubleshoot Namespace Provisioner 1258
Air-gapped installation 1258

View controller logs 1258

Provisioner application error 1258

Common errors 1258

Namespace selector malformed 1258

Debugging ytt templating errors in additional sources 1259

Unable to delete namespace 1259

Namespace Provisioner reference 1260

Tanzu Application Platform v1.5

VMware by Broadcom 68

Default resources 1260

Overview of Service Bindings 1260
Supported service binding specifications 1261

Overview of Service Bindings 1261
Supported service binding specifications 1261

Install Service Bindings 1261

Prerequisites 1262

Install Service Bindings 1262

Troubleshoot Service Bindings 1263
Collect logs 1263

Service Bindings resource specification 1265

Overview of Services Toolkit 1265
Capabilities 1265

Getting started 1265

How this documentation is organized 1266

Overview of Services Toolkit 1266

Capabilities 1266

Getting started 1267

How this documentation is organized 1267

Install Services Toolkit 1267
Prerequisites 1268

Install Services Toolkit 1268

Services Toolkit concepts 1268

The four levels of service consumption in Tanzu Application Platform 1269
Level 1 - direct bindings 1269

Level 2 - resource claims 1269

Level 3 - class claims and pool-based classes 1270

Level 4 - class claims and provisioner-based classes (aka “Dynamic Provisioning”) 1271

Summary 1272

Class claims compared to resource claims 1273
Similarities 1273

Using a ResourceClaim 1273

Using a ClassClaim 1274

Tutorials 1274

Tanzu Application Platform v1.5

VMware by Broadcom 69

Set up dynamic provisioning of service instances 1274
About this tutorial 1274

Prerequisites 1275

Scenario 1275

Concepts 1275

Procedure 1276

Step 1: Install the operator 1276

Step 2: Creating a CompositeResourceDefinition 1277

Step 3: Creating a Crossplane Composition 1279

About .spec.compositeTypeRef 1281

About .spec.resources 1282

The Object managed resource 1282

The patches section 1283

The readinessChecks section 1284

Check the namespace 1284

Step 4: Creating a provisioner-based class 1285

Step 5: Configure supporting RBAC 1285

Step 6: Verify your configuration 1287

Working with Bitnami Services 1287

Integrating cloud services into Tanzu Application Platform 1287
About this tutorial 1288

Concepts 1288

Procedure 1288

Step 1: Install a Provider 1289

Step 2: Create a CompositeResourceDefinition 1289

Step 3: Create a Composition 1289

Step 4: Create a provisioner-based ClusterInstanceClass 1290

Step 5: Configure RBAC 1290

Step 6: Verify your integration 1290

Abstracting service implementations behind a class across clusters 1291
About this tutorial 1291

Prerequisites 1291

Scenario 1291

Concepts 1292

Procedure 1293

Step 1: Set up the run-test cluster 1293

Step 2: Set up the run-production cluster 1293

Step 3: Create the class 1293

Step 4: Create and promote the workload and class claim 1295

Tanzu Application Platform v1.5

VMware by Broadcom 70

Using direct secret references 1296
About this tutorial 1296

Prerequisites 1296

Create a binding-compatible secret 1296

Services Toolkit how-to guides 1298

Authorize users and groups to claim from provisioner-based classes 1298

Authorize all users with the app-operator user role to claim from any namespace 1299

Authorize a user to claim from a specific namespace 1299

Revoke default authorization for claiming from the Bitnami Services classes 1301

Configure dynamic provisioning of AWS RDS service instances 1301

Prerequisites 1301

Configure dynamic provisioning 1301

Install the AWS Provider for Crossplane 1302

Create a CompositeResourceDefinition 1302

Create a Composition 1303

Make the service discoverable 1304

Configure RBAC 1304

Verify your configuration 1305

Configure dynamic provisioning of VMware SQL with Postgres for
Kubernetes service instances

1305

Prerequisites 1305

Configure dynamic provisioning 1306

Install the VMware Postgres Operator 1306

Set up the namespace 1306

Create a CompositeResourceDefinition 1306

Create a Composition 1307

Make the service discoverable 1310

Configure RBAC 1310

Verify your configuration 1311

Troubleshoot Services Toolkit 1311

Debug ClassClaim and provisioner-based ClusterInstanceClass 1312

Prerequisites 1312

Step 1: Inspect the ClassClaim, ClusterInstanceClass, and CompositeResourceDefinition 1312

Step 2: Inspect the Composite Resource, the Managed Resources and the underlying

resources
1313

Step 3: Inspect the events log 1313

Step 4: Inspect the secret 1313

Step 5: Contact support 1314

Unexpected error if additionalProperties is true in a CompositeResourceDefinition 1314

Tanzu Application Platform v1.5

VMware by Broadcom 71

Default cluster-admin IAM roles on GKE do not allow you to claim Bitnami Services 1314

Cannot claim from clusterinstanceclass when creating a ClassClaim 1315

Services Toolkit reference 1315

Services Toolkit API documentation 1315

ClusterInstanceClass and ClassClaim 1315
ClusterInstanceClass 1316

ClassClaim 1317

ResourceClaim and ResourceClaimPolicy 1319
ResourceClaim 1319

ResourceClaimPolicy 1320

InstanceQuery 1321
InstanceQuery 1321

RBAC 1321

Aggregation labels 1322

servicebinding.io/controller: “true” 1322

services.tanzu.vmware.com/aggregate-to-provider-kubernetes: “true” 1322

services.tanzu.vmware.com/aggregate-to-provider-helm: “true” 1323

The claim verb for ClusterInstanceClass 1323

Services Toolkit limitations 1324

Cannot claim and bind to the same service instance from across multiple namespaces 1324

Tanzu Service CLI plug-in 1324
tanzu service class 1324

tanzu service class list 1324

tanzu service class get 1325

tanzu service class-claim 1325

tanzu service class-claim create 1325

tanzu service class-claim get 1326

tanzu service class-claim delete 1326

tanzu service class-claim list 1327

tanzu service resource-claim 1327

tanzu service resource-claim create 1327

tanzu service resource-claim get 1328

tanzu service resource-claim delete 1328

tanzu service resource-claim list 1329

tanzu service claimable 1329

tanzu service claimable list 1329

Tanzu Application Platform v1.5

VMware by Broadcom 72

Services Toolkit terminology and user roles 1330
Terminology 1330

Service 1330

Service resource 1330

Provisioned service 1331

Service binding 1331

Service instance 1331

Service instance class 1331

Claim 1332

Claimable service instance 1332

Dynamic provisioning 1333

Service resource life cycle API 1333

Service cluster 1333

Workload cluster 1333

User roles 1333

Application developer (AD) 1333

Application operator (AO) 1333

Service operator (SO) 1334

Overview of Source Controller 1334

Overview of Source Controller 1334

Install Source Controller 1335
Prerequisites 1335

Install 1335

Troubleshoot Source Controller 1337
Collecting Logs from Source Controller Manager 1337

Source Controller reference 1338

ImageRepository 1338

MavenArtifact 1338

Overview of Spring Boot conventions 1339

Overview of Spring Boot conventions 1340

Install Spring Boot conventions 1341
Prerequisites 1341

Install Spring Boot conventions 1341

Configure and access Spring Boot actuators in Tanzu Application
Platform

1342

Workload-level configuration 1343

Tanzu Application Platform v1.5

VMware by Broadcom 73

Platform-level configuration 1344

Enable Application Live View for Spring Boot applications 1344
Verify the applied labels and annotations 1345

List of Spring Boot conventions 1349
Set a JAVA_TOOL_OPTIONS property for a workload 1349

Spring Boot convention 1350

Spring boot graceful shut down convention 1351

Spring Boot web convention 1352

Spring Boot Actuator convention 1353

Spring Boot Actuator Probes convention 1354

Service intent conventions 1355

Example 1356

Troubleshoot Spring Boot conventions 1357

Collect logs 1357

Overview of Spring Cloud Gateway for Kubernetes 1358

Overview of Spring Cloud Gateway for Kubernetes 1358

Install Spring Cloud Gateway for Kubernetes 1358
Prerequisites 1359

Install 1359

Overview of Supply Chain Choreographer for Tanzu 1360
Overview 1360

Out of the Box Supply Chains 1360

Overview of Supply Chain Choreographer for Tanzu 1361
Overview 1361

Out of the Box Supply Chains 1361

Install Supply Chain Choreographer 1361

Prerequisites 1362

Install 1362

Out of the Box Supply Chain Basic for Supply Chain Choreographer 1363

Prerequisites 1363

Developer Namespace 1364

Registries Secrets 1364

ServiceAccount 1365

RoleBinding 1365

Developer workload 1366

Tanzu Application Platform v1.5

VMware by Broadcom 74

Out of the Box Supply Chain Basic for Supply Chain Choreographer 1367
Prerequisites 1367

Developer Namespace 1367

Registries Secrets 1368

ServiceAccount 1368

RoleBinding 1369

Developer workload 1370

Install Out of the Box Supply Chain Basic for Supply Chain
Choreographer

1370

Prerequisites 1371

Install 1371

Out of the Box Supply Chain with Testing for Supply Chain
Choreographer

1373

Prerequisites 1374

Developer Namespace 1374

Updates to the developer Namespace 1375

Tekton/Pipeline 1375

Allow multiple Tekton pipelines in a namespace 1376

Developer Workload 1377

Out of the Box Supply Chain with Testing for Supply Chain
Choreographer

1378

Prerequisites 1378

Developer Namespace 1378

Updates to the developer Namespace 1379

Tekton/Pipeline 1379

Allow multiple Tekton pipelines in a namespace 1380

Developer Workload 1381

Install Out of the Box Supply Chain with Testing for Supply Chain
Choreographer

1382

Prerequisites 1382

Install 1382

Out of the Box Supply Chain with Testing and Scanning for Supply
Chain Choreographer

1385

Prerequisites 1386

Developer namespace 1386

Updates to the developer namespace 1387

ScanPolicy 1388

ScanTemplate 1389

Enable storing scan results 1389

Allow multiple Tekton pipelines in a namespace 1389

Tanzu Application Platform v1.5

VMware by Broadcom 75

Developer workload 1391

CVE triage workflow 1391

Scan Images using a different scanner 1391

Out of the Box Supply Chain with Testing and Scanning for Supply
Chain Choreographer

1392

Prerequisites 1392

Developer namespace 1393

Updates to the developer namespace 1393

ScanPolicy 1394

ScanTemplate 1395

Enable storing scan results 1396

Allow multiple Tekton pipelines in a namespace 1396

Developer workload 1397

CVE triage workflow 1397

Scan Images using a different scanner 1398

Install Out of the Box Supply Chain with Testing and Scanning for
Supply Chain Choreographer

1398

Prerequisites 1398

Install 1398

Out of the Box Templates for Supply Chain Choreographer 1401

Out of the Box Templates for Supply Chain Choreographer 1402

Install Out of the Box Templates 1402
Prerequisites 1403

Install 1403

Out of the Box Delivery Basic for Supply Chain Choreographer 1404
Prerequisites 1404

Using Out of the Box Delivery Basic 1404

More information 1405

Out of the Box Delivery Basic for Supply Chain Choreographer 1405
Prerequisites 1405

Using Out of the Box Delivery Basic 1405

More information 1406

Install Out of the Box Delivery Basic for Supply Chain Choreographer 1406
Prerequisites 1406

Install 1406

How-to guides for Supply Chain Choreographer for Tanzu 1407

Tanzu Application Platform v1.5

VMware by Broadcom 76

How-to guides 1407

Out of the Box Supply Chain with testing on Jenkins for Supply Chain
Choreographer

1408

Prerequisites 1408

Using the Out of the Box Jenkins Task 1408

1. Configuring a Jenkins job in an existing Jenkins Pipeline 1408

Example Jenkins Job 1408

2. Create a secret with auth credentials 1410

3. Create a Tekton pipeline 1410

4. Patching the default Service Account 1411

5. Create a Developer Workload 1412

Building container images with Supply Chain Choreographer 1414
Methods for building container images 1414

Building from source with Supply Chain Choreographer 1414

Git source 1414

Private GitRepository 1415

HTTP(S) Basic-authentication and Token-based authentication 1416

SSH authentication 1417

How it works 1418

Workload parameters 1418

Local source 1419

Authentication 1419

Developer 1420

Supply chain components 1420

How it works 1420

Maven Artifact 1421

Maven Repository Secret 1422

Use Dockerfile-based builds with Supply Chain Choreographer 1422

Use Dockerfile-based builds with Supply Chain Choreographer 1422
OpenShift 1423

Tanzu Build Service integration for Supply Chain Choreographer 1424

Configure and deploy to multiple environments with custom parameters 1426
Feature limits 1426

Using Carvel packages 1426

Using GitOps delivery with Flux CD 1426

Using GitOps delivery with Carvel App 1426

Configuring blue-green deployment 1426

Tanzu Application Platform v1.5

VMware by Broadcom 77

Carvel Package Supply Chains (alpha) 1426
Overview of the Carvel Package Supply Chains 1427

What do the Carvel Package Supply Chains Do? 1427

Installing the Carvel Package Supply Chains as an Operator 1428

Prerequisites 1428

Installation 1428

Verifying the Carvel Package Supply Chains are Installed 1429

Using the Carvel Package Supply Chains as a Developer 1429

Prerequisites 1429

Creating a Workload 1429

Verify the Carvel Package was Created 1430

Next Steps 1430

Use Gitops Delivery with a Carvel App (alpha) 1430

Prerequisites 1430

Set up Run cluster namespaces 1430

Create Carvel PackageInstalls and secrets 1431

Create an App 1432

Verifying applications 1434

Use Gitops Delivery with Flux CD (alpha) 1434

Prerequisites 1434

Set up run cluster namespaces 1434

Create Carvel PackageInstalls and secrets 1435

Create Flux CD GitRepository and Flux CD Kustomizations on the Build Cluster 1436

Verifying Installation 1438

Use blue-green deployment with Contour and PackageInstall for Supply
Chain Choreographer (alpha)

1438

Prerequisites 1438

Add HTTPProxy to the blue deployment 1438

Create the green deployment 1439

Divide traffic between the blue and green deployments 1440

Verify application 1443

Use an existing image with Supply Chain Choreographer 1443
Requirements for prebuilt images 1443

Configure your workload to use a prebuilt image 1444

Examples 1445

Using a Dockerfile 1445

Using Spring Boot’s build-image Maven target 1446

About Out of the Box Supply Chains 1447

Understanding the supply chain for a prebuilt image 1448

Tanzu Application Platform v1.5

VMware by Broadcom 78

Use Git authentication with Supply Chain Choreographer 1449
HTTP 1449

SSH 1450

Read more on Git 1452

Using Azure DevOps as a Git provider with your supply chains 1452
Overview 1452

Azure authentication 1452

Using Azure DevOps as a repository for committed code 1453

Azure DevOps example 1453

Configuring your Git implementation for Azure DevOps 1453

Using Azure DevOps as a GitOps repository 1453

GitOps write path example 1453

Gitops write path templates 1454

Gitops read example 1455

Gitops read implementation templates 1456

Author your supply chains 1456

Providing your own supply chain 1456

Providing your own templates 1457

Modifying an Out of the Box Supply Chain 1458

Example 1459

Modifying an Out of the Box Supply template 1460

Example 1460

Live modification of supply chains and templates 1461

Adding custom behavior to Supply Chains 1462

Reference guides for Supply Chain Choreographer for Tanzu 1463
Reference guides 1463

Events reference for Supply Chain Choreographer 1463
Events 1463

StampedObjectApplied 1463

StampedObjectRemoved 1464

ResourceOutputChanged 1464

ResourceHealthyStatusChanged 1464

Workload Reference for Supply Chain Choreographer 1464
Standard Fields 1464

Labels 1464

Parameters 1465

Service Account 1466

Supply chains for Supply Chain Choreographer 1466

Tanzu Application Platform v1.5

VMware by Broadcom 79

Source-to-URL 1466

Purpose 1466

Resources 1467

source-provider 1467

image-provider 1467

Common resources 1467

Parameters provided to all resources 1467

Package 1467

More information 1468

Source-Test-to-URL 1468

Resources 1468

source-provider 1468

source-tester 1468

image-provider 1468

Common resources 1468

Parameters provided to all resources 1469

Package 1469

More information 1469

Source-Test-Scan-to-URL 1469

Resources 1469

source-provider 1469

source-tester 1469

source-scanner 1469

image-provider 1470

image-scanner 1470

Common resources 1470

Parameters provided to all resources 1470

Package 1470

More information 1470

Basic-Image-to-URL 1470

Resources 1471

image-provider 1471

Common resources 1471

Parameters provided to all resources 1471

Package 1471

More information 1471

Testing-Image-to-URL 1471

Resources 1471

image-provider 1471

Common resources 1471

Parameters provided to all resources 1472

Package 1472

Tanzu Application Platform v1.5

VMware by Broadcom 80

More information 1472

Scanning-image-scan-to-URL 1472

Resources 1472

image-provider 1472

image-scanner 1472

Common resources 1472

Parameters provided to all resources 1473

Package 1473

More information 1473

Source-to-URL-Package (experimental) 1473

Purpose 1473

Resources 1473

source-provider 1473

image-provider 1473

carvel-package 1473

package-config-writer 1474

Common resources 1474

Parameters provided to all resources 1474

Package 1474

More information 1474

Basic-Image-to-URL-Package (experimental) 1474

Resources 1474

image-provider 1475

carvel-package 1475

package-config-writer 1475

Common resources 1475

Parameters provided to all resources 1475

Package 1475

More information 1475

Resources common to all OOTB supply chains 1475

config-provider 1476

app-config 1476

service-bindings 1476

api-descriptors 1476

config-writer 1476

deliverable 1476

Parameters provided by all supply chains to all resources 1476

Template reference for Supply Chain Choreographer 1477

source-template 1477

Purpose 1477

Used by 1477

Tanzu Application Platform v1.5

VMware by Broadcom 81

Creates 1477

GitRepository 1478

Parameters 1478

Template reference for Supply Chain Choreographer 1478
More information 1478

ImageRepository 1478

Parameters 1478

More information 1479

MavenArtifact 1479

Parameters 1479

More information 1480

testing-pipeline 1480

Purpose 1480

Used by 1480

Creates 1480

Parameters 1480

More information 1481

source-scanner-template 1481

Purpose 1481

Used by 1481

Creates 1481

Parameters 1481

More information 1482

image-provider-template 1482

Purpose 1482

Used by 1482

Creates 1482

Parameters 1482

More information 1483

kpack-template 1483

Purpose 1483

Used by 1483

Creates 1483

Parameters 1483

More information 1484

kaniko-template 1484

Purpose 1484

Used by 1484

Creates 1485

Parameters 1485

More information 1485

Tanzu Application Platform v1.5

VMware by Broadcom 82

image-scanner-template 1485

Purpose 1486

Used by 1486

Creates 1486

Parameters 1486

More information 1486

convention-template 1486

Purpose 1486

Used by 1486

Creates 1487

Parameters 1487

More information 1488

config-template 1488

Purpose 1488

Used by 1488

Creates 1488

Parameters 1488

More information 1488

worker-template 1488

Purpose 1488

Used by 1488

Creates 1489

Parameters 1489

More information 1489

server-template 1489

Purpose 1489

Used by 1489

Creates 1489

Parameters 1489

More information 1490

service-bindings 1490

Purpose 1490

Used by 1490

Creates 1490

Parameters 1490

More information 1491

api-descriptors 1491

Purpose 1491

Used by 1491

Creates 1491

Parameters 1491

More information 1491

Tanzu Application Platform v1.5

VMware by Broadcom 83

config-writer-template 1492

Purpose 1492

Used by 1492

Creates 1492

Parameters 1492

More information 1494

config-writer-and-pull-requester-template 1494

Purpose 1494

Used by 1494

Creates 1494

Parameters 1494

More information 1496

deliverable-template 1496

Purpose 1496

Used by 1496

Creates 1496

Parameters 1496

More information 1498

external-deliverable-template 1498

Purpose 1498

Used by 1498

Creates 1498

Parameters 1499

More information 1500

delivery-source-template 1500

Purpose 1500

Used by 1500

Creates 1500

GitRepository 1500

Parameters 1501

More information 1501

ImageRepository 1501

Parameters 1501

More information 1501

app-deploy 1502

Purpose 1502

Used by 1502

Creates 1502

Parameters 1502

More information 1502

carvel-package (experimental) 1502

Purpose 1502

Tanzu Application Platform v1.5

VMware by Broadcom 84

Used by 1502

Creates 1503

Parameters 1503

More information 1507

package-config-writer-template (experimental) 1507

Purpose 1507

Used by 1507

Creates 1507

Parameters 1507

More information 1509

package-config-writer-and-pull-requester-template (experimental) 1509

Purpose 1510

Used by 1510

Creates 1510

Parameters 1510

More information 1512

ClusterRunTemplate reference for Supply Chain Choreographer 1512
tekton-source-pipelinerun 1512

Purpose 1512

Used by 1512

Creates 1512

Inputs 1512

ClusterRunTemplate reference for Supply Chain Choreographer 1512
More information 1513

tekton-taskrun 1513

Purpose 1513

Used by 1513

Creates 1513

Inputs 1513

commit-and-pr-pipelinerun 1513

Purpose 1514

Used by 1514

Creates 1514

Inputs 1514

More information 1515

Delivery reference for Supply Chain Choreographer 1515
delivery-basic 1515

Purpose 1515

Resources 1515

source-provider 1515

Tanzu Application Platform v1.5

VMware by Broadcom 85

Deployer 1515

Package 1515

More information 1515

Use Git with Supply Chain Choreographer 1516
Supported Git Repositories 1516

Related Articles 1516

Use GitOps or RegistryOps with Supply Chain Choreographer 1516
GitOps 1517

Examples 1517

Deprecated parameters 1518

Examples 1519

Pull requests 1520

Authentication 1521

Authentication 1522

HTTP(S) Basic-auth or Token-based authentication 1522

SSH 1522

GitOps workload parameters 1523

Read more on Git 1524

RegistryOps 1524

Overview of Supply Chain Security Tools for VMware Tanzu - Policy
Controller

1525

Overview of Supply Chain Security Tools for VMware Tanzu - Policy
Controller

1526

Install Supply Chain Security Tools - Policy Controller 1527

Prerequisites 1527

Install 1528

Migration From Supply Chain Security Tools - Sign 1531
Enable Policy Controller on Namespaces 1532

Policy Controller ClusterImagePolicy 1532

Excluding Namespaces 1532

Specifying Public Keys 1533

Specifying Image Matching 1534

Specifying policy mode 1534

Configuring Supply Chain Security Tools - Policy 1535

Admission of Images 1535

Including Namespaces 1535

Create a ClusterImagePolicy resource 1535

images 1535

Tanzu Application Platform v1.5

VMware by Broadcom 86

mode 1536

match 1536

authorities 1537

key 1537

keyless 1537

static.action 1538

Provide credentials for the package 1539

Provide secrets for authentication in your policy 1539

Verify your configuration 1540

Overview of Supply Chain Security Tools - Scan 1541

Overview 1541

Language support 1541

Use cases 1541

Supply Chain Security Tools - Scan features 1542

A Note on Vulnerability Scanners 1542

Missed CVEs 1542

False positives 1542

Overview of Supply Chain Security Tools - Scan 1543
Overview 1543

Language support 1544

Use cases 1544

Supply Chain Security Tools - Scan features 1544

A Note on Vulnerability Scanners 1544

Missed CVEs 1544

False positives 1545

Install Supply Chain Security Tools - Scan 1546

Prerequisites 1546

Configure properties 1546

Install 1548

Option 1: Install to multiple namespaces with the Namespace Provisioner 1548

Option 2: Install manually to each individual namespace 1548

Upgrade Supply Chain Security Tools - Scan 1552

Prerequisites 1552

General Upgrades for SCST - Scan 1552

Upgrading a scanner in all namespaces 1552

Installation by using Namespace Provisioner 1553

Manual installation 1553

Upgrade to Version v1.2.0 1553

Tanzu Application Platform v1.5

VMware by Broadcom 87

Install another scanner for Supply Chain Security Tools - Scan 1556
Prerequisites 1556

Install 1556

Verify Installation 1559

Install scanner to multiple namespaces 1561

Configure Tanzu Application Platform Supply Chain to use new scanner 1562

Uninstall Scanner 1562

Other Available Scanner Integrations 1563

Supported Scanner Matrix for Supply Chain Security Tools - Scan 1563
Grype 1563

Prerequisites for Snyk Scanner for Supply Chain Security Tools - Scan
(Beta)

1563

Prepare the Snyk Scanner configuration 1564

SCST - Store integration 1565

Sample ScanPolicy for Snyk in SPDX JSON format 1566

Prerequisites for Carbon Black Scanner for Supply Chain Security Tools -
Scan (Beta)

1567

Prepare the Carbon Black Scanner configuration 1567

SCST - Store integration 1568

Using SCST - Store Integration 1568

Without SCST - Store Integration 1569

Sample ScanPolicy in CycloneDX format 1569

Prerequisites for Prisma Scanner for Supply Chain Security Tools - Scan
(Alpha)

1570

Verify the latest alpha package version 1570

Relocate images to a registry 1571

Add the Prisma Scanner package repository 1571

Prepare the Prisma Scanner configuration 1572

Obtain Console URL and Access Keys and Token 1572

Access key and secret authentication 1573

Access Token Authentication 1574

SCST - Store integration 1575

Multiple Scanners installed 1575

Prisma Only Scanner Installed 1576

No Store Integration 1576

Prepare the ScanPolicy 1577

Sample ScanPolicy using Prisma Policies 1577

Sample ScanPolicy using Local Policies 1577

Install Prisma Scanner 1578

Self-Signed Registry Certificate 1579

Tanzu Application Platform v1.5

VMware by Broadcom 88

Tanzu Application Platform Values Shared CA 1579

Secret within Developer Namespace 1579

Connect to Prisma through a Proxy 1579

Known Limits 1580

Install Trivy for Supply Chain Security Tools - Scan (alpha) 1580
Verify the latest alpha package version 1580

Relocate images to a registry 1580

Add Trivy package repository 1581

Prepare Trivy configuration 1582

SCST - Store integration 1583

Multiple scanners installed 1584

Trivy is the only scanner installed 1584

No store integration 1585

Prepare the ScanPolicy 1585

Install Trivy 1586

Air-gap configuration 1586

Relocate a Trivy database to your registry 1587

Use another Trivy version 1588

Use another Trivy Aqua plug-in version 1589

Integrate with the Aqua SaaS platform 1590

Self-signed registry certificate 1591

Spec reference 1591

About source and image scans 1592

About policy enforcement around vulnerabilities found 1592

Scan samples for Supply Chain Security Tools - Scan 1593

Scan samples for Supply Chain Security Tools - Scan 1593

Sample public image scan with compliance check for Supply Chain
Security Tools - Scan

1593

Public image scan 1593

Define the ScanPolicy and ImageScan 1594

(Optional) Set up a watch 1594

Deploy the resources 1595

View the scan results 1595

Edit the ScanPolicy 1595

Clean up 1595

Sample public source code scan with compliance check for Supply Chain
Security Tools - Scan

1595

Public source scan 1595

Tanzu Application Platform v1.5

VMware by Broadcom 89

Run an example public source scan 1596

Sample private image scan for Supply Chain Security Tools - Scan 1598
Define the resources 1598

Set up target image pull secret 1598

Create the private image scan 1599

(Optional) Set up a watch 1599

Deploy the resources 1599

View the scan results 1599

Clean up 1600

View vulnerability reports 1600

Sample private source scan for Supply Chain Security Tools - Scan 1600
Define the resources 1600

(Optional) Set up a watch 1601

Deploy the resources 1602

View the scan status 1602

Clean up 1602

View vulnerability reports 1602

Sample public source scan of a blob for Supply Chain Security Tools -
Scan

1602

Define the resources 1602

(Optional) Set up a watch 1603

Deploy the resources 1603

View the scan results 1603

Clean up 1603

View vulnerability reports 1603

Using Grype in air-gapped (offline) environments for Supply Chain
Security Tools - Scan

1603

Host the Grype vulnerability database 1604

To enable Grype in offline air-gapped environments 1605

Configure Grype environmental variables 1605

Troubleshooting 1606

ERROR failed to fetch latest cli version 1606

Solution 1606

Database is too old 1607

Solution 1607

Vulnerability database is invalid 1608

Solution 1608

Debug Grype database in a cluster 1609

Grype package overlays are not applied to scantemplates created by Namespace

Provisioner
1610

Tanzu Application Platform v1.5

VMware by Broadcom 90

Triage and Remediate CVEs for Supply Chain Security Tools - Scan 1611
Confirm that Supply Chain stopped due to failed policy enforcement 1611

Triage 1611

Remediation 1611

Updating the affected component 1611

Amending the scan policy 1612

Observe Supply Chain Security Tools - Scan 1612
Observability 1612

Troubleshoot Supply Chain Security Tools - Scan 1612
Debugging commands 1612

Debugging Tekton TaskRun 1612

Debugging Scan pods 1612

Debugging SourceScan and ImageScan 1613

Debugging Scanning within a SupplyChain 1613

Viewing the Scan-Controller manager logs 1614

Restarting Deployment 1614

Troubleshooting scanner to MetadataStore configuration 1614

Insight CLI failed to post scan results to metadata store due to failed certificate verification 1614

Troubleshooting issues 1615

Troubleshooting Grype in air gap Environments 1615

Missing target SSH secret 1615

Missing target image pull secret 1615

Deactivate Supply Chain Security Tools (SCST) - Store 1615

Resolving Incompatible Syft Schema Version 1616

Resolving incompatible scan policy 1616

Could not find CA in secret 1616

Blob Source Scan is reporting wrong source URL 1617

Resolving failing scans that block a Supply Chain 1617

Policy not defined in the Tanzu Application Platform GUI 1617

Lookup error when connecting to SCST - Store 1618

Sourcescan error with SCST - Store endpoint without a prefix 1618

Deprecated pre-v1.2 templates 1618

Incorrectly configured self-signed certificate 1618

Unable to pull scan controller and scanner images from a specified registry 1619

Grype database not available 1619

Scanner Pod restarts once in SCST - Scan v1.5.0 or later 1619

Troubleshoot Rego files with a scan policy for Supply Chain Security
Tools - Scan

1619

Using the Rego playground 1620

Sample input in CycloneDX’s XML re-encoded as JSON format 1620

Tanzu Application Platform v1.5

VMware by Broadcom 91

Example input in SPDX JSON format 1622

Configure code repositories and image artifacts for Supply Chain
Security Tools - Scan

1634

Prerequisite 1634

Deploy scan custom resources 1634

SourceScan 1634

ImageScan 1636

Configure code repositories and image artifacts for Supply Chain
Security Tools - Scan

1637

Prerequisite 1637

Deploy scan custom resources 1637

SourceScan 1637

ImageScan 1639

Enforce compliance policy using Open Policy Agent 1640
Writing a policy template 1640

Rego file contract 1640

Define a Rego file for policy enforcement 1640

Further refine the Scan Policy for use 1642

Troubleshooting Rego files (Scan Policy) 1644

Enable Tanzu Application Platform GUI to view ScanPolicy Resource 1644

Deprecated Rego file Definition 1645

Create a ScanTemplate with Supply Chain Security Tools - Scan 1646
Overview 1646

Output Model 1646

ScanTemplate Structure 1647

Sample Outputs 1647

View scan status conditions for Supply Chain Security Tools - Scan 1648
Viewing scan status 1648

Overview of conditions 1648

Condition types for the scans 1648

Scanning 1648

Succeeded 1648

SendingResults 1648

PolicySucceeded 1649

Overview of CVECount 1649

Overview of MetadataURL 1649

Overview of Phase 1649

Overview of ScannedBy 1650

Overview of ScannedAt 1650

Tanzu Application Platform v1.5

VMware by Broadcom 92

Troubleshoot Rego files with a scan policy for Supply Chain Security
Tools - Scan

1650

Using the Rego playground 1650

Sample input in CycloneDX’s XML re-encoded as JSON format 1650

Example input in SPDX JSON format 1653

Supply Chain Security Tools - Scan 2.0 (alpha) 1664
Overview 1664

Features 1665

Installing SCST - Scan 2.0 in a cluster 1665

Prerequisites 1665

Configure properties 1665

Install 1666

Configure namespace 1667

Scan an image 1668

Retrieving an image digest 1668

Integrating with the Out of the Box Supply Chain 1669

Authoring a ClusterImageTemplate 1669

Configuring the supply chain 1669

Using the provided Grype scanner 1670

Sample Grype scan 1670

Configuration Options 1670

Trigger a Grype scan 1671

Integrate your own scanner 1672

Sample ImageVulnerabilityScan 1672

Configuration options 1672

Default environment 1673

Trigger your scan 1674

Retrieving results 1674

Observability 1674

Troubleshooting 1675

Debugging commands 1675

Debugging resources 1675

Debugging scan pods 1675

Viewing the Scan-Controller manager logs 1676

Author a ClusterImageTemplate for Supply Chain integration 1676
Create a ClusterImageTemplate 1676

Overview of Supply Chain Security Tools for VMware Tanzu - Sign 1678

Overview of Supply Chain Security Tools for Tanzu – Store 1679
Overview 1679

Tanzu Application Platform v1.5

VMware by Broadcom 93

Using the Tanzu Insight CLI plug-in 1679

Multicluster configuration 1679

Integrating with Tanzu Application Platform GUI 1679

Additional documentation 1679

Overview of Supply Chain Security Tools for Tanzu – Store 1680
Overview 1680

Using the Tanzu Insight CLI plug-in 1680

Multicluster configuration 1680

Integrating with Tanzu Application Platform GUI 1680

Additional documentation 1681

Configure your target endpoint and certificate for Supply Chain Security
Tools - Store

1681

Overview 1681

Using Ingress 1681

Single Cluster setup 1681

Set Target 1681
Next Step 1682

Additional Resources 1682

Configure your access tokens for Supply Chain Security Tools - Store 1682
Setting the Access Token 1682

Additional Resources 1682

Security details for Supply Chain Security Tools - Store 1683
Application security 1683

TLS encryption 1683

Cryptographic algorithms 1683

Access controls 1683

Authentication 1683

Authorization 1683

Container security 1684

Non-root user 1684

Security scanning 1684

Static Application Security Testing (SAST) 1684

Software Composition Analysis (SCA) 1684

Additional documentation for Supply Chain Security Tools - Store 1685
Use and operate 1685

Troubleshooting and logging 1685

Configuration 1685

Tanzu Application Platform v1.5

VMware by Broadcom 94

Access control 1685

Certificates 1685

Database 1685

Other 1685

Additional documentation for Supply Chain Security Tools - Store 1686
Use and operate 1686

Troubleshooting and logging 1686

Configuration 1686

Access control 1686

Certificates 1686

Database 1686

Other 1686

API reference for Supply Chain Security Tools - Store 1687

Information 1687

Version 1687

Content negotiation 1687

URI Schemes 1687

Consumes 1687

Produces 1687

All endpoints 1687

images 1687

Operations 1687

Packages 1687

Sources 1688

v1artifact_groups 1688

v1images 1688

v1packages 1689

v1sources 1689

v1vulnerabilities 1689

vulnerabilities 1689

Paths 1689

Create an artifact group with specified labels and entity (CreateArtifactGroup) 1689

Parameters 1690

All responses 1690

Responses 1690

201 - ArtifactGroupPostResponse 1690

Schema 1690

400 - ErrorMessage 1690

Schema 1690

Default Response 1690

Tanzu Application Platform v1.5

VMware by Broadcom 95

Schema 1690

Create a new image report. Related packages and vulnerabilities are also created.

(CreateImageReport)
1690

Parameters 1690

All responses 1691

Responses 1691

200 - Image 1691

Schema 1691

Default Response 1691

Schema 1691

Create a new source report. Related packages and vulnerabilities are also created.

(CreateSourceReport)
1691

Parameters 1691

All responses 1691

Responses 1691

200 - Source 1691

Schema 1692

Default Response 1692

Schema 1692

Search image by ID (GetImageByID) 1692

Parameters 1692

All responses 1692

Responses 1692

200 - Image 1692

Schema 1692

404 - ErrorMessage 1692

Schema 1692

Default Response 1692

Schema 1692

List the packages in an image. (GetImagePackages) 1693

Parameters 1693

All responses 1693

Responses 1693

200 - Package 1693

Schema 1693

Default Response 1693

Schema 1693

List packages of the given image. (GetImagePackagesQuery) 1693

Parameters 1693

All responses 1693

Responses 1694

200 - Package 1694

Tanzu Application Platform v1.5

VMware by Broadcom 96

Schema 1694

Default Response 1694

Schema 1694

List vulnerabilities from the given image. (GetImageVulnerabilities) 1694

Parameters 1694

All responses 1694

Responses 1694

200 - Vulnerability 1694

Schema 1694

Default Response 1695

Schema 1695

Search image by id, name or digest . (GetImages) 1695

All responses 1695

Responses 1695

200 - Image 1695

Schema 1695

Default Response 1695

Schema 1695

Search package by ID (GetPackageByID) 1695

Parameters 1695

All responses 1695

Responses 1696

200 - Package 1696

Schema 1696

404 - ErrorMessage 1696

Schema 1696

Default Response 1696

Schema 1696

List the images that contain the given package. (GetPackageImages) 1696

Parameters 1696

All responses 1696

Responses 1696

200 - Image 1696

Schema 1697

Default Response 1697

Schema 1697

List the sources containing the given package. (GetPackageSources) 1697

Parameters 1697

All responses 1697

Responses 1697

200 - Source 1697

Schema 1697

Tanzu Application Platform v1.5

VMware by Broadcom 97

Default Response 1697

Schema 1697

List vulnerabilities from the given package. (GetPackageVulnerabilities) 1697

Parameters 1698

All responses 1698

Responses 1698

200 - Vulnerability 1698

Schema 1698

Default Response 1698

Schema 1698

Search packages by id, name and/or version. (GetPackages) 1698

Parameters 1698

All responses 1698

Responses 1699

200 - Package 1699

Schema 1699

Default Response 1699

Schema 1699

Search source by ID (GetSourceByID) 1699

Parameters 1699

All responses 1699

Responses 1699

200 - Source 1699

Schema 1699

404 - ErrorMessage 1699

Schema 1700

Default Response 1700

Schema 1700

get source packages (GetSourcePackages) 1700

Parameters 1700

All responses 1700

Responses 1700

200 - Package 1700

Schema 1700

Default Response 1700

Schema 1700

List packages of the given source. (GetSourcePackagesQuery) 1700

Parameters 1701

All responses 1701

Responses 1701

200 - Package 1701

Schema 1701

Tanzu Application Platform v1.5

VMware by Broadcom 98

Default Response 1701

Schema 1701

get source vulnerabilities (GetSourceVulnerabilities) 1701

Parameters 1701

All responses 1701

Responses 1701

200 - Vulnerability 1702

Schema 1702

Default Response 1702

Schema 1702

List vulnerabilities of the given source. (GetSourceVulnerabilitiesQuery) 1702

Parameters 1702

All responses 1702

Responses 1702

200 - Vulnerability 1702

Schema 1702

Default Response 1703

Schema 1703

Search for sources by ID, repository, commit sha and/or organization. (GetSources) 1703

Parameters 1703

All responses 1703

Responses 1703

200 - Source 1703

Schema 1703

Default Response 1703

Schema 1703

Search for vulnerabilities by CVE id. (GetVulnerabilities) 1703

Parameters 1704

All responses 1704

Responses 1704

200 - Vulnerability 1704

Schema 1704

Default Response 1704

Schema 1704

Search vulnerability by ID (GetVulnerabilityByID) 1704

Parameters 1704

All responses 1704

Responses 1705

200 - Vulnerability 1705

Schema 1705

404 - ErrorMessage 1705

Schema 1705

Tanzu Application Platform v1.5

VMware by Broadcom 99

Default Response 1705

Schema 1705

List the images that contain the given vulnerability. (GetVulnerabilityImages) 1705

Parameters 1705

All responses 1705

Responses 1705

200 - Image 1705

Schema 1705

Default Response 1706

Schema 1706

List packages that contain the given CVE id. (GetVulnerabilityPackages) 1706

Parameters 1706

All responses 1706

Responses 1706

200 - Package 1706

Schema 1706

Default Response 1706

Schema 1706

List sources that contain the given vulnerability. (GetVulnerabilitySources) 1706

Parameters 1706

All responses 1707

Responses 1707

200 - Source 1707

Schema 1707

Default Response 1707

Schema 1707

health check (HealthCheck) 1707

All responses 1707

Responses 1707

200 1707

Schema 1707

Default Response 1707

Schema 1707

Query for a list of artifact group that contains image(s) with specified digests, and or

source(s) with specified shas. At least one image digest or source sha must be provided.

This query can be further refined by matching images and sources with a specific

combination of package name and/or cve id. (SearchArtifactGroups)

1708

Parameters 1708

All responses 1708

Responses 1708

200 - PaginatedArtifactGroupResponse 1708

Schema 1708

Tanzu Application Platform v1.5

VMware by Broadcom 100

400 - ErrorMessage 1708

Schema 1708

Default Response 1708

Schema 1708

Search for how many artifact groups are affected by vulnerabilities associated with the

specified image(s) digests, and/or source(s) shas. At least one image digest or source

sha must be provided. (SearchArtifactGroupsVulnReach)

1709

Parameters 1709

All responses 1709

Responses 1709

200 - PaginatedArtifactGroupVulnReachResponse 1709

Schema 1709

400 - ErrorMessage 1709

Schema 1709

Default Response 1709

Schema 1709

Search for all vulnerabilities associated with an artifact group that contains image(s) with

specified digests, and/or source(s) with specified shas. At least one image digest or

source sha must be provided. (SearchArtifactGroupsVulnerabilities)

1710

Parameters 1710

All responses 1710

Responses 1710

200 - PaginatedArtifactGroupVulnerabilityResponse 1710

Schema 1710

400 - ErrorMessage 1710

Schema 1710

Default Response 1710

Schema 1710

Query for images. If no parameters are given, this endpoint will return all images.

(V1GetImages)
1710

Parameters 1711

All responses 1711

Responses 1711

200 - PaginatedImageResponse 1711

Schema 1711

404 - ErrorMessage 1711

Schema 1711

Default Response 1711

Schema 1712

Query for packages with images parameters. If no parameters are given, this endpoint

will return all packages related to images. (V1GetImagesPackages)
1712

Parameters 1712

All responses 1712

Tanzu Application Platform v1.5

VMware by Broadcom 101

Responses 1712

200 - PaginatedPackageResponse 1712

Schema 1712

404 - ErrorMessage 1713

Schema 1713

Default Response 1713

Schema 1713

Query for vulnerabilities with image parameters. If no parameters are give, this endpoint

will return all vulnerabilities. (V1GetImagesVulnerabilities)
1713

Parameters 1713

All responses 1713

Responses 1714

200 - PaginatedVulnerabilityResponse 1714

Schema 1714

404 - ErrorMessage 1714

Schema 1714

Default Response 1714

Schema 1714

Query for packages. If no parameters are given, this endpoint will return all packages.

(V1GetPackages)
1714

Parameters 1714

All responses 1715

Responses 1715

200 - PaginatedPackageResponse 1715

Schema 1715

404 - ErrorMessage 1715

Schema 1715

Default Response 1715

Schema 1715

Query for sources. If no parameters are given, this endpoint will return all sources.

(V1GetSources)
1715

Parameters 1715

All responses 1716

Responses 1716

200 - PaginatedSourceResponse 1716

Schema 1716

404 - ErrorMessage 1716

Schema 1716

Default Response 1716

Schema 1716

Query for packages with source parameters. If no parameters are given, this endpoint

will return all packages related to sources. (V1GetSourcesPackages)
1717

Tanzu Application Platform v1.5

VMware by Broadcom 102

All responses 1717

Responses 1717

200 - PaginatedPackageResponse 1717

Schema 1717

404 - ErrorMessage 1717

Schema 1717

Default Response 1717

Schema 1717

Query for vulnerabilities with source parameters. If no parameters are given, this

endpoint will return all vulnerabilities. (V1GetSourcesVulnerabilities)
1717

Parameters 1717

All responses 1718

Responses 1718

200 - PaginatedVulnerabilityResponse 1718

Schema 1718

404 - ErrorMessage 1718

Schema 1718

Default Response 1718

Schema 1719

Models 1719

ArtifactGroupPostRequest 1719

ArtifactGroupResponse 1719

ArtifactGroupSearchFilters 1719

ArtifactGroupVulnReachFiltersPostRequest 1720

ArtifactGroupVulnReachPostResponse 1721

ArtifactGroupVulnSearchFilters 1721

DeletedAt 1722

Entity 1722

ErrorMessage 1722

Image 1723

MethodType 1723

Model 1723

NullTime 1724

Package 1724

PaginatedArtifactGroupVulnReachResponse 1724

PaginatedResponse 1724

Rating 1725

RatingResponse 1725

Source 1725

StringArray 1726

VulnResponse 1726

Vulnerability 1726

Tanzu Application Platform v1.5

VMware by Broadcom 103

artifactGroupPostEntity 1727

artifactGroupPostResponse 1727

artifactGroupVulnArtifactGroup 1727

artifactGroupVulnEntity 1727

artifactGroupVulnPackage 1728

artifactGroupVulnResult 1728

paginatedArtifactGroupResponse 1729

paginatedArtifactGroupVulnerabilityResponse 1729

paginatedImageResponse 1729

paginatedPackageResponse 1730

paginatedSourceResponse 1730

paginatedVulnerabilityResponse 1730

responseImage 1730

responsePackage 1731

responseSource 1731

responseVulnerability 1732

API walkthrough for Supply Chain Security Tools - Store 1732
Use curl to post an image report 1732

Connect to the PostgreSQL database 1734

Deployment details and configuration for Supply Chain Security Tools -
Store

1735

What is deployed 1735

Deployment configuration 1735

Supported Network Configurations 1736

App service type 1736

Ingress support 1736

Database configuration 1736

Using AWS RDS PostgreSQL database 1736

Using external PostgreSQL database 1736

Custom database password 1737

Service accounts 1737

Exporting certificates 1737

Configure your AWS RDS PostgreSQL configuration 1737

Prerequisites 1737

Setup certificate and configuration 1737

Use external PostgreSQL database for Supply Chain Security Tools -
Store

1738

Prerequisites 1738

Set up certificate and configuration 1738

Tanzu Application Platform v1.5

VMware by Broadcom 104

Validation 1739

Database backup recommendations for Supply Chain Security Tools -
Store

1739

Backup 1739

Restore 1740

Log configuration and usage for Supply Chain Security Tools - Store 1740
Verbosity levels 1740

Slow SQL 1741

Error logs 1741

Obtaining logs 1741

API endpoint log output 1742

Format 1742

Key-value pairs 1742

Common to all logs 1742

Logging query and path parameter values 1743

API payload log output 1744

GraphQL endpoint log output 1744

Format 1744

Key-value pairs 1744

Common to all logs 1744

API payload log output 1745

Slow SQL query log output 1745

SQL Query log output 1745

SQL Query log output 1746

Format 1746

Connect to the PostgreSQL database 1746

Troubleshooting Supply Chain Security Tools - Store 1747

Querying by insight source returns zero CVEs even though there are CVEs in the source scan 1747

Symptom 1748

Solution 1748

Persistent volume retains data 1748

Symptom 1748

Solution 1748

Missing persistent volume 1748

Symptom 1748

Solution 1748

Builds fail due to volume errors on EKS running Kubernetes v1.23 1749

Symptom 1749

Explanation 1749

Tanzu Application Platform v1.5

VMware by Broadcom 105

Solution 1749

Certificate Expiries 1749

Symptom 1749

Explanation 1750

Solution 1750

Troubleshooting errors from Tanzu Application Platform GUI related to SCST - Store 1750

An error occurred while loading data from the Metadata Store 1750

Symptom 1750

Cause 1750

Solution 1751

Troubleshoot upgrading Supply Chain Security Tools - Store 1751
Database deployment does not exist 1751

Invalid checkpoint record 1751

Upgraded pod hanging 1751

Failover, redundancy, and backups for Supply Chain Security Tools -
Store

1752

API Server 1752

Database 1752

Custom certificate configuration for Supply Chain Security Tools - Store 1752
Default configuration 1752

(Optional) Setting up custom ingress TLS certificate 1753

Place the certificates in secret 1753

Update tap-values.yaml 1753

Additional resources 1753

TLS configuration for Supply Chain Security Tools - Store 1753
Setting up custom ingress TLS ciphers 1753

Example custom TLS settings 1754

Additional resources 1754

Certificate rotation for Supply Chain Security Tools - Store 1754
Certificates 1754

Certificate duration setting 1755

Ingress support for Supply Chain Security Tools - Store 1755
Ingress configuration 1755

Get the TLS CA certificate 1757

Additional Resources 1757

Use your LoadBalancer with Supply Chain Security Tools - Store 1757

Configure LoadBalancer 1757

Tanzu Application Platform v1.5

VMware by Broadcom 106

Port forwarding 1758

Edit your /etc/hosts file for Port Forwarding 1758

Configure the Insight plug-in 1758

Use your NodePort with Supply Chain Security Tools - Store 1759
Overview 1759

Edit your /etc/hosts file for Port Forwarding 1759

Configure the Insight plug-in 1759

Multicluster setup for Supply Chain Security Tools - Store 1760
Overview 1760

Prerequisites 1760

Procedure summary 1760

Copy SCST - Store CA certificate from View cluster 1760

Copy SCST - Store authentication token from the View cluster 1761

Apply the CA certificate and authentication token to a new Kubernetes cluster 1761

Install Build profile 1762

More information about how Build profile uses the configuration 1762

Configure developer namespaces 1762

Exporting SCST - Store secrets to a developer namespace in a Tanzu Application Platform

multicluster deployment
1762

Additional resources 1763

Developer namespace setup for Supply Chain Security Tools - Store 1763
Overview 1763

Single cluster - Using the Tanzu Application Platform values file 1763

Multicluster - Using SecretExport 1764

Next steps 1764

Retrieve access tokens for Supply Chain Security Tools - Store 1764
Overview 1764

Retrieving the read-write access token 1764

Retrieving the read-only access token 1764

Using an access token 1764

Additional Resources 1765

Retrieve and create service accounts for Supply Chain Security Tools -
Store

1765

Overview 1765

Create read-write service account 1765

Create a read-only service account 1766

With a default cluster role 1766

With a custom cluster role 1767

Additional Resources 1767

Tanzu Application Platform v1.5

VMware by Broadcom 107

Create a service account with a custom cluster role for Supply Chain
Security Tools - Store

1767

Example service account 1767

Additional Resources 1768

Install Supply Chain Security Tools - Store independent from Tanzu
Application Platform profiles

1768

Prerequisites 1768

Install 1768

Overview of Tanzu Application Platform GUI 1772

Overview of Tanzu Application Platform GUI 1773

Install Tanzu Application Platform GUI 1774
Prerequisites 1774

Procedure 1775

Runtime configuration options for Tanzu Application Platform GUI 1776
Identify the Tanzu Application Platform GUI version you have available 1776

Display the possible values options for Tanzu Application Platform GUI 1777

Customize the Tanzu Application Platform GUI portal 1777
Customize branding 1777

Customize the Software Catalog page 1778

Customize the name of the organization 1778

Prevent changes to the software catalog 1779

Customize the Authentication page 1779

Customize the default view 1780

Customize security banners 1780

Customize the Tanzu Application Platform GUI portal 1781
Customize branding 1781

Customize the Software Catalog page 1782

Customize the name of the organization 1782

Prevent changes to the software catalog 1783

Customize the Authentication page 1783

Customize the default view 1783

Customize security banners 1784

Customize the Support menu 1785
Overview 1785

Customizing 1785

Structure of the support configuration 1786

URL 1786

Tanzu Application Platform v1.5

VMware by Broadcom 108

Items 1786

Title 1786

Icon 1786

Links 1787

Access Tanzu Application Platform GUI 1787
Access with the LoadBalancer method (default) 1787

Access with the shared Ingress method 1788

Catalog operations 1789
Adding catalog entities 1789

Users and groups 1789

Systems 1790

Components 1790

Update software catalogs 1791

Register components 1791

Deregister components 1791

Add or change organization catalog locations 1791

Install demo apps and their catalogs 1792

Yelb system 1793

Install Yelb 1793

Install the Yelb catalog 1793

View resources on multiple clusters in Tanzu Application Platform GUI 1793
Set up a Service Account to view resources on a cluster 1793

Update Tanzu Application Platform GUI to view resources on multiple clusters 1797

View resources on multiple clusters in the Runtime Resources Visibility plug-in 1798

Set up authentication for Tanzu Application Platform GUI 1798
View your Backstage Identity 1798

Configure an authentication provider 1800

(Optional) Allow guest access 1802

(Optional) Customize the login page 1802

View resources on remote clusters 1802

View resources on remote clusters 1803

View resources on remote EKS clusters 1803

Set up the OIDC provider 1803

Configure the Kubernetes cluster with the OIDC provider 1804

Configure the Tanzu Application Platform GUI 1805

Upgrade the Tanzu Application Platform GUI package 1806

View resources on remote GKE clusters 1806

Tanzu Application Platform v1.5

VMware by Broadcom 109

Leverage an external OIDC provider 1806

Set up the OIDC provider 1806

Configure the GKE cluster with the OIDC provider 1807

Configure visibility of the remote cluster 1807

Update the tap-gui package to finish leveraging the external OIDC provider 1808

Leverage Google’s OIDC provider 1808

Add redirect configuration on the OIDC side 1808

Configure visibility of the remote GKE cluster 1808

Update the tap-gui package to finish leveraging the Google OIDC provider 1809

View runtime resources on authorization-enabled clusters 1810

Globally-scoped components 1810

Namespace-scoped components 1811

Assign roles and permissions on Kubernetes clusters 1811

Create roles 1812

Cluster-scoped roles 1812

Namespace-scoped roles 1812

Create users 1812

Assign users to their roles 1813

Add Tanzu Application Platform GUI integrations 1813

Add a GitHub provider integration 1813

Add a Git-based provider integration that isn’t GitHub 1814

Add a non-Git provider integration 1814

Update the package profile 1814

Configure the Tanzu Application Platform GUI database 1815
Configure a PostgreSQL database 1815

Edit tap-values.yaml 1815

(Optional) Configure extra parameters 1816

Update the package profile 1816

Generate and publish TechDocs 1817

Create an Amazon S3 bucket 1817

Configure Amazon S3 access 1817

Create an AWS IAM user group 1817

Create an AWS IAM user 1818

Find the catalog locations and their entities’ namespace, kind, and name 1818

Use the TechDocs CLI to generate and publish TechDocs 1818

Update the techdocs section in app-config.yaml to point to the Amazon S3 bucket 1819

Overview of Tanzu Application Platform GUI plug-ins 1820

Tanzu Application Platform v1.5

VMware by Broadcom 110

Overview of Tanzu Application Platform GUI plug-ins 1821

Runtime resources visibility in Tanzu Application Platform GUI 1821
Prerequisite 1821

If you have a metrics server 1821

Visualize Workloads on Tanzu Application Platform GUI 1822

Navigate to the Runtime Resources Visibility screen 1822

Resources 1823

Resources details page 1823

Overview card 1824

Status card 1825

Ownership card 1826

Annotations and Labels 1826

Selecting completed supply chain pods 1827

Navigating to the pod Details page 1827

Overview of pod metrics 1827

Navigating to Application Live View 1828

Viewing pod logs 1828

Pausing and resuming logs 1829

Filtering by container 1829

Filtering by date and time 1829

Changing log levels 1829

Line wrapping 1830

Downloading logs 1830

Connection interruptions 1830

Application Live View in Tanzu Application Platform GUI 1831
Overview 1831

Entry point to Application Live View plug-in 1831

Application Live View in Tanzu Application Platform GUI 1831
Overview 1831

Entry point to Application Live View plug-in 1832

Application Live View for Spring Boot applications in Tanzu Application
Platform GUI

1832

Details page 1832

Health page 1833

Environment page 1833

Log Levels page 1834

Threads page 1835

Memory page 1835

Request Mappings page 1836

Tanzu Application Platform v1.5

VMware by Broadcom 111

HTTP Requests page 1837

Caches page 1838

Configuration Properties page 1838

Conditions page 1839

Scheduled Tasks page 1839

Beans page 1840

Metrics page 1840

Actuator page 1841

Troubleshooting 1841

Application Live View for Spring Cloud Gateway applications in Tanzu
Application Platform GUI

1841

API Success Rate page 1842

API Overview page 1842

API Authentications By Path page 1842

Troubleshooting 1843

Application Live View for Steeltoe applications in Tanzu Application
Platform GUI

1843

Details page 1843

Health page 1843

Environment page 1844

Log Levels page 1845

Threads page 1846

Memory page 1846

Request Mappings page 1846

HTTP Requests page 1847

Metrics page 1847

Actuator page 1848

Troubleshooting 1848

Application Accelerator in Tanzu Application Platform GUI 1848
Overview 1849

Access Application Accelerator 1849

Configure project generation 1849

Create the project 1850

Develop your code 1850

Next steps 1851

Application Accelerator in Tanzu Application Platform GUI 1851
Overview 1851

Access Application Accelerator 1851

Configure project generation 1852

Create the project 1853

Tanzu Application Platform v1.5

VMware by Broadcom 112

Develop your code 1853

Next steps 1853

Install Application Accelerator 1854

Prerequisites 1854

Install 1854

Configure properties and resource use 1856

Create an Application Accelerator Git repository during project creation 1857
Overview 1857

Supported Providers 1857

Configure 1858

(Optional) Deactivate Git repository creation 1858

Create a Project 1858

API documentation plug-in in Tanzu Application Platform GUI 1859

Overview 1860

Use the API documentation plug-in 1860

Create a new API entry 1862

Manually create a new API entry 1862

Automatically create a new API entry 1863

API documentation plug-in in Tanzu Application Platform GUI 1863

Overview 1864

Use the API documentation plug-in 1864

Create a new API entry 1866

Manually create a new API entry 1866

Automatically create a new API entry 1867

Get started with the API documentation plug-in 1867
API entries 1868

About API entities 1868

Add a demo API entity to the Tanzu Application Platform GUI software catalog 1868

Update your demo API entry 1871

Validation Analysis of API specifications 1871

About the Validation Analysis card 1871

Automatic OpenAPI specification validation 1872

Security Analysis in Tanzu Application Platform GUI 1873
Overview 1873

Installing and configuring 1873

Accessing the plug-in 1873

Viewing vulnerability data 1874

Viewing CVE and package details 1875

Tanzu Application Platform v1.5

VMware by Broadcom 113

Supply Chain Choreographer in Tanzu Application Platform GUI 1876
Overview 1876

Prerequisites 1876

Enable CVE scan results 1877

Automatically connect Tanzu Application Platform GUI to the Metadata Store 1877

Manually connect Tanzu Application Platform GUI to the Metadata Store 1877

Enable GitOps Pull Request Flow 1878

Supply Chain Visibility 1878

View Vulnerability Scan Results 1879

Overview of enabling TLS for Tanzu Application Platform GUI 1880

Concepts 1880

Certificate delegation 1880

cert-manager, certificates, and ClusterIssuers 1880

Guides 1881

Overview of enabling TLS for Tanzu Application Platform GUI 1881
Concepts 1881

Certificate delegation 1881

cert-manager, certificates, and ClusterIssuers 1882

Guides 1883

Configure a TLS certificate by using an existing certificate 1883
Prerequisites 1883

Procedure 1884

Configure a TLS certificate by using a self-signed certificate 1885
Prerequisite 1885

Procedure 1885

Configure a TLS certificate by using cert-manager and a ClusterIssuer 1886

Prerequisites 1887

Procedure 1887

Upgrade Tanzu Application Platform GUI 1889

Considerations 1889

Upgrade within a Tanzu Application Platform profile 1889

Upgrade Tanzu Application Platform GUI individually 1889

Troubleshoot Tanzu Application Platform GUI 1890
General issues 1890

Tanzu Developer Portal reports that the port range is not valid 1890

Symptom 1890

Cause 1890

Tanzu Application Platform v1.5

VMware by Broadcom 114

Solution 1890

Tanzu Application Platform GUI does not load the catalog 1891

Symptom 1891

Cause 1891

Solution 1891

Updating a supply chain causes an error (Can not create edge...) 1892

Symptom 1892

Solution 1892

Catalog not found 1892

Symptom 1892

Cause 1892

Solution 1892

Issues updating the values file 1893

Symptom 1893

Solution 1893

Pull logs from Tanzu Application Platform GUI 1893

Symptom 1893

Solution 1894

Ad-blocking software interference 1894

Symptom 1894

Cause 1894

Solution 1894

TechDocs content does not load 1894

Symptom 1894

Cause 1894

Solution 1894

Runtime Resources tab issues 1895

Error communicating with Tanzu Application Platform web server 1895

Symptom 1895

Causes 1895

Solution 1895

No data available 1895

Symptom 1895

Cause 1895

Solution 1895

Errors retrieving resources 1895

Symptom 1895

Accelerators page issues 1896

No accelerators 1896

Symptom 1896

Cause 1896

Solution 1896

Tanzu Application Platform v1.5

VMware by Broadcom 115

Security Analysis plug-in issues 1896

Empty Impacted Workloads table 1896

Symptom 1896

Cause 1896

Solution 1897

Supply Chain Choreographer plug-in issues 1897

An error occurred while loading data from the Metadata Store 1897

Symptom 1897

Cause 1897

Solution 1897

Overview of Tanzu Application Platform Telemetry 1897
Tanzu Application Platform usage reports 1898

Overview of Tanzu Application Platform Telemetry 1899

Tanzu Application Platform usage reports 1899

Install Tanzu Application Platform Telemetry 1901
Prerequisites 1901

Install 1902

Deployment details and configurations of Tanzu Application Platform
Telemetry

1903

What is deployed 1903

Deployment configuration 1903

Overview of Tanzu Build Service 1904
Overview 1904

Overview of Tanzu Build Service 1904
Overview 1904

Install Tanzu Build Service 1904
Before you begin 1904

Prerequisites 1905

Deprecated Features 1905

Install the Tanzu Build Service package 1905

Use AWS IAM authentication for registry credentials 1907

Install full dependencies 1908

(Optional) Deactivate the CNB BOM format 1909

Install Tanzu Build Service on an air-gapped environment 1909
Before you begin 1909

Prerequisites 1910

Deprecated Features 1910

Tanzu Application Platform v1.5

VMware by Broadcom 116

Install the Tanzu Build Service package 1910

Install the Tanzu Build Service dependencies 1911

Configure Tanzu Build Service properties on a workload 1912

Overview 1912

Configure build-time service bindings 1912

Configure environment variables 1913

Configure the service account 1913

Configure the cluster builder 1913

Configure the workload container image registry 1914

Configure custom CA certificates for a single workload using service bindings 1914

Using custom CA certificates for all workloads 1915

Create a signed container image with Tanzu Build Service 1915
Prerequisites 1915

Configure Tanzu Build Service to sign your image builds 1915

Tanzu Build Service Dependencies 1918
How dependencies are installed 1918

View installed dependencies 1918

Bionic and Jammy stacks 1918

About lite and full dependencies 1919

Lite dependencies 1919

Lite dependencies: stacks 1919

Lite dependencies: buildpacks 1919

Full dependencies 1920

Full dependencies: stacks 1920

Full dependencies: buildpacks 1920

Dependency comparison 1921

Updating dependencies 1922

Security context constraint for OpenShift 1922

Troubleshoot Tanzu Build Service 1924

Builds fail due to volume errors on EKS running Kubernetes v1.23 1924

Symptom 1924

Cause 1924

Solution 1924

Smart-warmer-image-fetcher reports ErrImagePull due to dockerd’s layer depth limitation 1924

Symptom 1924

Cause 1925

Solution 1925

Nodes fail due to “trying to send message larger than max” error 1925

Tanzu Application Platform v1.5

VMware by Broadcom 117

Symptom 1925

Cause 1925

Solution 1925

Build platform uses the old build cache after upgrade to new stack 1926

Symptom 1926

Solution 1926

Switching from buildservice.kp_default_repository to shared.image_registry 1926

Symptom 1926

Cause 1926

Solution 1926

Create a GitHub build action (Alpha) 1926
Prerequisites 1926

Procedure 1927

Developer namespace 1927

Access to Kubernetes API server 1927

Permissions Required 1927

Use the action 1929

Debugging 1929

Overview of Tanzu Developer Tools for IntelliJ 1930

Extension features 1930

Next steps 1930

Overview of Tanzu Developer Tools for IntelliJ 1930

Extension features 1931

Next steps 1931

Install Tanzu Developer Tools for IntelliJ 1931
Prerequisites 1931

Install 1932

Update 1932

Uninstall 1932

Next steps 1933

Get Started with Tanzu Developer Tools for IntelliJ 1933
Prerequisite 1933

Configure source image registry 1933

Run Tanzu Developer Tools for IntelliJ 1933

Set up Tanzu Developer Tools 1934

Create the workload.yaml file 1934

Create the catalog-info.yaml file 1935

Create the Tiltfile file 1935

Tanzu Application Platform v1.5

VMware by Broadcom 118

Create the .tanzuignore file 1936

View an example project 1936

Next steps 1937

Use Tanzu Developer Tools for IntelliJ 1937
Workload Actions 1937

Apply a workload 1937

Delete a workload 1937

Debugging on the cluster 1938

Start debugging on the cluster 1938

Stop Debugging on the Cluster 1940

Live Update 1940

Start Live Update 1940

Stop Live Update 1940

Tanzu Workloads panel 1941

Working with microservices in a monorepo 1942

Recommended structure: Microservices that can be built independently 1942

Alternative structure: Services with build-time interdependencies 1942

Changing logging verbosity 1944

Glossary of terms 1944

Live Update 1944

Tiltfile 1944

Debugging on the cluster 1944

YAML file format 1945

workload.yaml file 1945

catalog-info.yaml file 1945

Code snippet 1945

Source image 1945

Local path 1945

Kubernetes context 1945

Kubernetes namespace 1945

Troubleshoot Tanzu Developer Tools for IntelliJ 1945
Tanzu Debug re-applies the workload when namespace field is empty 1946

Symptoms 1946

Cause 1946

Solution 1946

Workload is wrongly re-applied because of debug configuration selected from the launch

configuration drop-down menu
1946

Symptoms 1946

Cause 1946

Solution 1946

Tanzu Application Platform v1.5

VMware by Broadcom 119

Unable to view workloads on the panel when connected to GKE cluster 1946

Symptom 1946

Cause 1946

Solution 1946

Deactivated launch controls after running a launch configuration 1947

Symptom 1947

Cause 1947

Starting a Tanzu Debug session fails with Unable to open debugger port 1947

Symptom 1947

Cause 1947

Solution 1947

Timeout error when Live Updating 1947

Symptom 1947

Cause 1948

Solution 1948

Tanzu Panel empty when using a GKE cluster on macOS 1948

Symptom 1948

Cause 1948

Solution 1948

Tanzu panel shows workloads but doesn’t show Kubernetes resources 1948

Symptom 1948

Cause 1948

Solution 1948

Tanzu Workloads panel workloads only have describe and delete action 1949

Symptom 1949

Cause 1949

Solution 1949

Workload actions do not work when in a project with spaces in the name 1949

Symptom 1949

Cause 1949

Solution 1949

config-writer-pull-requester is categorized as Unknown 1949

Symptom 1949

Solution 1949

Frequent application restarts 1949

Symptom 1950

Cause 1950

Solution 1950

Overview of Tanzu Developer Tools for Visual Studio 1950
Extension features 1950

Next steps 1951

Tanzu Application Platform v1.5

VMware by Broadcom 120

Overview of Tanzu Developer Tools for Visual Studio 1951
Extension features 1951

Next steps 1952

Install Tanzu Developer Tools for Visual Studio 1952
Prerequisites 1952

Install 1952

Update 1953

Uninstall 1953

Next steps 1953

Get Started with Tanzu Developer Tools for Visual Studio 1953

Prerequisite 1953

Configure source image registry 1953

Set up Tanzu Developer Tools 1954

Create the workload.yaml file 1954

Create the catalog-info.yaml file 1955

Create the Tiltfile file 1955

Create the .tanzuignore file 1956

View an example project 1956

Next steps 1957

Use Tanzu Developer Tools for Visual Studio 1957
Configure settings 1957

Workload Actions 1957

Apply a workload 1958

Delete a workload 1958

Start debugging on the cluster 1958

Live Update 1958

Start Live Update 1958

Stop Live Update 1958

Tanzu Workloads panel 1958

Extension logs 1959

Troubleshoot Tanzu Developer Tools for Visual Studio 1959
Stop button causes workload to fail 1959

Symptom 1959

Solution 1959

Frequent application restarts 1959

Symptom 1959

Cause 1959

Solution 1960

Tanzu Application Platform v1.5

VMware by Broadcom 121

Overview of Tanzu Developer Tools for VS Code 1960
Extension features 1960

Overview of Tanzu Developer Tools for VS Code 1960

Extension features 1961

Install Tanzu Developer Tools for VS Code 1961
Prerequisites 1961

Install 1962

Configure 1962

Uninstall 1963

Next steps 1963

Get started with Tanzu Developer Tools for VS Code 1963
Prerequisite 1963

Configure source image registry 1963

Set up Tanzu Developer Tools 1963

Create the workload.yaml file 1964

Create the catalog-info.yaml file 1965

Create the Tiltfile file 1966

Create a .tanzuignore file 1967

View an example project 1967

Next steps 1968

Use Tanzu Developer Tools for VS Code 1968
Configure for multiple projects in the workspace 1968

Workload Commands 1968

Apply a workload 1969

Debugging on the cluster 1970

Start debugging on the cluster 1970

Stop Debugging on the cluster 1970

Debug apps in a microservice repository 1971

Live Update 1971

Start Live Update 1971

Stop Live Update 1971

Deactivate Live Update 1972

Live Update status 1972

Live Update apps in a microservices repository 1972

Delete a workload 1973

Switch namespaces 1973

Tanzu Workloads panel 1974

Working with Microservices in a Monorepo 1975

Recommended structure: Microservices that can be built independently 1976

Tanzu Application Platform v1.5

VMware by Broadcom 122

Alternative structure: Services with build-time interdependencies 1976

Changing logging verbosity 1977

Pinniped compatibility 1977

OAuth 1978

LDAP 1978

Integrate Live Hover by using Spring Boot Tools 1978

Prerequisites 1978

Activate the Live Hover feature 1978

Deploy a Workload to the Cluster 1978

Use Memory View in Spring Boot Dashboard 1980

Prerequisites 1980

Deploy a workload 1980

View memory use in Spring Boot Dashboard 1981

Troubleshoot Tanzu Developer Tools for VS Code 1985
Unable to view workloads on the panel when connected to GKE cluster 1985

Symptom 1985

Cause 1985

Solution 1985

Live Update fails with UnsupportedClassVersionError 1985

Symptom 1985

Cause 1985

Solution 1986

Timeout error when Live Updating 1986

Symptom 1986

Cause 1986

Solution 1986

Task-related error when running a Tanzu Debug launch configuration 1986

Symptom 1986

Cause 1986

Solution 1986

Tanzu Workloads panel workloads only show delete command 1986

Symptom 1986

Cause 1987

Solution 1987

Workload actions do not work when in a project with spaces in the name 1987

Symptom 1987

Cause 1987

Solution 1987

Cannot apply workload because of a malformed kubeconfig file 1987

Tanzu Application Platform v1.5

VMware by Broadcom 123

Symptom 1987

Cause 1987

Solution 1987

config-writer-pull-requester is categorized as Unknown 1987

Symptom 1987

Solution 1988

Frequent application restarts 1988

Symptom 1988

Cause 1988

Solution 1988

Overview of Tekton 1988

Overview of Tekton 1988

Install Tekton 1988

Prerequisites 1988

Install Tekton Pipelines 1989

Configure a namespace to use Tekton Pipelines 1989

Tanzu Application Platform v1.5

VMware by Broadcom 124

Tanzu Application Platform v1.5

VMware Tanzu Application Platform (commonly known as TAP) is an application development
platform with a rich set of developer tools. It offers developers a paved path to production to build
and deploy software quickly and securely on any compliant public cloud or on-premises Kubernetes
cluster.

Tanzu Application Platform overview

Tanzu Application Platform:

Delivers a superior developer experience for enterprises building and deploying cloud-
native applications on Kubernetes.

Allows developers to quickly build and test applications regardless of their familiarity with
Kubernetes.

Helps application teams get to production faster by automating source-to-production
pipelines.

Clearly defines the roles of developers and operators so they can work collaboratively and
integrate their efforts.

Operations teams can create application scaffolding templates with built-in security and compliance
guardrails, making those considerations mostly invisible to developers. Starting with the templates,
developers turn source code into a container and get a URL to test their app in minutes.

After the container is built, it updates every time there’s a new code commit or dependency patch.
An internal API management portal facilitates connecting to other applications and data, regardless
of how they’re built or the infrastructure they run on.

Simplified workflows

When creating supply chains, you can simplify workflows in both the inner and outer loop of
Kubernetes-based app development with Tanzu Application Platform.

Tanzu Application Platform v1.5

VMware by Broadcom 125

Inner Loop

The inner loop describes a developer’s development cycle of iterating on code.

Inner loop activities include coding, testing, and debugging before making a
commit.

On cloud-native or Kubernetes platforms, developers in the inner loop often build
container images and connect their apps to all necessary services and APIs to
deploy them to a development environment.

Outer Loop

The outer loop describes how operators deploy apps to production and maintain
them over time.

On a cloud-native platform, outer loop activities include:

Building container images.

Adding container security.

Configuring continuous integration and continuous delivery (CI/CD)
pipelines.

Outer loop activities are challenging in a Kubernetes-based development
environment. App delivery platforms are constructed from various third-party and
open source components with numerous configuration options.

Supply Chains and choreography

Tanzu Application Platform uses the choreography pattern inherited from the
context of microservices^1 and applies it to CI/CD to create a path to production.^2

Supply chains provide a way of codifying all of the steps of your path to production, or what is more
commonly known as CI/CD. A supply chain differs from CI/CD in that with a supply chain, you can
add every step necessary for an application to reach production or a lower environment.

To address the developer experience gap, the path to production allows users to create a unified
access point for all of the tools required for their applications to reach a customer-facing
environment.

Instead of having separate tools that are loosely coupled to each other for testing and building,
security, deploying, and running apps, a path to production defines all four tools in a single, unified
layer of abstraction. Where tools typically can’t integrate with one another and additional scripting
or webhooks are necessary, a unified automation tool codifies all interactions between each of the
tools.

Tanzu Application Platform provides a default set of components that automates pushing an app to
staging and production on Kubernetes. This removes the pain points for both inner and outer loops.
It also allows operators to customize the platform by replacing Tanzu Application Platform
components with other products.

Tanzu Application Platform v1.5

VMware by Broadcom 126

https://stackoverflow.com/questions/4127241/orchestration-vs-choreography
https://tanzu.vmware.com/developer/guides/supply-chain-choreography/

For more information about Tanzu Application Platform components, see Components and
installation profiles.

Notice of telemetry collection for Tanzu Application
Platform
Tanzu Application Platform participates in the VMware Customer Experience Improvement
Program (CEIP). As part of CEIP, VMware collects technical information about your organization’s
use of VMware products and services in association with your organization’s VMware license keys.
For information about CEIP, see the Trust & Assurance Center. You may join or leave CEIP at any
time. The CEIP Standard Participation Level provides VMware with information to improve its
products and services, identify and fix problems, and advise you on how to best deploy and use
VMware products. For example, this information can enable a proactive product deployment
discussion with your VMware account team or VMware support team to help resolve your issues.
This information cannot directly identify any individual.

You must acknowledge that you have read the VMware CEIP policy before you can proceed with
the installation. For more information, see Install your Tanzu Application Platform profile. To opt out
of telemetry participation after installation, see Opting out of telemetry collection.

Tanzu Application Platform v1.5

VMware by Broadcom 127

http://www.vmware.com/trustvmware/ceip.html

Tanzu Application Platform release notes

This topic describes the changes in Tanzu Application Platform (commonly known as TAP) v1.5.

v1.5.12

Release Date: 09 April 2024

v1.5.12 Security fixes

This release has the following security fixes, listed by component and area.

Package Name Vulnerabilities Resolved

metadata-store.apps.tanzu.vmware.com Expand to see the list

GHSA-rcjv-mgp8-qvmr

GHSA-qppj-fm5r-hxr3

GHSA-m425-mq94-257g

GHSA-4374-p667-p6c8

GHSA-2wrh-6pvc-2jm9

CVE-2023-45285

CVE-2023-44487

CVE-2023-39325

CVE-2023-39323

sso.apps.tanzu.vmware.com Expand to see the list

CVE-2024-26462

CVE-2024-26461

CVE-2024-26458

CVE-2024-0553

CVE-2023-7008

CVE-2023-5981

CVE-2023-4813

CVE-2023-4806

CVE-2022-48303

CVE-2021-36087

CVE-2021-36086

CVE-2021-36085

CVE-2021-36084

Tanzu Application Platform v1.5

VMware by Broadcom 128

https://github.com/advisories/GHSA-rcjv-mgp8-qvmr
https://github.com/advisories/GHSA-qppj-fm5r-hxr3
https://github.com/advisories/GHSA-m425-mq94-257g
https://github.com/advisories/GHSA-4374-p667-p6c8
https://github.com/advisories/GHSA-2wrh-6pvc-2jm9
https://nvd.nist.gov/vuln/detail/CVE-2023-45285
https://nvd.nist.gov/vuln/detail/CVE-2023-44487
https://nvd.nist.gov/vuln/detail/CVE-2023-39325
https://nvd.nist.gov/vuln/detail/CVE-2023-39323
https://nvd.nist.gov/vuln/detail/CVE-2024-26462
https://nvd.nist.gov/vuln/detail/CVE-2024-26461
https://nvd.nist.gov/vuln/detail/CVE-2024-26458
https://nvd.nist.gov/vuln/detail/CVE-2024-0553
https://nvd.nist.gov/vuln/detail/CVE-2023-7008
https://nvd.nist.gov/vuln/detail/CVE-2023-5981
https://nvd.nist.gov/vuln/detail/CVE-2023-4813
https://nvd.nist.gov/vuln/detail/CVE-2023-4806
https://nvd.nist.gov/vuln/detail/CVE-2022-48303
https://nvd.nist.gov/vuln/detail/CVE-2021-36087
https://nvd.nist.gov/vuln/detail/CVE-2021-36086
https://nvd.nist.gov/vuln/detail/CVE-2021-36085
https://nvd.nist.gov/vuln/detail/CVE-2021-36084

Package Name Vulnerabilities Resolved

tap-gui.tanzu.vmware.com Expand to see the list

CVE-2023-30589

CVE-2023-30588

CVE-2023-2650

CVE-2023-0842

CVE-2023-0466

CVE-2023-0465

CVE-2022-4415

CVE-2022-3821

CVE-2020-36634

CVE-2020-17753

CVE-2019-9705

CVE-2019-9704

CVE-2017-9525

CVE-2013-1779

CVE-2006-1611

CVE-2002-1647

v1.5.12 Known issues

This release introduces no new known issues.

v1.5.11

Release Date: 12 March 2024

v1.5.11 Security fixes

This release has the following security fixes, listed by component and area.

Tanzu Application Platform v1.5

VMware by Broadcom 129

https://nvd.nist.gov/vuln/detail/CVE-2023-30589
https://nvd.nist.gov/vuln/detail/CVE-2023-30588
https://nvd.nist.gov/vuln/detail/CVE-2023-2650
https://nvd.nist.gov/vuln/detail/CVE-2023-0842
https://nvd.nist.gov/vuln/detail/CVE-2023-0466
https://nvd.nist.gov/vuln/detail/CVE-2023-0465
https://nvd.nist.gov/vuln/detail/CVE-2022-4415
https://nvd.nist.gov/vuln/detail/CVE-2022-3821
https://nvd.nist.gov/vuln/detail/CVE-2020-36634
https://nvd.nist.gov/vuln/detail/CVE-2020-17753
https://nvd.nist.gov/vuln/detail/CVE-2019-9705
https://nvd.nist.gov/vuln/detail/CVE-2019-9704
https://nvd.nist.gov/vuln/detail/CVE-2017-9525
https://nvd.nist.gov/vuln/detail/CVE-2013-1779
https://nvd.nist.gov/vuln/detail/CVE-2006-1611
https://nvd.nist.gov/vuln/detail/CVE-2002-1647

Package Name Vulnerabilities Resolved

spring-cloud-gateway.tanzu.vmware.com Expand to see the list

GHSA-hr8g-6v94-x4m9

GHSA-ccgv-vj62-xf9h

GHSA-4g9r-vxhx-9pgx

GHSA-45x7-px36-x8w8

GHSA-4265-ccf5-phj5

CVE-2024-26308

CVE-2024-25710

CVE-2024-22365

CVE-2024-20952

CVE-2024-20932

CVE-2024-20926

CVE-2024-20918

CVE-2024-0727

CVE-2024-0567

CVE-2024-0553

CVE-2023-6237

CVE-2023-6129

CVE-2023-5678

CVE-2023-4641

CVE-2023-39326

Tanzu Application Platform v1.5

VMware by Broadcom 130

https://github.com/advisories/GHSA-hr8g-6v94-x4m9
https://github.com/advisories/GHSA-ccgv-vj62-xf9h
https://github.com/advisories/GHSA-4g9r-vxhx-9pgx
https://github.com/advisories/GHSA-45x7-px36-x8w8
https://github.com/advisories/GHSA-4265-ccf5-phj5
https://nvd.nist.gov/vuln/detail/CVE-2024-26308
https://nvd.nist.gov/vuln/detail/CVE-2024-25710
https://nvd.nist.gov/vuln/detail/CVE-2024-22365
https://nvd.nist.gov/vuln/detail/CVE-2024-20952
https://nvd.nist.gov/vuln/detail/CVE-2024-20932
https://nvd.nist.gov/vuln/detail/CVE-2024-20926
https://nvd.nist.gov/vuln/detail/CVE-2024-20918
https://nvd.nist.gov/vuln/detail/CVE-2024-0727
https://nvd.nist.gov/vuln/detail/CVE-2024-0567
https://nvd.nist.gov/vuln/detail/CVE-2024-0553
https://nvd.nist.gov/vuln/detail/CVE-2023-6237
https://nvd.nist.gov/vuln/detail/CVE-2023-6129
https://nvd.nist.gov/vuln/detail/CVE-2023-5678
https://nvd.nist.gov/vuln/detail/CVE-2023-4641
https://nvd.nist.gov/vuln/detail/CVE-2023-39326

Package Name Vulnerabilities Resolved

tekton.tanzu.vmware.com Expand to see the list

GHSA-hp87-p4gw-j4gq

CVE-2024-22365

CVE-2024-0567

CVE-2024-0553

CVE-2023-7192

CVE-2023-6918

CVE-2023-6546

CVE-2023-6004

CVE-2023-5981

CVE-2023-5717

CVE-2023-5363

CVE-2023-5197

CVE-2023-5178

CVE-2023-5158

CVE-2023-5156

CVE-2023-4921

CVE-2023-4881

CVE-2023-48795

CVE-2023-4813

CVE-2023-4806

CVE-2023-47038

CVE-2023-4623

CVE-2023-4622

CVE-2023-46218

CVE-2023-45871

CVE-2023-45863

CVE-2023-45862

CVE-2023-4569

CVE-2023-44487

CVE-2023-44466

CVE-2023-42756

CVE-2023-42755

CVE-2023-42754

CVE-2023-42753

CVE-2023-42752

CVE-2023-4273

CVE-2023-4244

CVE-2023-4208

CVE-2023-4207

CVE-2023-4206

CVE-2023-4194

CVE-2023-4155

Tanzu Application Platform v1.5

VMware by Broadcom 131

https://github.com/advisories/GHSA-hp87-p4gw-j4gq
https://nvd.nist.gov/vuln/detail/CVE-2024-22365
https://nvd.nist.gov/vuln/detail/CVE-2024-0567
https://nvd.nist.gov/vuln/detail/CVE-2024-0553
https://nvd.nist.gov/vuln/detail/CVE-2023-7192
https://nvd.nist.gov/vuln/detail/CVE-2023-6918
https://nvd.nist.gov/vuln/detail/CVE-2023-6546
https://nvd.nist.gov/vuln/detail/CVE-2023-6004
https://nvd.nist.gov/vuln/detail/CVE-2023-5981
https://nvd.nist.gov/vuln/detail/CVE-2023-5717
https://nvd.nist.gov/vuln/detail/CVE-2023-5363
https://nvd.nist.gov/vuln/detail/CVE-2023-5197
https://nvd.nist.gov/vuln/detail/CVE-2023-5178
https://nvd.nist.gov/vuln/detail/CVE-2023-5158
https://nvd.nist.gov/vuln/detail/CVE-2023-5156
https://nvd.nist.gov/vuln/detail/CVE-2023-4921
https://nvd.nist.gov/vuln/detail/CVE-2023-4881
https://nvd.nist.gov/vuln/detail/CVE-2023-48795
https://nvd.nist.gov/vuln/detail/CVE-2023-4813
https://nvd.nist.gov/vuln/detail/CVE-2023-4806
https://nvd.nist.gov/vuln/detail/CVE-2023-47038
https://nvd.nist.gov/vuln/detail/CVE-2023-4623
https://nvd.nist.gov/vuln/detail/CVE-2023-4622
https://nvd.nist.gov/vuln/detail/CVE-2023-46218
https://nvd.nist.gov/vuln/detail/CVE-2023-45871
https://nvd.nist.gov/vuln/detail/CVE-2023-45863
https://nvd.nist.gov/vuln/detail/CVE-2023-45862
https://nvd.nist.gov/vuln/detail/CVE-2023-4569
https://nvd.nist.gov/vuln/detail/CVE-2023-44487
https://nvd.nist.gov/vuln/detail/CVE-2023-44466
https://nvd.nist.gov/vuln/detail/CVE-2023-42756
https://nvd.nist.gov/vuln/detail/CVE-2023-42755
https://nvd.nist.gov/vuln/detail/CVE-2023-42754
https://nvd.nist.gov/vuln/detail/CVE-2023-42753
https://nvd.nist.gov/vuln/detail/CVE-2023-42752
https://nvd.nist.gov/vuln/detail/CVE-2023-4273
https://nvd.nist.gov/vuln/detail/CVE-2023-4244
https://nvd.nist.gov/vuln/detail/CVE-2023-4208
https://nvd.nist.gov/vuln/detail/CVE-2023-4207
https://nvd.nist.gov/vuln/detail/CVE-2023-4206
https://nvd.nist.gov/vuln/detail/CVE-2023-4194
https://nvd.nist.gov/vuln/detail/CVE-2023-4155

Package Name Vulnerabilities Resolved

CVE-2023-4147

CVE-2023-4132

CVE-2023-4128

CVE-2023-40283

CVE-2023-4016

CVE-2023-4015

CVE-2023-4004

CVE-2023-3995

CVE-2023-39804

CVE-2023-39198

CVE-2023-39197

CVE-2023-39194

CVE-2023-39193

CVE-2023-39192

CVE-2023-39189

CVE-2023-3866

CVE-2023-3865

CVE-2023-3863

CVE-2023-38546

CVE-2023-38432

CVE-2023-38429

CVE-2023-38428

CVE-2023-38426

CVE-2023-3817

CVE-2023-3777

CVE-2023-3776

CVE-2023-3773

CVE-2023-3772

CVE-2023-37453

CVE-2023-3611

CVE-2023-3610

CVE-2023-3609

CVE-2023-36054

CVE-2023-35829

CVE-2023-35828

CVE-2023-35824

CVE-2023-35823

CVE-2023-35788

CVE-2023-3567

CVE-2023-35001

CVE-2023-3446

CVE-2023-3439

CVE-2023-34319

Tanzu Application Platform v1.5

VMware by Broadcom 132

https://nvd.nist.gov/vuln/detail/CVE-2023-4147
https://nvd.nist.gov/vuln/detail/CVE-2023-4132
https://nvd.nist.gov/vuln/detail/CVE-2023-4128
https://nvd.nist.gov/vuln/detail/CVE-2023-40283
https://nvd.nist.gov/vuln/detail/CVE-2023-4016
https://nvd.nist.gov/vuln/detail/CVE-2023-4015
https://nvd.nist.gov/vuln/detail/CVE-2023-4004
https://nvd.nist.gov/vuln/detail/CVE-2023-3995
https://nvd.nist.gov/vuln/detail/CVE-2023-39804
https://nvd.nist.gov/vuln/detail/CVE-2023-39198
https://nvd.nist.gov/vuln/detail/CVE-2023-39197
https://nvd.nist.gov/vuln/detail/CVE-2023-39194
https://nvd.nist.gov/vuln/detail/CVE-2023-39193
https://nvd.nist.gov/vuln/detail/CVE-2023-39192
https://nvd.nist.gov/vuln/detail/CVE-2023-39189
https://nvd.nist.gov/vuln/detail/CVE-2023-3866
https://nvd.nist.gov/vuln/detail/CVE-2023-3865
https://nvd.nist.gov/vuln/detail/CVE-2023-3863
https://nvd.nist.gov/vuln/detail/CVE-2023-38546
https://nvd.nist.gov/vuln/detail/CVE-2023-38432
https://nvd.nist.gov/vuln/detail/CVE-2023-38429
https://nvd.nist.gov/vuln/detail/CVE-2023-38428
https://nvd.nist.gov/vuln/detail/CVE-2023-38426
https://nvd.nist.gov/vuln/detail/CVE-2023-3817
https://nvd.nist.gov/vuln/detail/CVE-2023-3777
https://nvd.nist.gov/vuln/detail/CVE-2023-3776
https://nvd.nist.gov/vuln/detail/CVE-2023-3773
https://nvd.nist.gov/vuln/detail/CVE-2023-3772
https://nvd.nist.gov/vuln/detail/CVE-2023-37453
https://nvd.nist.gov/vuln/detail/CVE-2023-3611
https://nvd.nist.gov/vuln/detail/CVE-2023-3610
https://nvd.nist.gov/vuln/detail/CVE-2023-3609
https://nvd.nist.gov/vuln/detail/CVE-2023-36054
https://nvd.nist.gov/vuln/detail/CVE-2023-35829
https://nvd.nist.gov/vuln/detail/CVE-2023-35828
https://nvd.nist.gov/vuln/detail/CVE-2023-35824
https://nvd.nist.gov/vuln/detail/CVE-2023-35823
https://nvd.nist.gov/vuln/detail/CVE-2023-35788
https://nvd.nist.gov/vuln/detail/CVE-2023-3567
https://nvd.nist.gov/vuln/detail/CVE-2023-35001
https://nvd.nist.gov/vuln/detail/CVE-2023-3446
https://nvd.nist.gov/vuln/detail/CVE-2023-3439
https://nvd.nist.gov/vuln/detail/CVE-2023-34319

Package Name Vulnerabilities Resolved

CVE-2023-34256

CVE-2023-3390

CVE-2023-3389

CVE-2023-3358

CVE-2023-3357

CVE-2023-3355

CVE-2023-3338

CVE-2023-33288

CVE-2023-33203

CVE-2023-3268

CVE-2023-32269

CVE-2023-32248

CVE-2023-32233

CVE-2023-3220

CVE-2023-3212

CVE-2023-3161

CVE-2023-31484

CVE-2023-31436

CVE-2023-3141

CVE-2023-31248

CVE-2023-3117

CVE-2023-31085

CVE-2023-31084

CVE-2023-31083

CVE-2023-3090

CVE-2023-30772

CVE-2023-30456

CVE-2023-2985

CVE-2023-2975

CVE-2023-29491

CVE-2023-29007

CVE-2023-2898

CVE-2023-28466

CVE-2023-28328

CVE-2023-28322

CVE-2023-28321

CVE-2023-27538

CVE-2023-27536

CVE-2023-27535

CVE-2023-27534

CVE-2023-27533

CVE-2023-26607

CVE-2023-26606

Tanzu Application Platform v1.5

VMware by Broadcom 133

https://nvd.nist.gov/vuln/detail/CVE-2023-34256
https://nvd.nist.gov/vuln/detail/CVE-2023-3390
https://nvd.nist.gov/vuln/detail/CVE-2023-3389
https://nvd.nist.gov/vuln/detail/CVE-2023-3358
https://nvd.nist.gov/vuln/detail/CVE-2023-3357
https://nvd.nist.gov/vuln/detail/CVE-2023-3355
https://nvd.nist.gov/vuln/detail/CVE-2023-3338
https://nvd.nist.gov/vuln/detail/CVE-2023-33288
https://nvd.nist.gov/vuln/detail/CVE-2023-33203
https://nvd.nist.gov/vuln/detail/CVE-2023-3268
https://nvd.nist.gov/vuln/detail/CVE-2023-32269
https://nvd.nist.gov/vuln/detail/CVE-2023-32248
https://nvd.nist.gov/vuln/detail/CVE-2023-32233
https://nvd.nist.gov/vuln/detail/CVE-2023-3220
https://nvd.nist.gov/vuln/detail/CVE-2023-3212
https://nvd.nist.gov/vuln/detail/CVE-2023-3161
https://nvd.nist.gov/vuln/detail/CVE-2023-31484
https://nvd.nist.gov/vuln/detail/CVE-2023-31436
https://nvd.nist.gov/vuln/detail/CVE-2023-3141
https://nvd.nist.gov/vuln/detail/CVE-2023-31248
https://nvd.nist.gov/vuln/detail/CVE-2023-3117
https://nvd.nist.gov/vuln/detail/CVE-2023-31085
https://nvd.nist.gov/vuln/detail/CVE-2023-31084
https://nvd.nist.gov/vuln/detail/CVE-2023-31083
https://nvd.nist.gov/vuln/detail/CVE-2023-3090
https://nvd.nist.gov/vuln/detail/CVE-2023-30772
https://nvd.nist.gov/vuln/detail/CVE-2023-30456
https://nvd.nist.gov/vuln/detail/CVE-2023-2985
https://nvd.nist.gov/vuln/detail/CVE-2023-2975
https://nvd.nist.gov/vuln/detail/CVE-2023-29491
https://nvd.nist.gov/vuln/detail/CVE-2023-29007
https://nvd.nist.gov/vuln/detail/CVE-2023-2898
https://nvd.nist.gov/vuln/detail/CVE-2023-28466
https://nvd.nist.gov/vuln/detail/CVE-2023-28328
https://nvd.nist.gov/vuln/detail/CVE-2023-28322
https://nvd.nist.gov/vuln/detail/CVE-2023-28321
https://nvd.nist.gov/vuln/detail/CVE-2023-27538
https://nvd.nist.gov/vuln/detail/CVE-2023-27536
https://nvd.nist.gov/vuln/detail/CVE-2023-27535
https://nvd.nist.gov/vuln/detail/CVE-2023-27534
https://nvd.nist.gov/vuln/detail/CVE-2023-27533
https://nvd.nist.gov/vuln/detail/CVE-2023-26607
https://nvd.nist.gov/vuln/detail/CVE-2023-26606

Package Name Vulnerabilities Resolved

CVE-2023-26605

CVE-2023-26545

CVE-2023-26544

CVE-2023-2650

CVE-2023-2612

CVE-2023-2603

CVE-2023-2602

CVE-2023-25815

CVE-2023-25775

CVE-2023-25652

CVE-2023-25588

CVE-2023-25585

CVE-2023-25584

CVE-2023-25012

CVE-2023-24329

CVE-2023-23946

CVE-2023-23916

CVE-2023-23915

CVE-2023-23914

CVE-2023-23559

CVE-2023-23455

CVE-2023-23454

CVE-2023-23004

CVE-2023-2283

CVE-2023-2269

CVE-2023-22490

CVE-2023-2235

CVE-2023-2194

CVE-2023-2166

CVE-2023-2163

CVE-2023-2162

CVE-2023-2156

CVE-2023-21400

CVE-2023-21255

CVE-2023-2124

CVE-2023-21102

CVE-2023-20938

CVE-2023-20593

CVE-2023-20588

CVE-2023-20569

CVE-2023-2006

CVE-2023-2002

CVE-2023-1998

Tanzu Application Platform v1.5

VMware by Broadcom 134

https://nvd.nist.gov/vuln/detail/CVE-2023-26605
https://nvd.nist.gov/vuln/detail/CVE-2023-26545
https://nvd.nist.gov/vuln/detail/CVE-2023-26544
https://nvd.nist.gov/vuln/detail/CVE-2023-2650
https://nvd.nist.gov/vuln/detail/CVE-2023-2612
https://nvd.nist.gov/vuln/detail/CVE-2023-2603
https://nvd.nist.gov/vuln/detail/CVE-2023-2602
https://nvd.nist.gov/vuln/detail/CVE-2023-25815
https://nvd.nist.gov/vuln/detail/CVE-2023-25775
https://nvd.nist.gov/vuln/detail/CVE-2023-25652
https://nvd.nist.gov/vuln/detail/CVE-2023-25588
https://nvd.nist.gov/vuln/detail/CVE-2023-25585
https://nvd.nist.gov/vuln/detail/CVE-2023-25584
https://nvd.nist.gov/vuln/detail/CVE-2023-25012
https://nvd.nist.gov/vuln/detail/CVE-2023-24329
https://nvd.nist.gov/vuln/detail/CVE-2023-23946
https://nvd.nist.gov/vuln/detail/CVE-2023-23916
https://nvd.nist.gov/vuln/detail/CVE-2023-23915
https://nvd.nist.gov/vuln/detail/CVE-2023-23914
https://nvd.nist.gov/vuln/detail/CVE-2023-23559
https://nvd.nist.gov/vuln/detail/CVE-2023-23455
https://nvd.nist.gov/vuln/detail/CVE-2023-23454
https://nvd.nist.gov/vuln/detail/CVE-2023-23004
https://nvd.nist.gov/vuln/detail/CVE-2023-2283
https://nvd.nist.gov/vuln/detail/CVE-2023-2269
https://nvd.nist.gov/vuln/detail/CVE-2023-22490
https://nvd.nist.gov/vuln/detail/CVE-2023-2235
https://nvd.nist.gov/vuln/detail/CVE-2023-2194
https://nvd.nist.gov/vuln/detail/CVE-2023-2166
https://nvd.nist.gov/vuln/detail/CVE-2023-2163
https://nvd.nist.gov/vuln/detail/CVE-2023-2162
https://nvd.nist.gov/vuln/detail/CVE-2023-2156
https://nvd.nist.gov/vuln/detail/CVE-2023-21400
https://nvd.nist.gov/vuln/detail/CVE-2023-21255
https://nvd.nist.gov/vuln/detail/CVE-2023-2124
https://nvd.nist.gov/vuln/detail/CVE-2023-21102
https://nvd.nist.gov/vuln/detail/CVE-2023-20938
https://nvd.nist.gov/vuln/detail/CVE-2023-20593
https://nvd.nist.gov/vuln/detail/CVE-2023-20588
https://nvd.nist.gov/vuln/detail/CVE-2023-20569
https://nvd.nist.gov/vuln/detail/CVE-2023-2006
https://nvd.nist.gov/vuln/detail/CVE-2023-2002
https://nvd.nist.gov/vuln/detail/CVE-2023-1998

Package Name Vulnerabilities Resolved

CVE-2023-1990

CVE-2023-1972

CVE-2023-1872

CVE-2023-1859

CVE-2023-1855

CVE-2023-1829

CVE-2023-1670

CVE-2023-1667

CVE-2023-1652

CVE-2023-1611

CVE-2023-1513

CVE-2023-1382

CVE-2023-1380

CVE-2023-1281

CVE-2023-1255

CVE-2023-1206

CVE-2023-1195

CVE-2023-1192

CVE-2023-1079

CVE-2023-1078

CVE-2023-1077

CVE-2023-1076

CVE-2023-1075

CVE-2023-1074

CVE-2023-1073

CVE-2023-0597

CVE-2023-0468

CVE-2023-0465

CVE-2023-0464

CVE-2023-0461

CVE-2023-0459

CVE-2023-0458

CVE-2023-0394

CVE-2023-0386

CVE-2023-0361

CVE-2023-0266

CVE-2023-0210

CVE-2023-0179

CVE-2023-0045

CVE-2022-48522

CVE-2022-48502

CVE-2022-4842

CVE-2022-48425

Tanzu Application Platform v1.5

VMware by Broadcom 135

https://nvd.nist.gov/vuln/detail/CVE-2023-1990
https://nvd.nist.gov/vuln/detail/CVE-2023-1972
https://nvd.nist.gov/vuln/detail/CVE-2023-1872
https://nvd.nist.gov/vuln/detail/CVE-2023-1859
https://nvd.nist.gov/vuln/detail/CVE-2023-1855
https://nvd.nist.gov/vuln/detail/CVE-2023-1829
https://nvd.nist.gov/vuln/detail/CVE-2023-1670
https://nvd.nist.gov/vuln/detail/CVE-2023-1667
https://nvd.nist.gov/vuln/detail/CVE-2023-1652
https://nvd.nist.gov/vuln/detail/CVE-2023-1611
https://nvd.nist.gov/vuln/detail/CVE-2023-1513
https://nvd.nist.gov/vuln/detail/CVE-2023-1382
https://nvd.nist.gov/vuln/detail/CVE-2023-1380
https://nvd.nist.gov/vuln/detail/CVE-2023-1281
https://nvd.nist.gov/vuln/detail/CVE-2023-1255
https://nvd.nist.gov/vuln/detail/CVE-2023-1206
https://nvd.nist.gov/vuln/detail/CVE-2023-1195
https://nvd.nist.gov/vuln/detail/CVE-2023-1192
https://nvd.nist.gov/vuln/detail/CVE-2023-1079
https://nvd.nist.gov/vuln/detail/CVE-2023-1078
https://nvd.nist.gov/vuln/detail/CVE-2023-1077
https://nvd.nist.gov/vuln/detail/CVE-2023-1076
https://nvd.nist.gov/vuln/detail/CVE-2023-1075
https://nvd.nist.gov/vuln/detail/CVE-2023-1074
https://nvd.nist.gov/vuln/detail/CVE-2023-1073
https://nvd.nist.gov/vuln/detail/CVE-2023-0597
https://nvd.nist.gov/vuln/detail/CVE-2023-0468
https://nvd.nist.gov/vuln/detail/CVE-2023-0465
https://nvd.nist.gov/vuln/detail/CVE-2023-0464
https://nvd.nist.gov/vuln/detail/CVE-2023-0461
https://nvd.nist.gov/vuln/detail/CVE-2023-0459
https://nvd.nist.gov/vuln/detail/CVE-2023-0458
https://nvd.nist.gov/vuln/detail/CVE-2023-0394
https://nvd.nist.gov/vuln/detail/CVE-2023-0386
https://nvd.nist.gov/vuln/detail/CVE-2023-0361
https://nvd.nist.gov/vuln/detail/CVE-2023-0266
https://nvd.nist.gov/vuln/detail/CVE-2023-0210
https://nvd.nist.gov/vuln/detail/CVE-2023-0179
https://nvd.nist.gov/vuln/detail/CVE-2023-0045
https://nvd.nist.gov/vuln/detail/CVE-2022-48522
https://nvd.nist.gov/vuln/detail/CVE-2022-48502
https://nvd.nist.gov/vuln/detail/CVE-2022-4842
https://nvd.nist.gov/vuln/detail/CVE-2022-48425

Package Name Vulnerabilities Resolved

CVE-2022-48424

CVE-2022-48423

CVE-2022-48303

CVE-2022-47929

CVE-2022-47696

CVE-2022-47673

CVE-2022-47521

CVE-2022-47520

CVE-2022-47519

CVE-2022-47518

CVE-2022-47011

CVE-2022-47010

CVE-2022-47008

CVE-2022-47007

CVE-2022-45919

CVE-2022-45886

CVE-2022-45869

CVE-2022-45703

CVE-2022-44840

CVE-2022-4415

CVE-2022-4382

CVE-2022-4379

CVE-2022-4285

CVE-2022-4269

CVE-2022-42329

CVE-2022-42328

CVE-2022-4139

CVE-2022-4129

CVE-2022-41218

CVE-2022-40982

CVE-2022-3996

CVE-2022-3821

CVE-2022-3707

CVE-2022-36280

CVE-2022-3545

CVE-2022-3521

CVE-2022-35205

CVE-2022-3435

CVE-2022-3424

CVE-2022-3344

CVE-2022-3169

CVE-2022-27672

CVE-2022-2196

Tanzu Application Platform v1.5

VMware by Broadcom 136

https://nvd.nist.gov/vuln/detail/CVE-2022-48424
https://nvd.nist.gov/vuln/detail/CVE-2022-48423
https://nvd.nist.gov/vuln/detail/CVE-2022-48303
https://nvd.nist.gov/vuln/detail/CVE-2022-47929
https://nvd.nist.gov/vuln/detail/CVE-2022-47696
https://nvd.nist.gov/vuln/detail/CVE-2022-47673
https://nvd.nist.gov/vuln/detail/CVE-2022-47521
https://nvd.nist.gov/vuln/detail/CVE-2022-47520
https://nvd.nist.gov/vuln/detail/CVE-2022-47519
https://nvd.nist.gov/vuln/detail/CVE-2022-47518
https://nvd.nist.gov/vuln/detail/CVE-2022-47011
https://nvd.nist.gov/vuln/detail/CVE-2022-47010
https://nvd.nist.gov/vuln/detail/CVE-2022-47008
https://nvd.nist.gov/vuln/detail/CVE-2022-47007
https://nvd.nist.gov/vuln/detail/CVE-2022-45919
https://nvd.nist.gov/vuln/detail/CVE-2022-45886
https://nvd.nist.gov/vuln/detail/CVE-2022-45869
https://nvd.nist.gov/vuln/detail/CVE-2022-45703
https://nvd.nist.gov/vuln/detail/CVE-2022-44840
https://nvd.nist.gov/vuln/detail/CVE-2022-4415
https://nvd.nist.gov/vuln/detail/CVE-2022-4382
https://nvd.nist.gov/vuln/detail/CVE-2022-4379
https://nvd.nist.gov/vuln/detail/CVE-2022-4285
https://nvd.nist.gov/vuln/detail/CVE-2022-4269
https://nvd.nist.gov/vuln/detail/CVE-2022-42329
https://nvd.nist.gov/vuln/detail/CVE-2022-42328
https://nvd.nist.gov/vuln/detail/CVE-2022-4139
https://nvd.nist.gov/vuln/detail/CVE-2022-4129
https://nvd.nist.gov/vuln/detail/CVE-2022-41218
https://nvd.nist.gov/vuln/detail/CVE-2022-40982
https://nvd.nist.gov/vuln/detail/CVE-2022-3996
https://nvd.nist.gov/vuln/detail/CVE-2022-3821
https://nvd.nist.gov/vuln/detail/CVE-2022-3707
https://nvd.nist.gov/vuln/detail/CVE-2022-36280
https://nvd.nist.gov/vuln/detail/CVE-2022-3545
https://nvd.nist.gov/vuln/detail/CVE-2022-3521
https://nvd.nist.gov/vuln/detail/CVE-2022-35205
https://nvd.nist.gov/vuln/detail/CVE-2022-3435
https://nvd.nist.gov/vuln/detail/CVE-2022-3424
https://nvd.nist.gov/vuln/detail/CVE-2022-3344
https://nvd.nist.gov/vuln/detail/CVE-2022-3169
https://nvd.nist.gov/vuln/detail/CVE-2022-27672
https://nvd.nist.gov/vuln/detail/CVE-2022-2196

Package Name Vulnerabilities Resolved

CVE-2007-4559

v1.5.11 Known issues

This release introduces no new known issues.

v1.5.10

Release Date: 13 February 2024

v1.5.10 Security fixes

This release has the following security fixes, listed by component and area.

Package Name Vulnerabilities Resolved

application-configuration-service.tanzu.vmware.com Expand to see the list

GHSA-wjxj-5m7g-mg7q

GHSA-cgwf-w82q-5jrr

GHSA-45x7-px36-x8w8

CVE-2023-42503

carbonblack.scanning.apps.tanzu.vmware.com Expand to see the list

GHSA-6xv5-86q9-7xr8

GHSA-6wrf-mxfj-pf5p

GHSA-33pg-m6jh-5237

Tanzu Application Platform v1.5

VMware by Broadcom 137

https://nvd.nist.gov/vuln/detail/CVE-2007-4559
https://github.com/advisories/GHSA-wjxj-5m7g-mg7q
https://github.com/advisories/GHSA-cgwf-w82q-5jrr
https://github.com/advisories/GHSA-45x7-px36-x8w8
https://nvd.nist.gov/vuln/detail/CVE-2023-42503
https://github.com/advisories/GHSA-6xv5-86q9-7xr8
https://github.com/advisories/GHSA-6wrf-mxfj-pf5p
https://github.com/advisories/GHSA-33pg-m6jh-5237

Package Name Vulnerabilities Resolved

ootb-templates.tanzu.vmware.com Expand to see the list

GHSA-qppj-fm5r-hxr3

GHSA-p782-xgp4-8hr8

GHSA-mw99-9chc-xw7r

GHSA-9763-4f94-gfch

GHSA-7ww5-4wqc-m92c

GHSA-449p-3h89-pw88

GHSA-2wrh-6pvc-2jm9

CVE-2024-22365

CVE-2024-0567

CVE-2024-0553

CVE-2024-0193

CVE-2023-7192

CVE-2023-6932

CVE-2023-6931

CVE-2023-6918

CVE-2023-6817

CVE-2023-6606

CVE-2023-6546

CVE-2023-6040

CVE-2023-6004

CVE-2023-5981

CVE-2023-5717

CVE-2023-5363

CVE-2023-5197

CVE-2023-5178

CVE-2023-5158

CVE-2023-5156

CVE-2023-4921

CVE-2023-4911

CVE-2023-4881

CVE-2023-48795

CVE-2023-4813

CVE-2023-4806

CVE-2023-47038

CVE-2023-4623

CVE-2023-4622

CVE-2023-46218

CVE-2023-45871

CVE-2023-45862

CVE-2023-4569

CVE-2023-44466

CVE-2023-42756

Tanzu Application Platform v1.5

VMware by Broadcom 138

https://github.com/advisories/GHSA-qppj-fm5r-hxr3
https://github.com/advisories/GHSA-p782-xgp4-8hr8
https://github.com/advisories/GHSA-mw99-9chc-xw7r
https://github.com/advisories/GHSA-9763-4f94-gfch
https://github.com/advisories/GHSA-7ww5-4wqc-m92c
https://github.com/advisories/GHSA-449p-3h89-pw88
https://github.com/advisories/GHSA-2wrh-6pvc-2jm9
https://nvd.nist.gov/vuln/detail/CVE-2024-22365
https://nvd.nist.gov/vuln/detail/CVE-2024-0567
https://nvd.nist.gov/vuln/detail/CVE-2024-0553
https://nvd.nist.gov/vuln/detail/CVE-2024-0193
https://nvd.nist.gov/vuln/detail/CVE-2023-7192
https://nvd.nist.gov/vuln/detail/CVE-2023-6932
https://nvd.nist.gov/vuln/detail/CVE-2023-6931
https://nvd.nist.gov/vuln/detail/CVE-2023-6918
https://nvd.nist.gov/vuln/detail/CVE-2023-6817
https://nvd.nist.gov/vuln/detail/CVE-2023-6606
https://nvd.nist.gov/vuln/detail/CVE-2023-6546
https://nvd.nist.gov/vuln/detail/CVE-2023-6040
https://nvd.nist.gov/vuln/detail/CVE-2023-6004
https://nvd.nist.gov/vuln/detail/CVE-2023-5981
https://nvd.nist.gov/vuln/detail/CVE-2023-5717
https://nvd.nist.gov/vuln/detail/CVE-2023-5363
https://nvd.nist.gov/vuln/detail/CVE-2023-5197
https://nvd.nist.gov/vuln/detail/CVE-2023-5178
https://nvd.nist.gov/vuln/detail/CVE-2023-5158
https://nvd.nist.gov/vuln/detail/CVE-2023-5156
https://nvd.nist.gov/vuln/detail/CVE-2023-4921
https://nvd.nist.gov/vuln/detail/CVE-2023-4911
https://nvd.nist.gov/vuln/detail/CVE-2023-4881
https://nvd.nist.gov/vuln/detail/CVE-2023-48795
https://nvd.nist.gov/vuln/detail/CVE-2023-4813
https://nvd.nist.gov/vuln/detail/CVE-2023-4806
https://nvd.nist.gov/vuln/detail/CVE-2023-47038
https://nvd.nist.gov/vuln/detail/CVE-2023-4623
https://nvd.nist.gov/vuln/detail/CVE-2023-4622
https://nvd.nist.gov/vuln/detail/CVE-2023-46218
https://nvd.nist.gov/vuln/detail/CVE-2023-45871
https://nvd.nist.gov/vuln/detail/CVE-2023-45862
https://nvd.nist.gov/vuln/detail/CVE-2023-4569
https://nvd.nist.gov/vuln/detail/CVE-2023-44466
https://nvd.nist.gov/vuln/detail/CVE-2023-42756

Package Name Vulnerabilities Resolved

CVE-2023-42755

CVE-2023-42754

CVE-2023-42753

CVE-2023-42752

CVE-2023-4273

CVE-2023-4244

CVE-2023-4208

CVE-2023-4207

CVE-2023-4206

CVE-2023-4194

CVE-2023-4155

CVE-2023-4147

CVE-2023-4132

CVE-2023-4128

CVE-2023-40283

CVE-2023-4016

CVE-2023-4015

CVE-2023-4004

CVE-2023-3995

CVE-2023-39804

CVE-2023-39198

CVE-2023-39197

CVE-2023-39194

CVE-2023-39193

CVE-2023-39192

CVE-2023-39189

CVE-2023-3866

CVE-2023-3865

CVE-2023-3863

CVE-2023-38546

CVE-2023-38545

CVE-2023-38432

CVE-2023-38429

CVE-2023-38428

CVE-2023-38426

CVE-2023-3817

CVE-2023-3777

CVE-2023-3776

CVE-2023-3773

CVE-2023-3772

CVE-2023-37453

CVE-2023-3611

CVE-2023-3610

Tanzu Application Platform v1.5

VMware by Broadcom 139

https://nvd.nist.gov/vuln/detail/CVE-2023-42755
https://nvd.nist.gov/vuln/detail/CVE-2023-42754
https://nvd.nist.gov/vuln/detail/CVE-2023-42753
https://nvd.nist.gov/vuln/detail/CVE-2023-42752
https://nvd.nist.gov/vuln/detail/CVE-2023-4273
https://nvd.nist.gov/vuln/detail/CVE-2023-4244
https://nvd.nist.gov/vuln/detail/CVE-2023-4208
https://nvd.nist.gov/vuln/detail/CVE-2023-4207
https://nvd.nist.gov/vuln/detail/CVE-2023-4206
https://nvd.nist.gov/vuln/detail/CVE-2023-4194
https://nvd.nist.gov/vuln/detail/CVE-2023-4155
https://nvd.nist.gov/vuln/detail/CVE-2023-4147
https://nvd.nist.gov/vuln/detail/CVE-2023-4132
https://nvd.nist.gov/vuln/detail/CVE-2023-4128
https://nvd.nist.gov/vuln/detail/CVE-2023-40283
https://nvd.nist.gov/vuln/detail/CVE-2023-4016
https://nvd.nist.gov/vuln/detail/CVE-2023-4015
https://nvd.nist.gov/vuln/detail/CVE-2023-4004
https://nvd.nist.gov/vuln/detail/CVE-2023-3995
https://nvd.nist.gov/vuln/detail/CVE-2023-39804
https://nvd.nist.gov/vuln/detail/CVE-2023-39198
https://nvd.nist.gov/vuln/detail/CVE-2023-39197
https://nvd.nist.gov/vuln/detail/CVE-2023-39194
https://nvd.nist.gov/vuln/detail/CVE-2023-39193
https://nvd.nist.gov/vuln/detail/CVE-2023-39192
https://nvd.nist.gov/vuln/detail/CVE-2023-39189
https://nvd.nist.gov/vuln/detail/CVE-2023-3866
https://nvd.nist.gov/vuln/detail/CVE-2023-3865
https://nvd.nist.gov/vuln/detail/CVE-2023-3863
https://nvd.nist.gov/vuln/detail/CVE-2023-38546
https://nvd.nist.gov/vuln/detail/CVE-2023-38545
https://nvd.nist.gov/vuln/detail/CVE-2023-38432
https://nvd.nist.gov/vuln/detail/CVE-2023-38429
https://nvd.nist.gov/vuln/detail/CVE-2023-38428
https://nvd.nist.gov/vuln/detail/CVE-2023-38426
https://nvd.nist.gov/vuln/detail/CVE-2023-3817
https://nvd.nist.gov/vuln/detail/CVE-2023-3777
https://nvd.nist.gov/vuln/detail/CVE-2023-3776
https://nvd.nist.gov/vuln/detail/CVE-2023-3773
https://nvd.nist.gov/vuln/detail/CVE-2023-3772
https://nvd.nist.gov/vuln/detail/CVE-2023-37453
https://nvd.nist.gov/vuln/detail/CVE-2023-3611
https://nvd.nist.gov/vuln/detail/CVE-2023-3610

Package Name Vulnerabilities Resolved

CVE-2023-3609

CVE-2023-36054

CVE-2023-35829

CVE-2023-35828

CVE-2023-35824

CVE-2023-35823

CVE-2023-35788

CVE-2023-35001

CVE-2023-3446

CVE-2023-3439

CVE-2023-34319

CVE-2023-34256

CVE-2023-3390

CVE-2023-3389

CVE-2023-3338

CVE-2023-33288

CVE-2023-33203

CVE-2023-3268

CVE-2023-32248

CVE-2023-3212

CVE-2023-3141

CVE-2023-31248

CVE-2023-3117

CVE-2023-31085

CVE-2023-31084

CVE-2023-31083

CVE-2023-3090

CVE-2023-30772

CVE-2023-2975

CVE-2023-2898

CVE-2023-28466

CVE-2023-28322

CVE-2023-28321

CVE-2023-25775

CVE-2023-23004

CVE-2023-2269

CVE-2023-2235

CVE-2023-2194

CVE-2023-2163

CVE-2023-2156

CVE-2023-21400

CVE-2023-21255

CVE-2023-2124

Tanzu Application Platform v1.5

VMware by Broadcom 140

https://nvd.nist.gov/vuln/detail/CVE-2023-3609
https://nvd.nist.gov/vuln/detail/CVE-2023-36054
https://nvd.nist.gov/vuln/detail/CVE-2023-35829
https://nvd.nist.gov/vuln/detail/CVE-2023-35828
https://nvd.nist.gov/vuln/detail/CVE-2023-35824
https://nvd.nist.gov/vuln/detail/CVE-2023-35823
https://nvd.nist.gov/vuln/detail/CVE-2023-35788
https://nvd.nist.gov/vuln/detail/CVE-2023-35001
https://nvd.nist.gov/vuln/detail/CVE-2023-3446
https://nvd.nist.gov/vuln/detail/CVE-2023-3439
https://nvd.nist.gov/vuln/detail/CVE-2023-34319
https://nvd.nist.gov/vuln/detail/CVE-2023-34256
https://nvd.nist.gov/vuln/detail/CVE-2023-3390
https://nvd.nist.gov/vuln/detail/CVE-2023-3389
https://nvd.nist.gov/vuln/detail/CVE-2023-3338
https://nvd.nist.gov/vuln/detail/CVE-2023-33288
https://nvd.nist.gov/vuln/detail/CVE-2023-33203
https://nvd.nist.gov/vuln/detail/CVE-2023-3268
https://nvd.nist.gov/vuln/detail/CVE-2023-32248
https://nvd.nist.gov/vuln/detail/CVE-2023-3212
https://nvd.nist.gov/vuln/detail/CVE-2023-3141
https://nvd.nist.gov/vuln/detail/CVE-2023-31248
https://nvd.nist.gov/vuln/detail/CVE-2023-3117
https://nvd.nist.gov/vuln/detail/CVE-2023-31085
https://nvd.nist.gov/vuln/detail/CVE-2023-31084
https://nvd.nist.gov/vuln/detail/CVE-2023-31083
https://nvd.nist.gov/vuln/detail/CVE-2023-3090
https://nvd.nist.gov/vuln/detail/CVE-2023-30772
https://nvd.nist.gov/vuln/detail/CVE-2023-2975
https://nvd.nist.gov/vuln/detail/CVE-2023-2898
https://nvd.nist.gov/vuln/detail/CVE-2023-28466
https://nvd.nist.gov/vuln/detail/CVE-2023-28322
https://nvd.nist.gov/vuln/detail/CVE-2023-28321
https://nvd.nist.gov/vuln/detail/CVE-2023-25775
https://nvd.nist.gov/vuln/detail/CVE-2023-23004
https://nvd.nist.gov/vuln/detail/CVE-2023-2269
https://nvd.nist.gov/vuln/detail/CVE-2023-2235
https://nvd.nist.gov/vuln/detail/CVE-2023-2194
https://nvd.nist.gov/vuln/detail/CVE-2023-2163
https://nvd.nist.gov/vuln/detail/CVE-2023-2156
https://nvd.nist.gov/vuln/detail/CVE-2023-21400
https://nvd.nist.gov/vuln/detail/CVE-2023-21255
https://nvd.nist.gov/vuln/detail/CVE-2023-2124

Package Name Vulnerabilities Resolved

CVE-2023-20593

CVE-2023-20588

CVE-2023-20569

CVE-2023-2002

CVE-2023-1990

CVE-2023-1855

CVE-2023-1611

CVE-2023-1206

CVE-2023-1192

CVE-2023-0597

CVE-2022-48522

CVE-2022-48502

CVE-2022-48425

CVE-2022-47011

CVE-2022-47010

CVE-2022-47008

CVE-2022-47007

CVE-2022-45919

CVE-2022-45886

CVE-2022-45703

CVE-2022-44840

CVE-2022-4285

CVE-2022-4269

CVE-2022-40982

CVE-2022-35205

sso.apps.tanzu.vmware.com Expand to see the list

CVE-2023-45145

CVE-2023-41056

CVE-2023-41053

CVE-2023-39319

CVE-2023-39318

CVE-2023-3817

CVE-2023-36054

CVE-2023-3446

CVE-2023-29409

CVE-2023-29406

v1.5.10 Resolved issues

The following issues, listed by component and area, are resolved in this release.

v1.5.10 Resolved issues: Application Single Sign-On

Tanzu Application Platform v1.5

VMware by Broadcom 141

https://nvd.nist.gov/vuln/detail/CVE-2023-20593
https://nvd.nist.gov/vuln/detail/CVE-2023-20588
https://nvd.nist.gov/vuln/detail/CVE-2023-20569
https://nvd.nist.gov/vuln/detail/CVE-2023-2002
https://nvd.nist.gov/vuln/detail/CVE-2023-1990
https://nvd.nist.gov/vuln/detail/CVE-2023-1855
https://nvd.nist.gov/vuln/detail/CVE-2023-1611
https://nvd.nist.gov/vuln/detail/CVE-2023-1206
https://nvd.nist.gov/vuln/detail/CVE-2023-1192
https://nvd.nist.gov/vuln/detail/CVE-2023-0597
https://nvd.nist.gov/vuln/detail/CVE-2022-48522
https://nvd.nist.gov/vuln/detail/CVE-2022-48502
https://nvd.nist.gov/vuln/detail/CVE-2022-48425
https://nvd.nist.gov/vuln/detail/CVE-2022-47011
https://nvd.nist.gov/vuln/detail/CVE-2022-47010
https://nvd.nist.gov/vuln/detail/CVE-2022-47008
https://nvd.nist.gov/vuln/detail/CVE-2022-47007
https://nvd.nist.gov/vuln/detail/CVE-2022-45919
https://nvd.nist.gov/vuln/detail/CVE-2022-45886
https://nvd.nist.gov/vuln/detail/CVE-2022-45703
https://nvd.nist.gov/vuln/detail/CVE-2022-44840
https://nvd.nist.gov/vuln/detail/CVE-2022-4285
https://nvd.nist.gov/vuln/detail/CVE-2022-4269
https://nvd.nist.gov/vuln/detail/CVE-2022-40982
https://nvd.nist.gov/vuln/detail/CVE-2022-35205
https://nvd.nist.gov/vuln/detail/CVE-2023-45145
https://nvd.nist.gov/vuln/detail/CVE-2023-41056
https://nvd.nist.gov/vuln/detail/CVE-2023-41053
https://nvd.nist.gov/vuln/detail/CVE-2023-39319
https://nvd.nist.gov/vuln/detail/CVE-2023-39318
https://nvd.nist.gov/vuln/detail/CVE-2023-3817
https://nvd.nist.gov/vuln/detail/CVE-2023-36054
https://nvd.nist.gov/vuln/detail/CVE-2023-3446
https://nvd.nist.gov/vuln/detail/CVE-2023-29409
https://nvd.nist.gov/vuln/detail/CVE-2023-29406

When requesting an access_token by using the the Authorization Code flow, scopes in the
token are filtered based on user roles. In this version, the scope parameter of the access
token response is also filtered, with the same rules. For more information, see the OAuth
documentation.

v1.5.10 Resolved issues: Contour

Ships with Contour v1.24.6.

Supports upgrades to Tanzu Application Platform v1.5.10 without downtime when
transitioning from DaemonSet to Deployments.

v1.5.10 Known issues

This release introduces no new known issues.

v1.5.9

Release Date: 09 January 2024

v1.5.9 Security fixes

This release has the following security fixes, listed by component and area.

Package Name Vulnerabilities Resolved

api-portal.tanzu.vmware.com Expand to see the list

GHSA-vmq6-5m68-f53m

CVE-2023-5981

CVE-2023-47038

CVE-2023-4016

CVE-2023-36054

CVE-2022-48522

application-configuration-service.tanzu.vmware.com Expand to see the list

CVE-2023-6378

CVE-2023-44487

CVE-2023-39325

CVE-2023-3635

CVE-2023-34053

Note

Downtime-free upgrades require more than one nodes in the cluster.

Tanzu Application Platform v1.5

VMware by Broadcom 142

https://www.ietf.org/archive/id/draft-ietf-oauth-v2-1-10.html#name-token-response
https://github.com/advisories/GHSA-vmq6-5m68-f53m
https://nvd.nist.gov/vuln/detail/CVE-2023-5981
https://nvd.nist.gov/vuln/detail/CVE-2023-47038
https://nvd.nist.gov/vuln/detail/CVE-2023-4016
https://nvd.nist.gov/vuln/detail/CVE-2023-36054
https://nvd.nist.gov/vuln/detail/CVE-2022-48522
https://nvd.nist.gov/vuln/detail/CVE-2023-6378
https://nvd.nist.gov/vuln/detail/CVE-2023-44487
https://nvd.nist.gov/vuln/detail/CVE-2023-39325
https://nvd.nist.gov/vuln/detail/CVE-2023-3635
https://nvd.nist.gov/vuln/detail/CVE-2023-34053

Package Name Vulnerabilities Resolved

cnrs.tanzu.vmware.com Expand to see the list

CVE-2023-5363

CVE-2023-5156

CVE-2023-4813

CVE-2023-4806

CVE-2023-45285

CVE-2023-39326

CVE-2023-3817

CVE-2023-3446

CVE-2023-2975

CVE-2023-2650

CVE-2023-1255

CVE-2023-0465

CVE-2023-0464

CVE-2022-3996

metadata-store.apps.tanzu.vmware.com Expand to see the list

CVE-2022-41717

CVE-2022-41715

CVE-2022-2880

CVE-2022-2879

spring-cloud-gateway.tanzu.vmware.com Expand to see the list

GHSA-jjfh-589g-3hjx

CVE-2023-5981

CVE-2023-5156

CVE-2023-4813

CVE-2023-4806

CVE-2023-47038

CVE-2023-4016

CVE-2023-39804

CVE-2023-34053

CVE-2022-48522

Tanzu Application Platform v1.5

VMware by Broadcom 143

https://nvd.nist.gov/vuln/detail/CVE-2023-5363
https://nvd.nist.gov/vuln/detail/CVE-2023-5156
https://nvd.nist.gov/vuln/detail/CVE-2023-4813
https://nvd.nist.gov/vuln/detail/CVE-2023-4806
https://nvd.nist.gov/vuln/detail/CVE-2023-45285
https://nvd.nist.gov/vuln/detail/CVE-2023-39326
https://nvd.nist.gov/vuln/detail/CVE-2023-3817
https://nvd.nist.gov/vuln/detail/CVE-2023-3446
https://nvd.nist.gov/vuln/detail/CVE-2023-2975
https://nvd.nist.gov/vuln/detail/CVE-2023-2650
https://nvd.nist.gov/vuln/detail/CVE-2023-1255
https://nvd.nist.gov/vuln/detail/CVE-2023-0465
https://nvd.nist.gov/vuln/detail/CVE-2023-0464
https://nvd.nist.gov/vuln/detail/CVE-2022-3996
https://nvd.nist.gov/vuln/detail/CVE-2022-41717
https://nvd.nist.gov/vuln/detail/CVE-2022-41715
https://nvd.nist.gov/vuln/detail/CVE-2022-2880
https://nvd.nist.gov/vuln/detail/CVE-2022-2879
https://github.com/advisories/GHSA-jjfh-589g-3hjx
https://nvd.nist.gov/vuln/detail/CVE-2023-5981
https://nvd.nist.gov/vuln/detail/CVE-2023-5156
https://nvd.nist.gov/vuln/detail/CVE-2023-4813
https://nvd.nist.gov/vuln/detail/CVE-2023-4806
https://nvd.nist.gov/vuln/detail/CVE-2023-47038
https://nvd.nist.gov/vuln/detail/CVE-2023-4016
https://nvd.nist.gov/vuln/detail/CVE-2023-39804
https://nvd.nist.gov/vuln/detail/CVE-2023-34053
https://nvd.nist.gov/vuln/detail/CVE-2022-48522

Package Name Vulnerabilities Resolved

sso.apps.tanzu.vmware.com Expand to see the list

GHSA-vmq6-5m68-f53m

CVE-2023-5363

CVE-2023-5156

CVE-2023-34053

CVE-2023-34035

CVE-2023-2975

CVE-2023-22049

CVE-2023-22045

CVE-2023-22044

CVE-2023-22041

CVE-2023-22036

CVE-2023-22006

CVE-2023-20863

CVE-2023-20861

v1.5.9 Known issues

This release has the following known issues, listed by component and area.

v1.5.9 Known issues: Supply Chain Security Tools - Scan

The Snyk scanner outputs an incorrectly created date, resulting in an invalid date. If the
workload is in a failed state due to an invalid date, wait approximately 10 hours and the
workload automatically goes into the ready state. For more information, see this issue in the
Snyk Github repository.

v1.5.8
Release Date: 12 December 2023

v1.5.8 Security fixes

This release has the following security fixes, listed by component and area.

Package Name Vulnerabilities Resolved

api-portal.tanzu.vmware.com Expand to see the list

GHSA-qppj-fm5r-hxr3

CVE-2023-5363

CVE-2023-3817

CVE-2023-3446

CVE-2023-2975

CVE-2023-22081

CVE-2023-22025

Tanzu Application Platform v1.5

VMware by Broadcom 144

https://github.com/advisories/GHSA-vmq6-5m68-f53m
https://nvd.nist.gov/vuln/detail/CVE-2023-5363
https://nvd.nist.gov/vuln/detail/CVE-2023-5156
https://nvd.nist.gov/vuln/detail/CVE-2023-34053
https://nvd.nist.gov/vuln/detail/CVE-2023-34035
https://nvd.nist.gov/vuln/detail/CVE-2023-2975
https://nvd.nist.gov/vuln/detail/CVE-2023-22049
https://nvd.nist.gov/vuln/detail/CVE-2023-22045
https://nvd.nist.gov/vuln/detail/CVE-2023-22044
https://nvd.nist.gov/vuln/detail/CVE-2023-22041
https://nvd.nist.gov/vuln/detail/CVE-2023-22036
https://nvd.nist.gov/vuln/detail/CVE-2023-22006
https://nvd.nist.gov/vuln/detail/CVE-2023-20863
https://nvd.nist.gov/vuln/detail/CVE-2023-20861
https://github.com/snyk-tech-services/snyk2spdx/issues/54
https://github.com/advisories/GHSA-qppj-fm5r-hxr3
https://nvd.nist.gov/vuln/detail/CVE-2023-5363
https://nvd.nist.gov/vuln/detail/CVE-2023-3817
https://nvd.nist.gov/vuln/detail/CVE-2023-3446
https://nvd.nist.gov/vuln/detail/CVE-2023-2975
https://nvd.nist.gov/vuln/detail/CVE-2023-22081
https://nvd.nist.gov/vuln/detail/CVE-2023-22025

Package Name Vulnerabilities Resolved

apis.apps.tanzu.vmware.com Expand to see the list

GHSA-qppj-fm5r-hxr3

GHSA-2wrh-6pvc-2jm9

CVE-2023-5363

CVE-2023-3817

CVE-2023-3446

CVE-2023-2975

Tanzu Application Platform v1.5

VMware by Broadcom 145

https://github.com/advisories/GHSA-qppj-fm5r-hxr3
https://github.com/advisories/GHSA-2wrh-6pvc-2jm9
https://nvd.nist.gov/vuln/detail/CVE-2023-5363
https://nvd.nist.gov/vuln/detail/CVE-2023-3817
https://nvd.nist.gov/vuln/detail/CVE-2023-3446
https://nvd.nist.gov/vuln/detail/CVE-2023-2975

Package Name Vulnerabilities Resolved

buildservice.tanzu.vmware.com Expand to see the list

GHSA-hp87-p4gw-j4gq

GHSA-4374-p667-p6c8

CVE-2023-5981

CVE-2023-5363

CVE-2023-5197

CVE-2023-4921

CVE-2023-4911

CVE-2023-4881

CVE-2023-4623

CVE-2023-4622

CVE-2023-45871

CVE-2023-44487

CVE-2023-44466

CVE-2023-42756

CVE-2023-42755

CVE-2023-42753

CVE-2023-42752

CVE-2023-4273

CVE-2023-4244

CVE-2023-4208

CVE-2023-4207

CVE-2023-4206

CVE-2023-4194

CVE-2023-4155

CVE-2023-4132

CVE-2023-4016

CVE-2023-3866

CVE-2023-3865

CVE-2023-3863

CVE-2023-38546

CVE-2023-38545

CVE-2023-38432

CVE-2023-38429

CVE-2023-38428

CVE-2023-38426

CVE-2023-3817

CVE-2023-3772

CVE-2023-36054

CVE-2023-35829

CVE-2023-35828

CVE-2023-35824

CVE-2023-35823

Tanzu Application Platform v1.5

VMware by Broadcom 146

https://github.com/advisories/GHSA-hp87-p4gw-j4gq
https://github.com/advisories/GHSA-4374-p667-p6c8
https://nvd.nist.gov/vuln/detail/CVE-2023-5981
https://nvd.nist.gov/vuln/detail/CVE-2023-5363
https://nvd.nist.gov/vuln/detail/CVE-2023-5197
https://nvd.nist.gov/vuln/detail/CVE-2023-4921
https://nvd.nist.gov/vuln/detail/CVE-2023-4911
https://nvd.nist.gov/vuln/detail/CVE-2023-4881
https://nvd.nist.gov/vuln/detail/CVE-2023-4623
https://nvd.nist.gov/vuln/detail/CVE-2023-4622
https://nvd.nist.gov/vuln/detail/CVE-2023-45871
https://nvd.nist.gov/vuln/detail/CVE-2023-44487
https://nvd.nist.gov/vuln/detail/CVE-2023-44466
https://nvd.nist.gov/vuln/detail/CVE-2023-42756
https://nvd.nist.gov/vuln/detail/CVE-2023-42755
https://nvd.nist.gov/vuln/detail/CVE-2023-42753
https://nvd.nist.gov/vuln/detail/CVE-2023-42752
https://nvd.nist.gov/vuln/detail/CVE-2023-4273
https://nvd.nist.gov/vuln/detail/CVE-2023-4244
https://nvd.nist.gov/vuln/detail/CVE-2023-4208
https://nvd.nist.gov/vuln/detail/CVE-2023-4207
https://nvd.nist.gov/vuln/detail/CVE-2023-4206
https://nvd.nist.gov/vuln/detail/CVE-2023-4194
https://nvd.nist.gov/vuln/detail/CVE-2023-4155
https://nvd.nist.gov/vuln/detail/CVE-2023-4132
https://nvd.nist.gov/vuln/detail/CVE-2023-4016
https://nvd.nist.gov/vuln/detail/CVE-2023-3866
https://nvd.nist.gov/vuln/detail/CVE-2023-3865
https://nvd.nist.gov/vuln/detail/CVE-2023-3863
https://nvd.nist.gov/vuln/detail/CVE-2023-38546
https://nvd.nist.gov/vuln/detail/CVE-2023-38545
https://nvd.nist.gov/vuln/detail/CVE-2023-38432
https://nvd.nist.gov/vuln/detail/CVE-2023-38429
https://nvd.nist.gov/vuln/detail/CVE-2023-38428
https://nvd.nist.gov/vuln/detail/CVE-2023-38426
https://nvd.nist.gov/vuln/detail/CVE-2023-3817
https://nvd.nist.gov/vuln/detail/CVE-2023-3772
https://nvd.nist.gov/vuln/detail/CVE-2023-36054
https://nvd.nist.gov/vuln/detail/CVE-2023-35829
https://nvd.nist.gov/vuln/detail/CVE-2023-35828
https://nvd.nist.gov/vuln/detail/CVE-2023-35824
https://nvd.nist.gov/vuln/detail/CVE-2023-35823

Package Name Vulnerabilities Resolved

CVE-2023-3446

CVE-2023-34319

CVE-2023-34256

CVE-2023-3338

CVE-2023-3268

CVE-2023-32248

CVE-2023-3212

CVE-2023-31484

CVE-2023-3141

CVE-2023-31085

CVE-2023-31084

CVE-2023-31083

CVE-2023-2975

CVE-2023-29491

CVE-2023-2898

CVE-2023-2650

CVE-2023-2603

CVE-2023-2602

CVE-2023-25775

CVE-2023-23004

CVE-2023-2269

CVE-2023-2235

CVE-2023-2163

CVE-2023-2156

CVE-2023-21255

CVE-2023-2124

CVE-2023-1255

CVE-2023-1206

CVE-2023-1192

CVE-2023-0465

CVE-2023-0464

CVE-2022-48502

CVE-2022-48425

CVE-2022-40982

CVE-2022-3996

Tanzu Application Platform v1.5

VMware by Broadcom 147

https://nvd.nist.gov/vuln/detail/CVE-2023-3446
https://nvd.nist.gov/vuln/detail/CVE-2023-34319
https://nvd.nist.gov/vuln/detail/CVE-2023-34256
https://nvd.nist.gov/vuln/detail/CVE-2023-3338
https://nvd.nist.gov/vuln/detail/CVE-2023-3268
https://nvd.nist.gov/vuln/detail/CVE-2023-32248
https://nvd.nist.gov/vuln/detail/CVE-2023-3212
https://nvd.nist.gov/vuln/detail/CVE-2023-31484
https://nvd.nist.gov/vuln/detail/CVE-2023-3141
https://nvd.nist.gov/vuln/detail/CVE-2023-31085
https://nvd.nist.gov/vuln/detail/CVE-2023-31084
https://nvd.nist.gov/vuln/detail/CVE-2023-31083
https://nvd.nist.gov/vuln/detail/CVE-2023-2975
https://nvd.nist.gov/vuln/detail/CVE-2023-29491
https://nvd.nist.gov/vuln/detail/CVE-2023-2898
https://nvd.nist.gov/vuln/detail/CVE-2023-2650
https://nvd.nist.gov/vuln/detail/CVE-2023-2603
https://nvd.nist.gov/vuln/detail/CVE-2023-2602
https://nvd.nist.gov/vuln/detail/CVE-2023-25775
https://nvd.nist.gov/vuln/detail/CVE-2023-23004
https://nvd.nist.gov/vuln/detail/CVE-2023-2269
https://nvd.nist.gov/vuln/detail/CVE-2023-2235
https://nvd.nist.gov/vuln/detail/CVE-2023-2163
https://nvd.nist.gov/vuln/detail/CVE-2023-2156
https://nvd.nist.gov/vuln/detail/CVE-2023-21255
https://nvd.nist.gov/vuln/detail/CVE-2023-2124
https://nvd.nist.gov/vuln/detail/CVE-2023-1255
https://nvd.nist.gov/vuln/detail/CVE-2023-1206
https://nvd.nist.gov/vuln/detail/CVE-2023-1192
https://nvd.nist.gov/vuln/detail/CVE-2023-0465
https://nvd.nist.gov/vuln/detail/CVE-2023-0464
https://nvd.nist.gov/vuln/detail/CVE-2022-48502
https://nvd.nist.gov/vuln/detail/CVE-2022-48425
https://nvd.nist.gov/vuln/detail/CVE-2022-40982
https://nvd.nist.gov/vuln/detail/CVE-2022-3996

Package Name Vulnerabilities Resolved

cnrs.tanzu.vmware.com Expand to see the list

CVE-2023-39319

CVE-2023-39318

CVE-2023-29409

CVE-2023-29406

CVE-2023-29403

CVE-2023-24536

CVE-2023-24534

CVE-2023-24532

developer-conventions.tanzu.vmware.com Expand to see the list

GHSA-qppj-fm5r-hxr3

GHSA-4374-p667-p6c8

GHSA-2wrh-6pvc-2jm9

CVE-2023-5363

CVE-2023-3817

CVE-2023-3446

CVE-2023-2975

CVE-2023-2650

CVE-2023-1255

CVE-2023-0465

CVE-2023-0464

CVE-2022-3996

Tanzu Application Platform v1.5

VMware by Broadcom 148

https://nvd.nist.gov/vuln/detail/CVE-2023-39319
https://nvd.nist.gov/vuln/detail/CVE-2023-39318
https://nvd.nist.gov/vuln/detail/CVE-2023-29409
https://nvd.nist.gov/vuln/detail/CVE-2023-29406
https://nvd.nist.gov/vuln/detail/CVE-2023-29403
https://nvd.nist.gov/vuln/detail/CVE-2023-24536
https://nvd.nist.gov/vuln/detail/CVE-2023-24534
https://nvd.nist.gov/vuln/detail/CVE-2023-24532
https://github.com/advisories/GHSA-qppj-fm5r-hxr3
https://github.com/advisories/GHSA-4374-p667-p6c8
https://github.com/advisories/GHSA-2wrh-6pvc-2jm9
https://nvd.nist.gov/vuln/detail/CVE-2023-5363
https://nvd.nist.gov/vuln/detail/CVE-2023-3817
https://nvd.nist.gov/vuln/detail/CVE-2023-3446
https://nvd.nist.gov/vuln/detail/CVE-2023-2975
https://nvd.nist.gov/vuln/detail/CVE-2023-2650
https://nvd.nist.gov/vuln/detail/CVE-2023-1255
https://nvd.nist.gov/vuln/detail/CVE-2023-0465
https://nvd.nist.gov/vuln/detail/CVE-2023-0464
https://nvd.nist.gov/vuln/detail/CVE-2022-3996

Package Name Vulnerabilities Resolved

eventing.tanzu.vmware.com Expand to see the list

GHSA-qppj-fm5r-hxr3

GHSA-m425-mq94-257g

GHSA-4374-p667-p6c8

GHSA-2wrh-6pvc-2jm9

CVE-2023-44487

CVE-2023-39323

CVE-2023-39319

CVE-2023-39318

CVE-2023-29409

CVE-2023-29406

CVE-2023-29405

CVE-2023-29404

CVE-2023-29403

CVE-2023-29402

CVE-2023-29400

CVE-2023-24540

CVE-2023-24539

CVE-2023-24538

CVE-2023-24537

CVE-2023-24536

CVE-2023-24534

CVE-2023-24532

CVE-2022-41725

CVE-2022-41724

CVE-2022-41723

CVE-2022-41722

CVE-2022-41717

CVE-2022-41715

CVE-2022-32189

CVE-2022-32148

CVE-2022-30635

CVE-2022-30633

CVE-2022-30632

CVE-2022-30631

CVE-2022-30630

CVE-2022-2880

CVE-2022-2879

CVE-2022-28131

CVE-2022-27664

CVE-2022-1962

CVE-2022-1705

Tanzu Application Platform v1.5

VMware by Broadcom 149

https://github.com/advisories/GHSA-qppj-fm5r-hxr3
https://github.com/advisories/GHSA-m425-mq94-257g
https://github.com/advisories/GHSA-4374-p667-p6c8
https://github.com/advisories/GHSA-2wrh-6pvc-2jm9
https://nvd.nist.gov/vuln/detail/CVE-2023-44487
https://nvd.nist.gov/vuln/detail/CVE-2023-39323
https://nvd.nist.gov/vuln/detail/CVE-2023-39319
https://nvd.nist.gov/vuln/detail/CVE-2023-39318
https://nvd.nist.gov/vuln/detail/CVE-2023-29409
https://nvd.nist.gov/vuln/detail/CVE-2023-29406
https://nvd.nist.gov/vuln/detail/CVE-2023-29405
https://nvd.nist.gov/vuln/detail/CVE-2023-29404
https://nvd.nist.gov/vuln/detail/CVE-2023-29403
https://nvd.nist.gov/vuln/detail/CVE-2023-29402
https://nvd.nist.gov/vuln/detail/CVE-2023-29400
https://nvd.nist.gov/vuln/detail/CVE-2023-24540
https://nvd.nist.gov/vuln/detail/CVE-2023-24539
https://nvd.nist.gov/vuln/detail/CVE-2023-24538
https://nvd.nist.gov/vuln/detail/CVE-2023-24537
https://nvd.nist.gov/vuln/detail/CVE-2023-24536
https://nvd.nist.gov/vuln/detail/CVE-2023-24534
https://nvd.nist.gov/vuln/detail/CVE-2023-24532
https://nvd.nist.gov/vuln/detail/CVE-2022-41725
https://nvd.nist.gov/vuln/detail/CVE-2022-41724
https://nvd.nist.gov/vuln/detail/CVE-2022-41723
https://nvd.nist.gov/vuln/detail/CVE-2022-41722
https://nvd.nist.gov/vuln/detail/CVE-2022-41717
https://nvd.nist.gov/vuln/detail/CVE-2022-41715
https://nvd.nist.gov/vuln/detail/CVE-2022-32189
https://nvd.nist.gov/vuln/detail/CVE-2022-32148
https://nvd.nist.gov/vuln/detail/CVE-2022-30635
https://nvd.nist.gov/vuln/detail/CVE-2022-30633
https://nvd.nist.gov/vuln/detail/CVE-2022-30632
https://nvd.nist.gov/vuln/detail/CVE-2022-30631
https://nvd.nist.gov/vuln/detail/CVE-2022-30630
https://nvd.nist.gov/vuln/detail/CVE-2022-2880
https://nvd.nist.gov/vuln/detail/CVE-2022-2879
https://nvd.nist.gov/vuln/detail/CVE-2022-28131
https://nvd.nist.gov/vuln/detail/CVE-2022-27664
https://nvd.nist.gov/vuln/detail/CVE-2022-1962
https://nvd.nist.gov/vuln/detail/CVE-2022-1705

Package Name Vulnerabilities Resolved

spring-cloud-gateway.tanzu.vmware.com Expand to see the list

GHSA-xpw8-rcwv-8f8p

GHSA-vmq6-5m68-f53m

GHSA-qppj-fm5r-hxr3

GHSA-jgvc-jfgh-rjvv

CVE-2023-5363

CVE-2023-4911

CVE-2023-44487

CVE-2023-3817

CVE-2023-36054

CVE-2023-3446

CVE-2023-2975

CVE-2023-22081

CVE-2023-22025

v1.5.8 Known issues

This release introduces no new known issues.

v1.5.7

Release Date: 14 November 2023

v1.5.7 Security fixes

This release has the following security fixes, listed by component and area.

Package Name Vulnerabilities Resolved

api-portal.tanzu.vmware.com Expand to see the list

GHSA-2wrh-6pvc-2jm9

CVE-2023-2603

CVE-2023-2602

CVE-2023-22049

CVE-2023-22045

CVE-2023-22044

CVE-2023-22041

CVE-2023-22036

CVE-2023-22006

contour.tanzu.vmware.com Expand to see the list

GHSA-qppj-fm5r-hxr3

GHSA-m425-mq94-257g

GHSA-4374-p667-p6c8

GHSA-2wrh-6pvc-2jm9

CVE-2023-44487

Tanzu Application Platform v1.5

VMware by Broadcom 150

https://github.com/advisories/GHSA-xpw8-rcwv-8f8p
https://github.com/advisories/GHSA-vmq6-5m68-f53m
https://github.com/advisories/GHSA-qppj-fm5r-hxr3
https://github.com/advisories/GHSA-jgvc-jfgh-rjvv
https://nvd.nist.gov/vuln/detail/CVE-2023-5363
https://nvd.nist.gov/vuln/detail/CVE-2023-4911
https://nvd.nist.gov/vuln/detail/CVE-2023-44487
https://nvd.nist.gov/vuln/detail/CVE-2023-3817
https://nvd.nist.gov/vuln/detail/CVE-2023-36054
https://nvd.nist.gov/vuln/detail/CVE-2023-3446
https://nvd.nist.gov/vuln/detail/CVE-2023-2975
https://nvd.nist.gov/vuln/detail/CVE-2023-22081
https://nvd.nist.gov/vuln/detail/CVE-2023-22025
https://github.com/advisories/GHSA-2wrh-6pvc-2jm9
https://nvd.nist.gov/vuln/detail/CVE-2023-2603
https://nvd.nist.gov/vuln/detail/CVE-2023-2602
https://nvd.nist.gov/vuln/detail/CVE-2023-22049
https://nvd.nist.gov/vuln/detail/CVE-2023-22045
https://nvd.nist.gov/vuln/detail/CVE-2023-22044
https://nvd.nist.gov/vuln/detail/CVE-2023-22041
https://nvd.nist.gov/vuln/detail/CVE-2023-22036
https://nvd.nist.gov/vuln/detail/CVE-2023-22006
https://github.com/advisories/GHSA-qppj-fm5r-hxr3
https://github.com/advisories/GHSA-m425-mq94-257g
https://github.com/advisories/GHSA-4374-p667-p6c8
https://github.com/advisories/GHSA-2wrh-6pvc-2jm9
https://nvd.nist.gov/vuln/detail/CVE-2023-44487

v1.5.7 Known issues

This release has the following known issues, listed by component and area.

v1.5.7 Known issues: Tanzu Application Platform

Tanzu Application Platform v1.5.7 is not supported with Tanzu Kubernetes releases (TKR)
v1.26 on vSphere with Tanzu v8.

v1.5.6
Release Date: 10 October 2023

v1.5.6 Breaking changes

This release has the following breaking changes, listed by component and area.

v1.5.6 Breaking changes: Services Toolkit

Services Toolkit forces explicit cluster-wide permissions to claim from a
ClusterInstanceClass. You must now grant the permission to claim from a
ClusterInstanceClass by using a ClusterRole and ClusterRoleBinding. For more
information, see The claim verb for ClusterInstanceClass.

v1.5.6 Security fixes

This release has the following security fixes, listed by component and area.

Package Name Vulnerabilities Resolved

accelerator.apps.tanzu.vmware.com Expand to see the list

CVE-2023-43642

api-portal.tanzu.vmware.com Expand to see the list

GHSA-6mjq-h674-j845

CVE-2023-31484

CVE-2023-29491

CVE-2023-2650

CVE-2023-1255

Tanzu Application Platform v1.5

VMware by Broadcom 151

https://nvd.nist.gov/vuln/detail/CVE-2023-43642
https://github.com/advisories/GHSA-6mjq-h674-j845
https://nvd.nist.gov/vuln/detail/CVE-2023-31484
https://nvd.nist.gov/vuln/detail/CVE-2023-29491
https://nvd.nist.gov/vuln/detail/CVE-2023-2650
https://nvd.nist.gov/vuln/detail/CVE-2023-1255

Package Name Vulnerabilities Resolved

apis.apps.tanzu.vmware.com Expand to see the list

CVE-2023-31484

CVE-2023-29491

CVE-2023-29383

CVE-2023-26604

CVE-2023-2650

CVE-2023-0465

CVE-2023-0464

CVE-2022-3821

CVE-2022-3219

CVE-2020-13844

CVE-2016-2781

CVE-2013-4235

apiserver.appliveview.tanzu.vmware.com Expand to see the list

CVE-2023-2650

CVE-2023-1255

CVE-2023-0465

CVE-2023-0464

CVE-2022-3996

application-configuration-service.tanzu.vmware.com Expand to see the list

GHSA-mjmq-gwgm-5qhm

GHSA-3p86-9955-h393

CVE-2023-20863

CVE-2023-20861

buildservice.tanzu.vmware.com Expand to see the list

CVE-2022-48064

controller.source.apps.tanzu.vmware.com Expand to see the list

GHSA-6wrf-mxfj-pf5p

GHSA-33pg-m6jh-5237

conventions.appliveview.tanzu.vmware.com Expand to see the list

CVE-2023-2650

CVE-2023-1255

CVE-2023-0465

CVE-2023-0464

CVE-2022-3996

learningcenter.tanzu.vmware.com Expand to see the list

CVE-2022-48064

CVE-2022-45919

CVE-2022-45887

CVE-2021-3712

Tanzu Application Platform v1.5

VMware by Broadcom 152

https://nvd.nist.gov/vuln/detail/CVE-2023-31484
https://nvd.nist.gov/vuln/detail/CVE-2023-29491
https://nvd.nist.gov/vuln/detail/CVE-2023-29383
https://nvd.nist.gov/vuln/detail/CVE-2023-26604
https://nvd.nist.gov/vuln/detail/CVE-2023-2650
https://nvd.nist.gov/vuln/detail/CVE-2023-0465
https://nvd.nist.gov/vuln/detail/CVE-2023-0464
https://nvd.nist.gov/vuln/detail/CVE-2022-3821
https://nvd.nist.gov/vuln/detail/CVE-2022-3219
https://nvd.nist.gov/vuln/detail/CVE-2020-13844
https://nvd.nist.gov/vuln/detail/CVE-2016-2781
https://nvd.nist.gov/vuln/detail/CVE-2013-4235
https://nvd.nist.gov/vuln/detail/CVE-2023-2650
https://nvd.nist.gov/vuln/detail/CVE-2023-1255
https://nvd.nist.gov/vuln/detail/CVE-2023-0465
https://nvd.nist.gov/vuln/detail/CVE-2023-0464
https://nvd.nist.gov/vuln/detail/CVE-2022-3996
https://github.com/advisories/GHSA-mjmq-gwgm-5qhm
https://github.com/advisories/GHSA-3p86-9955-h393
https://nvd.nist.gov/vuln/detail/CVE-2023-20863
https://nvd.nist.gov/vuln/detail/CVE-2023-20861
https://nvd.nist.gov/vuln/detail/CVE-2022-48064
https://github.com/advisories/GHSA-6wrf-mxfj-pf5p
https://github.com/advisories/GHSA-33pg-m6jh-5237
https://nvd.nist.gov/vuln/detail/CVE-2023-2650
https://nvd.nist.gov/vuln/detail/CVE-2023-1255
https://nvd.nist.gov/vuln/detail/CVE-2023-0465
https://nvd.nist.gov/vuln/detail/CVE-2023-0464
https://nvd.nist.gov/vuln/detail/CVE-2022-3996
https://nvd.nist.gov/vuln/detail/CVE-2022-48064
https://nvd.nist.gov/vuln/detail/CVE-2022-45919
https://nvd.nist.gov/vuln/detail/CVE-2022-45887
https://nvd.nist.gov/vuln/detail/CVE-2021-3712

Package Name Vulnerabilities Resolved

ootb-templates.tanzu.vmware.com Expand to see the list

CVE-2022-48064

CVE-2022-45919

CVE-2022-45887

policy.apps.tanzu.vmware.com Expand to see the list

CVE-2023-2650

CVE-2023-1255

CVE-2023-0465

CVE-2023-0464

CVE-2022-3996

services-toolkit.tanzu.vmware.com Expand to see the list

GHSA-hp87-p4gw-j4gq

spring-cloud-gateway.tanzu.vmware.com Expand to see the list

GHSA-cgwf-w82q-5jrr

GHSA-7g45-4rm6-3mm3

GHSA-5mg8-w23w-74h3

CVE-2023-42503

CVE-2023-3635

CVE-2023-2976

CVE-2023-22049

CVE-2023-22045

CVE-2023-22044

CVE-2023-22041

CVE-2023-22036

CVE-2023-22006

CVE-2020-8908

tap-gui.tanzu.vmware.com Expand to see the list

CVE-2023-32559

CVE-2023-32006

tekton.tanzu.vmware.com Expand to see the list

CVE-2022-48566

CVE-2022-48565

CVE-2022-48564

CVE-2022-48560

CVE-2022-48064

CVE-2022-45919

CVE-2022-45887

Tanzu Application Platform v1.5

VMware by Broadcom 153

https://nvd.nist.gov/vuln/detail/CVE-2022-48064
https://nvd.nist.gov/vuln/detail/CVE-2022-45919
https://nvd.nist.gov/vuln/detail/CVE-2022-45887
https://nvd.nist.gov/vuln/detail/CVE-2023-2650
https://nvd.nist.gov/vuln/detail/CVE-2023-1255
https://nvd.nist.gov/vuln/detail/CVE-2023-0465
https://nvd.nist.gov/vuln/detail/CVE-2023-0464
https://nvd.nist.gov/vuln/detail/CVE-2022-3996
https://github.com/advisories/GHSA-hp87-p4gw-j4gq
https://github.com/advisories/GHSA-cgwf-w82q-5jrr
https://github.com/advisories/GHSA-7g45-4rm6-3mm3
https://github.com/advisories/GHSA-5mg8-w23w-74h3
https://nvd.nist.gov/vuln/detail/CVE-2023-42503
https://nvd.nist.gov/vuln/detail/CVE-2023-3635
https://nvd.nist.gov/vuln/detail/CVE-2023-2976
https://nvd.nist.gov/vuln/detail/CVE-2023-22049
https://nvd.nist.gov/vuln/detail/CVE-2023-22045
https://nvd.nist.gov/vuln/detail/CVE-2023-22044
https://nvd.nist.gov/vuln/detail/CVE-2023-22041
https://nvd.nist.gov/vuln/detail/CVE-2023-22036
https://nvd.nist.gov/vuln/detail/CVE-2023-22006
https://nvd.nist.gov/vuln/detail/CVE-2020-8908
https://nvd.nist.gov/vuln/detail/CVE-2023-32559
https://nvd.nist.gov/vuln/detail/CVE-2023-32006
https://nvd.nist.gov/vuln/detail/CVE-2022-48566
https://nvd.nist.gov/vuln/detail/CVE-2022-48565
https://nvd.nist.gov/vuln/detail/CVE-2022-48564
https://nvd.nist.gov/vuln/detail/CVE-2022-48560
https://nvd.nist.gov/vuln/detail/CVE-2022-48064
https://nvd.nist.gov/vuln/detail/CVE-2022-45919
https://nvd.nist.gov/vuln/detail/CVE-2022-45887

Package Name Vulnerabilities Resolved

workshops.learningcenter.tanzu.vmware.com Expand to see the list

CVE-2022-48064

CVE-2022-45919

CVE-2022-45887

CVE-2021-3712

v1.5.6 Resolved issues

The following issues, listed by component and area, are resolved in this release.

v1.5.6 Resolved issues: Application Configuration Service

Resolves an issue which caused client applications that include the spring-cloud-config-
client dependency to fail to start or properly load the configuration that Application
Configuration Service produced. The fix is adding the property
spring.cloud.config.enabled=false in secret resources that Application Configuration
Service produced.

Resolves some installation failure scenarios by setting the pod security context to adhere to
the restricted pod security standard.

v1.5.6 Known issues

This release has the following known issues, listed by component and area.

v1.5.6 Known issues: Tanzu Application Platform

Tanzu Application Platform v1.5.6 is not supported with Tanzu Kubernetes releases (TKR)
v1.26 on vSphere with Tanzu v8.

v1.5.5
Release Date: 12 September 2023

v1.5.5 Security fixes

This release has the following security fixes, listed by component and area.

Tanzu Application Platform v1.5

VMware by Broadcom 154

https://nvd.nist.gov/vuln/detail/CVE-2022-48064
https://nvd.nist.gov/vuln/detail/CVE-2022-45919
https://nvd.nist.gov/vuln/detail/CVE-2022-45887
https://nvd.nist.gov/vuln/detail/CVE-2021-3712

Package Name Vulnerabilities Resolved

buildservice.tanzu.vmware.com Expand to see the list

CVE-2023-35788

CVE-2023-3439

CVE-2023-32233

CVE-2023-3220

CVE-2023-31436

CVE-2023-3117

CVE-2023-30456

CVE-2023-2985

CVE-2023-2612

CVE-2023-25012

CVE-2023-2283

CVE-2023-1667

CVE-2023-1380

CVE-2022-4415

CVE-2022-3821

carbonblack.scanning.apps.tanzu.vmware.com Expand to see the list

GHSA-2q89-485c-9j2x

eventing.tanzu.vmware.com Expand to see the list

CVE-2023-2650

CVE-2023-1255

CVE-2023-0465

CVE-2023-0464

CVE-2022-3996

learningcenter.tanzu.vmware.com Expand to see the list

GHSA-cf7p-gm2m-833m

CVE-2023-4147

CVE-2023-4015

CVE-2023-4004

CVE-2023-3995

CVE-2023-3777

CVE-2023-3635

CVE-2023-3610

CVE-2023-3609

CVE-2022-45886

ootb-templates.tanzu.vmware.com Expand to see the list

CVE-2022-45886

spring-cloud-gateway.tanzu.vmware.com Expand to see the list

CVE-2022-41881

Tanzu Application Platform v1.5

VMware by Broadcom 155

https://nvd.nist.gov/vuln/detail/CVE-2023-35788
https://nvd.nist.gov/vuln/detail/CVE-2023-3439
https://nvd.nist.gov/vuln/detail/CVE-2023-32233
https://nvd.nist.gov/vuln/detail/CVE-2023-3220
https://nvd.nist.gov/vuln/detail/CVE-2023-31436
https://nvd.nist.gov/vuln/detail/CVE-2023-3117
https://nvd.nist.gov/vuln/detail/CVE-2023-30456
https://nvd.nist.gov/vuln/detail/CVE-2023-2985
https://nvd.nist.gov/vuln/detail/CVE-2023-2612
https://nvd.nist.gov/vuln/detail/CVE-2023-25012
https://nvd.nist.gov/vuln/detail/CVE-2023-2283
https://nvd.nist.gov/vuln/detail/CVE-2023-1667
https://nvd.nist.gov/vuln/detail/CVE-2023-1380
https://nvd.nist.gov/vuln/detail/CVE-2022-4415
https://nvd.nist.gov/vuln/detail/CVE-2022-3821
https://github.com/advisories/GHSA-2q89-485c-9j2x
https://nvd.nist.gov/vuln/detail/CVE-2023-2650
https://nvd.nist.gov/vuln/detail/CVE-2023-1255
https://nvd.nist.gov/vuln/detail/CVE-2023-0465
https://nvd.nist.gov/vuln/detail/CVE-2023-0464
https://nvd.nist.gov/vuln/detail/CVE-2022-3996
https://github.com/advisories/GHSA-cf7p-gm2m-833m
https://nvd.nist.gov/vuln/detail/CVE-2023-4147
https://nvd.nist.gov/vuln/detail/CVE-2023-4015
https://nvd.nist.gov/vuln/detail/CVE-2023-4004
https://nvd.nist.gov/vuln/detail/CVE-2023-3995
https://nvd.nist.gov/vuln/detail/CVE-2023-3777
https://nvd.nist.gov/vuln/detail/CVE-2023-3635
https://nvd.nist.gov/vuln/detail/CVE-2023-3610
https://nvd.nist.gov/vuln/detail/CVE-2023-3609
https://nvd.nist.gov/vuln/detail/CVE-2022-45886
https://nvd.nist.gov/vuln/detail/CVE-2022-45886
https://nvd.nist.gov/vuln/detail/CVE-2022-41881

Package Name Vulnerabilities Resolved

tap-gui.tanzu.vmware.com Expand to see the list

GHSA-cchq-frgv-rjh5

GHSA-g644-9gfx-q4q4

tekton.tanzu.vmware.com Expand to see the list

CVE-2022-45886

workshops.learningcenter.tanzu.vmware.com Expand to see the list

CVE-2023-4147

CVE-2023-4015

CVE-2023-4004

CVE-2023-3995

CVE-2023-3777

CVE-2023-3635

CVE-2023-3610

CVE-2023-3609

CVE-2022-45886

v1.5.5 Resolved issues

The following issues, listed by component and area, are resolved in this release.

v1.5.5 Resolved issues: Application Configuration Service

GitRepository is now consistently observed beyond 15 minutes. The interval property for
a ConfigurationSlice now continues to work as expected.

Error-logging is improved where a ConfigurationSlice references a non-existent
ConfigurationSource. A ConfigurationSlice properly reconciles after the referenced
ConfigurationSource is created.

v1.5.5 Resolved issues: Tanzu CLI and plugins

This release includes Tanzu CLI v1.2.0 and a set of installable plug-in groups that are
versioned so that the CLI is compatible with every supported version of Tanzu Applicatin
Platform. For more information, see Install Tanzu CLI.

v1.5.5 Known issues

This release has the following known issues, listed by component and area.

v1.5.5 Known issues: Tanzu Application Platform

Tanzu Application Platform v1.5.5 is not supported with Tanzu Kubernetes releases (TKR)
v1.26 on vSphere with Tanzu v8.

v1.5.4
Release Date: 15 August 2023

Tanzu Application Platform v1.5

VMware by Broadcom 156

https://github.com/advisories/GHSA-cchq-frgv-rjh5
https://github.com/advisories/GHSA-g644-9gfx-q4q4
https://nvd.nist.gov/vuln/detail/CVE-2022-45886
https://nvd.nist.gov/vuln/detail/CVE-2023-4147
https://nvd.nist.gov/vuln/detail/CVE-2023-4015
https://nvd.nist.gov/vuln/detail/CVE-2023-4004
https://nvd.nist.gov/vuln/detail/CVE-2023-3995
https://nvd.nist.gov/vuln/detail/CVE-2023-3777
https://nvd.nist.gov/vuln/detail/CVE-2023-3635
https://nvd.nist.gov/vuln/detail/CVE-2023-3610
https://nvd.nist.gov/vuln/detail/CVE-2023-3609
https://nvd.nist.gov/vuln/detail/CVE-2022-45886

v1.5.4 Security fixes

This release has the following security fixes, listed by component and area.

Tanzu Application Platform v1.5

VMware by Broadcom 157

Package Name Vulnerabilities Resolved

carbonblack.scanning.apps.tanzu.vmware.com

Expand to see the list

GHSA-g2j6-57v7-gm8c

GHSA-m8cg-xc2p-r3fc

controller.source.apps.tanzu.vmware.com

Expand to see the list

GHSA-hw7c-3rfg-p46j

CVE-2023-2650

CVE-2023-1255

Tanzu Application Platform v1.5

VMware by Broadcom 158

https://github.com/advisories/GHSA-g2j6-57v7-gm8c
https://github.com/advisories/GHSA-m8cg-xc2p-r3fc
https://github.com/advisories/GHSA-hw7c-3rfg-p46j
https://nvd.nist.gov/vuln/detail/CVE-2023-2650
https://nvd.nist.gov/vuln/detail/CVE-2023-1255

ootb-templates.tanzu.vmware.com Expand to see the list

GHSA-m8cg-xc2p-r3fc

GHSA-hw7c-3rfg-p46j

GHSA-g2j6-57v7-gm8c

CVE-2023-3567

CVE-2023-3358

CVE-2023-3357

CVE-2023-32269

CVE-2023-32233

CVE-2023-3220

CVE-2023-3161

CVE-2023-31484

CVE-2023-31436

CVE-2023-30456

CVE-2023-2985

CVE-2023-29491

CVE-2023-29007

CVE-2023-28328

CVE-2023-27538

CVE-2023-27536

CVE-2023-27535

CVE-2023-27534

CVE-2023-27533

CVE-2023-26606

CVE-2023-26545

CVE-2023-26544

CVE-2023-2650

CVE-2023-2612

CVE-2023-2603

CVE-2023-2602

CVE-2023-25815

CVE-2023-25652

CVE-2023-25588

CVE-2023-25585

CVE-2023-25584

CVE-2023-25012

CVE-2023-23559

CVE-2023-23455

CVE-2023-23454

CVE-2023-2283

CVE-2023-2162

CVE-2023-21102

CVE-2023-20938

CVE-2023-1998

Tanzu Application Platform v1.5

VMware by Broadcom 159

https://github.com/advisories/GHSA-m8cg-xc2p-r3fc
https://github.com/advisories/GHSA-hw7c-3rfg-p46j
https://github.com/advisories/GHSA-g2j6-57v7-gm8c
https://nvd.nist.gov/vuln/detail/CVE-2023-3567
https://nvd.nist.gov/vuln/detail/CVE-2023-3358
https://nvd.nist.gov/vuln/detail/CVE-2023-3357
https://nvd.nist.gov/vuln/detail/CVE-2023-32269
https://nvd.nist.gov/vuln/detail/CVE-2023-32233
https://nvd.nist.gov/vuln/detail/CVE-2023-3220
https://nvd.nist.gov/vuln/detail/CVE-2023-3161
https://nvd.nist.gov/vuln/detail/CVE-2023-31484
https://nvd.nist.gov/vuln/detail/CVE-2023-31436
https://nvd.nist.gov/vuln/detail/CVE-2023-30456
https://nvd.nist.gov/vuln/detail/CVE-2023-2985
https://nvd.nist.gov/vuln/detail/CVE-2023-29491
https://nvd.nist.gov/vuln/detail/CVE-2023-29007
https://nvd.nist.gov/vuln/detail/CVE-2023-28328
https://nvd.nist.gov/vuln/detail/CVE-2023-27538
https://nvd.nist.gov/vuln/detail/CVE-2023-27536
https://nvd.nist.gov/vuln/detail/CVE-2023-27535
https://nvd.nist.gov/vuln/detail/CVE-2023-27534
https://nvd.nist.gov/vuln/detail/CVE-2023-27533
https://nvd.nist.gov/vuln/detail/CVE-2023-26606
https://nvd.nist.gov/vuln/detail/CVE-2023-26545
https://nvd.nist.gov/vuln/detail/CVE-2023-26544
https://nvd.nist.gov/vuln/detail/CVE-2023-2650
https://nvd.nist.gov/vuln/detail/CVE-2023-2612
https://nvd.nist.gov/vuln/detail/CVE-2023-2603
https://nvd.nist.gov/vuln/detail/CVE-2023-2602
https://nvd.nist.gov/vuln/detail/CVE-2023-25815
https://nvd.nist.gov/vuln/detail/CVE-2023-25652
https://nvd.nist.gov/vuln/detail/CVE-2023-25588
https://nvd.nist.gov/vuln/detail/CVE-2023-25585
https://nvd.nist.gov/vuln/detail/CVE-2023-25584
https://nvd.nist.gov/vuln/detail/CVE-2023-25012
https://nvd.nist.gov/vuln/detail/CVE-2023-23559
https://nvd.nist.gov/vuln/detail/CVE-2023-23455
https://nvd.nist.gov/vuln/detail/CVE-2023-23454
https://nvd.nist.gov/vuln/detail/CVE-2023-2283
https://nvd.nist.gov/vuln/detail/CVE-2023-2162
https://nvd.nist.gov/vuln/detail/CVE-2023-21102
https://nvd.nist.gov/vuln/detail/CVE-2023-20938
https://nvd.nist.gov/vuln/detail/CVE-2023-1998

CVE-2023-1972

CVE-2023-1872

CVE-2023-1859

CVE-2023-1829

CVE-2023-1670

CVE-2023-1667

CVE-2023-1652

CVE-2023-1513

CVE-2023-1380

CVE-2023-1281

CVE-2023-1255

CVE-2023-1079

CVE-2023-1078

CVE-2023-1077

CVE-2023-1076

CVE-2023-1075

CVE-2023-1074

CVE-2023-1073

CVE-2023-0465

CVE-2023-0464

CVE-2023-0459

CVE-2023-0458

CVE-2023-0394

CVE-2023-0386

CVE-2023-0266

CVE-2023-0210

CVE-2023-0045

CVE-2022-48424

CVE-2022-48423

CVE-2022-4842

CVE-2022-47929

CVE-2022-4382

CVE-2022-4129

CVE-2022-41218

CVE-2022-3996

CVE-2022-3707

CVE-2022-36280

CVE-2022-3424

CVE-2022-27672

CVE-2022-2196

Tanzu Application Platform v1.5

VMware by Broadcom 160

https://nvd.nist.gov/vuln/detail/CVE-2023-1972
https://nvd.nist.gov/vuln/detail/CVE-2023-1872
https://nvd.nist.gov/vuln/detail/CVE-2023-1859
https://nvd.nist.gov/vuln/detail/CVE-2023-1829
https://nvd.nist.gov/vuln/detail/CVE-2023-1670
https://nvd.nist.gov/vuln/detail/CVE-2023-1667
https://nvd.nist.gov/vuln/detail/CVE-2023-1652
https://nvd.nist.gov/vuln/detail/CVE-2023-1513
https://nvd.nist.gov/vuln/detail/CVE-2023-1380
https://nvd.nist.gov/vuln/detail/CVE-2023-1281
https://nvd.nist.gov/vuln/detail/CVE-2023-1255
https://nvd.nist.gov/vuln/detail/CVE-2023-1079
https://nvd.nist.gov/vuln/detail/CVE-2023-1078
https://nvd.nist.gov/vuln/detail/CVE-2023-1077
https://nvd.nist.gov/vuln/detail/CVE-2023-1076
https://nvd.nist.gov/vuln/detail/CVE-2023-1075
https://nvd.nist.gov/vuln/detail/CVE-2023-1074
https://nvd.nist.gov/vuln/detail/CVE-2023-1073
https://nvd.nist.gov/vuln/detail/CVE-2023-0465
https://nvd.nist.gov/vuln/detail/CVE-2023-0464
https://nvd.nist.gov/vuln/detail/CVE-2023-0459
https://nvd.nist.gov/vuln/detail/CVE-2023-0458
https://nvd.nist.gov/vuln/detail/CVE-2023-0394
https://nvd.nist.gov/vuln/detail/CVE-2023-0386
https://nvd.nist.gov/vuln/detail/CVE-2023-0266
https://nvd.nist.gov/vuln/detail/CVE-2023-0210
https://nvd.nist.gov/vuln/detail/CVE-2023-0045
https://nvd.nist.gov/vuln/detail/CVE-2022-48424
https://nvd.nist.gov/vuln/detail/CVE-2022-48423
https://nvd.nist.gov/vuln/detail/CVE-2022-4842
https://nvd.nist.gov/vuln/detail/CVE-2022-47929
https://nvd.nist.gov/vuln/detail/CVE-2022-4382
https://nvd.nist.gov/vuln/detail/CVE-2022-4129
https://nvd.nist.gov/vuln/detail/CVE-2022-41218
https://nvd.nist.gov/vuln/detail/CVE-2022-3996
https://nvd.nist.gov/vuln/detail/CVE-2022-3707
https://nvd.nist.gov/vuln/detail/CVE-2022-36280
https://nvd.nist.gov/vuln/detail/CVE-2022-3424
https://nvd.nist.gov/vuln/detail/CVE-2022-27672
https://nvd.nist.gov/vuln/detail/CVE-2022-2196

spring-cloud-gateway.tanzu.vmware.com

Expand to see the list

GHSA-crqg-jrpj-fc84

GHSA-6mjq-h674-j845

CVE-2023-34035

CVE-2023-34034

CVE-2023-33008

CVE-2023-31484

CVE-2023-2650

CVE-2023-2603

CVE-2023-2602

CVE-2023-1255

v1.5.4 Known issues

This release has the following known issues, listed by component and area.

v1.5.4 Known issues: Tanzu Application Platform

Upgrading from Tanzu Application Platform v1.4 to v1.5 sometimes causes temporary
failures that self heal in a few minutes. This is because Tanzu Application Platform switched
to versioned secrets for all components in v1.5, which can cause a race condition during
upgrades and errors similar to the following:

Reconcile failed: Preparing template values: secrets "tekton-pipelines-values"

not found

v1.5.3

Release Date: 11 July 2023

v1.5.3 Security fixes

This release has the following security fixes, listed by component and area.

Package Name Vulnerabilities Resolved

apis.apps.tanzu.vmware.com Expand to see the list

CVE-2023-1255

CVE-2022-3996

buildservice.tanzu.vmware.com Expand to see the list

GHSA-hw7c-3rfg-p46j

learningcenter.tanzu.vmware.com Expand to see the list

CVE-2023-2004

Tanzu Application Platform v1.5

VMware by Broadcom 161

https://github.com/advisories/GHSA-crqg-jrpj-fc84
https://github.com/advisories/GHSA-6mjq-h674-j845
https://nvd.nist.gov/vuln/detail/CVE-2023-34035
https://nvd.nist.gov/vuln/detail/CVE-2023-34034
https://nvd.nist.gov/vuln/detail/CVE-2023-33008
https://nvd.nist.gov/vuln/detail/CVE-2023-31484
https://nvd.nist.gov/vuln/detail/CVE-2023-2650
https://nvd.nist.gov/vuln/detail/CVE-2023-2603
https://nvd.nist.gov/vuln/detail/CVE-2023-2602
https://nvd.nist.gov/vuln/detail/CVE-2023-1255
https://nvd.nist.gov/vuln/detail/CVE-2023-1255
https://nvd.nist.gov/vuln/detail/CVE-2022-3996
https://github.com/advisories/GHSA-hw7c-3rfg-p46j
https://nvd.nist.gov/vuln/detail/CVE-2023-2004

Package Name Vulnerabilities Resolved

sso.apps.tanzu.vmware.com Expand to see the list

GHSA-m8cg-xc2p-r3fc

GHSA-g2j6-57v7-gm8c

GHSA-f3fp-gc8g-vw66

CVE-2023-2650

CVE-2023-1255

CVE-2023-0466

CVE-2023-0465

CVE-2023-0464

CVE-2022-3996

CVE-2022-3821

workshops.learningcenter.tanzu.vmware.com Expand to see the list

CVE-2023-2004

v1.5.3 Known issues

This release introduces no new known issues.

v1.5.2

Release Date: 13 June 2023

v1.5.2 Security fixes

This release has the following security fixes, listed by component and area.

Package Name Vulnerabilities Resolved

buildservice.tanzu.vmware.com Expand to see the list

CVE-2023-1829

CVE-2023-1281

CVE-2023-0386

cert-manager.tanzu.vmware.com Expand to see the list

GHSA-vvpx-j8f3-3w6h

sso.apps.tanzu.vmware.com Expand to see the list

CVE-2023-31484

tap-gui.tanzu.vmware.com Expand to see the list

GHSA-f9xv-q969-pqx4

v1.5.2 Resolved issues

The following issues, listed by component and area, are resolved in this release.

v1.5.2 Resolved issues: Supply Chain Security Tools (SCST) - Scan

Old TaskRuns associated with scans are now deleted to reduce memory consumption.

Tanzu Application Platform v1.5

VMware by Broadcom 162

https://github.com/advisories/GHSA-m8cg-xc2p-r3fc
https://github.com/advisories/GHSA-g2j6-57v7-gm8c
https://github.com/advisories/GHSA-f3fp-gc8g-vw66
https://nvd.nist.gov/vuln/detail/CVE-2023-2650
https://nvd.nist.gov/vuln/detail/CVE-2023-1255
https://nvd.nist.gov/vuln/detail/CVE-2023-0466
https://nvd.nist.gov/vuln/detail/CVE-2023-0465
https://nvd.nist.gov/vuln/detail/CVE-2023-0464
https://nvd.nist.gov/vuln/detail/CVE-2022-3996
https://nvd.nist.gov/vuln/detail/CVE-2022-3821
https://nvd.nist.gov/vuln/detail/CVE-2023-2004
https://nvd.nist.gov/vuln/detail/CVE-2023-1829
https://nvd.nist.gov/vuln/detail/CVE-2023-1281
https://nvd.nist.gov/vuln/detail/CVE-2023-0386
https://github.com/advisories/GHSA-vvpx-j8f3-3w6h
https://nvd.nist.gov/vuln/detail/CVE-2023-31484
https://github.com/advisories/GHSA-f9xv-q969-pqx4

Added support for ConfigMaps in custom ScanTemplates.

v1.5.2 Resolved issues: Tanzu Application Platform GUI

Simplified the default content security policy to remove violations from
fonts.googleapis.com.

v1.5.2 Resolved issues: Tanzu Application Platform GUI plug-ins

Security Analysis GUI plug-in:

CVE Details: The impacted workload count in the widget now matches the table.

Security Analysis Dashboard: The Highest Reach Critical Vulnerabilities chart no
longer overlaps Snyk CVE IDs.

Package Details: Removed extra versions from Workload Builds using Package
table.

v1.5.2 Resolved issues: Tanzu Developer Tools for IntelliJ

Resolved permission-denied errors encountered during Live Update when operating
against platforms configured to use the Jammy build stack.

v1.5.2 Resolved issues: Tanzu Developer Tools for Visual Studio

Resolved permission-denied errors encountered during Live Update when operating
against platforms configured to use the Jammy build stack.

v1.5.2 Resolved issues: Tanzu Developer Tools for VS Code

Resolved permission-denied errors encountered during Live Update when operating
against platforms configured to use the Jammy build stack.

v1.5.2 Known issues
This release introduces no new known issues.

v1.5.1
Release Date: 09 May 2023

v1.5.1 Security fixes

This release has the following security fixes, listed by component and area.

Package Name Vulnerabilities Resolved

accelerator.apps.tanzu.vmware.com Expand to see the list

CVE-2023-20860

api-portal.tanzu.vmware.com Expand to see the list

CVE-2023-20860

GHSA-493p-pfq6-5258

application-configuration-service.tanzu.vmware.com Expand to see the list

CVE-2023-20860

Tanzu Application Platform v1.5

VMware by Broadcom 163

https://nvd.nist.gov/vuln/detail/CVE-2023-20860
https://nvd.nist.gov/vuln/detail/CVE-2023-20860
https://nvd.nist.gov/vuln/detail/CVE-2023-20860

Package Name Vulnerabilities Resolved

apiserver.appliveview.tanzu.vmware.com Expand to see the list

GHSA-vvpx-j8f3-3w6h

GHSA-r48q-9g5r-8q2h

app-scanning.apps.tanzu.vmware.com Expand to see the list

GHSA-gwc9-m7rh-j2ww

GHSA-fxg5-wq6x-vr4w

GHSA-8c26-wmh5-6g9v

GHSA-69cg-p879-7622

GHSA-3vm4-22fp-5rfm

backend.appliveview.tanzu.vmware.com Expand to see the list

GHSA-mjmj-j48q-9wg2

GHSA-36p3-wjmg-h94x

CVE-2023-20860

CVE-2022-41881

buildservice.tanzu.vmware.com Expand to see the list

GHSA-vvpx-j8f3-3w6h

CVE-2023-20860

CVE-2023-0461

carbonblack.scanning.apps.tanzu.vmware.com Expand to see the list

GHSA-vvpx-j8f3-3w6h

GHSA-vpvm-3wq2-2wvm

GHSA-gwc9-m7rh-j2ww

GHSA-fxg5-wq6x-vr4w

GHSA-8c26-wmh5-6g9v

GHSA-69ch-w2m2-3vjp

GHSA-69cg-p879-7622

GHSA-3vm4-22fp-5rfm

connector.appliveview.tanzu.vmware.com Expand to see the list

GHSA-mjmj-j48q-9wg2

GHSA-36p3-wjmg-h94x

CVE-2023-20860

CVE-2022-41881

learningcenter.tanzu.vmware.com Expand to see the list

GHSA-hc6q-2mpp-qw7j

GHSA-frjg-g767-7363

CVE-2023-26114

metadata-store.apps.tanzu.vmware.com Expand to see the list

GHSA-vvpx-j8f3-3w6h

ootb-templates.tanzu.vmware.com Expand to see the list

GHSA-vvpx-j8f3-3w6h

Tanzu Application Platform v1.5

VMware by Broadcom 164

https://github.com/advisories/GHSA-vvpx-j8f3-3w6h
https://github.com/advisories/GHSA-r48q-9g5r-8q2h
https://github.com/advisories/GHSA-gwc9-m7rh-j2ww
https://github.com/advisories/GHSA-fxg5-wq6x-vr4w
https://github.com/advisories/GHSA-8c26-wmh5-6g9v
https://github.com/advisories/GHSA-69cg-p879-7622
https://github.com/advisories/GHSA-3vm4-22fp-5rfm
https://github.com/advisories/GHSA-mjmj-j48q-9wg2
https://github.com/advisories/GHSA-36p3-wjmg-h94x
https://nvd.nist.gov/vuln/detail/CVE-2023-20860
https://nvd.nist.gov/vuln/detail/CVE-2022-41881
https://github.com/advisories/GHSA-vvpx-j8f3-3w6h
https://nvd.nist.gov/vuln/detail/CVE-2023-20860
https://nvd.nist.gov/vuln/detail/CVE-2023-0461
https://github.com/advisories/GHSA-vvpx-j8f3-3w6h
https://github.com/advisories/GHSA-vpvm-3wq2-2wvm
https://github.com/advisories/GHSA-gwc9-m7rh-j2ww
https://github.com/advisories/GHSA-fxg5-wq6x-vr4w
https://github.com/advisories/GHSA-8c26-wmh5-6g9v
https://github.com/advisories/GHSA-69ch-w2m2-3vjp
https://github.com/advisories/GHSA-69cg-p879-7622
https://github.com/advisories/GHSA-3vm4-22fp-5rfm
https://github.com/advisories/GHSA-mjmj-j48q-9wg2
https://github.com/advisories/GHSA-36p3-wjmg-h94x
https://nvd.nist.gov/vuln/detail/CVE-2023-20860
https://nvd.nist.gov/vuln/detail/CVE-2022-41881
https://github.com/advisories/GHSA-hc6q-2mpp-qw7j
https://github.com/advisories/GHSA-frjg-g767-7363
https://nvd.nist.gov/vuln/detail/CVE-2023-26114
https://github.com/advisories/GHSA-vvpx-j8f3-3w6h
https://github.com/advisories/GHSA-vvpx-j8f3-3w6h

Package Name Vulnerabilities Resolved

scanning.apps.tanzu.vmware.com Expand to see the list

GHSA-vvpx-j8f3-3w6h

snyk.scanning.apps.tanzu.vmware.com Expand to see the list

GHSA-rc47-6667-2j5j

CVE-2023-23919

CVE-2023-23918

spring-cloud-gateway.tanzu.vmware.com Expand to see the list

GHSA-493p-pfq6-5258

CVE-2023-20860

sso.apps.tanzu.vmware.com Expand to see the list

CVE-2023-0466

CVE-2023-0465

CVE-2022-4899

tap-gui.tanzu.vmware.com Expand to see the list

CVE-2023-0466

CVE-2023-0465

CVE-2022-4899

workshops.learningcenter.tanzu.vmware.com Expand to see the list

GHSA-frjg-g767-7363

CVE-2023-26114

v1.5.1 Resolved issues

The following issues, listed by component and area, are resolved in this release.

v1.5.1 Resolved issues: Application Accelerator

The IntelliJ plug-in can now be installed in IntelliJ v2023.1.

v1.5.1 Resolved issues: External Secrets CLI (beta)

The external-secrets plug-in creating the ExternalSecret and SecretStore resources
through stdin now correctly confirms resource creation. Use -f to create resources using a
file instead of stdin.

v1.5.1 Resolved issues: Tanzu Developer Tools for IntelliJ

Live Update now works when using the Jammy ClusterBuilder.

v1.5.1 Resolved issues: Tanzu Developer Tools for Visual Studio

Live Update now works when using the Jammy ClusterBuilder.

v1.5.1 Known issues

This release has the following known issues, listed by component and area.

Tanzu Application Platform v1.5

VMware by Broadcom 165

https://github.com/advisories/GHSA-vvpx-j8f3-3w6h
https://github.com/advisories/GHSA-rc47-6667-2j5j
https://nvd.nist.gov/vuln/detail/CVE-2023-23919
https://nvd.nist.gov/vuln/detail/CVE-2023-23918
https://github.com/advisories/GHSA-493p-pfq6-5258
https://nvd.nist.gov/vuln/detail/CVE-2023-20860
https://nvd.nist.gov/vuln/detail/CVE-2023-0466
https://nvd.nist.gov/vuln/detail/CVE-2023-0465
https://nvd.nist.gov/vuln/detail/CVE-2022-4899
https://nvd.nist.gov/vuln/detail/CVE-2023-0466
https://nvd.nist.gov/vuln/detail/CVE-2023-0465
https://nvd.nist.gov/vuln/detail/CVE-2022-4899
https://github.com/advisories/GHSA-frjg-g767-7363
https://nvd.nist.gov/vuln/detail/CVE-2023-26114

v1.5.1 Known issues: Supply Chain Security Tools (SCST) - Scan

TaskRuns associated with scans are kept during the lifetime of the owner scan. This can lead
to Out of Memory restart problems in the SCST - Scan controller.

ConfigMaps used in ScanTemplates are not supported, whether introduced by overlays or in
a custom ScanTemplate. This is the error message you see:

The scan job could not be created. admission webhook "validation.webhook.pipeli

ne.tekton.dev" denied the request: validation failed: expected exactly one, got

neither: spec.workspaces[5].configmap, spec.workspaces[5].emptydir, spec.worksp

aces[5].persistentvolumeclaim, spec.workspaces[5].secret, spec.workspaces[5].vo

lumeclaimtemplate

v1.5.1 Known issues: Tanzu Application Platform GUI

Ad-blocking browser extensions and standalone ad-blocking software can interfere with
telemetry collection within the VMware Customer Experience Improvement Program and
restrict access to all or parts of Tanzu Application Platform GUI. For more information, see
Troubleshooting.

v1.5.0

Release Date: 11 April 2023

What’s new in Tanzu Application Platform

This release includes the following platform-wide enhancements.

v1.5.0 New components

Application Configuration Service is a new component that provides a Kubernetes-native
experience to enable the runtime configuration of existing Spring applications that were
previously leveraged by using Spring Cloud Config Server.

Crossplane is a new component that powers a number of capabilities, such as dynamic
provisioning of service instances with Services Toolkit and the Bitnami Services. It is part of
the iterate, run, and full profiles.

Bitnami Services is a new component that includes a set of backing services for Tanzu
Application Platform. The provided services are MySQL, PostgreSQL, RabbitMQ and Redis,
all of which are backed by the corresponding Bitnami Helm Chart. It is part of the iterate,
run, and full profiles.

Spring Cloud Gateway is an API gateway solution based on the open-source Spring Cloud
Gateway project. This new component provides a simple means to route internal or
external API requests to application services that expose APIs.

v1.5.0 New features by component and area

This release includes the following changes, listed by component and area.

v1.5.0 Features: Application Accelerator

The Application Accelerator plug-in for IntelliJ is now available as a beta release on Tanzu
Network.

Tanzu Application Platform v1.5

VMware by Broadcom 166

https://www.vmware.com/solutions/trustvmware/ceip.html
https://network.tanzu.vmware.com/products/tanzu-application-platform/

Adds the option to support Spring Boot v3.0 for the Tanzu Java Restful Web App and
Tanzu Java Web App accelerators.

Application Accelerator now generates application bootstrapping provenance when a
project is created using an accelerator. For more information, see Provenance transform.

Adds the option to use a system-wide property in the tap-values.yaml configuration file to
activate or deactivate Git repository creation. For more information, see Deactivate Git
repository creation.

The Accelerator Tanzu CLI plug-in now supports using the Tanzu Application Platform GUI
URL with the --server-url command option. For more information, see Using Tanzu
Application Platform GUI URL

v1.5.0 Features: Application Live View

Application Live View now supports improved security and access control. Introduces the
APIServer component that generates and validates user access to view actuator data for a
pod. For more information, see Improved security and access control in Application Live
View.

Application Live View now supports secure access to sensitive operations that can be
executed on a running application using the actuator endpoints at the cluster level. For
more information, see Improved security and access control in Application Live View

The Application Live View plugin now supports CPU stats in the memory and threads pages
for Steeltoe Applications. For more information, see Application Live View for Steeltoe
Applications in Tanzu Application Platform GUI.

v1.5.0 Features: Application Single Sign-On (AppSSO)

Introduces AuthServer CORS API that enables configuration of allowed HTTP origins. This is
useful for public clients, such as single-page apps.

Introduces an API for filtering external roles, groups, and memberships across OpenID,
LDAP, and SAML identity providers in AuthServer resource into the roles claim of the
resulting identity token. For more information, see Roles claim filtering.

Introduces mapping of user roles, filtered and propagated in the identity token’s roles
claim, into scopes of the access token. For access tokens that are in the JWT format, the
resulting scopes are part of the access token’s scope claim, if the ClientRegistration
contains the scopes. For more information, see Configure authorization.

Introduces default access token scopes for user’s authentication by using an identity
provider. For more information, see Default authorization scopes.

Introduces standardized client authentication methods to ClientRegistration custom
resource. For more information, see ClientRegistration.

v1.5.0 Features: Bitnami Services

The new component Bitnami Services is available with Tanzu Application Platform.

Provides integration for dynamic provisioning of Bitnami Helm Charts included with Tanzu
Application Platform for the following backing services:

PostgreSQL

MySQL

Redis

Tanzu Application Platform v1.5

VMware by Broadcom 167

https://github.com/vmware-tanzu/application-accelerator-samples/tree/main/java-rest-service
https://github.com/vmware-tanzu/application-accelerator-samples/tree/main/tanzu-java-web-app

RabbitMQ

For a tutorial to get started with using these services, see Working with Bitnami Services.

v1.5.0 Features: cert-manager

cert-manager.tanzu.vmware.com has upgraded to cert-manager v1.11.0. For more
information, see cert-manager GitHub repository.

v1.5.0 Features: Crossplane

The new component Crossplane is available with Tanzu Application Platform. It installs
Upbound Universal Crossplane v1.11.0.

Provides integration for dynamic provisioning in Services Toolkit and can be used for
integration with cloud services such as AWS, Azure, and GCP. For more information, see
Integrating cloud services into Tanzu Application Platform.

For more information about dynamic provisioning, see Set up dynamic provisioning of
service instances to learn more.

Includes two Crossplane Providers: provider-kubernetes and provider-helm. You can add
other providers manually as required.

v1.5.0 Features: External Secrets CLI (Beta)

The external-secrets plug-in available in the Tanzu CLI interacts with the External Secrets
Operator API. Users can use this CLI plug-in to create and view External Secrets Operator
resources on a Kubernetes cluster.

For more information about managing secrets with External Secrets in general, see the
official External Secrets Operator documentation. For installing the External Secrets
Operator and the CLI plug-in, see the following documentation:

Installing External Secrets Operator in TAP

Installing External Secrets CLI plug-in

External-Secrets with Hashicorp Vault

Additionally, see the example integration of External-Secrets with Hashicorp Vault

v1.5.0 Features: Namespace Provisioner

Includes a new GitOps workflow for managing a list of namespaces fully declaratively
through a Git repository. Specify the location of the GitOps repository that has the list of
namespaces that you want as ytt data values to be imported in the namespace provisioner
using the gitops_install tap-values.yaml configuration.

For more information, see the GitOps section in Provision developer namespaces.

The Namespace Provisioner controller supports adding namespace parameters from labels
or annotations on namespace objects based on accepted prefixes defined in the
parameter_prefixes configuration in the tap-values.yaml. You can use this feature to add
custom parameters to a namespace for creating resources conditionally.

For an example, see Create Tekton pipelines and Scan policies using namespace
parameters.

Adds support for importing Kubernetes secrets that contain a ytt overlay definition that you
can apply to the resources that Namespace Provisioner creates.

Tanzu Application Platform v1.5

VMware by Broadcom 168

https://github.com/cert-manager/cert-manager/releases/tag/v1.11.0
https://github.com/upbound/universal-crossplane
https://docs.crossplane.io/latest/concepts/providers/
https://external-secrets.io/

Using the overlays_secret configuration in namespace provisioner tap-values.yaml, you
can provide a list of secrets that contain the overlay definition to apply to resources created
by provisioner.

For an example of using overlays, see Customize OOTB default resources.

Adds support for reading sensitive data from a Kubernetes secret in YAML format and
populating that information in the resources that Namespace Provisioner creates during
runtime. This is kept in sync with the source. This removes the need to store any sensitive
data in GitOps repository.

Using the import_data_values_secrets configuration in the Namespace Provisioner
section of the Tanzu Application Platform values file, you can import sensitive data
from a YAML formatted secret and make it available under data.values.imported
for additional resource templating.

For an example use case, see Install multiple scanners in the developer namespace.

Namespace Provisioner now creates a Kubernetes LimitRange object with acceptable
default values that set maximum limits on many resources that pods in the managed
namespace can request.

Run profile: Stamped by default.

Full and iterate profile: Opt-in using parameters.

For a sample configuration, see Customize OOTB Limit Range default.

Namespaces Provisioner enables you to use private Git repositories for storing their GitOps
based installation files and additional platform operator templated resources that you want
to create in your developer namespace. Authentication is provided using a secret in tap-
namespace-provisioning namespace, or an existing secret in another namespace referred
to in the secretRef in the additional sources.

For an example use case, see Working with private Git Repositories

v1.5.0 Features: Services Toolkit

Services Toolkit now supports the dynamic provisioning of services instances.

ClusterInstanceClass now supports the new provisioner mode. When a ClassClaim
is created which refers to a provisioner ClusterInstanceClass, a new service
instance is created on-demand and claimed. This is powered by Crossplane.

The tanzu service CLI plug-in has the following updates:

The command tanzu service class-claim create now allows you to pass
parameters to the provisioner-based ClusterInstanceClass to support dynamic
provisioning. For example, tanzu service class-claim create rmq-claim-1 --
class rmq --parameter replicas=3 --parameter ha=true

The tanzu service class-claim get now outputs parameters passed as part of
claim creation.

For more information about these commands, see Tanzu Service CLI Plug-In.

Integrates with the new component Bitnami Services, which provides dynamic provisioning
support for the following Helm charts:

PostgreSQL

MySQL

Redis

Tanzu Application Platform v1.5

VMware by Broadcom 169

RabbitMQ

Improves the security model to control which users can claim specific service instances.

Introduced the claim custom RBAC verb that targets a specific
ClusterInstanceClass. You can bind this to users for access control of who can
create ClassClaim resources for a specific ClusterInstanceClass.

A ResourceClaimPolicy is now created automatically for successful ClassClaims.

For more information, see Authorize users and groups to claim from provisioner-based
classes to learn more.

The ResourceClaimPolicy now supports targeting individual resources by name. To do so,
configure .spec.subject.resourceNames.

The Where-For-Dinner sample Application Accelerator now supports dynamic provisioning.

Changes to the Services Toolkit component documentation.

The standalone Services Toolkit documentation is no longer receiving updates.
From now on you can find all Services Toolkit documentation in the Tanzu
Application Platform component documentation section for Services Toolkit.

To learn more about working with services on Tanzu Application Platform, see the
new tutorials, how-to guides, concepts, and reference material.

v1.5.0 Features: Supply Chain Choreographer

Introduces a variation of the Out of the Box Basic supply chains that output Carvel
packages. Carvel packages enable configuring for each runtime environment. For more
information, see Carvel Package Workflow. This feature is experimental.

v1.5.0 Features: Supply Chain Security Tools (SCST) - Policy Controller

ClusterImagePolicy resync is triggered every 10 hours to get updated values from the Key
Management Service (KMS).

v1.5.0 Features: Supply Chain Security Tools (SCST) - Scan

SCST - Scan now runs on Tanzu Service Mesh-enabled clusters, enabling end to end,
secure communication.

Kubernetes jobs that previously created the scan pods were replaced with Tekton
TaskRuns.

Observability and Troubleshooting documentation is updated to account for the
impact of these changes. For successful scans, scanner pods restart once. For more
information, see Scanner pod restarts once in SCST - Scan v1.5.0 or later.

Adds support for rotating certificates and TLS, to conform with NIST 800-53. Users can
specify a TLS certificate, minimum TLS version, and restrict TLS ciphers when using kube-
rbac-proxy. For more information, see Configure properties.

SCST - Scan now offers even more flexibility for users to use their existing investments in
scanning solutions. In Tanzu Application Platform v1.5.0, users have early access to:

A new alpha integration with the Trivy Open Source Vulnerability Scanner by Aqua
Security that scans source code and images from secure supply chains. See Install
Trivy (alpha).

Tanzu Application Platform v1.5

VMware by Broadcom 170

https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/index.html
https://tekton.dev/docs/pipelines/taskruns/#overview
https://www.aquasec.com/products/trivy/

A simplified alpha user experience for creating custom integrations with additional
vulnerability scanners that are not included by default. If you have a scanner that
you would like to use with Tanzu Application Platform, see SCST - Scan 2.0 (alpha).

VMware is looking for early adopters to test both of these alpha offerings and
provide feedback. Email your Tanzu representative or contact us here.

Carbon Black integration is updated to use the Carbon Black scanner CLI v1.9.2. Notable
optimizations include improved scan logic that reduces the time it takes for a scan to
complete.

For more information, see the Carbon Black Cloud Console Release Notes.

v1.5.0 Features: Tanzu Application Platform GUI

Disclosure: This upgrade includes a Java script operated by the service provider Pendo.io.
The Java script is installed on selected pages of VMware software and collects information
about your use of the software, such as clickstream data and page loads, hashed user ID,
and limited browser and device information. VMware uses this information to better
understand the way you use the software to improve your experience with VMware
products and services. For more information, see the Customer Experience Improvement
Program.

Supports automatic configuration with SCST - Store. For more information, see
Automatically connect Tanzu Application Platform GUI to the Metadata Store.

Enables specification of security banners. To use this customization, see Customize security
banners.

Upgrades Backstage to v1.10.1.

Includes an optional plug-in that collects telemetry by using the Pendo tool. To configure
Pendo telemetry and opt in or opt out, see Opt out of telemetry collection.

v1.5.0 Features: Tanzu Application Platform GUI plug-ins

Application Live View plug-in:

When alvToken has expired, the logic to fetch a new token and the API call are
both retried.

Actions are deactivated and a message is displayed when sensitive operations are
deactivated for the app.

The Heap Dump button deactivates when sensitive operations are deactivated for
the application.

Enabled Secure Access Communication between App Live View components.

Added an API to connect to appliveview-apiserver by reusing tap-gui
authentication.

The Application Live View plug-in now requests a token from appliveview-
apiserver and passes it to every call to the Application Live View back end.

Provides secured sensitive operations (edit env, change log levels, download heap
dump) and displays a message in the UI.

Renamed the k8s-logging-backend plug-in as k8s-custom-apis-backend.

The fetch token for the logLevelsPanelToggle component is now loaded from the
workload plug-in PodLogs page.

Tanzu Application Platform v1.5

VMware by Broadcom 171

https://tanzu.vmware.com/application-platform
https://docs.vmware.com/en/VMware-Carbon-Black-Cloud/services/rn/vmware-carbon-black-cloud-console-release-notes/index.html#What's%20New%20-%2012%20January%202023-Container%20Essentials
https://www.vmware.com/solutions/trustvmware/ceip.html

Security Analysis GUI plug-in:

CVE Details: Added Impacted Workloads widget to the CVE Details page.

CVE Details: Display and navigate to latest source SHA or image digest in the
Workload Builds table.

Package Details: Added Impacted Workloads column to the Vulnerabilities table.

Package Details: Display and navigate to latest source SHA or image digest in the
Workload Builds table.

Security Analysis Dashboard: Added Highest Reach Vulnerabilities widget.

v1.5.0 Features: Tanzu CLI Apps plug-in

Adds support for -ojson and -oyaml output flags in tanzu apps workload create/apply
command. The CLI does not wait to print workload when using --output in workload
create/apply unless --wait or --tail flags are specified as well.

Using the --no-color flag in tanzu apps workload create/apply commands now hides
progress bars in addition to color output and emojis.

Adds support for unsetting --git-repo, --git-commit, --git-tag and --git-branch flags by
setting the value to empty string.

v1.5.0 Features: Tanzu Developer Tools for IntelliJ

Updates the Tanzu Workloads panel to show workloads deployed across multiple
namespaces.

Tanzu actions for workload apply, workload delete, debug, and Live Update start are now
available from the Tanzu Workloads panel.

You can use Tanzu Developer Tools for IntelliJ to iterate on Spring Boot 3-based
applications.

v1.5.0 Features: Tanzu Developer Tools for Visual Studio

Supports iterative development of applications consisting of multiple microservices, enabling
developers to debug and Live Update each microservice independently and simultaneously.

Enables existing projects to work with Tanzu Application Platform developer tools easily by
using templates to generate the necessary configuration files.

v1.5.0 Features: Tanzu Developer Tools for VS Code

The Tanzu Activity tab in the Panels view enables developers to visualize the supply chain,
delivery, and running application pods.

The tab enables a developer to view and describe logs on each resource associated with a
workload from within their IDE. The tab displays detailed error messages for each resource
in an error state.

Updates the Tanzu Workloads panel to show workloads deployed across multiple
namespaces.

Tanzu commands for workload apply, workload delete, debug, and Live Update start are
now available from the Tanzu Workloads panel.

You can use Tanzu Developer Tools for VS Code to iterate on Spring Boot 3-based
applications.

Tanzu Application Platform v1.5

VMware by Broadcom 172

v1.5.0 Breaking changes

This release has the following breaking changes, listed by area and component.

v1.5.0 Breaking changes: Convention Controller

Convention Controller is removed in this release and is replaced by Cartographer
Conventions. Cartographer Conventions implements the conventions.carto.run API that
includes all the features that were available in the Convention Controller component.

v1.5.0 Breaking changes: Supply Chain Security Tools (SCST) - Scan

The deprecated Grype ScanTemplates included with Tanzu Application Platform v1.2.0 and
earlier are removed and no longer supported. Use Grype ScanTemplates v1.2 and later.

v1.5.0 Breaking changes: Tanzu Build Service

The default ClusterBuilder now uses the Ubuntu Jammy v22.04 stack instead of the
Ubuntu Bionic v18.04 stack. Previously, the default ClusterBuilder pointed to the Base
builder based on the Bionic stack. Now, the default ClusterBuilder points to the Base
builder based on the Jammy stack. Ensure that your workloads can be built and run on
Jammy.

For information about how to change the ClusterBuilder from the default builder, see the
Configure the Cluster Builder.

For more information about available builders, see Lite Dependencies and Full
Dependencies.

The Tanzu Build Service automatic dependency updater feature is removed in Tanzu
Application Platform v1.5.0. This feature has been deprecated since Tanzu Application
Platform v1.2.

v1.5.0 Security fixes

This release has the following security fixes, listed by area and component.

Package Name Vulnerabilities Resolved

buildservice.tanzu.vmware.com Expand to see the list

GHSA-fxg5-wq6x-vr4w

CVE-2023-0179

carbonblack.scanning.apps.tanzu.vmware.com Expand to see the list

CVE-2023-24827

eventing.tanzu.vmware.com Expand to see the list

GHSA-fxg5-wq6x-vr4w

GHSA-69ch-w2m2-3vjp

GHSA-69cg-p879-7622

grype.scanning.apps.tanzu.vmware.com Expand to see the list

CVE-2023-24329

Tanzu Application Platform v1.5

VMware by Broadcom 173

https://github.com/vmware-tanzu/cartographer-conventions
https://github.com/advisories/GHSA-fxg5-wq6x-vr4w
https://nvd.nist.gov/vuln/detail/CVE-2023-0179
https://nvd.nist.gov/vuln/detail/CVE-2023-24827
https://github.com/advisories/GHSA-fxg5-wq6x-vr4w
https://github.com/advisories/GHSA-69ch-w2m2-3vjp
https://github.com/advisories/GHSA-69cg-p879-7622
https://nvd.nist.gov/vuln/detail/CVE-2023-24329

Package Name Vulnerabilities Resolved

learningcenter.tanzu.vmware.com Expand to see the list

GHSA-x4qr-2fvf-3mr5

GHSA-ppp9-7jff-5vj2

GHSA-fxg5-wq6x-vr4w

GHSA-83g2-8m93-v3w7

GHSA-69ch-w2m2-3vjp

GHSA-3vm4-22fp-5rfm

GHSA-2hrw-hx67-34x6

CVE-2023-24329

CVE-2023-23919

CVE-2023-0461

CVE-2023-0286

policy.apps.tanzu.vmware.com Expand to see the list

GHSA-fxg5-wq6x-vr4w

snyk.scanning.apps.tanzu.vmware.com Expand to see the list

CVE-2023-24329

tap-gui.tanzu.vmware.com Expand to see the list

CVE-2023-23919

CVE-2023-23918

CVE-2023-0361

CVE-2023-0286

CVE-2023-0215

CVE-2022-4450

workshops.learningcenter.tanzu.vmware.com Expand to see the list

GHSA-ppp9-7jff-5vj2

GHSA-fxg5-wq6x-vr4w

GHSA-83g2-8m93-v3w7

GHSA-69ch-w2m2-3vjp

GHSA-3vm4-22fp-5rfm

CVE-2023-24329

CVE-2023-23919

CVE-2023-0461

CVE-2023-0286

Note

CVE-2023-0179, CVE-2023-1281 and CVE-2023-0461 are high severity
vulnerabilities. At this time, there is no available patch for them upstream for some
Tanzu Application Platform components. After there is a patch available, Tanzu
Application Platform will release a patched base stack image. These vulnerabilities
are kernel exploits that run on your container host VM, not the Tanzu Application

Tanzu Application Platform v1.5

VMware by Broadcom 174

https://github.com/advisories/GHSA-x4qr-2fvf-3mr5
https://github.com/advisories/GHSA-ppp9-7jff-5vj2
https://github.com/advisories/GHSA-fxg5-wq6x-vr4w
https://github.com/advisories/GHSA-83g2-8m93-v3w7
https://github.com/advisories/GHSA-69ch-w2m2-3vjp
https://github.com/advisories/GHSA-3vm4-22fp-5rfm
https://github.com/advisories/GHSA-2hrw-hx67-34x6
https://nvd.nist.gov/vuln/detail/CVE-2023-24329
https://nvd.nist.gov/vuln/detail/CVE-2023-23919
https://nvd.nist.gov/vuln/detail/CVE-2023-0461
https://nvd.nist.gov/vuln/detail/CVE-2023-0286
https://github.com/advisories/GHSA-fxg5-wq6x-vr4w
https://nvd.nist.gov/vuln/detail/CVE-2023-24329
https://nvd.nist.gov/vuln/detail/CVE-2023-23919
https://nvd.nist.gov/vuln/detail/CVE-2023-23918
https://nvd.nist.gov/vuln/detail/CVE-2023-0361
https://nvd.nist.gov/vuln/detail/CVE-2023-0286
https://nvd.nist.gov/vuln/detail/CVE-2023-0215
https://nvd.nist.gov/vuln/detail/CVE-2022-4450
https://github.com/advisories/GHSA-ppp9-7jff-5vj2
https://github.com/advisories/GHSA-fxg5-wq6x-vr4w
https://github.com/advisories/GHSA-83g2-8m93-v3w7
https://github.com/advisories/GHSA-69ch-w2m2-3vjp
https://github.com/advisories/GHSA-3vm4-22fp-5rfm
https://nvd.nist.gov/vuln/detail/CVE-2023-24329
https://nvd.nist.gov/vuln/detail/CVE-2023-23919
https://nvd.nist.gov/vuln/detail/CVE-2023-0461
https://nvd.nist.gov/vuln/detail/CVE-2023-0286

v1.5.0 Resolved issues

The following issues, listed by area and component, are resolved in this release.

v1.5.0 Resolved issues: Application Accelerator

Resolved issue with custom types not re-ordering fields correctly in the VS Code extension.

v1.5.0 Resolved issues: Application Single Sign-On (AppSSO)

Resolved redirect URI issue with insecure HTTP redirection on Tanzu Kubernetes Grid
multicloud (TKGm) clusters.

v1.5.0 Resolved issues: Cloud Native Runtimes

Resolved issue with DomainMapping names longer than 63 characters when auto-tls is
enabled, which is on by default.

Resolved issue with certain app name, namespace, and domain combinations producing
invalid HTTPProxy resources.

v1.5.0 Resolved issues: Namespace Provisioner

Updated default resources to avoid ownership conflicts with the grype package.

v1.5.0 Resolved issues: Tanzu Application Platform GUI plug-ins

Application Accelerator plug-in:

Fixed JSON schema for Git repository creation.

Added missing query string parameters to accelerator provenance.

Application Live View plug-in:

Fixed CPU stats in App Live View Steeltoe Threads and Memory pages.

The App Live View Details page now shows the correct boot version instead of
UNKNOWN.

Fixed request parameters for the post-API call.

Fixed the UI error in the ALV request-mapping page that was caused by an unused
style.

Fixed the ALV Request Mappings and Threads page to support Boot 3 apps.

v1.5.0 Resolved issues: Tanzu Build Service

Builds no longer fail for upgrades on OpenShift v4.11.

v1.5.0 Resolved issues: Tanzu CLI Apps plug-in

Allow users to pass only --git-commit as Git the ref while creating a workload from a Git
Repository. This update removes the limitation where users had to provide a --git-tag or -
-git-branch with the commit to create a workload.

Platform container image. Running on an up to date kernel is a mitigation for these
vulnerabilities.

Tanzu Application Platform v1.5

VMware by Broadcom 175

Fixed the behavior where subpath was getting removed from the workload when there are
updates to the Git section of the workload source specification.

v1.5.0 Resolved issues: Tanzu Developer Tools for IntelliJ

When there are multiple resource types with the same kind, the pop-up menu Describe
action in the Activity panel no longer fails when used on PodIntent resources.

v1.5.0 Known issues

This release has the following known issues, listed by area and component.

v1.5.0 Known issues: API Auto Registration

Users cannot update their APIs through API Auto Registration due to an issue with the ID
used to retrieve APIs. This issue causes errors in the API Descriptor CRD similar to the
following: Unable to find API entity's uid within TAP GUI. Retrying the sync.

v1.5.0 Known issues: Application Configuration Service

Client applications that include the spring-cloud-config-client dependency might fail to
start or properly load the configuration that Application Configuration Service produced.

Installation might fail because the pod security context does not perfectly adhere to the
restricted pod security standard.

v1.5.0 Known issues: Bitnami Services

If you try to configure private registry integration for the Bitnami services after having
already created a claim for one or more of the Bitnami services using the default
configuration, the updated private registry configuration does not appear to take effect.
This is due to caching behavior in the system which is not accounted for during
configuration updates. For a workaround, see Troubleshoot Bitnami Services.

v1.5.0 Known issues: Crossplane

Crossplane Providers do not transition to HEALTHY=True if using a custom certificate for your
registry. For more information and a workaround, see Troubleshoot Crossplane.

Crossplane Providers cannot communicate with systems using a custom CA. For more
information and a workaround, see Troubleshoot Crossplane.

v1.5.0 Known issues: Eventing

When using vSphere sources in Eventing, the vsphere-source is using a high number of
informers to alleviate load on the API server. This causes high memory utilization.

v1.5.0 Known issues: External Secrets CLI (beta)

The external-secrets plug-in creating the ExternalSecret and SecretStore resources
through stdin incorrectly confirms resource creation. Use -f to create resources using a file
instead of stdin.

v1.5.0 Known issues: Grype scanner

Tanzu Application Platform v1.5

VMware by Broadcom 176

Scanning Java source code that uses Gradle package manager might not reveal
vulnerabilities:

For most languages, source code scanning only scans files present in the source code
repository. Except for support added for Java projects using Maven, no network calls fetch
dependencies. For languages using dependency lock files, such as golang and Node.js,
Grype uses the lock files to verify dependencies for vulnerabilities.

For Java using Gradle, dependency lock files are not guaranteed, so Grype uses
dependencies present in the built binaries, such as .jar or .war files.

Grype fails to find vulnerabilities during a source scan because VMware discourages
committing binaries to source code repositories. The vulnerabilities are still found during the
image scan after the binaries are built and packaged as images.

v1.5.0 Known issues: Services Toolkit

Unexpected error if additionalProperties is true in a CompositeResourceDefinition. For
more information and a workaround, see Troubleshoot Services Toolkit.

Default cluster-admin IAM roles on GKE do not allow you to claim Bitnami Services. For
more information and a workaround, see Troubleshoot Services Toolkit.

v1.5.0 Known issues: Supply Chain Choreographer

When using the Carvel Package Supply Chains, if the operator updates the parameter
carvel_package.name_suffix, existing workloads incorrectly output a Carvel package to the
GitOps repository that uses the old value of carvel_package.name_suffix. You can ignore
or delete this package.

v1.5.0 Known issues: Tanzu Application Platform GUI

The portal might partially overlay text on the Security Banners customization at the bottom.

The Impacted Workloads table is empty on the CVE and Package Details pages if the
relevant CVE belongs to a workload that has only completed one type of vulnerability scan
(either image or source). A fix is planned for a later patch.

v1.5.0 Known issues: Tanzu CLI Apps plug-in

tanzu apps workload apply does not wait for the changes to be taken when the workload
is updated using --tail or --wait. Instead it fails if the status before the changes shows an
error.

v1.5.0 Known issues: Tanzu Developer Tools for IntelliJ

The error com.vdurmont.semver4j.SemverException: Invalid version (no major version)
is shown in the error logs when attempting to perform a workload action before installing
the Tanzu CLI apps plug-in.

The apply action prompts and stores the workload file path when using the action for the
first time, but modifying it afterwards is not possible. If the workload file location changes
you must delete the module’s key-value entries to delete the configuration. These entries
are prefixed with com.tanzu in PropertiesComponent in the project’s .idea/workspace.xml
file. The next apply action run prompts for new values again.

If you restart your computer while running Live Update without terminating the Tilt process
beforehand, there is a lock that incorrectly shows that Live Update is still running and

Tanzu Application Platform v1.5

VMware by Broadcom 177

prevents it from starting again. To resolve this, delete the Tilt lock file. The default location
for the file is ~/.tilt-dev/config.lock.

On Windows, workload actions do not work when in a project with spaces in the name such
as my-app project. For more information, see Troubleshooting.

In the Tanzu Activity Panel, the config-writer-pull-requester of type Runnable is
incorrectly categorized as Unknown. The correct category is Supply Chain.

v1.5.0 Known issues: Tanzu Developer Tools for Visual Studio

Clicking the red square Stop button in the Visual Studio top toolbar can cause a workload to
fail. For more information, see Troubleshooting.

v1.5.0 Known issues: Tanzu Developer Tools for VS Code

If you restart your computer while running Live Update without terminating the Tilt process
beforehand, there is a lock that incorrectly shows that Live Update is still running and
prevents it from starting again. Delete the Tilt lock file to resolve this. The default file
location is ~/.tilt-dev/config.lock.

On Windows, workload commands don’t work when in a project with spaces in the name,
such as my-app project. For more information, see Troubleshooting.

If your kubeconfig file ~/.kube/config is malformed, you cannot apply a workload. You see
an error message when you attempt to do so. To resolve this, fix the kubeconfig file.

In the Tanzu Activity Panel, the config-writer-pull-requester of type Runnable is
incorrectly categorized as Unknown. The correct category is Supply Chain.

v1.5.0 Known issues: Tanzu Source Controller

In v0.7.0, when pulling images from Elastic Container Registry (ECR), Tanzu Source
Controller keyless access to ECR through AWS IAM role binding fails to authenticate (error
code: 401). The workaround is to set up a standard Kubernetes secret with a user-id and
password to authenticate to ECR, instead of binding Tanzu Source Controller to an AWS
IAM role to pull images from ECR.

Deprecations
The following features, listed by component, are deprecated. Deprecated features will remain on
this list until they are retired from Tanzu Application Platform.

Application Live View deprecations

appliveview_connnector.backend.sslDisabled is deprecated and marked for removal in
Tanzu Application Platform v1.7.0. For more information about the migration, see
Deprecate the sslDisabled key.

Application Single Sign-On (AppSSO) deprecations

ClientRegistration resource clientAuthenticationMethod field values post and basic are
deprecated and marked for removal in Tanzu Application Platform v1.7.0. Use
client_secret_post and client_secret_basic instead.

AuthServer.spec.tls.disabled is deprecated and marked for removal in Tanzu Application
Platform v1.6.0. For more information about how to migrate to
AuthServer.spec.tls.deactivated, see Migration guides.

Tanzu Application Platform v1.5

VMware by Broadcom 178

Services Toolkit deprecations

The tanzu services claims CLI plug-in command is now deprecated. It is hidden from help
text output, but continues to work until officially removed after the deprecation period. The
new tanzu services resource-claims command provides the same function.

Supply Chain Security Tools (SCST) - Scan deprecations

The docker field and related sub-fields used in SCST - Scan are deprecated and marked for
removal in Tanzu Application Platform v1.7.0.

The deprecation impacts the following components: Scan Controller, Grype Scanner, and
Snyk Scanner. Carbon Black Scanner is not impacted. For information about the migration
path, see Troubleshooting.

Tanzu Build Service deprecations

The Ubuntu Bionic stack is deprecated: Ubuntu Bionic stops receiving support in April
2023. VMware recommends you migrate builds to Jammy stacks in advance. For how to
migrate builds, see Use Jammy stacks for a workload.

The Cloud Native Buildpack Bill of Materials (CNB BOM) format is deprecated. VMware
plans to deactivate this format by default in Tanzu Application Platform v1.6.1 and remove
support in Tanzu Application Platform v1.8. To manually deactivate legacy CNB BOM
support, see Deactivate the CNB BOM format.

Tanzu CLI Apps plug-in deprecations

The default value for the –update-strategy flag will change from merge to replace in Tanzu
Application Platform v1.7.0.

The tanzu apps workload update command is deprecated and marked for removal in Tanzu
Application Platform v1.6.0. Use the command tanzu apps workload apply instead.

Linux Kernel CVEs

Kernel level vulnerabilities are regularly identified and patched by Canonical. Tanzu Application
Platform releases with available images, which might contain known vulnerabilities. When Canonical
makes patched images available, Tanzu Application Platform incorporates these fixed images into
future releases.

The kernel runs on your container host VM, not the Tanzu Application Platform container image.
Even with a patched Tanzu Application Platform image, the vulnerability is not mitigated until you
deploy your containers on a host with a patched OS. An unpatched host OS might be exploitable if
the base image is deployed.

Tanzu Application Platform v1.5

VMware by Broadcom 179

Components and installation profiles for
Tanzu Application Platform

This topic lists the components you can install with Tanzu Application Platform (commonly known as
TAP). You can install components as individual packages or you can install them using a profile
containing a predefined group of packages.

Tanzu Application Platform components

API Auto Registration

When users deploy a workload that exposes an API, they want that API to automatically
show in Tanzu Application Platform GUI without requiring any added manual steps.

API Auto Registration is an automated workflow that can use a supply chain to create and
manage a Kubernetes Custom Resource (CR) of type APIDescriptor. A Kubernetes
controller reconciles the CR and updates the API entity in Tanzu Application Platform GUI
to achieve automated API registration from workloads. You can also use API Auto
Registration without supply chains by directly applying an APIDescriptor CR to the cluster.

API portal

API portal for VMware Tanzu enables API consumers to find APIs they can use in their own
applications.

Consumers can view detailed API documentation and try out an API to see if it meets their
needs. API portal assembles its dashboard and detailed API documentation views by
ingesting OpenAPI documentation from the source URLs. An API portal operator can add
any number of OpenAPI source URLs to appear in a single instance.

API Scoring and Validation

API Validation and Scoring focuses on scanning and validating an OpenAPI specification.
The API specification is generated from the API Auto Registration. After an API is
registered, the API specification goes through static scan analysis and is validated. Based on
the validation, a scoring is provided to indicate the quality and health of the API
specification as it relates to Documentation, OpenAPI best practices, and Security.

Application Accelerator

The Application Accelerator component helps app developers and app operators create
application accelerators.

Accelerators are templates that codify best practices and ensure that important
configurations and structures are in place. Developers can bootstrap their applications and
get started with feature development right away.

Application operators can create custom accelerators that reflect their desired architectures
and configurations and enable fleets of developers to use them. This helps ease operator
concerns about whether developers are implementing their best practices.

Application Configuration Service

Tanzu Application Platform v1.5

VMware by Broadcom 180

https://docs.vmware.com/en/API-portal-for-VMware-Tanzu/index.html

Application Configuration Service provides a Kubernetes-native experience to enable the
runtime configuration of existing Spring applications that were previously leveraged by
using Spring Cloud Config Server.

Application Configuration Service is compatible with the existing Git repository configuration
management approach. It filters runtime configuration for any application by using slices
that produce secrets.

Application Live View

Application Live View is a lightweight insight and troubleshooting tool that helps application
developers and application operators look inside running applications.

It is based on the concept of Spring Boot Actuators. The application provides information
from inside the running processes by using endpoints (in our case, HTTP endpoints).
Application Live View uses those endpoints to get the data from the application and to
interact with it.

Application Single Sign-On

Application Single Sign-On enables application users to sign in to their identity provider
once and be authorized and identified to access any Kubernetes-deployed workload. It is a
secure and straightforward approach for developers and operators to manage access across
all workloads in the enterprise.

Bitnami Services

Bitnami Services provides a set of services for Tanzu Application Platform backed by
corresponding Bitnami Helm Charts. Through integration with Crossplane and Services
Toolkit, these Bitnami Services are immediately ready for apps teams to consume, with no
additional setup or configuration required from ops teams. This makes it incredibly quick and
easy to get started working with services on Tanzu Application Platform.

Cartographer Conventions

Use Cartographer Conventions to ensure infrastructure uniformity across workloads
deployed on the cluster. Cartographer Conventions provide a way to control how
applications should be deployed on Kubernetes using a convention. Use Cartographer
Conventions to apply the runtime best practices, policies, and conventions of your
organization to workloads as they are created on the platform.

cert-manager

cert-manager adds certificates and certificate issuers as resource types to Kubernetes
clusters. It also helps you to obtain, renew, and use those certificates. For more information
about cert-manager, see the cert-manager documentation.

Cloud Native Runtimes

Cloud Native Runtimes for Tanzu is a serverless application runtime for Kubernetes that is
based on Knative and runs on a single Kubernetes cluster. For information about Knative,
see the Knative documentation.

Contour

Contour is an ingress controller for Kubernetes that supports dynamic configuration updates
and multi-team ingress delegation. It provides the control plane for the Envoy edge and
service proxy. For more information about Contour, see the Contour documentation.

Default roles for Tanzu Application Platform

This package includes five default roles for users, including app-editor, app-viewer, app-
operator, and service accounts including workload and deliverable. These roles are available
to help operators limit permissions a user or service account requires on a cluster that runs

Tanzu Application Platform v1.5

VMware by Broadcom 181

https://cert-manager.io/docs
https://knative.dev/docs/
https://projectcontour.io/docs/v1.22.0/

Tanzu Application Platform. They are built by using aggregated cluster roles in Kubernetes
role-based access control (RBAC). Default roles only apply to a user interacting with the
cluster by using kubectl and Tanzu CLI.

Crossplane

Crossplane is an open source, Cloud Native Computing Foundation (CNCF) project built on
the foundation of Kubernetes. Tanzu Application Platform uses Crossplane to power a
number of capabilities, such as dynamic provisioning of services instances with Services
Toolkit and the Bitnami Services.

Developer Conventions

Developer conventions configure workloads to prepare them for inner loop development.

It’s meant to be a “deploy and forget” component for developers. After it is installed on the
cluster with the Tanzu Package CLI, developers do not need to directly interact with it.
Developers instead interact with the Tanzu Developer Tools for VSCode IDE Extension or
Tanzu CLI Apps plug-in, which rely on the Developer Conventions to edit the workload to
enable inner loop capabilities.

Eventing

Eventing for VMware Tanzu focuses on providing tooling and patterns for Kubernetes
applications to manage event-triggered systems through Knative Eventing. For information
about Knative, see the Knative documentation.

Flux CD Source Controller

The main role of this source management component is to provide a common interface for
artifact acquisition.

Learning Center

Learning Center provides a platform for creating and self-hosting workshops. With Learning
Center, content creators can create workshops from markdown files that learners can view
in a terminal shell environment with an instructional wizard UI. The UI can embed slide
content, an integrated development environment (IDE), a web console for accessing the
Kubernetes cluster, and other custom web applications.

Although Learning Center requires Kubernetes to run, and it teaches users about
Kubernetes, you can use it to host training for other purposes as well. For example, you can
use it to train users on web-based applications, use of databases, or programming
languages.

Namespace Provisioner

Namespace Provisioner provides an easy, secure, automated way for Platform Operators to
provision namespaces with the resources and proper namespace-level privileges needed for
developer workloads to function as intended.

Service Bindings

Service Bindings create a Kubernetes-wide specification for communicating service secrets
to workloads in a consistent way.

Services Toolkit

Services Toolkit is responsible for backing many of the most exciting and powerful
capabilities for services in Tanzu Application Platform. From the integration of an extensive
list of cloud-based and on-prem services, through to the offering and discovery of those
services, and finally to the claiming and binding of service instances to application
workloads, Services Toolkit has the tools you need to make working with services on Tanzu
Application Platform simple, easy, and effective.

Tanzu Application Platform v1.5

VMware by Broadcom 182

https://knative.dev/docs/

Source Controller

Tanzu Source Controller provides a standard interface for artifact acquisition and extends
the function of Flux CD Source Controller. Tanzu Source Controller supports the following
two resource types:

ImageRepository

MavenArtifact

Spring Boot conventions

The Spring Boot convention server has a bundle of smaller conventions applied to any
Spring Boot application that is submitted to the supply chain in which the convention
controller is configured.

Spring Cloud Gateway

Spring Cloud Gateway for Kubernetes is an API gateway solution based on the open-source
Spring Cloud Gateway project. It provides a simple means to route internal or external API
requests to application services that expose APIs.

Supply Chain Choreographer

Supply Chain Choreographer is based on open-source Cartographer. It enables app
operators to create preapproved paths to production by integrating Kubernetes resources
with the elements of their existing toolchains, such as Jenkins.

Each pre-approved supply chain creates a paved road to production. It orchestrates supply
chain resources, namely test, build, scan, and deploy. Enabling developers to focus on
delivering value to their users. Pre-approved supply chains also assure application operators
that all code in production has passed through the steps of an approved workflow.

Supply Chain Security Tools - Policy Controller

Supply Chain Security Tools - Policy is an admission controller that allows a cluster operator
to specify policies to verify image container signatures before admitting them to a cluster. It
works with cosign signature format and allows for fine-tuned configuration of policies based
on image source patterns.

Supply Chain Security tools for Tanzu - Scan

With Supply Chain Security Tools for VMware Tanzu - Scan, you can build and deploy
secure trusted software that complies with their corporate security requirements.

To enable this, Supply Chain Security Tools - Scan provides scanning and gate keeping
capabilities that Application and DevSecOps teams can incorporate earlier in their path to
production. This is an established industry best practice for reducing security risk and
ensuring more efficient remediation.

Supply Chain Security Tools - Store

Supply Chain Security Tools - Store saves software bills of materials (SBoMs) to a database
and enables you to query for image, source, package, and vulnerability relationships. It
integrates with SCST - Scan to automatically store the resulting source and image
vulnerability reports.

Tanzu Application Platform GUI

Tanzu Application Platform GUI lets your developers view your organization’s running
applications and services. It provides a central location for viewing dependencies,
relationships, technical documentation, and even service status. Tanzu Application Platform
GUI is built from the Cloud Native Computing Foundation’s project Backstage.

Tanzu Application Platform Telemetry

Tanzu Application Platform v1.5

VMware by Broadcom 183

https://cartographer.sh/docs/
https://github.com/sigstore/cosign#quick-start

Tanzu Application Platform Telemetry is a set of objects that collect data about the use of
Tanzu Application Platform and send it back to VMware for product improvements. A
benefit of remaining enrolled in telemetry and identifying your company during Tanzu
Application Platform installation is that VMware can provide your organization with use
reports about Tanzu Application Platform. For information about enrolling in telemetry
reports, see Tanzu Application Platform usage reports.

Tanzu Build Service

Tanzu Build Service uses the open-source Cloud Native Build packs project to turn
application source code into container images.

Tanzu Build Service executes reproducible builds that align with modern container
standards and keeps images up to date. It does so by leveraging Kubernetes infrastructure
with kpack, a Cloud Native Build packs Platform, to orchestrate the image life cycle.

The kpack CLI tool, kp, can aid in managing kpack resources. Build Service helps you
develop and automate containerized software workflows securely and at scale.

Tanzu Developer Tools for IntelliJ

Tanzu Developer Tools for IntelliJ is the official VMware Tanzu IDE extension for IntelliJ
IDEA to help you develop code by using Tanzu Application Platform. This extension enables
you to rapidly iterate on your workloads on supported Kubernetes clusters that have Tanzu
Application Platform installed.

Tanzu Developer Tools for Visual Studio

Tanzu Developer Tools for Visual Studio is the official VMware Tanzu IDE extension for
Visual Studio to help you develop code by using Tanzu Application Platform. The Visual
Studio extension enables live updates of your application while it runs on the cluster and
lets you debug your application directly on the cluster.

Tanzu Developer Tools for Visual Studio Code

Tanzu Developer Tools for VS Code is the official VMware Tanzu IDE extension for VS Code
to help you develop code by using Tanzu Application Platform. The VS Code extension
enables live updates of your application while it runs on the cluster and lets you debug your
application directly on the cluster.

Tekton Pipelines

Tekton is a powerful and flexible open-source framework for creating CI/CD systems,
enabling developers to build, test, and deploy across cloud providers and on-premise
systems.

Installation profiles in Tanzu Application Platform v1.5

You can deploy Tanzu Application Platform through predefined profiles, each containing various
packages, or you can install the packages individually. The profiles allow Tanzu Application Platform
to scale across an organization’s multicluster, multi-cloud, or hybrid cloud infrastructure. These
profiles are not meant to cover all use cases, but serve as a starting point to allow for further
customization.

The following profiles are available in Tanzu Application Platform:

Note

You can opt out of telemetry collection by following the instructions in
Opting out of telemetry collection.

Tanzu Application Platform v1.5

VMware by Broadcom 184

Full (full): Contains nearly all Tanzu Application Platform packages. For the exceptions to
the full profile, see the packages with a check mark in the Not in a profile column in the
table later in this section.

Iterate (iterate): Intended for iterative application development.

Build (build): Intended for the transformation of source revisions to workload revisions.
Specifically, hosting workloads and SupplyChains.

Run (run): Intended for the transformation of workload revisions to running pods.
Specifically, hosting deliveries and deliverables.

View (view): Intended for instances of applications related to centralized developer
experiences. Specifically, Tanzu Application Platform GUI and Metadata Store.

The following tables list the packages contained in each profile. Packages not included in any profile
are available to install as individual packages only. See the component documentation for the
package for installation instructions. For a diagram showing the packages contained in each profile,
see Overview of multicluster Tanzu Application Platform.

Packages: A to C

Package Name Full Iterate Build Run View Not in a profile

API Auto Registration ✓ ✓ ✓

API portal ✓ ✓

Application Accelerator ✓ ✓

Application Configuration Service ✓

Application Live View APIServer ✓ ✓ ✓

Application Live View back end ✓ ✓

Application Live View connector ✓ ✓ ✓

Application Live View conventions ✓ ✓ ✓

Application Single Sign-On ✓ ✓ ✓

Bitnami Services ✓ ✓ ✓

Carbon Black Scanner for SCST - Scan (beta) ✓

cert-manager ✓ ✓ ✓ ✓ ✓

Cloud Native Runtimes ✓ ✓ ✓

Contour ✓ ✓ ✓ ✓ ✓

Crossplane ✓ ✓ ✓

Packages: D to R

Package Name Full Iterate Build Run View Not in a profile

Default Roles ✓ ✓ ✓ ✓

Developer Conventions ✓ ✓

External Secrets Operator ✓

Eventing ✓ ✓ ✓

Flux Source Controller ✓ ✓ ✓ ✓ ✓

Tanzu Application Platform v1.5

VMware by Broadcom 185

Package Name Full Iterate Build Run View Not in a profile

Grype Scanner for SCST - Scan ✓ ✓

Learning Center ✓ ✓

Namespace Provisioner ✓ ✓ ✓ ✓

Out of the Box Delivery - Basic ✓ ✓ ✓

Out of the Box Supply Chain - Basic ✓ ✓ ✓

Out of the Box Supply Chain - Testing ✓ ✓ ✓

Out of the Box Supply Chain - Testing and
Scanning

✓ ✓

Out of the Box Templates ✓ ✓ ✓ ✓

Packages: S to Z

Package Name Full Iterate Build Run View Not in a profile

Service Bindings ✓ ✓ ✓

Services Toolkit ✓ ✓ ✓

Source Controller ✓ ✓ ✓ ✓ ✓

Snyk Scanner for SCST - Scan (beta) ✓

Spring Boot conventions ✓ ✓ ✓

Spring Cloud Gateway ✓

Supply Chain Choreographer ✓ ✓ ✓ ✓

SCST - Policy Controller ✓ ✓ ✓

SCST - Scan ✓ ✓

SCST - Scan 2.0 (beta) ✓

SCST - Store ✓ ✓

Tanzu Build Service ✓ ✓ ✓

Tanzu Application Platform GUI ✓ ✓

Tekton Pipelines ✓ ✓ ✓

Telemetry ✓ ✓ ✓ ✓ ✓

Language and framework support in Tanzu Application
Platform

The following table shows the languages and frameworks supported by Tanzu Application Platform
components.

Note

You can only install one supply chain at any given time. For information about
switching supply chains, see Add testing and scanning to your application.

Tanzu Application Platform v1.5

VMware by Broadcom 186

Language or
Framework

Tanzu
Build
Service

Runtime
Conventions

Tanzu
Developer
Tooling

Application
Live View

Functions
Extended Scanning
Coverage using
Buildpack SBOM's

Java ✓ ✓ ✓ ✓ ✓

Spring Boot ✓ ✓ ✓ ✓ ✓ ✓

.NET Core ✓ ✓ ✓ ✓

Steeltoe ✓ ✓ ✓ ✓

NodeJS ✓ ✓ ✓

Python ✓ ✓ ✓

golang ✓ ✓

PHP ✓ ✓

Ruby ✓ ✓

Tanzu Developer Tooling: refers to the developer conventions that enable debugging and Live
Update function in the inner loop.

Extended Scanning Coverage: When building container images with the Tanzu Build Service, the
Cloud Native Build Packs used in the build process for the specified languages produce a Software
Bill of Materials (SBOM). Some scan engines support the enhanced ability to use this SBOM as a
source for the scan. Out of the Box Supply Chain - Testing and Scanning leverages Anchore’s
Grype for the image scan, which suppports this capability. In addition, users have the ability to
leverage Carbon Black Container image scans, which also supports this enhanced scan coverage.

Note: Different scanners may have different limits. See Supported Scanner Matrix for Supply Chain
Security Tools - Scan.

Installing Tanzu Application Platform

For more information about installing Tanzu Application Platform, see Installing Tanzu Application
Platform.

Tanzu Application Platform v1.5

VMware by Broadcom 187

Install Tanzu Application Platform

You can install Tanzu Application Platform (commonly known as TAP) by using one of the following
methods:

Install Tanzu Application Platform online. For Tanzu Application Platform on a Kubernetes
cluster with internet access.

Install Tanzu Application Platform in an air-gapped environment. For Tanzu Application
Platform on a Kubernetes cluster air-gapped from external traffic.

Install Tanzu Application Platform with GitOps (beta). For Tanzu Application Platform on a
Kubernetes cluster via a GitOps approach.

Install Tanzu Application Platform in AWS. For installing Tanzu Application platform using
AWS Cloud Services.

Install Tanzu Application Platform in Azure. For installing Tanzu Application platform using
Azure Cloud Services.

Install Tanzu Application Platform on OpenShift. For Tanzu Application Platform on an
OpenShift cluster with internet access.

Install Tanzu Application Platform

You can install Tanzu Application Platform (commonly known as TAP) by using one of the following
methods:

Install Tanzu Application Platform online. For Tanzu Application Platform on a Kubernetes
cluster with internet access.

Install Tanzu Application Platform in an air-gapped environment. For Tanzu Application
Platform on a Kubernetes cluster air-gapped from external traffic.

Install Tanzu Application Platform with GitOps (beta). For Tanzu Application Platform on a
Kubernetes cluster via a GitOps approach.

Install Tanzu Application Platform in AWS. For installing Tanzu Application platform using
AWS Cloud Services.

Install Tanzu Application Platform in Azure. For installing Tanzu Application platform using
Azure Cloud Services.

Install Tanzu Application Platform on OpenShift. For Tanzu Application Platform on an
OpenShift cluster with internet access.

Prerequisites for installing Tanzu Application Platform

The following are required to install Tanzu Application Platform (commonly known as TAP):

VMware Tanzu Network and container image registry
requirements

Tanzu Application Platform v1.5

VMware by Broadcom 188

Installation requires:

Access to VMware Tanzu Network:

A Tanzu Network account to download Tanzu Application Platform packages.

Network access to https://registry.tanzu.vmware.com.

Cluster-specific registry:

A container image registry, such as Harbor or Docker Hub for application images,
base images, and runtime dependencies. When available, VMware recommends
using a paid registry account to avoid potential rate-limiting associated with some
free registry offerings.

Recommended storage space for container image registry:

1 GB of available storage if installing Tanzu Build Service with the lite set of
dependencies.

10 GB of available storage if installing Tanzu Build Service with the full set
of dependencies, which are suitable for offline environments.

Registry credentials with read and write access available to Tanzu Application Platform to
store images.

Network access to your chosen container image registry.

DNS Records

There are some optional but recommended DNS records you must allocate if you decide to use
these particular components:

Cloud Native Runtimes (Knative): Allocate a wildcard subdomain for your developer’s
applications. This is specified in the shared.ingress_domain key of the tap-values.yaml
configuration file that you input with the installation. This wildcard must be pointed at the
external IP address of the tanzu-system-ingress’s envoy service. See Access with the
shared Ingress method for more information about tanzu-system-ingress.

Tanzu Learning Center: Similar to Cloud Native Runtimes, allocate a wildcard subdomain for
your workshops and content. This is also specified by the shared.ingress_domain key of the
tap-values.yaml configuration file that you input with the installation. This wildcard must be
pointed at the external IP address of the tanzu-system-ingress’s envoy service.

Tanzu Application Platform GUI: If you decide to implement the shared ingress and include
Tanzu Application Platform GUI, allocate a fully Qualified Domain Name (FQDN) that can be
pointed at the tanzu-system-ingress service. The default host name consists of tap-gui
and the shared.ingress_domain value. For example, tap-gui.example.com.

Supply Chain Security Tools - Store: Similar to Tanzu Application Platform GUI, allocate a
fully Qualified Domain Name (FQDN) that can be pointed at the tanzu-system-ingress
service. The default host name consists of metadata-store and the shared.ingress_domain
value. For example, metadata-store.example.com.

Note

For production environments, full dependencies are recommended
to optimize security and performance. For more information about
Tanzu Build Service dependencies, see About lite and full
dependencies.

Tanzu Application Platform v1.5

VMware by Broadcom 189

https://network.tanzu.vmware.com/
https://goharbor.io/
https://hub.docker.com/

Application Live View: If you select the ingressEnabled option, allocate a corresponding
fully Qualified Domain Name (FQDN) that can be pointed at the tanzu-system-ingress
service. The default host name consists of appliveview and the shared.ingress_domain
value. For example, appliveview.example.com.

Tanzu Application Platform GUI

For Tanzu Application Platform GUI, you must have:

Latest version of Chrome, Firefox, or Edge. Tanzu Application Platform GUI currently does
not support Safari browser.

Git repository for Tanzu Application Platform GUI’s software catalogs, with a token allowing
read access. For more information about how to use your Git repository, see Create an
application accelerator. Supported Git infrastructure includes:

GitHub

GitLab

Azure DevOps

Tanzu Application Platform GUI Blank Catalog from the Tanzu Application section of
VMware Tanzu Network.

To install, navigate to Tanzu Network. Under the list of available files to download,
there is a folder titled tap-gui-catalogs-latest. Inside that folder is a compressed
archive titled Tanzu Application Platform GUI Blank Catalog. You must extract
that catalog to the preceding Git repository of choice. This serves as the
configuration location for your organization’s catalog inside Tanzu Application
Platform GUI.

The Tanzu Application Platform GUI catalog allows for two approaches to store catalog
information:

The default option uses an in-memory database and is suitable for test and
development scenarios. This reads the catalog data from Git URLs that you specify
in the tap-values.yaml file. This data is temporary. Any operations that cause the
server pod in the tap-gui namespace to be re-created also cause this data to be
rebuilt from the Git location. This can cause issues when you manually register
entities by using the UI, because they only exist in the database and are lost when
that in-memory database gets rebuilt.

For production use cases, use a PostgreSQL database that exists outside the Tanzu
Application Platform packaging. The PostgreSQL database stores all the catalog
data persistently both from the Git locations and the UI manual entity registrations.
For more information, see Configure the Tanzu Application Platform GUI database

Kubernetes cluster requirements

Installation requires Kubernetes cluster v1.24, v1.25 or v1.26 on one of the following Kubernetes
providers:

Azure Kubernetes Service.

Amazon Elastic Kubernetes Service.

containerd must be used as the Container Runtime Interface (CRI). Some versions of
EKS default to Docker as the container runtime and must be changed to containerd.

EKS clusters on Kubernetes version 1.23 and above require the Amazon EBS CSI
Driver due to CSIMigrationAWS is enabled by default in Kubernetes version 1.23 and
above.

Tanzu Application Platform v1.5

VMware by Broadcom 190

https://network.tanzu.vmware.com/products/tanzu-application-platform/
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://aws.amazon.com/blogs/containers/amazon-eks-now-supports-kubernetes-1-23/

Users currently on EKS Kubernetes version 1.22 must install the Amazon
EBS CSI Driver before upgrading to Kubernetes version 1.23 and above. See
AWS documentation for more information.

AWS Fargate is not supported.

Google Kubernetes Engine.

GKE Autopilot clusters do not have the required features enabled.

GKE clusters that are set up in zonal mode might detect Kubernetes API errors
when the GKE control plane is resized after traffic increases. Users can mitigate this
by creating a regional cluster with three control-plane nodes right from the start.

Minikube.

Reference the resource requirements in the following section.

Hyperkit driver is supported on macOS only. Docker driver is not supported.

Red Hat OpenShift Container Platform v4.11 or v4.12.

vSphere

Baremetal

Tanzu Kubernetes Grid multicloud.

vSphere with Tanzu v8.0.1 or later.

For vSphere with Tanzu, you must configure pod security policies so Tanzu
Application Platform controller pods can run as root. For more information, see
Kubernetes documentation.

To set the pod security policies, run:

kubectl create clusterrolebinding default-tkg-admin-privileged-binding --

clusterrole=psp:vmware-system-privileged --group=system:authenticated

For more information about pod security policies on Tanzu for vSphere, see
VMware vSphere Product Documentation.

For more information about the supported Kubernetes versions, see Kubernetes version support
for Tanzu Application Platform.

Resource requirements

To deploy Tanzu Application Platform packages iterate profile on local Minikube cluster,
your cluster must have at least:

8 vCPUs for i9 (or equivalent) available to Tanzu Application Platform components
on Mac OS.

12 vCPUs for i7 (or equivalent) available to Tanzu Application Platform components
on Mac OS.

8 vCPUs available to Tanzu Application Platform components on Linux and
Windows.

12 GB of RAM available to Tanzu Application Platform components on Mac OS,
Linux and Windows.

70 GB of disk space available per node.

To deploy Tanzu Application Platform packages full profile, your cluster must have at least:

8 GB of RAM available per node to Tanzu Application Platform.

16 vCPUs available across all nodes to Tanzu Application Platform.

Tanzu Application Platform v1.5

VMware by Broadcom 191

https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi-migration-faq.html
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://docs.vmware.com/en/VMware-vSphere/8.0/vsphere-with-tanzu-tkg/GUID-3B7F5B44-E31D-4819-B166-C531D4ECAE7D.html

100 GB of disk space available per node.

To deploy Tanzu Application Platform packages build, run and iterate (shared) profile, your
cluster must have at least:

8 GB of RAM available per node to Tanzu Application Platform.

12 vCPUs available across all nodes to Tanzu Application Platform.

100 GB of disk space available per node.

To deploy Tanzu Application Platform packages view profile, your cluster must have at least:

8 GB of RAM available per node to Tanzu Application Platform.

8 vCPUs available across all nodes to Tanzu Application Platform.

100 GB of disk space available per node.

For the full profile or use of Security Chain Security Tools - Store, your cluster must have a
configured default StorageClass.

Pod security policies must be configured so that Tanzu Application Platform controller pods
can run as root in the following optional configurations:

Tanzu Build Service, in which CustomStacks require root privileges. For more
information, see Tanzu Build Service documentation.

Supply Chain, in which Kaniko usage requires root privileges to build containers.

Tanzu Learning Center, which requires root privileges.

For more information about pod security policies, see Kubernetes documentation.

Tools and CLI requirements
Installation requires:

The Kubernetes CLI (kubectl) v1.24, v1.25, or v1.26 installed and authenticated with admin
rights for your target cluster. See Install Tools in the Kubernetes documentation.

Next steps
Accept Tanzu Application Platform EULAs and installing the Tanzu CLI

Kubernetes version support for Tanzu Application Platform
The following is a matrix table providing details of the compatible Kubernetes cluster versions for
Tanzu Application Platform v1.5.

Kubernetes Cluster Support Information Notes

Kubernetes v1.24, v1.25, v1.26

VMware Tanzu Kubernetes Grid v2.3.0, v2.2.0, v2.1.1,
v2.1.0

Support for Tanzu Kubernetes Grid v2.3.x begins with
Tanzu Application Platform v1.5.4

Support for Tanzu Kubernetes Grid v2.2.x begins with
Tanzu Application Platform v1.5.2

Tanzu Kubernetes releases
(vSphere with Tanzu)

TKr v1.25.7 for
vSphere v8.x,
TKr v1.24.9 for
vSphere v8.x

Support for TKr v1.25.7 begins with Tanzu Application
Platform v1.5.4

OpenShift v4.11, v4.12

Tanzu Application Platform v1.5

VMware by Broadcom 192

https://docs.vmware.com/en/Tanzu-Build-Service/1.10/vmware-tanzu-build-service/managing-custom-stacks.html
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/tasks/tools/

Kubernetes Cluster Support Information Notes

Azure Kubernetes Service Supported

Elastic Kubernetes Service Supported

Google Kubernetes Engine Supported

Install Tanzu CLI

This topic tells you how to accept the EULAs, and install the Tanzu CLI and plug-ins on Tanzu
Application Platform (commonly known as TAP).

Accept the End User License Agreements

Before downloading and installing Tanzu Application Platform packages, you must accept the End
User License Agreements (EULAs) as follows:

1. Sign in to VMware Tanzu Network.

2. Accept or confirm that you have accepted the EULAs for each of the following:

Tanzu Application Platform

Cluster Essentials for VMware Tanzu

Example of accepting the Tanzu Application Platform EULA

To accept the Tanzu Application Platform EULA:

1. Go to Tanzu Application Platform.

2. Select the Click here to sign the EULA link in the yellow warning box under the release
drop-down menu. If the yellow warning box is not visible, the EULA has already been
accepted.

Tanzu Application Platform v1.5

VMware by Broadcom 193

https://network.tanzu.vmware.com/
https://network.tanzu.vmware.com/products/tanzu-application-platform/
https://network.tanzu.vmware.com/products/tanzu-cluster-essentials/
https://network.tanzu.vmware.com/products/tanzu-application-platform/

3. Select Agree in the bottom-right of the dialog box as seen in the following screenshot.

Tanzu Application Platform v1.5

VMware by Broadcom 194

Set the Kubernetes cluster context

For information about the supported Kubernetes cluster providers and versions, see Kubernetes
cluster requirements.

To set the Kubernetes cluster context:

1. List the existing contexts by running:

kubectl config get-contexts

For example:

$ kubectl config get-contexts

CURRENT NAME CLUSTER AUTHINFO

NAMESPACE

 aks-repo-trial aks-repo-trial clusterUser_aks-r

g-01_aks-repo-trial

* aks-tap-cluster aks-tap-cluster clusterUser_aks-r

g-01_aks-tap-cluster

2. If you are managing multiple cluster contexts, set the context to the cluster that you want
to use for the Tanzu Application Platform packages installation by running:

kubectl config use-context CONTEXT

Where CONTEXT is the cluster that you want to use. For example, aks-tap-cluster.

For example:

Tanzu Application Platform v1.5

VMware by Broadcom 195

$ kubectl config use-context aks-tap-cluster

Switched to context "aks-tap-cluster".

Install or update the Tanzu CLI and plug-ins

The Tanzu CLI and plug-ins enable you to install and use the Tanzu Application Platform functions
and features.

Install the Tanzu CLI

The Tanzu CLI core v1.0.0 distributed with Tanzu Application Platform is forward and backward
compatible with all supported releases of Tanzu Application Platform.

Run a single command to install the plug-in group version that matches the Tanzu Application
Platform version on any target environment. For more information, see Install Tanzu CLI Plug-ins.

Use a package manager to install Tanzu CLI on Windows, Mac, or Linux OS. Alternatively,
download and install manually from Tanzu Network, VMware Customer Connect, or GitHub.

Basic installation instructions are provided below. For more information including how to install the
Tanzu CLI and CLI plug-ins in Internet-restricted environments, see the VMware Tanzu CLI
documentation.

Install using a package manager
To install the Tanzu CLI using a package manager:

1. Follow the instructions for your package manager below. This installs the latest version of
the CLI available in the package registry.

Homebrew (MacOS):

brew update

brew install vmware-tanzu/tanzu/tanzu-cli

Chocolatey (Windows):

choco install tanzu-cli

The tanzu-cli package is part of the main Chocolatey Community Repository.
When a new tanzu-cli version is released, it might not be available immediately.
If the above command fails, run:

choco install tanzu-cli --version TANZU-CLI-VERSION

Where TANZU-CLI-VERSION is the Tanzu CLI version you want to install.

For example:

choco install tanzu-cli --version 1.2.0

APT (Debian or Ubuntu):

Note

To retain an existing installation of the Tanzu CLI, move the CLI binary from
/usr/local/bin/tanzu or C:\Program Files\tanzu on Windows to a different
location before following the steps below.

Tanzu Application Platform v1.5

VMware by Broadcom 196

https://docs.vmware.com/en/VMware-Tanzu-CLI/1.2/tanzu-cli/index.html
https://community.chocolatey.org/packages

sudo mkdir -p /etc/apt/keyrings/

sudo apt-get update

sudo apt-get install -y ca-certificates curl gpg

curl -fsSL https://packages.vmware.com/tools/keys/VMWARE-PACKAGING-GPG

-RSA-KEY.pub | sudo gpg --dearmor -o /etc/apt/keyrings/tanzu-archive-k

eyring.gpg

echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/tanzu-archive-keyrin

g.gpg] https://storage.googleapis.com/tanzu-cli-os-packages/apt tanzu-

cli-jessie main" | sudo tee /etc/apt/sources.list.d/tanzu.list

sudo apt-get update

sudo apt-get install -y tanzu-cli

YUM or DNF (RHEL):

cat << EOF | sudo tee /etc/yum.repos.d/tanzu-cli.repo

[tanzu-cli]

name=Tanzu CLI

baseurl=https://storage.googleapis.com/tanzu-cli-os-packages/rpm/tanzu

-cli

enabled=1

gpgcheck=1

repo_gpgcheck=1

gpgkey=https://packages.vmware.com/tools/keys/VMWARE-PACKAGING-GPG-RSA

-KEY.pub

EOF

sudo yum install -y tanzu-cli # If you are using DNF, run sudo dnf ins

tall -y tanzu-cli.

2. Check that the correct version of the CLI is properly installed.

tanzu version

version: v1.2.0

...

Install from a binary release
To install the Tanzu CLI from a binary release:

1. Download the Tanzu CLI binary from one of the following locations:

VMware Tanzu Network

1. Go to VMware Tanzu Network.

2. Choose the 1.5.12 release from the Release dropdown menu.

3. Click the tanzu-core-cli-binaries item from the result set.

4. Download the Tanzu CLI binary for your operating system.

VMware Customer Connect

1. Go to VMware Customer Connect.

2. Download the Tanzu CLI binary for your operating system.

GitHub

1. Go to Tanzu CLI release v1.2.0 on GitHub.

2. Download the Tanzu CLI binary for your operating system, for example,
tanzu-cli-windows-amd64.tar.gz.

2. Use an extraction tool to unpack the binary file:

macOS:

Tanzu Application Platform v1.5

VMware by Broadcom 197

https://network.tanzu.vmware.com/products/tanzu-application-platform/
https://customerconnect.vmware.com/downloads/details?downloadGroup=TCLI-100&productId=1455&rPId=109066
https://github.com/vmware-tanzu/tanzu-cli/releases/tag/v1.2.0

tar -xvf tanzu-cli-darwin-amd64.tar.gz

Linux:

tar -xvf tanzu-cli-linux-amd64.tar.gz

Windows:

Use the Windows extractor tool to unzip tanzu-cli-windows-amd64.zip.

3. Make the CLI available to the system:

cd to the directory containing the extracted CLI binary

macOS:

Install the binary to /usr/local/bin:

install tanzu-cli-darwin_amd64 /usr/local/bin/tanzu

Linux:

Install the binary to /usr/local/bin:

sudo install tanzu-cli-linux_amd64 /usr/local/bin/tanzu

Windows:

1. Create a new Program Files\tanzu folder.

2. Copy the tanzu-cli-windows_amd64.exe file into the new Program
Files\tanzu folder.

3. Rename tanzu-cli-windows_amd64.exe to tanzu.exe.

4. Right-click the tanzu folder, select Properties > Security, and make sure
that your user account has the Full Control permission.

5. Use Windows Search to search for env.

6. Select Edit the system environment variables and click the
Environment Variables button.

7. Select the Path row under System variables, and click Edit.

8. Click New to add a new row and enter the path to the Tanzu CLI. The
path value must not include the .exe extension. For example, C:\Program
Files\tanzu.

4. Check that the correct version of the CLI is properly installed:

tanzu version

version: v1.2.0

...

Install Tanzu CLI Plug-ins

There is a group of Tanzu CLI plug-ins which extend the Tanzu CLI Core with Tanzu Application
Platform specific functionality. The plug-ins can be installed as a group with a single command.

Versioned releases of the Tanzu Application Platform specific plug-in group align to each supported
Tanzu Application Platform version.

Tanzu Application Platform v1.5

VMware by Broadcom 198

This makes it easy to switch between different versions of Tanzu Application Platforms
environments. Use the following commands to search for, install, and verify Tanzu CLI plug-in
groups.

List the versions of each plug-in group available across Tanzu

tanzu plugin group search --show-details

List the versions of the Tanzu Application Platform specific plug-in group

tanzu plugin group search --name vmware-tanzu/default --show-details

Install the version of the Tanzu Application Platform specific plug-in group matching your target
environment

tanzu plugin install --group vmware-tap/default:v1.5.12

Verify the plugin group list against the plug-ins that were installed

tanzu plugin group get vmware-tap/default:v1.5.12

tanzu plugin list

For air-gapped installation, see the Installing the Tanzu CLI in Internet-Restricted Environments
section of the Tanzu CLI documentation.

Next steps
For online installation:

Deploy Cluster Essentials*

Install the Tanzu Application Platform package and profiles

For air-gapped installation:

Deploy Cluster Essentials*

Install Tanzu Application Platform in an air-gapped environment

For GitOps (beta) installation:

Deploy Cluster Essentials*

Install Tanzu Application Platform through GitOps with ESO

Install Tanzu Application Platform through Gitops with SOPS

* When you use a VMware Tanzu Kubernetes Grid cluster, you do not need to install Cluster
Essentials because the contents of Cluster Essentials are already installed on your cluster.

Install Tanzu Application Platform (online)
To install Tanzu Application Platform (commonly known as TAP) on your Kubernetes clusters with
internet access:

Tanzu Application Platform v1.5

VMware by Broadcom 199

https://docs.vmware.com/en/VMware-Tanzu-CLI/1.2/tanzu-cli/index.html#internet-restricted-install
https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.5/cluster-essentials/deploy.html
https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.5/cluster-essentials/deploy.html
https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.5/cluster-essentials/deploy.html

Step Task Link

1. Review the prerequisites to ensure you have met all requirements before
installing.

Prerequisites

2. Accept Tanzu Application Platform EULAs and install the Tanzu CLI. Accept Tanzu Application Platform
EULAs and installing the Tanzu CLI

3. Install Cluster Essentials for Tanzu*. Deploy Cluster Essentials

4. Add the Tanzu Application Platform package repository, prepare your
Tanzu Application Platform profile, and install the profile to the cluster.

Install the Tanzu Application
Platform package and profiles

5. (Optional) Install any additional packages that were not in the profile. Install individual packages

6. Set up developer namespaces to use your installed packages. Set up developer namespaces to use
your installed packages

7. Install developer tools into your integrated development environment
(IDE).

Install Tanzu Developer Tools for
your VS Code

* When you use a VMware Tanzu Kubernetes Grid cluster, there is no need to install Cluster
Essentials because the contents of Cluster Essentials are already installed on your cluster.

After installing Tanzu Application Platform on to your Kubernetes clusters, proceed with Get
started with Tanzu Application Platform.

Install Tanzu Application Platform (online)

To install Tanzu Application Platform (commonly known as TAP) on your Kubernetes clusters with
internet access:

Step Task Link

1. Review the prerequisites to ensure you have met all requirements before
installing.

Prerequisites

2. Accept Tanzu Application Platform EULAs and install the Tanzu CLI. Accept Tanzu Application Platform
EULAs and installing the Tanzu CLI

3. Install Cluster Essentials for Tanzu*. Deploy Cluster Essentials

4. Add the Tanzu Application Platform package repository, prepare your
Tanzu Application Platform profile, and install the profile to the cluster.

Install the Tanzu Application
Platform package and profiles

5. (Optional) Install any additional packages that were not in the profile. Install individual packages

6. Set up developer namespaces to use your installed packages. Set up developer namespaces to use
your installed packages

7. Install developer tools into your integrated development environment
(IDE).

Install Tanzu Developer Tools for
your VS Code

* When you use a VMware Tanzu Kubernetes Grid cluster, there is no need to install Cluster
Essentials because the contents of Cluster Essentials are already installed on your cluster.

After installing Tanzu Application Platform on to your Kubernetes clusters, proceed with Get
started with Tanzu Application Platform.

Install Tanzu Application Platform package and profiles

This topic tells you how to install Tanzu Application Platform (commonly known as TAP) packages
from your Tanzu Application Platform package repository.

Before installing the packages, ensure you have:

Tanzu Application Platform v1.5

VMware by Broadcom 200

https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.5/cluster-essentials/deploy.html
https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.5/cluster-essentials/deploy.html

Completed the Prerequisites.

Configured and verified the cluster.

Accepted Tanzu Application Platform EULA and installed Tanzu CLI with any required plug-
ins.

Relocate images to a registry

VMware recommends relocating the images from VMware Tanzu Network registry to your own
container image registry before attempting installation. If you don’t relocate the images, Tanzu
Application Platform depends on VMware Tanzu Network for continued operation, and VMware
Tanzu Network offers no uptime guarantees. The option to skip relocation is documented for
evaluation and proof-of-concept only.

The supported registries are Harbor, Azure Container Registry, Google Container Registry, and
Quay.io. See the following documentation for a registry to learn how to set it up:

Harbor documentation

Google Container Registry documentation

Quay.io documentation

To relocate images from the VMware Tanzu Network registry to your registry:

1. Set up environment variables for installation use by running:

export IMGPKG_REGISTRY_HOSTNAME_0=registry.tanzu.vmware.com

export IMGPKG_REGISTRY_USERNAME_0=MY-TANZUNET-USERNAME

export IMGPKG_REGISTRY_PASSWORD_0=MY-TANZUNET-PASSWORD

export IMGPKG_REGISTRY_HOSTNAME_1=MY-REGISTRY

export IMGPKG_REGISTRY_USERNAME_1=MY-REGISTRY-USER

export IMGPKG_REGISTRY_PASSWORD_1=MY-REGISTRY-PASSWORD

export INSTALL_REGISTRY_USERNAME=MY-REGISTRY-USER

export INSTALL_REGISTRY_PASSWORD=MY-REGISTRY-PASSWORD

export INSTALL_REGISTRY_HOSTNAME=MY-REGISTRY

export TAP_VERSION=VERSION-NUMBER

export INSTALL_REPO=TARGET-REPOSITORY

Where:

MY-REGISTRY-USER is the user with write access to MY-REGISTRY.

MY-REGISTRY-PASSWORD is the password for MY-REGISTRY-USER.

MY-REGISTRY is your own container registry.

MY-TANZUNET-USERNAME is the user with access to the images in the VMware Tanzu
Network registry registry.tanzu.vmware.com.

MY-TANZUNET-PASSWORD is the password for MY-TANZUNET-USERNAME.

VERSION-NUMBER is your Tanzu Application Platform version. For example, 1.5.12.

TARGET-REPOSITORY is your target repository, a folder/repository on MY-REGISTRY that
serves as the location for the installation files for Tanzu Application Platform.

VMware recommends using a JSON key file to authenticate with Google Container
Registry. In this case, the value of INSTALL_REGISTRY_USERNAME is _json_key and the value of
INSTALL_REGISTRY_PASSWORD is the content of the JSON key file. For more information
about how to generate the JSON key file, see Google Container Registry documentation.

2. Install the Carvel tool imgpkg CLI.

Tanzu Application Platform v1.5

VMware by Broadcom 201

https://goharbor.io/docs/2.5.0/
https://cloud.google.com/container-registry/docs
https://docs.projectquay.io/welcome.html
https://cloud.google.com/container-registry/docs/advanced-authentication
https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.5/cluster-essentials/deploy.html#optionally-install-clis-onto-your-path

To query for the available versions of Tanzu Application Platform on VMWare Tanzu
Network Registry, run:

imgpkg tag list -i registry.tanzu.vmware.com/tanzu-application-platform/tap-pac

kages | sort -V

3. Relocate the images with the imgpkg CLI by running:

imgpkg copy -b registry.tanzu.vmware.com/tanzu-application-platform/tap-package

s:${TAP_VERSION} --to-repo ${INSTALL_REGISTRY_HOSTNAME}/${INSTALL_REPO}/tap-pac

kages

Add the Tanzu Application Platform package repository
Tanzu CLI packages are available on repositories. Adding the Tanzu Application Platform package
repository makes Tanzu Application Platform and its packages available for installation.

Relocate images to a registry is strongly recommended but not required for installation. If you skip
this step, you can use the following values to replace the corresponding variables:

INSTALL_REGISTRY_HOSTNAME is registry.tanzu.vmware.com

INSTALL_REPO is tanzu-application-platform

INSTALL_REGISTRY_USERNAME and INSTALL_REGISTRY_PASSWORD are the credentials to the
VMware Tanzu Network registry registry.tanzu.vmware.com

TAP_VERSION is your Tanzu Application Platform version. For example, 1.5.12

To add the Tanzu Application Platform package repository to your cluster:

1. Create a namespace called tap-install for deploying any component packages by running:

kubectl create ns tap-install

This namespace keeps the objects grouped together logically.

2. Create a registry secret by running:

tanzu secret registry add tap-registry \

 --username ${INSTALL_REGISTRY_USERNAME} --password ${INSTALL_REGISTRY_PASSWOR

D} \

 --server ${INSTALL_REGISTRY_HOSTNAME} \

 --export-to-all-namespaces --yes --namespace tap-install

3. Create a internal registry secret by running:

tanzu secret registry add registry-credentials \

 --server ${INSTALL_REGISTRY_HOSTNAME} \

 --username ${INSTALL_REGISTRY_USERNAME} \

 --password ${INSTALL_REGISTRY_PASSWORD} \

 --namespace tap-install \

 --export-to-all-namespaces \

 --yes

4. Add the Tanzu Application Platform package repository to the cluster by running:

tanzu package repository add tanzu-tap-repository \

 --url ${INSTALL_REGISTRY_HOSTNAME}/${INSTALL_REPO}/tap-packages:$TAP_VERSION

\

 --namespace tap-install

Tanzu Application Platform v1.5

VMware by Broadcom 202

5. Get the status of the Tanzu Application Platform package repository, and ensure the status
updates to Reconcile succeeded by running:

tanzu package repository get tanzu-tap-repository --namespace tap-install

For example:

$ tanzu package repository get tanzu-tap-repository --namespace tap-install

- Retrieving repository tap...

NAME: tanzu-tap-repository

VERSION: 16253001

REPOSITORY: tapmdc.azurecr.io/mdc/1.4.0/tap-packages

TAG: 1.5.12

STATUS: Reconcile succeeded

REASON:

6. List the available packages by running:

tanzu package available list --namespace tap-install

For example:

$ tanzu package available list --namespace tap-install

/ Retrieving available packages...

 NAME DISPLAY-NAME

SHORT-DESCRIPTION

 accelerator.apps.tanzu.vmware.com Application Accelerator

for VMware Tanzu Used to create new projects a

nd configurations.

 api-portal.tanzu.vmware.com API portal

A unified user interface for API discovery and exploration at scale.

 apis.apps.tanzu.vmware.com API Auto Registration fo

r VMware Tanzu A TAP component to automatica

lly register API exposing workloads as API entities

in TAP GUI.

 backend.appliveview.tanzu.vmware.com Application Live View fo

r VMware Tanzu App for monitoring and troubl

eshooting running apps

 buildservice.tanzu.vmware.com Tanzu Build Service

Tanzu Build Service enables the building and automation of containerized

software workflows securely and at scale.

 carbonblack.scanning.apps.tanzu.vmware.com VMware Carbon Black for

Supply Chain Security Tools - Scan Default scan templates using

VMware Carbon Black

 cartographer.tanzu.vmware.com Cartographer

Kubernetes native Supply Chain Choreographer.

 cnrs.tanzu.vmware.com Cloud Native Runtimes

Cloud Native Runtimes is a serverless runtime based on Knative

 connector.appliveview.tanzu.vmware.com Application Live View Co

nnector for VMware Tanzu App for discovering and regis

tering running apps

 controller.source.apps.tanzu.vmware.com Tanzu Source Controller

Tanzu Source Controller enables workload create/update from source code.

 conventions.appliveview.tanzu.vmware.com Application Live View Co

Note

The VERSION and TAG numbers differ from the earlier example if you are on
Tanzu Application Platform v1.0.2 or earlier.

Tanzu Application Platform v1.5

VMware by Broadcom 203

nventions for VMware Tanzu Application Live View convent

ion server

 developer-conventions.tanzu.vmware.com Tanzu App Platform Devel

oper Conventions Developer Conventions

 eventing.tanzu.vmware.com Eventing

Eventing is an event-driven architecture platform based on Knative Eventing

 external-secrets.apps.tanzu.vmware.com External Secrets Operato

r External Secrets Operator is

a Kubernetes operator that integrates external

secret management systems.

 fluxcd.source.controller.tanzu.vmware.com Flux Source Controller

The source-controller is a Kubernetes operator, specialised in artifacts

acquisition from external sources such as Git, Helm repositories and S3 bucket

s.

 grype.scanning.apps.tanzu.vmware.com Grype for Supply Chain S

ecurity Tools - Scan Default scan templates using

Anchore Grype

 learningcenter.tanzu.vmware.com Learning Center for Tanz

u Application Platform Guided technical workshops

 metadata-store.apps.tanzu.vmware.com Supply Chain Security To

ols - Store Post SBoMs and query for imag

e, package, and vulnerability metadata.

 namespace-provisioner.apps.tanzu.vmware.com Namespace Provisioner

Automatic Provisioning of Developer Namespaces.

 ootb-delivery-basic.tanzu.vmware.com Tanzu App Platform Out o

f The Box Delivery Basic Out of The Box Delivery Basi

c.

 ootb-supply-chain-basic.tanzu.vmware.com Tanzu App Platform Out o

f The Box Supply Chain Basic Out of The Box Supply Chain B

asic.

 ootb-supply-chain-testing-scanning.tanzu.vmware.com Tanzu App Platform Out o

f The Box Supply Chain with Testing and Scanning Out of The Box Supply Chain w

ith Testing and Scanning.

 ootb-supply-chain-testing.tanzu.vmware.com Tanzu App Platform Out o

f The Box Supply Chain with Testing Out of The Box Supply Chain w

ith Testing.

 ootb-templates.tanzu.vmware.com Tanzu App Platform Out o

f The Box Templates Out of The Box Templates.

 policy.apps.tanzu.vmware.com Supply Chain Security To

ols - Policy Controller Policy Controller enables def

ining of a policy to restrict unsigned container

images.

 scanning.apps.tanzu.vmware.com Supply Chain Security To

ols - Scan Scan for vulnerabilities and

enforce policies directly within Kubernetes native

Supply Chains.

 service-bindings.labs.vmware.com Service Bindings for Kub

ernetes Service Bindings for Kubernet

es implements the Service Binding Specification.

 services-toolkit.tanzu.vmware.com Services Toolkit

The Services Toolkit enables the management, lifecycle, discoverability and

connectivity of Service Resources (databases, message queues, DNS records,

etc.).

 snyk.scanning.apps.tanzu.vmware.com Snyk for Supply Chain Se

curity Tools - Scan Default scan templates using

Snyk

 spring-boot-conventions.tanzu.vmware.com Tanzu Spring Boot Conven

tions Server Default Spring Boot conventio

n server.

 sso.apps.tanzu.vmware.com AppSSO

Tanzu Application Platform v1.5

VMware by Broadcom 204

Application Single Sign-On for Tanzu

 tap-auth.tanzu.vmware.com Default roles for Tanzu

Application Platform Default roles for Tanzu Appli

cation Platform

 tap-gui.tanzu.vmware.com Tanzu Application Platfo

rm GUI web app graphical user interf

ace for Tanzu Application Platform

 tap-telemetry.tanzu.vmware.com Telemetry Collector for

Tanzu Application Platform Tanzu Application Plaform Tel

emetry

 tap.tanzu.vmware.com Tanzu Application Platfo

rm Package to install a set of T

AP components to get you started based on your use

case.

 tekton.tanzu.vmware.com Tekton Pipelines

Tekton Pipelines is a framework for creating CI/CD systems.

 workshops.learningcenter.tanzu.vmware.com Workshop Building Tutori

al Workshop Building Tutorial

Install your Tanzu Application Platform profile

The tap.tanzu.vmware.com package installs predefined sets of packages based on your profile
settings. This is done by using the package manager installed by Tanzu Cluster Essentials.

For more information about profiles, see Components and installation profiles.

To prepare to install a profile:

1. List version information for the package by running:

tanzu package available list tap.tanzu.vmware.com --namespace tap-install

2. Create a tap-values.yaml file by using the Full Profile sample in the following section as a
guide. These samples have the minimum configuration required to deploy Tanzu Application
Platform. The sample values file contains the necessary defaults for:

The meta-package, or parent Tanzu Application Platform package.

Subordinate packages, or individual child packages.

Keep the values file for future configuration use.

3. View possible configuration settings for your package

Full profile

The following is the YAML file sample for the full-profile. The profile: field takes full as the
default value, but you can also set it to iterate, build, run or view. Refer to Install multicluster
Tanzu Application Platform profiles for more information.

shared:

 ingress_domain: "INGRESS-DOMAIN"

 ingress_issuer: # Optional, can denote a cert-manager.io/v1/ClusterIssuer of your ch

oice. Defaults to "tap-ingress-selfsigned".

Note

tap-values.yaml is set as a Kubernetes secret, which provides secure
means to read credentials for Tanzu Application Platform components.

Tanzu Application Platform v1.5

VMware by Broadcom 205

 image_registry:

 project_path: "SERVER-NAME/REPO-NAME"

 secret:

 name: "KP-DEFAULT-REPO-SECRET"

 namespace: "KP-DEFAULT-REPO-SECRET-NAMESPACE"

 kubernetes_distribution: "K8S-DISTRO" # Only required if the distribution is OpenShi

ft and must be used with the following kubernetes_version key.

 kubernetes_version: "K8S-VERSION" # Required regardless of distribution when Kuberne

tes version is 1.25 or later.

 ca_cert_data: | # To be passed if using custom certificates.

 -----BEGIN CERTIFICATE-----

 MIIFXzCCA0egAwIBAgIJAJYm37SFocjlMA0GCSqGSIb3DQEBDQUAMEY...

 -----END CERTIFICATE-----

ceip_policy_disclosed: FALSE-OR-TRUE-VALUE # Installation fails if this is not set to

true. Not a string.

#The above keys are minimum numbers of entries needed in tap-values.yaml to get a func

tioning TAP Full profile installation.

#Below are the keys which may have default values set, but can be overridden.

profile: full # Can take iterate, build, run, view.

supply_chain: basic # Can take testing, testing_scanning.

ootb_supply_chain_basic: # Based on supply_chain set above, can be changed to ootb_sup

ply_chain_testing, ootb_supply_chain_testing_scanning.

 registry:

 server: "SERVER-NAME" # Takes the value from the shared section by default, but ca

n be overridden by setting a different value.

 repository: "REPO-NAME" # Takes the value from the shared section by default, but

can be overridden by setting a different value.

 gitops:

 ssh_secret: "SSH-SECRET-KEY" # Takes "" as value by default; but can be overridden

by setting a different value.

contour:

 envoy:

 service:

 type: LoadBalancer # This is set by default, but can be overridden by setting a

different value.

buildservice:

 # Takes the value from the shared section by default, but can be overridden by setti

ng a different value.

 kp_default_repository: "KP-DEFAULT-REPO"

 kp_default_repository_secret: # Takes the value from the shared section above by def

ault, but can be overridden by setting a different value.

 name: "KP-DEFAULT-REPO-SECRET"

 namespace: "KP-DEFAULT-REPO-SECRET-NAMESPACE"

tap_gui:

 metadataStoreAutoconfiguration: true # Creates a service account, the Kubernetes con

trol plane token and the requisite app_config block to enable communications between T

anzu Application Platform GUI and SCST - Store.

 app_config:

 catalog:

 locations:

 - type: url

 target: https://GIT-CATALOG-URL/catalog-info.yaml

metadata_store:

Tanzu Application Platform v1.5

VMware by Broadcom 206

 ns_for_export_app_cert: "MY-DEV-NAMESPACE" # Verify this namespace is available with

in your cluster before initiating the Tanzu Application Platform installation.

 app_service_type: ClusterIP # Defaults to LoadBalancer. If shared.ingress_domain is

set earlier, this must be set to ClusterIP.

scanning:

 metadataStore:

 url: "" # Configuration is moved, so set this string to empty.

grype:

 namespace: "MY-DEV-NAMESPACE" # Verify this namespace is available within your clust

er before initiating the Tanzu Application Platform installation.

 targetImagePullSecret: "TARGET-REGISTRY-CREDENTIALS-SECRET"

 # In a single cluster, the connection between the scanning pod and the metadata stor

e happens inside the cluster and does not pass through ingress. This is automatically

configured, you do not need to provide an ingress connection to the store.

policy:

 tuf_enabled: false # By default, TUF initialization and keyless verification are dea

ctivated.

tap_telemetry:

 customer_entitlement_account_number: "CUSTOMER-ENTITLEMENT-ACCOUNT-NUMBER" # (Option

al) Identify data for creating the Tanzu Application Platform usage reports.

Where:

INGRESS-DOMAIN is the subdomain for the host name that you point at the tanzu-shared-
ingress service’s External IP address. It is not required to know the External IP address or
set up the DNS record while installing. Installing the Tanzu Application Platform package
creates the tanzu-shared-ingress and its External IP address. You can create the DNS
record after completing the installation.

KP-DEFAULT-REPO is a writable repository in your registry. Tanzu Build Service dependencies
are written to this location. Examples:

Harbor has the form kp_default_repository: "my-harbor.io/my-project/build-
service".

Docker Hub has the form kp_default_repository: "my-dockerhub-user/build-
service" or kp_default_repository: "index.docker.io/my-user/build-service".

Google Cloud Registry has the form kp_default_repository: "gcr.io/my-
project/build-service".

KP-DEFAULT-REPO-SECRET is the secret with user credentials that can write to KP-DEFAULT-
REPO. You can docker push to this location with this credential.

You can create a secret configured with a valid registry credential with a name and
namespace of your choice. For Google Cloud Registry, use
kp_default_repository_username: _json_key.

You must create the secret before the installation. For example, you can use the
registry-credentials secret created earlier.

KP-DEFAULT-REPO-SECRET-NAMESPACE is the namespace where KP-DEFAULT-REPO-SECRET is
created.

You must create the namespace before the installation. For example, you can use
the tap-install namespace created earlier.

K8S-DISTRO (optional) is the type of Kubernetes infrastructure in use. It is only required if the
distribution is OpenShift and must be used in coordination with kubernetes_version.
Supported value: openshift.

K8S-VERSION (optional) is the Kubernetes version in use. You can use it independently or in
coordination with kubernetes_distribution. For example, 1.24.x, where x is the

Tanzu Application Platform v1.5

VMware by Broadcom 207

Kubernetes patch version.

SERVER-NAME is the host name of the registry server. Examples:

Harbor has the form server: "my-harbor.io".

Docker Hub has the form server: "index.docker.io".

Google Cloud Registry has the form server: "gcr.io".

REPO-NAME is where workload images are stored in the registry. If this key is passed through
the shared section earlier and AWS ECR registry is used, you must ensure that the SERVER-
NAME/REPO-NAME/buildservice and SERVER-NAME/REPO-NAME/workloads exist. AWS ECR
expects the paths to be pre-created. Images are written to SERVER-NAME/REPO-
NAME/workload-name. Examples:

Harbor has the form repository: "my-project/supply-chain".

Docker Hub has the form repository: "my-dockerhub-user".

Google Cloud Registry has the form repository: "my-project/supply-chain".

SSH-SECRET-KEY is the SSH secret key in the developer namespace for the supply chain to
fetch source code from and push configuration to. This field is only required if you use a
private repository, otherwise, leave it empty. See Git authentication for more information.

GIT-CATALOG-URL is the path to the catalog-info.yaml catalog definition file. You can
download either a blank or populated catalog file from the Tanzu Application Platform
product page. Otherwise, you can use a Backstage-compliant catalog you’ve already built
and posted on the Git infrastructure.

MY-DEV-NAMESPACE is the name of the developer namespace. SCST - Store exports secrets
to the namespace, and SCST - Scan deploys the ScanTemplates there. This allows the
scanning feature to run in this namespace. If there are multiple developer namespaces, use
ns_for_export_app_cert: "*" to export the SCST - Store CA certificate to all namespaces.
To install Grype in multiple namespaces, use a namespace provisioner. For more
information, see Namespace Provisioner.

TARGET-REGISTRY-CREDENTIALS-SECRET is the name of the secret that contains the
credentials to pull an image from the registry for scanning.

CUSTOMER-ENTITLEMENT-ACCOUNT-NUMBER (optional) refers to the Entitlement Account
Number (EAN), which is a unique identifier VMware assigns to its customers. Tanzu
Application Platform telemetry uses this number to identify data that belongs to a particular
customers and prepare usage reports. See Locating the Entitlement Account number for
new orders for more information about identifying the Entitlement Account Number.

If you use custom CA certificates, you must provide one or more PEM-encoded CA certificates
under the ca_cert_data key. If you configured shared.ca_cert_data, Tanzu Application Platform
component packages inherit that value by default.

If you use AWS, the default settings creates a classic LoadBalancer. To use the Network
LoadBalancer instead of the classic LoadBalancer for ingress, add the following to your tap-
values.yaml:

contour:

 infrastructure_provider: aws

 envoy:

 service:

 aws:

 LBType: nlb

CEIP policy disclosure

Tanzu Application Platform v1.5

VMware by Broadcom 208

https://network.tanzu.vmware.com/products/tanzu-application-platform/#/releases/1239018
https://kb.vmware.com/s/article/2148565

Tanzu Application Platform is part of VMware’s CEIP program where data is collected to help
improve the customer experience. By setting ceip_policy_disclosed to true (not a string), you
acknowledge the program is disclosed to you and you are aware data collection is happening. This
field must be set for the installation to be completed.

See Opt out of telemetry collection for more information.

(Optional) Additional Build Service configurations

The following tasks are optional during the Tanzu Application Platform installation process:

(Optional) Configure your profile with full dependencies

(Optional) Configure your profile with the Jammy stack only

(Optional) Configure your profile with full dependencies

When you install a profile that includes Tanzu Build Service, Tanzu Application Platform is installed
with the lite set of dependencies. These dependencies consist of buildpacks and stacks required
for application builds.

The lite set of dependencies do not contain all buildpacks and stacks. To use all buildpacks and
stacks, you must install the full dependencies. For more information about the differences
between lite and full dependencies, see About lite and full dependencies.

To configure full dependencies, add the key-value pair exclude_dependencies: true to your tap-
values.yaml file under the buildservice section. For example:

buildservice:

 kp_default_repository: "KP-DEFAULT-REPO"

 kp_default_repository_secret: # Takes the value from the shared section by default,

but can be overridden by setting a different value.

 name: "KP-DEFAULT-REPO-SECRET"

 namespace: "KP-DEFAULT-REPO-SECRET-NAMESPACE"

 exclude_dependencies: true

After configuring full dependencies, you must install the dependencies after you have finished
installing your Tanzu Application Platform package. See Install the full dependencies package for
more information.

(Optional) Configure your profile with the Jammy stack only

Tanzu Application Platform v1.5.0 supports building applications with both the Ubuntu v22.04
(Jammy) and v18.04 (Bionic) stack. For more information, see Bionic and Jammy stacks.

To install Tanzu Application Platform with Jammy as the only available stack, include the
stack_configuration: jammy-only field under the buildservice: section in tap-values.yaml.

Install your Tanzu Application Platform package
Follow these steps to install the Tanzu Application Platform package:

1. Install the package by running:

tanzu package install tap -p tap.tanzu.vmware.com -v $TAP_VERSION --values-file

tap-values.yaml -n tap-install

2. Verify the package install by running:

tanzu package installed get tap -n tap-install

Tanzu Application Platform v1.5

VMware by Broadcom 209

https://www.vmware.com/solutions/trustvmware/ceip-products.html
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-index.html
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-stacks.html

This can take 5-10 minutes because it installs several packages on your cluster.

3. Verify that the necessary packages in the profile are installed by running:

tanzu package installed list -A

4. If you configured full dependencies in your tap-values.yaml file, install the full
dependencies by following the procedure in Install full dependencies.

You can run the following command after reconfiguring the profile to reinstall the Tanzu Application
Platform:

tanzu package installed update tap -p tap.tanzu.vmware.com -v $TAP_VERSION --values-f

ile tap-values.yaml -n tap-install

Install the full dependencies package
If you configured full dependencies in your tap-values.yaml file in Configure your profile with full
dependencies earlier, you must install the full dependencies package.

For more information about the differences between lite and full dependencies, see About lite
and full dependencies.

To install the full dependencies package:

1. If you have not done so already, add the key-value pair exclude_dependencies: true to
your tap-values.yaml file under the buildservice section. For example:

buildservice:

...

 exclude_dependencies: true

...

2. Get the latest version of the buildservice package by running:

tanzu package available list buildservice.tanzu.vmware.com --namespace tap-inst

all

3. Relocate the Tanzu Build Service full dependencies package repository by running:

imgpkg copy -b registry.tanzu.vmware.com/tanzu-application-platform/full-tbs-de

ps-package-repo:VERSION \

 --to-repo ${INSTALL_REGISTRY_HOSTNAME}/${INSTALL_REPO}/tbs-full-deps

Where VERSION is the version of the buildservice package you retrieved in the previous
step.

4. Add the Tanzu Build Service full dependencies package repository by running:

tanzu package repository add tbs-full-deps-repository \

 --url ${INSTALL_REGISTRY_HOSTNAME}/${INSTALL_REPO}/tbs-full-deps:VERSION \

Important

After installing the full profile on your cluster, you must set up developer
namespaces. Otherwise, creating a workload, a Knative service or other Tanzu
Application Platform packages fails. For more information, see Set up developer
namespaces to use your installed packages.

Tanzu Application Platform v1.5

VMware by Broadcom 210

 --namespace tap-install

Where VERSION is the version of the buildservice package you retrieved earlier.

5. Install the full dependencies package by running:

tanzu package install full-tbs-deps -p full-tbs-deps.tanzu.vmware.com -v VERSIO

N -n tap-install

Where VERSION is the version of the buildservice package you retrieved earlier.

Access Tanzu Application Platform GUI

To access Tanzu Application Platform GUI, you can use the host name that you configured earlier.
This host name is pointed at the shared ingress. To configure LoadBalancer for Tanzu Application
Platform GUI, see Access Tanzu Application Platform GUI.

You’re now ready to start using Tanzu Application Platform GUI. Proceed to the Getting Started
topic or the Tanzu Application Platform GUI - Catalog Operations topic.

Exclude packages from a Tanzu Application Platform
profile

To exclude packages from a Tanzu Application Platform profile:

1. Find the full subordinate (child) package name:

tanzu package available list --namespace tap-install

2. Update your tap-values file with a section listing the exclusions:

profile: PROFILE-VALUE

excluded_packages:

 - tap-gui.tanzu.vmware.com

 - service-bindings.lab.vmware.com

Next steps

(Optional) Install individual packages

Set up developer namespaces to use your installed packages

Replace the default ingress issuer

View possible configuration settings for your package

To view possible configuration settings for a package, run:

Important

If you exclude a package after performing a profile installation including that
package, you cannot see the accurate package states immediately after running tap
package installed list -n tap-install. Also, you can break package
dependencies by removing a package. Allow 20 minutes to verify that all packages
have reconciled correctly while troubleshooting.

Tanzu Application Platform v1.5

VMware by Broadcom 211

tanzu package available get tap.tanzu.vmware.com/$TAP_VERSION --values-schema --namesp

ace tap-install

profile: full

Shared configurations go under the shared key.

shared:

 ingress_domain: tap.example.com

...

For example, CNRs specific values go under its name.

cnrs:

 provider: local

For example, App Accelerator specific values go under its name.

accelerator:

 server:

 service_type: "ClusterIP"

Shared Keys define values that configure multiple packages. These keys are defined under the
shared Top-level Key, as summarized in the following table:

Shared Key Description Optional

ca_cert_data PEM-encoded certificate data to trust TLS connections with a private CA. This
shared key is used by convention_controller, scanning and source_controller

Yes

ingress_domain Domain name to be used in service routes and host names for instances of Tanzu
Application Platform components.

Yes

ingress_issuer A cert-manager.io/v1/ClusterIssuer for issuing TLS certificates to Tanzu
Application Platform components. Default value: tap-ingress-selfsigned

Yes

kubernetes_distrib

ution

Type of Kubernetes infrastructure being used. You can use this shared key in
coordination with the kubernetes_version key. Supported value: openshift.

Yes

kubernetes_version Kubernetes version. You can use this shared key independently or in coordination
with the kubernetes_distribution key. Supported value: 1.24.x, where x stands
for the Kubernetes patch version.

Yes

image_registry.pro

ject_path

Project path in the container image registry server used for builder and application
images.

Yes

image_registry.use

rname

User name for the container image registry. Mutually exclusive with
shared.image_registry.secret.name/namespace

Yes

image_registry.pas

sword

Password for the container image registry. Mutually exclusive with
shared.image_registry.secret.name/namespace

Yes

Note

The tap.tanzu.vmware.com package does not show all configuration settings for
packages it plans to install. The package only shows top-level keys. You can view
individual package configuration settings with the same tanzu package available
get command. For example, to find the keys for Cloud Native Runtimes, you must
first identify the version of the package with tanzu package installed list -n
tap-install, which lists all the installed packages versions. Then run the command
tanzu package available get -n tap-install cnrs.tanzu.vmware.com/CNRS-

VERSION --values-schema by using the package version listed for Cloud Native
Runtimes.

Tanzu Application Platform v1.5

VMware by Broadcom 212

Shared Key Description Optional

secret.name Secret name for the container image registry credentials of type
kubernetes.io/dockerconfigjson. Mutually exclusive with
shared.image_registry.username/password

Yes

secret.namespace Secret namespace for the container image registry credentials. Mutually exclusive
with shared.image_registry.username/password

Yes

activateAppLiveVie

wSecureAccessContr

ol

Enable secure access connection between Application Live View components. Yes

The following table summarizes the top-level keys used for package-specific configuration within
your tap-values.yaml.

Package Top-level Key

See table above. shared

API Auto Registration api_auto_registration

API portal api_portal

Application Accelerator accelerator

Application Live View appliveview

Application Live View connector appliveview_connector

Application Live View conventions appliveview-conventions

Cartographer cartographer

Cloud Native Runtimes cnrs

Source Controller source_controller

Supply Chain supply_chain

Supply Chain Basic ootb_supply_chain_basic

Supply Chain Testing ootb_supply_chain_testing

Supply Chain Testing Scanning ootb_supply_chain_testing_scanning

Supply Chain Security Tools - Scan scanning

Supply Chain Security Tools - Scan (Grype Scanner) grype

Supply Chain Security Tools - Store metadata_store

Build Service buildservice

Tanzu Application Platform GUI tap_gui

Learning Center learningcenter

For information about package-specific configuration, see Install individual packages.

Install individual packages

You can install Tanzu Application Platform (commonly known as TAP) through predefined profiles or
through individual packages. Use this topic to learn how to install each individual package. For more
information about installing through profiles, see Components and installation profiles.

Installing individual Tanzu Application Platform packages is useful if you do not want to use a profile
to install packages or if you want to install additional packages after installing a profile. Before

Tanzu Application Platform v1.5

VMware by Broadcom 213

installing the packages, be sure to complete the prerequisites, configure and verify the cluster,
accept the EULA, and install the Tanzu CLI with any required plug-ins. For more information, see
Prerequisites.

Install pages for individual Tanzu Application Platform
packages

Install API Auto Registration

Install API portal

Install Application Accelerator

Install Application Configuration Service

Install Application Live View

Install Application Single Sign-On

Install Bitnami Services

Install cert-manager

Install Cloud Native Runtimes

Install Contour

Install Crossplane

Install default roles for Tanzu Application Platform

Install Developer Conventions

Install Eventing

Install Flux CD Source Controller

Install Learning Center for Tanzu Application Platform

Install Out of the Box Templates

Install Out of the Box Supply Chain with Testing

Install Out of the Box Supply Chain with Testing and Scanning

Install Service Bindings

Install Services Toolkit

Install Source Controller

Install Spring Boot conventions

Install Supply Chain Choreographer

Install Supply Chain Security Tools - Store

Install Supply Chain Security Tools - Policy Controller

Install Supply Chain Security Tools - Scan

Install Tanzu Application Platform GUI

Install Tanzu Build Service

Install Tekton

Install Telemetry

Verify the installed packages

Tanzu Application Platform v1.5

VMware by Broadcom 214

Use the following procedure to verify that the packages are installed.

1. List the installed packages by running:

tanzu package installed list --namespace tap-install

For example:

$ tanzu package installed list --namespace tap-install

\ Retrieving installed packages...

NAME PACKAGE-NAME PAC

KAGE-VERSION STATUS

api-portal api-portal.tanzu.vmware.com 1.

0.3 Reconcile succeeded

app-accelerator accelerator.apps.tanzu.vmware.com 1.

0.0 Reconcile succeeded

app-live-view appliveview.tanzu.vmware.com 1.

0.2 Reconcile succeeded

appliveview-conventions build.appliveview.tanzu.vmware.com 1.

0.2 Reconcile succeeded

cartographer cartographer.tanzu.vmware.com 0.

1.0 Reconcile succeeded

cloud-native-runtimes cnrs.tanzu.vmware.com 1.

0.3 Reconcile succeeded

convention-controller controller.conventions.apps.tanzu.vmware.com 0.

7.0 Reconcile succeeded

developer-conventions developer-conventions.tanzu.vmware.com 0.

3.0-build.1 Reconcile succeeded

grype-scanner grype.scanning.apps.tanzu.vmware.com 1.

0.0 Reconcile succeeded

image-policy-webhook image-policy-webhook.signing.apps.tanzu.vmware.com 1.

1.2 Reconcile succeeded

metadata-store metadata-store.apps.tanzu.vmware.com 1.

0.2 Reconcile succeeded

ootb-supply-chain-basic ootb-supply-chain-basic.tanzu.vmware.com 0.

5.1 Reconcile succeeded

ootb-templates ootb-templates.tanzu.vmware.com 0.

5.1 Reconcile succeeded

scan-controller scanning.apps.tanzu.vmware.com 1.

0.0 Reconcile succeeded

service-bindings service-bindings.labs.vmware.com 0.

5.0 Reconcile succeeded

services-toolkit services-toolkit.tanzu.vmware.com 0.

8.0 Reconcile succeeded

source-controller controller.source.apps.tanzu.vmware.com 0.

2.0 Reconcile succeeded

sso4k8s-install sso.apps.tanzu.vmware.com 1.

0.0-beta.2-31 Reconcile succeeded

tap-gui tap-gui.tanzu.vmware.com 0.

3.0-rc.4 Reconcile succeeded

tekton-pipelines tekton.tanzu.vmware.com 0.3

0.0 Reconcile succeeded

tbs buildservice.tanzu.vmware.com 1.

5.0 Reconcile succeeded

Next steps
Set up developer namespaces to use your installed packages

Set up developer namespaces to use your installed
packages

Tanzu Application Platform v1.5

VMware by Broadcom 215

For details about how to automatically set up your developer namespaces, see Provision developer
namespaces in Namespace Provisioner.

Additional configuration for testing and scanning

If you plan to install or have already installed Out of the Box Supply Chains with Testing and
Scanning, you can use Namespace Provisioner to set up the required resources. For more
information, see Customize installation in the Namespace Provisioner documentation for
configuration steps.

Legacy namespace setup

To use the legacy manual process for setting up developer namespaces, see Legacy namespace
setup.

Next steps

Install Tanzu Developer Tools for your VS Code

Provision namespaces manually

This topic tells you how to use Namespace Provisioner to provision namespaces manually in Tanzu
Application Platform (commonly known as TAP).

Using Namespace Provisioner is the recommended best practice for setting up developer
namespaces on Tanzu Application Platform.

To provision namespaces manually, complete the following steps:

1. Enable single user access.

2. (Optional) Enable additional users with Kubernetes RBAC.

Enable single user access

1. To add read/write registry credentials to the developer namespace, run the following
command:

tanzu secret registry add registry-credentials --server REGISTRY-SERVER --usern

ame REGISTRY-USERNAME --password REGISTRY-PASSWORD --namespace YOUR-NAMESPACE

Where:

YOUR-NAMESPACE is the name you give to the developer namespace. For example,
use default for the default namespace.

REGISTRY-SERVER is the URL of the registry. You can use the same registry server as
in ootb_supply_chain_basic - registry - server. For more information, see Install
Tanzu Application Platform package and profiles.

For Docker Hub, the value is https://index.docker.io/v1/. It must have
the leading https://, the v1 path, and the trailing /.

For Google Container Registry (GCR), the value is gcr.io.

REGISTRY-PASSWORD is the password of the registry.

For GCR or Google Artifact Registry, this must be the concatenated version
of the JSON key. For example: "$(cat ~/gcp-key.json)"

If you observe the following issue:

Tanzu Application Platform v1.5

VMware by Broadcom 216

panic: runtime error: invalid memory address or nil pointer dereference

[signal SIGSEGV: segmentation violation code=0x1 addr=0x128 pc=0x2bcce00]

Use kubectl to create the secret instead:

kubectl create secret docker-registry registry-credentials --docker-server=REGI

STRY-SERVER --docker-username=REGISTRY-USERNAME --docker-password=REGISTRY-PASS

WORD -n YOUR-NAMESPACE

2. Run the following to add secrets, a service account to execute the supply chain, and RBAC
rules to authorize the service account to the developer namespace:

cat <<EOF | kubectl -n YOUR-NAMESPACE apply -f -

apiVersion: v1

kind: Secret

metadata:

 name: tap-registry

 annotations:

 secretgen.carvel.dev/image-pull-secret: ""

type: kubernetes.io/dockerconfigjson

data:

 .dockerconfigjson: e30K

apiVersion: v1

kind: ServiceAccount

metadata:

 name: default

secrets:

 - name: registry-credentials

imagePullSecrets:

 - name: registry-credentials

 - name: tap-registry

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: default-permit-deliverable

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: deliverable

subjects:

 - kind: ServiceAccount

 name: default

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: default-permit-workload

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: workload

subjects:

Note

This step is not required if you install Tanzu Application Platform on AWS
with EKS and use IAM Roles for Kubernetes Service Accounts instead of
secrets. You can specify the Role Amazon Resource Name (ARN) in the
next step.

Tanzu Application Platform v1.5

VMware by Broadcom 217

https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts.html

 - kind: ServiceAccount

 name: default

EOF

apiVersion: v1

kind: ServiceAccount

metadata:

 name: default

 annotations:

 eks.amazonaws.com/role-arn: <Role ARN>

imagePullSecrets:

 - name: tap-registry

Enable additional users with Kubernetes RBAC

Follow these steps to enable additional users in your namespace by using Kubernetes RBAC:

1. (Optional) Before you begin, ensure that you have enabled single user access. If you’ve set
up your developer namespace using Namespace Provisioner, you can skip this step.

2. Choose either of the following options to give developers namespace-level access and view
access to the appropriate cluster-level resources:

Option 1: Use the Tanzu Application Platform RBAC CLI plug-in (beta).

To use the tanzu rbac plug-in to grant app-viewer and app-editor roles to an
identity provider group, run:

tanzu rbac binding add -g GROUP-FOR-APP-VIEWER -n YOUR-NAMESPACE -r app-v

iewer

tanzu rbac binding add -g GROUP-FOR-APP-EDITOR -n YOUR-NAMESPACE -r app-e

ditor

Where:

YOUR-NAMESPACE is the name you give to the developer namespace.

GROUP-FOR-APP-VIEWER is the user group from the upstream identity provider
that requires access to app-viewer resources on the current namespace and
cluster.

GROUP-FOR-APP-EDITOR is the user group from the upstream identity provider
that requires access to app-editor resources on the current namespace and
cluster.

For more information about tanzu rbac, see Bind a user or group to a default role

VMware recommends creating a user group in your identity provider’s grouping
system for each developer namespace and then adding the users accordingly.

Depending on your identity provider, you might need to take further action to
federate user groups appropriately with your cluster. For an example of how to set

Note

If you install Tanzu Application Platform on AWS with EKS and use IAM
Roles for Kubernetes Service Accounts, you must annotate the ARN of the
IAM Role and remove the registry-credentials secret. Your service
account entry then looks like the following:

Tanzu Application Platform v1.5

VMware by Broadcom 218

https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts.html

up Azure Active Directory (Azure AD) with your cluster, see Integrate Azure Active
Directory.

Option 2: Use the native Kubernetes YAML.

Run the following to apply the RBAC policy:

cat <<EOF | kubectl -n YOUR-NAMESPACE apply -f -

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: dev-permit-app-viewer

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: app-viewer

subjects:

 - kind: Group

 name: GROUP-FOR-APP-VIEWER

 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: YOUR-NAMESPACE-permit-app-viewer

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: app-viewer-cluster-access

subjects:

 - kind: Group

 name: GROUP-FOR-APP-VIEWER

 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: dev-permit-app-editor

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: app-editor

subjects:

 - kind: Group

 name: GROUP-FOR-APP-EDITOR

 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: YOUR-NAMESPACE-permit-app-editor

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: app-editor-cluster-access

subjects:

 - kind: Group

 name: GROUP-FOR-APP-EDITOR

 apiGroup: rbac.authorization.k8s.io

EOF

Where:

YOUR-NAMESPACE is the name you give to the developer namespace.

Tanzu Application Platform v1.5

VMware by Broadcom 219

GROUP-FOR-APP-VIEWER is the user group from the upstream identity provider
that requires access to app-viewer resources on the current namespace and
cluster.

GROUP-FOR-APP-EDITOR is the user group from the upstream identity provider
that requires access to app-editor resources on the current namespace and
cluster.

VMware recommends creating a user group in your identity provider’s grouping
system for each developer namespace and then adding the users accordingly.

Depending on your identity provider, you might need to take further action to
federate user groups appropriately with your cluster.

Rather than granting roles directly to individuals, VMware recommends using your
identity provider’s user groups system to grant access to a group of developers.

For an example of how to set up Azure Active Directory (AD) with your cluster, see
Integrate Azure Active Directory.

3. (Optional) Log in as a non-admin user, such as a developer, to see the effects of RBAC after
the role bindings are applied.

Additional configuration for testing and scanning

If you plan to install Out of the Box Supply Chains with Testing and Scanning, see Developer
Namespace.

Install Tanzu Developer Tools for your VS Code

This topic tells you how to install VMware Tanzu Developer Tools for Visual Studio Code (VS Code).

Prerequisites

Before installing the extension, you must have:

VS Code

kubectl

Tilt v0.30.12 or later

Tanzu CLI and plug-ins

A cluster with the Tanzu Application Platform Full profile or Iterate profile

If you are an app developer, someone else in your organization might have already set up the
Tanzu Application Platform environment.

Docker Desktop and local Kubernetes are not prerequisites for using Tanzu Developer Tools for VS
Code.

Install

To install the extension:

1. Sign in to VMware Tanzu Network and download Tanzu Developer Tools for Visual Studio
Code.

2. Open VS Code.

Tanzu Application Platform v1.5

VMware by Broadcom 220

https://code.visualstudio.com/download
https://kubernetes.io/docs/tasks/tools/#kubectl
https://docs.tilt.dev/install.html
https://network.tanzu.vmware.com/products/tanzu-application-platform

3. Press cmd+shift+P to open the Command Palette and run Extensions: Install from
VSIX....

4. Select the extension file tanzu-vscode-extension.vsix.

5. If you do not have the following extensions, and they do not automatically install, install
them from VS Code Marketplace:

Debugger for Java

Language Support for Java(™) by Red Hat

YAML

6. Ensure Language Support for Java is running in Standard Mode. You can configure it in the
Settings menu by going to Code > Preferences > Settings under Java > Server: Launch
Mode.

When the JDK and Language Support for Java are configured correctly, you see that the
integrated development environment creates a directory target where the code is
compiled.

Configure
To configure VMware Tanzu Developer Tools for VS Code:

1. Ensure that you are targeting the correct cluster. For more information, see the
Kubernetes documentation.

2. Go to Code > Preferences > Settings > Extensions > Tanzu Developer Tools and set the
following:

Confirm Delete: This controls whether the extension asks for confirmation when
deleting a workload.

Enable Live Hover: For more information, see Integrating Live Hover by using
Spring Boot Tools. Reload VS Code for this change to take effect.

Source Image: (Required) The registry location for publishing local source code. For
example, registry.io/yourapp-source. This must include both a registry and a
project name.

Local Path: (Optional) The path on the local file system to a directory of source
code to build. This is the current directory by default.

Namespace: (Optional) This is the namespace that workloads are deployed into.
The namespace set in kubeconfig is the default.

Uninstall

Tanzu Application Platform v1.5

VMware by Broadcom 221

https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-debug
https://marketplace.visualstudio.com/items?itemName=redhat.java
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-yaml
https://code.visualstudio.com/docs/java/java-project#_lightweight-mode
https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/

To uninstall VMware Tanzu Developer Tools for VS Code:

1. Go to Code > Preferences > Settings > Extensions.

2. Right-click the extension and select Uninstall.

Next steps

Proceed to Getting started with Tanzu Developer Tools for Visual Studio Code.

Install Tanzu Application Platform (offline)

To install Tanzu Application Platform (commonly known as TAP) on your Kubernetes clusters in an
air-gapped environment:

Step Task Link

1. Review the prerequisites to ensure you have met all requirements
before installing.

Prerequisites

2. Accept Tanzu Application Platform EULAs and install the Tanzu CLI. Accept Tanzu Application Platform
EULAs and installing the Tanzu CLI

3. Install Cluster Essentials for Tanzu*. Deploy Cluster Essentials

4. Add the Tanzu Application Platform package repository, prepare your
Tanzu Application Platform profile, and install the profile to the cluster.

Install Tanzu Application Platform in
an air-gapped environment

5. Install Tanzu Build Service full dependencies. Install the Tanzu Build Service
dependencies

6. Configure custom certificate authorities for Tanzu Application Platform
GUI.

Configure custom certificate
authorities for Tanzu Application
Platform GUI

7. Add the certificate for the private Git repository in the Accelerator
system namespace.

Configure Application Accelerator

8. Apply patch to Grype. Use Grype in offline and air-gapped
environments

9. Set up developer namespaces to use your installed packages. Set up developer namespaces to use
your installed packages

* When you use a VMware Tanzu Kubernetes Grid cluster, there is no need to install Cluster
Essentials because the contents of Cluster Essentials are already installed on your cluster.

After installing Tanzu Application Platform on to your air-gapped cluster, you can start creating
workloads that run in your air-gapped containers.

For more information about the Namespace Provisioner mode, see Work with Git repositories in
air-gapped environments with Namespace Provisioner.

For more information about the manual mode, see Deploy an air-gapped workload.

Install Tanzu Application Platform (offline)

To install Tanzu Application Platform (commonly known as TAP) on your Kubernetes clusters in an
air-gapped environment:

Step Task Link

1. Review the prerequisites to ensure you have met all requirements
before installing.

Prerequisites

Tanzu Application Platform v1.5

VMware by Broadcom 222

https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.5/cluster-essentials/deploy.html

Step Task Link

2. Accept Tanzu Application Platform EULAs and install the Tanzu CLI. Accept Tanzu Application Platform
EULAs and installing the Tanzu CLI

3. Install Cluster Essentials for Tanzu*. Deploy Cluster Essentials

4. Add the Tanzu Application Platform package repository, prepare your
Tanzu Application Platform profile, and install the profile to the cluster.

Install Tanzu Application Platform in
an air-gapped environment

5. Install Tanzu Build Service full dependencies. Install the Tanzu Build Service
dependencies

6. Configure custom certificate authorities for Tanzu Application Platform
GUI.

Configure custom certificate
authorities for Tanzu Application
Platform GUI

7. Add the certificate for the private Git repository in the Accelerator
system namespace.

Configure Application Accelerator

8. Apply patch to Grype. Use Grype in offline and air-gapped
environments

9. Set up developer namespaces to use your installed packages. Set up developer namespaces to use
your installed packages

* When you use a VMware Tanzu Kubernetes Grid cluster, there is no need to install Cluster
Essentials because the contents of Cluster Essentials are already installed on your cluster.

After installing Tanzu Application Platform on to your air-gapped cluster, you can start creating
workloads that run in your air-gapped containers.

For more information about the Namespace Provisioner mode, see Work with Git repositories in
air-gapped environments with Namespace Provisioner.

For more information about the manual mode, see Deploy an air-gapped workload.

Install Tanzu Application Platform in your air-gapped
environment
This topic tells you how to install Tanzu Application Platform (commonly known as TAP) on your
Kubernetes cluster and registry that are air-gapped from external traffic.

Before installing the packages, ensure that you have completed the following tasks:

Review the Prerequisites to ensure that you have set up everything required before
beginning the installation.

Accept Tanzu Application Platform EULA and install Tanzu CLI.

Deploy Cluster Essentials. This step is optional if you are using VMware Tanzu Kubernetes
Grid cluster.

Relocate images to a registry
To relocate images from the VMware Tanzu Network registry to your air-gapped registry:

1. Set up environment variables for installation use by running:

export IMGPKG_REGISTRY_HOSTNAME_0=registry.tanzu.vmware.com

export IMGPKG_REGISTRY_USERNAME_0=MY-TANZUNET-USERNAME

export IMGPKG_REGISTRY_PASSWORD_0=MY-TANZUNET-PASSWORD

export IMGPKG_REGISTRY_HOSTNAME_1=MY-REGISTRY

export IMGPKG_REGISTRY_USERNAME_1=MY-REGISTRY-USER

export IMGPKG_REGISTRY_PASSWORD_1=MY-REGISTRY-PASSWORD

Tanzu Application Platform v1.5

VMware by Broadcom 223

https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.5/cluster-essentials/deploy.html
https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.5/cluster-essentials/deploy.html

export TAP_VERSION=VERSION-NUMBER

export REGISTRY_CA_PATH=PATH-TO-CA

export TO_REPO=MY-REPO

Where:

MY-REGISTRY is your air-gapped container registry.

MY-REGISTRY-USER is the user with write access to MY-REGISTRY.

MY-REGISTRY-PASSWORD is the password for MY-REGISTRY-USER.

MY-TANZUNET-USERNAME is the user with access to the images in the VMware Tanzu
Network registry registry.tanzu.vmware.com

MY-TANZUNET-PASSWORD is the password for MY-TANZUNET-USERNAME.

VERSION-NUMBER is your Tanzu Application Platform version. For example, 1.5.12

MY-REPO is your repository in the air-gapped container image registry. Examples:

Harbor has the form MY-REGISTRY/REPO-NAME/tap-packages.

Docker Hub has the form MY-REGISTRY/tap-packages.

Google Cloud Registry has the form MY-REGISTRY/MY-PROJECT/REPO-
NAME/tap-packages.

2. Copy the images into a .tar file from the VMware Tanzu Network onto an external storage
device with the Carvel tool imgpkg by running:

imgpkg copy \

 -b registry.tanzu.vmware.com/tanzu-application-platform/tap-packages:$TAP_VER

SION \

 --to-tar tap-packages-$TAP_VERSION.tar \

 --include-non-distributable-layers

3. Relocate the images with the Carvel tool imgpkg by running:

imgpkg copy \

 --tar tap-packages-$TAP_VERSION.tar \

 --to-repo $TO_REPO \

 --include-non-distributable-layers \

 --registry-ca-cert-path $REGISTRY_CA_PATH

4. Create a namespace called tap-install for deploying any component packages by running:

kubectl create ns tap-install

This namespace keeps the objects grouped together logically.

5. Create a registry secret by running:

tanzu secret registry add tap-registry \

 --server $IMGPKG_REGISTRY_HOSTNAME_1 \

 --username $IMGPKG_REGISTRY_USERNAME_1 \

 --password $IMGPKG_REGISTRY_PASSWORD_1 \

 --namespace tap-install \

 --export-to-all-namespaces \

 --yes

6. Create a internal registry secret by running:

tanzu secret registry add registry-credentials \

 --server $IMGPKG_REGISTRY_HOSTNAME_1 \

 --username $IMGPKG_REGISTRY_USERNAME_1 \

Tanzu Application Platform v1.5

VMware by Broadcom 224

 --password $IMGPKG_REGISTRY_PASSWORD_1 \

 --namespace tap-install \

 --export-to-all-namespaces \

 --yes

7. Add the Tanzu Application Platform package repository to the cluster by running:

tanzu package repository add tanzu-tap-repository \

 --url $IMGPKG_REGISTRY_HOSTNAME_1/tap-packages:$TAP_VERSION \

 --namespace tap-install

Where $TAP_VERSION is the Tanzu Application Platform version environment variable you
defined earlier.

8. Get the status of the Tanzu Application Platform package repository, and ensure the status
updates to Reconcile succeeded by running:

tanzu package repository get tanzu-tap-repository --namespace tap-install

9. List the available packages by running:

tanzu package available list --namespace tap-install

For example:

$ tanzu package available list --namespace tap-install

/ Retrieving available packages...

 NAME DISPLAY-NAME

SHORT-DESCRIPTION

 accelerator.apps.tanzu.vmware.com Application Accelerator

for VMware Tanzu Used to create new projects a

nd configurations.

 api-portal.tanzu.vmware.com API portal

A unified user interface for API discovery and exploration at scale.

 apis.apps.tanzu.vmware.com API Auto Registration fo

r VMware Tanzu A TAP component to automatica

lly register API exposing workloads as API entities

in TAP GUI.

 backend.appliveview.tanzu.vmware.com Application Live View fo

r VMware Tanzu App for monitoring and troubl

eshooting running apps

 buildservice.tanzu.vmware.com Tanzu Build Service

Tanzu Build Service enables the building and automation of containerized

software workflows securely and at scale.

 carbonblack.scanning.apps.tanzu.vmware.com VMware Carbon Black for

Supply Chain Security Tools - Scan Default scan templates using

VMware Carbon Black

 cartographer.tanzu.vmware.com Cartographer

Kubernetes native Supply Chain Choreographer.

 cnrs.tanzu.vmware.com Cloud Native Runtimes

Cloud Native Runtimes is a serverless runtime based on Knative

 connector.appliveview.tanzu.vmware.com Application Live View Co

nnector for VMware Tanzu App for discovering and regis

tering running apps

Note

The VERSION and TAG numbers differ from the earlier example if you are on
Tanzu Application Platform v1.0.2 or earlier.

Tanzu Application Platform v1.5

VMware by Broadcom 225

 controller.source.apps.tanzu.vmware.com Tanzu Source Controller

Tanzu Source Controller enables workload create/update from source code.

 conventions.appliveview.tanzu.vmware.com Application Live View Co

nventions for VMware Tanzu Application Live View convent

ion server

 developer-conventions.tanzu.vmware.com Tanzu App Platform Devel

oper Conventions Developer Conventions

 eventing.tanzu.vmware.com Eventing

Eventing is an event-driven architecture platform based on Knative Eventing

 external-secrets.apps.tanzu.vmware.com External Secrets Operato

r External Secrets Operator is

a Kubernetes operator that integrates external

secret management systems.

 fluxcd.source.controller.tanzu.vmware.com Flux Source Controller

The source-controller is a Kubernetes operator, specialised in artifacts

acquisition from external sources such as Git, Helm repositories and S3 bucket

s.

 grype.scanning.apps.tanzu.vmware.com Grype for Supply Chain S

ecurity Tools - Scan Default scan templates using

Anchore Grype

 learningcenter.tanzu.vmware.com Learning Center for Tanz

u Application Platform Guided technical workshops

 metadata-store.apps.tanzu.vmware.com Supply Chain Security To

ols - Store Post SBoMs and query for imag

e, package, and vulnerability metadata.

 namespace-provisioner.apps.tanzu.vmware.com Namespace Provisioner

Automatic Provisioning of Developer Namespaces.

 ootb-delivery-basic.tanzu.vmware.com Tanzu App Platform Out o

f The Box Delivery Basic Out of The Box Delivery Basi

c.

 ootb-supply-chain-basic.tanzu.vmware.com Tanzu App Platform Out o

f The Box Supply Chain Basic Out of The Box Supply Chain B

asic.

 ootb-supply-chain-testing-scanning.tanzu.vmware.com Tanzu App Platform Out o

f The Box Supply Chain with Testing and Scanning Out of The Box Supply Chain w

ith Testing and Scanning.

 ootb-supply-chain-testing.tanzu.vmware.com Tanzu App Platform Out o

f The Box Supply Chain with Testing Out of The Box Supply Chain w

ith Testing.

 ootb-templates.tanzu.vmware.com Tanzu App Platform Out o

f The Box Templates Out of The Box Templates.

 policy.apps.tanzu.vmware.com Supply Chain Security To

ols - Policy Controller Policy Controller enables def

ining of a policy to restrict unsigned container

images.

 scanning.apps.tanzu.vmware.com Supply Chain Security To

ols - Scan Scan for vulnerabilities and

enforce policies directly within Kubernetes native

Supply Chains.

 service-bindings.labs.vmware.com Service Bindings for Kub

ernetes Service Bindings for Kubernet

es implements the Service Binding Specification.

 services-toolkit.tanzu.vmware.com Services Toolkit

The Services Toolkit enables the management, lifecycle, discoverability and

connectivity of Service Resources (databases, message queues, DNS records,

etc.).

 snyk.scanning.apps.tanzu.vmware.com Snyk for Supply Chain Se

curity Tools - Scan Default scan templates using

Snyk

 spring-boot-conventions.tanzu.vmware.com Tanzu Spring Boot Conven

Tanzu Application Platform v1.5

VMware by Broadcom 226

tions Server Default Spring Boot conventio

n server.

 sso.apps.tanzu.vmware.com AppSSO

Application Single Sign-On for Tanzu

 tap-auth.tanzu.vmware.com Default roles for Tanzu

Application Platform Default roles for Tanzu Appli

cation Platform

 tap-gui.tanzu.vmware.com Tanzu Application Platfo

rm GUI web app graphical user interf

ace for Tanzu Application Platform

 tap-telemetry.tanzu.vmware.com Telemetry Collector for

Tanzu Application Platform Tanzu Application Platform Te

lemetry

 tap.tanzu.vmware.com Tanzu Application Platfo

rm Package to install a set of T

AP components to get you started based on your use

case.

 tekton.tanzu.vmware.com Tekton Pipelines

Tekton Pipelines is a framework for creating CI/CD systems.

 workshops.learningcenter.tanzu.vmware.com Workshop Building Tutori

al Workshop Building Tutorial

Prepare Sigstore Stack for air-gapped policy controller

By default, the public official Sigstore “The Update Framework (TUF) server” is used. You can use
an alternative Sigstore Stack by setting policy.tuf_mirror and policy.tuf_root.

The Sigstore Stack consists of:

Trillian

Rekor

Fulcio

Certificate Transparency Log (CTLog)

The Update Framework (TUF)

For an air-gapped environment, an internally accessible Sigstore Stack is required for keyless
authorities.

Install your Tanzu Application Platform profile

The tap.tanzu.vmware.com package installs predefined sets of packages based on your profile
settings. This is done by using the package manager installed by Tanzu Cluster Essentials.

For more information about profiles, see Components and installation profiles.

To prepare to install a profile:

1. List version information for the package by running:

tanzu package available list tap.tanzu.vmware.com --namespace tap-install

Important

This section only applies if the target environment requires support for keyless
authorities in ClusterImagePolicy. You must set the policy.tuf_enabled field to
true when installing Tanzu Application Platform. By default, keyless authorities
support is deactivated.

Tanzu Application Platform v1.5

VMware by Broadcom 227

https://github.com/google/trillian
https://github.com/sigstore/rekor
https://github.com/sigstore/fulcio
https://github.com/google/certificate-transparency-go
https://theupdateframework.io/

2. Create a tap-values.yaml file by using the Full Profile sample as a guide. These samples
have the minimum configuration required to deploy Tanzu Application Platform. The sample
values file contains the necessary defaults for:

The meta-package, or parent Tanzu Application Platform package

Subordinate packages, or individual child packages

Keep the values file for future configuration use.

Full Profile

To install Tanzu Application Platform with Supply Chain Basic, you must retrieve your cluster’s
base64 encoded ca certificate from $HOME/.kube/config. Retrieve the certificate-authority-data
from the respective cluster section and input it as B64_ENCODED_CA in the tap-values.yaml.

The following is the YAML file sample for the full-profile:

shared:

 ingress_domain: "INGRESS-DOMAIN"

 image_registry:

 project_path: "SERVER-NAME/REPO-NAME"

 secret:

 name: "KP-DEFAULT-REPO-SECRET"

 namespace: "KP-DEFAULT-REPO-SECRET-NAMESPACE"

 ca_cert_data: |

 -----BEGIN CERTIFICATE-----

 MIIFXzCCA0egAwIBAgIJAJYm37SFocjlMA0GCSqGSIb3DQEBDQUAMEY...

 -----END CERTIFICATE-----

profile: full

ceip_policy_disclosed: true

buildservice:

 kp_default_repository: "KP-DEFAULT-REPO"

 kp_default_repository_secret: # Takes the value from the shared section by default,

but can be overridden by setting a different value.

 name: "KP-DEFAULT-REPO-SECRET"

 namespace: "KP-DEFAULT-REPO-SECRET-NAMESPACE"

 exclude_dependencies: true

supply_chain: basic

scanning:

 metadataStore:

 url: ""

contour:

 infrastructure_provider: aws

 envoy:

 service:

 type: LoadBalancer

 annotations:

 # This annotation is for air-gapped AWS only.

 service.kubernetes.io/aws-load-balancer-internal: "true"

ootb_supply_chain_basic:

 registry:

 server: "SERVER-NAME" # Takes the value from the shared section by default, but

can be overridden by setting a different value.

Important

Tanzu Build Service is installed by default with lite depndencies. When installing
Tanzu Build Service in an air-gapped environment, the lite dependencies are not
available because they require Internet access. You must install the full
dependencies by setting exclude_dependencies to true.

Tanzu Application Platform v1.5

VMware by Broadcom 228

 repository: "REPO-NAME" # Takes the value from the shared section by default, bu

t can be overridden by setting a different value.

 gitops:

 ssh_secret: "SSH-SECRET"

 maven:

 repository:

 url: https://MAVEN-URL

 secret_name: "MAVEN-CREDENTIALS"

accelerator:

 ingress:

 include: true

 enable_tls: false

 git_credentials:

 secret_name: git-credentials

 username: GITLAB-USER

 password: GITLAB-PASSWORD

appliveview:

 ingressEnabled: true

appliveview_connector:

 backend:

 ingressEnabled: true

 sslDeactivated: false

 host: appliveview.INGRESS-DOMAIN

 caCertData: |-

 -----BEGIN CERTIFICATE-----

 MIIGMzCCBBugAwIBAgIJALHHzQjxM6wMMA0GCSqGSIb3DQEBDQUAMGcxCzAJBgNV

 BAgMAk1OMRQwEgYDVQQHDAtNaW5uZWFwb2xpczEPMA0GA1UECgwGVk13YXJlMRMw

 -----END CERTIFICATE-----

tap_gui:

 app_config:

 kubernetes:

 serviceLocatorMethod:

 type: multiTenant

 clusterLocatorMethods:

 - type: config

 clusters:

 - url: https://${KUBERNETES_SERVICE_HOST}:${KUBERNETES_SERVICE_PORT}

 name: host

 authProvider: serviceAccount

 serviceAccountToken: ${KUBERNETES_SERVICE_ACCOUNT_TOKEN}

 skipTLSVerify: false

 caData: B64_ENCODED_CA

 catalog:

 locations:

 - type: url

 target: https://GIT-CATALOG-URL/catalog-info.yaml

 #Example Integration for custom GitLab:

 integrations:

 gitlab:

 - host: GITLAB-URL

 token: GITLAB-TOKEN

 apiBaseUrl: https://GITLABURL/api/v4/

 backend:

 reading:

 allow:

 - host: GITLAB-URL # Example URL: gitlab.example.com

metadata_store:

 ns_for_export_app_cert: "MY-DEV-NAMESPACE"

 app_service_type: ClusterIP # Defaults to LoadBalancer. If shared.ingress_domain is

set earlier, this must be set to ClusterIP.

Tanzu Application Platform v1.5

VMware by Broadcom 229

grype:

 namespace: "MY-DEV-NAMESPACE"

 targetImagePullSecret: "TARGET-REGISTRY-CREDENTIALS-SECRET"

Where:

INGRESS-DOMAIN is the subdomain for the host name that you point at the tanzu-shared-
ingress service’s External IP address.

KP-DEFAULT-REPO is a writable repository in your registry. Tanzu Build Service dependencies
are written to this location. Examples:

Harbor has the form kp_default_repository: "my-harbor.io/my-project/build-
service".

Docker Hub has the form kp_default_repository: "my-dockerhub-user/build-
service" or kp_default_repository: "index.docker.io/my-user/build-service".

Google Cloud Registry has the form kp_default_repository: "gcr.io/my-
project/build-service".

KP-DEFAULT-REPO-SECRET is the secret with user credentials that can write to KP-DEFAULT-
REPO. You can docker push to this location with this credential.

For Google Cloud Registry, use kp_default_repository_username: _json_key.

You must create the secret before the installation. For example, you can use the
registry-credentials secret created earlier.

KP-DEFAULT-REPO-SECRET-NAMESPACE is the namespace where KP-DEFAULT-REPO-SECRET is
created.

SERVER-NAME is the host name of the registry server. Examples:

Harbor has the form server: "my-harbor.io".

Docker Hub has the form server: "index.docker.io".

Google Cloud Registry has the form server: "gcr.io".

REPO-NAME is where workload images are stored in the registry. If this key is passed through
the shared section earlier and AWS ECR registry is used, you must ensure that the SERVER-
NAME/REPO-NAME/buildservice and SERVER-NAME/REPO-NAME/workloads exist. AWS ECR
expects the paths to be pre-created.

Images are written to SERVER-NAME/REPO-NAME/workload-name. Examples:

Harbor has the form repository: "my-project/supply-chain".

Docker Hub has the form repository: "my-dockerhub-user".

Google Cloud Registry has the form repository: "my-project/supply-chain".

SSH-SECRET is the secret name for https authentication, certificate authority, and SSH
authentication. See Git authentication for more information.

MAVEN-CREDENTIALS is the name of the secret with maven creds. This secret must be in the
developer namespace. You can create it after the fact.

GIT-CATALOG-URL is the path to the catalog-info.yaml catalog definition file. You can
download either a blank or populated catalog file from the Tanzu Application Platform
product page. Otherwise, you can use a Backstage-compliant catalog you’ve already built
and posted on the Git infrastructure.

GITLABURL is the host name of your GitLab instance.

GITLAB-USER is the user name of your GitLab instance.

Tanzu Application Platform v1.5

VMware by Broadcom 230

https://network.tanzu.vmware.com/products/tanzu-application-platform/#/releases/1239018

GITLAB-PASSWORD is the password for the GITLAB-USER of your GitLab instance. This can also
be the GITLAB-TOKEN.

GITLAB-TOKEN is the API token for your GitLab instance.

MY-DEV-NAMESPACE is the name of the developer namespace. SCST - Store exports secrets
to the namespace, and SCST - Scan deploys the ScanTemplates there. This allows the
scanning feature to run in this namespace. If there are multiple developer namespaces, use
ns_for_export_app_cert: "*" to export the SCST - Store CA certificate to all namespaces.

Note: To install Grype in multiple namespaces, use a namespace provisioner. See
Namespace Provisioner.

TARGET-REGISTRY-CREDENTIALS-SECRET is the name of the secret that contains the
credentials to pull an image from the registry for scanning.

If you use custom CA certificates, you must provide one or more PEM-encoded CA certificates
under the ca_cert_data key. If you configured shared.ca_cert_data, Tanzu Application Platform
component packages inherit that value by default.

TLS is enabled by default on Application Live View back end using ClusterIssuer. Set the
ingressEnabled key to true for TLS to be enabled on Application Live View back end using
ClusterIssuer. This key is set to false by default.

The appliveview-cert certificate is generated by default and its issuerRef points to the
.ingress_issuer value. The ingress_issuer key consumes the value shared.ingress_issuer from
tap-values.yaml by default when you don’t specify the ingress_issuer in tap-values.yaml.

When ingressEnabled is true, an HTTPProxy object is created in the cluster and appliveview-cert
certificate is generated by default in the app_live_view namespace. The secretName appliveview-
cert stores this certificate.

To verify the HTTPProxy object with the secret, run:

kubectl get httpproxy -A

Expected output:

NAMESPACE NAME

FQDN TLS SECRET

STATUS STATUS DESCRIPTION

app-live-view appliveview

appliveview.192.168.42.55.nip.io appliveview-cert va

lid Valid HTTPProxy

The appliveview_connector.backend.host key is the back end host in the view cluster. The
appliveview_connector.backend.caCertData key is the certificate retrieved from the HTTPProxy
secret exposed by Application Live View back end in the view cluster. To retrieve this certificate,
run the following command in the view cluster:

kubectl get secret appliveview-cert -n app-live-view -o yaml | yq '.data."ca.crt"' |

base64 -d

Note

The appliveview_connector.backend.sslDisabled key is deprecated and renamed
to appliveview_connector.backend.sslDeactivated.

Tanzu Application Platform v1.5

VMware by Broadcom 231

Install your Tanzu Application Platform package

Follow these steps to install the Tanzu Application Platform package:

1. Install the package by running:

tanzu package install tap -p tap.tanzu.vmware.com -v $TAP_VERSION --values-file

tap-values.yaml -n tap-install

Where $TAP_VERSION is the Tanzu Application Platform version environment variable you
defined earlier.

2. Verify the package install by running:

tanzu package installed get tap -n tap-install

This may take 5-10 minutes because it installs several packages on your cluster.

3. Verify that all the necessary packages in the profile are installed by running:

tanzu package installed list -A

Next steps

Install the Tanzu Build Service dependencies

Install the Tanzu Build Service dependencies

This topic tells you how to install the Tanzu Build Service (TBS) full dependencies on Tanzu
Application Platform (commonly known as TAP).

By default, Tanzu Build Service is installed with lite dependencies.

When installing Tanzu Build Service on an air-gapped environment, the lite dependencies cannot
be used as they require Internet access. You must install the full dependencies.

To install full dependencies:

1. Get the latest version of the Tanzu Build Service package by running:

tanzu package available list buildservice.tanzu.vmware.com --namespace tap-inst

all

2. Relocate the Tanzu Build Service full dependencies package repository by running:

imgpkg copy -b registry.tanzu.vmware.com/tanzu-application-platform/full-tbs-de

ps-package-repo:VERSION \

 --to-tar=tbs-full-deps.tar

move tbs-full-deps.tar to environment with registry access

imgpkg copy --tar tbs-full-deps.tar \

 --to-repo=INSTALL-REGISTRY-HOSTNAME/TARGET-REPOSITORY/tbs-full-deps

Where:

VERSION is the version of the Tanzu Build Service package you retrieved earlier.

INSTALL-REGISTRY-HOSTNAME is your container registry.

TARGET-REPOSITORY is your target repository.

3. Add the Tanzu Build Service full dependencies package repository by running:

Tanzu Application Platform v1.5

VMware by Broadcom 232

tanzu package repository add tbs-full-deps-repository \

 --url INSTALL-REGISTRY-HOSTNAME/TARGET-REPOSITORY/tbs-full-deps:VERSION \

 --namespace tap-install

Where:

INSTALL-REGISTRY-HOSTNAME is your container registry.

TARGET-REPOSITORY is your target repository.

VERSION is the version of the Tanzu Build Service package you retrieved earlier.

4. Install the full dependencies package by running:

tanzu package install full-tbs-deps -p full-tbs-deps.tanzu.vmware.com -v VERSIO

N -n tap-install

Where VERSION is the version of the Tanzu Build Service package you retrieved earlier.

Next steps

Configure custom CAs for Tanzu Application Platform GUI

Configure custom certificate authorities for Tanzu
Application Platform GUI

This topic tells you how to configure your Tanzu Application Platform GUI (commonly known as
TAP GUI) to trust unusual certificate authorities (CA) when making outbound connections.

Tanzu Application Platform GUI might require custom certificates when connecting to persistent
databases or custom catalog locations that require SSL. You use overlays with PackageInstalls to
make this possible. There are two ways to implement this workaround: you can add a custom CA or
you can deactivate all SSL verification.

Add a custom CA
The overlay previously available in this section is no longer necessary. As of Tanzu Application
Platform v1.3, the value ca_cert_data is supported at the top level of its values file. Any number
of newline-delimited CA certificates in PEM format are accepted.

For example:

tap-gui-values.yaml

ca_cert_data: |

 -----BEGIN CERTIFICATE-----

 cert data here

 -----END CERTIFICATE-----

 -----BEGIN CERTIFICATE-----

 other cert data here

 -----END CERTIFICATE-----

app_config:

 # ...

Tanzu Application Platform GUI also inherits shared.ca_cert_data from your tap-values.yaml
file. shared.ca_cert_data is newline-concatenated with ca_certs given directly to Tanzu
Application Platform GUI.

shared:

 ca_cert_data: |

 -----BEGIN CERTIFICATE-----

Tanzu Application Platform v1.5

VMware by Broadcom 233

 cert data here

 -----END CERTIFICATE-----

tap_gui:

 ca_cert_data: |

 -----BEGIN CERTIFICATE-----

 other cert data here

 -----END CERTIFICATE-----

 app_config:

 # ...

To verify that Tanzu Application Platform GUI has processed the custom CA certificates, check
that the ca-certs-data volume with mount path /etc/custom-ca-certs-data is mounted in the
Tanzu Application Platform GUI server pod.

Deactivate all SSL verification
To deactivate SSL verification to allow for self-signed certificates, set the Tanzu Application
Platform GUI pod’s environment variable as NODE_TLS_REJECT_UNAUTHORIZED=0. When the value
equals 0, certificate validation is deactivated for TLS connections.

To do this, use the package_overlays key in the Tanzu Application Platform values file. For
instructions, see Customize Package Installation.

The following YAML is an example Secret containing an overlay to deactivate TLS:

apiVersion: v1

kind: Secret

metadata:

 name: deactivate-tls-overlay

 namespace: tap-install

stringData:

 deactivate-tls-overlay.yml: |

 #@ load("@ytt:overlay", "overlay")

 #@overlay/match by=overlay.subset({"kind":"Deployment", "metadata": {"name": "se

rver", "namespace": "NAMESPACE"}}),expects="1+"

 spec:

 template:

 spec:

 containers:

 #@overlay/match by=overlay.all,expects="1+"

 #@overlay/match-child-defaults missing_ok=True

 - env:

 - name: NODE_TLS_REJECT_UNAUTHORIZED

 value: "0"

Where NAMESPACE is the namespace in which your Tanzu Application Platform GUI instance is
deployed. For example, tap-gui.

Next steps

Configure Application Accelerator

Configure Application Accelerator

This topic describes advanced configuration options available for Application Accelerator. This
includes configuring Git-Ops style deployments of accelerators and configurations for use with non-
public repositories and in air-gapped environments.

Accelerators are created either using the Tanzu CLI or by applying a YAML manifest using kubectl.
Another option is Using a Git-Ops style configuration for deploying a set of managed accelerators.

Tanzu Application Platform v1.5

VMware by Broadcom 234

Application Accelerator pulls content from accelerator source repositories using either the “Flux
SourceController” or the “Tanzu Application Platform Source Controller” components. If the
repository used is accessible anonymously from a public server, you do not have to configure
anything additional. Otherwise, provide authentication as explained in Using non-public
repositories. There are also options for making these configurations easier explained in Configuring
tap-values.yaml with Git credentials secret

Using a Git-Ops style configuration for deploying a set of
managed accelerators
To enable a Git-Ops style of managing resources used for deploying accelerators, there is a new set
of properties for the Application Accelerator configuration. The resources are managed using a
Carvel kapp-controller App in the accelerator-system namespace that watches a Git repository
containing the manifests for the accelerators. This means that you can make changes to the
manifests, or to the accelerators they point to, and the changes are reconciled and reflected in the
deployed resources.

You can specify the following accelerator configuration properties when installing the Application
Accelerator. The same properties are provided in the accelerator section of the tap-values.yaml
file:

accelerator:

 managed_resources:

 enable: true

 git:

 url: GIT-REPO-URL

 ref: origin/main

 sub_path: null

 secret_ref: git-credentials

Where:

GIT-REPO-URL is the URL of a Git repository that contains manifest YAML files for the
accelerators that you want to have managed. The URL must start with https:// or git@.
You can specify a sub_path if necessary and also a secret_ref if the repository requires
authentication. If not needed, then leave these additional properties out.

For more information, see Configure tap-values.yaml with Git credentials secret and
Creating a manifest with multiple accelerators and fragments in this topic.

Functional and Organizational Considerations

Any accelerator manifest that is defined under the GIT-REPO-URL and optional sub_path is selected
by the kapp-controller app. If there are multiple manifests at the defined GIT-REPO-URL, they are all
watched for changes and displayed to the user as a merged catalog.

For example: if you have two manifests containing multiple accelerator or fragment definitions,
manifest-1.yaml, and manifest-2.yaml, on the same path in the organizational considerations. The
resulting catalog is (manifest-1.yaml + manifest-2.yaml).

Examples for creating accelerators

A minimal example for creating an accelerator

A minimal example might look like the following manifest:

spring-cloud-serverless.yaml

Tanzu Application Platform v1.5

VMware by Broadcom 235

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

 name: spring-cloud-serverless

spec:

 git:

 url: https://github.com/vmware-tanzu/application-accelerator-samples

 subPath: spring-cloud-serverless

 ref:

 branch: main

This example creates an accelerator named spring-cloud-serverless. The displayName,
description, iconUrl, and tags text boxes are populated based on the content under the
accelerator key in the accelerator.yaml file found in the main branch of the Git repository at
Application Accelerator Samples under the sub-path spring-cloud-serverless. For example:

accelerator.yaml

accelerator:

 displayName: Spring Cloud Serverless

 description: A simple Spring Cloud Function serverless app

 iconUrl: https://raw.githubusercontent.com/simple-starters/icons/master/icon-cloud.p

ng

 tags:

 - java

 - spring

 - cloud

 - function

 - serverless

 - tanzu

...

To create this accelerator with kubectl, run:

kubectl apply --namespace --accelerator-system --filename spring-cloud-serverless.yaml

Or, you can use the Tanzu CLI and run:

tanzu accelerator create spring-cloud-serverless --git-repo https://github.com/vmware-

tanzu/application-accelerator-samples.git --git-branch main --git-sub-path spring-clou

d-serverless

An example for creating an accelerator with customized properties

You can specify the displayName, description, iconUrl, and tags text boxes and this overrides any
values provided in the accelerator’s Git repository. The following example explicitly sets those text
boxes and the ignore text box:

my-spring-cloud-serverless.yaml

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

 name: my-spring-cloud-serverless

spec:

 displayName: My Spring Cloud Serverless

 description: My own Spring Cloud Function serverless app

 iconUrl: https://raw.githubusercontent.com/simple-starters/icons/master/icon-cloud.p

ng

 tags:

 - spring

 - cloud

Tanzu Application Platform v1.5

VMware by Broadcom 236

https://github.com/vmware-tanzu/application-accelerator-samples

 - function

 - serverless

 git:

 ignore: ".git/, bin/"

 url: https://github.com/vmware-tanzu/application-accelerator-samples

 subPath: spring-cloud-serverless

 ref:

 branch: test

To create this accelerator with kubectl, run:

kubectl apply --namespace --accelerator-system --filename my-spring-cloud-serverless.y

aml

To use the Tanzu CLI, run:

tanzu accelerator create my-spring-cloud-serverless --git-repo https://github.com/vmwa

re-tanzu/application-accelerator-samples --git-branch main --git-sub-path spring-cloud

-serverless \

 --description "My own Spring Cloud Function serverless app" \

 --display-name "My Spring Cloud Serverless" \

 --icon-url https://raw.githubusercontent.com/simple-starters/icons/master/icon-clou

d.png \

 --tags "spring,cloud,function,serverless"

Creating a manifest with multiple accelerators and fragments

You might have a manifest that contains multiple accelerators or fragments. For example:

accelerator-collection.yaml

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

 name: spring-cloud-serverless

spec:

 git:

 url: https://github.com/vmware-tanzu/application-accelerator-samples

 subPath: spring-cloud-serverless

 ref:

 branch: main

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

 name: tanzu-java-web-app

spec:

 git:

 url: https://github.com/vmware-tanzu/application-accelerator-samples.git

 subPath: tanzu-java-web-app

 ref:

 branch: main

For a larger example of this, see Sample Accelerators Main. Optionally, use this to create an initial
catalog of accelerators and fragments during a fresh Application Accelerator install.

Note

It is not possible to provide the git.ignore option with the Tanzu CLI.

Tanzu Application Platform v1.5

VMware by Broadcom 237

https://github.com/vmware-tanzu/application-accelerator-samples/blob/main/sample-accelerators-main.yaml

Configure tap-values.yaml with Git credentials secret

When deploying accelerators using Git repositories that requires authentication or are installed with
custom CA certificates, you must provide some additional authentication values in a secret. The
examples in the next section provide more details. This section describes how to configure a Git
credentials secret that is used in later Git-based examples.

You can specify the following accelerator configuration properties when installing Application
Accelerator. The same properties are provided in the accelerator section of the tap-values.yaml
file:

accelerator:

 git_credentials:

 secret_name: git-credentials

 username: GIT-USER-NAME

 password: GIT-CREDENTIALS

 ca_file: CUSTOM-CA-CERT

Where:

GIT-USER-NAME is the user name for authenticating with the Git repository.

GIT-CREDENTIALS is the password or access token used for authenticating with the Git
repository. VMware recommends using an access token for this.

CUSTOM-CA-CERT is the certificate data needed when accessing the Git repository.

This is an example of this part of a tap-values.yaml configuration:

accelerator:

 git_credentials:

 secret_name: git-credentials

 username: testuser

 password: s3cret

 ca_file: |

 -----BEGIN CERTIFICATE-----

 .

 .

 . < certificate data >

 .

 .

 -----END CERTIFICATE-----

You can specify the custom CA certificate data using the shared config value shared.ca_cert_data
and it propagates to all components that can make use of it, including the App Accelerator
configuration. The example earlier produces an output such as this using the shared value:

shared:

 ca_cert_data: |

 -----BEGIN CERTIFICATE-----

 .

 .

 . < certificate data >

 .

 .

 -----END CERTIFICATE-----

Note

For how to create a new OAuth Token for optional Git repository creation, see
Create an Application Accelerator Git repository during project creation.

Tanzu Application Platform v1.5

VMware by Broadcom 238

accelerator:

 git_credentials:

 secret_name: git-credentials

 username: testuser

 password: s3cret

Using non-public repositories

For GitHub repositories that aren’t accessible anonymously, you must provide credentials in a
Secret.

For HTTPS repositories the secret must contain user name and password fields. The
password field can contain a personal access token instead of an actual password. For more
information, see Fluxcd/source-controller basic access authentication.

For HTTPS with self-signed certificates, you can add a .data.caFile value to the secret
created for HTTPS authentication. For more information, see fluxcd/source-controller
HTTPS Certificate Authority.

For SSH repositories, the secret must contain identity, identity.pub, and known_hosts text
boxes. For more information, see fluxcd/source-controller SSH authentication.

For Image repositories that aren’t publicly available, an image pull secret might be provided.
For more information, see Kubernetes documentation on using imagePullSecrets.

Examples for a private Git repository

Example using http credentials

To create an accelerator using a private Git repository, first create a secret with the HTTP
credentials.

kubectl create secret generic https-credentials \

 --namespace accelerator-system \

 --from-literal=username=<user> \

 --from-literal=password=<access-token>

Verify that your secret was created by running:

kubectl get secret --namespace accelerator-system https-credentials -o yaml

The output is similar to:

apiVersion: v1

kind: Secret

metadata:

 name: https-credentials

 namespace: accelerator-system

type: Opaque

data:

 username: <BASE64>

 password: <BASE64>

Note

For better security, use an access token as the password.

Tanzu Application Platform v1.5

VMware by Broadcom 239

https://fluxcd.io/docs/components/source/gitrepositories/#basic-access-authentication
https://fluxcd.io/docs/components/source/gitrepositories/#https-certificate-authority
https://fluxcd.io/docs/components/source/gitrepositories/#ssh-authentication
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets

After you created and verified the secret, you can create the accelerator by using the
spec.git.secretRef.name property:

private-acc.yaml

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

 name: private-acc

spec:

 displayName: private

 description: Accelerator using a private repository

 git:

 url: REPOSITORY-URL

 ref:

 branch: main

 secretRef:

 name: https-credentials

For https credentials, the REPOSITORY-URL must use https:// as the URL scheme.

If you are using the Tanzu CLI, add the --secret-ref flag to your tanzu accelerator create
command and provide the name of the secret for that flag.

Example using http credentials with self-signed certificate

To create an accelerator using a private Git repository with a self-signed certificate, create a secret
with the HTTP credentials and the certificate.

kubectl create secret generic https-ca-credentials \

 --namespace accelerator-system \

 --from-literal=username=<user> \

 --from-literal=password=<access-token> \

 --from-file=caFile=<path-to-CA-file>

Verify that your secret was created by running:

kubectl get secret --namespace accelerator-system https-ca-credentials -o yaml

The output is similar to:

apiVersion: v1

kind: Secret

metadata:

 name: https-ca-credentials

 namespace: accelerator-system

type: Opaque

data:

 username: <BASE64>

 password: <BASE64>

 caFile: <BASE64>

After you have the secret created, you can create the accelerator by using the
spec.git.secretRef.name property:

private-acc.yaml

Note

For better security, use an access token as the password.

Tanzu Application Platform v1.5

VMware by Broadcom 240

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

 name: private-acc

spec:

 displayName: private

 description: Accelerator using a private repository

 git:

 url: REPOSITORY-URL

 ref:

 branch: main

 secretRef:

 name: https-ca-credentials

If you are using the Tanzu CLI, add the --secret-ref flag to your tanzu accelerator create
command and provide the name of the secret for that flag.

Example using SSH credentials

To create an accelerator using a private Git repository, create a secret with the SSH credentials
such as this example:

ssh-keygen -q -N "" -f ./identity

ssh-keyscan github.com > ./known_hosts

kubectl create secret generic ssh-credentials \

 --namespace accelerator-system \

 --from-file=./identity \

 --from-file=./identity.pub \

 --from-file=./known_hosts

If you have a key file already created, skip the ssh-keygen and ssh-keyscan steps and replace the
values for the kubectl create secret command. Such as:

--from-file=identity=<path to your identity file>

--from-file=identity.pub=<path to your identity.pub file>

--from-file=known_hosts=<path to your know_hosts file>

Verify that your secret was created by running:

kubectl get secret --namespace accelerator-system ssh-credentials -o yaml

The output is similar to :

apiVersion: v1

kind: Secret

metadata:

 name: ssh-credentials

 namespace: accelerator-system

type: Opaque

data:

 identity: <BASE64>

 identity.pub: <BASE64>

 known_hosts: <BASE64>

Important

For https credentials, the REPOSITORY-URL must use https:// as the URL scheme.

Tanzu Application Platform v1.5

VMware by Broadcom 241

To use this secret when creating an accelerator, provide the secret name in the
spec.git.secretRef.name property:

private-acc-ssh.yaml

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

 name: private-acc

spec:

 displayName: private

 description: Accelerator using a private repository

 git:

 url: REPOSITORY-URL

 ref:

 branch: main

 secretRef:

 name: ssh-credentials

When using SSH credentials, the REPOSITORY-URL must include the user name as part of the URL.
For example: ssh://user@example.com:22/repository.git. For more information, see Flux
documentation.

If you are using the Tanzu CLI, add the --secret-ref flag to your tanzu accelerator create
command and provide the name of the secret for that flag.

Examples for a private source-image repository

If your registry uses a self-signed certificate then you must add the CA certificate data to the
configuration for the “Tanzu Application Platform Source Controller” component. Add it under
source_controller.ca_cert_data in your tap-values.yaml file that is used during installation.

tap-values.yaml

source_controller:

 ca_cert_data: |-

 -----BEGIN CERTIFICATE-----

 .

 .

 . < certificate data >

 .

 .

 -----END CERTIFICATE-----

Example using image-pull credentials

To create an accelerator using a private source-image repository, create a secret with the image-
pull credentials:

create secret generic registry-credentials \

 --namespace accelerator-system \

 --from-literal=username=<user> \

 --from-literal=password=<password>

Verify that your secret was created by running:

kubectl get secret --namespace accelerator-system registry-credentials -o yaml

The output is similar to:

Tanzu Application Platform v1.5

VMware by Broadcom 242

https://fluxcd.io/flux/components/source/gitrepositories/#url

apiVersion: v1

kind: Secret

metadata:

 name: registry-credentials

 namespace: accelerator-system

type: Opaque

data:

 username: <BASE64>

 password: <BASE64>

After you have the secret created, you can create the accelerator by using the
spec.git.secretRef.name property:

private-acc.yaml

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

 name: private-acc

spec:

 displayName: private

 description: Accelerator using a private repository

 source:

 image: "registry.example.com/test/private-acc-src:latest"

 imagePullSecrets:

 - name: registry-credentials

If you are using the Tanzu CLI, add the --secret-ref flag to your tanzu accelerator create
command and provide the name of the secret for that flag.

Configure ingress timeouts when some accelerators take
longer to generate

If Tanzu Application Platform is configured to use an ingress for Tanzu Application Platform GUI and
the Accelerator Server, then it might detect a timeout during accelerator generation. This can
happen if the accelerator takes a longer time to generate than the default timeout. When this
happens, Tanzu Application Platform GUI appears to continue to run for an indefinite period. In the
IDE extension, it shows a 504 error. To mitigate this, you can increase the timeout value for the
HTTPProxy resources used for the ingress by applying secrets with overlays to edit the HTTPProxy
resources.

Configure an ingress timeout overlay secret for each HTTPProxy

For Tanzu Application Platform GUI, create the following overlay secret in the tap-install
namespace:

apiVersion: v1

kind: Secret

metadata:

 name: patch-tap-gui-timeout

 namespace: tap-install

stringData:

 patch.yaml: |

 #@ load("@ytt:overlay", "overlay")

 #@overlay/match by=overlay.subset({"kind": "HTTPProxy", "metadata": {"name": "tap-

gui"}})

 spec:

 routes:

 #@overlay/match by=overlay.subset({"services": [{"name": "server"}]})

Tanzu Application Platform v1.5

VMware by Broadcom 243

 #@overlay/match-child-defaults missing_ok=True

 - timeoutPolicy:

 idle: 30s

 response: 30s

For Accelerator Server (used for IDE extension), create the following overlay secret in the tap-
install namespace:

apiVersion: v1

kind: Secret

metadata:

 name: patch-accelerator-timeout

 namespace: tap-install

stringData:

 patch.yaml: |

 #@ load("@ytt:overlay", "overlay")

 #@overlay/match by=overlay.subset({"kind": "HTTPProxy", "metadata": {"name": "acce

lerator"}})

 spec:

 routes:

 #@overlay/match by=overlay.subset({"services": [{"name": "acc-server"}]})

 #@overlay/match-child-defaults missing_ok=True

 - timeoutPolicy:

 idle: 30s

 response: 30s

Apply the timeout overlay secrets in tap-values.yaml

Add the following package_overlays section to tap-values.yaml before installing or updating Tanzu
Application Platform:

package_overlays:

- name: tap-gui

 secrets:

 - name: patch-tap-gui-timeout

- name: accelerator

 secrets:

 - name: patch-accelerator-timeout

Configuring skipping TLS verification for access to Source
Controller
You can configure the Flux or Tanzu Application Platform Source Controller to use Transport Layer
Security (TLS) and use custom certificates. In that case, configure the Accelerator System to skip
the TLS verification for calls to access the sources by providing the following property in the
accelerator section of the tap-values.yaml file:

sources:

 skip_tls_verify: true

Enabling TLS for Accelerator Server

To enable TLS for the Accelerator Server, the following properties must be provided in the
accelerator section of the tap-values.yaml file:

server:

 tls:

 enabled: true

Tanzu Application Platform v1.5

VMware by Broadcom 244

 key: SERVER-PRIVATE-KEY

 crt: SERVER-CERTIFICATE

Where:

SERVER-PRIVATE-KEY is the pem encoded server private key.

SERVER-CERTIFICATE is the pem encoded server certificate.

Here is a sample tap-values.yaml configuration with TLS enabled for Accelerators Server:

server:

 tls:

 enabled: true

 key: |

 -----BEGIN PRIVATE KEY-----

 .

 . < private key data >

 .

 -----END PRIVATE KEY-----

 crt: |

 -----BEGIN CERTIFICATE-----

 .

 . < certificate data >

 .

 -----END CERTIFICATE-----

Configuring skipping TLS verification of Engine calls for
Accelerator Server

If you configure the Accelerator Engine to use TLS and use custom certificates, then you can
configure the Accelerator Server to skip the TLS verification for calls to the Engine by providing the
following property in the accelerator section of the tap-values.yaml file:

server:

 engine_skip_tls_verify: true

Enabling TLS for Accelerator Engine

To enable TLS for the Accelerator Engine, the following properties are provided in the accelerator
section of the tap-values.yaml file:

engine:

 tls:

 enabled: true

 key: ENGINE-PRIVATE-KEY

 crt: ENGINE-CERTIFICATE

Where:

ENGINE-PRIVATE-KEY is the pem encoded acc-engine private key.

ENGINE-CERTIFICATE is the pem encoded acc-engine certificate.

Here is a sample tap-values.yaml configuration with TLS enabled for Accelerators Engine:

engine:

 tls:

 enabled: true

 key: |

 -----BEGIN PRIVATE KEY-----

 .

Tanzu Application Platform v1.5

VMware by Broadcom 245

 . < private key data >

 .

 -----END PRIVATE KEY-----

 crt: |

 -----BEGIN CERTIFICATE-----

 .

 . < certificate data >

 .

 -----END CERTIFICATE-----

Next steps

Using Grype in offline and air-gapped environments

Use Grype in offline and air-gapped environments

The grype CLI attempts to perform two over the Internet calls:

One to verify for later versions of the CLI.

One to update the vulnerability database before scanning.

For the grype CLI to function in an offline or air-gapped environment, the vulnerability database
must be hosted within the environment. You must configure the grype CLI with the internal URL.

The grype CLI accepts environment variables to satisfy these needs.

Host the Grype vulnerability database

To host Grype’s vulnerability database in an air-gapped environment:

1. Retrieve Grype’s listing file from its public endpoint: https://toolbox-
data.anchore.io/grype/databases/listing.json.

2. Create your own listing.json file.

Note Different Grype versions require specific database schema versions. To avoid
compatibility issues between different versions, include a database schema for each version.
For example:

 {

 "available": {

 "1": [

 {

 "built": "2023-06-16T01:33:30Z",

 "version": 1,

 "url": "https://toolbox-data.anchore.io/grype/databases/vulnerabili

ty-db_v1_2023-06-16T01:33:30Z_1621f4169ffd15bea9e5.tar.gz",

 "checksum": "sha256:3f2c1b432945cca9a69b2e604f6fb231fec450fdd27f494

6fc5608692b63a9d1"

 }

],

 "2": [

 {

 "built": "2023-06-16T01:33:30Z",

 "version": 2,

 "url": "https://toolbox-data.anchore.io/grype/databases/vulnerabili

ty-db_v2_2023-06-16T01:33:30Z_d6eee5e78d9b78285e1a.tar.gz",

 "checksum": "sha256:7b7e3a2a7712c72b8c5cc777733c4d8d140d8cfee65e4f0

4540abbdfe3ef1f65"

 }

],

 "3": [

Tanzu Application Platform v1.5

VMware by Broadcom 246

https://toolbox-data.anchore.io/grype/databases/listing.json

 {

 "built": "2023-06-16T01:33:30Z",

 "version": 3,

 "url": "https://toolbox-data.anchore.io/grype/databases/vulnerabili

ty-db_v3_2023-06-16T01:33:30Z_f96ae38a7b05987c3ece.tar.gz",

 "checksum": "sha256:8ea9fae3fda3bf3bf35bd5e5eb656fc127b59cd3c42db4c

36795556aab8a9cf0"

 }

],

 "4": [

 {

 "built": "2023-06-16T01:33:30Z",

 "version": 4,

 "url": "https://toolbox-data.anchore.io/grype/databases/vulnerabili

ty-db_v4_2023-06-16T01:33:30Z_13bba2fa8ff62b7f8b26.tar.gz",

 "checksum": "sha256:3b53d20241b88e5aa45feb817b325c53d6efbe9fa1fc5a6

7eeddaecafa7687e0"

 }

],

 "5": [

 {

 "built": "2023-06-16T01:33:30Z",

 "version": 5,

 "url": "https://toolbox-data.anchore.io/grype/databases/vulnerabili

ty-db_v5_2023-06-16T01:33:30Z_e07da3853f6db6eb1104.tar.gz",

 "checksum": "sha256:93d4d9d2f9e39f86570f832cf85b7149a949ca6f1613581

b10c12393509d884f"

 }

]

 }

 }

Where url points to a tarball containing Grype’s vulnerability, db, and metadata.json files.

3. Download and host the tarballs in your internal file server.

4. Update the download url to point at your internal endpoint.

For information about setting up an offline vulnerability database, see the Anchore Grype
README in GitHub.

To enable Grype in offline air-gapped environments

1. Add the following to your tap-values.yaml file:

grype:

 db:

 dbUpdateUrl: INTERNAL-VULN-DB-URL

Where INTERNAL-VULN-DB-URL is the URL that points to the internal file server.

2. Update Tanzu Application Platform:

Note

Some storage solutions for internal file servers change the name of TAR files
automatically because of their limits. Notice these modified names and
reflect the changes in the url. Ensure that the timestamp in the name is
correctly formatted because Grype parses the name of TAR artifact to get
the timestamp.

Tanzu Application Platform v1.5

VMware by Broadcom 247

https://github.com/anchore/grype#offline-and-air-gapped-environments

tanzu package installed update tap -f tap-values.yaml -n tap-install

Configure Grype environmental variables

1. Create a secret that contains the ytt overlay to add the Grype environment variable to the
ScanTemplates.

apiVersion: v1

kind: Secret

metadata:

 name: grype-airgap-environmental-variables

 namespace: tap-install

stringData:

 patch.yaml: |

 #@ load("@ytt:overlay", "overlay")

 #@overlay/match by=overlay.subset({"kind":"ScanTemplate"}),expects="1+"

 spec:

 template:

 initContainers:

 #@overlay/match by=overlay.subset({"name": "scan-plugin"}), expects

="1+"

 - name: scan-plugin

 #@overlay/match missing_ok=True

 env:

 #@overlay/append

 - name: GRYPE_CHECK_FOR_APP_UPDATE

 value: "false"

Where spec.template.initContainers[] specifies setting one or more environment variables in the
scan-plugin initContainer.

Troubleshooting

ERROR failed to fetch latest cli version

The Grype CLI checks for later versions of the CLI by contacting the anchore endpoint over the
Internet.

ERROR failed to fetch latest version: Get "https://toolbox-data.anchore.io/grype/relea

ses/latest/VERSION": dial tcp: lookup toolbox-data.anchore.io on [::1]:53: read udp

[::1]:65010->[::1]:53: read: connection refused

Solution

Note

If you are using the Namespace Provisioner to provision a new developer
namespace and want to apply a package overlay for Grype, you must import the
overlay Secret. See Import overlay secrets.

Note

This message is a warning and the Grype scan still runs with this message.

Tanzu Application Platform v1.5

VMware by Broadcom 248

To deactivate this check, set the environment variable GRYPE_CHECK_FOR_APP_UPDATE to false by
using a package overlay with the following steps:

1. Create a secret that contains the ytt overlay to add the Grype environment variable to the
ScanTemplates.

apiVersion: v1

kind: Secret

metadata:

 name: grype-airgap-deactivate-cli-check-overlay

 namespace: tap-install #! namespace where tap is installed

stringData:

 patch.yaml: |

 #@ load("@ytt:overlay", "overlay")

 #@overlay/match by=overlay.subset({"kind":"ScanTemplate"}),expects="1+"

 spec:

 template:

 initContainers:

 #@overlay/match by=overlay.subset({"name": "scan-plugin"}), expects

="1+"

 - name: scan-plugin

 #@overlay/match missing_ok=True

 env:

 #@overlay/append

 - name: GRYPE_CHECK_FOR_APP_UPDATE

 value: "false"

2. Configure tap-values.yaml to use package_overlays. Add the following to your tap-
values.yaml file:

package_overlays:

 - name: "grype"

 secrets:

 - name: "grype-airgap-deactivate-cli-check-overlay"

3. Update Tanzu Application Platform:

tanzu package installed update tap -f tap-values.yaml -n tap-install

Database is too old

1 error occurred:

 * db could not be loaded: the vulnerability database was built N days/weeks ago (max

allowed age is 5 days)

Grype needs up-to-date vulnerability information to provide accurate matches. By default, it fails to
run if the local database was not built in the last 5 days.

Solution

Two options to resolve this:

1. Stale databases weaken your security posture. VMware recommends updating the
database daily as the first recommended solution.

2. If updating the database daily is not an option, the data staleness check is configurable by
using the environment variable GRYPE_DB_MAX_ALLOWED_BUILT_AGE and is addressed using a
package overlay with the following steps:

Tanzu Application Platform v1.5

VMware by Broadcom 249

1. Create a secret that contains the ytt overlay to add the Grype environment variable
to the ScanTemplates.

apiVersion: v1

kind: Secret

metadata:

 name: grype-airgap-override-stale-db-overlay

 namespace: tap-install #! namespace where tap is installed

stringData:

 patch.yaml: |

 #@ load("@ytt:overlay", "overlay")

 #@overlay/match by=overlay.subset({"kind":"ScanTemplate"}),expects="1

+"

 spec:

 template:

 initContainers:

 #@overlay/match by=overlay.subset({"name": "scan-plugin"}), exp

ects="1+"

 - name: scan-plugin

 #@overlay/match missing_ok=True

 env:

 #@overlay/append

 - name: GRYPE_DB_MAX_ALLOWED_BUILT_AGE #! see note on best

practices

 value: "120h"

2. Configure tap-values.yaml to use package_overlays. Add the following to your tap-
values.yaml file:

package_overlays:

 - name: "grype"

 secrets:

 - name: "grype-airgap-override-stale-db-overlay"

3. Update Tanzu Application Platform:

tanzu package installed update tap -f tap-values.yaml -n tap-install

Vulnerability database is invalid

scan-pod[scan-plugin] 1 error occurred:

scan-pod[scan-plugin] * failed to load vulnerability db: vulnerability database is in

valid (run db update to correct): database metadata not found: /.cache/grype/db/5

Solution

Examine the listing.json file you created. This matches the format of the listing file. The listing file
is located at Anchore Grype’s public endpoint. See the Grype README.md in GitHub.

Note

The default maximum allowed built age of Grype’s vulnerability
database is 5 days. This means that scanning with a 6 day old
database causes the scan to fail. You can use the
GRYPE_DB_MAX_ALLOWED_BUILT_AGE parameter to override the default
in accordance with your security posture.

Tanzu Application Platform v1.5

VMware by Broadcom 250

https://github.com/anchore/grype#how-database-updates-work

An example listing.json:

{

 "available": {

 "5": [

 {

 "built": "2023-03-28T01:29:38Z",

 "version": 5,

 "url": "https://toolbox-data.anchore.io/grype/databases/vulnerability-db_v5_20

23-03-28T01:29:38Z_e49d318c32a6113eed07.tar.gz",

 "checksum": "sha256:408ce2932f04dee929a5df524e92494f2d635c6b19e30ff9f0a50425b1

fc29a1"

 },

]

 }

}

Where:

5 refers to the Grype’s vulnerability database schema.

built is the build timestamp in the format yyyy-MM-ddTHH:mm:ssZ.

url is the download URL for the tarball containing the database. This points at your internal
endpoint. The tarball contains the following files:

vulnerability.db is an SQLite file that is Grype’s vulnerability database. Each time
the data shape of the vulnerability database changes, a new schema is created.
Different Grype versions require specific database schema versions. For example,
Grype v0.54.0 requires database schema version v5.

metadata.json file

checksum is the SHA used to verify the database’s integrity.

Verify these possible reasons why the vulnerability database is not valid:

1. The database schema is invalid. Confirm that the required database schema for the installed
Grype version is used. Confirm that the top level version key matches the nested version.
For example, the top level version 1 in the following snippet does not match the nested
version: 5.

{

 "available": {

 "1": [{

 "built": "2023-02-08T08_17_20Z",

 "version": 5,

 "url": "https://INTERNAL-ENDPOINT/PATH-TO-TARBALL/vulnerability-db_v

5_2023-02-08T08_17_20Z_6ef73016d160043c630f.tar.gz",

 "checksum": "sha256:aab8d369933c845878ef1b53bb5c26ee49b91ddc5cd87c9e

b57ffb203a88a72f"

 }]

 }

}

Where PATH-TO-TARBALL is the path to the tarball containing the vulnerability database.

As stale databases weaken your security posture, VMware recommends using the newest
entry of the relevant schema version in the listing.json file. See Anchore’s grype-db in
GitHub.

2. The built parameters in the listing.json file are incorrectly formatted. The proper format
is yyyy-MM-ddTHH:mm:ssZ.

Tanzu Application Platform v1.5

VMware by Broadcom 251

https://github.com/anchore/grype-db

3. The url that you modified to point at an internal endpoint is not reachable from within the
cluster. For information about verifying connectivity, see Debug Grype database in a
cluster.

4. Verify if there are syntax errors in the listing.json:

grype db check

5. Validate the configured listing.json:

grype db list -o raw

Debug Grype database in a cluster

1. Describe the failed source scan or image scan to verify the name of the ScanTemplate
being used.

For sourcescan, run:

kubectl describe sourcescan SCAN-NAME -n DEV-NAMESPACE

For imagescan, run:

kubectl describe imagescan SCAN-NAME -n DEV-NAMESPACE

Where SCAN-NAME is the name of the source or image scan that failed.

2. Pause reconciliation of the grype.scanning.apps.tanzu.vmware.com package:

kctrl package installed pause -i <PACKAGE-INSTALL-NAME> -n tap-install

Where PACKAGE-INSTALL-NAME is the name of the grype.scanning.apps.tanzu.vmware.com
package (e.g. grype)

3. Edit the ScanTemplate’s scan-plugin container to include a “sleep” entrypoint which allows
you to troubleshoot inside the container:

- name: scan-plugin

 volumeMounts:

 ...

 image: #@ data.values.scanner.image

 imagePullPolicy: IfNotPresent

 env:

 ...

 command: ["/bin/bash"]

 args:

 - "sleep 1800" # insert 30 min sleep here

4. Re-run the scan.

5. Get the name of the scan-plugin pod.

kubectl get pods -n DEV-NAMESPACE

6. Get a shell to the container.

kubectl exec --stdin --tty SCAN-PLUGIN-POD -c step-scan-plugin -- /bin/bash

Where SCAN-PLUGIN-POD is the name of the scan-plugin pod. For more information, see the
Kubernetes documentation.

Tanzu Application Platform v1.5

VMware by Broadcom 252

https://kubernetes.io/docs/tasks/debug/debug-application/get-shell-running-container/

7. Inside the container, run Grype CLI commands to report database status and verify
connectivity from the cluster to the mirror. See the Grype documentation in GitHub.

Report current status of Grype’s database, such as location, build date, and
checksum:

grype db status

8. Ensure that the built parameters in the listing.json has timestamps in this proper format
yyyy-MM-ddTHH:mm:ssZ.

9. After you complete troubleshooting, use the following command to trigger reconciliation:

kctrl package installed kick -i <PACKAGE-INSTALL-NAME> -n tap-install

Where PACKAGE-INSTALL-NAME is the name of the grype.scanning.apps.tanzu.vmware.com
package, such as Grype.

Grype package overlays are not applied to scantemplates created by
Namespace Provisioner

If you used the Namespace Provisioner to provision a new developer namespace and want to apply
a package overlay for Grype, see Import overlay secrets.

Set up developer namespaces to use your installed
packages

For details about how to automatically set up your developer namespaces, see Provision developer
namespaces in Namespace Provisioner.

Additional configuration for testing and scanning

If you plan to install or have already installed Out of the Box Supply Chains with Testing and
Scanning, you can use Namespace Provisioner to set up the required resources. For more
information, see Customize installation in the Namespace Provisioner documentation for
configuration steps.

Legacy namespace setup

To use the legacy manual process for setting up developer namespaces, see Legacy namespace
setup.

Next steps

For more information about the Namespace Provisioner mode, see Work with Git repositories in
air-gapped environments with Namespace Provisioner.

For more information about the manual mode, see Deploy an air-gapped workload.

Install Tanzu Application Platform (AWS)

You can install Tanzu Application Platform (commonly known as TAP) on Amazon Elastic
Kubernetes Services (EKS) by using Amazon Elastic Container Registry (ECR).

To install, take the following steps.

Tanzu Application Platform v1.5

VMware by Broadcom 253

https://github.com/anchore/grype#cli-commands-for-database-management
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.5/tap/namespace-provisioner-customize-installation.html
https://aws.amazon.com/eks/
https://aws.amazon.com/ecr/

Step Task Link

1. Review the prerequisites to ensure that you have set up everything
required before beginning the installation

Prerequisites

2. Accept Tanzu Application Platform EULAs and install the Tanzu CLI Accept Tanzu Application Platform
EULAs and installing the Tanzu CLI

3. Create AWS Resources (EKS Cluster, roles, etc) Create AWS Resources

4. Install Cluster Essentials for Tanzu Deploy Cluster Essentials

5. Add the Tanzu Application Platform package repository, prepare your
Tanzu Application Platform profile, and install the profile to the cluster

Install the Tanzu Application
Platform package and profiles

6. (Optional) Install any additional packages that were not in the profile Install individual packages

7. Set up developer namespaces to use your installed packages Set up developer namespaces to use
your installed packages

8. Install developer tools into your integrated development environment
(IDE)

Install Tanzu Developer Tools for
your VS Code

After installing Tanzu Application Platform on your Kubernetes clusters, get started with Tanzu
Application Platform and create your ECR repositories for your workload, such as tanzu-
application-platform/tanzu-java-web-app-default, tanzu-application-platform/tanzu-java-
web-app-default-bundle, and tanzu-application-platform/tanzu-java-web-app-default-source.

Install Tanzu Application Platform (AWS)

You can install Tanzu Application Platform (commonly known as TAP) on Amazon Elastic
Kubernetes Services (EKS) by using Amazon Elastic Container Registry (ECR).

To install, take the following steps.

Step Task Link

1. Review the prerequisites to ensure that you have set up everything
required before beginning the installation

Prerequisites

2. Accept Tanzu Application Platform EULAs and install the Tanzu CLI Accept Tanzu Application Platform
EULAs and installing the Tanzu CLI

3. Create AWS Resources (EKS Cluster, roles, etc) Create AWS Resources

4. Install Cluster Essentials for Tanzu Deploy Cluster Essentials

5. Add the Tanzu Application Platform package repository, prepare your
Tanzu Application Platform profile, and install the profile to the cluster

Install the Tanzu Application
Platform package and profiles

6. (Optional) Install any additional packages that were not in the profile Install individual packages

7. Set up developer namespaces to use your installed packages Set up developer namespaces to use
your installed packages

8. Install developer tools into your integrated development environment
(IDE)

Install Tanzu Developer Tools for
your VS Code

After installing Tanzu Application Platform on your Kubernetes clusters, get started with Tanzu
Application Platform and create your ECR repositories for your workload, such as tanzu-
application-platform/tanzu-java-web-app-default, tanzu-application-platform/tanzu-java-
web-app-default-bundle, and tanzu-application-platform/tanzu-java-web-app-default-source.

Create AWS Resources for Tanzu Application Platform

Tanzu Application Platform v1.5

VMware by Broadcom 254

https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.5/cluster-essentials/deploy.html
https://aws.amazon.com/eks/
https://aws.amazon.com/ecr/
https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.5/cluster-essentials/deploy.html

To install Tanzu Application Platform (commonly known as TAP) within the Amazon Web Services
(AWS) Ecosystem, you must create several AWS resources. Use this topic to learn how to create:

An Amazon Elastic Kubernetes Service (EKS) cluster to install Tanzu Application Platform.

Identity and Access Management (IAM) roles to allow authentication and authorization to
read and write from Amazon Elastic Container Registry (ECR).

ECR Repositories for the Tanzu Application Platform container images.

Creating these resources enables Tanzu Application Platform to use an IAM role bound to a
Kubernetes service account for authentication, rather than the typical username and password
stored in a Kubernetes secret strategy. For more information, see this AWS documentation.

This is important when using ECR because authenticating to ECR is a two-step process:

1. Retrieve a token using your AWS credentials.

2. Use the token to authenticate to the registry.

To increase security, the token has a lifetime of 12 hours. This makes storing it as a secret for a
service impractical because it has to be refereshed every 12 hours.

Using an IAM role on a service account mitigates the need to retrieve the token at all because it is
handled by credential helpers within the services.

Prerequisites

Before installing Tanzu Application Platform on AWS, you need:

An AWS Account. You need to create all of your resources within Amazon Web Services,
so you need an Amazon account. For more information, see How do I create and activate a
new AWS account?. You need your account ID for this walkthrough.

AWS CLI. This walkthrough uses the AWS CLI to both query and configure resources in
AWS, such as IAM roles. For more information, see this AWS documentation.

eksctl command line. The eksctl command line helps you manage the life cycle of EKS
clusters. This guide uses it to create clusters. To install eksctl, see the eksctl
documentation.

Export environment variables

Variables are used throughout this guide. To simplify the process and minimize the opportunity for
errors, export these variables:

export AWS_ACCOUNT_ID=012345678901

export AWS_REGION=us-west-2

export EKS_CLUSTER_NAME=tap-on-aws

Where:

Variable Description

AWS_ACCOUNT_ID Your AWS account ID

AWS_REGION The AWS region you are going to deploy to

EKS_CLUSTER_NAME The name of your EKS Cluster

Create an EKS cluster

To create an EKS cluster in the specified region, run:

Tanzu Application Platform v1.5

VMware by Broadcom 255

https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts.html
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://eksctl.io/installation/

eksctl create cluster --name $EKS_CLUSTER_NAME --managed --region $AWS_REGION --instan

ce-types t3.xlarge --version 1.24 --with-oidc -N 5

Creating the control plane and node group can take anywhere from 30-60 minutes.

Install EBS CSI driver

As a requirement for Tanzu Application Platform, EBS CSI driver is no longer installed by default
starting from EKS 1.23. For more information about how to install EBS CSI driver, see AWS
documentation.

Create the container repositories

ECR requires that the container repositories are already created. For Tanzu Application Platform,
you need to create two repositories:

A repository to store the Tanzu Application Platform service container images.

A repository to store Tanzu Build Service Base OS and Buildpack container images.

To create these repositories, run:

aws ecr create-repository --repository-name tap-images --region $AWS_REGION

aws ecr create-repository --repository-name tap-build-service --region $AWS_REGION

Name the repositories any name you want, but remember the names for when you later build the
configuration.

Create the workload container repositories
Similar to the two repositories created earlier for the platform, you must create repositories for
each workload that Tanzu Application Platform creates before creating any workloads so that a
repository is available to upload container images and workload bundles. This is because AWS ECR
does not support automatically creating container repositories on initial push. For more information,
see the AWS repository in GitHub.

When installing Tanzu Application Platform, you must specify a prefix for all workload registries. This
topic uses tanzu-application-platform as the default value, but you can customize this value in
the profile configuration created in Install Tanzu Application Platform package and profiles on AWS.

To use the default value, create two workload repositories for each workload with the following
format:

tanzu-application-platform/WORKLOADNAME-NAMESPACE

tanzu-application-platform/WORKLOADNAME-NAMESPACE-bundle

For example, to create these repositories for the sample workload tanzu-java-web-app in the
default namespace, you can run the following ECR command:

aws ecr create-repository --repository-name tanzu-application-platform/tanzu-java-web-

app-default --region $AWS_REGION

Note

This step is optional if you already have an existing EKS Cluster v1.23 or later with
OpenID Connect (OIDC) authentication enabled. For more information about how
to enable the OIDC provider, see AWS documentation.

Tanzu Application Platform v1.5

VMware by Broadcom 256

https://docs.aws.amazon.com/eks/latest/userguide/managing-ebs-csi.html
https://github.com/aws/containers-roadmap/issues/853
https://docs.aws.amazon.com/eks/latest/userguide/enable-iam-roles-for-service-accounts.html

aws ecr create-repository --repository-name tanzu-application-platform/tanzu-java-web-

app-default-bundle --region $AWS_REGION

Create IAM roles

By default, the EKS cluster is provisioned with an EC2 instance profile that provides read-only
access for the entire EKS cluster to the ECR registry within your AWS account. For more
information, see this AWS documentation.

However, some of the services within Tanzu Application Platform require write access to the
container repositories. To provide that access, create IAM roles and add the ARN to the
Kubernetes service accounts that those services use. This ensures that only the required services
have access to write container images to ECR, rather than a blanket policy that applies to the entire
cluster.

You must create two IAM Roles:

Tanzu Build Service: Gives write access to the repository to allow the service to
automatically upload new images. This is limited in scope to the service account for kpack
and the dependency updater.

Workload: Gives write access to the entire ECR registry with a prepended path. This
prevents you from having to update the policy for each new workload created.

To create the roles, you must establish two policies:

Trust Policy: Limits the scope to the OIDC endpoint for the Kubernetes cluster and the
Kubernetes service account you attach the role to.

Permission Policy: Limits the scope of actions the role can take on resources.

To simplify this walkthrough, use a script to create these policy documents and the roles. This script
outputs the files and then creates the IAM roles by using the policy documents.

Run:

Retrieve the OIDC endpoint from the Kubernetes cluster and store it for use in the p

olicy.

export OIDCPROVIDER=$(aws eks describe-cluster --name $EKS_CLUSTER_NAME --region $AWS_

REGION --output json | jq '.cluster.identity.oidc.issuer' | tr -d '"' | sed 's/http

s:\/\///')

cat << EOF > build-service-trust-policy.json

{

 "Version": "2012-10-17",

 "Statement": [

Note

The default Supply Chain Choreographer method of storing Kubernetes
configuration is RegistryOps, which requires the bundle repository. If you enabled
the GitOps capability, this repository is not required. For more information about
the differences between RegistryOps and GitOps, see Use GitOps or RegistryOps
with Supply Chain Choreographer.

Note

These policies attempt to achieve a least privilege model. Review them to confirm
they adhere to your organization’s policies.

Tanzu Application Platform v1.5

VMware by Broadcom 257

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2_instance-profiles.html

 {

 "Effect": "Allow",

 "Principal": {

 "Federated": "arn:aws:iam::${AWS_ACCOUNT_ID}:oidc-provider/${OIDCPROVI

DER}"

 },

 "Action": "sts:AssumeRoleWithWebIdentity",

 "Condition": {

 "StringEquals": {

 "${OIDCPROVIDER}:aud": "sts.amazonaws.com"

 },

 "StringLike": {

 "${OIDCPROVIDER}:sub": [

 "system:serviceaccount:kpack:controller",

 "system:serviceaccount:build-service:dependency-updater-contro

ller-serviceaccount"

]

 }

 }

 }

]

}

EOF

cat << EOF > build-service-policy.json

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Action": [

 "ecr:DescribeRegistry",

 "ecr:GetAuthorizationToken",

 "ecr:GetRegistryPolicy",

 "ecr:PutRegistryPolicy",

 "ecr:PutReplicationConfiguration",

 "ecr:DeleteRegistryPolicy"

],

 "Resource": "*",

 "Effect": "Allow",

 "Sid": "TAPEcrBuildServiceGlobal"

 },

 {

 "Action": [

 "ecr:DescribeImages",

 "ecr:ListImages",

 "ecr:BatchCheckLayerAvailability",

 "ecr:BatchGetImage",

 "ecr:BatchGetRepositoryScanningConfiguration",

 "ecr:DescribeImageReplicationStatus",

 "ecr:DescribeImageScanFindings",

 "ecr:DescribeRepositories",

 "ecr:GetDownloadUrlForLayer",

 "ecr:GetLifecyclePolicy",

 "ecr:GetLifecyclePolicyPreview",

 "ecr:GetRegistryScanningConfiguration",

 "ecr:GetRepositoryPolicy",

 "ecr:ListTagsForResource",

 "ecr:TagResource",

 "ecr:UntagResource",

 "ecr:BatchDeleteImage",

 "ecr:BatchImportUpstreamImage",

 "ecr:CompleteLayerUpload",

 "ecr:CreatePullThroughCacheRule",

 "ecr:CreateRepository",

 "ecr:DeleteLifecyclePolicy",

 "ecr:DeletePullThroughCacheRule",

Tanzu Application Platform v1.5

VMware by Broadcom 258

 "ecr:DeleteRepository",

 "ecr:InitiateLayerUpload",

 "ecr:PutImage",

 "ecr:PutImageScanningConfiguration",

 "ecr:PutImageTagMutability",

 "ecr:PutLifecyclePolicy",

 "ecr:PutRegistryScanningConfiguration",

 "ecr:ReplicateImage",

 "ecr:StartImageScan",

 "ecr:StartLifecyclePolicyPreview",

 "ecr:UploadLayerPart",

 "ecr:DeleteRepositoryPolicy",

 "ecr:SetRepositoryPolicy"

],

 "Resource": [

 "arn:aws:ecr:${AWS_REGION}:${AWS_ACCOUNT_ID}:repository/tap-build-serv

ice",

 "arn:aws:ecr:${AWS_REGION}:${AWS_ACCOUNT_ID}:repository/tap-images"

],

 "Effect": "Allow",

 "Sid": "TAPEcrBuildServiceScoped"

 }

]

}

EOF

cat << EOF > workload-policy.json

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Action": [

 "ecr:DescribeRegistry",

 "ecr:GetAuthorizationToken",

 "ecr:GetRegistryPolicy",

 "ecr:PutRegistryPolicy",

 "ecr:PutReplicationConfiguration",

 "ecr:DeleteRegistryPolicy"

],

 "Resource": "*",

 "Effect": "Allow",

 "Sid": "TAPEcrWorkloadGlobal"

 },

 {

 "Action": [

 "ecr:DescribeImages",

 "ecr:ListImages",

 "ecr:BatchCheckLayerAvailability",

 "ecr:BatchGetImage",

 "ecr:BatchGetRepositoryScanningConfiguration",

 "ecr:DescribeImageReplicationStatus",

 "ecr:DescribeImageScanFindings",

 "ecr:DescribeRepositories",

 "ecr:GetDownloadUrlForLayer",

 "ecr:GetLifecyclePolicy",

 "ecr:GetLifecyclePolicyPreview",

 "ecr:GetRegistryScanningConfiguration",

 "ecr:GetRepositoryPolicy",

 "ecr:ListTagsForResource",

 "ecr:TagResource",

 "ecr:UntagResource",

 "ecr:BatchDeleteImage",

 "ecr:BatchImportUpstreamImage",

 "ecr:CompleteLayerUpload",

 "ecr:CreatePullThroughCacheRule",

 "ecr:CreateRepository",

Tanzu Application Platform v1.5

VMware by Broadcom 259

 "ecr:DeleteLifecyclePolicy",

 "ecr:DeletePullThroughCacheRule",

 "ecr:DeleteRepository",

 "ecr:InitiateLayerUpload",

 "ecr:PutImage",

 "ecr:PutImageScanningConfiguration",

 "ecr:PutImageTagMutability",

 "ecr:PutLifecyclePolicy",

 "ecr:PutRegistryScanningConfiguration",

 "ecr:ReplicateImage",

 "ecr:StartImageScan",

 "ecr:StartLifecyclePolicyPreview",

 "ecr:UploadLayerPart",

 "ecr:DeleteRepositoryPolicy",

 "ecr:SetRepositoryPolicy"

],

 "Resource": [

 "arn:aws:ecr:${AWS_REGION}:${AWS_ACCOUNT_ID}:repository/tap-build-serv

ice",

 "arn:aws:ecr:${AWS_REGION}:${AWS_ACCOUNT_ID}:repository/tanzu-applicat

ion-platform/tanzu-java-web-app",

 "arn:aws:ecr:${AWS_REGION}:${AWS_ACCOUNT_ID}:repository/tanzu-applicat

ion-platform/tanzu-java-web-app-bundle",

 "arn:aws:ecr:${AWS_REGION}:${AWS_ACCOUNT_ID}:repository/tanzu-applicat

ion-platform",

 "arn:aws:ecr:${AWS_REGION}:${AWS_ACCOUNT_ID}:repository/tanzu-applicat

ion-platform/*"

],

 "Effect": "Allow",

 "Sid": "TAPEcrWorkloadScoped"

 }

]

}

EOF

cat << EOF > workload-trust-policy.json

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Principal": {

 "Federated": "arn:aws:iam::${AWS_ACCOUNT_ID}:oidc-provider/${OIDCPROVI

DER}"

 },

 "Action": "sts:AssumeRoleWithWebIdentity",

 "Condition": {

 "StringLike": {

 "${OIDCPROVIDER}:sub": "system:serviceaccount:*:default",

 "${OIDCPROVIDER}:aud": "sts.amazonaws.com"

 }

 }

 }

]

}

EOF

Create the Tanzu Build Service Role

aws iam create-role --role-name tap-build-service --assume-role-policy-document fil

e://build-service-trust-policy.json

Attach the Policy to the Build Role

aws iam put-role-policy --role-name tap-build-service --policy-name tapBuildServicePol

icy --policy-document file://build-service-policy.json

Create the Workload Role

Tanzu Application Platform v1.5

VMware by Broadcom 260

aws iam create-role --role-name tap-workload --assume-role-policy-document file://work

load-trust-policy.json

Attach the Policy to the Workload Role

aws iam put-role-policy --role-name tap-workload --policy-name tapWorkload --policy-do

cument file://workload-policy.json

Install Tanzu Application Platform package and profiles on
AWS
This topic tells you how to install Tanzu Application Platform (commonly known as TAP) packages
from your Tanzu Application Platform package repository on to AWS.

Before installing the packages, ensure you have:

Completed the Prerequisites.

Created AWS Resources.

Accepted Tanzu Application Platform EULA and installed Tanzu CLI with any required plug-
ins.

Installed Cluster Essentials for Tanzu.

Relocate images to a registry
VMware recommends relocating the images from VMware Tanzu Network registry to your own
container image registry before attempting installation. If you don’t relocate the images, Tanzu
Application Platform will depend on VMware Tanzu Network for continued operation, and VMware
Tanzu Network offers no uptime guarantees. The option to skip relocation is documented for
evaluation and proof-of-concept only.

This section describes how to relocate images to the tap-images repository created in Amazon
ECR. See Creating AWS Resources for more information.

To relocate images from the VMware Tanzu Network registry to the ECR registry:

1. Set up environment variables for installation use by running:

export AWS_ACCOUNT_ID=MY-AWS-ACCOUNT-ID

export AWS_REGION=TARGET-AWS-REGION

export IMGPKG_REGISTRY_HOSTNAME_0=registry.tanzu.vmware.com

export IMGPKG_REGISTRY_USERNAME_0=MY-TANZUNET-USERNAME

export IMGPKG_REGISTRY_PASSWORD_0=MY-TANZUNET-PASSWORD

export IMGPKG_REGISTRY_HOSTNAME_1=$AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaw

s.com

export IMGPKG_REGISTRY_USERNAME_1=AWS

export IMGPKG_REGISTRY_PASSWORD_1=`aws ecr get-login-password --region $AWS_REG

ION`

export TAP_VERSION=VERSION-NUMBER

export INSTALL_REGISTRY_HOSTNAME=$AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.

com

export INSTALL_REPO=tap-images

Where:

MY-AWS-ACCOUNT-ID is the account ID you deploy Tanzu Application Platform in. No
dashes and must be in the format 012345678901.

MY-TANZUNET-USERNAME is the user with access to the images in the VMware Tanzu
Network registry registry.tanzu.vmware.com

MY-TANZUNET-PASSWORD is the password for MY-TANZUNET-USERNAME.

Tanzu Application Platform v1.5

VMware by Broadcom 261

https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.5/cluster-essentials/deploy.html
https://aws.amazon.com/ecr/

TARGET-AWS-REGION is the region you deploy the Tanzu Application Platform to.

VERSION-NUMBER is your Tanzu Application Platform version. For example, 1.5.12

2. Install the Carvel tool imgpkg CLI.

3. Relocate the images with the imgpkg CLI by running:

imgpkg copy --concurrency 1 -b registry.tanzu.vmware.com/tanzu-application-plat

form/tap-packages:${TAP_VERSION} --to-repo ${INSTALL_REGISTRY_HOSTNAME}/${INSTA

LL_REPO}

4. Create a namespace called tap-install for deploying any component packages by running:

kubectl create ns tap-install

This namespace keeps the objects grouped together logically.

5. (Optional) If you haven’t relocated the images to ECR, create a secret to your registry by
running:

tanzu secret registry add tap-registry \

 --username ${INSTALL_REGISTRY_USERNAME} --password ${INSTALL_REGISTRY_PASSWOR

D} \

 --server ${INSTALL_REGISTRY_HOSTNAME} \

 --export-to-all-namespaces --yes --namespace tap-install

6. Add the Tanzu Application Platform package repository to the cluster by running:

tanzu package repository add tanzu-tap-repository \

 --url ${INSTALL_REGISTRY_HOSTNAME}/${INSTALL_REPO}:$TAP_VERSION \

 --namespace tap-install

7. Get the status of the Tanzu Application Platform package repository, and ensure the status
updates to Reconcile succeeded by running:

tanzu package repository get tanzu-tap-repository --namespace tap-install

For example:

$ tanzu package repository get tanzu-tap-repository --namespace tap-install

- Retrieving repository tap...

NAME: tanzu-tap-repository

VERSION: 16253001

REPOSITORY: 123456789012.dkr.ecr.us-west-2.amazonaws.com/tap-images

TAG: 1.5.12

STATUS: Reconcile succeeded

REASON:

8. List the available packages by running:

tanzu package available list --namespace tap-install

For example:

Note

The VERSION and TAG numbers differ from the earlier example if you are on
Tanzu Application Platform v1.0.2 or earlier.

Tanzu Application Platform v1.5

VMware by Broadcom 262

https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.5/cluster-essentials/deploy.html#optionally-install-clis-onto-your-path

$ tanzu package available list --namespace tap-install

/ Retrieving available packages...

 NAME DISPLAY-NAME

SHORT-DESCRIPTION

 accelerator.apps.tanzu.vmware.com Application Accelerator

for VMware Tanzu Used to create new projects a

nd configurations.

 api-portal.tanzu.vmware.com API portal

A unified user interface for API discovery and exploration at scale.

 apis.apps.tanzu.vmware.com API Auto Registration fo

r VMware Tanzu A TAP component to automatica

lly register API exposing workloads as API entities

in TAP GUI.

 backend.appliveview.tanzu.vmware.com Application Live View fo

r VMware Tanzu App for monitoring and troubl

eshooting running apps

 buildservice.tanzu.vmware.com Tanzu Build Service

Tanzu Build Service enables the building and automation of containerized

software workflows securely and at scale.

 carbonblack.scanning.apps.tanzu.vmware.com VMware Carbon Black for

Supply Chain Security Tools - Scan Default scan templates using

VMware Carbon Black

 cartographer.tanzu.vmware.com Cartographer

Kubernetes native Supply Chain Choreographer.

 cnrs.tanzu.vmware.com Cloud Native Runtimes

Cloud Native Runtimes is a serverless runtime based on Knative

 connector.appliveview.tanzu.vmware.com Application Live View Co

nnector for VMware Tanzu App for discovering and regis

tering running apps

 controller.conventions.apps.tanzu.vmware.com Convention Service for V

Mware Tanzu Convention Service enables ap

p operators to consistently apply desired runtime

configurations to fleets of workloads.

 controller.source.apps.tanzu.vmware.com Tanzu Source Controller

Tanzu Source Controller enables workload create/update from source code.

 conventions.appliveview.tanzu.vmware.com Application Live View Co

nventions for VMware Tanzu Application Live View convent

ion server

 developer-conventions.tanzu.vmware.com Tanzu App Platform Devel

oper Conventions Developer Conventions

 eventing.tanzu.vmware.com Eventing

Eventing is an event-driven architecture platform based on Knative Eventing

 external-secrets.apps.tanzu.vmware.com External Secrets Operato

r External Secrets Operator is

a Kubernetes operator that integrates external

secret management systems.

 fluxcd.source.controller.tanzu.vmware.com Flux Source Controller

The source-controller is a Kubernetes operator, specialised in artifacts

acquisition from external sources such as Git, Helm repositories and S3 bucket

s.

 grype.scanning.apps.tanzu.vmware.com Grype for Supply Chain S

ecurity Tools - Scan Default scan templates using

Anchore Grype

 learningcenter.tanzu.vmware.com Learning Center for Tanz

u Application Platform Guided technical workshops

 metadata-store.apps.tanzu.vmware.com Supply Chain Security To

ols - Store Post SBoMs and query for imag

e, package, and vulnerability metadata.

 namespace-provisioner.apps.tanzu.vmware.com Namespace Provisioner

Automatic Provisioning of Developer Namespaces.

 ootb-delivery-basic.tanzu.vmware.com Tanzu App Platform Out o

Tanzu Application Platform v1.5

VMware by Broadcom 263

f The Box Delivery Basic Out of The Box Delivery Basi

c.

 ootb-supply-chain-basic.tanzu.vmware.com Tanzu App Platform Out o

f The Box Supply Chain Basic Out of The Box Supply Chain B

asic.

 ootb-supply-chain-testing-scanning.tanzu.vmware.com Tanzu App Platform Out o

f The Box Supply Chain with Testing and Scanning Out of The Box Supply Chain w

ith Testing and Scanning.

 ootb-supply-chain-testing.tanzu.vmware.com Tanzu App Platform Out o

f The Box Supply Chain with Testing Out of The Box Supply Chain w

ith Testing.

 ootb-templates.tanzu.vmware.com Tanzu App Platform Out o

f The Box Templates Out of The Box Templates.

 policy.apps.tanzu.vmware.com Supply Chain Security To

ols - Policy Controller Policy Controller enables def

ining of a policy to restrict unsigned container

images.

 scanning.apps.tanzu.vmware.com Supply Chain Security To

ols - Scan Scan for vulnerabilities and

enforce policies directly within Kubernetes native

Supply Chains.

 service-bindings.labs.vmware.com Service Bindings for Kub

ernetes Service Bindings for Kubernet

es implements the Service Binding Specification.

 services-toolkit.tanzu.vmware.com Services Toolkit

The Services Toolkit enables the management, lifecycle, discoverability and

connectivity of Service Resources (databases, message queues, DNS records,

etc.).

 snyk.scanning.apps.tanzu.vmware.com Snyk for Supply Chain Se

curity Tools - Scan Default scan templates using

Snyk

 spring-boot-conventions.tanzu.vmware.com Tanzu Spring Boot Conven

tions Server Default Spring Boot conventio

n server.

 sso.apps.tanzu.vmware.com AppSSO

Application Single Sign-On for Tanzu

 tap-auth.tanzu.vmware.com Default roles for Tanzu

Application Platform Default roles for Tanzu Appli

cation Platform

 tap-gui.tanzu.vmware.com Tanzu Application Platfo

rm GUI web app graphical user interf

ace for Tanzu Application Platform

 tap-telemetry.tanzu.vmware.com Telemetry Collector for

Tanzu Application Platform Tanzu Application Plaform Tel

emetry

 tap.tanzu.vmware.com Tanzu Application Platfo

rm Package to install a set of T

AP components to get you started based on your use

case.

 tekton.tanzu.vmware.com Tekton Pipelines

Tekton Pipelines is a framework for creating CI/CD systems.

 workshops.learningcenter.tanzu.vmware.com Workshop Building Tutori

al Workshop Building Tutorial

Install your Tanzu Application Platform profile

The tap.tanzu.vmware.com package installs predefined sets of packages based on your profile
settings. This is done by using the package manager installed by Tanzu Cluster Essentials.

For more information about profiles, see Components and installation profiles.

Tanzu Application Platform v1.5

VMware by Broadcom 264

To prepare to install a profile:

1. List version information for the package by running:

tanzu package available list tap.tanzu.vmware.com --namespace tap-install

2. Create a tap-values.yaml file by using the Full Profile (AWS), which contains the minimum
configurations required to deploy Tanzu Application Platform on AWS. The sample values
file contains the necessary defaults for:

The meta-package, or parent Tanzu Application Platform package.

Subordinate packages, or individual child packages.

Keep the values file for future configuration use.

3. View possible configuration settings for your package

Full profile (AWS)

The following command generates the YAML file sample for the full-profile on AWS by using the
ECR repositories you created earlier. The profile: field takes full as the default value, but you can
also set it to iterate, build, run, or view. Refer to Install multicluster Tanzu Application Platform
profiles for more information.

cat << EOF > tap-values.yaml

shared:

 ingress_domain: "INGRESS-DOMAIN"

ceip_policy_disclosed: true

#The above keys are minimum numbers of entries needed in tap-values.yaml to get a func

tioning TAP Full profile installation.

Below are the keys which may have default values set, but can be overridden.

profile: full # Can take iterate, build, run, view.

supply_chain: basic # Can take testing, testing_scanning.

ootb_supply_chain_basic: # Based on supply_chain set above, can be changed to ootb_sup

ply_chain_testing, ootb_supply_chain_testing_scanning.

 registry:

 server: ${AWS_ACCOUNT_ID}.dkr.ecr.${AWS_REGION}.amazonaws.com

 # The prefix of the ECR repository. Workloads will need

 # two repositories created:

 #

 # tanzu-application-platform/<workloadname>-<namespace>

 # tanzu-application-platform/<workloadname>-<namespace>-bundle

 repository: tanzu-application-platform

contour:

 envoy:

 service:

 type: LoadBalancer # This is set by default, but can be overridden by setting a

different value.

Note

tap-values.yaml is set as a Kubernetes secret, which provides secure
means to read credentials for Tanzu Application Platform components.

Tanzu Application Platform v1.5

VMware by Broadcom 265

buildservice:

 kp_default_repository: ${AWS_ACCOUNT_ID}.dkr.ecr.${AWS_REGION}.amazonaws.com/tap-bui

ld-service

 # Enable the build service k8s service account to bind to the AWS IAM Role

 kp_default_repository_aws_iam_role_arn: "arn:aws:iam::${AWS_ACCOUNT_ID}:role/tap-bui

ld-service"

ootb_templates:

 # Enable the config writer service to use cloud based iaas authentication

 # which are retrieved from the developer namespace service account by

 # default

 iaas_auth: true

tap_gui:

 app_config:

 catalog:

 locations:

 - type: url

 target: https://GIT-CATALOG-URL/catalog-info.yaml

metadata_store:

 ns_for_export_app_cert: "MY-DEV-NAMESPACE" # Verify this namespace is available with

in your cluster before initiating the Tanzu Application Platform installation.

 app_service_type: ClusterIP # Defaults to LoadBalancer. If shared.ingress_domain is

set earlier, this must be set to ClusterIP.

scanning:

 metadataStore:

 url: "" # Configuration is moved, so set this string to empty.

tap_telemetry:

 customer_entitlement_account_number: "CUSTOMER-ENTITLEMENT-ACCOUNT-NUMBER" # (Option

al) Identify data for creating Tanzu Application Platform usage reports.

EOF

Where:

INGRESS-DOMAIN is the subdomain for the host name that you point at the tanzu-shared-
ingress service’s External IP address.

kp_default_repository_aws_iam_role_arn is the ARN that was created to write to the ECR
repository for the build service. This value is generated by the script, but you can modify it
manually.

GIT-CATALOG-URL is the path to the catalog-info.yaml catalog definition file. You can
download either a blank or populated catalog file from the Tanzu Application Platform
product page. Otherwise, you can use a Backstage-compliant catalog you’ve already built
and posted on the Git infrastructure.

MY-DEV-NAMESPACE is the name of the developer namespace. SCST - Store exports secrets
to the namespace, and SCST - Scan deploys the ScanTemplates there. This allows the
scanning feature to run in this namespace. If there are multiple developer namespaces, use
ns_for_export_app_cert: "*" to export the SCST - Store CA certificate to all namespaces.

CUSTOMER-ENTITLEMENT-ACCOUNT-NUMBER (optional) refers to the Entitlement Account
Number (EAN), which is a unique identifier VMware assigns to its customers. Tanzu
Application Platform telemetry uses this number to identify data that belongs to a particular
customers and prepare usage reports. See Kubernetes Grid documentation for more
information about identifying the Entitlement Account Number.

For AWS, the default settings creates a classic LoadBalancer. To use the Network LoadBalancer
instead of the classic LoadBalancer for ingress, add the following to your tap-values.yaml:

Tanzu Application Platform v1.5

VMware by Broadcom 266

https://network.tanzu.vmware.com/products/tanzu-application-platform/#/releases/1239018
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/1.5/vmware-tanzu-kubernetes-grid-15/GUID-cluster-lifecycle-ceip.html#identify-the-entitlement-account-number-2

contour:

 infrastructure_provider: aws

 envoy:

 service:

 aws:

 LBType: nlb

(Optional) Configure your profile with full dependencies

When you install a profile that includes Tanzu Build Service, Tanzu Application Platform is installed
with the lite set of dependencies. These dependencies consist of buildpacks and stacks required
for application builds.

The lite set of dependencies do not contain all buildpacks and stacks. To use all buildpacks and
stacks, you must install the full dependencies. For more information about the differences
between lite and full dependencies, see About lite and full dependencies.

To configure full dependencies, add the key-value pair exclude_dependencies: true to your tap-
values.yaml file under the buildservice section. For example:

buildservice:

 kp_default_repository: ${AWS_ACCOUNT_ID}.dkr.ecr.${AWS_REGION}.amazonaws.com/tap-bui

ld-service

 exclude_dependencies: true

After configuring full dependencies, you must install the dependencies after you have finished
installing your Tanzu Application Platform package. See Install the full dependencies package for
more information.

Install your Tanzu Application Platform package
Follow these steps to install the Tanzu Application Platform package:

1. Install the package by running:

tanzu package install tap -p tap.tanzu.vmware.com -v $TAP_VERSION --values-file

tap-values.yaml -n tap-install

2. Verify the package install by running:

tanzu package installed get tap -n tap-install

This can take 5-10 minutes because it installs several packages on your cluster.

3. Verify that the necessary packages in the profile are installed by running:

tanzu package installed list -A

4. If you configured full dependencies in your tbs-values.yaml file, install the full
dependencies by following the procedure in Install full dependencies.

After installing the Full profile on your cluster, you can install the Tanzu Developer Tools for VS
Code Extension to help you develop against it. For instructions, see Install Tanzu Developer Tools
for your VS Code.

Note

Tanzu Application Platform v1.5

VMware by Broadcom 267

https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-index.html
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-stacks.html

tanzu package installed update tap -p tap.tanzu.vmware.com -v $TAP_VERSION --values-f

ile tap-values.yaml -n tap-install

Install the full dependencies package
If you configured full dependencies in your tap-values.yaml file in Configure your profile with full
dependencies earlier, you must install the full dependencies package.

For more information about the differences between lite and full dependencies, see About lite
and full dependencies.

To install the full dependencies package:

1. If you have not done so already, add the key-value pair exclude_dependencies: true to
your tap-values.yaml file under the buildservice section. For example:

buildservice:

 kp_default_repository: ${AWS_ACCOUNT_ID}.dkr.ecr.${AWS_REGION}.amazonaws.com/

tap-build-service

 exclude_dependencies: true

...

2. Get the latest version of the buildservice package by running:

tanzu package available list buildservice.tanzu.vmware.com --namespace tap-inst

all

3. Create an ECR repository for Tanzu Build Service full dependencies by running:

aws ecr create-repository --repository-name tbs-full-deps --region ${AWS_REGIO

N}

4. Relocate the Tanzu Build Service full dependencies package repository by running:

imgpkg copy -b registry.tanzu.vmware.com/tanzu-application-platform/full-tbs-de

ps-package-repo:VERSION \

 --to-repo ${INSTALL_REGISTRY_HOSTNAME}/tbs-full-deps

Where VERSION is the version of the buildservice package you retrieved in the previous
step.

5. Add the Tanzu Build Service full dependencies package repository by running:

tanzu package repository add tbs-full-deps-repository \

 --url ${INSTALL_REGISTRY_HOSTNAME}/${INSTALL_REPO}/tbs-full-deps:VERSION \

 --namespace tap-install

Where VERSION is the version of the buildservice package you retrieved earlier.

6. Install the full dependencies package by running:

tanzu package install full-tbs-deps -p full-tbs-deps.tanzu.vmware.com -v VERSIO

N -n tap-install

Where VERSION is the version of the buildservice package you retrieved earlier.

You can run the following command after reconfiguring the profile to reinstall the
Tanzu Application Platform:

Tanzu Application Platform v1.5

VMware by Broadcom 268

Access Tanzu Application Platform GUI

To access Tanzu Application Platform GUI, you can use the host name that you configured earlier.
This host name is pointed at the shared ingress. To configure LoadBalancer for Tanzu Application
Platform GUI, see Access Tanzu Application Platform GUI.

You’re now ready to start using Tanzu Application Platform GUI. Proceed to the Getting Started
topic or the Tanzu Application Platform GUI - Catalog Operations topic.

Exclude packages from a Tanzu Application Platform
profile

To exclude packages from a Tanzu Application Platform profile:

1. Find the full subordinate (child) package name:

tanzu package available list --namespace tap-install

2. Update your tap-values file with a section listing the exclusions:

profile: PROFILE-VALUE

excluded_packages:

 - tap-gui.tanzu.vmware.com

 - service-bindings.lab.vmware.com

Next steps

(Optional) Install Individual Packages

Set up developer namespaces to use your installed packages

View possible configuration settings for your package

To view possible configuration settings for a package, run:

tanzu package available get tap.tanzu.vmware.com/$TAP_VERSION --values-schema --namesp

ace tap-install

Important

If you exclude a package after performing a profile installation including that
package, you cannot see the accurate package states immediately after running tap
package installed list -n tap-install. Also, you can break package
dependencies by removing a package. Allow 20 minutes to verify that all packages
have reconciled correctly while troubleshooting.

Note

The tap.tanzu.vmware.com package does not show all configuration settings for
packages it plans to install. The package only shows top-level keys. You can view
individual package configuration settings with the same tanzu package available
get command. For example, to find the keys for Cloud Native Runtimes, you must
first identify the version of the package with tanzu package installed list -n
tap-install, which lists all the installed packages versions. Then run the command

Tanzu Application Platform v1.5

VMware by Broadcom 269

profile: full

Shared configurations go under the shared key.

shared:

 ingress_domain: tap.example.com

...

For example, CNRs specific values go under its name.

cnrs:

 provider: local

For example, App Accelerator specific values go under its name.

accelerator:

 server:

 service_type: "ClusterIP"

Shared Keys define values that configure multiple packages. These keys are defined under the
shared Top-level Key, as summarized in the following table:

Shared Key Description Optional

ca_cert_data PEM-encoded certificate data to trust TLS connections with a private CA. This
shared key is used by convention_controller, scanning and source_controller

Yes

ingress_domain Domain name to be used in service routes and host names for instances of Tanzu
Application Platform components.

Yes

ingress_issuer A cert-manager.io/v1/ClusterIssuer for issuing TLS certificates to Tanzu
Application Platform components. Default value: tap-ingress-selfsigned

Yes

kubernetes_distrib

ution

Type of Kubernetes infrastructure being used. You can use this shared key in
coordination with the kubernetes_version key. Supported value: openshift.

Yes

kubernetes_version Kubernetes version. You can use this shared key independently or in coordination
with the kubernetes_distribution key. Supported value: 1.24.x, where x stands
for the Kubernetes patch version.

Yes

image_registry.pro

ject_path

Project path in the container image registry server used for builder and application
images.

Yes

image_registry.use

rname

User name for the container image registry. Mutually exclusive with
shared.image_registry.secret.name/namespace

Yes

image_registry.pas

sword

Password for the container image registry. Mutually exclusive with
shared.image_registry.secret.name/namespace

Yes

secret.name Secret name for the container image registry credentials of type
kubernetes.io/dockerconfigjson. Mutually exclusive with
shared.image_registry.username/password

Yes

secret.namespace Secret namespace for the container image registry credentials. Mutually exclusive
with shared.image_registry.username/password

Yes

activateAppLiveVie

wSecureAccessContr

ol

Enable secure access connection between Application Live View components. Yes

The following table summarizes the top-level keys used for package-specific configuration within
your tap-values.yaml.

tanzu package available get -n tap-install cnrs.tanzu.vmware.com/CNRS-

VERSION --values-schema by using the package version listed for Cloud Native
Runtimes.

Tanzu Application Platform v1.5

VMware by Broadcom 270

Package Top-level Key

See table above. shared

API Auto Registration api_auto_registration

API portal api_portal

Application Accelerator accelerator

Application Live View appliveview

Application Live View connector appliveview_connector

Application Live View conventions appliveview-conventions

Cartographer cartographer

Cloud Native Runtimes cnrs

Source Controller source_controller

Supply Chain supply_chain

Supply Chain Basic ootb_supply_chain_basic

Supply Chain Testing ootb_supply_chain_testing

Supply Chain Testing Scanning ootb_supply_chain_testing_scanning

Supply Chain Security Tools - Scan scanning

Supply Chain Security Tools - Scan (Grype Scanner) grype

Supply Chain Security Tools - Store metadata_store

Build Service buildservice

Tanzu Application Platform GUI tap_gui

Learning Center learningcenter

For information about package-specific configuration, see Install individual packages.

Install individual packages

You can install Tanzu Application Platform (commonly known as TAP) through predefined profiles or
through individual packages. Use this topic to learn how to install each individual package. For more
information about installing through profiles, see Components and installation profiles.

Installing individual Tanzu Application Platform packages is useful if you do not want to use a profile
to install packages or if you want to install additional packages after installing a profile. Before
installing the packages, be sure to complete the prerequisites, configure and verify the cluster,
accept the EULA, and install the Tanzu CLI with any required plug-ins. For more information, see
Prerequisites.

Install pages for individual Tanzu Application Platform
packages

Install API Auto Registration

Install API portal

Install Application Accelerator

Install Application Configuration Service

Tanzu Application Platform v1.5

VMware by Broadcom 271

Install Application Live View

Install Application Single Sign-On

Install Bitnami Services

Install cert-manager

Install Cloud Native Runtimes

Install Contour

Install Crossplane

Install default roles for Tanzu Application Platform

Install Developer Conventions

Install Eventing

Install Flux CD Source Controller

Install Learning Center for Tanzu Application Platform

Install Out of the Box Templates

Install Out of the Box Supply Chain with Testing

Install Out of the Box Supply Chain with Testing and Scanning

Install Service Bindings

Install Services Toolkit

Install Source Controller

Install Spring Boot conventions

Install Supply Chain Choreographer

Install Supply Chain Security Tools - Store

Install Supply Chain Security Tools - Policy Controller

Install Supply Chain Security Tools - Scan

Install Tanzu Application Platform GUI

Install Tanzu Build Service

Install Tekton

Install Telemetry

Verify the installed packages

Use the following procedure to verify that the packages are installed.

1. List the installed packages by running:

tanzu package installed list --namespace tap-install

For example:

$ tanzu package installed list --namespace tap-install

\ Retrieving installed packages...

NAME PACKAGE-NAME PAC

KAGE-VERSION STATUS

api-portal api-portal.tanzu.vmware.com 1.

0.3 Reconcile succeeded

app-accelerator accelerator.apps.tanzu.vmware.com 1.

Tanzu Application Platform v1.5

VMware by Broadcom 272

0.0 Reconcile succeeded

app-live-view appliveview.tanzu.vmware.com 1.

0.2 Reconcile succeeded

appliveview-conventions build.appliveview.tanzu.vmware.com 1.

0.2 Reconcile succeeded

cartographer cartographer.tanzu.vmware.com 0.

1.0 Reconcile succeeded

cloud-native-runtimes cnrs.tanzu.vmware.com 1.

0.3 Reconcile succeeded

convention-controller controller.conventions.apps.tanzu.vmware.com 0.

7.0 Reconcile succeeded

developer-conventions developer-conventions.tanzu.vmware.com 0.

3.0-build.1 Reconcile succeeded

grype-scanner grype.scanning.apps.tanzu.vmware.com 1.

0.0 Reconcile succeeded

image-policy-webhook image-policy-webhook.signing.apps.tanzu.vmware.com 1.

1.2 Reconcile succeeded

metadata-store metadata-store.apps.tanzu.vmware.com 1.

0.2 Reconcile succeeded

ootb-supply-chain-basic ootb-supply-chain-basic.tanzu.vmware.com 0.

5.1 Reconcile succeeded

ootb-templates ootb-templates.tanzu.vmware.com 0.

5.1 Reconcile succeeded

scan-controller scanning.apps.tanzu.vmware.com 1.

0.0 Reconcile succeeded

service-bindings service-bindings.labs.vmware.com 0.

5.0 Reconcile succeeded

services-toolkit services-toolkit.tanzu.vmware.com 0.

8.0 Reconcile succeeded

source-controller controller.source.apps.tanzu.vmware.com 0.

2.0 Reconcile succeeded

sso4k8s-install sso.apps.tanzu.vmware.com 1.

0.0-beta.2-31 Reconcile succeeded

tap-gui tap-gui.tanzu.vmware.com 0.

3.0-rc.4 Reconcile succeeded

tekton-pipelines tekton.tanzu.vmware.com 0.3

0.0 Reconcile succeeded

tbs buildservice.tanzu.vmware.com 1.

5.0 Reconcile succeeded

Next steps

Set up developer namespaces to use your installed packages

Set up developer namespaces to use your installed
packages
You can choose either one of the following two approaches to create a Workload for your
application by using the registry credentials specified, add credentials and Role-Based Access
Control (RBAC) rules to the namespace that you plan to create the Workload in:

Enable single user access.

Enable additional users access with Kubernetes RBAC.

Enable single user access
Follow these steps to enable your current user to submit jobs to the Supply Chain:

1. (Optional) If the variable AWS_ACCOUNT_ID environment is not set during the installation
process, export the AWS Account ID.

Tanzu Application Platform v1.5

VMware by Broadcom 273

export AWS_ACCOUNT_ID=MY-AWS-ACCOUNT-ID

2. Add a service account to execute the supply chain and RBAC rules to authorize the service
account to the developer namespace.

cat <<EOF | kubectl -n YOUR-NAMESPACE apply -f -

apiVersion: v1

kind: ServiceAccount

metadata:

 name: default

 annotations:

 eks.amazonaws.com/role-arn: "arn:aws:iam::${AWS_ACCOUNT_ID}:role/tap-worklo

ad"

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: default-permit-workload

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: workload

subjects:

 - kind: ServiceAccount

 name: default

EOF

Where YOUR-NAMESPACE is your developer namespace.

3. (Optional) If you haven’t relocated the images to ECR, add a placeholder secret for
gathering the credentials used for pulling container images.

cat <<EOF | kubectl -n YOUR-NAMESPACE apply -f -

apiVersion: v1

kind: Secret

metadata:

 name: tap-registry

 annotations:

 secretgen.carvel.dev/image-pull-secret: ""

type: kubernetes.io/dockerconfigjson

data:

 .dockerconfigjson: e30K

apiVersion: v1

kind: ServiceAccount

metadata:

 name: default

 annotations:

 eks.amazonaws.com/role-arn: "arn:aws:iam::${AWS_ACCOUNT_ID}:role/tap-worklo

ad"

imagePullSecrets:

 - name: tap-registry

EOF

Where YOUR-NAMESPACE is your developer namespace.

Enable additional users access with Kubernetes RBAC
Follow these steps to enable additional users by using Kubernetes RBAC to submit jobs to the
Supply Chain:

1. Enable single user access.

Tanzu Application Platform v1.5

VMware by Broadcom 274

2. Choose either of the following options to give developers namespace-level access and view
access to appropriate cluster-level resources:

Option 1: Use the Tanzu Application Platform RBAC CLI plug-in (beta).

To use the tanzu rbac plug-in to grant app-viewer and app-editor roles to an
identity provider group, run:

tanzu rbac binding add -g GROUP-FOR-APP-VIEWER -n YOUR-NAMESPACE -r app-v

iewer

tanzu rbac binding add -g GROUP-FOR-APP-EDITOR -n YOUR-NAMESPACE -r app-e

ditor

Where:

YOUR-NAMESPACE is the name you give to the developer namespace.

GROUP-FOR-APP-VIEWER is the user group from the upstream identity provider
that requires access to app-viewer resources on the current namespace and
cluster.

GROUP-FOR-APP-EDITOR is the user group from the upstream identity provider
that requires access to app-editor resources on the current namespace and
cluster.

For more information about tanzu rbac, see Bind a user or group to a default role.

VMware recommends creating a user group in your identity provider’s grouping
system for each developer namespace and then adding the users accordingly.

Depending on your identity provider, you might need to take further action to
federate user groups appropriately with your cluster. For an example of how to set
up Azure Active Directory (AD) with your cluster, see Integrating Azure Active
Directory.

Option 2: Use the native Kubernetes YAML.

To apply the RBAC policy, run:

cat <<EOF | kubectl -n YOUR-NAMESPACE apply -f -

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: dev-permit-app-viewer

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: app-viewer

subjects:

 - kind: Group

 name: GROUP-FOR-APP-VIEWER

 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: YOUR-NAMESPACE-permit-app-viewer

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: app-viewer-cluster-access

subjects:

 - kind: Group

 name: GROUP-FOR-APP-VIEWER

 apiGroup: rbac.authorization.k8s.io

Tanzu Application Platform v1.5

VMware by Broadcom 275

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: dev-permit-app-editor

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: app-editor

subjects:

 - kind: Group

 name: GROUP-FOR-APP-EDITOR

 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: YOUR-NAMESPACE-permit-app-editor

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: app-editor-cluster-access

subjects:

 - kind: Group

 name: GROUP-FOR-APP-EDITOR

 apiGroup: rbac.authorization.k8s.io

EOF

Where:

YOUR-NAMESPACE is the name you give to the developer namespace.

GROUP-FOR-APP-VIEWER is the user group from the upstream identity provider
that requires access to app-viewer resources on the current namespace and
cluster.

GROUP-FOR-APP-EDITOR is the user group from the upstream identity provider
that requires access to app-editor resources on the current namespace and
cluster.

VMware recommends creating a user group in your identity provider’s grouping
system for each developer namespace and then adding the users accordingly.

Depending on your identity provider, you might need to take further action to
federate user groups appropriately with your cluster. For an example of how to set
up Azure Active Directory (AD) with your cluster, see Integrating Azure Active
Directory.

Rather than granting roles directly to individuals, VMware recommends using your
identity provider’s user groups system to grant access to a group of developers. For
an example of how to set up Azure AD with your cluster, see Integrating Azure
Active Directory.

3. (Optional) Log in as a non-admin user, such as a developer, to see the effects of RBAC after
the bindings are applied.

Next steps

Install Tanzu Developer Tools for your VS Code

Install Tanzu Developer Tools for your VS Code

This topic tells you how to install VMware Tanzu Developer Tools for Visual Studio Code (VS Code).

Tanzu Application Platform v1.5

VMware by Broadcom 276

Prerequisites

Before installing the extension, you must have:

VS Code

kubectl

Tilt v0.30.12 or later

Tanzu CLI and plug-ins

A cluster with the Tanzu Application Platform Full profile or Iterate profile

If you are an app developer, someone else in your organization might have already set up the
Tanzu Application Platform environment.

Docker Desktop and local Kubernetes are not prerequisites for using Tanzu Developer Tools for VS
Code.

Install

To install the extension:

1. Sign in to VMware Tanzu Network and download Tanzu Developer Tools for Visual Studio
Code.

2. Open VS Code.

3. Press cmd+shift+P to open the Command Palette and run Extensions: Install from
VSIX....

4. Select the extension file tanzu-vscode-extension.vsix.

5. If you do not have the following extensions, and they do not automatically install, install
them from VS Code Marketplace:

Debugger for Java

Language Support for Java(™) by Red Hat

YAML

6. Ensure Language Support for Java is running in Standard Mode. You can configure it in the
Settings menu by going to Code > Preferences > Settings under Java > Server: Launch
Mode.

When the JDK and Language Support for Java are configured correctly, you see that the
integrated development environment creates a directory target where the code is
compiled.

Tanzu Application Platform v1.5

VMware by Broadcom 277

https://code.visualstudio.com/download
https://kubernetes.io/docs/tasks/tools/#kubectl
https://docs.tilt.dev/install.html
https://network.tanzu.vmware.com/products/tanzu-application-platform
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-debug
https://marketplace.visualstudio.com/items?itemName=redhat.java
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-yaml
https://code.visualstudio.com/docs/java/java-project#_lightweight-mode

Configure

To configure VMware Tanzu Developer Tools for VS Code:

1. Ensure that you are targeting the correct cluster. For more information, see the
Kubernetes documentation.

2. Go to Code > Preferences > Settings > Extensions > Tanzu Developer Tools and set the
following:

Confirm Delete: This controls whether the extension asks for confirmation when
deleting a workload.

Enable Live Hover: For more information, see Integrating Live Hover by using
Spring Boot Tools. Reload VS Code for this change to take effect.

Source Image: (Required) The registry location for publishing local source code. For
example, registry.io/yourapp-source. This must include both a registry and a
project name.

Local Path: (Optional) The path on the local file system to a directory of source
code to build. This is the current directory by default.

Namespace: (Optional) This is the namespace that workloads are deployed into.
The namespace set in kubeconfig is the default.

Uninstall

To uninstall VMware Tanzu Developer Tools for VS Code:

1. Go to Code > Preferences > Settings > Extensions.

2. Right-click the extension and select Uninstall.

Next steps

Proceed to Getting started with Tanzu Developer Tools for Visual Studio Code.

Install Tanzu Application Platform (Azure)

To install Tanzu Application Platform (commonly known as TAP) on Azure:

Step Task Link

1. Review the prerequisites to ensure that you have set up everything
required before beginning the installation

Prerequisites

2. Accept Tanzu Application Platform EULAs and install the Tanzu CLI Accept Tanzu Application Platform
EULAs and installing the Tanzu CLI

3. Create Azure Resources Create Azure Resources

4. Install Cluster Essentials for Tanzu Deploy Cluster Essentials

5. Add the Tanzu Application Platform package repository, prepare your
Tanzu Application Platform profile, and install the profile to the cluster

Install the Tanzu Application
Platform package and profiles

6. (Optional) Install any additional packages that were not in the profile Install individual packages

7. Set up developer namespaces to use your installed packages Set up developer namespaces to use
your installed packages

8. Install developer tools into your integrated development environment
(IDE)

Install Tanzu Developer Tools for
your VS Code

Tanzu Application Platform v1.5

VMware by Broadcom 278

https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/
https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.5/cluster-essentials/deploy.html

After installing Tanzu Application Platform on to your Kubernetes clusters, proceed with Get
started with Tanzu Application Platform.

Install Tanzu Application Platform (Azure)

To install Tanzu Application Platform (commonly known as TAP) on Azure:

Step Task Link

1. Review the prerequisites to ensure that you have set up everything
required before beginning the installation

Prerequisites

2. Accept Tanzu Application Platform EULAs and install the Tanzu CLI Accept Tanzu Application Platform
EULAs and installing the Tanzu CLI

3. Create Azure Resources Create Azure Resources

4. Install Cluster Essentials for Tanzu Deploy Cluster Essentials

5. Add the Tanzu Application Platform package repository, prepare your
Tanzu Application Platform profile, and install the profile to the cluster

Install the Tanzu Application
Platform package and profiles

6. (Optional) Install any additional packages that were not in the profile Install individual packages

7. Set up developer namespaces to use your installed packages Set up developer namespaces to use
your installed packages

8. Install developer tools into your integrated development environment
(IDE)

Install Tanzu Developer Tools for
your VS Code

After installing Tanzu Application Platform on to your Kubernetes clusters, proceed with Get
started with Tanzu Application Platform.

Create Azure Resources for Tanzu Application Platform

To install Tanzu Application Platform (commonly known as TAP) within the Azure ecosystem, you
must create several Azure resources. Use this topic to learn how to create:

An Azure Kubernetes Service (AKS) cluster to install Tanzu Application Platform.

ACR repositories for the Tanzu Application Platform container images.

Creating these resources enables Tanzu Application Platform to use an IAM role bound to a
Kubernetes service account for authentication, rather than the typical username and password
stored in a Kubernetes secret strategy.

This is important when using ACR because authenticating to ACR is a two-step process:

1. Retrieve a token using your Azure credentials.

2. Use the token to authenticate to the registry.

To increase security, the token has a lifetime of 12 hours. This makes storing it as a secret for a
service impractical because it must be refreshed every 12 hours.

Using an IAM role on a service account mitigates the need to retrieve the token because it is
handled by credential helpers within the services.

Prerequisites

Before installing Tanzu Application Platform on Azure, you need:

An Azure subscription:

Tanzu Application Platform v1.5

VMware by Broadcom 279

https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.5/cluster-essentials/deploy.html

You must create all of your resources within an Azure subscription and create an Azure free
account.

Azure CLI:

To run CLI reference commands locally, you must install the Azure CLI. This topic uses
Azure CLI to both query and configure resources in Azure, such as IAM roles. For more
information, see Azure CLI documentation.

Create Azure Resource Group

1. Log in to Azure.

az login

az account set --subscription SUBSCRIPTION-NAME

2. Create a resource group with the az group create command.

az group create --name myTAPResourceGroup --location eastus

Create an AKS cluster
To create an AKS cluster, you can run the az aks create command with the --enable-addons
monitoring and --enable-msi-auth-for-monitoring parameter to enable Azure Monitor Container
insights with managed identity authentication (preview).

The following example creates a cluster named tap-on-azure with one node and enables a system-
assigned managed identity:

az aks create -g myTAPResourceGroup -n tap-on-azure --enable-managed-identity --node-c

ount 6 --enable-addons monitoring --enable-msi-auth-for-monitoring --generate-ssh-keys

--node-vm-size Standard_D4ds_v4 --kubernetes-version K8S-VERSION

Where K8S-VERSION is the compatible Kubernetes version that can be retrieved by running az aks
get-versions.

After a few minutes, the command completes and returns JSON-formatted information about the
cluster.

Connect to the AKS cluster

To manage a Kubernetes cluster, use the Kubernetes command-line client, kubectl. kubectl is
already installed if you use Azure Cloud Shell.

1. Install kubectl locally by using the az aks install-cli command:

az aks install-cli

2. Configure kubectl to connect to your Kubernetes cluster by using the az aks get-
credentials command that:

Note

When you create an AKS cluster, a second resource group is automatically created
to store the AKS resources. For more information, see Why are two resource
groups created with AKS?

Tanzu Application Platform v1.5

VMware by Broadcom 280

https://learn.microsoft.com/en-us/azure/guides/developer/azure-developer-guide#understanding-accounts-subscriptions-and-billing
https://azure.microsoft.com/en-us/free/?ref=microsoft.com&utm_source=microsoft.com&utm_medium=docs&utm_campaign=visualstudio
https://learn.microsoft.com/en-us/cli/azure/install-azure-cli
https://learn.microsoft.com/en-us/cli/azure/authenticate-azure-cli
https://learn.microsoft.com/en-us/cli/azure/aks?view=azure-cli-latest#az-aks-create
https://learn.microsoft.com/en-us/azure/azure-monitor/containers/container-insights-overview
https://kubernetes.io/docs/reference/kubectl/
https://learn.microsoft.com/en-us/cli/azure/aks#az-aks-install-cli
https://learn.microsoft.com/en-us/cli/azure/aks#az-aks-get-credentials
https://learn.microsoft.com/en-us/azure/aks/faq#why-are-two-resource-groups-created-with-aks

Downloads credentials and configures the Kubernetes CLI to use them.

Uses ~/.kube/config, the default location for the Kubernetes configuration file. You
can specify a different location for your Kubernetes configuration file by using the --
file argument.

az aks get-credentials --resource-group myTAPResourceGroup --name tap-on-azure

Create the container repositories

Azure Container Registry (ACR) does not require that the container repositories are already
created. Repositories are created automatically when images are uploaded.

Enable registry admin account

To enable push and pull to your registries, you must enable the admin user account, which is
created with each registry. Run the following command to enable the admin user account:

az acr update -n $REGISTRY_NAME --admin-enabled true

There are two passwords created for each admin user account per registry. To retrieve the
passwords, run the following for each registry:

az acr credential show --name $REGISTRY_NAME --resource-group myTAPResourceGroup

Expect to see the following outputs:

{

 "passwords": [

 {

 "name": "password",

 "value": YOUR-PASSWORD

 },

 {

 "name": "password2",

 "value": YOUR-PASSWORD-2

 }

],

 "username": ""

}

Export the username and password by running:

export KP_REGISTRY_USERNAME=$REGISTRY_NAME

export KP_REGISTRY_PASSWORD=YOUR-PASSWORD

Next steps
Install Tanzu Application Platform package and profiles on Azure

Install Tanzu Application Platform package and profiles on
Azure

This topic tells you how to install Tanzu Application Platform (commonly known as TAP) packages
from your Tanzu Application Platform package repository on to Azure.

Before installing the packages, ensure you have:

Tanzu Application Platform v1.5

VMware by Broadcom 281

https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/

Completed the Prerequisites.

Created Azure Resources.

Accepted Tanzu Application Platform EULA and installed Tanzu CLI with any required plug-
ins.

Installed Cluster Essentials for Tanzu.

Relocate images to a registry

VMware recommends relocating the images from VMware Tanzu Network registry to your own
container image registry before attempting installation. If you don’t relocate the images, Tanzu
Application Platform depends on VMware Tanzu Network for continued operation, and VMware
Tanzu Network offers no uptime guarantees. The option to skip relocation is documented for
evaluation and proof-of-concept only.

To relocate images from the VMware Tanzu Network registry to the ACR registry:

1. Set up environment variables for installation use by running:

export AZURE_SP_APP_ID=MY-AZURE-APP-ID

export AZURE_SP_TENANT=AZURE-TENANT

export AZURE_SP_PASSWORD=AZURE-PASSWORD

export AZURE_SUBSCRIPTION_ID=MY-AZURE-SUBSCRIPTION-ID

export AZURE_ACCOUNT_ID=MY-AZURE-ACCOUNT-ID

export AZURE_REGION=TARGET-AZURE-REGION

export AKS_CLUSTER_NAME=tap-on-azure

export IMGPKG_REGISTRY_HOSTNAME_0=registry.tanzu.vmware.com

export IMGPKG_REGISTRY_USERNAME_0=MY-TANZUNET-USERNAME

export IMGPKG_REGISTRY_PASSWORD_0=MY-TANZUNET-PASSWORD

export IMGPKG_REGISTRY_HOSTNAME_1=$INSTALL_REGISTRY_HOSTNAME

export IMGPKG_REGISTRY_USERNAME_1=$REGISTRY_NAME

export IMGPKG_REGISTRY_PASSWORD_1=REGISTRY-PASSWORD

export TAP_VERSION=VERSION-NUMBER

export INSTALL_REGISTRY_HOSTNAME=$REGISTRY_NAME.azurecr.io

export INSTALL_REPO=tapimages

Where:

MY-AZURE-APP-ID is the application ID you deploy Tanzu Application Platform in.
Must be in UUID format.

AZURE-TENANT is the tenant you deploy Tanzu Application Platform in. Must be in
UUID format.

MY-AZURE-SUBSCRIPTION-ID is the Azure subscription ID you deploy Tanzu
Application Platform in. Must be in UUID format.

MY-TANZUNET-USERNAME is the user with access to the images in the VMware Tanzu
Network registry registry.tanzu.vmware.com

MY-TANZUNET-PASSWORD is the password for MY-TANZUNET-USERNAME.

TARGET-AZURE-REGION is the region you deploy the Tanzu Application Platform to.

VERSION-NUMBER is your Tanzu Application Platform version. For example, 1.5.12

2. Install the Carvel tool imgpkg CLI.

3. Relocate the images with the imgpkg CLI by running:

imgpkg copy --concurrency 1 -b ${IMGPKG_REGISTRY_HOSTNAME_0}/tanzu-application-

platform/tap-packages:${TAP_VERSION} --to-repo ${INSTALL_REGISTRY_HOSTNAME}/${I

NSTALL_REPO}

Tanzu Application Platform v1.5

VMware by Broadcom 282

https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.5/cluster-essentials/deploy.html
https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.5/cluster-essentials/deploy.html#optionally-install-clis-onto-your-path

4. Create a namespace called tap-install for deploying any component packages by running:

kubectl create ns tap-install

This namespace keeps the objects grouped together logically.

5. Export the VMware Tanzu Network registry by running:

export INSTALL_REPO=tanzu-application-platform/tap-packages

6. Create registry secret for the VMware Tanzu Network registry by running:

tanzu secret registry add tap-registry \

--username ${INSTALL_REGISTRY_USERNAME} --password ${INSTALL_REGISTRY_PASSWORD}

\

--server ${INSTALL_REGISTRY_HOSTNAME} \

--export-to-all-namespaces --yes --namespace tap-install

tanzu secret registry list --namespace tap-install

7. Add the Tanzu Application Platform package repository to the cluster by running:

tanzu package repository add tanzu-tap-repository \

 --url ${INSTALL_REGISTRY_HOSTNAME}/full-deps-package-repo

 --namespace tap-install

8. Get the status of the Tanzu Application Platform package repository, and ensure the status
updates to Reconcile succeeded by running:

tanzu package repository get tanzu-tap-repository --namespace tap-install

For example:

$ tanzu package repository get tanzu-tap-repository --namespace tap-install

- Retrieving repository tap...

NAME: tanzu-tap-repository

VERSION: 16253001

REPOSITORY: 123456789012.dkr.acr.us-east.azure.com/tap-images

TAG: 1.5.12

STATUS: Reconcile succeeded

REASON:

9. List the available packages by running:

tanzu package available list --namespace tap-install

For example:

$ tanzu package available list --namespace tap-install

/ Retrieving available packages...

 NAME DISPLAY-NAME

SHORT-DESCRIPTION

 accelerator.apps.tanzu.vmware.com Application Accelerator

for VMware Tanzu Used to create new projects a

nd configurations.

Note

The VERSION and TAG numbers differ from the earlier example if you are on
Tanzu Application Platform v1.0.2 or earlier.

Tanzu Application Platform v1.5

VMware by Broadcom 283

 api-portal.tanzu.vmware.com API portal

A unified user interface for API discovery and exploration at scale.

 apis.apps.tanzu.vmware.com API Auto Registration fo

r VMware Tanzu A TAP component to automatica

lly register API exposing workloads as API entities

in TAP GUI.

 backend.appliveview.tanzu.vmware.com Application Live View fo

r VMware Tanzu App for monitoring and troubl

eshooting running apps

 buildservice.tanzu.vmware.com Tanzu Build Service

Tanzu Build Service enables the building and automation of containerized

software workflows securely and at scale.

 carbonblack.scanning.apps.tanzu.vmware.com VMware Carbon Black for

Supply Chain Security Tools - Scan Default scan templates using

VMware Carbon Black

 cartographer.tanzu.vmware.com Cartographer

Kubernetes native Supply Chain Choreographer.

 cnrs.tanzu.vmware.com Cloud Native Runtimes

Cloud Native Runtimes is a serverless runtime based on Knative

 connector.appliveview.tanzu.vmware.com Application Live View Co

nnector for VMware Tanzu App for discovering and regis

tering running apps

 controller.source.apps.tanzu.vmware.com Tanzu Source Controller

Tanzu Source Controller enables workload create/update from source code.

 conventions.appliveview.tanzu.vmware.com Application Live View Co

nventions for VMware Tanzu Application Live View convent

ion server

 developer-conventions.tanzu.vmware.com Tanzu App Platform Devel

oper Conventions Developer Conventions

 eventing.tanzu.vmware.com Eventing

Eventing is an event-driven architecture platform based on Knative Eventing

 external-secrets.apps.tanzu.vmware.com External Secrets Operato

r External Secrets Operator is

a Kubernetes operator that integrates external

secret management systems.

 fluxcd.source.controller.tanzu.vmware.com Flux Source Controller

The source-controller is a Kubernetes operator, specialised in artifacts

acquisition from external sources such as Git, Helm repositories and S3 bucket

s.

 grype.scanning.apps.tanzu.vmware.com Grype for Supply Chain S

ecurity Tools - Scan Default scan templates using

Anchore Grype

 learningcenter.tanzu.vmware.com Learning Center for Tanz

u Application Platform Guided technical workshops

 metadata-store.apps.tanzu.vmware.com Supply Chain Security To

ols - Store Post SBoMs and query for imag

e, package, and vulnerability metadata.

 namespace-provisioner.apps.tanzu.vmware.com Namespace Provisioner

Automatic Provisioning of Developer Namespaces.

 ootb-delivery-basic.tanzu.vmware.com Tanzu App Platform Out o

f The Box Delivery Basic Out of The Box Delivery Basi

c.

 ootb-supply-chain-basic.tanzu.vmware.com Tanzu App Platform Out o

f The Box Supply Chain Basic Out of The Box Supply Chain B

asic.

 ootb-supply-chain-testing-scanning.tanzu.vmware.com Tanzu App Platform Out o

f The Box Supply Chain with Testing and Scanning Out of The Box Supply Chain w

ith Testing and Scanning.

 ootb-supply-chain-testing.tanzu.vmware.com Tanzu App Platform Out o

f The Box Supply Chain with Testing Out of The Box Supply Chain w

ith Testing.

 ootb-templates.tanzu.vmware.com Tanzu App Platform Out o

Tanzu Application Platform v1.5

VMware by Broadcom 284

f The Box Templates Out of The Box Templates.

 policy.apps.tanzu.vmware.com Supply Chain Security To

ols - Policy Controller Policy Controller enables def

ining of a policy to restrict unsigned container

images.

 scanning.apps.tanzu.vmware.com Supply Chain Security To

ols - Scan Scan for vulnerabilities and

enforce policies directly within Kubernetes native

Supply Chains.

 service-bindings.labs.vmware.com Service Bindings for Kub

ernetes Service Bindings for Kubernet

es implements the Service Binding Specification.

 services-toolkit.tanzu.vmware.com Services Toolkit

The Services Toolkit enables the management, lifecycle, discoverability and

connectivity of Service Resources (databases, message queues, DNS records,

etc.).

 snyk.scanning.apps.tanzu.vmware.com Snyk for Supply Chain Se

curity Tools - Scan Default scan templates using

Snyk

 spring-boot-conventions.tanzu.vmware.com Tanzu Spring Boot Conven

tions Server Default Spring Boot conventio

n server.

 sso.apps.tanzu.vmware.com AppSSO

Application Single Sign-On for Tanzu

 tap-auth.tanzu.vmware.com Default roles for Tanzu

Application Platform Default roles for Tanzu Appli

cation Platform

 tap-gui.tanzu.vmware.com Tanzu Application Platfo

rm GUI web app graphical user interf

ace for Tanzu Application Platform

 tap-telemetry.tanzu.vmware.com Telemetry Collector for

Tanzu Application Platform Tanzu Application Platform Te

lemetry

 tap.tanzu.vmware.com Tanzu Application Platfo

rm Package to install a set of T

AP components to get you started based on your use

case.

 tekton.tanzu.vmware.com Tekton Pipelines

Tekton Pipelines is a framework for creating CI/CD systems.

 workshops.learningcenter.tanzu.vmware.com Workshop Building Tutori

al Workshop Building Tutorial

Install your Tanzu Application Platform profile

The tap.tanzu.vmware.com package installs predefined sets of packages based on your profile
settings by using the package manager installed by Tanzu Cluster Essentials. For more information
about profiles, see Components and installation profiles.

To create a registry secret and add it to a developer namespace:

export KP_REGISTRY_USERNAME=YOUR-USERNAME

export KP_REGISTRY_PASSWORD=YOUR-PASSWORD

export KP_REGISTRY_HOSTNAME=YOUR-HOSTNAME

echo $KP_REGISTRY_USERNAME

echo $KP_REGISTRY_PASSWORD

echo $KP_REGISTRY_HOSTNAME

docker login $KP_REGISTRY_HOSTNAME -u $KP_REGISTRY_USERNAME -p $KP_REGISTRY_PASSWORD

Tanzu Application Platform v1.5

VMware by Broadcom 285

export YOUR_NAMESPACE=mydev-ns

echo $YOUR_NAMESPACE

kubectl create ns $YOUR_NAMESPACE

tanzu secret registry add registry-credentials --server $KP_REGISTRY_HOSTNAME --userna

me $KP_REGISTRY_USERNAME --password $KP_REGISTRY_PASSWORD --namespace $YOUR_NAMESPACE

kubectl get secret registry-credentials -o jsonpath='{.data.\.dockerconfigjson}' -n

$YOUR_NAMESPACE| base64 --decode

To prepare to install a profile:

1. List version information for the package by running:

tanzu package available list tap.tanzu.vmware.com --namespace tap-install

2. Create a tap-values.yaml file by using the Full Profile (Azure), which contains the minimum
configurations required to deploy Tanzu Application Platform on Azure. The sample values
file contains the necessary defaults for:

The meta-package, or parent Tanzu Application Platform package.

Subordinate packages, or individual child packages.

Keep the values file for future configuration use.

3. View possible configuration settings for your package

Full profile (Azure)

The following is the YAML file sample for the full-profile on Azure by using the ACR repositories
you created earlier. The profile: field takes full as the default value, but you can also set it to
iterate, build, run, or view. See Install multicluster Tanzu Application Platform profiles for more
information.

cat << EOF > tap-values.yaml

ceip_policy_disclosed: true

profile: full # Can take iterate, build, run, view.

supply_chain: basic # Can take testing, testing_scanning.

ootb_templates:

 iaas_auth: true

ootb_supply_chain_basic:

 registry:

 server: ${KP_REGISTRY_HOSTNAME}

 repository: ${INSTALL_REPO}

 gitops:

 ssh_secret: ""

contour:

 envoy:

 service:

Note

tap-values.yaml is set as a Kubernetes secret, which provides secure
means to read credentials for Tanzu Application Platform components.

Tanzu Application Platform v1.5

VMware by Broadcom 286

 type: LoadBalancer

buildservice:

 kp_default_repository: ${KP_REGISTRY_HOSTNAME}

 kp_default_repository_secret:

 name: registry-credentials

 namespace: "MY-DEV-NAMESPACE"

 enable_automatic_dependency_updates: false

learningcenter:

 ingressDomain: learning-center.tap.com

ootb_delivery_basic:

 service_account: default

tap_gui:

 ingressEnabled: true

 ingressDomain: tap.com

 app_config:

 supplyChain:

 enablePlugin: true

 auth:

 allowGuestAccess: true

 backend:

 baseUrl: http://tap-gui.tap.com

 cors:

 origin: http://tap-gui.tap.com

 app:

 baseUrl: http://tap-gui.tap.com

metadata_store:

 ingressEnabled: true

 ingressDomain: "INGRESS-DOMAIN"

 app_service_type: ClusterIP

 ns_for_export_app_cert: "MY-DEV-NAMESPACE"

scanning:

 metadataStore:

 url: "" # Configuration is moved, so set this string to empty.

accelerator:

 server:

 service_type: "ClusterIP"

cnrs:

 domain_name: tap.com

EOF

Where:

INGRESS-DOMAIN is the subdomain for the host name that you point at the tanzu-shared-
ingress service’s External IP address.

GIT-CATALOG-URL is the path to the catalog-info.yaml catalog definition file. You can
download either a blank or populated catalog file from the Tanzu Application Platform
product page. Otherwise, you can use a Backstage-compliant catalog that was built and
posted on the Git infrastructure.

MY-DEV-NAMESPACE is the name of the developer namespace. SCST - Store exports secrets
to the namespace, and SCST - Scan deploys the ScanTemplates there. This allows the
scanning feature to run in this namespace. If there are multiple developer namespaces, use
ns_for_export_app_cert: "*" to export the SCST - Store CA certificate to all namespaces.

TARGET-REGISTRY-CREDENTIALS-SECRET is the name of the secret that contains the
credentials to pull an image from the registry for scanning.

Tanzu Application Platform v1.5

VMware by Broadcom 287

https://network.tanzu.vmware.com/products/tanzu-application-platform/#/releases/1239018

(Optional) Additional Build Service configurations

The following tasks are optional during the Tanzu Application Platform installation process:

(Optional) Configure your profile with full dependencies

(Optional) Configure your profile with the Jammy stack only

(Optional) Configure your profile with full dependencies

When you install a profile that includes Tanzu Build Service, Tanzu Application Platform is installed
with the lite set of dependencies. These dependencies consist of buildpacks and stacks required
for application builds.

The lite set of dependencies do not contain all buildpacks and stacks. To use all buildpacks and
stacks, you must install the full dependencies. For more information about the differences
between lite and full dependencies, see About lite and full dependencies.

To configure full dependencies, add the key-value pair exclude_dependencies: true to your tap-
values.yaml file under the buildservice section. For example:

buildservice:

 kp_default_repository: "KP-DEFAULT-REPO"

 kp_default_repository_secret: # Takes the value from the shared section by default,

but can be overridden by setting a different value.

 name: "KP-DEFAULT-REPO-SECRET"

 namespace: "KP-DEFAULT-REPO-SECRET-NAMESPACE"

 exclude_dependencies: true

After configuring full dependencies, you must install the dependencies after you have finished
installing your Tanzu Application Platform package. See Install the full dependencies package for
more information.

(Optional) Configure your profile with the Jammy stack only

Tanzu Application Platform v1.5.0 supports building applications with both the Ubuntu v22.04
(Jammy) and v18.04 (Bionic) stack. For more information, see Bionic and Jammy stacks.

To install Tanzu Application Platform with Jammy as the only available stack, include the
stack_configuration: jammy-only field under the buildservice: section in tap-values.yaml.

Install your Tanzu Application Platform package

Follow these steps to install the Tanzu Application Platform package:

1. Install the package by running:

tanzu package install tap -p tap.tanzu.vmware.com -v $TAP_VERSION --values-file

tap-values.yaml -n tap-install

2. Verify the package install by running:

tanzu package installed get tap -n tap-install

This can take 5-10 minutes because it installs several packages on your cluster.

3. Verify that the necessary packages in the profile are installed by running:

tanzu package installed list -A

Tanzu Application Platform v1.5

VMware by Broadcom 288

https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-index.html
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-stacks.html

4. If you configured full dependencies in your tbs-values.yaml file, install the full
dependencies by following the procedure in Install full dependencies.

After installing the Full profile on your cluster, you can install the Tanzu Developer Tools for VS
Code Extension to help you develop against it. For more information, see Install Tanzu Developer
Tools for your VS Code.

Install the full dependencies package

If you configured full dependencies in your tap-values.yaml file in Configure your profile with full
dependencies earlier, you must install the full dependencies package.

For more information about the differences between lite and full dependencies, see About lite
and full dependencies.

To install the full dependencies package:

1. If you have not done so already, add the key-value pair exclude_dependencies: true to
your tap-values.yaml file under the buildservice section. For example:

buildservice:

 kp_default_repository: ${KP_REGISTRY_HOSTNAME}.azurecr.io/{$REPOSITORY_NAME}

 exclude_dependencies: true

...

2. Get the latest version of the buildservice package by running:

tanzu package available list buildservice.tanzu.vmware.com --namespace tap-inst

all

3. Relocate the Tanzu Build Service full dependencies package repository by running:

imgpkg copy -b registry.tanzu.vmware.com/tanzu-application-platform/full-tbs-de

ps-package-repo:VERSION \

 --to-repo ${INSTALL_REGISTRY_HOSTNAME}/tbs-full-deps

Where VERSION is the version of the buildservice package you retrieved in the previous
step.

4. Add the Tanzu Build Service full dependencies package repository by running:

tanzu package repository add tbs-full-deps-repository \

 --url ${INSTALL_REGISTRY_HOSTNAME}/${INSTALL_REPO}/tbs-full-deps:VERSION \

 --namespace tap-install

Where VERSION is the version of the tap package you retrieved earlier.

5. Install the full dependencies package by running:

tanzu package install full-tbs-deps -p full-tbs-deps.tanzu.vmware.com -v VERSIO

N -n tap-install

Where VERSION is the version of the buildservice package you retrieved earlier.

Access Tanzu Application Platform GUI
To access Tanzu Application Platform GUI, you can use the host name that you configured earlier.
This host name is pointed at the shared ingress. To configure LoadBalancer for Tanzu Application
Platform GUI, see Access Tanzu Application Platform GUI.

Tanzu Application Platform v1.5

VMware by Broadcom 289

You’re now ready to start using Tanzu Application Platform GUI. Proceed to the Getting Started
topic or the Tanzu Application Platform GUI - Catalog Operations topic.

Next steps

(Optional) Install Individual Packages

Set up developer namespaces to use your installed packages

View possible configuration settings for your package

To view possible configuration settings for a package, run:

tanzu package available get tap.tanzu.vmware.com/$TAP_VERSION --values-schema --namesp

ace tap-install

profile: full

Shared configurations go under the shared key.

shared:

 ingress_domain: tap.example.com

...

For example, CNRs specific values go under its name.

cnrs:

 provider: local

For example, App Accelerator specific values go under its name.

accelerator:

 server:

 service_type: "ClusterIP"

Shared Keys define values that configure multiple packages. These keys are defined under the
shared Top-level Key, as summarized in the following table:

Shared Key Description Optional

ca_cert_data PEM-encoded certificate data to trust TLS connections with a private CA. This
shared key is used by convention_controller, scanning and source_controller

Yes

ingress_domain Domain name to be used in service routes and host names for instances of Tanzu
Application Platform components.

Yes

ingress_issuer A cert-manager.io/v1/ClusterIssuer for issuing TLS certificates to Tanzu
Application Platform components. Default value: tap-ingress-selfsigned

Yes

Note

The tap.tanzu.vmware.com package does not show all configuration settings for
packages it plans to install. The package only shows top-level keys. You can view
individual package configuration settings with the same tanzu package available
get command. For example, to find the keys for Cloud Native Runtimes, you must
first identify the version of the package with tanzu package installed list -n
tap-install, which lists all the installed packages versions. Then run the command
tanzu package available get -n tap-install cnrs.tanzu.vmware.com/CNRS-

VERSION --values-schema by using the package version listed for Cloud Native
Runtimes.

Tanzu Application Platform v1.5

VMware by Broadcom 290

Shared Key Description Optional

kubernetes_distrib

ution

Type of Kubernetes infrastructure being used. You can use this shared key in
coordination with the kubernetes_version key. Supported value: openshift.

Yes

kubernetes_version Kubernetes version. You can use this shared key independently or in coordination
with the kubernetes_distribution key. Supported value: 1.24.x, where x stands
for the Kubernetes patch version.

Yes

image_registry.pro

ject_path

Project path in the container image registry server used for builder and application
images.

Yes

image_registry.use

rname

User name for the container image registry. Mutually exclusive with
shared.image_registry.secret.name/namespace

Yes

image_registry.pas

sword

Password for the container image registry. Mutually exclusive with
shared.image_registry.secret.name/namespace

Yes

secret.name Secret name for the container image registry credentials of type
kubernetes.io/dockerconfigjson. Mutually exclusive with
shared.image_registry.username/password

Yes

secret.namespace Secret namespace for the container image registry credentials. Mutually exclusive
with shared.image_registry.username/password

Yes

activateAppLiveVie

wSecureAccessContr

ol

Enable secure access connection between Application Live View components. Yes

The following table summarizes the top-level keys used for package-specific configuration within
your tap-values.yaml.

Package Top-level Key

See table above. shared

API Auto Registration api_auto_registration

API portal api_portal

Application Accelerator accelerator

Application Live View appliveview

Application Live View connector appliveview_connector

Application Live View conventions appliveview-conventions

Cartographer cartographer

Cloud Native Runtimes cnrs

Source Controller source_controller

Supply Chain supply_chain

Supply Chain Basic ootb_supply_chain_basic

Supply Chain Testing ootb_supply_chain_testing

Supply Chain Testing Scanning ootb_supply_chain_testing_scanning

Supply Chain Security Tools - Scan scanning

Supply Chain Security Tools - Scan (Grype Scanner) grype

Supply Chain Security Tools - Store metadata_store

Build Service buildservice

Tanzu Application Platform v1.5

VMware by Broadcom 291

Package Top-level Key

Tanzu Application Platform GUI tap_gui

Learning Center learningcenter

For information about package-specific configuration, see Install individual packages.

Install individual packages

You can install Tanzu Application Platform (commonly known as TAP) through predefined profiles or
through individual packages. Use this topic to learn how to install each individual package. For more
information about installing through profiles, see Components and installation profiles.

Installing individual Tanzu Application Platform packages is useful if you do not want to use a profile
to install packages or if you want to install additional packages after installing a profile. Before
installing the packages, be sure to complete the prerequisites, configure and verify the cluster,
accept the EULA, and install the Tanzu CLI with any required plug-ins. For more information, see
Prerequisites.

Install pages for individual Tanzu Application Platform
packages

Install API Auto Registration

Install API portal

Install Application Accelerator

Install Application Configuration Service

Install Application Live View

Install Application Single Sign-On

Install Bitnami Services

Install cert-manager

Install Cloud Native Runtimes

Install Contour

Install Crossplane

Install default roles for Tanzu Application Platform

Install Developer Conventions

Install Eventing

Install Flux CD Source Controller

Install Learning Center for Tanzu Application Platform

Install Out of the Box Templates

Install Out of the Box Supply Chain with Testing

Install Out of the Box Supply Chain with Testing and Scanning

Install Service Bindings

Install Services Toolkit

Install Source Controller

Install Spring Boot conventions

Tanzu Application Platform v1.5

VMware by Broadcom 292

Install Supply Chain Choreographer

Install Supply Chain Security Tools - Store

Install Supply Chain Security Tools - Policy Controller

Install Supply Chain Security Tools - Scan

Install Tanzu Application Platform GUI

Install Tanzu Build Service

Install Tekton

Install Telemetry

Verify the installed packages

Use the following procedure to verify that the packages are installed.

1. List the installed packages by running:

tanzu package installed list --namespace tap-install

For example:

$ tanzu package installed list --namespace tap-install

\ Retrieving installed packages...

NAME PACKAGE-NAME PAC

KAGE-VERSION STATUS

api-portal api-portal.tanzu.vmware.com 1.

0.3 Reconcile succeeded

app-accelerator accelerator.apps.tanzu.vmware.com 1.

0.0 Reconcile succeeded

app-live-view appliveview.tanzu.vmware.com 1.

0.2 Reconcile succeeded

appliveview-conventions build.appliveview.tanzu.vmware.com 1.

0.2 Reconcile succeeded

cartographer cartographer.tanzu.vmware.com 0.

1.0 Reconcile succeeded

cloud-native-runtimes cnrs.tanzu.vmware.com 1.

0.3 Reconcile succeeded

convention-controller controller.conventions.apps.tanzu.vmware.com 0.

7.0 Reconcile succeeded

developer-conventions developer-conventions.tanzu.vmware.com 0.

3.0-build.1 Reconcile succeeded

grype-scanner grype.scanning.apps.tanzu.vmware.com 1.

0.0 Reconcile succeeded

image-policy-webhook image-policy-webhook.signing.apps.tanzu.vmware.com 1.

1.2 Reconcile succeeded

metadata-store metadata-store.apps.tanzu.vmware.com 1.

0.2 Reconcile succeeded

ootb-supply-chain-basic ootb-supply-chain-basic.tanzu.vmware.com 0.

5.1 Reconcile succeeded

ootb-templates ootb-templates.tanzu.vmware.com 0.

5.1 Reconcile succeeded

scan-controller scanning.apps.tanzu.vmware.com 1.

0.0 Reconcile succeeded

service-bindings service-bindings.labs.vmware.com 0.

5.0 Reconcile succeeded

services-toolkit services-toolkit.tanzu.vmware.com 0.

8.0 Reconcile succeeded

source-controller controller.source.apps.tanzu.vmware.com 0.

2.0 Reconcile succeeded

sso4k8s-install sso.apps.tanzu.vmware.com 1.

0.0-beta.2-31 Reconcile succeeded

Tanzu Application Platform v1.5

VMware by Broadcom 293

tap-gui tap-gui.tanzu.vmware.com 0.

3.0-rc.4 Reconcile succeeded

tekton-pipelines tekton.tanzu.vmware.com 0.3

0.0 Reconcile succeeded

tbs buildservice.tanzu.vmware.com 1.

5.0 Reconcile succeeded

Next steps

Set up developer namespaces to use your installed packages

Set up developer namespaces to use your installed
packages
This topic tells you how to set up developer namespaces by using the legacy manual process. For
more information about how to automatically set up your developer namespaces, see Namespace
Provisioner.

Additional configuration for testing and scanning
If you plan to install or have already installed Out of the Box Supply Chains with Testing and
Scanning, you can use Namespace Provisioner to set up the required resources. For more
information, see Customize installation in the Namespace Provisioner documentation for
configuration steps.

Legacy namespace setup
You can choose either one of the following two approaches to create a Workload for your
application by using the registry credentials specified, add credentials and Role-Based Access
Control (RBAC) rules to the namespace that you plan to create the Workload in:

Enable single user access.

Enable additional users access with Kubernetes RBAC.

Enable single user access

Run the following command to add secrets, a service account to execute the supply chain, and
RBAC rules to authorize the service account to the developer namespace:

cat <<EOF | kubectl -n YOUR-NAMESPACE apply -f -

apiVersion: v1

kind: Secret

metadata:

 name: tap-registry

 annotations:

 secretgen.carvel.dev/image-pull-secret: ""

type: kubernetes.io/dockerconfigjson

data:

 .dockerconfigjson: e30K

apiVersion: v1

kind: ServiceAccount

metadata:

 name: default

secrets:

 - name: registry-credentials

imagePullSecrets:

Tanzu Application Platform v1.5

VMware by Broadcom 294

 - name: registry-credentials

 - name: tap-registry

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 name: default

rules:

- apiGroups: [source.toolkit.fluxcd.io]

 resources: [gitrepositories]

 verbs: ['*']

- apiGroups: [source.apps.tanzu.vmware.com]

 resources: [imagerepositories]

 verbs: ['*']

- apiGroups: [carto.run]

 resources: [deliverables, runnables]

 verbs: ['*']

- apiGroups: [kpack.io]

 resources: [images]

 verbs: ['*']

- apiGroups: [conventions.apps.tanzu.vmware.com]

 resources: [podintents]

 verbs: ['*']

- apiGroups: [""]

 resources: ['configmaps']

 verbs: ['*']

- apiGroups: [""]

 resources: ['pods']

 verbs: ['list']

- apiGroups: [tekton.dev]

 resources: [taskruns, pipelineruns]

 verbs: ['*']

- apiGroups: [tekton.dev]

 resources: [pipelines]

 verbs: ['list']

- apiGroups: [kappctrl.k14s.io]

 resources: [apps]

 verbs: ['*']

- apiGroups: [serving.knative.dev]

 resources: ['services']

 verbs: ['*']

- apiGroups: [servicebinding.io]

 resources: ['servicebindings']

 verbs: ['*']

- apiGroups: [services.apps.tanzu.vmware.com]

 resources: ['resourceclaims']

 verbs: ['*']

- apiGroups: [scanning.apps.tanzu.vmware.com]

 resources: ['imagescans', 'sourcescans']

 verbs: ['*']

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: default

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: Role

 name: default

subjects:

 - kind: ServiceAccount

 name: default

Where YOUR-NAMESPACE is your developer namespace.

Tanzu Application Platform v1.5

VMware by Broadcom 295

Enable additional users access with Kubernetes RBAC

Follow these steps to enable additional users by using Kubernetes RBAC to submit jobs to the
Supply Chain:

1. Enable single user access.

2. Choose either of the following options to give developers namespace-level access and view
access to appropriate cluster-level resources:

Option 1: Use the Tanzu Application Platform RBAC CLI plug-in (beta).

To use the tanzu rbac plug-in to grant app-viewer and app-editor roles to an
identity provider group, run:

tanzu rbac binding add -g GROUP-FOR-APP-VIEWER -n YOUR-NAMESPACE -r app-v

iewer

tanzu rbac binding add -g GROUP-FOR-APP-EDITOR -n YOUR-NAMESPACE -r app-e

ditor

Where:

YOUR-NAMESPACE is the name you give to the developer namespace.

GROUP-FOR-APP-VIEWER is the user group from the upstream identity provider
that requires access to app-viewer resources on the current namespace and
cluster.

GROUP-FOR-APP-EDITOR is the user group from the upstream identity provider
that requires access to app-editor resources on the current namespace and
cluster.

For more information about tanzu rbac, see Bind a user or group to a default role.

VMware recommends creating a user group in your identity provider’s grouping
system for each developer namespace and then adding the users accordingly.

Depending on your identity provider, you might need to take further action to
federate user groups appropriately with your cluster. For an example of how to set
up Azure Active Directory (AD) with your cluster, see Integrating Azure Active
Directory.

Option 2: Use the native Kubernetes YAML.

To apply the RBAC policy, run:

cat <<EOF | kubectl -n YOUR-NAMESPACE apply -f -

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: dev-permit-app-viewer

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: app-viewer

subjects:

 - kind: Group

 name: GROUP-FOR-APP-VIEWER

 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: YOUR-NAMESPACE-permit-app-viewer

roleRef:

Tanzu Application Platform v1.5

VMware by Broadcom 296

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: app-viewer-cluster-access

subjects:

 - kind: Group

 name: GROUP-FOR-APP-VIEWER

 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: dev-permit-app-editor

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: app-editor

subjects:

 - kind: Group

 name: GROUP-FOR-APP-EDITOR

 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: YOUR-NAMESPACE-permit-app-editor

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: app-editor-cluster-access

subjects:

 - kind: Group

 name: GROUP-FOR-APP-EDITOR

 apiGroup: rbac.authorization.k8s.io

EOF

Where:

YOUR-NAMESPACE is the name you give to the developer namespace.

GROUP-FOR-APP-VIEWER is the user group from the upstream identity provider
that requires access to app-viewer resources on the current namespace and
cluster.

GROUP-FOR-APP-EDITOR is the user group from the upstream identity provider
that requires access to app-editor resources on the current namespace and
cluster.

VMware recommends creating a user group in your identity provider’s grouping
system for each developer namespace and then adding the users accordingly.

Depending on your identity provider, you might need to take further action to
federate user groups appropriately with your cluster. For an example of how to set
up Azure Active Directory (AD) with your cluster, see Integrating Azure Active
Directory.

Rather than granting roles directly to individuals, VMware recommends using your
identity provider’s user groups system to grant access to a group of developers. For
an example of how to set up Azure AD with your cluster, see Integrating Azure
Active Directory.

3. (Optional) Log in as a non-admin user, such as a developer, to see the effects of RBAC after
the bindings are applied.

Next steps

Tanzu Application Platform v1.5

VMware by Broadcom 297

Install Tanzu Developer Tools for your VS Code

Install Tanzu Developer Tools for your VS Code

This topic tells you how to install VMware Tanzu Developer Tools for Visual Studio Code (VS Code).

Prerequisites

Before installing the extension, you must have:

VS Code

kubectl

Tilt v0.30.12 or later

Tanzu CLI and plug-ins

A cluster with the Tanzu Application Platform Full profile or Iterate profile

If you are an app developer, someone else in your organization might have already set up the
Tanzu Application Platform environment.

Docker Desktop and local Kubernetes are not prerequisites for using Tanzu Developer Tools for VS
Code.

Install

To install the extension:

1. Sign in to VMware Tanzu Network and download Tanzu Developer Tools for Visual Studio
Code.

2. Open VS Code.

3. Press cmd+shift+P to open the Command Palette and run Extensions: Install from
VSIX....

4. Select the extension file tanzu-vscode-extension.vsix.

5. If you do not have the following extensions, and they do not automatically install, install
them from VS Code Marketplace:

Debugger for Java

Language Support for Java(™) by Red Hat

YAML

6. Ensure Language Support for Java is running in Standard Mode. You can configure it in the
Settings menu by going to Code > Preferences > Settings under Java > Server: Launch
Mode.

Tanzu Application Platform v1.5

VMware by Broadcom 298

https://code.visualstudio.com/download
https://kubernetes.io/docs/tasks/tools/#kubectl
https://docs.tilt.dev/install.html
https://network.tanzu.vmware.com/products/tanzu-application-platform
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-debug
https://marketplace.visualstudio.com/items?itemName=redhat.java
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-yaml
https://code.visualstudio.com/docs/java/java-project#_lightweight-mode

When the JDK and Language Support for Java are configured correctly, you see that the
integrated development environment creates a directory target where the code is
compiled.

Configure
To configure VMware Tanzu Developer Tools for VS Code:

1. Ensure that you are targeting the correct cluster. For more information, see the
Kubernetes documentation.

2. Go to Code > Preferences > Settings > Extensions > Tanzu Developer Tools and set the
following:

Confirm Delete: This controls whether the extension asks for confirmation when
deleting a workload.

Enable Live Hover: For more information, see Integrating Live Hover by using
Spring Boot Tools. Reload VS Code for this change to take effect.

Source Image: (Required) The registry location for publishing local source code. For
example, registry.io/yourapp-source. This must include both a registry and a
project name.

Local Path: (Optional) The path on the local file system to a directory of source
code to build. This is the current directory by default.

Namespace: (Optional) This is the namespace that workloads are deployed into.
The namespace set in kubeconfig is the default.

Uninstall
To uninstall VMware Tanzu Developer Tools for VS Code:

1. Go to Code > Preferences > Settings > Extensions.

2. Right-click the extension and select Uninstall.

Next steps
Proceed to Getting started with Tanzu Developer Tools for Visual Studio Code.

Install Tanzu Application Platform (OpenShift)
To install Tanzu Application Platform (commonly known as TAP) on your OpenShift clusters with
internet access:

Tanzu Application Platform v1.5

VMware by Broadcom 299

https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/

Step Task Link

1. Review the prerequisites to ensure you have met all requirements before
installing.

Prerequisites

2. Accept Tanzu Application Platform EULAs and install the Tanzu CLI. Accept Tanzu Application Platform
EULAs and installing the Tanzu CLI

3. Install Cluster Essentials for Tanzu. Deploy Cluster Essentials

4. Add the Tanzu Application Platform package repository, prepare your
Tanzu Application Platform profile, and install the profile to the cluster.

Install the Tanzu Application
Platform package and profiles

5. (Optional) Install any additional packages that were not in the profile. Install individual packages

6. Set up developer namespaces to use your installed packages. Set up developer namespaces to use
your installed packages

7. Install developer tools into your integrated development environment
(IDE).

Install Tanzu Developer Tools for
your VS Code

After installing Tanzu Application Platform on to your OpenShift clusters, proceed with Get started
with Tanzu Application Platform.

Install Tanzu Application Platform (OpenShift)

To install Tanzu Application Platform (commonly known as TAP) on your OpenShift clusters with
internet access:

Step Task Link

1. Review the prerequisites to ensure you have met all requirements before
installing.

Prerequisites

2. Accept Tanzu Application Platform EULAs and install the Tanzu CLI. Accept Tanzu Application Platform
EULAs and installing the Tanzu CLI

3. Install Cluster Essentials for Tanzu. Deploy Cluster Essentials

4. Add the Tanzu Application Platform package repository, prepare your
Tanzu Application Platform profile, and install the profile to the cluster.

Install the Tanzu Application
Platform package and profiles

5. (Optional) Install any additional packages that were not in the profile. Install individual packages

6. Set up developer namespaces to use your installed packages. Set up developer namespaces to use
your installed packages

7. Install developer tools into your integrated development environment
(IDE).

Install Tanzu Developer Tools for
your VS Code

After installing Tanzu Application Platform on to your OpenShift clusters, proceed with Get started
with Tanzu Application Platform.

Install Tanzu Application Platform on your OpenShift
clusters
This topic tells you how to install Tanzu Application Platform (commonly known as TAP) packages
on your OpenShift clusters.

Before installing the packages, ensure you have:

Completed the Prerequisites.

Configured and verified the cluster.

Tanzu Application Platform v1.5

VMware by Broadcom 300

https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.5/cluster-essentials/deploy.html
https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.5/cluster-essentials/deploy.html

Accepted Tanzu Application Platform EULA and installed Tanzu CLI with any required plug-
ins.

Relocate images to a registry

VMware recommends relocating the images from VMware Tanzu Network registry to your own
container image registry before attempting installation. If you don’t relocate the images, Tanzu
Application Platform will depend on VMware Tanzu Network for continued operation, and VMware
Tanzu Network offers no uptime guarantees. The option to skip relocation is documented for
evaluation and proof-of-concept only.

The supported registries are Harbor, Azure Container Registry, Google Container Registry, and
Quay.io. See the following documentation for a registry to learn how to set it up:

Harbor documentation

Google Container Registry documentation

Quay.io documentation

To relocate images from the VMware Tanzu Network registry to your registry:

1. Set up environment variables for installation use by running:

export IMGPKG_REGISTRY_HOSTNAME_0=registry.tanzu.vmware.com

export IMGPKG_REGISTRY_USERNAME_0=MY-TANZUNET-USERNAME

export IMGPKG_REGISTRY_PASSWORD_0=MY-TANZUNET-PASSWORD

export IMGPKG_REGISTRY_HOSTNAME_1=MY-REGISTRY

export IMGPKG_REGISTRY_USERNAME_1=MY-REGISTRY-USER

export IMGPKG_REGISTRY_PASSWORD_1=MY-REGISTRY-PASSWORD

export INSTALL_REGISTRY_USERNAME="${IMGPKG_REGISTRY_USERNAME_1}"

export INSTALL_REGISTRY_PASSWORD="${IMGPKG_REGISTRY_PASSWORD_1}"

export INSTALL_REGISTRY_HOSTNAME=MY-REGISTRY

export TAP_VERSION=VERSION-NUMBER

export INSTALL_REPO=TARGET-REPOSITORY

Where:

MY-REGISTRY-USER is the user with write access to MY-REGISTRY.

MY-REGISTRY-PASSWORD is the password for MY-REGISTRY-USER.

MY-REGISTRY is your own container registry.

MY-TANZUNET-USERNAME is the user with access to the images in the VMware Tanzu
Network registry registry.tanzu.vmware.com

MY-TANZUNET-PASSWORD is the password for MY-TANZUNET-USERNAME.

VERSION-NUMBER is your Tanzu Application Platform version. For example, 1.5.12.

TARGET-REPOSITORY is your target repository, a folder/repository on MY-REGISTRY that
serves as the location for the installation files for Tanzu Application Platform.

2. Install the Carvel tool imgpkg CLI.

3. Relocate the images with the imgpkg CLI by running:

imgpkg copy -b registry.tanzu.vmware.com/tanzu-application-platform/tap-package

s:${TAP_VERSION} --to-repo ${INSTALL_REGISTRY_HOSTNAME}/${INSTALL_REPO}/tap-pac

kages

4. Create a namespace called tap-install for deploying any component packages by running:

kubectl create ns tap-install

Tanzu Application Platform v1.5

VMware by Broadcom 301

https://goharbor.io/docs/2.5.0/
https://cloud.google.com/container-registry/docs
https://docs.projectquay.io/welcome.html
https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.5/cluster-essentials/deploy.html#optionally-install-clis-onto-your-path

This namespace keeps the objects grouped together logically.

5. Create a registry secret by running:

tanzu secret registry add tap-registry \

 --username ${INSTALL_REGISTRY_USERNAME} --password ${INSTALL_REGISTRY_PASSWOR

D} \

 --server ${INSTALL_REGISTRY_HOSTNAME} \

 --export-to-all-namespaces --yes --namespace tap-install

6. (Optional) Create a registry secret for your writable image repository used for:

Tanzu Build Service Dependencies

Workloads when using the shared.image_registry key

tanzu secret registry add image-registry-creds \

 --server "${REGISTRY_HOSTNAME}" \

 --username "${REGISTRY_USERNAME}" \

 --password "${REGISTRY_PASSWORD}" \

 --namespace tap-install

Where:

REGISTRY_HOSTNAME is the host name for the registry that contains your writable
repository. Examples:

Harbor has the form --server "my-harbor.io".

Docker Hub has the form --server "index.docker.io".

Google Cloud Registry has the form --server "gcr.io".

REGISTRY_USERNAME and REGISTRY_PASSWORD are the user name and password for the
user that can write to the repository used in the following step. For Google Cloud
Registry, use _json_key as the user name and the contents of the service account
JSON file for the password.

7. Add the Tanzu Application Platform package repository to the cluster by running:

tanzu package repository add tanzu-tap-repository \

 --url ${INSTALL_REGISTRY_HOSTNAME}/${INSTALL_REPO}/tap-packages:$TAP_VERSION

\

 --namespace tap-install

8. Get the status of the Tanzu Application Platform package repository, and ensure the status
updates to Reconcile succeeded by running:

tanzu package repository get tanzu-tap-repository --namespace tap-install

For example:

$ tanzu package repository get tanzu-tap-repository --namespace tap-install

- Retrieving repository tap...

NAME: tanzu-tap-repository

VERSION: 16253001

Note

If using the same repository as tap-registry, you can skip this step and use
the tap-registry secret in your tap-values.yaml instead of image-
registry-creds.

Tanzu Application Platform v1.5

VMware by Broadcom 302

REPOSITORY: tapmdc.azurecr.io/mdc/1.4.0/tap-packages

TAG: 1.5.12

STATUS: Reconcile succeeded

REASON:

9. List the available packages by running:

tanzu package available list --namespace tap-install

For example:

$ tanzu package available list --namespace tap-install

/ Retrieving available packages...

 NAME DISPLAY-NAME

SHORT-DESCRIPTION

 accelerator.apps.tanzu.vmware.com Application Accelerator

for VMware Tanzu Used to create new projects a

nd configurations.

 api-portal.tanzu.vmware.com API portal

A unified user interface for API discovery and exploration at scale.

 apis.apps.tanzu.vmware.com API Auto Registration fo

r VMware Tanzu A TAP component to automatica

lly register API exposing workloads as API entities

in TAP GUI.

 backend.appliveview.tanzu.vmware.com Application Live View fo

r VMware Tanzu App for monitoring and troubl

eshooting running apps

 buildservice.tanzu.vmware.com Tanzu Build Service

Tanzu Build Service enables the building and automation of containerized

software workflows securely and at scale.

 carbonblack.scanning.apps.tanzu.vmware.com VMware Carbon Black for

Supply Chain Security Tools - Scan Default scan templates using

VMware Carbon Black

 cartographer.tanzu.vmware.com Cartographer

Kubernetes native Supply Chain Choreographer.

 cnrs.tanzu.vmware.com Cloud Native Runtimes

Cloud Native Runtimes is a serverless runtime based on Knative

 connector.appliveview.tanzu.vmware.com Application Live View Co

nnector for VMware Tanzu App for discovering and regis

tering running apps

 controller.source.apps.tanzu.vmware.com Tanzu Source Controller

Tanzu Source Controller enables workload create/update from source code.

 conventions.appliveview.tanzu.vmware.com Application Live View Co

nventions for VMware Tanzu Application Live View convent

ion server

 developer-conventions.tanzu.vmware.com Tanzu App Platform Devel

oper Conventions Developer Conventions

 eventing.tanzu.vmware.com Eventing

Eventing is an event-driven architecture platform based on Knative Eventing

 external-secrets.apps.tanzu.vmware.com External Secrets Operato

r External Secrets Operator is

a Kubernetes operator that integrates external

secret management systems.

 fluxcd.source.controller.tanzu.vmware.com Flux Source Controller

The source-controller is a Kubernetes operator, specialised in artifacts

Note

The VERSION and TAG numbers differ from the earlier example if you are on
Tanzu Application Platform v1.0.2 or earlier.

Tanzu Application Platform v1.5

VMware by Broadcom 303

acquisition from external sources such as Git, Helm repositories and S3 bucket

s.

 grype.scanning.apps.tanzu.vmware.com Grype for Supply Chain S

ecurity Tools - Scan Default scan templates using

Anchore Grype

 learningcenter.tanzu.vmware.com Learning Center for Tanz

u Application Platform Guided technical workshops

 metadata-store.apps.tanzu.vmware.com Supply Chain Security To

ols - Store Post SBoMs and query for imag

e, package, and vulnerability metadata.

 namespace-provisioner.apps.tanzu.vmware.com Namespace Provisioner

Automatic Provisioning of Developer Namespaces.

 ootb-delivery-basic.tanzu.vmware.com Tanzu App Platform Out o

f The Box Delivery Basic Out of The Box Delivery Basi

c.

 ootb-supply-chain-basic.tanzu.vmware.com Tanzu App Platform Out o

f The Box Supply Chain Basic Out of The Box Supply Chain B

asic.

 ootb-supply-chain-testing-scanning.tanzu.vmware.com Tanzu App Platform Out o

f The Box Supply Chain with Testing and Scanning Out of The Box Supply Chain w

ith Testing and Scanning.

 ootb-supply-chain-testing.tanzu.vmware.com Tanzu App Platform Out o

f The Box Supply Chain with Testing Out of The Box Supply Chain w

ith Testing.

 ootb-templates.tanzu.vmware.com Tanzu App Platform Out o

f The Box Templates Out of The Box Templates.

 policy.apps.tanzu.vmware.com Supply Chain Security To

ols - Policy Controller Policy Controller enables def

ining of a policy to restrict unsigned container

images.

 scanning.apps.tanzu.vmware.com Supply Chain Security To

ols - Scan Scan for vulnerabilities and

enforce policies directly within Kubernetes native

Supply Chains.

 service-bindings.labs.vmware.com Service Bindings for Kub

ernetes Service Bindings for Kubernet

es implements the Service Binding Specification.

 services-toolkit.tanzu.vmware.com Services Toolkit

The Services Toolkit enables the management, lifecycle, discoverability and

connectivity of Service Resources (databases, message queues, DNS records,

etc.).

 snyk.scanning.apps.tanzu.vmware.com Snyk for Supply Chain Se

curity Tools - Scan Default scan templates using

Snyk

 spring-boot-conventions.tanzu.vmware.com Tanzu Spring Boot Conven

tions Server Default Spring Boot conventio

n server.

 sso.apps.tanzu.vmware.com AppSSO

Application Single Sign-On for Tanzu

 tap-auth.tanzu.vmware.com Default roles for Tanzu

Application Platform Default roles for Tanzu Appli

cation Platform

 tap-gui.tanzu.vmware.com Tanzu Application Platfo

rm GUI web app graphical user interf

ace for Tanzu Application Platform

 tap-telemetry.tanzu.vmware.com Telemetry Collector for

Tanzu Application Platform Tanzu Application Platform Te

lemetry

 tap.tanzu.vmware.com Tanzu Application Platfo

rm Package to install a set of T

AP components to get you started based on your use

Tanzu Application Platform v1.5

VMware by Broadcom 304

case.

 tekton.tanzu.vmware.com Tekton Pipelines

Tekton Pipelines is a framework for creating CI/CD systems.

 workshops.learningcenter.tanzu.vmware.com Workshop Building Tutori

al Workshop Building Tutorial

Install your Tanzu Application Platform profile

The tap.tanzu.vmware.com package installs predefined sets of packages based on your profile
settings. This is done by using the package manager installed by Tanzu Cluster Essentials.

For more information about profiles, see Components and installation profiles.

To prepare to install a profile:

1. List version information for the package by running:

tanzu package available list tap.tanzu.vmware.com --namespace tap-install

2. Create a tap-values.yaml file by using the Full Profile sample in the following section as a
guide. These samples have the minimum configuration required to deploy Tanzu Application
Platform. The sample values file contains the necessary defaults for:

The meta-package, or parent Tanzu Application Platform package.

Subordinate packages, or individual child packages.

Keep the values file for future configuration use.

3. View possible configuration settings for your package

Full profile

The following is the YAML file sample for the full-profile. The profile: field takes full as the
default value, but you can also set it to iterate, build, run or view. Refer to Install multicluster
Tanzu Application Platform profiles for more information.

shared:

 ingress_domain: "INGRESS-DOMAIN"

 image_registry:

 project_path: "SERVER-NAME/REPO-NAME"

 secret:

 name: image-registry-creds

 namespace: tap-install

 kubernetes_distribution: "openshift" # To be passed only for OpenShift. Defaults to

"".

 kubernetes_version: "K8S-VERSION"

 ca_cert_data: | # To be passed if using custom certificates.

 -----BEGIN CERTIFICATE-----

 MIIFXzCCA0egAwIBAgIJAJYm37SFocjlMA0GCSqGSIb3DQEBDQUAMEY...

 -----END CERTIFICATE-----

ceip_policy_disclosed: FALSE-OR-TRUE-VALUE # Installation fails if this is not set to

true. Not a string.

Note

tap-values.yaml is set as a Kubernetes secret, which provides secure
means to read credentials for Tanzu Application Platform components.

Tanzu Application Platform v1.5

VMware by Broadcom 305

#The above keys are minimum numbers of entries needed in tap-values.yaml to get a func

tioning TAP Full profile installation.

#Below are the keys which may have default values set, but can be overridden.

profile: full # Can take iterate, build, run, view.

supply_chain: basic # Can take testing, testing_scanning.

ootb_supply_chain_basic: # Based on supply_chain set above, can be changed to ootb_sup

ply_chain_testing, ootb_supply_chain_testing_scanning.

 registry:

 server: "SERVER-NAME" # Takes the value from shared section above by default, but

can be overridden by setting a different value.

 repository: "REPO-NAME" # Takes the value from shared section above by default, bu

t can be overridden by setting a different value.

 gitops:

 ssh_secret: "SSH-SECRET-KEY" # Takes "" as value by default; but can be overridden

by setting a different value.

contour:

 envoy:

 service:

 type: LoadBalancer # This is set by default, but can be overridden by setting a

different value.

buildservice:

 kp_default_repository: "KP-DEFAULT-REPO"

 kp_default_repository_secret: # Takes the value from the shared section by default,

but can be overridden by setting a different value.

 name: image-registry-creds

 namespace: tap-install

tap_gui:

 app_config:

 catalog:

 locations:

 - type: url

 target: https://GIT-CATALOG-URL/catalog-info.yaml

metadata_store:

 ns_for_export_app_cert: "MY-DEV-NAMESPACE"

 app_service_type: ClusterIP # Defaults to LoadBalancer. If shared.ingress_domain is

set earlier, this must be set to ClusterIP.

scanning:

 metadataStore:

 url: "" # Configuration is moved, so set this string to empty.

grype:

 namespace: "MY-DEV-NAMESPACE"

 targetImagePullSecret: "TARGET-REGISTRY-CREDENTIALS-SECRET"

Where:

INGRESS-DOMAIN is the subdomain for the host name that you point at the tanzu-shared-
ingress service’s External IP address.

KP-DEFAULT-REPO is a writable repository in your registry. Tanzu Build Service dependencies
are written to this location. Examples:

Harbor has the form kp_default_repository: "my-harbor.io/my-project/build-
service".

Tanzu Application Platform v1.5

VMware by Broadcom 306

Docker Hub has the form kp_default_repository: "my-dockerhub-user/build-
service" or kp_default_repository: "index.docker.io/my-user/build-service".

Google Cloud Registry has the form kp_default_repository: "gcr.io/my-
project/build-service".

K8S-VERSION is the Kubernetes version used by your OpenShift cluster. It must be in the
form of 1.24.x or 1.25.x, where x stands for the patch version. Examples:

Red Hat OpenShift Container Platform v4.11 uses the Kubernetes version 1.24.1.

Red Hat OpenShift Container Platform v4.12 uses the Kubernetes version 1.25.2.

SERVER-NAME is the host name of the registry server. Examples:

Harbor has the form server: "my-harbor.io".

Docker Hub has the form server: "index.docker.io".

Google Cloud Registry has the form server: "gcr.io".

REPO-NAME is where workload images are stored in the registry. If this key is passed through
the shared section earlier and AWS ECR registry is used, you must ensure that the SERVER-
NAME/REPO-NAME/buildservice and SERVER-NAME/REPO-NAME/workloads exist. AWS ECR
expects the paths to be pre-created. Images are written to SERVER-NAME/REPO-
NAME/workload-name. Examples:

Harbor has the form repository: "my-project/supply-chain".

Docker Hub has the form repository: "my-dockerhub-user".

Google Cloud Registry has the form repository: "my-project/supply-chain".

SSH-SECRET-KEY is the SSH secret key in the developer namespace for the supply chain to
fetch source code from and push configuration to. This field is only required if you use a
private repository, otherwise, leave it empty. See Git authentication for more information.

GIT-CATALOG-URL is the path to the catalog-info.yaml catalog definition file. You can
download either a blank or populated catalog file from the Tanzu Application Platform
product page. Otherwise, you can use a Backstage-compliant catalog you’ve already built
and posted on the Git infrastructure.

MY-DEV-NAMESPACE is the name of the developer namespace. SCST - Store exports secrets
to the namespace, and SCST - Scan deploys the ScanTemplates there. This allows the
scanning feature to run in this namespace. If there are multiple developer namespaces, use
ns_for_export_app_cert: "*" to export the SCST - Store CA certificate to all namespaces.

TARGET-REGISTRY-CREDENTIALS-SECRET is the name of the secret that contains the
credentials to pull an image from the registry for scanning.

Tanzu Application Platform is part of VMware’s CEIP program where data is collected to help
improve the customer experience. By setting ceip_policy_disclosed to true (not a string), you
acknowledge the program is disclosed to you and you are aware data collection is happening. This
field must be set for the installation to be completed. See Opt out of telemetry collection for more
information.

If you use custom CA certificates, you must provide one or more PEM-encoded CA certificates
under the ca_cert_data key. If you configured shared.ca_cert_data, Tanzu Application Platform
component packages inherit that value by default.

If you use AWS, the default settings creates a classic LoadBalancer. To use the Network
LoadBalancer instead of the classic LoadBalancer for ingress, add the following to your tap-
values.yaml:

Tanzu Application Platform v1.5

VMware by Broadcom 307

https://network.tanzu.vmware.com/products/tanzu-application-platform/#/releases/1239018
https://www.vmware.com/solutions/trustvmware/ceip-products.html

contour:

 infrastructure_provider: aws

 envoy:

 service:

 aws:

 LBType: nlb

(Optional) Additional Build Service configurations

The following tasks are optional during the Tanzu Application Platform installation process:

(Optional) Configure your profile with full dependencies

(Optional) Configure your profile with the Jammy stack only

(Optional) Configure your profile with full dependencies

When you install a profile that includes Tanzu Build Service, Tanzu Application Platform is installed
with the lite set of dependencies. These dependencies consist of buildpacks and stacks required
for application builds.

The lite set of dependencies do not contain all buildpacks and stacks. To use all buildpacks and
stacks, you must install the full dependencies. For more information about the differences
between lite and full dependencies, see About lite and full dependencies.

To configure full dependencies, add the key-value pair exclude_dependencies: true to your tap-
values.yaml file under the buildservice section. For example:

buildservice:

 ...

 exclude_dependencies: true

 ...

After configuring full dependencies, you must install the dependencies after you have finished
installing your Tanzu Application Platform package. See Install the full dependencies package for
more information.

(Optional) Configure your profile with the Jammy stack only

Tanzu Application Platform v1.5.0 supports building applications with both the Ubuntu v22.04
(Jammy) and v18.04 (Bionic) stack. For more information, see Bionic and Jammy stacks.

To install Tanzu Application Platform with Jammy as the only available stack, include the
stack_configuration: jammy-only field under the buildservice: section in tap-values.yaml.

Security Context Constraints

Security Context Constraints (SCC) define a set of rules that a pod must satisfy to be created. Tanzu
Application Platform components use the built-in nonroot-v2 or restricted-v2 SCC.

In Red Hat OpenShift, SCC are used to restrict privileges for pods. In Tanzu Application Platform
v1.4 there is no custom SCC.

Tanzu Application Platform packages reconcile without any issues when using OpenShift v4.11 with
restricted-v2 or nonroot-v2.

(Optional) Exclude components that require RedHat OpenShift privileged SCC

Learning Center package uses privileged SCC. To exclude this package, update your tap-values file
with a section listing the exclusions:

Tanzu Application Platform v1.5

VMware by Broadcom 308

https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-index.html
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-stacks.html
https://github.com/openshift/cluster-kube-apiserver-operator/blob/d373b65cf454fd594b6affd202e5cedb48d88964/bindata/bootkube/scc-manifests/0000_20_kube-apiserver-operator_00_scc-nonroot-v2.yaml
https://github.com/openshift/cluster-kube-apiserver-operator/blob/d373b65cf454fd594b6affd202e5cedb48d88964/bindata/bootkube/scc-manifests/0000_20_kube-apiserver-operator_00_scc-restricted-v2.yaml

...

excluded_packages:

 - learningcenter.tanzu.vmware.com

 - workshops.learningcenter.tanzu.vmware.com

...

See Exclude packages from a Tanzu Application Platform profile for more information.

Install your Tanzu Application Platform package

Follow these steps to install the Tanzu Application Platform package:

1. Install the package by running:

tanzu package install tap -p tap.tanzu.vmware.com -v $TAP_VERSION --values-file

tap-values.yaml -n tap-install

2. Verify the package install by running:

tanzu package installed get tap -n tap-install

This can take 5-10 minutes because it installs several packages on your cluster.

3. Verify that the necessary packages in the profile are installed by running:

tanzu package installed list -A

4. If you configured full dependencies in your tbs-values.yaml file, install the full
dependencies by following the procedure in Install full dependencies.

After installing the Full profile on your cluster, you can install the Tanzu Developer Tools for VS
Code Extension to help you develop against it. For instructions, see Install Tanzu Developer Tools
for your VS Code.

tanzu package installed update tap -p tap.tanzu.vmware.com -v $TAP_VERSION --values-f

ile tap-values.yaml -n tap-install

Install the full dependencies package

If you configured full dependencies in your tap-values.yaml file in Configure your profile with full
dependencies earlier, you must install the full dependencies package.

For more information about the differences between lite and full dependencies, see About lite
and full dependencies.

To install the full dependencies package:

1. If you have not done so already, add the key-value pair exclude_dependencies: true to
your tap-values.yaml file under the buildservice section. For example:

buildservice:

 ...

Note

You can run the following command after reconfiguring the profile to reinstall the
Tanzu Application Platform:

Tanzu Application Platform v1.5

VMware by Broadcom 309

 exclude_dependencies: true

 ...

2. Get the latest version of the buildservice package by running:

tanzu package available list buildservice.tanzu.vmware.com --namespace tap-inst

all

3. Relocate the Tanzu Build Service full dependencies package repository by running:

imgpkg copy -b registry.tanzu.vmware.com/tanzu-application-platform/full-tbs-de

ps-package-repo:VERSION \

 --to-repo ${INSTALL_REGISTRY_HOSTNAME}/${INSTALL_REPO}/tbs-full-deps

Where VERSION is the version of the buildservice package you retrieved in the previous
step.

4. Add the Tanzu Build Service full dependencies package repository by running:

tanzu package repository add tbs-full-deps-repository \

 --url ${INSTALL_REGISTRY_HOSTNAME}/${INSTALL_REPO}/tbs-full-deps:VERSION \

 --namespace tap-install

Where VERSION is the version of the buildservice package you retrieved earlier.

5. Install the full dependencies package by running:

tanzu package install full-tbs-deps -p full-tbs-deps.tanzu.vmware.com -v VERSIO

N -n tap-install

Where VERSION is the version of the buildservice package you retrieved earlier.

Access Tanzu Application Platform GUI

To access Tanzu Application Platform GUI, you can use the host name that you configured earlier.
This host name is pointed at the shared ingress. To configure LoadBalancer for Tanzu Application
Platform GUI, see Access Tanzu Application Platform GUI.

You’re now ready to start using Tanzu Application Platform GUI. Proceed to the Getting Started
topic or the Tanzu Application Platform GUI - Catalog Operations topic.

Exclude packages from a Tanzu Application Platform
profile

To exclude packages from a Tanzu Application Platform profile:

1. Find the full subordinate (child) package name:

tanzu package available list --namespace tap-install

2. Update your tap-values file with a section listing the exclusions:

profile: PROFILE-VALUE

excluded_packages:

 - tap-gui.tanzu.vmware.com

 - service-bindings.lab.vmware.com

Important

Tanzu Application Platform v1.5

VMware by Broadcom 310

View possible configuration settings for your package

To view possible configuration settings for a package, run:

tanzu package available get tap.tanzu.vmware.com/$TAP_VERSION --values-schema --namesp

ace tap-install

profile: full

Shared configurations go under the shared key.

shared:

 ingress_domain: tap.example.com

...

For example, CNRs specific values go under its name.

cnrs:

 provider: local

For example, App Accelerator specific values go under its name.

accelerator:

 server:

 service_type: "ClusterIP"

Shared Keys define values that configure multiple packages. These keys are defined under the
shared Top-level Key, as summarized in the following table:

Shared Key Description Optional

ca_cert_data PEM-encoded certificate data to trust TLS connections with a private CA. This
shared key is used by convention_controller, scanning and source_controller

Yes

ingress_domain Domain name to be used in service routes and host names for instances of Tanzu
Application Platform components.

Yes

ingress_issuer A cert-manager.io/v1/ClusterIssuer for issuing TLS certificates to Tanzu
Application Platform components. Default value: tap-ingress-selfsigned

Yes

If you exclude a package after performing a profile installation including that
package, you cannot see the accurate package states immediately after running tap
package installed list -n tap-install. Also, you can break package
dependencies by removing a package. Allow 20 minutes to verify that all packages
have reconciled correctly while troubleshooting.

Note

The tap.tanzu.vmware.com package does not show all configuration settings for
packages it plans to install. The package only shows top-level keys. You can view
individual package configuration settings with the same tanzu package available
get command. For example, to find the keys for Cloud Native Runtimes, you must
first identify the version of the package with tanzu package installed list -n
tap-install, which lists all the installed packages versions. Then run the command
tanzu package available get -n tap-install cnrs.tanzu.vmware.com/CNRS-

VERSION --values-schema by using the package version listed for Cloud Native
Runtimes.

Tanzu Application Platform v1.5

VMware by Broadcom 311

Shared Key Description Optional

kubernetes_distrib

ution

Type of Kubernetes infrastructure being used. You can use this shared key in
coordination with the kubernetes_version key. Supported value: openshift.

Yes

kubernetes_version Kubernetes version. You can use this shared key independently or in coordination
with the kubernetes_distribution key. Supported value: 1.24.x, where x stands
for the Kubernetes patch version.

Yes

image_registry.pro

ject_path

Project path in the container image registry server used for builder and application
images.

Yes

image_registry.use

rname

User name for the container image registry. Mutually exclusive with
shared.image_registry.secret.name/namespace

Yes

image_registry.pas

sword

Password for the container image registry. Mutually exclusive with
shared.image_registry.secret.name/namespace

Yes

secret.name Secret name for the container image registry credentials of type
kubernetes.io/dockerconfigjson. Mutually exclusive with
shared.image_registry.username/password

Yes

secret.namespace Secret namespace for the container image registry credentials. Mutually exclusive
with shared.image_registry.username/password

Yes

activateAppLiveVie

wSecureAccessContr

ol

Enable secure access connection between Application Live View components. Yes

The following table summarizes the top-level keys used for package-specific configuration within
your tap-values.yaml.

Package Top-level Key

See table above. shared

API Auto Registration api_auto_registration

API portal api_portal

Application Accelerator accelerator

Application Live View appliveview

Application Live View connector appliveview_connector

Application Live View conventions appliveview-conventions

Cartographer cartographer

Cloud Native Runtimes cnrs

Source Controller source_controller

Supply Chain supply_chain

Supply Chain Basic ootb_supply_chain_basic

Supply Chain Testing ootb_supply_chain_testing

Supply Chain Testing Scanning ootb_supply_chain_testing_scanning

Supply Chain Security Tools - Scan scanning

Supply Chain Security Tools - Scan (Grype Scanner) grype

Supply Chain Security Tools - Store metadata_store

Build Service buildservice

Tanzu Application Platform v1.5

VMware by Broadcom 312

Package Top-level Key

Tanzu Application Platform GUI tap_gui

Learning Center learningcenter

For information about package-specific configuration, see Install individual packages.

Install individual packages

You can install Tanzu Application Platform (commonly known as TAP) through predefined profiles or
through individual packages. Use this topic to learn how to install each individual package. For more
information about installing through profiles, see Components and installation profiles.

Installing individual Tanzu Application Platform packages is useful if you do not want to use a profile
to install packages or if you want to install additional packages after installing a profile. Before
installing the packages, be sure to complete the prerequisites, configure and verify the cluster,
accept the EULA, and install the Tanzu CLI with any required plug-ins. For more information, see
Prerequisites.

Install pages for individual Tanzu Application Platform
packages

Install API Auto Registration

Install API portal

Install Application Accelerator

Install Application Configuration Service

Install Application Live View

Install Application Single Sign-On

Install Bitnami Services

Install cert-manager

Install Cloud Native Runtimes

Install Contour

Install Crossplane

Install default roles for Tanzu Application Platform

Install Developer Conventions

Install Eventing

Install Flux CD Source Controller

Install Learning Center for Tanzu Application Platform

Install Out of the Box Templates

Install Out of the Box Supply Chain with Testing

Install Out of the Box Supply Chain with Testing and Scanning

Install Service Bindings

Install Services Toolkit

Install Source Controller

Install Spring Boot conventions

Tanzu Application Platform v1.5

VMware by Broadcom 313

Install Supply Chain Choreographer

Install Supply Chain Security Tools - Store

Install Supply Chain Security Tools - Policy Controller

Install Supply Chain Security Tools - Scan

Install Tanzu Application Platform GUI

Install Tanzu Build Service

Install Tekton

Install Telemetry

Verify the installed packages

Use the following procedure to verify that the packages are installed.

1. List the installed packages by running:

tanzu package installed list --namespace tap-install

For example:

$ tanzu package installed list --namespace tap-install

\ Retrieving installed packages...

NAME PACKAGE-NAME PAC

KAGE-VERSION STATUS

api-portal api-portal.tanzu.vmware.com 1.

0.3 Reconcile succeeded

app-accelerator accelerator.apps.tanzu.vmware.com 1.

0.0 Reconcile succeeded

app-live-view appliveview.tanzu.vmware.com 1.

0.2 Reconcile succeeded

appliveview-conventions build.appliveview.tanzu.vmware.com 1.

0.2 Reconcile succeeded

cartographer cartographer.tanzu.vmware.com 0.

1.0 Reconcile succeeded

cloud-native-runtimes cnrs.tanzu.vmware.com 1.

0.3 Reconcile succeeded

convention-controller controller.conventions.apps.tanzu.vmware.com 0.

7.0 Reconcile succeeded

developer-conventions developer-conventions.tanzu.vmware.com 0.

3.0-build.1 Reconcile succeeded

grype-scanner grype.scanning.apps.tanzu.vmware.com 1.

0.0 Reconcile succeeded

image-policy-webhook image-policy-webhook.signing.apps.tanzu.vmware.com 1.

1.2 Reconcile succeeded

metadata-store metadata-store.apps.tanzu.vmware.com 1.

0.2 Reconcile succeeded

ootb-supply-chain-basic ootb-supply-chain-basic.tanzu.vmware.com 0.

5.1 Reconcile succeeded

ootb-templates ootb-templates.tanzu.vmware.com 0.

5.1 Reconcile succeeded

scan-controller scanning.apps.tanzu.vmware.com 1.

0.0 Reconcile succeeded

service-bindings service-bindings.labs.vmware.com 0.

5.0 Reconcile succeeded

services-toolkit services-toolkit.tanzu.vmware.com 0.

8.0 Reconcile succeeded

source-controller controller.source.apps.tanzu.vmware.com 0.

2.0 Reconcile succeeded

sso4k8s-install sso.apps.tanzu.vmware.com 1.

0.0-beta.2-31 Reconcile succeeded

Tanzu Application Platform v1.5

VMware by Broadcom 314

tap-gui tap-gui.tanzu.vmware.com 0.

3.0-rc.4 Reconcile succeeded

tekton-pipelines tekton.tanzu.vmware.com 0.3

0.0 Reconcile succeeded

tbs buildservice.tanzu.vmware.com 1.

5.0 Reconcile succeeded

Next steps

Set up developer namespaces to use your installed packages

Set up developer namespaces to use your installed
packages
For details about how to automatically set up your developer namespaces, see Provision developer
namespaces in Namespace Provisioner.

Additional configuration for testing and scanning
If you plan to install or have already installed Out of the Box Supply Chains with Testing and
Scanning, you can use Namespace Provisioner to set up the required resources. For more
information, see Customize installation in the Namespace Provisioner documentation for
configuration steps.

Legacy namespace setup
To use the legacy manual process for setting up developer namespaces, see Legacy namespace
setup.

Next steps
Install Tanzu Developer Tools for your VS Code

Install Tanzu Developer Tools for your VS Code
This topic tells you how to install VMware Tanzu Developer Tools for Visual Studio Code (VS Code).

Prerequisites
Before installing the extension, you must have:

VS Code

kubectl

Tilt v0.30.12 or later

Tanzu CLI and plug-ins

A cluster with the Tanzu Application Platform Full profile or Iterate profile

If you are an app developer, someone else in your organization might have already set up the
Tanzu Application Platform environment.

Docker Desktop and local Kubernetes are not prerequisites for using Tanzu Developer Tools for VS
Code.

Tanzu Application Platform v1.5

VMware by Broadcom 315

https://code.visualstudio.com/download
https://kubernetes.io/docs/tasks/tools/#kubectl
https://docs.tilt.dev/install.html

Install

To install the extension:

1. Sign in to VMware Tanzu Network and download Tanzu Developer Tools for Visual Studio
Code.

2. Open VS Code.

3. Press cmd+shift+P to open the Command Palette and run Extensions: Install from
VSIX....

4. Select the extension file tanzu-vscode-extension.vsix.

5. If you do not have the following extensions, and they do not automatically install, install
them from VS Code Marketplace:

Debugger for Java

Language Support for Java(™) by Red Hat

YAML

6. Ensure Language Support for Java is running in Standard Mode. You can configure it in the
Settings menu by going to Code > Preferences > Settings under Java > Server: Launch
Mode.

When the JDK and Language Support for Java are configured correctly, you see that the
integrated development environment creates a directory target where the code is
compiled.

Configure

To configure VMware Tanzu Developer Tools for VS Code:

1. Ensure that you are targeting the correct cluster. For more information, see the
Kubernetes documentation.

2. Go to Code > Preferences > Settings > Extensions > Tanzu Developer Tools and set the
following:

Confirm Delete: This controls whether the extension asks for confirmation when
deleting a workload.

Enable Live Hover: For more information, see Integrating Live Hover by using
Spring Boot Tools. Reload VS Code for this change to take effect.

Source Image: (Required) The registry location for publishing local source code. For
example, registry.io/yourapp-source. This must include both a registry and a
project name.

Tanzu Application Platform v1.5

VMware by Broadcom 316

https://network.tanzu.vmware.com/products/tanzu-application-platform
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-debug
https://marketplace.visualstudio.com/items?itemName=redhat.java
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-yaml
https://code.visualstudio.com/docs/java/java-project#_lightweight-mode
https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/

Local Path: (Optional) The path on the local file system to a directory of source
code to build. This is the current directory by default.

Namespace: (Optional) This is the namespace that workloads are deployed into.
The namespace set in kubeconfig is the default.

Uninstall

To uninstall VMware Tanzu Developer Tools for VS Code:

1. Go to Code > Preferences > Settings > Extensions.

2. Right-click the extension and select Uninstall.

Next steps

Proceed to Getting started with Tanzu Developer Tools for Visual Studio Code.

Custom Security Context Constraint details for Tanzu
Application Platform
Custom Security Context Constraint (commonly known as SCC) details for Tanzu Application
Platform (commonly known as TAP) components are as follows:

Application Accelerator on OpenShift cluster

Application Live View on OpenShift

Application Single Sign-On for OpenShift cluster

Contour for OpenShift cluster

Developer Conventions for OpenShift cluster

Tanzu Build Service for OpenShift cluster

Application Accelerator on OpenShift
On OpenShift clusters, Application Accelerator must run with a custom SecurityContextConstraint
(SCC) to enable compliance with restricted Kubernetes pod security standards. Tanzu Application
Platform configures the following SCC for Application Accelerator when you configure the
kubernetes_distribution: openshift key in the tap-values.yaml file.

Specification follows:

#@ load("@ytt:data", "data")

#@ load("@ytt:assert", "assert")

#@ kubernetes_distribution = data.values.kubernetes_distribution

#@ validDistributions = [None, "", "openshift"]

#@ if kubernetes_distribution not in validDistributions:

#@ assert.fail("{} not in {}".format(kubernetes_distribution, validDistributions))

#@ end

#@ if kubernetes_distribution == "openshift":

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 name: accelerator-system-nonroot-scc

 namespace: accelerator-system

rules:

Tanzu Application Platform v1.5

VMware by Broadcom 317

- apiGroups:

 - security.openshift.io

 resourceNames:

 - nonroot

 resources:

 - securitycontextconstraints

 verbs:

 - use

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: accelerator-system-nonroot-scc

 namespace: accelerator-system

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: Role

 name: accelerator-system-nonroot-scc

subjects:

- apiGroup: rbac.authorization.k8s.io

 kind: Group

 name: system:serviceaccounts:accelerator-system

#@ end

Application Live View on OpenShift

Application Live View must run with a custom SecurityContextConstraint (SCC) to enable
compliance with restricted Kubernetes Pod Security Standards on Openshift. Tanzu Application
Platform configures the following SCC for Application Live View back end, Application Live View
connector, and Application Live View convention service when you configure the
kubernetes_distribution: openshift key in the tap-values.yaml file.

The following is a SecurityContextConstraints specification for Application Live View connector:

apiVersion: security.openshift.io/v1

kind: SecurityContextConstraints

metadata:

 name: appliveview-connector-restricted-with-seccomp

allowHostDirVolumePlugin: false

allowHostIPC: false

allowHostNetwork: false

allowHostPID: false

allowHostPorts: false

allowPrivilegeEscalation: false

allowPrivilegedContainer: false

allowedCapabilities: null

defaultAddCapabilities: null

fsGroup:

 type: MustRunAs

priority: null

readOnlyRootFilesystem: false

requiredDropCapabilities:

 - ALL

runAsUser:

 type: MustRunAsNonRoot

seLinuxContext:

 type: MustRunAs

supplementalGroups:

 type: RunAsAny

volumes:

 - configMap

 - downwardAPI

 - emptyDir

Tanzu Application Platform v1.5

VMware by Broadcom 318

 - persistentVolumeClaim

 - projected

 - secret

seccompProfiles:

 - runtime/default

The preceding SecurityContextConstraints specification is applicable to Application Live View
back end and Application Live View convention service as well.

Application Single Sign-On for OpenShift cluster

On OpenShift clusters, AppSSO must run with a custom SecurityContextConstraint (SCC) to enable
compliance with restricted Kubernetes Pod Security Standards. Tanzu Application Platform
configures the following SCC for AppSSO controller and its AuthServer managed resources when
you configure the kubernetes_distribution: openshift key in the tap-values.yaml file.

Specification follows:

kind: SecurityContextConstraints

apiVersion: security.openshift.io/v1

metadata:

 name: appsso-scc

allowHostDirVolumePlugin: false

allowHostIPC: false

allowHostNetwork: false

allowHostPID: false

allowHostPorts: false

allowPrivilegeEscalation: false

allowPrivilegedContainer: false

allowedCapabilities: null

defaultAddCapabilities: null

fsGroup:

 type: MustRunAs

priority: null

readOnlyRootFilesystem: false

requiredDropCapabilities:

 - KILL

 - MKNOD

 - SETUID

 - SETGID

runAsUser:

 type: MustRunAsNonRoot

seLinuxContext:

 type: MustRunAs

volumes:

 - configMap

 - downwardAPI

 - emptyDir

 - persistentVolumeClaim

 - projected

 - secret

seccompProfiles:

 - 'runtime/default'

AppSSO controller’s ServiceAccount is given the following additional permissions, including a use
permission for AppSSO SCC, so AuthServer can use the custom SCC:

- apiGroups:

 - security.openshift.io

 resources:

 - securitycontextconstraints

Tanzu Application Platform v1.5

VMware by Broadcom 319

 verbs:

 - "get"

 - "list"

 - "watch"

- apiGroups:

 - security.openshift.io

 resourceNames:

 - appsso-scc

 resources:

 - securitycontextconstraints

 verbs:

 - "use"

Contour for OpenShift cluster

On OpenShift clusters, Contour must run with a custom SecurityContextConstraint (SCC) to enable
compliance with restricted Kubernetes Pod Security Standards. Tanzu Application Platform
configures the following SCC for the service accounts in the tanzu-system-ingress namespace,
which applies to Contour’s controller and Envoy pods, when you configure the
kubernetes_distribution: openshift key in the tap-values.yaml file.

Specification follows:

apiVersion: security.openshift.io/v1

kind: SecurityContextConstraints

metadata:

 annotations:

 include.release.openshift.io/ibm-cloud-managed: "true"

 include.release.openshift.io/self-managed-high-availability: "true"

 include.release.openshift.io/single-node-developer: "true"

 kubernetes.io/description: nonroot provides all features of the restricted SCC

 but allows users to run with any non-root UID. The user must specify the UID

 or it must be specified on the by the manifest of the container runtime. On

 top of the legacy 'nonroot' SCC, it also requires to drop ALL capabilities and

 does not allow privilege escalation binaries. It will also default the seccomp

 profile to runtime/default if unset, otherwise this seccomp profile is required.

 name: contour-seccomp-nonroot-v2

allowHostDirVolumePlugin: false

allowHostIPC: false

allowHostNetwork: false

allowHostPID: false

allowHostPorts: false

allowPrivilegeEscalation: false

allowPrivilegedContainer: false

allowedCapabilities:

- NET_BIND_SERVICE

defaultAddCapabilities: null

fsGroup:

 type: RunAsAny

groups: []

priority: null

readOnlyRootFilesystem: false

requiredDropCapabilities:

- ALL

runAsUser:

 type: MustRunAsNonRoot

seLinuxContext:

 type: MustRunAs

seccompProfiles:

- runtime/default

supplementalGroups:

 type: RunAsAny

Tanzu Application Platform v1.5

VMware by Broadcom 320

users: []

volumes:

- configMap

- downwardAPI

- emptyDir

- persistentVolumeClaim

- projected

- secret

The SCC is bound to the service accounts by using the following Role and RoleBinding:

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 name: contour-seccomp-nonroot-v2

 namespace: tanzu-system-ingress

rules:

- apiGroups:

 - security.openshift.io

 resourceNames:

 - contour-seccomp-nonroot-v2

 resources:

 - securitycontextconstraints

 verbs:

 - use

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: contour-seccomp-nonroot-v2

 namespace: tanzu-system-ingress

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: Role

 name: contour-seccomp-nonroot-v2

subjects:

- apiGroup: rbac.authorization.k8s.io

 kind: Group

 name: system:serviceaccounts:tanzu-system-ingress

Developer Conventions for OpenShift cluster

On OpenShift clusters, Developer Conventions must run with a custom SecurityContextConstraint
(SCC) to enable compliance with restricted Kubernetes pod security standards. Tanzu Application
Platform configures the following SCC for the Developer Convention’s webhook when you
configure the kubernetes_distribution: openshift key in the tap-values.yaml file.

Specification follows:

apiVersion: security.openshift.io/v1

kind: SecurityContextConstraints

metadata:

 name: developer-conventions-scc

allowHostDirVolumePlugin: false

allowHostIPC: false

allowHostNetwork: false

allowHostPID: false

allowHostPorts: false

allowPrivilegeEscalation: false

allowPrivilegedContainer: false

Tanzu Application Platform v1.5

VMware by Broadcom 321

defaultAddCapabilities: null

fsGroup:

 type: RunAsAny

priority: null

readOnlyRootFilesystem: false

requiredDropCapabilities: null

runAsUser:

 type: MustRunAsNonRoot

seLinuxContext:

 type: MustRunAs

supplementalGroups:

 type: RunAsAny

volumes:

 - secret

seccompProfiles: []

groups:

 - system:serviceaccounts:developer-conventions

Tanzu Build Service for OpenShift cluster

On OpenShift clusters Tanzu Build Service must run with a custom Security Context Constraint
(SCC) to enable compliance. Tanzu Application Platform configures the following SCC for Tanzu
Build Service when you configure the kubernetes_distribution: openshift key in the tap-
values.yaml file.

kind: SecurityContextConstraints

apiVersion: security.openshift.io/v1

metadata:

 name: tbs-restricted-scc-with-seccomp

allowHostDirVolumePlugin: false

allowHostIPC: false

allowHostNetwork: false

allowHostPID: false

allowHostPorts: false

allowPrivilegeEscalation: false

allowPrivilegedContainer: false

allowedCapabilities:

 - NET_BIND_SERVICE

defaultAddCapabilities: null

fsGroup:

 type: RunAsAny

groups: []

priority: null

readOnlyRootFilesystem: false

requiredDropCapabilities:

 - ALL

runAsUser:

 type: MustRunAsNonRoot

seLinuxContext:

 type: MustRunAs

seccompProfiles:

 - runtime/default

supplementalGroups:

 type: RunAsAny

users: []

volumes:

 - configMap

 - downwardAPI

 - emptyDir

 - persistentVolumeClaim

 - projected

 - secret

Tanzu Application Platform v1.5

VMware by Broadcom 322

https://docs.openshift.com/container-platform/4.10/authentication/managing-security-context-constraints.html

It also applies the following RBAC to allow Tanzu Build Service services to use the SCC:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 labels:

 apps.tanzu.vmware.com/aggregate-to-workload: "true"

 annotations:

 rbac.authorization.kubernetes.io/autoupdate: "true"

 name: system:tbs:scc:restricted-with-seccomp

rules:

 - apiGroups:

 - security.openshift.io

 resourceNames:

 - tbs-restricted-scc-with-seccomp

 resources:

 - securitycontextconstraints

 verbs:

 - use

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: system:tbs:scc:restricted-with-seccomp

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: system:tbs:scc:restricted-with-seccomp

subjects:

 - kind: ServiceAccount

 namespace: build-service

 name: dependency-updater-serviceaccount

 - kind: ServiceAccount

 namespace: build-service

 name: dependency-updater-controller-serviceaccount

 - kind: ServiceAccount

 namespace: build-service

 name: secret-syncer-service-account

 - kind: ServiceAccount

 namespace: build-service

 name: warmer-service-account

 - kind: ServiceAccount

 namespace: build-service

 name: build-service-daemonset-serviceaccount

 - kind: ServiceAccount

 namespace: cert-injection-webhook

 name: cert-injection-webhook-sa

 - kind: ServiceAccount

 namespace: kpack

 name: kp-default-repository-serviceaccount

 - kind: ServiceAccount

 namespace: kpack

 name: kpack-pull-lifecycle-serviceaccount

 - kind: ServiceAccount

 namespace: kpack

 name: controller

 - kind: ServiceAccount

 namespace: kpack

 name: webhook

 - kind: ServiceAccount

 namespace: stacks-operator-system

 name: controller-manager

Tanzu Application Platform v1.5

VMware by Broadcom 323

Install Tanzu Application Platform (GitOps)

GitOps is a set of practices and principles to manage Kubernetes infrastructure and application
deployments using Git as the single source of truth. It promotes declarative configurations and
automated workflows to ensure consistency, reliability, and traceability for your application
deployments.

The key components involved in implementing GitOps with Kubernetes include:

Git as the single source of truth: The desired state is stored in a Git repository. To change
the cluster state, you must change it in the Git repository instead of modifying it directly on
the cluster.

Declarative configuration: GitOps follows a declarative approach, where the desired state
is defined in the declarative configuration files.

Pull-based synchronization: GitOps follows a pull-based model. Kubernetes cluster
periodically pulls the desired state from the Git repository. This approach ensures that the
cluster is always in sync with the desired configuration.

How Tanzu RI supports GitOps
The Tanzu GitOps Reference Implementation (RI) is built upon Carvel, which shares the same
packaging APIs as the Tanzu Application Platform. Carvel packaging APIs support all the GitOps
features and enables a native GitOps flow.

All the packaging APIs are declarative in nature.

Among many options to fetch the manifest to be deployed, it can also pull the content from
the Git repository, making Git the source of truth.

Packages installed are reconciled every time after the SyncPeriod expires (10 minutes by
default). As part of the reconciliation, it fetches the manifest from the Git repository and
when the desired state is different from the actual state on Kubernetes, it converges the
resources to their desired state declared in Git.

GitOps benefits
GitOps offers the following benefits:

Compliance and auditing capabilities: In GitOps, Git is the single source of truth, enabling
auditors to access a complete audit trail of all configuration changes.

Disaster recovery: Disaster recovery involves an organization’s efforts to restore access
and function to its IT infrastructure. With all configurations securely stored in Git, disaster
recovery becomes as straightforward as reapplying the desired configuration version.

Repeatable: Running Tanzu CLI commands with environment variables or configuration
files on a local machine is no longer required. Instead, all the necessary configurations and
service accounts for access are configured in a shared Git repository. This approach allows
any operator to make edits to a file, and the system’s behavior remains independent of their
local environment.

Caution

Tanzu Application Platform (GitOps) is currently in beta and is intended for
evaluation and test purposes only. Do not use in a production environment.

Tanzu Application Platform v1.5

VMware by Broadcom 324

GitOps install paths

Choose one of the following install paths to install Tanzu Application Platform on your Kubernetes
clusters through GitOps:

GitOps with Secrets OPerationS (SOPS)
Applies to the scenario when you want a simple instance and store sensitive data encrypted in
your Git repo:

Step Task Link

1. Review the prerequisites to ensure you have met all
requirements before installing.

Prerequisites

2. Accept Tanzu Application Platform EULAs and install
the Tanzu CLI.

Accept Tanzu Application Platform EULAs and
installing the Tanzu CLI

3. Install Cluster Essentials for Tanzu*. Deploy Cluster Essentials

4. Install Tanzu Application Platform. Install Tanzu Application Platform through Gitops
with Secrets OPerationS (SOPS)

5. (Optional) Install any additional packages that were
not in the profile.

Install individual packages

6. Set up developer namespaces to use your installed
packages.

Set up developer namespaces to use your installed
packages

7. Install developer tools into your integrated
development environment (IDE).

Install Tanzu Developer Tools for your VS Code

GitOps with External Secrets Operator (ESO)
Applies to the scenario when you want to store sensitive data in external store:

Step Task Link

1. Review the prerequisites to ensure you have met all requirements
before installing.

Prerequisites

2. Accept Tanzu Application Platform EULAs and install the Tanzu
CLI.

Accept Tanzu Application Platform
EULAs and installing the Tanzu CLI

3. Create AWS Resources (EKS Cluster, roles, etc) Create AWS Resources

4. Install Cluster Essentials for Tanzu*. Deploy Cluster Essentials

5. Add the Tanzu Application Platform package repository, prepare
your Tanzu Application Platform profile, and install the profile to
the cluster.

Install Tanzu Application Platform
through GitOps with External Secrets
Operator (ESO)

6. (Optional) Install any additional packages that were not in the
profile.

Install individual packages

7. Set up developer namespaces to use your installed packages. Set up developer namespaces to use
your installed packages

8. Install developer tools into your integrated development
environment (IDE).

Install Tanzu Developer Tools for your VS
Code

* When you use a VMware Tanzu Kubernetes Grid cluster, there is no need to install Cluster
Essentials because the contents of Cluster Essentials are already installed on your cluster.

After installing Tanzu Application Platform on to your Kubernetes clusters, proceed with Get
started with Tanzu Application Platform.

Tanzu Application Platform v1.5

VMware by Broadcom 325

https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.5/cluster-essentials/deploy.html
https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.5/cluster-essentials/deploy.html

Install Tanzu Application Platform (GitOps)

GitOps is a set of practices and principles to manage Kubernetes infrastructure and application
deployments using Git as the single source of truth. It promotes declarative configurations and
automated workflows to ensure consistency, reliability, and traceability for your application
deployments.

The key components involved in implementing GitOps with Kubernetes include:

Git as the single source of truth: The desired state is stored in a Git repository. To change
the cluster state, you must change it in the Git repository instead of modifying it directly on
the cluster.

Declarative configuration: GitOps follows a declarative approach, where the desired state
is defined in the declarative configuration files.

Pull-based synchronization: GitOps follows a pull-based model. Kubernetes cluster
periodically pulls the desired state from the Git repository. This approach ensures that the
cluster is always in sync with the desired configuration.

How Tanzu RI supports GitOps
The Tanzu GitOps Reference Implementation (RI) is built upon Carvel, which shares the same
packaging APIs as the Tanzu Application Platform. Carvel packaging APIs support all the GitOps
features and enables a native GitOps flow.

All the packaging APIs are declarative in nature.

Among many options to fetch the manifest to be deployed, it can also pull the content from
the Git repository, making Git the source of truth.

Packages installed are reconciled every time after the SyncPeriod expires (10 minutes by
default). As part of the reconciliation, it fetches the manifest from the Git repository and
when the desired state is different from the actual state on Kubernetes, it converges the
resources to their desired state declared in Git.

GitOps benefits
GitOps offers the following benefits:

Compliance and auditing capabilities: In GitOps, Git is the single source of truth, enabling
auditors to access a complete audit trail of all configuration changes.

Disaster recovery: Disaster recovery involves an organization’s efforts to restore access
and function to its IT infrastructure. With all configurations securely stored in Git, disaster
recovery becomes as straightforward as reapplying the desired configuration version.

Repeatable: Running Tanzu CLI commands with environment variables or configuration
files on a local machine is no longer required. Instead, all the necessary configurations and
service accounts for access are configured in a shared Git repository. This approach allows
any operator to make edits to a file, and the system’s behavior remains independent of their
local environment.

Caution

Tanzu Application Platform (GitOps) is currently in beta and is intended for
evaluation and test purposes only. Do not use in a production environment.

Tanzu Application Platform v1.5

VMware by Broadcom 326

GitOps install paths

Choose one of the following install paths to install Tanzu Application Platform on your Kubernetes
clusters through GitOps:

GitOps with Secrets OPerationS (SOPS)
Applies to the scenario when you want a simple instance and store sensitive data encrypted in
your Git repo:

Step Task Link

1. Review the prerequisites to ensure you have met all
requirements before installing.

Prerequisites

2. Accept Tanzu Application Platform EULAs and install
the Tanzu CLI.

Accept Tanzu Application Platform EULAs and
installing the Tanzu CLI

3. Install Cluster Essentials for Tanzu*. Deploy Cluster Essentials

4. Install Tanzu Application Platform. Install Tanzu Application Platform through Gitops
with Secrets OPerationS (SOPS)

5. (Optional) Install any additional packages that were
not in the profile.

Install individual packages

6. Set up developer namespaces to use your installed
packages.

Set up developer namespaces to use your installed
packages

7. Install developer tools into your integrated
development environment (IDE).

Install Tanzu Developer Tools for your VS Code

GitOps with External Secrets Operator (ESO)
Applies to the scenario when you want to store sensitive data in external store:

Step Task Link

1. Review the prerequisites to ensure you have met all requirements
before installing.

Prerequisites

2. Accept Tanzu Application Platform EULAs and install the Tanzu
CLI.

Accept Tanzu Application Platform
EULAs and installing the Tanzu CLI

3. Create AWS Resources (EKS Cluster, roles, etc) Create AWS Resources

4. Install Cluster Essentials for Tanzu*. Deploy Cluster Essentials

5. Add the Tanzu Application Platform package repository, prepare
your Tanzu Application Platform profile, and install the profile to
the cluster.

Install Tanzu Application Platform
through GitOps with External Secrets
Operator (ESO)

6. (Optional) Install any additional packages that were not in the
profile.

Install individual packages

7. Set up developer namespaces to use your installed packages. Set up developer namespaces to use
your installed packages

8. Install developer tools into your integrated development
environment (IDE).

Install Tanzu Developer Tools for your VS
Code

* When you use a VMware Tanzu Kubernetes Grid cluster, there is no need to install Cluster
Essentials because the contents of Cluster Essentials are already installed on your cluster.

After installing Tanzu Application Platform on to your Kubernetes clusters, proceed with Get
started with Tanzu Application Platform.

Tanzu Application Platform v1.5

VMware by Broadcom 327

https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.5/cluster-essentials/deploy.html
https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.5/cluster-essentials/deploy.html

Install Tanzu Application Platform through GitOps with
External Secrets Operator (ESO)

This topic tells you how to install Tanzu Application Platform (commonly known as TAP) through
GitOps with secrets managed in an external secrets store. To decide which approach to use, see
Choosing SOPS or ESO.

Tanzu GitOps Reference Implememtation (RI) does not support changing the secrets management
strategy for a cluster. The External Secrets Operator integration in this release of Tanzu GitOps RI is
verified to support AWS Elastic Kubernetes Service cluster with AWS Secrets Manager. Other
combinations of Kubernetes distribution and ESO providers are not verified.

Prerequisites

Before installing Tanzu Application Platform, ensure you have:

Completed the Prerequisites.

Created AWS Resources.

Accepted Tanzu Application Platform EULA and installed Tanzu CLI with any required plug-
ins.

Installed Cluster Essentials for Tanzu.

Installed eksctl CLI.

Relocate images to a registry

VMware recommends relocating the images from VMware Tanzu Network registry to your own
container image registry before attempting installation. If you don’t relocate the images, Tanzu
Application Platform depends on VMware Tanzu Network for continued operation, and VMware
Tanzu Network offers no uptime guarantees. The option to skip relocation is documented for
evaluation and proof-of-concept only.

The supported registries are Harbor, Azure Container Registry, Google Container Registry, and
Quay.io. See the following documentation for a registry to learn how to set it up:

Harbor documentation

Google Container Registry documentation

Quay.io documentation

To relocate images from the VMware Tanzu Network registry to your registry:

1. Set up environment variables for installation use by running:

export IMGPKG_REGISTRY_HOSTNAME_0=registry.tanzu.vmware.com

export IMGPKG_REGISTRY_USERNAME_0=MY-TANZUNET-USERNAME

export IMGPKG_REGISTRY_PASSWORD_0=MY-TANZUNET-PASSWORD

export IMGPKG_REGISTRY_HOSTNAME_1=MY-REGISTRY

export IMGPKG_REGISTRY_USERNAME_1=MY-REGISTRY-USER

export IMGPKG_REGISTRY_PASSWORD_1=MY-REGISTRY-PASSWORD

export INSTALL_REGISTRY_USERNAME=MY-REGISTRY-USER

export INSTALL_REGISTRY_PASSWORD=MY-REGISTRY-PASSWORD

Caution

Tanzu Application Platform (GitOps) is currently in beta and is intended for
evaluation and test purposes only. Do not use in a production environment.

Tanzu Application Platform v1.5

VMware by Broadcom 328

https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.5/cluster-essentials/deploy.html
https://github.com/weaveworks/eksctl#installation
https://goharbor.io/docs/2.5.0/
https://cloud.google.com/container-registry/docs
https://docs.projectquay.io/welcome.html

export INSTALL_REGISTRY_HOSTNAME=MY-REGISTRY

export TAP_VERSION=VERSION-NUMBER

export INSTALL_REPO=TARGET-REPOSITORY

Where:

MY-REGISTRY-USER is the user with write access to MY-REGISTRY.

MY-REGISTRY-PASSWORD is the password for MY-REGISTRY-USER.

MY-REGISTRY is your own container registry.

MY-TANZUNET-USERNAME is the user with access to the images in the VMware Tanzu
Network registry registry.tanzu.vmware.com.

MY-TANZUNET-PASSWORD is the password for MY-TANZUNET-USERNAME.

VERSION-NUMBER is your Tanzu Application Platform version. For example, 1.5.12.

TARGET-REPOSITORY is your target repository, a folder or repository on MY-REGISTRY
that serves as the location for the installation files for Tanzu Application Platform.

VMware recommends using a JSON key file to authenticate with Google Container
Registry. In this case, the value of INSTALL_REGISTRY_USERNAME is _json_key and the value of
INSTALL_REGISTRY_PASSWORD is the content of the JSON key file. For more information
about how to generate the JSON key file, see Google Container Registry documentation.

2. Install the Carvel tool imgpkg CLI.

To query for the available versions of Tanzu Application Platform on VMWare Tanzu
Network Registry, run:

imgpkg tag list -i registry.tanzu.vmware.com/tanzu-application-platform/tap-pac

kages | sort -V

3. Relocate the images with the imgpkg CLI by running:

imgpkg copy -b registry.tanzu.vmware.com/tanzu-application-platform/tap-package

s:${TAP_VERSION} --to-repo ${INSTALL_REGISTRY_HOSTNAME}/${INSTALL_REPO}/tap-pac

kages

(Optional) Install Tanzu Application Platform in an air-
gapped environment

Complete the following steps if you install Tanzu Application Platform in an air-gapped
environment:

1. Relocate the Tanzu Build Service images to your registry:

imgpkg copy -b registry.tanzu.vmware.com/tanzu-application-platform/full-tbs-de

ps-package-repo:VERSION --to-repo ${INSTALL_REGISTRY_HOSTNAME}/${INSTALL_REPO}/

full-tbs-deps-package-repo

Where:

VERSION is the version of Tanzu Build Service. You can retrieve this value by running
kubectl get package -n tap-install | grep buildservice

2. Configure custom certificate authorities for Tanzu Application Platform GUI.

3. Host a grype database in the air-gapped environment. For more information, see Use Grype
in offline and air-gapped environments.

Tanzu Application Platform v1.5

VMware by Broadcom 329

https://cloud.google.com/container-registry/docs/advanced-authentication
https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.5/cluster-essentials/deploy.html#optionally-install-clis-onto-your-path

Create a new Git repository

1. In a hosted Git service, for example, GitHub or GitLab, create a new respository.

This version of Tanzu GitOps RI only supports authenticating to a hosted Git repository by
using SSH.

2. Initialize a new Git repository:

mkdir -p $HOME/tap-gitops

cd $HOME/tap-gitops

git init

git remote add origin git@github.com:my-organization/tap-gitops.git

3. Create a read-only deploy key for this new repository (recommended) or SSH key for an
account with read access to this repository.

The private portion of this key is referred to as GIT_SSH_PRIVATE_KEY.

Download and unpack Tanzu GitOps Reference
Implementation (RI)

1. Sign in to VMware Tanzu Network.

2. Go to the Tanzu Application Platform product page.

3. Select Release 1.5.12 from the release drop-down menu.

4. Click Tanzu GitOps Reference Implementation.

5. Unpack the downloaded TGZ file into the $HOME/tap-gitops directory by running:

tar -xvf tanzu-gitops-ri-*.tgz -C $HOME/tap-gitops

6. Commit the initial state:

cd $HOME/tap-gitops

git add . && git commit -m "Initialize Tanzu GitOps RI"

git push -u origin

Create cluster configuration

1. Seed configuration for a cluster using ESO through the provided convenience script:

cd $HOME/tap-gitops

./setup-repo.sh CLUSTER-NAME eso

Where:

CLUSTER-NAME is the name for your cluster. Typically, this is the same as your EKS
cluster’s name, the name of the cluster as it appears in eksctl get clusters.

eso selects the External Secrets Operator-based secrets management variant.

For example, if the name of your cluster is iterate-green:

cd $HOME/tap-gitops

Tanzu Application Platform v1.5

VMware by Broadcom 330

https://network.tanzu.vmware.com/
https://network.tanzu.vmware.com/products/tanzu-application-platform

./setup-repo.sh iterate-green eso

This script creates the directory clusters/iterate-green/ and copies in the configuration
required to sync this Git repository with the cluster and installing Tanzu Application
Platform.

2. Commit and push:

git add . && git commit -m 'Add "iterate-green" cluster'

git push

Saving the base configuration in an initial commit makes it easier to review customizations in
the future.

Customize cluster configuration

Configuring the Tanzu Application Platform installation involves setting up two components:

an installation of Tanzu Application Platform;

an instance of Tanzu Sync, the component that implements the GitOps workflow, fetching
configuration from Git and applying it to the cluster.

Follow these steps to customize your Tanzu Application Platform cluster configuration:

1. Navigate to the created directory:

cd clusters/CLUSTER-NAME

For example, if the name of your cluster is iterate-green:

cd clusters/iterate-green

2. Define the following environment variables:

export AWS_ACCOUNT_ID=MY-AWS-ACCOUNT-ID

export AWS_REGION=AWS-REGION

export EKS_CLUSTER_NAME=EKS-CLUSTER-NAME

export TAP_PKGR_REPO=TAP-PACKAGE-OCI-REPOSITORY

Where:

MY-AWS-ACCOUNT-ID is your AWS account ID as it appears in the output of aws sts
get-caller-identity.

AWS-REGION is the region where the Secrets Manager is and the EKS cluster was
created.

EKS-CLUSTER-NAME is the name of the target cluster as it appears in the output of
eksctl get clusters.

TAP-PACKAGE-OCI-REPOSITORY is the fully-qualified path to the OCI repository hosting
the Tanzu Application Platform images. If they are relocated to a different registry as
described in Relocate images to a registry, the value is
${INSTALL_REGISTRY_HOSTNAME}/${INSTALL_REPO}/tap-packages.

Grant read access to secret data

All sensitive configuration is stored in AWS Secrets Manager secrets. Both Tanzu Sync and the
Tanzu Application Platform installation require access to this sensitive data.

Follow these step to configure the IAM Role for a Service Account:

Tanzu Application Platform v1.5

VMware by Broadcom 331

https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts.html

1. In AWS Identity and Access Manager, create two IAM Policies, one to read Tanzu Sync
secrets and another to read the Tanzu Application Platform installation secrets by using the
supplied script:

tanzu-sync/scripts/aws/create-policies.sh

2. Create two IAM Role-to-Service Account pairs for your cluster, one for Tanzu Sync and
anther for the Tanzu Application Platform installation by using the supplied script:

tanzu-sync/scripts/aws/create-irsa.sh

For example, if the name of the EKS cluster is iterate-green using the defaults, there are
two IAM roles in the AWS account:

$ aws iam list-roles --query 'Roles[?starts_with(RoleName,`iterate-green`)]'

[

 {

 "RoleName": "iterate-green--tanzu-sync-secrets",

 ...

 },

 {

 "RoleName": "iterate-green--tap-install-secrets",

 ...

 }

]

Generate default configuration

You can use the following script to generate default configuration for the both Tanzu Sync and
Tanzu Application Platform installation:

tanzu-sync/scripts/configure.sh

The following sections guide you through the process of editing the configuration values to suit
your specific needs.

Review and store Tanzu Sync config

Configuration for Tanzu is stored in two locations:

sensitive configuration is stored in AWS Secrets Manager;

non-sensitive configuration are stored in YAML files in the Git repository.

Follow these steps to create the sensitive configuration and review the non-sensitive configuration:

1. Save the credentials that Tanzu Sync uses to authenticate with the Git repository:

Create a secret named dev/EKS-CLUSTER-NAME/tanzu-sync/sync-git-ssh containing the
following information as plaintext:

{

 "ssh-privatekey": "... (private key portion here) ...",

 "ssh-knownhosts": "... (known_hosts for git host here) ..."

}

Where EKS-CLUSTER-NAME is the name as it appears in eksctl get clusters.

For example, if the Git repository is hosted on GitHub, and the private key created in
Create a new Git repository is stored in the file ~/.ssh/id_ed25519:

Tanzu Application Platform v1.5

VMware by Broadcom 332

aws secretsmanager create-secret \

 --name dev/${EKS_CLUSTER_NAME}/tanzu-sync/sync-git-ssh \

 --secret-string "$(cat <<EOF

{

 "ssh-privatekey": "$(cat ~/.ssh/id_ed25519 | awk '{printf "%s\\n", $0}')",

 "ssh-knownhosts": "$(ssh-keyscan github.com | awk '{printf "%s\\n", $0}')"

}

EOF

)"

Where:

The content of ~/.ssh/id_ed25519 is the private portion of the SSH key.

ssh-keyscan obtains the public keys for the SSH host.

awk '{printf "%s\n", $0}' converts a multiline string into a single-line string with
embedded newline chars (\n). JSON does not support multiline strings.

2. Save the authentication credentials required for accessing the OCI registry that hosts the
Tanzu Application Platform images by creating a secret named dev/EKS-CLUSTER-
NAME/tanzu-sync/install-registry-dockerconfig containing the following information as
plaintext:

{

 "auths": {

 "MY-REGISTRY": {

 "username": "MY-REGISTRY-USER",

 "password": "MY-REGISTRY-PASSWORD"

 }

 }

}

Where:

EKS-CLUSTER-NAME is the name as it appears in eksctl get clusters

MY-REGISTRY-USER is the user with write access to MY-REGISTRY.

MY-REGISTRY-PASSWORD is the password for MY-REGISTRY-USER.

MY-REGISTRY is the container registry to which the Tanzu Application Platform
images are located.

For example:

aws secretsmanager create-secret \

 --name dev/${EKS_CLUSTER_NAME}/tanzu-sync/install-registry-dockerconfig \

 --secret-string "$(cat <<EOF

{

 "auths": {

 "${INSTALL_REGISTRY_HOSTNAME}": {

 "username": "${INSTALL_REGISTRY_USERNAME}",

 "password": "${INSTALL_REGISTRY_PASSWORD}"

 }

 }

}

Caution

This version of Tanzu GitOps RI only supports authenticating to a hosted Git
repository by using SSH. Authenticating by using HTTP Basic Authentication
is not supported.

Tanzu Application Platform v1.5

VMware by Broadcom 333

EOF

)"

3. Review the hosted Git URL and branch Tanzu Sync should use.

This configuration was generated by the configure.sh script. It reported:

...

wrote non-sensitive Tanzu Sync configuration to: tanzu-sync/app/values/tanzu-sy

nc.yaml

...

For example, for the iterate-green cluster, if the Git repository is hosted on GitHub at my-
organization/tap-gitops on the main branch, tanzu-sync.yaml contains the following
information:

git:

 url: git@github.com:my-organization/tap-gitops.git

 ref: origin/main

 sub_path: clusters/iterate-green/cluster-config

You can review and edit these values as needed.

4. Review the integration with External Secrets Operator.

This configuration was generated by the configure.sh script. It reported:

...

wrote ESO configuration for Tanzu Sync to: tanzu-sync/app/values/tanzu-sync-es

o.yaml

...

For example, for the iterate-green cluster, if the AWS account is 665100000000, tanzu-
sync-eso.yaml contains the following information:

secrets:

 eso:

 aws:

 region: us-west-2

 tanzu_sync_secrets:

 role_arn: arn:aws:iam::665100000000:role/iterate-green--tanzu-sync-secre

ts

 remote_refs:

 sync_git_ssh:

 ssh_private_key:

 key: dev/iterate-green/tanzu-sync/sync-git-ssh

 property: ssh-privatekey

 ssh_known_hosts:

 key: dev/iterate-green/tanzu-sync/sync-git-ssh

 property: ssh-knownhosts

 install_registry_dockerconfig:

 dockerconfigjson:

 key: dev/iterate-green/tanzu-sync/install-registry-dockerconfig

Where:

role_arn is the IAM role that grants permission to Tanzu Sync to read secrets
specific to Tanzu Sync. This role was created in the Grant read access to secret data
section.

Tanzu Application Platform v1.5

VMware by Broadcom 334

ssh_private_key is the AWS Secrets Manager secret name, as known as key, and
JSON property that contains the private key portion of the SSH authentication to
the Git repository created earlier.

ssh_known_hosts is the AWS Secrets Manager secret name, as known as key, and
JSON property that contains the known host entries for the SSH authentication to
the Git repository created earlier.

install_registry_dockerconfig contains the AWS Secrets Manager secret name
that contains the Docker config authentication to the OCI registry hosting the Tanzu
Application Platform images created earlier.

5. Commit the Tanzu Sync configuration.

For example, for the “iterate-green” cluster, run:

git add tanzu-sync/

git commit -m 'Configure Tanzu Sync on "iterate-green"'

Review and store Tanzu Application Platform installation config

Configuration for the Tanzu Application Platform installation are stored in two places:

sensitive configuration is stored in AWS Secrets Manager;

non-sensitive configuration is stored in YAML files in the Git repository.

Follow these steps to create the sensitive configuration and review the non-sensitive configuration:

1. Create a secret named dev/${EKS_CLUSTER_NAME}/tap/sensitive-values.yaml that stores
the sensitive data such as username, password, private key from the tap-values.yaml file:

aws secretsmanager create-secret \

 --name dev/${EKS_CLUSTER_NAME}/tap/sensitive-values.yaml \

 --secret-string "$(cat <<EOF

this document is intentionally initially blank.

EOF

)"

You can start with an empty document and edit it later on in the Configure and push the
Tanzu Application Platform values section.

2. Review the integration with External Secrets Operator.

This configuration was generated by the configure.sh script. It reported:

...

wrote ESO configuration for TAP Install to: cluster-config/values/tap-install-e

so-values.yaml

...

For example, for the iterate-green cluster, if the AWS account is 665100000000, tap-
install-eso-values.yaml contains the following information:

tap_install:

 secrets:

 eso:

 aws:

 region: us-west-2

 tap_install_secrets:

 role_arn: arn:aws:iam:665100000000:iterate-green--tap-install-secrets

 remote_refs:

Tanzu Application Platform v1.5

VMware by Broadcom 335

 tap_sensitive_values:

 sensitive_tap_values_yaml:

 key: dev/iterate-green/tap/sensitive-values.yaml

Where:

role_arn is the IAM role that grants permission to Tanzu Application Platform
installation to read its associated secrets. This role was created in the Grant read
access to secret data section.

sensitive_tap_values_yaml.key is the AWS Secrets Manager secret name that
contains the sensitive data from the tap-values.yaml file for this cluster in a YAML
format.

3. Commit the Tanzu Application Platform installation configuration.

For example, for the iterate-green cluster, run:

git add cluster-config/

git commit -m 'Configure installer for TAP 1.5.0 on "iterate-green"'

Configure and push the Tanzu Application Platform values

The configuration for the Tanzu Application Platform is divided into two separate locations:

sensitive configuration is stored in a AWS Secrets Manager secret created as described in
the Review and store Tanzu Application Platform installation config section.

non-sensitive configuration is stored in a plain YAML file cluster-config/values/tap-
values.yaml

Follow these steps to split the Tanzu Application Platform values:

1. Create the file cluster-config/values/tap-values.yaml by using the Full Profile (AWS)
which contains the minimum configurations required to deploy Tanzu Application Platform
on AWS.

The Tanzu Application Platform values are input configurations to the Tanzu Application
Platform installation and are placed under the tap_install.values path.

tap_install:

 values:

 # Tanzu Application Platform values go here.

 shared:

 ingress_domain: "INGRESS-DOMAIN"

 ceip_policy_disclosed: true

...

To install Tanzu Application Service in an offline environment, you must configure Tanzu
Build Service and Grype to work in an air-gapped environment:

tap_install:

 values:

 ...

 buildservice:

 exclude_dependencies: true

 grype:

 db:

 dbUpdateUrl: INTERNAL-VULN-DB-URL

Where:

Tanzu Application Platform v1.5

VMware by Broadcom 336

INTERNAL-VULN-DB-URL is the URL that points to the internal file server.

For more information, see Components and installation profiles.

2. (Optional) Update Tanzu Application Platform to use the latest patch:

tap_install:

 ...

 version:

 package_repo_bundle_tag: "1.5.6" # Populate these values with the lates

t patch version.

 package_version: "1.5.6"

Where:

package_repo_bundle_tag is the version of Tanzu Application Platform you want to
upgrade to.

package_version is the version of Tanzu Application Platform you want to upgrade
to. This version must match package_repo_bundle_tag.

3. Review the contents of tap-values.yaml and move all sensitive values into the AWS
Secrets Store secret created in the Review and store Tanzu Application Platform installation
config section.

For example, if the iterate-green cluster is configured with the basic Out of the Box
Supply Chain, this might include a passphrase for that supply chain’s GitOps flow:

tap_install:

 values:

 ...

 ootb_supply_chain_basic:

 registry:

 server: "SERVER-NAME"

 repository: "REPO-NAME"

 gitops:

 ssh_secret: "SSH-SECRET-KEY" # <== sensitive value; do not commit to G

it repository!

 ...

To maintain the secrecy of ootb_supply_chain_basic.gitops.ssh_secret, move this value
from the tap-values.yaml file:

tap_install:

 values:

 ...

 ootb_supply_chain_basic:

 registry:

 server: "SERVER-NAME"

 repository: "REPO-NAME"

 ...

Note

Tanzu GitOps RI does not provide a separate artifact for each patch version
within a minor line. For example, Tanzu Application Platform v1.5.x contains
the GitOps artifact with v1.5.0 only.

Tanzu Application Platform v1.5

VMware by Broadcom 337

Add it to the AWS Secrets Store secret named dev/iterate-green/tap/sensitive-
values.yaml, by default, without the tap_install.values root:

...

ootb_supply_chain_basic:

 gitops:

 ssh_secret: "SSH-SECRET-KEY"

...

To update the secret value, follow the instructions in Modify an AWS Secrets Manager
secret.

When moving values, you must omit the tap_install.values root, but keep the remaining
structure. All of the parent keys, for example, ootb_supply_chain_basic.gitops of the
moved value, for example, ssh_secret, must be copied to the sensitive value YAML.

4. Commit and push the Tanzu Application Platform values:

git add cluster-config/

git commit -m "Configure initial values for TAP 1.5.0"

git push

Tanzu Sync fetches configuration from the hosted clone of the Git repository. For changes
to take effect on the cluster, they must be pushed to that clone of the Git repository.

Deploy Tanzu Sync
Deploying Tanzu Sync kickstarts the GitOps workflow that initiates the Tanzu Application Platform
installation.

After deployed, Tanzu Sync periodically polls the Git repository for changes. The following
deployment process is only required once per cluster:

1. Install the Carvel tools kapp and ytt onto your $PATH:

sudo cp $HOME/tanzu-cluster-essentials/kapp /usr/local/bin/kapp

sudo cp $HOME/tanzu-cluster-essentials/ytt /usr/local/bin/ytt

This step is required to ensure the correct deployment of the tanzu-sync App.

2. Ensure the Kubernetes cluster context is set to the EKS cluster.

1. List the existing contexts:

kubectl config get-contexts

2. Set the context to the cluster that you want to deploy:

kubectl config use-context CONTEXT-NAME

Where CONTEXT-NAME can be retrieved from the outputs of the previous step.

3. Bootstrap the deployment.

External Secrets Operator is installed from the package included in the Tanzu Application
Plaform package repository. That repository must be fetched from the OCI registry initially.

1. Set the following environment variables:

export INSTALL_REGISTRY_HOSTNAME=MY-REGISTRY

export INSTALL_REGISTRY_USERNAME=MY-REGISTRY-USER

Tanzu Application Platform v1.5

VMware by Broadcom 338

https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_update-secret.html

export INSTALL_REGISTRY_PASSWORD=MY-REGISTRY-PASSWORD

Where:

MY-REGISTRY is your container registry.

MY-REGISTRY-USER is the user with read access to MY-REGISTRY.

MY-REGISTRY-PASSWORD is the password for MY-REGISTRY-USER.

2. Create a secret containing credentials to fetch from that OCI registry by using the
provided script:

tanzu-sync/scripts/bootstrap.sh

These credentials are used exactly once to install the External Secrets Operator
(ESO) package.

4. Install Tanzu Sync and start the GitOps workflow by deploying it to the cluster using kapp
and ytt.

tanzu-sync/scripts/deploy.sh

Depending on the profile and components included, it may take 5-10 minutes for the Tanzu
Application Platform to install. During this time, kapp waits for the deployment of Tanzu
Sync to reconcile successfully. This is normal.

You can track the progress of the installation by watching the installation of those packages
in a separate terminal window:

watch kubectl get pkgi -n tap-install

Install Tanzu Application Platform through Gitops with
Secrets OPerationS (SOPS)
This topic tells you how to install Tanzu Application Platform (commonly known as TAP) through
GitOps with secrets managed in a Git repository.

Prerequisites

Before installing Tanzu Application Platform, you need:

SOPS CLI to view and edit SOPS encrypted files. To install the SOPS CLI, see SOPS
documentation in GitHub.

Age CLI to create an encryption key used to encrypt and decrypt sensitive data. To install
the Age CLI, see age documentation in GitHub.

Completed the Prerequisites.

Caution

Tanzu Application Platform (GitOps) is currently in beta and is intended for
evaluation and test purposes only. Do not use in a production environment.

Tanzu GitOps Reference Implementation (RI) does not support changing the
secrets management strategy for a cluster.

Tanzu Application Platform v1.5

VMware by Broadcom 339

https://github.com/mozilla/sops/releases
https://github.com/FiloSottile/age#installation

Accepted Tanzu Application Platform EULA and installed Tanzu CLI with any required plug-
ins.

Installed Cluster Essentials for Tanzu.

Relocate images to a registry

VMware recommends relocating the images from VMware Tanzu Network registry to your own
container image registry before attempting installation. If you don’t relocate the images, Tanzu
Application Platform depends on VMware Tanzu Network for continued operation, and VMware
Tanzu Network offers no uptime guarantees. The option to skip relocation is documented for
evaluation and proof-of-concept only.

The supported registries are Harbor, Azure Container Registry, Google Container Registry, and
Quay.io. See the following documentation for a registry to learn how to set it up:

Harbor documentation

Google Container Registry documentation

Quay.io documentation

To relocate images from the VMware Tanzu Network registry to your registry:

1. Set up environment variables for installation use by running:

export IMGPKG_REGISTRY_HOSTNAME_0=registry.tanzu.vmware.com

export IMGPKG_REGISTRY_USERNAME_0=MY-TANZUNET-USERNAME

export IMGPKG_REGISTRY_PASSWORD_0=MY-TANZUNET-PASSWORD

export IMGPKG_REGISTRY_HOSTNAME_1=MY-REGISTRY

export IMGPKG_REGISTRY_USERNAME_1=MY-REGISTRY-USER

export IMGPKG_REGISTRY_PASSWORD_1=MY-REGISTRY-PASSWORD

export INSTALL_REGISTRY_USERNAME=MY-REGISTRY-USER

export INSTALL_REGISTRY_PASSWORD=MY-REGISTRY-PASSWORD

export INSTALL_REGISTRY_HOSTNAME=MY-REGISTRY

export TAP_VERSION=VERSION-NUMBER

export INSTALL_REPO=TARGET-REPOSITORY

Where:

MY-REGISTRY-USER is the user with write access to MY-REGISTRY.

MY-REGISTRY-PASSWORD is the password for MY-REGISTRY-USER.

MY-REGISTRY is your own container registry.

MY-TANZUNET-USERNAME is the user with access to the images in the VMware Tanzu
Network registry registry.tanzu.vmware.com.

MY-TANZUNET-PASSWORD is the password for MY-TANZUNET-USERNAME.

VERSION-NUMBER is your Tanzu Application Platform version. For example, 1.5.12.

TARGET-REPOSITORY is your target repository, a folder or repository on MY-REGISTRY
that serves as the location for the installation files for Tanzu Application Platform.

VMware recommends using a JSON key file to authenticate with Google Container
Registry. In this case, the value of INSTALL_REGISTRY_USERNAME is _json_key and the value of
INSTALL_REGISTRY_PASSWORD is the content of the JSON key file. For more information
about how to generate the JSON key file, see Google Container Registry documentation.

2. Install the Carvel tool imgpkg CLI.

To query for the available versions of Tanzu Application Platform on VMWare Tanzu
Network Registry, run:

Tanzu Application Platform v1.5

VMware by Broadcom 340

https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.5/cluster-essentials/deploy.html
https://goharbor.io/docs/2.5.0/
https://cloud.google.com/container-registry/docs
https://docs.projectquay.io/welcome.html
https://cloud.google.com/container-registry/docs/advanced-authentication
https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.5/cluster-essentials/deploy.html#optionally-install-clis-onto-your-path

imgpkg tag list -i registry.tanzu.vmware.com/tanzu-application-platform/tap-pac

kages | sort -V

3. Relocate the images with the imgpkg CLI by running:

imgpkg copy -b registry.tanzu.vmware.com/tanzu-application-platform/tap-package

s:${TAP_VERSION} --to-repo ${INSTALL_REGISTRY_HOSTNAME}/${INSTALL_REPO}/tap-pac

kages

(Optional) Install Tanzu Application Platform in an air-
gapped environment

Complete the following steps if you install Tanzu Application Platform in an air-gapped
environment:

1. Relocate the Tanzu Build Service images to your registry:

imgpkg copy -b registry.tanzu.vmware.com/tanzu-application-platform/full-tbs-de

ps-package-repo:VERSION --to-repo ${INSTALL_REGISTRY_HOSTNAME}/${INSTALL_REPO}/

full-tbs-deps-package-repo

Where:

VERSION is the version of Tanzu Build Service. You can retrieve this value by running
kubectl get package -n tap-install | grep buildservice

2. Host a grype database in the air-gapped environment. For more information, see Use Grype
in offline and air-gapped environments.

Create a new Git repository

1. In a hosted Git service, for example, GitHub or GitLab, create a new repository.

This version of Tanzu GitOps RI only supports authenticating to a hosted Git repository by
using SSH.

2. Initialize a new Git repository:

mkdir -p $HOME/tap-gitops

cd $HOME/tap-gitops

git init

git remote add origin git@github.com:my-organization/tap-gitops.git

3. Create a read-only deploy key for this new repository (recommended) or SSH key for an
account with read access to this repository.

The private portion of this key is referred to as GIT_SSH_PRIVATE_KEY.

Download and unpack Tanzu GitOps Reference
Implementation (RI)

1. Sign in to VMware Tanzu Network.

2. Go to the Tanzu Application Platform product page.

3. Select Release 1.5.12 from the release drop-down menu.

4. Click Tanzu GitOps Reference Implementation.

Tanzu Application Platform v1.5

VMware by Broadcom 341

https://network.tanzu.vmware.com/
https://network.tanzu.vmware.com/products/tanzu-application-platform

5. Unpack the downloaded TGZ file into the $HOME/tap-gitops directory by running:

tar xvf tanzu-gitops-ri-*.tgz -C $HOME/tap-gitops

6. Commit the initial state:

cd $HOME/tap-gitops

git add . && git commit -m "Initialize Tanzu GitOps RI"

git push -u origin

Create cluster configuration
1. Seed configuration for a cluster using SOPS:

cd $HOME/tap-gitops

./setup-repo.sh CLUSTER-NAME sops

Where:

CLUSTER-NAME the name of your cluster.

sops selects the Secrets OPerationS-based secrets management variant.

Example:

cd $HOME/tap-gitops

./setup-repo.sh full-tap-cluster sops

Created cluster configuration in ./clusters/full-tap-cluster.

...

This script creates the directory clusters/full-tap-cluster/ and copies in the
configuration required to sync this Git repository with the cluster and installing Tanzu
Application Platform.

2. Commit and push:

git add . && git commit -m "Add full-tap-cluster"

git push

Configure Tanzu Application Platform
Tanzu Sync Reference Implementation (RI) splits the values configuration of Tanzu Application
Platform into two categories:

Sensitive TAP values, for example, credentials, encryptions keys and so on.

Non-sensitive TAP values, for example, packages to exclude, namespace configuration and
so on.

The following sections describe how to create these values files.

Preparing sensitive Tanzu Application Platform values
1. Generate Age public or secrets keys:

Note

Tanzu Application Platform v1.5

VMware by Broadcom 342

mkdir -p $HOME/tmp-enc

chmod 700 $HOME/tmp-enc

cd $HOME/tmp-enc

age-keygen -o key.txt

cat key.txt

created: 2023-02-08T10:55:35-07:00

public key: age1ql3z7hjy54pw3hyww5ayyfg7zqgvc7w3j2elw8zmrj2kg5sfn9aqmcac8p

AGE-SECRET-KEY-my-secret-key

2. Create a plain YAML file tap-sensitive-values.yaml that contains a placeholder for the
sensitive portion of Tanzu Application Platform values:

tap_install:

 sensitive_values:

3. Encrypt tap-sensitive-values.yaml with Age using SOPS:

export SOPS_AGE_RECIPIENTS=$(cat key.txt | grep "# public key: " | sed 's/# pub

lic key: //')

sops --encrypt tap-sensitive-values.yaml > tap-sensitive-values.sops.yaml

Where:

grep is used to find the line containing the public key portion of the generated
secret.

sed is used to extract the public key from the line found by grep.

4. (Optional) Verify the encrypted file can be decrypted:

export SOPS_AGE_KEY_FILE=key.txt

sops --decrypt tap-sensitive-values.sops.yaml

(Optional) Verify the encrypted file can be edited directly by using SOPS:

sops tap-sensitive-values.sops.yaml

5. Move the sensitive Tanzu Application Platform values into the cluster config:

mv tap-sensitive-values.sops.yaml <GIT-REPO-ROOT>/clusters/<CLUSTER-NAME>/clust

er-config/values/

Example:

mv tap-sensitive-values.sops.yaml $HOME/tap-gitops/clusters/full-tap-cluster/cl

uster-config/values/

6. (Optional) Retain the Age identity key file in a safe and secure place such as a password
manager, and purge the scratch space:

mv key.txt SAFE-LOCATION/

export SOPS_AGE_KEY_FILE=SAFE-LOCATION/key.txt

rm -rf $HOME/tmp-enc

Skip this step if you already have an Age key to encrypt or decrypt secrets.

Tanzu Application Platform v1.5

VMware by Broadcom 343

Preparing non-sensitive Tanzu Application Platform values

Create a plain YAML file <GIT-REPO-ROOT>/clusters/<CLUSTER-NAME>/cluster-config/values/tap-
non-sensitive-values.yaml by using the Full Profile sample as a guide:

Example:

tap_install:

 values:

 ceip_policy_disclosed: true

 excluded_packages:

 - policy.apps.tanzu.vmware.com

...

To install Tanzu Application Service in an offline environment, you must configure Tanzu Build
Service and Grype to work in an air-gapped environment:

tap_install:

 values:

 ...

 buildservice:

 exclude_dependencies: true

 grype:

 db:

 dbUpdateUrl: INTERNAL-VULN-DB-URL

Where:

INTERNAL-VULN-DB-URL URL that points to the internal file server.

Updating sensitive Tanzu Application Platform values

After filling in the non-sensitive values, follow these steps to extract the sensitive values into tap-
sensitive-values.sops.yaml that you prepared earlier:

1. Open an editor through SOPS to edit the encrypted sensitive values file:

sops <GIT-REPO-ROOT>/clusters/<CLUSTER-NAME>/cluster-config/values/tap-sensitiv

e-values.sops.yaml

Example:

sops $HOME/tap-gitops/clusters/full-tap-cluster/cluster-config/values/tap-sensi

tive-values.sops.yaml

2. Add the sensitive values:

Example of the container registry credentials using basic authentication:

tap_install:

 sensitive_values:

 shared:

 image_registry:

 project_path: "example.com/my-project/tap"

 username: "my_username"

 password: "my_password"

Example of the container registry credentials using Google Container Registry:

Tanzu Application Platform v1.5

VMware by Broadcom 344

tap_install:

 sensitive_values:

 shared:

 image_registry:

 project_path: "gcr.io/my-project/tap"

 username: "_json_key"

 password: |

 {

 "type": "service_account",

 "project_id": "my-project",

 "private_key_id": "my-private-key-id",

 "private_key": "-----BEGIN PRIVATE KEY-----\n..........\n-----END PR

IVATE KEY-----\n",

 ...

 }

Generate Tanzu Application Platform installation and Tanzu
Sync configuration
Follow these steps to generate the Tanzu Application Platform installation and Tanzu Sync
configuration:

1. Set up environment variables by running:

export INSTALL_REGISTRY_HOSTNAME=MY-REGISTRY

export INSTALL_REGISTRY_USERNAME=MY-REGISTRY-USER

export INSTALL_REGISTRY_PASSWORD=MY-REGISTRY-PASSWORD

export GIT_SSH_PRIVATE_KEY=PRIVATE-KEY

export GIT_KNOWN_HOSTS=KNOWN-HOST-LIST

export SOPS_AGE_KEY=AGE-KEY

export TAP_PKGR_REPO=TAP-PACKAGE-OCI-REPOSITORY

Where:

MY-REGISTRY is your container registry.

MY-REGISTRY-USER is the user with read access to MY-REGISTRY.

MY-REGISTRY-PASSWORD is the password for MY-REGISTRY-USER.

PRIVATE-KEY is the contents of an SSH private key file with read access to your Git
repository.

HOST-LIST is the list of known hosts for Git host service.

AGE-KEY is the contents of the Age key generated earlier.

TAP-PACKAGE-OCI-REPOSITORY is the fully-qualified path to the OCI repository hosting
the Tanzu Application Platform images. If the images are relocated as described in
Relocate images to a registry, this value is
${INSTALL_REGISTRY_HOSTNAME}/${INSTALL_REPO}/tap-packages.

Example of the Git repo hosted on GitHub:

export INSTALL_REGISTRY_HOSTNAME=registry.tanzu.vmware.com

export INSTALL_REGISTRY_USERNAME=foo@example.com

export INSTALL_REGISTRY_PASSWORD=my-password

export GIT_SSH_PRIVATE_KEY=$(cat $HOME/.ssh/my_private_key)

export GIT_KNOWN_HOSTS=$(ssh-keyscan github.com)

export SOPS_AGE_KEY=$(cat $HOME/key.txt)

export TAP_PKGR_REPO=registry.tanzu.vmware.com/tanzu-application-platform/tap-p

ackages

Tanzu Application Platform v1.5

VMware by Broadcom 345

2. Generate the Tanzu Application Platform install and the Tanzu Sync configuration files by
using the provided script:

cd <GIT-REPO-ROOT>/clusters/<CLUSTER-NAME>

./tanzu-sync/scripts/configure.sh

Example:

cd $HOME/tap-gitops/clusters/full-tap-cluster

./tanzu-sync/scripts/configure.sh

3. (Optional) Update Tanzu Application Platform to use the latest patch:

Update the Tanzu Application Platform version in GIT-REPO-ROOT/clusters/CLUSTER-
NAME/cluster-config/values/tap-install-values.yaml:

tap_install:

 ...

 version:

 package_repo_bundle_tag: "1.5.6" # Populate these values with the lates

t patch version.

 package_version: "1.5.6"

Where:

package_repo_bundle_tag is the version of Tanzu Application Platform you want to
upgrade to.

package_version is the version of Tanzu Application Platform you want to upgrade
to. This version must match package_repo_bundle_tag.

4. Commit the generated configured to Git repository:

git add cluster-config/ tanzu-sync/

git commit -m "Configure install of TAP 1.5.0"

git push

Deploy Tanzu Sync

1. Install the Carvel tools kapp and ytt onto your $PATH:

sudo cp $HOME/tanzu-cluster-essentials/kapp /usr/local/bin/kapp

sudo cp $HOME/tanzu-cluster-essentials/ytt /usr/local/bin/ytt

2. Set the Kubernetes cluster context.

1. List the existing contexts:

kubectl config get-contexts

2. Set the context to the cluster that you want to deploy:

Note

Tanzu GitOps RI does not provide a separate artifact for each patch version
within a minor line. For example, Tanzu Application Platform v1.5.x contains
the GitOps artifact with v1.5.0 only.

Tanzu Application Platform v1.5

VMware by Broadcom 346

kubectl config use-context CONTEXT-NAME

Where CONTEXT-NAME can be retrieved from the outputs of the previous step.

3. Deploy the Tanzu Sync component:

cd GIT-REPO-ROOT/clusters/CLUSTER-NAME

./tanzu-sync/scripts/deploy.sh

Example:

cd $HOME/tap-gitops/clusters/full-tap-cluster

./tanzu-sync/scripts/deploy.sh

Install individual packages

You can install Tanzu Application Platform (commonly known as TAP) through predefined profiles or
through individual packages. Use this topic to learn how to install each individual package. For more
information about installing through profiles, see Components and installation profiles.

Installing individual Tanzu Application Platform packages is useful if you do not want to use a profile
to install packages or if you want to install additional packages after installing a profile. Before
installing the packages, be sure to complete the prerequisites, configure and verify the cluster,
accept the EULA, and install the Tanzu CLI with any required plug-ins. For more information, see
Prerequisites.

Install pages for individual Tanzu Application Platform
packages

Install API Auto Registration

Install API portal

Install Application Accelerator

Install Application Configuration Service

Install Application Live View

Install Application Single Sign-On

Install Bitnami Services

Install cert-manager

Install Cloud Native Runtimes

Install Contour

Install Crossplane

Install default roles for Tanzu Application Platform

Note

Depending on the profile and components included, it may take 5-10
minutes for Tanzu Application Platform to install. During this time, kapp waits
for the deployment of Tanzu Sync to reconcile successfully. This is normal.

Tanzu Application Platform v1.5

VMware by Broadcom 347

Install Developer Conventions

Install Eventing

Install Flux CD Source Controller

Install Learning Center for Tanzu Application Platform

Install Out of the Box Templates

Install Out of the Box Supply Chain with Testing

Install Out of the Box Supply Chain with Testing and Scanning

Install Service Bindings

Install Services Toolkit

Install Source Controller

Install Spring Boot conventions

Install Supply Chain Choreographer

Install Supply Chain Security Tools - Store

Install Supply Chain Security Tools - Policy Controller

Install Supply Chain Security Tools - Scan

Install Tanzu Application Platform GUI

Install Tanzu Build Service

Install Tekton

Install Telemetry

Verify the installed packages

Use the following procedure to verify that the packages are installed.

1. List the installed packages by running:

tanzu package installed list --namespace tap-install

For example:

$ tanzu package installed list --namespace tap-install

\ Retrieving installed packages...

NAME PACKAGE-NAME PAC

KAGE-VERSION STATUS

api-portal api-portal.tanzu.vmware.com 1.

0.3 Reconcile succeeded

app-accelerator accelerator.apps.tanzu.vmware.com 1.

0.0 Reconcile succeeded

app-live-view appliveview.tanzu.vmware.com 1.

0.2 Reconcile succeeded

appliveview-conventions build.appliveview.tanzu.vmware.com 1.

0.2 Reconcile succeeded

cartographer cartographer.tanzu.vmware.com 0.

1.0 Reconcile succeeded

cloud-native-runtimes cnrs.tanzu.vmware.com 1.

0.3 Reconcile succeeded

convention-controller controller.conventions.apps.tanzu.vmware.com 0.

7.0 Reconcile succeeded

developer-conventions developer-conventions.tanzu.vmware.com 0.

3.0-build.1 Reconcile succeeded

grype-scanner grype.scanning.apps.tanzu.vmware.com 1.

Tanzu Application Platform v1.5

VMware by Broadcom 348

0.0 Reconcile succeeded

image-policy-webhook image-policy-webhook.signing.apps.tanzu.vmware.com 1.

1.2 Reconcile succeeded

metadata-store metadata-store.apps.tanzu.vmware.com 1.

0.2 Reconcile succeeded

ootb-supply-chain-basic ootb-supply-chain-basic.tanzu.vmware.com 0.

5.1 Reconcile succeeded

ootb-templates ootb-templates.tanzu.vmware.com 0.

5.1 Reconcile succeeded

scan-controller scanning.apps.tanzu.vmware.com 1.

0.0 Reconcile succeeded

service-bindings service-bindings.labs.vmware.com 0.

5.0 Reconcile succeeded

services-toolkit services-toolkit.tanzu.vmware.com 0.

8.0 Reconcile succeeded

source-controller controller.source.apps.tanzu.vmware.com 0.

2.0 Reconcile succeeded

sso4k8s-install sso.apps.tanzu.vmware.com 1.

0.0-beta.2-31 Reconcile succeeded

tap-gui tap-gui.tanzu.vmware.com 0.

3.0-rc.4 Reconcile succeeded

tekton-pipelines tekton.tanzu.vmware.com 0.3

0.0 Reconcile succeeded

tbs buildservice.tanzu.vmware.com 1.

5.0 Reconcile succeeded

Next steps

Set up developer namespaces to use your installed packages

Set up developer namespaces to use your installed
packages
For details about how to automatically set up your developer namespaces, see Provision developer
namespaces in Namespace Provisioner.

Additional configuration for testing and scanning
If you plan to install or have already installed Out of the Box Supply Chains with Testing and
Scanning, you can use Namespace Provisioner to set up the required resources. For more
information, see Customize installation in the Namespace Provisioner documentation for
configuration steps.

Legacy namespace setup
To use the legacy manual process for setting up developer namespaces, see Legacy namespace
setup.

Next steps
Install Tanzu Developer Tools for your VS Code

Install Tanzu Developer Tools for your VS Code
This topic tells you how to install VMware Tanzu Developer Tools for Visual Studio Code (VS Code).

Prerequisites

Tanzu Application Platform v1.5

VMware by Broadcom 349

Before installing the extension, you must have:

VS Code

kubectl

Tilt v0.30.12 or later

Tanzu CLI and plug-ins

A cluster with the Tanzu Application Platform Full profile or Iterate profile

If you are an app developer, someone else in your organization might have already set up the
Tanzu Application Platform environment.

Docker Desktop and local Kubernetes are not prerequisites for using Tanzu Developer Tools for VS
Code.

Install

To install the extension:

1. Sign in to VMware Tanzu Network and download Tanzu Developer Tools for Visual Studio
Code.

2. Open VS Code.

3. Press cmd+shift+P to open the Command Palette and run Extensions: Install from
VSIX....

4. Select the extension file tanzu-vscode-extension.vsix.

5. If you do not have the following extensions, and they do not automatically install, install
them from VS Code Marketplace:

Debugger for Java

Language Support for Java(™) by Red Hat

YAML

6. Ensure Language Support for Java is running in Standard Mode. You can configure it in the
Settings menu by going to Code > Preferences > Settings under Java > Server: Launch
Mode.

When the JDK and Language Support for Java are configured correctly, you see that the
integrated development environment creates a directory target where the code is
compiled.

Configure

Tanzu Application Platform v1.5

VMware by Broadcom 350

https://code.visualstudio.com/download
https://kubernetes.io/docs/tasks/tools/#kubectl
https://docs.tilt.dev/install.html
https://network.tanzu.vmware.com/products/tanzu-application-platform
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-debug
https://marketplace.visualstudio.com/items?itemName=redhat.java
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-yaml
https://code.visualstudio.com/docs/java/java-project#_lightweight-mode

To configure VMware Tanzu Developer Tools for VS Code:

1. Ensure that you are targeting the correct cluster. For more information, see the
Kubernetes documentation.

2. Go to Code > Preferences > Settings > Extensions > Tanzu Developer Tools and set the
following:

Confirm Delete: This controls whether the extension asks for confirmation when
deleting a workload.

Enable Live Hover: For more information, see Integrating Live Hover by using
Spring Boot Tools. Reload VS Code for this change to take effect.

Source Image: (Required) The registry location for publishing local source code. For
example, registry.io/yourapp-source. This must include both a registry and a
project name.

Local Path: (Optional) The path on the local file system to a directory of source
code to build. This is the current directory by default.

Namespace: (Optional) This is the namespace that workloads are deployed into.
The namespace set in kubeconfig is the default.

Uninstall

To uninstall VMware Tanzu Developer Tools for VS Code:

1. Go to Code > Preferences > Settings > Extensions.

2. Right-click the extension and select Uninstall.

Next steps

Proceed to Getting started with Tanzu Developer Tools for Visual Studio Code.

Tanzu GitOps RI Reference Documentation

The following diagrams shows you the components that are installed as part of Tanzu GitOps
Reference Implementation (RI) and how they work together to automate the installation of Tanzu
Application Platform (commonly known as TAP):

SOPS

ESO

Tanzu Application Platform v1.5

VMware by Broadcom 351

https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/

Tanzu Sync Carvel Application

Tanzu Sync consists of a Carvel application named sync that is installed in the tanzu-sync
namespace. The sync application:

1. Fetches a Git repository that contains configuration for Tanzu Application Platform.

2. Templates with ytt a set of resources and data values.

3. Deploys with kapp a set of resources to install Tanzu Application Platform, with any other
user specified configuration in the Git Repository.

Choosing SOPS or ESO

The following table outlines the Kubernetes distributions and secret management solutions that
SOPS and ESO support:

Choose IaaS Secrets Manager

SOPS Any TAP supported IaaS N/A

ESO AWS (EKS) AWS Secrets Manager

The following table describes a few common use cases and scenarios for SOPS and ESO:

I want … SOPS ESO

Sensitive data encrypted inside the Git repository. � �

Sensitive data to be stored outside the Git repository. � �

Minimal setup. No external secret storage system � �

Caution

Tanzu Application Platform (GitOps) is currently in beta and is intended for
evaluation and test purposes only. Do not use in a production environment.

Note

Future release will include additional Secrets Managers for ESO.

Tanzu Application Platform v1.5

VMware by Broadcom 352

https://carvel.dev/kapp-controller/docs/latest/app-overview/

I want … SOPS ESO

To manage sensitive data myself. For example, storing keys, rotation and usage auditing.) � �

To utilize sensitive data management. For example, storage, rotation and usage auditing by a third-
party solution.

� �

Git Repository structure

Tanzu Sync Application fetches our deployable content from a Git repository that must match the
following structure:

Git repository for a cluster named full-tap-cluster:

├── .catalog

│ ├── tanzu-sync

│ │ └── 0.0.3

│ └── tap-install

│ └── 1.5.0

├── README.md

├── clusters

│ └── full-tap-cluster

│ ├── README.md

│ ├── cluster-config

│ │ ├── config

│ │ │ └── tap-install

│ │ │ └── .tanzu-managed

│ │ └── values

│ └── tanzu-sync

│ ├── app

│ │ ├── config

│ │ │ └── .tanzu-managed

│ │ └── values

│ ├── bootstrap

│ └── scripts

└── setup-repo.sh

Where:

.catalog: VMware supplied directory of resources and configuration to install Tanzu Sync
and Tanzu Application Platform.

tanzu-sync: Contains the Carvel Packaging App which supports a GitOps workflow
for fetching, templating and deploying the clusters/full-tap-cluster/cluster-
config directory of this repository.

tap-install: Contains the configuration to install Tanzu Application Platform.

clusters/full-tap-cluster

cluster-config

config: Contains the Tanzu Application Platform installation configuration.
This directory can be extended to include any desired resources managed
through GitOps to your cluster.

.tanzu-managed: Contains VMware managed Kubernetes resource files to
install Tanzu Application Platform. Do not alter this value.

values: Contains the plain YAML data files which configure the application.

tanzu-sync

app: Contains the main Carvel Packaging App that runs on the cluster. It
fetches, templates and deploys your Tanzu Application Platform installation
from clusters/full-tap-cluster/cluster-config.

Tanzu Application Platform v1.5

VMware by Broadcom 353

bootstrap: Contains secret provider specific bootstrapping if required.

scripts: Contains helper scripts to assist with the configuration and
deployment of Tanzu GitOps RI.

Configuration of Tanzu Sync without helper scripts

1. The following plain YAML values files are required to run Tanzu Sync:

Tanzu Sync App:

clusters/full-tap-cluster/tanzu-sync/app/values/values.yaml adhering to the
following schema:

#@data/values-schema

#@overlay/match-child-defaults missing_ok=True

git:

 url: ""

 ref: ""

 sub_path: ""

tap_package_repository:

 oci_repository: ""

Example:

git:

 url: git@github.com:my-org/gitops-tap.git

 ref: origin/main

 sub_path: clusters/full-tap-cluster/cluster-config

tap_package_repository:

 oci_repository: registry.example.com/tanzu-application-platform/tap-pac

kages

Tanzu Application Platform Install:

clusters/full-tap-cluster/cluster-config/config/values/install-values.yaml

adhering to the following schema:

#@data/values-schema

#@overlay/match-child-defaults missing_ok=True

tap_install:

 package_repository:

 oci_repository: ""

 #@schema/type any=True

 values: {}

Example:

tap_install:

 package_repository:

 oci_repository: registry.example.com/tanzu-application-platform/tap-p

ackages

 values:

 shared:

 ingress_domain: example.vmware.com

 ceip_policy_disclosed: true

Tanzu Application Platform v1.5

VMware by Broadcom 354

clusters/full-tap-cluster/cluster-config/config/values/sensitive-

values.sops.yaml adhering to the following schema:

#@data/values-schema

#@overlay/match-child-defaults missing_ok=True

tap_install:

 #@schema/nullable

 #@schema/validation not_null=True

 #@schema/type any=True

 sensitive_values: {}

Example:

tap_install:

 sensitive_values:

 shared:

 image_registry:

 project_path: example.registry.com/my-project/my-user/tap

 username: my-username

 password: my-password

2. The following is used to deploy the application by using kapp:

kapp deploy --app tanzu-sync --file <(ytt \

 --file tanzu-sync/app/config \

 --file cluster-config/config/tap-install/.tanzu-managed/version.yaml \

 --data-values-file tanzu-sync/app/values/ \

 --data-value secrets.sops.age_key=$(cat $HOME/key.txt) \

 --data-value secrets.sops.registry.hostname="hostname" \

 --data-value secrets.sops.registry.username="foo@example.com" \

 --data-value secrets.sops.registry.password="password" \

 --data-value secrets.sops.git.ssh.private_key=$(cat $HOME/.ssh/my_private_k

ey) \

 --data-value secrets.sops.git.ssh.known_hosts=$(ssh-keyscan github.com) \

)

Tanzu Sync Scripts

VMware provides a set of convenience bash scripts in clusters/MY-CLUSTER/tanzu-sync/scripts to
help you set up your Git repository and configure the values as described in the previous section:

setup-repo.sh: Populates a Git repository with the structure described in the Git Repository
structure section.

configure.sh: Generates the values files described in the Configuration of values without
helper scripts section.

deploy.sh: A light wrapper around a simple kapp deploy given the data values from the
previous section and sensitive values which must not be stored on disk.

Customize your package installation

Caution

The provided scripts are intended to help set up your Git repository to work with a
GitOps approach, they are subject to change or removal between releases.

Tanzu Application Platform v1.5

VMware by Broadcom 355

You can customize your package configuration that is not exposed through data values by using
annotations and ytt overlays.

You can customize a package that was installed manually or that was installed by using a Tanzu
Application Platform profile.

Customize a package that was manually installed

To customize a package that was installed manually:

1. Create a secret.yml file with a Secret that contains your ytt overlay. For example:

apiVersion: v1

kind: Secret

metadata:

 name: tap-overlay

 namespace: tap-install

stringData:

 custom-package-overlay.yml: |

 CUSTOM-OVERLAY

For more information about ytt overlays, see the Carvel documentation.

2. Apply the Secret to your cluster by running:

kubectl apply -f secret.yml

3. Update your PackageInstall to include the ext.packaging.carvel.dev/ytt-paths-from-
secret-name.x annotation to reference your new overlay Secret. For example:

apiVersion: packaging.carvel.dev/v1alpha1

kind: PackageInstall

metadata:

 name: PACKAGE-NAME

 namespace: tap-install

 annotations:

 ext.packaging.carvel.dev/ytt-paths-from-secret-name: tap-overlay

...

Customize a package that was installed by using a profile

To add an overlay to a package that was installed by using a Tanzu Application Platform profile:

1. Create a Secret with your ytt overlay. For more information about ytt overlays, see the
Carvel documentation.

2. Update your values file to include a package_overlays field:

package_overlays:

- name: PACKAGE-NAME

 secrets:

 - name: SECRET-NAME

Note

You can suffix the extension annotation with .x, where x is a number, to
apply multiple overlays. For more information, see the Carvel
documentation.

Tanzu Application Platform v1.5

VMware by Broadcom 356

https://carvel.dev/ytt/docs/v0.43.0/ytt-overlays/
https://carvel.dev/ytt/docs/v0.43.0/ytt-overlays/
https://carvel.dev/kapp-controller/docs/v0.40.0/package-install-extensions/

Where PACKAGE-NAME is the target package for the overlay. For example, tap-gui.

3. Update Tanzu Application Platform by running:

tanzu package installed update tap -p tap.tanzu.vmware.com -v 1.5.12 --values-

file tap-values.yaml -n tap-install

For information about Tanzu Application Platform profiles, see Installing Tanzu Application Platform
package and profiles.

Upgrade your Tanzu Application Platform

This document tells you how to upgrade your Tanzu Application Platform (commonly known as
TAP).

You can perform a fresh install of Tanzu Application Platform by following the instructions in
Installing Tanzu Application Platform.

Prerequisites

Before you upgrade Tanzu Application Platform:

Verify that you meet all the prerequisites of the target Tanzu Application Platform version. If
the target Tanzu Application Platform version does not support your existing Kubernetes
version, VMware recommends upgrading to a supported version before proceeding with
the upgrade.

For information about installing your Tanzu Application Platform, see Install your Tanzu
Application Platform profile.

Ensure that Tanzu CLI is updated to the version recommended by the target Tanzu
Application Platform version. For information about installing or updating the Tanzu CLI and
plug-ins, see Install or update the Tanzu CLI and plug-ins.

For information about Tanzu Application Platform GUI considerations, see Tanzu Application
Platform GUI Considerations.

Verify all packages are reconciled by running tanzu package installed list -A.

To avoid the temporary warning state that is described in Update the new package
repository, upgrade to Cluster Essentials v1.5. See Cluster Essentials documentation for
more information about the upgrade procedures.

Update the new package repository

Follow these steps to update the new package repository:

1. Relocate the latest version of Tanzu Application Platform images by following step 1 through
step 6 in Relocate images to a registry.

2. Add the target version of the Tanzu Application Platform package repository by running:

Cluster Essentials 1.2 or above

Important

Make sure to update the TAP_VERSION to the target version of Tanzu
Application Platform you are migrating to. For example, 1.5.12.

Tanzu Application Platform v1.5

VMware by Broadcom 357

https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.5/cluster-essentials/deploy.html#upgrade

tanzu package repository add tanzu-tap-repository \

--url ${INSTALL_REGISTRY_HOSTNAME}/${INSTALL_REPO}/tap-packages:$TAP_VERSION

\

--namespace tap-install

Cluster Essentials 1.1 or 1.0

tanzu package repository update tanzu-tap-repository \

--url ${INSTALL_REGISTRY_HOSTNAME}/TARGET-REPOSITORY/tap-packages:${TAP_VERSI

ON} \

--namespace tap-install

Expect to see the installed Tanzu Application Platform packages in a temporary
“Reconcile Failed” state, following a “Package not found” warning. These warnings will
disappear after you upgrade the installed Tanzu Application Platform packages to version
1.2.0.

3. Verify you have added the new package repository by running:

tanzu package repository get TAP-REPO-NAME --namespace tap-install

Where TAP-REPO-NAME is the package repository name. It must match with either NEW-
TANZU-TAP-REPOSITORY or tanzu-tap-repository in the previous step.

Perform the upgrade of Tanzu Application Platform
The following sections describe how to upgrade in different scenarios.

Upgrade instructions for Profile-based installation

The following changes affect the upgrade procedures:

Keyless support deactivated by default

In Tanzu Application Platform v1.5.0, keyless support is deactivated by default. For more
information, see Install Supply Chain Security Tools - Policy Controller.

To support the keyless authorities in ClusterImagePolicy, Policy Controller no longer
initializes TUF by default. To continue using keyless authorities, you must set the
policy.tuf_enabled field to true in the tap-values.yaml file during the upgrade process.

By default, the public official Sigstore “The Update Framework (TUF) server” is used. You
can use an alternative Sigstore Stack by setting policy.tuf_mirror and policy.tuf_root.

Image Policy Webhook no longer in use

Tanzu Application Platform v1.5.0 removes Image Policy Webhook. If you use Image Policy
Webhook in the previous version of Tanzu Application Platform, you must migrate the
ClusterImagePolicy resource from Image Policy Webhook to Policy Controller. For more
information, see Migration From Supply Chain Security Tools - Sign.

CVE results require a read-write service account

Tanzu Application Platform v1.3.0 uses a read-only service account. In Tanzu Application
Platform v1.4.0 and later, enabling CVE results for the Supply Chain Choreographer and
Security Analysis GUI plug-ins requires a read-write service account. For more information,
see Enable CVE scan results.

If you installed Tanzu Application Platform by using a profile, you can perform the upgrade by
running the following command in the directory where the tap-values.yaml file resides:

Tanzu Application Platform v1.5

VMware by Broadcom 358

tanzu package installed update tap -p tap.tanzu.vmware.com -v ${TAP_VERSION} --values

-file tap-values.yaml -n tap-install

When upgrading to Tanzu Application Platform v1.5, you might encounter a temporary resource
reconciliation failure. This error does not persist and the packages will reconcile subsequently. To
facilitate the reconciliation of packages, you can execute the tanzu package installed kick -n
tap-install tap -y command repeatedly.

Upgrade the full dependencies package

If you installed the full dependencies package, you can upgrade the package by following these
steps:

1. After upgrading Tanzu Application Platform, retrieve the latest version of the Tanzu Build
Service package by running:

tanzu package available list buildservice.tanzu.vmware.com --namespace tap-inst

all

2. Relocate the Tanzu Build Service full dependencies package repository by running:

imgpkg copy -b registry.tanzu.vmware.com/tanzu-application-platform/full-tbs-de

ps-package-repo:VERSION \

--to-repo ${INSTALL_REGISTRY_HOSTNAME}/${INSTALL_REPO}/tbs-full-deps

Where VERSION is the version of the Tanzu Build Service package you retrieved in the
previous step.

3. Update the Tanzu Build Service full dependencies package repository by running:

tanzu package repository add tbs-full-deps-repository \

 --url ${INSTALL_REGISTRY_HOSTNAME}/${INSTALL_REPO}/tbs-full-deps:VERSION \

 --namespace tap-install

4. Update the full dependencies package by running:

tanzu package installed update full-tbs-deps -p full-tbs-deps.tanzu.vmware.com

-v VERSION -n tap-install

Multicluster upgrade order

Upgrading a multicluster deployment requires updating multiple clusters with different profiles. If
upgrades are not performed at the exact same time, different clusters have different versions of
profiles installed temporarily. This might cause a temporary API mismatch that leads to errors.
Those errors eventually disappear when the versions are consistent across all clusters.

To reduce the likelihood of temporary failures, follow these steps to upgrade your multicluster
deployment:

1. Upgrade the view-profile cluster.

2. Upgrade the remaining clusters in any order.

Upgrade instructions for component-specific installation

For information about upgrading Tanzu Application Platform GUI, see Upgrade Tanzu Application
Platform GUI. For information about upgrading Supply Chain Security Tools - Scan, see Upgrade
Supply Chain Security Tools - Scan.

Tanzu Application Platform v1.5

VMware by Broadcom 359

Verify the upgrade

Verify the versions of packages after the upgrade by running:

tanzu package installed list --namespace tap-install

Your output is similar, but probably not identical, to the following example output:

- Retrieving installed packages...

 NAME PACKAGE-NAME

PACKAGE-VERSION STATUS

 accelerator accelerator.apps.tanzu.vmware.com

1.3.0 Reconcile succeeded

 api-auto-registration apis.apps.tanzu.vmware.com

0.1.1 Reconcile succeeded

 api-portal api-portal.tanzu.vmware.com

1.2.2 Reconcile succeeded

 appliveview backend.appliveview.tanzu.vmware.com

1.3.0 Reconcile succeeded

 appliveview-connector connector.appliveview.tanzu.vmware.com

1.3.0 Reconcile succeeded

 appliveview-conventions conventions.appliveview.tanzu.vmware.com

1.3.0 Reconcile succeeded

 appsso sso.apps.tanzu.vmware.com

2.0.0 Reconcile succeeded

 buildservice buildservice.tanzu.vmware.com

1.7.1 Reconcile succeeded

 cartographer cartographer.tanzu.vmware.com

0.5.3 Reconcile succeeded

 cert-manager cert-manager.tanzu.vmware.com

1.7.2+tap.1 Reconcile succeeded

 cnrs cnrs.tanzu.vmware.com

2.0.1 Reconcile succeeded

 contour contour.tanzu.vmware.com

1.22.0+tap.3 Reconcile succeeded

 conventions-controller controller.conventions.apps.tanzu.vmware.com

0.7.1 Reconcile succeeded

 developer-conventions developer-conventions.tanzu.vmware.com

0.8.0 Reconcile succeeded

 eventing eventing.tanzu.vmware.com

2.0.1 Reconcile succeeded

 fluxcd-source-controller fluxcd.source.controller.tanzu.vmware.com

0.27.0+tap.1 Reconcile succeeded

 grype grype.scanning.apps.tanzu.vmware.com

1.3.0 Reconcile succeeded

 image-policy-webhook image-policy-webhook.signing.apps.tanzu.vmware.c

om 1.1.7 Reconcile succeeded

 learningcenter learningcenter.tanzu.vmware.com

0.2.3 Reconcile succeeded

 learningcenter-workshops workshops.learningcenter.tanzu.vmware.com

0.2.2 Reconcile succeeded

 metadata-store metadata-store.apps.tanzu.vmware.com

1.3.3 Reconcile succeeded

 ootb-delivery-basic ootb-delivery-basic.tanzu.vmware.com

0.10.2 Reconcile succeeded

 ootb-supply-chain-testing-scanning ootb-supply-chain-testing-scanning.tanzu.vmware.

com 0.10.2 Reconcile succeeded

 ootb-templates ootb-templates.tanzu.vmware.com

0.10.2 Reconcile succeeded

 policy-controller policy.apps.tanzu.vmware.com

1.1.1 Reconcile succeeded

 scanning scanning.apps.tanzu.vmware.com

1.3.0 Reconcile succeeded

 service-bindings service-bindings.labs.vmware.com

0.8.0 Reconcile succeeded

Tanzu Application Platform v1.5

VMware by Broadcom 360

 services-toolkit services-toolkit.tanzu.vmware.com

0.8.0 Reconcile succeeded

 source-controller controller.source.apps.tanzu.vmware.com

0.5.0 Reconcile succeeded

 spring-boot-conventions spring-boot-conventions.tanzu.vmware.com

0.5.0 Reconcile succeeded

 tap tap.tanzu.vmware.com

1.3.0 Reconcile succeeded

 tap-auth tap-auth.tanzu.vmware.com

1.1.0 Reconcile succeeded

 tap-gui tap-gui.tanzu.vmware.com

1.3.0 Reconcile succeeded

 tap-telemetry tap-telemetry.tanzu.vmware.com

0.3.1 Reconcile succeeded

 tekton-pipelines tekton.tanzu.vmware.com

0.39.0+tap.2 Reconcile succeeded

Opt out of telemetry collection

This topic tells you how to opt out of the VMware Customer Experience Improvement Program
(CEIP) and out of Pendo telemetry on an organizational level.

There are two components for telemetry collection in Tanzu Application Platform (commonly
known as TAP) under the VMware Customer Experience Improvement Program (CEIP):

1. The standard CEIP telemetry collection

2. Pendo telemetry from Tanzu Application Platform GUI

Each telemetry component has its own opt-in and opt-out process. The CEIP telemetry opt-out
decision can be made at an organizational level, whereas the decision regarding the Pendo
telemetry is available both on an organizational level and at an individual user level.

When you install Tanzu Application Platform, both standard CEIP and Pendo telemetry are turned
on by default. If you opt out of standard CEIP telemetry collection, VMware cannot offer you
proactive support and the other benefits that accompany participation in the CEIP.

Turn off standard CEIP telemetry collection

To deactivate Pendo telemetry collection, see Enable or deactivate the Pendo telemetry for the
organization later in the topic.

To turn off CEIP telemetry collection, follow these instructions:

kubectl
To turn off telemetry collection on Tanzu Application Platform by using kubectl:

1. Ensure that your Kubernetes context is pointing to the cluster where Tanzu Application
Platform is installed.

2. Run:

kubectl apply -f - <<EOF

apiVersion: v1

Note

If you decide to opt in to Pendo telemetry collection, each user is given the option
to opt in or opt out. For more information, see Opt in or opt out of Pendo telemetry
for Tanzu Application Platform GUI.

Tanzu Application Platform v1.5

VMware by Broadcom 361

kind: Namespace

metadata:

 name: vmware-system-telemetry

apiVersion: v1

kind: ConfigMap

metadata:

 namespace: vmware-system-telemetry

 name: vmware-telemetry-cluster-ceip

data:

 level: disabled

EOF

3. If you already have Tanzu Application Platform installed, restart the telemetry collector to
apply the change:

kubectl delete pods --namespace tap-telemetry --all

Your Tanzu Application Platform deployment now no longer emits telemetry, and you have
opted out of the CEIP.

Tanzu CLI
The Tanzu CLI provides a telemetry plug-in enabled by the Tanzu Framework v0.25.0, which is
included in Tanzu Application Platform v1.3 and later.

To turn off telemetry collection on your Tanzu Application Platform by using the Tanzu CLI, run:

tanzu telemetry update --CEIP-opt-out

To learn more about how to update the telemetry settings, run:

tanzu telemetry update --help

Your Tanzu Application Platform deployment now no longer emits telemetry, and you have
opted out of the CEIP.

Turn off Pendo telemetry collection

To deactivate the program for the entire organization, add the following parameters to your tap-
values.yaml file:

tap_gui:

 app_config:

 pendoAnalytics:

 enabled: false

To enable Pendo telemetry for the organization, add the following parameters to your tap-
values.yaml file:

tap_gui:

 app_config:

 pendoAnalytics:

 enabled: true

Opt in or opt out of Pendo telemetry for Tanzu Application
Platform GUI

Tanzu Application Platform v1.5

VMware by Broadcom 362

Tanzu Application Platform GUI (commonly called TAP GUI) uses Pendo.io to better understand the
way users interact with it to provide a better user experience for VMware customers and to
improve VMware products and services.

Pendo.io collects data based on your interaction with the software, such as clickstream data and
page loads, hashed user ID, and limited browser and device information.

To enable or deactivate Pendo telemetry for the organization, see Enable or deactivate the Pendo
telemetry for the organization.

Opt in or opt out of Pendo telemetry from Tanzu
Application Platform GUI

After the Pendo telemetry is enabled for the organization, in accordance with VMware policy each
user is prompted to agree to participate in the program or decline.

Each individual’s preference is stored in Tanzu Application Platform GUI and can be modified at any
time. To change your preferences, go to Settings > Preferences.

Note

Pendo telemetry is separate from the VMware CEIP telemetry. There is a separate
process for opting in or out of the VMware CEIP. For more information, see Opt out
of telemetry collection.

Tanzu Application Platform v1.5

VMware by Broadcom 363

Request to delete your anonymized data
If you no longer want to participate in the program and you want VMware to delete all your
anonymized data, please send an email requesting deletion, with your hashed User ID, to tap-
pendo@groups.vmware.com.

This enables VMware to identify your anonymized data and delete it in accordance with the
applicable regulations.

To find your hashed User ID, go to Settings > Preferences in Tanzu Application Platform GUI.

Tanzu Application Platform v1.5

VMware by Broadcom 364

mailto:tap-pendo@groups.vmware.com

Overview of security and compliance in
Tanzu Application Platform

Security is a primary focus for Tanzu Application Platform (commonly known as TAP).

This section describes:

TLS and certificates in Tanzu Application Platform

Use custom CA certificates in Tanzu Application Platform

Use External Secrets Operator (beta) in Tanzu Application Platform

Assess Tanzu Application Platform against the NIST 800-53 Moderate Assessment

Harden Tanzu Application Platform

Overview of TLS and certificates in Tanzu Application
Platform
This topic provides you with information about certificate requirements for ingress and egress
communication in Tanzu Application Platform (commonly known as TAP).

Ingress communication uses TLS by default. Platform operators can control certificates and how
they are used by components. For more information, see Ingress certificates.

For egress communication, you can establish trust for custom CA certificates. For more
information, see Custom CA certificates.

Secure Ingress certificates in Tanzu Application Platform
This topic tells you how to secure exposed ingress endpoints with TLS in Tanzu Application
Platform (commonly known as TAP).

Tanzu Application Platform exposes ingress endpoints so that:

Platform operators and application developers can interact with the platform.

End users can interact with applications running on the platform.

For information about ingress endpoints and their certificates, see Ingress certificates inventory.

To secure these endpoints with TLS, such as https://, Tanzu Application Platform has two ways of
configuring ingress certificates:

A shared ingress issuer
VMware recommends a shared ingress issuer as the best practice for issuing ingress certificates on
Tanzu Application Platform.

The ingress issuer is an on-platform representation of a certificate authority. All participating
components get their certificates issued by it. It is designated by the single Tanzu Application
Platform configuration value shared.ingress_issuer. Unless customized, all components obtain
their ingress certificates from this issuer.

Tanzu Application Platform v1.5

VMware by Broadcom 365

By default, the ingress issuer is self-signed.

For more information about prerequisites, default values, and how to bring your own issuer, see
Shared ingress issuer.

Component-level configuration

In some situations, depending on prerequisites, the shared ingress issuer is not the right choice.
You can override configuration of TLS and certificates per component. A component’s ingress and
TLS configuration takes precedence over the shared ingress issuer.

For a list of components with ingress and how to customize them, see Inventory.

Tanzu Application Platform also has limited support for wildcard certificates.

Shared Ingress issuer in Tanzu Application Platform

This topic tells you about the Tanzu Application Platform (commonly known as TAP) shared ingress
issuer.

The shared ingress issuer is an on-platform representation of a certificate authority. It provides a
method to set up TLS for the entire platform. All participating components get their ingress
certificates issued by it.

This is the recommended best practice for issuing ingress certificates on Tanzu Application
Platform.

The ingress issuer is designated by the single Tanzu Application Platform configuration value
shared.ingress_issuer. It refers to a cert-manager.io/v1/ClusterIssuer.

By default, a self-signed issuer is used. It’s called tap-ingress-selfsigned and has limitations. For
more information, see Limitations of the default, self-signed issuer.

VMware recommends you replace the default self-signed issuer with your own issuer. For more
information, see Replacing the default ingress issuer.

Component-level configuration of TLS takes precedence and can be mixed with the ingress issuer.
For more information, see Overriding TLS for components.

You can deactivate the ingress issuer. For more information, see Deactivating TLS for ingress.

Prerequisites

To use the Tanzu Applicatin Platforms ingress issuer your certificate authority must be
representable by a cert-manager ClusterIssuer. You need one of the following:

Your own CA certificate

Your CA is an ACME, Venafi, or Vault-based issuer, for example, LetsEncrypt

Your CA can be represented by an external cert-manager ClusterIssuer.

Without one of the above, you cannot use the issuer ingress, but you can still configure TLS for
components. For more information, see Ingress certificates inventory.

Note

The approaches can be mixed, for example, you can use a shared ingress issuer, but
override TLS configuration for select components.

Tanzu Application Platform v1.5

VMware by Broadcom 366

https://cert-manager.io/docs/configuration/external/

Default

By default, Tanzu Application Platform installs and uses a self-signed CA as its ingress issuer for all
components.

This default ingress issuer is a self-signed cert-manager.io/v1/ClusterIssuer and is provided by
Tanzu Application Platform’s cert-manager package. Its default name is tap-ingress-selfsigned.

The default ingress issuer is appropriate for testing and evaluation, but VMware recommends that
you replace it with your own issuer.

Limitations of the default, self-signed issuer

The default ingress issuer represents a self-signed certificate authority. This is not problematic as far
as security is concerned, however, it is not included in any trust chain configured.

As a result, nothing trusts the default ingress issuer implicitly, not even Tanzu Application Platform
components. While the issued certificates are valid in principal, they are rejected, for example, by
your browser. Furthermore, some interactions between components are not functional by default.

Trusting the default, self-signed issuer

You can trust the default ingress issuer by including tap-ingress-selfsigned’s certificate in Tanzu
Application Platforms’s trusted CA certificates and your device’s certificate chain.

1. Obtain tap-ingress-selfsigned’s PEM-encoded certificate

kubectl get secret \

tap-ingress-selfsigned-root-ca \

--namespace cert-manager \

--output go-template='{{ index .data "tls.crt" | base64decode }}'

2. Add the certificate to custom CA certificates by appending it to shared.ca_cert_data and
applying the Tanzu Application Platforms installation values file.

3. Add the certificate to your device’s trust chain. The trust chain will vary depending on your
operating system and privileges.

Replacing the default ingress issuer
Tanzu Application Platform’s default ingress issuer can be replaced by any other cert-manager-
compliant ClusterIssuer.

To replace the default ingress issuer:

Custom CA

Important

If cert-manager.tanzu.vmware.com is excluded from the installation, then tap-
ingress-selfsigned is not installed either. In this case, bring your own ingress
issuer.

Caution

This approach is discouraged. Instead, replace the default ingress issuer.

Tanzu Application Platform v1.5

VMware by Broadcom 367

https://cert-manager.io/docs/configuration/

Prerequisites

You need your own CAs certificate and private key for this.

Complete the following steps:

1. Create your ClusterIssuer

Create a Secret and ClusterIssuer which represent your CA on the platform:

apiVersion: v1

kind: Secret

type: kubernetes.io/tls

metadata:

 name: my-company-ca

 namespace: cert-manager

stringData:

 tls.crt: #! your CA's PEM-encoded certificate

 tls.key: #! your CA's PEM-encoded private key

apiVersion: cert-manager.io/v1

kind: ClusterIssuer

metadata:

 name: my-company

spec:

 ca:

 secretName: my-company-ca

2. Set shared.ingress_issuer to the name of your issuer:

#! my-tap-values.yaml

#! ...

shared:

 ingress_issuer: my-company-ca

#! ...

3. Apply the Tanzu Application Platform installation values file.

After the configuration is applied, components eventually obtain certificates from the
new issuer and will serve them.

LetsEncrypt production

Complete the following steps

Prerequisites

Public CAs, like LetsEncrypt, record signed certificates in publicly-available certificate
logs for the purpose of certificate transparency. Ensure that you are OK with this before
using LetsEncrypt.

LetsEncrypt’s production API has rate limits.

LetsEncrypt requires your shared.ingress_domain to be accessible from the Internet.

Depending on your setup, you might need to adjust .spec.acme.solvers

Replace .spec.acme.email with the email which should receive notices for certificates
from LetsEncrypt.

Caution ACME HTTP01 challenges can fail under certain conditions. For more information, see
ACME challenges.

1. Create a ClusterIssuer for Let’s Encrypts production API:

Tanzu Application Platform v1.5

VMware by Broadcom 368

https://certificate.transparency.dev/
https://letsencrypt.org/docs/rate-limits/
https://cert-manager.io/docs/configuration/acme/#solving-challenges
https://letsencrypt.org/

apiVersion: cert-manager.io/v1

kind: ClusterIssuer

metadata:

 name: letsencrypt-production

spec:

 acme:

 email: certificate-notices@my-company.com

 privateKeySecretRef:

 name: letsencrypt-production

 server: https://acme-v02.api.letsencrypt.org/directory

 solvers:

 - http01:

 ingress:

 class: contour

2. Set shared.ingress_issuer to the name of your issuer:

#! my-tap-values.yaml

#! ...

shared:

 ingress_issuer: letsencrypt-production

#! ...

3. Apply Tanzu Application Platform installation values file.

Once the configuration is applied, components eventually obtain certificates from the
new issuer and will serve them.

LetsEncrypt staging
Complete the following steps

Prerequisites

Public CAs - like LetsEncrypt - record signed certificates in publicly-available certificate
logs for the purpose of certificate transparency. Ensure that you are OK with this before
using LetsEncrypt.

LetsEncrypt’s staging API is not a publicly-trusted CA. You have to add its certificate to
your devices trust chain and Tanzu Application Platform’s custom CA certificates.

LetsEncrypt requires your shared.ingress_domain to be accessible from the Internet.

Depending on your setup you might need to adjust .spec.acme.solvers.

Replace .spec.acme.email with the email which should receive notices for certificates
from LetsEncrypt.

1. Create a ClusterIssuer for Let’s Encrypts staging API:

apiVersion: cert-manager.io/v1

kind: ClusterIssuer

metadata:

 name: letsencrypt-staging

spec:

 acme:

 email: certificate-notices@my-company.com

Caution

ACME HTTP01 challenges can fail under certain conditions. For more
information, see ACME challenges.

Tanzu Application Platform v1.5

VMware by Broadcom 369

https://certificate.transparency.dev/
https://cert-manager.io/docs/configuration/acme/#solving-challenges
https://letsencrypt.org/

 privateKeySecretRef:

 name: letsencrypt-production

 server: https://acme-staging-v02.api.letsencrypt.org/directory

 solvers:

 - http01:

 ingress:

 class: contour

2. Set shared.ingress_issuer to the name of your issuer:

#! my-tap-values.yaml

#! ...

shared:

 ingress_issuer: letsencrypt-staging

#! ...

3. Apply Tanzu Application Platform installation values file.

When the configuration is applied, components obtain certificates from the new issuer
and serve them.

Other
Complete the following steps:

You can use any other cert-manager-supported ClusterIssuer as an ingress issuer for Tanzu
Application Platform.

Cert-manager supports a host of in-tree and out-of-tree issuers. Refer to cert-manager’s
documentation of issuers.

1. Set shared.ingress_issuer to the name of your issuer:

#! my-tap-values.yaml

#! ...

shared:

 ingress_issuer: my-company-ca

#! ...

2. Apply the Tanzu Application Platform installation values file.

After the configuration is applied, components obtain certificates from the new issuer
and serve them.

There are many ways and tools to assert that new certificates are issued and served. It is best to
connect to one of the ingress endpoints and inspect the certificate it serves.

The openssl command-line utility is available on most operating systems. The following command
retrieves the certificate from an ingress endpoint and shows its text representation:

replace tap.example.com with your Tanzu Application Platform installation's ingress

domain

openssl s_client -showcerts -servername tap-gui.tap.example.com -connect tap-gui.tap.e

xample.com:443 <<< Q | openssl x509 -text -noout

Alternatively, use a browser to navigate to the ingress endpoint and click the lock icon in the
navigation bar to inspect the certificate.

Deactivating TLS for ingress

Tanzu Application Platform v1.5

VMware by Broadcom 370

https://cert-manager.io/docs/configuration/

While VMware does not recommend it, you can deactivate the ingress issuer by setting
shared.ingress_issuer: "".

Overriding TLS for components

You can override TLS settings for each component. In your Tanzu Application Platform values file a
component’s configuration takes precedence over shared values. For more information about
which components have ingress and how to configure them, see components.

Use wildcard certificates in Tanzu Application Platform

This topic tells you about using wildcard certificates in Tanzu Application Platform (commonly
known as TAP) for components with a fixed or variable set of ingress endpoints.

You can use wildcard certificates, but Tanzu Application Platform does not offer support.

Wildcard certificates require component-level configuration. For more information about which
components support wildcards, see Inventory.

When using wildcard certificates the approach differs between components that have a fixed set of
ingress endpoints and those that have a variable set of ingress endpoints:

Components with a fixed set of ingress endpoints can receive a reference to the wildcard
certificate’s Secret and an ingress domain, for example, Tanzu Application Platform GUI.

Components with a variable set of ingress endpoints usually offer Kubernetes APIs that
create ingress resources. These components allow configuration of domain templating so
that wildcard certificates can be used, for example, Cloud Native Runtimes and Application
Single Sign-On.

Plan Ingress certificates inventory in Tanzu Application
Platform

This topic tells you how to plan for TLS certificates in Tanzu Application Platform (commonly known
as TAP).

The effective number of ingress endpoints can vary widely, depending on the installation profile,
excluded packages, and end-user-facing resources such as Workload, and AuthServer. As a result,
the number of TLS certificates is not fixed but is a function of the platform’s configuration and
tenancy.

Components are categorized into those which don’t have ingress endpoints and those which do.
The latter further breaks down into those which have a fixed number of ingress endpoints and
those which offer Kubernetes APIs with ingress.

Note

The approaches can be mixed. Use a shared ingress issuer, but override TLS
configuration for select components.

Note

You can use a mixed approach for configuring TLS for components. For example,
you can use a shared ingress issuer, but override TLS configuration for select
components while using wildcard certificates for some.

Tanzu Application Platform v1.5

VMware by Broadcom 371

Use the following table to help with the planning and accounting of TLS certificates. For a full list of
components and the profiles supported for each component, see About Tanzu Application Platform
components and profiles.

Package name Ingress purpose
Supports
ingress
issuer

Supports
wildcards

Number of
ingress

SANs*

api-
portal.tanzu.vmw
are.com

Serves the API portal No Yes 1 api-portal.INGRESS-

DOMAIN

cnrs.tanzu.vmwar
e.com

Instances of Knative’s
Service have ingress

Yes Yes Number of

Services

SANs depend on the
component’s
domain_template

learningcenter.ta
nzu.vmware.com

Instances of
TrainingPortal have
ingress

No Yes** Number of

TrainingPorta

ls

TRAINING-

PORTAL.learningcenter

.INGRESS-DOMAIN

metadata-
store.apps.tanzu.
vmware.com

Serves the Supply
Chain Security Tools
store

Yes Yes 1 metadata-

store.INGRESS-DOMAIN

spring-cloud-
gateway.tanzu.v
mware.com

Instances of
SpringCloudGateway
have ingress

No Yes Number of

SpringCloudGa

teways

See Using an Ingress
Resource in the Spring
Cloud Gateway
documentation

sso.apps.tanzu.v
mware.com

Instances of
AuthServer have
ingress

Yes Yes Number of

AuthServers

Depend on the
component’s
domain_template

tap-
gui.tanzu.vmware
.com

Serves the platform-
internal developer
and service portal

Yes Yes 1 tap-gui.INGRESS-

DOMAIN

*The SANs is configurable for components in the following two ways:

components that install a single ingress resource in the form of COMPONENT.DOMAIN-NAME, for
example, TAP GUI

components that install an ingress resource per API instance that gets templated from a
domain_template feeding DOMAIN-NAME, for example, cnrs.tanzu.vmware.com and
sso.apps.tanzu.vmware.com

** Only supports wildcards

Use custom CA certificates in Tanzu Application Platform

This topic tells you about configuring custom CA certificates in Tanzu Application Platform
(commonly known as TAP).

You configure trust for custom CAs. This is helpful if any Tanzu Application Platforms components
are connecting to services that serve certificates issued by private certificate authorities.

The shared.ca_cert_data installation value can contain a PEM-encoded CA bundle. Each
component then trusts the CAs contained in the bundle.

Note

The lowercase ingress refers to any resource which facilitates ingress, for example,
core Ingress and Contour’s HTTPProxy.

Tanzu Application Platform v1.5

VMware by Broadcom 372

https://docs.vmware.com/en/VMware-Spring-Cloud-Gateway-for-Kubernetes/2.0/scg-k8s/GUID-guides-external-access.html

You can also configure trust per component by providing a CA bundle in the component’s
installation values. The component then trusts those CAs and the CAs configured in
shared.ca_cert_data. For more information, see components.

For example:

#! my-tap-values.yaml

shared:

 ca_cert_data: |

 Corporate CA 1

 -----BEGIN CERTIFICATE-----

 MIIFmDCCA4....

 -----END CERTIFICATE-----

 Corporate CA 2

 -----BEGIN CERTIFICATE-----

 MIIFkzCCA3....

 -----END CERTIFICATE-----

Use External Secrets Operator in Tanzu Application
Platform (beta)

The External Secrets Operator is a Kubernetes operator that integrates with external secret
management systems, for example, Google Secrets Manager and Hashicorp Vault. It reads
information from external APIs and automatically injects the values into a Kubernetes secret.

Tanzu Application Platform (commonly known as TAP) uses the External Secrets Operator to
simplify Kubernetes secret life cycle management. The external-secrets plug-in, which is available
in the Tanzu CLI, interacts with the External Secrets Operator API. Users can use this CLI plug-in
to create and view External Secrets Operator resources on a Kubernetes cluster.

External Secrets Operator is available in Tanzu Application Platform packages with a Carvel Package
named external-secrets.apps.tanzu.vmware.com. It is not part of any install profile.

Where to start

To learn more about managing secrets with External Secrets in general, see the official External
Secrets Operator documentation. For installing the External Secrets Operator and the CLI plug-in
see the following documentation. Additionally, see the example integration of External-Secrets
with Hashicorp Vault.

Installing External Secrets Operator in TAP

Installing Tanzu CLI

External-Secrets with Hashicorp Vault

Install External Secrets Operator in Tanzu Application
Platform

Caution

The External Secrets plug-in is in beta and is intended for evaluation and test
purposes only. Do not use it in a production environment.

Tanzu Application Platform v1.5

VMware by Broadcom 373

https://external-secrets.io/
https://external-secrets.io/
https://external-secrets.io/
https://external-secrets.io/

This topic tells you how to install the External Secrets Operator from the Tanzu Application
Platform (commonly known as TAP) package repository.

Prerequisites

Before installing External Secrets Operator:

Complete all prerequisites to install the Tanzu Application Platform. For more information,
see Prerequisites.

Install

To install External Secrets Operator:

1. List version information for the package by running:

tanzu package available list external-secrets.apps.tanzu.vmware.com -n tap-inst

all

For example:

NAME VERSION RELEASED-AT

external-secrets.apps.tanzu.vmware.com 0.6.1+tap.6 2023-03-08 14:00:00 -0500

EST

2. Install the package:

tanzu package install external-secrets \

 --package external-secrets.apps.tanzu.vmware.com \

 --version VERSION-NUMBER \

 --namespace tap-install

Where VERSION-NUMBER is the version of the package listed in step 1.

For example:

$ tanzu package install external-secrets \

 --package external-secrets.apps.tanzu.vmware.com \

 --version 0.6.1+tap.6 \

 --namespace tap-install

\ Installing package 'external-secrets.apps.tanzu.vmware.com'

| Getting package metadata for 'external-secrets.apps.tanzu.vmware.com'

| Creating service account 'external-secrets-tap-install-sa'

/ Creating cluster admin role 'external-secrets-tap-install-cluster-role'

| Creating cluster role binding 'external-secrets-tap-install-cluster-rolebindi

n

/ Creating cluster role binding 'external-secrets-tap-install-cluster-rolebindi

n

\ Creating cluster role binding 'external-secrets-tap-install-cluster-rolebindi

n

| Creating cluster role binding 'external-secrets-tap-install-cluster-rolebindi

ng'

\ Creating package resource

Waiting for 'PackageInstall' reconciliation for 'external-secrets'

Important

External Secrets Operator is not included or installed with any Tanzu Application
Platform profile.

Tanzu Application Platform v1.5

VMware by Broadcom 374

'PackageInstall' resource install status: Reconciling

'PackageInstall' resource install status: ReconcileSucceeded

Added installed package 'external-secrets'

3. Verify the package installation by running:

tanzu package installed get external-secrets \

--namespace tap-install

For example:

tanzu package installed get external-secrets -n tap-install

NAME: external-secrets

PACKAGE-NAME: external-secrets.apps.tanzu.vmware.com

PACKAGE-VERSION: 0.6.1+tap.6

STATUS: Reconcile succeeded

CONDITIONS: [{ReconcileSucceeded True }]

USEFUL-ERROR-MESSAGE:

Integrate External Secrets Operator with HashiCorp Vault in
Tanzu Application Platform

This topic shows you how to integrate External Secrets Operator with HashiCorp Vault in Tanzu
Application Platform.

The operator synchronizes secret data from external APIs to a Kubernetes secret resource. For
more information about Kubernetes secret resources, see the Kubernetes documentation.

Prerequisites
Before proceeding with this example, you must:

Install External Secrets Operator. For more information, see Install External Secrets
Operator.

Install the Tanzu CLI. The Tanzu CLI includes the plug-in external-secrets. For Tanzu CLI
installation, see Tanzu CLI.

Have a running instance of HashiCorp Vault. In this instance, there is a secret defined with
the key eso-demo/reg-cred.

Set up the integration
To set up the External Secrets Operator integration with HashiCorp Vault:

1. Create a Secret with the vault token. For example:

VAULT_TOKEN="vault-token-value"

cat <<EOF | kubectl apply -f -

apiVersion: v1

Important

This example integration is constructed to showcase the features available and must
not be considered in a production environment.

Tanzu Application Platform v1.5

VMware by Broadcom 375

https://www.vaultproject.io/
https://kubernetes.io/docs/concepts/configuration/secret

kind: Secret

metadata:

name: vault-token

stringData:

token: $VAULT_TOKEN

EOF

2. Create a SecretStore resource referencing the vault-token secret. For example:

VAULT_SERVER="http://my.vault.server:8200"

VAULT_PATH="eso-demo"

cat <<EOF | tanzu external-secrets store create -y -f -

apiVersion: external-secrets.io/v1beta1

kind: SecretStore

metadata:

 name: vault-secret-store

spec:

 provider:

 vault:

 server: $VAULT_SERVER

 path: $VAULT_PATH

 version: v2

 auth:

 tokenSecretRef:

 name: "vault-token" # vault-token created in the previous step

 key: "token"

EOF

3. Verify that the status of the SecretStore resource is Valid by running:

tanzu external-secrets store list

Example output:

NAMESPACE NAME PROVIDER STATUS

default vault-secret-store Hashicorp Vault Valid

4. Create an ExternalSecret resource that uses the SecretStore you just created by running:

cat <<EOF | tanzu external-secrets secret create -y -f -

apiVersion: external-secrets.io/v1beta1

kind: ExternalSecret

metadata:

 name: vault-secret-example

spec:

 refreshInterval: 15m

 secretStoreRef:

 name: vault-secret-store

 kind: SecretStore

 target:

 name: registry-secret

 template:

Caution

When creating the SecretStore, ensure that you match the Vault KV secret
engine version. This is either v1 or v2. The default is v2. For more
information, see Vault KV Secrets Engine documentation.

Tanzu Application Platform v1.5

VMware by Broadcom 376

https://developer.hashicorp.com/vault/docs/secrets/kv

 type: kubernetes.io/dockerconfigjson

 data:

 .dockerconfigjson: "{{ .registryCred | toString }}"

 creationPolicy: Owner

 data:

 - secretKey: registryCred

 remoteRef:

 key: $VAULT_PATH/eso-demo

 property: reg-cred

EOF

5. Verify that the status of the ExternalSecret resource is Valid by running:

tanzu external-secrets secret list

Example output:

NAMESPACE NAME SECRET NAME STORE REFRESH I

NTERVAL STATUS LAST UPDATED LAST REFRESH

default vault-secret-example registry-secret vault-secret-store 15m

SecretSynced 21s 10m

6. After the resource has reconciled, a Kubernetes secret resource is created. Look for a
secret named registry-secret created by the referenced ExternalSecret. For example:

kubectl get secrets registry-secret -o="jsonpath={.data.\.dockerconfigjson}" |

base64 -D

{"auths":{"my-registry.example:8200":{"username":"foo","password":"bar4","emai

l":"foo@bar.example","auth":"Zm9vOmJhcjQ="}}}

Assess Tanzu Application Platform against the NIST 800-53
Moderate Assessment
This topic provides you with an assessment of Tanzu Application Platform (commonly known as
TAP) against the NIST SP 800-53 Revision 4 Moderate baseline controls. This translates to FISMA
Moderate and CNSSI 1253 Mod/Mod/Mod for use in US Federal systems accreditation.

The Moderate baseline applies to only technical controls. Organizational policy controls, physical
security, media policies, and similar are excluded as they are not applicable to Tanzu Application
Platform. These excluded controls are still relevant to the system at large and must be inherited
from existing accreditations or otherwise addressed.

The initial iteration of this assessment delineates responsible parties. Incremental updates will add
more details about implementation and updates to 800-53 Revision 5.

Name Title
Responsible
Party

Notes

AC-2(1) Automated
System
Account
Management

Customer Implemented on customer identity store. The customer must employ
automated mechanisms to support the management of information
system accounts used to access their Tanzu Application Platform
installation.

AC-2(2) Removal of
Temporary /
Emergency
Accounts

Customer Implemented on customer identity store. If the customer chooses to use
temporary or emergency accounts, they must ensure that the system
automatically deactivates or removes the account following an
organization-defined time period.

Tanzu Application Platform v1.5

VMware by Broadcom 377

Name Title
Responsible
Party

Notes

AC-2(3) Deactivate
Inactive
Accounts

Customer Implemented on customer identity store. The customer must
automatically deactivate inactive accounts used to access their Tanzu
Application Platform installation following an organization-defined time
period of inactivity.

AC-2(4) Automated
Audit
Actions

Customer Implemented on customer identity store. The customer must
automatically audit account creation, modification, enabling,
deactivating, and removal actions associated with accounts used to
access their Tanzu Application Platform installation and must notify an
organization-defined personnel or role.

AC-3 Access
Enforcement

Customer The customer must federate their IdP with Tanzu Application Platform to
enforce approved access authorizations to their Tanzu Application
Platform installation.

AC-4 Information
Flow
Enforcement

Customer The customer is responsible for enforcing approved authorizations for
controlling the flow of information between Tanzu Application Platform
and interconnected systems, based on organization-defined information
flow control policies, for example, a SIEM. Tanzu Application Platform
does not restrict intra-service or inter-system communication. Future
versions of Tanzu Application Platform will include this feature using
service mesh architecture or similar methods.

AC-6 Least
Privilege

Shared The customer is responsible for enforcing least privilege by ensuring Tanzu
Application Platform users have the minimum permissions necessary to
perform their job function. Tanzu Application Platform is responsible for
providing RBAC functionality to enforce least privilege.

AC-6(1) Authorize
Access to
Security
Functions

Shared The customer is responsible for explicitly authorizing access to
organization-defined security functions and security-relevant information
as it relates to their Tanzu Application Platform installation. Tanzu
Application Platform is responsible for providing the RBAC functionality
necessary to restrict which users can access security functions and
security-related information.

AC-6(5) Privileged
Accounts

Shared The customer must restrict privileged Tanzu Application Platform
accounts to organization-defined personnel or roles. Tanzu Application
Platform is responsible for providing the RBAC functionality for customers
to restrict privileged Tanzu Application Platform accounts to
organization-defined personnel or roles.

AC-6(9) Auditing Use
of Privileged
Functions

Shared The customer is responsible for configuring Tanzu Application Platform
and underlying Kubernetes to send log streams to their SIEM tool for log
analysis to be capable of auditing the execution of privileged functions.
Tanzu Application Platform is responsible for generating logs pertaining
to the execution of privileged functions that can be ingested by the
customer SIEM tool for analysis.

AC-6(10) Prohibit
Non-
Privileged
Users from
Executing
Privileged
Functions

Tanzu
Application
Platform

This functionality is inherent to Tanzu Application Platform/Kubernetes
RBAC and can’t be configured otherwise.

AC-7
AC-7a
AC-7b

Unsuccessful
Logon
Attempts

Customer Implemented on customer identity provider. The customer is responsible
for configuring their IdP to enforce a limit of consecutive invalid logon
attempts by a user during an organization-defined time period which
locks the user’s account for an organization-defined time period, or until
released by an administrator.

Tanzu Application Platform v1.5

VMware by Broadcom 378

Name Title
Responsible
Party

Notes

AC-8
AC-8a
AC-8a.1
AC-8a.2
AC-8a.3
AC-8a.4
AC-8b
AC-8c
AC-8c.1
AC-8c.2
AC-8c.3

System Use
Notification

Customer Implemented on customer identity provider. Customer must configure
their IdP to display the system use notification banner before login.

AC-11
AC-11a
AC-11b

Session Lock Customer The customer must configure sessions locks on user workstations used to
access their Tanzu Application Platform installation. Tanzu Application
Platform does not have a concept of session locks and relies on sessions
locks applied by the user’s workstation. Tanzu Application Platform
provides logout functionality in place of session locking.

AC-11(1) Pattern-
Hiding
Displays

Customer The customer must configure sessions locks on user workstations used to
access their Tanzu Application Platform installation. This includes hiding
the user’s private session with a publicly available image. Tanzu
Application Platform does not have a concept of session locks and relies
on sessions locks applied by the user’s workstation. Tanzu Application
Platform provides logout functionality in place of session locking.

AC-12 Session
Termination

Shared Implemented on customer identity provider. The customer is responsible
for configuring IdP token TTL and refresh policies that apply to Tanzu
Application Platform sessions. Tanzu Application Platform enforces token
policies and cannot be configured otherwise.

AC-14
AC-14a

Permitted
Actions
Without
Identification
or
Authenticati
on

Shared The customer is responsible for identifying organization-defined user
actions that can be performed on the information system without
identification or authentication consistent with organizational
missions/business functions. For production installations, Tanzu
Application Platform GUI must be configured with OIDC authentication
and guest access deactivated.

AC-17(1) Automated
Monitoring /
Control

Customer “Remote Access” is defined as outside-the-org endpoints like remote
workers over VPN. This is outside the scope of Tanzu Application
Platform. The customer is responsible for all aspects regarding “remote
access” to Tanzu Application Platform.

AC-17(2) Protection of
Confidentialit
y / Integrity
Using
Encryption

Customer “Remote Access” is defined as outside-the-org endpoints like remote
workers over VPN. This is outside the scope of Tanzu Application
Platform. The customer is responsible for implementing cryptographic
mechanisms to protect the confidentiality and integrity of “remote
access” sessions to Tanzu Application Platform.

AC-17(3) Managed
Access
Control
Points

Customer “Remote Access” is defined as outside-the-org endpoints like remote
workers over VPN. This is outside the scope of Tanzu Application
Platform. The customer is responsible for routing all “remote accesses” to
Tanzu Application Platform through an organization-defined number of
managed network access control points.

AC-19
AC-19
AC-19b

Access
Control for
Mobile
Devices

Customer The customer is responsible for all aspects regarding mobile devices
which grant access to Tanzu Application Platform.

AU-3 Content of
Audit
Records

Tanzu
Application
Platform

The Tanzu Application Platform application must be capable of
generating audit logs that contain the minimum content required by the
customer consuming the application.

Tanzu Application Platform v1.5

VMware by Broadcom 379

Name Title
Responsible
Party

Notes

AU-3(1) Additional
Audit
Information

Customer Implemented on customer SIEM. The customer is responsible for parsing
Tanzu Application Platform logs on their SIEM to extract organization-
defined extra information.

AU-4 Audit
Storage
Capacity

Customer Implemented on customer Kubernetes. Tanzu Application Platform logs
are all captured by Kubernetes logging. The customer is responsible for
configuring their Kubernetes hosts with record storage capacity to ensure
that there is adequate storage of logs generated by Tanzu Application
Platform clusters.

AU-5
AU-5a
AU-5b

Response to
Audit
Processing
Failures

Customer Implemented on customer Kubernetes. Tanzu Application Platform audit
records are collected and managed by Kubernetes and are out of Tanzu
Application Platform scope. The customer is responsible for configuring
their Kubernetes hosts to account for audit processing failures and to alert
the appropriate personnel responsible to take appropriate action.

AU-7
AU-7a
AU-7b

Audit
Reduction
and Report
Generation

Customer Implemented on customer Kubernetes and SIEM Tanzu Application
Platform audit records are collected and managed by Kubernetes. The
customer is responsible for ensuring that Kubernetes ships Tanzu
Application Platform audit records to a central SIEM for review and
analysis.

AU-7(1) Automatic
Processing

Customer Implemented on customer Kubernetes and SIEM Tanzu Application
Platform audit records are collected and managed by Kubernetes. The
customer is responsible for ensuring that Kubernetes ships Tanzu
Application Platform audit records to a central SIEM for review and
analysis.

AU-8
AU-8a
AU-8b

Time Stamps Tanzu
Application
Platform

Tanzu Application Platform components pull their system time from the
container OS and the Kubernetes host and cannot be configured
otherwise. Tanzu Application Platform components log statements
include UTC timestamps and cannot be configured otherwise.

AU-8(1)
AU-8(1)
(a)
AU-8(1)
(b)

Synchronizat
ion With
Authoritative
Time Source

Customer The customer is responsible for configuring authoritative time sources on
K8 clusters.

AU-9 Protection of
Audit
Information

Customer Tanzu Application Platform audit records are collected and managed by
Kubernetes. The customer is responsible for protecting Kubernetes and
Kubernetes logging configurations from unauthorized access,
modification, and deletion.

AU-12
AU-12a
AU-12b
AU-12c

Audit
Generation

Shared Tanzu Application Platform audit records are collected and managed by
Kubernetes. The customer is responsible for ensuring that Kubernetes
ships Tanzu Application Platform audit records to a central SIEM for
review and analysis. Tanzu Application Platform cannot be configured to
audit specific information. Tanzu Application Platform logs verbosely and
lets the customer filter out what is relevant to them using their SIEM.
Tanzu Application Platform logging cannot be deactivated.

CM-7
CM-7a
CM-7b

Least
Functionality

Shared The customer is responsible for configuring Tanzu Application Platform to
provide only essential capabilities. Tanzu Application Platform is
responsible for providing customers with the capability to deactivate
non-essential features not required by the customer. The customer must
restrict the use of functions, ports, protocols, and services for the Tanzu
Application Platform installation. Tanzu Application Platform is
responsible for ensuring that functions, ports, protocols, and services are
limited to those explicitly required for the application to operate.

Tanzu Application Platform v1.5

VMware by Broadcom 380

Name Title
Responsible
Party

Notes

CM-7(2) Prevent
Program
Execution

Tanzu
Application
Platform

As an extension of CM-7, Least Functionality, this control is a
responsibility of Tanzu Application Platform. Tanzu Application Platform
only consists of containers with purposeful services with no extra
programs running or bloat. This cannot be configured by the customer.

CM-7(4)
(b)

Unauthorized
Software/De
nylisting

Tanzu
Application
Platform

Tanzu Application Platform service containers do not implement a deny-
by-exception policy to prohibit the execution of unauthorized software
programs. Tanzu Application Platform service containers are built to
provide stripped-down services and do not include extra programs or
bloat. Tanzu Application Platform can provide a SBOM to compare
against customer organization policies on disallowed software.

IA-2 Identification
and
Authenticati
on
(Organizatio
nal Users)

Shared The customer is responsible for configuring Tanzu Application Platform to
use their IdP which is capable of uniquely identifying and authenticating
organizational users. Tanzu Application Platform is responsible for
providing customers with the capability to integrate their IdP to allow
Tanzu Application Platform to uniquely identify organizational users.

IA-2(1) Network
Access to
Privileged
Accounts

Customer Implemented on customer identity provider. The customer is responsible
for implementing multifactor authentication on their IdP for network
access to privileged accounts.

IA-2(2) Network
Access to
Non-
Privileged
Accounts

Customer Implemented on customer identity provider. The customer is responsible
for implementing multifactor authentication on their IdP for network
access to non-privileged accounts.

IA-2(3) Local Access
to Privileged
Accounts

N/A Tanzu Application Platform does not use local accounts. All access occurs
over a network connection.

IA-2(8) Network
Access to
Privileged
Accounts -
Replay
Resistant

Tanzu
Application
Platform

Tanzu Application Platform is responsible for ensuring that all connections
to the customer IdP are over TLS 1.2+.

IA-2(11) Remote
Access -
Separate
Device

Customer The customer is responsible for all aspects of MFA and MFA devices used
to authenticate to their Tanzu Application Platform installation, including
using remote access.

IA-2(12) Acceptance
of Piv
Credentials

Customer Implemented on customer identity provider. The customer is responsible
for implementing CAC/PIV credentials with their IdP.

IA-3 Device
Identification
and
Authenticati
on

Customer The customer is responsible for uniquely identifying and authenticating
organization-defined specific and/or types of devices before establishing
a local, remote, or network connection.

IA-4e Identifier
Management

Customer Implemented on customer identity provider. The customer is responsible
for configuring IdP token TTL and refresh policies that apply to Tanzu
Application Platform sessions. Tanzu Application Platform enforces token
policies and cannot be configured otherwise.

Tanzu Application Platform v1.5

VMware by Broadcom 381

Name Title
Responsible
Party

Notes

IA-5(1)
IA-5(1)(a)
IA-5(1)(b)
IA-5(1)(c)
IA-5(1)(d)
IA-5(1)(e)
IA-5(1)(f)

Password-
Based
Authenticati
on

Customer Implemented on customer identity store. The customer is responsible for
all aspects of password-based authentication to their IdP, using their
identity store. Tanzu Application Platform does not employ password-
based authentication itself.

IA-5(2)
IA-5(2)(a)
IA-5(2)(b)
IA-5(2)(c)
IA-5(2)(d)

PKI-Based
Authenticati
on

Customer Implemented on customer identity provider. The customer is responsible
for all aspects of PKI-based authentication on the IdP used to access their
Tanzu Application Platform installation.

IA-5(11) Hardware
Token-Based
Authenticati
on

Customer The customer is responsible for ensuring hardware token-based
authentication employs mechanisms that satisfy organization-defined
token quality requirements.

IA-6 Authenticato
r Feedback

Customer Implemented on customer identity provider. The customer is responsible
for ensuring their IdP obscures feedback of authentication information
during the authentication process.

IA-7 Cryptographi
c Module
Authenticati
on

Customer Implemented on customer identity provider. The customer is responsible
for ensuring their IdP implements FIPS 140-2 validated cryptographic
modules.

IA-8 Identification
and
Authenticati
on(Non-
Organization
al Users)

Customer Implemented on customer identity provider. The customer is responsible
for ensuring that their IdP uniquely identifies and authenticates non-
organizational Tanzu Application Platform users, or processes acting on
behalf of non-organizational users.

IA-8(1) Acceptance
of Piv
Credentials
from Other
Agencies

Customer Implemented on customer identity provider. The customer is responsible
for configuring their IdP to accept and electronically verify Personal
Identity Verification(PIV) credentials from other federal agencies.

IA-8(2) Acceptance
of Third-
Party
Credentials

Customer Implemented on customer identity provider. The customer is responsible
for configuring their IdP to accept only FICAM-approved third-party
credentials.

IA-8(3) Use of
FICAM-
Approved
Products

Customer Implemented on customer identity provider. The customer is responsible
for employing only FICAM-approved information system components on
their IdP to accept third-party credentials.

IA-8(4) Use of
FICAM-
Issued
Profiles

Customer Implemented on customer identity provider. The customer is responsible
for ensuring their IdP conforms to FICAM-issued profiles.

SC-2 Application
Partitioning

Tanzu
Application
Platform

Tanzu Application Platform does not isolate user and management
functionality on separate network interfaces, instances, CPUs, or similar.
Tanzu Application Platform relies on different roles and Kubernetes RBAC
to keep user and management functionality distinct.

SC-4 Information
in Shared
Resources

Tanzu
Application
Platform

Tanzu Application Platform creates dedicated Kubernetes namespaces
upon deployment. Kubernetes namespaces prevent unauthorized and
unintended information transfer using shared system resources.

Tanzu Application Platform v1.5

VMware by Broadcom 382

Name Title
Responsible
Party

Notes

SC-5 Denial of
Service
Protection

Customer The customer is responsible for ensuring that organizational DoS
protections at the network layer include the Tanzu Application Platform
installation.

SC-7
SC-7a
SC-7b
SC-7c

Boundary
Protection

Customer The customer is responsible for the configuration and management of
boundary protection devices.

SC-7(4)(c) External
Telecommun
ications
Services

Customer The customer is responsible for external telecommunication services used
to establish connections to their Tanzu Application Platform installation.

SC-7(5) Deny by
Default /
Allow by
Exception

Shared Tanzu Application Platform does not implement “deny by default”
network policies. This might be mitigated by network-level access
controls configured by the customer.

SC-7(7) Prevent Split
Tunneling for
Remote
Devices

Customer The customer is responsible for all configuration of remote devices used
to access Tanzu Application Platform.

SC-8 Transmission
Confidentialit
y and
Integrity

Tanzu
Application
Platform

Tanzu Application Platform is responsible for ensuring all communications
occur over TLS 1.2+.

SC-8(1) Cryptographi
c or
Alternate
Physical
Protection

Tanzu
Application
Platform

Tanzu Application Platform is responsible for ensuring all communications
occur over TLS 1.2+.

SC-10 Network
Disconnect

Tanzu
Application
Platform

Tanzu Application Platform tears down TCP connections and deallocates
system resources following the expiration of a session token and cannot
be configured otherwise.

SC-12 Cryptographi
c Key
Establishmen
t and
Management

Tanzu
Application
Platform

Tanzu Application Platform is responsible for providing customers with
the ability to manage trust stores.

SC-13 Cryptographi
c Protection

Tanzu
Application
Platform

Tanzu Application Platform is responsible for implementing FIPS 140
validated cryptographic modules and providing the customer with a
means to enable “FIPS Mode”.

SC-21 Secure
Name /
Address
Resolution
Service
(Recursive or
Caching
Resolver)

Customer Tanzu Application Platform inherits the DNSSEC capabilities of the
organization resolvers it is configured to use. The customer is responsible
for configuring the Tanzu Application Platform and Kubernetes
infrastructure to use DNSSEC-capable resolvers.

SC-23 Session
Authenticity

Tanzu
Application
Platform

Tanzu Application Platform is responsible for ensuring all communications
occur over TLS 1.2+.

Tanzu Application Platform v1.5

VMware by Broadcom 383

Name Title
Responsible
Party

Notes

SC-28 Protection of
Information
at Rest

Customer Tanzu Application Platform does not natively provide encryption for data
at rest, but instead relies on the underlying Kubernetes persistent volumes
for appropriate cryptographic protections. The customer is responsible
for deploying Tanzu Application Platform to Kubernetes with persistent
volumes for appropriate cryptographic protections.

SC-39 Process
Isolation

Tanzu
Application
Platform

Tanzu Application Platform container OS enforces the use of separate
execution domains for each executing process and cannot be configured
otherwise. The underlying Kubernetes host isolates each container from
the other.

SI-2c Flaw
Remediation

Tanzu
Application
Platform

The customer is responsible for keeping the Tanzu Application Platform
installation up to date, to within org-defined standards. Tanzu Application
Platform does not automatically update itself.

SI-3(2) Automatic
Updates

N/A Tanzu Application Platform does not include malicious code protection
mechanisms therefore automatic update to such mechanisms does not
apply.

SI-7(1) Integrity
Checks

Tanzu
Application
Platform

Tanzu Application Platform performs a hash check when images are
downloaded, and a cryptographic signature validation at runtime. This
cannot be configured otherwise.

SI-10 Information
Input
Validation

Tanzu
Application
Platform

Tanzu Application Platform is responsible for performing input validation
of user-supplied input to Tanzu Application Platform.

SI-11
SI-11a
SI-11b

Error
Handling

Tanzu
Application
Platform

Tanzu Application Platform limits error message verbosity but does
display errors to users. Given the development/coding nature of Tanzu
Application Platform, deployment errors and similar must be raised to the
user so they can be corrected.

SI-16 Memory
Protection

Tanzu
Application
Platform

Tanzu Application Platform container OS protects its memory from
unauthorized code execution and cannot be configured otherwise. The
underlying Kubernetes host also isolates container memory pages.

Harden Tanzu Application Platform

This topic provides you with installation and configuration guidance for Tanzu Application Platform
(commonly known as TAP) to comply with the NIST 800-53 Security and Privacy Controls for
Information Systems and Organizations.

Objective

This is not a comprehensive security guide, but rather, an abbreviated Tanzu Application Platform
readiness outline with considerations for hardening Tanzu Application Platform with 800-53
controls as a guide.

Configuring your Tanzu Application Platform installation to this standard does not guarantee
approval given there are multiple organizational requirements and deviations that a platform team
may make during installation and configuration.

Scope

The document will focus on the hardening on the Tanzu Application Platform. This platform is
deployed to Kubernetes and as such, relies on the Kubernetes platform being hardened in a shared
responsibility model with the Tanzu Application Platform. This guide will provide instruction on
Kubernetes based hardening configurations that are required for the Tanzu Application Platform,
however, it should not be viewed as a hardening guide for Kubernetes as well.

Tanzu Application Platform v1.5

VMware by Broadcom 384

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r5.pdf

For hardening Kubernetes, refer to Kubernetes specific hardening guides such as:

NSA/CISA Kubernetes Hardening Guide: Published in Aug 2022, this is a prescriptive
document that covers many areas related to Kubernetes security.

NIST Kubernetes STIG Checklist: Published in April 2021, provides a prescriptive a list of
technical requirements for securing a basic Kubernetes platform.

CIS Kubernetes Benchmark: Widely used as a secure configuration guide, last updated in
June 2021.

Identity and Access Management

In order to provide an audit trail of what a user does in a system, it is important to configure the
Tanzu Application Platform so that the identity for a given user is known. When installing and
configuring the Tanzu Application Platform, there are several areas where user identity
configuration should be considered. Currently the Tanzu Application Platform has three different
areas where users have identities.

1. Tanzu Application Platform GUI

2. Tanzu Application Platform GUI Authentication to Remote Clusters

3. The Kubernetes cluster that the Tanzu Application Platform components are installed on

It is recommended to use the same identity provider for each of these components so that a
common identity is shared across the entire Tanzu Application Platform. To facilitate this,
components are able to use common OIDC providers. Below is the configuration for each
component:

Tanzu Application Platform GUI

The Tanzu Application Platform GUI is based on the Backstage open source project and has a
variety of OIDC providers that you are able to configure as an identity provider.

In order to configure authentication for the Tanzu Application Platform GUI, VMware suggests the
following:

1. Enable user authentication using one of the supported providers. Note that due to the
limitations with the backstage authentication implementation, simply having authentication
does not guarantee full end-to-end security as Backstage doesn’t currently support per-API
authentication. VMware recommends implementing additional security either via an
inbound proxy or via networking (firewall / VPN).

2. It is recommended to disable guest access via the tap_gui section in the tap-values.yaml.

tap_gui:

 app_config:

 auth:

 allowGuestAccess: false

Tanzu Application Platform GUI to Remote Kubernetes Cluster
Authentication

Several plugins within the Tanzu Application Platform GUI, such as the Runtime Resource Viewer,
Supply Chain Visualization, and Security Analyst GUI require authentication to remote Kubernetes
clusters to query Kubernetes resources.

To do so, the plugins must authenticate to the Kubernetes API on remote clusters. This
authentication can be configured in two ways: a shared Kubernetes service account that all users
will use to authenticate to remote clusters, and by setting up an authentication provider for the

Tanzu Application Platform v1.5

VMware by Broadcom 385

https://media.defense.gov/2022/Aug/29/2003066362/-1/-1/0/CTR_KUBERNETES_HARDENING_GUIDANCE_1.2_20220829.PDF
https://ncp.nist.gov/checklist/996
https://www.cisecurity.org/benchmark/kubernetes/
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.5/tap/tap-gui-auth.html
https://backstage.io/docs/auth/#sign-in-configuration

remote cluster. As best security practice, VMware recommends setting up a remote authentication
provider for the Kubernetes cluster.

For more information, see Update Tanzu Application Platform GUI to view resources on multiple
clusters.

As best practice, the users on the Kubernetes clusters that are used for remote authentication
should be assigned to Kubernetes roles that limit access in a least privilege model. More
information about Kubernetes roles provider out of box can be found in the next section.

Kubernetes Cluster Authentication and Authorization

Although not a Tanzu Application Platform configuration, VMware recommends enabling
authentication to the Kubernetes clusters where the Tanzu Application Platform components are
installed, using the same identity provider that other components are using.

While there are many options on how to enable OIDC providers for authentication with the
Kubernetes API, VMware supports the Pinniped project and has documented the process of
setting it up as part of the Tanzu Application Platform documentation.

By configuring this to use the same identify provider as the Tanzu Application Platform GUI, users
can have a common identity across the Kubernetes clusters and the Tanzu Application Platform
GUI. Because the Tanzu CLI is making Kubernetes API calls, this configuration will also be enabled
for the Tanzu CLI.

Using Pinniped will provide authentication for Kubernetes clusters but still requires the users to be
bound to Kubernetes roles. To provide a starting point, the Tanzu Application Platform provides six
Kubernetes Roles as part of the installation that users can be bound to. For more information
around the roles used for authorization, see Default roles for Tanzu Application Platform.

Cryptographic Protections

Encryption of data is leveraged to prevent unauthorized access to data. With the Tanzu Application
Platform, this protection focuses on the two primary states of data that should be encrypted:

1. Encryption of Data in Transit

2. Encryption of Data at Rest

Encryption of Data in Transit

Internal TLS Configuration

Communication between services that originate and terminate within the cluster is referred to as
internal communication. Tanzu Application Platform is in the process of enabling TLS on internal
communication for components.

If you require encrypted internal communication, there are three remediating options:

1. Enable Tanzu Service Mesh, which provides mutual TLS between components. For more
information, see Set up Tanzu Service Mesh.

2. Configure Kubernetes to encrypt all communication with a Container Networking Interface
(CNI) that supports traffic encryption, for example, Antrea.

3. Use the underlying network infrastructure running Kubernetes which has encryption on all
network traffic.

External TLS Configuration

Tanzu Application Platform v1.5

VMware by Broadcom 386

https://pinniped.dev/
https://github.com/antrea-io/antrea/blob/main/docs/traffic-encryption.md

Based upon OSS doc: https://projectcontour.io/docs/v1.22.1/configuration/#tls-configuration

TLS enables encryption of communication from end-users to the cluster. Since Contour is the edge
gateway for all the traffic ingressing into the cluster, it is an easy spot to set up TLS and ensure that
all communications between users and the cluster are encrypted.

It also allows cluster owners to satisfy compliance requirements like NIST 800-53 Control SC-8
where it is required to protect the confidentiality of transmitted information.

Moreover, it may be required that certain cipher suites and/or TLS versions are used when
encrypting communications.NIST 800-52r2 requires all government-only applications shall use TLS
1.2 and should be configured to use TLS 1.3 as well.

Configuring TLS for Contour

In order to configure Contour to use TLS according to the NIST 800-52r2 requirements you need
to create a new section in your tap-values.yaml file like:

...

contour:

 * existing stuff, probably already there if you're following tap docs

 envoy:

 service:

 type: LoadBalancer # This is set by default, but can be overridden by setting a

different value.

 * new stuff

 contour:

 configFileContents:

 tls:

 minimum-protocol-version: "1.2"

 cipher-suites:

 - '[ECDHE-ECDSA-AES128-GCM-SHA256|ECDHE-ECDSA-CHACHA20-POLY1305]'

 - '[ECDHE-RSA-AES128-GCM-SHA256|ECDHE-RSA-CHACHA20-POLY1305]'

 - 'ECDHE-ECDSA-AES256-GCM-SHA384'

 - 'ECDHE-RSA-AES256-GCM-SHA384'

After adding this section, apply the tap-values file and that will change the configuration of TLS to
match the requirements.

For more settings in the Contour component, you can reference the open source documentation.

Ingress Certificates

For information about to configure TLS for a Tanzu Application Platform installation’s ingress
endpoints, see Ingress certificates.

Encryption of Data At Rest

All data should be encrypted at rest. The Tanzu Application Platform runs on Kubernetes and
verifies the default storage class configured on the Kubernetes cluster. If you require Encryption of
Data at Rest (DARE), you must provide a Persistent Volume Provisioner that supports encryption to
the Kubernetes infrastructure.

Persistent Volume claim encryption

Data at rest should be encrypted.

Ports and Protocols

Ports are used in TCP and UDP protocols for identification of applications. While some applications
use well-known port numbers, such as 80 for HTTP, or 443 for HTTPS, some applications use

Tanzu Application Platform v1.5

VMware by Broadcom 387

https://projectcontour.io/docs/v1.22.1/configuration/#tls-configuration
https://csf.tools/reference/nist-sp-800-53/r4/sc/sc-8/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r2.pdf
https://projectcontour.io/docs/v1.22.1/configuration/#tls-configuration

dynamic ports. Open port refers to a port on which a system is accepting communication. An open
port does not immediately mean a security issue, but it’s important to understand that it can
provide a pathway for attackers to the application listening on that port. To help with understanding
the traffic flows in the Tanzu Application Platform, a list of Tanzu Application Platform ports and
protocols is available to existing and future customers upon request.

See the TAP Architecture Overview.

Networking

Ensure that workloads only expose internal-only routes.

All traffic should go through Contour and LoadBalancer without utilizing NodePort services.

Tanzu Application Platform is supported by Tanzu Service Mesh.

You must configure proper affinity rules on Knative deployed services. For more information, see
Install Tanzu Application Platform in an air-gapped environment.

Key Management

Key management is the foundation of all data security. Data is encrypted and decrypted via the use
of encryption keys or secrets that must be safely stored to prevent the loss or compromise of
infrastructure, systems, and applications. Tanzu Application Platform values are secrets and must be
protected to ensure the security and integrity of the platform.

Tanzu Application Platform stores all sensitive values as Kubernetes Secrets

Encryption of secrets at rest are Kubernetes Distribution Dependent.

If customers desire to store secrets in a Secret Management service (e.g. Hashicorp Vault,
Google Secrets Manager, Amazon Secrets Manager, Microsoft Azure Key Vault) they can
make use of the External Secrets Operator to automate the lifecycle management
(ALPHA).

800-53 Section AC-23 related to safeguarding of sensitive information from exploitation, for
example, Tanzu Application Platform values.

Logging

Log files provide an audit trail necessary to monitor activity within infrastructure, identify policy
violations, unusual activity, and highlight security incidents. It is vital that logs are captured and
retained according to the policies set forth by the organization’s security team or governing body.
Tanzu Application Platform components run as pods on the Kubernetes infrastructure and all
components output to standard out, captured as part of the pod logs.

All Tanzu Application Platform components follow Kubernetes Logging best practices. Log
aggregation should be implemented following the best practices of the organization log retention
process.

800-53 Section AU-4 Audit Log Storage Capacity

Deployment Architecture

Tanzu Application Platform provides a reference architecture that depicts separate components
based on function. VMware recommends multiple Kubernetes clusters for the iterate, build, view,
and run functions. This separation enables Kubernetes administrators to manage each function
independently and therefore, protect the availability and performance of the platform during high
usage periods, for example, building or scanning.

Tanzu Application Platform v1.5

VMware by Broadcom 388

https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.5/tap-reference-architecture/GUID-reference-designs-tap-architecture-planning.html
https://kubernetes.io/docs/concepts/services-networking/service/
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.5/tap/integrations-tsm-tap-integration.html
https://knative.dev/docs/serving/configuration/feature-flags/#kubernetes-node-affinity
https://kubernetes.io/docs/concepts/configuration/secret/
https://www.vaultproject.io/
https://cloud.google.com/secret-manager
https://aws.amazon.com/secrets-manager/
https://azure.microsoft.com/en-us/products/key-vault/
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.5/tap/external-secrets-about-external-secrets-operator.html
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r5.pdf
https://kubernetes.io/docs/concepts/cluster-administration/logging/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r5.pdf
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.5/tap-reference-architecture/GUID-reference-designs-tap-architecture-planning.html

Overview of multicluster Tanzu Application
Platform

You can install Tanzu Application Platform (commonly known as TAP) in various topologies to
reflect your existing landscape. VMware has tested and recommends a multicluster topology for
production use. Because flexibility and choice are core to Tanzu Application Platform’s design, none
of the implementation recommendations are set in stone.

The multicluster topology uses the profile capabilities supported by Tanzu Application Platform.
Each cluster adopts one of following multicluster-aligned profiles:

Iterate: Intended for inner-loop iterative application development.

Build: Transforms source revisions to workload revisions; specifically, hosting workloads and
supply chains.

Run: Transforms workload revisions to running pods; specifically, hosting deliveries and
deliverables.

View: For applications related to centralized developer experiences; specifically, Tanzu
Application Platform GUI and metadata store.

The following diagram illustrates this topology.

Next steps

To get started with installing a multicluster topology, see Install multicluster Tanzu Application
Platform profiles.

Tanzu Application Platform v1.5

VMware by Broadcom 389

Overview of multicluster Tanzu Application Platform

You can install Tanzu Application Platform (commonly known as TAP) in various topologies to
reflect your existing landscape. VMware has tested and recommends a multicluster topology for
production use. Because flexibility and choice are core to Tanzu Application Platform’s design, none
of the implementation recommendations are set in stone.

The multicluster topology uses the profile capabilities supported by Tanzu Application Platform.
Each cluster adopts one of following multicluster-aligned profiles:

Iterate: Intended for inner-loop iterative application development.

Build: Transforms source revisions to workload revisions; specifically, hosting workloads and
supply chains.

Run: Transforms workload revisions to running pods; specifically, hosting deliveries and
deliverables.

View: For applications related to centralized developer experiences; specifically, Tanzu
Application Platform GUI and metadata store.

The following diagram illustrates this topology.

Next steps

To get started with installing a multicluster topology, see Install multicluster Tanzu Application
Platform profiles.

Install multicluster Tanzu Application Platform profiles

This topic tells you how to install a multicluster topology for your Tanzu Application Platform
(commonly known as TAP).

Prerequisites

Tanzu Application Platform v1.5

VMware by Broadcom 390

Before installing multicluster Tanzu Application Platform profiles, you must meet the following
prerequisites:

All clusters must satisfy all the requirements to install Tanzu Application Platform. See
Prerequisites.

Accept Tanzu Application Platform EULA and install Tanzu CLI with any required plug-ins.

Install Tanzu Cluster Essentials on all clusters. For more information, see Deploy Cluster
Essentials.

Multicluster Installation Order of Operations

The installation order is flexible given the ability to update the installation with a modified values file
using the tanzu package installed update command. The following is an example of the order of
operations to be used:

1. Install View profile cluster.

2. Install Build profile cluster.

3. Install Run profile cluster.

4. Install Iterate profile cluster.

5. Add Build, Run and Iterate clusters to Tanzu Application Platform GUI.

6. Update the View cluster’s installation values file with the previous information and run the
following command to pass the updated config values to Tanzu Application Platform GUI:

tanzu package installed update tap -p tap.tanzu.vmware.com -v TAP-VERSION --val

ues-file tap-values.yaml -n tap-install

Where TAP-VERSION is the Tanzu Application Platform version you’ve installed.

Install View cluster

Install the View profile cluster first, because some components must exist before installing the Run
clusters. For example, the Application Live View back end must be present before installing the
Run clusters. For more information about profiles, see About Tanzu Application Platform package
profiles.

To install the View cluster:

1. Follow the steps described in Installing the Tanzu Application Platform package and profiles
by using a reduced values file as shown in View profile.

2. Verify that you can access Tanzu Application Platform GUI by using the ingress that you set
up. The address must follow this format: https://tap-gui.INGRESS-DOMAIN, where INGRESS-
DOMAIN is the DNS domain you set in shared.ingress_domain which points to the shared
Contour installation in the tanzu-system-ingress namespace with the service envoy.

3. Deploy Supply Chain Security Tools (SCST) - Store. See Multicluster setup for more
information.

Install Build clusters

To install the Build profile cluster, follow the steps described in Installing the Tanzu Application
Platform package and profiles by using a reduced values file as shown in Build profile.

Install Run clusters

Tanzu Application Platform v1.5

VMware by Broadcom 391

https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.5/cluster-essentials/deploy.html

To install the Run profile cluster:

1. Follow the steps described in Install the Tanzu Application Platform package and profiles by
using a reduced values file as shown in Run profile.

2. To use Application Live View, set the INGRESS-DOMAIN for appliveview_connector to match
the value you set on the View profile for the appliveview in the values file.

Install Iterate clusters

To install the Iterate profile cluster, follow the steps described in Install the Tanzu Application
Platform package and profiles by using a reduced values file as shown in Iterate profile.

Add Build, Run and Iterate clusters to Tanzu Application
Platform GUI

After installing the Build, Run and Iterate clusters, follow the steps in View resources on multiple
clusters in Tanzu Application Platform GUI to:

1. Create the Service Accounts that Tanzu Application Platform GUI uses to read objects from
the clusters.

2. Add a remote cluster.

These steps create the necessary RBAC elements allowing you to pull the URL and token from the
Build, Run and Iterate clusters that allows them come back and add to the View cluster’s values
file.

You must add the Build, Run and Iterate clusters to the View cluster for all plug-ins to function as
expected.

Next steps

After setting up the four profiles, you’re ready to run a workload by using the supply chain. See Get
started with multicluster Tanzu Application Platform.

Get started with multicluster Tanzu Application Platform

This topic tells you how to validate the implementation of a multicluster topology by taking a
sample workload and passing it by using the supply chains on the Build and Run clusters.

Use this topic to build an application on the Build profile clusters and run the application on the Run
profile clusters.

You can view the workload and associated objects from Tanzu Application Platform GUI (commonly
known as TAP GUI) interface on the View profile cluster.

You can take various approaches to configuring the supply chain in this topology, but the following
procedures validate the most basic capabilities.

Prerequisites

Note

The default configuration of shared.ingress_domain points to the local Run
cluster, rather than the View cluster, as a result, shared.ingress_domain
must be set explicitly.

Tanzu Application Platform v1.5

VMware by Broadcom 392

Before implementing a multicluster topology, complete the following:

1. Complete all installation steps for the four profiles: Build, Run, View and Iterate.

2. For the sample workload, VMware uses the same Application Accelerator - Tanzu Java
Web App in the non-multicluster Get Started guide. You can download this accelerator to
your own Git infrastructure of choice. You might need to configure additional permissions.
Alternatively, you can also use the application-accelerator-samples GitHub repository.

3. The two supply chains are ootb-supply-chain-basic on the Build/Iterate profile and ootb-
delivery-basic on the Run profile. For the Build/Iterate and Run profiled clusters, perform
the steps described in Setup Developer Namespace. This guide assumes that you use the
default namespace.

4. To set the value of DEVELOPER_NAMESPACE to the namespace you setup in the previous step,
run:

export DEVELOPER_NAMESPACE=YOUR-DEVELOPER-NAMESPACE

Where:

YOUR-DEVELOPER-NAMESPACE is the namespace you set up in Set up developer
namespaces to use your installed packages. default is used in this example.

Start the workload on the Build profile cluster

The Build cluster starts by building the necessary bundle for the workload that is delivered to the
Run cluster.

1. Use the Tanzu CLI to start the workload down the first supply chain:

tanzu apps workload create tanzu-java-web-app \

--git-repo https://github.com/vmware-tanzu/application-accelerator-samples \

--sub-path tanzu-java-web-app \

--git-branch main \

--type web \

--label app.kubernetes.io/part-of=tanzu-java-web-app \

--yes \

--namespace ${DEVELOPER_NAMESPACE}

2. To monitor the progress of this process, run:

tanzu apps workload tail tanzu-java-web-app --since 10m --timestamp --namespace

${DEVELOPER_NAMESPACE}

3. To exit the monitoring session, press CTRL + C.

4. Verify that your supply chain has produced the necessary ConfigMap containing Deliverable
content produced by the Workload:

kubectl get configmap tanzu-java-web-app-deliverable --namespace ${DEVELOPER_NA

MESPACE} -o go-template='{{.data.deliverable}}'

The output resembles the following:

apiVersion: carto.run/v1alpha1

kind: Deliverable

metadata:

 name: tanzu-java-web-app-deliverable

 labels:

 apis.apps.tanzu.vmware.com/register-api: "true"

 app.kubernetes.io/part-of: tanzu-java-web-app

Tanzu Application Platform v1.5

VMware by Broadcom 393

https://github.com/vmware-tanzu/application-accelerator-samples

 apps.tanzu.vmware.com/workload-type: web

 app.kubernetes.io/component: deliverable

 app.tanzu.vmware.com/deliverable-type: web

spec:

 params:

 - name: gitops_ssh_secret

 value: ""

 source:

 git:

 url: http://git-server.default.svc.cluster.local/app-namespace/tanzu-java

-web-app

 ref:

 branch: main

5. Store the Deliverable content, which you can take to the Run profile clusters from the
ConfigMap by running:

kubectl get configmap tanzu-java-web-app-deliverable -n ${DEVELOPER_NAMESPACE}

-o go-template='{{.data.deliverable}}' > deliverable.yaml

6. Take this Deliverable file to the Run profile clusters by running:

kubectl apply -f deliverable.yaml --namespace ${DEVELOPER_NAMESPACE}

7. Verify that this Deliverable is started and Ready by running:

kubectl get deliverables --namespace ${DEVELOPER_NAMESPACE}

The output resembles the following:

kubectl get deliverables --namespace default

NAME SOURCE

DELIVERY READY REASON AGE

tanzu-java-web-app tapmulticloud.azurecr.io/tap-multi-build-dev/tanzu-java-we

b-app-default-bundle:xxxx-xxxx-xxxx-xxxx-1a7beafd6389 delivery-basic True

Ready 7m2s

8. To test the application, query the URL for the application. Look for the httpProxy by
running:

kubectl get httpproxy --namespace ${DEVELOPER_NAMESPACE}

The output resembles the following:

kubectl get httpproxy --namespace default

NAME FQDN

TLS SECRET STATUS STATUS DESCRIPTION

tanzu-java-web-app-contour-a98df54e3629c5ae9c82a395501ee1fdtanz tanzu-java-we

b-app.default.svc.cluster.local valid Valid HTTPP

roxy

tanzu-java-web-app-contour-e1d997a9ff9e7dfb6c22087e0ce6fd7ftanz tanzu-java-we

b-app.default.apps.run.multi.kapplegate.com valid Valid HTTPP

roxy

tanzu-java-web-app-contour-tanzu-java-web-app.default tanzu-java-we

b-app.default valid Valid HTTPP

roxy

tanzu-java-web-app-contour-tanzu-java-web-app.default.svc tanzu-java-we

b-app.default.svc valid Valid HTTPP

roxy

Select the URL that corresponds to the domain you specified in your Run cluster’s profile
and enter it into a browser. Expect to see the message “Greetings from Spring Boot +

Tanzu Application Platform v1.5

VMware by Broadcom 394

Tanzu!”.

9. View the component in Tanzu Application Platform GUI, by following these steps and using
the catalog file from the sample accelerator in GitHub.

Install Tanzu Application Platform Build profile

This topic tells you how to install Build profile cluster by using a reduced values file.

Prerequisites

Before installing the Build profile, follow all the steps in Install View cluster.

Example values.yaml

The following is the YAML file sample for the build-profile:

profile: build

ceip_policy_disclosed: FALSE-OR-TRUE-VALUE # Installation fails if this is not set to

true. Not a string.

shared:

 ingress_domain: "INGRESS-DOMAIN"

 kubernetes_distribution: "openshift" # To be passed only for Openshift. Defaults to

"".

 kubernetes_version: "K8S-VERSION"

 image_registry:

 project_path: "SERVER-NAME/REPO-NAME" # To be used by Build Service by appending

"/buildservice" and used by Supply chain by appending "/workloads".

 secret:

 name: "KP-DEFAULT-REPO-SECRET"

 namespace: "KP-DEFAULT-REPO-SECRET-NAMESPACE"

 ca_cert_data: | # To be passed if using custom certificates.

 -----BEGIN CERTIFICATE-----

 MIIFXzCCA0egAwIBAgIJAJYm37SFocjlMA0GCSqGSIb3DQEBDQUAMEY...

 -----END CERTIFICATE-----

The above shared keys can be overridden in the below section.

buildservice:

Takes the value from the shared section by default, but can be overridden by setting

a different value.

 kp_default_repository: "KP-DEFAULT-REPO"

 kp_default_repository_secret:

 name: "KP-DEFAULT-REPO-SECRET"

 namespace: "KP-DEFAULT-REPO-SECRET-NAMESPACE"

supply_chain: testing_scanning

ootb_supply_chain_testing_scanning: # Optional if the corresponding shared keys are pr

ovided.

 registry:

 server: "SERVER-NAME"

 repository: "REPO-NAME"

 gitops:

 ssh_secret: "SSH-SECRET-KEY" # (Optional) Defaults to "".

grype:

 namespace: "MY-DEV-NAMESPACE" # (Optional) Defaults to default namespace.

 targetImagePullSecret: "TARGET-REGISTRY-CREDENTIALS-SECRET"

 metadataStore:

 url: METADATA-STORE-URL-ON-VIEW-CLUSTER

 caSecret:

 name: store-ca-cert

 importFromNamespace: metadata-store-secrets

 authSecret:

Tanzu Application Platform v1.5

VMware by Broadcom 395

https://github.com/vmware-tanzu/application-accelerator-samples/blob/main/tanzu-java-web-app/catalog/catalog-info.yaml

 name: store-auth-token

 importFromNamespace: metadata-store-secrets

scanning:

 metadataStore:

 url: "" # Configuration is moved, so set this string to empty.

tap_telemetry:

 customer_entitlement_account_number: "CUSTOMER-ENTITLEMENT-ACCOUNT-NUMBER" # (Option

al) Identify data for creating Tanzu Application Platform usage reports.

Where:

K8S-VERSION is the Kubernetes version used by your OpenShift cluster. It must be in the
form of 1.23.x or 1.24.x, where x stands for the patch version. Examples:

Red Hat OpenShift Container Platform v4.10 uses the Kubernetes version 1.23.3.

Red Hat OpenShift Container Platform v4.11 uses the Kubernetes version 1.24.1.

KP-DEFAULT-REPO is a writable repository in your registry. The Tanzu Build Service
dependencies are written to this location. Examples:

Harbor has the form kp_default_repository: "my-harbor.io/my-project/build-
service"

Docker Hub has the form kp_default_repository: "my-dockerhub-user/build-
service" or kp_default_repository: "index.docker.io/my-user/build-service"

Google Cloud Registry has the form kp_default_repository: "gcr.io/my-
project/build-service"

For Google Cloud Registry, use the contents of the service account JSON file.

KP-DEFAULT-REPO-SECRET is the secret with user credentials that can write to KP-DEFAULT-
REPO. You can docker push to this location with this credential.

For Google Cloud Registry, use kp_default_repository_username: _json_key.

You must create the secret before the installation. For example, you can use the
registry-credentials secret created earlier.

KP-DEFAULT-REPO-SECRET-NAMESPACE is the namespace where KP-DEFAULT-REPO-SECRET is
created.

SERVER-NAME is the host name of the registry server. Examples:

Harbor has the form server: "my-harbor.io".

Docker Hub has the form server: "index.docker.io".

Google Cloud Registry has the form server: "gcr.io".

REPO-NAME is where workload images are stored in the registry. Images are written to
SERVER-NAME/REPO-NAME/workload-name. Examples:

Harbor has the form repository: "my-project/supply-chain".

Docker Hub has the form repository: "my-dockerhub-user".

Google Cloud Registry has the form repository: "my-project/supply-chain".

SSH-SECRET-KEY is the SSH secret key in the developer namespace for the supply chain to
fetch source code from and push configuration to. See Git authentication for more
information.

METADATA-STORE-URL-ON-VIEW-CLUSTER is the URL of the Supply Chain Security Tools (SCST)
- Store deployed on the View cluster. For example, https://metadata-store.example.com.
For information about caSecret and store-auth-token, see Multicluster setup.

MY-DEV-NAMESPACE is the name of the developer namespace. SCST - Scan deploys the
ScanTemplates there. This allows the scanning feature to run in this namespace.

Tanzu Application Platform v1.5

VMware by Broadcom 396

TARGET-REGISTRY-CREDENTIALS-SECRET is the name of the Secret that contains the
credentials to pull an image from the registry for scanning.

CUSTOMER-ENTITLEMENT-ACCOUNT-NUMBER (optional) refers to the Entitlement Account
Number (EAN), which is a unique identifier VMware assigns to its customers. Tanzu
Application Platform telemetry uses this number to identify data that belongs to a particular
customers and prepare usage reports. See the Tanzu Kubernetes Grid documentation for
more information about identifying the Entitlement Account Number.

When you install Tanzu Application Platform, it is bootstrapped with the lite set of dependencies,
including buildpacks and stacks, for application builds. For more information about buildpacks, see
the VMware Tanzu Buildpacks Documentation. You can find the buildpack and stack artifacts
installed with Tanzu Application Platform on Tanzu Network. You can update the dependencies by
upgrading Tanzu Application Platform to the latest patch.

See Multicluster setup for more information about the value settings of grype.metadataStore.

You must set the scanning.metadatastore.url to an empty string if you’re installing Grype Scanner
v1.2.0 and later or Snyk Scanner to deactivate the embedded SCST - Store integration.

If you use custom CA certificates, you must provide one or more PEM-encoded CA certificates
under the ca_cert_data key. If you configured shared.ca_cert_data, Tanzu Application Platform
component packages inherit that value by default.

Install Tanzu Application Platform Run profile

This topic tells you how to install Run profile cluster by using a reduced values file.

The following is the YAML file sample for the run-profile:

profile: run

ceip_policy_disclosed: FALSE-OR-TRUE-VALUE # Installation fails if this is not set to

true. Not a string.

shared:

 ingress_domain: INGRESS-DOMAIN

 kubernetes_distribution: "openshift" # To be passed only for Openshift. Defaults to

"".

 kubernetes_version: "K8S-VERSION"

 ca_cert_data: | # To be passed if using custom certificates.

 -----BEGIN CERTIFICATE-----

 MIIFXzCCA0egAwIBAgIJAJYm37SFocjlMA0GCSqGSIb3DQEBDQUAMEY...

 -----END CERTIFICATE-----

supply_chain: basic

contour:

 envoy:

 service:

 type: LoadBalancer # NodePort can be used if your Kubernetes cluster doesn't sup

port LoadBalancing.

appliveview_connector:

 backend:

 sslDeactivated: TRUE-OR-FALSE-VALUE

 ingressEnabled: true

 host: appliveview.VIEW-CLUSTER-INGRESS-DOMAIN

tap_telemetry:

 customer_entitlement_account_number: "CUSTOMER-ENTITLEMENT-ACCOUNT-NUMBER" # (Option

al) Identify data for creating Tanzu Application Platform usage reports.

Where:

Tanzu Application Platform v1.5

VMware by Broadcom 397

https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/1.5/vmware-tanzu-kubernetes-grid-15/GUID-cluster-lifecycle-ceip.html#identify-the-entitlement-account-number-2
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-index.html
https://network.tanzu.vmware.com/products/tbs-dependencies

INGRESS-DOMAIN is the subdomain for the host name that you point at the tanzu-shared-
ingress service’s external IP address.

K8S-VERSION is the Kubernetes version used by your OpenShift cluster. It must be in the
form of 1.23.x or 1.24.x, where x stands for the patch version. Examples:

Red Hat OpenShift Container Platform v4.10 uses the Kubernetes version 1.23.3.

Red Hat OpenShift Container Platform v4.11 uses the Kubernetes version 1.24.1.

VIEW-CLUSTER-INGRESS-DOMAIN is the subdomain you setup on the View profile cluster. This
matches the value key appliveview.ingressDomain or shared.ingress_domain on the view
cluster. Include the default host name appliveview. ahead of the domain.

CUSTOMER-ENTITLEMENT-ACCOUNT-NUMBER (optional) refers to the Entitlement Account
Number (EAN), which is a unique identifier VMware assigns to its customers. Tanzu
Application Platform telemetry uses this number to identify data that belongs to a particular
customers and prepare usage reports. See the Tanzu Kubernetes Grid documentation for
more information about identifying the Entitlement Account Number.

If you use custom CA certificates, you must provide one or more PEM-encoded CA certificates
under the ca_cert_data key. If you configured shared.ca_cert_data, Tanzu Application Platform
component packages inherit that value by default.

If you set shared.ingress_domain in run profile, the appliveview_connector.backend.host is
automatically configured as host: appliveview.INGRESS-DOMAIN. To override the shared ingress for
Application Live View to connect to the view cluster, set the appliveview_connector.backend.host
key to appliveview.VIEW-CLUSTER-INGRESS-DOMAIN.

Install Tanzu Application Platform View profile

This topic tells you how to install View profile cluster by using a reduced values file.

The following is the YAML file sample for the view-profile:

profile: view

ceip_policy_disclosed: FALSE-OR-TRUE-VALUE # Installation fails if this is not set to

true. Not a string.

shared:

 ingress_domain: "INGRESS-DOMAIN"

 kubernetes_distribution: "openshift" # To be passed only for Openshift. Defaults to

"".

 kubernetes_version: "K8S-VERSION"

 ca_cert_data: | # To be passed if using custom certificates.

 -----BEGIN CERTIFICATE-----

 MIIFXzCCA0egAwIBAgIJAJYm37SFocjlMA0GCSqGSIb3DQEBDQUAMEY...

 -----END CERTIFICATE-----

contour:

 envoy:

 service:

 type: LoadBalancer # NodePort can be used if your Kubernetes cluster doesn't sup

port LoadBalancing.

tap_gui:

 app_config:

 catalog:

 locations:

 - type: url

 target: https://GIT-CATALOG-URL/catalog-info.yaml

 kubernetes:

 serviceLocatorMethod:

 type: 'multiTenant'

Tanzu Application Platform v1.5

VMware by Broadcom 398

https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/1.5/vmware-tanzu-kubernetes-grid-15/GUID-cluster-lifecycle-ceip.html#identify-the-entitlement-account-number-2

 clusterLocatorMethods:

 - type: 'config'

 clusters:

 - url: CLUSTER-URL

 name: CLUSTER-NAME # Build profile cluster can go here.

 authProvider: serviceAccount

 serviceAccountToken: CLUSTER-TOKEN

 skipTLSVerify: TRUE-OR-FALSE-VALUE

 - url: CLUSTER-URL

 name: CLUSTER-NAME # Run profile cluster can go here.

 authProvider: serviceAccount

 serviceAccountToken: CLUSTER-TOKEN

 skipTLSVerify: TRUE-OR-FALSE-VALUE

appliveview:

 ingressEnabled: true

tap_telemetry:

 customer_entitlement_account_number: "CUSTOMER-ENTITLEMENT-ACCOUNT-NUMBER" # (Option

al) Identify data for creating Tanzu Application Platform usage reports.

Where:

INGRESS-DOMAIN is the subdomain for the host name that you point at the tanzu-shared-
ingress service’s external IP address.

K8S-VERSION is the Kubernetes version used by your OpenShift cluster. It must be in the
form of 1.23.x or 1.24.x, where x stands for the patch version. Examples:

Red Hat OpenShift Container Platform v4.10 uses the Kubernetes version 1.23.3.

Red Hat OpenShift Container Platform v4.11 uses the Kubernetes version 1.24.1.

GIT-CATALOG-URL is the path to the catalog-info.yaml catalog definition file. You can
download either a blank or populated catalog file from the Tanzu Application Platform
product page. Otherwise, use a Backstage-compliant catalog you’ve already built and
posted on the Git infrastructure in the Integration section.

CLUSTER-URL, CLUSTER-NAME and CLUSTER-TOKEN are described in the View resources on
multiple clusters in Tanzu Application Platform GUI. Observe the order of operations laid out
in the previous steps.

CUSTOMER-ENTITLEMENT-ACCOUNT-NUMBER (optional) refers to the Entitlement Account
Number (EAN), which is a unique identifier VMware assigns to its customers. Tanzu
Application Platform telemetry uses this number to identify data that belongs to a particular
customers and prepare usage reports. See the Tanzu Kubernetes Grid documentation for
more information about identifying the Entitlement Account Number.

If you use custom CA certificates, you must provide one or more PEM-encoded CA certificates
under the ca_cert_data key. If you configured shared.ca_cert_data, Tanzu Application Platform
component packages inherit that value by default.

The appliveview.ingressEnabled key is set to false by default. In a multicluster setup,
ingressEnabled key must be set to true. If the shared.ingress_domain key is set, the Application
Live View back end is automatically exposed through the shared ingress.

Install Tanzu Application Platform Iterate profile

This topic tells you how to install Iterate profile cluster by using a reduced values file.

The following is the YAML file sample for the iterate-profile:

profile: iterate

Tanzu Application Platform v1.5

VMware by Broadcom 399

https://network.tanzu.vmware.com/products/tanzu-application-platform/#/releases/1239018
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/1.5/vmware-tanzu-kubernetes-grid-15/GUID-cluster-lifecycle-ceip.html#identify-the-entitlement-account-number-2

shared:

 ingress_domain: "INGRESS-DOMAIN"

 kubernetes_distribution: "openshift" # To be passed only for OpenShift. Defaults to

"".

 kubernetes_version: "K8S-VERSION"

 image_registry:

 project_path: "SERVER-NAME/REPO-NAME" # To be used by Build Service by appending

"/buildservice" and used by Supply chain by appending "/workloads"

 username: "KP-DEFAULT-REPO-USERNAME"

 password: "KP-DEFAULT-REPO-PASSWORD"

 ca_cert_data: | # To be passed if using custom certificates

 -----BEGIN CERTIFICATE-----

 MIIFXzCCA0egAwIBAgIJAJYm37SFocjlMA0GCSqGSIb3DQEBDQUAMEY...

 -----END CERTIFICATE-----

ceip_policy_disclosed: FALSE-OR-TRUE-VALUE # Installation fails if this is not set to

true. Not a string.

The above shared keys may be overridden in the below section.

buildservice: # Optional if the corresponding shared keys are provided.

 kp_default_repository: "KP-DEFAULT-REPO"

 kp_default_repository_username: "KP-DEFAULT-REPO-USERNAME"

 kp_default_repository_password: "KP-DEFAULT-REPO-PASSWORD"

supply_chain: basic

ootb_supply_chain_basic: # Optional if the shared above mentioned shared keys are prov

ided.

 registry:

 server: "SERVER-NAME"

 repository: "REPO-NAME"

 gitops:

 ssh_secret: "SSH-SECRET-KEY" # (Optional) Defaults to "".

image_policy_webhook:

 allow_unmatched_tags: true

contour:

 envoy:

 service:

 type: LoadBalancer # (Optional) Defaults to LoadBalancer.

cnrs:

 domain_name: "TAP-ITERATE-CNRS-DOMAIN" # Optional if the shared.ingress_domain is pr

ovided.

appliveview_connector:

 backend:

 sslDeactivated: TRUE-OR-FALSE-VALUE

 ingressEnabled: true

 host: appliveview.VIEW-CLUSTER-INGRESS-DOMAIN

tap_telemetry:

 customer_entitlement_account_number: "CUSTOMER-ENTITLEMENT-ACCOUNT-NUMBER" # (Option

al) Identify data for creating Tanzu Application Platform usage reports.

Where:

K8S-VERSION is the Kubernetes version used by your OpenShift cluster. It must be in the
form of 1.23.x or 1.24.x, where x stands for the patch version. Examples:

Red Hat OpenShift Container Platform v4.10 uses the Kubernetes version 1.23.3.

Red Hat OpenShift Container Platform v4.11 uses the Kubernetes version 1.24.1.

KP-DEFAULT-REPO is a writable repository in your registry. Tanzu Build Service dependencies
are written to this location. Examples:

Tanzu Application Platform v1.5

VMware by Broadcom 400

Harbor has the form kp_default_repository: "my-harbor.io/my-project/build-
service".

Docker Hub has the form kp_default_repository: "my-dockerhub-user/build-
service" or kp_default_repository: "index.docker.io/my-user/build-service".

Google Cloud Registry has the form kp_default_repository: "gcr.io/my-
project/build-service".

KP-DEFAULT-REPO-USERNAME is the user name that can write to KP-DEFAULT-REPO. You can
docker push to this location with this credential.

For Google Cloud Registry, use kp_default_repository_username: _json_key.

KP-DEFAULT-REPO-PASSWORD is the password for the user that can write to KP-DEFAULT-REPO.
You can docker push to this location with this credential. This credential can also be
configured by using a Secret reference. For more information, see Install Tanzu Build
Service for details.

For Google Cloud Registry, use the contents of the service account JSON file.

SERVER-NAME is the host name of the registry server. Examples:

Harbor has the form server: "my-harbor.io".

Docker Hub has the form server: "index.docker.io".

Google Cloud Registry has the form server: "gcr.io".

REPO-NAME is where workload images are stored in the registry. Images are written to
SERVER-NAME/REPO-NAME/workload-name. Examples:

Harbor has the form repository: "my-project/supply-chain".

Docker Hub has the form repository: "my-dockerhub-user".

Google Cloud Registry has the form repository: "my-project/supply-chain".

SSH-SECRET-KEY is the SSH secret key in the developer namespace for the supply chain to
fetch source code from and push configuration to. See Git authentication for more
information.

TAP-ITERATE-CNRS-DOMAIN is the iterate cluster CNRS domain.

VIEW-CLUSTER-INGRESS-DOMAIN is the subdomain you setup on the View profile cluster. This
matches the value key appliveview.ingressDomain or shared.ingress_domain on the view
cluster. Include the default host name appliveview. ahead of the domain.

CUSTOMER-ENTITLEMENT-ACCOUNT-NUMBER (optional) refers to the Entitlement Account
Number (EAN), which is a unique identifier VMware assigns to its customers. Tanzu
Application Platform telemetry uses this number to identify data that belongs to a particular
customers and prepare usage reports. See the Tanzu Kubernetes Grid documentation for
more information about identifying the Entitlement Account Number.

If you use custom CA certificates, you must provide one or more PEM-encoded CA certificates
under the ca_cert_data key. If you configured shared.ca_cert_data, Tanzu Application Platform
component packages inherit that value by default.

If you set shared.ingress_domain in the iterate profile, the appliveview_connector.backend.host is
automatically configured as host: appliveview.INGRESS-DOMAIN. To override the shared ingress for
Application Live View to connect to the view cluster, set the appliveview_connector.backend.host
key to appliveview.VIEW-CLUSTER-INGRESS-DOMAIN.

Tanzu Application Platform v1.5

VMware by Broadcom 401

https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/1.5/vmware-tanzu-kubernetes-grid-15/GUID-cluster-lifecycle-ceip.html#identify-the-entitlement-account-number-2

Get started with Tanzu Application
Platform

Welcome to Tanzu Application Platform (commonly known as TAP). The guides in this section
provide hands-on instructions for developers and operators to help you get started on Tanzu
Application Platform.

Prerequisites

Before you start, verify you have successfully:

Installed Tanzu Application Platform
See Installing Tanzu Application Platform.

Installed Tanzu Application Platform on the target Kubernetes cluster
See Installing the Tanzu CLI and Installing the Tanzu Application Platform Package and
Profiles.

Set the default kubeconfig context to the target Kubernetes cluster
See Changing clusters.

Installed Out of The Box (OOTB) Supply Chain Basic
See Install Out of The Box Supply Chain Basic. If you used the default profiles provided in
Installing the Tanzu Application Platform Package and Profiles, you have already installed
the Out of The Box (OOTB) Supply Chain Basic.

Installed Tekton Pipelines
See Install Tekton Pipelines. If you used the default profiles provided in Installing the Tanzu
Application Platform Package and Profiles, you have already installed Tekton Pipelines.

Set up a developer namespace to accommodate the developer workload
See Set up developer namespaces to use your installed packages.

Installed Tanzu Application Platform GUI
See Install Tanzu Application Platform GUI. If you used the Full or View profiles provided in
Installing the Tanzu Application Platform Package and Profiles, you have already installed
Tanzu Application Platform GUI.

Installed the VS Code Tanzu Extension
See Install the Visual Studio Code Tanzu Extension for instructions.

When you have completed these prerequisites, you are ready to get started.

Next steps

For developers:

Create an application accelerator

Deploy an app on Tanzu Application Platform

Deploy Spring Cloud Applications to Tanzu Application Platform

For operators:

Tanzu Application Platform v1.5

VMware by Broadcom 402

Add testing and scanning to your application

Configure image signing

Get started with Tanzu Application Platform

Welcome to Tanzu Application Platform (commonly known as TAP). The guides in this section
provide hands-on instructions for developers and operators to help you get started on Tanzu
Application Platform.

Prerequisites

Before you start, verify you have successfully:

Installed Tanzu Application Platform
See Installing Tanzu Application Platform.

Installed Tanzu Application Platform on the target Kubernetes cluster
See Installing the Tanzu CLI and Installing the Tanzu Application Platform Package and
Profiles.

Set the default kubeconfig context to the target Kubernetes cluster
See Changing clusters.

Installed Out of The Box (OOTB) Supply Chain Basic
See Install Out of The Box Supply Chain Basic. If you used the default profiles provided in
Installing the Tanzu Application Platform Package and Profiles, you have already installed
the Out of The Box (OOTB) Supply Chain Basic.

Installed Tekton Pipelines
See Install Tekton Pipelines. If you used the default profiles provided in Installing the Tanzu
Application Platform Package and Profiles, you have already installed Tekton Pipelines.

Set up a developer namespace to accommodate the developer workload
See Set up developer namespaces to use your installed packages.

Installed Tanzu Application Platform GUI
See Install Tanzu Application Platform GUI. If you used the Full or View profiles provided in
Installing the Tanzu Application Platform Package and Profiles, you have already installed
Tanzu Application Platform GUI.

Installed the VS Code Tanzu Extension
See Install the Visual Studio Code Tanzu Extension for instructions.

When you have completed these prerequisites, you are ready to get started.

Next steps

For developers:

Create an application accelerator

Deploy an app on Tanzu Application Platform

Deploy Spring Cloud Applications to Tanzu Application Platform

For operators:

Add testing and scanning to your application

Configure image signing

Tanzu Application Platform v1.5

VMware by Broadcom 403

Add testing and scanning to your application

This topic guides you through installing the optional OOTB Supply Chain with Testing and the
optional OOTB Supply Chain with Testing and Scanning.

For more information about available supply chains, see Supply chains on Tanzu Application
Platform.

What you will do

Install OOTB Supply Chain with Testing.

Add a Tekton pipeline to the cluster and update the workload to point to the pipeline and
resolve errors.

Install OOTB Supply Chain with Testing and Scanning.

Update the workload to point to the Tekton pipeline and resolve errors.

Query for vulnerabilities and dependencies.

Overview

The default Out of the Box (OOTB) Supply Chain Basic and its dependencies were installed on your
cluster during the Tanzu Application Platform install. As demonstrated in this guide, you can add
testing and security scanning to your application. When you activate OOTB Supply Chain with
Testing, it deactivates OOTB Supply Chain Basic.

The following installations also provide a sample Tekton pipeline that tests your sample application.
The pipeline is configurable. Therefore, you can customize the steps to perform either additional
testing or other tasks with Tekton Pipelines.

Install OOTB Supply Chain with Testing

To install OOTB Supply Chain with Testing:

1. You can activate the OOTB Supply Chain with Testing by updating your profile to use
testing rather than basic as the selected supply chain for workloads in this cluster. The
tap-values.yaml is the file used to customize the profile in Tanzu package install tap --
values-file=.... Update tap-values.yaml with the following changes:

- supply_chain: basic

+ supply_chain: testing

- ootb_supply_chain_basic:

+ ootb_supply_chain_testing:

 registry:

 server: "SERVER-NAME"

 repository: "REPO-NAME"

Where:

SERVER-NAME is the name of your server.

REPO-NAME is the name of the image repository that hosts the container images.

2. Update the installed profile by running:

tanzu package installed update tap -p tap.tanzu.vmware.com -v VERSION-NUMBER --

values-file tap-values.yaml -n tap-install

Tanzu Application Platform v1.5

VMware by Broadcom 404

Where VERSION-NUMBER is your Tanzu Application Platform version. For example, 1.5.12.

Tekton pipeline config example

In this section, a Tekton pipeline is added to the cluster. In the next section, the workload is
updated to point to the pipeline and resolve any current errors.

To add the Tekton pipeline to the cluster, apply the following YAML to the cluster:

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

 name: developer-defined-tekton-pipeline

 namespace: DEVELOPER-NAMESPACE

 labels:

 apps.tanzu.vmware.com/pipeline: test # (!) required

spec:

 params:

 - name: source-url # (!) required

 - name: source-revision # (!) required

 tasks:

 - name: test

 params:

 - name: source-url

 value: $(params.source-url)

 - name: source-revision

 value: $(params.source-revision)

 taskSpec:

 params:

 - name: source-url

 - name: source-revision

 steps:

 - name: test

 image: gradle

 script: |-

 cd `mktemp -d`

 wget -qO- $(params.source-url) | tar xvz -m

 ./mvnw test

Where DEVELOPER-NAMESPACE is the name of your developer namespace.

The preceding YAML puts a Tekton pipeline in the developer namespace you specify. It defines the
Tekton pipeline with a single step. The step contained in the steps pulls the code from the
repository indicated in the developers workload and runs the tests within the repository. The steps
of the Tekton pipeline are configurable and allow the developer to add additional items needed to
test their code.

There are many steps in the supply chain. In this case, the next step is an image build. Any
additional steps the developer adds to the Tekton pipeline to test their code are independent of
the image being built and of any subsequent steps executed in the supply chain. This
independence gives the developer freedom to focus on testing their code.

The params are templated by Supply Chain Choreographer. Additionally, Tekton pipelines require a
Tekton pipelineRun to execute on the cluster. Supply Chain Choreographer handles creating the

Note

Developers can perform this step because they know how their application must be
tested. The operator can also add the Tekton pipeline to a cluster before the
developer gets access.

Tanzu Application Platform v1.5

VMware by Broadcom 405

pipelineRun dynamically each time that step of the supply chain requires execution.

Workload update

To connect the new supply chain to the workload, the workload must be updated to point at your
Tekton pipeline.

1. Update the workload by running the following with the Tanzu CLI:

tanzu apps workload apply tanzu-java-web-app \

 --git-repo https://github.com/vmware-tanzu/application-accelerator-samples \

 --sub-path tanzu-java-web-app \

 --git-branch main \

 --type web \

 --label apps.tanzu.vmware.com/has-tests=true \

 --label app.kubernetes.io/part-of=tanzu-java-web-app \

 --yes

2. After accepting the workload creation, monitor the creation of new resources by the
workload by running:

kubectl get workload,gitrepository,pipelinerun,images.kpack,podintent,app,servi

ces.serving

The result is output similar to the following example that shows the objects created by
Supply Chain Choreographer:

NAME AGE

workload.carto.run/tanzu-java-web-app 109s

NAME URL

READY STATUS AGE

gitrepository.source.toolkit.fluxcd.io/tanzu-java-web-app https://github.com/

vmware-tanzu/application-accelerator-samples True Fetched revision: main/8

72ff44c8866b7805fb2425130edb69a9853bfdf 109s

NAME SUCCEEDED REASON START

TIME COMPLETIONTIME

pipelinerun.tekton.dev/tanzu-java-web-app-4ftlb True Succeeded 104s

77s

NAME LATESTIMAGE

READY

image.kpack.io/tanzu-java-web-app 10.188.0.3:5000/foo/tanzu-java-web-app@sha2

56:1d5bc4d3d1ffeb8629fbb721fcd1c4d28b896546e005f1efd98fbc4e79b7552c True

NAME READY REASON

AGE

podintent.conventions.carto.run/tanzu-java-web-app True 7s

NAME DESCRIPTION SINCE-DEPLOY

AGE

app.kappctrl.k14s.io/tanzu-java-web-app Reconcile succeeded 1s

2s

NAME URL

LATESTCREATED LATESTREADY READY REASON

service.serving.knative.dev/tanzu-java-web-app http://tanzu-java-web-app.deve

loper.example.com tanzu-java-web-app-00001 tanzu-java-web-app-00001 Unkno

wn IngressNotConfigured

Install OOTB Supply Chain with Testing and Scanning

Tanzu Application Platform v1.5

VMware by Broadcom 406

Prerequisites

Both the Scan Controller and the default Grype scanner must be installed for scanning.
Refer to the verify installation steps later in the topic.

Add the necessary configuration to enable CVE scan results in the Tanzu Application
Platform GUI. This configuration allows the Supply Chain Choreographer Tanzu Application
Platform GUI plug-in to retrieve metadata about project packages and their vulnerabilities.

To install OOTB Supply Chain with Testing and Scanning:

1. Supply Chain Security Tools (SCST) - Scan is installed as part of the Tanzu Application
Platform profiles. Verify that both Scan Controller and Grype Scanner are installed by
running:

tanzu package installed get scanning -n tap-install

tanzu package installed get grype -n tap-install

If the packages are not already installed, follow the steps in Supply Chain Security Tools -
Scan to install the required scanning components.

During installation of the Grype Scanner, sample ScanTemplates are installed into the
default namespace. If the workload is deployed into another namespace, these sample
ScanTemplates must also be present in the other namespace. One way to accomplish this is
to install Grype Scanner again and provide the namespace in the values file.

A ScanPolicy is required and must be in the required namespace. A sample ScanPolicy is
provided as follows to block a supply chain when CVEs with critical, high, and unknown
ratings are found using notAllowedSeverities :=
["Critical","High","UnknownSeverity"]. You can also configure the supply chain to use
your own custom policies and apply exceptions when you want to ignore certain CVEs. See
Out of the Box Supply Chain with Testing and Scanning. To apply the sample ScanPolicy,
you can either add the namespace flag to the kubectl command or add the namespace text
box to the template by running:

kubectl apply -f - -o yaml << EOF

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanPolicy

metadata:

 name: scan-policy

 labels:

 'app.kubernetes.io/part-of': 'enable-in-gui'

spec:

 regoFile: |

 package main

 # Accepted Values: "Critical", "High", "Medium", "Low", "Negligible", "Unkn

ownSeverity"

 notAllowedSeverities := ["Critical", "High", "UnknownSeverity"]

 ignoreCves := []

Note

When leveraging both Tanzu Build Service and Grype in your Tanzu
Application Platform supply chain, you can receive enhanced scanning
coverage for the languages and frameworks with check marks in the column
“Extended Scanning Coverage using Anchore Grype” on the Language and
Framework Support Table.

Tanzu Application Platform v1.5

VMware by Broadcom 407

 contains(array, elem) = true {

 array[_] = elem

 } else = false { true }

 isSafe(match) {

 severities := { e | e := match.ratings.rating.severity } | { e | e := mat

ch.ratings.rating[_].severity }

 some i

 fails := contains(notAllowedSeverities, severities[i])

 not fails

 }

 isSafe(match) {

 ignore := contains(ignoreCves, match.id)

 ignore

 }

 deny[msg] {

 comps := { e | e := input.bom.components.component } | { e | e := input.b

om.components.component[_] }

 some i

 comp := comps[i]

 vulns := { e | e := comp.vulnerabilities.vulnerability } | { e | e := com

p.vulnerabilities.vulnerability[_] }

 some j

 vuln := vulns[j]

 ratings := { e | e := vuln.ratings.rating.severity } | { e | e := vuln.ra

tings.rating[_].severity }

 not isSafe(vuln)

 msg = sprintf("CVE %s %s %s", [comp.name, vuln.id, ratings])

 }

EOF

2. (optional) The Tanzu Application Platform profiles install the Supply Chain Security Tools -
Store package by default. To persist and query the vulnerability results post-scan, confirm it
is installed by running:

tanzu package installed get metadata-store -n tap-install

If the package is not installed, follow the installation instructions at Install Supply Chain
Security Tools - Store independent from Tanzu Application Platform profiles.

3. Update the profile to use the supply chain with testing and scanning by updating tap-
values.yaml (the file used to customize the profile in tanzu package install tap --
values-file=...) with the following changes:

- supply_chain: testing

+ supply_chain: testing_scanning

- ootb_supply_chain_testing:

+ ootb_supply_chain_testing_scanning:

 registry:

 server: "<SERVER-NAME>"

 repository: "<REPO-NAME>"

4. Update the tap package:

tanzu package installed update tap -p tap.tanzu.vmware.com -v VERSION-NUMBER --

values-file tap-values.yaml -n tap-install

Where VERSION-NUMBER is your Tanzu Application Platform version. For example, 1.5.12.

Tanzu Application Platform v1.5

VMware by Broadcom 408

Workload update

To connect the new supply chain to the workload, update the workload to point to your Tekton
pipeline:

1. Update the workload by running the following using the Tanzu CLI:

tanzu apps workload apply tanzu-java-web-app \

 --git-repo https://github.com/vmware-tanzu/application-accelerator-samples \

 --sub-path tanzu-java-web-app \

 --git-branch main \

 --type web \

 --label apps.tanzu.vmware.com/has-tests=true \

 --label app.kubernetes.io/part-of=tanzu-java-web-app \

 --yes

2. After accepting the workload creation, view the new resources that the workload created
by running:

kubectl get workload,gitrepository,sourcescan,pipelinerun,images.kpack,imagesca

n,podintent,app,services.serving

The following is an example output, which shows the objects that Supply Chain
Choreographer created:

NAME AGE

workload.carto.run/tanzu-java-web-app 109s

NAME URL

READY STATUS AGE

gitrepository.source.toolkit.fluxcd.io/tanzu-java-web-app https://github.com/

vmware-tanzu/application-accelerator-samples True Fetched revision: main/8

72ff44c8866b7805fb2425130edb69a9853bfdf 109s

NAME PHASE SCAN

NEDREVISION SCANNEDREPOSITORY

AGE CRITICAL HIGH MEDIUM LOW UNKNOWN CVETOTAL

sourcescan.scanning.apps.tanzu.vmware.com/tanzu-java-web-app Completed 1878

50b39b754e425621340787932759a0838795 https://github.com/vmware-tanzu/applicat

ion-accelerator-samples 90s

NAME SUCCEEDED REASON START

TIME COMPLETIONTIME

pipelinerun.tekton.dev/tanzu-java-web-app-4ftlb True Succeeded 104s

77s

NAME LATESTIMAGE

READY

image.kpack.io/tanzu-java-web-app 10.188.0.3:5000/foo/tanzu-java-web-app@sha2

56:1d5bc4d3d1ffeb8629fbb721fcd1c4d28b896546e005f1efd98fbc4e79b7552c True

NAME PHASE SCANN

EDIMAGE

AGE CRITICAL HIGH MEDIUM LOW UNKNOWN CVETOTAL

imagescan.scanning.apps.tanzu.vmware.com/tanzu-java-web-app Completed 10.18

8.0.3:5000/foo/tanzu-java-web-app@sha256:1d5bc4d3d1ffeb8629fbb721fcd1c4d28b8965

46e005f1efd98fbc4e79b7552c 14s

NAME READY REASON

AGE

podintent.conventions.carto.run/tanzu-java-web-app True 7s

NAME DESCRIPTION SINCE-DEPLOY

AGE

Tanzu Application Platform v1.5

VMware by Broadcom 409

app.kappctrl.k14s.io/tanzu-java-web-app Reconcile succeeded 1s

2s

NAME URL

LATESTCREATED LATESTREADY READY REASON

service.serving.knative.dev/tanzu-java-web-app http://tanzu-java-web-app.deve

loper.example.com tanzu-java-web-app-00001 tanzu-java-web-app-00001 Unkno

wn IngressNotConfigured

Query for vulnerabilities

Scan reports are automatically saved to the Supply Chain Security Tools - Store, and you can query
them for vulnerabilities and dependencies. For example, related to open-source software (OSS) or
third-party packages.

Query the tanzu-java-web-app image dependencies and vulnerabilities by running:

tanzu insight image get --digest DIGEST

tanzu insight image vulnerabilities --digest DIGEST

Where DIGEST is the component version or image digest printed in the KUBECTL GET command.

For additional information and examples, see Tanzu Insight plug-in overview.

Congratulations! You have successfully added testing and security scanning to your application on
the Tanzu Application Platform.

Take the next steps to learn about recommended supply chain security best practices and gain a
powerful services journey experience on the Tanzu Application Platform by enabling several
advanced use cases.

Next steps

Configure image signing and verification in your supply chain

Add testing and scanning to your application

This topic guides you through installing the optional OOTB Supply Chain with Testing and the
optional OOTB Supply Chain with Testing and Scanning.

For more information about available supply chains, see Supply chains on Tanzu Application
Platform.

What you will do

Install OOTB Supply Chain with Testing.

Add a Tekton pipeline to the cluster and update the workload to point to the pipeline and
resolve errors.

Install OOTB Supply Chain with Testing and Scanning.

Important

If the source or image scan has a “Failed” phase this means that the scan
failed due to a scan policy violation and the supply chain stops. For
information about the CVE triage workflow, see Out of the Box Supply
Chain with Testing and Scanning.

Tanzu Application Platform v1.5

VMware by Broadcom 410

Update the workload to point to the Tekton pipeline and resolve errors.

Query for vulnerabilities and dependencies.

Overview

The default Out of the Box (OOTB) Supply Chain Basic and its dependencies were installed on your
cluster during the Tanzu Application Platform install. As demonstrated in this guide, you can add
testing and security scanning to your application. When you activate OOTB Supply Chain with
Testing, it deactivates OOTB Supply Chain Basic.

The following installations also provide a sample Tekton pipeline that tests your sample application.
The pipeline is configurable. Therefore, you can customize the steps to perform either additional
testing or other tasks with Tekton Pipelines.

Install OOTB Supply Chain with Testing

To install OOTB Supply Chain with Testing:

1. You can activate the OOTB Supply Chain with Testing by updating your profile to use
testing rather than basic as the selected supply chain for workloads in this cluster. The
tap-values.yaml is the file used to customize the profile in Tanzu package install tap --
values-file=.... Update tap-values.yaml with the following changes:

- supply_chain: basic

+ supply_chain: testing

- ootb_supply_chain_basic:

+ ootb_supply_chain_testing:

 registry:

 server: "SERVER-NAME"

 repository: "REPO-NAME"

Where:

SERVER-NAME is the name of your server.

REPO-NAME is the name of the image repository that hosts the container images.

2. Update the installed profile by running:

tanzu package installed update tap -p tap.tanzu.vmware.com -v VERSION-NUMBER --

values-file tap-values.yaml -n tap-install

Where VERSION-NUMBER is your Tanzu Application Platform version. For example, 1.5.12.

Tekton pipeline config example

In this section, a Tekton pipeline is added to the cluster. In the next section, the workload is
updated to point to the pipeline and resolve any current errors.

To add the Tekton pipeline to the cluster, apply the following YAML to the cluster:

Note

Developers can perform this step because they know how their application must be
tested. The operator can also add the Tekton pipeline to a cluster before the
developer gets access.

Tanzu Application Platform v1.5

VMware by Broadcom 411

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

 name: developer-defined-tekton-pipeline

 namespace: DEVELOPER-NAMESPACE

 labels:

 apps.tanzu.vmware.com/pipeline: test # (!) required

spec:

 params:

 - name: source-url # (!) required

 - name: source-revision # (!) required

 tasks:

 - name: test

 params:

 - name: source-url

 value: $(params.source-url)

 - name: source-revision

 value: $(params.source-revision)

 taskSpec:

 params:

 - name: source-url

 - name: source-revision

 steps:

 - name: test

 image: gradle

 script: |-

 cd `mktemp -d`

 wget -qO- $(params.source-url) | tar xvz -m

 ./mvnw test

Where DEVELOPER-NAMESPACE is the name of your developer namespace.

The preceding YAML puts a Tekton pipeline in the developer namespace you specify. It defines the
Tekton pipeline with a single step. The step contained in the steps pulls the code from the
repository indicated in the developers workload and runs the tests within the repository. The steps
of the Tekton pipeline are configurable and allow the developer to add additional items needed to
test their code.

There are many steps in the supply chain. In this case, the next step is an image build. Any
additional steps the developer adds to the Tekton pipeline to test their code are independent of
the image being built and of any subsequent steps executed in the supply chain. This
independence gives the developer freedom to focus on testing their code.

The params are templated by Supply Chain Choreographer. Additionally, Tekton pipelines require a
Tekton pipelineRun to execute on the cluster. Supply Chain Choreographer handles creating the
pipelineRun dynamically each time that step of the supply chain requires execution.

Workload update

To connect the new supply chain to the workload, the workload must be updated to point at your
Tekton pipeline.

1. Update the workload by running the following with the Tanzu CLI:

tanzu apps workload apply tanzu-java-web-app \

 --git-repo https://github.com/vmware-tanzu/application-accelerator-samples \

 --sub-path tanzu-java-web-app \

 --git-branch main \

 --type web \

 --label apps.tanzu.vmware.com/has-tests=true \

 --label app.kubernetes.io/part-of=tanzu-java-web-app \

 --yes

Tanzu Application Platform v1.5

VMware by Broadcom 412

2. After accepting the workload creation, monitor the creation of new resources by the
workload by running:

kubectl get workload,gitrepository,pipelinerun,images.kpack,podintent,app,servi

ces.serving

The result is output similar to the following example that shows the objects created by
Supply Chain Choreographer:

NAME AGE

workload.carto.run/tanzu-java-web-app 109s

NAME URL

READY STATUS AGE

gitrepository.source.toolkit.fluxcd.io/tanzu-java-web-app https://github.com/

vmware-tanzu/application-accelerator-samples True Fetched revision: main/8

72ff44c8866b7805fb2425130edb69a9853bfdf 109s

NAME SUCCEEDED REASON START

TIME COMPLETIONTIME

pipelinerun.tekton.dev/tanzu-java-web-app-4ftlb True Succeeded 104s

77s

NAME LATESTIMAGE

READY

image.kpack.io/tanzu-java-web-app 10.188.0.3:5000/foo/tanzu-java-web-app@sha2

56:1d5bc4d3d1ffeb8629fbb721fcd1c4d28b896546e005f1efd98fbc4e79b7552c True

NAME READY REASON

AGE

podintent.conventions.carto.run/tanzu-java-web-app True 7s

NAME DESCRIPTION SINCE-DEPLOY

AGE

app.kappctrl.k14s.io/tanzu-java-web-app Reconcile succeeded 1s

2s

NAME URL

LATESTCREATED LATESTREADY READY REASON

service.serving.knative.dev/tanzu-java-web-app http://tanzu-java-web-app.deve

loper.example.com tanzu-java-web-app-00001 tanzu-java-web-app-00001 Unkno

wn IngressNotConfigured

Install OOTB Supply Chain with Testing and Scanning

Prerequisites

Both the Scan Controller and the default Grype scanner must be installed for scanning.
Refer to the verify installation steps later in the topic.

Note

When leveraging both Tanzu Build Service and Grype in your Tanzu
Application Platform supply chain, you can receive enhanced scanning
coverage for the languages and frameworks with check marks in the column
“Extended Scanning Coverage using Anchore Grype” on the Language and
Framework Support Table.

Tanzu Application Platform v1.5

VMware by Broadcom 413

Add the necessary configuration to enable CVE scan results in the Tanzu Application
Platform GUI. This configuration allows the Supply Chain Choreographer Tanzu Application
Platform GUI plug-in to retrieve metadata about project packages and their vulnerabilities.

To install OOTB Supply Chain with Testing and Scanning:

1. Supply Chain Security Tools (SCST) - Scan is installed as part of the Tanzu Application
Platform profiles. Verify that both Scan Controller and Grype Scanner are installed by
running:

tanzu package installed get scanning -n tap-install

tanzu package installed get grype -n tap-install

If the packages are not already installed, follow the steps in Supply Chain Security Tools -
Scan to install the required scanning components.

During installation of the Grype Scanner, sample ScanTemplates are installed into the
default namespace. If the workload is deployed into another namespace, these sample
ScanTemplates must also be present in the other namespace. One way to accomplish this is
to install Grype Scanner again and provide the namespace in the values file.

A ScanPolicy is required and must be in the required namespace. A sample ScanPolicy is
provided as follows to block a supply chain when CVEs with critical, high, and unknown
ratings are found using notAllowedSeverities :=
["Critical","High","UnknownSeverity"]. You can also configure the supply chain to use
your own custom policies and apply exceptions when you want to ignore certain CVEs. See
Out of the Box Supply Chain with Testing and Scanning. To apply the sample ScanPolicy,
you can either add the namespace flag to the kubectl command or add the namespace text
box to the template by running:

kubectl apply -f - -o yaml << EOF

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanPolicy

metadata:

 name: scan-policy

 labels:

 'app.kubernetes.io/part-of': 'enable-in-gui'

spec:

 regoFile: |

 package main

 # Accepted Values: "Critical", "High", "Medium", "Low", "Negligible", "Unkn

ownSeverity"

 notAllowedSeverities := ["Critical", "High", "UnknownSeverity"]

 ignoreCves := []

 contains(array, elem) = true {

 array[_] = elem

 } else = false { true }

 isSafe(match) {

 severities := { e | e := match.ratings.rating.severity } | { e | e := mat

ch.ratings.rating[_].severity }

 some i

 fails := contains(notAllowedSeverities, severities[i])

 not fails

 }

 isSafe(match) {

 ignore := contains(ignoreCves, match.id)

 ignore

Tanzu Application Platform v1.5

VMware by Broadcom 414

 }

 deny[msg] {

 comps := { e | e := input.bom.components.component } | { e | e := input.b

om.components.component[_] }

 some i

 comp := comps[i]

 vulns := { e | e := comp.vulnerabilities.vulnerability } | { e | e := com

p.vulnerabilities.vulnerability[_] }

 some j

 vuln := vulns[j]

 ratings := { e | e := vuln.ratings.rating.severity } | { e | e := vuln.ra

tings.rating[_].severity }

 not isSafe(vuln)

 msg = sprintf("CVE %s %s %s", [comp.name, vuln.id, ratings])

 }

EOF

2. (optional) The Tanzu Application Platform profiles install the Supply Chain Security Tools -
Store package by default. To persist and query the vulnerability results post-scan, confirm it
is installed by running:

tanzu package installed get metadata-store -n tap-install

If the package is not installed, follow the installation instructions at Install Supply Chain
Security Tools - Store independent from Tanzu Application Platform profiles.

3. Update the profile to use the supply chain with testing and scanning by updating tap-
values.yaml (the file used to customize the profile in tanzu package install tap --
values-file=...) with the following changes:

- supply_chain: testing

+ supply_chain: testing_scanning

- ootb_supply_chain_testing:

+ ootb_supply_chain_testing_scanning:

 registry:

 server: "<SERVER-NAME>"

 repository: "<REPO-NAME>"

4. Update the tap package:

tanzu package installed update tap -p tap.tanzu.vmware.com -v VERSION-NUMBER --

values-file tap-values.yaml -n tap-install

Where VERSION-NUMBER is your Tanzu Application Platform version. For example, 1.5.12.

Workload update

To connect the new supply chain to the workload, update the workload to point to your Tekton
pipeline:

1. Update the workload by running the following using the Tanzu CLI:

tanzu apps workload apply tanzu-java-web-app \

 --git-repo https://github.com/vmware-tanzu/application-accelerator-samples \

 --sub-path tanzu-java-web-app \

 --git-branch main \

 --type web \

 --label apps.tanzu.vmware.com/has-tests=true \

 --label app.kubernetes.io/part-of=tanzu-java-web-app \

 --yes

Tanzu Application Platform v1.5

VMware by Broadcom 415

2. After accepting the workload creation, view the new resources that the workload created
by running:

kubectl get workload,gitrepository,sourcescan,pipelinerun,images.kpack,imagesca

n,podintent,app,services.serving

The following is an example output, which shows the objects that Supply Chain
Choreographer created:

NAME AGE

workload.carto.run/tanzu-java-web-app 109s

NAME URL

READY STATUS AGE

gitrepository.source.toolkit.fluxcd.io/tanzu-java-web-app https://github.com/

vmware-tanzu/application-accelerator-samples True Fetched revision: main/8

72ff44c8866b7805fb2425130edb69a9853bfdf 109s

NAME PHASE SCAN

NEDREVISION SCANNEDREPOSITORY

AGE CRITICAL HIGH MEDIUM LOW UNKNOWN CVETOTAL

sourcescan.scanning.apps.tanzu.vmware.com/tanzu-java-web-app Completed 1878

50b39b754e425621340787932759a0838795 https://github.com/vmware-tanzu/applicat

ion-accelerator-samples 90s

NAME SUCCEEDED REASON START

TIME COMPLETIONTIME

pipelinerun.tekton.dev/tanzu-java-web-app-4ftlb True Succeeded 104s

77s

NAME LATESTIMAGE

READY

image.kpack.io/tanzu-java-web-app 10.188.0.3:5000/foo/tanzu-java-web-app@sha2

56:1d5bc4d3d1ffeb8629fbb721fcd1c4d28b896546e005f1efd98fbc4e79b7552c True

NAME PHASE SCANN

EDIMAGE

AGE CRITICAL HIGH MEDIUM LOW UNKNOWN CVETOTAL

imagescan.scanning.apps.tanzu.vmware.com/tanzu-java-web-app Completed 10.18

8.0.3:5000/foo/tanzu-java-web-app@sha256:1d5bc4d3d1ffeb8629fbb721fcd1c4d28b8965

46e005f1efd98fbc4e79b7552c 14s

NAME READY REASON

AGE

podintent.conventions.carto.run/tanzu-java-web-app True 7s

NAME DESCRIPTION SINCE-DEPLOY

AGE

app.kappctrl.k14s.io/tanzu-java-web-app Reconcile succeeded 1s

2s

NAME URL

LATESTCREATED LATESTREADY READY REASON

service.serving.knative.dev/tanzu-java-web-app http://tanzu-java-web-app.deve

loper.example.com tanzu-java-web-app-00001 tanzu-java-web-app-00001 Unkno

wn IngressNotConfigured

Important

If the source or image scan has a “Failed” phase this means that the scan
failed due to a scan policy violation and the supply chain stops. For

Tanzu Application Platform v1.5

VMware by Broadcom 416

Query for vulnerabilities

Scan reports are automatically saved to the Supply Chain Security Tools - Store, and you can query
them for vulnerabilities and dependencies. For example, related to open-source software (OSS) or
third-party packages.

Query the tanzu-java-web-app image dependencies and vulnerabilities by running:

tanzu insight image get --digest DIGEST

tanzu insight image vulnerabilities --digest DIGEST

Where DIGEST is the component version or image digest printed in the KUBECTL GET command.

For additional information and examples, see Tanzu Insight plug-in overview.

Congratulations! You have successfully added testing and security scanning to your application on
the Tanzu Application Platform.

Take the next steps to learn about recommended supply chain security best practices and gain a
powerful services journey experience on the Tanzu Application Platform by enabling several
advanced use cases.

Next steps
Configure image signing and verification in your supply chain

Configure image signing and verification in your supply
chain

This topic guides you through configuring your Tanzu Application Platform (commonly known as
TAP) supply chain to sign and verify your image builds.

What you will do

Configure your supply chain to sign your image builds.

Configure an admission control policy to verify image signatures before admitting pods to
the cluster.

Configure your supply chain to sign and verify your image
builds

1. Use Cosign to configure Tanzu Build Service to sign your container image builds. For
instructions, see Configure Tanzu Build Service to sign your image builds.

2. Create a values.yaml file, and install the Supply Chain Security Tools - Policy Controller. For
instructions, see Install Supply Chain Security Tools - Policy Controller.

3. Create a ClusterImagePolicy that passes Tanzu Application Platform images. It is planned
for a future release for these to be signed and verifiable, but currently we recommend
creating a policy to pass them:

For example:

information about the CVE triage workflow, see Out of the Box Supply
Chain with Testing and Scanning.

Tanzu Application Platform v1.5

VMware by Broadcom 417

kubectl apply -f - -o yaml << EOF

apiVersion: policy.sigstore.dev/v1beta1

kind: ClusterImagePolicy

metadata:

 name: image-policy-exceptions

spec:

 images:

 - glob: registry.example.org/myproject/*

 - glob: REPO-NAME*

 authorities:

 - static:

 action: pass

EOF

Where:

REPO-NAME is the repository in your registry where Tanzu Build Service dependencies
are stored. This is the exact same value configured in the kp_default_repository
inside your tap-values.yaml or tbs-values.yaml files. Examples:

Harbor has the form "my-harbor.io/my-project/build-service".

Docker Hub has the form "my-dockerhub-user/build-service" or
"index.docker.io/my-user/build-service".

Google Cloud Registry has the form "gcr.io/my-project/build-service".

Add any unsigned image that must run in your namespace to the previous policy.
For example, if you add a Tekton pipeline that runs a Gradle image for testing, you
need to add glob: index.docker.io/library/gradle* to spec.images.glob in the
preceding code.

Replace registry.example.org/myproject/* with your target registry for your Tanzu
Application Platform images. If you did not relocate the Tanzu Application Platform
images to your own registry during installation, use
registry.tanzu.vmware.com/tanzu-application-platform/tap-packages*.

4. Configure and apply a ClusterImagePolicy resource to the cluster to verify image
signatures when deploying resources. For instructions, see Create a ClusterImagePolicy
resource.

For example:

kubectl apply -f - -o yaml << EOF

apiVersion: policy.sigstore.dev/v1beta1

kind: ClusterImagePolicy

metadata:

 name: example-policy

spec:

 images:

 - glob: registry.example.org/myproject/*

 authorities:

 - key:

 data: |

 -----BEGIN PUBLIC KEY-----

 <content ...>

 -----END PUBLIC KEY-----

EOF

5. Enable the policy controller verification in your namespace by adding the label
policy.sigstore.dev/include: "true" to the namespace resource.

Tanzu Application Platform v1.5

VMware by Broadcom 418

For example:

kubectl label namespace YOUR-NAMESPACE policy.sigstore.dev/include=true

Where YOUR-NAMESPACE is the name of your secure namespace.

When you apply the ClusterImagePolicy resource, your cluster requires valid signatures for all
images that match the spec.images.glob[] you define in the configuration. For more information
about configuring an image policy, see Configuring Supply Chain Security Tools - Policy.

Next steps
Consume services on Tanzu Application Platform

Or learn more about Supply Chain Security Tools:

Overview for Supply Chain Security Tools - Policy

Configuring Supply Chain Security Tools - Policy

Supply Chain Security Tools - Policy known issues

Generate an application with Application Accelerator
This topic guides you through how to generate a new project using Application Accelerator and
how to deploy the project onto a Tanzu Application Platform (commonly known as TAP) cluster.
For background information, see Application Accelerator.

Prerequisites
Before you start, complete all Getting Started prerequisites.

Generate a project using an Application Accelerator
There are multiple interfaces that you can use to generate a new project. The options are:

Application Accelerator extension for VS Code

Application Accelerator plug-in for IntelliJ

Tanzu Application Platform GUI

Choose one of the following tabs for how to generate and deploy applications using your selected
interface. If you have already generated a project and want to skip this step, you can go to
Deploying your application with Tanzu Application Platform.

VS Code
What you will do:

Install the Application Accelerator extension for VS Code.

(Optional) Provision a new GitHub repository and upload the project to the repository.

Generate a project using an Application Accelerator.

Note

Supply Chain Security Tools - Policy Controller only validates resources in
namespaces that have chosen to opt in.

Tanzu Application Platform v1.5

VMware by Broadcom 419

To generate a new project using an Application Accelerator:

1. Install and configure the Application Accelerator extension for VS Code, see Application
Accelerator Visual Studio Code extension.

2. Select an accelerator from the catalog. This example uses Tanzu Java Web App.

3. In Configure Accelerator, configure the accelerator as defined by your project’s
requirements. This example configures the project to use Spring Boot v3.0 and Java v17.

Tanzu Application Platform v1.5

VMware by Broadcom 420

4. Click Next Step.

5. If your organization’s Tanzu Application Platform is configured for Git repository creation,
configure the Setup Repository step using the following sub-steps. If not, click Skip and
go to step 5.

1. Using the Providers drop-down menu, select your Git provider. For example,
github.com.

2. After you select the provider, a dialog box appears for you to enter an API token
for your Git provider. Populate the text box with your provider’s API token and
press Enter.

This API key must be able to create new repositories for an organization or user.
For information about how to create an API token for Git repository creation, see
Creating a personal access token in the GitHub documentation.

Note

For information about configuring optional Git repository creation and
supported repositories, see Create an Application Accelerator Git
repository during project creation.

Tanzu Application Platform v1.5

VMware by Broadcom 421

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token#creating-a-personal-access-token-classic

3. In the Owner text box, enter the name of either the GitHub organization or user
name to create the repository under.

4. In the Repository Name text box, enter the name of the project repository.

5. In the Repository Branch text box, enter the name of the default branch for the
project repository. Typically, this is set to main.

6. Click Next Step.

6. In the Review and Generate step, verify that all the information you provided is
accurate, then click Generate Project.

7. A dialog box appears for you to choose a location for the project to be stored on the
local file system. Choose a directory or create a new one.

8. After the project has generated, a second dialog box appears for you to open the new
project in a new window. Click Yes.

9. When opened, the project is ready for development.

IntelliJ
What you will do:

Install the Application Accelerator plug-in for IntelliJ.

Generate a project using an Application Accelerator.

To generate a new project using an Application Accelerator:

1. Install and configure the Application Accelerator plug-in for IntelliJ, see Application
Accelerator plugin for IntelliJ.

2. On the Welcome to IntelliJ IDEA page, click New Project.

3. Click Tanzu Application Accelerator in the left side panel.

Tanzu Application Platform v1.5

VMware by Broadcom 422

4. Select an accelerator from the catalog. This example uses Tanzu Java Web App.

5. Click Next.

6. In the Configure Options step, configure the accelerator as defined by your project’s
requirements.

7. Click Next.

8. In the Review and Generate step, verify that all the information provided is accurate
then click Next.

9. After the project has generated, click Create to open the new project in IntelliJ.

Tanzu Application Platform v1.5

VMware by Broadcom 423

10. When opened, the project is ready for development.

Tanzu Application Platform GUI
In this example, you use the Tanzu-Java-Web-App accelerator. You also use Tanzu Application
Platform GUI. For information about connecting to Tanzu Application Platform GUI, see Access
Tanzu Application Platform GUI.

What you will do:

Generate a project from an Application Accelerator.

(Optional) Provision a new Git repository for the project.

Upload it to your Git repository of choice.

To generate a new project using an Application Accelerator:

1. From Tanzu Application Platform GUI portal, click Create located on the left side of the
navigation pane to see the list of available accelerators.

2. Locate the Tanzu Java Web App accelerator and click CHOOSE.

3. In the Generate Accelerators dialog box, replace the default value dev.local in the
prefix for container image registry text box with the registry in the form of SERVER-
NAME/REPO-NAME. The SERVER-NAME/REPO-NAME must match what was specified for
registry as part of the installation values for ootb_supply_chain_basic. See the Full
Profile section on Installing Tanzu Application Platform package and../install-
online/install.hbs.md profiles.

Tanzu Application Platform v1.5

VMware by Broadcom 424

4. Click NEXT.

5. If your instance has optional Git repository support enabled, continue with the following
sub-steps. If your instance does not support this, skip to step 5.

1. Select the Create Git repo? check box.

2. Select the host Git repository provider from the Host drop-down menu. For
example, github.com.

3. Populate the Owner and Repository text boxes.

Note

For information about configuring optional Git repository creation and
supported repositories, see Create an Application Accelerator Git
repository during project creation.

Tanzu Application Platform v1.5

VMware by Broadcom 425

4. While you are populating the form, a dialog box appears asking for permission to
provision Git repositories. Follow the prompts and continue.

5. Click NEXT.

6. Verify the provided information, and click GENERATE ACCELERATOR.

7. After the Task Activity processes complete, click DOWNLOAD ZIP FILE.

8. After downloading the ZIP file, expand it in a workspace directory. If you did not create a
Git repository in the preceding steps, follow your preferred procedure for uploading the
generated project files to a Git repository for your new project.

Learn more about Application Accelerator

For information about how to configure optional Git repository creation, see Configure in
Create an Application Accelerator Git repository during project creation.

For information about Application Accelerator configurations, see Configure Application
Accelerator.

For information about installing the Application Accelerator extension for Visual Studio
Code, see Application Accelerator Visual Studio Code extension.

For general accelerator troubleshooting, see Troubleshooting Application Accelerator for
VMware Tanzu.

Tanzu Application Platform v1.5

VMware by Broadcom 426

Next Steps

Now that you have generated a project that is ready for Tanzu Application Platform, learn how to
quickly deploy the application on a Tanzu Application Platform cluster in Deploy an app on Tanzu
Application Platform.

Generate an application with Application Accelerator

This topic guides you through how to generate a new project using Application Accelerator and
how to deploy the project onto a Tanzu Application Platform (commonly known as TAP) cluster.
For background information, see Application Accelerator.

Prerequisites

Before you start, complete all Getting Started prerequisites.

Generate a project using an Application Accelerator

There are multiple interfaces that you can use to generate a new project. The options are:

Application Accelerator extension for VS Code

Application Accelerator plug-in for IntelliJ

Tanzu Application Platform GUI

Choose one of the following tabs for how to generate and deploy applications using your selected
interface. If you have already generated a project and want to skip this step, you can go to
Deploying your application with Tanzu Application Platform.

VS Code
What you will do:

Install the Application Accelerator extension for VS Code.

(Optional) Provision a new GitHub repository and upload the project to the repository.

Generate a project using an Application Accelerator.

To generate a new project using an Application Accelerator:

1. Install and configure the Application Accelerator extension for VS Code, see Application
Accelerator Visual Studio Code extension.

2. Select an accelerator from the catalog. This example uses Tanzu Java Web App.

Tanzu Application Platform v1.5

VMware by Broadcom 427

3. In Configure Accelerator, configure the accelerator as defined by your project’s
requirements. This example configures the project to use Spring Boot v3.0 and Java v17.

Tanzu Application Platform v1.5

VMware by Broadcom 428

4. Click Next Step.

5. If your organization’s Tanzu Application Platform is configured for Git repository creation,
configure the Setup Repository step using the following sub-steps. If not, click Skip and
go to step 5.

1. Using the Providers drop-down menu, select your Git provider. For example,
github.com.

2. After you select the provider, a dialog box appears for you to enter an API token
for your Git provider. Populate the text box with your provider’s API token and
press Enter.

This API key must be able to create new repositories for an organization or user.
For information about how to create an API token for Git repository creation, see
Creating a personal access token in the GitHub documentation.

3. In the Owner text box, enter the name of either the GitHub organization or user
name to create the repository under.

4. In the Repository Name text box, enter the name of the project repository.

5. In the Repository Branch text box, enter the name of the default branch for the
project repository. Typically, this is set to main.

6. Click Next Step.

6. In the Review and Generate step, verify that all the information you provided is
accurate, then click Generate Project.

7. A dialog box appears for you to choose a location for the project to be stored on the
local file system. Choose a directory or create a new one.

8. After the project has generated, a second dialog box appears for you to open the new
project in a new window. Click Yes.

9. When opened, the project is ready for development.

Note

For information about configuring optional Git repository creation and
supported repositories, see Create an Application Accelerator Git
repository during project creation.

Tanzu Application Platform v1.5

VMware by Broadcom 429

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token#creating-a-personal-access-token-classic

IntelliJ
What you will do:

Install the Application Accelerator plug-in for IntelliJ.

Generate a project using an Application Accelerator.

To generate a new project using an Application Accelerator:

1. Install and configure the Application Accelerator plug-in for IntelliJ, see Application
Accelerator plugin for IntelliJ.

2. On the Welcome to IntelliJ IDEA page, click New Project.

3. Click Tanzu Application Accelerator in the left side panel.

4. Select an accelerator from the catalog. This example uses Tanzu Java Web App.

5. Click Next.

6. In the Configure Options step, configure the accelerator as defined by your project’s
requirements.

Tanzu Application Platform v1.5

VMware by Broadcom 430

7. Click Next.

8. In the Review and Generate step, verify that all the information provided is accurate
then click Next.

9. After the project has generated, click Create to open the new project in IntelliJ.

10. When opened, the project is ready for development.

Tanzu Application Platform GUI
In this example, you use the Tanzu-Java-Web-App accelerator. You also use Tanzu Application
Platform GUI. For information about connecting to Tanzu Application Platform GUI, see Access
Tanzu Application Platform GUI.

What you will do:

Generate a project from an Application Accelerator.

(Optional) Provision a new Git repository for the project.

Upload it to your Git repository of choice.

To generate a new project using an Application Accelerator:

1. From Tanzu Application Platform GUI portal, click Create located on the left side of the
navigation pane to see the list of available accelerators.

Tanzu Application Platform v1.5

VMware by Broadcom 431

2. Locate the Tanzu Java Web App accelerator and click CHOOSE.

3. In the Generate Accelerators dialog box, replace the default value dev.local in the
prefix for container image registry text box with the registry in the form of SERVER-
NAME/REPO-NAME. The SERVER-NAME/REPO-NAME must match what was specified for
registry as part of the installation values for ootb_supply_chain_basic. See the Full
Profile section on Installing Tanzu Application Platform package and../install-
online/install.hbs.md profiles.

4. Click NEXT.

5. If your instance has optional Git repository support enabled, continue with the following
sub-steps. If your instance does not support this, skip to step 5.

Note

Tanzu Application Platform v1.5

VMware by Broadcom 432

1. Select the Create Git repo? check box.

2. Select the host Git repository provider from the Host drop-down menu. For
example, github.com.

3. Populate the Owner and Repository text boxes.

4. While you are populating the form, a dialog box appears asking for permission to
provision Git repositories. Follow the prompts and continue.

5. Click NEXT.

6. Verify the provided information, and click GENERATE ACCELERATOR.

7. After the Task Activity processes complete, click DOWNLOAD ZIP FILE.

8. After downloading the ZIP file, expand it in a workspace directory. If you did not create a
Git repository in the preceding steps, follow your preferred procedure for uploading the
generated project files to a Git repository for your new project.

Learn more about Application Accelerator

For information about configuring optional Git repository creation and
supported repositories, see Create an Application Accelerator Git
repository during project creation.

Tanzu Application Platform v1.5

VMware by Broadcom 433

For information about how to configure optional Git repository creation, see Configure in
Create an Application Accelerator Git repository during project creation.

For information about Application Accelerator configurations, see Configure Application
Accelerator.

For information about installing the Application Accelerator extension for Visual Studio
Code, see Application Accelerator Visual Studio Code extension.

For general accelerator troubleshooting, see Troubleshooting Application Accelerator for
VMware Tanzu.

Next Steps

Now that you have generated a project that is ready for Tanzu Application Platform, learn how to
quickly deploy the application on a Tanzu Application Platform cluster in Deploy an app on Tanzu
Application Platform.

Deploy an app on Tanzu Application Platform

This topic guides you through deploying your first application on Tanzu Application Platform
(commonly known as TAP) by using the Tanzu CLI, and optionally adding your application to the
Tanzu Application Platform GUI software catalog.

This guide is a continuation from the previous step, Generate an application with Application
Accelerator.

What you will do

Deploy an app using the Tanzu CLI.

View the build and runtime logs for your app.

View the web app in your browser.

(Optional) Add your application to Tanzu Application Platform GUI software catalog.

Prerequisites

Before you start, you must have:

Completed all Getting Started prerequisites.

Created a project. To do so, you can follow the steps in Generate an application with
Application Accelerator.

Created a Git repository during the project creation stage. If the project does not have an
associated Git repository, create a repository and update the workload.yaml the repository
URL and branch.

Deploy your application using the Tanzu CLI

Complete the following steps to deploy your application using the Tanzu CLI.

Prerequisites

Ensure that you meet the following prerequisites:

Before you deploy your application using the Tanzu CLI, ensure that you have created a Git
repository during the project creation stage.

Tanzu Application Platform v1.5

VMware by Broadcom 434

If the project does not have an associated Git repository, you must create one, and then
update the workload.yaml with the repository URL and branch.

Procedure

1. Deploy the Tanzu Java Web App project that you generated in Generate an application
with Application Accelerator by running the tanzu apps workload create command:

tanzu apps workload create --file config/workload.yaml --namespace YOUR-NAMESPA

CE

Alternatively, you can create a workload using the command line:

tanzu apps workload create tanzu-java-web-app \

--git-repo GIT-REPO-URL \

--git-branch main \

--type web \

--label app.kubernetes.io/part-of=tanzu-java-web-app \

--label apps.tanzu.vmware.com/has-tests="true" \

--yes \

--namespace YOUR-NAMESPACE

Where:

GIT-REPO-URL is the Git repository URL for where your project is stored. For
example, https://github.com/vmware-tanzu/my-tanzu-java-web-app-project.

YOUR-NAMESPACE is the namespace where workloads are deployed. For example, my-
app-dev-namespace. This depends on your organization’s Tanzu Application Platform
configuration. For more information, consult with your Tanzu Application Platform
administrators.

For more information, see Tanzu Apps Workload Apply.

2. View the build and runtime logs for your app by running the get command:

tanzu apps workload get tanzu-java-web-app --namespace YOUR-DEVELOPER-NAMESPACE

Where YOUR-DEVELOPER-NAMESPACE is the namespace configured earlier.

An example of the output from an early-stage deployment looks like the following:

Overview

 name: tanzu-java-web-app

 type: web

 namespace: dev-namespace

Source

 type: git

 url: https://github.com/my-organization/tanzu-java-web-app

 branch: main

Supply Chain

 name: source-to-url

 NAME READY HEALTHY UPDATED RESOURCE

Note

To watch updates in real time, prepend watch -n1 to the tanzu apps
workload get command to see the result update every second.

Tanzu Application Platform v1.5

VMware by Broadcom 435

 source-provider True True 5s gitrepositories.source.too

lkit.fluxcd.io/tanzu-java-web-app

 image-provider Unknown Unknown 5s images.kpack.io/tanzu-java

-web-app

 config-provider False Unknown 8s not found

 app-config False Unknown 8s not found

 service-bindings False Unknown 8s not found

 api-descriptors False Unknown 8s not found

 config-writer False Unknown 8s not found

Delivery

 name: delivery-basic

 NAME READY HEALTHY UPDATED RESOURCE

 source-provider False False 2s imagerepositories.source.app

s.tanzu.vmware.com/tanzu-java-web-app-delivery

 deployer False Unknown 5s not found

Messages

 Workload [MissingValueAtPath]: waiting to read value [.status.latestImag

e] from resource [images.kpack.io/tanzu-java-web-app] in namespace [dev-namespa

ce]

 Deliverable [HealthyConditionRule]: Unable to resolve image with tag "my-

instance.azurecr.io/tap/tanzu-java-web-app-dev-namespace-bundle:0da415bc-5d79-4

d80-8ff1-0d27f42f871c" to a digest: HEAD https://my-instance.azurecr.io/v2/

 tap/tanzu-java-web-app-dev-namespace-bundle/manifests/0da415bc-5d79-4d80-8f

f1-0d27f42f871c: unexpected status code 404 Not Found (HEAD responses have no b

ody, use GET for details)

Pods

 NAME READY STATUS RESTARTS AGE

 tanzu-java-web-app-build-1-build-pod 0/1 Init:0/6 0 5s

After the workload is deployed, text similar to the following is displayed:

Overview

 name: tanzu-java-web-app

 type: web

 namespace: dev-namespace

Source

 type: git

 url: https://github.com/my-organization/tanzu-java-web-app

 branch: main

Supply Chain

 name: source-to-url

 NAME READY HEALTHY UPDATED RESOURCE

 source-provider True True 5m26s gitrepositories.source.toolk

it.fluxcd.io/tanzu-java-web-app

 image-provider True True 4m30s images.kpack.io/tanzu-java-w

eb-app

 config-provider True True 4m24s podintents.conventions.cart

o.run/tanzu-java-web-app

 app-config True True 4m24s configmaps/tanzu-java-web-ap

p

 service-bindings True True 4m24s configmaps/tanzu-java-web-ap

p-with-claims

 api-descriptors True True 4m24s configmaps/tanzu-java-web-ap

p-with-api-descriptors

 config-writer True True 4m12s runnables.carto.run/tanzu-ja

va-web-app-config-writer

Delivery

 name: delivery-basic

Tanzu Application Platform v1.5

VMware by Broadcom 436

 NAME READY HEALTHY UPDATED RESOURCE

 source-provider True True 3m23s imagerepositories.source.app

s.tanzu.vmware.com/tanzu-java-web-app-delivery

 deployer True True 3m17s apps.kappctrl.k14s.io/tanzu-j

ava-web-app

Messages

 No messages found.

Pods

 NAME READY STATUS RESTARTS

AGE

 tanzu-java-web-app-build-1-build-pod 0/1 Completed 0

5m25s

 tanzu-java-web-app-config-writer-p47cg-pod 0/1 Completed 0

4m24s

Knative Services

 NAME READY URL

 tanzu-java-web-app Ready https://tanzu-java-web-app.dev-namespace.apps.

my-organization.com

3. After the workload is built and deployed, fetch the URL of the deployed app. The URL of
the web app is in the Knative Services section at the bottom of the output of the tanzu
apps workload get command:

tanzu apps workload get tanzu-java-web-app --namespace YOUR-DEVELOPER-NAMESPACE

Where YOUR-DEVELOPER-NAMESPACE is the namespace configured earlier.

The output looks similar to the following:

Knative Services

 NAME READY URL

 tanzu-java-web-app Ready https://tanzu-java-web-app.dev-namespace.apps.

my-organization.com

4. View the web app in your browser.

Add your application to Tanzu Application Platform GUI
software catalog

1. Navigate to the home page of Tanzu Application Platform GUI and click Home, located on
the left navigation pane.

2. Click REGISTER ENTITY.

Alternatively, you can add a link for the catalog-info.yaml to the tap-values.yaml
configuration file in the tap_gui.app_config.catalog.locations section. For more
information, see Installing the Tanzu Application Platform Package and Profiles.

Tanzu Application Platform v1.5

VMware by Broadcom 437

3. Register an existing component prompts you to type a repository URL. Type the link to
the catalog-info.yaml file of the tanzu-java-web-app in the Git repository text box. For
example, https://github.com/USERNAME/PROJECTNAME/blob/main/catalog-info.yaml.

4. Click ANALYZE.

5. Review the catalog entities to be added and click IMPORT.

6. Navigate back to the home page. The catalog changes and entries are visible for further
inspection.

Next steps

Now that you have your application deployed on your Tanzu Application Platform cluster, the next
step is to iterate on your application.

If you are an IntelliJ user, see the Iterate on your new app using IntelliJ guide.

If you are a Visual Studio user, see the Iterate on your new app using Visual Studio guide.

If you are a VS Code user, see the Iterate on your new app using VS Code guide.

Note

If your Tanzu Application Platform GUI instance does not have a PostgreSQL
database configured, you must re-register the catalog-info.yaml location after the
instance is restarted or upgraded.

Tanzu Application Platform v1.5

VMware by Broadcom 438

Iterate on your new app using Tanzu Developer Tools for
IntelliJ

This topic guides you through starting to iterate on your first application on Tanzu Application
Platform (commonly known as TAP). You deployed the app in the previous how-to Deploy your first
application.

What you will do

Prepare your IDE to iterate on your application.

Live update your application to view code changes updating live on the cluster.

Debug your application.

Delete your application from the cluster.

Prepare your IDE to iterate on your application

In the previous Getting started how-to topic, Deploy your first application, you deployed your first
application on Tanzu Application Platform. Now that you have developed a skeleton workload, you
are ready to begin to iterate on your new application and test code changes on the cluster.

Tanzu Developer Tools for IntelliJ is VMware Tanzu’s official IDE extension for IntelliJ. It helps you
develop and receive fast feedback on your workloads running on the Tanzu Application Platform.

The IntelliJ extension enables live updates of your application while running on the cluster and
allows you to debug your application directly on the cluster. For information about installing the
prerequisites and the Tanzu Developer Tools for IntelliJ extension, see Install Tanzu Developer
Tools for IntelliJ.

1. Open the Tanzu Java Web App as a project within your IntelliJ IDE by selecting File >
Open, then selecting the Tanzu Java Web App folder and clicking Open. If you don’t have
the Tanzu Java Web App you can obtain it by following the instructions in Generate a new
project using an Application Accelerator, or from the Application Accelerator Samples
GitHub page.

2. Confirm that your current Kubernetes context contains a default namespace. The Tanzu
Panel, found by clicking Tanzu Panel at the bottom-left of the IntelliJ window, uses the
default namespace associated with your current Kubernetes context to populate the
workloads from the cluster.

1. Open the Terminal by clicking View > Terminal.

2. Ensure that your current context has a default namespace by running:

kubectl config get-contexts

This command returns a list of all of your Kubernetes contexts with an asterisk (*) in
front of your current context. Verify that your current context has a namespace in
the namespace column.

3. If your current context does not have a namespace in the namespace column, run:

Important

Use Tilt v0.30.12 or later for the sample application.

Tanzu Application Platform v1.5

VMware by Broadcom 439

https://github.com/vmware-tanzu/application-accelerator-samples

kubectl config set-context --current --namespace=YOUR-DEVELOPER-NAMESPACE

Where YOUR-DEVELOPER-NAMESPACE is the namespace value you want to assign to
your current Kubernetes context.

You are now ready to iterate on your application.

Apply your application to the cluster

Apply the workload to see your application running on the cluster:

1. In the Project tab in IntelliJ, right-click any file under the application name tanzu-java-web-
app and click Tanzu > Apply Workload.

2. In the dialog box enter your Source Image, Local Path, and optionally a Namespace.

1. In the Source Image text box, provide the destination image repository to publish
an image containing your workload source code.

The source image value tells the Tanzu Developer Tools for IntelliJ extension where
to publish the container image with your uncompiled source code, and what to
name that image. The image must be published to a container image registry where
you have write (push) access. For example, gcr.io/myteam/tanzu-java-web-app-
source.

2. In the Local Path text box, provide the path to the directory containing the Tanzu
Java Web App. The current directory is the default.

The local path value tells the Tanzu Developer Tools for IntelliJ extension which
directory on your local file system to bring into the source image. For example, dot
(.) uses the working directory, or you can specify a full file path.

3. (Optional) In the Namespace text box, provide the namespace to be associated
with the workload on the cluster. If you followed the steps to Prepare your IDE to
iterate on your application earlier, you do not need to enter a namespace because
IntelliJ uses the namespace you associated with your context.

4. Click the OK button.

The apply workload command runs, which opens a terminal and shows you the output of the
command. The apply workload command can take a few minutes to deploy your application onto
the cluster.

You can also use the Tanzu Panel to monitor your application as it’s being deployed to the cluster.
The Tanzu Panel shows information about the workloads in the namespace associated with your
current Kubernetes context. On the left side, it shows the workloads in the namespace. In the
center, it shows the details of the Kubernetes resources for the running workloads.

Enable Live Update for your application

Note

See the documentation for the registry you’re using to find out
which steps are necessary to authenticate and gain push access.

For example, if you use Docker, see the Docker documentation, or if
you use Harbor, see the Harbor documentation.

Tanzu Application Platform v1.5

VMware by Broadcom 440

https://docs.docker.com/engine/reference/commandline/login/
https://goharbor.io/docs/1.10/working-with-projects/working-with-images/pulling-pushing-images/

Live Update allows you to save changes to your code and see those changes reflected within
seconds in the workload running on the cluster.

To enable Live Update for your application:

1. Create a Run Configuration.

1. In IntelliJ, select the Edit Run/Debug configurations drop-down menu at the top-
right corner. Alternatively, navigate to Run > Edit Configurations.

2. Select Tanzu Live Update.

3. Select Add new run configuration, or click the plus icon at the top of the list.

4. Give your new run configuration a name, for example, Tanzu Live Update - tanzu-
java-web-app.

5. In the Tiltfile Path text box, provide the path to the Tiltfile in the Tanzu Java
Web App project directory.

6. Select the folder icon on the right-side of the text box, go to the Tanzu Java Web
App directory, select the Tiltfile, and click Open. The Tiltfile facilitates Live
Update using Tilt.

7. In the Local Path text box, provide the path to the directory containing the Tanzu
Java Web App.

The local path value tells the Tanzu Developer Tools for IntelliJ extension which
directory on your local file system to bring into the source image.

For example, /Users/developer/Documents/tanzu-java-web-app.

8. In the Source Image text box, provide the destination image repository to publish
an image containing your workload source code.

The source image value tells the Tanzu Developer Tools for IntelliJ extension where
to publish the container image with your uncompiled source code, and what to
name that image. The image must be published to a container image registry where
you have write (push) access. For example, gcr.io/myteam/tanzu-java-web-app-
source.

9. Click Apply, and then click the OK button.

2. Begin Live Updating the application on the cluster by doing one of the following:

In the Project tab of IntelliJ, right-click the Tiltfile file under the application name
tanzu-java-web-app and click Run 'Tanzu Live Update - tanzu-java-web-app'.

Alternatively, click the Edit Run/Debug configurations drop-down menu in the
top-right corner, select Tanzu Live Update - tanzu-java-web-app, and then click
the green play button to the right of the Edit Run/Debug configurations drop-
down menu.

The Run tab opens and displays the output from Tanzu Application Platform and from Tilt
indicating that the container is being built and deployed.

Note

See the documentation for the registry you’re using to find out
which steps are necessary to authenticate and gain push access.

For example, if you use Docker, see the Docker documentation, or if
you use Harbor, see the Harbor documentation.

Tanzu Application Platform v1.5

VMware by Broadcom 441

https://docs.docker.com/engine/reference/commandline/login/
https://goharbor.io/docs/1.10/working-with-projects/working-with-images/pulling-pushing-images/

On the Tanzu Panel tab, the status of Live Update is reflected under the tanzu-java-web-
app workload entry. Live update can take up to three minutes while the workload deploys
and the Knative service becomes available.

3. When the Live Update task in the Run tab is successful, it resolves to Live Update Started.
Use the hyperlink at the top of the Run output following the words Tilt started on to view
your application in your browser.

4. In the IDE, make a change to the source code. For example, in HelloController.java, edit
the string returned to say Hello! and save.

5. (Optional) Build your project by clicking Build > Build Project if you do not have Build
project automatically activated under Preferences > Build, Execution, Deployment >
Compiler.

6. The container is updated when the logs stop streaming. Navigate to your browser and
refresh the page.

7. View the changes to your workload running on the cluster.

8. Either continue making changes, or stop the Live Update process when finished. To stop
Live Update navigate to the Run tab at the bottom left of the IntelliJ window and click the
red stop icon on the left side of the screen.

Debug your application

Debug the cluster either on the application or in your local environment.

To debug the cluster:

1. Set a breakpoint in your code. For example, in HelloController.java, set a breakpoint on
the line returning text.

2. Create a Run Configuration.

1. In IntelliJ, select the Edit Run/Debug configurations drop-down menu at the top-
right corner. Alternatively, navigate to Run > Edit Configurations.

2. Select Tanzu Debug Workload.

3. Select Add new run configuration, or click the plus icon at the top of the list.

4. Give your new run configuration a name, for example, Tanzu Debug Workload -
tanzu-java-web-app.

5. In the Workload File Path text box, provide the path to the workload.yaml file in
the Tanzu Java Web App project directory located at Config > workload.yaml.

6. Select the folder icon on the right-side of the text box, navigate to the Tanzu Java
Web App directory, select the workload.yaml file and click the Open button. The

Note

Depending on the type of cluster you use, you might see an error similar to
the following:

ERROR: Stop! cluster-name might be production. If you're sure you

want to deploy there, add: allow_k8s_contexts('cluster-name') to

your Tiltfile. Otherwise, switch k8scontexts and restart Tilt.

Follow the instructions and add the line, allow_k8s_contexts('cluster-
name') to your Tiltfile.

Tanzu Application Platform v1.5

VMware by Broadcom 442

workload.yaml provides configuration instructions about your application to the
Tanzu Application Platform.

7. In the Local Path text box, provide the path to the directory containing the Tanzu
Java Web App.

The local path value tells the Tanzu Developer Tools for IntelliJ extension which
directory on your local file system to bring into the source image. For example,
/Users/developer/Documents/tanzu-java-web-app.

8. In the Source Image text box, provide the destination image repository to publish
an image containing your workload source code.

The source image value tells the Tanzu Developer Tools for IntelliJ extension where
to publish the container image with your uncompiled source code, and what to
name that image. The image must be published to a container image registry where
you have write (push) access. For example, gcr.io/myteam/tanzu-java-web-app-
source.

9. (Optional) In the Namespace text box, provide the namespace to be associated
with the workload on the cluster. If you followed the steps to Prepare your IDE to
iterate on your application, you do not need to enter a namespace because IntelliJ
uses the namespace you associated with your context.

10. Click Apply, and then click OK.

3. Apply your application to the cluster.

4. Obtain the URL for your workload:

1. In the center panel of the Tanzu Panel go to Workload/tanzu-java-web-app >
Running Application > Service/tanzu-java-web-app.

2. Right-click the Service/tanzu-java-web-app entry and select Describe.

3. In the resulting output, copy the value after Status > URL: that begins with
https://tanzu-java-web-app.... Make sure you copy the value from Status > URL:
and not the value under Status > Address > URL.

Note

See the documentation for the registry you’re using to find out
which steps are necessary to authenticate and gain push access.

For example, if you use Docker, see the Docker documentation, or if
you use Harbor, see the Harbor documentation.

Tanzu Application Platform v1.5

VMware by Broadcom 443

https://docs.docker.com/engine/reference/commandline/login/
https://goharbor.io/docs/1.10/working-with-projects/working-with-images/pulling-pushing-images/

4. Open your web browser and paste the URL you copied to access your workload.

5. In the Project tab of IntelliJ, right-click the workload.yaml file under the application name
tanzu-java-web-app and select Run 'Tanzu Debug Workload - tanzu-java-web-app' to
begin debugging the application on the cluster.

1. Alternatively, select the Edit Run/Debug configurations drop-down menu in the
top-right corner, select Tanzu Debug Workload - tanzu-java-web-app, and then
click the green debug button to the right of the Edit Run/Debug configurations
drop-down menu.

6. The Debug tab opens and displays a message that it has connected.

7. In your web browser, reload your workload. IntelliJ opens to show your breakpoint.

8. You can now use the resume program action, or stop debugging, in the Debug tab.

Delete your application from the cluster

You can use the delete action to remove your application from the cluster as follows:

1. In the Project tab, right-click any file under the application name tanzu-java-web-app and
select Tanzu > Delete Workload.

2. Alternatively, right-click tanzu-java-web-app in the TANZU WORKLOADS panel and select
Delete Workload.

3. In the confirmation dialog box that appears, click OK to delete the application from the
cluster.

Next steps

Consume services on Tanzu Application Platform

Iterate on your new app using Tanzu Developer Tools for
Visual Studio
This topic guides you through starting to iterate on your first application on Tanzu Application
Platform (commonly known as TAP). You deployed the app in the previous how-to Deploy your first

Tanzu Application Platform v1.5

VMware by Broadcom 444

application.

What you will do

Prepare to iterate on your application.

Prepare your project to support Live Update.

Prepare your IDE to iterate on your application.

Apply your application to the cluster.

Live update your application to view code changes updating live on the cluster.

Debug your application.

Monitor your running application on the Application Live View UI.

Delete your application from the cluster.

Prepare to iterate on your application

In the previous Getting started how-to topic, Deploy your first application, you deployed your first
application on Tanzu Application Platform. Now that you have developed a skeleton workload, you
are ready to begin to iterate on your new application and test code changes on the cluster.

Tanzu Developer Tools for Visual Studio is VMware Tanzu’s official IDE extension for Visual Studio.
It helps you develop and receive fast feedback on your workloads running on the Tanzu Application
Platform.

The Visual Studio extension enables live updates of your application while running on the cluster
and allows you to debug your application directly on the cluster.

For information about installing the prerequisites and the Tanzu Developer Tools for Visual Studio
extension, see Install Tanzu Developer Tools for Visual Studio.

To prepare to iterate on your application, you must:

1. Prepare your project to support Live Update

2. Set up the IDE

Prepare your project to support Live Update

Tanzu Live Update uses Tilt. This requires a suitable Tiltfile to exist at the root of your project.

Your Tiltfile must be similar to the following:

SOURCE_IMAGE = os.getenv("SOURCE_IMAGE", default='your-registry.io/project/csharp-weat

herforecast-source')

LOCAL_PATH = os.getenv("LOCAL_PATH", default='.')

NAMESPACE = os.getenv("NAMESPACE", default='default')

NAME = os.getenv("NAME", default='sample-app')

k8s_custom_deploy(

 NAME,

 apply_cmd="tanzu apps workload apply -f config/workload.yaml --update-strategy rep

lace --debug --live-update" +

 " --local-path " + LOCAL_PATH +

Important

Use Tilt v0.30.12 or later for the sample application.

Tanzu Application Platform v1.5

VMware by Broadcom 445

https://tilt.dev/

 " --namespace " + NAMESPACE +

 " --yes --output yaml",

 delete_cmd="tanzu apps workload delete " + NAME + " --namespace " + NAMESPACE + "

--yes",

 deps=['./bin'],

 container_selector='workload',

 live_update=[

 sync('./bin/Debug/net6.0', '/workspace')

]

)

k8s_resource('tanzu-java-web-app', port_forwards=["8080:8080"],

 extra_pod_selectors=[{'carto.run/workload-name': 'sample-app', 'app.kubern

etes.io/component': 'run'}])

Set up the IDE

After verifying your project has the required Tiltfile, you are ready to set up your development
environment.

1. Open the Weather Forecast solution in Visual Studio by selecting File > Open >
Project/Solution…. If you don’t have the Weather Forecast app you can obtain it by
following the instructions in Generate an application with Application Accelerator, or from
the Application Accelerator Samples GitHub page.

You are now ready to iterate on your application.

Apply your application to the cluster

Apply the workload to see your application running on the cluster:

1. In Solution Explorer, right-click any file under the application name and click Tanzu >
Apply Workload.

2. In the dialog box, enter the following:

1. In the Local Path text box, provide the path to the directory containing the
Weather Forecast app. The current directory is the default.

The local path value tells the Tanzu Developer Tools for Visual Studio extension
which directory on your local file system to bring into the source image. For
example, dot (.) uses the working directory, or you can specify a full file path.

2. In the Namespace text box, provide the namespace to be associated with the
workload on the cluster.

3. (Optional) In the Source Image text box, provide the destination image repository
to publish the image containing your workload source code.

The source image value tells the Tanzu Developer Tools for Visual Studio extension
where to publish the container image with your uncompiled source code, and what
to name that image. The image must be published to a container image registry
where you have write (push) access. For example, gcr.io/myteam/weather-
forecast-source.

Note

See the documentation for the registry you’re using to find out
which steps are necessary to authenticate and gain push access.

Tanzu Application Platform v1.5

VMware by Broadcom 446

https://github.com/vmware-tanzu/application-accelerator-samples

4. Click the OK button.

The apply workload command runs and opens a an output window in which you can monitor the
output of the command. The apply workload command can take a few minutes to deploy your
application onto the cluster.

Enable Live Update for your application

Live Update allows you to save changes to your code and see those changes reflected within
seconds in the workload running on the cluster.

To enable Live Update for your application:

1. In Solution Explorer, right-click any file under the application name and click Tanzu > Start
Live Update.

2. Live update can take up to three minutes while the workload deploys and the Knative
service becomes available.

3. In the IDE, make a change to the source code.

4. Build your project.

5. The container is updated when the logs stop streaming. Go to your browser and refresh the
page.

6. View the changes to your workload running on the cluster.

7. Either continue making changes, or stop the Live Update process when finished. To stop
Live Update, in Solution Explorer, right-click any file under the application name and click
Tanzu > Stop Live Update.

Debug your application

Debug the cluster either on the application or in your local environment.

To start debugging the cluster:

1. Set a breakpoint in your code.

2. Apply your application to the cluster.

3. In Solution Explorer, right-click any file under the application name and click Tanzu >
Debug Workload.

To stop debugging the cluster:

For example, if you use Docker, see the Docker documentation, or if
you use Harbor, see the Harbor documentation.

Note

Depending on the type of cluster you use, you might see an error similar to
the following:

ERROR: Stop! cluster-name might be production. If you're sure you

want to deploy there, add: allow_k8s_contexts('cluster-name') to

your Tiltfile. Otherwise, switch k8scontexts and restart Tilt.

Follow the instructions and add the line, allow_k8s_contexts('cluster-
name') to your Tiltfile.

Tanzu Application Platform v1.5

VMware by Broadcom 447

https://docs.docker.com/engine/reference/commandline/login/
https://goharbor.io/docs/1.10/working-with-projects/working-with-images/pulling-pushing-images/

1. In main, click Debug > Detach All

Delete your application from the cluster

You can use the delete action to remove your application from the cluster as follows:

1. In Solution Explorer, right-click any file under the application name and click Tanzu >
Delete Workload.

2. In the confirmation dialog box that appears, click OK to delete the application from the
cluster.

Next steps

Consume services on Tanzu Application Platform

Iterate on your new app using Tanzu Developer Tools for
VS Code
This topic guides you through starting to iterate on your first application on Tanzu Application
Platform (commonly known as TAP). You deployed the app in the previous how-to Deploy your first
application.

What you will do
Prepare your IDE to iterate on your application.

Apply your application to the cluster.

Live update your application to view code changes updating live on the cluster.

Debug your application.

Monitor your running application on the Application Live View UI.

Delete your application from the cluster.

Prepare your IDE to iterate on your application
In the previous Getting started how-to topic, Deploy your first application, you deployed your first
application on Tanzu Application Platform. Now that you have developed a skeleton workload, you
are ready to begin to iterate on your new application and test code changes on the cluster.

Tanzu Developer Tools for VS Code is VMware Tanzu’s official IDE extension for VS Code. It helps
you develop and receive fast feedback on your workloads running on the Tanzu Application
Platform.

The VS Code extension enables live updates of your application while running on the cluster and
allows you to debug your application directly on the cluster. For information about installing the
prerequisites and the Tanzu Developer Tools for VS Code extension, see Install Tanzu Developer
Tools for your VS Code.

Important

Use Tilt v0.30.12 or a later version for the sample application.

Tanzu Application Platform v1.5

VMware by Broadcom 448

1. Open the Tanzu Java Web App as a project within your VS Code IDE by clicking File >
Open Folder, select the Tanzu Java Web App folder and click Open.

If you don’t have the Tanzu Java Web App you can obtain it by following the instructions in
Generate a new project using an Application Accelerator, or from the Application
Accelerator Samples GitHub page.

2. To ensure that your extension assists you with iterating on the correct project, configure its
settings as follows:

1. In Visual Studio Code, navigate to Preferences > Settings > Extensions > Tanzu
Developer Tools.

2. In the Local Path text box, provide the path to the directory containing the Tanzu
Java Web App. The current directory is the default.

The local path value tells the Tanzu Developer Tools for VS Code extension which
directory on your local file system to bring into the source image. For example, dot
(.) uses the working directory, or you can specify a full file path.

3. In the Source Image text box, provide the destination image repository to publish
an image containing the workload source code.

The source image value tells the Tanzu Developer Tools for VS Code extension
where to publish the container image with your uncompiled source code, and what
to name that image. The image must be published to a container image registry
where you have write (push) access. For example, gcr.io/myteam/tanzu-java-web-
app-source.

3. Confirm that your current Kubernetes context has a namespace associated with it. The
TANZU WORKLOADS section of the Explorer view in the left Side Bar uses the
namespace associated with your current Kubernetes context to populate the workloads
from the cluster.

1. Open the Terminal by clicking View > Terminal.

2. Ensure your current context has a default namespace by running:

kubectl config get-contexts

This command returns a list of all of your Kubernetes contexts with an asterisk (*) in
front of your current context. Verify that your current context has a namespace in
the namespace column.

3. If your current context does not have a namespace in the namespace column, run:

kubectl config set-context --current --namespace=YOUR-DEVELOPER-NAMESPACE

Note

See the documentation for the registry you’re using to find out
which steps are necessary to authenticate and gain push access.

For example, if you use Docker, see the Docker documentation, or if
you use Harbor, see the Harbor documentation.

For troubleshooting failed registry authentication, see Troubleshoot
using Tanzu Application Platform

Tanzu Application Platform v1.5

VMware by Broadcom 449

https://github.com/vmware-tanzu/application-accelerator-samples
https://docs.docker.com/engine/reference/commandline/login/
https://goharbor.io/docs/1.10/working-with-projects/working-with-images/pulling-pushing-images/

Where YOUR-DEVELOPER-NAMESPACE is the namespace value you want to assign to
your current Kubernetes context.

You are now ready to iterate on your application.

Apply your application to the cluster

Apply the workload to see your application running on the cluster by doing one of the following:

In the Explorer view in the left Side Bar, right-click any file under the application name
tanzu-java-web-app and click Tanzu: Apply Workload to begin applying the workload to
the cluster.

Alternatively, use the Command Palette, ⇧⌘P on Mac and Ctrl+Shift+P on Windows or
View > Command Palette, to run the Tanzu: Apply Workload command.

The apply workload command runs, which opens a terminal and shows you the output of the
workload apply.

You can also monitor your application as it’s being deployed to the cluster using the TANZU
ACTIVITY tab in the Panel at the bottom of VS Code. The TANZU ACTIVITY tab shows the details
of the Kubernetes resources for the workloads running in the namespace associated with your
current Kubernetes context.

To view the TANZU ACTIVITY tab, open the Panel at the bottom of VS Code (View > Appearance
> Panel) and then click the TANZU ACTIVITY tab. The apply workload command can take a few
minutes to deploy your application onto the cluster. After complete, you can see the workload
running in the TANZU WORKLOADS section of the Explorer view in the left Side Bar.

Enable Live Update for your application

Live Update allows you to save changes to your code and see those changes reflected within
seconds in the workload running on the cluster.

To enable Live Update for your application:

1. To begin Live Updating the workload on the cluster, do one of the following:

In the Explorer view in the left Side Bar, right-click any file under the application
name tanzu-java-web-app and click Tanzu: Live Update Start.

Right-click the tanzu-java-web-app in the TANZU WORKLOADS section of the
Explorer view and click Tanzu: Live Update Start.

From the Command Palette, ⇧⌘P on Mac and Ctrl+Shift+P on Windows, type in
and select Tanzu: Live Update Start.

You can view output from Tanzu Application Platform indicating that the container is being
built and deployed.

The status of Live Update is reflected in the TANZU WORKLOADS view under the tanzu-
java-web-app workload entry. You can also see Live Update starting... in the status bar
at the bottom right. Live update can take up to three minutes while the workload deploys
and the Knative service becomes available.

Note

Depending on the type of cluster you use, you might see an error similar to
the following:

Tanzu Application Platform v1.5

VMware by Broadcom 450

2. When the Live Update status in the TANZU WORKLOADS view changes from Live Update
Stopped to Live Update Running, navigate to http://localhost:8080 in your browser to
view your running application.

3. In the IDE, make a change to the source code. For example, in HelloController.java, edit
the string returned to say Hello!, and save.

4. The container is updated when the logs stop streaming. Go to your browser and refresh the
page.

5. View the changes to the workload running on the cluster.

6. Either continue making changes, or stop the Live Update process when finished. To stop
Live Update, open the Terminal by navigating to View > Terminal, and click the trash can
icon that appears when you place your hover over the tilt: up - tanzu-java-web-app
process, or select the process and use hot key ⌘+Backspace.

Debug your application

Debug your application in a production-like environment by debugging on your Kubernetes cluster.

To debug the cluster:

1. Set a breakpoint in your code. For example, in HelloController.java, set a breakpoint on
the line returning text.

2. Apply your application to the cluster.

3. Open the Panel at the bottom of VS Code by clicking View > Appearance > Panel.

4. In the Panel, click the TANZU ACTIVITY tab.

5. In the TANZU ACTIVITY tab, go to Workload/tanzu-java-web-app > Running
Application > Service/tanzu-java-web-app.

6. Right-click the Pod… entry and select Describe.

7. In resulting output, copy the value after Status > URL: that begins with https://tanzu-
java-web-app.... Make sure you copy the value from Status > URL: and not the value
under Status > Address > URL.

ERROR: Stop! cluster-name might be production. If you're sure you

want to deploy there, add: allow_k8s_contexts('cluster-name') to

your Tiltfile. Otherwise, switch k8scontexts and restart Tilt.

Follow the instructions and add the line, allow_k8s_contexts('cluster-
name') to your Tiltfile.

Tanzu Application Platform v1.5

VMware by Broadcom 451

8. Open your web browser and paste the URL you copied to access your workload.

9. Begin debugging the workload on the cluster by doing one of the following:

In the Explorer view in the left Side Bar, right-click any file under the application
name tanzu-java-web-app and click Tanzu: Java Debug Start.

Alternatively, right-click the tanzu-java-web-app in the TANZU WORKLOADS view
and click Tanzu: Java Debug Start.

10. In a few moments, debugging is enabled on the workload. The Deploy and Connect task
completes and the debug actions are made available to you in the debug overlay, indicating
that the debugger has attached.

The TANZU WORKLOADS view shows Debug Running under the tanzu-java-web-app
workload.

11. In your web browser, reload your workload. VS Code opens to show your breakpoint.

12. You can now continue the program, or stop debugging, using the debug controls overlay.

Monitor your running application

Inspect the runtime characteristics of your running application using the Application Live View UI to
monitor:

Resource consumption

Java Virtual Machine (JVM) status

Incoming traffic

Change log level

You can also troubleshoot environment variables and fine-tune the running application.

Use the following steps to diagnose Spring Boot-based applications by using Application Live View:

1. Confirm that the Application Live View components are installed. For instructions, see
Install Application Live View.

2. Access the Application Live View UI plug-in in Tanzu Application Platform GUI. For
instructions, see Entry point to Application Live View plug-in.

3. Select your running application to view the diagnostic options and inside the application.
For more information, see Application Live View features.

Delete your application from the cluster

Tanzu Application Platform v1.5

VMware by Broadcom 452

You can use the delete action to remove your application from the cluster by doing one of the
following:

In the Explorer view in the left Side Bar, right-click any file under the application name
tanzu-java-web-app and click Tanzu: Delete Workload to delete the workload from the
cluster.

Alternatively, right-click the tanzu-java-web-app in the TANZU WORKLOADS view and
click Tanzu: Delete Workload.

Next steps

Consume services on Tanzu Application Platform

Claim services on Tanzu Application Platform

This topic for application operators guides you through claiming a service instance and therefore
making credentials available to workloads within your namespace. The topic uses RabbitMQ as an
example, but the process is the same regardless of the service you want to consume.

You will use the tanzu service CLI plug-in and will learn about classes, claims, and bindings.

What you will do

Discover the range of services available to you

Create a claim for an instance of one of the services

Overview

The following diagram depicts a summary of what this tutorial covers.

Bear the following observations in mind as you work through this guide:

Tanzu Application Platform v1.5

VMware by Broadcom 453

1. There are a set of four service classes preinstalled on the cluster.

2. Service operators do not need to configure or setup these four services.

3. The life cycle of a service binding is implicitly tied to the life cycle of a workload, and is
managed by the application developer.

4. The life cycles of claims are explicitly managed by the application operator.

5. The diagram and tutorial in this guide are predominantly focused on the application
operator, therefore the inner workings of how service instances are provisioned are not in
the diagram and are labeled as “behind the scenes”.

Prerequisites

Before following this tutorial, an application operator must:

1. Have access to a cluster with Tanzu Application Platform installed.

2. Have the Tanzu CLI and the corresponding plug-ins.

3. Have access to the default namespace which has been set up to use installed packages.
For more information, see Set up developer namespaces to use your installed packages.

Discover available services

This section covers using tanzu service class list and tanzu service class get to find
information about the classes of services.

To discover the range of available services, run the tanzu service class list command:

tanzu service class list

Expected output:

 NAME DESCRIPTION

 mysql-unmanaged MySQL by Bitnami

 postgresql-unmanaged PostgreSQL by Bitnami

 rabbitmq-unmanaged RabbitMQ by Bitnami

 redis-unmanaged Redis by Bitnami

The output lists four classes that cover a range of services: MySQL, PostgreSQL, RabbitMQ
and Redis. This is the default set of services that come preconfigured with Tanzu
Application Platform. They are backed by Bitnami Helm charts that run on the Tanzu
Application Platform cluster. You can consider these to be unmanaged services with no
guarantees of service provided.

To see more detailed information for a class, run the tanzu service class get command:

tanzu service class get rabbitmq-unmanaged

Expected output:

 NAME: rabbitmq-unmanaged

 DESCRIPTION: RabbitMQ by Bitnami

 READY: true

 PARAMETERS:

 KEY DESCRIPTION

TYPE DEFAULT REQUIRED

 replicas The desired number of replicas forming the cluster

integer 1 false

Tanzu Application Platform v1.5

VMware by Broadcom 454

 storageGB The desired storage capacity of a single replica, in Gigabytes.

integer 1 false

The PARAMETERS section is of particular interest because it lists the range of configuration
options available to you when creating a claim for the given class.

Create a claim for a service instance

This section covers using tanzu service class-claim create to create a claim for an instance of a
class and using tanzu service class-claim get to get detailed information about the status of the
claim.

To create a claim for an instance of a class, run the tanzu service class-claim create
command:

tanzu service class-claim create rabbitmq-1 --class rabbitmq-unmanaged --parame

ter storageGB=3

In this example, you create a claim for the rabbitmq-unmanaged class and pass a parameter
to the command to set the storage capacity of the resulting instance to 3 Gigabytes, rather
than using the default 1 Gigabyte.

Expected output:

 Creating claim 'rabbitmq-1' in namespace 'default'.

To get detailed information about the claim, run the tanzu service class-claim get
command:

tanzu service class-claim get rabbitmq-1

Expected output:

 Name: rabbitmq-1

 Namespace: default

 Claim Reference: services.apps.tanzu.vmware.com/v1alpha1:ClassClaim:rabbitmq-

1

 Class Reference:

 Name: rabbitmq-unmanaged

 Parameters:

 storageGB: 3

 Status:

 Ready: True

 Claimed Resource:

 Name: b5982046-a1e9-40cf-8282-00fe67a2f868

 Namespace: default

 Group:

 Version: v1

 Kind: Secret

It might take a moment or two for the claim to report Ready: True.

In the background, the creation of the claim triggers the on-demand creation of a Helm release of
the Bitnami RabbitMQ Helm chart. Credentials and connectivity information required to connect to
the RabbitMQ cluster are formatted according to the Service Binding Specification for Kubernetes
and stored in a Secret in your namespace.

As an application operator you don’t need to know what’s happening in the background. Tanzu
Application Platform promotes a strong separation of concerns between service operators, who are
responsible for managing service instances for the platform, and application operators, who want to

Tanzu Application Platform v1.5

VMware by Broadcom 455

https://github.com/servicebinding/spec

use those service instances with their application workloads. The class and claims abstractions
enable that separation of concerns. Application operators create claims and service operators help
to fulfil them.

Now that you have a claim for a RabbitMQ service instance, you can now follow instructions to
Consume services on Tanzu Application Platform.

Learn more

To learn more about working with services on Tanzu Application Platform, see the Services Toolkit
component documentation:

Tutorials

How-to guides

Explanations

Reference material

Next steps

Now that you completed the Getting started guides, learn about:

Multicluster Tanzu Application Platform

Consume services on Tanzu Application Platform

This topic for application developers guides you through deploying two application workloads and
configuring them to communicate using a service instance. The topic uses RabbitMQ as an
example, but the process is the same regardless of the service you want to consume.

You will use the Tanzu Service CLI plug-in and will learn about classes, claims, and bindings.

What you will do

Discover existing claims on service instances within your namespace

Create two application workloads and bind them to an existing claim so that the workloads
use the service instance.

Overview

The following diagram depicts a summary of what this tutorial covers.

Tanzu Application Platform v1.5

VMware by Broadcom 456

Bear the following observations in mind as you work through this guide:

1. There are a set of four service classes preinstalled on the cluster.

2. Service operators do not need to configure or setup these four services.

3. The life cycle of a service binding is implicitly tied to the life cycle of a workload, and is
managed by the application developer.

4. The life cycles of claims are explicitly managed by the application operator.

5. The diagram and tutorial in this guide are predominantly focused on the application
operator and developer user roles, as such the inner workings of how service instances are
provisioned are not in the diagram and are labeled as “behind the scenes”.

Prerequisites

Before following this tutorial, an application developer must:

1. Have access to a cluster with Tanzu Application Platform installed.

2. Have the Tanzu CLI and the corresponding plug-ins.

3. Have access to the default namespace which has been set up to use installed packages.
For more information, see Set up developer namespaces to use your installed packages.

4. Have a Tanzu Application Platform cluster that can pull source code from GitHub.

Discovering existing claims

This section covers using tanzu service class-claim list and tanzu service class-class get to
discover existing claims within your namespace and obtaining information needed †o bind your
workload to them.

1. To get the list of claims within your namespace, run:

Tanzu Application Platform v1.5

VMware by Broadcom 457

tanzu service class-claim list

Expected output:

NAME CLASS READY REASON

rabbitmq-1 rabbitmq-unmanaged True Ready

2. To get detailed information about the claim, run:

tanzu service class-claim get rabbitmq-1

Expected output:

 Name: rabbitmq-1

 Namespace: default

 Claim Reference: services.apps.tanzu.vmware.com/v1alpha1:ClassClaim:rabbitmq-

1

 Class Reference:

 Name: rabbitmq-unmanaged

 Parameters:

 storageGB: 3

 Status:

 Ready: True

 Claimed Resource:

 Name: b5982046-a1e9-40cf-8282-00fe67a2f868

 Namespace: default

 Group:

 Version: v1

 Kind: Secret

Binding application workloads to the service instance

This section covers using tanzu apps workload create with the --service-ref flag to create
workloads and to bind them to the service instance through the claim.

In Tanzu Application Platform, service bindings are created when you create application workloads
using the --service-ref flag of the tanzu apps workload create command.

To create an application workload:

1. Review the output of the tanzu service class-claim get command you ran in Discovering
existing claims earlier, and note the value of the Claim Reference. This is the value to pass
to --service-ref when creating the application workloads.

2. Create the application workload by running:

tanzu apps workload create spring-sensors-consumer-web \

 --git-repo https://github.com/tanzu-end-to-end/spring-sensors \

 --git-branch rabbit \

 --type web \

 --label app.kubernetes.io/part-of=spring-sensors \

 --annotation autoscaling.knative.dev/minScale=1 \

 --service-ref="rmq=services.apps.tanzu.vmware.com/v1alpha1:ClassClaim:rabbitm

q-1"

tanzu apps workload create \

 spring-sensors-producer \

 --git-repo https://github.com/tanzu-end-to-end/spring-sensors-sensor \

 --git-branch main \

 --type web \

 --label app.kubernetes.io/part-of=spring-sensors \

 --annotation autoscaling.knative.dev/minScale=1 \

Tanzu Application Platform v1.5

VMware by Broadcom 458

 --service-ref="rmq=services.apps.tanzu.vmware.com/v1alpha1:ClassClaim:rabbitm

q-1"

3. After the workloads are ready, visit the URL of the spring-sensors-consumer-web app.
Confirm that sensor data is passing from the spring-sensors-producer workload to the
spring-sensors-consumer-web workload using the RabbitmqCluster service instance.

Learn more

To learn more about working with services on Tanzu Application Platform, see the Services Toolkit
component documentation:

Tutorials

How-to guides

Concepts

Reference material

Next steps

Now that you completed the Getting started guides, learn about:

Multicluster Tanzu Application Platform

Deploy an air-gapped workload on Tanzu Application
Platform
This topic for developers guides you through deploying your first workload on Tanzu Application
Platform (commonly known as TAP) in an air-gapped environment.

For information about installing Tanzu Application Platform in an air-gapped environment, see
Install Tanzu Application Platform in an air-gapped environment.

What you will do
Create a workload from Git.

Create a basic supply chain workload.

Create a testing supply chain workload.

Create a testing scanning supply chain workload.

Prerequisites
Before you begin, a Platform operator must configure the air-gapped environment using
Namespace Provisioner. For instructions, see Work with Git repositories in air-gapped
environments with Namespace Provisioner.

Create a workload from Git
To create a workload from Git through HTTPS, follow these steps:

1. (Optional) To pass in login credentials for a Git repository with the certificate authority (CA)
certificate, create a file called git-credentials.yaml. For example:

apiVersion: v1

kind: Secret

Tanzu Application Platform v1.5

VMware by Broadcom 459

metadata:

 name: git-ca

 # namespace: default

type: Opaque

stringData:

 username: USERNAME

 password: PASSWORD

 caFile: |

 CADATA

Where:

USERNAME is the user name.

PASSWORD is the password.

CADATA is the PEM-encoded CA certificate for the Git repository.

2. To pass in a custom settings.xml for Java, create a file called settings-xml.yaml. For
example:

apiVersion: v1

kind: Secret

metadata:

 name: settings-xml

type: service.binding/maven

stringData:

 type: maven

 provider: sample

 settings.xml: |

 <settings xmlns="http://maven.apache.org/SETTINGS/1.0.0" xmlns:xsi="http://

www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0 https://maven.

apache.org/xsd/settings-1.0.0.xsd">

 <mirrors>

 <mirror>

 <id>reposilite</id>

 <name>Tanzu seal Internal Repo</name>

 <url>https://reposilite.tap-trust.cf-app.com/releases</url>

 <mirrorOf>*</mirrorOf>

 </mirror>

 </mirrors>

 <servers>

 <server>

 <id>reposilite</id>

 <username>USERNAME</username>

 <password>PASSWORD</password>

 </server>

 </servers>

 </settings>

3. Apply the file:

kubectl create -f settings-xml.yaml -n DEVELOPER-NAMESPACE

Create a basic supply chain workload
Next, create your basic supply chain workload.

To pass the CA certificate in when you create the workload, run:

tanzu apps workload create APP-NAME --git-repo https://GITREPO --git-branch BRANCH --

type web --label app.kubernetes.io/part-of=CATALOGNAME --yes --param-yaml buildService

Tanzu Application Platform v1.5

VMware by Broadcom 460

Bindings='[{"name": "settings-xml", "kind": "Secret"}]' --param "gitops_ssh_secret=git

-ca"

Create a testing supply chain workload

For instructions about creating a workload with the testing supply chain, see Install OOTB Supply
Chain with Testing.

To add the Tekton supply chain to the cluster, apply the following YAML to the cluster:

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

 name: developer-defined-tekton-pipeline

 labels:

 apps.tanzu.vmware.com/pipeline: test # (!) required

spec:

 params:

 - name: source-url # (!) required

 - name: source-revision # (!) required

 tasks:

 - name: test

 params:

 - name: source-url

 value: $(params.source-url)

 - name: source-revision

 value: $(params.source-revision)

 taskSpec:

 params:

 - name: source-url

 - name: source-revision

 steps:

 - name: test

 image: MY-REGISTRY/gradle

 script: |-

 cd `mktemp -d`

Where MY-REGISTRY is your container image registry. Relocate all the images given in the pipeline
YAML to your private container registry.

Create the workload by running:

tanzu apps workload create APP-NAME --git-repo https://GITURL --git-branch BRANCH --t

ype web --label app.kubernetes.io/part-of=CATALOGNAME --yes --param-yaml --label apps.

tanzu.vmware.com/has-tests=true buildServiceBindings='[{"name": "settings-xml", "kin

d": "Secret"}]'

To instead pass the CA certificate when you create the workload, run:

tanzu apps workload create APP-NAME --git-repo https://GITREPO --git-branch BRANCH --

type web --label app.kubernetes.io/part-of=CATALOGNAME --yes --param-yaml --label app

s.tanzu.vmware.com/has-tests=true buildServiceBindings='[{"name": "settings-xml", "kin

d": "Secret"}]' --param "gitops_ssh_secret=git-ca"

Create a testing scanning supply chain workload

For instructions about creating a workload with the testing and scanning supply chain, see Install
OOTB Supply Chain with Testing and Scanning.

In addition to the prerequisites given at Prerequisites, follow Using Grype in offline and air-gapped
environments before workload creation.

Tanzu Application Platform v1.5

VMware by Broadcom 461

Create workload by running:

tanzu apps workload create APP-NAME --git-repo https://GITURL --git-branch BRANCH --t

ype web --label app.kubernetes.io/part-of=CATALOGNAME --yes --param-yaml --label apps.

tanzu.vmware.com/has-tests=true buildServiceBindings='[{"name": "settings-xml", "kin

d": "Secret"}]'

To instead pass the CA certificate when you create the workload, run:

tanzu apps workload create APP-NAME --git-repo https://GITREPO --git-branch BRANCH --

type web --label app.kubernetes.io/part-of=CATALOGNAME --yes --param-yaml --label app

s.tanzu.vmware.com/has-tests=true buildServiceBindings='[{"name": "settings-xml", "kin

d": "Secret"}]' --param "gitops_ssh_secret=git-ca"

Deploy Spring Cloud applications to Tanzu Application
Platform

This sub-section tells you how to run Spring applications that rely on various Spring Cloud services
as workloads on Tanzu Application Platform (commonly known as TAP).

In this sub-section:

Deploy Spring Cloud Config applications

Deploy Spring Cloud DiscoveryClient applications

Use Spring Cloud Gateway for Kubernetes

Deploy Spring Cloud applications to Tanzu Application
Platform

This sub-section tells you how to run Spring applications that rely on various Spring Cloud services
as workloads on Tanzu Application Platform (commonly known as TAP).

In this sub-section:

Deploy Spring Cloud Config applications

Deploy Spring Cloud DiscoveryClient applications

Use Spring Cloud Gateway for Kubernetes

Deploy Spring Cloud Config applications to Tanzu
Application Platform
This topic tells you how to run Spring applications that depend on Spring Cloud Config Server as
workloads on Tanzu Application Platform (commonly known as TAP).

Identify Spring Cloud Config applications
The Spring Cloud Config project is used within many common configuration services for Spring
applications, including the following:

The Config Server in the managed service tile Spring Cloud Services for VMware Tanzu that
is supported by VMware Tanzu Application Service for VMs.

Application Configuration Service for Tanzu in Azure Spring Apps. For more information
about Azure Spring Apps, see the Microsoft Azure documentation.

Tanzu Application Platform v1.5

VMware by Broadcom 462

https://spring.io/projects/spring-cloud-config
https://docs.vmware.com/en/Spring-Cloud-Services-for-VMware-Tanzu/3.1/spring-cloud-services/GUID-config-server-index.html
https://learn.microsoft.com/en-us/azure/spring-apps/how-to-enterprise-application-configuration-service
https://azure.microsoft.com/en-us/products/spring-apps/

Spring applications that use these configuration services often include a client dependency that
interacts with the Spring Cloud Config Server:

Applications that use the Spring Cloud Services Config Server on Tanzu Application Service
typically include the spring-cloud-services-starter-config-client dependency from the
io.pivotal.spring.cloud group. For more information, see the Config Server in the Spring
Cloud Services documentation.

Applications that use the open-source Spring Cloud Config Server typically include the
spring-cloud-starter-config dependency from the org.springframework.cloud group.
For more information, see the Spring Cloud Config documentation.

Prerequisites

Before you can deploy Spring Cloud Config applications, you must Install Application Configuration
Service for VMware Tanzu.

The Application Configuration Service for VMware Tanzu component in Tanzu Application Platform
distributes configuration information to applications through Kubernetes Secrets that contain Spring
properties.

Configure workloads

For instructions for how to run existing Spring applications that rely on the Spring Cloud Config
Server as workloads in Tanzu Application Platform, see Configuring Workloads in Tanzu Application
Platform using Application Configuration Service in the Application Configuration Service for
VMware Tanzu documentation.

Deploy Spring Cloud DiscoveryClient applications to Tanzu
Application Platform
This topic tells you how to run Spring applications that use the Spring Cloud DiscoveryClient as
workloads on Tanzu Application Platform (commonly known as TAP).

Identify Spring Cloud DiscoveryClient applications
The Spring Cloud DiscoveryClient abstraction underlies several common libraries and services for
Spring applications to register themselves as services for other applications and to look up
connection details of registered applications. These services include the following:

The Service Registry in the managed service tile Spring Cloud Services for VMware Tanzu
supported by VMware Tanzu Application Service for VMs.

The Tanzu Service Registry in Azure Spring Apps. For more information about Azure Spring
Apps, see the Microsoft Azure documentation.

The Spring Cloud Netflix project, which includes the Eureka client library and the Eureka
server.

Spring applications that use these discovery services include a client dependency that implements
the Spring Cloud DiscoveryClient:

Applications that use the Spring Cloud Services Service Registry on Tanzu Application
Service typically include the spring-cloud-services-starter-service-registry
dependency from the io.pivotal.spring.cloud group. For more information, see Service
Registry in the Spring Cloud Services documentation.

Tanzu Application Platform v1.5

VMware by Broadcom 463

https://docs.vmware.com/en/Spring-Cloud-Services-for-VMware-Tanzu/3.1/spring-cloud-services/GUID-client-dependencies.html#config-server
https://docs.spring.io/spring-cloud-config/docs/current/reference/html/#_client_side_usage
https://docs.vmware.com/en/Application-Configuration-Service-for-VMware-Tanzu/2.0/acs/GUID-gettingstarted-configuringworkloads.html
https://docs.vmware.com/en/Spring-Cloud-Services-for-VMware-Tanzu/3.1/spring-cloud-services/GUID-service-registry-index.html
https://learn.microsoft.com/en-us/azure/spring-apps/how-to-enterprise-service-registry
https://azure.microsoft.com/en-us/products/spring-apps/
https://spring.io/projects/spring-cloud-netflix
https://docs.vmware.com/en/Spring-Cloud-Services-for-VMware-Tanzu/3.1/spring-cloud-services/GUID-client-dependencies.html#service-registry

Applications that use the Tanzu Service Registry in Azure Spring Apps or that use the
Spring Cloud Netflix libraries typically include the spring-cloud-starter-netflix-eureka-
client dependency from the org.springframework.cloud group. For more information
about how to use the Tanzu Service Registry, see the Microsoft Azure documentation. For
more information about how to include Eureka Client, see the Spring documentation.

Each of these client dependencies includes the Spring Cloud SimpleDiscoveryClient from the Spring
Cloud Commons project as a base dependency. The approach in this topic uses this common
dependency to configure service resolution for client applications.

Prerequisites

Before you can continue with the example in this topic, you must Install Application Configuration
Service for VMware Tanzu.

In this example, the Application Configuration Service for VMware Tanzu component in Tanzu
Application Platform distributes service discovery information to client applications as Spring
properties.

Example: The Greeting application

The following sections show how to run the Greeting sample application as a pair of workloads on
Tanzu Application Platform.

Create a properties file in your configuration repository

In a Git repository that is reachable from your Run cluster, create a greeter-dev.yaml file as follows:

eureka:

 client:

 # this disables the Eureka Spring Cloud discovery client

 enabled: false

spring:

 cloud:

 discovery:

 client:

 simple:

 instances:

 greeter-messages:

 - uri: http://greeter-messages.my-apps.svc.cluster.local

The values under spring.cloud.discovery.client.simple.instances list all the services that your
application requires. The example greeter-dev.yaml file shows how to connect to another
workload running on the same cluster.

In the example in Create application workload resources, the greeter-messages microservice is
deployed as a workload of type web, so the discovery client configuration must use the fully qualified
domain name for the service within the Kubernetes cluster. If you instead choose to run the
greeter-messages microservice as a workload of type server, this address still works, but the
greeter microservice can also connect using the shorter URI http://greeter-messages.

Create Application Configuration Service resources

On your Run cluster, create the ConfigurationSource and ConfigurationSlice resources that tell
Application Configuration Service (ACS) how to fetch the discovery configuration from the Git
repository you are using.

The following example uses a public repository and no encryption. For more information about how
to connect to private repositories, encrypt configuration, and load properties in other formats, see

Tanzu Application Platform v1.5

VMware by Broadcom 464

https://learn.microsoft.com/en-us/azure/spring-apps/how-to-enterprise-service-registry
https://docs.spring.io/spring-cloud-netflix/docs/current/reference/html/#netflix-eureka-client-starter
https://docs.spring.io/spring-cloud-commons/docs/current/reference/html/#simplediscoveryclient
https://github.com/spring-cloud-services-samples/greeting

the ACS documentation.

apiVersion: "config.apps.tanzu.vmware.com/v1alpha4"

kind: ConfigurationSource

metadata:

 name: greeter-config-source

 namespace: my-apps

spec:

 backends:

 - type: git

 uri: https://github.com/your-org/your-config-repo

apiVersion: config.apps.tanzu.vmware.com/v1alpha4

kind: ConfigurationSlice

metadata:

 name: greeter-config

 namespace: my-apps

spec:

 configurationSource: greeter-config-source

 content:

 - greeter/dev

 secretStrategy: applicationProperties

 interval: 10m

A Kubernetes secret is created in the my-apps namespace with a name starting with greeter-
config-.

Create application workload resources

The ConfigurationSlice object you created in the previous section is a Provisioned Service. You
can use a ResourceClaim to claim it within the my-apps namespace. You then supply the resource
claim in the serviceClaims list in the Workload object to provide the configuration inside the
runtime environment of the workload.

The SPRING_CONFIG_IMPORT variable passes this configuration to Spring. If your application already
uses that variable to apply other Spring configuration, use the SPRING_CONFIG_ADDITIONAL_LOCATION
variable instead.

In the following example, one workload is created for the greeter-messages microservice, and a
second workload is created for the greeter microservice. Both apps bind to the ConfigurationSlice
to add Spring configuration:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

 name: greeter-messages

 namespace: my-apps

 labels:

 apps.tanzu.vmware.com/workload-type: web

 apps.tanzu.vmware.com/has-tests: "true"

 app.kubernetes.io/part-of: greeter

spec:

 build:

 env:

 - name: BP_JVM_VERSION

 value: "17"

 # this tells the Gradle buildpack which module to build

 - name: BP_GRADLE_BUILT_MODULE

 value: "greeter-messages"

 env:

 # the Greeting app enables basic authentication unless the

Tanzu Application Platform v1.5

VMware by Broadcom 465

https://github.com/servicebinding/spec#provisioned-service

 # development profile is used

 - name: SPRING_PROFILES_ACTIVE

 value: "development"

 - name: SPRING_CONFIG_IMPORT

 value: "${SERVICE_BINDING_ROOT}/spring-properties/"

 serviceClaims:

 - name: spring-properties

 ref:

 apiVersion: services.apps.tanzu.vmware.com/v1alpha1

 kind: ResourceClaim

 name: greeter-config-claim

 source:

 git:

 url: https://github.com/spring-cloud-services-samples/greeting

 ref:

 branch: main

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

 name: greeter

 namespace: my-apps

 labels:

 apps.tanzu.vmware.com/workload-type: web

 apps.tanzu.vmware.com/has-tests: "true"

 app.kubernetes.io/part-of: greeter

spec:

 build:

 env:

 - name: BP_JVM_VERSION

 value: "17"

 - name: BP_GRADLE_BUILT_MODULE

 value: "greeter"

 env:

 - name: SPRING_PROFILES_ACTIVE

 value: "development"

 - name: SPRING_CONFIG_IMPORT

 value: "${SERVICE_BINDING_ROOT}/spring-properties/"

 serviceClaims:

 - name: spring-properties

 ref:

 apiVersion: services.apps.tanzu.vmware.com/v1alpha1

 kind: ResourceClaim

 name: greeter-config-claim

 source:

 git:

 url: https://github.com/spring-cloud-services-samples/greeting

 ref:

 branch: main

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ResourceClaim

metadata:

 name: greeter-config-claim

 namespace: my-apps

spec:

 ref:

 apiVersion: config.apps.tanzu.vmware.com/v1alpha4

 kind: ConfigurationSlice

 name: greeter-config

The greeter application builds, starts up, and finds the greeter-messages URI using the
SimpleDiscoveryClient.

Tanzu Application Platform v1.5

VMware by Broadcom 466

Using Spring Cloud Gateway for Kubernetes with Tanzu
Application Platform

This topic tells you how to use Spring Cloud Gateway for Kubernetes as an API gateway for
workloads running on Tanzu Application Platform (commonly known as TAP).

Spring Cloud Gateway is a popular project library for creating an API Gateway that is built on top of
the Spring ecosystem. The open source library is a foundational component of VMware Spring
Cloud Gateway for Kubernetes and Spring Cloud Gateway for VMware Tanzu Application Service
commercial offerings with commercial-only capabilities and platform-integrated operator
experiences. You can use the open source and commercial offerings as a reverse proxy with extra
API Gateway functions to handle request and response to upstream application services.

Spring Cloud Gateway for Kubernetes is included with Tanzu Application Platform v1.5 and later.
You can migrate upstream applications that expose API routes on Spring Cloud Gateway from
Tanzu Application Service and custom open source implementations to Tanzu Application Platform.
For how to do so, see the VMware Spring Cloud Gateway for Kubernetes documentation.

Create a new application accelerator

This topic guides you through creating an accelerator and registering it in a Tanzu Application
Platform (commonly known as TAP) instance.

Tanzu Application Platform offers a selection of built-in accelerators to streamline your
development process. However, if these accelerators don’t meet your needs, you can create a new
accelerator. By creating an accelerator, you can ensure that your technology stacks and
organizational best practices are adhered to.

What you will do

Create a new accelerator project that contains an accelerator.yaml file and README.md file.

Configure the accelerator.yaml file to alter the project’s README.md.

Test your accelerator locally using the Tanzu CLI generate-from-local command.

Create a new Git repository for the project and push the project to it.

Register the accelerator in a Tanzu Application Platform instance.

Verify project generation with the new accelerator by using Tanzu Application Platform
GUI.

Set up Visual Studio Code

1. To simplify accelerator authoring, code assist capabilities are available. To install the
extension, navigate to the Marketplace page for the YAML plug-in and click Install.

Note

This guide follows a quick start format. See the Application Accelerator
documentation for advanced features.

Note

Code assist for authoring accelerators is also available in the IntelliJ IDE. You
can enable this by selecting Application Accelerator in the schema

Tanzu Application Platform v1.5

VMware by Broadcom 467

https://docs.vmware.com/en/VMware-Spring-Cloud-Gateway-for-Kubernetes/2.0/scg-k8s/GUID-guides-tap.html
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-yaml

2. After you install the plug-in, editing files entitled accelerator.yaml automatically uses the
code assist capabilities.

Create a simple project

To create your project, follow these instructions to set up the project directory, prepare the
README.md and accelerator.yaml, and test your accelerator.

Set up the project directory

1. Create a new directory for the project named myProject and change to the newly created
directory.

mkdir myProject

cd myProject

2. Create two new files in the myProject directory named README.md and accelerator.yaml.

touch README.MD accelerator.yaml

Prepare the README.md and accelerator.yaml

The following instructions require using Visual Studio Code to edit the files.

1. Using Visual Studio Code, open the README.md, copy and paste the following code block into
it, and save the file. CONFIGURABLE_PARAMETER_# is targeted to be transformed during project
generation in the upcoming accelerator.yaml definition.

Tanzu Application Accelerator Sample Project

This is some very important placeholder text that should describe what this pro

ject can do and how to use it.

Here are some configurable parameters:

* CONFIGURABLE_PARAMETER_1

* CONFIGURABLE_PARAMETER_2

2. Open accelerator.yaml and begin populating the file section using the snippet below. This
section contains important information, such as the accelerator’s display name, description,
tags, and more.

For all possible parameters available in this section, see Creating accelerator.yaml.

accelerator:

 displayName: Simple Accelerator

 description: Contains just a README

 iconUrl: https://blogs.vmware.com/wp-content/uploads/2022/02/tap.png

 tags:

 - simple

 - getting-started

3. Add the configuration parameters using the following code snippet. This configures what
parameters are displayed in the accelerator form during project creation.

mapping drop-down menu. For more information about how to enable this,
see the IntelliJ Using schemas from JSON Schema Store documentation.

Tanzu Application Platform v1.5

VMware by Broadcom 468

https://www.jetbrains.com/help/idea/json.html#ws_json_using_schemas

In this example snippet, the field firstConfigurableParameter takes in text the user
provides. The secondConfigurableParameter does the same, except it is only displayed if
the user checks secondConfigurableParameterCheckbox because of the dependsOn
parameter.

For more information about possible options, see Creating accelerator.yaml.

Place this after the 'tags' section from the previous step

 options:

 - name: firstConfigurableParameter

 inputType: text

 label: The text used to replace the first placeholder text in the README.

md. Converted to lowercase.

 defaultValue: Configurable Parameter 1

 required: true

 - name: secondConfigurableParameterCheckbox

 inputType: checkbox

 dataType: boolean

 label: Enable to configure the second configurable parameter, otherwise u

se the default value.

 - name: secondConfigurableParameter

 inputType: text

 label: The text used to replace the second placeholder text in the READM

E.md. Converted to lowercase.

 defaultValue: Configurable Parameter 2

 dependsOn:

 name: secondConfigurableParameterCheckbox

4. Add the engine configuration by using the following code snippet and save the file.

The engine configuration tells the accelerator engine behind the scenes what must be
done to the project files during project creation. In this example, this instructs the engine to
replace CONFIGURABLE_PARAMETER_1 and, if the check box is checked,
CONFIGURABLE_PARAMETER_2 with the parameters that the user passes in during project
creation.

This also leverages Spring Expression Language (SpEL) syntax to convert the text input to
all lowercase.

For more information about the possible parameters for use within the engine section, see
Creating accelerator.yaml.

Place this after the `options` section from the previous step

engine:

 merge:

 - include: ["README.md"]

 chain:

 - type: ReplaceText

 substitutions:

 - text: "CONFIGURABLE_PARAMETER_1"

 with: "#firstConfigurableParameter.toLowerCase()"

 - condition: "#secondConfigurableParameterCheckbox"

 chain:

 - type: ReplaceText

 substitutions:

 - text: "CONFIGURABLE_PARAMETER_2"

 with: "#secondConfigurableParameter.toLowerCase()"

Test the accelerator

It is important to quickly test and iterate on accelerators as they are being developed to ensure
that the resulting project is generated as expected.

Tanzu Application Platform v1.5

VMware by Broadcom 469

https://docs.spring.io/spring-framework/docs/current/reference/html/core.html#expressions

1. Using the terminal of your choice with access to the tanzu command, run the following
command to test the accelerator created earlier.

This step takes the local accelerator.yaml and project files, configures the project using the
parameters passed in through the --options field, and outputs the project to a specified
directory.

tanzu accelerator generate-from-local \

 --accelerator-path simple-accelerator="$(pwd)" `# The path to new accelerat

or` \

 --server-url TANZU-APPLICATION-ACCELERATOR-URL `# Example: https://accelera

tor.mytapcluster.myorg.com` \

 --options '{"firstConfigurableParameter": "Parameter 1", "secondConfigurabl

eParameterCheckbox": true, "secondConfigurableParameter":"Parameter 2"}' \

 -o "${HOME}/simple-accelerator/" `# Change this path to change where the pr

oject folder gets generated`

2. After the project is generated, a status message is displayed.

generated project simple-accelerator

3. Navigate to the output directory and verify that the README.md is updated based on the --
options specified in the preceding generate-from-local command.

Tanzu Application Accelerator Sample Project

This is some very important placeholder text that should describe what this pro

ject can do and how to use it.

Here are some configurable parameters:

- parameter 1

- parameter 2

Upload the project to a Git repository
The Application Accelerator system and Tanzu Application Platform GUI depend on an accelerator
project residing inside a Git repository. For this example, GitHub is used.

1. Create a new repository in GitHub and ensure that Visibility is set to Public. Click Create
Repository.

2. To push your accelerator project (not the generated project from generate-from-local) to
GitHub, follow the instructions that GitHub provides for the …or create a new repository on
the command line that is shown after clicking Create Repository. Instructions can also be
found in the GitHub documentation.

3. Verify that the project is pushed to the target repository.

Register the accelerator to the Tanzu Application Platform
and verify project generation output

Important

This step requires that the TANZU-APPLICATION-ACCELERATOR-URL endpoint is
exposed and accessible. For more information, see Server API connections
for operators and developers.

Tanzu Application Platform v1.5

VMware by Broadcom 470

https://github.com/
https://docs.github.com/en/get-started/quickstart/create-a-repo
https://docs.github.com/en/get-started/importing-your-projects-to-github/importing-source-code-to-github/adding-locally-hosted-code-to-github#adding-a-local-repository-to-github-using-git

Now that the accelerator is committed to its own repository, you can register the accelerator to
Tanzu Application Platform GUI for developers to generate projects from the newly created
accelerator.

To do so, use the URL of the Git repository and branch name created earlier and run the following
command using the Tanzu CLI to register the accelerator to Tanzu Application Platform GUI.

tanzu accelerator create simple-accelerator --git-repository https://github.com/myuser

name/myprojectrepository --git-branch main

The accelerator can take time to reconcile. After it has reconciled, it is available for use in Tanzu
Application Platform GUI and the Application Accelerator extension for Visual Studio Code.

Verify project generation output by using Tanzu Application
Platform GUI

1. Navigate to your organization’s instance of Tanzu Application Platform GUI.

2. On the left navigation pane, click Create.

3. Using the search bar near the left side of the page, search for simple accelerator. After
you’ve found it, click Choose on the accelerator card.

4. Configure the project by filling in the parameters in the form.

Note

tanzu accelerator create works with monorepos as well. Add the --git-sub-path
parameter with the desired subpath to fetch the accelerator project in that
directory. For more information, see tanzu accelerator create.

Tanzu Application Platform v1.5

VMware by Broadcom 471

The options you defined in accelerator.yaml are now displayed for you to configure. The
secondConfigurableParameter dependsOn secondConfigurableParameterCheckbox might be
hidden depending on whether the check box is selected.

5. After configuration is complete, click Next.

6. On the Review and generate step, review the parameters and click Generate
Accelerator.

7. Explore the ZIP file of the configured project and verify that the project is generated with
the parameters you provided during configuration.

Note

Depending on your organization’s Tanzu Application Platform configuration,
you might be presented with an option to create a Git repository. In this
guide, this is skipped and is covered in Deploy an app on Tanzu Application
Platform.

Tanzu Application Platform v1.5

VMware by Broadcom 472

Learn more about Application Accelerator

For advanced functionality when creating accelerators, such as accelerator best practices,
accelerator fragments, engine transforms, and more, see the Application Accelerator
documentation.

For more information about Application Accelerator configurations, see the Configure
Application Accelerator documentation.

For information about installing the Application Accelerator extension for Visual Studio
Code, see the Application Accelerator Visual Studio Code extension documentation.

For general accelerator troubleshooting, see Troubleshooting Application Accelerator for
VMware Tanzu.

Learn about Tanzu Application Platform

The topics in this section explain concepts important to getting started with Tanzu Application
Platform (commonly known as TAP).

In this section:

Application Accelerator

Supply chains on Tanzu Application Platform

Vulnerability scanning and metadata storage for your supply chain

Consume services on Tanzu Application Platform

Application accelerators on Tanzu Application Platform

This topic describes the key concepts you need to know about application accelerators on Tanzu
Application Platform (commonly known as TAP).

What are application accelerators

Application accelerators are templates that not only codify best practices but also provide important
configuration and structures ready and available for use. Developers can create applications and get
started with feature development immediately with the help of application accelerators.

Enterprise Architects use Application Accelerator to create application accelerators, which provide
developers and admins in their organization with ready-made, enterprise-conforming code and
configurations. Accelerators contain complete and runnable application code and deployment
configurations. They also contain metadata for altering the code and deployment configurations
based on input values provided for specific options defined in the accelerator metadata.

Working with accelerators

The Application Accelerator plug-in for Tanzu Application Platform GUI helps you to discover
accelerators and to enter extra information used for processing the files before downloading. As of
Tanzu Application Platform v1.2, developers can also discover and work on accelerators right in
Visual Studio Code with the Tanzu Application Accelerator for VS Code extension. Developers can
use the list, get, and generate commands to use accelerators available in an Application
Accelerator server.

Admins use the create, update, and delete commands for managing accelerators in a Kubernetes
context. When admins want to use the get and list commands, they can specify the --from-
context flag to access accelerators in a Kubernetes context.

Tanzu Application Platform v1.5

VMware by Broadcom 473

Next steps

Apply what you have learned:

Developers:

Deploy an app on Tanzu Application Platform

Operators:

Create an application accelerator

Supply chains on Tanzu Application Platform

This topic describes the key concepts you need to know about supply chains and Continuous
Integration/Continuous Delivery (CI/CD) on Tanzu Application Platform (commonly known as TAP).

What are supply chains

Supply chains provide a way of codifying all of the steps of your path to production, more
commonly known as CI/CD. CI/CD is a method to frequently deliver applications by introducing
automation into the stages of application development. The main concepts attributed to CI/CD are
continuous integration, continuous delivery, and continuous deployment.

CI/CD is the method used by supply chains to deliver applications through automation. Tanzu
Application Platform supply chains allow you to use CI/CD and add any other steps necessary for an
application to reach production or a different environment, such as staging.

A path to production

A path to production allows you to create a unified access point for all of the tools required for your
applications to reach a customer-facing environment. Instead of having four tools that are loosely
coupled to each other, a path to production defines all four tools in a single, unified layer of
abstraction. The path to production can be automated and repeatable between teams for
applications at scale.

Typically tools cannot integrate with one another without scripting or webhooks. Whereas with a
path to production, there is a unified automation tool to codify all the interactions between each of
the tools. Supply chains that are used to codify the path to production for an organization are
configurable. This allows their authors to add all of the steps of the path to production for their
applications.

Available supply chains

Tanzu Application Platform provides three out of the box (OOTB) supply chains to work with the
Tanzu Application Platform components. They include:

OOTB Supply Chain Basic (default)

OOTB Supply Chain with Testing (optional)

OOTB Supply Chain with Testing+Scanning (optional)

1: OOTB Basic (default)

Tanzu Application Platform v1.5

VMware by Broadcom 474

The default OOTB Basic supply chain and its dependencies were installed on your cluster during
the Tanzu Application Platform install. The following diagram and table provide a description of the
supply chain and dependencies provided with Tanzu Application Platform.

Name Package Name Description Dependencies

Out of the Box
Basic (Default -
Installed during
Installing Part 2)

ootb-supply-

chain-

basic.tanzu.vm

ware.com

This supply chain monitors a repository that is
identified in the developer’s workload.yaml file.
When any new commits are made to the
application, the supply chain:

Creates a new image.

Applies any predefined conventions.

Deploys the application to the cluster.

Flux/Source
Controller

Tanzu Build
Service

Cartographer
Conventions

Tekton

Cloud Native
Runtimes

If using
Service
References:

Servi
ce
Bindi
ngs

Servi
ces
Tool
kit

2: OOTB Testing

OOTB Testing supply chain runs a Tekton pipeline within the supply chain. The following diagram
and table provide a description of the supply chain and dependencies provided with Tanzu
Application Platform.

Name Package Name Description Dependencies

Out of
the Box
Testing

ootb-supply-

chain-

testing.tanzu.vm

ware.com

Out of the Box Testing contains all of the same elements as the
Source to URL. It allows developers to specify a Tekton
pipeline that runs as part of the CI step of the supply chain.

The application tests using the Tekton pipeline.

A new image is created.

Any predefined conventions are applied.

The application is deployed to the cluster.

All of the Source to
URL dependencies

3: OOTB Testing+Scanning

OOTB Testing+Scanning supply chain includes integrations for secure scanning tools. The
following diagram and table provide a description of the supply chain and dependencies provided
with Tanzu Application Platform.

Tanzu Application Platform v1.5

VMware by Broadcom 475

Name Package Name Description Dependencies

Out of the
Box
Testing
and
Scanning

ootb-supply-

chain-testing-

scanning.tanzu.

vmware.com

Out of the Box Testing and Scanning contains all of the
same elements as the Out of the Box Testing supply
chain, and it also includes integrations with the secure
scanning components of Tanzu Application Platform.

The application is tested using the provided
Tekton pipeline.

The application source code is scanned for
vulnerabilities.

A new image is created.

The image is scanned for vulnerabilities.

Any predefined conventions are applied.

The application deploys to the cluster.

All of the Source to URL
dependencies, and:

The secure
scanning
components
included with
Tanzu Application
Platform

Next steps

Apply what you have learned:

Add testing and scanning to your application

Or learn about:

Vulnerability scanning and metadata storage for your supply chain

Vulnerability scanning, storing, and viewing for your supply
chain

This topic describes the vulnerability scanning features you can use with Tanzu Application Platform
(commonly known as TAP).

This feature set allows an application operator to introduce source code and image vulnerability
scanning, storing, and viewing to their Tanzu Application Platform supply chain. It also allows for the
creation of scan-time rules that prevent critical vulnerabilities from flowing to the supply chain
unresolved.

Features

Features include:

Scan source code repositories and images for known common vulnerabilities and exposures
(CVEs) before deploying to a cluster.

Identify CVEs by scanning continuously on each new code commit or each new image built.

Analyze scan results against user-defined policies by using Open Policy Agent. Create scan
policy to prevent vulnerable components from going into production.

Produce vulnerability scan results and post them to the SCST - Store where they can be
queried.

Query the store for such use cases as:

What images and packages are affected by a specific vulnerability?

What source code repositories are affected by a specific vulnerability?

What packages and vulnerabilities does a particular image have?

Visualize the supply chain and its packages and vulnerabilities of your supply chain.

Tanzu Application Platform v1.5

VMware by Broadcom 476

Components

Supply Chain Security Tools (SCST) - Scan scans source code and images for their packages
and vulnerabilities.

SCST - Store takes the vulnerability scanning results and stores them.

Tanzu Insight plug-in provides a CLI to query for packages and vulnerabilities.

Supply Chain Choreographer in Tanzu Application Platform GUI visualizes the supply chain,
including scans, packages, and vulnerabilities.

Next steps

Apply what you have learned:

Add testing and scanning to your application

Enable CVE scan results in Supply Chain Choreographer in Tanzu Application Platform GUI

Or learn about:

Supply chains on Tanzu Application Platform

Or go deeper into scanning on Tanzu Application Platform:

Scan samples to try the scan and store features as individual one-off scans

Configure Code Repositories and Image Artifacts to be Scanned

Code and Image Compliance Policy Enforcement Using Open Policy Agent (OPA)

How to Create a ScanTemplate

Viewing and Understanding Scan Status Conditions

Observing and Troubleshooting

Tanzu Insight plug-in overview

Troubleshooting

SCST Scan - Observing and Troubleshooting

SCST Store - Troubleshooting

TAP GUI - Troubleshooting

About consuming services on Tanzu Application Platform
This topic describes the key concepts and terms you need to know about consuming services on
Tanzu Application Platform (commonly known as TAP).

As part of Tanzu Application Platform, you can work with backing services such as RabbitMQ,
PostgreSQL, and MySQL among others. The most common use of services is binding an application
workload to a service instance.

Key concepts
When working with services on Tanzu Application Platform, you must be familiar with service
instances, service bindings, and resource claims. This section provides a brief overview of each of
these key concepts.

Service instances

Tanzu Application Platform v1.5

VMware by Broadcom 477

A service instance is a logical grouping of one or more Kubernetes resources that together expose
a known capability through a well-defined interface. For example, a theoretical “MySQL” service
instance might consist of a MySQLDatabase and a MySQLUser resource. When considering
compatibility of service instances for Tanzu Application Platform, one of the resources of a service
instance must adhere to the Service Binding for Kubernetes specification.

Service bindings

Service binding refers to a mechanism in which connectivity information, such as service instance
credentials, and connectivity information, such as host and port, are automatically communicated to
application workloads. Tanzu Application Platform uses a standard named Service Binding for
Kubernetes to implement this mechanism. See this standard to fully understand the services aspect
of Tanzu Application Platform.

Resource claims

Resource claims are inspired in part by Persistent Volume Claims. For more information, see the
Kubernetes documentation. Resource claims provide a mechanism for users to claim service
instances on a cluster, while also decoupling the life cycle of application workloads and service
instances.

Services you can use with Tanzu Application Platform
The following list of Kubernetes operators expose APIs that integrate well with Tanzu Application
Platform:

1. VMware RabbitMQ for Kubernetes.

2. VMware SQL with Postgres for Kubernetes.

3. VMware SQL with MySQL for Kubernetes.

Compatibility of a service with Tanzu Application Platform ranges on a scale between fully
compatible and incompatible. The minimum requirement for compatibility is that there must be a
declarative, Kubernetes-based API on which at least one API resource type adheres to the
Provisioned Service duck type defined by the Service Binding Specification for Kubernetes in
GitHub. This duck type includes any resource type with the following schema:

status:

 binding:

 name: # string

The value of .status.binding.name must point to a Secret in the same namespace. The Secret
contains required credentials and connectivity information for the resource.

Typically, APIs that include these resource types are installed onto the Tanzu Application Platform
cluster as Kubernetes operators. These Kubernetes operators provide custom resource definitions
(CRDs) and corresponding controllers to reconcile the resources of the CRDs, as is the case with
the three Kubernetes operators listed earlier.

For services that do not provide a resource adhering to the Service Binding Specification for
Kubernetes, you might still be able to provide configurations allowing such services to integrate
with Tanzu Application Platform. For an example of how to do this for Amazon AWS RDS, see the
tutorial Integrating cloud services into Tanzu Application Platform.

User roles and responsibilities

Tanzu Application Platform v1.5

VMware by Broadcom 478

https://servicebinding.io/
https://servicebinding.io/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://docs.vmware.com/en/VMware-RabbitMQ-for-Kubernetes/index.html
https://docs.vmware.com/en/VMware-SQL-with-Postgres-for-Kubernetes/index.html
https://docs.vmware.com/en/VMware-SQL-with-MySQL-for-Kubernetes/index.html
https://github.com/servicebinding/spec#provisioned-service
https://github.com/servicebinding/spec

It is important to understand the user roles for services on Tanzu Application Platform and the
responsibilities assumed by each. The following table describes each user role.

User role
Exists as a default role in Tanzu
Application Platform?

Responsibilities

Service operator Yes - service-operator Life cycle management (CRUD) of service
instances

Life cycle management (CRUD) of service
instance classes

Life cycle management (CRUD) of resource
claim policies

View and query for resource claims across
namespaces

Application
operator

Yes - app-operator Life cycle management (CRUD) of resource claims

Application
developer

Yes - app-editor and app-viewer Binding service instances to application workloads

Next steps

Apply what you’ve learned:

Claim services on Tanzu Application Platform

Consume services on Tanzu Application Platform

Tanzu Application Platform v1.5

VMware by Broadcom 479

Set up Tanzu Service Mesh

This topic tells you how to set up a Tanzu Application Platform application deployed on Kubernetes
with Tanzu Service Mesh (commonly called TSM).

Sample applications are used to demonstrate how a global namespace can provide a network for
Kubernetes workloads that are connected and secured within and across clusters, and across
clouds.

Prerequisites

Meet the prerequisites, which includes having

A supported Kubernetes platform

The correct resource configuration (number of nodes, CPUs, RAM, and so on)

The required connectivity requirements

Connectivity is only required from your local clusters out to Tanzu Service Mesh and not inwards.
This can traverse a corporate proxy as well. In addition, connectivity in the data plane is required
between the clusters that must communicate, specifically egress to ingress gateways. No data
plane traffic needs to reach the Tanzu Service Mesh software as a service (SaaS) management
plane.

Activate your Tanzu Service Mesh subscription

Activate your Tanzu Service Mesh subscription at cloud.vmware.com. After purchasing your Tanzu
Service Mesh subscription, the VMware Cloud team sends you instructions. If you don’t receive
them, you can follow these instructions.

Onboard your clusters to Tanzu Service Mesh as described later in this topic. This deploys the
Tanzu Service Mesh local control plane and OSS Istio on your Kubernetes cluster and connects the
local control plane to your Tanzu Service Mesh tenant.

Tanzu Application Platform v1.5

VMware by Broadcom 480

https://docs.vmware.com/en/VMware-Tanzu-Service-Mesh/services/tanzu-service-mesh-environment-requirements-and-supported-platforms/GUID-D0B939BE-474E-4075-9A65-3D72B5B9F237.html
https://www.vmware.com/cloud-solutions.html
https://pathfinder.vmware.com/v3/path/tsm_activation

Set up Tanzu Application Platform

To enable Tanzu Service Mesh support in Tanzu Application Platform Build clusters:

1. Add the following key to tap-values.yaml under the buildservice top-level key:

buildservice:

 injected_sidecar_support: true

2. Install Tanzu Application Platform on the run cluster.

End-to-end workload build and deployment scenario
The following sections describe how to build and deploy a workload.

Apply a workload resource to a build cluster

Workloads can be built by using a Tanzu Application Platform supply chain by applying a workload
resource to a build cluster. At this time, Tanzu Service Mesh and Tanzu Application Platform cannot
use the Knative resources that are the default runtime target when using the web resource type.

In Tanzu Application Platform v1.4 and later, two workload types support a Tanzu Service Mesh and
Tanzu Application Platform integration: server and worker.

To work with Tanzu Service Mesh, web workloads must be converted to the server or worker
workload type. Server workloads cause a Kubernetes Deployment resource to be created with a
Service resource that uses port 8080 by default.

1. If the service port that you want is 80 or some other port, add port information to
workload.yaml. The following example YAML snippets show the changes to make from the
web to server workload type. This is an example before applying the changes:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

 name: hungryman

 labels:

 apps.tanzu.vmware.com/workload-type: web

 app.kubernetes.io/part-of: hungryman-api-gateway

spec:

 params:

 - name: annotations

value:

autoscaling.knative.dev/minScale: "1"

 source:

 git:

 url: https://github.com/gm2552/hungryman.git

 ref:

 branch: main

 subPath: hungryman-api-gateway

This is an example modified for Tanzu Service Mesh, which includes the removal of the
autoscaling annotation:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

 name: hungryman

 labels:

 apps.tanzu.vmware.com/workload-type: server # modification

 app.kubernetes.io/part-of: hungryman-api-gateway

spec:

Tanzu Application Platform v1.5

VMware by Broadcom 481

 params:

 - name: ports # modification

 value:

 - port: 80 # modification

 containerPort: 8080 # modification

 name: http # modification

 source:

 git:

 url: https://github.com/gm2552/hungryman.git

 ref:

 branch: main

 subPath: hungryman-api-gateway

This results in a deployment and a service that listens on port 80 and forwards traffic to port
8080 on the pod’s workload container.

2. Submit the modified YAML to your build cluster by running:

tanzu apps NAMESPACE apply --file WORKLOAD-YAML-FILE

Where:

NAMESPACE is the namespace that the build cluster uses for building.

WORKLOAD-YAML-FILE is the name of your workload YAML file, such as
workload.yaml.

After your workload is built a Deliverable resource is created.

Configure egress for Tanzu Build Service

For Tanzu Build Service to properly work, provide egress to access the registry where Tanzu Build
Service writes application images, and define the registry in the kp_default_repository key and
the Tanzu Application Platform install registry.

Additionally, configure egress for buildpack builds to download any required dependencies. This
configuration varies with different buildpacks and language environments. For example, Java builds
might need to download dependencies from Maven central.

Create a global namespace

Using the Tanzu Service Mesh portal or API, create a global namespace (GNS) that includes the
namespaces where your application components are deployed. For more information, see Global
Namespaces

Whether in a single cluster or multiple clusters, or within the same site or across clouds, after you
add a namespace selection to the GNS, the services that Tanzu Application Platform deploys are
connected based on the GNS configuration for service discovery and connectivity policies.

If a service must be accessible through the ingress from the outside, it can be configured through
the public service option in Tanzu Service Mesh or directly through Istio on the clusters where that
service resides. It’s best practice to configure the service’s accessibility through the GNS.

Run cluster deployment

Before deploying a workload to a run cluster, ensure that any prerequisite resources have already
been created on the run cluster. This includes concepts such as data, messaging, routing, security
services, RBAC, ResourceClaims, and so on.

After a successful build in a build cluster, workloads can be deployed to the run cluster by applying
resulting deliverable resources to the run cluster as described in Getting Started with Multicluster
Tanzu Application Platform.

Tanzu Application Platform v1.5

VMware by Broadcom 482

https://docs.vmware.com/en/VMware-Tanzu-Service-Mesh/services/concepts-guide/GUID-9E3F1F90-4310-415B-98C8-C06E59B8A5EE.html

Another option is to create a kapp application that references a GitOps repository to include all
deliverable resources for a given cluster. See the following example of a kapp definition that points
to a GitOps repository:

apiVersion: kappctrl.k14s.io/v1alpha1

kind: App

metadata:

 name: deliverable-gitops

 namespace: hungryman

spec:

 serviceAccountName: default

 fetch:

 - git:

 url: https://github.com/gm2552/tap-play-gitops

 ref: origin/deliverables-tap-east01

 subPath: config

 template:

 - ytt: {}

 deploy:

 - kapp: {}

The advantage of this model is that applications can be deployed or uninstalled from a cluster by
managing the contents of the deliverable resources from within the GitOps repository and enabling
a GitOps workflow for application and service change control.

Deployment use case: Hungryman

The following instructions describe an end-to-end process for configuring, building, and deploying
the Hungryman application into a Tanzu Service Mesh global namespace.

These instructions use the default configuration of Hungryman, which consists of only needing a
single-node RabbitMQ cluster, an in-memory database, and no security. The application is deployed
across two Tanzu Application Platform run clusters. It requires the ytt command to execute the
build and deployment commands.

The configuration resources referenced in this scenario are located in the hungryman-tap-tsm
GitHub repository.

Create an initial set of configuration files from the accelerator

This use case deployment includes a pre-built set of configuration files in a Git repository. However,
they were created from a set of configuration files by using a bootstrapped process that uses the
Hungryman accelerator, and were later modified.

For reference, you can create an initial set of configuration files from the Hungryman accelerator,
which is available in Tanzu Application Platform v1.3.

This section does not include instructions for modifying the configuration files from the accelerator
into configuration files used in a later section.

From the accelerator, accept all of the default options with the following exceptions:

Workload namespace: Update this field with the name of the namespace you will use to
build the application in your build cluster

Service namespace: Update this field with the name of the namespace you will use to
deploy a RabbitMQ cluster on your Tanzu Application Platform run cluster

Apply the workload resources to your build cluster

Tanzu Application Platform v1.5

VMware by Broadcom 483

https://github.com/gm2552/hungryman-tap-tsm

To build the application services, run the following command to apply the workload resources to
your build cluster. You can also clone or fork the repository in this command to either use the
YAML files locally or point to your own Git repository.

ytt -f workloads.yaml -v workloadNamespace=WORKLOAD-NAMESPACE | kubectl apply -f-

Where WORKLOAD-NAMESPACE is the name of your build namespace

For example:

ytt -f https://raw.githubusercontent.com/gm2552/hungryman-tap-tsm/main/workloads.yaml

\

-v workloadNamespace=workloads | kubectl apply -f-

If you are using a GitOps workflow with your build cluster, after the workloads are built the
deployment information is pushed to your GitOps repository.

If you follow these instructions without pull requests in the GitOps workflow, the config-writer pods
that commit deployment information to the GtiOps repository might fail because of concurrency
conflicts. A workaround for this is to delete the failed workloads from the build cluster and re-run
the command provided in the instructions.

Install service claim resources on the cluster

Hungryman requires a RabbitMQ cluster installed on your run cluster. You must install RabbitMQ on
the same run cluster that is named RunCluster01 in the following deployment section. Additionally,
you must install service claim resources on this cluster.

1. If you haven’t already done so, install the RabbitMQ Cluster Operator on the run cluster by
running:

kubectl apply -f "https://github.com/rabbitmq/cluster-operator/releases/downloa

d/v1.13.1/cluster-operator.yml"

2. Spin up an instance of a RabbitMQ cluster by running:

kubectl create ns SERVICE-NAMESPACE

ytt -f rmqCluster.yaml -v serviceNamespace=SERVICE-NAMESPACE | kubectl apply -f

-

Where SERVICE-NAMESPACE is the namespace of where you want to deploy your RabbitMQ
cluster

For example:

kubectl create ns service-instances

ytt -f https://raw.githubusercontent.com/gm2552/hungryman-tap-tsm/main/rmqClust

er.yaml -v \

serviceNamespace=service-instances | kubectl apply -f-

3. Create service toolkit resources for the RabbitMQ class and resource claim by running:

ytt -f rmqResourceClaim.yaml -v serviceNamespace=SERVICE-NAMESPACE -v \

workloadNamespace=WORKLOAD-NAMESPACE | kubectl apply -f-

Where SERVICE-NAMESPACE and WORKLOAD-NAMESPACE are the namespaces where you
deployed your RabbitMQ cluster and the namespace where the application service will run.

For example:

Tanzu Application Platform v1.5

VMware by Broadcom 484

ytt -f https://raw.githubusercontent.com/gm2552/hungryman-tap-tsm/main/rmqResou

rceClaim.yaml \

-v serviceNamespace=service-instances -v workloadNamespace=hungryman | kubectl

apply -f-

Run cluster deployment

Workloads are deployed to the run cluster using deliverable resources. This section applies the
deliverable resources directly to the run clusters instead of using a kapp application.

This deployment assumes that two clusters are part of the Tanzu Service Mesh GNS Hungryman.
These example clusters are named RunCluster01 and RunCluster02. The majority of the workload is
deployed to RunCluster01 while the crawler workload is deployed to RunCluster02.

The deliverable objects reference the GitOps repository, where the build cluster has written
deployment information, and needs to reference this repository in the following commands.

Deploy the workloads to the run clusters by running these commands against their respective
clusters:

ytt -f cluster01Deliverables.yaml -v workloadNamespace=WORKLOAD-NAMESPACE -v \

gitOpsSecret=GIT-OPS-SECRET -v gitOpsRepo=GIT-OPS-REPO | kubectl apply -f-

Where:

WORKLOAD-NAMESPACE is the namespace where the workloads are deployed

GIT-OPS-SECRET is the GitOps secret used to access the GitOps repository

GIT-OPS-REPO is the URL of the GitOps repository where the build cluster wrote out
deployment configuration information

ytt -f cluster02Deliverables.yaml -v workloadNamespace=WORKLOAD-NAMESPACE -v \

gitOpsSecret=GIT-OPS-SECRET -v gitOpsRepo=GIT-OPS-REPO | kubectl apply -f-

Where:

WORKLOAD-NAMESPACE is the namespace where the workloads are deployed

GIT-OPS-SECRET is the GitOps secret used to access the GitOps repository

GIT-OPS-REPO is the URL of the GitOps repository where the build cluster wrote out
deployment configuration information

To run this deployment on cluster RunCluster01, for example, you run:

ytt -f https://raw.githubusercontent.com/gm2552/hungryman-tap-tsm/main/cluster01Delive

rables.yaml -v \

workloadNamespace=hungryman -v gitOpsSecret=tap-play-gitops-secret -v \

gitOpsRepo=https://github.com/gm2552/tap-play-gitops.git | kubectl apply -f-

To run this deployment on cluster RunCluster02, for example, you run:

ytt -f https://raw.githubusercontent.com/gm2552/hungryman-tap-tsm/main/cluster02Delive

rables.yaml -v \

workloadNamespace=hungryman -v gitOpsSecret=tap-play-gitops-secret -v \

gitOpsRepo=https://github.com/gm2552/tap-play-gitops.git | kubectl apply -f-

You can create an Istio ingress resource on RunCluster01 if you do not plan on using the GNS
capabilities to expose the application to external networks.

You must create a domain name system address (DNS A) record in your DNS provider’s
configuration tool to point to the Istio load-balanced IP address of RunCluster01. The DNS

Tanzu Application Platform v1.5

VMware by Broadcom 485

configuration is out of the scope of this topic.

Create the ingress by running:

ytt -f ingress.yaml -v workloadNamespace=WORKLOAD-NAMESPACE -v domainName=DOMAIN-NAME

| kubectl apply -f-

Where:

WORKLOAD-NAMESPACE is the namespace where the workload is deployed

DOMAIN-NAME is the public domain that will host your application

For example:

ytt -f https://raw.githubusercontent.com/gm2552/hungryman-tap-tsm/main/ingress.yaml -v

\

workloadNamespace=hungryman -v domainName=tsmdemo.perfect300rock.com | kubectl apply -

f-

Create a global namespace

The example clusters have the names RunCluster01 and RunCluster02, and they assume the
workload and service namespaces of Hungryman and service-instances, respectively.

1. Open the Tanzu Service Mesh console and create a new GNS.

2. Configure the following settings in each step:

1. General details

GNS Name: hungryman

Domain: hungryman.lab

2. Namespace mapping

Namespace mapping Rule 1

Cluster name: RunCluster01

Namespace: hungryman

Namespace Mapping Rule 2

Cluster name: RunCluster02

Namespace: hungryman

Namespace Mapping Rule 3

Cluster name: RunCluster01

Namespace: service-instances

3. Autodiscovery. Use the default settings.

4. Public services

Service name: hungryman

Service port: 80

Public URL: http hungryman . Select a domain.

5. Global server load balancing and resiliency. Use the default settings.

You can now access the Hungryman application with the URL configured earlier.

Deployment use case: ACME Fitness Store

Tanzu Application Platform v1.5

VMware by Broadcom 486

The following instructions describe an end-to-end process for configuring, building, and deploying
the ACME Fitness Store application into a Tanzu Service Mesh GNS. In this use case, the
application is deployed across two Tanzu Application Platform run clusters. ytt is used to run the
build and deployment commands.

The configuration resources referenced in this scenario are in the acme-fitness-tap-tsm Git
repository.

Deploy AppSSO

ACME requires the use of an AppSSO authorization server and client registration resource. Install
these resources on the same run cluster that is named RunCluster01 in the deployment section.

1. Deploy the authorization server instance by running:

ytt -f appSSOInstance.yaml -v workloadNamespace=WORKLOAD-NAMESPACE \

-v devDefaultAccountUsername=DEV-DEFAULT-ACCOUNT-USERNAME -v \

devDefaultAccountPassword=DEV-DEFAULT-ACCOUNT-PASSWORD | kubectl apply -f-

Where:

WORKLOAD-NAMESPACE is the namespace where the workloads will be deployed

DEV-DEFAULT-ACCOUNT-USERNAME is the user name for the ACME application
authentication

DEV-DEFAULT-ACCOUNT-PASSWORD is the password for the ACME application
authentication

For example:

ytt -f https://raw.githubusercontent.com/gm2552/acme-fitness-tap-tsm/main/appSS

OInstance.yaml -v \

workloadNamespace=acme -v devDefaultAccountUsername=acme -v \

devDefaultAccountPassword=fitness | kubectl apply -f-

2. Create a ClientRegistration resource by running:

ytt -f appSSOInstance.yaml -v workloadNamespace=WORKLOAD-NAMESPACE -v \

appSSORedirectURI=APP-SSO-REDIRECT-URI | kubectl apply –f-

Where:

WORKLOAD-NAMESPACE is the namespace where the workloads will be deployed.

APP-SSO-REDIRECT-URI is the public URI that the authorization server redirects to
after a login

For example:

ytt -f https://raw.githubusercontent.com/gm2552/acme-fitness-tap-tsm/main/clien

tRegistrationResourceClaim.yaml \

-v workloadNamespace=acme -v \

appSSORedirectURI=http://acme-fitness.tsmdemo.perfect300rock.com/login/oauth2/c

ode/sso | kubectl apply -f-

3. Obtain the appSSO Issuer URI by running:

kubectl get authserver -n WORKLOAD-NAMESPACE

Where WORKLOAD-NAMESPACE is the name of the namespace where the workloads will be
deployed.

Tanzu Application Platform v1.5

VMware by Broadcom 487

https://github.com/gm2552/acme-fitness-tap-tsm

4. Record the Issuer URI because you need it for the next section.

Apply the workload resources to your build cluster

To build the application services, run the following command to apply the workload resources to
your build cluster. You can also clone or fork the repository in the following command to either use
the YAML files locally or point to your own Git repository.

ytt -f workloads.yaml -v workloadNamespace=WORKLOAD-NAMESPACE -v \

appSSOIssuerURI=APP-SSO-ISSUER-URL | kubectl apply -f-

Where:

WORKLOAD-NAMESPACE is the name of your build namespace

APP-SSO-ISSUER-URL is the URL of the AppSSO authorization server that you deployed
earlier

For example:

ytt -f https://raw.githubusercontent.com/gm2552/acme-fitness-tap-tsm/main/workloads.ya

ml -v \

workloadNamespace=workloads -v \

appSSOIssuerURI=http://appsso-acme-fitness.acme.tsmdemo.perfect300rock.com | kubectl a

pply -f-

If you are using a GitOps workflow with your build cluster then, after building the workloads, the
deployment information is pushed to your GitOps repository.

If you follow these instructions without pull requests in the GitOps workflow, the config-writer
pods that commit deployment information to the GitOps repository might fail because of
concurrency conflicts. A workaround for this is to delete the failed workloads from the build cluster
and re-run the command provided in these instructions.

Create the Istio ingress resources

The authorization server requires a publicly accessible URL and must be available before the Spring
Cloud Gateway can deploy properly. The authorization server is deployed at the URI authserver app
domain.

You must create a domain name system address (DNS A) record in your DNS provider’s
configuration tool to point to the Istio load-balanced IP address of RunCluster01. The DNS
configuration is out of the scope of this topic.

Create the Istio ingress resources by running:

ytt -f istioGateway.yaml -v workloadNamespace=WORKLOAD-NAMESPACE -v \

appDomainName=APP-DOMAIN | kubectl apply -f-

Where:

WORKLOAD-NAMESPACE is the name of your build namespace

APP-DOMAIN is the application’s DNS domain

For example:

ytt -f https://raw.githubusercontent.com/gm2552/acme-fitness-tap-tsm/main/istioGatewa

y.yaml -v \

workloadNamespace=acme -v appDomainName=tsmdemo.perfect300rock.com | kubectl apply -f-

Deploy Redis

Tanzu Application Platform v1.5

VMware by Broadcom 488

A Redis instance is needed for caching the ACME fitness store cart service. Deploy the Redis
instance by running:

ytt -f https://raw.githubusercontent.com/gm2552/acme-fitness-tap-tsm/main/redis.yaml -

v \

workloadNamespace=WORKLOAD-NAMESPACE -v redisPassword=REDIS-PASSWORD | kb apply -f-

Where:

WORKLOAD-NAMESPACE is the namespace where the workloads will be deployed

REDIS-PASSWORD is your password

For example:

ytt -f https://raw.githubusercontent.com/gm2552/acme-fitness-tap-tsm/main/redis.yaml -

v \

workloadNamespace=acme -v redisPassword=fitness | kubectl apply -f-

Run cluster deployment

Workloads are deployed to the run cluster by using deliverable resources. In this section you apply
the deliverable resources directly to the run clusters, instead of using a kapp application. This
deployment assumes that two clusters are part of the Tanzu Service Mesh GNS ACME. In this
example these clusters are named RunCluster01 and RunCluster02.

The deliverable objects reference the GitOps repository, where the build cluster has written
deployment information, and need to reference this repository in the following commands.

To deploy the workloads to the run clusters, run these commands against their respective clusters:

ytt -f cluster01Deliverables.yaml -v workloadNamespace=WORKLOAD-NAMESPACE -v \

gitOpsSecret=GIT-OPS-SECRET -v gitOpsRepo=GIT-OPS-REPO | kubectl apply -f-

Where:

WORKLOAD-NAMESPACE is the namespace where the workloads will be deployed

GIT-OPS-SECRET is the GitOps secret used to access the GitOps repository

GIT-OPS-REPO is the URL of the GitOps repository where the build cluster wrote out
deployment configuration information

ytt -f cluster02Deliverables.yaml -v workloadNamespace=WORKLOAD-NAMESPACE -v \

gitOpsSecret=GIT-OPS-SECRET -v gitOpsRepo=GIT-OPS-REPO | kubectl apply -f-

Where:

WORKLOAD-NAMESPACE is the namespace where the workloads will be deployed

GIT-OPS-SECRET is the GitOps secret used to access the GitOps repository

GIT-OPS-REPO is the URL of the GitOps repository where the build cluster wrote out
deployment configuration information

For the RunCluster01 example, run:

ytt -f https://raw.githubusercontent.com/gm2552/acme-fitness-tap-tsm/main/cluster01Del

iverables.yaml \

-v workloadNamespace=acme -v gitOpsSecret=tap-play-gitops-secret -v \

gitOpsRepo=https://github.com/gm2552/tap-play-gitops.git | kubectl apply -f-

For the RunCluster02 example, run:

Tanzu Application Platform v1.5

VMware by Broadcom 489

ytt -f https://raw.githubusercontent.com/gm2552/acme-fitness-tap-tsm/main/cluster02Del

iverables.yaml \

-v workloadNamespace=acme -v gitOpsSecret=tap-play-gitops-secret -v \

gitOpsRepo=https://github.com/gm2552/tap-play-gitops.git | kubectl apply -f-

Deploy Spring Cloud Gateway

The following sections describe how to deploy Spring Cloud Gateway.

Install the Spring Cloud Gateway package

The section requires the Spring Cloud Gateway for Kubernetes package to be installed on
RunCluster01. If Spring Cloud Gateway is already installed on the run cluster, skip these install
steps.

In Tanzu Application Platform v1.5 and later, Spring Cloud Gateway is included as an optional
package in the Tanzu Application Platform Carvel bundle. Install the Spring Cloud Gateway package
with the default settings by using this Tanzu CLI template:

tanzu package install scg –-package spring-cloud-gateway.tanzu.vmware.com \

-version VERSION-NUMBER -n TAP-INSTALL-NAMESPACE

For example:

tanzu package install scg --package spring-cloud-gateway.tanzu.vmware.com \

--version 2.0.0-tap.3 -n tap-install

Configure the Spring Cloud Gateway instance and route

The Tanzu Application Platform fork of the ACME fitness store uses Spring Cloud Gateway for
routing API classes from the web front end to the microservices.

Deploy the gateway and applicable routes by running:

ytt -f scgInstance.yaml -v workloadNamespace=WORKLOAD-NAMESPACE

Where WORKLOAD-NAMESPACE is the namespace where the workload is deployed.

ytt -f scgRoutes.yaml -v workloadNamespace=WORKLOAD-NAMESPACE

Where WORKLOAD-NAMESPACE is the namespace where the workload is deployed.

For example:

ytt -f https://raw.githubusercontent.com/gm2552/acme-fitness-tap-tsm/main/scgInstance.

yaml -v \

workloadNamespace=acme | kubectl apply -f-

Caution

The Spring Cloud Gateway spec.service.name configuration was not built with
multicluster or cross-cluster support. The configuration for the gateway routes
currently implements a workaround, which is brittle in terms of where certain
services are deployed. Future releases of the gateway might have better support
for this use case.

Tanzu Application Platform v1.5

VMware by Broadcom 490

ytt -f https://raw.githubusercontent.com/gm2552/acme-fitness-tap-tsm/main/scgRoutes.ya

ml -v \

workloadNamespace=acme | kubectl apply -f-

Create a global namespace

The example clusters are named RunCluster01 and RunCluster02, and they assume a workload
namespace of ACME.

1. Open the Tanzu Service Mesh console and create a new global namespace.

2. Configure the following settings in each step:

1. General details

GNS name: acme-tap

Domain: acme-tap.lab

2. Namespace mapping

Namespace mapping Rule 1

Cluster name: RunCluster01

Namespace: acme

Namespace Mapping Rule 2

Cluster name: RunCluster02

Namespace: acme

3. Autodiscovery. Use the default settings.

4. Public Services

No Public service

5. Global server load-balancing and resiliency. Use the default settings.

You can access the application by going to the URL http://acme-fitness.

Set up Tanzu Service Mesh

This topic tells you how to set up a Tanzu Application Platform application deployed on Kubernetes
with Tanzu Service Mesh (commonly called TSM).

Sample applications are used to demonstrate how a global namespace can provide a network for
Kubernetes workloads that are connected and secured within and across clusters, and across
clouds.

Prerequisites

Meet the prerequisites, which includes having

A supported Kubernetes platform

The correct resource configuration (number of nodes, CPUs, RAM, and so on)

The required connectivity requirements

Connectivity is only required from your local clusters out to Tanzu Service Mesh and not inwards.
This can traverse a corporate proxy as well. In addition, connectivity in the data plane is required
between the clusters that must communicate, specifically egress to ingress gateways. No data
plane traffic needs to reach the Tanzu Service Mesh software as a service (SaaS) management
plane.

Tanzu Application Platform v1.5

VMware by Broadcom 491

https://docs.vmware.com/en/VMware-Tanzu-Service-Mesh/services/tanzu-service-mesh-environment-requirements-and-supported-platforms/GUID-D0B939BE-474E-4075-9A65-3D72B5B9F237.html

Activate your Tanzu Service Mesh subscription

Activate your Tanzu Service Mesh subscription at cloud.vmware.com. After purchasing your Tanzu
Service Mesh subscription, the VMware Cloud team sends you instructions. If you don’t receive
them, you can follow these instructions.

Onboard your clusters to Tanzu Service Mesh as described later in this topic. This deploys the
Tanzu Service Mesh local control plane and OSS Istio on your Kubernetes cluster and connects the
local control plane to your Tanzu Service Mesh tenant.

Set up Tanzu Application Platform

To enable Tanzu Service Mesh support in Tanzu Application Platform Build clusters:

1. Add the following key to tap-values.yaml under the buildservice top-level key:

buildservice:

 injected_sidecar_support: true

2. Install Tanzu Application Platform on the run cluster.

End-to-end workload build and deployment scenario

The following sections describe how to build and deploy a workload.

Apply a workload resource to a build cluster

Workloads can be built by using a Tanzu Application Platform supply chain by applying a workload
resource to a build cluster. At this time, Tanzu Service Mesh and Tanzu Application Platform cannot
use the Knative resources that are the default runtime target when using the web resource type.

In Tanzu Application Platform v1.4 and later, two workload types support a Tanzu Service Mesh and
Tanzu Application Platform integration: server and worker.

To work with Tanzu Service Mesh, web workloads must be converted to the server or worker
workload type. Server workloads cause a Kubernetes Deployment resource to be created with a
Service resource that uses port 8080 by default.

1. If the service port that you want is 80 or some other port, add port information to
workload.yaml. The following example YAML snippets show the changes to make from the

Tanzu Application Platform v1.5

VMware by Broadcom 492

https://www.vmware.com/cloud-solutions.html
https://pathfinder.vmware.com/v3/path/tsm_activation

web to server workload type. This is an example before applying the changes:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

 name: hungryman

 labels:

 apps.tanzu.vmware.com/workload-type: web

 app.kubernetes.io/part-of: hungryman-api-gateway

spec:

 params:

 - name: annotations

value:

autoscaling.knative.dev/minScale: "1"

 source:

 git:

 url: https://github.com/gm2552/hungryman.git

 ref:

 branch: main

 subPath: hungryman-api-gateway

This is an example modified for Tanzu Service Mesh, which includes the removal of the
autoscaling annotation:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

 name: hungryman

 labels:

 apps.tanzu.vmware.com/workload-type: server # modification

 app.kubernetes.io/part-of: hungryman-api-gateway

spec:

 params:

 - name: ports # modification

 value:

 - port: 80 # modification

 containerPort: 8080 # modification

 name: http # modification

 source:

 git:

 url: https://github.com/gm2552/hungryman.git

 ref:

 branch: main

 subPath: hungryman-api-gateway

This results in a deployment and a service that listens on port 80 and forwards traffic to port
8080 on the pod’s workload container.

2. Submit the modified YAML to your build cluster by running:

tanzu apps NAMESPACE apply --file WORKLOAD-YAML-FILE

Where:

NAMESPACE is the namespace that the build cluster uses for building.

WORKLOAD-YAML-FILE is the name of your workload YAML file, such as
workload.yaml.

After your workload is built a Deliverable resource is created.

Configure egress for Tanzu Build Service

Tanzu Application Platform v1.5

VMware by Broadcom 493

For Tanzu Build Service to properly work, provide egress to access the registry where Tanzu Build
Service writes application images, and define the registry in the kp_default_repository key and
the Tanzu Application Platform install registry.

Additionally, configure egress for buildpack builds to download any required dependencies. This
configuration varies with different buildpacks and language environments. For example, Java builds
might need to download dependencies from Maven central.

Create a global namespace

Using the Tanzu Service Mesh portal or API, create a global namespace (GNS) that includes the
namespaces where your application components are deployed. For more information, see Global
Namespaces

Whether in a single cluster or multiple clusters, or within the same site or across clouds, after you
add a namespace selection to the GNS, the services that Tanzu Application Platform deploys are
connected based on the GNS configuration for service discovery and connectivity policies.

If a service must be accessible through the ingress from the outside, it can be configured through
the public service option in Tanzu Service Mesh or directly through Istio on the clusters where that
service resides. It’s best practice to configure the service’s accessibility through the GNS.

Run cluster deployment

Before deploying a workload to a run cluster, ensure that any prerequisite resources have already
been created on the run cluster. This includes concepts such as data, messaging, routing, security
services, RBAC, ResourceClaims, and so on.

After a successful build in a build cluster, workloads can be deployed to the run cluster by applying
resulting deliverable resources to the run cluster as described in Getting Started with Multicluster
Tanzu Application Platform.

Another option is to create a kapp application that references a GitOps repository to include all
deliverable resources for a given cluster. See the following example of a kapp definition that points
to a GitOps repository:

apiVersion: kappctrl.k14s.io/v1alpha1

kind: App

metadata:

 name: deliverable-gitops

 namespace: hungryman

spec:

 serviceAccountName: default

 fetch:

 - git:

 url: https://github.com/gm2552/tap-play-gitops

 ref: origin/deliverables-tap-east01

 subPath: config

 template:

 - ytt: {}

 deploy:

 - kapp: {}

The advantage of this model is that applications can be deployed or uninstalled from a cluster by
managing the contents of the deliverable resources from within the GitOps repository and enabling
a GitOps workflow for application and service change control.

Deployment use case: Hungryman

Tanzu Application Platform v1.5

VMware by Broadcom 494

https://docs.vmware.com/en/VMware-Tanzu-Service-Mesh/services/concepts-guide/GUID-9E3F1F90-4310-415B-98C8-C06E59B8A5EE.html

The following instructions describe an end-to-end process for configuring, building, and deploying
the Hungryman application into a Tanzu Service Mesh global namespace.

These instructions use the default configuration of Hungryman, which consists of only needing a
single-node RabbitMQ cluster, an in-memory database, and no security. The application is deployed
across two Tanzu Application Platform run clusters. It requires the ytt command to execute the
build and deployment commands.

The configuration resources referenced in this scenario are located in the hungryman-tap-tsm
GitHub repository.

Create an initial set of configuration files from the accelerator

This use case deployment includes a pre-built set of configuration files in a Git repository. However,
they were created from a set of configuration files by using a bootstrapped process that uses the
Hungryman accelerator, and were later modified.

For reference, you can create an initial set of configuration files from the Hungryman accelerator,
which is available in Tanzu Application Platform v1.3.

This section does not include instructions for modifying the configuration files from the accelerator
into configuration files used in a later section.

From the accelerator, accept all of the default options with the following exceptions:

Workload namespace: Update this field with the name of the namespace you will use to
build the application in your build cluster

Service namespace: Update this field with the name of the namespace you will use to
deploy a RabbitMQ cluster on your Tanzu Application Platform run cluster

Apply the workload resources to your build cluster

To build the application services, run the following command to apply the workload resources to
your build cluster. You can also clone or fork the repository in this command to either use the
YAML files locally or point to your own Git repository.

ytt -f workloads.yaml -v workloadNamespace=WORKLOAD-NAMESPACE | kubectl apply -f-

Where WORKLOAD-NAMESPACE is the name of your build namespace

For example:

ytt -f https://raw.githubusercontent.com/gm2552/hungryman-tap-tsm/main/workloads.yaml

\

-v workloadNamespace=workloads | kubectl apply -f-

If you are using a GitOps workflow with your build cluster, after the workloads are built the
deployment information is pushed to your GitOps repository.

If you follow these instructions without pull requests in the GitOps workflow, the config-writer pods
that commit deployment information to the GtiOps repository might fail because of concurrency
conflicts. A workaround for this is to delete the failed workloads from the build cluster and re-run
the command provided in the instructions.

Install service claim resources on the cluster

Hungryman requires a RabbitMQ cluster installed on your run cluster. You must install RabbitMQ on
the same run cluster that is named RunCluster01 in the following deployment section. Additionally,
you must install service claim resources on this cluster.

Tanzu Application Platform v1.5

VMware by Broadcom 495

https://github.com/gm2552/hungryman-tap-tsm

1. If you haven’t already done so, install the RabbitMQ Cluster Operator on the run cluster by
running:

kubectl apply -f "https://github.com/rabbitmq/cluster-operator/releases/downloa

d/v1.13.1/cluster-operator.yml"

2. Spin up an instance of a RabbitMQ cluster by running:

kubectl create ns SERVICE-NAMESPACE

ytt -f rmqCluster.yaml -v serviceNamespace=SERVICE-NAMESPACE | kubectl apply -f

-

Where SERVICE-NAMESPACE is the namespace of where you want to deploy your RabbitMQ
cluster

For example:

kubectl create ns service-instances

ytt -f https://raw.githubusercontent.com/gm2552/hungryman-tap-tsm/main/rmqClust

er.yaml -v \

serviceNamespace=service-instances | kubectl apply -f-

3. Create service toolkit resources for the RabbitMQ class and resource claim by running:

ytt -f rmqResourceClaim.yaml -v serviceNamespace=SERVICE-NAMESPACE -v \

workloadNamespace=WORKLOAD-NAMESPACE | kubectl apply -f-

Where SERVICE-NAMESPACE and WORKLOAD-NAMESPACE are the namespaces where you
deployed your RabbitMQ cluster and the namespace where the application service will run.

For example:

ytt -f https://raw.githubusercontent.com/gm2552/hungryman-tap-tsm/main/rmqResou

rceClaim.yaml \

-v serviceNamespace=service-instances -v workloadNamespace=hungryman | kubectl

apply -f-

Run cluster deployment

Workloads are deployed to the run cluster using deliverable resources. This section applies the
deliverable resources directly to the run clusters instead of using a kapp application.

This deployment assumes that two clusters are part of the Tanzu Service Mesh GNS Hungryman.
These example clusters are named RunCluster01 and RunCluster02. The majority of the workload is
deployed to RunCluster01 while the crawler workload is deployed to RunCluster02.

The deliverable objects reference the GitOps repository, where the build cluster has written
deployment information, and needs to reference this repository in the following commands.

Deploy the workloads to the run clusters by running these commands against their respective
clusters:

ytt -f cluster01Deliverables.yaml -v workloadNamespace=WORKLOAD-NAMESPACE -v \

gitOpsSecret=GIT-OPS-SECRET -v gitOpsRepo=GIT-OPS-REPO | kubectl apply -f-

Where:

WORKLOAD-NAMESPACE is the namespace where the workloads are deployed

GIT-OPS-SECRET is the GitOps secret used to access the GitOps repository

Tanzu Application Platform v1.5

VMware by Broadcom 496

GIT-OPS-REPO is the URL of the GitOps repository where the build cluster wrote out
deployment configuration information

ytt -f cluster02Deliverables.yaml -v workloadNamespace=WORKLOAD-NAMESPACE -v \

gitOpsSecret=GIT-OPS-SECRET -v gitOpsRepo=GIT-OPS-REPO | kubectl apply -f-

Where:

WORKLOAD-NAMESPACE is the namespace where the workloads are deployed

GIT-OPS-SECRET is the GitOps secret used to access the GitOps repository

GIT-OPS-REPO is the URL of the GitOps repository where the build cluster wrote out
deployment configuration information

To run this deployment on cluster RunCluster01, for example, you run:

ytt -f https://raw.githubusercontent.com/gm2552/hungryman-tap-tsm/main/cluster01Delive

rables.yaml -v \

workloadNamespace=hungryman -v gitOpsSecret=tap-play-gitops-secret -v \

gitOpsRepo=https://github.com/gm2552/tap-play-gitops.git | kubectl apply -f-

To run this deployment on cluster RunCluster02, for example, you run:

ytt -f https://raw.githubusercontent.com/gm2552/hungryman-tap-tsm/main/cluster02Delive

rables.yaml -v \

workloadNamespace=hungryman -v gitOpsSecret=tap-play-gitops-secret -v \

gitOpsRepo=https://github.com/gm2552/tap-play-gitops.git | kubectl apply -f-

You can create an Istio ingress resource on RunCluster01 if you do not plan on using the GNS
capabilities to expose the application to external networks.

You must create a domain name system address (DNS A) record in your DNS provider’s
configuration tool to point to the Istio load-balanced IP address of RunCluster01. The DNS
configuration is out of the scope of this topic.

Create the ingress by running:

ytt -f ingress.yaml -v workloadNamespace=WORKLOAD-NAMESPACE -v domainName=DOMAIN-NAME

| kubectl apply -f-

Where:

WORKLOAD-NAMESPACE is the namespace where the workload is deployed

DOMAIN-NAME is the public domain that will host your application

For example:

ytt -f https://raw.githubusercontent.com/gm2552/hungryman-tap-tsm/main/ingress.yaml -v

\

workloadNamespace=hungryman -v domainName=tsmdemo.perfect300rock.com | kubectl apply -

f-

Create a global namespace

The example clusters have the names RunCluster01 and RunCluster02, and they assume the
workload and service namespaces of Hungryman and service-instances, respectively.

1. Open the Tanzu Service Mesh console and create a new GNS.

2. Configure the following settings in each step:

1. General details

Tanzu Application Platform v1.5

VMware by Broadcom 497

GNS Name: hungryman

Domain: hungryman.lab

2. Namespace mapping

Namespace mapping Rule 1

Cluster name: RunCluster01

Namespace: hungryman

Namespace Mapping Rule 2

Cluster name: RunCluster02

Namespace: hungryman

Namespace Mapping Rule 3

Cluster name: RunCluster01

Namespace: service-instances

3. Autodiscovery. Use the default settings.

4. Public services

Service name: hungryman

Service port: 80

Public URL: http hungryman . Select a domain.

5. Global server load balancing and resiliency. Use the default settings.

You can now access the Hungryman application with the URL configured earlier.

Deployment use case: ACME Fitness Store
The following instructions describe an end-to-end process for configuring, building, and deploying
the ACME Fitness Store application into a Tanzu Service Mesh GNS. In this use case, the
application is deployed across two Tanzu Application Platform run clusters. ytt is used to run the
build and deployment commands.

The configuration resources referenced in this scenario are in the acme-fitness-tap-tsm Git
repository.

Deploy AppSSO

ACME requires the use of an AppSSO authorization server and client registration resource. Install
these resources on the same run cluster that is named RunCluster01 in the deployment section.

1. Deploy the authorization server instance by running:

ytt -f appSSOInstance.yaml -v workloadNamespace=WORKLOAD-NAMESPACE \

-v devDefaultAccountUsername=DEV-DEFAULT-ACCOUNT-USERNAME -v \

devDefaultAccountPassword=DEV-DEFAULT-ACCOUNT-PASSWORD | kubectl apply -f-

Where:

WORKLOAD-NAMESPACE is the namespace where the workloads will be deployed

DEV-DEFAULT-ACCOUNT-USERNAME is the user name for the ACME application
authentication

DEV-DEFAULT-ACCOUNT-PASSWORD is the password for the ACME application
authentication

For example:

Tanzu Application Platform v1.5

VMware by Broadcom 498

https://github.com/gm2552/acme-fitness-tap-tsm

ytt -f https://raw.githubusercontent.com/gm2552/acme-fitness-tap-tsm/main/appSS

OInstance.yaml -v \

workloadNamespace=acme -v devDefaultAccountUsername=acme -v \

devDefaultAccountPassword=fitness | kubectl apply -f-

2. Create a ClientRegistration resource by running:

ytt -f appSSOInstance.yaml -v workloadNamespace=WORKLOAD-NAMESPACE -v \

appSSORedirectURI=APP-SSO-REDIRECT-URI | kubectl apply –f-

Where:

WORKLOAD-NAMESPACE is the namespace where the workloads will be deployed.

APP-SSO-REDIRECT-URI is the public URI that the authorization server redirects to
after a login

For example:

ytt -f https://raw.githubusercontent.com/gm2552/acme-fitness-tap-tsm/main/clien

tRegistrationResourceClaim.yaml \

-v workloadNamespace=acme -v \

appSSORedirectURI=http://acme-fitness.tsmdemo.perfect300rock.com/login/oauth2/c

ode/sso | kubectl apply -f-

3. Obtain the appSSO Issuer URI by running:

kubectl get authserver -n WORKLOAD-NAMESPACE

Where WORKLOAD-NAMESPACE is the name of the namespace where the workloads will be
deployed.

4. Record the Issuer URI because you need it for the next section.

Apply the workload resources to your build cluster

To build the application services, run the following command to apply the workload resources to
your build cluster. You can also clone or fork the repository in the following command to either use
the YAML files locally or point to your own Git repository.

ytt -f workloads.yaml -v workloadNamespace=WORKLOAD-NAMESPACE -v \

appSSOIssuerURI=APP-SSO-ISSUER-URL | kubectl apply -f-

Where:

WORKLOAD-NAMESPACE is the name of your build namespace

APP-SSO-ISSUER-URL is the URL of the AppSSO authorization server that you deployed
earlier

For example:

ytt -f https://raw.githubusercontent.com/gm2552/acme-fitness-tap-tsm/main/workloads.ya

ml -v \

workloadNamespace=workloads -v \

appSSOIssuerURI=http://appsso-acme-fitness.acme.tsmdemo.perfect300rock.com | kubectl a

pply -f-

If you are using a GitOps workflow with your build cluster then, after building the workloads, the
deployment information is pushed to your GitOps repository.

Tanzu Application Platform v1.5

VMware by Broadcom 499

If you follow these instructions without pull requests in the GitOps workflow, the config-writer
pods that commit deployment information to the GitOps repository might fail because of
concurrency conflicts. A workaround for this is to delete the failed workloads from the build cluster
and re-run the command provided in these instructions.

Create the Istio ingress resources

The authorization server requires a publicly accessible URL and must be available before the Spring
Cloud Gateway can deploy properly. The authorization server is deployed at the URI authserver app
domain.

You must create a domain name system address (DNS A) record in your DNS provider’s
configuration tool to point to the Istio load-balanced IP address of RunCluster01. The DNS
configuration is out of the scope of this topic.

Create the Istio ingress resources by running:

ytt -f istioGateway.yaml -v workloadNamespace=WORKLOAD-NAMESPACE -v \

appDomainName=APP-DOMAIN | kubectl apply -f-

Where:

WORKLOAD-NAMESPACE is the name of your build namespace

APP-DOMAIN is the application’s DNS domain

For example:

ytt -f https://raw.githubusercontent.com/gm2552/acme-fitness-tap-tsm/main/istioGatewa

y.yaml -v \

workloadNamespace=acme -v appDomainName=tsmdemo.perfect300rock.com | kubectl apply -f-

Deploy Redis

A Redis instance is needed for caching the ACME fitness store cart service. Deploy the Redis
instance by running:

ytt -f https://raw.githubusercontent.com/gm2552/acme-fitness-tap-tsm/main/redis.yaml -

v \

workloadNamespace=WORKLOAD-NAMESPACE -v redisPassword=REDIS-PASSWORD | kb apply -f-

Where:

WORKLOAD-NAMESPACE is the namespace where the workloads will be deployed

REDIS-PASSWORD is your password

For example:

ytt -f https://raw.githubusercontent.com/gm2552/acme-fitness-tap-tsm/main/redis.yaml -

v \

workloadNamespace=acme -v redisPassword=fitness | kubectl apply -f-

Run cluster deployment

Workloads are deployed to the run cluster by using deliverable resources. In this section you apply
the deliverable resources directly to the run clusters, instead of using a kapp application. This
deployment assumes that two clusters are part of the Tanzu Service Mesh GNS ACME. In this
example these clusters are named RunCluster01 and RunCluster02.

Tanzu Application Platform v1.5

VMware by Broadcom 500

The deliverable objects reference the GitOps repository, where the build cluster has written
deployment information, and need to reference this repository in the following commands.

To deploy the workloads to the run clusters, run these commands against their respective clusters:

ytt -f cluster01Deliverables.yaml -v workloadNamespace=WORKLOAD-NAMESPACE -v \

gitOpsSecret=GIT-OPS-SECRET -v gitOpsRepo=GIT-OPS-REPO | kubectl apply -f-

Where:

WORKLOAD-NAMESPACE is the namespace where the workloads will be deployed

GIT-OPS-SECRET is the GitOps secret used to access the GitOps repository

GIT-OPS-REPO is the URL of the GitOps repository where the build cluster wrote out
deployment configuration information

ytt -f cluster02Deliverables.yaml -v workloadNamespace=WORKLOAD-NAMESPACE -v \

gitOpsSecret=GIT-OPS-SECRET -v gitOpsRepo=GIT-OPS-REPO | kubectl apply -f-

Where:

WORKLOAD-NAMESPACE is the namespace where the workloads will be deployed

GIT-OPS-SECRET is the GitOps secret used to access the GitOps repository

GIT-OPS-REPO is the URL of the GitOps repository where the build cluster wrote out
deployment configuration information

For the RunCluster01 example, run:

ytt -f https://raw.githubusercontent.com/gm2552/acme-fitness-tap-tsm/main/cluster01Del

iverables.yaml \

-v workloadNamespace=acme -v gitOpsSecret=tap-play-gitops-secret -v \

gitOpsRepo=https://github.com/gm2552/tap-play-gitops.git | kubectl apply -f-

For the RunCluster02 example, run:

ytt -f https://raw.githubusercontent.com/gm2552/acme-fitness-tap-tsm/main/cluster02Del

iverables.yaml \

-v workloadNamespace=acme -v gitOpsSecret=tap-play-gitops-secret -v \

gitOpsRepo=https://github.com/gm2552/tap-play-gitops.git | kubectl apply -f-

Deploy Spring Cloud Gateway

The following sections describe how to deploy Spring Cloud Gateway.

Install the Spring Cloud Gateway package

The section requires the Spring Cloud Gateway for Kubernetes package to be installed on
RunCluster01. If Spring Cloud Gateway is already installed on the run cluster, skip these install
steps.

In Tanzu Application Platform v1.5 and later, Spring Cloud Gateway is included as an optional
package in the Tanzu Application Platform Carvel bundle. Install the Spring Cloud Gateway package
with the default settings by using this Tanzu CLI template:

tanzu package install scg –-package spring-cloud-gateway.tanzu.vmware.com \

-version VERSION-NUMBER -n TAP-INSTALL-NAMESPACE

For example:

Tanzu Application Platform v1.5

VMware by Broadcom 501

tanzu package install scg --package spring-cloud-gateway.tanzu.vmware.com \

--version 2.0.0-tap.3 -n tap-install

Configure the Spring Cloud Gateway instance and route

The Tanzu Application Platform fork of the ACME fitness store uses Spring Cloud Gateway for
routing API classes from the web front end to the microservices.

Deploy the gateway and applicable routes by running:

ytt -f scgInstance.yaml -v workloadNamespace=WORKLOAD-NAMESPACE

Where WORKLOAD-NAMESPACE is the namespace where the workload is deployed.

ytt -f scgRoutes.yaml -v workloadNamespace=WORKLOAD-NAMESPACE

Where WORKLOAD-NAMESPACE is the namespace where the workload is deployed.

For example:

ytt -f https://raw.githubusercontent.com/gm2552/acme-fitness-tap-tsm/main/scgInstance.

yaml -v \

workloadNamespace=acme | kubectl apply -f-

ytt -f https://raw.githubusercontent.com/gm2552/acme-fitness-tap-tsm/main/scgRoutes.ya

ml -v \

workloadNamespace=acme | kubectl apply -f-

Create a global namespace

The example clusters are named RunCluster01 and RunCluster02, and they assume a workload
namespace of ACME.

1. Open the Tanzu Service Mesh console and create a new global namespace.

2. Configure the following settings in each step:

1. General details

GNS name: acme-tap

Domain: acme-tap.lab

2. Namespace mapping

Namespace mapping Rule 1

Cluster name: RunCluster01

Namespace: acme

Namespace Mapping Rule 2

Cluster name: RunCluster02

Caution

The Spring Cloud Gateway spec.service.name configuration was not built with
multicluster or cross-cluster support. The configuration for the gateway routes
currently implements a workaround, which is brittle in terms of where certain
services are deployed. Future releases of the gateway might have better support
for this use case.

Tanzu Application Platform v1.5

VMware by Broadcom 502

Namespace: acme

3. Autodiscovery. Use the default settings.

4. Public Services

No Public service

5. Global server load-balancing and resiliency. Use the default settings.

You can access the application by going to the URL http://acme-fitness.

Tanzu Application Platform v1.5

VMware by Broadcom 503

Overview of workloads

This topic provides you with an overview of workload types in Tanzu Application Platform
(commonly known as TAP).

Workload features

Tanzu Application Platform allows you to quickly build and test applications regardless of your
familiarity with Kubernetes.

You can turn source code into a workload that runs in a container with a URL. You can also use
supply chains to build applications that process work from a message queue, or provide arbitrary
network services.

A workload allows you to choose application specifications, such as repository location,
environment variables, service binding, and so on. For more information about workload creation
and management, see Commands Details.

The Out of the Box supply chains support a range of workload types, including

Scalable web applications (web)

Traditional application servers (server)

Background applications (worker)

Serverless functions

You can use a collection of workloads of different types to deploy microservices that function as a
logical application. Alternatively, you can deploy your entire application as a single monolith.

If you build your own supply chains, you can define additional deployment methods beyond those
in the Out of the Box supply-chain templates.

Available workload types

When using the Out of the Box supply chain, the apps.tanzu.vmware.com/workload-type
annotation selects which style of deployment is suitable for your application. The valid values are:

Type Description Indicators

web Scalable web applications Scales based on request load

Automatically exposed by HTTP Ingress

Does not perform background work

Works with Service Bindings

Stateless

Quick startup time

Tanzu Application Platform v1.5

VMware by Broadcom 504

Type Description Indicators

server Traditional applications Provides HTTP or TCP services on the network

Exposed by external Ingress or LoadBalancer settings

Might perform background work from a queue

Works with Service Bindings

Fixed scaling, no disk persistence

Startup time not an issue

worker Background applications Does not provide network services

Not exposed externally as a network service

Performs background work from a queue

Works with Service Bindings

Fixed scaling, no disk persistence

Startup time not an issue

Overview of workloads
This topic provides you with an overview of workload types in Tanzu Application Platform
(commonly known as TAP).

Workload features
Tanzu Application Platform allows you to quickly build and test applications regardless of your
familiarity with Kubernetes.

You can turn source code into a workload that runs in a container with a URL. You can also use
supply chains to build applications that process work from a message queue, or provide arbitrary
network services.

A workload allows you to choose application specifications, such as repository location,
environment variables, service binding, and so on. For more information about workload creation
and management, see Commands Details.

The Out of the Box supply chains support a range of workload types, including

Scalable web applications (web)

Traditional application servers (server)

Background applications (worker)

Serverless functions

You can use a collection of workloads of different types to deploy microservices that function as a
logical application. Alternatively, you can deploy your entire application as a single monolith.

If you build your own supply chains, you can define additional deployment methods beyond those
in the Out of the Box supply-chain templates.

Available workload types
When using the Out of the Box supply chain, the apps.tanzu.vmware.com/workload-type
annotation selects which style of deployment is suitable for your application. The valid values are:

Tanzu Application Platform v1.5

VMware by Broadcom 505

Type Description Indicators

web Scalable web applications Scales based on request load

Automatically exposed by HTTP Ingress

Does not perform background work

Works with Service Bindings

Stateless

Quick startup time

server Traditional applications Provides HTTP or TCP services on the network

Exposed by external Ingress or LoadBalancer settings

Might perform background work from a queue

Works with Service Bindings

Fixed scaling, no disk persistence

Startup time not an issue

worker Background applications Does not provide network services

Not exposed externally as a network service

Performs background work from a queue

Works with Service Bindings

Fixed scaling, no disk persistence

Startup time not an issue

Use web workloads

This topic tells you how to use the web workload type in Tanzu Application Platform (commonly
known as TAP).

Overview

The web workload type allows you to deploy web applications on Tanzu Application Platform. Using
an application workload specification, you can turn source code into a scalable, stateless application
that runs in a container with an automatically-assigned URL. This type of application is often called
serverless, and is deployed using Knative.

The web workload type is suitable for modern stateless web applications that follow the twelve-
factor app methodology and have the following characteristics:

Perform all work through HTTP requests, including gRPC and WebSocket

Do not perform work except when processing a request

Start up quickly

Store state in external databases instead of storing state locally

Applications using the web workload type have the following features:

Automatic request-based scaling, including scale-to-zero

Automatic URL provisioning and optional certificate provisioning

Automatic health-check definitions, if not provided by a convention

Blue-green application rollouts

Tanzu Application Platform v1.5

VMware by Broadcom 506

https://12factor.net/

When creating a workload with the tanzu apps workload create command, you can use the --
type=web argument to select the web workload type. For more information, see Use the web
Workload Type later in this topic.

You can also use the apps.tanzu.vmware.com/workload-type:web label in the YAML workload
description to support this deployment type.

Use the web workload type

The tanzu-java-web-app workload mentioned in Deploy an app on Tanzu Application Platform is a
good match for the web workload type. It is a good match because it serves HTTP requests and
does not perform any background processing.

You can experiment with the differences between the web and server workload types by changing
the workload type. To change the workload type run:

tanzu apps workload apply tanzu-java-web-app --type=server

After changing the workload type to server, the application does not auto-scale or expose an
external URL. For more information about the server workload type, see Use Server workloads.

Switch back to the web workload by running:

tanzu apps workload apply tanzu-java-web-app --type=web

Use this to test which applications can function well as serverless web applications, and which are
more suited to the server application style.

Calling web workloads within a cluster

When a web workload type is created, a Knative service is deployed to the cluster. To access your
application, you need the URL for the route created by the Knative Service. Obtain it by running
one of these commands:

tanzu apps workload get WORKLOAD-NAME --namespace DEVELOPER-NAMESPACE

kubectl get ksvc WORKLOAD-NAME -n YOUR-DEVELOPER-NAMESPACE -ojsonpath="{status.addres

s.url}"

When calling a Knative service, both the Service name and namespace are required. This behavior
is distinct from server type workloads, which do not rely on the namespace name to establish
service to service communication between applications within the same namespace.

Example of service to service communication for web and server
workloads

You have three applications deployed to the namespace called dev-namespace:

1. A server type workload named server-workload

2. A web type workload named web-workload

3. A pod running the busybox image with curl, named busybox

Open a shell to the running container of the busybox pod and send requests to the server and web
workloads using curl. Specify the namespace for both, as follows:

kubectl exec busybox -n dev-namespace -- curl server-workload.dev-namespace.svc.cluste

r.local -v

Tanzu Application Platform v1.5

VMware by Broadcom 507

kubectl exec busybox -n dev-namespace -- curl web-workload.dev-namespace.svc.cluster.l

ocal -v

Use server workloads

This topic tells you how to use the server workload type in Tanzu Application Platform (commonly
known as TAP).

Overview

The server workload type allows you to deploy traditional network applications on Tanzu
Application Platform.

Using an application workload specification, you can build and deploy application source code to a
manually-scaled Kubernetes deployment which exposes an in-cluster Service endpoint. If required,
you can use environment-specific LoadBalancer Services or Ingress resources to expose these
applications outside the cluster.

The server workload is suitable for traditional applications, including HTTP applications, which have
the following characteristics:

Store state locally

Run background tasks outside of requests

Provide multiple network ports or non-HTTP protocols

Are not a good match for the web workload type

An application using the server workload type has the following features:

Does not natively autoscale, but you can use these applications with the Kubernetes
Horizontal Pod Autoscaler.

By default, is exposed only within the cluster using a ClusterIP service.

Uses health checks if defined by a convention.

Uses a rolling update pattern by default.

When creating a workload with the tanzu apps workload create command, you can use the --
type=server argument to select the server workload type. For more information, see Use the
server Workload Type later in this topic. You can also use the apps.tanzu.vmware.com/workload-
type:server annotation in the YAML workload description to support this deployment type.

Use the server workload type

The spring-sensors-consumer-web workload in Bind an application workload to the service instance
in the Get started guide is a good match for the server workload type.

This is because it runs continuously to extract information from a RabbitMQ queue, and stores the
resulting data locally in memory and presents it through a web UI.

In the Services Toolkit example in Bind an application workload to the service instance, you can
update the spring-sensors-consumer-web workload to use the server supply chain by changing the
workload:

tanzu apps workload apply spring-sensors-consumer-web --type=server

This shows the change in the workload label and prompts you to accept the change. After the
workload finishes the new deployment, there are a few differences:

Tanzu Application Platform v1.5

VMware by Broadcom 508

The workload no longer exposes a URL. It’s available within the cluster as spring-sensors-
consumer-web within the namespace, but you must use kubectl port-forward
service/spring-sensors-consumer-web 8080 to access the web service on port 8080.

You can set up a Kubernetes Ingress rule to direct traffic from outside the cluster to the
workload. Use an Ingress rule to specify that specific host names or paths must be routed to
the application. For more information about Ingress rules, see the Kubernetes
documentation

The workload no longer autoscales based on request traffic. For the spring-sensors-
consumer-web workload, this means that it never spawns a second instance that consumes
part of the request queue. Also, it does not scale down to zero instances.

server-specific workload parameters

In addition to the common supply chain parameters, server workloads can expose one or more
network ports from the application to the Kubernetes cluster by using the ports parameter. This
parameter is a list of port objects, similar to a Kubernetes service specification.

If you do not configure the ports parameter, the applied container conventions in the cluster
establishes the set of exposed ports.

The following configuration exposes two ports on the Kubernetes cluster under the my-app host
name:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

 name: my-app

 labels:

 apps.tanzu.vmware.com/workload-type: server

spec:

 params:

 - name: ports

 value:

 - containerPort: 2025

 name: smtp

 port: 25

 - port: 8080

 ...

This snippet configures:

One service on port 25, which is redirected to port 2025 on the application

One service on port 8080, which is routed to port 8080 on the application

You can set the ports parameter from the tanzu apps workload create command as --param-yaml
'ports=[{"port": 8080}]'.

The following values are valid within the ports argument:

Field Value

port The port on which the application is exposed to the rest of the cluster

containerPort The port on which the application listens for requests. Defaults to port if not set.

name A human-readable name for the port. Defaults to port if not set.

Expose server workloads outside the cluster

Tanzu Application Platform v1.5

VMware by Broadcom 509

https://kubernetes.io/docs/concepts/services-networking/ingress/

You have several options for exposing server workloads outside the cluster:

Expose HTTP server workloads outside the cluster manually

Define a workload type that exposes server workloads outside the cluster

Expose workloads outside the cluster using AVI L4/L7

Use server workloads

This topic tells you how to use the server workload type in Tanzu Application Platform (commonly
known as TAP).

Overview

The server workload type allows you to deploy traditional network applications on Tanzu
Application Platform.

Using an application workload specification, you can build and deploy application source code to a
manually-scaled Kubernetes deployment which exposes an in-cluster Service endpoint. If required,
you can use environment-specific LoadBalancer Services or Ingress resources to expose these
applications outside the cluster.

The server workload is suitable for traditional applications, including HTTP applications, which have
the following characteristics:

Store state locally

Run background tasks outside of requests

Provide multiple network ports or non-HTTP protocols

Are not a good match for the web workload type

An application using the server workload type has the following features:

Does not natively autoscale, but you can use these applications with the Kubernetes
Horizontal Pod Autoscaler.

By default, is exposed only within the cluster using a ClusterIP service.

Uses health checks if defined by a convention.

Uses a rolling update pattern by default.

When creating a workload with the tanzu apps workload create command, you can use the --
type=server argument to select the server workload type. For more information, see Use the
server Workload Type later in this topic. You can also use the apps.tanzu.vmware.com/workload-
type:server annotation in the YAML workload description to support this deployment type.

Use the server workload type

The spring-sensors-consumer-web workload in Bind an application workload to the service instance
in the Get started guide is a good match for the server workload type.

This is because it runs continuously to extract information from a RabbitMQ queue, and stores the
resulting data locally in memory and presents it through a web UI.

In the Services Toolkit example in Bind an application workload to the service instance, you can
update the spring-sensors-consumer-web workload to use the server supply chain by changing the
workload:

tanzu apps workload apply spring-sensors-consumer-web --type=server

Tanzu Application Platform v1.5

VMware by Broadcom 510

This shows the change in the workload label and prompts you to accept the change. After the
workload finishes the new deployment, there are a few differences:

The workload no longer exposes a URL. It’s available within the cluster as spring-sensors-
consumer-web within the namespace, but you must use kubectl port-forward
service/spring-sensors-consumer-web 8080 to access the web service on port 8080.

You can set up a Kubernetes Ingress rule to direct traffic from outside the cluster to the
workload. Use an Ingress rule to specify that specific host names or paths must be routed to
the application. For more information about Ingress rules, see the Kubernetes
documentation

The workload no longer autoscales based on request traffic. For the spring-sensors-
consumer-web workload, this means that it never spawns a second instance that consumes
part of the request queue. Also, it does not scale down to zero instances.

server-specific workload parameters

In addition to the common supply chain parameters, server workloads can expose one or more
network ports from the application to the Kubernetes cluster by using the ports parameter. This
parameter is a list of port objects, similar to a Kubernetes service specification.

If you do not configure the ports parameter, the applied container conventions in the cluster
establishes the set of exposed ports.

The following configuration exposes two ports on the Kubernetes cluster under the my-app host
name:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

 name: my-app

 labels:

 apps.tanzu.vmware.com/workload-type: server

spec:

 params:

 - name: ports

 value:

 - containerPort: 2025

 name: smtp

 port: 25

 - port: 8080

 ...

This snippet configures:

One service on port 25, which is redirected to port 2025 on the application

One service on port 8080, which is routed to port 8080 on the application

You can set the ports parameter from the tanzu apps workload create command as --param-yaml
'ports=[{"port": 8080}]'.

The following values are valid within the ports argument:

Field Value

port The port on which the application is exposed to the rest of the cluster

containerPort The port on which the application listens for requests. Defaults to port if not set.

name A human-readable name for the port. Defaults to port if not set.

Tanzu Application Platform v1.5

VMware by Broadcom 511

https://kubernetes.io/docs/concepts/services-networking/ingress/

Expose server workloads outside the cluster

You have several options for exposing server workloads outside the cluster:

Expose HTTP server workloads outside the cluster manually

Define a workload type that exposes server workloads outside the cluster

Expose workloads outside the cluster using AVI L4/L7

Expose HTTP server workloads outside the cluster
manually

You can expose HTTP server workloads outside the cluster by creating an Ingress resource and
using cert-manager to provision TLS-signed certificates. To do so:

1. Using the spring-sensors-consumer-web workload from Bind an application workload to the
service instance as an example, create the following Ingress:

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: spring-sensors-consumer-web

 namespace: DEVELOPER-NAMESPACE

 annotations:

 cert-manager.io/cluster-issuer: tap-ingress-selfsigned

 ingress.kubernetes.io/force-ssl-redirect: "true"

 kubernetes.io/ingress.class: contour

 kubernetes.io/tls-acme: "true"

spec:

 tls:

 - secretName: spring-sensors-consumer-web

 hosts:

 - "spring-sensors-consumer-web.INGRESS-DOMAIN"

 rules:

 - host: "spring-sensors-consumer-web.INGRESS-DOMAIN"

 http:

 paths:

 - pathType: Prefix

 path: /

 backend:

 service:

 name: spring-sensors-consumer-web

 port:

 number: 8080

Replace DEVELOPER-NAMESPACE with your developer namespace.

Replace INGRESS-DOMAIN with the domain name defined in tap-values.yaml during
the installation.

Set the annotation cert-manager.io/cluster-issuer to the shared.ingress_issuer
value configured during installation or leave it as tap-ingress-selfsigned to use the
default value.

Update the port exposed by your Service resource, which is set as 8080 in the
example.

2. Access the server workload with HTTPS:

curl -k https://spring-sensors-consumer-web.INGRESS-DOMAIN

Tanzu Application Platform v1.5

VMware by Broadcom 512

Define a workload type that exposes server workloads
outside the cluster

Tanzu Application Platform (commonly known as TAP) allows you to create new workload types.
You start by adding an Ingress resource to the server-template ClusterConfigTemplate when this
new type of workload is created.

1. Delete the Ingress resource previously created.

2. Install the yq CLI on your local machine.

3. Save the existing server-template in a local file by running:

kubectl get ClusterConfigTemplate server-template -o yaml > secure-server-templ

ate.yaml

4. Extract the .spec.ytt field from this file and create another file by running:

yq eval '.spec.ytt' secure-server-template.yaml > spec-ytt.yaml

5. In the next step, you add the Ingress resource snippet to spec-ytt.yaml. This step
provides a sample Ingress resource snippet. Make the following edits before adding the
Ingress resource snippet to spec-ytt.yaml:

Replace INGRESS-DOMAIN with the Ingress domain you set during the installation.

Set the annotation cert-manager.io/cluster-issuer to the shared.ingress_issuer
value configured during installation or leave it as tap-ingress-selfsigned to use the
default one.

This configuration is based on your workload service running on port 8080.

The Ingress resource snippet looks like this:

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: #@ data.values.workload.metadata.name

 annotations:

 cert-manager.io/cluster-issuer: tap-ingress-selfsigned

 ingress.kubernetes.io/force-ssl-redirect: "true"

 kubernetes.io/ingress.class: contour

 kubernetes.io/tls-acme: "true"

 kapp.k14s.io/change-rule: "upsert after upserting Services"

 labels: #@ merge_labels({ "app.kubernetes.io/component": "run", "carto.run/wo

rkload-name": data.values.workload.metadata.name })

spec:

 tls:

 - secretName: #@ data.values.workload.metadata.name

 hosts:

 - #@ data.values.workload.metadata.name + ".INGRESS-DOMAIN"

 rules:

 - host: #@ data.values.workload.metadata.name + ".INGRESS-DOMAIN"

 http:

 paths:

 - pathType: Prefix

 path: /

 backend:

 service:

 name: #@ data.values.workload.metadata.name

 port:

 number: 8080

Tanzu Application Platform v1.5

VMware by Broadcom 513

6. Add the Ingress resource snippet to the spec-ytt.yaml file and save. Look for the Service
resource, and insert the snippet before the last #@ end. For example:

THE TOP OF THE FILE IS NOT SHOWN

apiVersion: v1

kind: Service

metadata:

 name: #@ data.values.workload.metadata.name

 labels: #@ merge_labels({ "app.kubernetes.io/component": "run", "carto.run/wo

rkload-name": data.values.workload.metadata.name })

spec:

 selector: #@ data.values.config.metadata.labels

 ports:

 #@ hasattr(data.values.params, "ports") and len(data.values.params.ports) or

assert.fail("one or more ports param must be provided.")

 #@ declared_ports = {}

 #@ if "ports" in data.values.params:

 #@ declared_ports = data.values.params.ports

 #@ else:

 #@ declared_ports = struct.encode([{ "containerPort": 8080, "port": 8080,

"name": "http"}])

 #@ end

 #@ for p in merge_ports(declared_ports, data.values.config.spec.containers):

 - #@ p

 #@ end

NEW INGRESS RESOURCE

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: #@ data.values.workload.metadata.name

 annotations:

 cert-manager.io/cluster-issuer: tap-ingress-selfsigned

 ingress.kubernetes.io/force-ssl-redirect: "true"

 kubernetes.io/ingress.class: contour

 kubernetes.io/tls-acme: "true"

 kapp.k14s.io/change-rule: "upsert after upserting Services"

 labels: #@ merge_labels({ "app.kubernetes.io/component": "run", "carto.run/wo

rkload-name": data.values.workload.metadata.name })

spec:

 tls:

 - secretName: #@ data.values.workload.metadata.name

 hosts:

 - #@ data.values.workload.metadata.name + ".INGRESS-DOMAIN"

 rules:

 - host: #@ data.values.workload.metadata.name + ".INGRESS-DOMAIN"

 http:

 paths:

 - pathType: Prefix

 path: /

 backend:

 service:

 name: #@ data.values.workload.metadata.name

 port:

 number: 8080

END NEW INGRESS RESOURCE

#@ end

apiVersion: v1

Tanzu Application Platform v1.5

VMware by Broadcom 514

kind: ConfigMap

metadata:

 name: #@ data.values.workload.metadata.name + "-server"

 labels: #@ merge_labels({ "app.kubernetes.io/component": "config" })

data:

 delivery.yml: #@ yaml.encode(delivery())

7. Add the snippet to the .spec.ytt property in secure-server-template.yaml:

SPEC_YTT=$(cat spec-ytt.yaml) yq eval -i '.spec.ytt |= strenv(SPEC_YTT)' secure

-server-template.yaml

8. Change the name of the ClusterConfigTemplate to secure-server-template by running:

yq eval -i '.metadata.name = "secure-server-template"' secure-server-template.y

aml

9. Create the new ClusterConfigTemplate by running:

kubectl apply -f secure-server-template.yaml

10. Verify the new ClusterConfigTemplate is in the cluster by running:

kubectl get ClusterConfigTemplate

Expected output:

kubectl get ClusterConfigTemplate

NAME AGE

api-descriptors 82m

config-template 82m

convention-template 82m

secure-server-template 22s

server-template 82m

service-bindings 82m

worker-template 82m

11. Add the new workload type to the tap-values.yaml. The new workload type is named
secure-server and the cluster_config_template_name is secure-server-template.

ootb_supply_chain_basic:

 supported_workloads:

 - type: web

 cluster_config_template_name: config-template

 - type: server

 cluster_config_template_name: server-template

 - type: worker

 cluster_config_template_name: worker-template

 - type: secure-server

 cluster_config_template_name: secure-server-template

12. Update your Tanzu Application Platform installation as follows:

tanzu package installed update tap -p tap.tanzu.vmware.com --values-file \

"/path/to/your/config/tap-values.yaml" -n tap-install

13. Give privileges to the deliverable role to manage Ingress resources:

cat <<EOF | kubectl apply -f -

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

Tanzu Application Platform v1.5

VMware by Broadcom 515

 name: deliverable-with-ingress

 labels:

 apps.tanzu.vmware.com/aggregate-to-deliverable: "true"

rules:

- apiGroups:

 - networking.k8s.io

 resources:

 - ingresses

 verbs:

 - get

 - list

 - watch

 - create

 - patch

 - update

 - delete

 - deletecollection

EOF

14. Update the workload type to secure-server:

tanzu apps workload apply spring-sensors-consumer-web --type=secure-server

15. After the process finishes, verify that the resources Deployment, Service, and Ingress
appear by running:

kubectl get ingress,svc,deploy -l carto.run/workload-name=spring-sensors-consum

er-web

Expected output:

kubectl get ingress,svc,deploy -l carto.run/workload-name=tanzu-java-web-app-js

NAME CLASS HOSTS

ADDRESS PORTS AGE

ingress.networking.k8s.io/spring-sensors-consumer-web <none> spring-sensors

-consumer-web.INGRESS-DOMAIN 34.111.111.111 80, 443 37s

NAME TYPE CLUSTER-IP EXTERNAL-IP

PORT(S) AGE

service/spring-sensors-consumer-web ClusterIP 10.32.15.194 <none>

8080/TCP 36m

NAME READY UP-TO-DATE AVAILABLE

AGE

deployment.apps/spring-sensors-consumer-web 1/1 1 1

37s

16. Access your secure-server workload with HTTPS by running:

curl -k https://spring-sensors-consumer-web.INGRESS-DOMAIN

Expose workloads outside the cluster using AVI L4/L7

Note

If you created the Ingress resource manually in the previous section, delete
it before this.

Tanzu Application Platform v1.5

VMware by Broadcom 516

To expose workloads outside the cluster by using AVI L4/L7, see the Tanzu Reference
Architecture documentation.

Use worker workloads

This topic tells you how to create and install a supply chain for the worker workload type in Tanzu
Application Platform (commonly known as TAP).

Overview

The worker workload type allows you to deploy applications that run continuously without network
input on Tanzu Application Platform. Using an application workload specification, you can build and
deploy application source code to a manually scaled Kubernetes deployment with no network
exposure.

The worker workload is a good match for applications that manage their own work by reading from
a worker or a background scheduled time source, and don’t expose any network interfaces.

An application using the worker workload type has the following features:

Does not natively auto-scale but you can use it with the Kubernetes Horizontal Pod
Autoscaler

Does not expose any network services

Uses health checks if defined by a convention

Uses a rolling update pattern by default

When creating a workload with tanzu apps workload create, you can use the --type=worker
argument to select the worker workload type. For more information, see the Use the worker
Workload Type section. You can also use the apps.tanzu.vmware.com/workload-type:worker
annotation in the YAML workload description to support this deployment type.

Use the worker workload type

The spring-sensors-producer workload in the example in Consume services on Tanzu Application
Platform is a good match for the worker workload type. This is because it runs continuously without
a UI to report sensor information to a RabbitMQ topic.

If you followed the Services Toolkit example, you can update the spring-sensors-producer to use
the worker supply chain by changing the workload type. To do so, run:

tanzu apps workload apply spring-sensors-producer --type=worker

This shows a difference in the workload label, and prompts you to accept the change. After the
workload finishes the new deployment, there are a few differences:

The workload no longer has a URL. Because the workload does not present a web UI, this
more closely matches the original application intent.

The workload no longer auto-scales based on request traffic. For the spring-sensors-
producer workload, this means that it does not scale down to zero instances when there is
no request traffic.

Parameter reference

This topic tells you about the default supply chains and templates provided by Tanzu Application
Platform (commonly known as TAP). This topic describes the workload.spec.params parameters

Tanzu Application Platform v1.5

VMware by Broadcom 517

https://docs.vmware.com/en/VMware-Tanzu-Reference-Architecture/services/tanzu-solutions-workbooks/solution-workbooks-tap-workloads-avi-l4-l7.html

that are configured in workload objects, and the deliverable.spec.params parameters that are
configured in the deliverable object.

Workload Parameter Reference

The supply chains and templates provided by the Out of the Box packages contain a series of
parameters that customize supply chain behavior. This section describes the workload.spec.params
parameters that can be configured in workload objects.

The following table provides a list of supply chain resources organized by the resource in the supply
chain where they are used. Some of these resources might not be applicable depending on the
supply chain in use.

List of Supply Chain Resources for Workload Object

Supply Chain
Resource

Output Type Purpose Basic Testing Scanning

source-provider Source Fetches source code Yes Yes Yes

source-tester Source Tests source code No Yes Yes

source-scanner Source Scans source code No No Yes

image-provider Image Builds application container image Yes Yes Yes

image-scanner Image Scans application container image No No Yes

config-provider Podtemplate
spec

Tailors a pod spec based on the application image
and conventions set up in the cluster

Yes Yes Yes

app-config Kubernetes
configuration

Creates Kubernetes config files (knative
service/deployment - depending on workload
type)

Yes Yes Yes

service-bindings Kubernetes
configuration

Adds service bindings to the set of config files Yes Yes Yes

api-descriptors Kubernetes
configuration

Adds api descriptors to the set of config files Yes Yes Yes

config-writer Kubernetes
configuration

Writes configuration to a destination (git or
registry) for further deployment to a run cluster

Yes Yes Yes

deliverable Kubernetes
configuration

Writes deliverable content to be extracted for use
in a run cluster

Yes Yes Yes

For information about supply chains, see:

Out of the Box Supply Chain Basic

Out of the Box Supply Chain Testing

Out of the Box Supply Chain Testing Scanning

source-provider

The source-provider resource in the supply chain creates objects that fetch either source code or
pre-compiled Java applications depending on how the workload is configured. For more
information, see Building from Source.

GitRepository

Tanzu Application Platform v1.5

VMware by Broadcom 518

Use gitrepository when fetching source code from Git repositories. This resource makes further
resources available in the supply chain, such as the contents of the Git repository as a tarball
available in the cluster.

Parameters:

Parameter
name

Meaning Example

gitImplemen

tation

VMware recommends that you use the underlying library for fetching the
source code. Either libgit2, required for Azure DevOps, or go-git. - name:

gitImplementat

ion

 value:

libgit2

gitops_ssh_

secret

The name of the secret in the same namespace as the `Workload` used for
providing credentials for fetching source code from the Git repository. For
more information, see Git authentication.

 - name:

gitops_ssh_sec

ret

 value:

git-credential

s

It might not be necessary to change the default Git implementation, but some providers such as
Azure DevOps, require you to use libgit2 as the server-side implementation provides support only
for git’s v2 protocol.

For information about the features supported by each implementation, see Git implementation in
the Flux documentation.

For information about how to create a workload that uses a GitHub repository as the provider of
source code, see Create a workload from GitHub repository.

For more information about GitRepository objects, see Git Repository in the Flux documentation.

ImageRepository

Use the ImageRepository when fetching source code from container images. It makes the contents
of the container image available as a tarball to further resources in the supply chain. The contents
of the container image are fetched by using Git or Maven.

For more information, see Create a workload from local source code.

Parameters:

Parameter
Name

Meaning Example

serviceAcco

unt

The name of the service account (in the same namespace as the workload) to
use to provide the credentials to `ImageRepository` for fetching the container
images.

 - name:

serviceAccount

 value:

default

The --service-account flag sets the spec.serviceAccountName key in the workload object. To
configure the serviceAccount parameter, use --param serviceAccount=SERVICE-ACCOUNT.

For information about custom resource details, see the ImageRepository reference topic.

Tanzu Application Platform v1.5

VMware by Broadcom 519

https://git-scm.com/docs/protocol-v2
https://fluxcd.io/flux/components/source/gitrepositories/#git-implementation
https://fluxcd.io/flux/components/source/gitrepositories/

For information about how to use ImageRepository with the Tanzu CLI, see Create a workload.

MavenArtifact

When carrying pre-built Java artifacts, MavenArtifact makes the artifact available to further
resources in the supply chain as a tarball. You can wrap the tarball as a container image for further
deployment. Differently from git and image, its configuration is solely driven by parameters in the
workload.

Parameters:

Parameter
Name

Meaning Example

maven Points to the maven artifact to fetch and the
polling interval. - name: maven

 value:

 artifactId: springboot-ini

tial

 groupId: com.example

 version: RELEASE

 classifier: sources

optional

 type: # optional

 artifactRetryTimeout: 1m0s

optional

For information about the custom resource, see the MavenArtifact reference documentation.

For information about how to use the custom resource with the tanzu apps workload CLI plug-in,
see Create a workload from Maven repository artifact.

source-tester

The source-tester resource is in ootb-supply-chain-testing and ootb-supply-chain-testing-
scanning. This resource is responsible for instantiating a Tekton PipelineRun object that calls the
execution of a Tekton Pipeline, in the same namespace as the workload, whenever its inputs
change. For example, the source code revision that you want to test changes.

A Runnable object is instantiated to ensure that there’s always a run for a particular set of inputs.
The parameters are passed from the workload down to Runnable’s Pipeline selection mechanism
through testing_pipeline_matching_labels and the execution of the PipelineRuns through
testing_pipeline_params.

Parameters:

Parameter name Meaning Example

testing_pipeli

ne_matching_la

bels

The set of labels to use when searching for Tekton Pipeline objects in the
same namespace as the workload. By default, a Pipeline labeled as
`apps.tanzu.vmware.com/pipeline: test` is selected, but when using this
parameter, it's possible to override the behavior.

 - name:

testing_pipeli

ne_matching_la

bels

 value:

 app

s.tanzu.com/pi

peline: test

 my.c

ompany/languag

e: golang

Tanzu Application Platform v1.5

VMware by Broadcom 520

https://tekton.dev/docs/pipelines/pipelineruns/
https://cartographer.sh/docs/v0.4.0/reference/runnable/

Parameter name Meaning Example

testing_pipeli

ne_params

The set of extra parameters, aside from `source-url` and `source-revision`,
to pass to the Tekton Pipeline. The Tekton Pipeline must declare both the
required parameters `source-url` and `source-revision` and the extra ones
declared in this table.

 - name:

testing_pipeli

ne_params

 value:

 - nam

e: verbose

 valu

e: true

For information about how to set up the Workload namespace for testing with Tekton, see Out of
the Box Supply Chain with Testing.

For information about how to use the parameters to customize this resource to test using a Jenkins
cluster, see Out of the Box Supply Chain with Testing on Jenkins.

source-scanner

The source-scanner resource is available in ootb-supply-chain-testing-scanning. It scans the
source code that is tested by pointing a SourceScan object at the same source code as the tests.

You can customize behavior for both CVEs evaluation with parameters.

Parameters:

Parameter name Meaning Example

scanning_source

_template

The name of the ScanTemplate object (in the same namespace
as the workload) to use for running the scans against the source
code.

 - name: scannin

g_source_template

 value: privat

e-source-scan-templat

e

scanning_source

_policy

The name of the ScanPolicy object (in the same namespace as
the workload) to use when evaluating the scan results of a
source scan.

 - name: scannin

g_source_policy

 value: allowl

ist-policy

For more information, see Out of the Box Supply Chain with Testing and Scanning for details about
how to set up the workload namespace with the ScanPolicy and ScanTemplate required for this
resource, and SourceScan reference for details about the SourceScan custom resource.

For information about how the artifacts found during scanning are catalogued, see Supply Chain
Security Tools for Tanzu – Store.

image-provider

The image-provider in the supply chains provides a container image carrying the application already
built to further resources.

Different semantics apply, depending on how the workload is configured, for example, if using pre-
built images or building from source:

pre-built: an ImageRepository object is created aiming at providing a reference to the latest
image found matching the name as specified in workload.spec.image

Tanzu Application Platform v1.5

VMware by Broadcom 521

building from source: an image builder object is created (either Kpack’s Image or a Runnable
for creating Tekton TaskRuns for building images from Dockerfiles)

Kpack Image

Use the Kpack Image object to build a container image out of source code or pre-built Java artifact.

This makes the container image available to further resources in the supply chain through a content
addressable image reference that’s carried to the final deployment objects unchanged. For more
information, see Tanzu Build Service.

Parameters:

Parameter
name

Meaning Example

serviceAccou

nt

The name of the serviceaccount (in the same namespace as the workload)
to use for providing credentials to `Image` for pushing the container
images it builds to the configured registry.

 - name: se

rviceAccount

 value: d

efault

clusterBuild

er

The name of the Kpack cluster builder to use in the Kpack Image object
created. - name: cl

usterBuilder

 value: n

odejs-cluster-bu

ilder

buildService

Bindings

The definition of a list of service bindings to use at build time. For
example, providing credentials for fetching dependencies from
repositories that require credentials.

 - name: bu

ildServiceBindin

gs

 value:

 - nam

e: settings-xml

 kin

d: Secret

 apiV

ersion: v1

live-update Enables the use of Tilt's live-update function.
 - name: li

ve-update

 value:

"true"

The --service-account flag sets the spec.serviceAccountName key in the workload object. To
configure the serviceAccount parameter, use --param serviceAccount=SERVICE-ACCOUNT.

For information about the integration with Tanzu Build Service, see Tanzu Build Service Integration.

For information about live-update, see Developer Conventions and Overview of Tanzu Developer
Tools for IntelliJ.

For information about using Kpack builders with clusterBuilder, see Builders.

For information about buildServiceBindings, see Service Bindings.

Tanzu Application Platform v1.5

VMware by Broadcom 522

https://github.com/buildpacks-community/kpack/blob/main/docs/builders.md
https://github.com/buildpacks-community/kpack/blob/main/docs/servicebindings.md

Runnable (TaskRuns for Dockerfile-based builds)

To perform Dockerfile-based builds, all the supply chains instantiate a Runnable object that
instantiates Tekton TaskRun objects to call the execution of kaniko builds.

Parameters:

Parameter name Meaning Example

dockerfile The relative path to the Dockerfile file in the build context.
./Dockerfile

docker_build_context The relative path to the directory where the build context is.
.

docker_build_extra_a

rgs

List of flags to pass directly to Kaniko, such as providing
arguments to a build. - --build-arg=FOO

=BAR

For information about how to use Dockerfile-based builds and limitations associated with the
function, see Dockerfile-based builds.

Pre-built image (ImageRepository)

For applications that already have their container images built outside the supply chains, such as
providing an image reference under workload.spec.image, an ImageRepository object is created to
keep track of any images pushed under that name.

This makes the content-addressable name, such as the image name containing the digest, available
for further resources in the supply chain.

Parameters:

Parameter
name

Meaning Example

serviceAcco

unt

The name of the serviceaccount (in the same namespace as the workload) to
use for providing the credentials to `ImageRepository` for fetching the
container images.

 - name:

serviceAccount

 value:

default

The --service-account flag sets the spec.serviceAccountName key in the workload object. To
configure the serviceAccount parameter, use --param serviceAccount=....

For information about the ImageRepository resource, see the ImageRepository reference
documentation. For information about the prebuild image function, see Using a prebuilt image.

image-scanner

The image-scanner resource is included only in ootb-supply-chain-testing-scanning.

This resource scans a container image (either built by using the supply chain or prebuilt), persisting
the results in the store, and gating the image from moving forward in case the CVEs found are not
compliant with the ScanPolicy referenced by the ImageScan object create for doing so.

Parameters:

Tanzu Application Platform v1.5

VMware by Broadcom 523

https://github.com/GoogleContainerTools/kaniko

Parameter name Meaning Example

scanning_image_

template

The name of the ScanTemplate object (in the same namespace
as the workload) to use for running the scans against a container
image.

 - name: scanni

ng_image_template

 value: priva

te-image-scan-templa

te

scanning_image_

policy

The name of the ScanPolicy object (in the same namespace as
the workload) to use when evaluating the scan results of an
image scan.

 - name: scanni

ng_image_policy

 value: allow

list-policy

For information about the ImageScan custom resource, see ImageScan reference.

For information about how the artifacts found during scanning are catalogued, see Supply Chain
Security Tools for Tanzu – Store.

config-provider

The config-provider resource in the supply chains generates a PodTemplateSpec to use in
application configs, such as Knative services and deployments, to represent the desired pod
configuration to instantiate to run the application in containers. For more information, see
PodTemplateSpec in the Kubernetes documentation.

The config-provider resource manages a PodIntent object that represents the intention of having
PodTemplateSpec enhanced with conventions installed in the cluster whose final representation is
then passed forward to other resources to form the final deployment configuration.

Parameters:

Parameter
name

Meaning Example

serviceAcc

ount

The name of the serviceaccount (in the same namespace as the workload) to use for
providing the necessary credentials to `PodIntent` for fetching the container image
to inspect the metadata to pass to convention servers and the
serviceAccountName set in the podtemplatespec.

 - nam

e: serviceA

ccount

 val

ue: default

annotation

s

An extra set of annotations to pass down to the PodTemplateSpec.
 - nam

e: annotati

ons

 val

ue:

 n

ame: my-app

lication

 v

ersion: v1.

2.3

 t

eam: store

Tanzu Application Platform v1.5

VMware by Broadcom 524

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec

Parameter
name

Meaning Example

debug Put the workload in debug mode.
 - nam

e: debug

 val

ue: "true"

live-

update

Enable live-updating of the code (for innerloop development).
 - nam

e: live-upd

ate

 val

ue: "true"

The --service-account flag sets the spec.serviceAccountName key in the workload object. To
configure the serviceAccount parameter, use --param serviceAccount=SERVICE-ACCOUNT.

For more information about the controller behind PodIntent, see Cartographer Conventions.

For more details about the two convention servers enabled by default in Tanzu Application
Platform installations, see Developer Conventions and Spring Boot conventions.

app-config

The app-config resource prepares a ConfigMap with the Kubernetes configuration that is used for
instantiating an application in the form of a particular workload type in a cluster.

The resource is configured in the supply chain to allow, by default, three types of workloads with
the selection of which workload type to apply based on the labels set in the workload object
created by the developer:

apps.tanzu.vmware.com/workload-type: web

apps.tanzu.vmware.com/workload-type: worker

apps.tanzu.vmware.com/workload-type: server

Only the server workload type has the following configurable parameters:

Parameter
name

Meaning example

ports The set of network ports to expose from the application to the
Kubernetes cluster. - name: ports

 value:

 - containerPor

t: 2025

 name: smtp

 port: 25

For more information about the three different types of workloads, see workload types. For a more
detailed overview of the ports parameter, see server-specific Workload parameters.

service-bindings

The service-bindings resource adds ServiceBindings to the set of Kubernetes configuration files to
promote for deployment.

Tanzu Application Platform v1.5

VMware by Broadcom 525

Parameters:

Parameter
name

Meaning Example

annotations The extra set of annotations to pass down to the ServiceBinding
and ResourceClaim objects. - name: annotat

ions

 value:

 name: my-ap

plication

 version: v

1.2.3

 team: store

For an example, see –service-ref in Tanzu CLI documentation.

For an overview of the function, see Consume services on Tanzu Application Platform.

api-descriptors

The api-descriptor resource adds an APIDescriptor to the set of Kubernetes objects to deploy.
This enables API auto registration.

Parameters:

Parameter
name

Meaning Example

annotations An extra set of annotations to pass down to
the APIDescriptor object. - name: annotations

 value:

 name: my-application

 version: v1.2.3

 team: store

api_descrip

tor

Information used to fill the state that you
want of the APIDescriptor object (its spec). - name: api_descriptor

 value:

 type: openapi

 location:

 baseURL: http://petclinic-

hard-coded.my-apps.tapdemo.vmware.com/

 path: "/v3/api"

 owner: team-petclinic

 system: pet-clinics

 description: "example"

The workload must include the apis.apps.tanzu.vmware.com/register-api: "true" label to
activate this function.

For more details about API auto registration, see Use API Auto Registration.

config-writer (git or registry)

The config-writer resource is responsible for performing the last mile of the supply chain:
persisting in an external system (registry or Git repository) the Kubernetes configuration generated
throughout the supply chain.

There are three methods:

Tanzu Application Platform v1.5

VMware by Broadcom 526

Publishing the configuration to a container image registry

Publishing the configuration to a Git repository by using the push of a commit

Publishing the configuration to a Git repository by pushing a commit and opening a pull
request

For more information about the different modes of operation, see Gitops vs RegistryOps.

deliverable

The deliverable resource creates a deliverable object that represents the intention of delivering
to the cluster the configurations that are produced by the supply chain.

Parameters:

Parameter
name

Meaning Example

serviceAcc

ount

The name of the serviceaccount (in the same namespace as the deliverable) to use
for providing the necessary permissions to create the children objects for
deploying the objects created by the supply chain to the cluster.

 - nam

e: serviceAc

count

 valu

e: default

The --service-account flag sets the spec.serviceAccountName key in the workload object. To
configure the serviceAccount parameter, use --param serviceAccount=SERVICE-ACCOUNT.

On build clusters where a corresponding ClusterDelivery doesn’t exist, the deliverable takes no
effect (similarly to a workload without a SupplyChain, no action is taken).

Deliverable Parameters Reference

The deliverable object applies the configuration produced by the resources defined by a
ClusterSupplyChain to a Kubernetes cluster.

This section describes the deliverable.spec.params parameters that can be configured in the
deliverable object. The following section describes the two resources defined in the ClusterDelivery
resources section. These are part of the ootb-delivery-basic package:

List of Cluster Delivery Resources for Deliverable Object

Cluster Delivery
Resource

Output
Type

Purpose

source provider Source Fetches the Kubernetes configuration file from Git repository or image
registry

app deployer Source Applies configuration produced by a supply chain to the cluster

For information about the ClusterDelivery shipped with ootb-delivery-basic, and the templates
used by it, see:

Out of the Box Delivery Basic

Out of the Templates

For information about the use of the deliverable object in a multicluster environment, see Getting
started with multicluster Tanzu Application Platform.

Tanzu Application Platform v1.5

VMware by Broadcom 527

For reference information about deliverable, see Deliverable and Delivery custom resources in the
Cartographer documentation.

source-provider

The source-provider resource in the basic ClusterDelivery creates objects that continuously fetch
Kubernetes configuration files from a Git repository or container image registry so that it can apply
those to the cluster.

Regardless of where it fetches that Kubernetes configuration from (Git repository or image
registry), it exposes those files to further resources along the ClusterDelivery as a tarball.

GitRepository

A GitRepository object is instantiated when deliverable.spec.source.git is configured to
continuously look for a Kubernetes configuration pushed to a Git repository, making it available for
resources in the ClusterDelivery.

Parameters:

Parameter
name

Meaning Example

gitImplemen

tation

VMware recommends that you use the underlying library for fetching the source
code. Either libgit2, required for Azure DevOps, or go-git. - name:

gitImplementa

tion

 valu

e: libgit2

gitops_ssh_

secret

The name of the secret in the same namespace as the `deliverable` used for
providing credentials for fetching Kubernetes configuration files from the Git
repository pointed at. See [Git authentication](../scc/git-auth.md).

 - name:

gitops_ssh_se

cret

 valu

e: git-creden

tials

It might not be necessary to change the default Git implementation but some providers, such as
Azure DevOps, require you to use libgit2 as the server-side implementation provides support only
for git’s v2 protocol.

For information about the features supported by each implementation, see git implementation in
the Flux documentation.

For information about how to create a workload that uses a GitHub repository as the provider of
source code, see Create a workload from GitHub repository.

For information about GitRepository objects, see GitRepository.

ImageRepository

An ImageRepository object is instantiated when deliverable.spec.source.image is configured to
continuously look for Kubernetes configuration files pushed to a container image registry as
opposed to a Git repository.

Parameters:

Tanzu Application Platform v1.5

VMware by Broadcom 528

https://cartographer.sh/docs/v0.5.0/reference/deliverable/
https://git-scm.com/docs/protocol-v2
https://fluxcd.io/flux/components/source/gitrepositories/#git-implementation
https://fluxcd.io/flux/components/source/gitrepositories/

Parameter
name

Meaning Example

serviceAcc

ount

The name of the service account, in the same namespace as the deliverable, you
want to use to provide the necessary permissions for `kapp-controller` to
deploy the objects to the cluster.

 - name:

serviceAccoun

t

 valu

e: default

The --service-account flag sets the spec.serviceAccountName key in the deliverable object. To
configure the serviceAccount parameter, use --param serviceAccount=SERVICE-ACCOUNT.

For information about custom resource details, see the ImageRepository reference documentation.

app deployer

The app-deploy resource in the ClusterDelivery applies the Kubernetes configuration that is built by
the supply chain, pushed to either a Git repository or image repository, and applied to the cluster.

App

Regardless of where the configuration comes from, an App object is instantiated to deploy the set
of Kubernetes configuration files to the cluster.

Parameters:

Parameter name Meaning Example

serviceAccount The name of the service account, in the same namespace as the
deliverable, you want to use to provide the necessary privileges for `App`
to apply the Kubernetes objects to the cluster.

 - name:

serviceAccoun

t

 valu

e: default

gitops_sub_path

(deprecated)

The subdirectory within the configuration bundle used for looking up the
files to apply to the Kubernetes cluster. - name:

gitops_sub_pa

th

 valu

e: ./config

The gitops_sub_path parameter is deprecated. Use deliverable.spec.source.subPath instead.

The --service-account flag sets the spec.serviceAccountName key in the deliverable object.

To configure the serviceAccount parameter, use --param serviceAccount=SERVICE-ACCOUNT.

For details about RBAC and how kapp-controller uses the ServiceAccount provided to it using the
serviceAccount parameter in the deliverable object, see kapp-controller’s Security Model in the
Carvel documentation.

Use functions (Beta)

This topic tells you how to create and deploy a HTTP or CloudEvent function from an Application
Accelerator starter template in an online or air-gapped environment on Tanzu Application Platform
(commonly known as TAP).

Tanzu Application Platform v1.5

VMware by Broadcom 529

https://carvel.dev/kapp-controller/docs/v0.41.0/app-overview/
https://carvel.dev/kapp-controller/docs/v0.41.0/security-model/

Overview
The function experience on Tanzu Application Platform enables you to deploy functions, use starter
templates to bootstrap your function, and write only the code that matters to your business. You
can run a single CLI command to deploy your functions to an auto-scaled cluster.

Functions provide a quick way to get started writing an application. Compared with a traditional
application:

Functions have a single entry-point and perform a single task. This means that functions can
be easier to understand and monitor.

The function buildpack manages the webserver. This means that you can focus on your
business logic.

A traditional webserver application might be a better fit if you want to implement an entire
website or API in a single container

Supported languages and frameworks

For HTTP and CloudEvents:

Language/framework HTTP CloudEvents

Java ✓ ✓

Python ✓ ✓

NodeJS ✓ N/A

For REST API:

Language/framework GET POST

Java N/A ✓

Python ✓ ✓

NodeJS ✓ ✓

Prerequisites

Important

Function Buildpacks for Knative and the corresponding Application Accelerator
starter templates for Python and Java are deprecated and will be removed in Tanzu
Application Platform v1.7. This beta product will not receive any future updates or
patches.

Important

Beta features have been tested for functionality, but not performance. Features
enter the beta stage so that customers can gain early access, and give feedback on
the design and behavior.

Beta features might undergo changes based on this feedback before the end of the
beta stage. VMware discourages running beta features in production. VMware
cannot guarantee that you can upgrade any beta feature in the future.

Tanzu Application Platform v1.5

VMware by Broadcom 530

Before using function workloads, follow all instructions to install Tanzu Application Platform for your
environment:

Installing Tanzu Application Platform online

Installing Tanzu Application Platform in an air-gapped environment

Create a function project from an accelerator

To create a function project from an accelerator:

1. From the Tanzu Application Platform GUI portal, click Create on the left navigation bar to
see the list of available accelerators.

2. Locate the function accelerator in the language or framework of your choice and click
CHOOSE.

3. Provide a name for your function project and your function.

4. If you are creating a Java function, select a project type.

5. Provide a Git repository to store the files for the accelerator.

6. Click NEXT STEP, verify the provided information, and then click CREATE.

7. After the Task Activity processes complete, click DOWNLOAD ZIP FILE.

Tanzu Application Platform v1.5

VMware by Broadcom 531

8. After downloading the ZIP file, expand it in a workspace directory and follow your preferred
procedure for uploading the generated project files to a Git repository for your new project.

Create a function project using the Tanzu CLI

From the CLI, to generate a function project using an accelerator template and then download the
project artifacts as a ZIP file:

1. Verify that you have added the function accelerator template to the application accelerator
server by running:

tanzu accelerator list

2. Get the server-url for the Application Accelerator server. The URL depends on the
configuration settings for Application Accelerator:

For installations configured with a shared ingress, use https://accelerator.DOMAIN
where DOMAIN is provided in the values file for the accelerator configuration.

For installations using a LoadBalancer, look up the External IP address by running:

kubectl get -n accelerator-system service/acc-server

Use http://EXTERNAL-IP as the URL.

For any other configuration, you can use port forwarding by running:

kubectl port-forward service/acc-server -n accelerator-system 8877:80

Use http://localhost:8877 as the URL.

3. Generate a function project from an accelerator template by running:

tanzu accelerator generate ACCELERATOR-NAME \

--options '{"projectName": "FUNCTION-NAME", "interfaceType": "TYPE"}' \

--server-url APPLICATION-ACCELERATOR-URL

Where:

ACCELERATOR-NAME is the name of the function accelerator template you want to use.

FUNCTION-NAME is the name of your function project.

TYPE is the interface you want to use for your function. Available options are http or
cloudevents. CloudEvents is experimental.

APPLICATION-ACCELERATOR-URL is the URL for the Application Accelerator server that
you retrieved in the previous step.

For example:

tanzu accelerator generate java-function \

--options '{"projectName": "my-func", "interfaceType": "http"}' \

--server-url http://localhost:8877

4. After generating the ZIP file, expand it in your directory and follow your preferred
procedure for uploading the generated project files to a Git repository for your new project.

Deploy your function
To deploy and verify your function:

Tanzu Application Platform v1.5

VMware by Broadcom 532

1. Deploy the function accelerator by running the tanzu apps workload create command:

tanzu apps workload create functions-accelerator-python \

--local-path . \

--source-image SOURCE-IMAGE \

--type web \

--yes

--namespace YOUR-DEVELOPER-NAMESPACE

--build-env 'BP_FUNCTION=func.hello'

Where:

SOURCE-IMAGE is a writable repository in your registry in the form
REGISTRY/IMAGE:TAG.

Harbor has the form: “my-harbor.io/my-project/functions-accelerator-
python”.

Docker Hub has the form: “my-dockerhub-user/functions-accelerator-
python”.

Google Cloud Registry has the form: “gcr.io/my-project/functions-
accelerator-python”.

YOUR-DEVELOPER-NAMESPACE is the namespace you configured earlier.

2. View the build and runtime logs for your application by running the tail command:

tanzu apps workload tail functions-accelerator-python --since 10m --timestamp -

-namespace YOUR-DEVELOPER-NAMESPACE

Where YOUR-DEVELOPER-NAMESPACE is the namespace configured earlier.

3. After the workload is built and running, you can view the web application in your browser.
To view the URL of the web application, run the following command and then ctrl-click the
Workload Knative Services URL at the bottom of the command output.

tanzu apps workload get functions-accelerator-python --namespace YOUR-DEVELOPER

-NAMESPACE

Where YOUR-DEVELOPER-NAMESPACE is the namespace configured earlier.

4. (Optional) You can test your function using a curl command. To do so, you must have curl
installed on your computer. Java function POST example:

curl -w'\n' URL-FROM-YOUR-WORKLOAD-KNATIVE-SERVICES-SECTION \

-H "Content-Type: application/json" \

-d '{"firstName":"John", "lastName":"Doe"}'

For language support for the REST API, see Supported languages and frameworks earlier in
this topic.

Use functions (Beta)
This topic tells you how to create and deploy a HTTP or CloudEvent function from an Application
Accelerator starter template in an online or air-gapped environment on Tanzu Application Platform
(commonly known as TAP).

Important

Tanzu Application Platform v1.5

VMware by Broadcom 533

Overview

The function experience on Tanzu Application Platform enables you to deploy functions, use starter
templates to bootstrap your function, and write only the code that matters to your business. You
can run a single CLI command to deploy your functions to an auto-scaled cluster.

Functions provide a quick way to get started writing an application. Compared with a traditional
application:

Functions have a single entry-point and perform a single task. This means that functions can
be easier to understand and monitor.

The function buildpack manages the webserver. This means that you can focus on your
business logic.

A traditional webserver application might be a better fit if you want to implement an entire
website or API in a single container

Supported languages and frameworks

For HTTP and CloudEvents:

Language/framework HTTP CloudEvents

Java ✓ ✓

Python ✓ ✓

NodeJS ✓ N/A

For REST API:

Language/framework GET POST

Java N/A ✓

Python ✓ ✓

NodeJS ✓ ✓

Prerequisites
Before using function workloads, follow all instructions to install Tanzu Application Platform for your
environment:

Function Buildpacks for Knative and the corresponding Application Accelerator
starter templates for Python and Java are deprecated and will be removed in Tanzu
Application Platform v1.7. This beta product will not receive any future updates or
patches.

Important

Beta features have been tested for functionality, but not performance. Features
enter the beta stage so that customers can gain early access, and give feedback on
the design and behavior.

Beta features might undergo changes based on this feedback before the end of the
beta stage. VMware discourages running beta features in production. VMware
cannot guarantee that you can upgrade any beta feature in the future.

Tanzu Application Platform v1.5

VMware by Broadcom 534

Installing Tanzu Application Platform online

Installing Tanzu Application Platform in an air-gapped environment

Create a function project from an accelerator

To create a function project from an accelerator:

1. From the Tanzu Application Platform GUI portal, click Create on the left navigation bar to
see the list of available accelerators.

2. Locate the function accelerator in the language or framework of your choice and click
CHOOSE.

3. Provide a name for your function project and your function.

4. If you are creating a Java function, select a project type.

5. Provide a Git repository to store the files for the accelerator.

6. Click NEXT STEP, verify the provided information, and then click CREATE.

7. After the Task Activity processes complete, click DOWNLOAD ZIP FILE.

8. After downloading the ZIP file, expand it in a workspace directory and follow your preferred
procedure for uploading the generated project files to a Git repository for your new project.

Tanzu Application Platform v1.5

VMware by Broadcom 535

Create a function project using the Tanzu CLI

From the CLI, to generate a function project using an accelerator template and then download the
project artifacts as a ZIP file:

1. Verify that you have added the function accelerator template to the application accelerator
server by running:

tanzu accelerator list

2. Get the server-url for the Application Accelerator server. The URL depends on the
configuration settings for Application Accelerator:

For installations configured with a shared ingress, use https://accelerator.DOMAIN
where DOMAIN is provided in the values file for the accelerator configuration.

For installations using a LoadBalancer, look up the External IP address by running:

kubectl get -n accelerator-system service/acc-server

Use http://EXTERNAL-IP as the URL.

For any other configuration, you can use port forwarding by running:

kubectl port-forward service/acc-server -n accelerator-system 8877:80

Use http://localhost:8877 as the URL.

3. Generate a function project from an accelerator template by running:

tanzu accelerator generate ACCELERATOR-NAME \

--options '{"projectName": "FUNCTION-NAME", "interfaceType": "TYPE"}' \

--server-url APPLICATION-ACCELERATOR-URL

Where:

ACCELERATOR-NAME is the name of the function accelerator template you want to use.

FUNCTION-NAME is the name of your function project.

TYPE is the interface you want to use for your function. Available options are http or
cloudevents. CloudEvents is experimental.

APPLICATION-ACCELERATOR-URL is the URL for the Application Accelerator server that
you retrieved in the previous step.

For example:

tanzu accelerator generate java-function \

--options '{"projectName": "my-func", "interfaceType": "http"}' \

--server-url http://localhost:8877

4. After generating the ZIP file, expand it in your directory and follow your preferred
procedure for uploading the generated project files to a Git repository for your new project.

Deploy your function

To deploy and verify your function:

1. Deploy the function accelerator by running the tanzu apps workload create command:

tanzu apps workload create functions-accelerator-python \

--local-path . \

Tanzu Application Platform v1.5

VMware by Broadcom 536

--source-image SOURCE-IMAGE \

--type web \

--yes

--namespace YOUR-DEVELOPER-NAMESPACE

--build-env 'BP_FUNCTION=func.hello'

Where:

SOURCE-IMAGE is a writable repository in your registry in the form
REGISTRY/IMAGE:TAG.

Harbor has the form: “my-harbor.io/my-project/functions-accelerator-
python”.

Docker Hub has the form: “my-dockerhub-user/functions-accelerator-
python”.

Google Cloud Registry has the form: “gcr.io/my-project/functions-
accelerator-python”.

YOUR-DEVELOPER-NAMESPACE is the namespace you configured earlier.

2. View the build and runtime logs for your application by running the tail command:

tanzu apps workload tail functions-accelerator-python --since 10m --timestamp -

-namespace YOUR-DEVELOPER-NAMESPACE

Where YOUR-DEVELOPER-NAMESPACE is the namespace configured earlier.

3. After the workload is built and running, you can view the web application in your browser.
To view the URL of the web application, run the following command and then ctrl-click the
Workload Knative Services URL at the bottom of the command output.

tanzu apps workload get functions-accelerator-python --namespace YOUR-DEVELOPER

-NAMESPACE

Where YOUR-DEVELOPER-NAMESPACE is the namespace configured earlier.

4. (Optional) You can test your function using a curl command. To do so, you must have curl
installed on your computer. Java function POST example:

curl -w'\n' URL-FROM-YOUR-WORKLOAD-KNATIVE-SERVICES-SECTION \

-H "Content-Type: application/json" \

-d '{"firstName":"John", "lastName":"Doe"}'

For language support for the REST API, see Supported languages and frameworks earlier in
this topic.

Tanzu Application Platform v1.5

VMware by Broadcom 537

Troubleshoot Tanzu Application Platform

These topics provide you with troubleshooting information to help resolve issues with your Tanzu
Application Platform (commonly known as TAP):

Troubleshoot installing Tanzu Application Platform

Troubleshoot using Tanzu Application Platform

Troubleshoot Tanzu Application Platform components

Troubleshoot Tanzu GitOps Reference Implementation (RI)

Troubleshoot Tanzu Application Platform

These topics provide you with troubleshooting information to help resolve issues with your Tanzu
Application Platform (commonly known as TAP):

Troubleshoot installing Tanzu Application Platform

Troubleshoot using Tanzu Application Platform

Troubleshoot Tanzu Application Platform components

Troubleshoot Tanzu GitOps Reference Implementation (RI)

Troubleshoot installing Tanzu Application Platform

This topic tells you how to troubleshoot installing Tanzu Application Platform (commonly known as
TAP).

Developer cannot be verified when installing Tanzu CLI on
macOS

You see the following error when you run Tanzu CLI commands, for example tanzu version, on
macOS:

"tanzu" cannot be opened because the developer cannot be verified

Explanation

Security settings are preventing installation.

Solution

To resolve this issue:

1. Click Cancel in the macOS prompt window.

2. Open System Preferences > Security & Privacy.

3. Click General.

4. Next to the warning message for the Tanzu binary, click Allow Anyway.

Tanzu Application Platform v1.5

VMware by Broadcom 538

5. Enter your system username and password in the macOS prompt window to confirm the
changes.

6. In the terminal window, run:

tanzu version

7. In the macOS prompt window, click Open.

Access .status.usefulErrorMessage details

When installing Tanzu Application Platform, you receive an error message that includes the
following:

(message: Error (see .status.usefulErrorMessage for details))

Explanation

A package fails to reconcile and you must access the details in .status.usefulErrorMessage.

Solution

Access the details in .status.usefulErrorMessage by running:

kubectl get packageinstall PACKAGE-NAME -n tap-install -o yaml

Where PACKAGE-NAME is the name of the package to target.

“Unauthorized to access” error

When running the tanzu package install command, you receive an error message that includes
the error:

UNAUTHORIZED: unauthorized to access repository

For example:

$ tanzu package install app-live-view -p appliveview.tanzu.vmware.com -v 0.1.0 -n tap-

install --values-file ./app-live-view.yaml

Error: package reconciliation failed: vendir: Error: Syncing directory '0':

 Syncing directory '.' with imgpkgBundle contents:

 Imgpkg: exit status 1 (stderr: Error: Checking if image is bundle: Collecting imag

es: Working with registry.tanzu.vmware.com/app-live-view/application-live-view-install

-bundle@sha256:b13b9ba81bcc985d76607cfc04bcbb8829b4cc2820e64a99e0af840681da12aa: GET h

ttps://registry.tanzu.vmware.com/v2/app-live-view/application-live-view-install-bundl

e/manifests/sha256:b13b9ba81bcc985d76607cfc04bcbb8829b4cc2820e64a99e0af840681da12aa: U

NAUTHORIZED: unauthorized to access repository: app-live-view/application-live-view-in

stall-bundle, action: pull: unauthorized to access repository: app-live-view/applicati

on-live-view-install-bundle, action: pull

Explanation

The Tanzu Network credentials needed to access the package may be missing or incorrect.

Note

This example shows an error received when with Application Live View as the
package. This error can also occur with other packages.

Tanzu Application Platform v1.5

VMware by Broadcom 539

Solution

To resolve this issue:

1. Repeat the step to create a secret for the namespace. For instructions, see Add the Tanzu
Application Platform Package Repository in Installing the Tanzu Application Platform
Package and Profiles. Ensure that you provide the correct credentials.

When the secret has the correct credentials, the authentication error should resolve itself
and the reconciliation succeed. Do not reinstall the package.

2. List the status of the installed packages to confirm that the reconcile has succeeded. For
instructions, see Verify the Installed Packages in Installing Individual Packages.

“Serviceaccounts already exists” error

When running the tanzu package install command, you receive the following error:

failed to create ServiceAccount resource: serviceaccounts already exists

For example:

$ tanzu package install app-accelerator -p accelerator.apps.tanzu.vmware.com -v 0.2.0

-n tap-install --values-file app-accelerator-values.yaml

Error: failed to create ServiceAccount resource: serviceaccounts "app-accelerator-tap-

install-sa" already exists

Explanation

The tanzu package install command may be executed again after failing.

Solution

To update the package, run the following command after the first use of the tanzu package
install command

tanzu package installed update

After package installation, one or more packages fails to
reconcile
You run the tanzu package install command and one or more packages fails to install.

For example:

tanzu package install tap -p tap.tanzu.vmware.com -v 0.4.0 -n tap-install --values-fil

e tap-values.yaml

- Installing package 'tap.tanzu.vmware.com'

\ Getting package metadata for 'tap.tanzu.vmware.com'

| Creating service account 'tap-tap-install-sa'

/ Creating cluster admin role 'tap-tap-install-cluster-role'

| Creating cluster role binding 'tap-tap-install-cluster-rolebinding'

| Creating secret 'tap-tap-install-values'

Note

This example shows an error received with App Accelerator as the package. This
error can also occur with other packages.

Tanzu Application Platform v1.5

VMware by Broadcom 540

| Creating package resource

- Waiting for 'PackageInstall' reconciliation for 'tap'

/ 'PackageInstall' resource install status: Reconciling

| 'PackageInstall' resource install status: ReconcileFailed

Please consider using 'tanzu package installed update' to update the installed package

with correct settings

Error: resource reconciliation failed: kapp: Error: waiting on reconcile packageinstal

l/tap-gui (packaging.carvel.dev/v1alpha1) namespace: tap-install:

 Finished unsuccessfully (Reconcile failed: (message: Error (see .status.usefulError

Message for details))). Reconcile failed: Error (see .status.usefulErrorMessage for de

tails)

Error: exit status 1

Explanation

Often, the cause is one of the following:

Your infrastructure provider takes longer to perform tasks than the timeout value allows.

A race-condition between components exists. For example, a package that uses Ingress
completes before the shared Tanzu ingress controller becomes available.

The VMware Carvel tools kapp-controller continues to try in a reconciliation loop in these cases.
However, if the reconciliation status is failed then there might be a configuration issue in the
provided tap-config.yaml file.

Solution

1. Verify if the installation is still in progress by running:

tanzu package installed list -A

If the installation is still in progress, the command produces output similar to the following
example, and the installation is likely to finish successfully.

\ Retrieving installed packages...

 NAME PACKAGE-NAME

PACKAGE-VERSION STATUS NAMESPACE

 accelerator accelerator.apps.tanzu.vmware.com

1.0.0 Reconcile succeeded tap-install

 api-portal api-portal.tanzu.vmware.com

1.0.6 Reconcile succeeded tap-install

 appliveview run.appliveview.tanzu.vmware.com

1.0.0-build.3 Reconciling tap-install

 appliveview-conventions build.appliveview.tanzu.vmware.com

1.0.0-build.3 Reconcile succeeded tap-install

 buildservice buildservice.tanzu.vmware.com

1.4.0-build.1 Reconciling tap-install

 cartographer cartographer.tanzu.vmware.com

0.1.0 Reconcile succeeded tap-install

 cert-manager cert-manager.tanzu.vmware.com

1.5.3+tap.1 Reconcile succeeded tap-install

 cnrs cnrs.tanzu.vmware.com

1.1.0 Reconcile succeeded tap-install

 contour contour.tanzu.vmware.com

1.18.2+tap.1 Reconcile succeeded tap-install

 conventions-controller controller.conventions.apps.tanzu.vmware.com

0.4.2 Reconcile succeeded tap-install

 developer-conventions developer-conventions.tanzu.vmware.com

0.4.0-build1 Reconcile succeeded tap-install

 fluxcd-source-controller fluxcd.source.controller.tanzu.vmware.com

0.16.0 Reconcile succeeded tap-install

 grype grype.scanning.apps.tanzu.vmware.com

Tanzu Application Platform v1.5

VMware by Broadcom 541

1.0.0 Reconcile succeeded tap-install

 image-policy-webhook image-policy-webhook.signing.apps.tanzu.vmware.com

1.0.0-beta.3 Reconcile succeeded tap-install

 learningcenter learningcenter.tanzu.vmware.com

0.1.0-build.6 Reconcile succeeded tap-install

 learningcenter-workshops workshops.learningcenter.tanzu.vmware.com

0.1.0-build.7 Reconcile succeeded tap-install

 ootb-delivery-basic ootb-delivery-basic.tanzu.vmware.com

0.5.1 Reconcile succeeded tap-install

 ootb-supply-chain-basic ootb-supply-chain-basic.tanzu.vmware.com

0.5.1 Reconcile succeeded tap-install

 ootb-templates ootb-templates.tanzu.vmware.com

0.5.1 Reconcile succeeded tap-install

 scanning scanning.apps.tanzu.vmware.com

1.0.0 Reconcile succeeded tap-install

 metadata-store metadata-store.apps.tanzu.vmware.com

1.0.2 Reconcile succeeded tap-install

 service-bindings service-bindings.labs.vmware.com

0.6.0 Reconcile succeeded tap-install

 services-toolkit services-toolkit.tanzu.vmware.com

0.7.1 Reconcile succeeded tap-install

 source-controller controller.source.apps.tanzu.vmware.com

0.2.0 Reconcile succeeded tap-install

 spring-boot-conventions spring-boot-conventions.tanzu.vmware.com

0.2.0 Reconcile succeeded tap-install

 tap tap.tanzu.vmware.com

0.4.0-build.12 Reconciling tap-install

 tap-gui tap-gui.tanzu.vmware.com

1.0.0-rc.72 Reconcile succeeded tap-install

 tap-telemetry tap-telemetry.tanzu.vmware.com

0.1.0 Reconcile succeeded tap-install

 tekton-pipelines tekton.tanzu.vmware.com

0.30.0 Reconcile succeeded tap-install

If the installation has stopped running, one or more reconciliations have likely failed, as seen
in the following example:

NAME PACKAGE NAME

PACKAGE VERSION DESCRIPTION

AGE

accelerator accelerator.apps.tanzu.vmware.com

1.0.1 Reconcile succeeded

109m

api-portal api-portal.tanzu.vmware.com

1.0.9 Reconcile succeeded

119m

appliveview run.appliveview.tanzu.vmware.com

1.0.2-build.2 Reconcile succeeded

109m

appliveview-conventions build.appliveview.tanzu.vmware.com

1.0.2-build.2 Reconcile succeeded

109m

buildservice buildservice.tanzu.vmware.com

1.5.0 Reconcile succeeded

119m

cartographer cartographer.tanzu.vmware.com

0.2.1 Reconcile succeeded

117m

cert-manager cert-manager.tanzu.vmware.com

1.5.3+tap.1 Reconcile succeeded

119m

cnrs cnrs.tanzu.vmware.com

1.1.0 Reconcile succeeded

109m

contour contour.tanzu.vmware.com

Tanzu Application Platform v1.5

VMware by Broadcom 542

1.18.2+tap.1 Reconcile succeeded

117m

conventions-controller controller.conventions.apps.tanzu.vmware.com

0.5.0 Reconcile succeeded

117m

developer-conventions developer-conventions.tanzu.vmware.com

0.5.0 Reconcile succeeded

109m

fluxcd-source-controller fluxcd.source.controller.tanzu.vmware.com

0.16.1 Reconcile succeeded

119m

grype grype.scanning.apps.tanzu.vmware.com

1.0.0 Reconcile failed: Error (see .status.usefulErrorMessage for d

etails) 109m

image-policy-webhook image-policy-webhook.signing.apps.tanzu.vmware.com

1.0.1 Reconcile succeeded

117m

learningcenter learningcenter.tanzu.vmware.com

0.1.0 Reconcile succeeded

109m

learningcenter-workshops workshops.learningcenter.tanzu.vmware.com

0.1.0 Reconcile succeeded

103m

metadata-store metadata-store.apps.tanzu.vmware.com

1.0.2 Reconcile succeeded

117m

ootb-delivery-basic ootb-delivery-basic.tanzu.vmware.com

0.6.1 Reconcile succeeded

103m

ootb-supply-chain-basic ootb-supply-chain-basic.tanzu.vmware.com

0.6.1 Reconcile succeeded

103m

ootb-templates ootb-templates.tanzu.vmware.com

0.6.1 Reconcile succeeded

109m

scanning scanning.apps.tanzu.vmware.com

1.0.0 Reconcile succeeded

119m

service-bindings service-bindings.labs.vmware.com

0.6.0 Reconcile succeeded

119m

services-toolkit services-toolkit.tanzu.vmware.com

0.7.1 Reconcile succeeded

119m

source-controller controller.source.apps.tanzu.vmware.com

0.2.0 Reconcile succeeded

119m

spring-boot-conventions spring-boot-conventions.tanzu.vmware.com

0.3.0 Reconcile succeeded

109m

tap tap.tanzu.vmware.com

1.0.1 Reconcile failed: Error (see .status.usefulErrorMessage for d

etails) 119m

tap-gui tap-gui.tanzu.vmware.com

1.0.2 Reconcile succeeded

109m

tap-telemetry tap-telemetry.tanzu.vmware.com

0.1.3 Reconcile succeeded

119m

tekton-pipelines tekton.tanzu.vmware.com

0.30.0 Reconcile succeeded

119m

In this example, packageinstall/grype and packageinstall/tap have reconciliation errors.

2. To get more details on the possible cause of a reconciliation failure, run:

Tanzu Application Platform v1.5

VMware by Broadcom 543

kubectl describe packageinstall/NAME -n tap-install

Where NAME is the name of the failing package. For this example it would be grype.

3. Use the displayed information to search for a relevant troubleshooting issue in this topic. If
none exists, and you are unable to fix the described issue yourself, please contact support.

4. Repeat these diagnosis steps for any other packages that failed to reconcile.

Failure to accept an End User License Agreement error

You cannot access Tanzu Application Platform or one of its components from VMware Tanzu
Network.

Explanation

You cannot access Tanzu Application Platform or one of its components from VMware Tanzu
Network before accepting the relevant EULA in VMware Tanzu Network.

Solution

Follow the steps in Accept the End User License Agreements in Installing the Tanzu CLI.

Ingress is broken on Kind cluster

Your Contour installation cannot provide ingress to workloads when installed on a Kind cluster
without a LoadBalancer solution. Your Kind cluster was created with port mappings, as described in
the Kind install guide.

Explanation

In Tanzu Application Platform v1.5.12, the default configuration for contour.envoy.service.type is
LoadBalancer. However, for the Envoy pods to be accessed by using the port mappings on your
Kind cluster, the service must be of type NodePort.

Solution

Configure contour.evnoy.service.type to be NodePort. Then, configure
envoy.service.nodePorts.http and envoy.service.nodePorts.https to the corresponding port
mappings on your Kind node. Otherwise, the NodePort service is assigned random ports, which are
not accessible through your Kind cluster.

Troubleshoot using Tanzu Application Platform

This topic tells you how to troubleshoot using Tanzu Application Platform (commonly known as
TAP).

Use events to find possible causes

Events can highlight issues with components in a supply chain. For example, high occurrences of
StampedObjectApplied or ResourceOutputChanged can indicate problems with trashing on a
component.

To view the recent events for a workload, run:

kubectl describe workload.carto.run <workload-name> -n <workload-ns>

Missing build logs after creating a workload

Tanzu Application Platform v1.5

VMware by Broadcom 544

https://tanzu.vmware.com/support

You create a workload, but no logs appear when you run:

tanzu apps workload tail workload-name --since 10m --timestamp

Explanation

Common causes include:

Misconfigured repository

Misconfigured service account

Misconfigured registry credentials

Solution

To resolve this issue, run:

kubectl get clusterbuilder.kpack.io -o yaml

kubectl get image.kpack.io <workload-name> -o yaml

kubectl get build.kpack.io -o yaml

Workload creation stops responding with “Builder default is
not ready” message
You can see the “Builder default is not ready” message in two places:

1. The “Messages” section of the tanzu apps workload get my-app command.

2. The Supply Chain section of Tanzu Application Platform GUI.

This message indicates there is something wrong with the Builder (the component that builds the
container image for your workload).

Explanation

This message is typically encountered when the core component of the Builder (kpack) transitions
into a bad state.

Although this isn’t the only scenario where this can happen, kpack can transition into a bad state
when Tanzu Application Platform is deployed to a local minikube or kind cluster, and especially
when that minikube or kind cluster is restarted.

Solution

1. Restart kpack by deleting the kpack-controller and kpack-webhook pods in the kpack
namespace. Deleting these resources triggers their recreation:

kubectl delete pods --all --namespace kpack

2. Verify status of the replacement pods:

kubectl get pods --namespace kpack

3. Verify the workload status after the new kpack pods STATUS are Running:

tanzu apps workload get YOUR-WORKLOAD-NAME

Tanzu Application Platform v1.5

VMware by Broadcom 545

“Workload already exists” error after updating the
workload

When you update the workload, you receive the following error:

Error: workload "default/APP-NAME" already exists

Error: exit status 1

Where APP-NAME is the name of the app.

For example, when you run:

tanzu apps workload create tanzu-java-web-app \

--git-repo https://github.com/dbuchko/tanzu-java-web-app \

--git-branch main \

--type web \

--label apps.tanzu.vmware.com/has-tests=true \

--yes

You receive the following error

Error: workload "default/tanzu-java-web-app" already exists

Error: exit status 1

Explanation

The app is running before performing a Live Update using the same app name.

Solution

To resolve this issue, either delete the app or use a different name for the app.

Workload creation fails due to authentication failure in
Docker Registry

You might encounter an error message similar to the following when creating or updating a
workload by using IDE or apps CLI plug-in:

Error: Writing 'index.docker.io/shaileshp2922/build-service/tanzu-java-web-app:lates

t': Error while preparing a transport to talk with the registry: Unable to create roun

d tripper: GET https://auth.ipv6.docker.com/token?scope=repository%3Ashaileshp2922%2Fb

uild-service%2Ftanzu-java-web-app%3Apush%2Cpull&service=registry.docker.io: unexpected

status code 401 Unauthorized: {"details":"incorrect username or password"}

Explanation

This type of error frequently occurs when the URL set for source image (IDE) or --source-image
flag (apps CLI plug-in) is not Docker registry compliant.

Solution
1. Verify that you can authenticate directly against the Docker registry and resolve any failures

by running:

docker login -u USER-NAME

2. Verify your --source-image URL is compliant with Docker.

Tanzu Application Platform v1.5

VMware by Broadcom 546

The URL in this example index.docker.io/shaileshp2922/build-service/tanzu-java-web-
app includes nesting. Docker registry, unlike many other registry solutions, does not support
nesting.

3. To resolve this issue, you must provide an unnested URL. For example,
index.docker.io/shaileshp2922/tanzu-java-web-app

Telemetry component logs show errors fetching the “reg-
creds” secret

When you view the logs of the tap-telemetry controller by running kubectl logs -n tap-
telemetry <tap-telemetry-controller-<hash> -f, you see the following error:

"Error retrieving secret reg-creds on namespace tap-telemetry","error":"secrets \"reg-

creds\" is forbidden: User \"system:serviceaccount:tap-telemetry:controller\" cannot g

et resource \"secrets\" in API group \"\" in the namespace \"tap-telemetry\""

Explanation

The tap-telemetry namespace misses a role that allows the controller to list secrets in the tap-
telemetry namespace. For more information about roles, see Role and ClusterRole Kubernetes
documentation.

Solution

To resolve this issue, run:

kubectl patch roles -n tap-telemetry tap-telemetry-controller --type='json' -p='[{"o

p": "add", "path": "/rules/-", "value": {"apiGroups": [""],"resources": ["secrets"],"v

erbs": ["get", "list", "watch"]} }]'

Debug convention might not apply

If you upgrade from Tanzu Application Platform v0.4, the debug convention can not apply to the
app run image.

Explanation

The Tanzu Application Platform v0.4 lacks SBOM data.

Solution

Delete existing app images that were built using Tanzu Application Platform v0.4.

Execute bit not set for App Accelerator build scripts

You cannot execute a build script provided as part of an accelerator.

Explanation

Build scripts provided as part of an accelerator do not have the execute bit set when a new project
is generated from the accelerator.

Solution

Tanzu Application Platform v1.5

VMware by Broadcom 547

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#role-and-clusterrole

Explicitly set the execute bit by running the chmod command:

chmod +x BUILD-SCRIPT-NAME

Where BUILD-SCRIPT-NAME is the name of the build script.

For example, for a project generated from the “Spring PetClinic” accelerator, run:

chmod +x ./mvnw

“No live information for pod with ID” error
After deploying Tanzu Application Platform workloads, Tanzu Application Platform GUI shows a “No
live information for pod with ID” error.

Explanation

The connector must discover the application instances and render the details in Tanzu Application
Platform GUI.

Solution

Recreate the Application Live View connector pod by running:

kubectl -n app-live-view delete pods -l=name=application-live-view-connector

This allows the connector to discover the application instances and render the details in Tanzu
Application Platform GUI.

“image-policy-webhook-service not found” error
When installing a Tanzu Application Platform profile, you receive the following error:

Internal error occurred: failed calling webhook "image-policy-webhook.signing.apps.tan

zu.vmware.com": failed to call webhook: Post "https://image-policy-webhook-service.ima

ge-policy-system.svc:443/signing-policy-check?timeout=10s": service "image-policy-webh

ook-service" not found

Explanation

The “image-policy-webhook-service” service cannot be found.

Solution

Redeploy the trainingPortal resource.

“Increase your cluster resources” error

You receive an “Increase your cluster’s resources” error.

Explanation

Node pressure can be caused by an insufficient number of nodes or a lack of resources on nodes
necessary to deploy the workloads.

Tanzu Application Platform v1.5

VMware by Broadcom 548

Solution

Follow instructions from your cloud provider to scale out or scale up your cluster.

MutatingWebhookConfiguration prevents pod admission

Admission of all pods is prevented when the image-policy-controller-manager deployment pods
do not start before the MutatingWebhookConfiguration is applied to the cluster.

Explanation

Pods are prevented from starting if nodes in a cluster are scaled to zero and the webhook is forced
to restart at the same time as other system components. A deadlock can occur when some
components expect the webhook to verify their image signatures and the webhook is not currently
running.

A known rare condition during Tanzu Application Platform profiles installation can cause this. If so,
you can see a message similar to one of the following in component statuses:

Events:

 Type Reason Age From Message

 ---- ------ ---- ---- -------

 Warning FailedCreate 4m28s replicaset-controller Error creati

ng: Internal error occurred: failed calling webhook "image-policy-webhook.signing.app

s.tanzu.vmware.com": Post "https://image-policy-webhook-service.image-policy-system.sv

c:443/signing-policy-check?timeout=10s": no endpoints available for service "image-pol

icy-webhook-service"

Events:

 Type Reason Age From Message

 ---- ------ ---- ---- -------

 Warning FailedCreate 10m replicaset-controller Error creating: Internal error occurr

ed: failed calling webhook "image-policy-webhook.signing.apps.tanzu.vmware.com": Post

"https://image-policy-webhook-service.image-policy-system.svc:443/signing-policy-chec

k?timeout=10s": service "image-policy-webhook-service" not found

Solution

Delete the MutatingWebhookConfiguration resource to resolve the deadlock and enable the system
to restart. After the system is stable, restore the MutatingWebhookConfiguration resource to re-
enable image signing enforcement.

1. Back up MutatingWebhookConfiguration to a file by running:

kubectl get MutatingWebhookConfiguration image-policy-mutating-webhook-configur

ation -o yaml > image-policy-mutating-webhook-configuration.yaml

2. Delete MutatingWebhookConfiguration by running:

kubectl delete MutatingWebhookConfiguration image-policy-mutating-webhook-confi

guration

Important

These steps temporarily deactivate signature verification in your cluster.

Tanzu Application Platform v1.5

VMware by Broadcom 549

3. Wait until all components are up and running in your cluster, including the image-policy-
controller-manager pods (namespace image-policy-system).

4. Re-apply MutatingWebhookConfiguration by running:

kubectl apply -f image-policy-mutating-webhook-configuration.yaml

Priority class of webhook’s pods preempts less privileged
pods

When viewing the output of kubectl get events, you see events similar to:

$ kubectl get events

LAST SEEN TYPE REASON OBJECT MESSAGE

28s Normal Preempted pod/testpod Preempted by image-polic

y-system/image-policy-controller-manager-59dc669d99-frwcp on node test-node

Explanation

The Supply Chain Security Tools (SCST) - Sign component uses a privileged PriorityClass to start
its pods to prevent node pressure from preempting its pods. This can cause less privileged
components to have their pods preempted or evicted instead.

Solution

Solution 1: Reduce the number of pods deployed by the Sign component: If your
deployment of the Sign component runs more pods than necessary, scale the deployment
down as follows:

1. Create a values file named scst-sign-values.yaml with the following contents:

replicas: N

Where N is an integer indicating the lowest number of pods you necessary for your
current cluster configuration.

2. Apply the new configuration by running:

tanzu package installed update image-policy-webhook \

 --package image-policy-webhook.signing.apps.tanzu.vmware.com \

 --version 1.0.0-beta.3 \

 --namespace tap-install \

 --values-file scst-sign-values.yaml

3. Wait a few minutes for your configuration to take effect in the cluster.

Solution 2: Increase your cluster’s resources: Node pressure can be caused by an
insufficient number of nodes or a lack of resources on nodes necessary to deploy the
workloads. Follow instructions from your cloud provider to scale out or scale up your
cluster.

CrashLoopBackOff from password authentication fails

SCST - Store does not start. You see the following error in the metadata-store-app Pod logs:

Tanzu Application Platform v1.5

VMware by Broadcom 550

$ kubectl logs pod/metadata-store-app-* -n metadata-store -c metadata-store-app

...

[error] failed to initialize database, got error failed to connect to `host=metadata-s

tore-db user=metadata-store-user database=metadata-store`: server error (FATAL: passwo

rd authentication failed for user "metadata-store-user" (SQLSTATE 28P01))

Explanation

The database password has changed between deployments. This is not supported.

Solution

Redeploy the app either with the original database password or follow the latter steps to erase the
data on the volume:

1. Deploy metadata-store app with kapp.

2. Verify that the metadata-store-db-* pod fails.

3. Run:

kubectl exec -it metadata-store-db-KUBERNETES-ID -n metadata-store /bin/bash

Where KUBERNETES-ID is the ID generated by Kubernetes and appended to the pod name.

4. To delete all database data, run:

rm -rf /var/lib/postgresql/data/*

This is the path found in postgres-db-deployment.yaml.

5. Delete the metadata-store app with kapp.

6. Deploy the metadata-store app with kapp.

Password authentication fails

SCST - Store does not start. You see the following error in the metadata-store-app pod logs:

$ kubectl logs pod/metadata-store-app-* -n metadata-store -c metadata-store-app

...

[error] failed to initialize database, got error failed to connect to `host=metadata-s

tore-db user=metadata-store-user database=metadata-store`: server error (FATAL: passwo

rd authentication failed for user "metadata-store-user" (SQLSTATE 28P01))

Explanation
The database password has changed between deployments. This is not supported.

Solution

Redeploy the app either with the original database password or follow the latter steps to erase the
data on the volume:

1. Deploy metadata-store app with kapp.

2. Verify that the metadata-store-db-* pod fails.

3. Run:

Tanzu Application Platform v1.5

VMware by Broadcom 551

kubectl exec -it metadata-store-db-KUBERNETES-ID -n metadata-store /bin/bash

Where KUBERNETES-ID is the ID generated by Kubernetes and appended to the pod name.

4. To delete all database data, run:

rm -rf /var/lib/postgresql/data/*

This is the path found in postgres-db-deployment.yaml.

5. Delete the metadata-store app with kapp.

6. Deploy the metadata-store app with kapp.

metadata-store-db pod fails to start

When SCST - Store is deployed, deleted, and then redeployed, the metadata-store-db pod fails to
start if the database password changed during redeployment.

Explanation

The persistent volume used by PostgreSQL retains old data, even though the retention policy is set
to DELETE.

Solution

Redeploy the app either with the original database password or follow the later steps to erase the
data on the volume:

1. Deploy metadata-store app with kapp.

2. Verify that the metadata-store-db-* pod fails.

3. Run:

kubectl exec -it metadata-store-db-KUBERNETES-ID -n metadata-store /bin/bash

Where KUBERNETES-ID is the ID generated by Kubernetes and appended to the pod name.

4. To delete all database data, run:

rm -rf /var/lib/postgresql/data/*

This is the path found in postgres-db-deployment.yaml.

5. Delete the metadata-store app with kapp.

6. Deploy the metadata-store app with kapp.

Missing persistent volume

After SCST - Store is deployed, metadata-store-db pod fails for missing volume while postgres-db-
pv-claim pvc is in the PENDING state.

Explanation

The cluster where SCST - Store is deployed does not have storageclass defined. The provisioner
of storageclass is responsible for creating the persistent volume after metadata-store-db attaches
postgres-db-pv-claim.

Tanzu Application Platform v1.5

VMware by Broadcom 552

Solution

1. Verify that your cluster has storageclass by running:

kubectl get storageclass

2. Create a storageclass in your cluster before deploying SCST - Store. For example:

This is the storageclass that Kind uses

kubectl apply -f https://raw.githubusercontent.com/rancher/local-path-provision

er/master/deploy/local-path-storage.yaml

set the storage class as default

kubectl patch storageclass local-path -p '{"metadata": {"annotations":{"storage

class.kubernetes.io/is-default-class":"true"}}}'

Failure to connect Tanzu CLI to AWS EKS clusters
When using the Tanzu CLI to connect to AWS EKS clusters, you might see one of the following
errors:

Error: Unable to connect: connection refused. Confirm kubeconfig details and try

again

invalid apiVersion "client.authentication.k8s.io/v1alpha1"

Explanation

The cause is Kubernetes v1.24 dropping support for client.authentication.k8s.io/v1alpha1. For
more information, see aws/aws-cli/issues/6920 in GitHub.

Solution

Follow these steps to update your aws-cli to a supported v2.7.35 or later, and update the
kubeconfig entry for your EKS clusters:

1. Update aws-cli to the latest version. For more information see AWS documentation.

2. Update the kubeconfig entry for your EKS clusters:

aws eks update-kubeconfig --name ${EKS_CLUSTER_NAME} --region ${REGION}

3. In a new terminal window, run a Tanzu CLI command to verify the connection issue is
resolved. For example:

tanzu apps workload list

Expect the command to execute without error.

Invalid repository paths are propagated

When inputting shared.image_registry.project_path, invalid repository paths are propagated.

Explanation

The key shared.image_registry.project_path, which takes input as SERVER-NAME/REPO-NAME,
cannot take “/” at the end of the string.

Tanzu Application Platform v1.5

VMware by Broadcom 553

https://kubernetes.io/blog/2022/05/03/kubernetes-1-24-release-announcement/
https://github.com/aws/aws-cli/issues/6920
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

Solution

Do not append “/” to the end of the string.

x509: certificate signed by unknown authority

Explanation

Tanzu Application Platform v1.4 introduces Shared Ingress Issuer to secure ingress communication
by default. The Certificate Authority for Shared Ingress Issuer is generated as self-signed. As a
result, you might see one of the following errors:

connection refused

x509: certificate signed by unknown authority

Solution

You can choose one of the following options to mitigate the issue:

Option 1: Configure the Shared Ingress Issuer’s Certificate Authority as a trusted Certificate
Authority

Follow these steps to trust the Shared Ingress Issuer’s Certificate Authority in Tanzu Application
Platform:

1. Extract the ClusterIssuer’s Certificate Authority.

For default installations where ingress_issuer is not set in tap_values.yml, you can extract
the ClusterIssuer’s Certificate Authority from cert-manager:

kubectl get secret tap-ingress-selfsigned-root-ca -n cert-manager -o yaml | yq

.data | cut -d' ' -f2 | head -1 | base64 -d

If you overrode the default ingress_issuer while installing Tanzu Application Platform, you
must refer to your issuer’s documentation to extract your ClusterIssuer’s Certificate
Authority instead of using the command above.

2. Add the certificate to the list of trusted certificate authorities by appending the certificate
authority to the shared.ca_cert_data field in your tap-values.yml.

3. Reapply your configuration:

tanzu package install tap -p tap.tanzu.vmware.com -v ${TAP_VERSION} --values-fi

le tap-values.yml -n tap-install

Option 2: Deactivate the shared ingress issuer

Important

This is the recommended option for a secure instance.

Important

This option is recommended for testing purposes only.

Tanzu Application Platform v1.5

VMware by Broadcom 554

Follow these steps to deactivate TLS for Cloud Native Runtimes, AppSSO and Tanzu Application
Platform GUI:

1. Set shared.ingress_issuer to "" in your tap-values.yml:

shared:

 ingress_issuer: ""

2. Reapply your configuration:

tanzu package install tap -p tap.tanzu.vmware.com -v ${TAP_VERSION} --values-fi

le tap-values.yml -n tap-install

Troubleshoot Tanzu Application Platform components
For component-level troubleshooting, see these topics:

Troubleshoot Application Live View

Troubleshoot Bitnami Services

Troubleshoot Cloud Native Runtimes for Tanzu

Troubleshoot Crossplane

Troubleshoot Learning Center

Troubleshoot Service Bindings

Troubleshoot Services Toolkit

Troubleshoot Source Controller

Troubleshoot Spring Boot conventions

Troubleshoot Supply Chain Security Tools - Scan

Troubleshoot Supply Chain Security Tools - Store

Troubleshoot Tanzu Application Platform GUI

Troubleshoot Tanzu Build Service

Tanzu Build Service FAQ

Troubleshoot Tanzu GitOps Reference Implementation (RI)
This topic tells you how to troubleshoot Tanzu GitOps Reference Implementation (commonly
known as RI).

Tanzu Sync application error
After the Tanzu Sync application is installed in the cluster, the main resource to check is the sync
app in the tanzu-sync namespace:

kubectl -n tanzu-sync get app/sync --template='{{.status.usefulErrorMessage}}'

Example error:

kapp: Error: waiting on reconcile packageinstall/tap (packaging.carvel.dev/v1alpha1) n

amespace: tap-install:

 Finished unsuccessfully (Reconcile failed: (message: Error (see .status.usefulError

Message for details)))

Tanzu Application Platform v1.5

VMware by Broadcom 555

https://docs.vmware.com/en/Cloud-Native-Runtimes-for-VMware-Tanzu/2.2/tanzu-cloud-native-runtimes/troubleshooting.html
https://docs.vmware.com/en/Tanzu-Build-Service/1.10/vmware-tanzu-build-service/faq.html

This indicates that the resource packageinstall/tap in the namespace tap-install failed. See the
following section for the solution details.

Tanzu Application Platform install error

After the Tanzu Sync application is installed in the cluster, the Tanzu Application Platform starts to
install. The resource to check is the Tanzu Application Platform package install in the tap-install
namespace:

kubectl -n tap-install get packageinstall/tap --template='{{.status.usefulErrorMessag

e}}'

Common errors

You might encounter one of the following errors:

Given data value is not declared in schema

Error: Reconciliation fails with Given data value is not declared in schema

^ Reconcile failed: (message: ytt: Error: Overlaying data values (in following order:

tap-install/.tanzu-managed/version.yaml, additional data values):

One or more data values were invalid

====================================

Given data value is not declared in schema

tap-values.yaml:

 |

 1 | shared:

 |

 = found: shared

 = expected: a map item with the key named "tap_install" (from tap-install/.tanzu-m

anaged/schema--tap-sensitive-values.yaml:3)

Problem: The values files were not generated according to the expected schema.

Solution: Ensure both non-sensitive and sensitive Tanzu Application Platform values files to adhere
to the schema described in configure values.

Incorrect values example:

shared:

 ingress_domain: example.vmware.com

Correct values example:

tap_install:

 values:

 ingress_domain: example.vmware.com

Tanzu Application Platform v1.5

VMware by Broadcom 556

Uninstall your Tanzu Application Platform
by using Tanzu CLI

This document tells you how to uninstall Tanzu Application Platform (commonly known as TAP)
packages from your Tanzu Application Platform package repository by using Tanzu CLI.

To uninstall Tanzu Application Platform:

Delete the Packages

Delete the Tanzu Application Platform Package Repository

Remove Tanzu CLI, plug-ins, and associated files

Remove Cluster Essentials

Delete the packages

If you installed Tanzu Application Platform through predefined profiles, delete the tap
metadata package by running:

tanzu package installed delete tap --namespace tap-install

If you installed any additional packages that were not in the predefined profiles, delete the
individual packages by running:

1. List the installed packages by running:

tanzu package installed list --namespace tap-install

2. Remove a package by running:

tanzu package installed delete PACKAGE-NAME --namespace tap-install

For example:

$ tanzu package installed delete cloud-native-runtimes --namespace tap-in

stall

| Uninstalling package 'cloud-native-runtimes' from namespace 'tap-instal

l'

/ Getting package install for 'cloud-native-runtimes'

\ Deleting package install 'cloud-native-runtimes' from namespace 'tap-in

stall'

\ Package uninstall status: Reconciling

/ Package uninstall status: Deleting

| Deleting admin role 'cloud-native-runtimes-tap-install-cluster-role'

| Deleting role binding 'cloud-native-runtimes-tap-install-cluster-rolebi

nding'

| Deleting secret 'cloud-native-runtimes-tap-install-values'

/ Deleting service account 'cloud-native-runtimes-tap-install-sa'

 Uninstalled package 'cloud-native-runtimes' from namespace 'tap-install'

Where PACKAGE-NAME is the name of a package listed in step 1.

Tanzu Application Platform v1.5

VMware by Broadcom 557

3. Repeat step 2 for each individual package installed.

Delete the Tanzu Application Platform package repository

To delete the Tanzu Application Platform package repository:

1. Retrieve the name of the Tanzu Application Platform package repository by running:

tanzu package repository list --namespace tap-install

For example:

$ tanzu package repository list --namespace tap-install

- Retrieving repositories...

 NAME REPOSITORY

STATUS DETAILS

 tanzu-tap-repository registry.tanzu.vmware.com/tanzu-application-platform/ta

p-packages:0.2.0 Reconcile succeeded

2. Remove the Tanzu Application Platform package repository by running:

tanzu package repository delete PACKAGE-REPO-NAME --namespace tap-install

Where PACKAGE-REPO-NAME is the name of the packageRepository from the earlier step.

For example:

$ tanzu package repository delete tanzu-tap-repository --namespace tap-install

- Deleting package repository 'tanzu-tap-repository'...

 Deleted package repository 'tanzu-tap-repository' in namespace 'tap-install'

Remove Tanzu CLI, plug-ins, and associated files

To completely remove the Tanzu CLI, plug-ins, and associated files, run the script for your OS:

For Linux or MacOS, run:

#!/bin/zsh

rm -rf $HOME/tanzu/cli # Remove previously downloaded cli files

sudo rm /usr/local/bin/tanzu # Remove CLI binary (executable)

rm -rf ~/.config/tanzu/ # current location # Remove config directory

rm -rf ~/.tanzu/ # old location # Remove config directory

rm -rf ~/.cache/tanzu # remove cached catalog.yaml

rm -rf ~/Library/Application\ Support/tanzu-cli/* # Remove plug-ins

Remove Cluster Essentials
To completely remove Cluster Essentials, see Cluster Essentials documentation.

Tanzu Application Platform v1.5

VMware by Broadcom 558

https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.5/cluster-essentials/deploy.html#uninstall

Uninstall Tanzu Application Platform by
using GitOps

This document tells you how to uninstall Tanzu Application Platform (commonly known as TAP)
when installed by using GitOps.

To uninstall your Tanzu Application Platform:

Delete Tanzu Sync Application

Delete external resources (ESO installation only)

Remove the Tanzu CLI, plug-ins, and associated files

Remove Cluster Essentials

Delete Tanzu Sync Application

To delete Tanzu Sync Application, run:

kapp delete -a tanzu-sync

Delete external resources (ESO installation only)
To delete external resources from AWS, run:

cd $HOME/REPO-NAME/clusters/CLUSTER-NAME

./tanzu-sync/aws/scripts/delete-irsa.sh

./tanzu-sync/aws/scripts/delete-policies.sh

Remove the Tanzu CLI, plug-ins, and associated files

Caution

Tanzu Application Platform (GitOps) is currently in beta and is intended for
evaluation and test purposes only. Do not use in a production environment.

Caution

Deleting Tanzu Sync application removes all associated resources of Tanzu
Application Platform on the cluster.

You must delete any applications that were installed manually into the tap-
install namespace, because they might interfere with the deletion of
Tanzu Application Platform.

Tanzu Application Platform v1.5

VMware by Broadcom 559

To completely remove the Tanzu CLI, plug-ins, and associated files, run the following scrips for
Linux or MacOS:

#!/bin/zsh

rm -rf $HOME/tanzu/cli # Remove previously downloaded cli files

sudo rm /usr/local/bin/tanzu # Remove CLI binary (executable)

rm -rf ~/.config/tanzu/ # current location # Remove config directory

rm -rf ~/.tanzu/ # old location # Remove config directory

rm -rf ~/.cache/tanzu # remove cached catalog.yaml

rm -rf ~/Library/Application\ Support/tanzu-cli/* # Remove plug-ins

Remove Cluster Essentials

To completely remove Cluster Essentials, see Cluster Essentials documentation.

Tanzu Application Platform v1.5

VMware by Broadcom 560

https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.5/cluster-essentials/deploy.html#uninstall

Component documentation for Tanzu
Application Platform

Tanzu Application Platform (commonly known as TAP) is a modular platform that you can enhance
by installing components. Most of the Tanzu Application Platform components are documented in
this section. In some cases, a component’s documentation is hosted on a separate site, and you’ll
find a link to it in this section.

Component documentation for Tanzu Application Platform

Tanzu Application Platform (commonly known as TAP) is a modular platform that you can enhance
by installing components. Most of the Tanzu Application Platform components are documented in
this section. In some cases, a component’s documentation is hosted on a separate site, and you’ll
find a link to it in this section.

Overview of Tanzu CLI

This topic tells you about the Tanzu command-line interface (commonly known as Tanzu CLI).

Tanzu CLI

The Tanzu CLI is a command-line interface that connects you to Tanzu. For example, you can use
the Tanzu CLI to:

Configure the Tanzu CLI itself

Install and manage packages

Create and manage application workloads

Tanzu CLI Architecture

The Tanzu CLI has a pluggable architecture. Plug-ins contain CLI commands. Here are the CLI
plug-ins that can be installed with Tanzu Application Platform.

Accelerator: manage accelerator’s in a Kubernetes cluster

Apps: manage application workloads running on workload clusters

Insight: post and query image, package, source, and vulnerability data

Package: package management

Secret: secret management

Services: discover service types, service instances, and manage resource claims

Tanzu CLI Installation

You install and initialize the Tanzu CLI on a computer. The computer can be a laptop, host, or
server.

Tanzu Application Platform v1.5

VMware by Broadcom 561

To install the CLI :

To use the Tanzu CLI with Tanzu Application Platform, see Installing the Tanzu CLI.

To use the Tanzu CLI with Tanzu Kubernetes Grid, see Install the Tanzu CLI and Other
Tools.

Tanzu CLI Command Groups

Tanzu CLI commands are organized into command groups. To view a list of available command
groups, run tanzu. The list of command groups that you see depends on which CLI plug-ins are
installed on your local machine.

Install New Plug-ins

To install a Tanzu CLI plug-in that was not automatically downloaded when running tanzu login or
tanzu plugin sync, install it manually by following these steps.

1. In a terminal, run:

tanzu plugin install PLUGIN-NAME

2. Verify that you installed the plug-in successfully by running:

tanzu plugin list

NAME DESCRIPTION

SCOPE DISCOVERY VERSION STATUS

login Login to the platform

Standalone default v0.28.1 not installed

management-cluster Kubernetes management-cluster operations

Standalone default v0.28.1 not installed

package Tanzu package management

Standalone default v0.28.1 installed

pinniped-auth Pinniped authentication operations (usually not directly in

voked) Standalone default v0.28.1 not installed

secret Tanzu secret management

Standalone default v0.28.1 installed

telemetry Configure cluster-wide telemetry settings

Standalone default v0.28.1 not installed

services Commands for working with service instances, classes and cl

aims Standalone v0.5.0 installed

accelerator Manage accelerators in a Kubernetes cluster

Standalone v1.4.1 installed

apps Applications on Kubernetes

Standalone v0.10.0 installed

insight post & query image, package, source, and vulnerability data

Standalone v1.4.3 installed

Install Local Plug-ins
If your network is not connected to the Internet or you want to download and inspect the Tanzu
CLI plug-in binaries before installing, follow these steps:

1. Download the plug-in tar.gz from the release artifacts for your distribution.

2. Extract the tar.gz to a location on your local machine using the extraction tool of your
choice. For example, the tar -xvf command.

3. From that location, run:

Tanzu Application Platform v1.5

VMware by Broadcom 562

https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid-Integrated-Edition/1.14/tkgi/GUID-installing-cli.html#install-the-tkgi-cli-0

tanzu plugin install all --local /PATH/TO/FILE/

4. Verify that you installed the plug-ins successfully by running:

tanzu plugin list

NAME DESCRIPTION

SCOPE DISCOVERY VERSION STATUS

login Login to the platform

Standalone default v0.28.1 not installed

management-cluster Kubernetes management-cluster operations

Standalone default v0.28.1 not installed

package Tanzu package management

Standalone default v0.28.1 installed

pinniped-auth Pinniped authentication operations (usually not directly in

voked) Standalone default v0.28.1 not installed

secret Tanzu secret management

Standalone default v0.28.1 installed

telemetry Configure cluster-wide telemetry settings

Standalone default v0.28.1 not installed

services Commands for working with service instances, classes and cl

aims Standalone v0.5.0 installed

accelerator Manage accelerators in a Kubernetes cluster

Standalone v1.4.1 installed

apps Applications on Kubernetes

Standalone v0.10.0 installed

insight post & query image, package, source, and vulnerability data

Standalone v1.4.3 installed

Overview of Tanzu CLI

This topic tells you about the Tanzu command-line interface (commonly known as Tanzu CLI).

Tanzu CLI

The Tanzu CLI is a command-line interface that connects you to Tanzu. For example, you can use
the Tanzu CLI to:

Configure the Tanzu CLI itself

Install and manage packages

Create and manage application workloads

Tanzu CLI Architecture

The Tanzu CLI has a pluggable architecture. Plug-ins contain CLI commands. Here are the CLI
plug-ins that can be installed with Tanzu Application Platform.

Accelerator: manage accelerator’s in a Kubernetes cluster

Apps: manage application workloads running on workload clusters

Insight: post and query image, package, source, and vulnerability data

Package: package management

Secret: secret management

Services: discover service types, service instances, and manage resource claims

Tanzu CLI Installation

Tanzu Application Platform v1.5

VMware by Broadcom 563

You install and initialize the Tanzu CLI on a computer. The computer can be a laptop, host, or
server.

To install the CLI :

To use the Tanzu CLI with Tanzu Application Platform, see Installing the Tanzu CLI.

To use the Tanzu CLI with Tanzu Kubernetes Grid, see Install the Tanzu CLI and Other
Tools.

Tanzu CLI Command Groups

Tanzu CLI commands are organized into command groups. To view a list of available command
groups, run tanzu. The list of command groups that you see depends on which CLI plug-ins are
installed on your local machine.

Install New Plug-ins

To install a Tanzu CLI plug-in that was not automatically downloaded when running tanzu login or
tanzu plugin sync, install it manually by following these steps.

1. In a terminal, run:

tanzu plugin install PLUGIN-NAME

2. Verify that you installed the plug-in successfully by running:

tanzu plugin list

NAME DESCRIPTION

SCOPE DISCOVERY VERSION STATUS

login Login to the platform

Standalone default v0.28.1 not installed

management-cluster Kubernetes management-cluster operations

Standalone default v0.28.1 not installed

package Tanzu package management

Standalone default v0.28.1 installed

pinniped-auth Pinniped authentication operations (usually not directly in

voked) Standalone default v0.28.1 not installed

secret Tanzu secret management

Standalone default v0.28.1 installed

telemetry Configure cluster-wide telemetry settings

Standalone default v0.28.1 not installed

services Commands for working with service instances, classes and cl

aims Standalone v0.5.0 installed

accelerator Manage accelerators in a Kubernetes cluster

Standalone v1.4.1 installed

apps Applications on Kubernetes

Standalone v0.10.0 installed

insight post & query image, package, source, and vulnerability data

Standalone v1.4.3 installed

Install Local Plug-ins
If your network is not connected to the Internet or you want to download and inspect the Tanzu
CLI plug-in binaries before installing, follow these steps:

1. Download the plug-in tar.gz from the release artifacts for your distribution.

2. Extract the tar.gz to a location on your local machine using the extraction tool of your
choice. For example, the tar -xvf command.

Tanzu Application Platform v1.5

VMware by Broadcom 564

https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid-Integrated-Edition/1.14/tkgi/GUID-installing-cli.html#install-the-tkgi-cli-0

3. From that location, run:

tanzu plugin install all --local /PATH/TO/FILE/

4. Verify that you installed the plug-ins successfully by running:

tanzu plugin list

NAME DESCRIPTION

SCOPE DISCOVERY VERSION STATUS

login Login to the platform

Standalone default v0.28.1 not installed

management-cluster Kubernetes management-cluster operations

Standalone default v0.28.1 not installed

package Tanzu package management

Standalone default v0.28.1 installed

pinniped-auth Pinniped authentication operations (usually not directly in

voked) Standalone default v0.28.1 not installed

secret Tanzu secret management

Standalone default v0.28.1 installed

telemetry Configure cluster-wide telemetry settings

Standalone default v0.28.1 not installed

services Commands for working with service instances, classes and cl

aims Standalone v0.5.0 installed

accelerator Manage accelerators in a Kubernetes cluster

Standalone v1.4.1 installed

apps Applications on Kubernetes

Standalone v0.10.0 installed

insight post & query image, package, source, and vulnerability data

Standalone v1.4.3 installed

Overview of Tanzu CLI plug-ins
The topics in this section tell you about the following plug-ins in your Tanzu Application Platform
(commonly known as TAP):

accelerator - The Application Accelerator Tanzu CLI plug-in includes commands for
developers and operators to create and use accelerators.

apps - This Tanzu CLI plug-in provides the ability to create, view, update, and delete
application workloads on any Kubernetes cluster that has the Tanzu Application Platform
components installed.

insight - The Tanzu Insight CLI plug-in enables querying vulnerability, image, and package
data.

Overview of Tanzu CLI plug-ins
The topics in this section tell you about the following plug-ins in your Tanzu Application Platform
(commonly known as TAP):

accelerator - The Application Accelerator Tanzu CLI plug-in includes commands for
developers and operators to create and use accelerators.

apps - This Tanzu CLI plug-in provides the ability to create, view, update, and delete
application workloads on any Kubernetes cluster that has the Tanzu Application Platform
components installed.

insight - The Tanzu Insight CLI plug-in enables querying vulnerability, image, and package
data.

Tanzu Apps CLI overview

Tanzu Application Platform v1.5

VMware by Broadcom 565

This topic gives you an overview of the Tanzu Apps CLI. Use the Tanzu Apps CLI to create, view,
update, and delete application workloads on any Kubernetes cluster that has the Tanzu Application
Platform (commonly known as TAP) components installed.

About workloads

Tanzu Application Platform enables you to quickly build and test applications regardless of your
familiarity with Kubernetes. You can turn source code into a workload that runs in a container with
a URL. A workload enables you to choose application specifications, such as repository location,
environment variables, and service binding.

Tanzu Application Platform can support a range of workloads, including a serverless process that
starts on demand, a constellation of microservices that functions as a logical application, or a small
hello-world test application.

For information about installing the Tanzu Apps CLI, see Install Apps CLI plug-in.

Tanzu Apps CLI overview

This topic gives you an overview of the Tanzu Apps CLI. Use the Tanzu Apps CLI to create, view,
update, and delete application workloads on any Kubernetes cluster that has the Tanzu Application
Platform (commonly known as TAP) components installed.

About workloads

Tanzu Application Platform enables you to quickly build and test applications regardless of your
familiarity with Kubernetes. You can turn source code into a workload that runs in a container with
a URL. A workload enables you to choose application specifications, such as repository location,
environment variables, and service binding.

Tanzu Application Platform can support a range of workloads, including a serverless process that
starts on demand, a constellation of microservices that functions as a logical application, or a small
hello-world test application.

For information about installing the Tanzu Apps CLI, see Install Apps CLI plug-in.

Install Tanzu Apps CLI plug-in

This topic describes how to install the Apps CLI plug-in.

Prerequisites

Ensure that you installed or updated the Tanzu CLI, for more information, see Install Tanzu CLI.

Install Tanzu Apps CLI plug-in

Run:

tanzu plugin install apps --group vmware-tap/default:v1.5

Verify that the plug-in is installed correctly:

tanzu apps version

sample output

v0.12.1

Tanzu Application Platform v1.5

VMware by Broadcom 566

Uninstall Apps CLI plug-in

Run:

tanzu plugin delete apps

Change clusters
The Apps CLI plug-in refers to the default kubeconfig file to access a Kubernetes cluster. When
you run a tanzu apps command, the plug-in uses the default context that is defined in that
kubeconfig file (located by default at HOME/.kube/config).

There are two ways to change the target cluster:

1. Use kubectl config use-context CONTENT-NAME to change the default context. All
subsequent tanzu apps commands target the cluster defined in the new default kubeconfig
context.

2. Include the --context CONTENT-NAME flag when running any tanzu apps command.

Override the default kubeconfig

There are two approaches to overriding the default kubeconfig:

1. Set the environment variable KUBECONFIG=PATH to change the kubeconfig the Apps CLI
plug-in will reference.

All subsequent tanzu apps commands reference the non-default kubeconfig assigned to
the environment variable.

2. Include the --kubeconfig path flag when running any tanzu apps command.

For more information about kubeconfig, see Configure Access to Multiple Clusters in the
Kubernetes documentation.

Autocompletion

The Apps CLI plug-in has auto-completion support. The plug-in supports auto-completion for
commands, positional arguments, flags, and flag values. Add one of the following commands to the
shell config file according to your current setup:

Bash

tanzu completion bash > HOME/.tanzu/completion.bash.inc

Note

Any subsequent tanzu apps commands that do not include the --context
CONTENT-NAME flag continue to use the default context set in the kubeconfig.

Note

Any subsequent tanzu apps commands that do not include the --context
CONTEXT-NAME flag continue to use the default context set in the kubeconfig.

Tanzu Application Platform v1.5

VMware by Broadcom 567

https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/

Zsh

echo "autoload -U compinit; compinit" >> ~/.zshrc

tanzu completion zsh > "${fpath[1]}/_tanzu"

Create workloads

Create workloads from one of the following sources:

A Git repository, for example, a Git branch, Git tag, or Git commit

An existing local project

An image that is pulled from a registry to deploy the application.

A Maven repository artifact.

For more information, see Create a workload.

Debug and troubleshoot workloads

Check the workload status with the tanzu apps workload get and tanzu apps workload tail
commands.

Use tanzu apps workload get to see the workload specification, the resources attached to it, their
status and any associated high-level error messages (if they exist).

Use tanzu apps workload tail to see testing, scanning, build, configuration, deployment, and
runtime logs associated with a workload and its progression through the supply chain.

For more information about using these commands and common errors, see Debug workloads.

Create a workload

This topics tells you how to create a workload from example source code with Tanzu Application
Platform (commonly known as TAP).

Prerequisites

The following prerequisites are required to use workloads with Tanzu Application Platform:

Install kubectl.

Install Tanzu Application Platform components on a Kubernetes cluster. See Installing Tanzu
Application Platform.

Set your kubeconfig context to the prepared cluster kubectl config use-context
CONTEXT_NAME.

Install Tanzu CLI. See Install or update the Tanzu CLI and plug-ins.

Install the Apps plug-in. See the Install Apps plug-in.

Set up developer namespaces to use your installed packages.

For more information about the values you can provide when creating and managing the
life cycle of workloads, see Workload and Supply Chain Custom Resources in the
Cartographer documentation. Alternatively, run kubectl explain workload.spec for the
Kubernetes version running on the target cluster.

Get started with an example workload

Tanzu Application Platform v1.5

VMware by Broadcom 568

https://kubernetes.io/docs/tasks/tools/
https://cartographer.sh/docs/v0.6.0/reference/workload/

You can create a workload from a GitHub repository or local source.

Create a workload from GitHub repository

Use the flags --git-repo, --git-branch, --git-tag, and --git-commit flags to create a workload
from an existing Git repository. This allows the supply chain to get the source from the given
repository to deploy the application.

To create a named workload and specify a Git source code location, run:

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-tag tap-1.5.0 --

type web

Respond Y to prompts to complete process.

Where:

tanzu-java-web-app is the name of the workload.

--git-repo is the location of the code to build the workload from.

--sub-path is the relative path inside the repository to treat as application root.

--git-tag (optional) specifies which tag in the repository to pull the code from.

--git-branch (optional) specifies which branch in the repository to pull the code from.

--type distinguishes the workload type.

This process can also be done with non-publicly accessible repositories. These require
authentication using credentials stored in a Kubernetes secret. The supply chain is in charge of
managing these credentials.

Further information on how to set it up in Out of the Box Supply Chain with private Git repos, how
the supply chain manages git repositories in How it works section and how to override parameters
to customize the behavior to manage them in Workload parameters section.

View the full list of supported workload configuration options by running tanzu apps workload
apply --help.

Create a workload from local source code

Use the --local-path and --source-image flags to create a workload from an existing local project.
This allows the supplychain to generate an image (carvel-imgpkg) and push it to the given registry
to be used in the workload.

To create a named workload and specify where the local source code is, run:

tanzu apps workload create pet-clinic --local-path /path/to/my/project --source-image

springio/petclinic

Respond Y to the dialog box about publishing local source code if the image must be updated.

Where:

pet-clinic is the name of the workload.

--local-path points to the directory where the source code is located.

--source-image is the registry path where the local source code is uploaded as an image.

The cluster needs the correct credentials and access rights in order to push the source code to the
image registry. More information on authentication to publish local source in supply chain local

Tanzu Application Platform v1.5

VMware by Broadcom 569

https://carvel.dev/imgpkg/

source authentication and a deeper explanation on how the supply chain manages this
authentication in the local source how it works section.

Exclude Files

When working with local source code, you can exclude files from the source code to be uploaded
within the image by creating a .tanzuignore file at the root of the source code.

The file must contain a list of file paths to exclude from the image including the file itself and the
directories must not end with the system path separator (/ or \).

For more information regarding the .tanzuignore file see tanzuignorefile.

Create workload from an existing image

Create a workload from an existing registry image by providing the reference to that image through
the --image flag. The supplychain references the provided registry image when the workload is
deployed.

For example:

tanzu apps workload create petclinic-image --image springcommunity/spring-framework-pe

tclinic

Respond Y to prompts to complete process.

Where:

petclinic-image is the name of the workload.

--image is an existing image, pulled from a registry, that contains the source that the
workload is going to use to create the application.

Check the requirements to use a pre-built image in supply chain pre-built images requirements and
how to configure the workload in order to use it.

Create a workload from Maven repository artifact

Create a workload from a Maven repository artifact Source-Controller by setting its properties
through the --maven-* flags when using the supply chain.

The Maven repository URL is set when the supply chain is created.

To create a Maven workload using the CLI provided flags, run:

tanzu apps workload apply my-workload \

 --maven-artifact hello-world \

 --maven-type jar

 --maven-version 0.0.1 \

 --maven-group carto.run \

 --type web -y

For more information about the Maven flags, see the Maven flags command reference information.

For information about how to configure the Maven artifact authentication credentials, see Maven
Repository Secret.

Working with YAML files

In many cases, workload life cycles are managed through CLI commands. However, there might be
cases where managing the workload through direct interactions and edits of a yaml file is preferred.
The Apps CLI plug-in supports using yaml files to meet the requirements.

Tanzu Application Platform v1.5

VMware by Broadcom 570

When a workload is managed using a yaml file, that file must contain a single workload definition.

For example, a valid file looks similar to the following example:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

 name: tanzu-java-web-app

 labels:

 app.kubernetes.io/part-of: tanzu-java-web-app

 apps.tanzu.vmware.com/workload-type: web

spec:

 source:

 git:

 url: https://github.com/vmware-tanzu/application-accelerator-samples

 ref:

 tag: tap-1.4.0

 subPath: tanzu-java-web-app

To create a workload from a file like the earlier example:

tanzu apps workload create --file my-workload-file.yaml

The workload YAML definition can also be passed in through stdin as follows:

tanzu apps workload create --file - --yes

The console waits for input, and the content with valid yaml definitions for a workload can either be
written or pasted. Then click Ctrl-D three times to start the workload creation. This can also be
done with the workload apply command.

To pass a workload through stdin, the --yes flag is required. If not provided, the command fails.

Another way to pass a workload with the --file flag is using a URL, which, as mentioned before,
must contain a raw file with the workload definition.

For example:

tanzu apps workload apply --file https://raw.githubusercontent.com/vmware-tanzu/apps-c

li-plugin/main/pkg/commands/testdata/workload.yaml

Bind a service to a workload

Tanzu Application Platform supports creating a workload with binding to multiple services
(ServiceBinding). The cluster supply chain is in charge of provisioning those services.

The purpose of these bindings is to provide information from a service resource to an application.

To bind a database service to a workload, run:

tanzu apps workload apply pet-clinic --service-ref "database=services.tanzu.vmw

are.com/v1alpha1:MySQL:my-prod-db"

Where:

Note

When flags are passed in combination with --file my-workload-file.yaml the flag
values take precedence over the associated property or values in the YAML.

Tanzu Application Platform v1.5

VMware by Broadcom 571

pet-clinic is the name of the workload to be updated.

--service-ref references the service using the format {service-ref-name}=
{apiVersion}:{kind}:{service-binding-name}.

For more information about how to bind a service to a workload, see Consume services on Tanzu
Application Platform.

Next steps

You can verify workload details and status, add environment variables, export definitions, or bind
services.

1. To verify a workload status and details, use tanzu apps workload get.

To get workload logs, use tanzu apps workload tail.

For more information, see debug workload section.

2. To add environment variables, run:

tanzu apps workload apply pet-clinic --env foo=bar

3. To export the workload definition into Git, or to migrate to another environment, run:

tanzu apps workload get pet-clinic --export

4. To bind a service to a workload, see the –service-ref flag.

5. To see flags available for the workload commands, run:

tanzu apps workload -h

tanzu apps workload get -h

tanzu apps workload create -h

Workload Examples

This topic provides you with examples of how to use the Tanzu Apps CLI apps workload apply
command flags.

Custom registry credentials

Either use a custom certificate on your system or pass the path to the certificate through flags.

To pass the certificate through flags, specify:

--registry-ca-cert: This is the path of the self-signed certificate needed for the custom or
private registry. This is also populated with a default value through the environment variable
TANZU_APPS_REGISTRY_CA_CERT.

--registry-password: Use this when the registry requires credentials to push. The value of
this flag can also be specified through TANZU_APPS_REGISTRY_PASSWORD.

--registry-username: Use with --registry-password to set the registry credentials. It can
also be provided as the environment variable TANZU_APPS_REGISTRY_USERNAME.

--registry-token: Set when the registry authentication is done through a token. The value
of this flag can also be taken from TANZU_APPS_REGISTRY_TOKEN environment variable.

For example:

Tanzu Application Platform v1.5

VMware by Broadcom 572

tanzu apps workload apply WORKLOAD --local-path PATH-TO-REPO -s registry.url.nip.io/PA

CKAGE/IMAGE --type web --registry-ca-cert PATH-TO-CA-CERT.nip.io.crt --registry-userna

me USERNAME --registry-password PASSWORD

Alternatively, the same command can be run as:

```console

export TANZU_APPS_REGISTRY_CA_CERT=PATH-TO-CA-CERT.nip.io.crt

export TANZU_APPS_REGISTRY_PASSWORD=USERNAME

export TANZU_APPS_REGISTRY_USERNAME=PASSWORD

tanzu apps workload apply WORKLOAD --local-path PATH-TO-REPO -s registry.url.nip.io/PA

CKAGE/IMAGE

–live-update and –debug

Use the --live-update flag to ensure that local source code changes are reflected quickly on the
running workload. This is particularly valuable when iterating on features that require the workload
to be deployed and running to validate.

Live update is ideally situated for running from within one of our supported IDE extensions, but it
can also be utilized independently as shown in the following Spring Boot application example:

Spring Boot application example

Prerequisites: Tilt must be installed on the client.

1. Clone the repository by running:

git clone https://github.com/vmware-tanzu/application-accelerator-samples

2. Change into the tanzu-java-web-app directory.

3. In Tiltfile, first, change the SOURCE_IMAGE variable to use your registry and project.

4. At the very end of the file add:

allow_k8s_contexts('your-cluster-name')

5. Inside the directory, run:

tanzu apps workload apply tanzu-java-web-app --live-update --local-path . -s

gcr.io/PROJECT/tanzu-java-web-app-live-update -y

Expected output:

The files and directories listed in the .tanzuignore file are being excluded fr

om the uploaded source code.

Publishing source in "." to "gcr.io/PROJECT/tanzu-java-web-app-live-update"...

� Published source

� Create workload:

   1 + |---

   2 + |apiVersion: carto.run/v1alpha1

   3 + |kind: Workload

   4 + |metadata:

   5 + |  name: tanzu-java-web-app

   6 + |  namespace: default

   7 + |spec:

   8 + |  params:

   9 + |  - name: live-update

  10 + |    value: "true"

Tanzu Application Platform v1.5

VMware by Broadcom 573

https://docs.tilt.dev/install.html


  11 + |  source:

  12 + |    image: gcr.io/PROJECT/tanzu-java-web-app-live-update:latest@sha256:

3c9fd738492a23ac532a709301fcf0c9aa2a8761b2b9347bdbab52ce9404264b

� Created workload "tanzu-java-web-app"

To see logs:   "tanzu apps workload tail tanzu-java-web-app --timestamp --since 

1h"

To get status: "tanzu apps workload get tanzu-java-web-app"

6. Run Tilt to deploy the workload.

tilt up

Tilt started on http://localhost:10350/

v0.23.6, built 2022-01-14

(space) to open the browser

(s) to stream logs (--stream=true)

(t) to open legacy terminal mode (--legacy=true)

(ctrl-c) to exit

Tilt started on http://localhost:10350/

v0.23.6, built 2022-01-14

Initial Build • (Tiltfile)

Loading Tiltfile at: /path/to/repo/tanzu-java-web-app/Tiltfile

Successfully loaded Tiltfile (1.500809ms)

tanzu-java-w… │

tanzu-java-w… │ Initial Build • tanzu-java-web-app

tanzu-java-w… │ WARNING: Live Update failed with unexpected error:

tanzu-java-w… │   Cannot extract live updates on this build graph structure

tanzu-java-w… │ Falling back to a full image build + deploy

tanzu-java-w… │ STEP 1/1 — Deploying

tanzu-java-w… │      Objects applied to cluster:

tanzu-java-w… │        → tanzu-java-web-app:workload

tanzu-java-w… │

tanzu-java-w… │      Step 1 - 8.87s (Deploying)

tanzu-java-w… │      DONE IN: 8.87s

tanzu-java-w… │

tanzu-java-w… │

tanzu-java-w… │ Tracking new pod rollout (tanzu-java-web-app-build-1-build-po

d):

tanzu-java-w… │      ┊ Scheduled       - (…) Pending

tanzu-java-w… │      ┊ Initialized     - (…) Pending

tanzu-java-w… │      ┊ Ready           - (…) Pending

...

–export

Use this flag to retrieve the workload definition with all the extraneous, cluster-specific, properties,
and values removed. For example, the status and metadata text boxes like creationTimestamp. This
allows you to apply the workload definition to a different environment without having to make
significant edits.

This means that the workload definition includes only the text boxes that were specified by the
developer that created it (--export preserves the essence of the developer’s intent for portability).

For example, if you create a workload with:

tanzu apps workload apply rmq-sample-app --git-repo https://github.com/jhvhs/rabbitmq-

sample --git-branch main --service-ref "rmq=rabbitmq.com/v1beta1:RabbitmqCluster:examp

le-rabbitmq-cluster-1" -t web

Tanzu Application Platform v1.5

VMware by Broadcom 574



When querying the workload with --export, the default export format in YAML is as follows:

# with yaml format

    tanzu apps workload get rmq-sample-app --export

    ---

    apiVersion: carto.run/v1alpha1

    kind: Workload

    metadata:

    labels:

        apps.tanzu.vmware.com/workload-type: web

    name: rmq-sample-app

    namespace: default

    spec:

    serviceClaims:

    - name: rmq

        ref:

        apiVersion: rabbitmq.com/v1beta1

        kind: RabbitmqCluster

        name: example-rabbitmq-cluster-1

    source:

        git:

        ref:

            branch: main

        url: https://github.com/jhvhs/rabbitmq-sample

# with json format

    tanzu apps workload get rmq-sample-app --export --output json

    {

        "apiVersion": "carto.run/v1alpha1",

        "kind": "Workload",

        "metadata": {

            "labels": {

                "apps.tanzu.vmware.com/workload-type": "web"

            },

            "name": "rmq-sample-app",

            "namespace": "default"

        },

        "spec": {

            "serviceClaims": [

                {

                    "name": "rmq",

                    "ref": {

                        "apiVersion": "rabbitmq.com/v1beta1",

                        "kind": "RabbitmqCluster",

                        "name": "example-rabbitmq-cluster-1"

                    }

                }

            ],

            "source": {

                "git": {

                    "ref": {

                        "branch": "main"

                    },

                    "url": "https://github.com/jhvhs/rabbitmq-sample"

                }

            }

        }

    }

–output

Use this flag to retrieve the workload including all the cluster-specifics. The --output flag can also
be used in conjunction with the --export flag to set the export format as json, yaml, or yml.

Tanzu Application Platform v1.5

VMware by Broadcom 575



# with json format

tanzu apps workload get rmq-sample-app --output json # can also be used as tanzu apps 

workload get rmq-sample-app -ojson

    {

        "kind": "Workload",

        "apiVersion": "carto.run/v1alpha1",

        "metadata": {

            "name": "rmq-sample-app",

            "namespace": "default",

            "uid": "3619ff6d-9e73-473a-9112-891a6d8aee9e",

            "resourceVersion": "11657434",

            "generation": 2,

            "creationTimestamp": "2022-11-28T05:10:32Z",

            "labels": {

                "apps.tanzu.vmware.com/workload-type": "web"

            },

            "managedFields": [

                {

                    "manager": "v0.10.0+dev-002cc44e",

                    "operation": "Update",

                    "apiVersion": "carto.run/v1alpha1",

                    "time": "2022-11-28T05:10:32Z",

                    "fieldsType": "FieldsV1",

                    "fieldsV1": {

                        "f:metadata": {

                            "f:labels": {

                                ".": {},

                                "f:apps.tanzu.vmware.com/workload-type": {}

                            }

                        },

                        ...

                    }

                },

                ...

            ]

        },

        ...

            "status": {

            "observedGeneration": 2,

            "conditions": [

                {

                    "type": "SupplyChainReady",

                    "status": "True",

                    "lastTransitionTime": "2022-11-28T05:10:32Z",

                    "reason": "Ready",

                    "message": ""

                },

                {

                    "type": "ResourcesSubmitted",

                    "status": "True",

                    "lastTransitionTime": "2022-11-28T05:13:33Z",

                    "reason": "ResourceSubmissionComplete",

                    "message": ""

                },

                ...

            ],

            "supplyChainRef": {

                "kind": "ClusterSupplyChain",

                "name": "source-to-url"

            },

            "resources": [

                {

                    "name": "source-provider",

                    "stampedRef": {

                        "kind": "GitRepository",

                        "namespace": "default",

Tanzu Application Platform v1.5

VMware by Broadcom 576



                        "name": "rmq-sample-app",

                        "apiVersion": "source.toolkit.fluxcd.io/v1beta1",

                        "resource": "gitrepositories.source.toolkit.fluxcd.io"

                    },

                    "templateRef": {

                        "kind": "ClusterSourceTemplate",

                        "name": "source-template",

                        "apiVersion": "carto.run/v1alpha1"

                    },

                ...

                }

            ...

            ]

            ...

        }

        ...

    }

## with yaml format

tanzu apps workload get rmq-sample-app --output yaml # can also be used as tanzu apps 

workload get rmq-sample-app -oyaml

---

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  creationTimestamp: "2022-11-28T05:10:32Z"

  generation: 2

  labels:

    apps.tanzu.vmware.com/workload-type: web

  managedFields:

  - apiVersion: carto.run/v1alpha1

      ...

    manager: v0.10.0+dev-002cc44e

    operation: Update

    time: "2022-11-28T05:10:32Z"

  - apiVersion: carto.run/v1alpha1

    fieldsType: FieldsV1

    ...

    manager: cartographer

    operation: Update

    subresource: status

    time: "2022-11-28T05:10:36Z"

  name: rmq-sample-app

  namespace: default

  resourceVersion: "11657434"

  uid: 3619ff6d-9e73-473a-9112-891a6d8aee9e

spec:

  serviceClaims:

  - name: rmq

    ref:

      apiVersion: rabbitmq.com/v1beta1

      kind: RabbitmqCluster

      name: example-rabbitmq-cluster-1

  source:

    git:

      ref:

        branch: main

      url: https://github.com/jhvhs/rabbitmq-sample

status:

  conditions:

  - lastTransitionTime: "2022-11-28T05:10:32Z"

    message: ""

    reason: Ready

    status: "True"

    type: SupplyChainReady

  ...

Tanzu Application Platform v1.5

VMware by Broadcom 577



  observedGeneration: 2

  resources:

  ...

    name: source-provider

    outputs:

    - digest: sha256:97b2cb779b4ea31339595cd204a3fec0053805eeacbbd6d6dd23af7d3000a6ae

      lastTransitionTime: "2022-11-28T05:16:01Z"

      name: url

      preview: |

        http://fluxcd-source-controller.flux-system.svc.cluster.local./gitrepository/d

efault/rmq-sample-app/73c6311eefbf724fee9ad6f4524fa24ec842ff34.tar.gz

    - digest: sha256:e7884b071fe1bbb2551d42a171043d061a7591e744705572136e689c2a154b7a

      lastTransitionTime: "2022-11-28T05:16:01Z"

      name: revision

      preview: |

        HEAD/73c6311eefbf724fee9ad6f4524fa24ec842ff34

    stampedRef:

      apiVersion: source.toolkit.fluxcd.io/v1beta1

      kind: GitRepository

      name: rmq-sample-app

      namespace: default

      resource: gitrepositories.source.toolkit.fluxcd.io

    templateRef:

      apiVersion: carto.run/v1alpha1

      kind: ClusterSourceTemplate

      name: source-template

  - conditions:

    - lastTransitionTime: "2022-11-28T05:13:25Z"

      message: ""

      reason: ResourceSubmissionComplete

      status: "True"

      type: ResourceSubmitted

    ...

    inputs:

    - name: source-provider

–sub-path

Use this flag to support use cases where more than one application is in a single project or
repository.

Use --sub-path when creating a workload from a Git repository.

```console

tanzu apps workload apply subpathtester --git-repo https://github.com/PATH-TO-REPO --g

it-branch main --type web --sub-path SUBPATH

� Create workload:

 1 + |---

 2 + |apiVersion: carto.run/v1alpha1

 3 + |kind: Workload

 4 + |metadata:

 5 + | labels:

 6 + | apps.tanzu.vmware.com/workload-type: web

 7 + | name: subpathtester

 8 + | namespace: default

 9 + |spec:

 10 + | source:

 11 + | git:

 12 + | ref:

 13 + | branch: main

 14 + | url: https://github.com/path-to-repo/PATH-TO-REPO

 15 + | subPath: SUBPATH

Tanzu Application Platform v1.5

VMware by Broadcom 578

� Do you want to create this workload? [yN]:

```

Use --sub-path when you create a workload from local source code. In the directory of the project
you want to create the workload from:

  ```console

 tanzu apps workload apply WORKLOAD --local-path . -s gcr.io/REGISTRY/WORKLOAD-IMAGE

--sub-path SUBPATH

 � Publish source in "." to "gcr.io/REGISTRY/WORKLOAD-IMAGE"? It might be visible to

others who can pull images from that repository Yes

 Publishing source in "." to "gcr.io/REGISTRY/WORKLOAD-IMAGE"...

 � Published source

 � Create workload:

 1 + |---

 2 + |apiVersion: carto.run/v1alpha1

 3 + |kind: Workload

 4 + |metadata:

 5 + | name: WORKLOAD

 6 + | namespace: default

 7 + |spec:

 8 + | source:

 9 + | image: gcr.io/REGISTRY/my-workload-image:latest@sha256:f28c5fedd0e902

800e6df9605ce5e20a8e835df9e87b1a0aa256666ea179fc3f

 10 + | subPath: SUBPATH

 � Do you want to create this workload? [yN]:

  ```

Note In cases where a workload must be created from local source code, to reduce the total
amount of code that is uploaded, set the --local-path value to point directly to the directory
containing the code rather than using --sub-path.

.tanzuignore file

There are many files and directories in projects that are not connected to running code (these files
are not part of the final running container). When creating a workload from local source code, list
these unused files and directories in the .tanzuignore file to avoid unnecessary consumption of
resources when uploading the source.

When iterating on code with the --live-update flag enabled, changes to directories or files listed in
.tanzuignore do not trigger the automatic re-deployment of the source code.

The following are some guidelines for the .tanzuignore file:

The .tanzuignore file should include a reference to itself, as it provides no value when
deployed.

Directories must not end with the system separator /, or \.

Comments using hashtag # can be included.

If the .tanzuignore file contains files or directories that are not found in the source code,
they are ignored.

Example of a .tanzuignore file

    .tanzuignore # must contain itself in order to be ignored

    # This is a comment

    this/is/a/folder/to/exclude

Tanzu Application Platform v1.5

VMware by Broadcom 579



    this-is-a-file.ext

–dry-run

Use the --dry-run flag to prepare all the steps to submit a workload to the cluster but stop before
sending it, and display an output of the final structure of the workload.

For example, when applying a workload from Git source:

tanzu apps workload apply rmq-app --git-repo https://github.com/jhvhs/rabbitmq-sample 

--git-branch main --service-ref "rmq=rabbitmq.com/v1beta1:RabbitmqCluster:example-rabb

itmq-cluster-1" -t web --dry-run

---

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  creationTimestamp: null

  labels:

    apps.tanzu.vmware.com/workload-type: web

  name: rmq-app

  namespace: default

spec:

  serviceClaims:

  - name: rmq

    ref:

      apiVersion: rabbitmq.com/v1beta1

      kind: RabbitmqCluster

      name: example-rabbitmq-cluster-1

  source:

    git:

      ref:

        branch: main

      url: https://github.com/jhvhs/rabbitmq-sample

status:

  supplyChainRef: {}

Certify how a workload is created or updated in the cluster based on the current specifications
passed through --file workload.yaml or command flags.

If there is an error applying the workload, this is shown with the --dry-run flag:

tanzu apps workload create rmq-sample-app --git-repo https://github.com/jhvhs/rabbitmq

-sample --git-branch main --service-ref "rmq=rabbitmq.com/v1beta1:RabbitmqCluster:exam

ple-rabbitmq-cluster-1" -t web --dry-run

Error: workload "default/rmq-sample-app" already exists

–update-strategy
Use this flag to control whether configuration properties and values passed through --file
workload.yaml for an existing workload merge with, or replace (overwrite), existing on-cluster
properties or values set for a workload.

The --update-strategy flag accepts two values: merge (default), and replace.

With the default merge:

If the --file workload.yaml deletes an existing on-cluster property or value, that property is not
removed from the on-cluster definition. If the --file workload.yaml includes a new property or
value, it is added to the on-cluster workload properties/values. If the --file workload.yaml
updates an existing value for a property, that property’s value on-cluster is updated.

Tanzu Application Platform v1.5

VMware by Broadcom 580



With replace:

The on-cluster workload is updated to exactly what is specified in the --file workload.yaml
definition.

The intent of the current default merge strategy is to prevent unintentional deletions of critical
properties from existing workloads.

Examples of the outcomes of both merge and replace update strategies are provided in the
following examples:

# Export workload if there is no previous yaml definition

tanzu apps workload get spring-petclinic --export > spring-petclinic.yaml

# modify the workload definition

vi rmq-sample-app.yaml

---

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

name: spring-petclinic

labels:

  app.kubernetes.io/part-of: spring-petclinic

  apps.tanzu.vmware.com/workload-type: web

spec:

resources:

  requests:

    memory: 1Gi

  limits:           # delete this line

    memory: 1Gi     # delete this line

    cpu: 500m       # delete this line

source:

  git:

    url: https://github.com/sample-accelerators/spring-petclinic

    ref:

      tag: tap-1.1

After saving the file, to verify how both of the update strategy options behave, run:

tanzu apps workload apply -f ./spring-petclinic.yaml --update-strategy merge # if flag 

is not specified, merge is taken as default

This produces the following output:

� WARNING: Configuration file update strategy is changing. By default, provided config

uration files

will replace rather than merge existing configuration. The change will take place in t

he January 2024

Tanzu Application Platform release (use "--update-strategy" to control strategy explic

itly).

Workload is unchanged, skipping update

By contrast, use replace as follows:

tanzu apps workload apply -f ./spring-petclinic.yaml --update-strategy replace

Note

The default value for the --update-strategy flag will change from merge to
replace in Tanzu Application Platform v1.7.0.

Tanzu Application Platform v1.5

VMware by Broadcom 581



This produces the following output:

� WARNING: Configuration file update strategy is changing. By default, provided config

uration files

will replace rather than merge existing configuration. The change will take place in t

he January 2024

Tanzu Application Platform release (use "--update-strategy" to control strategy explic

itly).

� Update workload:

...

  8,  8   |  name: spring-petclinic

  9,  9   |  namespace: default

 10, 10   |spec:

 11, 11   |  resources:

 12     - |    limits:

 13     - |      cpu: 500m

 14     - |      memory: 1Gi

 15, 12   |    requests:

 16, 13   |      memory: 1Gi

 17, 14   |  source:

 18, 15   |    git:

...

� Really update the workload "spring-petclinic"? [yN]:

The lines that were deleted in the YAML file are deleted as well in the workload running in the
cluster. The only text boxes that remain exactly as they were created are the system populated
metadata text boxes (resourceVersion, uuid, generation, creationTimestamp, deletionTimestamp).

Output workload after create/apply

tanzu apps workload create/apply commands can be used with --output flag which prints the
workload once the process of its creation or update happens.

Since the usage of this flag is mainly for scripting processes, all the prompts can be skipped with the
usage of --yes flag as follows:

tanzu apps workload apply rmq-sample-app --git-repo https://github.com/jhvhs/rabbitmq-

sample --git-branch main --service-ref "rmq=rabbitmq.com/v1beta1:RabbitmqCluster:examp

le-rabbitmq-cluster-1" --type web --output yaml --yes

---

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  creationTimestamp: "2023-04-04T16:15:41Z"

  generation: 1

  labels:

    apps.tanzu.vmware.com/workload-type: web

  name: rmq-sample-app

  namespace: default

  resourceVersion: "184277312"

  uid: faf6e581-a2a3-47ab-b2d3-4160513c72df

spec:

  serviceClaims:

  - name: rmq

    ref:

      apiVersion: rabbitmq.com/v1beta1

      kind: RabbitmqCluster

      name: example-rabbitmq-cluster-1

  source:

    git:

      ref:

        branch: main

Tanzu Application Platform v1.5

VMware by Broadcom 582



      url: https://github.com/jhvhs/rabbitmq-sample

status:

  supplyChainRef: {}

If it is not used with --yes flag, all the prompts will be printed and the workload definition will be
shown at the end.

tanzu apps workload apply rmq-sample-app --git-repo https://github.com/jhvhs/rabbitmq-

sample --git-branch main --service-ref "rmq=rabbitmq.com/v1beta1:RabbitmqCluster:examp

le-rabbitmq-cluster-1" --type web --output yaml

� Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |  name: rmq-sample-app

      8 + |  namespace: default

      9 + |spec:

     10 + |  serviceClaims:

     11 + |  - name: rmq

     12 + |    ref:

     13 + |      apiVersion: rabbitmq.com/v1beta1

     14 + |      kind: RabbitmqCluster

     15 + |      name: example-rabbitmq-cluster-1

     16 + |  source:

     17 + |    git:

     18 + |      ref:

     19 + |        branch: main

     20 + |      url: https://github.com/jhvhs/rabbitmq-sample

� Do you want to create this workload? [yN]: y

� Created workload "rmq-sample-app"

To see logs:   "tanzu apps workload tail rmq-sample-app --timestamp --since 1h"

To get status: "tanzu apps workload get rmq-sample-app"

---

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  creationTimestamp: "2023-04-04T15:18:13Z"

  generation: 1

  labels:

    apps.tanzu.vmware.com/workload-type: web

  name: rmq-sample-app

  namespace: default

  resourceVersion: "184169566"

  uid: 6588d398-b803-47e3-b31a-23d9a1a633a9

spec:

  serviceClaims:

  - name: rmq

    ref:

      apiVersion: rabbitmq.com/v1beta1

      kind: RabbitmqCluster

      name: example-rabbitmq-cluster-1

  source:

    git:

      ref:

        branch: main

      url: https://github.com/jhvhs/rabbitmq-sample

status:

  supplyChainRef: {}

Tanzu Application Platform v1.5

VMware by Broadcom 583



This flag can also be used with --wait or --tail if the intention is to retrieve the workload with
everything and its status. The behavior is the same regarding the prompts: if --yes flag is not used,
then the workload definition and the surveys are displayed and it remains waiting until the workload
is in status ready. Otherwise, it does not show anything until the workload is ready in the cluster.

It should be made clear that, if --tail is used, its logs are not going to be suppressed despite the
usage of --yes flag.

tanzu apps workload apply rmq-sample-app --git-repo https://github.com/jhvhs/rabbitmq-

sample --git-branch main --service-ref "rmq=rabbitmq.com/v1beta1:RabbitmqCluster:examp

le-rabbitmq-cluster-1" --type web --output yaml --yes --wait

---

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  creationTimestamp: "2023-04-04T16:22:29Z"

  generation: 1

  labels:

    apps.tanzu.vmware.com/workload-type: web

  name: rmq-sample-app

  namespace: default

  resourceVersion: "184296857"

  uid: 7fa58a71-0b41-4975-b816-781b87d02cde

spec:

  serviceClaims:

  - name: rmq

    ref:

      apiVersion: rabbitmq.com/v1beta1

      kind: RabbitmqCluster

      name: example-rabbitmq-cluster-1

  source:

    git:

      ref:

        branch: main

      url: https://github.com/jhvhs/rabbitmq-sample

status:

  conditions:

  ...

  - lastTransitionTime: "2023-04-04T16:26:03Z"

    message: ""

    reason: Ready

    status: "True"

    type: Ready

  observedGeneration: 1

  resources:

  - conditions:

    - lastTransitionTime: "2023-04-04T16:22:36Z"

      message: ""

      reason: ResourceSubmissionComplete

      status: "True"

      type: ResourceSubmitted

      ...

    name: source-provider

    outputs:

    - digest: sha256:1982253401b1be2236786e3da433216d36d289d0b158fbc9ca6477ac94879e60

      lastTransitionTime: "2023-04-04T16:22:36Z"

      name: url

      preview: |

        http://fluxcd-source-controller.flux-system.svc.cluster.local./gitrepository/d

efault/rmq-sample-app/103fde37882b5510e9b3974e5fe209161b54f675.tar.gz

    ...

    stampedRef:

      apiVersion: source.toolkit.fluxcd.io/v1beta1

      kind: GitRepository

      name: rmq-sample-app

Tanzu Application Platform v1.5

VMware by Broadcom 584



      namespace: default

      resource: gitrepositories.source.toolkit.fluxcd.io

    templateRef:

      apiVersion: carto.run/v1alpha1

      kind: ClusterSourceTemplate

      name: source-template

  - conditions:

    ...

    - lastTransitionTime: "2023-04-04T16:25:45Z"

      message: ""

      reason: Ready

      status: "True"

      type: Ready

    inputs:

    - name: source-provider

    ...

  - conditions:

    ...

    - lastTransitionTime: "2023-04-04T16:25:52Z"

      message: ""

      reason: Ready

      status: "True"

      type: Ready

    inputs:

    - name: image-provider

    name: config-provider

    outputs:

    - digest: sha256:0549f3f3fe5ef817af62ae6357465e6df1a6c901e5a7abc17468ee3f3e16c1a1

      lastTransitionTime: "2023-04-04T16:25:52Z"

      name: config

      preview: |-

        metadata:

            annotations:

                boot.spring.io/version: 2.4.9

                conventions.carto.run/applied-conventions: |-

                    spring-boot-convention/auto-configure-actuators-check

                    ...

                developer.conventions/target-containers: workload

                services.conventions.carto.run/rabbitmq: amqp-client/5.10.0

            labels:

                app.kubernetes.io/component: run

                apps.tanzu.vmware.com/auto-configure-actuators: "false"

                apps.tanzu.vmware.com/workload-type: web

                car

    ...

  supplyChainRef:

    kind: ClusterSupplyChain

    name: source-to-url

And with tail:

tanzu apps workload apply rmq-sample-app --git-repo https://github.com/jhvhs/rabbitmq-

sample --git-branch main --service-ref "rmq=rabbitmq.com/v1beta1:RabbitmqCluster:examp

le-rabbitmq-cluster-1" --type web --output yaml --yes --tail

+ rmq-sample-app-build-1-build-pod › prepare

rmq-sample-app-build-1-build-pod[prepare] Build reason(s): CONFIG

rmq-sample-app-build-1-build-pod[prepare] CONFIG:

rmq-sample-app-build-1-build-pod[prepare] + env:

rmq-sample-app-build-1-build-pod[prepare] + - name: BP_OCI_SOURCE

rmq-sample-app-build-1-build-pod[prepare] +   value: main/103fde37882b5510e9b397

4e5fe209161b54f675

rmq-sample-app-build-1-build-pod[prepare] resources: {}

rmq-sample-app-build-1-build-pod[prepare] - source: {}

rmq-sample-app-build-1-build-pod[prepare] + source:

rmq-sample-app-build-1-build-pod[prepare] +   blob:

rmq-sample-app-build-1-build-pod[prepare] +     url: http://fluxcd-source-contro

Tanzu Application Platform v1.5

VMware by Broadcom 585



ller.flux-system.svc.cluster.local./gitrepository/default/rmq-sample-app/103fde37882b5

510e9b3974e5fe209161b54f675.tar.gz

rmq-sample-app-build-1-build-pod[prepare] Loading secret for "gcr.io" from secret "reg

istry-credentials" at location "/var/build-secrets/registry-credentials"

rmq-sample-app-build-1-build-pod[prepare] Loading secret for "registry.tanzu.vmware.co

m" from secret "registry-credentials" at location "/var/build-secrets/registry-credent

ials"

rmq-sample-app-build-1-build-pod[prepare] Loading cluster credential helpers

rmq-sample-app-build-1-build-pod[prepare] Downloading fluxcd-source-controller.flux-sy

stem.svc.cluster.local./gitrepository/default/rmq-sample-app/103fde37882b5510e9b3974e5

fe209161b54f675.tar.gz...

...

...

...

---

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  creationTimestamp: "2023-04-04T16:22:29Z"

  generation: 1

  labels:

    apps.tanzu.vmware.com/workload-type: web

  name: rmq-sample-app

  namespace: default

  resourceVersion: "184296857"

  uid: 7fa58a71-0b41-4975-b816-781b87d02cde

spec:

  serviceClaims:

  - name: rmq

    ref:

      apiVersion: rabbitmq.com/v1beta1

      kind: RabbitmqCluster

      name: example-rabbitmq-cluster-1

  source:

    git:

      ref:

        branch: main

      url: https://github.com/jhvhs/rabbitmq-sample

status:

  conditions:

  ...

  - lastTransitionTime: "2023-04-04T16:26:03Z"

    message: ""

    reason: Ready

    status: "True"

    type: Ready

  observedGeneration: 1

  resources:

  - conditions:

    - lastTransitionTime: "2023-04-04T16:22:36Z"

      message: ""

      reason: ResourceSubmissionComplete

      status: "True"

      type: ResourceSubmitted

      ...

    name: source-provider

    outputs:

    - digest: sha256:1982253401b1be2236786e3da433216d36d289d0b158fbc9ca6477ac94879e60

      lastTransitionTime: "2023-04-04T16:22:36Z"

      name: url

      preview: |

        http://fluxcd-source-controller.flux-system.svc.cluster.local./gitrepository/d

efault/rmq-sample-app/103fde37882b5510e9b3974e5fe209161b54f675.tar.gz

    ...

    stampedRef:

      apiVersion: source.toolkit.fluxcd.io/v1beta1

Tanzu Application Platform v1.5

VMware by Broadcom 586



      kind: GitRepository

      name: rmq-sample-app

      namespace: default

      resource: gitrepositories.source.toolkit.fluxcd.io

    templateRef:

      apiVersion: carto.run/v1alpha1

      kind: ClusterSourceTemplate

      name: source-template

  - conditions:

    ...

    - lastTransitionTime: "2023-04-04T16:25:45Z"

      message: ""

      reason: Ready

      status: "True"

      type: Ready

    inputs:

    - name: source-provider

    ...

  - conditions:

    ...

    - lastTransitionTime: "2023-04-04T16:25:52Z"

      message: ""

      reason: Ready

      status: "True"

      type: Ready

    inputs:

    - name: image-provider

    name: config-provider

    outputs:

    - digest: sha256:0549f3f3fe5ef817af62ae6357465e6df1a6c901e5a7abc17468ee3f3e16c1a1

      lastTransitionTime: "2023-04-04T16:25:52Z"

      name: config

      preview: |-

        metadata:

            annotations:

                boot.spring.io/version: 2.4.9

                conventions.carto.run/applied-conventions: |-

                    spring-boot-convention/auto-configure-actuators-check

                    ...

                developer.conventions/target-containers: workload

                services.conventions.carto.run/rabbitmq: amqp-client/5.10.0

            labels:

                app.kubernetes.io/component: run

                apps.tanzu.vmware.com/auto-configure-actuators: "false"

                apps.tanzu.vmware.com/workload-type: web

                car

    ...

  supplyChainRef:

    kind: ClusterSupplyChain

    name: source-to-url

Un-setting Git fields

There are various ways to update a workload. It can be by changing its fields through flags or create
a yaml file with the changes and run tanzu apps workload apply command with the --update-
strategy set as replace (check --update-strategy for a better usage explanation).

However, for fields deletion, there is an easier way supported for the --git-* flags in which,
through setting them as empty string in the command, the workload.spec.source.git fields get
removed.

For example, if there is a workload that specifies --git-tag, --git-commit and --git-branch, to
remove any of these the only thing that needs to be done is use empty string right after setting
them.

Tanzu Application Platform v1.5

VMware by Broadcom 587



## Existing workload definition

---

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  labels:

    apps.tanzu.vmware.com/workload-type: web

  name: rmq-sample-app

  namespace: default

spec:

  serviceClaims:

  - name: rmq

    ref:

      apiVersion: rabbitmq.com/v1beta1

      kind: RabbitmqCluster

      name: example-rabbitmq-cluster-1

  source:

    git:

      ref:

        branch: main

        commit: dec60a68190a4a8ebd3644806962002983ded69e

        tag: v0.1.0

      url: https://github.com/jhvhs/rabbitmq-sample

## Update the workload to remove one of its git fields

tanzu apps workload apply rmq-sample-app --git-tag ""

� Update workload:

...

 17, 17   |    git:

 18, 18   |      ref:

 19, 19   |        branch: main

 20, 20   |        commit: dec60a68190a4a8ebd3644806962002983ded69e

 21     - |        tag: v0.1.0

 22, 21   |      url: https://github.com/jhvhs/rabbitmq-sample

� Really update the workload "rmq-sample-app"? [yN]: y

� Updated workload "rmq-sample-app"

To see logs:   "tanzu apps workload tail rmq-sample-app --timestamp --since 1h"

To get status: "tanzu apps workload get rmq-sample-app"

## Export the workload to see that `spec.source.git.ref.tag` is not part of the defini

tion

tanzu apps workload get rmq-sample-app --export

---

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  labels:

    apps.tanzu.vmware.com/workload-type: web

  name: rmq-sample-app

  namespace: default

spec:

  serviceClaims:

  - name: rmq

    ref:

      apiVersion: rabbitmq.com/v1beta1

      kind: RabbitmqCluster

      name: example-rabbitmq-cluster-1

  source:

    git:

      ref:

        branch: main

Tanzu Application Platform v1.5

VMware by Broadcom 588



        commit: dec60a68190a4a8ebd3644806962002983ded69e

      url: https://github.com/jhvhs/rabbitmq-sample

NOTE: If --git-repo is set to empty, then the whole git section is going to be removed from the
workload definition.

tanzu apps workload apply rmq-sample-app --git-repo ""

� Update workload:

...

 12, 12   |    ref:

 13, 13   |      apiVersion: rabbitmq.com/v1beta1

 14, 14   |      kind: RabbitmqCluster

 15, 15   |      name: example-rabbitmq-cluster-1

 16     - |  source:

 17     - |    git:

 18     - |      ref:

 19     - |        branch: main

 20     - |        commit: dec60a68190a4a8ebd3644806962002983ded69e

 21     - |      url: https://github.com/jhvhs/rabbitmq-sample

� NOTICE: no source code or image has been specified for this workload.

� Really update the workload "rmq-sample-app"? [yN]: y

� Updated workload "rmq-sample-app"

To see logs:   "tanzu apps workload tail rmq-sample-app --timestamp --since 1h"

To get status: "tanzu apps workload get rmq-sample-app"

## Export the workload and check that the git source section does not exist

tanzu apps workload get rmq-sample-app --export

---

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  labels:

    apps.tanzu.vmware.com/workload-type: web

  name: rmq-sample-app

  namespace: default

spec:

  serviceClaims:

  - name: rmq

    ref:

      apiVersion: rabbitmq.com/v1beta1

      kind: RabbitmqCluster

      name: example-rabbitmq-cluster-1

Remove color from output

Most of Tanzu Apps Plug-in commands have emojis and colored output with the intention to be
more user-friendly.

However, sometimes color, emojis and other characters are not needed (e.g. scripting) or even well
interpreted in certain terminals and the best way to suppress them is using the --no-color flag.

So, for example, in a workload that is created through local path, which usually shows emojis and a
progress bar, these special characters would be avoid by using --no-color.

tanzu apps workload apply my-workload --local-path path/to/my/source -s my-registry.ex

t/my-project/my-workload --type web --no-color

The files and/or directories listed in the .tanzuignore file are being excluded from t

he uploaded source code.

Publishing source in "path/to/my/source" to "my-registry.ext/my-project/my-workloa

d"...

Published source

Tanzu Application Platform v1.5

VMware by Broadcom 589



Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |  name: my-workload

      8 + |  namespace: default

      9 + |spec:

     10 + |  source:

     11 + |    image: my-registry.ext/my-project/my-workload:latest@sha256:724bcd14c3a

84fc7a918cd8ee7a6a987de1699617a17c5af166e8c689a2becf7

? Do you want to create this workload? [yN]:

To avoid having color in general for Tanzu Apps Plug-in, the best way is setting the NO_COLOR
environment variable. This will suppress color, emojis and progress bar for all the Plug-in related
commands.

export NO_COLOR=true

Debug workloads

This topic tells you how to use the Tanzu Apps CLI to debug workloads.

Verify build logs

Check build logs
After a workload is created, tail the workload to view the build and runtime logs.

Check logs by running:

tanzu apps workload tail pet-clinic --since 10m --timestamp

Where:

pet-clinic is the name you gave the workload.

--since (optional) the amount of time to go back to begin streaming logs. The default is 1
second.

--timestamp (optional) prints the timestamp with each log entry.

Get the workload status and details

After the workload build process is complete, create a Knative service to run the workload. You can
view workload details at any time during the process. Some details, such as the workload URL, are
only available after the workload is running.

To check the workload details, run:

tanzu apps workload get pet-clinic

Where:

pet-clinic is the name of the workload you want details about.

Tanzu Application Platform v1.5

VMware by Broadcom 590



You can now see the running workload. When the workload is created, tanzu apps workload get
includes the URL for the running workload. Some terminals allow you to ctrl+click the URL to view
it. You can also copy and paste the URL into your web browser to see the workload.

Common workload errors

A workload can either be ready, on error or with an unknown status.

There are known errors that cause the workload to enter an error or unknown status. The most
common are:

Local Path Development Error Cases

Message: Writing registry/project/repo/workload:latest: Writing image: Unexpected status
code 401 Unauthorized (HEAD responses have no body, use GET for details)

Cause: Apps plug-in cannot talk to the registry because the registry credentials are missing or
invalid.

Resolution: Run docker logout registry and docker login registry commands and specify the
valid credentials for the registry.

Message: Writing registry/project/workload:latest: Writing image: HEAD Unexpected status
code 400 Bad Request (HEAD responses have no body, use GET for details)

Cause: Certain registries like Harbor or GCR have a concept of Project. A 400 Bad request is sent
when either the project does not exist, the user does not have access to it, or the path in the —
source-image flag is missing either project or repository.

Resolution: Fix the path in the —source-image flag value to point to a valid repository path.

WorkloadLabelsMissing/SupplyChainNotFound

Message: No supply chain found where full selector is satisfied by labels:
map[app.kubernetes.io/part-of:spring-petclinic]

Cause: The labels and attributes in the workload object did not fully satisfy any installed supply chain
on the cluster.

Resolution: Use the tanzu apps cluster-supply-chain list (alias csc) and tanzu apps csc get
<supply-chain-name> commands to see the workload selection criteria for the supply chain available
on the cluster. Apply any missing labels to a workload by using tanzu apps workload apply --
label required-label-name=required-label-value. For example:

tanzu apps workload apply workload-name —-type web

tanzu apps workload apply workload-name --label apps.tanzu.vmware.com/workload-type=we

b

MissingValueAtPath

Message: Waiting to read value [.status.artifact.url] from resource
gitrepository.source.toolkit.fluxcd.io in namespace [ns]

Possible Cause: The Git url/tag/branch/commit parameters passed in the workload are not valid.

Resolution: Fix the invalid Git parameters by using tanzu apps workload apply

Possible Cause: The Git repository is not accessible from the cluster

Resolution: Configure your cluster networking or your Git repository networking so that they can
communicate with each other.

Tanzu Application Platform v1.5

VMware by Broadcom 591



Possible Cause: The namespace is missing the Git secret for communicating with the private
repository

Resolution: For more information, see Git authentication

TemplateRejectedByAPIServer

Message: Unable to apply object [ns/workload-name] for resource [source-provider] in supply
chain [source-to-url]: failed to get unstructured [ns/workload-name] from API server:
imagerepositories.source.apps.tanzu.vmware.com “workload-name” is forbidden: User
“system:serviceaccount:ns:default” cannot get resource “imagerepositories” in API group
“source.apps.tanzu.vmware.com” in the namespace “ns”

Cause: This error happens when the service account in the workload object does not have
permission to create objects that are stamped out by the supply chain.

Resolution: Set up the Set up developer namespaces to use your installed packages with the
required service account and permissions.

Review supply chain steps

After you create a workload with the tanzu apps workload create (or) apply, command, you can
run the tanzu apps workload get command to display the current condition of each supply chain.

For example:

...

� Supply Chain

   name:   source-to-url

   NAME               READY   HEALTHY   UPDATED   RESOURCE

   source-provider    True    True      71m       gitrepositories.source.toolkit.fluxc

d.io/spring-petclinic

   image-provider     True    True      70m       images.kpack.io/spring-petclinic

   config-provider    True    True      69m       podintents.conventions.carto.run/spr

ing-petclinic

   app-config         True    True      69m       configmaps/spring-petclinic

   service-bindings   True    True      69m       configmaps/spring-petclinic-with-cla

ims

   api-descriptors    True    True      69m       configmaps/spring-petclinic-with-api

-descriptors

   config-writer      True    True      69m       runnables.carto.run/spring-petclinic

-config-writer

� Delivery

   name:   delivery-basic

   NAME              READY   HEALTHY   UPDATED   RESOURCE

   source-provider   True    True      69m       imagerepositories.source.apps.tanzu.v

mware.com/spring-petclinic-delivery

   deployer          True    True      69m       apps.kappctrl.k14s.io/spring-petclini

c

� Messages

   No messages found.

...

The Supply Chain section displays the supply chain steps associated with the workload. If a step
fails, the READY column value is Unknown or False, and the HEALTHY column value is False. If there is
a resource in Unknown or False status, inspect it with:

kubectl describe RESOURCE-NAME

Tanzu Application Platform v1.5

VMware by Broadcom 592



Where RESOURCE-NAME refers to the name of the stamped out resource, displayed in RESOURCE
column.

For example, if tanzu apps workload get command returns this resource:

NAME               READY   HEALTHY   UPDATED   RESOURCE

source-provider    False   False     3h12m     gitrepositories.source.toolkit.fluxcd.i

o/spring-petclinic

Check this resource with:

kubectl describe gitrepositories.source.toolkit.fluxcd.io/spring-petclinic

The Messages section might give a hint as to what went wrong in the process. For example, a
message similar to the following is shown:

� Messages

   Workload [HealthyConditionRule]:   failed to checkout and determine revision: faile

d to resolve commit object for '425ae9a2a2f84d195a9f3862668e8b2abf81418a': object not 

found

This might mean that the commit does not belong to the specified branch or does not exist in the
repository.

Additional Troubleshooting References

For more workload troubleshooting tips, see Troubleshoot using Tanzu Application Platform page.

Tanzu Apps CLI commands

The following topics describe the Tanzu CLI Apps plug-in commands.

tanzu apps clustersupplychain sub-commands and details.

tanzu apps workload sub-commands and flags usage for each:

tanzu apps workload get

tanzu apps workload list

tanzu apps workload tail

tanzu apps workload delete

tanzu apps workload apply

Tanzu Apps CLI commands

The following topics describe the Tanzu CLI Apps plug-in commands.

tanzu apps clustersupplychain sub-commands and details.

tanzu apps workload sub-commands and flags usage for each:

tanzu apps workload get

tanzu apps workload list

tanzu apps workload tail

tanzu apps workload delete

tanzu apps workload apply

Tanzu Application Platform v1.5

VMware by Broadcom 593



tanzu apps cluster-supply-chain

This topic tells you about the Tanzu Apps CLI cluster-supply-chain command.

Tanzu apps cluster supply chain list

The tanzu apps clustersupplychain list command lists the available supply chains installed in the
cluster (supported clustersupplychain alias is csc).

Run the following command to view more detailed information about the selectors and conditions
that must be met for a workload to be selected by a certain supply chain:

tanzu apps clustersupplychain get SUPPLYCHAIN-NAME`.

Default view
The default view displays the name of the supply chain, whether it is ready or not, and its age.

For example:

tanzu apps clustersupplychain list

NAME                 READY   AGE

basic-image-to-url   Ready   11d

source-to-url        Ready   11d

To view details: "tanzu apps cluster-supply-chain get <name>"

Tanzu apps cluster supply chain get

The tanzu apps clustersupplychain get command gets detailed information of the cluster supply
chain.

Default view

The default view displays the status of the supply chain, and the selectors that a workload must
match so it is taken by that supply chain.

For example:

tanzu apps cluster-supply-chain get source-to-url

---

# source-to-url: Ready

---

Supply Chain Selectors

   TYPE          KEY                                   OPERATOR   VALUE

   expressions   apps.tanzu.vmware.com/workload-type   In         web

   expressions   apps.tanzu.vmware.com/workload-type   In         server

   expressions   apps.tanzu.vmware.com/workload-type   In         worker

This output indicates the attributes a workload needs to be selected by the source-to-url supply
chain on the target cluster. For example:

The workload must have the --type flag value of web, server, or worker.

Or, if expressed through workload.yaml, the Workload.metadata.labels label
apps.tanzu.vmware.com/workload-type must exist and have a value of web, server , or
worker.

Tanzu Application Platform v1.5

VMware by Broadcom 594



Another example is the testing/scanning pipeline, which has the tekton steps for testing and the
scanning steps.

---

# source-test-scan-to-url: Ready

---

Supply Chain Selectors

   TYPE          KEY                                   OPERATOR   VALUE

   labels        apps.tanzu.vmware.com/has-tests                  true

   expressions   apps.tanzu.vmware.com/workload-type   In         web

   expressions   apps.tanzu.vmware.com/workload-type   In         server

   expressions   apps.tanzu.vmware.com/workload-type   In         worker

In this case, the workload must have both labels apps.tanzu.vmware.com/has-tests: true and
apps.tanzu.vmware.com/workload-type set up as web, server, or worker to be selected for the
supply chain.

tanzu apps workload apply

This topic tells you about the Tanzu Apps CLI tanzu apps workload apply command.

Use the tanzu apps workload apply command to create and update workloads that are deployed
in a cluster through a supply chain.

The tanzu apps workload apply and tanzu apps workload create commands have the same
behavior and flags with the following exceptions:

The tanzu apps workload create command fails if a workload with the same name
preexists on the target cluster.

the update-strategy flag is only applicable to the tanzu apps workload apply command.
The update-strategy flag is not applicable to the tanzu apps workload create command.

Default view

In the output of the tanzu apps workload apply command, the specification for the workload is
shown in YAML file format.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-tag tap-1.5.0 --

type web

� Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |  name: tanzu-java-web-app

      8 + |  namespace: default

      9 + |spec:

     10 + |  source:

     11 + |    git:

     12 + |      ref:

     13 + |        tag: tap-1.5.0

     14 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

     15 + |    subPath: tanzu-java-web-app

� Do you want to create this workload? [yN]:

� Created workload "tanzu-java-web-app"

Tanzu Application Platform v1.5

VMware by Broadcom 595



To see logs:   "tanzu apps workload tail tanzu-java-web-app --timestamp --since 1h"

To get status: "tanzu apps workload get tanzu-java-web-app"

In the first section, the definition of workload is displayed. It’s followed by a dialog box asking
whether the workload should be created or updated. In the last section, if a workload is created
or updated, some hints are displayed about the next steps.

Workload Apply flags

--annotation

Sets the annotations to be applied to the workload. To specify more than one annotation set the
flag multiple times. These annotations are passed as parameters to be processed in the supply
chain.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-tag tap-1.5.0 --

type web --annotation tag=tap-1.5.0 --annotation name="Tanzu Java Web"

� Create workload:

    1 + |---

    2 + |apiVersion: carto.run/v1alpha1

    3 + |kind: Workload

    4 + |metadata:

    5 + |  labels:

    6 + |    apps.tanzu.vmware.com/workload-type: web

    7 + |  name: tanzu-java-web-app

    8 + |  namespace: default

    9 + |spec:

   10 + |  params:

   11 + |  - name: annotations

   12 + |    value:

   13 + |      name: Tanzu Java Web

   14 + |      tag: tap-1.5.0

   15 + |  source:

   16 + |    git:

   17 + |      ref:

   18 + |        tag: tap-1.5.0

   19 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

   20 + |    subPath: tanzu-java-web-app

To delete an annotation, use - after its name.

Example

tanzu apps workload apply tanzu-java-web-app --annotation tag-

� Update workload:

...

10, 10   |  params:

11, 11   |  - name: annotations

12, 12   |    value:

13, 13   |      name: Tanzu Java Web

14     - |      tag: tap-1.5.0

15, 14   |  source:

16, 15   |    git:

17, 16   |      ref:

18, 17   |        tag: tap-1.5.0

...

� Really update the workload "tanzu-java-web-app"? [yN]:

Tanzu Application Platform v1.5

VMware by Broadcom 596



--app / -a

This is the application the workload is part of. This is part of the workload metadata section.

Example

tanzu apps workload apply tanzu-app --git-repo https://github.com/vmware-tanzu/applica

tion-accelerator-samples --sub-path tanzu-java-web-app --git-tag tap-1.5.0 --type web 

--app tanzu-java-web-app

� Create workload:

    1 + |---

    2 + |apiVersion: carto.run/v1alpha1

    3 + |kind: Workload

    4 + |metadata:

    5 + |  labels:

    6 + |    app.kubernetes.io/part-of: tanzu-java-web-app

    7 + |    apps.tanzu.vmware.com/workload-type: web

    8 + |  name: tanzu-app

    9 + |  namespace: default

   10 + |spec:

   11 + |  source:

   12 + |    git:

   13 + |      ref:

   14 + |        tag: tap-1.5.0

   15 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

   16 + |    subPath: tanzu-java-web-app

� Do you want to create this workload? [yN]:

� Created workload "tanzu-app"

To see logs:   "tanzu apps workload tail tanzu-app --timestamp --since 1h"

To get status: "tanzu apps workload get tanzu-app"

--build-env

Sets environment variables to use in the build phase by the build resources in the supply chain.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-tag tap-1.5.0 --

type web --build-env JAVA_VERSION=1.8

� Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |  name: tanzu-java-web-app

      8 + |  namespace: default

      9 + |spec:

     10 + |  build:

     11 + |    env:

     12 + |    - name: JAVA_VERSION

     13 + |      value: "1.8"

     14 + |  source:

     15 + |    git:

     16 + |      ref:

     17 + |        tag: tap-1.5.0

     18 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

     19 + |    subPath: tanzu-java-web-app

� Do you want to create this workload? [yN]:

To delete a build environment variable, use - after its name.

Tanzu Application Platform v1.5

VMware by Broadcom 597



Example

tanzu apps workload apply tanzu-java-web-app --build-env JAVA_VERSION-

� Update workload:

...

   6,  6   |    apps.tanzu.vmware.com/workload-type: web

   7,  7   |  name: tanzu-java-web-app

   8,  8   |  namespace: default

   9,  9   |spec:

  10     - |  build:

  11     - |    env:

  12     - |    - name: JAVA_VERSION

  13     - |      value: "1.8"

  14, 10   |  source:

  15, 11   |    git:

  16, 12   |      ref:

  17, 13   |        tag: tap-1.5.0

...

� Really update the workload "tanzu-java-web-app"? [yN]:

--debug

Sets the parameter variable debug to true in the workload.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-branch main --ty

pe web --debug

� Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |  name: tanzu-java-web-app

      8 + |  namespace: default

      9 + |spec:

     10 + |  params:

     11 + |  - name: debug

     12 + |    value: "true"

     13 + |  source:

     14 + |    git:

     15 + |      ref:

     16 + |        branch: main

     17 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

     18 + |    subPath: tanzu-java-web-app

� Do you want to create this workload? [yN]:

--dry-run

Prepares all the steps to submit the workload to the cluster and stops before sending it, showing an
output of the final structure of the workload.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-tag tap-1.5.0 --

type web --build-env JAVA_VERSION=1.8 --param-yaml server=$'port: 8080\nmanagement-por

t: 8181' --dry-run

---

apiVersion: carto.run/v1alpha1

Tanzu Application Platform v1.5

VMware by Broadcom 598



kind: Workload

metadata:

  creationTimestamp: null

  labels:

    apps.tanzu.vmware.com/workload-type: web

  name: tanzu-java-web-app

  namespace: default

spec:

  build:

    env:

    - name: JAVA_VERSION

      value: "1.8"

  params:

  - name: server

    value:

      management-port: 8181

      port: 8080

  source:

    git:

      ref:

        tag: tap-1.5.0

      url: https://github.com/vmware-tanzu/application-accelerator-samples

    subPath: tanzu-java-web-app

status:

  supplyChainRef: {}

--env / -e

Sets the environment variables to the workload so the supply chain resources can use it to deploy
the workload application.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-tag tap-1.5.0 --

type web --env NAME="Tanzu Java App"

� Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |  name: tanzu-java-web-app

      8 + |  namespace: default

      9 + |spec:

     10 + |  env:

     11 + |  - name: NAME

     12 + |    value: Tanzu Java App

     13 + |  source:

     14 + |    git:

     15 + |      ref:

     16 + |        tag: tap-1.5.0

     17 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

     18 + |    subPath: tanzu-java-web-app

� Do you want to create this workload? [yN]:

To unset an environment variable, use - after its name.

tanzu apps workload apply tanzu-java-web-app --env NAME-

� Update workload:

...

   6,  6   |    apps.tanzu.vmware.com/workload-type: web

   7,  7   |  name: tanzu-java-web-app

Tanzu Application Platform v1.5

VMware by Broadcom 599



   8,  8   |  namespace: default

   9,  9   |spec:

  10     - |  env:

  11     - |  - name: NAME

  12     - |    value: Tanzu Java App

  13, 10   |  source:

  14, 11   |    git:

  15, 12   |      ref:

  16, 13   |        tag: tap-1.5.0

...

� Really update the workload "tanzu-java-web-app"? [yN]:

--file, -f

Sets the workload specification file to create the workload. This comes from any other workload
specification passed by flags to the command set or overrides what is in the file. Another way to
use this flag is by using - in the command to receive workload definition through stdin. See
Working with YAML Files for an example.

Example

tanzu apps workload apply tanzu-java-web-app -f java-app-workload.yaml --param-yaml se

rver=$'port: 9090\nmanagement-port: 9190'

� Create workload:

       1 + |---

       2 + |apiVersion: carto.run/v1alpha1

       3 + |kind: Workload

       4 + |metadata:

       5 + |  labels:

       6 + |    apps.tanzu.vmware.com/workload-type: web

       7 + |  name: tanzu-java-web-app

       8 + |  namespace: default

       9 + |spec:

      10 + |  build:

      11 + |    env:

      12 + |    - name: JAVA_VERSION

      13 + |      value: "1.8"

      14 + |  params:

      15 + |  - name: server

      16 + |    value:

      17 + |      management-port: 9190

      18 + |      port: 9090

      19 + |  source:

      20 + |    git:

      21 + |      ref:

      22 + |        tag: tap-1.5.0

      23 + |      url: url: https://github.com/vmware-tanzu/application-accelerator-sa

mples

      24 + |    subPath: tanzu-java-web-app

� Do you want to create this workload? [yN]:

--git-repo

The Git repository from which the workload is created. With this, either --git-tag, --git-commit, -
-git-branch or the three of them can be specified. When setting this flag to empty string, the
whole spec.source.git section is removed from workload definition.

For Git source, if all the flags are specified (--git-tag, --git-commit, --git-branch) the revision to
which the workload will checkout depends on the source controller.

--git-branch

Tanzu Application Platform v1.5

VMware by Broadcom 600



The branch in a Git repository from where the workload is created. Commit and tag can also be
specified alongside this flag. It can be unset by defining it as empty string when applying a workload
(--git-branch "").

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-branch main --ty

pe web

� Create workload:

    1 + |---

    2 + |apiVersion: carto.run/v1alpha1

    3 + |kind: Workload

    4 + |metadata:

    5 + |  labels:

    6 + |    apps.tanzu.vmware.com/workload-type: web

    7 + |  name: tanzu-java-web-app

    8 + |  namespace: default

    9 + |spec:

   10 + |  source:

   11 + |    git:

   12 + |      ref:

   13 + |        branch: main

   14 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

   15 + |    subPath: tanzu-java-web-app

� Do you want to create this workload? [yN]:

--git-tag

The tag in a Git repository from which the workload is created. Can be unset by defining it as empty
string when applying a workload (--git-tag "").

--git-commit

Commit in Git repository from where the workload is resolved. Either --git-branch or --git-tag
can be specified with it too. It can be unset by defining it as empty string when applying a workload
(--git-commit "").

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-commit 1c4cf82e4

99f7e46da182922d4097908d4817320 --type web

� Create workload:

    1 + |---

    2 + |apiVersion: carto.run/v1alpha1

    3 + |kind: Workload

    4 + |metadata:

    5 + |  labels:

    6 + |    apps.tanzu.vmware.com/workload-type: web

    7 + |  name: tanzu-java-web-app

    8 + |  namespace: default

    9 + |spec:

   10 + |  source:

   11 + |    git:

   12 + |      ref:

   13 + |        commit: 1c4cf82e499f7e46da182922d4097908d4817320

   14 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

   15 + |    subPath: tanzu-java-web-app

� Do you want to create this workload? [yN]:

--image / -i

Tanzu Application Platform v1.5

VMware by Broadcom 601



Sets the OSI image to be used as the workload application source instead of a Git repository

Example

tanzu apps workload apply tanzu-java-web-app --image private.repo.domain.com/tanzu-jav

a-web-app --type web

� Create workload:

       1 + |---

       2 + |apiVersion: carto.run/v1alpha1

       3 + |kind: Workload

       4 + |metadata:

       5 + |  labels:

       6 + |    apps.tanzu.vmware.com/workload-type: web

       7 + |  name: tanzu-java-web-app

       8 + |  namespace: default

       9 + |spec:

      10 + |  build:

      11 + |    env:

      12 + |    - name: JAVA_VERSION

      13 + |      value: "1.8"

      14 + |  params:

      15 + |  - name: server

      16 + |    value:

      17 + |      management-port: 9190

      18 + |      port: 9090

      19 + |  source:

      20 + |    git:

      21 + |      ref:

      22 + |        tag: tap-1.5.0

      23 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

      24 + |    subPath: tanzu-java-web-app

� Do you want to create this workload? [yN]:

--label / -l

Sets the label to be applied to the workload. To specify more than one label, set the flag multiple
times.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-branch main --ty

pe web --label stage=production

� Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |    stage: production

      8 + |  name: tanzu-java-web-app

      9 + |  namespace: default

     10 + |spec:

     11 + |  source:

     12 + |    git:

     13 + |      ref:

     14 + |        branch: main

     15 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

     16 + |    subPath: tanzu-java-web-app

� Do you want to create this workload? [yN]:

To unset labels, use - after their name.

Example

Tanzu Application Platform v1.5

VMware by Broadcom 602



tanzu apps workload apply tanzu-java-web-app --label stage-

� Update workload:

...

   3,  3   |kind: Workload

   4,  4   |metadata:

   5,  5   |  labels:

   6,  6   |    apps.tanzu.vmware.com/workload-type: web

   7     - |    stage: production

   8,  7   |  name: tanzu-java-web-app

   9,  8   |  namespace: default

  10,  9   |spec:

  11, 10   |  source:

...

� Really update the workload "tanzu-java-web-app"? [yN]:

--limit-cpu

The maximum CPU the workload pods are allowed to use.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-branch main --ty

pe web --limit-cpu .2

� Create workload:

    1 + |---

    2 + |apiVersion: carto.run/v1alpha1

    3 + |kind: Workload

    4 + |metadata:

    5 + |  labels:

    6 + |    apps.tanzu.vmware.com/workload-type: web

    7 + |  name: tanzu-java-web-app

    8 + |  namespace: default

    9 + |spec:

   10 + |  resources:

   11 + |    limits:

   12 + |      cpu: 200m

   13 + |  source:

   14 + |    git:

   15 + |      ref:

   16 + |        branch: main

   17 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

   18 + |    subPath: tanzu-java-web-app

� Do you want to create this workload? [yN]:

--limit-memory

The maximum memory the workload pods are allowed to use.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-branch main --ty

pe web --limit-memory 200Mi

� Create workload:

    1 + |---

    2 + |apiVersion: carto.run/v1alpha1

    3 + |kind: Workload

    4 + |metadata:

    5 + |  labels:

    6 + |    apps.tanzu.vmware.com/workload-type: web

    7 + |  name: tanzu-java-web-app

    8 + |  namespace: default

    9 + |spec:

Tanzu Application Platform v1.5

VMware by Broadcom 603



   10 + |  resources:

   11 + |    limits:

   12 + |      memory: 200Mi

   13 + |  source:

   14 + |    git:

   15 + |      ref:

   16 + |        branch: main

   17 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

   18 + |    subPath: tanzu-java-web-app

� Do you want to create this workload? [yN]:

--live-update

Enable this to deploy the workload once, save changes to the code, and see those changes
reflected in the workload running on the cluster.

Example

An example with a Spring Boot application:

1. Clone the repository by running:

git clone https://github.com/vmware-tanzu/application-accelerator-samples

2. Change into the tanzu-java-web-app directory.

3. In Tiltfile, first change the SOURCE_IMAGE variable to use your registry and project.

4. At the very end of the file add:

allow_k8s_contexts('your-cluster-name')

5. Inside the directory, run:

tanzu apps workload apply tanzu-java-web-app --live-update --local-path . -s

gcr.io/my-project/tanzu-java-web-app-live-update -y

Expected output:

The files and directories listed in the .tanzuignore file are being excluded fr

om the uploaded source code.

Publishing source in "." to "gcr.io/my-project/tanzu-java-web-app-live-updat

e"...

� Published source

� Create workload:

   1 + |---

   2 + |apiVersion: carto.run/v1alpha1

   3 + |kind: Workload

   4 + |metadata:

   5 + |  name: tanzu-java-web-app

   6 + |  namespace: default

   7 + |spec:

   8 + |  params:

   9 + |  - name: live-update

  10 + |    value: "true"

  11 + |  source:

  12 + |    image: gcr.io/my-project/tanzu-java-web-app-live-update:latest@sha2

56:3c9fd738492a23ac532a709301fcf0c9aa2a8761b2b9347bdbab52ce9404264b

� Created workload "tanzu-java-web-app"

To see logs:   "tanzu apps workload tail tanzu-java-web-app --timestamp --since 

1h"

Tanzu Application Platform v1.5

VMware by Broadcom 604



To get status: "tanzu apps workload get tanzu-java-web-app"

6. Run Tilt to deploy the workload.

tilt up

Tilt started on http://localhost:10350/

v0.23.6, built 2022-01-14

(space) to open the browser

(s) to stream logs (--stream=true)

(t) to open legacy terminal mode (--legacy=true)

(ctrl-c) to exit

Tilt started on http://localhost:10350/

v0.23.6, built 2022-01-14

Initial Build • (Tiltfile)

Loading Tiltfile at: /path/to/repo/tanzu-java-web-app/Tiltfile

Successfully loaded Tiltfile (1.500809ms)

tanzu-java-w… │

tanzu-java-w… │ Initial Build • tanzu-java-web-app

tanzu-java-w… │ WARNING: Live Update failed with unexpected error:

tanzu-java-w… │   Cannot extract live updates on this build graph structure

tanzu-java-w… │ Falling back to a full image build + deploy

tanzu-java-w… │ STEP 1/1 — Deploying

tanzu-java-w… │      Objects applied to cluster:

tanzu-java-w… │        → tanzu-java-web-app:workload

tanzu-java-w… │

tanzu-java-w… │      Step 1 - 8.87s (Deploying)

tanzu-java-w… │      DONE IN: 8.87s

tanzu-java-w… │

tanzu-java-w… │

tanzu-java-w… │ Tracking new pod rollout (tanzu-java-web-app-build-1-build-po

d):

tanzu-java-w… │      ┊ Scheduled       - (…) Pending

tanzu-java-w… │      ┊ Initialized     - (…) Pending

tanzu-java-w… │      ┊ Ready           - (…) Pending

...

--local-path

Sets the path to a source in the local machine from where the workload creates an image to use as
an application source. The local path can be a directory, a JAR, a ZIP, or a WAR file. Java/Spring
Boot compiled binaries are also supported. This flag must be used with --source-image flag.

If Java/Spring compiled binary is passed instead of source code, the command takes less time to
apply the workload since the build pack skips the compiling steps and start uploading the image.

When working with local source code, you can exclude files from the source code to be uploaded
within the image by creating a file .tanzuignore at the root of the source code. The .tanzuignore
file contains a list of file paths to exclude from the image including the file itself. The directories
must not end with the system path separator (/ or \). If the file contains directories that are not in
the source code, they are ignored. Lines starting with a # hashtag are also ignored.

--maven-artifact

This artifact is an output of a Maven project build. This flag must be used with --maven-version and
--maven-group.

Example

Tanzu Application Platform v1.5

VMware by Broadcom 605



tanzu apps workload apply petc-mvn --maven-artifact petc --maven-version 2.6.1 --maven

-group demo.com

� Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  name: petc-mvn

      6 + |  namespace: default

      7 + |spec:

      8 + |  params:

      9 + |  - name: maven

     10 + |    value:

     11 + |      artifactId: petc

     12 + |      groupId: demo.com

     13 + |      version: 2.6.1

� Do you want to create this workload? [yN]:

--maven-group

This group identifies the project across all other Maven projects.

--maven-type

This specifies the type of artifact that the Maven project produces. This flag is optional and is set by
default as jar by the supply chain.

--maven-version

Definition of the current version of the Maven project.

--source-image, -s

Registry path where the local source code is uploaded as an image.

Example

tanzu apps workload apply spring-pet-clinic --local-path /home/user/workspace/spring-p

et-clinic --source-image gcr.io/spring-community/spring-pet-clinic --type web

� Publish source in "/home/user/workspace/spring-pet-clinic" to "gcr.io/spring-communi

ty/spring-pet-clinic"? It might be visible to others who can pull images from that rep

ository Yes

The files and/or directories listed in the .tanzuignore file are being excluded from t

he uploaded source code.

Publishing source in "/home/user/workspace/spring-pet-clinic" to "gcr.io/spring-commun

ity/spring-pet-clinic"...

� Published source

� Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |  name: spring-pet-clinic

      8 + |  namespace: default

      9 + |spec:

     10 + |  source:

     11 + |    image:gcr.io/spring-community/spring-pet-clinic:latest@sha256:5feb0d9da

f3f639755d8683ca7b647027cfddc7012e80c61dcdac27f0d7856a7

� Do you want to create this workload? [yN]:

Tanzu Application Platform v1.5

VMware by Broadcom 606



--namespace, -n

Specifies the namespace in which the workload is created or updated in.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-branch main --ty

pe web --namespace my-namespace

� Create workload:

    1 + |---

    2 + |apiVersion: carto.run/v1alpha1

    3 + |kind: Workload

    4 + |metadata:

    5 + |  labels:

    6 + |    apps.tanzu.vmware.com/workload-type: web

    7 + |  name: tanzu-java-web-app

    8 + |  namespace: my-namespace

    9 + |spec:

   10 + |  source:

   11 + |    git:

   12 + |      ref:

   13 + |        branch: main

   14 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

  15 + |    subPath: tanzu-java-web-app

� Do you want to create this workload? [yN]:

--output, -o

This flag can be used to retrieve a workload right after it’s applied in the specified format (yaml, yml,
json). If used with --yes flag, all prompts are skipped and it only returns the workload definition. It
can also be used with --wait or --tail flags to return the workload with its status.

Example

tanzu apps workload apply rmq-sample-app --git-repo https://github.com/jhvhs/rabbitmq-

sample --git-branch main --service-ref "rmq=rabbitmq.com/v1beta1:RabbitmqCluster:examp

le-rabbitmq-cluster-1" --type web --output yaml

� Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |  name: rmq-sample-app

      8 + |  namespace: default

      9 + |spec:

     10 + |  serviceClaims:

     11 + |  - name: rmq

     12 + |    ref:

     13 + |      apiVersion: rabbitmq.com/v1beta1

     14 + |      kind: RabbitmqCluster

     15 + |      name: example-rabbitmq-cluster-1

     16 + |  source:

     17 + |    git:

     18 + |      ref:

     19 + |        branch: main

     20 + |      url: https://github.com/jhvhs/rabbitmq-sample

� Do you want to create this workload? [yN]: y

� Created workload "rmq-sample-app"

To see logs:   "tanzu apps workload tail rmq-sample-app --timestamp --since 1h"

To get status: "tanzu apps workload get rmq-sample-app"

Tanzu Application Platform v1.5

VMware by Broadcom 607



---

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  creationTimestamp: "2023-04-04T15:18:13Z"

  generation: 1

  labels:

    apps.tanzu.vmware.com/workload-type: web

  name: rmq-sample-app

  namespace: default

  resourceVersion: "184169566"

  uid: 6588d398-b803-47e3-b31a-23d9a1a633a9

spec:

  serviceClaims:

  - name: rmq

    ref:

      apiVersion: rabbitmq.com/v1beta1

      kind: RabbitmqCluster

      name: example-rabbitmq-cluster-1

  source:

    git:

      ref:

        branch: main

      url: https://github.com/jhvhs/rabbitmq-sample

status:

  supplyChainRef: {}

--param / -p

Additional parameters to be sent to the supply chain, the value is sent as a string. For complex
YAML and JSON objects use --param-yaml.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-branch main --ty

pe web --param port=9090 --param management-port=9190

� Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |  name: tanzu-java-web-app

      8 + |  namespace: default

      9 + |spec:

     10 + |  params:

     11 + |  - name: port

     12 + |    value: "9090"

     13 + |  - name: management-port

     14 + |    value: "9190"

     15 + |  source:

     16 + |    git:

     17 + |      ref:

     18 + |        branch: main

     19 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

     20 + |    subPath: tanzu-java-web-app

� Do you want to create this workload? [yN]:

To unset parameters, use - after their name.

Example

Tanzu Application Platform v1.5

VMware by Broadcom 608



tanzu apps workload apply tanzu-java-web-app --param port-

� Update workload:

...

   7,  7   |  name: tanzu-java-web-app

   8,  8   |  namespace: default

   9,  9   |spec:

  10, 10   |  params:

  11     - |  - name: port

  12     - |    value: "9090"

  13, 11   |  - name: management-port

  14, 12   |    value: "9190"

  15, 13   |  source:

  16, 14   |    git:

...

� Really update the workload "tanzu-java-web-app"? [yN]:

--param-yaml

Additional parameters to be sent to the supply chain, the value is sent as a complex object.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-branch main --ty

pe web --param-yaml server=$'port: 9090\nmanagement-port: 9190'

� Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |  name: tanzu-java-web-app

      8 + |  namespace: default

      9 + |spec:

     10 + |  params:

     11 + |  - name: server

     12 + |    value:

     13 + |      management-port: 9190

     14 + |      port: 9090

     15 + |  source:

     16 + |    git:

     17 + |      ref:

     18 + |        branch: main

     19 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

     20 + |    subPath: tanzu-java-web-app

� Do you want to create this workload? [yN]:

To unset parameters, use - after their name.

Example

tanzu apps workload apply tanzu-java-web-app --param-yaml server-

� Update workload:

...

   6,  6   |    apps.tanzu.vmware.com/workload-type: web

   7,  7   |  name: tanzu-java-web-app

   8,  8   |  namespace: default

   9,  9   |spec:

  10     - |  params:

  11     - |  - name: server

  12     - |    value:

  13     - |      management-port: 9190

  14     - |      port: 9090

Tanzu Application Platform v1.5

VMware by Broadcom 609



  15, 10   |  source:

  16, 11   |    git:

  17, 12   |      ref:

  18, 13   |        branch: main

...

� Really update the workload "tanzu-java-web-app"? [yN]:

--registry-ca-cert

Refers to the path of the self-signed certificate needed for the custom/private registry. This is also
populated with a default value through environment variables. If the environment variable
TANZU_APPS_REGISTRY_CA_CERT is set, it’s not necessary to use it in the command.

See Custom registry credentials for the supported environment variables.

Example

tanzu apps workload apply my-workload --local-path . -s registry.url.nip.io/my-packag

e/my-image --type web --registry-ca-cert path/to/cacert/mycert.nip.io.crt --registry-u

sername my-username --registry-password my-password

� Publish source in "." to "registry.url.nip.io/my-package/my-image"? It might be visi

ble to others who can pull images from that repository Yes

Publishing source in "." to "registry.url.nip.io/my-package/my-image"...

� Published source

� Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |  name: my-workload

      8 + |  namespace: default

      9 + |spec:

     10 + |  source:

     11 + |    image: registry.url.nip.io/my-package/my-image:latest@sha256:caeb7e3a0e

3ae0659f74d01095b6fdfe0d3c4a12856a15ac67ad6cd3b9e43648

� Do you want to create this workload? [yN]:

--registry-password

If credentials are needed, the user name and password values are set through the --registry-
password flag. The value of this flag can also be specified through TANZU_APPS_REGISTRY_PASSWORD.

--registry-token

Used for token authentication in the private registry. This flag is set as TANZU_APPS_REGISTRY_TOKEN
environment variable.

--registry-username

Often used with --registry-password to set private registry credentials. Can be provided using
TANZU_APPS_REGISTRY_USERNAME environment variable to avoid setting it every time in the
command.

--request-cpu

Refers to the minimum CPU the workload pods request to use.

Example

Tanzu Application Platform v1.5

VMware by Broadcom 610



tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-branch main --ty

pe web --request-cpu .3

� Create workload:

    1 + |---

    2 + |apiVersion: carto.run/v1alpha1

    3 + |kind: Workload

    4 + |metadata:

    5 + |  labels:

    6 + |    apps.tanzu.vmware.com/workload-type: web

    7 + |  name: tanzu-java-web-app

    8 + |  namespace: default

    9 + |spec:

   10 + |  resources:

   11 + |    requests:

   12 + |      cpu: 300m

   13 + |  source:

   14 + |    git:

   15 + |      ref:

   16 + |        branch: main

   17 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

   18 + |    subPath: tanzu-java-web-app

� Do you want to create this workload? [yN]:

--request-memory

Refers to the minimum memory the workload pods are requesting to use.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-branch main --ty

pe web --request-memory 300Mi

� Create workload:

     1 + |---

     2 + |apiVersion: carto.run/v1alpha1

     3 + |kind: Workload

     4 + |metadata:

     5 + |  labels:

     6 + |    apps.tanzu.vmware.com/workload-type: web

     7 + |  name: tanzu-java-web-app

     8 + |  namespace: default

     9 + |spec:

    10 + |  resources:

    11 + |    requests:

    12 + |      memory: 300Mi

    13 + |  source:

    14 + |    git:

    15 + |      ref:

    16 + |        branch: main

    17 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

    18 + |    subPath: tanzu-java-web-app

� Do you want to create this workload? [yN]:

--service-account

Refers to the service account to associate with the workload. A service account provides an
identity for a workload object.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-branch main --ty

Tanzu Application Platform v1.5

VMware by Broadcom 611



pe web --service-account petc-serviceaccount

� Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |  name: tanzu-java-web-app

      8 + |  namespace: default

      9 + |spec:

     10 + |  serviceAccountName: petc-serviceaccount

     11 + |  source:

     12 + |    git:

     13 + |      ref:

     14 + |        branch: main

     15 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

     16 + |    subPath: tanzu-java-web-app

� Do you want to create this workload? [yN]:

To unset a service account, pass empty string.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-branch main --ty

pe web --service-account ""

� Update workload:

...

  6,  6   |    apps.tanzu.vmware.com/workload-type: web

  7,  7   |  name: tanzu-java-web-app

  8,  8   |  namespace: default

  9,  9   |spec:

 10     - |  serviceAccountName: petc-serviceaccount

 11, 10   |  source:

 12, 11   |    git:

 13, 12   |      ref:

 14, 13   |        branch: main

...

� Really update the workload "tanzu-java-web-app"? [yN]:

--service-ref

Binds a service to a workload to provide the information from a service resource to an application.

For more information, see Tanzu Application Platform documentation.

Example

tanzu apps workload apply rmq-sample-app --git-repo https://github.com/jhvhs/rabbitmq-

sample --git-branch main --service-ref "rmq=rabbitmq.com/v1beta1:RabbitmqCluster:examp

le-rabbitmq-cluster-1"

� Create workload:

     1 + |---

     2 + |apiVersion: carto.run/v1alpha1

     3 + |kind: Workload

     4 + |metadata:

     5 + |  name: rmq-sample-app

     6 + |  namespace: default

     7 + |spec:

     8 + |  serviceClaims:

     9 + |  - name: rmq

    10 + |    ref:

    11 + |      apiVersion: rabbitmq.com/v1beta1

    12 + |      kind: RabbitmqCluster

Tanzu Application Platform v1.5

VMware by Broadcom 612

https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.3/tap/GUID-getting-started-consume-services.html#stk-bind


    13 + |      name: example-rabbitmq-cluster-1

    14 + |  source:

    15 + |    git:

    16 + |      ref:

    17 + |        branch: main

    18 + |      url: https://github.com/jhvhs/rabbitmq-sample

� Do you want to create this workload? [yN]:

To delete service binding, use the service name followed by -.

Example

tanzu apps workload apply rmq-sample-app --service-ref rmq-

� Update workload:

...

   4,  4   |metadata:

   5,  5   |  name: rmq-sample-app

   6,  6   |  namespace: default

   7,  7   |spec:

   8     - |  serviceClaims:

   9     - |  - name: rmq

  10     - |    ref:

  11     - |      apiVersion: rabbitmq.com/v1beta1

  12     - |      kind: RabbitmqCluster

  13     - |      name: example-rabbitmq-cluster-1

  14,  8   |  source:

  15,  9   |    git:

  16, 10   |      ref:

  17, 11   |        branch: main

...

� Really update the workload "rmq-sample-app"? [yN]:

--sub-path

Defines which path is used as the root path to create and update the workload.

Example

Git repository

tanzu apps workload apply subpathtester --git-repo https://github.com/path-to-r

epo/my-repo --git-branch main --type web --sub-path my-subpath

� Create workload:

    1 + |---

    2 + |apiVersion: carto.run/v1alpha1

    3 + |kind: Workload

    4 + |metadata:

    5 + |  labels:

    6 + |    apps.tanzu.vmware.com/workload-type: web

    7 + |  name: subpathtester

    8 + |  namespace: default

    9 + |spec:

   10 + |  source:

   11 + |    git:

   12 + |      ref:

   13 + |        branch: main

   14 + |      url: https://github.com/path-to-repo/my-repo

   15 + |    subPath: my-subpath

� Do you want to create this workload? [yN]:

Local path

In the directory of the project you want to create the workload from

Tanzu Application Platform v1.5

VMware by Broadcom 613



tanzu apps workload apply my-workload --local-path . -s gcr.io/my-registr

y/my-workload-image --sub-path subpath_folder

� Publish source in "." to "gcr.io/my-registry/my-workload-image"? It mig

ht be visible to others who can pull images from that repository Yes

Publishing source in "." to "gcr.io/my-registry/my-workload-image"...

� Published source

� Create workload:

    1 + |---

    2 + |apiVersion: carto.run/v1alpha1

    3 + |kind: Workload

    4 + |metadata:

    5 + |  name: myworkload

    6 + |  namespace: default

    7 + |spec:

    8 + |  source:

    9 + |    image: gcr.io/my-registry/my-workload-image:latest@sha256:f2

8c5fedd0e902800e6df9605ce5e20a8e835df9e87b1a0aa256666ea179fc3f

   10 + |    subPath: subpath_folder

� Do you want to create this workload? [yN]:

--tail

Prints the logs of the workload creation in every step.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-branch main --ty

pe web --tail

� Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |  name: tanzu-java-web-app

      8 + |  namespace: default

      9 + |spec:

     10 + |  source:

     11 + |    git:

     12 + |      ref:

     13 + |        branch: main

     14 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

     15 + |    subPath: tanzu-java-web-app

� Do you want to create this workload? [yN]: y

� Created workload "tanzu-java-web-app"

To see logs:   "tanzu apps workload tail tanzu-java-web-app --timestamp --since 1h"

To get status: "tanzu apps workload get tanzu-java-web-app"

Waiting for workload "tanzu-java-web-app" to become ready...

+ tanzu-java-web-app-build-1-build-pod › prepare

tanzu-java-web-app-build-1-build-pod[prepare] Build reason(s): CONFIG

tanzu-java-web-app-build-1-build-pod[prepare] CONFIG:

tanzu-java-web-app-build-1-build-pod[prepare]   + env:

tanzu-java-web-app-build-1-build-pod[prepare]   + - name: BP_OCI_SOURCE

tanzu-java-web-app-build-1-build-pod[prepare]   +   value: main/d381fb658cb435a04e2271

ca85bd3e8627a5e7e4

tanzu-java-web-app-build-1-build-pod[prepare]   resources: {}

tanzu-java-web-app-build-1-build-pod[prepare]   - source: {}

tanzu-java-web-app-build-1-build-pod[prepare]   + source:

tanzu-java-web-app-build-1-build-pod[prepare]   +   blob:

Tanzu Application Platform v1.5

VMware by Broadcom 614



tanzu-java-web-app-build-1-build-pod[prepare]   +     url: http://source-controller.fl

ux-system.svc.cluster.local./gitrepository/default/tanzu-java-web-app/1c4cf82e499f7e46

da182922d4097908d4817320.tar.gz

...

...

...

--tail-timestamp

Prints the logs of the workload creation in every step adding the time in which the log is occurring.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-branch main --ty

pe web --tail-timestamp

� Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |  name: tanzu-java-web-app

      8 + |  namespace: default

      9 + |spec:

     10 + |  source:

     11 + |    git:

     12 + |      ref:

     13 + |        branch: main

     14 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

     15 + |    subPath: tanzu-java-web-app

� Do you want to create this workload? [yN]: y

� Created workload "tanzu-java-web-app"

To see logs:   "tanzu apps workload tail tanzu-java-web-app --timestamp --since 1h"

To get status: "tanzu apps workload get tanzu-java-web-app"

Waiting for workload "tanzu-java-web-app" to become ready...

+ tanzu-java-web-app-build-1-build-pod › prepare

tanzu-java-web-app-build-1-build-pod[prepare] 2022-06-15T11:28:01.348418803-05:00 Buil

d reason(s): CONFIG

tanzu-java-web-app-build-1-build-pod[prepare] 2022-06-15T11:28:01.364719405-05:00 CONF

IG:

tanzu-java-web-app-build-1-build-pod[prepare] 2022-06-15T11:28:01.364761781-05:00   + 

env:

tanzu-java-web-app-build-1-build-pod[prepare] 2022-06-15T11:28:01.364771861-05:00   + 

- name: BP_OCI_SOURCE

tanzu-java-web-app-build-1-build-pod[prepare] 2022-06-15T11:28:01.364781718-05:00   +   

value: main/d381fb658cb435a04e2271ca85bd3e8627a5e7e4

tanzu-java-web-app-build-1-build-pod[prepare] 2022-06-15T11:28:01.364788374-05:00   re

sources: {}

tanzu-java-web-app-build-1-build-pod[prepare] 2022-06-15T11:28:01.364795451-05:00   - 

source: {}

tanzu-java-web-app-build-1-build-pod[prepare] 2022-06-15T11:28:01.365344965-05:00   + 

source:

tanzu-java-web-app-build-1-build-pod[prepare] 2022-06-15T11:28:01.365364101-05:00   +   

blob:

tanzu-java-web-app-build-1-build-pod[prepare] 2022-06-15T11:28:01.365372427-05:00   +     

url: http://source-controller.flux-system.svc.cluster.local./gitrepository/default/tan

zu-java-web-app/1c4cf82e499f7e46da182922d4097908d4817320.tar.gz

...

...

...

Tanzu Application Platform v1.5

VMware by Broadcom 615



--type / -t

Sets the type of workload by adding the label apps.tanzu.vmware.com/workload-type, which is used
as a matcher by supply chains. Use the TANZU_APPS_TYPE environment variable to have a default
value for this flag.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-branch main --ty

pe web

� Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |  name: tanzu-java-web-app

      8 + |  namespace: default

      9 + |spec:

     10 + |  source:

     11 + |    git:

     12 + |      ref:

     13 + |        branch: main

     14 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

     15 + |    subPath: tanzu-java-web-app

--update-strategy

Specifies whether the update from file should replace or merge the current workload. The default is
merge.

Example

For example, there is a workload created from a file, which has in its spec the following:

...

spec:

  resources:

    requests:

      memory: 1Gi

    limits:           # delete this line

      memory: 1Gi     # delete this line

      cpu: 500m       # delete this line

...

If the workload file is changed as specified in the comments, there are two ways to update the
workload running in the cluster.

One, with merge update strategy.

tanzu apps workload apply -f ./spring-petclinic.yaml # defaulting to merge

� WARNING: Configuration file update strategy is changing. By default, provided config

uration files will replace rather than merge existing configuration. The change will t

Note

This flag is only applicable to the tanzu apps workload apply command. It is not
applicable to the tanzu apps workload create command.

Tanzu Application Platform v1.5

VMware by Broadcom 616



ake place in the January 2024 TAP release (use "--update-strategy" to control strategy 

explicitly).

Workload is unchanged, skipping update

The other, with replace update strategy, which completely overwrites the workload in the cluster
according to the new specifications in the file.

tanzu apps workload apply -f ./spring-petclinic.yaml --update-strategy replace

� WARNING: Configuration file update strategy is changing. By default, provided config

uration files will replace rather than merge existing configuration. The change will t

ake place in the January 2024 TAP release (use "--update-strategy" to control strategy 

explicitly).

� Update workload:

...

  8,  8   |  name: spring-petclinic

  9,  9   |  namespace: default

 10, 10   |spec:

 11, 11   |  resources:

 12     - |    limits:

 13     - |      cpu: 500m

 14     - |      memory: 1Gi

 15, 12   |    requests:

 16, 13   |      memory: 1Gi

 17, 14   |  source:

 18, 15   |    git:

...

� Really update the workload "spring-petclinic"? [yN]:

--wait

Holds the command until the workload is ready.

Example

tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-tag tap-1.5.0 --

type web --wait

� Update workload:

...

10, 10   |  source:

11, 11   |    git:

12, 12   |      ref:

13, 13   |        branch: main

    14 + |        tag: tap-1.5.0

14, 15   |      url: https://github.com/vmware-tanzu/application-accelerator-samples

15, 16   |    subPath: tanzu-java-web-app

� Really update the workload "tanzu-java-web-app"? Yes

� Updated workload "tanzu-java-web-app"

To see logs:   "tanzu apps workload tail tanzu-java-web-app --timestamp --since 1h"

To get status: "tanzu apps workload get tanzu-java-web-app"

Waiting for workload "tanzu-java-web-app" to become ready...

Workload "tanzu-java-web-app" is ready

--wait-timeout

Sets a timeout to wait for the workload to become ready.

Example

Tanzu Application Platform v1.5

VMware by Broadcom 617



tanzu apps workload apply tanzu-java-web-app --git-repo https://github.com/vmware-tanz

u/application-accelerator-samples --sub-path tanzu-java-web-app --git-tag tap-1.5.0-ta

ke1 --type web --wait --wait-timeout 1m

� Update workload:

...

10, 10   |  source:

11, 11   |    git:

12, 12   |      ref:

13, 13   |        branch: main

14     - |        tag: tap-1.5.0

    14 + |        tag: tap-1.5.0-take1

15, 15   |      url: https://github.com/vmware-tanzu/application-accelerator-samples

16, 16   |    subPath: tanzu-java-web-app

� Really update the workload "tanzu-java-web-app"? Yes

� Updated workload "tanzu-java-web-app"

To see logs:   "tanzu apps workload tail tanzu-java-web-app --timestamp --since 1h"

To get status: "tanzu apps workload get tanzu-java-web-app"

Waiting for workload "tanzu-java-web-app" to become ready...

Workload "tanzu-java-web-app" is ready

--yes, -y

Assumes --yes on all the survey prompts.

Example

tanzu apps workload apply spring-pet-clinic --local-path/home/user/workspace/spring-pe

t-clinic --source-image gcr.io/spring-community/spring-pet-clinic --type web -y

The files and/or directories listed in the .tanzuignore file are being excluded from t

he uploaded source code.

Publishing source in "/Users/dalfonso/Documents/src/java/tanzu-java-web-app" to "gcr.i

o/spring-community/spring-pet-clinic"...

� Published source

� Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |  name: spring-pet-clinic

      8 + |  namespace: default

      9 + |spec:

     10 + |  source:

     11 + |    image: gcr.io/spring-community/spring-pet-clinic:latest@sha256:5feb0d9d

af3f639755d8683ca7b647027cfddc7012e80c61dcdac27f0d7856a7

� Created workload "spring-pet-clinic"

To see logs:   "tanzu apps workload tail spring-pet-clinic --timestamp --since 1h"

To get status: "tanzu apps workload get spring-pet-clinic"

tanzu apps workload delete
This topic tells you about the Tanzu Apps CLI tanzu apps workload delete command. This
command deletes workloads in a cluster. Deleting a workload does not mean the images published
in the registry are deleted with it.

Default view

Tanzu Application Platform v1.5

VMware by Broadcom 618



A message is displayed in the terminal asking if a workload should be deleted unless the --yes flag
is used. If you indicate “Y”, then the workload starts a deletion process inside the cluster.

tanzu apps workload delete spring-pet-clinic

� Really delete the workload "spring-pet-clinic"? Yes

� Deleted workload "spring-pet-clinic"

tanzu apps workload delete spring-pet-clinic --yes

� Deleted workload "spring-pet-clinic"

Workload Delete flags

--all

Deletes all workloads in a namespace.

tanzu apps workload delete --all

� Really delete all workloads in the namespace "default"? (y/N) Y

� Deleted workloads in namespace "default"

tanzu apps workload delete --all -n my-namespace

� Really delete all workloads in the namespace "my-namespace"? Yes

� Deleted workloads in namespace "my-namespace"

--file, -f

Path to a file that contains the specification of the workload to be deleted.

tanzu apps workload delete -f path/to/file/spring-petclinic.yaml

� Really delete the workload "spring-petclinic"? Yes

� Deleted workload "spring-petclinic"

--namespace, -n

Specifies the namespace in which the workload is to be deleted.

tanzu apps workload delete spring-petclinic -n spring-petclinic-ns

� Really delete the workload "spring-petclinic"? Yes

� Deleted workload "spring-petclinic"

wait

Waits until workload is deleted.

tanzu apps workload delete -f path/to/file/spring-petclinic.yaml --wait

� Really delete the workload "spring-petclinic"? Yes

� Deleted workload "spring-petclinic"

Waiting for workload "spring-petclinic" to be deleted...

Workload "spring-petclinic" was deleted

--wait-timeout

Sets a timeout to wait for workload to be deleted.

tanzu apps workload delete -f path/to/file/spring-petclinic.yaml --wait --wait-timeout 

1m

� Really delete the workload "spring-petclinic"? Yes

Tanzu Application Platform v1.5

VMware by Broadcom 619



� Deleted workload "spring-petclinic"

Waiting for workload "spring-petclinic" to be deleted...

Workload "spring-petclinic" was deleted

tanzu apps workload delete spring-petclinic -n spring-petclinic-ns --wait --wait-timeo

ut 1m

� Really delete the workload "spring-petclinic"? Yes

� Deleted workload "spring-petclinic"

Waiting for workload "spring-petclinic" to be deleted...

Error: timeout after 1m waiting for "spring-petclinic" to be deleted

To view status run: tanzu apps workload get spring-petclinic --namespace spring-petcli

nic-ns

Error: exit status 1

✖  exit status 1

--yes, -f

Assume yes on all the survey prompts.

tanzu apps workload delete spring-petclinic --yes

� Deleted workload "spring-petclinic"

tanzu apps workload get

This topic tells you how to use the Tanzu Apps CLI tanzu apps workload get command to retrieve
information and status about a workload.

Some of the workload details in the command output are as follows:

Workload name, type, and namespace.

The source code used to build the workload (or the pre-built OCI image).

The supply chain that processed the workload.

The specific resources within the supply chain that interacted with the workload, and the
stamped out resources associated with each of those interactions.

The delivery workflow that the application follows.

Any issues associated with deploying the workload.

The pods the workload generates.

And when applicable, the knative services related to the workload.

Default view

There are multiple sections in the workload get command output. The following data is displayed:

Name of the workload and its status.

Displays source information of workload.

If the workload was matched with a supply chain, the information of its name and the status
is displayed.

Information and status of the individual steps that is defined in the supply chain for the
workload.

Any issue with the workload: the name and corresponding message.

Tanzu Application Platform v1.5

VMware by Broadcom 620



Workload related resource information and status like services claims, related pods, knative
services.

At the very end of the command output, a hint to follow up commands is also displayed.

tanzu apps workload get rmq-sample-app

� Overview

   name:        rmq-sample-app

   type:        web

   namespace:   default

� Source

   type:     git

   url:      https://github.com/jhvhs/rabbitmq-sample

   branch:   main

� Supply Chain

   name:   source-to-url

   NAME               READY   HEALTHY   UPDATED   RESOURCE

   source-provider    True    True      7d11h     gitrepositories.source.toolkit.fluxc

d.io/rmq-sample-app

   image-provider     True    True      2d18h     images.kpack.io/rmq-sample-app

   config-provider    True    True      7d11h     podintents.conventions.carto.run/rmq

-sample-app

   app-config         True    True      7d11h     configmaps/rmq-sample-app

   service-bindings   True    True      7d11h     configmaps/rmq-sample-app-with-claim

s

   api-descriptors    True    True      7d11h     configmaps/rmq-sample-app-with-api-d

escriptors

   config-writer      True    True      2d18h     runnables.carto.run/rmq-sample-app-c

onfig-writer

� Delivery

   name:   delivery-basic

   NAME              READY     HEALTHY   UPDATED   RESOURCE

   source-provider   True      True      7d11h     imagerepositories.source.apps.tanz

u.vmware.com/rmq-sample-app-delivery

   deployer          True      True      6m25s     apps.kappctrl.k14s.io/rmq-sample-ap

p

� Messages

   No messages found.

� Services

   CLAIM   NAME                         KIND              API VERSION

   rmq     example-rabbitmq-cluster-1   RabbitmqCluster   rabbitmq.com/v1beta1

� Pods

   NAME                                     READY   STATUS      RESTARTS   AGE

   rmq-sample-app-build-1-build-pod         0/1     Completed   0          56d

   rmq-sample-app-build-2-build-pod         0/1     Completed   0          46d

   rmq-sample-app-build-3-build-pod         0/1     Completed   0          45d

Note

the Supply Chain and Delivery sections are included in the command output
depending on whether those resources are present on the target cluster (e.g. If the
target includes only build components, there would be no Delivery resources
available and therefore the Delivery section would not be included in the command
output.).

Tanzu Application Platform v1.5

VMware by Broadcom 621



   rmq-sample-app-config-writer-54mwk-pod   0/1     Completed   0          6d12h

   rmq-sample-app-config-writer-74qvp-pod   0/1     Completed   0          6d16h

   rmq-sample-app-config-writer-78r5w-pod   0/1     Completed   0          45d

   rmq-sample-app-config-writer-9xs5f-pod   0/1     Completed   0          46d

� Knative Services

   NAME             READY   URL

   rmq-sample-app   Ready   http://rmq-sample-app.default.127.0.0.1.nip.io

To see logs: "tanzu apps workload tail rmq-sample-app --timestamp --since 1h"

--export

Exports the submitted workload in yaml format. This flag can also be used with the --output flag.
With export, the output is shortened because some text boxes are removed.

tanzu apps workload get tanzu-java-web-app --export

---

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

labels:

    apps.tanzu.vmware.com/workload-type: web

    autoscaling.knative.dev/min-scale: "1"

name: tanzu-java-web-app

namespace: default

spec:

source:

    git:

    ref:

        tag: tap-1.3

      url: https://github.com/vmware-tanzu/application-accelerator-samples

    subPath: tanzu-java-web-app

--output/-o

Configures how the workload is being shown. This supports the values yaml, yml, and json, where
yaml and yml are equal. It shows the actual workload in the cluster.

yaml/yml

tanzu apps workload get tanzu-java-web-app -o yaml

---

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

creationTimestamp: "2022-06-03T18:10:59Z"

generation: 1

labels:

    apps.tanzu.vmware.com/workload-type: web

    autoscaling.knative.dev/min-scale: "1"

...

spec:

source:

    git:

        ref:

            tag: tap-1.1

        url: https://github.com/vmware-tanzu/application-accelerator-samples

    subPath: tanzu-java-web-app

status:

    conditions:

Tanzu Application Platform v1.5

VMware by Broadcom 622



    - lastTransitionTime: "2022-06-03T18:10:59Z"

        message: ""

        reason: Ready

        status: "True"

        type: SupplyChainReady

    - lastTransitionTime: "2022-06-03T18:14:18Z"

        message: ""

        reason: ResourceSubmissionComplete

        status: "True"

        type: ResourcesSubmitted

    - lastTransitionTime: "2022-06-03T18:14:18Z"

        message: ""

        reason: Ready

        status: "True"

        type: Ready

    observedGeneration: 1

    resources:

    ...

    supplyChainRef:

        kind: ClusterSupplyChain

        name: source-to-url

        ...

json

tanzu apps workload get tanzu-java-web-app -o json

{

    "kind": "Workload",

    "apiVersion": "carto.run/v1alpha1",

    "metadata": {

        "name": "tanzu-java-web-app",

        "namespace": "default",

        "uid": "937679ca-9c72-4e23-bfef-6334e6c003a7",

        "resourceVersion": "111637840",

        "generation": 1,

        "creationTimestamp": "2022-06-03T18:10:59Z",

        "labels": {

            "apps.tanzu.vmware.com/workload-type": "web",

            "autoscaling.knative.dev/min-scale": "1"

        },

...

}

"spec": {

        "source": {

            "git": {

                "url": "https://github.com/vmware-tanzu/application-accelerator

-samples",

                "ref": {

                    "tag": "tap-1.3"

                }

            },

            "subPath": "tanzu-java-web-app"

        }

    },

    "status": {

        "observedGeneration": 1,

        "conditions": [

            {

                "type": "SupplyChainReady",

                "status": "True",

                "lastTransitionTime": "2022-06-03T18:10:59Z",

                "reason": "Ready",

                "message": ""

            },

            {

                "type": "ResourcesSubmitted",

Tanzu Application Platform v1.5

VMware by Broadcom 623



                "status": "True",

                "lastTransitionTime": "2022-06-03T18:14:18Z",

                "reason": "ResourceSubmissionComplete",

                "message": ""

            },

            {

                "type": "Ready",

                "status": "True",

                "lastTransitionTime": "2022-06-03T18:14:18Z",

                "reason": "Ready",

                "message": ""

            }

        ],

        "supplyChainRef": {

            "kind": "ClusterSupplyChain",

            "name": "source-to-url"

        },

        "resources": [

            {

                "name": "source-provider",

                "stampedRef": {

                    "kind": "GitRepository",

                    "namespace": "default",

                    "name": "tanzu-java-web-app",

                    ...

                }

            }

        ]

        ...

    }

    ...

}

--namespace/-n

Specifies the namespace where the workload is deployed.

tanzu apps workload get tanzu-java-web-app -n development

� Overview

   name:        tanzu-java-web-app

   type:        web

   namespace:   development

� Source

   type:     git

   url:      https://github.com/vmware-tanzu/application-accelerator-samples

   sub-path: tanzu-java-web-app

   tag:      tap-1.3

� Supply Chain

   name:   source-to-url

   NAME               READY   HEALTHY   UPDATED   RESOURCE

   source-provider    True    True      31m       gitrepositories.source.toolkit.fluxc

d.io/tanzu-java-web-app

   image-provider     True    True      30m       images.kpack.io/tanzu-java-web-app

   config-provider    True    True      30m       podintents.conventions.carto.run/tan

zu-java-web-app

   app-config         True    True      30m       configmaps/tanzu-java-web-app

   service-bindings   True    True      30m       configmaps/tanzu-java-web-app-with-c

laims

   api-descriptors    True    True      30m       configmaps/tanzu-java-web-app-with-a

pi-descriptors

   config-writer      True    True      30m       runnables.carto.run/tanzu-java-web-a

Tanzu Application Platform v1.5

VMware by Broadcom 624



pp-config-writer

� Delivery

   name:   delivery-basic

   NAME              READY   HEALTHY   UPDATED   RESOURCE

   source-provider   True    True      30m       imagerepositories.source.apps.tanzu.v

mware.com/tanzu-java-web-app-delivery

   deployer          True    True      30m       apps.kappctrl.k14s.io/tanzu-java-web-

app

� Messages

   No messages found.

� Pods

   NAME                                        READY   STATUS      RESTARTS   AGE

   tanzu-java-web-app-build-11-build-pod       0/1     Completed   0          6d12h

   tanzu-java-web-app-build-12-build-pod       0/1     Completed   0          22h

   tanzu-java-web-app-build-3-build-pod        0/1     Completed   0          60d

   tanzu-java-web-app-config-writer-655rb-pod  0/1     Completed   0          21d

   tanzu-java-web-app-config-writer-7h8bn-pod  0/1     Completed   0          6d12h

   tanzu-java-web-app-config-writer-7xr6m-pod  0/1     Completed   0          60d

   tanzu-java-web-app-config-writer-g9gp8-pod  0/1     Completed   0          45d

� Knative Services

   NAME                READY   URL

   tanzu-java-web-app  Ready   http://tanzu-java-web-app.default.127.0.0.1.nip.io

To see logs: "tanzu apps workload tail tanzu-java-web-app --namespace development --ti

mestamp --since 1h"

tanzu apps workload list

This topic tells you about the Tanzu Apps CLI tanzu apps workload list command.

The tanzu apps workload list command gets the workloads present in the cluster, either in the
current namespace, in another namespace, or all namespaces.

Default view

The default view for workload list is a table with the workloads present in the cluster in the
specified namespace. This table has, in each row, the name of the workload, the app it is related to,
its status, and how long it’s been in the cluster.

For example, in the default namespace

tanzu apps workload list

NAME                  TYPE      APP                  READY                   AGE

nginx4                web       <empty>              Ready                   7d9h

petclinic2            web       <empty>              Ready                   29h

rmq-sample-app        web       <empty>              Ready                   164m

rmq-sample-app4       web       <empty>              WorkloadLabelsMissing   29d

spring-pet-clinic     web       <empty>              Unknown                 166m

spring-petclinic2     web       spring-petclinic     Unknown                 29d

spring-petclinic3     <empty>   spring-petclinic     Ready                   29d

tanzu-java-web-app    web       tanzu-java-web-app   Ready                   40m

tanzu-java-web-app2   web       tanzu-java-web-app   Ready                   20m

>Workload List flags

Tanzu Application Platform v1.5

VMware by Broadcom 625



--all-namespaces, -A

Shows workloads in all namespaces in cluster.

tanzu apps workload list -A

NAMESPACE   TYPE   NAME                  APP                  READY                         

AGE

default     web    nginx4                <empty>              Ready                         

7d9h

default     web    petclinic2            <empty>              Ready                         

30h

default     web    rmq-sample-app        <empty>              Ready                         

179m

default     web    rmq-sample-app4       <empty>              WorkloadLabelsMissing         

29d

default     web    spring-pet-clinic     <empty>              Unknown                       

3h1m

default     web    spring-petclinic2     spring-petclinic     Unknown                       

29d

default     web    spring-petclinic3     spring-petclinic     Ready                         

29d

default     web    tanzu-java-web-app    tanzu-java-web-app   Ready                         

40m

default     web    tanzu-java-web-app2   tanzu-java-web-app   Ready                         

20m

nginx-ns    web    nginx2                <empty>              TemplateRejectedByAPISer

ver   8d

nginx-ns    web    nginx4                <empty>              TemplateRejectedByAPISer

ver   8d

--app

Shows workloads which app is the one specified in the command.

tanzu apps workload list --app spring-petclinic

NAME                TYPE   READY     AGE

spring-petclinic2   web    Unknown   29d

spring-petclinic3   web    Ready     29d

--namespace, -n

Lists all the workloads present in the specified namespace.

tanzu apps workload list -n my-namespace

NAME   TYPE   APP       READY                         AGE

app1   web    <empty>   TemplateRejectedByAPIServer   8d

app2   web    <empty>   Ready                         8d

app3   web    <empty>   Unknown                       8d

--output, -o

Allows to list all workloads in the specified namespace in yaml, yml or json format.

yaml/yml

---

- apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

Tanzu Application Platform v1.5

VMware by Broadcom 626



    creationTimestamp: "2022-05-17T22:06:49Z"

    generation: 1

    labels:

    app.kubernetes.io/part-of: tanzu-java-web-app

    apps.tanzu.vmware.com/workload-type: web

    managedFields:

    ...

    ...

    manager: cartographer

    operation: Update

    time: "2022-05-17T22:06:52Z"

name: tanzu-java-web-app2

namespace: default

resourceVersion: "6071972"

uid: 7fbcd40d-4eb3-41dc-a1db-657b64148708

spec:

    source:

        git:

            ref:

              tag: tap-1.3

            url: https://github.com/vmware-tanzu/application-accelerator-sample

s

        subPath: tanzu-java-web-app

...

...

---

- apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

    creationTimestamp: "2022-05-17T22:06:49Z"

    generation: 1

    labels:

    app.kubernetes.io/part-of: tanzu-java-web-app

    apps.tanzu.vmware.com/workload-type: web

    managedFields:

    ...

    ...

    manager: cartographer

    operation: Update

    time: "2022-05-17T22:06:52Z"

name: tanzu-java-web-app

namespace: default

resourceVersion: "6071972"

uid: 7fbcd40d-4eb3-41dc-a1db-657b64148708

spec:

    source:

        git:

            ref:

              tag: tap-1.3

            url: https://github.com/vmware-tanzu/application-accelerator-sample

s

        subPath: tanzu-java-web-app

...

...

json

[

    {

        "kind": "Workload",

        "apiVersion": "carto.run/v1alpha1",

        "metadata": {

            "name": "tanzu-java-web-app2",

            "namespace": "default",

            "uid": "7fbcd40d-4eb3-41dc-a1db-657b64148708",

            "resourceVersion": "6071972",

Tanzu Application Platform v1.5

VMware by Broadcom 627



            "generation": 1,

            "creationTimestamp": "2022-05-17T22:06:49Z",

            "labels": {

                "app.kubernetes.io/part-of": "tanzu-java-web-app",

                "apps.tanzu.vmware.com/workload-type": "web"

            },

        ...

        }

    ...

    },

    {

        "kind": "Workload",

        "apiVersion": "carto.run/v1alpha1",

        "metadata": {

            "name": "tanzu-java-web-app",

            "namespace": "default",

            "uid": "7fbcd40d-4eb3-41dc-a1db-657b64148708",

            "resourceVersion": "6071972",

            "generation": 1,

            "creationTimestamp": "2022-05-17T22:06:49Z",

            "labels": {

                "app.kubernetes.io/part-of": "tanzu-java-web-app",

                "apps.tanzu.vmware.com/workload-type": "web"

            },

        ...

        }

    ...

    },

...

...

]

tanzu apps workload tail

This topic tells you about the Tanzu Apps CLI tanzu apps workload tail command.

The tanzu apps workload tail checks the runtime logs of a workload.

Default view

Without timestamp set, workload tail will show the stage where it is and the related log.

+ spring-pet-clinic-build-1-build-pod › prepare

+ spring-pet-clinic-build-1-build-pod › detect

+ spring-pet-clinic-build-1-build-pod › analyze

+ spring-pet-clinic-build-1-build-pod › build

+ spring-pet-clinic-build-1-build-pod › restore

spring-pet-clinic-build-1-build-pod[detect] ======== Output: tanzu-buildpacks/poetry@

0.1.0 ========

spring-pet-clinic-build-1-build-pod[detect] pyproject.toml must include [tool.poetry.d

ependencies.python], see https://python-poetry.org/docs/pyproject/#dependencies-and-de

v-dependencies

spring-pet-clinic-build-1-build-pod[analyze] Restoring data for sbom from previous ima

ge

spring-pet-clinic-build-1-build-pod[detect] err:  tanzu-buildpacks/poetry@0.1.0 (1)

spring-pet-clinic-build-1-build-pod[detect] ======== Output: tanzu-buildpacks/poetry@

0.1.0 ========

spring-pet-clinic-build-1-build-pod[detect] pyproject.toml must include [tool.poetry.d

ependencies.python], see https://python-poetry.org/docs/pyproject/#dependencies-and-de

v-dependencies

spring-pet-clinic-build-1-build-pod[detect] err:  tanzu-buildpacks/poetry@0.1.0 (1)

spring-pet-clinic-build-1-build-pod[detect] 10 of 38 buildpacks participating

spring-pet-clinic-build-1-build-pod[detect] paketo-buildpacks/ca-certificates   3.1.0

spring-pet-clinic-build-1-build-pod[detect] paketo-buildpacks/bellsoft-liberica 9.2.0

Tanzu Application Platform v1.5

VMware by Broadcom 628



spring-pet-clinic-build-1-build-pod[detect] paketo-buildpacks/syft              1.10.0

spring-pet-clinic-build-1-build-pod[detect] paketo-buildpacks/gradle            6.4.1

spring-pet-clinic-build-1-build-pod[detect] paketo-buildpacks/maven             6.4.0

spring-pet-clinic-build-1-build-pod[detect] paketo-buildpacks/executable-jar    6.1.0

spring-pet-clinic-build-1-build-pod[detect] paketo-buildpacks/apache-tomcat     7.2.0

spring-pet-clinic-build-1-build-pod[detect] paketo-buildpacks/dist-zip          5.2.0

spring-pet-clinic-build-1-build-pod[detect] paketo-buildpacks/spring-boot       5.8.0

spring-pet-clinic-build-1-build-pod[detect] paketo-buildpacks/image-labels      4.1.0

...

...

...

>Workload Tail flags

--component

Set the component from which the tail command should stream the logs. The values that the flag
can take depend on the final deployed pods label app.kubernetes.io/component, for example,
build, run and, config-writer

tanzu apps workload tail pet-clinic --component build

pet-clinic-build-1-build-pod[export] Adding label 'io.buildpacks.project.metadata'

pet-clinic-build-1-build-pod[export] Adding label 'org.opencontainers.image.title'

pet-clinic-build-1-build-pod[export] Adding label 'org.opencontainers.image.version'

pet-clinic-build-1-build-pod[export] Adding label 'org.springframework.boot.version'

pet-clinic-build-1-build-pod[export] Adding label 'org.opencontainers.image.source'

pet-clinic-build-1-build-pod[export] Setting default process type 'web'

pet-clinic-build-1-build-pod[export] Saving gcr.io/dalfonso-tanzu-dev-frmwrk/pet-clini

c-default...

pet-clinic-build-1-build-pod[export] *** Images (sha256:2ae6154c4433d870a330a0c2fc8253

40c3ead2603e3d1526e47c47cb6297fffe):

pet-clinic-build-1-build-pod[export]       gcr.io/dalfonso-tanzu-dev-frmwrk/pet-clinic

-default

pet-clinic-build-1-build-pod[export]       gcr.io/dalfonso-tanzu-dev-frmwrk/pet-clinic

-default:b1.20220603.181107

pet-clinic-build-1-build-pod[export] Adding cache layer 'paketo-buildpacks/bellsoft-li

berica:jdk'

pet-clinic-build-1-build-pod[export] Adding cache layer 'paketo-buildpacks/syft:syft'

pet-clinic-build-1-build-pod[export] Adding cache layer 'paketo-buildpacks/maven:appli

cation'

pet-clinic-build-1-build-pod[export] Adding cache layer 'paketo-buildpacks/maven:cach

e'

pet-clinic-build-1-build-pod[export] Adding cache layer 'cache.sbom'

--namespace, -n

Specifies the namespace where the workload was deployed to get logs from.

tanzu apps workload tail pet-clinic -n development

pet-clinic-00004-deployment-6445565f7b-ts8l5[workload] 2022-06-14 16:28:52.684  INFO 1 

--- [           main] org.apache.catalina.core.StandardEngine  : Starting Servlet engi

ne: [Apache Tomcat/9.0.63]

+ pet-clinic-build-3-build-pod › export

pet-clinic-00004-deployment-6445565f7b-ts8l5[workload] 2022-06-14 16:28:52.699  INFO 1 

--- [           main] o.a.c.c.C.[Tomcat-1].[localhost].[/]     : Initializing Spring e

mbedded WebApplicationContext

pet-clinic-00004-deployment-6445565f7b-ts8l5[workload] 2022-06-14 16:28:52.699  INFO 1 

--- [           main] w.s.c.ServletWebServerApplicationContext : Root WebApplicationCo

ntext: initialization completed in 131 ms

pet-clinic-00004-deployment-6445565f7b-ts8l5[workload] 2022-06-14 16:28:52.755  INFO 1 

Tanzu Application Platform v1.5

VMware by Broadcom 629



--- [           main] o.s.b.a.e.web.EndpointLinksResolver      : Exposing 13 endpoint

(s) beneath base path '/actuator'

pet-clinic-00004-deployment-6445565f7b-ts8l5[workload] 2022-06-14 16:28:53.059  INFO 1 

--- [           main] o.s.b.w.embedded.tomcat.TomcatWebServer  : Tomcat started on por

t(s): 8081 (http) with context path ''

pet-clinic-00004-deployment-6445565f7b-ts8l5[workload] 2022-06-14 16:28:53.074  INFO 1 

--- [           main] o.s.s.petclinic.PetClinicApplication     : Started PetClinicAppl

ication in 8.373 seconds (JVM running for 8.993)

pet-clinic-00004-deployment-6445565f7b-ts8l5[workload] 2022-06-14 16:28:53.229  INFO 1 

--- [nio-8081-exec-1] o.a.c.c.C.[Tomcat-1].[localhost].[/]     : Initializing Spring D

ispatcherServlet 'dispatcherServlet'

pet-clinic-00004-deployment-6445565f7b-ts8l5[workload] 2022-06-14 16:28:53.229  INFO 1 

--- [nio-8081-exec-1] o.s.web.servlet.DispatcherServlet        : Initializing Servlet 

'dispatcherServlet'

pet-clinic-00004-deployment-6445565f7b-ts8l5[workload] 2022-06-14 16:28:53.231  INFO 1 

--- [nio-8081-exec-1] o.s.web.servlet.DispatcherServlet        : Completed initializat

ion in 2 ms

--since

Sets the time duration to start reading logs from, this is set in seconds (s), minutes(m) or hours (h) in
the format 0h0m0s. You do not need to indicate a 0 duration, for example, 1 hour, 0 minutes and 1
seconds is 1h1s. The default value is 1 second 1s

tanzu apps workload tail pet-clinic --since 1h1s

pet-clinic-config-writer-9fbk6-pod[place-tools] 2022/06/14 16:28:04 Copied /ko-app/ent

rypoint to /tekton/bin/entrypoint

pet-clinic-config-writer-9fbk6-pod[place-scripts] 2022/06/14 16:28:06 Decoded script /

tekton/scripts/script-0-dz84w

pet-clinic-config-writer-9fbk6-pod[step-init] 2022/06/14 16:28:05 Setup /step director

ies

pet-clinic-config-writer-9fbk6-pod[step-main] ++ mktemp -d

pet-clinic-config-writer-9fbk6-pod[step-main] + cd /tmp/tmp.n4ObHYVxpl

pet-clinic-config-writer-9fbk6-pod[step-main] + echo -e eyJkZWxpdmVyeS55bWwiOiJhcGlWZX

JzaW9uOiBzZXJ2aW5nLmtuYXRpdmUuZGV2L3YxXG5raW5kOiBTZXJ2aWNlXG5tZXRhZGF0YTpcbiAgbmFtZTog

cGV0LWNsaW5pY1xuICBsYWJlbHM6XG4gICAgYXBwcy50YW56dS52bXdhcmUuY29tL3dvcmtsb2FkLXR5cGU6IH

dlYlxuICAgIGF1dG9zY2FsaW5nLmtuYXRpdmUuZGV2L21pbi1zY2FsZTogXCIxXCJcbiAgICBhcHAua3ViZXJu

ZXRlcy5pby9jb21wb25lbnQ6IHJ1blxuICAgIGNhcnRvLnJ1bi93b3JrbG9hZC1uYW1lOiBwZXQtY2xpbmljXG

5zcGVjOlxuICB0ZW1wbGF0ZTpcbiAgICBtZXRhZGF0YTpcbiAgICAgIGFubm90YXRpb25zOlxuICAgICAgICBi

b290LnNwcmluZy5pby9hY3R1YXRvcjogaHR0cDovLzo4MDgxL2FjdHVhdG9yXG4gICAgICAgIGJvb3Quc3ByaW

5nLmlvL3ZlcnNpb246IDIuNi44XG4gICAgICAgIGNvbnZlbnRpb25zLmFwcHMudGFuenUudm13YXJlLmNvbS9h

cHBsaWVkLWNvbnZlbnRpb25zOiB8LVxuICAgICAgICAgIHNwcmluZy1ib290LWNvbnZlbnRpb24vc3ByaW5nLW

Jvb3RcbiAgICAgICAgICBzcHJpbmctYm9vdC1jb252ZW50aW9uL3NwcmluZy1ib290LWdyYWNlZnVsLXNodXRk

b3duXG4gICAgICAgICAgc3ByaW5nLWJvb3QtY29udmVudGlvbi9zcHJpbmctYm9vdC13ZWJcbiAgICAgICAgIC

BzcHJpbmctYm9vdC1jb252ZW50aW9uL3NwcmluZy1ib290LWFjdHVhdG9yXG4gICAgICAgICAgc3ByaW5nLWJv

b3QtY29udmVudGlvbi9zcHJpbmctYm9vdC1hY3R1YXRvci1wcm9iZXNcbiAgICAgICAgICBzcHJpbmctYm9vdC

1jb252ZW50aW9uL3NlcnZpY2UtaW50ZW50LW15c3FsXG4gICAgICAgICAgc3ByaW5nLWJvb3QtY29udmVudGlv

bi9zZXJ2aWNlLWludGVudC1wb3N0Z3Jlc1xuICAgICAgICAgIGFwcGxpdmV2aWV3LXNhbXBsZS9hcHAtbGl2ZS

12aWV3LWNvbm5lY3RvclxuICAgICAgICAgIGFwcGxpdmV2aWV3LXNhbXBsZS9hcHAtbGl2ZS12aWV3LWFwcGZs

YXZvdXJzXG4gICAgICAgICAgYXBwbGl2ZXZpZXctc2FtcGxlL2FwcC1saXZlLXZpZXctc3lzdGVtcHJvcGVydG

llc1xuICAgICAgICBkZXZlbG9wZXIuY29udmVudGlvbnMvdGFyZ2V0LWNvbnRhaW5lcnM6IHdvcmtsb2FkXG4g

ICAgICAgIHNlcnZpY2VzLmNvbnZlbnRpb25zLmFwcHMudGFuenUudm13YXJlLmNvbS9teXNxbDogbXlzcWwtY2

9ubmVjdG9yLWphdmEvOC4wLjI5XG4gICAgICAgIHNlcnZpY2VzLmNvbnZlbnRpb25zLmFwcHMudGFuenUudm13

YXJlLmNvbS9wb3N0Z3JlczogcG9zdGdyZXNxbC80Mi4zLjVcbiAgICAgIGxhYmVsczpcbiAgICAgICAgYXBwLm

t1YmVybmV0ZXMuaW8vY29tcG9uZW50OiBydW5cbiAgICAgICAgYXBwcy50YW56dS52bXdhcmUuY29tL3dvcmts

b2FkLXR5cGU6IHdlYlxuICAgICAgICBjYXJ0by5ydW4vd29ya2xvYWQtbmFtZTogcGV0LWNsaW5pY1xuICAgIC

AgICBjb252ZW50aW9ucy5hcHBzLnRhbnp1LnZtd2FyZS5jb20vZnJhbWV3b3JrOiBzcHJpbmctYm9vdFxuICAg

ICAgICBzZXJ2aWNlcy5jb252ZW50aW9ucy5hcHBzLnRhbnp1LnZtd2FyZS5jb20vbXlzcWw6IHdvcmtsb2FkXG

4gICAgICAgIHNlcnZpY2VzLmNvbnZlbnRpb25zLmFwcHMudGFuenUudm13YXJlLmNvbS9wb3N0Z3Jlczogd29y

a2xvYWRcbiAgICAgICAgdGFuenUuYXBwLmxpdmUudmlldzogXCJ0cnVlXCJcbiAgICAgICAgdGFuenUuYXBwLm

xpdmUudmlldy5hcHBsaWNhdGlvbi5hY3R1YXRvci5wb3J0OiBcIjgwODFcIlxuICAgICAgICB0YW56dS5hcHAu

bGl2ZS52aWV3LmFwcGxpY2F0aW9uLmZsYXZvdXJzOiBzcHJpbmctYm9vdFxuICAgICAgICB0YW56dS5hcHAubG

l2ZS52aWV3LmFwcGxpY2F0aW9uLm5hbWU6IHBldGNsaW5pY1xuICAgIHNwZWM6XG4gICAgICBjb250YWluZXJz

Tanzu Application Platform v1.5

VMware by Broadcom 630



OlxuICAgICAgLSBlbnY6XG4gICAgICAgIC0gbmFtZTogSkFWQV9UT09MX09QVElPTlNcbiAgICAgICAgICB2YW

x1ZTogLURtYW5hZ2VtZW50LmVuZHBvaW50LmhlYWx0aC5wcm9iZXMuYWRkLWFkZGl0aW9uYWwtcGF0aHM9XCJ0

cnVlXCIgLURtYW5hZ2VtZW50LmVuZHBvaW50LmhlYWx0aC5zaG93LWRldGFpbHM9YWx3YXlzIC1EbWFuYWdlbW

VudC5lbmRwb2ludHMud2ViLmJhc2UtcGF0aD1cIi9hY3R1YXRvclwiIC1EbWFuYWdlbWVudC5lbmRwb2ludHMu

d2ViLmV4cG9zdXJlLmluY2x1ZGU9KiAtRG1hbmFnZW1lbnQuaGVhbHRoLnByb2Jlcy5lbmFibGVkPVwidHJ1ZV

wiIC1EbWFuYWdlbWVudC5zZXJ2ZXIucG9ydD1cIjgwODFcIiAtRHNlcnZlci5wb3J0PVwiODA4MFwiIC1Ec2Vy

dmVyLnNodXRkb3duLmdyYWNlLXBlcmlvZD1cIjI0c1wiXG4gICAgICAgIGltYWdlOiBnY3IuaW8vZGFsZm9uc2

8tdGFuenUtZGV2LWZybXdyay9wZXQtY2xpbmljLWRlZmF1bHRAc2hhMjU2OjM5NjRiNTQwNTVlZjNkNmFiNWQ3

YTM5MmVjOGU3OWJhOTg2NjczODU2NmIyOGE2OGY4ZDM2YWY5YjkyMGJhODNcbiAgICAgICAgbGl2ZW5lc3NQcm

9iZTpcbiAgICAgICAgICBodHRwR2V0OlxuICAgICAgICAgICAgcGF0aDogL2xpdmV6XG4gICAgICAgICAgICBw

b3J0OiA4MDgwXG4gICAgICAgICAgICBzY2hlbWU6IEhUVFBcbiAgICAgICAgbmFtZTogd29ya2xvYWRcbiAgIC

AgICAgcG9ydHM6XG4gICAgICAgIC0gY29udGFpbmVyUG9ydDogODA4MFxuICAgICAgICAgIHByb3RvY29sOiBU

Q1BcbiAgICAgICAgcmVhZGluZXNzUHJvYmU6XG4gICAgICAgICAgaHR0cEdldDpcbiAgICAgICAgICAgIHBhdG

g6IC9yZWFkeXpcbiAgICAgICAgICAgIHBvcnQ6IDgwODBcbiAgICAgICAgICAgIHNjaGVtZTogSFRUUFxuICAg

ICAgICByZXNvdXJjZXM6IHt9XG4gICAgICAgIHNlY3VyaXR5Q29udGV4dDpcbiAgICAgICAgICBydW5Bc1VzZX

I6IDEwMDBcbiAgICAgIHNlcnZpY2VBY2NvdW50TmFtZTogZGVmYXVsdFxuIn0=

pet-clinic-config-writer-9fbk6-pod[step-main] + base64 --decode

pet-clinic-config-writer-9fbk6-pod[step-main] ++ cat files.json

+ pet-clinic-config-writer-kpmc6-pod › place-tools

pet-clinic-config-writer-9fbk6-pod[step-main] ++ jq -r 'to_entries | .[] | @sh "mkdir 

-p $(dirname \(.key)) && echo \(.value) > \(.key)"'

+ pet-clinic-config-writer-kpmc6-pod › step-main

+ pet-clinic-config-writer-kpmc6-pod › step-init

+ pet-clinic-config-writer-kpmc6-pod › place-scripts

pet-clinic-config-writer-9fbk6-pod[step-main] + eval 'mkdir -p $(dirname '\''delivery.

yml'\'') && echo '\''apiVersion: serving.knative.dev/v1'

pet-clinic-config-writer-9fbk6-pod[step-main] kind: Service

pet-clinic-config-writer-9fbk6-pod[step-main] metadata:

pet-clinic-config-writer-9fbk6-pod[step-main]   name: pet-clinic

pet-clinic-config-writer-9fbk6-pod[step-main]   labels:

pet-clinic-config-writer-9fbk6-pod[step-main]     apps.tanzu.vmware.com/workload-type: 

web

pet-clinic-config-writer-9fbk6-pod[step-main]     autoscaling.knative.dev/min-scale: 

"1"

pet-clinic-config-writer-9fbk6-pod[step-main]     app.kubernetes.io/component: run

pet-clinic-config-writer-9fbk6-pod[step-main]     carto.run/workload-name: pet-clinic

--timestamp, -t

Adds the timestamp to the beginning of each log message

tanzu apps workload tail pet-clinic -t

pet-clinic-00002-deployment-5cc69cfdc8-t45sc[workload] 2022-06-09T18:10:07.645910625-0

5:00

pet-clinic-00002-deployment-5cc69cfdc8-t45sc[workload] 2022-06-09T18:10:07.645942876-0

5:00

pet-clinic-00002-deployment-5cc69cfdc8-t45sc[workload] 2022-06-09T18:10:07.645951930-0

5:00               |\      _,,,--,,_

pet-clinic-00002-deployment-5cc69cfdc8-t45sc[workload] 2022-06-09T18:10:07.645957151-0

5:00              /,`.-'`'   ._  \-;;,_

pet-clinic-00002-deployment-5cc69cfdc8-t45sc[workload] 2022-06-09T18:10:07.645961411-0

5:00   _______ __|,4-  ) )_   .;.(__`'-'__     ___ __    _ ___ _______

pet-clinic-00002-deployment-5cc69cfdc8-t45sc[workload] 2022-06-09T18:10:07.645967316-0

5:00  |       | '---''(_/._)-'(_\_)   |   |   |   |  |  | |   |       |

pet-clinic-00002-deployment-5cc69cfdc8-t45sc[workload] 2022-06-09T18:10:07.645971010-0

5:00  |    _  |    ___|_     _|       |   |   |   |   |_| |   |       | __ _ _

pet-clinic-00002-deployment-5cc69cfdc8-t45sc[workload] 2022-06-09T18:10:07.645976591-0

5:00  |   |_| |   |___  |   | |       |   |   |   |       |   |       | \ \ \ \

pet-clinic-00002-deployment-5cc69cfdc8-t45sc[workload] 2022-06-09T18:10:07.645986474-0

5:00  |    ___|    ___| |   | |      _|   |___|   |  _    |   |      _|  \ \ \ \

pet-clinic-00002-deployment-5cc69cfdc8-t45sc[workload] 2022-06-09T18:10:07.645990521-0

5:00  |   |   |   |___  |   | |     |_|       |   | | |   |   |     |_    ) ) ) )

pet-clinic-00002-deployment-5cc69cfdc8-t45sc[workload] 2022-06-09T18:10:07.645994112-0

5:00  |___|   |_______| |___| |_______|_______|___|_|  |__|___|_______|  / / / /

Tanzu Application Platform v1.5

VMware by Broadcom 631



pet-clinic-00002-deployment-5cc69cfdc8-t45sc[workload] 2022-06-09T18:10:07.645998053-0

5:00  ==================================================================/_/_/_/

pet-clinic-00002-deployment-5cc69cfdc8-t45sc[workload] 2022-06-09T18:10:07.646001577-0

5:00

pet-clinic-00002-deployment-5cc69cfdc8-t45sc[workload] 2022-06-09T18:10:07.646005296-0

5:00 :: Built with Spring Boot :: 2.6.8

Tanzu Accelerator CLI overview

The Tanzu Accelerator Tanzu CLI includes commands for developers and operators to create and
use accelerators.

Server API connections for operators and developers

The Tanzu Accelerator CLI must connect to a server for all provided commands except for the help
and version commands.

Operators typically use create, update, and delete commands for managing accelerators in a
Kubernetes context. They also use the fragment commands to manage accelerator fragments.
These commands require a Kubernetes context where the operator is already authenticated and is
authorized to create and edit the accelerator resources. Operators can also use the get and list
commands by using the same authentication. For any of these commands, the operator can specify
the --context flag to access accelerators in a specific Kubernetes context.

Developers use the list, get, and generate commands for using accelerators available in an
Application Accelerator server. Developers use the --server-url to point to the Application
Accelerator server they want to use.

You can either use the proxy that is part of TAP-GUI or you can use the URL for the Application
Accelerator server, if that is configured to be exposed. VMware recommends using the TAP-GUI
address.

Using TAP-GUI URL

1. Specify --server-url as:

https://tap-gui.DOMAIN

Where DOMAIN defaults to the shared.ingress_domain value provided in the Tanzu
Application Platform values file.

2. Add the following flags to the tap-values.yaml file when shared.ingress_domain is set.

accelerator:

  ingress:

    include: true

Using Application Accelerator Server URL

If you cannot use the TAP-GUI URL, the fallback is to use Application Accelerator server directly. In
this case the URL depends on the configuration settings for Application Accelerator:

For installations configured with a shared ingress and where the Application Accelerator
server is configured to use the ingress, use https://accelerator.<domain> where domain
defaults to the shared.ingress_domain value provided in the values file of Tanzu Application
Platform.

For installations using a LoadBalancer, look up the External IP address by using:

Tanzu Application Platform v1.5

VMware by Broadcom 632



kubectl get -n accelerator-system service/acc-server

Use http://<External-IP> as the URL.

For any other configuration, you can use port forwarding by using:

kubectl port-forward service/acc-server -n accelerator-system 8877:80

Use http://localhost:8877 as the URL.

Using “ACC_SERVER_URL” environment variable

The developer can set an ACC_SERVER_URL environment variable to avoid having to provide the
same --server-url flag for every command. Run export ACC_SERVER_URL=<URL> for the terminal
session in use. If the developer explicitly specifies the --server-url flag, it overrides the
ACC_SERVER_URL environment variable if it is set.

Installation
For information about installing the Tanzu CLI Accelerator plug-in, see Install Accelerator CLI plug-
in.

Command reference
For information about available commands, see Command Reference.

Tanzu Accelerator CLI overview
The Tanzu Accelerator Tanzu CLI includes commands for developers and operators to create and
use accelerators.

Server API connections for operators and developers
The Tanzu Accelerator CLI must connect to a server for all provided commands except for the help
and version commands.

Operators typically use create, update, and delete commands for managing accelerators in a
Kubernetes context. They also use the fragment commands to manage accelerator fragments.
These commands require a Kubernetes context where the operator is already authenticated and is
authorized to create and edit the accelerator resources. Operators can also use the get and list
commands by using the same authentication. For any of these commands, the operator can specify
the --context flag to access accelerators in a specific Kubernetes context.

Developers use the list, get, and generate commands for using accelerators available in an
Application Accelerator server. Developers use the --server-url to point to the Application
Accelerator server they want to use.

You can either use the proxy that is part of TAP-GUI or you can use the URL for the Application
Accelerator server, if that is configured to be exposed. VMware recommends using the TAP-GUI
address.

Using TAP-GUI URL

1. Specify --server-url as:

https://tap-gui.DOMAIN

Tanzu Application Platform v1.5

VMware by Broadcom 633



Where DOMAIN defaults to the shared.ingress_domain value provided in the Tanzu
Application Platform values file.

2. Add the following flags to the tap-values.yaml file when shared.ingress_domain is set.

accelerator:

  ingress:

    include: true

Using Application Accelerator Server URL

If you cannot use the TAP-GUI URL, the fallback is to use Application Accelerator server directly. In
this case the URL depends on the configuration settings for Application Accelerator:

For installations configured with a shared ingress and where the Application Accelerator
server is configured to use the ingress, use https://accelerator.<domain> where domain
defaults to the shared.ingress_domain value provided in the values file of Tanzu Application
Platform.

For installations using a LoadBalancer, look up the External IP address by using:

kubectl get -n accelerator-system service/acc-server

Use http://<External-IP> as the URL.

For any other configuration, you can use port forwarding by using:

kubectl port-forward service/acc-server -n accelerator-system 8877:80

Use http://localhost:8877 as the URL.

Using “ACC_SERVER_URL” environment variable

The developer can set an ACC_SERVER_URL environment variable to avoid having to provide the
same --server-url flag for every command. Run export ACC_SERVER_URL=<URL> for the terminal
session in use. If the developer explicitly specifies the --server-url flag, it overrides the
ACC_SERVER_URL environment variable if it is set.

Installation
For information about installing the Tanzu CLI Accelerator plug-in, see Install Accelerator CLI plug-
in.

Command reference
For information about available commands, see Command Reference.

Install Tanzu Accelerator CLI
This topic tells you how to install the Tanzu Accelerator CLI.

Note

Follow the steps in this topic if you do not want to use a profile to install Tanzu
Accelerator CLI. For more information about profiles, see About Tanzu Application
Platform components and profiles.

Tanzu Application Platform v1.5

VMware by Broadcom 634



Prerequisites

Before you install the Tanzu Accelerator CLI:

Follow the instructions to Install or update the Tanzu CLI and plug-ins.

Install

To install the Tanzu Accelerator CLI:

1. From the $HOME/tanzu directory, run:

tanzu plugin install accelerator

2. To verify that the CLI is installed correctly, run:

tanzu accelerator version

A version will be displayed in the output.

If the following error is displayed during installation:

Error: could not find plug-in "accelerator" in any known repositories

✖  could not find plug-in "accelerator" in any known repositories

Verify that there is an accelerator entry in the cli/manifest.yaml file:

plugins:

...

    - name: accelerator

    description: Manage accelerators in a Kubernetes cluster

    versions: []

Command reference
This topic provides you with a list of the Tanzu Accelerator CLI commands.

tanzu accelerator

tanzu accelerator apply

tanzu accelerator create

tanzu accelerator delete

tanzu accelerator fragment

tanzu accelerator fragment create

tanzu accelerator fragment delete

tanzu accelerator fragment get

tanzu accelerator fragment list

tanzu accelerator fragment update

tanzu accelerator generate

tanzu accelerator generate-from-local

tanzu accelerator get

tanzu accelerator list

Tanzu Application Platform v1.5

VMware by Broadcom 635



tanzu accelerator push

tanzu accelerator update

Command reference

This topic provides you with a list of the Tanzu Accelerator CLI commands.

tanzu accelerator

tanzu accelerator apply

tanzu accelerator create

tanzu accelerator delete

tanzu accelerator fragment

tanzu accelerator fragment create

tanzu accelerator fragment delete

tanzu accelerator fragment get

tanzu accelerator fragment list

tanzu accelerator fragment update

tanzu accelerator generate

tanzu accelerator generate-from-local

tanzu accelerator get

tanzu accelerator list

tanzu accelerator push

tanzu accelerator update

tanzu accelerator

This topic tells you how to use the Tanzu Accelerator CLI tanzu accelerator command to manage
accelerators in a Kubernetes cluster.

Options

      --context name      name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

  -h, --help              help for accelerator

      --kubeconfig file   kubeconfig file (default is $HOME/.kube/config)

SEE ALSO

tanzu accelerator apply - Apply accelerator resource

tanzu accelerator create - Create a new accelerator

tanzu accelerator delete - Delete an accelerator

tanzu accelerator fragment create - Create a fragment

tanzu accelerator generate - Generate project from accelerator

tanzu accelerator generate-from-local - Generate a project from local or registered
accelerators/fragments

Tanzu Application Platform v1.5

VMware by Broadcom 636



tanzu accelerator get - Get accelerator information

tanzu accelerator list - List accelerators

tanzu accelerator push - Push local path to source image

tanzu accelerator update - Update an accelerator

tanzu accelerator

This topic tells you how to use the Tanzu Accelerator CLI tanzu accelerator command to manage
accelerators in a Kubernetes cluster.

Options

      --context name      name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

  -h, --help              help for accelerator

      --kubeconfig file   kubeconfig file (default is $HOME/.kube/config)

SEE ALSO

tanzu accelerator apply - Apply accelerator resource

tanzu accelerator create - Create a new accelerator

tanzu accelerator delete - Delete an accelerator

tanzu accelerator fragment create - Create a fragment

tanzu accelerator generate - Generate project from accelerator

tanzu accelerator generate-from-local - Generate a project from local or registered
accelerators/fragments

tanzu accelerator get - Get accelerator information

tanzu accelerator list - List accelerators

tanzu accelerator push - Push local path to source image

tanzu accelerator update - Update an accelerator

tanzu accelerator apply

tanzu accelerator apply
This topic tells you how to use the Tanzu Accelerator CLI tanzu accelerator apply command to
create or update accelerators.

Synopsis

Create or update accelerator resource using specified manifest file.

tanzu accelerator apply [flags]

Examples

tanzu accelerator apply --filename <path-to-resource-manifest>

Tanzu Application Platform v1.5

VMware by Broadcom 637



Options

  -f, --filename string    path of manifest file for the resource

  -h, --help               help for apply

  -n, --namespace string   namespace for the resource (default "accelerator-system")

Options inherited from parent commands

      --context name      name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

      --kubeconfig file   kubeconfig file (default is $HOME/.kube/config)

SEE ALSO

tanzu accelerator - Manage accelerators in a Kubernetes cluster

tanzu accelerator create
This topic tells you how to use the Tanzu Accelerator CLI tanzu accelerator create command to
create a new accelerator.

Synopsis
Create a new accelerator resource with specified configuration.

Accelerator configuration options include:

Git repository URL and branch/tag where accelerator code and metadata is defined

Metadata like description, display-name, tags, and icon-url

The Git repository option is required. Metadata options are optional and override any values for the
same options specified in the accelerator metadata retrieved from the Git repository.

tanzu accelerator create [flags]

Examples

tanzu accelerator create <accelerator-name> --git-repository <URL> --git-branch <branc

h>

Options

      --description string    description of this accelerator

      --display-name string   display name for the accelerator

      --git-branch string     Git repository branch to be used (default "main")

      --git-repo string       Git repository URL for the accelerator

      --git-sub-path string   Git repository subPath to be used

      --git-tag string        Git repository tag to be used

  -h, --help                  help for create

      --icon-url string       URL for icon to use with the accelerator

      --interval string       interval for checking for updates to Git or image reposi

tory

      --local-path string     path to the directory containing the source for the acce

lerator

  -n, --namespace string      namespace for accelerator system (default "accelerator-s

ystem")

      --secret-ref string     name of secret containing credentials for private Git or 

Tanzu Application Platform v1.5

VMware by Broadcom 638



image repository

      --source-image string   name of the source image for the accelerator

      --tags strings          tags that can be used to search for accelerators

Options inherited from parent commands

      --context name      name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

      --kubeconfig file   kubeconfig file (default is $HOME/.kube/config)

SEE ALSO

tanzu accelerator

tanzu accelerator delete

This topic tells you how to use the Tanzu Accelerator CLI tanzu accelerator delete command to
delete an accelerator.

Synopsis

Delete the accelerator resource with the specified name.

tanzu accelerator delete [flags]

Examples

tanzu accelerator delete <accelerator-name>

Options

  -h, --help               help for delete

  -n, --namespace string   namespace for accelerator system (default "accelerator-syst

em")

Options inherited from parent commands

      --context name      name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

      --kubeconfig file   kubeconfig file (default is $HOME/.kube/config)

SEE ALSO

tanzu accelerator - Manage accelerators in a Kubernetes cluster

tanzu accelerator fragment

This topic tells you how to use the Tanzu Accelerator CLI tanzu accelerator fragment command
to manage fragments.

Synopsis

Tanzu Application Platform v1.5

VMware by Broadcom 639



Commands to manage accelerator fragments

Examples

tanzu accelerator fragment --help

Options

  -h, --help   help for fragment

Options inherited from parent commands

      --context name      name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

      --kubeconfig file   kubeconfig file (default is $HOME/.kube/config)

SEE ALSO

Using accelerator fragments

tanzu accelerator - Manage accelerators in a Kubernetes cluster

tanzu accelerator fragment create - Create a new accelerator fragment

tanzu accelerator fragment delete - Delete an accelerator fragment

tanzu accelerator fragment get - Get accelerator fragment information

tanzu accelerator fragment list - List accelerator fragments

tanzu accelerator fragment update - Update an accelerator fragment

tanzu accelerator fragment create

This topic tells you how to use the Tanzu Accelerator CLI tanzu accelerator fragment create
command to create a new accelerator fragment.

Synopsis

Create a new accelerator fragment resource with specified configuration.

Accelerator configuration options include:

Git repository URL and branch/tag where accelerator code and metadata is defined

Metadata like description, display-name, tags and icon-url

The Git repository option is required. Metadata options are optional and will override any values for
the same options specified in the accelerator metadata retrieved from the Git repository.

tanzu accelerator fragment create [flags]

Example

tanzu accelerator fragment create <fragment-name> --git-repository <URL> --git-branch 

<branch> --git-sub-path <sub-path>

Tanzu Application Platform v1.5

VMware by Broadcom 640



Options

      --display-name string   display name for the accelerator fragment

      --git-branch string     Git repository branch to be used (default "main")

      --git-repo string       Git repository URL for the accelerator fragment

      --git-sub-path string   Git repository subPath to be used

      --git-tag string        Git repository tag to be used

  -h, --help                  help for create

      --interval string       interval for checking for updates to Git or image reposi

tory

      --local-path string     path to the directory containing the source for the acce

lerator fragment

  -n, --namespace string      namespace for accelerator system (default "accelerator-s

ystem")

      --secret-ref string     name of secret containing credentials for private Git or 

image repository

      --source-image string   name of the source image for the accelerator

Options inherited from parent commands

      --context name      name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

      --kubeconfig file   kubeconfig file (default is $HOME/.kube/config)

SEE ALSO

tanzu accelerator fragment

tanzu accelerator fragment delete

This topic tells you how to use the Tanzu Accelerator CLI tanzu accelerator fragment delete
command to delete an accelerator fragment.

Synopsis

Delete the accelerator fragment resource with the specified name.

tanzu accelerator fragment delete [flags]

Examples

tanzu accelerator fragment delete <fragment-name>

Options

  -h, --help               help for delete

  -n, --namespace string   namespace for accelerator system (default "accelerator-syst

em")

Options inherited from parent commands

      --context name      name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

Tanzu Application Platform v1.5

VMware by Broadcom 641



      --kubeconfig file   kubeconfig file (default is $HOME/.kube/config)

SEE ALSO

tanzu accelerator fragment

tanzu accelerator fragment get

This topic tells you how to use the Tanzu Accelerator CLI tanzu accelerator fragment get
command to get accelerator fragment information.

Synopsis

Get accelerator fragment information.

tanzu accelerator fragment get [flags]

Examples

tanzu accelerator get <fragment-name>

Options

  -h, --help               help for get

  -n, --namespace string   namespace for accelerator system (default "accelerator-syst

em")

Options inherited from parent commands

      --context name      name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

      --kubeconfig file   kubeconfig file (default is $HOME/.kube/config)

SEE ALSO

tanzu accelerator fragment - Fragment commands

tanzu accelerator fragment list
This topic tells you how to use the Tanzu Accelerator CLI tanzu accelerator fragment list to list
accelerator fragments.

Synopsis
List all accelerator fragments.

tanzu accelerator fragment list [flags]

Examples

tanzu accelerator fragment list

Tanzu Application Platform v1.5

VMware by Broadcom 642



Options

  -h, --help               help for list

  -n, --namespace string   namespace for accelerator system (default "accelerator-syst

em")

  -v, --verbose            include repository and show long URLs or image digests in t

he output

Options inherited from parent commands

      --context name      name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

      --kubeconfig file   kubeconfig file (default is $HOME/.kube/config)

SEE ALSO

tanzu accelerator fragment

tanzu accelerator fragment update

This topic tells you how to use the Tanzu Accelerator CLI tanzu accelerator fragment update
command to update an accelerator fragment.

Synopsis

Update an accelerator fragment resource with the specified name using the specified configuration.

Accelerator configuration options include: - Git repository URL and branch/tag where accelerator
code and metadata is defined - Metadata like display-name

The update command also provides a –reconcile flag that will force the accelerator fragment to be
refreshed with any changes made to the associated Git repository.

tanzu accelerator fragment update [flags]

Examples

tanzu accelerator update <accelerator-name> --description "Lorem Ipsum"

Options

      --display-name string   display name for the accelerator fragment

      --git-branch string     Git repository branch to be used

      --git-repo string       Git repository URL for the accelerator fragment

      --git-sub-path string   Git repository subPath to be used

      --git-tag string        Git repository tag to be used

  -h, --help                  help for update

      --interval string       interval for checking for updates to Git repository

  -n, --namespace string      namespace for accelerator fragments (default "accelerato

r-system")

      --reconcile             trigger a reconciliation including the associated GitRep

ository resource

      --secret-ref string     name of secret containing credentials for private Git re

pository

Tanzu Application Platform v1.5

VMware by Broadcom 643



Options inherited from parent commands

      --context name      name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

      --kubeconfig file   kubeconfig file (default is $HOME/.kube/config)

SEE ALSO

tanzu accelerator fragment - Fragment commands

tanzu accelerator generate

tanzu accelerator generate
This topic tells you how to use the Tanzu Accelerator CLI tanzu accelerator generate command
to generate a project from an accelerator.

Synopsis

Generate a project from an accelerator using provided options and download project artifacts as a
ZIP file.

Generation options are provided as a JSON string and should match the metadata options that are
specified for the accelerator used for the generation. The options can include “projectName” which
defaults to the name of the accelerator. This “projectName” will be used as the name of the
generated ZIP file.

You can see the available options by using the “tanzu accelerator get ” command.

Here is an example of an options JSON string that specifies the “projectName” and an
“includeKubernetes” boolean flag:

--options '{"projectName":"test", "includeKubernetes": true}'

You can also provide a file that specifies the JSON string using the –options-file flag.

The generate command needs access to the Application Accelerator server. You can specify the –
server-url flag or set an ACC_SERVER_URL environment variable. If you specify the –server-url
flag it overrides the ACC_SERVER_URL environment variable if it is set.

tanzu accelerator generate [flags]

Examples

tanzu accelerator generate <accelerator-name> --options '{"projectName":"test"}'

Options

  -h, --help                  help for generate

      --options string        options JSON string

      --options-file string   path to file containing options JSON string

      --output-dir string     directory that the zip file will be written to

      --server-url string     the URL for the Application Accelerator server

Options inherited from parent commands

Tanzu Application Platform v1.5

VMware by Broadcom 644



      --context name      name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

      --kubeconfig file   kubeconfig file (default is $HOME/.kube/config)

SEE ALSO

tanzu accelerator - Manage accelerators in a Kubernetes cluster

tanzu accelerator generate-from-local

This topic tells you how to use the Tanzu Accelerator CLI tanzu accelerator generate-from-local
command to generate a project from a combination of registered and local artifacts.

Synopsis

Generate a project from a combination of local files and registered accelerators/fragments using
provided options and download project artifacts as a ZIP file.

Options values are provided as a JSON object and should match the declared options that are
specified for the accelerator used for the generation. The options can include “projectName” which
defaults to the name of the accelerator. This “projectName” is used as the name of the generated
ZIP file.

Here is an example of an options JSON string that specifies the “projectName” and an
“includeKubernetes” Boolean flag:

--options '{"projectName":"test", "includeKubernetes": true}'

You can also provide a file that specifies the JSON string using the –options-file flag.

The generate-from-local command needs access to the Application Accelerator server. You can
specify the –server-url flag or set an ACC_SERVER_URL environment variable. If you specify the –
server-url flag it overrides the ACC_SERVER_URL environment variable if it is set.

tanzu accelerator generate-from-local [flags]

Examples

tanzu accelerator generate-from-local --accelerator-path java-rest=workspace/java-rest 

--fragment-paths java-version=workspace/version --fragment-names tap-workload --option

s '{"projectName":"test"}'

Options

      --accelerator-name string             name of the registered accelerator to use

      --accelerator-path "key=value" pair   key value pair of the name and path to the 

directory containing the accelerator

  -f, --force                               force clean and rewrite of output-dir

      --fragment-names strings              names of the registered fragments to use

      --fragment-paths stringToString       key value pairs of the name and path to th

e directory containing each fragment (default [])

  -h, --help                                help for generate-from-local

      --options string                      options JSON string (default "{}")

      --options-file string                 path to file containing options JSON strin

g

  -o, --output-dir string                   the directory that the project will be cre

ated in (defaults to the project name)

Tanzu Application Platform v1.5

VMware by Broadcom 645



      --server-url string                   the URL for the Application Accelerator se

rver

Options inherited from parent commands

      --context name      name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

      --kubeconfig file   kubeconfig file (default is $HOME/.kube/config)

SEE ALSO

tanzu accelerator

tanzu accelerator get

This topic tells you how to use the Tanzu Accelerator CLI tanzu accelerator get command to get
accelerator information.

Synopsis

Get accelerator information.

You can choose to get the accelerator from the Application Accelerator server using –server-url
flag or from a Kubernetes context using –from-context flag. The default is to get accelerators from
the Kubernetes context. To override this, you can set the ACC_SERVER_URL environment
variable with the URL for the Application Accelerator server you want to access.

tanzu accelerator get [flags]

Examples

tanzu accelerator get <accelerator-name> --from-context

Options

      --from-context        retrieve resources from current context defined in kubecon

fig

  -h, --help                help for get

  -n, --namespace string    namespace for accelerator system (default "accelerator-sys

tem")

      --server-url string   the URL for the Application Accelerator server

  -v, --verbose             include all fields and show long URLs in the output

Options inherited from parent commands

      --context name      name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

      --kubeconfig file   kubeconfig file (default is $HOME/.kube/config)

SEE ALSO

tanzu accelerator

Tanzu Application Platform v1.5

VMware by Broadcom 646



tanzu accelerator list

This topic tells you how to use the Tanzu Accelerator CLI tanzu accelerator list command to list
accelerators.

Synopsis

List all accelerators.

You can choose to list the accelerators from the Application Accelerator server using –server-url
flag or from a Kubernetes context using –from-context flag. The default is to list accelerators from
the Kubernetes context. To override this, you can set the ACC_SERVER_URL environment
variable with the URL for the Application Accelerator server you want to access.

tanzu accelerator list [flags]

Examples

tanzu accelerator list

Options

      --from-context        retrieve resources from the current context defined in kub

econfig

  -h, --help                help for list

  -n, --namespace string    namespace for accelerator system (default "accelerator-sys

tem")

      --server-url string   the URL for the Application Accelerator server

  -t, --tags strings        accelerator tags to match against

  -v, --verbose             include repository and show long URLs or image digests in 

the output

Options inherited from parent commands

      --context name      name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

      --kubeconfig file   kubeconfig file (default is $HOME/.kube/config)

SEE ALSO
tanzu accelerator

tanzu accelerator push

tanzu accelerator push

This topic tells you how to use the Tanzu Accelerator CLI tanzu accelerator push command to
push source code from local path to source image.

Synopsis

Push source code from local path to source image used by an accelerator

Tanzu Application Platform v1.5

VMware by Broadcom 647



tanzu accelerator push [flags]

Examples

tanzu accelerator push --local-path <local path> --source-image <image>

Options

  -h, --help                  help for push

      --local-path string     path to the directory containing the source for the acce

lerator

      --source-image string   name of the source image for the accelerator

Options inherited from parent commands

      --context name      name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

      --kubeconfig file   kubeconfig file (default is $HOME/.kube/config)

SEE ALSO

tanzu accelerator - Manage accelerators in a Kubernetes cluster

tanzu accelerator update

This topic tells you how to use the Tanzu Accelerator CLI tanzu accelerator update command to
update an accelerator.

Synopsis

Update an accelerator resource with the specified name using the specified configuration.

Accelerator configuration options include: - Git repository URL and branch/tag where accelerator
code and metadata is defined - Metadata like description, display-name, tags and icon-url

The update command also provides a –reoncile flag that will force the accelerator to be refreshed
with any changes made to the associated Git repository.

tanzu accelerator update [flags]

Examples

tanzu accelerator update <accelerator-name> --description "Lorem Ipsum"

Options

      --description string    description of this accelerator

      --display-name string   display name for the accelerator

      --git-branch string     Git repository branch to be used

      --git-repo string       Git repository URL for the accelerator

      --git-sub-path string   Git repository subPath to be used

      --git-tag string        Git repository tag to be used

  -h, --help                  help for update

      --icon-url string       URL for icon to use with the accelerator

Tanzu Application Platform v1.5

VMware by Broadcom 648



      --interval string       interval for checking for updates to Git or image reposi

tory

  -n, --namespace string      namespace for accelerator system (default "accelerator-s

ystem")

      --reconcile             trigger a reconciliation including the associated GitRep

ository resource

      --secret-ref string     name of secret containing credentials for private Git or 

image repository

      --source-image string   name of the source image for the accelerator

      --tags strings          tags that can be used to search for accelerators

Options inherited from parent commands

      --context name      name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

      --kubeconfig file   kubeconfig file (default is $HOME/.kube/config)

SEE ALSO

tanzu accelerator - Manage accelerators in a Kubernetes cluster

Overview of the Tanzu Insight plug-in

The Tanzu Insight CLI plug-in helps you query vulnerability, image, and package data.

Follow these steps to install, configure, and use your Tanzu Insight CLI plug-in:

Note: Prior to using the CLI plug-in, you must install the Supply Chain Security Tools - Store, either
as its own package, or as part of Tanzu Application Platform View profile.

1. If the insight plug-in is not already installed, see Install the Tanzu Insight plug-in

2. Configure insight

Once tanzu insight CLI plug-in is set up:

1. Add data

2. Query data

Overview of the Tanzu Insight plug-in
The Tanzu Insight CLI plug-in helps you query vulnerability, image, and package data.

Follow these steps to install, configure, and use your Tanzu Insight CLI plug-in:

Note: Prior to using the CLI plug-in, you must install the Supply Chain Security Tools - Store, either
as its own package, or as part of Tanzu Application Platform View profile.

1. If the insight plug-in is not already installed, see Install the Tanzu Insight plug-in

2. Configure insight

Once tanzu insight CLI plug-in is set up:

1. Add data

2. Query data

Install your Tanzu Insight CLI plug-in

This topic tells you how to install your Tanzu Insight CLI plug-in.

Tanzu Application Platform v1.5

VMware by Broadcom 649



1. From your tanzu directory, install the local version of the Tanzu Insight plug-in you
downloaded by running:

cd $HOME/tanzu

tanzu plugin install insight

2. Follow the steps in Configure the Tanzu Insight CLI plug-in.

Configure your Tanzu Insight CLI plug-in
This topic tells you how to configure your Tanzu Insight CLI plug-in.

Set the target and certificate authority (CA) certificate
These instructions are for the recommended configuration where Ingress is enabled. For
instructions on non Ingress setups, see Configure target endpoint and certificate.

Set the endpoint host to metadata-store.INGRESS-DOMAIN, such as metadata-
store.example.domain.com. Where INGRESS-DOMAIN isthe value of the ingress_domain property in
your deployment yaml.

Note In a multi-cluster setup, a DNS record is required for the domain. The below instructions for
single cluster setup do not apply, skip to Set Target section.

Single Cluster setup
In a single-cluster setup, a DNS record is still recommended. However, if no accessible DNS record
exists for the domain, edit the /etc/hosts file to add a local record:

ENVOY_IP=$(kubectl get svc envoy -n tanzu-system-ingress -o jsonpath="{.status.loadBal

ancer.ingress[0].ip}")

# Replace with your domain

METADATA_STORE_DOMAIN="metadata-store.example.domain.com"

# Delete any previously added entry

sudo sed -i '' "/$METADATA_STORE_DOMAIN/d" /etc/hosts

echo "$ENVOY_IP $METADATA_STORE_DOMAIN" | sudo tee -a /etc/hosts > /dev/null

Set Target

To get the certificate, run:

kubectl get secret tap-ingress-selfsigned-root-ca -n cert-manager -o json | jq -r '.da

ta."ca.crt"' | base64 -d > insight-ca.crt

Set the target by running:

Note

Follow the steps in this topic if you do not want to use a profile to install the Tanzu
Insight CLI plug-in. For more information about profiles, see About Tanzu
Application Platform > components and profiles.

Tanzu Application Platform v1.5

VMware by Broadcom 650



tanzu insight config set-target https://$METADATA_STORE_DOMAIN --ca-cert insight-ca.cr

t

Set the access token

When using the insight plug-in, you must set the METADATA_STORE_ACCESS_TOKEN environment
variable, or use the --access-token flag. VMware discourages using the --access-token flag as the
token appears in your shell history.

The following command retrieves the access token from the default metadata-store-read-write-
client service account and stores it in METADATA_STORE_ACCESS_TOKEN:

export METADATA_STORE_ACCESS_TOKEN=$(kubectl get secrets metadata-store-read-write-cli

ent -n metadata-store -o jsonpath="{.data.token}" | base64 -d)

Verify the connection
Verify that your configuration is correct and you can make a connection using tanzu insight
health.

For example:

$ tanzu insight health

Success: Reached Metadata Store!

Query vulnerabilities, images, and packages

This topic tells you how to query the database to understand vulnerability, image, and dependency
relationships. The Tanzu Insight CLI plug-in queries the database for vulnerability scan reports or
Software Bill of Materials (commonly known as SBoM) files.

Supported use cases

The following use cases are supported by the Tanzu Insight CLI plug-in:

What packages and CVEs exist in a particular image? (image)

What dependencies are affected by a specific CVE? (vulnerabilities)

Important

The tanzu insight config set-target does not initiate a test connection. Use
tanzu insight health to test connecting using the configured endpoint and CA
certificate. Neither commands test whether the access token is correct. For that
you must use the plug-in to add data and query data.

Important

The tanzu insight health command tests the configured endpoint and CA
certificate. However, it does not test whether the access token is correct. For that,
you must use the plug-in to add and query data.

Tanzu Application Platform v1.5

VMware by Broadcom 651



Query using the Tanzu Insight CLI plug-in

There are four commands for querying and adding data:

image - Post an image SBOM or query images for packages and vulnerabilities.

package - Query packages for vulnerabilities or by image or source code.

source - Post a source code SBOM or query source code for packages and vulnerabilities.

vulnerabilities - Query vulnerabilities by image, package, or source code.

For more information about these commands, use tanzu insight -h or see Tanzu Insight Details.

Example 1: What packages and CVEs does a specific image
contain?

To query an image scan for vulnerabilities, you need the image digest value. Get the image digest
value from the image scan resource using Supply Chain Tools - Scan 2.0 or Supply Chain Tools Scan
Pre-2.0.

Find the image digest using Supply Chain Tools - Scan 2.0

Find the image digest by looking inside the corresponding image vulnerability scan custom
resource.

To get a list of image vulnerability scans, run:

kubectl get imagevulnerabilityscan -n WORKLOAD-NAMESPACE

For example:

$ kubectl get imagevulnerabilityscan -n my-apps

NAME                                  SUCCEEDED   REASON

tanzu-java-web-app-grype-scan-jb76m   True        Succeeded

The name of the image vulnerability scan starts with the name of the workload.

To describe the image vulnerability scan, run:

kubectl describe imagevulnerabilityscan IMAGE-VULNERABILITY-SCAN-NAME -n WORKLOAD-NAME

SPACE

For example:

kubectl describe imagevulnerabilityscan tanzu-java-web-app-grype-scan-jb76m -n my-apps

In the resource, look for the Spec.Image field. The value points to the image that was scanned,
including its digest.

For example:

Spec:

  Image: fake.oci-registry.io/dev-cluster/supply-chain-apps/tanzu-java-web-app-my-apps

@sha256:a24a8d8eb724b6816f244925cc6625a84c15f6ced6a19335121343424be693cd

In this example, the image digest is:
sha256:a24a8d8eb724b6816f244925cc6625a84c15f6ced6a19335121343424be693cd

Find the image digest using Supply Chain Tools - Scan Pre-2.0

Tanzu Application Platform v1.5

VMware by Broadcom 652



Find the image digest by looking inside the corresponding image scan custom resource.

Run:

kubectl get imagescan WORKLOAD-NAME -n WORKLOAD-NAMESPACE

For example:

kubectl get imagescan tanzu-java-web-app -n my-apps

In the resource, look for the Spec.Registry.Image field. The value points to the image that was
scanned, including its digest.

For example:

Spec:

  Registry:

    Image: fake.oci-registry.io/dev-cluster/supply-chain-apps/tanzu-java-web-app-my-ap

ps@sha256:e8c648533c4c7440ee9a93142ac7480205e0f7669e4f86771cede8bfaacdc2cf

In this example, the image digest is:
sha256:e8c648533c4c7440ee9a93142ac7480205e0f7669e4f86771cede8bfaacdc2cf

Query an image using the image digest value

When you have found the image digest value, you can query an image using this value.

Run:

tanzu insight image get --digest DIGEST

Where:

DIGEST is the component version or image digest.

For example:

$ tanzu insight image get --digest sha256:sha256:e8c648533c4c7440ee9a93142ac7480205e0f

7669e4f86771cede8bfaacdc2cf

Registry: fake.oci-registry.com

Image Name: dev-cluster/supply-chain-apps/tanzu-java-web-app-my-apps

Digest:    sha256:sha256:e8c648533c4c7440ee9a93142ac7480205e0f7669e4f86771cede8bf

aacdc2cf

Packages:

1. alpine-baselayout@3.1.2-r0

2. alpine-keys@2.1-r2

3. apk-tools@2.10.4-r2

CVEs:

1. CVE-2021-30139 (High)

2. CVE-2021-36159 (Critical)

4. busybox@1.30.1-r3

CVEs:

1. CVE-2021-28831 (High)

...

Example 2: What packages and CVEs does my source code
contain?
When you find the source code organization, repository or commit SHA, you can use these to
query the source code in more detail.

Tanzu Application Platform v1.5

VMware by Broadcom 653



Find the source code organization, repository, and commit SHA

To query a source scan for vulnerabilities, you need a Git organization and Git repository, or the
commit SHA. Find these by examining the source scan resource.

Run:

kubectl describe sourcescan WORKLOAD-NAME -n WORKLOAD-NAMESPACE

For example:

kubectl describe sourcescan tanzu-java-web-app -n my-apps

In the resource look for the Spec.Blob field. Within, there’s Revision and URL.

For example:

Spec:

  Blob:

    Revision:     master/c7e4c27ba43250a4b7c46f030355c108aa73cc39

    URL:          http://source-controller.flux-system.svc.cluster.local./gitrepositor

y/my-apps/tanzu-java-web-app-gitops/c7e4c27ba43250a4b7c46f030355c108aa73cc39.tar.gz

The URL is parsed and split into the organization and repository. Revision is parsed as the commit
SHA.

Organization is parsed as gitrepository

Repository is parsed as my-apps/tanzu-java-web-app-
gitops/c7e4c27ba43250a4b7c46f030355c108aa73cc39.tar.gz

Commit SHA is parsed as master/c7e4c27ba43250a4b7c46f030355c108aa73cc39

Query the source code using the repository and organization values

Run:

tanzu insight source get --repo REPO --org ORG

Where:

REPO specifies the repository. For example, java-web-app, my-apps/java-web-
app/c7ls8bakd87sakjda8d7.tar.gz

ORG is the source code’s organization. For example, gitrepository, gitrepositiory-
kj32kal8

For example:

$ tanzu insight source get --repo my-apps/java-web-app/c7ls8bakd87sakjda8d7.tar.gz --o

rg gitrepository

ID:       1

Repository:  my-apps/java-web-app/c7ls8bakd87sakjda8d7.tar.gz

Commit:  c7e4c27ba43250a4b7c46f030355c108aa73cc39

Organization: gitrepository

Packages:

1. go.uber.org/atomic@v1.7.0

CVEs:

1. CVE-2022-42322 (Low)

2. golang.org/x/crypto@v0.0.0-20220518034528-6f7dac969898

3. github.com/valyala/bytebufferpool@v1.0.0

Query the source code using the commit SHA value

Tanzu Application Platform v1.5

VMware by Broadcom 654



Run:

tanzu insight source get --commit COMMIT

Where:

COMMIT specifies the commit. For example,
d7e4c27ba43250a4b7c46f030355c108aa73cc39,
main/d7e4c27ba43250a4b7c46f030355c108aa73cc39

For example:

$ tanzu insight source get --commit b66668e

ID:       2

Repository:  kpack

Commit:  b66668e

Organization: pivotal

Packages:

1. cloud.google.com/go/kms@v1.0.0

2. github.com/BurntSushi/toml@v3.1.1

CVEs:

1. CVE-2021-30999 (Low)

3. github.com/Microsoft/go-winio@v0.5.2

Example 3: What dependencies are affected by a specific
CVE?

Run:

tanzu insight vulnerabilities get --cveid CVE-IDENTIFIER

Where:

CVE-IDENTIFIER is the CVE identifier, for example, CVE-2021-30139.

For example:

$ tanzu insight vulnerabilities get --cveid CVE-2010-4051

1. CVE-2010-4051 (Low)

Packages:

1. libc-bin@2.28-10

2. libc-l10n@2.28-10

3. libc6@2.28-10

4. locales@2.28-10

Add data

For information about manually adding data, see Add data to your Supply Chain Security Tools -
Store.

Add data to your Supply Chain Security Tools - Store

This topic tells you how to add vulnerability scan reports or Software Bill of Materials (commonly
known as SBoM) files to your Supply Chain Security Tools (commonly known as SCST) - Store.

Supported formats and file types

Currently, only CycloneDX XML and JSON files are accepted.

Tanzu Application Platform v1.5

VMware by Broadcom 655



Source commits and image files have been tested. Additional file types might work, but are not fully
supported (for example, JAR files).

If you are not using a source commit or image file, you must ensure the component.version field in
the CycloneDX file is non-null.

Generate a CycloneDX file

A CycloneDX file is needed to post data. Supply Chain Security Tools - Scan outputs CycloneDX
files automatically. For more information, see Supply Chain Security Tools - Scan.

To generate a file to post manually, use Grype or another tool in the CycloneDX Tool Center.

To use Grype to scan an image and generate an image report in CycloneDX format:

1. Install Grype.

2. Scan the image and generate a report by running:

grype REPO:TAG -o cyclonedx > IMAGE-CVE-REPORT

Where:

REPO is the name of your repository

TAG is the name of a tag

IMAGE-CVE-REPORT is the resulting file name of the Grype image scan report

For example:

$ grype docker.io/checkr/flagr:1.1.12 -o cyclonedx > image-cve-report

 ✔ Vulnerability DB        [updated]

 ✔ Parsed image

 ✔ Cataloged packages      [21 packages]

 ✔ Scanned image           [8 vulnerabilities]

Add data with the Tanzu Insight plug-in
Use the following commands to add data:

image add

source add

If you are not using a source commit or image file, you can select either option.

Example #1: Add an image report
To use a CycloneDX-formatted image report:

1. Run:

tanzu insight image add --cyclonedxtype TYPE --path IMAGE-CVE-REPORT

Where:

TYPE specifies XML or JSON, the two supported file types

IMAGE-CVE-REPORT is the location of a Cyclone DX formatted file

For example:

Tanzu Application Platform v1.5

VMware by Broadcom 656

https://cyclonedx.org/tool-center/
https://github.com/anchore/grype


$ tanzu insight image add --cyclonedxtype xml --path downloads/image-cve-report

Image report created.

Example #2: Add a source report

To use a CycloneDX-formatted source report:

1. Run:

tanzu insight source add --cyclonedxtype TYPE --path SOURCE-CVE-REPORT

Where:

TYPE specifies XML or JSON, the two supported file types

SOURCE-CVE-REPORT is the location of a Cyclone DX formatted file

For example:

$ tanzu insight source add --cyclonedxtype json --path source-cve-report

Source report created.

Tanzu insight CLI plug-in command reference

This topic tells you about the Tanzu Insight CLI plug-in.

Synopsis

This CLI plug-in is used to post data and query the Supply Chain Security Tools - Store through its
secure REST API. Source commit and image vulnerability reports can be uploaded using CycloneDX
format (XML and JSON) and SPDX format (JSON). Source commit, image, package, and
vulnerabilities can be queried and outputted in CycloneDX XML, JSON, and human-readable text
formats.

Options

  -h, --help   help for tanzu insight

See also

Tanzu insight config - Config commands

Tanzu insight health - Checks if endpoint is reachable

Note

The Metadata Store only stores a subset of CycloneDX file data. Support for more
data might be added in the future.

Note

Supply Chain Security Tools - Store only stores a subset of a CycloneDX file’s data.
Support for more data might be added in the future.

Tanzu Application Platform v1.5

VMware by Broadcom 657



Tanzu insight image - Image commands

Tanzu insight package - Package commands

Tanzu insight source - Source commands

Tanzu insight version - Display Tanzu Insight version

Tanzu insight vulnerabilities - Vulnerabilities commands

tanzu insight config set-target

tanzu insight config set-target

This topic tells you how to use the Tanzu Insight CLI plug-in tanzu insight config set-target
command to set your metadata store endpoint.

Synopsis

Set the target endpoint for the metadata store.

tanzu insight config set-target <endpoint> [--ca-cert <ca certificate path to verify p

eer against>] [--access-token <kubernetes service account access token>] [flags]

Examples

tanzu insight config set-target https://localhost:8443 --ca-cert=/tmp/ca.crt --access-

token eyJhbGc...

Options

      --access-token string   Kubernetes access token. It is recommended to use the En

vironment Variable METADATA_STORE_ACCESS_TOKEN during the API calls, this will overrid

e access token flag. Note: using the access-token flag stores the token on disk, the E

nvironment Variable is retrieved at the time of the API call

      --ca-cert string        trusted ca certificate

  -h, --help                  help for set-target

See also

Tanzu insight config - Config commands

tanzu insight config

This topic tells you how to use the Tanzu Insight CLI plug-in tanzu insight config command to
get help for the configuration commands.

Options

  -h, --help   help for config

See also

Tanzu insight - This CLI is used to post data and make queries to the metadata store.

Tanzu insight config set-target - Set metadata store endpoint.

Tanzu Application Platform v1.5

VMware by Broadcom 658



tanzu insight health

tanzu insight health
This topic tells you how to use the Tanzu Insight CLI plug-in tanzu insight health command to
check if an endpoint is reachable.

Synopsis

Checks if endpoint is reachable.

tanzu insight health [flags]

Examples

tanzu insight health

Options

  -h, --help   help for health

See also

Tanzu insight

tanzu insight image

This topic tells you how to use the Tanzu Insight CLI plug-in tanzu insight image command to get
help for the image commands.

Options

  -h, --help   help for image

See also
Tanzu insight - This CLI is used to post data and query the metadata store.

Tanzu insight image add - Add an image report.

Tanzu insight image get - Get image by digest.

Tanzu insight image packages - Get image packages.

Tanzu insight image vulnerabilities - Get image vulnerabilities.

tanzu insight image add
This topic tells you how to use the Tanzu Insight CLI plug-in tanzu insight image add command to
add an image report.

tanzu insight image add [--cyclonedxtype <json|xml>] [--spdxtype json] --path <filepat

h>

If report type is not specified, it will be defaulted to --cyclonedxtype=xml

Tanzu Application Platform v1.5

VMware by Broadcom 659



Examples

tanzu insight image add --cyclonedxtype json --path /path/to/file.json

Options

      --cyclonedxtype string   cyclonedx file type(xml/json, default: xml)

  -h, --help                   help for add

      --path string            path to file

      --spdxtype string        spdx file type(json)

See also

Tanzu insight image - Image commands

tanzu insight image get

This topic tells you how to use the Tanzu Insight CLI plug-in tanzu insight image get command to
get an image by digest.

Synopsis

Get image by digest.

tanzu insight image get --digest <image-digest> [--format <image-format>] [flags]

Examples

tanzu insight image get --digest sha256:a86859ac1946065d93df9ecb5cb7060adeeb0288fad610

b1b659907 --format json

Options

  -d, --digest string   image digest

  -f, --format string   output format (default "text")

  -h, --help            help for get

See Also
Tanzu insight image - Image commands

tanzu insight image packages
This topic tells you how to use the Tanzu Insight CLI plug-in tanzu insight image packages
command to get the image packages.

Synopsis
Get image packages.

Tanzu Application Platform v1.5

VMware by Broadcom 660



tanzu insight image packages [--digest <image-digest>] [--name <name>] [--format <imag

e-format>] [flags]

Examples

tanzu insight image packages --digest sha256:a86859ac1946065d93df9ecb5cb7060adeeb0288f

ad610b1b659907 --format json

Options

  -d, --digest string   image digest

  -f, --format string   output format (default "text")

  -h, --help            help for packages

  -n, --name string     image name

See also

Tanzu insight image - Image commands

tanzu insight image vulnerabilities

This topic tells you how to use the Tanzu Insight CLI plug-in tanzu insight image vulnerabilities
command to get the image vulnerabilities.

tanzu insight image vulnerabilities --digest <image-digest> [--format <image-format>] 

[flags]

Examples

tanzu insight image vulnerabilities --digest sha256:a86859ac1946065d93df9ecb5cb7060ade

eb0288fad610b1b659907 --format json

Options

  -d, --digest string   image digest

  -f, --format string   output format (default "text")

  -h, --help            help for vulnerabilities

See also

Tanzu insight image - Image commands

tanzu insight package

This topic tells you how to use the Tanzu Insight CLI plug-in tanzu insight package command to
get help for the package commands.

Options

  -h, --help   help for package

Tanzu Application Platform v1.5

VMware by Broadcom 661



See also

Tanzu insight - This CLI is used to post data and query the metadata store.

Tanzu insight package get - Get package by name, version, and package manager.

Tanzu insight package images - Get images that contain the given package by name.

Tanzu insight package sources - Get sources that contain the given package by name.

Tanzu insight package vulnerabilities - Get package vulnerabilities.

tanzu insight package get

This topic tells you how to use the Tanzu Insight CLI plug-in tanzu insight package get command
to get the package by name, version, and package manager.

Synopsis

Get package by name, version, and package manager.

tanzu insight package get --name <package name> --version <package version> --pkgmngr 

Unknown [--format <format>] [flags]

Examples

tanzu insight package get --name client --version 1.0.0a --pkgmngr Unknown

Options

  -f, --format string    output format which can be in 'json' or 'text'. If not presen

t, defaults to text. (default "text")

  -h, --help             help for get

  -n, --name string      name of the package

  -p, --pkgmngr string   Package manager of the dependency. 'Unknown' is currently the 

only supported value (default "Unknown")

  -v, --version string   version of the package

See also
Tanzu insight package - Package commands

tanzu insight package images
This topic tells you how to use the Tanzu Insight CLI plug-in tanzu insight package images
command to get the images that contain the given package by name.

Synopsis
Get images that contain the given package by name.

tanzu insight package images --name <package name> [flags]

Examples

Tanzu Application Platform v1.5

VMware by Broadcom 662



tanzu insight package images --name client

Options

  -f, --format string   output format which can be in 'json' or 'text'. If not presen

t, defaults to text. (default "text")

  -h, --help            help for images

  -n, --name string     name of the package

See also

Tanzu insight package - Package commands

tanzu insight package sources

This topic tells you how to use the Tanzu Insight CLI plug-in tanzu insight package sources
command to get the sources that contain the given package by name.

Synopsis

Get sources that contain the given package by name.

tanzu insight package sources --name <package name> [flags]

Examples

tanzu insight package sources --name client

Options

  -f, --format string   output format which can be in 'json' or 'text'. If not presen

t, defaults to text. (default "text")

  -h, --help            help for sources

  -n, --name string     name of the package

See also

Tanzu insight package - Package commands

tanzu insight package vulnerabilities

This topic tells you how to use the Tanzu Insight CLI plug-in tanzu insight package
vulnerabilities command to get the package vulnerabilities.

Synopsis

Get package vulnerabilities.

tanzu insight package vulnerabilities --name <package name> [flags]

Tanzu Application Platform v1.5

VMware by Broadcom 663



Examples

tanzu insight package vulnerabilities --name client

Options

  -f, --format string   output format which can be in 'json' or 'text'. If not presen

t, defaults to text. (default "text")

  -h, --help            help for vulnerabilities

  -n, --name string     name of the package

See also

Tanzu insight package - Package commands

tanzu insight source

This topic tells you how to use the Tanzu Insight CLI plug-in tanzu insight source command to
get help for the source commands.

Options

  -h, --help   help for source

See also

Tanzu insight - This CLI is used to post data and query the metadata store.

Tanzu insight source add - Add a source report.

Tanzu insight source get - Get sources by repository, commit, or organization.

Tanzu insight source packages - Get source packages.

Tanzu insight source vulnerabilities - Get source vulnerabilities.

tanzu insight source add

This topic tells you how to use the Tanzu Insight CLI plug-in tanzu insight source add command
to add a source report.

tanzu insight source add [--cyclonedxtype <json|xml>] [--spdxtype json] --path <filepa

th>

If report type is not specified, it defaults to --cyclonedxtype=xml

Examples

tanzu insight source add --cyclonedxtype json --path  /path/to/file.json

Options

      --cyclonedxtype string   cyclonedx file type (xml/json, default: xml)

  -h, --help                   help for add

Tanzu Application Platform v1.5

VMware by Broadcom 664



      --path string            path to file

      --spdxtype string        spdx file type (json)

See also

Tanzu insight source - Source commands

tanzu insight source get

This topic tells you how to use the Tanzu Insight CLI plug-in tanzu insight source get command
to get sources by repository, commit or organization.

Synopsis

Get sources by repository, commit, or organization.

tanzu insight source get --repo <repository> --commit <commit-hash> --org <organizatio

n-name> [--format <format>] [flags]

Examples

tanzu insight source get --repo github.com/org/example --commit b33dfee51 --org compan

y

Options

  -c, --commit string   commit hash

  -f, --format string   output format which can be in 'json' or 'text'. If not presen

t, defaults to text. (default "text")

  -h, --help            help for get

  -o, --org string      organization that owns the source

  -r, --repo string     repository name

See also

Tanzu insight source - Source commands

tanzu insight source packages

This topic tells you how to use the Tanzu Insight CLI plug-in tanzu insight source packages
command to get the source packages.

Synopsis

Get source packages.

tanzu insight source packages [--commit <commit-hash>] [--repo <repo-url>] [--format <

format>] [flags]

Examples

tanzu insight sources packages --commit 0b1b659907 --format json

Tanzu Application Platform v1.5

VMware by Broadcom 665



Options

  -c, --commit string   commit hash

  -f, --format string   output format (default "text")

  -h, --help            help for packages

  -r, --repo string     source repository url

See also

Tanzu insight source - Source commands

tanzu insight source vulnerabilities

This topic tells you how to use the Tanzu Insight CLI plug-in tanzu insight source
vulnerabilities command to get the source vulnerabilities.

Synopsis

Get source vulnerabilities. You can specify either commit or repository.

tanzu insight source vulnerabilities [--commit <commit-hash>] [--repo <repo-url>] [--f

ormat <format>] [flags]

Examples

tanzu insight sources vulnerabilities --commit eb55fc13

Options

  -c, --commit string   commit hash

  -f, --format string   output format which can be in 'json' or 'text'. If not presen

t, defaults to text. (default "text")

  -h, --help            help for vulnerabilities

  -r, --repo string     source repository url

See also
Tanzu insight source - Source commands

tanzu insight version
This topic tells you how to use the Tanzu Insight CLI plug-in tanzu insight version command to
display the Tanzu insight version:

tanzu insight version [flags]

Options

  -h, --help   help for version

See also

Tanzu Application Platform v1.5

VMware by Broadcom 666



Tanzu insight - This CLI is used to post data and query the metadata store.

tanzu insight vulnerabilities

This topic tells you how to use the Tanzu Insight CLI plug-in tanzu insight vulnerabilities
command to get help for the vulnerabilities commands.

Options

  -h, --help   help for vulnerabilities

See also

Tanzu insight - This CLI is used to post data and query the metadata store.

Tanzu insight vulnerabilities get - Get vulnerability by CVE id.

Tanzu insight vulnerabilities images - Get images with a given vulnerability.

Tanzu insight vulnerabilities packages - Get packages with a given vulnerability.

Tanzu insight vulnerabilities sources - Get sources with a given vulnerability.

tanzu insight vulnerabilities get

This topic tells you how to use the Tanzu Insight CLI plug-in tanzu insight vulnerabilities get
command to get a vulnerability by CVE ID.

Synopsis

Get vulnerability by CVE id.

tanzu insight vulnerabilities get --cveid <cve-id> [--format <format>] [flags]

Examples

tanzu insight vulnerabilities get --cveid CVE-123123-2021

Options

  -c, --cveid string    CVE id

  -f, --format string   output format which can be in 'json' or 'text'. If not presen

t, defaults to text. (default "text")

  -h, --help            help for get

See also

Tanzu insight vulnerabilities - Vulnerabilities commands

tanzu insight vulnerabilities images

This topic tells you how to use the Tanzu Insight CLI plug-in tanzu insight vulnerabilities
images command to get the images with a given vulnerability.

Tanzu Application Platform v1.5

VMware by Broadcom 667



Synopsis

Get images with a given vulnerability.

tanzu insight vulnerabilities images --cveid <cve-id> [--format <format>] [flags]

Examples

tanzu insight vulnerabilities images --cveid CVE-123123-2021

Options

  -c, --cveid string    CVE id

  -f, --format string   output format which can be in 'json' or 'text'. If not presen

t, defaults to text. (default "text")

  -h, --help            help for images

See also
Tanzu insight vulnerabilities - Vulnerabilities commands

tanzu insight vulnerabilities packages
This topic tells you how to use the Tanzu Insight CLI plug-in tanzu insight vulnerabilities
packages command to get the packages with a given vulnerability.

Synopsis
Get packages with a given vulnerability.

tanzu insight vulnerabilities packages --cveid <cve-id> [--format <format>] [flags]

Examples

tanzu insight vulnerabilities packages --cveid CVE-123123-2021

Options

  -c, --cveid string    CVE id

  -f, --format string   output format which can be in 'json' or 'text'. If not presen

t, defaults to text. (default "text")

  -h, --help            help for packages

See also

Tanzu insight vulnerabilities - Vulnerabilities commands

tanzu insight vulnerabilities sources

This topic tells you how to use the Tanzu Insight CLI plug-in tanzu insight vulnerabilities
sources command to get the sources with a given vulnerability.

Tanzu Application Platform v1.5

VMware by Broadcom 668



Synopsis

Get sources with a given vulnerability.

tanzu insight vulnerabilities sources --cveid <cve-id> [--format <format>] [flags]

Examples

tanzu insight vulnerabilities sources --cveid CVE-123123-2021

Options

  -c, --cveid string    CVE id

  -f, --format string   output format which can be in 'json' or 'text'. If not presen

t, defaults to text. (default "text")

  -h, --help            help for sources

See also
Tanzu insight vulnerabilities - Vulnerabilities commands

Overview of API Auto Registration
This topic provides an overview of API Auto Registration for Tanzu Application Platform.

Overview
API Auto Registration automates the registration of API specification defined in a workload’s
configuration. The registered API specification is accessible in Tanzu Application Platform GUI
without any additional steps. An automated workflow using a supply chain, leverages API Auto
Registration to create and manage a Kubernetes Custom Resource (CR) of kind APIDescriptor. A
Kubernetes controller periodically reconciles the CR and updates the API entity in Tanzu
Application Platform GUI to achieve automated API specification registration from origin workloads.
You might also use API Auto Registration without supply chain automation, with other GitOps
processes, or by directly applying an APIDescriptor CR to the cluster.

Getting started
For information about API Auto Registration architecture, or the APIDescriptor CR and API entities
in Tanzu Application Platform GUI, see Key Concepts.

For information about configuring iterate, run, and full Tanzu Application Platform cluster profiles,
see Configure API Auto Registration.

For information about generating API specifications and registering them with Tanzu Application
Platform GUI catalog, see Use API Auto Registration.

Tanzu Application Platform v1.5

VMware by Broadcom 669



For information about other profiles, install the api-auto-registration package. See Install API
Auto Registration.

For information about troubleshooting and debugging API Auto Registration, see Troubleshooting.

Overview of API Auto Registration

This topic provides an overview of API Auto Registration for Tanzu Application Platform.

Overview

API Auto Registration automates the registration of API specification defined in a workload’s
configuration. The registered API specification is accessible in Tanzu Application Platform GUI
without any additional steps. An automated workflow using a supply chain, leverages API Auto
Registration to create and manage a Kubernetes Custom Resource (CR) of kind APIDescriptor. A
Kubernetes controller periodically reconciles the CR and updates the API entity in Tanzu
Application Platform GUI to achieve automated API specification registration from origin workloads.
You might also use API Auto Registration without supply chain automation, with other GitOps
processes, or by directly applying an APIDescriptor CR to the cluster.

Getting started

For information about API Auto Registration architecture, or the APIDescriptor CR and API entities
in Tanzu Application Platform GUI, see Key Concepts.

For information about configuring iterate, run, and full Tanzu Application Platform cluster profiles,
see Configure API Auto Registration.

For information about generating API specifications and registering them with Tanzu Application
Platform GUI catalog, see Use API Auto Registration.

For information about other profiles, install the api-auto-registration package. See Install API
Auto Registration.

For information about troubleshooting and debugging API Auto Registration, see Troubleshooting.

Key Concepts for API Auto Registration

This topic explains key concepts you use with API Auto Registration.

API Auto Registration Architecture

You can use the full potential of API Auto Registration by using a distributed environment, like the
one in this diagram:

Tanzu Application Platform v1.5

VMware by Broadcom 670



APIDescriptor Custom Resource Explained
To use API Auto Registration, you must create a custom resource of type APIDescriptor. The
information from this custom resource is used to construct an API entity in Tanzu Application
Platform GUI.

This custom resource exposes the following text boxes:

apiVersion: apis.apps.tanzu.vmware.com/v1alpha1

kind: APIDescriptor

metadata:

  name:                  # name of your APIDescriptor

  namespace:             # optional namespace of your APIDescriptor

spec:

  type:                  # type of the API spec. oneOf(openapi, grpc, asyncapi, graphq

l)

  description:           # description for the API exposed

  system:                # system that the API is part of

  owner:                 # person/team that owns the API

  location:

    path:                # sub-path where the API spec is available

    baseURL:             # base URL object where the API spec is available. oneOf(url, 

ref)

      url:               # static absolute base URL

      ref:               # object ref to oneOf(HTTPProxy, Knative Service, Ingress)

        apiVersion:

        kind:

        name:

        namespace:

The text boxes cause specific behavior in Tanzu Application Platform GUI:

The system and owner are copied to the API entity. You might have to separately create
and add the System and Group kind to the catalog.

Tanzu Application Platform GUI uses the namespace for the API entity where the
APIDescriptor CR is applied. This causes the API entity’s name, system, and owner to all be
in that namespace.

To explicitly use a system or owner in a different namespace, you can specify that in the
system: my-namespace/my-other-system or owner: my-namespace/my-other-team text
boxes.

If the system or owner you are trying to link doesn’t have a namespace specified, you can
qualify them with the default namespace. For example, system: default/my-default-
system

Tanzu Application Platform v1.5

VMware by Broadcom 671

https://backstage.io/docs/features/software-catalog/descriptor-format#kind-system
https://backstage.io/docs/features/software-catalog/descriptor-format#kind-group


With an Absolute URL

To create an APIDescriptor with a static baseURL.url, you must apply the following YAML to your
cluster.

apiVersion: apis.apps.tanzu.vmware.com/v1alpha1

kind: APIDescriptor

metadata:

  name: sample-absolute-url

spec:

  type: openapi

  description: A set of API endpoints to manage the resources within the petclinic ap

p.

  system: spring-petclinic

  owner: team-petclinic

  location:

    path: "/v3/api-docs.yaml"

    baseURL:

      url: https://myservice.com

With an Object Ref
You can use an object reference, instead of hard coding the URL, to point to a HTTPProxy, Knative
Service, or Ingress.

With an HTTPPRoxy Object Ref

This section includes an example YAML that points to an HTTPProxy from which the controller
extracts the .spec.virtualhost.fqdn as the baseURL.

apiVersion: apis.apps.tanzu.vmware.com/v1alpha1

kind: APIDescriptor

metadata:

  name: sample-contour-ref

spec:

  type: openapi

  description: A set of API endpoints to manage the resources within the petclinic ap

p.

  system: spring-petclinic

  owner: team-petclinic

  location:

    path: "/test/openapi"

    baseURL:

      ref:

        apiVersion: projectcontour.io/v1

        kind: HTTPProxy

        name: my-httpproxy

        namespace: my-namespace # optional

With a Knative Service Object Ref

To use a Knative Service, your controller reads the status.url as the baseURL. For example:

# all other fields similar to the above example

    baseURL:

      ref:

        apiVersion: serving.knative.dev/v1

        kind: Service

        name: my-knative-service

        namespace: my-namespace # optional

Tanzu Application Platform v1.5

VMware by Broadcom 672



With an Ingress Object Ref

To use an Ingress instead, your controller reads the URL from the jsonPath specified. When
jsonPath is left empty, your controller reads the "{.spec.rules[0].host}" as the URL. For
example:

# all other fields similar to the above example

    baseURL:

      ref:

        apiVersion: networking.k8s.io/v1

        kind: Ingress

        name: my-ingress

        jsonPath: "{.spec.rules[1].host}"

        namespace: my-namespace # optional

APIDescriptor Status Fields

When processing an APIDescriptor several fields are added to the status. One of these is
conditons, which provide information useful for troubleshooting. The conditions are explained in
the Troubleshooting Guide.

In addition to conditions the status contains a couple of other useful fields. The following is a list of
these fields with a brief explanation of what they contain.

status:

  registeredEntityURL:   # Url of the corresponding API Entity in TAP GUI

  registeredTapUID:      # Unique identifier for the corresponding API Entity in TAP G

UI

  resolvedAPISpec:       # Full API Spec as retrieved by Api Auto Registration

Install API Auto Registration

This topic describes how you can install API Auto Registration from the Tanzu Application Platform
package repository.

Tanzu Application Platform prerequisites

Before installing API Auto Registration, complete all prerequisites to install Tanzu Application
Platform. See Tanzu Application Platform Prerequisites.

Using with TLS

Starting in Tanzu Application Platform v1.4, TLS is turned on by default for several components. API
Auto Registration automatically trusts the CA for the shared ingress_issuer when using the default
ClusterIssuer tap-ingress-selfsigned. This change means that a Certificate is automatically
generated using this issuer.

If you do not want a Certificate to generate automatically, you can set the auto_generate_cert
flag to false in the values file. To replace the default with a custom ingress issuer, see Security and
compliance. Whenever you do not use the default ClusterIssuer tap-ingress-selfsigned, do not

Note

Follow the steps in this topic if you do not want to use a profile to install API Auto
Registration. For more information about profiles, see Components and installation
profiles.

Tanzu Application Platform v1.5

VMware by Broadcom 673



automatically generate certificates, or use other custom CAs, you must manually set the certificate.
See Troubleshooting.

Install

To install the API Auto Registration package:

1. List version information for the package by running:

tanzu package available list apis.apps.tanzu.vmware.com --namespace tap-install

For example:

$ tanzu package available list apis.apps.tanzu.vmware.com --namespace tap-insta

ll

- Retrieving package versions for apis.apps.tanzu.vmware.com...

  NAME                                     VERSION  RELEASED-AT

  apis.apps.tanzu.vmware.com  0.1.0        2022-08-30 19:00:00 -0500 -05

  apis.apps.tanzu.vmware.com  0.2.0        2022-11-24 12:20:00 -0500 -05

2. (Optional) Gather values schema.

Display values schema of the package:

tanzu package available get apis.apps.tanzu.vmware.com/VERSION-NUMBER --values-

schema --namespace tap-install

Where VERSION-NUMBER is the version of the package you retrieved.

For example:

tanzu package available get apis.apps.tanzu.vmware.com/0.2.2 --values-schema --

namespace tap-install

Retrieving package details for apis.apps.tanzu.vmware.com/0.2.2...

KEY                        DEFAULT                                       TYPE     

DESCRIPTION

ca_cert_data                                                             string   

Optional: PEM-encoded certificate data for the controller to trust TLS.

ingress_issuer                                                           string   

Optional: Name of the default cluster issuer used to generate certificates

auto_generate_cert         true                                          boolea

n  Flag that indicates if a cert-manager certificate should be generated using 

the ingress_issuer. Only applies if the ingress_issuer is specified

connections with a custom CA

cluster_name               dev                                           string   

Name of the cluster used for setting the API entity lifecycle in TAP GUI. The v

alue should be unique for each run cluster.

sync_period                5m                                            string   

Time period used for reconciling an APIDescriptor.

tap_gui_url                http://server.tap-gui.svc.cluster.local:7000  string   

FQDN URL for TAP GUI.

replicas                   1                                             intege

r  Number of controller replicas to deploy.

resources.limits.cpu       500m                                          string   

CPU limit of the controller.

resources.limits.memory    500Mi                                         string   

Memory limit of the controller.

resources.requests.cpu     20m                                           string   

CPU request of the controller.

resources.requests.memory  100Mi                                         string   

Memory request of the controller.

logging_profile            production                                    string   

Tanzu Application Platform v1.5

VMware by Broadcom 674



Logging profile for controller. If set to development, use console logging with 

full stack traces, else use JSON logging.

3. Locate the Tanzu Application Platform GUI URL.

When running on a full profile Tanzu Application Platform cluster, the default value of Tanzu
Application Platform GUI URL is sufficient. You can edit this to match the externally
available FQDN of Tanzu Application Platform GUI to display the entity URL in the
externally accessible APIDescriptor status.

When installed in a run cluster or with a profile where Tanzu Application Platform GUI is not
installed in the same cluster, you must set the tap_gui_url parameters correctly for
successful entity registration with Tanzu Application Platform GUI.

You can locate the tap_gui_url by going to the view cluster with the Tanzu Application
Platform GUI you want to register the entity with:

kubectl get secret tap-values -n tap-install -o jsonpath="{.data['tap-values\.y

aml']}" | base64 -d | yq '.tap_gui.app_config.app.baseUrl'

4. (Optional) VMware recommends creating api-auto-registration-values.yaml.

To overwrite the default values when installing the package, create a api-auto-
registration-values.yaml file:

tap_gui_url: https://tap-gui.view-cluster.com

cluster_name: staging-us-east

ca_cert_data:  |

    -----BEGIN CERTIFICATE-----

    MIIFXzCCA0egAwIBAgIJAJYm37SFocjlMA0GCSqGSIb3DQEBDQUAMEY...

    -----END CERTIFICATE-----

sync_period: 2m

5. Install the package using the Tanzu CLI:

tanzu package install api-auto-registration

--package apis.apps.tanzu.vmware.com

--namespace tap-install

--version VERSION-NUMBER

--values-file api-auto-registration-values.yaml

Where VERSION-NUMBER is the version of the package you retrieved in the earlier step.

6. Verify the package installation by running:

tanzu package installed get api-auto-registration -n tap-install

Verify that STATUS is Reconcile succeeded:

kubectl get pods -n api-auto-registration

7. Verify that applying an APIDescriptor resource to your cluster causes the STATUS showing
Ready:

kubectl apply -f - <<EOF

apiVersion: apis.apps.tanzu.vmware.com/v1alpha1

kind: APIDescriptor

metadata:

  name: sample-api-descriptor-with-absolute-url

spec:

  type: openapi

  description: A sample APIDescriptor to validate package installation successf

Tanzu Application Platform v1.5

VMware by Broadcom 675



ul

  system: test-installation

  owner: test-installation

  location:

    path: "/api/v3/openapi.json"

    baseURL:

      url: https://petstore3.swagger.io

EOF

Verify that the APIDescriptor status shows Ready:

kubectl get apidescriptors

NAME                                       STATUS

sample-api-descriptor-with-absolute-url    Ready

kubectl get apidescriptors -owide

NAME                                       STATUS    TAP GUI ENTITY URL     API 

SPEC URL

sample-api-descriptor-with-absolute-url    Ready     <url-to-the-entity>    <ur

l-to-the-api-spec>

If the status does not show Ready, you can inspect the reason with the detailed message
shown by running:

kubectl get apidescriptor sample-api-descriptor-with-absolute-url -o jsonpath

='{.status.conditions[?(@.type=="Ready")].message}'

Verify that the entity is created in your Tanzu Application Platform GUI: TAP-GUI-
URL/catalog/default/api/sample-api-descriptor-with-absolute-url

Use API Auto Registration
This topic describes how you can use API Auto Registration.

API Auto Registration requires the following:

1. A location exposing a dynamic or static API specification.

2. An APIDescriptor Custom Resource (CR) with that location created in the cluster.

3. (Optional) Configure Cross-Origin Resource Sharing (CORS) for OpenAPI specifications.

To generate OpenAPI Spec:

By creating a simple Spring Boot app

By scaffolding a new project using App Accelerator Template

In an existing Spring Boot project

To create APIDescriptor Custom Resource:

Using Out Of The Box Supply Chains

Using Custom Supply Chains

Using other GitOps processes or Manually

Note

The run profile requires you to update the install values before proceeding. For
iterate and full profiles, the default values work but you might prefer to update
them. For information about profiles, see About Tanzu Application Platform profiles.

Tanzu Application Platform v1.5

VMware by Broadcom 676



To configure:

CORS for viewing OpenAPI Spec in TAP GUI

Generate OpenAPI Spec

Using a Spring Boot app with a REST service

You can use a Spring Boot example app built using Building a RESTful Web Service guide. and has
the Springdoc dependency.

Example of a workload using the Spring Boot app:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  name: simple-rest-app

  labels:

    ...

    apis.apps.tanzu.vmware.com/register-api: "true"

spec:

  source:

    ...

  params:

    - name: api_descriptor

      value:

        type: openapi

        location:

          path: "/v3/api-docs"

        system: dev

        owner: team-a

        description: "A set of API endpoints."

Using App Accelerator Template

If you are creating a new application exposing an API, you might use the java-rest-service App
Accelerator template to get a pre-built app that includes a workload.yaml with a basic REST API.
From your Tanzu Application Platform GUI Accelerators tab, search for the accelerator and scaffold
it according to your needs.

Using an existing Spring Boot project using springdoc

If you have an existing Spring Boot app that exposes an API, you can generate OpenAPI
specifications using springdoc. See the springdoc documentation

After you have springdoc configured and an OpenAPI automatically generated, you can choose
one of the three methods of creating the APIDescriptor custom resource. VMware recommends
having your Spring Boot app to be managed using Workloads and the Out-Of-The-Box (OOTB)
supply chain. See the Use Out-Of-The-Box (OOTB) supply chains for further instructions.
Alternatively, if you want to use custom supply chains, see Using Custom Supply Chains. Lastly, if
you want to use a different Gitops process or manage the APIDescriptor CR manually, see the
Using other GitOps processes or Manually section.

Create APIDescriptor Custom Resource

Use Out-Of-The-Box (OOTB) supply chains

All the Out-Of-The-Box (OOTB) supply chains are modified so that they can use API Auto
Registration. If you want your workload to be auto registered, you must make modifications to your

Tanzu Application Platform v1.5

VMware by Broadcom 677

https://github.com/making/rest-service
https://spring.io/guides/gs/rest-service/
https://springdoc.org/#getting-started
https://github.com/vmware-tanzu/application-accelerator-samples/tree/main/java-rest-service
https://springdoc.org/#getting-started


workload YAML:

1. Add the label apis.apps.tanzu.vmware.com/register-api: "true".

2. Add a parameter of type api_descriptor:

  params:

    - name: api_descriptor

      value:

        type: openapi   # We currently support any of openapi, aysncapi, graphq

l, grpc

        location:

          path: "/v3/api-docs"  # The path to the api documentation

        owner: team-petclinic   # The team that owns this

        description: "A set of API endpoints to manage the resources within the 

petclinic app."

There are 2 different options for the location:

The default supply chains use Knative to deploy your applications. In this event the only
location information you must send is the path to the API documentation. The controller
can figure out the base URL for you.

You can hardcode the URL using the baseURL property. The controller uses a combination
of this baseURL and your path to retrieve the YAML.

Example workload that exposes a Knative service:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  name: petclinic-knative

  labels:

    ...

    apis.apps.tanzu.vmware.com/register-api: "true"

spec:

  source:

    ...

  params:

    - name: api_descriptor

      value:

        type: openapi

        location:

          path: "/v3/api-docs"

        system: pet-clinics

        owner: team-petclinic

        description: "A set of API endpoints to manage the resources within the petcli

nic app."

Example of a workload with a hardcoded URL to the API documentation:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  name: petclinic-hard-coded

  labels:

    ...

    apis.apps.tanzu.vmware.com/register-api: "true"

spec:

  source:

    ...

  params:

    - name: api_descriptor

      value:

Tanzu Application Platform v1.5

VMware by Broadcom 678



        type: openapi

        location:

          baseURL: http://petclinic-hard-coded.my-apps.tapdemo.vmware.com/

          path: "/v3/api-docs"

        owner: team-petclinic

        system: pet-clinics

        description: "A set of API endpoints to manage the resources within the petcli

nic app."

After the supply chain runs, it creates an APIDescriptor custom resource. This resource is what
Tanzu Application Platform uses to auto register your API. See APIDescriptor explained.

Using Custom Supply Chains

If you are creating custom supply chains, you can still use API Auto Registration. To write a supply
chain pipeline, use ClusterConfigTemplate by the name of config-template in your pipeline. To
write a custom task, verify how the template is written to read parameters, interpret baseURL from
Knative Services, and construct APIDescriptor CRs.

In the Delivery pipeline, you must directly create an APIDescriptor custom resource. You must
grant permissions to create the CR from the delivery pipeline.

For information about APIDescriptors, see Key Concepts.

Using other GitOps processes or Manually

Using your GitOps process, or manually, you must stamp out an APIDescriptor CR and apply it in
the cluster you choose. Be sure specify all the required fields for an APIDescriptor CR to reconcile.

For information about APIDescriptors, see Key Concepts.

Additional configuration

Setting up CORS for OpenAPI specifications

The agent, usually a browser, uses the CORS protocol to verify whether the current origin uses an
API. To use the “Try it out” feature for OpenAPI specifications from the API Documentation plug-
in, you must configure CORS to allow successful requests.

Your API must be configured to allow CORS Requests from Tanzu Application Platform GUI. How
you accomplish this varies based on the programming language and framework you are using. If
you are using Spring, see CORS support in spring framework.

At a high level, the Tanzu Application Platform GUI domain must be accepted as valid cross-origin
by your API.

Verify the following:

Origins allowed header: Access-Control-Allow-Origin: A list of comma-separated values.
This list must include your Tanzu Application Platform GUI host.

Methods allowed header: Access-Control-Allow-Method: Must allow the method used by
your API. Also confirm that your API supports preflight requests, a valid response to the
OPTIONS HTTP method.

Headers allowed header: Access-Control-Allow-Headers: If the API requires any header,
you must include it in the API configuration or your authorization server.

Troubleshoot API Auto Registration

This topic contains ways that you can troubleshoot API Auto Registration.

Tanzu Application Platform v1.5

VMware by Broadcom 679

https://fetch.spec.whatwg.org/#http-cors-protocol
https://spring.io/blog/2015/06/08/cors-support-in-spring-framework


Debug API Auto Registration

This section includes commands for debugging or troubleshooting the APIDescriptor CR.

1. Get the details of APIDescriptor CR.

kubectl get apidescriptor <api-apidescriptor-name> -owide

2. Find the status of the APIDescriptor CR.

kubectl get apidescriptor <api-apidescriptor-name> -o jsonpath='{.status.condit

ions}'

3. Read logs from the api-auto-registration controller.

kubectl -n api-auto-registration logs deployment.apps/api-auto-registration-con

troller

4. Patch an APIDescriptor that is stuck in Deleting mode.

This might happen if the controller package is uninstalled before you clean up the
APIDescriptor resources. You can reinstall the package and delete all the APIDescriptor
resources first, or run the following command for each stuck APIDescriptor resource.

kubectl patch apidescriptor <api-apidescriptor-name> -p '{"metadata":{"finalize

rs":null}}' --type=merge

APIDescriptor CRD shows message of connection refused but
service is up and running

In Tanzu Application Platform v1.4 and later, if your workloads use ClusterIssuer for the TLS
configuration or your API specifications location URL is secured using a custom CA, your
APIDescription CRD shows a status and message similar to:

    Message:               Get "https://spring-petclinic.example.com/v3/api-docs": dia

l tcp 12.34.56.78:443: connect: connection refused

    Reason:                FailedToRetrieve

    Status:                False

    Type:                  APISpecResolved

    Last Transition Time:  2022-11-28T09:59:13Z

This might be due to your workloads using a custom Ingress issuer. To solve this issue, either:

Configure ca_cert_data following the instructions in Configure CA Cert Data.

Deactivate TLS by setting shared.ingress_issuer: "". VMware discourages this method.
Deactivating TLS reduces your ability to test plugin functionality and iterate quickly.

Configure CA Cert Data

1. Obtain the PEM Encoded crt file for your ClusterIssuer or TLS setup . You use this to
update the api-auto-registration package.

Note

If you manually remove the finalizers from the APIDescriptor resources, you
can have stale API entities within Tanzu Application Platform GUI that you
must manually deregister.

Tanzu Application Platform v1.5

VMware by Broadcom 680



2. If you installed the API Auto Registration package through predefined profiles, you must
update the tap-values.yaml and update the Tanzu Application Platform installation. Place
the PEM encoded certificate into the shared.ca_cert_data key of the values file. See Install
your Tanzu Application Platform profile. Run the following command to update the package.

tanzu package installed update tap -p tap.tanzu.vmware.com -v TAP-VERSION  --va

lues-file tap-values.yaml -n tap-install

Where TAP-VERSION is the version of Tanzu Application Platform installed.

3. If you installed the API Auto Registration package as standalone, you must update the api-
auto-registration-values.yaml and then update the package. Place the PEM encoded
certificate into the ca_cert_data key of the values file. Run to update the package.

tanzu package installed update api-auto-registration --version API-AUTO-REGISTR

ATION-VERSION --namespace tap-install --values-file api-auto-registration-value

s.yaml

Where API-AUTO-REGISTRATION-VERSION is the version of API Auto Registration installed.

You can find the available api-auto-registration versions by running:

tanzu package available list -n tap-install | grep 'API Auto Registration'

APIDescriptor CRD shows message of x509: certificate signed by
unknown authority but service is running

Your APIDescription CRD shows a status and message similar to:

    Message:               Put "https://tap-gui.tap.my-cluster.tapdemo.vmware.com/api/

catalog/immediate/entities": x509: certificate signed by unknown authority

    Reason:                Error

    Status:                False

    Type:                  Ready

    Last Transition Time:  2022-11-28T09:59:13Z

This is the same issue as connection refused described earlier.

Overview of API portal for VMware Tanzu

You can use API portal for VMware Tanzu to find APIs you can use in your own applications. You
can view detailed API documentation and try out an API to meet your needs. API portal assembles
its dashboard and detailed API documentation views by ingesting OpenAPI documentation from
the source URLs. An API portal operator can add any number of OpenAPI source URLs in a single
instance.

Getting started

To install the package without the predefined profiles of Tanzu Application Platform, see Install API
portal.

For information about API portal for VMware Tanzu, see API portal for VMware Tanzu.

For information about configuring the package, see Configuring API portal for VMware Tanzu on
Kubernetes.

API portal for VMware Tanzu supports:

Authentication through Single Sign-On (SSO)

Tanzu Application Platform v1.5

VMware by Broadcom 681

https://docs.vmware.com/en/API-portal-for-VMware-Tanzu/index.html
https://docs.vmware.com/en/API-portal-for-VMware-Tanzu/1.3/api-portal/GUID-configuring-k8s.html


API keys configuration and management

Secure communication by using TLS

Overview of API portal for VMware Tanzu

You can use API portal for VMware Tanzu to find APIs you can use in your own applications. You
can view detailed API documentation and try out an API to meet your needs. API portal assembles
its dashboard and detailed API documentation views by ingesting OpenAPI documentation from
the source URLs. An API portal operator can add any number of OpenAPI source URLs in a single
instance.

Getting started

To install the package without the predefined profiles of Tanzu Application Platform, see Install API
portal.

For information about API portal for VMware Tanzu, see API portal for VMware Tanzu.

For information about configuring the package, see Configuring API portal for VMware Tanzu on
Kubernetes.

API portal for VMware Tanzu supports:

Authentication through Single Sign-On (SSO)

API keys configuration and management

Secure communication by using TLS

Install API portal for VMware Tanzu

This topic tells you how to install and update Tanzu API portal for VMware Tanzu from the Tanzu
Application Platform (commonly known as TAP) package repository.

Prerequisites

Before installing API portal:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

Install

To install the API portal package:

1. Confirm what versions of API portal are available to install by running:

tanzu package available list -n tap-install api-portal.tanzu.vmware.com

For example:

Note

Follow the steps in this topic if you do not want to use a profile to install API portal.
For more information about profiles, see Components and installation profiles.

Tanzu Application Platform v1.5

VMware by Broadcom 682

https://docs.vmware.com/en/API-portal-for-VMware-Tanzu/index.html
https://docs.vmware.com/en/API-portal-for-VMware-Tanzu/1.3/api-portal/GUID-configuring-k8s.html


$ tanzu package available list api-portal.tanzu.vmware.com --namespace tap-inst

all

- Retrieving package versions for api-portal.tanzu.vmware.com...

  NAME                         VERSION  RELEASED-AT

  api-portal.tanzu.vmware.com  1.0.3    2021-10-13T00:00:00Z

2. (Optional) Gather values schema.

tanzu package available get api-portal.tanzu.vmware.com/VERSION-NUMBER --values

-schema --namespace tap-install

Where VERSION-NUMBER is the version of the API Portal package listed earlier.

For example:

$ tanzu package available get api-portal.tanzu.vmware.com/1.0.3 --values-schema 

--namespace tap-install

Retrieving package details for api-portal.tanzu.vmware.com/1.0.3...

3. (Optional) VMware recommends creating api-portal-values.yaml.

To overwrite the default values when installing the package, create a api-portal-
values.yaml file by following the values schema.

4. Install API portal by running:

tanzu package install api-portal -n tap-install -p api-portal.tanzu.vmware.com 

-v VERSION-NUMBER --values-file api-portal-values.yaml

Where VERSION-NUMBER is the version of the API Portal package listed earlier.

For example:

$ tanzu package install api-portal -n tap-install -p api-portal.tanzu.vmware.co

m -v 1.0.3 --values-file api-portal-values.yaml

/ Installing package 'api-portal.tanzu.vmware.com'

| Getting namespace 'api-portal'

| Getting package metadata for 'api-portal.tanzu.vmware.com'

| Creating service account 'api-portal-api-portal-sa'

| Creating cluster admin role 'api-portal-api-portal-cluster-role'

| Creating cluster role binding 'api-portal-api-portal-cluster-rolebinding'

/ Creating package resource

- Package install status: Reconciling

Added installed package 'api-portal' in namespace 'tap-install'

5. Verify the package installation by running:

tanzu package installed get api-portal -n tap-install

Verify that STATUS is Reconcile succeeded:

kubectl get pods -n api-portal

Update the installation values for the api-portal package

To update the installation values for the api-portal package:

Tanzu Application Platform v1.5

VMware by Broadcom 683



1. To overwrite the default values, create new values, or update the existing values, you need
an api-portal-values.yaml file. If you do not already have an existing values file, you can
extract the existing values by running:

tanzu package installed get api-portal -n tap-install --values-file-output api-

portal-values.yaml

You can view the schema of the package:

tanzu package available get apis.apps.tanzu.vmware.com/VERSION-NUMBER --values-

schema --namespace tap-install

Where VERSION-NUMBER is the version of the API Portal package listed in the earlier step.

For example:

tanzu package available get api-portal.tanzu.vmware.com/1.2.5 --values-schema -

-namespace tap-install

2. Update the package by using the Tanzu CLI:

tanzu package installed update api-auto-registration

--package apis.apps.tanzu.vmware.com

--namespace tap-install

--version VERSION-NUMBER

--values-file api-portal-values.yaml

Where VERSION-NUMBER is the version of the API Portal package listed in the earlier step.

3. If you installed the API portal package as part of Tanzu Application Platform, you must
update the tap-values.yaml and update the installation of Tanzu Application Platform. See
Install your Tanzu Application Platform profile.

tanzu package installed update tap --package tap.tanzu.vmware.com --version VER

SION-NUMBER --values-file tap-values.yaml -n tap-install

Where VERSION-NUMBER is the version of the API Portal package listed in the earlier step.

Overview of API Validation and Scoring

API Validation and Scoring focuses on scanning and validating an OpenAPI specification. The API
specification is generated from the API Auto Registration. After an API is registered, the API
specification goes through static scan analysis and is validated. Based on the validation, a scoring is
provided to indicate the quality and health of the API specification as it relates to Documentation,
OpenAPI best practices, and Security. The Validation Analysis card on the API overview page
displays the summary of the scores. To learn more details about the scores, you can go to the
detailed view by clicking the MORE DETAILS link.

API Validation and Scoring helps you to ensure your APIs are secure and robust, by providing
feedback and recommendations early on in the software development life cycle. Based on the
feedback and recommendations, you can edit your API specifications, improve the scores and the
posture of your APIs and better understand how well the APIs are implemented.

Note

You can update API portal as part of upgrading Tanzu Application Platform. See
Upgrading Tanzu Application Platform.

Tanzu Application Platform v1.5

VMware by Broadcom 684



Overview of API Validation and Scoring

API Validation and Scoring focuses on scanning and validating an OpenAPI specification. The API
specification is generated from the API Auto Registration. After an API is registered, the API
specification goes through static scan analysis and is validated. Based on the validation, a scoring is
provided to indicate the quality and health of the API specification as it relates to Documentation,
OpenAPI best practices, and Security. The Validation Analysis card on the API overview page
displays the summary of the scores. To learn more details about the scores, you can go to the
detailed view by clicking the MORE DETAILS link.

API Validation and Scoring helps you to ensure your APIs are secure and robust, by providing
feedback and recommendations early on in the software development life cycle. Based on the
feedback and recommendations, you can edit your API specifications, improve the scores and the
posture of your APIs and better understand how well the APIs are implemented.

Install API Validation and Scoring

This topic tells you how to install API Validation and Scoring from the Tanzu Application Platform
(commonly known as TAP) package repository.

Prerequisites

Before installing API Validation and Scoring, complete the following prerequisites:

1. Create a Tanzu Network account to download Tanzu Application Platform packages.

2. Provision Kubernetes cluster v1.22, v1.23 or v1.24 on Amazon Elastic Kubernetes Service.

3. Install Tanzu CLI.

4. Install kapp.

5. Install Kubernetes CLI. For more information, see Install Tools in the Kubernetes
documentation.

6. Deploy Cluster Essentials

Resource requirements

To deploy API Validation and Scoring package, your cluster must have at least:

5 nodes.

4 vCPUs available per node.

16 GB of RAM available per node.

100 GB of disk space available across all nodes.

Relocate images to a registry

VMware recommends relocating the images from VMware Tanzu Network registry to your own
container image registry before attempting installation. API Validation and Scoring depends on

Note

The Installation of API scoring and validation package must be done on a
new cluster without any existing Tanzu Application Platform installations.

Tanzu Application Platform v1.5

VMware by Broadcom 685

https://network.tanzu.vmware.com/
https://carvel.dev/kapp/docs/v0.54.0/install/
https://kubernetes.io/docs/tasks/tools
https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.5/cluster-essentials/deploy.html


VMware Tanzu Network for continued operation. If you don’t relocate the images, VMware Tanzu
Network offers no uptime guarantees. The option to skip relocation is documented for evaluation
and proof-of-concept only.

To relocate images from the VMware Tanzu Network registry to your registry:

1. Set up environment variables for installation use by running:

export IMGPKG_REGISTRY_HOSTNAME_0=registry.tanzu.vmware.com

export IMGPKG_REGISTRY_USERNAME_0=MY-TANZUNET-USERNAME

export IMGPKG_REGISTRY_PASSWORD_0=MY-TANZUNET-PASSWORD

export IMGPKG_REGISTRY_HOSTNAME_1=MY-REGISTRY

export IMGPKG_REGISTRY_USERNAME_1=MY-REGISTRY-USER

export IMGPKG_REGISTRY_PASSWORD_1=MY-REGISTRY-PASSWORD

export INSTALL_REGISTRY_USERNAME="${IMGPKG_REGISTRY_USERNAME_1}"

export INSTALL_REGISTRY_PASSWORD="${IMGPKG_REGISTRY_PASSWORD_1}"

export APIX_VERSION=VERSION-NUMBER

export INSTALL_REPO=TARGET-REPOSITORY

Where:

MY-REGISTRY-USER is the user with write access to MY-REGISTRY.

MY-REGISTRY-PASSWORD is the password for MY-REGISTRY-USER.

MY-REGISTRY is your own container registry.

MY-TANZUNET-USERNAME is the user with access to the images in the VMware Tanzu
Network registry registry.tanzu.vmware.com

MY-TANZUNET-PASSWORD is the password for MY-TANZUNET-USERNAME.

VERSION-NUMBER is your API Validation and Scoring package version. For example,
0.2.5

TARGET-REPOSITORY is your target repository, a folder/repository on MY-REGISTRY that
serves as the location for the installation files for API Validation and Scoring.

2. Install the Carvel tool imgpkg CLI.

To query for the available imgpkg CLI versions on VMWare Tanzu Network Registry, run:

imgpkg tag list -i registry.tanzu.vmware.com/tanzu-application-platform/apix | 

sort -V

3. Relocate the images with the imgpkg CLI by running:

imgpkg copy -b registry.tanzu.vmware.com/tanzu-application-platform/apix:${APIX

_VERSION} --to-repo ${INSTALL_REGISTRY_HOSTNAME}/${INSTALL_REPO}/apix

Add the API Validation and Scoring package repository

Tanzu CLI packages are available on repositories. Adding the API Validation and Scoring package
repository makes the packages available for installation.

Relocate images to a registry is strongly recommended but not required for installation. If you skip
this step, you can use the following values to replace the corresponding variables:

INSTALL_REGISTRY_HOSTNAME is registry.tanzu.vmware.com

INSTALL_REPO is tanzu-application-platform.

INSTALL_REGISTRY_USERNAME and INSTALL_REGISTRY_PASSWORD are the credentials for the
VMware Tanzu Network registry registry.tanzu.vmware.com

Tanzu Application Platform v1.5

VMware by Broadcom 686

https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.5/cluster-essentials/deploy.html#optionally-install-clis-onto-your-path


APIX_VERSION is your API Validation and Scoring package version. For example, 0.2.5

To add the API Validation and Scoring package repository to your cluster:

1. Create a namespace called apix-install for deploying API Validation and Scoring package
by running:

kubectl create ns apix-install

This namespace keeps the objects grouped together logically.

2. Create a secret for adding the API Validation and Scoring package repository:

tanzu secret registry add tap-registry --username ${INSTALL_REGISTRY_USERNAME} 

--password ${INSTALL_REGISTRY_PASSWORD} --server ${INSTALL_REGISTRY_HOSTNAME} -

-export-to-all-namespaces --yes --namespace apix-install

3. Add the API Validation and Scoring package repository to the cluster by running:

tanzu package repository add apix-repository \

--url ${INSTALL_REGISTRY_HOSTNAME}/${INSTALL_REPO}/apix:${APIX_VERSION} \

--namespace apix-install

4. Verify the package installation by running:

tanzu package available list -n apix-install

If the package installed, expect to see the output that resembles the following:

NAME                         DISPLAY-NAME     SHORT_DESCRIPTION               L

ATEST-VERSION

apix.apps.tanzu.vmware.com   apix             apix.apps.tanzu.vmware.com      

0.2.5

5. Get the status of the API Validation and Scoring package repository by running:

tanzu package repository get apix-repository --namespace apix-install

For example:

~ %    tanzu package repository get apix-repository --namespace apix-install

NAME:          apix-repository

VERSION:       796582

REPOSITORY:    projects.registry.vmware.com/mazinger/apix

TAG:           0.2.5

STATUS:        Reconcile succeeded

REASON:

Verify the STATUS is Reconcile succeeded

Install

Follow these steps to install the API Validation and Scoring package:

1. To overwrite the default values when installing the package, create the apix-values.yaml
file:

apix:

 host: "HOST"

 backstage:

Tanzu Application Platform v1.5

VMware by Broadcom 687



  host: "BACKSTAGE-HOST"

  port: "BACKSTAGE-PORT"

Where:

HOST is the hostname of the API Validation and Scoring GUI. It can be left empty ""
to use the default value.

BACKSTAGE-HOST is the Tanzu Application Platform GUI or Backstage host that you
want to point to. For example, https://tap-gui.view-cluster.com

BACKSTAGE-PORT is the Tanzu Application Platform GUI or Backstage port that you
want to point to. For example, 443

2. Install the API Validation and Scoring package using the Tanzu CLI by running:

tanzu package install apix -n apix-install -p apix.apps.tanzu.vmware.com -v ${A

PIX_VERSION} -f apix-values.yaml

3. Verify that STATUS is Reconcile succeeded by running:

tanzu package installed get apix -n apix-install

If your package successfully reconciled, expect to see the output that resembles the
following::

NAME:                    apix

PACKAGE-NAME:            apix.apps.tanzu.vmware.com

PACKAGE-VERSION:         0.2.5

STATUS:                  Reconcile succeeded

CONDITIONS:              [{ReconcileSucceeded True  }]

USEFUL-ERROR-MESSAGE:

Uninstall

Uninstall the API Validation and Scoring package by running:

tanzu package installed delete apix -n apix-install

For example:

% tanzu package installed delete apix -n apix-install

Deleting installed package 'apix' in namespace 'apix-install'. Are you sure? [y/N]: y

Uninstalling package 'apix' from namespace 'apix-install'

Getting package install for 'apix'

Deleting package install 'apix' from namespace 'apix-install'

'PackageInstall' resource deletion status: Deleting

Deleting admin role 'apix-apix-install-cluster-role'

Deleting role binding 'apix-apix-install-cluster-rolebinding'

Deleting secret 'apix-apix-install-values'

Deleting service account 'apix-apix-install-sa'

Uninstalled package 'apix' from namespace 'apix-install'

Use API Validation and Scoring to score your auto-
registered API

Use API Validation and Scoring to score your auto-
registered API

Tanzu Application Platform v1.5

VMware by Broadcom 688



This topic tells you how an Auto Registered API is scored:

See Use API Auto Registration to deploy the workload.

Navigate to the Tanzu Application Platform GUI to view the API .

The Overview tab of your API in Tanzu Application Platform GUI shows the API scores.

To view more details about the Validation Analysis and the required improvements for your
API, click MORE DETAILS.

Application Accelerator Overview

This topic tells you about the Application Accelerator component and architecture in Tanzu
Application Platform (commonly known as TAP).

Overview

Application Accelerator for VMware Tanzu helps you bootstrap developing your applications and
deploying them in a discoverable and repeatable way.

Enterprise Architects author and publish accelerator projects that provide developers and operators
in their organization ready-made, conforming code and configurations.

Published accelerator projects are maintained in Git repositories. You can then use Application
Accelerator to create new projects based on those accelerator projects.

The Application Accelerator UI enables you to discover available accelerators, configure them, and
generate new projects to download.

Tanzu Application Platform v1.5

VMware by Broadcom 689



Architecture

The following diagram of Accelerator components illustrates the Application Accelerator
architecture.

How does Application Accelerator work?

Application Accelerator allows you to generate new projects from files in Git repositories. An
accelerator.yaml file in the repository declares input options for the accelerator. This file also
contains instructions for processing the files when you generate a new project.

Accelerator custom resources (CRs) control which repositories appear in both the Tanzu Application
Platform Application Accelerator UI and in the Application Accelerator extension for VS Code. You
can maintain CRs by using Kubernetes tools such as kubectl or by using the Tanzu CLI accelerator
commands. The Accelerator controller reconciles the CRs with a Flux2 Source Controller to fetch
files from GitHub or GitLab.

The Application Accelerator web UI gives you a searchable list of accelerators to choose from. After
you select an accelerator, the UI presents text boxes for the options that are defined within the
accelerator.yaml of the selected accelerator.

Application Accelerator sends the input values to the Accelerator Engine for processing. (Optional)
The user can choose to have a new Git repository created as part of the project creation process.
The Engine then returns the project in a ZIP file. If the project was generated using the Application
Accelerator extension for VS Code, the project automatically be extracted to the directory location
of your choice on your local machine. You can then open the project in your favorite integrated
development environment (IDE) to develop further.

Next steps

Learn more about:

Creating Accelerators

Application Accelerator Overview

This topic tells you about the Application Accelerator component and architecture in Tanzu
Application Platform (commonly known as TAP).

Tanzu Application Platform v1.5

VMware by Broadcom 690



Overview

Application Accelerator for VMware Tanzu helps you bootstrap developing your applications and
deploying them in a discoverable and repeatable way.

Enterprise Architects author and publish accelerator projects that provide developers and operators
in their organization ready-made, conforming code and configurations.

Published accelerator projects are maintained in Git repositories. You can then use Application
Accelerator to create new projects based on those accelerator projects.

The Application Accelerator UI enables you to discover available accelerators, configure them, and
generate new projects to download.

Architecture

The following diagram of Accelerator components illustrates the Application Accelerator
architecture.

How does Application Accelerator work?

Application Accelerator allows you to generate new projects from files in Git repositories. An
accelerator.yaml file in the repository declares input options for the accelerator. This file also
contains instructions for processing the files when you generate a new project.

Accelerator custom resources (CRs) control which repositories appear in both the Tanzu Application
Platform Application Accelerator UI and in the Application Accelerator extension for VS Code. You
can maintain CRs by using Kubernetes tools such as kubectl or by using the Tanzu CLI accelerator
commands. The Accelerator controller reconciles the CRs with a Flux2 Source Controller to fetch
files from GitHub or GitLab.

The Application Accelerator web UI gives you a searchable list of accelerators to choose from. After
you select an accelerator, the UI presents text boxes for the options that are defined within the
accelerator.yaml of the selected accelerator.

Application Accelerator sends the input values to the Accelerator Engine for processing. (Optional)
The user can choose to have a new Git repository created as part of the project creation process.
The Engine then returns the project in a ZIP file. If the project was generated using the Application
Accelerator extension for VS Code, the project automatically be extracted to the directory location

Tanzu Application Platform v1.5

VMware by Broadcom 691



of your choice on your local machine. You can then open the project in your favorite integrated
development environment (IDE) to develop further.

Next steps

Learn more about:

Creating Accelerators

Install Application Accelerator

This topic tells you how to install Application Accelerator from the Tanzu Application Platform
(commonly known as TAP) package repository.

Prerequisites

Before installing Application Accelerator:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

Install Flux SourceController on the cluster. See Install Flux CD Source Controller.

Install Source Controller on the cluster. See Install Source Controller.

Install

To install Application Accelerator:

1. List version information for the package by running:

tanzu package available list accelerator.apps.tanzu.vmware.com --namespace tap-

install

For example:

$ tanzu package available list accelerator.apps.tanzu.vmware.com --namespace ta

p-install

- Retrieving package versions for accelerator.apps.tanzu.vmware.com...

  NAME                               VERSION  RELEASED-AT

  accelerator.apps.tanzu.vmware.com  1.4.0    2022-12-08 12:00:00 -0500 EST

2. (Optional) View the changes you can make to the default installation settings by running:

tanzu package available get accelerator.apps.tanzu.vmware.com/VERSION-NUMBER \

  --values-schema \

  --namespace tap-install

Where VERSION-NUMBER is the version of the Application Accelerator package listed earlier.

For example:

Note

Follow the steps in this topic if you do not want to use a profile to install Application
Accelerator. For more information about profiles, see About Tanzu Application
Platform components and profiles.

Tanzu Application Platform v1.5

VMware by Broadcom 692



$ tanzu package available get accelerator.apps.tanzu.vmware.com/1.4.0 \

    --values-schema \

    --namespace tap-install

For more information about values schema options, see the properties listed in Configure
properties and resource use later.

3. Create a file named app-accelerator-values.yaml using the following example code:

server:

  service_type: "LoadBalancer"

  watched_namespace: "accelerator-system"

samples:

  include: true

4. Edit the values in your app-accelerator-values.yaml if needed, or leave the default values.
You can add values you want from Configure properties and resource use.

5. Install the package by running:

tanzu package install app-accelerator \

  --package accelerator.apps.tanzu.vmware.com \

  --version VERSION-NUMBER \

  --namespace tap-install \

  --values-file app-accelerator-values.yaml

Where VERSION-NUMBER is the version of the Application Accelerator package listed earlier.

For example:

$ tanzu package install app-accelerator \

    --package accelerator.apps.tanzu.vmware.com \

    --version 1.4.0 \

    --namespace tap-install \

    --values-file app-accelerator-values.yaml

- Installing package 'accelerator.apps.tanzu.vmware.com'

| Getting package metadata for 'accelerator.apps.tanzu.vmware.com'

| Creating service account 'app-accelerator-tap-install-sa'

| Creating cluster admin role 'app-accelerator-tap-install-cluster-role'

| Creating cluster role binding 'app-accelerator-tap-install-cluster-rolebindin

g'

| Creating secret 'app-accelerator-tap-install-values'

- Creating package resource

- Package install status: Reconciling

 Added installed package 'app-accelerator' in namespace 'tap-install'

6. Verify the package install by running:

tanzu package installed get app-accelerator -n tap-install

For example:

$ tanzu package installed get app-accelerator -n tap-install

| Retrieving installation details for cc...

NAME:                    app-accelerator

PACKAGE-NAME:            accelerator.apps.tanzu.vmware.com

PACKAGE-VERSION:         1.4.0

STATUS:                  Reconcile succeeded

CONDITIONS:              [{ReconcileSucceeded True  }]

USEFUL-ERROR-MESSAGE:

Tanzu Application Platform v1.5

VMware by Broadcom 693



Verify that STATUS is Reconcile succeeded.

7. To see the IP address for the Application Accelerator API when the server.service_type is
set to LoadBalancer, run:

kubectl get service -n accelerator-system

This lists an external IP address for use with the --server-url Tanzu CLI flag for the
Accelerator plug-in generate & generate-from-local command.

For how to troubleshoot installation issues, see Troubleshoot Application Accelerator.

Configure properties and resource use

When you install the Application Accelerator, you can configure the following optional properties
from within your app-accelerator-values.yaml configuration file:

Property Default Description

registry.secret_ref registry.tanzu.vmware.com The secret used for accessing the registry where the
App-Accelerator images are located

server.service_type ClusterIP The service type for the acc-ui-server service including
LoadBalancer, NodePort, or ClusterIP

server.watched_namesp

ace

accelerator-system The namespace the server watches for accelerator
resources

server.engine_invocat

ion_url

http://acc-

engine.accelerator-

system.svc.cluster.local/inv

ocations

The URL to use for invoking the accelerator engine

engine.service_type ClusterIP The service type for the acc-engine service including
LoadBalancer, NodePort, or ClusterIP

engine.max_direct_mem

ory_size

32M The maximum size for the Java -
XX:MaxDirectMemorySize setting

samples.include True Option to include the bundled sample Accelerators in
the installation

ingress.include False Option to include the ingress configuration in the
installation

ingress.enable_tls False Option to include TLS for the ingress configuration

domain tap.example.com Top-level domain to use for ingress configuration,
default is shared.ingress_domain

tls.secret_name tls The name of the secret

tls.namespace tanzu-system-ingress The namespace for the secret

telemetry.retain_invo

cation_events_for_no_

days

30 The number of days to retain recorded invocation
events resources

telemetry.record_invo

cation_events

true The system records each engine invocation when
generating files for an accelerator?

git_credentials.secre

t_name

git-credentials The name to use for the secret storing Git credentials
for accelerators

git_credentials.usern

ame

null The user name to use in secret storing Git credentials
for accelerators

Tanzu Application Platform v1.5

VMware by Broadcom 694



Property Default Description

git_credentials.passw

ord

null The password to use in secret storing Git credentials
for accelerators

git_credentials.ca_fi

le

null The CA certificate data to use in secret storing Git
credentials for accelerators

managed_resources.ena

ble

false Whether to enable the App used to control managed
accelerator resources

managed_resources.git

.url

none Required if managed_resources are enabled. Git
repository URL containing manifests for managed
accelerator resources

managed_resources.git

.ref

origin/main Required if managed_resources are enabled. Git ref to
use for repository containing manifests for managed
accelerator resources

managed_resources.git

.sub_path

null Git subPath to use for repository containing manifests
for managed accelerator resources

managed_resources.git

.secret_ref

git-credentials Secret name to use for repository containing manifests
for managed accelerator resources

VMware recommends that you do not override the default setting for registry.secret_ref,
server.engine_invocation_url, or engine.service_type. These properties are only used to
configure non-standard installations.

The following table is the resource use configurations for the components of Application
Accelerator.

Component Resource requests Resource limits

acc-controller CPU: 100m
memory: 20Mi

CPU: 100m
memory: 30Mi

acc-server CPU: 100m
memory:20Mi

CPU: 100m
memory: 30Mi

acc-engine CPU: 500m
memory: 1Gi

CPU: 500m
memory: 2Gi

Configure Application Accelerator

This topic tells you about advanced configuration options available for Application Accelerator in
Tanzu Application Platform (commonly known as TAP). This includes configuring Git-Ops style
deployments of accelerators and configurations for use with non-public repositories and in air-
gapped environments.

Overview

Accelerators are created either using the Tanzu CLI or by applying a YAML manifest using kubectl.
Another option is Using a Git-Ops style configuration for deploying a set of managed accelerators.

Application Accelerator pulls content from accelerator source repositories using either the “Flux
SourceController” or the “Tanzu Application Platform Source Controller” components. If the
repository used is accessible anonymously from a public server, you do not have to configure
anything additional. Otherwise, provide authentication as explained in Using non-public
repositories. There are also options for making these configurations easier explained in Configuring
tap-values.yaml with Git credentials secret

Tanzu Application Platform v1.5

VMware by Broadcom 695



Using a Git-Ops style configuration for deploying a set of
managed accelerators

To enable a Git-Ops style of managing resources used for deploying accelerators, there is a new set
of properties for the Application Accelerator configuration. The resources are managed using a
Carvel kapp-controller App in the accelerator-system namespace that watches a Git repository
containing the manifests for the accelerators. This means that you can make changes to the
manifests, or to the accelerators they point to, and the changes are reconciled and reflected in the
deployed resources.

You can specify the following accelerator configuration properties when installing the Application
Accelerator. The same properties are provided in the accelerator section of the tap-values.yaml
file:

accelerator:

  managed_resources:

    enable: true

    git:

      url: GIT-REPO-URL

      ref: origin/main

      sub_path: null

      secret_ref: git-credentials

Where:

GIT-REPO-URL is the URL of a Git repository that contains manifest YAML files for the
accelerators that you want to have managed. The URL must start with https:// or git@.
You can specify a sub_path if necessary and also a secret_ref if the repository requires
authentication. If not needed, then leave these additional properties out.

For more information, see Configure tap-values.yaml with Git credentials secret and
Creating a manifest with multiple accelerators and fragments in this topic.

Functional and Organizational Considerations

Any accelerator manifest that is defined under the GIT-REPO-URL and optional sub_path is selected
by the kapp-controller app. If there are multiple manifests at the defined GIT-REPO-URL, they are all
watched for changes and displayed to the user as a merged catalog.

For example: if you have two manifests containing multiple accelerator or fragment definitions,
manifest-1.yaml, and manifest-2.yaml, on the same path in the organizational considerations. The
resulting catalog is (manifest-1.yaml + manifest-2.yaml).

Examples for creating accelerators

A minimal example for creating an accelerator

A minimal example might look like the following manifest:

spring-cloud-serverless.yaml

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

  name: spring-cloud-serverless

spec:

  git:

    url: https://github.com/vmware-tanzu/application-accelerator-samples

    subPath: spring-cloud-serverless

Tanzu Application Platform v1.5

VMware by Broadcom 696



    ref:

      branch: main

This example creates an accelerator named spring-cloud-serverless. The displayName,
description, iconUrl, and tags text boxes are populated based on the content under the
accelerator key in the accelerator.yaml file found in the main branch of the Git repository at
Application Accelerator Samples under the sub-path spring-cloud-serverless. For example:

accelerator.yaml

accelerator:

  displayName: Spring Cloud Serverless

  description: A simple Spring Cloud Function serverless app

  iconUrl: https://raw.githubusercontent.com/simple-starters/icons/master/icon-cloud.p

ng

  tags:

  - java

  - spring

  - cloud

  - function

  - serverless

  - tanzu

...

To create this accelerator with kubectl, run:

kubectl apply --namespace --accelerator-system --filename spring-cloud-serverless.yaml

Or, you can use the Tanzu CLI and run:

tanzu accelerator create spring-cloud-serverless --git-repo https://github.com/vmware-

tanzu/application-accelerator-samples.git --git-branch main --git-sub-path spring-clou

d-serverless

An example for creating an accelerator with customized properties

You can specify the displayName, description, iconUrl, and tags text boxes and this overrides any
values provided in the accelerator’s Git repository. The following example explicitly sets those text
boxes and the ignore text box:

my-spring-cloud-serverless.yaml

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

  name: my-spring-cloud-serverless

spec:

  displayName: My Spring Cloud Serverless

  description: My own Spring Cloud Function serverless app

  iconUrl: https://raw.githubusercontent.com/simple-starters/icons/master/icon-cloud.p

ng

  tags:

    - spring

    - cloud

    - function

    - serverless

  git:

    ignore: ".git/, bin/"

    url: https://github.com/vmware-tanzu/application-accelerator-samples

    subPath: spring-cloud-serverless

    ref:

      branch: test

Tanzu Application Platform v1.5

VMware by Broadcom 697

https://github.com/vmware-tanzu/application-accelerator-samples


To create this accelerator with kubectl, run:

kubectl apply --namespace --accelerator-system --filename my-spring-cloud-serverless.y

aml

To use the Tanzu CLI, run:

tanzu accelerator create my-spring-cloud-serverless --git-repo https://github.com/vmwa

re-tanzu/application-accelerator-samples --git-branch main --git-sub-path spring-cloud

-serverless \

  --description "My own Spring Cloud Function serverless app" \

  --display-name "My Spring Cloud Serverless" \

  --icon-url https://raw.githubusercontent.com/simple-starters/icons/master/icon-clou

d.png \

  --tags "spring,cloud,function,serverless"

Creating a manifest with multiple accelerators and fragments

You might have a manifest that contains multiple accelerators or fragments. For example:

accelerator-collection.yaml

---

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

  name: spring-cloud-serverless

spec:

  git:

    url: https://github.com/vmware-tanzu/application-accelerator-samples

    subPath: spring-cloud-serverless

    ref:

      branch: main

---

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

  name: tanzu-java-web-app

spec:

  git:

    url: https://github.com/vmware-tanzu/application-accelerator-samples.git

    subPath: tanzu-java-web-app

    ref:

      branch: main

For a larger example of this, see Sample Accelerators Main. Optionally, use this to create an initial
catalog of accelerators and fragments during a fresh Application Accelerator install.

Configure tap-values.yaml with Git credentials secret

Note

It is not possible to provide the git.ignore option with the Tanzu CLI.

Note

For how to create a new OAuth Token for optional Git repository creation, see
Create an Application Accelerator Git repository during project creation.

Tanzu Application Platform v1.5

VMware by Broadcom 698

https://github.com/vmware-tanzu/application-accelerator-samples/blob/main/sample-accelerators-main.yaml


When deploying accelerators using Git repositories that requires authentication or are installed with
custom CA certificates, you must provide some additional authentication values in a secret. The
examples in the next section provide more details. This section describes how to configure a Git
credentials secret that is used in later Git-based examples.

You can specify the following accelerator configuration properties when installing Application
Accelerator. The same properties are provided in the accelerator section of the tap-values.yaml
file:

accelerator:

  git_credentials:

    secret_name: git-credentials

    username: GIT-USER-NAME

    password: GIT-CREDENTIALS

    ca_file: CUSTOM-CA-CERT

Where:

GIT-USER-NAME is the user name for authenticating with the Git repository.

GIT-CREDENTIALS is the password or access token used for authenticating with the Git
repository. VMware recommends using an access token for this.

CUSTOM-CA-CERT is the certificate data needed when accessing the Git repository.

This is an example of this part of a tap-values.yaml configuration:

accelerator:

  git_credentials:

    secret_name: git-credentials

    username: testuser

    password: s3cret

    ca_file: |

      -----BEGIN CERTIFICATE-----

      .

      .

      .  < certificate data >

      .

      .

      -----END CERTIFICATE-----

You can specify the custom CA certificate data using the shared config value shared.ca_cert_data
and it propagates to all components that can make use of it, including the App Accelerator
configuration. The example earlier produces an output such as this using the shared value:

shared:

  ca_cert_data: |

    -----BEGIN CERTIFICATE-----

    .

    .

    .  < certificate data >

    .

    .

    -----END CERTIFICATE-----

accelerator:

  git_credentials:

    secret_name: git-credentials

    username: testuser

    password: s3cret

Using non-public repositories

Tanzu Application Platform v1.5

VMware by Broadcom 699



For GitHub repositories that aren’t accessible anonymously, you must provide credentials in a
Secret.

For HTTPS repositories the secret must contain user name and password fields. The
password field can contain a personal access token instead of an actual password. For more
information, see Fluxcd/source-controller basic access authentication.

For HTTPS with self-signed certificates, you can add a .data.caFile value to the secret
created for HTTPS authentication. For more information, see fluxcd/source-controller
HTTPS Certificate Authority.

For SSH repositories, the secret must contain identity, identity.pub, and known_hosts text
boxes. For more information, see fluxcd/source-controller SSH authentication.

For Image repositories that aren’t publicly available, an image pull secret might be provided.
For more information, see Kubernetes documentation on using imagePullSecrets.

Examples for a private Git repository

Example using http credentials

To create an accelerator using a private Git repository, first create a secret with the HTTP
credentials.

kubectl create secret generic https-credentials \

    --namespace accelerator-system \

    --from-literal=username=USER \

    --from-literal=password=ACCESS-TOKEN

Verify that your secret was created by running:

kubectl get secret --namespace accelerator-system https-credentials -o yaml

The output is similar to:

apiVersion: v1

kind: Secret

metadata:

  name: https-credentials

  namespace: accelerator-system

type: Opaque

data:

  username: <BASE64>

  password: <BASE64>

After you created and verified the secret, you can create the accelerator by using the
spec.git.secretRef.name property:

private-acc.yaml

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

  name: private-acc

spec:

  displayName: private

Note

For better security, use an access token as the password.

Tanzu Application Platform v1.5

VMware by Broadcom 700

https://fluxcd.io/docs/components/source/gitrepositories/#basic-access-authentication
https://fluxcd.io/docs/components/source/gitrepositories/#https-certificate-authority
https://fluxcd.io/docs/components/source/gitrepositories/#ssh-authentication
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets


  description: Accelerator using a private repository

  git:

    url: REPOSITORY-URL

    ref:

      branch: main

    secretRef:

      name: https-credentials

For https credentials, the REPOSITORY-URL must use https:// as the URL scheme.

If you are using the Tanzu CLI, add the --secret-ref flag to your tanzu accelerator create
command and provide the name of the secret for that flag.

Example using http credentials with self-signed certificate

To create an accelerator using a private Git repository with a self-signed certificate, create a secret
with the HTTP credentials and the certificate.

kubectl create secret generic https-ca-credentials \

    --namespace accelerator-system \

    --from-literal=username=USER \

    --from-literal=password=ACCESS-TOKEN \

    --from-file=caFile=PATH-TO-CA-FILE

Verify that your secret was created by running:

kubectl get secret --namespace accelerator-system https-ca-credentials -o yaml

The output is similar to:

apiVersion: v1

kind: Secret

metadata:

  name: https-ca-credentials

  namespace: accelerator-system

type: Opaque

data:

  username: <BASE64>

  password: <BASE64>

  caFile: <BASE64>

After you have the secret created, you can create the accelerator by using the
spec.git.secretRef.name property:

private-acc.yaml

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

  name: private-acc

spec:

  displayName: private

  description: Accelerator using a private repository

  git:

    url: REPOSITORY-URL

    ref:

      branch: main

Note

For better security, use an access token as the password.

Tanzu Application Platform v1.5

VMware by Broadcom 701



    secretRef:

      name: https-ca-credentials

If you are using the Tanzu CLI, add the --secret-ref flag to your tanzu accelerator create
command and provide the name of the secret for that flag.

Example using SSH credentials

To create an accelerator using a private Git repository, create a secret with the SSH credentials
such as this example:

ssh-keygen -q -N "" -f ./identity

ssh-keyscan github.com > ./known_hosts

kubectl create secret generic ssh-credentials \

    --namespace accelerator-system \

    --from-file=./identity \

    --from-file=./identity.pub \

    --from-file=./known_hosts

If you have a key file already created, skip the ssh-keygen and ssh-keyscan steps and replace the
values for the kubectl create secret command. Such as:

--from-file=identity=PATH-TO-YOUR-IDENTITY-FILE

--from-file=identity.pub=PATH-TO-YOUR-IDENTITY.PUB-FILE

--from-file=known_hosts=PATH-TO-YOUR-KNOWN-HOSTS-FILE

Verify that your secret was created by running:

kubectl get secret --namespace accelerator-system ssh-credentials -o yaml

The output is similar to :

apiVersion: v1

kind: Secret

metadata:

  name: ssh-credentials

  namespace: accelerator-system

type: Opaque

data:

  identity: <BASE64>

  identity.pub: <BASE64>

  known_hosts: <BASE64>

To use this secret when creating an accelerator, provide the secret name in the
spec.git.secretRef.name property:

private-acc-ssh.yaml

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

  name: private-acc

spec:

  displayName: private

  description: Accelerator using a private repository

Important

For https credentials, the REPOSITORY-URL must use https:// as the URL scheme.

Tanzu Application Platform v1.5

VMware by Broadcom 702



  git:

    url: REPOSITORY-URL

    ref:

      branch: main

    secretRef:

      name: ssh-credentials

When using SSH credentials, the REPOSITORY-URL must include the user name as part of the URL.
For example: ssh://user@example.com:22/repository.git. For more information, see Flux
documentation.

If you are using the Tanzu CLI, add the --secret-ref flag to your tanzu accelerator create
command and provide the name of the secret for that flag.

Examples for a private source-image repository

If your registry uses a self-signed certificate then you must add the CA certificate data to the
configuration for the “Tanzu Application Platform Source Controller” component. Add it under
source_controller.ca_cert_data in your tap-values.yaml file that is used during installation.

tap-values.yaml

source_controller:

  ca_cert_data: |-

    -----BEGIN CERTIFICATE-----

    .

    .

    .  < certificate data >

    .

    .

    -----END CERTIFICATE-----

Example using image-pull credentials

To create an accelerator using a private source-image repository, create a secret with the image-
pull credentials:

create secret generic registry-credentials \

    --namespace accelerator-system \

    --from-literal=username=USER \

    --from-literal=password=PASSWORD

Verify that your secret was created by running:

kubectl get secret --namespace accelerator-system registry-credentials -o yaml

The output is similar to:

apiVersion: v1

kind: Secret

metadata:

  name: registry-credentials

  namespace: accelerator-system

type: Opaque

data:

  username: <BASE64>

  password: <BASE64>

After you have the secret created, you can create the accelerator by using the
spec.git.secretRef.name property:

Tanzu Application Platform v1.5

VMware by Broadcom 703

https://fluxcd.io/flux/components/source/gitrepositories/#url


private-acc.yaml

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

  name: private-acc

spec:

  displayName: private

  description: Accelerator using a private repository

  source:

    image: "registry.example.com/test/private-acc-src:latest"

    imagePullSecrets:

    - name: registry-credentials

If you are using the Tanzu CLI, add the --secret-ref flag to your tanzu accelerator create
command and provide the name of the secret for that flag.

Configure ingress timeouts when some accelerators take
longer to generate

If Tanzu Application Platform is configured to use an ingress for Tanzu Application Platform GUI and
the Accelerator Server, then it might detect a timeout during accelerator generation. This can
happen if the accelerator takes a longer time to generate than the default timeout. When this
happens, Tanzu Application Platform GUI appears to continue to run for an indefinite period. In the
IDE extension, it shows a 504 error. To mitigate this, you can increase the timeout value for the
HTTPProxy resources used for the ingress by applying secrets with overlays to edit the HTTPProxy
resources.

Configure an ingress timeout overlay secret for each HTTPProxy

For Tanzu Application Platform GUI, create the following overlay secret in the tap-install
namespace:

apiVersion: v1

kind: Secret

metadata:

  name: patch-tap-gui-timeout

  namespace: tap-install

stringData:

  patch.yaml: |

    #@ load("@ytt:overlay", "overlay")

    #@overlay/match by=overlay.subset({"kind": "HTTPProxy", "metadata": {"name": "tap-

gui"}})

    ---

    spec:

      routes:

        #@overlay/match by=overlay.subset({"services": [{"name": "server"}]})

        #@overlay/match-child-defaults missing_ok=True

        - timeoutPolicy:

            idle: 30s

            response: 30s

For Accelerator Server (used for IDE extension), create the following overlay secret in the tap-
install namespace:

apiVersion: v1

kind: Secret

metadata:

  name: patch-accelerator-timeout

  namespace: tap-install

Tanzu Application Platform v1.5

VMware by Broadcom 704



stringData:

  patch.yaml: |

    #@ load("@ytt:overlay", "overlay")

    #@overlay/match by=overlay.subset({"kind": "HTTPProxy", "metadata": {"name": "acce

lerator"}})

    ---

    spec:

      routes:

        #@overlay/match by=overlay.subset({"services": [{"name": "acc-server"}]})

        #@overlay/match-child-defaults missing_ok=True

        - timeoutPolicy:

            idle: 30s

            response: 30s

Apply the timeout overlay secrets in tap-values.yaml

Add the following package_overlays section to tap-values.yaml before installing or updating Tanzu
Application Platform:

package_overlays:

- name: tap-gui

  secrets:

  - name: patch-tap-gui-timeout

- name: accelerator

  secrets:

  - name: patch-accelerator-timeout

Configuring skipping TLS verification for access to Source
Controller

You can configure the Flux or Tanzu Application Platform Source Controller to use Transport Layer
Security (TLS) and use custom certificates. In that case, configure the Accelerator System to skip
the TLS verification for calls to access the sources by providing the following property in the
accelerator section of the tap-values.yaml file:

sources:

  skip_tls_verify: true

Enabling TLS for Accelerator Server
To enable TLS for the Accelerator Server, the following properties must be provided in the
accelerator section of the tap-values.yaml file:

server:

  tls:

    enabled: true

    key: SERVER-PRIVATE-KEY

    crt: SERVER-CERTIFICATE

Where:

SERVER-PRIVATE-KEY is the pem encoded server private key.

SERVER-CERTIFICATE is the pem encoded server certificate.

Here is a sample tap-values.yaml configuration with TLS enabled for Accelerators Server:

server:

  tls:

    enabled: true

Tanzu Application Platform v1.5

VMware by Broadcom 705



    key: |

      -----BEGIN PRIVATE KEY-----

      .

      .  < private key data >

      .

      -----END PRIVATE KEY-----

    crt: |

      -----BEGIN CERTIFICATE-----

      .

      .  < certificate data >

      .

      -----END CERTIFICATE-----

Configuring skipping TLS verification of Engine calls for
Accelerator Server
If you configure the Accelerator Engine to use TLS and use custom certificates, then you can
configure the Accelerator Server to skip the TLS verification for calls to the Engine by providing the
following property in the accelerator section of the tap-values.yaml file:

server:

  engine_skip_tls_verify: true

Enabling TLS for Accelerator Engine

To enable TLS for the Accelerator Engine, the following properties are provided in the accelerator
section of the tap-values.yaml file:

engine:

  tls:

    enabled: true

    key: ENGINE-PRIVATE-KEY

    crt: ENGINE-CERTIFICATE

Where:

ENGINE-PRIVATE-KEY is the pem encoded acc-engine private key.

ENGINE-CERTIFICATE is the pem encoded acc-engine certificate.

Here is a sample tap-values.yaml configuration with TLS enabled for Accelerators Engine:

engine:

  tls:

    enabled: true

    key: |

      -----BEGIN PRIVATE KEY-----

      .

      .  < private key data >

      .

      -----END PRIVATE KEY-----

    crt: |

      -----BEGIN CERTIFICATE-----

      .

      .  < certificate data >

      .

      -----END CERTIFICATE-----

Next steps

Tanzu Application Platform v1.5

VMware by Broadcom 706



Creating accelerators

Create accelerators

This topic tells you how to create an accelerator in Tanzu Application Platform GUI.

An accelerator contains your conforming code and configurations that developers can use to create
new projects that by default follow the standards defined in your accelerators.

Prerequisites

The following prerequisites are required to create an accelerator:

Application Accelerator is installed. For information about installing Application Accelerator,
see Installing Application Accelerator for VMware Tanzu.

You can access Tanzu Application Platform GUI from a browser or use the Application
Accelerator extension for VS Code.

For more information about Tanzu Application Platform GUI, see Overview of Tanzu
Application Platform GUI.

For more information about Application Accelerator extension for VS Code, see
Application Accelerator Visual Studio Code extension.

kubectl is installed and authenticated with admin rights for your target cluster.

Getting started

You can use any Git repository to create an accelerator. You need the URL of the repository to
create an accelerator.

For this example, the Git repository is public and contains a README.md file. These are options
available when you create repositories on GitHub.

Use the following procedure to create an accelerator based on this Git repository:

1. Clone your Git repository.

2. Create a file named accelerator.yaml in the root directory of this Git repository.

3. Add the following content to the accelerator.yaml file:

accelerator:

  displayName: Simple Accelerator

  description: Contains just a README

  iconUrl: https://images.freecreatives.com/wp-content/uploads/2015/05/smiley-5

59124_640.jpg

  tags:

  - simple

  - getting-started

Feel free to use a different icon if it uses a reachable URL.

4. Add the new accelerator.yaml file, commit this change and push to your Git repository.

Publishing the new accelerator
1. To publish your new accelerator, run:

tanzu accelerator create simple --git-repository ${GIT_REPOSITORY_URL} --git-br

anch ${GIT_REPOSITORY_BRANCH}

Tanzu Application Platform v1.5

VMware by Broadcom 707



Where:

GIT-REPOSITORY-URL is the URL for your Git repository where the accelerator is
located.

GIT-REPOSITORY-BRANCH is the name of the branch where you pushed the new
accelerator.yaml file.

2. Refresh Tanzu Application Platform GUI or the Application Accelerator extension in VS
Code to reveal the newly published accelerator. It might take a few seconds to refresh the
catalog and add an entry for your new accelerator.

Alternatively, use the Tanzu CLI to create a separate manifest file and apply it to the cluster.

1. Create a simple-manifest.yaml file and add the following content, filling in with your Git
repository and branch values.

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

  name: simple

  namespace: accelerator-system

spec:

  git:

    url: YOUR-GIT-REPOSITORY-URL

    ref:

      branch: YOUR-GIT-BRANCH

2. To apply the simple-manifest.yaml, run this command in your terminal in the directory
where you created this file:

tanzu accelerator apply -f simple-manifest.yaml

Using local-path for publishing accelerators

You can publish an accelerator directly from a local directory on your system. This helps when
authoring accelerators and allows you to avoid having to commit every small change to a remote
Git repository. You can also specify --interval so the accelerator is reconciled quicker when
VMware push new changes.

tanzu accelerator create simple --local-path ${ACCELERATOR_PATH} --source-image ${SOUR

CE_IMAGE_REPO} --interval 10s

Tanzu Application Platform v1.5

VMware by Broadcom 708



Where:

ACCELERATOR-PATH is the path to the accelerator source. It is a fully qualified or a relative
path. If your current directory is already the directory where your source is, then use “.”.

SOURCE-IMAGE-REPO is the name of the OCI image repository where you want to push the
new accelerator source. If using Docker Hub, use something such as
docker.io/YOUR_DOCKER_ID/simple-accelerator-source.

After you have made any additional changes, you can push the latest to the same OCI image
repository using:

tanzu accelerator push --local-path ${ACCELERATOR_PATH} --source-image ${SOURCE_IMAGE_

REPO}

The accelerator now reflects the new content after approximately a 10-second wait as specified in
the previous command.

Using accelerator fragments

Accelerator fragments are reusable accelerator components that can provide options, files, or
transforms. They can be imported from accelerators using an import entry and the transforms from
the fragment can be referenced in an InvokeFragment transform in the accelerator that is declaring
the import. For additional details see InvokeFragment transform.

The accelerator samples include three fragments - java-version, tap-initialize, and live-
update. See vmware-tanzu/application-accelerator-samples/fragments Git repository for the
content of these fragments.

To discover what fragments are available to use, run:

tanzu accelerator fragment list

Look a the java-version fragment as an example. It contains the following accelerator.yaml file:

accelerator:

  options:

  - name: javaVersion

    inputType: select

    label: Java version to use

    choices:

    - value: "1.8"

      text: Java 8

    - value: "11"

      text: Java 11

    - value: "17"

      text: Java 17

    defaultValue: "11"

    required: true

engine:

  merge:

    - include: [ "pom.xml" ]

      chain:

      - type: ReplaceText

        regex:

          pattern: "<java.version>.*<"

          with: "'<java.version>' + #javaVersion + '<'"

    - include: [ "build.gradle" ]

      chain:

      - type: ReplaceText

        regex:

Tanzu Application Platform v1.5

VMware by Broadcom 709

https://github.com/vmware-tanzu/application-accelerator-samples/tree/tap-1.3/fragments


          pattern: "sourceCompatibility = .*"

          with: "'sourceCompatibility = ''' + #javaVersion + ''''"

    - include: [ "config/workload.yaml" ]

      chain:

      - type: ReplaceText

        condition: "#javaVersion == '17'"

        substitutions:

          - text: "spec:"

            with: "'spec:\n  build:\n    env:\n    - name: BP_JVM_VERSION\n      valu

e: \"17\"'"

This fragment contributes the following to any accelerator that imports it:

1. An option named javaVersion with three choices Java 8, Java 11, and Java 17

2. Three ReplaceText transforms:

If the accelerator has a pom.xml file, then what is specified for <java.version> is
replaced with the chosen version.

If the accelerator has a build.gradle file, then what is specified for
sourceCompatibility is replaced with the chosen version.

If the accelerator has a config/workload.yaml file, and the user selected “Java 17”
then a build environment entry of BP_JVM_VERSION is inserted into the spec:
section.

Deploying accelerator fragments

To deploy new fragments to the accelerator system, use the new tanzu accelerator fragment
create CLI command or apply a custom resource manifest file with either kubectl apply or the
tanzu accelerator apply commands.

The resource manifest for the java-version fragment looks like this:

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Fragment

metadata:

  name: java-version

  namespace: accelerator-system

spec:

  displayName: Select Java Version

  git:

    ref:

      tag: GIT_TAG_VERSION

    url: https://github.com/vmware-tanzu/application-accelerator-samples.git

    subPath: fragments/java-version

Where GIT-TAG-VERSION is the Git tag of the java-version fragment. For example, tap-1.4.0 is a
valid Git tag for the java-version fragment.

To create the fragment, save the above manifest in a java-version.yaml file) and run:

tanzu accelerator apply -f ./java-version.yaml

To avoid having to create a separate manifest file, run:

Note

The accelerator apply command can be used to apply both Accelerator and
Fragment resources.

Tanzu Application Platform v1.5

VMware by Broadcom 710



tanzu accelerator fragment create java-version \

  --git-repo https://github.com/vmware-tanzu/application-accelerator-samples.git \

  --git-tag ${GIT_TAG_VERSION} \

  --git-sub-path fragments/java-version

Where GIT-TAG-VERSION is the Git tag of the java-version fragment. For example,tap-1.4.0 is a
valid Git tag for the java-version fragment.

Now you can use this java-version fragment in an accelerator:

accelerator:

  displayName: Hello Fragment

  description: A sample app

  tags:

  - java

  - spring

  - cloud

  - tanzu

  imports:

  - name: java-version

engine:

  merge:

    - include: ["**/*"]

    - type: InvokeFragment

      reference: java-version

The earlier accelerator imports the java-version which, as seen earlier, provides an option to
select the Java version to use for the project. It then instructs the engine to run the transforms
provided in the fragment that updates the Java version used in pom.xml or build.gradle files from
the accelerator.

For more detail on the use of fragments, see InvokeFragment transform.

Next steps

Learn how to:

Write an accelerator.yaml.

Configure accelerators with Accelerator Custom Resources.

Manipulate files using Transforms.

Use SpEL in the accelerator.yaml file.

Create accelerators

This topic tells you how to create an accelerator in Tanzu Application Platform GUI.

An accelerator contains your conforming code and configurations that developers can use to create
new projects that by default follow the standards defined in your accelerators.

Prerequisites

The following prerequisites are required to create an accelerator:

Application Accelerator is installed. For information about installing Application Accelerator,
see Installing Application Accelerator for VMware Tanzu.

Tanzu Application Platform v1.5

VMware by Broadcom 711



You can access Tanzu Application Platform GUI from a browser or use the Application
Accelerator extension for VS Code.

For more information about Tanzu Application Platform GUI, see Overview of Tanzu
Application Platform GUI.

For more information about Application Accelerator extension for VS Code, see
Application Accelerator Visual Studio Code extension.

kubectl is installed and authenticated with admin rights for your target cluster.

Getting started

You can use any Git repository to create an accelerator. You need the URL of the repository to
create an accelerator.

For this example, the Git repository is public and contains a README.md file. These are options
available when you create repositories on GitHub.

Use the following procedure to create an accelerator based on this Git repository:

1. Clone your Git repository.

2. Create a file named accelerator.yaml in the root directory of this Git repository.

3. Add the following content to the accelerator.yaml file:

accelerator:

  displayName: Simple Accelerator

  description: Contains just a README

  iconUrl: https://images.freecreatives.com/wp-content/uploads/2015/05/smiley-5

59124_640.jpg

  tags:

  - simple

  - getting-started

Feel free to use a different icon if it uses a reachable URL.

4. Add the new accelerator.yaml file, commit this change and push to your Git repository.

Publishing the new accelerator
1. To publish your new accelerator, run:

tanzu accelerator create simple --git-repository ${GIT_REPOSITORY_URL} --git-br

anch ${GIT_REPOSITORY_BRANCH}

Where:

GIT-REPOSITORY-URL is the URL for your Git repository where the accelerator is
located.

GIT-REPOSITORY-BRANCH is the name of the branch where you pushed the new
accelerator.yaml file.

2. Refresh Tanzu Application Platform GUI or the Application Accelerator extension in VS
Code to reveal the newly published accelerator. It might take a few seconds to refresh the
catalog and add an entry for your new accelerator.

Tanzu Application Platform v1.5

VMware by Broadcom 712



Alternatively, use the Tanzu CLI to create a separate manifest file and apply it to the cluster.

1. Create a simple-manifest.yaml file and add the following content, filling in with your Git
repository and branch values.

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

  name: simple

  namespace: accelerator-system

spec:

  git:

    url: YOUR-GIT-REPOSITORY-URL

    ref:

      branch: YOUR-GIT-BRANCH

2. To apply the simple-manifest.yaml, run this command in your terminal in the directory
where you created this file:

tanzu accelerator apply -f simple-manifest.yaml

Using local-path for publishing accelerators

You can publish an accelerator directly from a local directory on your system. This helps when
authoring accelerators and allows you to avoid having to commit every small change to a remote
Git repository. You can also specify --interval so the accelerator is reconciled quicker when
VMware push new changes.

tanzu accelerator create simple --local-path ${ACCELERATOR_PATH} --source-image ${SOUR

CE_IMAGE_REPO} --interval 10s

Where:

ACCELERATOR-PATH is the path to the accelerator source. It is a fully qualified or a relative
path. If your current directory is already the directory where your source is, then use “.”.

SOURCE-IMAGE-REPO is the name of the OCI image repository where you want to push the
new accelerator source. If using Docker Hub, use something such as
docker.io/YOUR_DOCKER_ID/simple-accelerator-source.

After you have made any additional changes, you can push the latest to the same OCI image
repository using:

Tanzu Application Platform v1.5

VMware by Broadcom 713



tanzu accelerator push --local-path ${ACCELERATOR_PATH} --source-image ${SOURCE_IMAGE_

REPO}

The accelerator now reflects the new content after approximately a 10-second wait as specified in
the previous command.

Using accelerator fragments

Accelerator fragments are reusable accelerator components that can provide options, files, or
transforms. They can be imported from accelerators using an import entry and the transforms from
the fragment can be referenced in an InvokeFragment transform in the accelerator that is declaring
the import. For additional details see InvokeFragment transform.

The accelerator samples include three fragments - java-version, tap-initialize, and live-
update. See vmware-tanzu/application-accelerator-samples/fragments Git repository for the
content of these fragments.

To discover what fragments are available to use, run:

tanzu accelerator fragment list

Look a the java-version fragment as an example. It contains the following accelerator.yaml file:

accelerator:

  options:

  - name: javaVersion

    inputType: select

    label: Java version to use

    choices:

    - value: "1.8"

      text: Java 8

    - value: "11"

      text: Java 11

    - value: "17"

      text: Java 17

    defaultValue: "11"

    required: true

engine:

  merge:

    - include: [ "pom.xml" ]

      chain:

      - type: ReplaceText

        regex:

          pattern: "<java.version>.*<"

          with: "'<java.version>' + #javaVersion + '<'"

    - include: [ "build.gradle" ]

      chain:

      - type: ReplaceText

        regex:

          pattern: "sourceCompatibility = .*"

          with: "'sourceCompatibility = ''' + #javaVersion + ''''"

    - include: [ "config/workload.yaml" ]

      chain:

      - type: ReplaceText

        condition: "#javaVersion == '17'"

        substitutions:

          - text: "spec:"

            with: "'spec:\n  build:\n    env:\n    - name: BP_JVM_VERSION\n      valu

e: \"17\"'"

This fragment contributes the following to any accelerator that imports it:

Tanzu Application Platform v1.5

VMware by Broadcom 714

https://github.com/vmware-tanzu/application-accelerator-samples/tree/tap-1.3/fragments


1. An option named javaVersion with three choices Java 8, Java 11, and Java 17

2. Three ReplaceText transforms:

If the accelerator has a pom.xml file, then what is specified for <java.version> is
replaced with the chosen version.

If the accelerator has a build.gradle file, then what is specified for
sourceCompatibility is replaced with the chosen version.

If the accelerator has a config/workload.yaml file, and the user selected “Java 17”
then a build environment entry of BP_JVM_VERSION is inserted into the spec:
section.

Deploying accelerator fragments

To deploy new fragments to the accelerator system, use the new tanzu accelerator fragment
create CLI command or apply a custom resource manifest file with either kubectl apply or the
tanzu accelerator apply commands.

The resource manifest for the java-version fragment looks like this:

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Fragment

metadata:

  name: java-version

  namespace: accelerator-system

spec:

  displayName: Select Java Version

  git:

    ref:

      tag: GIT_TAG_VERSION

    url: https://github.com/vmware-tanzu/application-accelerator-samples.git

    subPath: fragments/java-version

Where GIT-TAG-VERSION is the Git tag of the java-version fragment. For example, tap-1.4.0 is a
valid Git tag for the java-version fragment.

To create the fragment, save the above manifest in a java-version.yaml file) and run:

tanzu accelerator apply -f ./java-version.yaml

To avoid having to create a separate manifest file, run:

tanzu accelerator fragment create java-version \

  --git-repo https://github.com/vmware-tanzu/application-accelerator-samples.git \

  --git-tag ${GIT_TAG_VERSION} \

  --git-sub-path fragments/java-version

Where GIT-TAG-VERSION is the Git tag of the java-version fragment. For example,tap-1.4.0 is a
valid Git tag for the java-version fragment.

Now you can use this java-version fragment in an accelerator:

Note

The accelerator apply command can be used to apply both Accelerator and
Fragment resources.

Tanzu Application Platform v1.5

VMware by Broadcom 715



accelerator:

  displayName: Hello Fragment

  description: A sample app

  tags:

  - java

  - spring

  - cloud

  - tanzu

  imports:

  - name: java-version

engine:

  merge:

    - include: ["**/*"]

    - type: InvokeFragment

      reference: java-version

The earlier accelerator imports the java-version which, as seen earlier, provides an option to
select the Java version to use for the project. It then instructs the engine to run the transforms
provided in the fragment that updates the Java version used in pom.xml or build.gradle files from
the accelerator.

For more detail on the use of fragments, see InvokeFragment transform.

Next steps

Learn how to:

Write an accelerator.yaml.

Configure accelerators with Accelerator Custom Resources.

Manipulate files using Transforms.

Use SpEL in the accelerator.yaml file.

Create an accelerator.yaml file in Application Accelerator

This topic tells you how to use Application Accelerator to create an accelerator.yaml file in Tanzu
Application Platform (commonly known as TAP).

By including an accelerator.yaml file in your Accelerator repository, you can declare input options
that users fill in using a form in the UI. Those option values control processing by the template
engine before it returns the zipped output files. For more information, see the Sample accelerator.

When there is no accelerator.yaml, the repository still works as an accelerator but the files are
passed unmodified to users.

accelerator.yaml has two top-level sections: accelerator and engine.

Accelerator

This section documents how an accelerator is presented to users in the web UI. For example:

accelerator:

  displayName: Hello Fun

  description: A simple Spring Cloud Function serverless app

  iconUrl: https://raw.githubusercontent.com/simple-starters/icons/master/icon-cloud.p

ng

  tags:

  - java

Tanzu Application Platform v1.5

VMware by Broadcom 716



  - spring

  options:

  - name: deploymentType

    inputType: select

    choices:

    - value: none

      text: Skip Kubernetes deployment

    - value: k8s-simple

      text: Kubernetes deployment and service

    - value: knative

      text: Knative service

    defaultValue: k8s-simple

    required: true

Accelerator metadata

These properties are in accelerator listings such as the web UI:

displayName: A human-readable name.

description: A more detailed description.

iconUrl: A URL pointing to an icon image.

tags: A list of tags used to filter accelerators.

Accelerator options

The list of options is passed to the UI to create input text boxes for each option.

The following option properties are used by both the UI and the engine.

name: Each option must have a unique, camelCase name. The option value entered by a
user is made available as a SPeL variable name. For example, #deploymentType.

You can specify your own default name by including:

options:

- name: projectName

label: Name

inputType: text

defaultValue: myname

required: true

dataType: Data types that work with the UI are:

string

boolean

number

Custom types defined in the accelerator types section

Arrays of these such as [string], [number], and so on.

Most input types return a string, which is the default. Use Boolean values with checkbox.

defaultValue: This literal value pre-populates the option. Ensure that it’s type matches the
dataType. For example, use ["text 1", "text 2"] for the dataType [string]. Options
without a defaultValue can trigger a processing error if the user doesn’t provide a value for
that option.

validationRegex: When present, a regex validates the string representation of the option
value when set. It doesn’t apply when the value is blank. As a consequence, don’t use the

Tanzu Application Platform v1.5

VMware by Broadcom 717



regex to enforce prerequisites. See required for that purpose.

This regex is used in several layers in Application Accelerator, built using several
technologies, for example, JavaScript and Java. So refrain from using “exotic” regex
features. Also, the regex applies to portions of the value by default. That is, [a-z ]+
matches Hello world despite the capital H. To apply it to the whole value (or just start/end),
anchor it using ^ and $.

Finally, backslashes in a YAML string using double quotes must be escaped, so to match a
number, write validationRegex: "\\d+" or use another string style.

The following option properties are for UI purposes only.

label: A human-readable version of the name identifying the option.

description: A tooltip to accompany the input.

inputType:

text: The default input type.

textarea: Single text value with larger input allowing line breaks.

checkbox: Ideal for Boolean values or multi-value selection from choices.

select: Single-value selection from choices using a drop-down menu.

radio: Alternative single-value selection from choices using buttons.

choices: This is a list of predefined choices. Users can select from the list in the UI. Choices
are supported by checkbox, select, and radio. Each choice must have a text property for
the displayed text, and a value property for the value that the form returns for that choice.
The list is presented in the UI in the same order as it is declared in accelerator.yaml.

required: true forces users to enter a value in the UI.

dependsOn: This is a way to control visibility by specifying the name and optional value of
another input option. When the other option has a value exactly equal to value, or true if
no value is specified, then the option with dependsOn is visible. Otherwise, it is hidden.
Ensure that the value matches the dataType of the dependsOn option. For example, a multi-
value option (dataType = [string]) such as a checkbox uses [matched-value] to trigger
another option when matched-value (and only matched-value) is selected. See the following
section for more information about dependsOn.

DependsOn and multi-value dataType

dependsOn tests for strict equality, even for multi-valued options. This means that a multi-valued
option must not be used to trigger several other options unfolding, one for each value. Instead, use
several single-valued options:

Instead of

options:

  - name: toppings

    dataType: [string]

    inputType: checkbox

    choices:

      - value: vegetables

        text: Vegetables

      - value: meat

        text: Meat

        ...

  - name: vegType

    dependsOn:

      name: toppings

Tanzu Application Platform v1.5

VMware by Broadcom 718



      value: [vegetables] # or vegetables, this won't do what you want either

  - name: meatType

    dependsOn:

      name: toppings

      value: [meat]

  ...

do this:

options:

  - name: useVeggies

    dataType: boolean

    inputType: checkbox

    label: Vegetables

  - name: useMeat

    dataType: boolean

    inputType: checkbox

    label: Meat

  - name: vegType

    dependsOn:

      name: useVeggies

      value: true

  - name: meatType

    dependsOn:

      name: useMeat

      value: true

  ...

Examples

The later screenshot and accelerator.yaml file snippet that follows demonstrates each inputType.
You can also see the GitHub sample demo-input-types.

Tanzu Application Platform v1.5

VMware by Broadcom 719

https://github.com/vmware-tanzu/application-accelerator-samples/tree/main/demo-input-types


accelerator:

  displayName: Demo Input Types

  description: "Accelerator with options for each inputType"

  iconUrl: https://raw.githubusercontent.com/simple-starters/icons/master/icon-cloud.p

ng

  tags: ["demo", "options"]

  options:

  - name: text

    display: true

    defaultValue: Text value

  - name: toggle

    display: true

    dataType: boolean

    defaultValue: true

  - name: dependsOnToggle

    label: 'depends on toggle'

    description: Visibility depends on the value of the toggle option being true.

    dependsOn:

      name: toggle

    defaultValue: text value

  - name: textarea

    inputType: textarea

    display: true

    defaultValue: |

      Text line 1

      Text line 2

  - name: checkbox

    inputType: checkbox

    display: true

    dataType: [string]

    defaultValue:

      - value-2

    choices:

      - text: Checkbox choice 1

        value: value-1

      - text: Checkbox choice 2

        value: value-2

      - text: Checkbox choice 3

        value: value-3

  - name: dependsOnCheckbox

    label: 'depends on checkbox'

    description: Visibility depends on the checkbox option containing exactly value va

lue-2.

    dependsOn:

      name: checkbox

      value: [value-2]

    defaultValue: text value

  - name: select

    inputType: select

    display: true

    defaultValue: value-2

    choices:

      - text: Select choice 1

        value: value-1

      - text: Select choice 2

        value: value-2

      - text: Select choice 3

        value: value-3

Tanzu Application Platform v1.5

VMware by Broadcom 720



  - name: radio

    inputType: radio

    display: true

    defaultValue: value-2

    choices:

      - text: Radio choice 1

        value: value-1

      - text: Radio choice 2

        value: value-2

      - text: Radio choice 3

        value: value-3

engine:

  type: YTT

Engine

The engine section describes how to take the files from the accelerator root directory and
transform them into the contents of a generated project file.

The YAML notation here defines what is called a transform. A transform is a function on a set of
files. It uses a set of files as input. It produces a modified set of files as output derived from this
input.

Different types of transforms do different tasks:

Filtering the set of files: that is, removing, or keeping files that match certain criteria.

Changing the contents of files. For example, replacing some strings in the files.

Renaming or moving files: that is, changing the paths of the files.

The notation also provides the composition operators merge and chain, which enable you to create
more complex transforms by composing simpler transforms together.

The following is an example of what is possible. To learn the notation, see Introduction to
transforms.

Engine example

engine:

  include:

    ["**/*.md", "**/*.xml", "**/*.gradle", "**/*.java"]

  exclude:

    ["**/secret/**"]

  let:

    - name: includePoms

      expression:

        "#buildType == 'Maven'"

    - name: includeGradle

      expression: "#buildType == 'Gradle'"

  merge:

    - condition:

        "#includeGradle"

      include: ["*.gradle"]

    - condition: "#includePoms"

      include: ["pom.xml"]

    - include: ["**/*.java", "README.md"]

      chain:

        - type: ReplaceText

          substitutions:

            - text: "Hello World!"

              with: "#greeting"

Tanzu Application Platform v1.5

VMware by Broadcom 721



  chain:

    - type: RewritePath

      regex: (.*)simpleboot(.*)

      rewriteTo: "#g1 + #packageName + #g2"

    - type: ReplaceText

      substitutions:

        - text: simpleboot

          with: "#packageName"

  onConflict:

    Fail

Engine notation descriptions

This section describes the notations in the preceding example.

engine is the global transformation node. It produces the final set of files to be zipped and returned
from the accelerator. As input, it receives all the files from the accelerator repository root. The
properties in this node dictate how this set of files is transformed into a final set of files zipped as
the accelerator result.

engine.include filters the set of files, retaining only those matching a list of path patterns. This
ensures that that the accelerator only detects files in the repository that match the list of patterns.

engine.exclude further restricts which files are detected. The example ensures files in any directory
called secret are never detected.

engine.let defines additional variables and assigns them values. These derived symbols function
such as options, but instead of being supplied from a UI widget, they are computed by the
accelerator itself.

engine.merge executes each of its children in parallel. Each child receives a copy of the current set
of input files. These are files remaining after applying the include and exclude filters. Each of the
children therefore produces a set of files. All the files from all the children are then combined, as if
overlaid on top of each other in the same directory. If more than one child produces a file with the
same path, the transform resolves the conflict by dropping the file contents from the earlier child
and keeping the contents from the later child.

engine.merge.chain specifies additional transformations to apply to the set of files produced by this
child. In the example, ReplaceText is only applied to Java files and README.md.

engine.chain applies transformation to all files globally. The chain has a list of child transformations.
These transformations are applied after everything else in the same node. This is the global node.
The children in a chain are applied sequentially.

engine.onConflict specifies how conflict is handled when an operation, such as merging, produces
multiple files at the same path: - Fail raises an error when there is a conflict. - UseFirst keeps the
contents of the first file. - UseLast keeps the contents of the last file. - Append keeps both by using
cat <first-file> <second-file>.

Advanced accelerator use

Additional advanced features can be leveraged when writing an accelerator.yaml. For more
information see, Creating dynamic parameters using custom types

Application Accelerator sample accelerator.yaml file
This topic provides you with a sample accelerator file to get you started writing your own
accelerators in Tanzu Application Platform (commonly known as TAP).

accelerator:

  # The `accelerator` section serves to document how an accelerator is presented to th

Tanzu Application Platform v1.5

VMware by Broadcom 722



e

  # user in the accelerator web UI.

  # displayName: a descriptive human-readable name. Make this short so as to look nice

  #              in a list of many accelerators shown to a user.

  displayName: Hello Spring Boot

  # description: a more detailed description that a user can see if they took a closer

  #              look at a particular accelerator.

  description: Simple Hello World Rest Service based on Spring Boot

  # iconUrl: Optional, a nice colorful, icon for your accelerator to make it stand out 

visually.

  iconUrl: https://raw.githubusercontent.com/simple-starters/icons/master/icon-cloud.p

ng

  # tags: A list of classification tags. The UI allows users to search for accelerator

s based on tags

  tags:

    - Java

    - Spring

    - Function

  # options are parameters that can affect how the accelerator behaves.

  # The purpose of the options section is

  #   - to list all applicable options

  #   - describe each option in enough detail so that the UI can create

  #     a suitable input widget for it.

  options: # a list of options

    # a first option

    - name:

        greeting

        # name: each option must have a name.

        # This must be

        #   - camelCase

        #   - unique (i.e. no two options can have the same name)

        # This is like a variable used by the accelerator to refer to

        # and use the value during its execution.

        # This name is internal to your accelerator and is not shown to

        # the user.

      label:

        Greeting Message

        # A human readable version of the `name`. This is used to identify an

        # option to the user in the UI.

        # This should be short (so as not to look ugly in a ui with limited

        # space available for labeling the input widgets).

        # There are no limits on what characters can be used in the label (so spaces

        # are allowed).

      description:

        Greeting message displayed by the Hello World app.

        # An optional more detailed description / explanation that can be shown to

        # to the user in the UI when the short label alone might not be enough to unde

rstand

        # its purpose.

      dataType:

        string

        # type of data the accelerator expects during execution (this is

        # like the type of the 'variable'.

        # possible dataTypes are string, boolean, number or [string] (the latter meani

ng a

        # list of strings

      inputType:

        text

        # Related to the dataType but somewhat independent, this identifies the type

        # of widget shown in the ui. Available types are:

        # - text - the default

Tanzu Application Platform v1.5

VMware by Broadcom 723



        # - toggle (boolean on/off control)

        # - textarea (single text value with larger input that allows linebreaks)

        # - checkbox - multivalue selection from choices

        # - select - single value selection from choices

        # - radio - alternative single value selection from choices

        # - tag - multivalue input ui for entering single-word tags

      required: true

      defaultValue: Hello Accelerator

    # second option:

    - name: packageName

      label: "Package Name"

      description: Name of Java package

      dataType: string

      inputType: text

      defaultValue: somepackage

    # another option:

    - name: buildType

      label: Build Type

      description: Choose whether to use Maven or Gradle to build the project.

      dataType: string

      inputType: select

      choices:

        - value: Maven

          text: Maven (pom.xml)

        - value: Gradle

          text: Gradle (build.gradle)

# The 'engine' section describes how to take the files from the accelerator

# repo root folder and 'transform' them into the contents of a generated project / zi

p.

# transformation operate on the files as a set and can do things like:

# - filtering the set of files (i.e. removing / keeping only files that match certain 

criteria)

# - changing the contents of a file (e.g. replacing some strings in them)

# - renaming or moving files (changing the paths of the files)

engine:

  # this is the 'global' transformation node. It produces the final set of

  # files to be zipped and returned from the accelerator.

  # As input it receives all the files from the accelerator repo root.

  # The properties in this node dictate how this set of files is

  # transformed into a final set of files to zip up as the accelerator

  # result.

  include:

    ["**/*.md", "**/*.xml", "**/*.gradle", "**/*.java"]

    # This globally defined `include` filters the set of files

    # retaining only those matching a given list of path patterns.

    # This can ensure that only files in the repo matching the list of

    # patterns will be seen / considered by the accelerator.

  exclude:

    ["**/secret/**"]

    # This globally defined `exclude` further restricts what files are considered.

    # This example ensures files in any directory called `secret` are never considere

d.

  # Under 'let' you can define additional variables and assign them values

  # These 'derived symbols' function much like options, but instead of

  # being supplied from a UI widget, they are computed by the accelerator itself.

  let:

    - name: includePoms # name of a symbol, must be camelCase

      expression:

        "#buildType == 'Maven'" # <- SpEL expression given as a string. You must take 

care to use

        # proper quotes to avoid yaml treating '#' as starting a comment.

Tanzu Application Platform v1.5

VMware by Broadcom 724



    - name: includeGradle

      expression: "#buildType == 'Gradle'"

  merge: # This merge section executes each of its children 'in parallel'.

    # Each child receives a copy of the current set of input files.

    # (i.e. the files that are remaining after considering the `include` and `exclude

`.

    # Each of the children thus produces a set of files.

    # Merge then combines all the files from all the children, as if by overlaying the

m on top of each other

    # in the same directory. If more than one child produces a file with the same pat

h,

    # this 'conflict' is resolved by dropping the file contents from the earlier child

    # and keeping only the later one.

    # merge child 1: this child node wants to contribute 'gradle' files to the final r

esult

    - condition:

        "#includeGradle" # this child is deactivated if the Gradle option was not sele

cted by the user

        # A deactivated child doesn't contribute anything to the final result.

      include: ["*.gradle"] # this child only focusses on gradle files (ignoring all o

ther files)

    # merge child 2: this child wants to contribute 'pom' files to the final result

    - condition: "#includePoms"

      include: ["pom.xml"]

    # merge child 3: this child wants to contribute Java code and README.md to the fin

al result

    - include: ["**/*.java", "README.md"]

      # Using: chain you can specify additional transformations to be applied to the s

et

      # of files produced by this child (i.e. the `ReplaceText` below is only applied 

to .java files and README.md)

      chain:

        - type: ReplaceText

          substitutions:

            - text: "Hello World!"

              with: "#greeting"

  chain:

    # Globally specified chain, works like the one `from merge child 3`. But because i

t is global, it

    # applies transformation to all files globally.

    #

    # The chain has a list of child transformations. These transformation are applied 

after everything else

    # in the same node (here we are in the 'global node').

    #

    # The children in a chain are applied sequentially.

    - type: RewritePath

      regex: (.*)simpleboot(.*)

      rewriteTo: "#g1 + #packageName + #g2" # SpEL expression. You can use '#g1' and 

'#g2' to reference 'match groups'

    - type: ReplaceText

      substitutions:

        - text: simpleboot

          with: "#packageName"

  onConflict:

    Fail # other values are `UseFirst`, `UseLast`, or `Append`

    # when merging (or really any operation) produces multiple files at the same path

    # this defines how that conflict is handled.

    # Fail: raise an error when conflict happens

    # UseFirst: keep the contents of the first file

    # UseLast: keep the contents of the last file

    # Append: keep both as by using `cat <first-file> <second-file>`).

Use transforms in Application Accelerator

Tanzu Application Platform v1.5

VMware by Broadcom 725



This topic tells you about using transforms with Application Accelerator.

When the accelerator engine executes the accelerator, it produces a ZIP file containing a set of
files. The purpose of the engine section is to describe precisely how the contents of that ZIP file is
created.

accelerator:

  ...

engine:

  <transform-definition>

Why transforms?

When you run an accelerator, the contents of the accelerator produce the result. It is made up of
subsets of the files taken from the accelerator <root> directory and its subdirectories. You can copy
the files as is, or transform them in a number of ways before adding them to the result.

The YAML notation in the engine section defines a transformation that takes as input a set of files
(in the <root> directory of the accelerator) and produces as output another set of files, which are
put into the ZIP file.

Every transform has a type. Different types of transform have different behaviors and different
YAML properties that control precisely what they do.

In the following example, a transform of type Include is a filter. It takes as input a set of files and
produces as output a subset of those files, retaining only those files whose path matches any one of
a list of patterns.

If the accelerator has something like this:

engine:

  type: Include

  patterns: ['**/*.java']

This accelerator produces a ZIP file containing all the .java files from the accelerator <root> or its
subdirectories but nothing else.

Transforms can also operate on the contents of a file, instead of merely selecting it for inclusion.

For example:

type: ReplaceText

substitutions:

- text: hello-fun

  with: "#artifactId"

This transform looks for all instances of a string hello-fun in all its input files and replaces them with
an artifactId, which is the result of evaluating a SpEL expression.

Combining transforms

From the preceding examples, you can see that transforms such as ReplaceText and Include are
too primitive to be useful by themselves. They are meant to be the building blocks of more
complex accelerators.

To combine transforms, provide two operators called Chain and Merge. These operators are
recursive in the sense that they compose a number of child transforms to create a more complex
transform. This allows building arbitrarily deep and complex trees of nested transform definitions.

Tanzu Application Platform v1.5

VMware by Broadcom 726



The following example shows what each of these two operators does and how they are used
together.

Chain

Because transforms are functions whose input and output are of the same type (a set of files), you
can take the output of one function and feed it as input to another. This is what Chain does. In
mathematical terms, Chain is function composition.

You might, for example, want to do this with the ReplaceText transform. Used by itself, it replaces
text strings in all the accelerator input files. What if you wanted to apply this replacement to only a
subset of the files? You can use an Include filter to select only a subset of files of interest and chain
that subset into ReplaceText.

For example:

type: Chain

transformations:

- type: Include

  patterns: ['**/pom.xml']

- type: ReplaceText

  substitutions:

  - text: hello-fun

    with: "#artifactId"

Merge

Chaining Include into ReplaceText limits the scope of ReplaceText to a subset of the input files. It
also eliminates all other files from the result.

For example:

engine:

  type: Chain

  transformations:

  - type: Include

    patterns: ['**/pom.xml']

  - type: ReplaceText

    substitutions:

    - text: hello-fun

      with: "#artifactId"

The preceding accelerator produces a ZIP file that only contains pom.xml files and nothing else.

What if you also wanted other files in that ZIP? Perhaps you want to include some Java files as well,
but don’t want to apply the same text replacement to them.

You might be tempted to write something such as:

engine:

  type: Chain

  transformations:

  - type: Include

    patterns: ['**/pom.xml']

  - type: ReplaceText

    ...

  - type: Include

    patterns: ['**/*.java']

However, that doesn’t work. If you chain non-overlapping includes together like this, the result is
an empty result set. The reason is that the first include retains only pom.xml files. These files are fed

Tanzu Application Platform v1.5

VMware by Broadcom 727



to the next transform in the chain. The second include only retains .java files, but because there
are only pom.xml files left in the input, the result is an empty set.

This is where Merge comes in. A Merge takes the outputs of several transforms executed
independently on the same input sourceset and combines or merges them together into a single
sourceset.

For example:

engine:

  type: Merge

  sources:

  - type: Chain

    - type: Include

      patterns: ['**/pom.xml']

    - type: ReplaceText

      ...

  - type: Include

    patterns: ['**/*.java']

The preceding accelerator produces a result that includes both:

The pom.xml files with some text replacements applied to them.

Verbatim copies of all the .java files.

Shortened notation

It becomes cumbersome and verbose to combine transforms such as Include, Exclude, and
ReplaceText with explicit Chain and Merge operators. Also, there is a common composition pattern
to using them. Specifically, select an interesting subset using includes and excludes, apply a chain
of additional transformations to the subset, and merge the result with the results of other
transforms. That is why there is a transform known the Combo transform that combines Include,
Exclude, Merge, and Chain.

For example:

type: Combo

include: ['**/*.txt', '**/*.md']

exclude: ['**/secret/*']

merge:

- <transform-definition>

- ...

chain:

- <transform-definition>

- ...

Each of the properties in this Combo transform is optional if you specify at least one.

Notice how each of the properties include, exclude, merge, and chain corresponds to the name of
a type of transform, only spelled with lowercase letters.

If you specify only one of the properties, the Combo transform behaves exactly as if you used that
type of transformation by itself.

For example:

merge: ...

Behaves the same as:

type: Merge

Tanzu Application Platform v1.5

VMware by Broadcom 728



sources: ...

When you do specify multiple properties at the same time, the Combo transform composes them
together and combines Merge and Chain.

For example:

include: ['**/*.txt', '**.md']

chain:

- type: ReplaceText

  ...

Is the same as:

type: Chain

transformations:

- type: Include

  patterns: ['**/*.txt', '**.md']

- type: Chain

  transformations:

  - type: ReplaceText

    ...

When you use all of the properties of Combo at once:

include: I

exclude: E

merge:

- S1

- S2

chain:

- T1

- T2

This is equivalent to:

type: Chain

transformations:

- type: Include

  patterns: I

- type: Exclude

  patterns: E

- type: Merge

  sources:

  - S1

  - S2

- T1

- T2

A Combo of one?

You can use the Combo as a convenient shorthand for a single type of annotation. However, though
you can use it to combine multiple types, and though that is its main purpose, that doesn’t mean
you have to.

For example:

include: ["**/*.java"]

This is a Combo transform (remember, type: Combo is optional), but rather than combining multiple
types of transforms, it only defines the include property. This makes it behaves exactly as an
Include transform:

Tanzu Application Platform v1.5

VMware by Broadcom 729



type: Include

patterns: ["**/*.java"]

It is usually more convenient to use a Combo transform to denote a single Include, Exclude, Chain,
or Merge transform, because it is slightly shorter to write it as a Combo than writing it with an explicit
type: property.

A common pattern with merge transforms

It is a common and useful pattern to use merges with overlapping contents to apply a
transformation to a subset of files and then replace these changed files within a bigger context.

For example:

engine:

  merge:

  - include: ["**/*"]

  - include: ["**/pom.xml"]

    chain:

    - type: ReplaceText

        subsitutions: ...

The preceding accelerator copies all files from accelerator <root> while applying some text
replacements only to pom.xml files. Other files are copied verbatim.

Here in more detail is how this works:

Transform A is applied to the files from accelerator <root>. It selects all files, including
pom.xml files.

Transform B is also applied to the files from accelerator <root>. Again, Merge passes the
same input independently to each of its child transforms. Transform B selects pom.xml files
and replaces some text in them.

So both Transform A and Transform B output pom.xml files. The fact that both result sets contain
the same file, and with different contents in them in this case, is a conflict that has to be resolved.
By default, Combo follows a simple rule to resolve such conflicts: take the contents from the last
child. Essentially, it behaves as if you overlaid both result sets one after another into the same
location. The contents of the latter overwrite any previous files placed there by the earlier.

In the preceding example, this means that while both Transform A and Transform B produce
contents for pom.xml, the contents from Transform B “wins.” So you get the version of the pom.xml
that has text replacements applied to it rather than the verbatim copy from Transform A.

Conditional transforms

Every <transform-definition> can have a condition attribute.

  - condition: "#k8sConfig == 'k8s-resource-simple'"

    include: [ "kubernetes/app/*.yaml" ]

    chain:

      - type: ReplaceText

        substitutions:

        - text: hello-fun

          with: "#artifactId"

When a transform’s condition is false, that transform is deactivated. This means it is replaced by a
transform that does nothing. However, doing nothing can have different meanings depending on
the context:

Tanzu Application Platform v1.5

VMware by Broadcom 730



When in the context of a Merge, a deactivated transform behaves like something that
returns an empty set. A Merge adds things together using a kind of union; adding an empty
set to union essentially does nothing.

When in the context of a 'Chain however, a deactivated transform behaves like the
identity function instead (that is, lambda (x) => x). When you chain functions together, a
value is passed through all functions in succession. So each function in the chain has the
chance to do something by returning a different modified value. If you are a function in a
chain, to do nothing means to return the input you received unchanged as your output.

If a transform is deactivated in the context of your accelerator definition, it evaluates to false and is
ignored. Your accelerator behaves as if you deleted or commented out that transform’s YAML text
from the accelerator definition file.

The following examples illustrate both cases.

Conditional ‘Merge’ transform

This example, transform A, has a conditional transform in a Merge context:

merge:

  - condition: "#k8sConfig == 'k8s-resource-simple'"

    include: [ "kubernetes/app/*.yaml" ]

    chain:

      ...

  - include: [ "pom.xml" ]

    chain:

      ...

If the condition of transform A is false, it is replaced with an empty set because it is used in a
Merge context. This has the same effect as if the whole of transform A was deleted or commented
out:

merge:

  - include: [ "pom.xml" ]

    chain:

      ...

In this example, if the condition is false, only pom.xml file is in the result.

Conditional ‘Chain’ transform

In the following example, some conditional transforms are used in a Chain context:

merge:

- include: [ '**/*.json' ]

  chain:

  - type: ReplaceText

    condition: '#customizeJson'

    substitutions: ...

  - type: JsonPrettyPrint

    condition: '#prettyJson'

    indent: '#jsonIndent'

In the preceding example, both transform A and transform B are conditional and used in a Chain
context. Transform A is chained after the include transform. Whereas transform B is chained after
transform A. When either of these conditions is false, the corresponding transform behaves like
the identity function. Namely, whatever set of files it receives as input is exactly what it returns as
output.

Tanzu Application Platform v1.5

VMware by Broadcom 731



For example, if transform A’s condition is false, it behaves as if transform A isn’t there.
Transform A is chained after include so it receives the include’s result, returns it unchanged, and
this is passed to transform B. In other words, the result of the include is passed as is to transform
B.

A small gotcha with using conditionals in merge transforms

As mentioned earlier, it is a useful pattern to use merges with overlapping contents. But you must
be careful using this in combination with conditional transforms.

For example:

engine:

  merge:

  - include: ["**/*"]

  - include: ["**/pom.xml"]

    chain:

    - type: ReplaceText

      subsitutions: ...

If you only want to include pom files, if you select a useMaven option, when you add a ‘condition’ to
transform B to deactivate it, the final result still contains pom.xml files.:

engine:

  merge:

  - include: "**/*"

  - condition: '#useMaven'

    include: ["**/pom.xml"]

    chain:

    - type: ReplaceText

      subsitutions: ...

This is because if a transform is deactivated in the context of your accelerator definition, it evaluates
to false and is ignored. So when #useMaven is false, the example reduces to:

engine:

  merge:

  - include: ["**/*"]

This accelerator copies all files from accelerator <root>, including pom.xml.

There are several ways to avoid this. One is to ensure the pom.xml files are not included in
transform A by explicitly excluding them:

  ...

  - include: ["**/*"]

    exclude: ["**/pom.xml"]

  ...

Another way is to apply the exclusion of pom.xml conditionally in a Chain after the main transform:

engine:

  merge:

  - include: ["**/*"]

  - include: ["**/pom.xml"]

    chain:

    - type: ReplaceText

        subsitutions: ...

  chain:

  - condition: '!#useMaven'

    exclude: ['**/pom.xml']

Tanzu Application Platform v1.5

VMware by Broadcom 732



Merge conflict

The representation of the set of files upon which transforms operate is richer than what you can
physically store on a file system. A key difference is that in this case, the set of files allows for
multiple files with the same path to exist at the same time. When files are initially read from a
physical file system, or a ZIP file, this situation does not arise. However, as transforms are applied to
this input, it can produce results that have more than one file with the same path and yet different
contents.

Earlier examples illustrated this happening through a merge operation. For example:

merge:

- include: ["**/*"]

- include: ["**/pom.xml"]

  chain:

  - type: ReplaceText

    subsitutions: ...

The result of the preceding merge is two files with path pom.xml, assuming there was a pom.xml file
in the input. Transform A produces a pom.xml that is a verbatim copy of the input file. Transform B
produces a modified copy with some text replaced in it.

It is impossible to have two files on a disk with the same path. Therefore, this conflict must be
resolved before you can write the result to disk or pack it into a ZIP file.

As the example shows, merges are likely to give rise to these conflicts, so you might call this a
“merge conflict.” However, such conflicts can also arise from other operations. For example,
RewritePath:

type: RewritePath

regex: '.*.md'

rewriteTo: "'docs/README.md'"

This example renames any .md file to docs/README.md. Assuming the input contains more than one
.md file, the output contains multiple files with path docs/README.md. Again, this is a conflict,
because there can only be one such file in a physical file system or ZIP file.

Resolving merge conflicts

By default, when a conflict arises, the engine doesn’t do anything with it. Our internal
representation for a set of files allows for multiple files with the same path. The engine carries on
manipulating the files as is. This isn’t a problem until the files must be written to disk or a ZIP file. If
a conflict is still present at that time, an error is raised.

If your accelerator produces such conflicts, they must be resolved before writing files to disk.
VMware provides the UniquePath transform. This transform allows you to specify what to do when
more than one file has the same path. For example:

chain:

- type: RewritePath

  regex: '.*.md'

  rewriteTo: "'docs/README.md'"

- type: UniquePath

  strategy: Append

The result of the above transform is that all .md files are gathered up and concatenated into a single
file at path docs/README.md. Another possible resolution strategy is to keep only the contents of
one of the files. See Conflict Resolution.

Tanzu Application Platform v1.5

VMware by Broadcom 733



Combo transform includes some convenient built-in support for conflict resolution. It automatically
selects the UseLast strategy if none is explicitly supplied. You rarely, if ever, need to specify a
conflict resolution strategy.

File ordering

As mentioned earlier, our set of files representation is richer than the files on a typical file system in
that it allows for multiple files with the same path. Another way in which it is richer is that the files
in the set are ordered. That is, a FileSet is more like an ordered list than an unordered set.

In most situations, the order of files in a FileSet doesn’t matter. However, in conflict resolution it is
significant. If you look at the preceding RewritePath example again, you might wonder about the
order in which the various .md files are appended to each other. This ordering is determined by the
order of the files in the input set.

So what is that order? In general, when files are read from disk to create a FileSet, you cannot
assume a specific order. Yes, the files are read and processed in a sequential order, but the actual
order is not well defined. It depends on implementation details of the underlying file system. The
accelerator engine therefore does not ensure a specific order in this case. It only ensures that it
preserves whatever ordering it receives from the file system, and processes files in accord with that
order.

If you do not want the file order produced from reading directly from a file system and want to
control the order of the sections in the README.md file, change the order of the merge children.
Merge processes its children in order and reflects this order in the resulting output

For example:

chain:

  - merge:

      - include: ['README.md']

      - include: ['DEPLOYMENT.md']

        chain:

          - type: RewritePath

            rewriteTo: "'README.md'"

  - type: UniquePath

    strategy: Append

In this example, README.md from the first child of merge comes before DEPLOYMENT.md from the
second child of merge.

Next steps
This introduction focused on an intuitive understanding of the <transform-definition> notation.
This notation defines precisely how the accelerator engine generates new project content from the
files in the accelerator root.

For more information, see:

An exhaustive Reference of all built-in transform types

A sample, commented accelerator.yaml to learn from a concrete example

Use custom types in Application Accelerator
This topic tells you how to declare new types in accelerator.yaml

Use these types for options declaration, in addition to the built-in types string, number, and
boolean.

Tanzu Application Platform v1.5

VMware by Broadcom 734



In accelerator.yaml, use the types entry (inside the top-level accelerator section) to define
custom types.

The name must be an initial capital letter.

In the following example, the struct type definition is syntactically equivalent to a sequence of
option definitions:

accelerator:

  options:

    ...

  types:

    - name: Task

      struct:

        - name: title

          dataType: string

          label: Title

          description: A sample title

        - name: details

          label: Task details

          description: Enter the task details

        - name: done

          dataType: boolean

          label: Done?

          defaultValue: false

This example creates a new type that is available for the dataType property of any option. For
example,

accelerator:

  options:

    - name: myTask

      dataType: Task

  types:

    ...

UIs render similar to the following:

and associate the entered values to the myTask top-level name, resulting in the following example
values submission (here represented using JSON notation):

{

  "myTask": { // Note the use of a nested object here

    "title": "Get job done!",

    "details": "Needs this asap",

    "done": false

Tanzu Application Platform v1.5

VMware by Broadcom 735



  }

}

The type of the myTask value is object (in Javascript/JSON parlance) and Map<String, ?> when
seen from the Java engine side.

The earlier example is technically possible with the custom types feature, but brings little benefit
over having three options named to achieve the same result, for example, myTaskTitle,
myTaskDetails, and myTaskDone. The value of custom types is when they are used in sequence
types, allowing you to enter an unbounded list of structured data:

accelerator:

  options:

    - name: myTasks

      dataType: [Task]

  types:

    ...

Which might result in the following example submission (JSON):

{

  "myTasks": [ // Note the use of JSON array

    {  // with elem 0 being an object

      "details": "something",

      "done": true,

      "title": "The Title"

    },

    {  // and elem 1 as well, etc

      "details": "something else",

      "done": false,

      "title": "The other Title"

    }

  ]

}

Limitations
A struct custom type declaration is made of an ordered series of option definitions. The support
and semantics for individual text boxes of option-definition-like elements when used in the type
declaration are stated in the following example.

When referencing a custom type in an option definition, some previously valid properties of an
option definition might become irrelevant or unsupported. This is stated in the following example:

accelerator:

  types:

    - name: MyType

      struct:

        - name: someField   # the "option name" will become a 'property' of the newly 

created type

          dataType: string  # is the type of this single property. Typically, will be 

a simple

                            # scalar type like string or number

          defaultValue: foo # supported and is the default if not overridden at usage 

point by the option's defaultValue

          description: something # will become the description for the field's widget

          choices:               # supported

            - value: v

              text:  t

          validationRegex:       # validates that single property

          label:                 # will become the "title" of the widget

          inputType:             # supported

Tanzu Application Platform v1.5

VMware by Broadcom 736



          required:              # supported

          dependsOn:             # supported against other properties of THIS struct

    .. other fields

  options:

    - name: anOptionThatUsesACustomType

      dataType: MyType

      defaultValue: # supported, should then be an object (or array thereof)

      description:  # supported, is the description of the whole option (as opposed to 

individual fields)

      label:        # supported, idem

      choices:      # NOT supported

        - value: v

          text:  t

      validationRegex: # NOT supported

      inputType:       # NOT supported

      required:        # technically supported, useless in practice

      dependsOn:       # OK to depend on another option

Interaction with SpEL

Everywhere that SpEL is used in the engine syntax, accelerator authors might use SpEL syntax for
accessing properties or array elements:

  #myTasks[2]['done']

Do not use array indexing either with a literal number or a variable, as the purpose of the list of the
custom types feature is that you don’t know the data length in advance. For more information
about idiomatic uses of repeated structured data, see Loop Transform.

Interaction with Composition

Using composition alongside custom types has the following advantages/disadvantages:

You might want to leverage types declared in an imported fragment

There might be a type name clash between a host accelerator/fragment and an imported
fragment, because the imported fragment author is unaware of how the fragment is to be
used.

For more information about the syntax to customize the imported types names, see Use fragments
in Application Accelerator.

Use fragments in Application Accelerator

This topic tells you how to use fragments in Application Accelerator.

Introduction

Despite their benefits, writing and maintaining, accelerators can become repetitive and verbose as
new accelerators are added. Some create a project different from the next with similar aspects,
requiring some form of copy-paste.

To alleviate this concern, Application Accelerators support a feature named Composition that allows
the re-use of parts of an accelerator, called fragments.

Introducing fragments

A fragment looks exactly the same as an accelerator:

Tanzu Application Platform v1.5

VMware by Broadcom 737



It is made of a set of files.

It contains an accelerator.yaml descriptor with options, declarations, and a root transform.

There are differences however. Namely:

Fragments are declared to the system differently. They are filed as fragment custom
resources.

They deal with files differently. Because fragments deal with their own files and files from
the accelerator using them, they use dedicated conflict resolution strategies (more on this
later).

Fragments may be thought of as “functions” in programming languages. After being defined and
referenced, they are “called” at various points in the main accelerator. The composition feature is
designed with ease of use and “common use first” in mind, so these “functions” are typically called
with as little noise as possible. You can also call them complex or different values.

Composition relies on two building blocks that play hand in hand:

The imports section at the top of an accelerator manifest.

The, InvokeFragment transform, to be used alongside any other transform.

| The imports section explained

To be usable in composition, a fragment MUST be imported into the dedicated section of an
accelerator manifest:

accelerator:

  name: my-awesome-accelerator

  options:

    - name: flavor

      dataType: string

      defaultValue: Strawberry

  imports:

    - name: my-first-fragment

    - name: another-fragment

engine:

  ...

The effect of importing a fragment this way is twofold:

It makes its files available to the engine (therefore importing a fragment is required).

It exposes all of its options as options of the accelerator as if they were defined by the
accelerator itself.

So in the earlier example, if the my-first-fragment fragment had the following accelerator.yaml
file:

accelerator

  name: my-first-fragment

  options:

    - name: optionFromFragment

      dataType: boolean

      description: this option comes from the fragment

...

Then it is as if the my-awesome-accelerator accelerator defined it:

accelerator:

  name: my-awesome-accelerator

  options:

Tanzu Application Platform v1.5

VMware by Broadcom 738



    - name: flavor

      dataType: string

      defaultValue: Strawberry

    - name: optionFromFragment

      dataType: boolean

      description: this option comes from the fragment

  imports:

    - name: my-first-fragment

    - name: another-fragment

engine:

  ...

All the metadata about options (type, default value, description, choices if applicable, etc.) come
along when imported.

Because of this, users are prompted for a value for those options that come from fragments, as if
they were options of the accelerator.

Using the InvokeFragment Transform

The second part at play in the composition is the InvokeFragment Transform.

As with any other transform, it may be used anywhere in the engine tree and receives files that are
“visible” at that point. Those files, alongside those that make up the fragment, are made available to
the fragment logic. If the fragment wants to choose between two versions of a file for a path, two
new conflict resolution strategies are available: FavorForeign and FavorOwn.

The behavior of the InvokeFragment transform is very straightforward: after having validated options
that the fragment expects (and maybe after having set default values for options that support one),
it executes the whole transform of the fragment as if it was written in place of InvokeFragment.

See the InvokeFragment reference page for more explanations, examples, and configuration
options. This topic now focuses on additional features of the imports section that are seldom used
but still available to cover more complex use cases.

Back to the imports section

The complete definition of the imports section is as follows, with features in increasing order of
“complexity”:

accelerator:

  name: ...

  options:

    - name: ...

    ...

  imports:

    - name: some-fragment

    - name: another-fragment

      expose:

        - name: "*"

      exposeTypes:

        - name: "*"

    - name: yet-another-fragment

      expose:

        - name: someOption

        - name: someOtherOption

          as: aDifferentName

      exposeType:

        - name: SomeType

Tanzu Application Platform v1.5

VMware by Broadcom 739



        - name: SomeOtherType

          as: ADifferentName

engine:

  ...

As shown earlier, the imports section calls a list of fragments to import. By default, all their options
and types become options/type of the accelerator. Those options appear after the options defined
by the accelerator, in the order the fragments are imported in.

It is even possible for a fragment to import another fragment, the semantics being the same as
when an accelerator imports a fragment. This is a way to break apart a fragment even further if
needed.

When importing a fragment, you can select which options of the fragment to make available as
options of the accelerator. This feature should only be used when a name clash arises in option
names.

The semantics of the expose block are as follows:

For every name/as pair, don’t use the original (name) of the option but instead, use the alias
(as). Other metadata about the option is left unchanged.

If the special name: "*" (which is NOT a legit option name usually) appears, all imported
option names that are not remapped (the index at which the * appears in the YAML list is
irrelevant) might be exposed with their original name.

The default value for expose is [{name: "*"}], that is, by default exposes all options with
their original name.

As soon as a single remap rule appears, the default is overridden. For example, to override
some names AND expose the others unchanged, the * must be explicitly re-added.

To explicitly un-expose ALL options from an imported fragment, an empty array may be
used and overrides the default: expose: [].

Similarly, you can also select which custom types of the fragment to make available as types of the
accelerator. This feature should only be used when a name clash arises in types names.

The semantics of the exposeTypes block are as follows:

For every name/as pair, don’t use the original (name) of the type but instead, use the alias
(as). Options that used the original name are automatically “rewritten” to use the new
name.

If the special name: "*" appears, which is NOT usually a legit type name, all imported other
type names that are not remapped are exposed with their original name. The index at
which the * appears in the YAML list is irrelevant.

The default value for exposeTypes is [{name: "*"}], that is, by default exposes all types with
their original name.

As soon as a single remap rule appears, the default is overridden. For example, to override
some names AND expose the others unchanged, the * must be explicitly re-added.

To explicitly un-expose ALL types from an imported fragment, an empty array may be used,
which overrides the default: exposeTypes: [].

Using dependsOn in the imports section

Lastly, as a convenience for the conditional use of fragments, you can make an exposed imported
option depend on another option, as in the following example:

Tanzu Application Platform v1.5

VMware by Broadcom 740



  imports:

    - name: tap-initialize

      expose:

        - name: gitRepository

          as: gitRepository

          dependsOn:

            name: deploymentType

            value: workload

        - name: gitBranch

          as: gitBranch

          dependsOn:

            name: deploymentType

            value: workload

This plays well with the use of condition, as in the following example:

...

engine:

  ...

    type: InvokeFragment

    condition: "#deploymentType == 'workload'"

    reference: tap-initialize```

Discovering fragments using Tanzu CLI accelerator plug-in

Using the accelerator plug-in for Tanzu CLI, you can view a list of available fragments. Run:

tanzu accelerator fragment list

To see a list of available accelerator fragments. For example:

NAME                                 READY   REPOSITORY

app-sso-client                       true    source-image: dev.registry.tanzu.vmware.c

om/app-accelerator/fragments/app-sso-client@sha256:ed5cf5544477d52d4c7baf3a76f71a11298

7856e77558697112e46947ada9241

java-version                         true    source-image: dev.registry.tanzu.vmware.c

om/app-accelerator/fragments/java-version@sha256:df99a5ace9513dc8d083fb5547e2a24770dfb

08ec111b6591e98497a329b969d

live-update                          true    source-image: dev.registry.tanzu.vmware.c

om/app-accelerator/fragments/live-update@sha256:c2eda015b0f811b0eeaa587b6f2c5410ac87d4

0701906a357cca0decb3f226a4

spring-boot-app-sso-auth-code-flow   true    source-image: dev.registry.tanzu.vmware.c

om/app-accelerator/fragments/spring-boot-app-sso-auth-code-flow@sha256:78604c96dd52697

ea0397d3933b42f5f5c3659cbcdc0616ff2f57be558650499

tap-initialize                       true    source-image: dev.registry.tanzu.vmware.c

om/app-accelerator/fragments/tap-initialize@sha256:7a3ae8f9277ef633200622dbf9d0f5a07de

a25351ac3dbf803ea2fa759e3baac

tap-workload                         true    source-image: dev.registry.tanzu.vmware.c

om/app-accelerator/fragments/tap-workload@sha256:8056ad9f05388883327d9bbe457e6a0122dc4

52709d179f683eceb6d848338d0

The tanzu accelerator fragment get <fragment-name> command shows all the options defined for
the fragment and also any accelerators or other fragments that import this fragment. Run:

tanzu accelerator fragment get java-version

The following output is displayed:

name: java-version

namespace: accelerator-system

displayName: Select Java Version

Tanzu Application Platform v1.5

VMware by Broadcom 741



ready: true

options:

- choices:

  - text: Java 8

    value: "1.8"

  - text: Java 11

    value: "11"

  - text: Java 17

    value: "17"

  defaultValue: "11"

  inputType: select

  label: Java version to use

  name: javaVersion

  required: true

artifact:

  message: Resolved revision: dev.registry.tanzu.vmware.com/app-accelerator/fragments/

java-version@sha256:df99a5ace9513dc8d083fb5547e2a24770dfb08ec111b6591e98497a329b969d

  ready: true

  url: http://source-controller-manager-artifact-service.source-system.svc.cluster.loc

al./imagerepository/accelerator-system/java-version-frag-97nwp/df99a5ace9513dc8d083fb5

547e2a24770dfb08ec111b6591e98497a329b969d.tar.gz

imports:

  None

importedBy:

  accelerator/java-rest-service

  accelerator/java-server-side-ui

  accelerator/spring-cloud-serverless

This shows the options and importedBy with a list of three accelerators that import this fragment.

Correspondingly, the tanzu accelerator get <accelerator-name> shows the fragments that an
accelerator imports. Run:

tanzu accelerator get java-rest-service

The following output is shown:

name: java-rest-service

namespace: accelerator-system

description: A Spring Boot Restful web application including OpenAPI v3 document gener

ation and database persistence, based on a three-layer architecture.

displayName: Tanzu Java Restful Web App

iconUrl: data:image/png;base64,...abbreviated...

source:

  image: dev.registry.tanzu.vmware.com/app-accelerator/samples/java-rest-service@sha25

6:c098bb38b50d8bbead0a1b1e9be5118c4fdce3e260758533c38487b39ae0922d

  secret-ref: [{reg-creds}]

tags:

- java

- spring

- web

- jpa

- postgresql

- tanzu

ready: true

options:

- defaultValue: customer-profile

  inputType: text

  label: Module artifact name

  name: artifactId

  required: true

- defaultValue: com.example

  inputType: text

  label: Module group name

  name: groupId

Tanzu Application Platform v1.5

VMware by Broadcom 742



  required: true

- defaultValue: com.example.customerprofile

  inputType: text

  label: Module root package

  name: packageName

  required: true

- defaultValue: customer-profile-database

  inputType: text

  label: Database Instance Name this Application will use (can be existing one in

    the cluster)

  name: databaseName

  required: true

- choices:

  - text: Maven (https://maven.apache.org/)

    value: maven

  - text: Gradle (https://gradle.org/)

    value: gradle

  defaultValue: maven

  inputType: select

  name: buildTool

  required: true

- choices:

  - text: Flyway (https://flywaydb.org/)

    value: flyway

  - text: Liquibase (https://docs.liquibase.com/)

    value: liquibase

  defaultValue: flyway

  inputType: select

  name: databaseMigrationTool

  required: true

- dataType: boolean

  defaultValue: false

  label: Expose OpenAPI endpoint?

  name: exposeOpenAPIEndpoint

- defaultValue: ""

  dependsOn:

    name: exposeOpenAPIEndpoint

  inputType: text

  label: System API Belongs To

  name: apiSystem

- defaultValue: ""

  dependsOn:

    name: exposeOpenAPIEndpoint

  inputType: text

  label: Owner of API

  name: apiOwner

- defaultValue: ""

  dependsOn:

    name: exposeOpenAPIEndpoint

  inputType: text

  label: API Description

  name: apiDescription

- choices:

  - text: Java 8

    value: "1.8"

  - text: Java 11

    value: "11"

  - text: Java 17

    value: "17"

  defaultValue: "11"

  inputType: select

  label: Java version to use

  name: javaVersion

  required: true

- dataType: boolean

  defaultValue: true

Tanzu Application Platform v1.5

VMware by Broadcom 743



  dependsOn:

    name: buildTool

    value: maven

  inputType: checkbox

  label: Include TAP IDE Support for Java Workloads

  name: liveUpdateIDESupport

- defaultValue: dev.local

  dependsOn:

    name: liveUpdateIDESupport

  description: The prefix for the source image repository where source can be stored

    during development

  inputType: text

  label: The source image repository prefix to use when pushing the source

  name: sourceRepositoryPrefix

artifact:

  message: Resolved revision: dev.registry.tanzu.vmware.com/app-accelerator/samples/ja

va-rest-service@sha256:c098bb38b50d8bbead0a1b1e9be5118c4fdce3e260758533c38487b39ae0922

d

  ready: true

  url: http://source-controller-manager-artifact-service.source-system.svc.cluster.loc

al./imagerepository/accelerator-system/java-rest-service-acc-wcn8x/c098bb38b50d8bbead0

a1b1e9be5118c4fdce3e260758533c38487b39ae0922d.tar.gz

imports:

  java-version

  live-update

  tap-workload

The imports section at the end shows the fragments that this accelerator imports. The options
section shows all options defined for this accelerator. This includes all options defined in the
imported fragments, for example, the options for the Java version imported from the java-version
fragment.

Transforms reference

This topic provides you with a list and brief description of the available Application Accelerator
transforms in Tanzu Application Platform (commonly known as TAP).

Available transforms

You can use:

Combo as a shortcut notation for many common operations. It combines the behaviors of
many of the other transforms.

Include to select files to operate on.

Exclude to select files to operate on.

Merge to work on subsets of inputs and to gather the results at the end.

Chain to apply several transforms in sequence using function composition.

Let to introduce new scoped variables to the model.

InvokeFragment allows re-using various fragments across accelerators.

ReplaceText to perform simple token replacement in text files.

RewritePath to move files around using regular expression (regex) rules.

OpenRewriteRecipe to apply Rewrite recipes, such as package rename.

YTT to run the ytt tool on its input files and gather the result.

UseEncoding to set the encoding to use when handling files as text.

Tanzu Application Platform v1.5

VMware by Broadcom 744

https://docs.openrewrite.org/


UniquePath to decide what to do when several files end up on the same path.

Loop to iterate over a list and apply a transform for each element.

Provenance to generate a manifest of the accelerator run.

See also

Conflict Resolution

Transforms reference

This topic provides you with a list and brief description of the available Application Accelerator
transforms in Tanzu Application Platform (commonly known as TAP).

Available transforms

You can use:

Combo as a shortcut notation for many common operations. It combines the behaviors of
many of the other transforms.

Include to select files to operate on.

Exclude to select files to operate on.

Merge to work on subsets of inputs and to gather the results at the end.

Chain to apply several transforms in sequence using function composition.

Let to introduce new scoped variables to the model.

InvokeFragment allows re-using various fragments across accelerators.

ReplaceText to perform simple token replacement in text files.

RewritePath to move files around using regular expression (regex) rules.

OpenRewriteRecipe to apply Rewrite recipes, such as package rename.

YTT to run the ytt tool on its input files and gather the result.

UseEncoding to set the encoding to use when handling files as text.

UniquePath to decide what to do when several files end up on the same path.

Loop to iterate over a list and apply a transform for each element.

Provenance to generate a manifest of the accelerator run.

See also

Conflict Resolution

Combo transform

This topic tells you about the Application Accelerator Combo transform in Tanzu Application Platform
(commonly known as TAP).

The Combo transform combines the behaviors of Include, Exclude, Merge, Chain, UniquePath, and
Let.

Tanzu Application Platform v1.5

VMware by Broadcom 745

https://docs.openrewrite.org/


combo

let

chain

applyTo 'files/applied/to'

chain

merge

input
Include

example/**
output

Exclude

**/secret/** T4

T1

T2

UniquePath

UseLast
T3

Syntax reference
Here is the full syntax of Combo:

type: Combo                  # This can be omitted, because Combo is the default trans

form type.

let:                        # See Let.

  - name: <string>

    expression: <SpEL expression>

  - name: <string>

    expression: <SpEL expression>

condition: <SpEL expression>

include: [<ant pattern>]    # See Include.

exclude: [<ant pattern>]    # See Exclude.

merge:                      # See Merge.

  - <m1-transform>

  - <m2-transform>

  - ...

chain:                     # See Chain.

  - <c1-transform>

  - <c2-transform>

  - ...

applyTo: [<ant pattern>]   # See Chain

onConflict: <conflict resolution> # See UniquePath.

Behavior

The Combo transform properties have default values, are optional, and you must use at least one
property.

When you configure the Combo transform with all properties, it behaves as follows:

1. Applies the include as if it were the first element of a Chain. The default value is ['**']; if
not present, all files are retained.

2. Applies the exclude as if it were the second element of the chain. The default value is []; if
not present, no files are excluded. Only files that match the include, but are not excluded
by the exclude, remain.

3. Feeds all those files as input to all transforms declared in the merge property, exactly as
Merge does. The result of that Merge, which is the third transform in the big chain, is
another set of files. If there are no elements in merge, the previous result is directly fed to
the next step.

4. The result of the merge step is prone to generate duplicate entries for the same path. It’s
implicitly forwarded to a UniquePath check, configured with the onConflict strategy. The

Tanzu Application Platform v1.5

VMware by Broadcom 746



default policy is to retain files appearing later. The results of the transforms that appear later
in the merge block “win” against results appearing earlier.

5. Passes that result as the input to the chain defined by the chain property. The combo chain
is prolonged with the elements defined in chain. If there are no elements in chain, it’s as if
the previous result was used directly. If the applyTo property is set, it applies to the sub-
chain (and that sub-chain only).

6. If the let property is defined in the Combo, the whole execution is wrapped inside a Let that
exposes its derived symbols.

To recap in pseudo code, a giant Combo behaves like this:

Let(symbols, in:

    Chain(

        include,

        exclude,

        Chain(Merge(<m1-transform>, <m2-transform>, ...), UniquePath(onConflict)),

        Chain(<applyTo>, <c1-transform>, <c2-transform>, ...)

    )

)

You rarely use at any one time all the features that Combo offers. Yet Combo is a good way to author
other common building blocks without having to write their type: x in full.

For example, this:

include: ['**/*.txt']

is a perfectly valid way to achieve the same effect as this:

type: Include

patterns: ['**/*.txt']

Similarly, this:

chain:

  - type: T1

    ...

  - type: T2

    ...

is often preferred over the more verbose:

type: Chain

transformations:

  - type: T1

    ...

  - type: T2

    ...

As with other transforms, the order of declaration of properties has no impact. For clarity, a
convention that mimics the actual behavior is used, but the following applies T1 and T2 on all .yaml
files even though it places the include section after the merge section.

merge:

  - type: T1

  - type: T2

include: ["*.yaml"]

Tanzu Application Platform v1.5

VMware by Broadcom 747



In other words, Combo applies include filters before merge irrespective of the physical order of the
keys in the YAML text. It’s a good practice to place the include key before the merge key. This
makes the accelerator definition more readable, but has no effect on its execution order.

Examples

The following are typical use cases for Combo.

Example 1

To apply separate transformations to separate sets of files. For example, to all .yaml files and to all
.xml files:

merge:                   # This uses the Merge syntax in a first Combo.

  - include: ['*.yaml']      # This actually nests a second Combo inside the first.

    chain:

      - type: T1

      - type: T2

  - include: ['*.xml']      # Here comes a third Combo, used as the 2nd child inside t

he first

    chain:

      - type: T3

      - type: T4

combo

chain

merge

combo

chain

combo

chain

input

Include

*.xml

Include

*.yaml

output
UniquePath

UseLast

T3

T1

T4

T2

Example 2

To apply T1 then T2 on all .yaml files that are not in any secret directory:

include: ['**/*.yaml']

exclude: ['**/secret/**']

chain:

  - type: T1

    ..

Tanzu Application Platform v1.5

VMware by Broadcom 748



  - type: T2

    ..

combo

chain

input
Include

**/*.yaml
output

Exclude

**/secret/**
T2T1

Include transform
This topic tells you about the Application Accelerator Include transform in Tanzu Application
Platform (commonly known as TAP).

The Include transform retains files based on their path, letting in only those files whose path
matches at least one of the configured patterns. The contents of files, and any of their other
characteristics, are unaffected.

Include is a basic building block seldom used as is, which makes sense if composed inside a Chain
or a Merge. It is often more convenient to leverage the shorthand notation offered by Combo.

Syntax reference

type: Include

patterns: [<ant pattern>]

condition: <SpEL expression>

Examples

type: Chain

transformations:

  - type: Include

    patterns: ["**/*.yaml"]

  - type: # At this point, only yaml files are affected

input

README.md

secret/passwd

document.yaml

Include

*.yaml

output

document.yaml

See also

Exclude

Combo

Exclude transform

This topic tells you about the Application Accelerator Exclude transform in Tanzu Application
Platform (commonly known as TAP).

Tanzu Application Platform v1.5

VMware by Broadcom 749



The Exclude transform retains files based on their path, allowing all files except ones with a path
that matches at least one of the configured patterns. The contents of files, and any of their other
characteristics are unaffected.

Exclude is a basic building block seldom used as is, which makes sense if composed inside a Chain
or a Merge. It is often more convenient to leverage the shorthand notation offered by Combo.

Syntax reference

type: Exclude

patterns: [<ant pattern>]

condition: <SpEL expression>

Examples

type: Chain

transformations:

  - type: Exclude

    patterns: ["**/secret/**"]

  - type: # At this point, no file matching **/secret/** is affected.

input

README.md

secret/passwd

picture.png

Exclude

**/secret/**

output

README.md

picture.png

See also

Include

Combo

Merge transform

This topic tells you about the Application Accelerator Merge transform in Tanzu Application Platform
(commonly known as TAP).

The Merge transform feeds a copy of its input to several other transforms and merges the results
together using set union.

A Merge of T1, T2, and T3 applied to input I results in T1(I) ∪ T2(I) ∪ T3(I).

Tanzu Application Platform v1.5

VMware by Broadcom 750



merge

input

T1

T2

T3

output

An empty merge produces nothing (∅).

Syntax reference

type: Merge

sources:

  - <transform>

  - <transform>

  - <transform>

  - ...

condition: <SpEL expression>

See also

Combo is often used to express a Merge and other transformations in a shorthand syntax.

Chain transform

This topic tells you about the Application Accelerator Chain transform in Tanzu Application Platform
(commonly known as TAP).

The Chain transform uses function composition to produce its final output.

chain

input T1 outputT3T2

Syntax reference

type: Chain

transformations:

  - <transform>

  - <transform>

  - <transform>

  - ...

applyTo: [<ant pattern>]

condition: <SpEL expression>

Tanzu Application Platform v1.5

VMware by Broadcom 751



Behavior

A chain of T1 then T2 then T3 first applies transform T1. It then applies T2 to the output of T1, and
finally applies T3 to the output of that. In other words, T3 to T2 to T1.

An empty chain acts as function identity.

If the optional applyTo property is set, then the chained transformations are only applied to files
with paths that match the applyTo patterns. Files with paths that don’t match are left untouched
and merged back with the other results to form the final result of the Chain transform.

Let transform

This topic tells you about the Application Accelerator Let transform in Tanzu Application Platform
(commonly known as TAP).

The Let transform wraps another transform, creating a new scope that extends the existing scope.

SpEL expressions inside the Let can access variables from both the existing scope and the new
scope.

Variables defined by the Let should not shadow existing variables. If they do, those existing
variables won’t be accessible.

Syntax reference

type: Let

symbols:

- name: <string>

  expression: <SpEL expression>

- ...

in: <transform> # <- new symbols are visible in here

Execution

The Let adds variables to the new scope by computation of SpEL expressions.

engine:

  let:

  - name: <string>

    expression: <SpEL expression>

  - ...

Both a name and an expression must define each symbol where:

name must be a camelCase string name. If a let symbol happens to have the same name as a
symbol already defined in the surrounding scope, then the local symbol shadows the symbol
from the surrounding scope. This makes the variable from the surrounding scope
inaccessible in the remainder of the Let but doesn’t alter its original value.

expression must be a valid SpEL expression expressed as a YAML string. Be careful when
using the # symbol for variable evaluation, because this is the comment marker in YAML. So
SpEL expressions in YAML must enclose strings in quotes or rely on block style. For more
information about block style, see Block Style Productions.

Symbols defined in the Let are evaluated in the new scope in the order they are defined. This
means that symbols lower in the list can make use of the variables defined higher in the list but not
the other way around.

Tanzu Application Platform v1.5

VMware by Broadcom 752

https://docs.spring.io/spring-framework/docs/current/reference/html/core.html#expressions
https://yaml.org/spec/1.2.2/#chapter-8-block-style-productions


See also

Combo provides a way to declare a Let scope and other transforms in a short syntax.

Loop transform

This topic tells you about the Application Accelerator Loop transform in Tanzu Application Platform
(commonly known as TAP).

The Loop transform iterates over elements in a list and applies the provided transform for every
element in that list.

When doAsMerge is used, a copy of the Loop transform’s input is passed to each transform and the
outputs from each transform are merged using a set union.

When doAsChain is used, each transform is executed sequentially, receiving the previous
transform’s output as its input. The first transform is to receive the Loop transform’s input as its
input.

Syntax reference

type: Loop

on: <SpEL expression>

var: <string>

index: <string>

doAsChain: <transform>

doAsMerge: <transform>

on must be a SpEL expression that evaluates a list. This is the list of elements to be iterated
over.

var is the name of the variable to be assigned to the current element on each iteration.
(optional)

index is the variable’s name to be assigned to the index of the current element on each
iteration. (optional)

doAsMerge is the transform to be executed for every element in the list, on a copy of the
Loop transform’s input.

doAsChain is the transform to be executed for every element in the list, passing the output
of the transform as input to the next transform.

Both var and index are optional.

Only one of the doAsMerge or doAsChain variables is to be used in a Loop transform.

Behavior

Consider the following when choosing doAsMerge or doAsChain:

doAsMerge executes the transform on the same input files for every iteration and merges the
resulting outputs. It is best suited when a transform is executed multiple times on the same input
and does not have conflicts.

doAsChain executes the transform on the initial input files once and then passes the resulting
output to the second iteration and so on. It is best suited when a transform must detect any
changes that occurred in the previous iteration.

Examples

Tanzu Application Platform v1.5

VMware by Broadcom 753



See the following examples using the Loop transform.

Example 1

Create a new directory for every module in modules (a list of strings) based on the contents of the
“template” directory.

type: Loop

on: "#modules"

var: m

doAsMerge:

  type: RewritePath

  regex: "template/(.*)"

  rewriteTo: "#m + '/' + #g1"

The following diagram shows how this example behaves:

merge

input

RewritePath

template/(.*)

⇒

'module-1' + '/' + #g1

RewritePath

template/(.*)

⇒

'module-2' + '/' + #g1

RewritePath

template/(.*)

⇒

'module-3' + '/' + #g1

output

Example 2

Add every artifactId in artifacts (a list of strings) as a Spring dependency.

type: Loop

on: "#artifacts"

var: a

doAsChain:

  type: OpenRewriteRecipe

  recipe: org.openrewrite.maven.AddDependency

  options:

    groupId: "'org.springframework'"

    artifactId: "#a"

    version: "'5.7.1'"

The following diagram shows how this example behaves:

chain

input

OpenRewriteRecipe

org.openrewrite.maven.AddDependency

groupId = 'org.springframework'

artifactId = 'spring-core'

version = '5.7.1'

output

OpenRewriteRecipe

org.openrewrite.maven.AddDependency

groupId = 'org.springframework'

artifactId = 'spring-web'

version = '5.7.1'

OpenRewriteRecipe

org.openrewrite.maven.AddDependency

groupId = 'org.springframework'

artifactId = 'spring-transaction'

version = '5.7.1'

Tanzu Application Platform v1.5

VMware by Broadcom 754



Example 3

You can use Loop in combination with custom types, for example:

accelerator:

  types:

    - name: MavenPlugin

      struct:

        - name: groupId

        - name: artifactId

        - name: version

  options:

    - name: pluginsToAdd

      dataType: [MavenPlugin] # End users will be able to enter a collection of GAV tu

ples

engine:

  include: [pom.xml]

  chain:

    - type: Loop

      on: pluginsToAdd # Iterate on the pluginsToAdd collection

      var: p           # The variable "p" will contain each tuple in turn

      doAsChain:       # Will apply the second execution to the result of the first, a

nd so on...

        type: OpenRewriteRecipe

        recipe: org.openrewrite.maven.AddPlugin

        options:

          groupId:    "#p['groupId']"

          artifactId: "#p['artifactId']"

          version:    "#p['version']"

For more information, see Using Custom Types.

InvokeFragment transform

This topic tells you about the Application Accelerator InvokeFragment transform in Tanzu
Application Platform (commonly known as TAP).

The InvokeFragment performs transformations defined in an imported Fragment, allowing re-use
across accelerators.

Syntax reference

type: InvokeFragment

reference: <imported-fragment>

let:  # See Let

  - name: <string>

    expression: <SpEL expression>

  ...

anchor: [<file path>]

Behavior

Assuming some fragment my-fragment has been imported in the accelerator (thus exposing the
options it defines as options of the current accelerator), the following construct invokes my-
fragment:

type: InvokeFragment

reference: my-fragment

Tanzu Application Platform v1.5

VMware by Broadcom 755



This passes all input files (depending where this invocation sits in the “tree”) to the invoked
fragment, which can then manipulate them alongside its own files. The result of the invocation
becomes the result of this transform.

Variables

At the point of invocation, all currently defined variables are made visible to the invoked fragment.
Therefore, if it was import-ed in the most straightforward manner, a fragment defining an option
myOption is defining an option named myOption at the accelerator level, and the value provided by
the user is visible at the time of invocation.

To override a value, or if an imported option has been exposed under a different name, or not at all,
you can use a let construct when using InvokeFragment. This behaves as the Let transform: for the
duration of the fragment invocation, the variables defined by let now have their newly defined
values. Outside the scope of the invocation, the regular model applies.

Files

The set of files coming from the invoking accelerator and made visible to the fragment is the set of
files that “reach” the point of invocation. For example, in the following case:

include: ["somedir/**"]

chain:

  - type: InvokeFragment

    reference: my-fragment

All files that the fragment invocation “sees” are files in the somedir/ subdirectory. If the my-
fragment has not been written accordingly, this can be problematic. Chances are that this re-usable
fragment expects files to be present at the root of the project tree and work on them.

To better cope with this typical situation, the InvokeFragment transform exposes the optional
anchor configuration property. Continuing with the earlier example, by using anchor: somedir, then
all files coming from the current accelerator are exposed as if their path had the somedir/ prefix
removed. When it comes to gathering the result of the invocation though, all resulting files are re-
introduced with a prefix prepended to their path (this applies to all files produced by the fragment,
not just the ones originating from the accelerator).

The value of the anchor property must not start nor end with a slash (/) character.

Examples

The following is a full-featured example showcasing the interaction between the imports section
and InvokeFragment:

accelerator:

  name: my-accelerator

  options:

    - name: someOption

      dataType: number

  imports:

    - name: my-fragment

engine:

  merge:

    - include: ["..."]

    - ...

    - chain:

        - include: ["**/pom.xml"]

Tanzu Application Platform v1.5

VMware by Broadcom 756



        - type: InvokeFragment

          reference: my-fragment

Assuming my-fragment is defined as follows:

accelerator:

  name: my-fragment

  options:

    - name: indentationLevel

      dataType: number

      defaultValue: 2

transform:

  chain:

    - include: ["**/*.xml"]

    - type: SomeTransform

      ...

Then users will be presented with two options: someOption and indentationLevel, as if
indentationLevel was defined in the host accelerator.

Moreover, the behavior of the calling accelerator is exactly as if the body of the fragment transform
was inserted in-place of InvokeFragment:

accelerator:

  name: my-accelerator

  options:

    - name: someOption

      dataType: number

    - name: indentationLevel

      dataType: number

      defaultValue: 2

engine:

  merge:

    - include: ["..."]

    - ...

    - chain:

        - include: ["**/pom.xml"]

        - chain:

          - include: ["**/*.xml"]

          - type: SomeTransform

            ...

Now you can imagine some scenarios to better clarify all configuration properties.

If, for some reason, you don’t want to use the value entered in the indentationLevel option for the
fragment, but twice the value provided for someOption. The InvokeFragment block can be rewritten
as follows:

    type: InvokeFragment

    reference: my-fragment

    let:

      - name: indentationLevel

        value: '2 * #someOption'

Finally, if the invocation in the accelerator looks like this:

engine:

  merge:

    - include: ["..."]

    - ...

    - chain:

Tanzu Application Platform v1.5

VMware by Broadcom 757



        - include: ["**/README.md"]

        - type: InvokeFragment

          reference: my-fragment

Then there is zero visible effect, because this is forwarding only README.md files to the fragment and
the fragment is itself using a filter on *.xml files.

See also

Let

RewritePath

ReplaceText transform

This topic tells you about the Application Accelerator ReplaceText transform in Tanzu Application
Platform (commonly known as TAP).

The ReplaceText transform allows replacing one or several text tokens in files as they are being
copied to their destination. The replacement values are the result of dynamic evaluation of SpEL
expressions.

This transform is text-oriented and requires knowledge of how to interpret the stream of bytes that
make up the file contents into text. All files are assumed to use UTF-8 encoding by default, but you
can use the UseEncoding transform upfront to specify a different charset to use on some files.

You can use ReplaceText transform in one of two ways:

To replace several literal text tokens.

To define the replacement behavior using a single regular expression, in which case the
replacement SpEL expression can leverage the regex capturing group syntax.

Syntax reference

Syntax reference for replacing several literal text tokens:

type: ReplaceText

substitutions:

  - text: STRING

    with: SPEL-EXPRESSION

  - text: STRING

    with: SPEL-EXPRESSION

  - ..

condition: SPEL-EXPRESSION

Syntax reference for defining the replacement behavior using a single regular expression:

Regex is used to match the entire document. To match on a per line basis, enable multiline mode
by including (?m) in the regex.

type: ReplaceText

regex:

  pattern: REGULAR-EXPRESSION

  with: SPEL-EXPRESSION

condition: SPEL-EXPRESSION

In both cases, the SpEL expression can use the special #files helper object. This enables the
replacement string to consist of the contents of an accelerator file. See the following example.

Tanzu Application Platform v1.5

VMware by Broadcom 758

https://docs.spring.io/spring-framework/docs/current/reference/html/core.html#expressions


Another set of helper objects are functions of the form xxx2Yyyy() where xxx and yyy can take the
value camel, kebab, pascal, or snake. For example, camel2Snake() enables changing from
camelCase to snake_case.

Examples

See the following examples using The ReplaceText transform.

Example 1

Replacing the hardcoded string "hello-world-app" with the value of variable #artifactId in all .md,
.xml, and .yaml files.

include: ['**/*.md', '**/*.xml', '**/*.yaml']

chain:

  - type: ReplaceText

    substitutions:

      - text: "hello-world-app"

        with: "#artifactId"

combo

chain

input

EADME.md: hello-world-app example

Include

**/*.md

**/*.xml

**/*.yaml

output

README.md: my-project exampl

ReplaceText

hello-world-app ⇒ #artifactId

Example 2

Replacing the hardcoded string "hello-world-app" with the value of variable #artifactId in the
README-fr.md and README-de.md files, which are encoded using the ISO-8859-1 charset:

include: ['README-fr.md', 'README-de.md']

chain:

  - type: UseEncoding

    encoding: 'ISO-8859-1'

  - type: ReplaceText

    substitutions:

      - text: "hello-world-app"

        with: "#artifactId"

Example 3

Similar to the preceding example, but making sure the value appears as kebab case, while the
entered #artifactId is using camel case:

include: ['**/*.md', '**/*.xml', '**/*.yaml']

chain:

  - type: ReplaceText

    substitutions:

      - text: "hello-world-app"

        with: "#camel2Kebab(#artifactId)"

Example 4

Replacing the hardcoded string "REPLACE-ME" with the contents of file named after the value of the
#platform option in README.md:

Tanzu Application Platform v1.5

VMware by Broadcom 759



include: ['README.md']

chain:

  - type: ReplaceText

    substitutions:

      - text: "REPLACE-ME"

        with: "#files.contentsOf('snippets/install-' + #platform + '.md')"

See also

UseEncoding

RewritePath transform

This topic tells you about the Application Accelerator RewritePath transform in Tanzu Application
Platform (commonly known as TAP).

The RewritePath transform allows you to change the name and path of files without affecting their
content.

Syntax reference

type: RewritePath

regex: <string>

rewriteTo: <SpEL expression>

matchOrFail: <boolean>

For each input file, RewritePath attempts to match its path by using the regular expression (regex)
defined by the regex property. If the regex matches, RewritePath changes the path of the file to
the evaluation result of rewriteTo.

rewriteTo is an expression that has access to the overall engine model and to variables defined by
capturing groups of the regular expression. Both named capturing groups (?<example>[a-z]*) and
regular index-based capturing groups are supported. g0 contains the whole match, g1 contains the
first capturing group, and so on.

If the regex doesn’t match, the behavior depends on the matchOrFail property:

If set to false, which is the default, the file is left untouched.

If set to true, an error occurs. This prevents misconfiguration if you expect all files coming in
to match the regex. For more information about typical interactions between RewritePath
and Chain + Include, see the following section, Interaction with Chain and Include.

The default value for regex is the following regular expression, which provides convenient access to
some named capturing groups:

^(?<folder>.*/)?(?<filename>([^/]+?|)(?=(?<ext>\.[^/.]*)?)$)

Using some/deep/nested/file.xml as an example, the preceding regular expression captures:

folder: The full folder path the file is in. In this example, some/deep/nested/.

filename: The full name of the file, including extension if present. In this example, file.xml.

ext: The last dot and extension in the filename, if present. In this example, .xml.

The default value for rewriteTo is the expression #folder + #filename, which doesn’t rewrite
paths.

Examples

Tanzu Application Platform v1.5

VMware by Broadcom 760



See the following examples using the RewritePath transform.

Example 1

The following moves all files from src/main/java to sub-module/src/main/java:

type: RewritePath

regex: src/main/java/(.*)

rewriteTo: "'sub-module/src/main/java' + #g1"   # 'sub-module/' + #g0 works too

input

src/main/java/com/acme/Foo.java

c/main/java/com/acme/model/Bar.java

RewritePath

src/main/java/(.*)

⇒

'sub-module/src/main/java' + #g1

output

sub-module/src/main/java/com/acme/Foo.java

sub-module/src/main/java/com/acme/model/Bar.j

Example 2

The following flattens all files found inside the sub-path directory and its subdirectories, and puts
them into the flattened folder:

type: RewritePath

regex: sub-path/(.*/)*(?<filename>[^/]+)

rewriteTo: "'flattened' + #filename"   # 'flattened' + #g2 would work too

Example 3

The following turns all paths into lowercase:

type: RewritePath

rewriteTo: "#g0.toLowerCase()"

Interaction with Chain and Include
It’s common to define pipelines that perform a Chain of transformations on a subset of files, typically
selected by Include/Exclude:

- include: ["**/*.java"]

- chain:

    - # do something here

    - # and then here

If one of the transformations in the chain is a RewritePath operation, chances are you want the
rewrite to apply to all files matched by the Include. For those typical configurations, you can set
the matchOrFail guard to true to ensure the regex you provide indeed matches all files coming in.

See also

Use UniquePath to ensure rewritten paths don’t clash with other files, or to decide which
path to select if they do clash.

OpenRewriteRecipe transform

This topic tells you about the Application Accelerator OpenRewriteRecipe transform in Tanzu
Application Platform (commonly known as TAP).

The OpenRewriteRecipe transform allows you to apply any Open Rewrite Recipe to a set of files and
gather the results.

Tanzu Application Platform v1.5

VMware by Broadcom 761

https://docs.openrewrite.org/


The following Open Rewrite Recipes are supported:

Java recipes

Maven recipes

XML recipes

YAML recipes

JSON recipes

Properties recipes

The engine leverages v7.30.1 of Open Rewrite and parses Java files using the grammar for Java 11.

Syntax reference

type: OpenRewriteRecipe

recipe: <string>                  # Full qualified classname of the recipe

options:

  <string>: <SpEL expression>      # Keys and values depend on the class of the recipe

  <string>: <SpEL expression>      # Refer to the documentation of said recipe

  ...

Example

The following example applies the ChangePackage Recipe to a set of Java files in the com.acme
package and moves them to the value of #companyPkg. This is more powerful than using
RewritePath and ReplaceText, as it reads the syntax of files and correctly deals with imports, fully
compared to non-fully qualified names, and so on.

chain:

  - include: ["**/*.java"]

  - type: OpenRewriteRecipe

    recipe: org.openrewrite.java.ChangePackage

    options:

      oldPackageName: "'com.acme'"

      newPackageName: "#companyPkg"

chain

input
Include

**/*.java
output

OpenRewriteRecipe

org.openrewrite.java.ChangePackage

oldPackageName = 'com.acme'

newPackageName = #companyPkg

YTT transform
This topic tells you about the Application Accelerator YTT transform in Tanzu Application Platform
(commonly known as TAP).

The YTT transform starts the YTT template engine as an external process.

Syntax reference

Tanzu Application Platform v1.5

VMware by Broadcom 762

https://docs.openrewrite.org/reference/recipes/java
https://docs.openrewrite.org/reference/recipes/maven
https://docs.openrewrite.org/reference/recipes/xml
https://docs.openrewrite.org/reference/recipes/yaml
https://docs.openrewrite.org/reference/recipes/json
https://docs.openrewrite.org/reference/recipes/properties
https://docs.openrewrite.org/reference/recipes/java/changepackage
https://carvel.dev/ytt/


type: YTT

extraArgs: # optional

  - <SPEL-EXPRESSION-1>

  - <SPEL-EXPRESSION-2>

  - ...

The YTT transform’s YAML notation does not require any parameters. When invoked without
parameters, which is the typical use case, the YTT transform’s input is determined entirely by two
things only:

1. The input files fed into the transform.

2. The current values for options and derived symbols.

Execution

YTT is invoked as an external process with the following command line:

ytt -f <input-folder> \

    --data-values-file <symbols.json> \

    --output-files <output-folder> \

    <extra-args>

The <input-folder> is a temporary directory into which the input files are “materialized.” That is,
the set of files passed to the YTT transform as input is written out into this directory to allow the
YTT process to read them.

The <symbols.json> file is a temporary JSON file, which the current option values and derived
symbols are materialized in the form of a JSON map. This allows YTT templates in the <input-
folder> to make use of these symbols during processing.

The <output-folder> is a fresh temporary directory that is empty at the time of invocation. In a
typical scenario, upon completion, the output directory contains files generated by YTT.

The <extra-args> are additional command line arguments obtained by evaluating the SPEL
expressions from the extraArgs attribute.

When the ytt process completes with a 0 exit code, this is considered a successful execution and
the contents of the output directory is taken to be the result of the YTT transform.

When the ytt process completes with a non 0 exit code, the execution of the YTT transform is
considered to have failed and an exception is raised.

Examples

See the following examples using the YTT transform.

Basic invocation

When you want to execute ytt on the contents of the entire accelerator repository, use the YTT
transform as your only transform in the engine declaration.

accelerator:

  ...

engine:

  type: YTT

To do anything beyond calling YTT, compose YTT into your accelerator flow using merge or chain
combinators. This is exactly the same as composing any other type of transform.

Tanzu Application Platform v1.5

VMware by Broadcom 763



For example, when you want to define some derived symbols as well as merge the results from
YTT with results from other parts of your accelerator transform, you can reference this example:

engine:

  let: # Define derived symbols visible to all transforms (including YTT)

  - name: theAnswer

    expression: "41 + 1"

  merge:

  - include: ["deploy/**.yml"] # select some yaml files to process with YTT

    chain: # Chain selected yaml files to YTT

    - type: YTT

  - ... include/generate other stuff to be merged alongside yaml generated by YTT...

The preceding example uses a combination of Chain and Merge. You can use either Merge or Chain
or both to compose YTT into your accelerator flow. Which one you choose depends on how you
want to use YTT as part of your larger accelerator.

Using extraArgs

The extraArgs passes additional command line arguments to YTT. This adds file marks. See File
Marks in the Carvel documentation.

For example, the following runs YTT and renames the foo/demo.yml file in its output to
bar/demo.yml.

engine:

  type: YTT

  extraArgs: ["'--file-mark'",  "'foo/demo.yml:path=bar/demo.yml'"]

The extraArgs attribute expects SPEL expressions. Take care to use proper escaping of literal
strings using double and single quotes (that is, `“‘LITERAL-STRING’”).

UseEncoding transform

This topic tells you about the Application Accelerator UseEncoding transform in Tanzu Application
Platform (commonly known as TAP).

When considering files in textual form, for example, when doing text replacement with the
ReplaceText transform, the engine must decide which encoding to use.

By default, UTF-8 is assumed. If any files must be handled differently, use the UseEncoding transform
to annotate them with an explicit encoding.

UseEncoding returns an error if you apply encoding to files that have already been explicitly
configured with a particular encoding.

Syntax reference

type: UseEncoding

encoding: <encoding>    # As recognized by the java java.nio.charset.Charset class

condition: <SpEL expression>

Supported encoding names include, for example, UTF-8, US-ASCII, and ISO-8859-1.

Example use

UseEncoding is typically used as an upfront transform to, for example, ReplaceText in a chain:

Tanzu Application Platform v1.5

VMware by Broadcom 764

https://carvel.dev/ytt/docs/latest/file-marks/#available-marks
https://en.wikipedia.org/wiki/Character_encoding


type: Chain   # Or using "Combo"

transformations:

  - type: UseEncoding

    encoding: ISO-8859-1

  - type: ReplaceText

    substitutions:

      - text: "hello"

        with: "#howToSayHello"

See also

ReplaceText

UniquePath transform

This topic tells you about the Application Accelerator UniquePath transform in Tanzu Application
Platform (commonly known as TAP).

You can use the UniquePath transform to ensure there are no path conflicts between files
transformed. You can often use this at the tail of a Chain.

Syntax reference

type: UniquePath

strategy: <conflict resolution>

condition: <SpEL expression>

Examples

The following example concatenates the file that was originally named DEPLOYMENT.md to the file
README.md:

chain:

  - merge:

      - include: ['README.md']

      - include: ['DEPLOYMENT.md']

        chain:

          - type: RewritePath

            rewriteTo: "'README.md'"

  - type: UniquePath

    strategy: Append

See also

UniquePath uses a Conflict Resolution strategy to decide what to do when several input files
use the same path.

Combo implicitly embeds a UniquePath after the Merge defined by its merge property.

Conflict resolution

This topic tells you how to resolve conflicts that Application Accelerator transforms in Tanzu
Application Platform (commonly known as TAP) might produce.

For example, if you’re using Merge (or Combo’s merge syntax) or RewritePath, a transform can
produce several files at the same path. The engine then must take an action: Should it keep the last

Tanzu Application Platform v1.5

VMware by Broadcom 765



file? Report an error? Concatenate the files together?

Syntax reference

Conflicts can arise for a number of reasons. You can avoid or resolve them by configuring
transforms with a conflict resolution. For example:

Combo uses UseLast by default, but you can configure it to do otherwise.

You can explicitly end a transform Chain with a UniquePath, which by default uses Fail. This
is customizable.

Combo

type: Combo      # often omitted

merge:

  - <transform>

  - <transform>

  - <transform>

chain:

  - <transform>

  - ...

onConflict: <conflict resolution>  # defaults to 'UseLast'

combo

chain

merge

input

T1

T2

T3

outputT4
UniquePath

UseLast

Chain

type: Chain      # or implicitly using Combo

transformations:

  - <transform>

  - <transform>

  - type: UniquePath

    strategy: <conflict resolution>  # defaults to 'Fail'

Tanzu Application Platform v1.5

VMware by Broadcom 766



chain

input T1 output
UniquePath

Fail
T2

Available strategies

The following values and behaviors are available:

Fail: Stop processing on the first file that exhibits path conflicts.

UseFirst: For each conflicting file, the file produced first (typically by a transform appearing
earlier in the YAML definition) is retained.

UseLast: For each conflicting file, the file produced last (typically by a transform appearing
later in the YAML definition) is retained.

Append: The conflicting versions of files are concatenated (as if using cat file1 file2 ...),
with files produced first appearing first.

FavorOwn: Only makes sense in the context of composition. Selects the version of the file
that comes from the current executing fragment if possible, falls back to the caller version
otherwise.

FavorForeign: Only makes sense in the context of composition. Selects the version of the
file that was provided by the caller if present, falls back to the file originating from this
fragment’s fileset otherwise.

NWayDiff: Try to merge the conflicting resources by applying patches computed against a
common ancestor. The resulting resource has the attributes of the first conflicting resource.

See also

Combo

UniquePath

Provenance transform

This topic tells you about the Application Accelerator Provenance transform in Tanzu Application
Platform (commonly known as TAP).

The Provenance transform is a special transform used to generate a file that provides details of the
accelerator engine transform.

For more information, see Application Bootstrapping Provenance.

Syntax reference

type: Provenance

condition: <SpEL expression>

The Provenance transform is added as a child to the top-most transform, which is usually a Merge or
a Chain, using a Combo.

Behavior

Tanzu Application Platform v1.5

VMware by Broadcom 767



The Provenance transform ignores its input and outputs a single resource named accelerator-
info.yaml. For example:

id: <unique GUID of invocation>

timestamp: <timestamp in RFC3339 format>

username: <captured username of user triggering the run>

source: <client environment from which accelerator was run>

accelerator:

  name: <name of registered accelerator>

  git:

    url: <git repository location>

    ref:

      branch: <branch name> or

      tag: <tag name> or

      commit: <specific requested commit>

    subPath: <optional subpath inside the repo>

    commit: <actual SHA the branch or tag pointed to>

fragments:

  - name: <name of registered fragment 1>

    git:

      url: <git repository location>

      ref:

        branch: <branch name> or

        tag: <tag name> or

        commit: <specific requested commit>

      subPath: <optional subpath inside the repo>

      commit: <actual SHA the branch or tag pointed to>

  - name: <name of registered fragment 2>

    git:

      url: <git repository location>

      ref:

        branch: <branch name> or

        tag: <tag name> or

        commit: <specific requested commit>

      subPath: <optional subpath inside the repo>

      commit: <actual SHA the branch or tag pointed to>

  - ...

options:

  - name: <option name>

    value: <option value>

  - name: <option name>

    value: <option value>

Use SpEL with Application Accelerator
This topic tells you about some common Spring Expression Language (SpEL) use cases for the
accelerator.yaml file in Application Accelerator.

For more information, see Spring Expression Language documentation.

Variables
You can reference all the values added as options in the accelerator section from the YAML file as
variables in the engine section. You can access the value using the syntax #<option name>:

Note

Depending on the invocation scenario, some pieces of data might not be present.

Tanzu Application Platform v1.5

VMware by Broadcom 768

https://docs.spring.io/spring-framework/docs/current/reference/html/core.html#expressions


options:

  - name: foo

    dataType: string

    inputType: text

...

engine:

  - include: ["some/file.txt"]

    chain:

    - type: ReplaceText

      substitutions:

      - text: bar

        with: "#foo"

This sample replaces every occurrence of the text bar in the file some/file.txt with the contents
of the foo option.

Implicit variables

Some variables are made available to the model by the engine, including:

artifactId is a built-in value derived from the projectName passed in from the UI with
spaces replaced by “_”. If that value is empty, it is set to app.

files is a helper object that currently exposes the contentsOf(<path>) method. For more
information, see ReplaceText.

camel2Kebab and other variations of the form xxx2Yyyy is a series of helper functions for
dealing with changing case of words. For more information, see ReplaceText.

Conditionals

You can use Boolean options for conditionals in your transformations.

options:

  - name: numbers

    inputType: select

    choices:

    - text: First Option

      value: first

    - text: Seconf Option

      value: second

    defaultValue: first

...

engine:

  - include: ["some/file.txt"]

    condition: "#numbers == 'first'"

    chain:

    - type: ReplaceText

      substitutions:

      - text: bar

        with: "#foo"

This replaces the text only if the selected option is the first one.

Rewrite path concatenation

options:

  - name: renameTo

    dataType: string

    inputType: text

...

Tanzu Application Platform v1.5

VMware by Broadcom 769



engine:

  - include: ["some/file.txt"]

    chain:

    - type: RewritePath

      rewriteTo: "'somewhere/' + #renameTo + '.txt'"

Regular expressions

Regular expressions allow you to use patterns as a matcher for strings. Here is a small example of
what you can do with them:

options:

  - name: foo

    dataType: string

    inputType: text

    defaultValue: abcZ123

...

engine:

  - include: ["some/file.txt"]

    condition: "#foo.matches('[a-z]+Z\d+')"

    chain:

    - type: ReplaceText

      substitutions:

      - text: bar

        with: "#foo"

This example uses RegEx to match a string of letters that ends with a capital Z and any number of
digits. If this condition is fulfilled, the text is replaced in the file, file.txt.

Dealing with string arrays

Options with a dataType of [string] come out as an array of strings.

To use them and for example format the result as a bulleted list, you can use the Java static
String.join() method. For example:

accelerator:

  options:

    - name: meals

      dataType: [string]

      inputType: checkbox

      choices:

        - value: fish

        - value: chips

        - value: BLT

...

engine:

  type: ReplaceText

  substitutions:

  - text: recipe

    with: "' * ' + T(java.lang.String).join('\n * ', #meals)"

Accelerator custom resource definition
This topic tells you about the Application Accelerator custom resource definition.

Overview

Tanzu Application Platform v1.5

VMware by Broadcom 770



The Accelerator custom resource definition (CRD) defines any accelerator resources to be made
available to the Application Accelerator for VMware Tanzu system. It is a namespaced CRD,
meaning that any resources created belong to a namespace. For the resource to be available to
the Application Accelerator system, it must be created in the namespace that the Application
Accelerator UI server is configured to watch.

The Fragment custom resource definition (CRD) defines any accelerator fragment resources to be
made available to the Application Accelerator for VMware Tanzu system. It is a namespaced CRD,
meaning that any resources created belong to a namespace. For the resource to be available to
the Application Accelerator system, it must be created in the namespace that the Application
Accelerator UI server is configured to watch.

API definitions

The Accelerator CRD is defined with the following properties:

Property Value

Name Accelerator

Group accelerator.apps.tanzu.vmware.com

Version v1alpha1

ShortName acc

Accelerator CRD Spec

The Accelerator CRD spec defined in the AcceleratorSpec type has the following fields:

Field Description Required/Optional

displayNa
me

A short descriptive name used for an Accelerator. Optional (*)

description A longer description of an Accelerator. Optional (*)

iconUrl A URL for an image to represent the Accelerator in a UI. Optional (*)

tags An array of strings defining attributes of the Accelerator that can be used in a
search.

Optional (*)

git Defines the accelerator source Git repository. Optional (***)

git.url The repository URL, can be a HTTP/S or SSH address. Optional (***)

git.gitImpl
ementation

Determines which git client library to use. The default setting is to go-git. Valid
values are (‘go-git’, ‘libgit2’).

Optional (**)

git.ignore Overrides the set of excluded patterns in the .sourceignore format (which is the
same as .gitignore). If not provided, a default of .git/ is used.

Optional (**)

git.interval The interval at which to inquire for repository updates. If not provided the default
setting is 10 minuets. There is an additional refresh interval (currently 10s) involved
before accelerators can appear in the UI. There might be a 10s delay before changes
are reflected in the UI.*

Optional (**)

git.ref Git reference to checkout and monitor for changes, the default is main branch. Optional (**)

git.ref.bran
ch

The Git branch to checkout, the default is main. Optional (**)

git.ref.com
mit

The Git commit SHA to checkout, if specified tag filters are ignored. Optional (**)

Tanzu Application Platform v1.5

VMware by Broadcom 771



Field Description Required/Optional

git.ref.sem
ver

The Git tag semver expression, takes precedence over tag. Optional (**)

git.ref.tag The Git tag to checkout, takes precedence over branch. Optional (**)

git.secretR
ef

The secret name containing the Git credentials. For HTTPS repositories, the secret
must contain user name and password fields. For SSH repositories, the secret must
contain identity, identity.pub, and known_hosts fields.

Optional (**)

git.subPath SubPath is the folder inside the git repository to consider as the root of the
accelerator or fragment. Defaults at the root of the repository.

Optional

source Defines the source image repository. Optional (***)

source.ima
ge

Image is a reference to an image in a remote registry. Optional (***)

source.ima
gePullSecr
ets

ImagePullSecrets contains the names of the Kubernetes Secrets containing registry
login information to resolve image metadata

Optional

source.inte
rval

The interval at which to check for repository updates. Optional

source.serv
iceAccount
Name

ServiceAccountName is the name of the Kubernetes ServiceAccount used to
authenticate the image pull if the service account has attached pull secrets

Optional

The Fragment CRD is defined with the following properties:

Property Value

Name Fragment

Group accelerator.apps.tanzu.vmware.com

Version v1alpha1

ShortName frag

Fragment CRD Spec

The Fragment CRD spec defined in the FragmentSpec type has the following fields:

Field Description Required/Optional

display
Name

DisplayName is a short descriptive name used for a Fragment. Optional

git Defines the fragment source Git repository. Required

git.url The repository URL, can be a HTTP/S or SSH address. Required

git.igno
re

Overrides the set of excluded patterns in the .sourceignore format (which is the same
as .gitignore). If not provided, a default of .git/ is used.

Optional (**)

git.inter
val

The interval at which to inquire for repository updates. If not provided the default is 10
min.

Optional (**)

git.ref Git reference to checkout and monitor for changes, the default is main branch. Optional (**)

git.ref.b
ranch

The Git branch to checkout, defaults to main. Optional (**)

git.ref.c
ommit

The Git commit SHA to checkout, if specified tag filters are ignored. Optional (**)

Tanzu Application Platform v1.5

VMware by Broadcom 772



Field Description Required/Optional

git.ref.s
emver

The Git tag semver expression, takes precedence over tag. Optional (**)

git.ref.ta
g

The Git tag to checkout, takes precedence over branch. Optional (**)

git.secr
etRef

The secret name containing the Git credentials. For HTTPS repositories, the secret
must contain user name and password fields. For SSH repositories, the secret must
contain identity, identity.pub, and known_hosts fields.

Optional (**)

git.subP
ath

SubPath is the directory inside the Git repository to consider as the root of the
accelerator or fragment. Defaults at the root of the repository.

Optional

* Any optional text boxes marked with an asterisk (*) are populated from a text box of the same
name in the accelerator definition in the accelerator.yaml file if that is present in the Git
repository for the accelerator.

** Any fields marked with a double asterisk (**) are part of the Flux GitRepository CRD that is
documented in the Flux Source Controller Git Repositories documentation.

*** Any fields marked with a triple asterisk (***) are optional but either git or source is required to
specify the repository to use. If git is specified, the git.url is required, and if source is specified,
source.image is required.

Excluding files

The git.ignore field defaults to .git/, which is different from the defaults provided by the Flux
Source Controller GitRepository implementation. You can override this, and provide your own
exclusions. For more information, see fluxcd/source-controller Excluding files.

Test accelerators in Application Accelerator

This topic tells you how to test an updated accelerator, or fragment that is not registered in your
Tanzu Application Platform (commonly known as TAP) cluster.

Generating a project from local sources

When you are authoring your accelerator, you can test it before committing any changes.

With the tanzu accelerator generate-from-local command, you can run your accelerator (or
fragment), including any changes you have locally, specify a set of options and view the generated
project.

You can run the accelerator using the components on your Tanzu Application Platform cluster,
without impacting the state of the Tanzu Application Platform cluster.

To do so, ensure that you have the following prerequisites:

The Tanzu CLI is installed, with the Application Accelerator plug-in. For details about
installing the Tanzu CLI and plug-ins, see Tanzu CLI.

The server URL is pointing to the Tanzu Application Platform cluster you want to test with.
For details about setting the server URL, see Application Accelerator CLI plug-in overview.

For example, to use the accelerator that is located at the path workspace/java-rest:

tanzu accelerator generate-from-local --accelerator-path java-rest=workspace/java-rest 

--fragment-names tap-workload,java-version --options '{"projectName":"test"}' --output

-dir generated-project

Tanzu Application Platform v1.5

VMware by Broadcom 773

https://fluxcd.io/docs/components/source/gitrepositories/
https://fluxcd.io/docs/components/source/gitrepositories/#excluding-files


This generates the project in the local directory generated-project, using the accelerator located
at workspace/java-rest, the fragments tap-workload and java-version which are assumed to be
already registered in the Tanzu Application Platform cluster and the option projectName set to test.

For example, to use the fragment named java-version that is located at the path
workspace/version:

tanzu accelerator generate-from-local --accelerator-name java-rest --fragment-paths ja

va-version=workspace/version --fragment-names tap-workload --options '{"projectNam

e":"test"}' --output-dir generated-project

This generates the project in the local directory generated-project, using the accelerator java-
rest and the fragment tap-workload which are assumed to be already registered in the Tanzu
Application Platform cluster, the fragment named java-version located at workspace/version, and
the option projectName set to test.

For the full documentation for the generate-from-local command, see reference Tanzu
accelerator generate-from-local.

No changes are made to the Tanzu Application Platform cluster that is provided with the server
URL. No new accelerators/fragments are registered or modified. A Tanzu Application Platform
cluster is required to ensure that there is consistency between the version that is used for testing
and the version that is used when the accelerator is registered. Furthermore, it allows using
registered fragments and accelerators as dependencies for the local accelerator/fragment.

CI/CD Pipeline

As you iterate on an accelerator, you can have some automated assertions run before any changes
to the accelerator are accepted.

The process for generating a project from the committed source files is the same as described
earlier.

When the generated project is available, you can run various assertions on it:

cd generated-project

test -f build.gradle

./gradlew test

If you have multiple assertions, you might choose to run a predefined script:

cd generated-project

../assertions/validate-generate-project.sh

You might choose to generate multiple projects from the same accelerator, providing different
options for each and running different assertions on each generated project.

(Optional) Getting the Tanzu CLI in a CI/CD pipeline

If the Tanzu CLI is already available in your CI/CD pipeline you can skip this section.

VMware provides an example script that is agnostic to the CI/CD system it is running on. The script
requires a variable named TANZU_REFRESH_TOKEN which holds a personal VMware Tanzu Network
refresh token. To generate such a token see How to Authenticate. The script also uses curl and
jq.

The script downloads artifacts compatible with Tanzu Application Platform version v1.4 and a Linux
operating system. Update the script to suit the Tanzu Application Platform version and OS that you
are using.

Tanzu Application Platform v1.5

VMware by Broadcom 774

https://network.tanzu.vmware.com/docs/api#how-to-authenticate


#!/bin/bash

# Get access token using personal Tanzu Network refresh token

# See https://network.tanzu.vmware.com/docs/api#how-to-authenticate

ACCESS_TOKEN=$(curl -X POST https://network.tanzu.vmware.com/api/v2/authentication/acc

ess_tokens -d '{"refresh_token":"'"$TANZU_REFRESH_TOKEN"'"}' | jq -r ".access_token")

# Download bundle

# See https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.5/tap/GUID-instal

l-tanzu-cli.html#cli-plugin-install

# Update url to download desired version

mkdir -p $HOME/tanzu

curl -L -X GET https://network.tanzu.vmware.com/api/v2/products/tanzu-application-plat

form/releases/1205491/product_files/1352407/download -H "Authorization: Bearer $ACCESS

_TOKEN" --output bundle.tar

# Unpack bundle

export TANZU_CLI_NO_INIT=true

export VERSION=v0.25.0 # Update to desired version

tar -xvf bundle.tar -C $HOME/tanzu

cd $HOME/tanzu

# Install CLI

# Update to use desired OS

sudo install cli/core/$VERSION/tanzu-core-linux_amd64 /usr/local/bin/tanzu

# Install plugins

tanzu plugin install accelerator

Use the Provenance transform in Application Accelerator

This topic tells you about the Application Accelerator Provenance transform in Tanzu Application
Platform (commonly known as TAP).

The Provenance transform is a special transform used to generate a file that provides details of the
accelerator engine transform.

The Provenance transform provides traceability and visibility into the generation of an application
from an accelerator. The following information is embedded into a file that is part of the generated
project:

Which accelerator was used to bootstrap the project

Which version of the accelerator was used

When the application was bootstrapped

Who bootstrapped the application

For more information on the structure of the file and how to enable application bootstrapping
provenance, see Provenance transform.

Use the Application Accelerator Visual Studio Code
extension
This topic describes how to use the Application Accelerator Visual Studio Code extension to
explore and generate projects from the defined accelerators in Tanzu Application Platform
(commonly known as TAP) using VS Code.

The Application Accelerator Visual Studio Code extension lets you explore and generate projects
from the defined accelerators in Tanzu Application Platform using VS Code.

Tanzu Application Platform v1.5

VMware by Broadcom 775



Dependencies

To use the VS Code extension, the extension must access the Tanzu Application Platform
GUI URL. For information about how to retrieve the Tanzu Application Platform GUI URL,
see Retrieving the URL for the Tanzu Application Platform GUI.

(Optionally) To use Git repository provisioning during project creation in the VS Code
extension, you must enable GitHub repository creation in the Application Accelerator plug-
in. For more information, see Create an Application Accelerator Git repository during
project creation.

Installation

Use the following steps to install the Application Accelerator Visual Studio extension:

1. Sign in to VMware Tanzu Network and download the “Tanzu App Accelerator Extension for
Visual Studio Code” file from the product page for VMware Tanzu Application Platform.

2. Open VS Code.

Option 1:

1. From the Command Palette (cmd + shift + P), run “Extensions: Install from VSIX…”.

2. Select the extension file tanzu-app-accelerator-<EXTENSION_VERSION>.vsix.

Option 2:

1. Select the Extensions tab: 

2. Select Install from VSIX… from the overflow menu.

Configure the extension
Before using the extension, you need follow the next steps:

1. Go to VS Code settings - click Code > Preferences > Settings > Extensions > Tanzu App
Accelerator.

2. Look for the setting Tap Gui Url.

3. Add the Tanzu Application Platform GUI URL.

Tanzu Application Platform v1.5

VMware by Broadcom 776

https://network.tanzu.vmware.com/products/tanzu-application-platform


An example URL: https://tap-gui.myclusterdomain.myorg.com. If you have access to the
Tanzu Application Platform cluster that is running the Tanzu Application Platform GUI, you
can run the following command to determine the fully-qualified domain name:

kubectl get httpproxy tap-gui -n tap-gui

Using the extension
After adding the Tap Gui Url you can explore the defined accelerators accessing the Application
Accelerator extension icon:

Choose any of the defined accelerators, fill the options and click the generate project

Tanzu Application Platform v1.5

VMware by Broadcom 777



Retrieving the URL for the Tanzu Application Platform GUI

If you have access to the Tanzu Application Platform cluster that is running the Tanzu Application
Platform GUI, you can run the following command to determine the fully-qualified domain name:

kubectl get httpproxy tap-gui -n tap-gui

With an expected response of something similar to:

NAME      FQDN                                      TLS SECRET     STATUS   STATUS DES

CRIPTION

tap-gui   tap-gui.tap.tapdemo.myorg.com             tap-gui-cert   valid    Valid HTTP

Proxy

Download and Install Self-Signed Certificates from the
Tanzu Application Platform GUI

To enable the Application Accelerator extension for VS Code to communicate with a Tanzu
Application Platform GUI instance that is secured using TLS, you must download and install the
certificates locally.

Prerequisites

yq is required to process the YAML output.

Procedure

1. Find the name of the Tanzu Application Platform GUI certificate. The name of the certificate
might look different to the following example.

kubectl get secret -n cert-manager

Tanzu Application Platform v1.5

VMware by Broadcom 778

https://github.com/mikefarah/yq


NAME                                           TYPE                             

DATA   AGE

canonical-registry-secret                      kubernetes.io/dockerconfigjson   

1      18d

cert-manager-webhook-ca                        Opaque                           

3      18d

postgres-operator-ca-certificate               kubernetes.io/tls                

3      18d

tanzu-sql-with-mysql-operator-ca-certificate   kubernetes.io/tls                

3      18d

tap-ingress-selfsigned-root-ca                 kubernetes.io/tls                

3      18d <------- This is the certificate that is needed

2. Download the certificate:

kubectl get secret -n cert-manager tap-ingress-selfsigned-root-ca -o yaml | yq 

'.data."ca.crt"' | base64 -d > ca.crt

3. Install the certificate on your local system and fully restart any applications that uses the
certificate. After restarting, the application uses the certificate to communicate with the
endpoints using TLS. For more information, see Installing a root CA certificate in the trust
store in the Ubuntu documentation.

macOS
Run:

sudo security add-trusted-cert -d -r trustRoot -k /Library/Keychains/System.k

eychain ca.crt

Windows
Complete the following steps:

1. Use Windows Explorer to navigate to the directory where the certificate was
downloaded and click on the certificate.

2. In the Certificate window, click Install Certificate….

3. Change the Store Location from Current User to Local Machine. Click Next.

4. Select Place all certificates in the following store, click Browse, and select
Trusted Root Certification Authorities

5. Click Finish.

6. A pop-up window stating The import was successful. is displayed.

Use the Application Accelerator IntelliJ plug-in
This topic tells you about the Application Accelerator IntelliJ plug-in. The plug-in is used to explore
and generate projects from the defined accelerators in Tanzu Application Platform (commonly
called TAP) using IntelliJ.

Dependencies
The plug-in must have access to the Tanzu Application Platform GUI URL. For information about
how to retrieve the Tanzu Application Platform GUI URL, see Retrieving the URL for the Tanzu
Application Platform GUI.

Installation

Tanzu Application Platform v1.5

VMware by Broadcom 779

https://ubuntu.com/server/docs/security-trust-store


Use the following steps to install the Application Accelerator IntelliJ plug-in:

1. Sign in to VMware Tanzu Network and download the Tanzu App Accelerator Extension for
Intellij file.

2. Open IntelliJ

1. From the Plugins section, select the Gear button and select Install Plugin from
Disk…

2. Select the plug-in zip file and restart IntelliJ.

Configure the plug-in

Before using the plug-in, you must enter the Tanzu Application Platform GUI URL in the IntelliJ
Preferences:

1. Go to the IntelliJ menu, select IntelliJ IDEA > Preferences > Tools > Tanzu Application
Accelerator.

2. Add the Tanzu Application Platform GUI URL. For example, https://tap-
gui.myclusterdomain.myorg.com. If you have access to the Tanzu Application Platform
cluster that is running the Tanzu Application Platform GUI, run the following command to
determine the fully-qualified domain name:

kubectl get httpproxy tap-gui -n tap-gui

Tanzu Application Platform v1.5

VMware by Broadcom 780

https://network.tanzu.vmware.com/products/tanzu-application-platform


3. Click Apply and OK.

Using the plug-in

After adding the Tanzu Application Platform GUI URL, you can explore the defined accelerators:

1. Select New Project, then select Tanzu Application Accelerator.

Tanzu Application Platform v1.5

VMware by Broadcom 781



2. Choose one of the defined accelerators and configure the options.

3. Click Next to review the options.

Tanzu Application Platform v1.5

VMware by Broadcom 782



4. Click Next to download the project. If the project is downloaded successfully, the Create
button is enabled and you can now create and open the project.

Retrieving the URL for the Tanzu Application Platform GUI

If you have access to the Tanzu Application Platform cluster that is running the Tanzu Application
Platform GUI, run the following command to determine the fully-qualified domain name:

kubectl get httpproxy tap-gui -n tap-gui

The result is similar to:

NAME      FQDN                                      TLS SECRET     STATUS   STATUS DES

CRIPTION

tap-gui   tap-gui.tap.tapdemo.myorg.com             tap-gui-cert   valid    Valid HTTP

Proxy

Download and Install Self-Signed Certificates
To enable communication between the Application Accelerator plug-in and a Tanzu Application
Platform GUI instance that is secured using TLS, you must download and install the certificates
locally.

Prerequisites

yq is required to process the YAML output.

1. Find the name of the Tanzu Application Platform GUI certificate. The name of the certificate
might look different to the following example.

kubectl get secret -n cert-manager

Tanzu Application Platform v1.5

VMware by Broadcom 783

https://github.com/mikefarah/yq


NAME                                           TYPE                             

DATA   AGE

canonical-registry-secret                      kubernetes.io/dockerconfigjson   

1      18d

cert-manager-webhook-ca                        Opaque                           

3      18d

postgres-operator-ca-certificate               kubernetes.io/tls                

3      18d

tanzu-sql-with-mysql-operator-ca-certificate   kubernetes.io/tls                

3      18d

tap-ingress-selfsigned-root-ca                 kubernetes.io/tls                

3      18d <------- This is the certificate that is needed

2. Download the certificate:

kubectl get secret -n cert-manager tap-ingress-selfsigned-root-ca -o yaml | yq 

'.data."ca.crt"' | base64 -d > ca.crt

3. Install the certificate on your local system and fully restart any applications that leverage the
certificate. After restarting, the application uses the certificate to communicate with the
endpoints using TLS.

MacOS
Run:

sudo security add-trusted-cert -d -r trustRoot -k /Library/Keychains/System.k

eychain ca.crt

For more information, see Installing a root CA certificate in the trust store in the Ubuntu
documentation.

Windows
Complete the following steps:

1. Using Windows Explorer, navigate to the directory where the certificate was
downloaded and double-click on the certificate.

2. In the Certificate window, click Install Certificate….

3. Change the Store Location from Current User to Local Machine. Click Next.

4. Select Place all certificates in the following store, click Browse, and select
Trusted Root Certification Authorities

5. Click Finish.

6. A pop-up window stating The import was successful. is displayed.

Application Accelerator best practices
The following topics tells you about best practices for authoring accelerators and fragments.

Best practices for using Accelerators

A collection of best practices for authoring accelerators.

Best practices for using Fragments

A collection of best practices for authoring fragments.

Best practices for using accelerators

Tanzu Application Platform v1.5

VMware by Broadcom 784

https://ubuntu.com/server/docs/security-trust-store


This topic tells you about the benefits, and design considerations for accelerators.

Benefits of using an accelerator

There are several good reasons to develop accelerators:

If you’re repeatedly using the same application architecture for new applications.

To enforce standardization of technology stacks and application setups throughout your
organization.

To share best practices around application architecture, application, and test setup.

Design considerations

Each accelerator must have only one base technology stack, combined with related tooling, and
one target architecture. For example, if you use both Spring Boot and C# .NET Core applications in
your target environment, you must set up two separate accelerators. Mixing multiple technology
stacks and multiple target architectures makes both the directory structure and acceleratory.YAML
unreadable.

The scope of your accelerator must align with your different types of deployments. For example,
back-end API, front-end UI, business service, and so on.

Choose OpenRewrite-based transformation over ReplaceText-based transformation when possible.
OpenRewrite-based transformations understand the semantics of the files they work on, for
example, Maven pom.xml or Java source files. OpenRewrite-based transformations also provide
more accurate and robust modifications. As a last resort, ReplaceText supports a regex mode.
When used with capturing groups in the replacement string, ReplaceText allows most
modifications.

Housekeeping rules

VMware has found that the following rules keep the set of accelerators clear and findable for end
users:

Use an intuitive name and short description that reflects the accelerators purpose. The
word ‘accelerator’ must not be in the name.

Use an appropriate and intuitive icon.

Use tags that reflect language, framework, and type of service. For example, database,
messaging, and so on. This helps when searching for an accelerator by tags. Tag names
must use lowercase letters, consist of [a-z0-9+#] separated by [-], and not exceed 63
characters.

Accelerators must expose options to allow configuring an accelerator for different use cases
instead of creating multiple similar accelerators.

Options must be straightforward, the description of each clearly stating the role it plays in
the accelerator. Options must have default values when appropriate.

Options must be short so that they are easy to navigate. Make options conditional on other
options as appropriate.

Free text options that have limitations on their values must ensure these limitations are met
by a regular expression-based validation. This validation ensures early feedback on invalid
user input.

Generated application skeletons must have a detailed README file that describes the
function and structure of a generated application. It must provide detailed information

Tanzu Application Platform v1.5

VMware by Broadcom 785



about how developers can build and deploy a generated application of the accelerator and
how to use it.

Tests

Application skeleton

An accelerator that generates an application skeleton without a good test suite for the different
layers of the application promotes bad behavior. It could result in code running in production
without testing.

Tests you could use for the application skeleton:

An overall application test that bootstraps the application to see if it comes online.

A test per layer of the application. For example, presentation layer, business layer, and data
layer. These tests can be unit tests that leverage stubbing or mocking frameworks.

An integration test per layer of the application, especially the presentation and data layer.
For example, you can provide an integration test with some database interaction by using
test containers.

Best practices for using fragments
This topic tells you about the benefits, and design considerations for fragments.

Benefits of using Fragment
A fragment is a partial accelerator. It can do the same transformations as an accelerator, but it
cannot run on its own. It’s always part of the calling (host) accelerator.

Developing a fragment is useful in the following situations:

When you must update a version of an element of a technology stack in multiple locations.
For example, when the Java Development Kit (JDK) version must be updated in the build
tool configuration, the buildpack configuration, and in the deployment options.

To add a consistent cross-cutting concern to a set of accelerators. For example, logging,
monitoring, or support for a certain type of deployment or framework.

To add integration with some technology to a generated application skeleton. For example,
certain database support, support for a messaging middleware, or integration with an email
provider.

Design considerations
Developing and maintaining a fragment is complex. The following is a list of design considerations:

The fragment you develop must work with all possible syntax and format variations. For
example, dependency in a Gradle build.gradle.kts can have the following forms:

implementation(‘org.springframework.boot:spring-boot-starter’)

implementation("org.springframework.boot:spring-boot-starter")

implementation(group = "org.springframework.boot”, name= “spring-boot-

starter")

implementation(group = ‘org.springframework.boot’, name= ‘spring-boot-

starter’)

Tanzu Application Platform v1.5

VMware by Broadcom 786

https://www.testcontainers.org/


implementation(name= “spring-boot-starter", group =

"org.springframework.boot”)

The fragment can be used in multiple accelerator contexts and its behavior must result in a
compilable and deployable application skeleton.

Testing a fragment in isolation is more difficult than testing an accelerator. Testing takes
more time because all the combinations must be tested from an accelerator perspective.

When flexibly reusing fragments in different combinations, each fragment must cover a
small, cohesive function. Fragments must follow these two UNIX principles:

Small is beautiful.

Each fragment does one thing well.

Keep the files the fragment changes to a minimum. Only change the files that are related to
the same technology stack for the same purpose.

The design of both the accelerator and fragment is limited by the technology stack and the
target deployment technology chosen for the accelerator. For example, to create a
fragment for standardizing logging, you must create one fragment per base technology
stack.

Housekeeping rules

Fragments are used by accelerator authors. VMware has found that the following guidelines keep
fragments understandable and reusable.

Give fragments an intuitive name and short description that reflects their purpose. Do not
include “fragment” in the name.

Fragments must expose options to allow configuring the output of execution.

Each fragment must contain a README file explaining the additional functions the fragment
adds to a generated application skeleton. List any options expected by this fragment. Also
describe how this fragment can be included in a host accelerator. Be sure to state any
known limitations or use cases not covered. For example, if the fragment supports Maven
and Gradle as build tools but only Groovy DSL of Gradle is supported, the README file
must include this information.

If a fragment must provide additional documentation to end users, it can either be added to
a README-X file of the generated application skeleton or append a section to the host’s
README.

Troubleshoot Application Accelerator

This topic provides troubleshooting steps for development, accelerator authorship, and operations
issues in Application Accelerator.

Installation issues

Depending on the error output, you can take the following actions to troubleshoot installation
problems.

Verify installed packages

The package might be already installed. Verify this by running:

tanzu package installed list -n tap-install

Tanzu Application Platform v1.5

VMware by Broadcom 787



Look for any package called accelerator.apps.tanzu.vmware.com.

Look at resource events

The error might be within the custom resources such as accelerator, Git repository, fragment, and
so on. Find these errors by using the Kubernetes command line interface tool (kubectl).

Here is an example using the custom resource accelerator:

1. Check for errors. For example, review the custom resource accelerator by running:

kubectl get acc -n accelerator-system

Note items in the output with a READY status False:

NAME                       READY   REASON     AGE

appsso-starter-java        True    Ready      5h2m

where-for-dinner           True    Ready      5h2m

java-function              True    Ready      5h2m

java-rest-service          True    Ready      5h2m

java-server-side-ui        True    Ready      5h2m

node-express               True    Ready      5h2m

node-function              False   Not-Ready  5h2m

python-function            True    Ready      5h2m

spring-cloud-serverless    True    Ready      5h2m

spring-smtp-gateway        True    Ready      5h2m

tanzu-java-web-app         True    Ready      5h2m

tap-initialize             True    Ready      5h2m

weatherforecast-csharp     True    Ready      5h2m

weatherforecast-steeltoe   True    Ready      5h2m

2. To see more information about any error events you found, run:

kubectl get acc node-function -n accelerator-system -o yaml

Look at the event section for more information about the error.

Development issues

Failure to generate a new project

URI is not absolute error

The generate command fails with the following error:

% tanzu accelerator generate test --server-url https://accelerator.example.com

Error: there was an error generating the accelerator, the server response was: "URI is 

not absolute"

Use:

  tanzu accelerator generate [flags]

Examples:

  tanzu accelerator generate <accelerator-name> --options '{"projectName":"test"}'

Flags:

  -h, --help                  help for generate

      --options string        options JSON string

      --options-file string   path to file containing options JSON string

      --output-dir string     directory that the zip file will be written to

      --server-url string     the URL for the Application Accelerator server

Tanzu Application Platform v1.5

VMware by Broadcom 788



Global Flags:

      --context name      name of the kubeconfig context to use (default is current-co

ntext defined by kubeconfig)

      --kubeconfig file   kubeconfig file (default is $HOME/.kube/config)

there was an error generating the accelerator, the server response was: "URI is not ab

solute"

Error: exit status 1

✖  exit status 1

This indicates that the accelerator resource requested is not in a READY state. Review the
instructions in the When Accelerator ready column is false section or contact your system admin.

Accelerator authorship issues

General tips

Speed up the reconciliation of the accelerator

Set the git.interval to make the accelerator reconcile sooner. The default interval is 10 minutes,
which is too long when developing an accelerator.

You can set this when using the YAML manifest:

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

  name: test-accelerator

spec:

  git:

    url: https://github.com/trisberg/test-accelerator

    ref:

      branch: main

    interval: 10s

You can also set this when creating the accelerator resource. To do so from the Tanzu CLI, run:

tanzu accelerator create test-accelerator --git-repo https://github.com/trisberg/test-

accelerator --git-branch main --interval 10s

Use a source image with local accelerator source directory

You don’t have to use a Git repository when developing an accelerator. You can create an
accelerator based on content in a local directory using --local-path when creating the accelerator
resource.

Push the local path content to an OCI image by running:

tanzu accelerator create test-accelerator --local-path . --source-image REPO-PREFIX/te

st-accelerator --interval 10s

Where REPO-PREFIX is your own repository prefix. Use a repository that the deployed Application
Accelerator system can access.

The interval is 10s so that you can push changes to the source-image repository and get faster
reconcile time for the accelerator resource. When you have made changes to your accelerator
source, push those changes by running:

Tanzu Application Platform v1.5

VMware by Broadcom 789



tanzu accelerator push --local-path . --source-image REPO-PREFIX/test-accelerator

Where REPO-PREFIX is your own repository prefix. Use a repository that is accessible to the
deployed Application Accelerator system.

Expression evaluation errors

Expression evaluation errors include:

Expression evaluated to null, such as:

Could not read response from accelerator: java.lang.IllegalArgumentException: E

xpression '#mytestexp' evaluated to null

In most cases, a typo in the variable name causes this error. Compare the expression with
the defined options or any variables declared with let.

could not parse SpEL expression, such as:

Could not read response from accelerator: Error reading manifest:could not pars

e SpEL expression at [Source: (InputStreamReader); line: 65, column: 1] (throug

h reference chain: com.vmware.tanzu.accelerator.engine.manifest.Manifest["engin

e"]->com.vmware.tanzu.accelerator.engine.transform.transforms.Combo["let"]->jav

a.util.ArrayList[0]->com.vmware.tanzu.accelerator.engine.transform.transforms.L

et$DerivedSymbol["expression"])

In most cases, an error in a let expression causes this error. Review the error message and,
for more information, see SpEL samples.

SpelEvaluationException, such as:

Could not read response from accelerator: org.springframework.expression.spel.S

pelEvaluationException: EL1007E: Property or field 'test' cannot be found on nu

ll

In most cases, an error in a transform expression causes this error. Review the error
message and, for more information, see SpEL samples.

Operations issues

Accelerator persists in Tanzu Application Platform GUI after deletion

If an accelerator still displays in the Tanzu Application Platform GUI after it is deleted using the
tanzu accelerator delete command, complete the following steps to delete:

1. Navigate to your instance of the Tanzu Application Platform GUI.

2. Search for the accelerator which should be deleted and select it.

3. On the top right of the window, click the three dots, and select Unregister Template.

The accelerator is not longer displayed in the Tanzu Application Platform GUI Accelerator Catalog.

Check status of accelerator resources

Verify the status of accelerator resources by using kubectl or the Tanzu CLI:

From kubectl, run:

kubectl get accelerators.accelerator.apps.tanzu.vmware.com -n accelerator-syste

m

Tanzu Application Platform v1.5

VMware by Broadcom 790



From the Tanzu CLI, run:

tanzu accelerator list

Verify that the READY status is true for all accelerators.

When Accelerator ready column is blank

1. View the status of accelerator-system by running:

kubectl get deployment -n accelerator-system

Example output:

NAME                             READY   UP-TO-DATE   AVAILABLE   AGE

acc-engine                       1/1     1            1           3d5h

acc-server                       1/1     1            1           2d1h

accelerator-controller-manager   0/1     1            0           3d5h

2. View the logs for any component with no Pods available by running:

kubectl logs deployment/COMPONENT-NAME/ -n accelerator-system -p

Where COMPONENT-NAME is the component with no pods you retrieved in the previous step.

If the log has the following error then the Flux CD source-controller is not installed:

2021-11-18T20:55:18.963Z ERROR setup problem running manager {"error": "f

ailed to wait for accelerator caches to sync: no matches for kind \"GitRe

pository\" in version \"source.toolkit.fluxcd.io/v1beta1\""}

If the log has the following error, the Tanzu Application Platform source-controller is
not installed:

2021-11-18T20:50:10.557Z ERROR setup problem running manager {"error": "f

ailed to wait for accelerator caches to sync: no matches for kind \"Image

Repository\" in version \"source.apps.tanzu.vmware.com/v1alpha1\""}

When Accelerator ready column is false

View the REASON column for non-ready accelerators. Run:

kubectl get accelerators.accelerator.apps.tanzu.vmware.com -n accelerator-system

REASON: GitRepositoryResolutionFailed

For example:

$ kubectl get accelerators.accelerator.apps.tanzu.vmware.com -n accelerator-system

NAME        READY   REASON                             AGE

more-fun    False   GitRepositoryResolutionFailed      28s

1. View the resource status. Run:

kubectl get -oyaml accelerators.accelerator.apps.tanzu.vmware.com -n accelerato

r-system hello-fun

2. Read status.conditions.message near the end of the output to learn the likely cause of
failure. For example:

Tanzu Application Platform v1.5

VMware by Broadcom 791



status:

  address:

    url: http://accelerator-engine.accelerator-system.svc.cluster.local/invocat

ions

  artifact:

    message: 'unable to clone ''https://github.com/vmware-tanzu/application-acc

elerator-samples'',

      error: couldn''t find remote ref "refs/heads/test"'

    ready: false

    url: ""

  conditions:

  - lastTransitionTime: "2021-11-18T21:05:47Z"

    message: |-

      failed to resolve GitRepository

      unable to clone 'https://github.com/vmware-tanzu/application-accelerator-

samples', error: couldn't find remote ref "refs/heads/test"

    reason: GitRepositoryResolutionFailed

    status: "False"

    type: Ready

  description: Test-git

  observedGeneration: 1

In this example, couldn't find remote ref "refs/heads/test" reveals that the branch or
tag specified doesn’t exist.

Another common problem is that the Git repository doesn’t exist. For example:

status:

  address:

    url: http://accelerator-engine.accelerator-system.svc.cluster.local/invocat

ions

  artifact:

    message: 'unable to clone ''https://github.com/vmware-tanzu/application-acc

elerator-sampl'',

      error: authentication required'

    ready: false

    url: ""

  conditions:

  - lastTransitionTime: "2021-11-18T21:09:52Z"

    message: |-

      failed to resolve GitRepository

      unable to clone 'https://github.com/vmware-tanzu/application-accelerator-

sampl', error: authentication required

    reason: GitRepositoryResolutionFailed

    status: "False"

    type: Ready

  description: Test-git

  observedGeneration: 1

An error message about failed authentication might display because the Git repository
doesn’t exist. For example:

unable to clone 'https://github.com/vmware-tanzu/application-accelerator-samp

l', error: authentication required

REASON: GitRepositoryResolutionPending

For example:

$ kubectl get accelerators.accelerator.apps.tanzu.vmware.com -n accelerator-system

NAME        READY   REASON                             AGE

more-fun    False   GitRepositoryResolutionPending     28s

Tanzu Application Platform v1.5

VMware by Broadcom 792



1. See the resource status. Run:

kubectl get -oyaml accelerators.accelerator.apps.tanzu.vmware.com -n accelerato

r-system hello-fun

2. Locate status.conditions at the end of the output. For example:

status:

  address:

    url: http://accelerator-engine.accelerator-system.svc.cluster.local/invocat

ions

  artifact:

    message: ""

    ready: false

    url: ""

  conditions:

  - lastTransitionTime: "2021-11-18T20:17:38Z"

    message: GitRepository not yet resolved

    reason: GitRepositoryResolutionPending

    status: "False"

    type: Ready

  description: Test-git

  observedGeneration: 1

3. Verify that the Flux system is running and that the READY column has 1/1. Run:

kubectl get -n flux-system deployment/source-controller

Example output:

NAME                READY   UP-TO-DATE   AVAILABLE   AGE

source-controller   1/1     0            0           5d4h

REASON: ImageRepositoryResolutionPending

For example:

$ kubectl get accelerators.accelerator.apps.tanzu.vmware.com -n accelerator-system

NAME        READY   REASON                             AGE

more-fun    False   ImageRepositoryResolutionPending   28s

1. See the resource status. Run:

kubectl get -oyaml accelerators.accelerator.apps.tanzu.vmware.com -n accelerato

r-system hello-fun

2. Locate status.conditions at the end of the output. For example:

$ kubectl get -oyaml accelerators.accelerator.apps.tanzu.vmware.com -n accelera

tor-system more-fun

apiVersion: accelerator.apps.tanzu.vmware.com/v1alpha1

kind: Accelerator

metadata:

  annotations:

    kubectl.kubernetes.io/last-applied-configuration: |

      {"apiVersion":"accelerator.apps.tanzu.vmware.com/v1alpha1","kind":"Accele

rator","metadata":{"annotations":{},"name":"more-fun","namespace":"accelerator-

system"},"spec":{"description":"Test-image","source":{"image":"trisberg/more-fu

n-source"}}}

  creationTimestamp: "2021-11-18T20:32:36Z"

Tanzu Application Platform v1.5

VMware by Broadcom 793



  generation: 1

  name: more-fun

  namespace: accelerator-system

  resourceVersion: "605401"

  uid: 407b565d-14aa-44fe-ad8d-c9b3c3a7e5ce

spec:

  description: Test-image

  source:

    image: trisberg/more-fun-source

status:

  address:

    url: http://accelerator-engine.accelerator-system.svc.cluster.local/invocat

ions

  artifact:

    message: ""

    ready: false

    url: ""

  conditions:

  - lastTransitionTime: "2021-11-18T20:32:36Z"

    message: ImageRepository not yet resolved

    reason: ImageRepositoryResolutionPending

    status: "False"

    type: Ready

  description: Test-image

  observedGeneration: 1

3. Verify that Tanzu Application Platform source-controller system is running and the READY
column has 1/1. Run:

kubectl get -n source-system deployment/source-controller-manager

Expected output:

NAME                        READY   UP-TO-DATE   AVAILABLE   AGE

source-controller-manager   1/1     0            0           5d5h

Overview of Application Configuration Service for VMware
Tanzu

Application Configuration Service (commonly known as App Config Service) provides a Kubernetes-
native experience to enable the runtime configuration of existing Spring applications that were
previously leveraged by using Spring Cloud Config Server.

Spring Cloud Config Server was an essential component in microservices architectures for providing
runtime configuration to Spring Boot applications.

Spring Cloud Config Server did this by enabling configuration management to be hosted in Git
repositories on different branches and in directories that could be used to generate runtime
configuration properties for applications.

Application Configuration Service is compatible with the existing Git repository configuration
management approach. It filters runtime configuration for any application by using slices that
produce secrets.

For more information about Application Configuration Service, see the Application Configuration
Service for VMware Tanzu documentation.

Overview of Application Configuration Service for VMware
Tanzu

Tanzu Application Platform v1.5

VMware by Broadcom 794

https://docs.vmware.com/en/Application-Configuration-Service-for-VMware-Tanzu/2.0/acs/GUID-overview.html


Application Configuration Service (commonly known as App Config Service) provides a Kubernetes-
native experience to enable the runtime configuration of existing Spring applications that were
previously leveraged by using Spring Cloud Config Server.

Spring Cloud Config Server was an essential component in microservices architectures for providing
runtime configuration to Spring Boot applications.

Spring Cloud Config Server did this by enabling configuration management to be hosted in Git
repositories on different branches and in directories that could be used to generate runtime
configuration properties for applications.

Application Configuration Service is compatible with the existing Git repository configuration
management approach. It filters runtime configuration for any application by using slices that
produce secrets.

For more information about Application Configuration Service, see the Application Configuration
Service for VMware Tanzu documentation.

Install Application Configuration Service for VMware Tanzu

This topic tells you how to install Application Configuration Service for VMware Tanzu (commonly
known as App Config Service) from the Tanzu Application Platform package repository.

Prerequisites

Before installing Application Configuration Service, complete all prerequisites to install Tanzu
Application Platform. For more information, see Prerequisites.

Install

To install Application Configuration Service on a compliant Kubernetes cluster:

1. List version information for the package by running:

tanzu package available list application-configuration-service.tanzu.vmware.com 

--namespace tap-install

For example:

$ tanzu package available list application-configuration-service.tanzu.vmware.c

om --namespace tap-install

- Retrieving package versions for application-configuration-service.tanzu.vmwar

e.com...

NAME                                                VERSION  RELEASED-AT

application-configuration-service.tanzu.vmware.com  2.0.0    2023-03-08 19:00:0

0 -0500 EST

2. (Optional) Make changes to the default installation settings by running:

tanzu package available get application-configuration-service.tanzu.vmware.com/

VERSION-NUMBER \

--values-schema --namespace tap-install

Where VERSION-NUMBER is the number you discovered previously. For example, 2.0.0.

3. Install the package by running:

tanzu package install application-configuration-service \

--package application-configuration-service.tanzu.vmware.com \

Tanzu Application Platform v1.5

VMware by Broadcom 795

https://docs.vmware.com/en/Application-Configuration-Service-for-VMware-Tanzu/2.0/acs/GUID-overview.html


--version VERSION -n tap-install \

--values-file values.yaml

Where VERSION is the version you want, such as 2.0.0. Using a values.yaml file is optional.

For example:

$ tanzu package install application-configuration-service \

--package application-configuration-service.tanzu.vmware.com \

--version 2.0.0 -n tap-install

Installing package 'application-configuration-service.tanzu.vmware.com'

Getting package metadata for 'application-configuration-service.tanzu.vmware.co

m'

Creating service account 'application-configuration-service-tap-install-sa'

Creating cluster admin role 'application-configuration-service-tap-install-clus

ter-role'

Creating cluster role binding 'application-configuration-service-tap-install-cl

uster-rolebinding'

Creating package resource

Waiting for 'PackageInstall' reconciliation for 'application-configuration-serv

ice'

'PackageInstall' resource install status: Reconciling

'PackageInstall' resource install status: ReconcileSucceeded

Added installed package 'application-configuration-service'

4. Verify that you installed the package by running:

tanzu package installed get application-configuration-service -n tap-install

For example:

$ tanzu package installed get application-configuration-service -n tap-install

NAME:                    application-configuration-service

PACKAGE-NAME:            application-configuration-service.tanzu.vmware.com

PACKAGE-VERSION:         2.0.0

STATUS:                  Reconcile succeeded

CONDITIONS:              [{ReconcileSucceeded True  }]

USEFUL-ERROR-MESSAGE:

Overview of Application Live View

Application Live View is a lightweight insights and troubleshooting tool for app developers and app
operators that helps you to look inside running applications. It is based on the concept of Spring
Boot Actuators.

The application provides information from inside the running processes using endpoints, in this
case, HTTP endpoints. Application Live View uses those endpoints to get and interact with the
data from apps.

Value proposition

Application Live View is a diagnostic tool for developers to manage and analyze runtime
characteristics of containerized apps. In addition, it provides a Kubernetes-native feel for
developers to manage their apps in a Kubernetes environment more effectively.

Intended audience

Tanzu Application Platform v1.5

VMware by Broadcom 796



This documentation is intended for developers and operators to visualize the actuator information
of their running apps on Application Live View for VMware Tanzu. This documentation helps
developers to monitor and troubleshoot apps in development, staging, and production
environments. It is also intended to help app operators to deploy and administer containerized apps
in a Kubernetes environment.

Supported application platforms

You can extend Application Live View to support multiple app platforms, including, but not limited
to, Spring Boot, Spring Cloud Gateway, and Steeltoe.

Multicloud compatibility

Using Tanzu platform, you can integrate Application Live View to monitor apps running across on-
premises, public clouds, and edge. The platform provides a centralized view to manage apps across
cloud environments, which accelerates developer productivity and reduces time-to-market.

Deployment

Use a connector as the mode of deployment for registering apps with the Application Live View
running on a Kubernetes cluster. A connector is a component responsible for discovering multiple
apps running on a Kubernetes cluster and is installed as a DaemonSet by default.

Overview of Application Live View

Application Live View is a lightweight insights and troubleshooting tool for app developers and app
operators that helps you to look inside running applications. It is based on the concept of Spring
Boot Actuators.

The application provides information from inside the running processes using endpoints, in this
case, HTTP endpoints. Application Live View uses those endpoints to get and interact with the
data from apps.

Value proposition

Application Live View is a diagnostic tool for developers to manage and analyze runtime
characteristics of containerized apps. In addition, it provides a Kubernetes-native feel for
developers to manage their apps in a Kubernetes environment more effectively.

Intended audience

This documentation is intended for developers and operators to visualize the actuator information
of their running apps on Application Live View for VMware Tanzu. This documentation helps
developers to monitor and troubleshoot apps in development, staging, and production
environments. It is also intended to help app operators to deploy and administer containerized apps
in a Kubernetes environment.

Supported application platforms

You can extend Application Live View to support multiple app platforms, including, but not limited
to, Spring Boot, Spring Cloud Gateway, and Steeltoe.

Multicloud compatibility

Tanzu Application Platform v1.5

VMware by Broadcom 797



Using Tanzu platform, you can integrate Application Live View to monitor apps running across on-
premises, public clouds, and edge. The platform provides a centralized view to manage apps across
cloud environments, which accelerates developer productivity and reduces time-to-market.

Deployment

Use a connector as the mode of deployment for registering apps with the Application Live View
running on a Kubernetes cluster. A connector is a component responsible for discovering multiple
apps running on a Kubernetes cluster and is installed as a DaemonSet by default.

Install Application Live View

This topic tells you how to install Application Live View from the Tanzu Application Platform
(commonly known as TAP) package repository.

Overview

Application Live View includes four packages you must install. The following table lists these
packages and shows the Tanzu Application Platform profiles each package is included in.

Package Profiles Details

Application Live View APIServer
(apiserver.appliveview.tanzu.vmwa
re.com)

Full, Iterate,
Run

Installed in the appliveview-tokens-system namespace

Application Live View back end
(backend.appliveview.tanzu.vmware
.com)

Full, View Installed with Tanzu Application Platform GUI in the app-
live-view namespace

Application Live View connector
(connector.appliveview.tanzu.vmwa
re.com)

Full, Iterate,
Run

Installed as a DaemonSet in the app-live-view-connector
namespace

Application Live View conventions
(conventions.appliveview.tanzu.vm
ware.com)

Full, Iterate,
Build

Installed in the app-live-view-conventions namespace

For more information about these packages, see Application Live View internal architecture.

Prerequisites

Before installing Application Live View:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

Install Cartographer Conventions, which is bundled with Supply Chain Choreographer as of
v0.5.3. To install, see Installing Supply Chain Choreographer. For more information, see
Cartographer Conventions.

Note

Follow the steps in this topic if you do not want to use a profile to install Application
Live View. For more information about profiles, see About Tanzu Application
Platform components and profiles.

Tanzu Application Platform v1.5

VMware by Broadcom 798



Install Application Live View

You can install Application Live View in single cluster or multicluster environment:

Single cluster: All Application Live View components are deployed in a single cluster. The
user can access Application Live View plug-in information of the applications across all the
namespaces in the Kubernetes cluster. This is the default mode of Application Live View.

Multicluster: In a multicluster environment, the Application Live View back end
component is installed only once in a single cluster and exposes a RSocket registration for
the other clusters using Tanzu shared ingress. Each cluster continues to install the
connector as a DaemonSet. The connectors are configured to connect to the central
instance of the Application Live View back end.

The improved security and access control secures the communication between the Application
Live View components. For more information, see Configure security and access control in
Application Live View.

Install Application Live View back end

To install Application Live View back end:

1. List version information for the package by running:

tanzu package available list backend.appliveview.tanzu.vmware.com --namespace t

ap-install

For example:

$ tanzu package available list backend.appliveview.tanzu.vmware.com --namespace 

tap-install

- Retrieving package versions for backend.appliveview.tanzu.vmware.com...

  NAME                                  VERSION        RELEASED-AT

  backend.appliveview.tanzu.vmware.com  1.5.1          2023-03-29T00:00:00Z

2. Create the file app-live-view-backend-values.yaml using the following information:

For a single-cluster environment: The Application Live View back end is exposed
through the Kubernetes cluster service.

By default, ingress is deactivated for Application Live View back end. You do not
have to change your app-live-view-backend-values.yaml file in this step.

For a multicluster environment: Set the flag ingressEnabled to true for the
Application Live View back end to be exposed on the ingress domain.

appliveview:

  ingressEnabled: true

For a profile install using shared ingress domain key: If you are using a Tanzu
Application Platform profile installation and the top-level key shared.ingress_domain
is set in the tap-values.yaml, the back end is automatically exposed through the
shared ingress.

To override the shared ingress for Application Live View in a multicluster
environment, use the following values:

appliveview:

  ingressEnabled: true

Tanzu Application Platform v1.5

VMware by Broadcom 799



  ingressDomain: ${INGRESS-DOMAIN}

Where INGRESS-DOMAIN is the top-level domain you use for the tanzu-shared-
ingress service’s external IP address. The appliveview subdomain is prepended to
the value provided.

3. Configure TLS in your app-live-view-backend-values.yaml file:

To enable TLS for Application Live View back end using a self-signed certificate:

1. Create the app-live-view namespace and the TLS secret for the domain.
You must do this before installing the Tanzu Application Platform packages
in the cluster so that the HTTPProxy is updated with the TLS secret. To
create a TLS secret, run:

kubectl create -n app-live-view secret tls alv-cert --cert=CERT-FI

LE --key=KEY-FILE

Where:

SECRET-NAME is the name you want for the TLS secret for the domain,
for example, alv-cert.

CERT-FILE is a .crt file that contains the PEM encoded server
certificate.

KEY-FILE is a .key file that contains the PEM encoded server private
key.

2. Provide the following properties in your app-live-view-backend-
values.yaml:

appliveview:

  ingressEnabled: true

  tls:

    namespace: "NAMESPACE"

    secretName: "SECRET-NAME"

Where:

NAMESPACE is the targeted namespace of TLS secret for the domain.

SECRET-NAME is the name of TLS secret for the domain.

You can edit the values to suit your project needs or leave the default values
as is.

When ingressEnabled is true, the HTTPProxy object is created in the
cluster.

3. Verify the HTTPProxy object with the TLS secret by running:

kubectl get httpproxy -A

Expected output:

NAMESPACE       NAME          FQDN                               T

LS SECRET               STATUS   STATUS DESCRIPTION

app-live-view   appliveview   appliveview.192.168.42.55.nip.io   a

pp-live-view/alv-cert   valid    Valid HTTPProxy

To enable TLS for Application Live View back end using ClusterIssuer:

Tanzu Application Platform v1.5

VMware by Broadcom 800



1. Set the ingressEnabled key to true for TLS to be enabled on Application
Live View back end using ClusterIssuer. This key is set to false by default.

appliveview:

  ingressEnabled: true

TLS is then automatically enabled on Application Live View back end using
the shared ClusterIssuer. The appliveview-cert certificate is generated by
default and its issuerRef points to the .ingress_issuer value. The
ingress_issuer key consumes the value shared.ingress_issuer from tap-
values.yaml by default if you don’t specify the ingress_issuer in tap-
values.yaml.

When ingressEnabled is true, HTTPProxy object is created in the cluster
and also appliveview-cert certificate is generated by default in the
app_live_view namespace. Here, the secretName appliveview-cert stores
this certificate.

2. To verify the HTTPProxy object with the secret, run:

kubectl get httpproxy -A

Expected output:

NAMESPACE       NAME          FQDN                               T

LS SECRET         STATUS   STATUS DESCRIPTION

app-live-view   appliveview   appliveview.192.168.42.55.nip.io   a

ppliveview-cert   valid    Valid HTTPProxy

3. To verify the Application Live View pages in a multicluster setup, set the
appropriate connector configuration in your run cluster as listed in Install
Application Live View connector later in this topic.

4. (Optional) View additional changes you can make in your app-live-view-backend-
values.yaml file by running:

tanzu package available get backend.appliveview.tanzu.vmware.com/VERSION-NUMBER 

\

  --values-schema \

  --namespace tap-install

Where VERSION-NUMBER is the version of the package listed earlier. For example, 1.5.1.

For example:

$ tanzu package available get backend.appliveview.tanzu.vmware.com/1.5.1 \

    --values-schema \

    --namespace tap-install

  KEY                      DEFAULT          TYPE        DESCRIPTION

  tls.namespace            <nil>            string      The targeted namespace 

for secret consumption by the HTTPProxy.

  tls.secretName           <nil>            string      The name of secret for 

consumption by the HTTPProxy.

  ingressDomain            tap.example.com  string      Domain to be used by th

e HTTPProxy ingress object. The "appliveview"

                                                        subdomain will be prepe

nded to the value provided. For example:

                                                        "example.com" would bec

Tanzu Application Platform v1.5

VMware by Broadcom 801



ome "appliveview.example.com".

  ingressEnabled           false            boolean     Flag for whether or not 

to create an HTTPProxy for ingress.

  ingress_issuer                            string      Cluster issuer to be us

ed in App Live View Backend.

  kubernetes_distribution                   string      Kubernetes distribution 

that this package is being installed on. Accepted

                                                        values: ['''',''openshi

ft'']

  kubernetes_version                        string      Optional: The Kubernete

s Version. Valid values are '1.24.*', or ''

  server.tls.crt                            string      TLS cert file

  server.tls.enabled       false            boolean     Flag to enable tls on b

ackend

  server.tls.key                            string      TLS key file

5. Install the Application Live View back end package by running:

tanzu package install appliveview \

  --package backend.appliveview.tanzu.vmware.com \

  --version VERSION-NUMBER \

  --namespace tap-install \

  --values-file app-live-view-backend-values.yaml

Where VERSION-NUMBER is the version of the package listed earlier. For example, 1.5.1.

For example:

$ tanzu package install appliveview \

    --package backend.appliveview.tanzu.vmware.com \

    --version 1.5.1 \

    --namespace tap-install \

    --values-file app-live-view-backend-values.yaml

- Installing package 'backend.appliveview.tanzu.vmware.com'

| Getting namespace 'tap-install'

| Getting package metadata for 'backend.appliveview.tanzu.vmware.com'

| Creating service account 'appliveview-tap-install-sa'

| Creating cluster admin role 'appliveview-tap-install-cluster-role'

| Creating cluster role binding 'appliveview-tap-install-cluster-rolebinding'

| Creating package resource

| Package install status: Reconciling

Added installed package 'appliveview' in namespace 'tap-install'

The Application Live View back end component is deployed in app-live-view namespace
by default.

6. Verify the Application Live View back end package installation by running:

tanzu package installed get appliveview -n tap-install

For example:

$ tanzu package installed get appliveview -n tap-install

\ Retrieving installation details for appliveview...

NAME:                    appliveview

PACKAGE-NAME:            backend.appliveview.tanzu.vmware.com

PACKAGE-VERSION:         1.5.1

STATUS:                  Reconcile succeeded

Tanzu Application Platform v1.5

VMware by Broadcom 802



CONDITIONS:              [{ReconcileSucceeded True  }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded.

Install Application Live View connector

To install Application Live View connector:

1. List version information for the package by running:

tanzu package available list connector.appliveview.tanzu.vmware.com --namespace 

tap-install

For example:

$ tanzu package available list connector.appliveview.tanzu.vmware.com --namespa

ce tap-install

- Retrieving package versions for connector.appliveview.tanzu.vmware.com...

  NAME                                    VERSION        RELEASED-AT

  connector.appliveview.tanzu.vmware.com  1.5.1          2023-03-29T00:00:00Z

2. Create the file app-live-view-connector-values.yaml using the following details:

For a single-cluster environment: The Application Live View connector connects
to the cluster-local Application Live View back end to register the applications.

By default, ingress is deactivated for connector. You do not have to change your
app-live-view-connector-values.yaml file in this step.

For a multicluster environment: Set the flag ingressEnabled to true for the
Application Live View connector to connect to the Application Live View back end
by using the ingress domain. For example:

appliveview_connector:

  backend:

    ingressEnabled: true

For a profile install using shared ingress domain key: If you are using a Tanzu
Application Platform profile installation and the top-level key shared.ingress_domain
is set in the tap-values.yaml, the Application Live View connector and Application
Live View back end are configured to communicate through ingress. The
Application Live View connector then uses the shared.ingress_domain to reach the
back end.

To override the shared ingress for Application Live View in a multicluster
environment, use the following values:

appliveview_connector:

  backend:

    host: appliveview.INGRESS-DOMAIN

Where INGRESS-DOMAIN is the top-level domain the Application Live View back end
exposes by using tanzu-shared-ingress for the connectors in other clusters to
reach the Application Live View back end. Prepend the appliveview subdomain to
the provided value.

3. Configure TLS in your app-live-view-connector-values.yaml. Choose a tab depending on
how you configured TLS in Install Application Live View back end earlier.

Tanzu Application Platform v1.5

VMware by Broadcom 803



To configure TLS with a self-signed certificate, set the CA certificate for the ingress
domain in the backend.caCertData key for SSL validation as follows:

appliveview_connector:

  backend:

    ...

    caCertData: |-

      -----BEGIN CERTIFICATE-----

      MIIGMzCCBBugAwIBAgIJALHHzQjxM6wMMA0GCSqGSIb3DQEBDQUAMGcxCzAJBgNV

      BAgMAk1OMRQwEgYDVQQHDAtNaW5uZWFwb2xpczEPMA0GA1UECgwGVk13YXJlMRMw

      -----END CERTIFICATE-----

backend.sslDeactivated is set to false by default.

To enable TLS using ClusterIssuer:

1. Retrieve the certificate from the HTTPProxy secret by running the following
command in the view cluster:

kubectl get secret appliveview-cert -n app-live-view -o yaml |  yq 

'.data."ca.crt"' | base64 -d

2. Set the following connector configuration in the run cluster:

appliveview_connector:

  backend:

    ingressEnabled: true

    sslDeactivated: false

    host: appliveview.INGRESS-DOMAIN

    caCertData: |-

      -----BEGIN CERTIFICATE-----

      MIIGMzCCBBugAwIBAgIJALHHzQjxM6wMMA0GCSqGSIb3DQEBDQUAMGcxCzAJ

BgNV

      BAgMAk1OMRQwEgYDVQQHDAtNaW5uZWFwb2xpczEPMA0GA1UECgwGVk13YXJl

MRMw

      -----END CERTIFICATE-----

Where:

caCertData is the certificate you retrieved from the HTTPProxy
secret exposed by the Application Live View back end in the view
cluster.

host is the backend host in the view cluster.

To deactivate TLS if TLS is not enabled for the INGRESS-DOMAIN in the Application
Live View back end, set backend.sslDeactivated to true. For example:

appliveview_connector:

  backend:

    ...

    sslDeactivated: true

You can edit the values to suit your project needs or leave the default values as is.

Note

The sslDisabled key is deprecated and has been renamed to
sslDeactivated.

Tanzu Application Platform v1.5

VMware by Broadcom 804



Using the HTTP proxy either on 80 or 443 based on SSL config exposes the back
end service running on port 7000. The connector connects to the back end on port
80/443 by default. Therefore, you are not required to explicitly configure the port
field.

4. (Optional) View additional changes you can make in your app-live-view-connector-
values.yaml file by running:

tanzu package available get connector.appliveview.tanzu.vmware.com/VERSION-NUMB

ER \

  --values-schema \

  --namespace tap-install

Where VERSION-NUMBER is the version of the package listed earlier. For example, 1.5.1.

For example:

$ tanzu package available get connector.appliveview.tanzu.vmware.com/1.5.1 \

    --values-schema \

    --namespace tap-install

  KEY                                   DEFAULT             TYPE        DESCRIP

TION

  backend.caCertData                      cert-in-pem-format  string    CA Cert 

Data for ingress domain

  backend.host                            <nil>               string    Domain 

to be used to reach the application live view backend. Prepend

                                                                        "appliv

eview" subdomain to the value if you are using shared ingress. For

                                                                        exampl

e: "example.com" would become "appliveview.example.com".

  backend.ingressEnabled                  false               boolean   Flag fo

r the connector to connect to ingress on backend

  backend.port                            <nil>               number    Port to 

reach the application live view backend

  backend.sslDeactivated                  false               boolean   Flag fo

r whether or not to deactivate ssl

  backend.sslDisabled                     false               boolean   The key 

sslDisabled has been deprecated in TAP 1.4.0 and will be removed in TAP

                                                                        1.X+Y.0 

of TAP, please migrate to the key sslDeactivated

  connector.namespace_scoped.enabled      false               boolean   Flag fo

r the connector to run in namespace scope

  connector.namespace_scoped.namespace    default             string    Namespa

ce to deploy connector

  kubernetes_distribution                                     string    Kuberne

tes distribution that this package is being installed on. Accepted

                                                                        values: 

['''',''openshift'']

  kubernetes_version                                          string    Optiona

l: The Kubernetes Version. Valid values are '1.24.*', or ''

  activateAppLiveViewSecureAccessControl                      boolean   Optiona

l: Configuration required to enable Secure Access Connection between App

                                                                        Live Vi

ew components

  activateSensitiveOperations                                 boolean   Optiona

l: Configuration to allow connector to execute sensitive operations on a

                                                                        running 

application

5. Install the Application Live View connector package by running:

Tanzu Application Platform v1.5

VMware by Broadcom 805



tanzu package install appliveview-connector \

  --package connector.appliveview.tanzu.vmware.com \

  --version VERSION-NUMBER \

  --namespace tap-install \

  --values-file app-live-view-connector-values.yaml

Where VERSION-NUMBER is the version of the package listed earlier. For example, 1.5.1.

For example:

$ tanzu package install appliveview-connector \

    --package connector.appliveview.tanzu.vmware.com \

    --version 1.5.1 \

    --namespace tap-install \

    --values-file app-live-view-connector-values.yaml

| Installing package 'connector.appliveview.tanzu.vmware.com'

| Getting namespace 'tap-install'

| Getting package metadata for 'connector.appliveview.tanzu.vmware.com'

| Creating service account 'appliveview-connector-tap-install-sa'

| Creating cluster admin role 'appliveview-connector-tap-install-cluster-role'

| Creating cluster role binding 'appliveview-connector-tap-install-cluster-role

binding'

- Creating package resource

/ Package install status: Reconciling

Added installed package 'appliveview-connector' in namespace 'tap-install'

Each cluster installs the connector as a DaemonSet. The connector is configured to connect
to the central instance of the back end. The Application Live View connector component is
deployed in app-live-view-connector namespace by default.

6. Verify the Application Live View connector package installation by running:

tanzu package installed get appliveview-connector -n tap-install

For example:

$ tanzu package installed get appliveview-connector -n tap-install

| Retrieving installation details for appliveview-connector...

NAME:                    appliveview-connector

PACKAGE-NAME:            connector.appliveview.tanzu.vmware.com

PACKAGE-VERSION:         1.5.1

STATUS:                  Reconcile succeeded

CONDITIONS:              [{ReconcileSucceeded True  }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded.

Install Application Live View conventions

To install Application Live View conventions:

1. List version information for the package by running:

tanzu package available list conventions.appliveview.tanzu.vmware.com --namespa

ce tap-install

For example:

Tanzu Application Platform v1.5

VMware by Broadcom 806



$ tanzu package available list conventions.appliveview.tanzu.vmware.com --names

pace tap-install

- Retrieving package versions for conventions.appliveview.tanzu.vmware.com...

  NAME                                      VERSION        RELEASED-AT

  conventions.appliveview.tanzu.vmware.com  1.5.1          2023-03-29T00:00:00Z

2. (Optional) View the changes you can make to the default installation settings by running:

tanzu package available get conventions.appliveview.tanzu.vmware.com/VERSION-NU

MBER \

  --values-schema \

  --namespace tap-install

Where VERSION-NUMBER is the version of the package listed earlier. For example, 1.5.1.

For example:

$ tanzu package available get conventions.appliveview.tanzu.vmware.com/1.5.1 \

    --values-schema \

    --namespace tap-install

  KEY                               DEFAULT             TYPE     DESCRIPTION

  kubernetes_distribution                               string  Kubernetes dist

ribution that this package is installed on. Accepted values: ['''',''openshif

t''].

  kubernetes_version                                    string  Optional: The K

ubernetes Version. Valid values are '1.24.*', or ''.

3. (Optional) Create a file named app-live-view-conventions-values.yaml to override the
default installation settings using the information output in the previous step.

4. Install the Application Live View conventions package.

Default values
To install Application Live View conventions with the default settings, run:

tanzu package install appliveview-conventions \

  --package conventions.appliveview.tanzu.vmware.com \

  --version VERSION-NUMBER \

  --namespace tap-install

Where VERSION-NUMBER is the version of the package listed earlier. For example, 1.5.1.

For example:

$ tanzu package install appliveview-conventions \

    --package conventions.appliveview.tanzu.vmware.com \

    --version 1.5.1 \

    --namespace tap-install

- Installing package 'conventions.appliveview.tanzu.vmware.com'

| Getting namespace 'tap-install'

| Getting package metadata for 'conventions.appliveview.tanzu.vmware.com'

| Creating service account 'appliveview-conventions-tap-install-sa'

| Creating cluster admin role 'appliveview-conventions-tap-install-cluster-ro

le'

| Creating cluster role binding 'appliveview-conventions-tap-install-cluster-

rolebinding'

- Creating package resource

\ Package install status: Reconciling

Tanzu Application Platform v1.5

VMware by Broadcom 807



Added installed package 'appliveview-conventions' in namespace 'tap-install'

Overriding values
To install Application Live View conventions while overriding the default settings, run:

tanzu package install appliveview-conventions \

  --package conventions.appliveview.tanzu.vmware.com \

  --version VERSION-NUMBER \

  --namespace tap-install \

  --values-file app-live-view-conventions-values.yaml

Where VERSION-NUMBER is the version of the package listed earlier. For example, 1.5.1.

5. Verify the package install for Application Live View conventions package by running:

tanzu package installed get appliveview-conventions -n tap-install

For example:

$ tanzu package installed get appliveview-conventions -n tap-install

| Retrieving installation details for appliveview-conventions...

NAME:                    appliveview-conventions

PACKAGE-NAME:            conventions.appliveview.tanzu.vmware.com

PACKAGE-VERSION:         1.5.1

STATUS:                  Reconcile succeeded

CONDITIONS:              [{ReconcileSucceeded True  }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded.

Install Application Live View APIServer

To install Application Live View APIServer:

1. List version information for the package by running:

tanzu package available list apiserver.appliveview.tanzu.vmware.com --namespace 

tap-install

For example:

$ tanzu package available list apiserver.appliveview.tanzu.vmware.com --namespa

ce tap-install

- Retrieving package versions for apiserver.appliveview.tanzu.vmware.com...

  NAME                                    VERSION       RELEASED-AT

  apiserver.appliveview.tanzu.vmware.com  1.5.1         2023-03-29T00:00:00Z

2. (Optional) View the changes you can make to the default installation settings by running:

tanzu package available get apiserver.appliveview.tanzu.vmware.com/VERSION-NUMB

ER \

  --values-schema \

  --namespace tap-install

Where VERSION-NUMBER is the version of the package listed earlier. For example, 1.5.1.

For example:

Tanzu Application Platform v1.5

VMware by Broadcom 808



$ tanzu package available get apiserver.appliveview.tanzu.vmware.com/1.5.1 \

    --values-schema \

    --namespace tap-install \

  KEY                               DEFAULT             TYPE     DESCRIPTION

  kubernetes_distribution                               string  Kubernetes dist

ribution that this package is installed on. Accepted values: ['''',''openshif

t''].

  kubernetes_version                                    string  Optional: The K

ubernetes Version. Valid values are '1.24.*', or ''.

3. (Optional) Create a file named app-live-view-apiserver-values.yaml to override the
default installation settings using the information output in the previous step.

4. Install the Application Live View APIServer package.

Default values
To install Application Live View APIServer with the default settings, run:

tanzu package install appliveview-apiserver \

  --package apiserver.appliveview.tanzu.vmware.com \

  --version VERSION-NUMBER \

  --namespace tap-install

Where VERSION-NUMBER is the version of the package listed earlier. For example, 1.5.1.

For example:

$ tanzu package install appliveview-apiserver \

    --package apiserver.appliveview.tanzu.vmware.com \

    --version 1.5.1 \

    --namespace tap-install

- Installing package 'apiserver.appliveview.tanzu.vmware.com'

| Getting namespace 'tap-install'

| Getting package metadata for 'apiserver.appliveview.tanzu.vmware.com'

- Creating package resource

\ Package install status: Reconciling

Added installed package 'appliveview-apiserver' in namespace 'tap-install'

Overriding values
To install Application Live View APIServer while overriding the default settings, run:

tanzu package install appliveview-apiserver \

  --package apiserver.appliveview.tanzu.vmware.com \

  --version VERSION-NUMBER \

  --namespace tap-install \

  --values-file app-live-view-apiserver-values.yaml

Where VERSION-NUMBER is the version of the package listed earlier. For example, 1.5.1.

5. Verify the package install for Application Live View APIServer package by running:

tanzu package installed get appliveview-apiserver -n tap-install

For example:

$ tanzu package installed get appliveview-apiserver -n tap-install

| Retrieving installation details for appliveview-apiserver...

Tanzu Application Platform v1.5

VMware by Broadcom 809



NAME:                    appliveview-apiserver

PACKAGE-NAME:            apiserver.appliveview.tanzu.vmware.com

PACKAGE-VERSION:         1.5.1

STATUS:                  Reconcile succeeded

CONDITIONS:              [{ReconcileSucceeded True  }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded.

The Application Live View UI plug-in is part of Tanzu Application Platform GUI. To access the
Application Live View UI, see Application Live View in Tanzu Application Platform GUI.

Deprecation notice for the sslDisabled key

The appliveview_connector.backend.sslDisabled key is deprecated and renamed to
appliveview_connector.backend.sslDeactivated. The
appliveview_connector.backend.sslDisabled key is marked for removal in Tanzu Application
Platform 1.7.0.

Configure security and access control in Application Live
View
This topic tells you how to enable improved security and access control in Application Live View in
Tanzu Application Platform (commonly known as TAP). Improved security and access control in
Application Live View secures the REST API exposed by the Application Live View back end.

For more information about Application Live View packages, see Install Application Live View.

Security and access control overview
There is one instance of Application Live View back end installed per View profile. Multiple users
access this back-end API to fetch actuator data for different applications. All the REST API calls to
the back end are secured. A token must be passed to the Application Live View back end on each
call to the REST API to fetch actuator data. This token is obtained from Application Live View
APIServer.

The Application Live View APIServer generates a unique token upon access validation of a user to
a pod. The Application Live View back end passes this token to the Application Live View
connector when requesting the actuator data. The Application Live View connector verifies this
token by calling the Application Live View APIServer and proxies the actuator data only if the token
is valid.

The Application Live View UI plug-in part of The Tanzu Application Platform GUI uses the
preceding approach to securely query for the actuator data for a pod. It requests a token from
Application Live View APIServer and passes it in the subsequent calls to the back end. This ensures
that actuator data from the running application is fetched only if the user is authorized to see the
live information for the pod.

Tanzu Application Platform v1.5

VMware by Broadcom 810



The Application Live View UI plug-in relies on Tanzu Application Platform GUI authentication and
authorization to access the Application Live View APIServer and fetch the Application Live View
tokens.

The Tanzu Application Platform GUI controls the access to Kubernetes resources based on user
roles and permissions for each of the remote clusters. For more information, see View runtime
resources on authorization-enabled clusters.

For more information about how to set up unrestricted remote cluster visibility, see Viewing
resources on multiple clusters in Tanzu Application Platform GUI.

Prerequisites

1. You install the Application Live View APIServer package
(apiserver.appliveview.tanzu.vmware.com) in Tanzu Application Platform. For more
information, see Install Application Live View APIServer.

2. Assign users necessary roles and permissions for the Kubernetes clusters. For more
information about managing role-based access control, see Assign roles and permissions on
Kubernetes clusters

For example: If you are using Service Account to view resources on a cluster in Tanzu Application
Platform GUI, verify that the ClusterRole has rules to access and request tokens from the
Application Live View APIServer.

- apiGroups: ['appliveview.apps.tanzu.vmware.com']

  resources:

  - resourceinspectiongrants

  verbs: ['get', 'watch', 'list', 'create']

For more information, see Set up a Service Account to view resources on a cluster.

Note

Tanzu Application Platform v1.5

VMware by Broadcom 811



Configure improved security

The improved security feature is enabled by default for Application Live View.

In a Tanzu Application Platform profile install, the Application Live View connector
(connector.appliveview.tanzu.vmware.com) and the Tanzu Application Platform GUI (tap-
gui.tanzu.vmware.com) are automatically configured to enable the secure communication between
Application Live View components.

You can control this feature by setting the top-level key
shared.activateAppLiveViewSecureAccessControl in the tap-values.yaml.

For example:

shared:

    activateAppLiveViewSecureAccessControl: true

To override the security feature at the individual component level, take the following steps.

Application Live View connector

1. (Optional) Change the default installation settings for Application Live View connector by
running:

tanzu package available get connector.appliveview.tanzu.vmware.com/VERSION-NUMB

ER --values-schema --namespace tap-install

Where VERSION-NUMBER is the version of the package listed. For example, 1.5.0-build.5.

For example:

$ tanzu package available get connector.appliveview.tanzu.vmware.com/1.5.0-buil

d.5 --values-schema --namespace tap-install

  KEY                                   DEFAULT             TYPE        DESCRIP

TION

  kubernetes_version                                        string      Optiona

l: The Kubernetes Version. Valid values are '1.24.*', or ''.

  backend.sslDeactivated                false               boolean     Flag fo

r whether to disable SSL.

  backend.caCertData                    cert-in-pem-format  string      CA Cert 

Data for ingress domain.

  backend.host                          <nil>               string      Domain 

used to reach the Application Live View back end. Prepend

                                                                        "appliv

eview" subdomain to the value if you use shared ingress. For

                                                                        exampl

e: "example.com" becomes "appliveview.example.com".

  backend.ingressEnabled                false               boolean     Flag fo

r the connector to connect to ingress on back end.

  backend.port                          <nil>               number      Port to 

reach the Application Live View back end.

  connector.namespace_scoped.enabled    false               boolean     Flag fo

r the connector to run in namespace scope.

  connector.namespace_scoped.namespace  default             string      Namespa

ce to deploy connector.

With the Service Account approach to view resources on a cluster, every user with
the Service Account Token with access to view the pods is able to see the live
information in Application Live View.

Tanzu Application Platform v1.5

VMware by Broadcom 812



  kubernetes_distribution                                   string      Kuberne

tes distribution that this package is being installed on. Accepted

                                                                        values: 

['''',''openshift''].

  activateAppLiveViewSecureAccessControl                    boolean     Optiona

l: Configuration required to enable Secure Access Connection between App Live V

iew components.

  activateSensitiveOperations                               boolean     Optiona

l: Configuration to allow connector to execute sensitive operations on a runnin

g application.

For more information about values schema options, see the properties listed earlier.

2. Create app-live-view-connector-values.yaml with the following details:

To override the default security settings for connector, use the following values:

activateAppLiveViewSecureAccessControl: false

By default, activateAppLiveViewSecureAccessControl is set to true.

The activateSensitiveOperations key activates/deactivates the execution of sensitive
operations, such as editing environment variables, downloading heap dump data, and
changing log levels for the applications in the cluster. It is set to false by default.

To enable the sensitive operations, set activateSensitiveOperations to true.

activateSensitiveOperations: true

3. Install the Application Live View connector package by running:

tanzu package install appliveview-connector \

  --package connector.appliveview.tanzu.vmware.com \

  --version VERSION-NUMBER \

  --namespace tap-install \

  --values-file app-live-view-connector-values.yaml

Where VERSION-NUMBER is the version of the package listed. For example, 1.5.0-build.5.

For example:

$ tanzu package install appliveview-connector \

    --package connector.appliveview.tanzu.vmware.com \

    --version 1.5.0-build.5 \

    --namespace tap-install \

    --values-file app-live-view-connector-values.yaml

| Installing package 'connector.appliveview.tanzu.vmware.com'

| Getting namespace 'tap-install'

| Getting package metadata for 'connector.appliveview.tanzu.vmware.com'

| Creating service account 'appliveview-connector-tap-install-sa'

| Creating cluster admin role 'appliveview-connector-tap-install-cluster-role'

| Creating cluster role binding 'appliveview-connector-tap-install-cluster-role

binding'

- Creating package resource

/ Package install status: Reconciling

Added installed package 'appliveview-connector' in namespace 'tap-install'

4. Verify the Application Live View connector package installation by running:

tanzu package installed get appliveview-connector -n tap-install

For example:

Tanzu Application Platform v1.5

VMware by Broadcom 813



tanzu package installed get appliveview-connector -n tap-install                                           

5s

| Retrieving installation details for appliveview-connector...

NAME:                    appliveview-connector

PACKAGE-NAME:            connector.appliveview.tanzu.vmware.com

PACKAGE-VERSION:         1.5.0-build.5

STATUS:                  Reconcile succeeded

CONDITIONS:              [{ReconcileSucceeded True  }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded.

Application Live View UI plug-in

The Application Live View UI plug-in is part of Tanzu Application Platform GUI. To override the
default security settings for the Application Live View UI plug-in, take the following steps.

1. (Optional) Make changes to the default installation settings by running:

tanzu package available get tap-gui.tanzu.vmware.com/VERSION-NUMBER --values-sc

hema --namespace tap-install

Where VERSION-NUMBER is the number you discovered previously. For example, 1.4.6.

For more information about values schema options, see the individual product
documentation.

2. Create tap-gui-values.yaml and paste in the following code:

ingressEnabled: true

ingressDomain: "INGRESS-DOMAIN"

app_config:

  catalog:

    locations:

      - type: url

        target: https://GIT-CATALOG-URL/catalog-info.yaml

  appLiveView:

    activateAppLiveViewSecureAccessControl: false

Where:

INGRESS-DOMAIN is the subdomain for the host name that you point at the tanzu-
shared-ingress service’s External IP address.

GIT-CATALOG-URL is the path to the catalog-info.yaml catalog definition file from
either the included Blank catalog (provided as an additional download named “Blank
Tanzu Application Platform GUI Catalog”) or a Backstage-compliant catalog that
you’ve already built and posted on the Git infrastructure specified in Add Tanzu
Application Platform GUI integrations.

3. Install the package by running:

tanzu package install tap-gui \

  --package tap-gui.tanzu.vmware.com \

  --version VERSION \

  --namespace tap-install \

  --values-file tap-gui-values.yaml

Where VERSION is the version that you want. For example, 1.4.6.

For example:

Tanzu Application Platform v1.5

VMware by Broadcom 814



$ tanzu package install tap-gui \

    --package tap-gui.tanzu.vmware.com \

    --version 1.4.6 \

    --namespace tap-install \

    --values-file tap-gui-values.yaml

- Installing package 'tap-gui.tanzu.vmware.com'

| Getting package metadata for 'tap-gui.tanzu.vmware.com'

| Creating service account 'tap-gui-default-sa'

| Creating cluster admin role 'tap-gui-default-cluster-role'

| Creating cluster role binding 'tap-gui-default-cluster-rolebinding'

| Creating secret 'tap-gui-default-values'

- Creating package resource

- Package install status: Reconciling

 Added installed package 'tap-gui' in namespace 'tap-install'

4. Verify that the package installed by running:

tanzu package installed get tap-gui -n tap-install

For example:

$ tanzu package installed get tap-gui -n tap-install

| Retrieving installation details for cc...

NAME:                    tap-gui

PACKAGE-NAME:            tap-gui.tanzu.vmware.com

PACKAGE-VERSION:         1.4.6

STATUS:                  Reconcile succeeded

CONDITIONS:              [{ReconcileSucceeded True  }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded.

5. To access Tanzu Application Platform GUI, use the service you exposed in the service_type
field in the values file.

Enabling Spring Boot apps for Application Live View
This topic for developers tells you how to configure a Spring Boot app for observation by
Application Live View within Tanzu Application Platform (commonly known as TAP).

Enable Spring Boot apps
For Application Live View to interact with a Spring Boot app within Tanzu Application Platform, add
the spring-boot-starter-actuator module dependency.

Add the maven dependency in pom.xml as follows:

<dependency>

  <groupId>org.springframework.boot</groupId>

  <artifactId>spring-boot-starter-actuator</artifactId>

</dependency>

Add the following plugin configuration in pom.xml:

<plugin>

  <groupId>org.springframework.boot</groupId>

  <artifactId>spring-boot-maven-plugin</artifactId>

  <executions>

    <execution>

      <goals>

Tanzu Application Platform v1.5

VMware by Broadcom 815



        <goal>build-info</goal>

      </goals>

      <configuration>

        <additionalProperties>

          <spring.boot.version>${project.parent.version}</spring.boot.version>

        </additionalProperties>

      </configuration>

    </execution>

  </executions>

</plugin>

Add the preceding configuration to generate build-info.properties into your Spring Boot
application. This information is then used to display the Spring Boot version that the app uses in
Application Live View.

To enable Application Live View for Spring Boot apps, Spring Boot conventions automatically sets
the Application Live View labels onto the PodSpec. For more information about the labels
automatically set by Spring Boot conventions, see Enable Application Live View for Spring Boot
applications.

Enable Spring Boot 3 apps

For Application Live View to interact with a Spring Boot 3 app within Tanzu Application Platform,
add the spring-boot-starter-actuator module dependency.

Add the maven dependency in pom.xml as follows:

<dependency>

  <groupId>org.springframework.boot</groupId>

  <artifactId>spring-boot-starter-actuator</artifactId>

</dependency>

Add the following plugin configuration in pom.xml:

<plugin>

  <groupId>org.springframework.boot</groupId>

  <artifactId>spring-boot-maven-plugin</artifactId>

  <executions>

    <execution>

      <goals>

        <goal>build-info</goal>

      </goals>

      <configuration>

        <additionalProperties>

          <spring.boot.version>${project.parent.version}</spring.boot.version>

        </additionalProperties>

      </configuration>

    </execution>

  </executions>

</plugin>

Add the preceding configuration to generate build-info.properties into your Spring Boot
application. This information is then used to display the Spring Boot version that the app uses in
Application Live View.

To enable Application Live View for Spring Boot 3 apps, Spring Boot conventions automatically sets
the Application Live View labels onto the PodSpec. For more information about the labels
automatically set by Spring Boot conventions, see Enable Application Live View for Spring Boot
applications.

Here is an example of creating a workload for a Spring Boot 3 Application:

Tanzu Application Platform v1.5

VMware by Broadcom 816



tanzu apps workload create spring-boot-3 --git-repo https://github.com/martinlippert/s

b3-demo.git --git-branch main --annotation autoscaling.knative.dev/min-scale=1 --yes -

-label app.kubernetes.io/part-of=tanzu-java-web-app --type web --build-env "BP_JVM_VER

SION=17" --label apps.tanzu.vmware.com/auto-configure-actuators="true"

Enable Spring Cloud Gateway apps

For Application Live View to interact with a Spring Cloud Gateway app within Tanzu Application
Platform, add the spring-boot-starter-actuator and spring-cloud-starter-gateway module
dependency.

Add the maven dependencies in pom.xml as follows:

<dependency>

  <groupId>org.springframework.boot</groupId>

  <artifactId>spring-boot-starter-actuator</artifactId>

</dependency>

<dependency>

  <groupId>org.springframework.cloud</groupId>

  <artifactId>spring-cloud-starter-gateway</artifactId>

</dependency>

To enable Application Live View on the Spring Cloud Gateway Tanzu Application Platform
workload, Spring Boot conventions automatically applies labels on the workload, such as
tanzu.app.live.view.application.flavours: spring-boot_spring-cloud-gateway and
tanzu.app.live.view: true, based on the Spring Cloud Gateway image metadata.

Here is an example of creating a workload for a Spring Cloud Gateway Application:

tanzu apps workload create tanzu-scg-web-app --git-repo https://github.com/ksankaranar

a-vmw/gs-gateway.git --git-branch main --type web --label app.kubernetes.io/part-of=ta

nzu-scg-web-app --yes --annotation autoscaling.knative.dev/min-scale=1

Workload image NOT built with Tanzu Build Service
If your application image is NOT built with Tanzu Build Service, to enable Application Live View on
Spring Boot Tanzu Application Platform workload, use the following command. For example:

tanzu apps workload create boot-app --type web --app boot-app --image <IMAGE NAME> --a

nnotation autoscaling.knative.dev/min-scale=1 --yes --label tanzu.app.live.view=true -

-label tanzu.app.live.view.application.name=boot-app --label tanzu.app.live.view.appli

cation.flavours=spring-boot

If your application image is NOT built with Tanzu Build Service, to enable Application Live View on
Spring Cloud Gateway Tanzu Application Platform workload, use the following command. For
example:

tanzu apps workload create scg-app --type web --app scg-app --image <IMAGE NAME> --ann

otation autoscaling.knative.dev/min-scale=1 --yes --label tanzu.app.live.view=true --l

abel tanzu.app.live.view.application.name=scg-app --label tanzu.app.live.view.applicat

ion.flavours=spring-boot_spring-cloud-gateway

If your application image is NOT built with Tanzu Build Service, to enable Application Live View on
Steeltoe Tanzu Application Platform workload, use the following command. For example:

tanzu apps workload create steeltoe-app --type web --app steeltoe-app --image <IMAGE N

AME> --annotation autoscaling.knative.dev/min-scale=1 --yes --label tanzu.app.live.vie

Tanzu Application Platform v1.5

VMware by Broadcom 817



w=true --label tanzu.app.live.view.application.name=steeltoe-app --label tanzu.app.liv

e.view.application.flavours=steeltoe

Enabling Spring Boot apps for Application Live View

This topic for developers tells you how to configure a Spring Boot app for observation by
Application Live View within Tanzu Application Platform (commonly known as TAP).

Enable Spring Boot apps

For Application Live View to interact with a Spring Boot app within Tanzu Application Platform, add
the spring-boot-starter-actuator module dependency.

Add the maven dependency in pom.xml as follows:

<dependency>

  <groupId>org.springframework.boot</groupId>

  <artifactId>spring-boot-starter-actuator</artifactId>

</dependency>

Add the following plugin configuration in pom.xml:

<plugin>

  <groupId>org.springframework.boot</groupId>

  <artifactId>spring-boot-maven-plugin</artifactId>

  <executions>

    <execution>

      <goals>

        <goal>build-info</goal>

      </goals>

      <configuration>

        <additionalProperties>

          <spring.boot.version>${project.parent.version}</spring.boot.version>

        </additionalProperties>

      </configuration>

    </execution>

  </executions>

</plugin>

Add the preceding configuration to generate build-info.properties into your Spring Boot
application. This information is then used to display the Spring Boot version that the app uses in
Application Live View.

To enable Application Live View for Spring Boot apps, Spring Boot conventions automatically sets
the Application Live View labels onto the PodSpec. For more information about the labels
automatically set by Spring Boot conventions, see Enable Application Live View for Spring Boot
applications.

Enable Spring Boot 3 apps
For Application Live View to interact with a Spring Boot 3 app within Tanzu Application Platform,
add the spring-boot-starter-actuator module dependency.

Add the maven dependency in pom.xml as follows:

<dependency>

  <groupId>org.springframework.boot</groupId>

  <artifactId>spring-boot-starter-actuator</artifactId>

</dependency>

Tanzu Application Platform v1.5

VMware by Broadcom 818



Add the following plugin configuration in pom.xml:

<plugin>

  <groupId>org.springframework.boot</groupId>

  <artifactId>spring-boot-maven-plugin</artifactId>

  <executions>

    <execution>

      <goals>

        <goal>build-info</goal>

      </goals>

      <configuration>

        <additionalProperties>

          <spring.boot.version>${project.parent.version}</spring.boot.version>

        </additionalProperties>

      </configuration>

    </execution>

  </executions>

</plugin>

Add the preceding configuration to generate build-info.properties into your Spring Boot
application. This information is then used to display the Spring Boot version that the app uses in
Application Live View.

To enable Application Live View for Spring Boot 3 apps, Spring Boot conventions automatically sets
the Application Live View labels onto the PodSpec. For more information about the labels
automatically set by Spring Boot conventions, see Enable Application Live View for Spring Boot
applications.

Here is an example of creating a workload for a Spring Boot 3 Application:

tanzu apps workload create spring-boot-3 --git-repo https://github.com/martinlippert/s

b3-demo.git --git-branch main --annotation autoscaling.knative.dev/min-scale=1 --yes -

-label app.kubernetes.io/part-of=tanzu-java-web-app --type web --build-env "BP_JVM_VER

SION=17" --label apps.tanzu.vmware.com/auto-configure-actuators="true"

Enable Spring Cloud Gateway apps
For Application Live View to interact with a Spring Cloud Gateway app within Tanzu Application
Platform, add the spring-boot-starter-actuator and spring-cloud-starter-gateway module
dependency.

Add the maven dependencies in pom.xml as follows:

<dependency>

  <groupId>org.springframework.boot</groupId>

  <artifactId>spring-boot-starter-actuator</artifactId>

</dependency>

<dependency>

  <groupId>org.springframework.cloud</groupId>

  <artifactId>spring-cloud-starter-gateway</artifactId>

</dependency>

To enable Application Live View on the Spring Cloud Gateway Tanzu Application Platform
workload, Spring Boot conventions automatically applies labels on the workload, such as
tanzu.app.live.view.application.flavours: spring-boot_spring-cloud-gateway and
tanzu.app.live.view: true, based on the Spring Cloud Gateway image metadata.

Here is an example of creating a workload for a Spring Cloud Gateway Application:

tanzu apps workload create tanzu-scg-web-app --git-repo https://github.com/ksankaranar

a-vmw/gs-gateway.git --git-branch main --type web --label app.kubernetes.io/part-of=ta

Tanzu Application Platform v1.5

VMware by Broadcom 819



nzu-scg-web-app --yes --annotation autoscaling.knative.dev/min-scale=1

Workload image NOT built with Tanzu Build Service

If your application image is NOT built with Tanzu Build Service, to enable Application Live View on
Spring Boot Tanzu Application Platform workload, use the following command. For example:

tanzu apps workload create boot-app --type web --app boot-app --image <IMAGE NAME> --a

nnotation autoscaling.knative.dev/min-scale=1 --yes --label tanzu.app.live.view=true -

-label tanzu.app.live.view.application.name=boot-app --label tanzu.app.live.view.appli

cation.flavours=spring-boot

If your application image is NOT built with Tanzu Build Service, to enable Application Live View on
Spring Cloud Gateway Tanzu Application Platform workload, use the following command. For
example:

tanzu apps workload create scg-app --type web --app scg-app --image <IMAGE NAME> --ann

otation autoscaling.knative.dev/min-scale=1 --yes --label tanzu.app.live.view=true --l

abel tanzu.app.live.view.application.name=scg-app --label tanzu.app.live.view.applicat

ion.flavours=spring-boot_spring-cloud-gateway

If your application image is NOT built with Tanzu Build Service, to enable Application Live View on
Steeltoe Tanzu Application Platform workload, use the following command. For example:

tanzu apps workload create steeltoe-app --type web --app steeltoe-app --image <IMAGE N

AME> --annotation autoscaling.knative.dev/min-scale=1 --yes --label tanzu.app.live.vie

w=true --label tanzu.app.live.view.application.name=steeltoe-app --label tanzu.app.liv

e.view.application.flavours=steeltoe

Enable Steeltoe apps for Application Live View

This topic for developers tells you how to extend .NET Core Apps to Steeltoe apps and enable
Application Live View on Steeltoe workloads within Tanzu Application Platform (commonly known
as TAP).

Application Live View supports Steeltoe .NET apps with .NET core runtime version v6.0.8.

Extend .NET Core Apps to Steeltoe Apps

A .NET Core application can be extended to a Steeltoe application by adding independent NuGet
packages.

To enable the Actuators on a .NET Core App:

1. Add a PackageReference to your .csproj file:

<PackageReference Include="Steeltoe.Management.EndpointCore" Version="$(Steelto

eVersion)" />

2. Call the extension AddAllActuators in your Program.cs file:

Note

The PackageReference is expected to change to
Steeltoe.Management.Endpoint from version Steeltoe 4.0 onwards.

Tanzu Application Platform v1.5

VMware by Broadcom 820



builder.WebHost.AddAllActuators();

3. (Optional) You can add app-specific configurations, such as the following.

To expose all management actuator endpoints except env endpoint, add the following
configuration to your appsettings.json file:

{

  "Management": {

    "Endpoints": {

      "Actuator":{

        "Exposure": {

          "Include": [ "*" ],

          "Exclude": [ "env" ]

        }

      }

    }

  }

}

To enable logging, add the following configuration to your appsettings.json file:

{

  "Logging": {

    "LogLevel": {

      "Default": "Information",

      "Microsoft": "Warning",

      "Steeltoe": "Warning",

      "Sample": "Information"

    }

  }

}

To enable heapdump, add the following configuration to your appsettings.json file:

{

  "Management": {

    "Endpoints": {

      "HeapDump": {

        "HeapDumpType": "Normal"

      }

    }

  }

}

Enable Application Live View on Steeltoe Tanzu Application
Platform workload
You can enable Application Live View to interact with a Steeltoe app within Tanzu Application
Platform.

To enable Application Live View on the Steeltoe Tanzu Application Platform workload, the
Application Live View convention service automatically applies labels on the workload, such as
tanzu.app.live.view.application.flavours: steeltoe and tanzu.app.live.view: true, based on
the Steeltoe image metadata.

Here’s an example of creating a workload for a Steeltoe Application:

tanzu apps workload create steeltoe-app --type web --git-repo https://github.com/vmwar

e-tanzu/application-accelerator-samples --sub-path weatherforecast-steeltoe --git-bran

Tanzu Application Platform v1.5

VMware by Broadcom 821



ch main --annotation autoscaling.knative.dev/min-scale=1 --yes --label app.kubernetes.

io/part-of=sample-app

If your application image is NOT built with Tanzu Build Service, to enable Application Live View on
Steeltoe Tanzu Application Platform workload, use the following command. For example:

tanzu apps workload create steeltoe-app --type web --app steeltoe-app --image IMAGE-NA

ME --annotation autoscaling.knative.dev/min-scale=1 --yes --label tanzu.app.live.view=

true --label tanzu.app.live.view.application.name=steeltoe-app --label tanzu.app.live.

view.application.flavours=steeltoe

Where IMAGE-NAME is the name of your application image.

<PropertyGroup>

    <SteeltoeVersion>3.2.*</SteeltoeVersion>

</PropertyGroup>

Application Live View convention server

This topic provides information about Application Live View convention, which provides a Webhook
handler for Cartographer Conventions.

Role of Application Live View convention

Application Live View conventions works in conjunction with core Cartographer Conventions. It
enhances Tanzu PodIntents with metadata such as labels, annotations, or app properties. This
metadata allows Application Live View, specifically the connector, to discover app instances so that
Application Live View can access the actuator data from those workloads.

To run Application Live View with Steeltoe apps, the Spring Boot convention recognizes
PodIntents and adds the following metadata labels:

tanzu.app.live.view: "true": Enables the connector to observe application pod.

tanzu.app.live.view.application.name: APPLICATION-NAME: Identifies the app name to be
used internally by Application Live View.

tanzu.app.live.view.application.actuator.port: ACTUATOR-PORT: Identifies the port on
the pod at which the actuators are available for Application Live View.

tanzu.app.live.view.application.flavours: steeltoe: Exposes the framework flavor of
the app.

Note

Thread metrics is available in SteeltoeVersion 3.2.*. To enable the Threads page in
the Application Live View UI, add the following configuration to your .csproj file:

Note

Application Live View conventions now supports only Steeltoe applications. Spring
Boot conventions supports both Spring Boot and Spring Cloud Gateway
applications. For more information about Spring Boot conventions, see Enable
Application Live View with Spring Boot apps

Tanzu Application Platform v1.5

VMware by Broadcom 822



These metadata labels allow Application Live View to identify pods that are enabled for Application
Live View. The metadata labels also tell the Application Live View connector what kind of app it is,
and on which port the actuators are accessible for Application Live View.

Description of metadata labels

If a workload resource explicitly defines a label under metadata.labels in the workload.yaml, then
the convention service detects the presence of that label and respects its value. When deploying a
workload using Tanzu Application Platform, you can override the labels listed in the following table
using the Workload YAML.

Metadata Default Type Description

tanzu.app.live.vi

ew

true Labe
l

When deploying a workload in Tanzu Application Platform, this label is set
to true as default across the supply chain.

tanzu.app.live.vi

ew.application.na

me

steeltoe

-app

Labe
l

When deploying a workload in Tanzu Application Platform, this label is set
to steeltoe-app if the container image metadata does not contain the app
name. Otherwise, the label is set to the app name from container image
metadata.

tanzu.app.live.vi

ew.application.fl

avours

steeltoe Labe
l

When deploying a Spring Boot workload in Tanzu Application Platform, this
label is set to steeltoe as default across the supply chain.

Verify the applied labels and annotations

You can verify the applied labels and annotations by running:

kubectl get podintents.conventions.carto.run WORKLOAD-NAME -o yaml

Where WORKLOAD-NAME is the name of the deployed workload, for example steetoe-app.

Expected output for Steeltoe workload:

apiVersion: conventions.carto.run/v1alpha1

kind: PodIntent

metadata:

  creationTimestamp: "2022-11-14T09:56:53Z"

  generation: 1

  labels:

    app.kubernetes.io/component: intent

    app.kubernetes.io/part-of: sample-app

    apps.tanzu.vmware.com/workload-type: web

    carto.run/cluster-template-name: convention-template

    carto.run/resource-name: config-provider

    carto.run/supply-chain-name: source-to-url

    carto.run/template-kind: ClusterConfigTemplate

    carto.run/workload-name: steeltoe-app

    carto.run/workload-namespace: default

  name: steeltoe-app

  namespace: default

  ownerReferences:

  - apiVersion: carto.run/v1alpha1

    blockOwnerDeletion: true

    controller: true

    kind: Workload

    name: steeltoe-app

    uid: 97897399-807a-4815-9693-fb06bb4bc1ed

  resourceVersion: "428904"

  uid: 0c74e045-075c-4af3-beef-b092b951be7f

spec:

Tanzu Application Platform v1.5

VMware by Broadcom 823



  serviceAccountName: default

  template:

    metadata:

      annotations:

        autoscaling.knative.dev/min-scale: "1"

        developer.conventions/target-containers: workload

      labels:

        app.kubernetes.io/component: run

        app.kubernetes.io/part-of: sample-app

        apps.tanzu.vmware.com/workload-type: web

        carto.run/workload-name: steeltoe-app

    spec:

      containers:

      - image: dev.registry.tanzu.vmware.com/app-live-view/test/steeltoe-app-default@s

ha256:c8ea14d8714ec31ad978085ebff43d15679613a0c12df37812adf22cb47b5232

        name: workload

        resources: {}

        securityContext:

          runAsUser: 1000

      serviceAccountName: default

status:

  conditions:

  - lastTransitionTime: "2022-11-14T09:56:57Z"

    message: ""

    reason: Applied

    status: "True"

    type: ConventionsApplied

  - lastTransitionTime: "2022-11-14T09:56:57Z"

    message: ""

    reason: ConventionsApplied

    status: "True"

    type: Ready

  observedGeneration: 1

  template:

    metadata:

      annotations:

        autoscaling.knative.dev/min-scale: "1"

        conventions.carto.run/applied-conventions: |-

          spring-boot-convention/auto-configure-actuators-check

          spring-boot-convention/app-live-view-appflavour-check

          appliveview-sample/app-live-view-appflavour-check

          appliveview-sample/app-live-view-connector-steeltoe

          appliveview-sample/app-live-view-appflavours-steeltoe

        developer.conventions/target-containers: workload

      labels:

        app.kubernetes.io/component: run

        app.kubernetes.io/part-of: sample-app

        apps.tanzu.vmware.com/workload-type: web

        carto.run/workload-name: steeltoe-app

        tanzu.app.live.view: "true"

        tanzu.app.live.view.application.flavours: steeltoe

        tanzu.app.live.view.application.name: steeltoe-app

    spec:

      containers:

      - image: dev.registry.tanzu.vmware.com/app-live-view/test/steeltoe-app-default@s

ha256:c8ea14d8714ec31ad978085ebff43d15679613a0c12df37812adf22cb47b5232

        name: workload

        resources: {}

        securityContext:

          runAsUser: 1000

      serviceAccountName: default

In your output:

status.template.metadata.labels shows the list of applied labels by Application Live View
convention server.

Tanzu Application Platform v1.5

VMware by Broadcom 824



status.template.metadata.annotations shows the list of applied annotations by Application
Live View convention server.

Custom configuration for the connector

This topic for developers tells you how to custom configure an app or workload for Application Live
View.

The connector component is responsible for discovering the app and registering it with Application
Live View. Labels from the app PodSpec are used to discover the app and configure the connector
to access the actuator data of the app.

Usually, Application Live View conventions applies the necessary configuration automatically. To
deactivate the convention and configure the app and the workload manually, the list of labels in the
following table gives you an overview of the options:

Label Name Mandatory Type Default Significance

tanzu.app.live.view true Boolean None Toggle to activate or
deactivate pod discovery

tanzu.app.live.view.applica

tion.name

true String None Application name

tanzu.app.live.view.applica

tion.port

false Integer 8080 Application port

tanzu.app.live.view.applica

tion.path

false String / Application context path

tanzu.app.live.view.applica

tion.actuator.port

false Integer 8080 Application actuator port

tanzu.app.live.view.applica

tion.actuator.path

false String /actuator Actuator context path

tanzu.app.live.view.applica

tion.protocol

false http / https http Protocol scheme

tanzu.app.live.view.applica

tion.actuator.health.port

false Integer 8080 Health endpoint port

tanzu.app.live.view.applica

tion.flavours

false Comma
separated
string

spring-

boot,spring-cloud-

gateway

Application flavors

You can add connector labels in the app Workload or override labels that the convention applies,
such as tanzu.app.live.view and tanzu.app.live.view.application.name. If you do not want
Application Live View to observe your app, you can override the existing label
tanzu.app.live.view: "false".

Configure the developer workload in Tanzu Application
Platform
The following YAML is an example of a Spring PetClinic workload that overrides the connector label
to tanzu.app.live.view: "false":

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  name: spring-petclinic

  namespace: default

  labels:

Tanzu Application Platform v1.5

VMware by Broadcom 825



    tanzu.app.live.view: "false"

    app.kubernetes.io/part-of: tanzu-java-web-app

    apps.tanzu.vmware.com/workload-type: web

  annotations:

    autoscaling.knative.dev/minScale: "1"

spec:

  source:

    git:

      ref:

        branch: main

      url: https://github.com/kdvolder/spring-petclinic

Deploy the workload

To deploy the workload, run:

kapp -y deploy -n default -a workloads -f workloads.yaml

Verify the label has propagated through the Supply Chain

To verify the label:

1. Verify that the workload build is successful by ensuring that SUCCEEDED is set to True:

kubectl get builds

NAME                         IMAGE                                                                         

SUCCEEDED

spring-petclinic-build-1     dev.registry.tanzu.vmware.com/app-live-view/test/s

pring-petclinic-default@sha256:9db2a8a8e77e9215239431fd8afe3f2ecdf09cce8afac565

dad7b5f0c5ac0cdf     True

2. Verify the PodIntent of your workload by ensuring status.template.metadata.labels
shows the newly added label has propagated through the Supply Chain:

kubectl get podintents.conventions.carto.run spring-petclinic -oyaml

status:

  conditions:

  - lastTransitionTime: "2021-12-03T15:14:33Z"

    status: "True"

    type: ConventionsApplied

  - lastTransitionTime: "2021-12-03T15:14:33Z"

    status: "True"

    type: Ready

  observedGeneration: 3

  template:

    metadata:

      annotations:

        autoscaling.knative.dev/minScale: "1"

        boot.spring.io/actuator: http://:8080/actuator

        boot.spring.io/version: 2.5.6

        conventions.carto.run/applied-conventions: |-

          appliveview-sample/app-live-view-connector-boot

          appliveview-sample/app-live-view-appflavours-boot

          appliveview-sample/app-live-view-systemproperties

          spring-boot-convention/spring-boot

          spring-boot-convention/spring-boot-graceful-shutdown

          spring-boot-convention/spring-boot-web

          spring-boot-convention/spring-boot-actuator

          spring-boot-convention/service-intent-mysql

        developer.conventions/target-containers: workload

        kapp.k14s.io/identity: v1;default/carto.run/Workload/spring-petclinic;c

Tanzu Application Platform v1.5

VMware by Broadcom 826



arto.run/v1alpha1

        kapp.k14s.io/original: '{"apiVersion":"carto.run/v1alpha1","kind":"Work

load","metadata":{"annotations":{"autoscaling.knative.dev/minScale":"2"},"label

s":{"app.kubernetes.io/part-of":"tanzu-java-web-app","apps.tanzu.vmware.com/wor

kload-type":"web","kapp.k14s.io/app":"1638455805474051000","kapp.k14s.io/associ

ation":"v1.5a9384bd7b93ca74ef494c4dec2caa4b","tanzu.app.live.view":"false"},"na

me":"spring-petclinic","namespace":"default"},"spec":{"source":{"git":{"ref":

{"branch":"main"},"url":"https://github.com/ksankaranara-vmw/spring-petclini

c"}}}}'

        kapp.k14s.io/original-diff-md5: 58e0494c51d30eb3494f7c9198986bb9

        services.conventions.carto.run/mysql: mysql-connector-java/8.0.27

      labels:

        app.kubernetes.io/component: run

        app.kubernetes.io/part-of: tanzu-java-web-app

        apps.tanzu.vmware.com/workload-type: web

        carto.run/workload-name: spring-petclinic

        conventions.carto.run/framework: spring-boot

        kapp.k14s.io/app: "1638455805474051000"

        kapp.k14s.io/association: v1.5a9384bd7b93ca74ef494c4dec2caa4b

        services.conventions.carto.run/mysql: workload

        tanzu.app.live.view: "false"

        tanzu.app.live.view.application.flavours: spring-boot

        tanzu.app.live.view.application.name: petclinic

3. Verify the ConfigMap was created for the app by ensuring metadata.labels shows the
newly added label has propagated through the Supply Chain:

kubectl describe configmap spring-petclinic

Name:         spring-petclinic

Namespace:    default

Labels:       carto.run/cluster-supply-chain-name=source-to-url

              carto.run/cluster-template-name=config-template

              carto.run/resource-name=app-config

              carto.run/template-kind=ClusterConfigTemplate

              carto.run/workload-name=spring-petclinic

              carto.run/workload-namespace=default

Annotations:  <none>

Data

====

delivery.yml:

----

apiVersion: serving.knative.dev/v1

kind: Service

metadata:

  name: spring-petclinic

  labels:

    app.kubernetes.io/part-of: tanzu-java-web-app

    apps.tanzu.vmware.com/workload-type: web

    kapp.k14s.io/app: "1638455805474051000"

    kapp.k14s.io/association: v1.5a9384bd7b93ca74ef494c4dec2caa4b

    tanzu.app.live.view: "false"

    app.kubernetes.io/component: run

    carto.run/workload-name: spring-petclinic

4. Verify the running Knative application pod by ensuring labels shows the newly added label
on the Knative application pod:

kubectl get pods -o yaml spring-petclinic-00002-deployment-77dbb85c65-cf7rn | g

rep labels

    kapp.k14s.io/original: '{"apiVersion":"carto.run/v1alpha1","kind":"Workloa

d","metadata":{"annotations":{"autoscaling.knative.dev/minScale":"1"},"labels":

{"app.kubernetes.io/part-of":"tanzu-java-web-app","apps.tanzu.vmware.com/worklo

ad-type":"web","kapp.k14s.io/app":"1638455805474051000","kapp.k14s.io/associati

on":"v1.5a9384bd7b93ca74ef494c4dec2caa4b","tanzu.app.live.view":"false"},"nam

Tanzu Application Platform v1.5

VMware by Broadcom 827



e":"spring-petclinic","namespace":"default"},"spec":{"source":{"git":{"ref":{"b

ranch":"main"},"url":"https://github.com/ksankaranara-vmw/spring-petclini

c"}}}}'

You can add or override the connector in the Workload of your Knative app.

Custom configuration for application actuator endpoints

This topic for developers tells you how to configure the Application Live View connector
component to access actuator endpoints for custom settings, such as a different base path. By
default, the actuator endpoint for an application is exposed on /actuator.

The following table describes the actuator configuration scenarios and the associated labels to use,
assuming that the app runs on port 8080:

management.server.base-
path

management.server.port
management.endpoints.web.base-
path

server.servlet.context.path Comments
Connector
Configuration

None None None None Actuators
endpoints
available
at
localhost

:8080/act

uator

tanzu.app.li

ve.view.appl

ication.actu

ator.path=ac

tuator,
tanzu.app.li

ve.view.appl

ication.actu

ator.port=80

80

/path 8082 / None Actuator
endpoints
available
at
localhost

:8082/pat

h

tanzu.app.li

ve.view.appl

ication.actu

ator.path=pa

th,
tanzu.app.li

ve.view.appl

ication.actu

ator.port=80

82

/path 8082 /manage/actuator None Actuator
endpoints
available
at
localhost

:8082/pat

h/manage/

actuator

tanzu.app.li

ve.view.appl

ication.actu

ator.path=pa

th/manage/ac

tuator,
tanzu.app.li

ve.view.appl

ication.actu

ator.port=80

82

None None / None Actuators
are
deactivate
d to avoid
conflicts

None

Tanzu Application Platform v1.5

VMware by Broadcom 828



management.server.base-
path

management.server.port
management.endpoints.web.base-
path

server.servlet.context.path Comments
Connector
Configuration

None None /manage None Actuator
endpoints
available
at /manage

tanzu.app.li

ve.view.appl

ication.actu

ator.path=ma

nage,
tanzu.app.li

ve.view.appl

ication.actu

ator.port=80

80

/path 8082 None None Actuator
endpoints
available
at
localhost

:8082/pat

h/actuato

r

tanzu.app.li

ve.view.appl

ication.actu

ator.path=pa

th/actuator,
tanzu.app.li

ve.view.appl

ication.actu

ator.port=80

82

/ 8082 None None Actuator
endpoints
available
at
localhost

:8082/act

uator

tanzu.app.li

ve.view.appl

ication.actu

ator.path=ac

tuator,
tanzu.app.li

ve.view.appl

ication.actu

ator.port=80

82

None None None /api Actuator
endpoints
available
at
localhost

:8080/api

/actuator

tanzu.app.li

ve.view.appl

ication.actu

ator.path=ap

i/actuator,
tanzu.app.li

ve.view.appl

ication.actu

ator.port=80

80

/path 8082 None /api Actuator
endpoints
available
at
localhost

:8082/pat

h/actuato

r

tanzu.app.li

ve.view.appl

ication.actu

ator.path=pa

th/actuator,
tanzu.app.li

ve.view.appl

ication.actu

ator.port=80

82

Tanzu Application Platform v1.5

VMware by Broadcom 829



management.server.base-
path

management.server.port
management.endpoints.web.base-
path

server.servlet.context.path Comments
Connector
Configuration

/path 8082 /manage /api Actuator
endpoints
available
at
localhost

:8082/pat

h/manage

tanzu.app.li

ve.view.appl

ication.actu

ator.path=pa

th/manage,
tanzu.app.li

ve.view.appl

ication.actu

ator.port=80

82

/path None /manage /api Actuator
endpoints
available
at
localhost

:8080/api

/manage

tanzu.app.li

ve.view.appl

ication.actu

ator.path=ap

i/manage,
tanzu.app.li

ve.view.appl

ication.actu

ator.port=80

80

/path None / /api Actuators
are
deactivate
d to avoid
conflicts

None

/path 8082 / /api Actuator
endpoints
available
at
localhost

:8082/pat

h

tanzu.app.li

ve.view.appl

ication.actu

ator.path=pa

th,
tanzu.app.li

ve.view.appl

ication.actu

ator.port=80

82

None None /manage /api Actuator
endpoints
available
at
localhost

:8080/api

/manage

tanzu.app.li

ve.view.appl

ication.actu

ator.path=ap

i/manage,
tanzu.app.li

ve.view.appl

ication.actu

ator.port=80

80

Scaling Knative apps in Tanzu Application Platform

This topic tells you how to use Application Live View when scaling Knative apps or developer
workloads in Tanzu Application Platform (commonly known as TAP).

Application Live View is focused on monitoring apps for a live window and does not apply to any
of the apps that are scaled down to zero. The intended behavior for Knative apps is to keep track of
revisions to allow you to rollback easily, but also scale all of the unused revision instances down to
zero to keep resource consumption low.

Tanzu Application Platform v1.5

VMware by Broadcom 830



You can configure Knative apps to set autoscaling.knative.dev/minScale to 1 so that Application
Live View can still observe app instance. This ensures that there is at least one instance of the
latest revision, while still scaling down the older instances.

You can configure any app in Tanzu Application Platform using the Workload resource. To scale a
Knative app, add the annotation autoscaling.knative.dev/minScale in the Workload and set it to
the value you want. For Application Live View to observe an app and have at least one instance of
the latest revision, set autoscaling.knative.dev/minScale = "1".

The annotations or labels in the Workload get propagated through the Tanzu Application Platform
supply chain as follows:

Workload > PodIntent > ConfigMap > Push Config > to repository/registry > git-
repository/imagerepository picks the Config from repository/registry > kapp-ctrl deploys and
knative runs the config > final pod running on the Kubernetes cluster.

Configure the developer workload in Tanzu Application
Platform
The following YAML is an example Workload that adds the annotation
autoscaling.knative.dev/minScale = "1" to set the minimum scale for the spring-petclinic app:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  name: spring-petclinic

  namespace: default

  labels:

    app.kubernetes.io/part-of: tanzu-java-web-app

    apps.tanzu.vmware.com/workload-type: web

  annotations:

    autoscaling.knative.dev/minScale: "1"

spec:

  source:

    git:

      ref:

        branch: main

      url: https://github.com/kdvolder/spring-petclinic

Deploy the workload

To deploy the workload, run:

kapp -y deploy -n default -a workloads -f workloads.yaml

Verify the annotation has propagated through the Supply
Chain

To verify the annotation:

1. Verify that the workload build is successful by ensuring that SUCCEEDED is set to True:

kubectl get builds

NAME                         IMAGE                                                                         

SUCCEEDED

spring-petclinic-build-1     dev.registry.tanzu.vmware.com/app-live-view/test/s

pring-petclinic-default@sha256:9db2a8a8e77e9215239431fd8afe3f2ecdf09cce8afac565

dad7b5f0c5ac0cdf     True

Tanzu Application Platform v1.5

VMware by Broadcom 831



2. Verify the PodIntent of your workload by ensuring status.template.metadata.annotations
shows the newly added annotation has propagated through the Supply Chain:

kubectl get podintents.conventions.carto.run spring-petclinic -oyaml

status:

  conditions:

  - lastTransitionTime: "2021-12-03T15:14:33Z"

    status: "True"

    type: ConventionsApplied

  - lastTransitionTime: "2021-12-03T15:14:33Z"

    status: "True"

    type: Ready

  observedGeneration: 3

  template:

    metadata:

      annotations:

        autoscaling.knative.dev/minScale: "1"

3. Verify the ConfigMap was created for the app by ensuring
spec.template.metadata.annotations shows the newly added annotation has propagated
through the Supply Chain:

kubectl describe configmap spring-petclinic

Name:         spring-petclinic

Namespace:    default

Labels:       carto.run/cluster-supply-chain-name=source-to-url

              carto.run/cluster-template-name=config-template

              carto.run/resource-name=app-config

              carto.run/template-kind=ClusterConfigTemplate

              carto.run/workload-name=spring-petclinic

              carto.run/workload-namespace=default

Annotations:  <none>

Data

====

delivery.yml:

----

apiVersion: serving.knative.dev/v1

kind: Service

metadata:

  name: spring-petclinic

  labels:

    app.kubernetes.io/part-of: tanzu-java-web-app

    apps.tanzu.vmware.com/workload-type: web

    kapp.k14s.io/app: "1638455805474051000"

    kapp.k14s.io/association: v1.5a9384bd7b93ca74ef494c4dec2caa4b

    tanzu.app.live.view: "false"

    app.kubernetes.io/component: run

    carto.run/workload-name: spring-petclinic

spec:

  template:

    metadata:

      annotations:

        autoscaling.knative.dev/minScale: "1"

4. Verify the running Knative application pod by ensuring annotations shows the newly added
annotation on the Knative application pod:

kubectl get pods -o yaml spring-petclinic-00002-deployment-77dbb85c65-cf7rn | g

rep annotations

  annotations:

    kapp.k14s.io/original: '{"apiVersion":"carto.run/v1alpha1","kind":"Workloa

d","metadata":{"annotations":{"autoscaling.knative.dev/minScale":"1"},"labels":

Tanzu Application Platform v1.5

VMware by Broadcom 832



{"app.kubernetes.io/part-of":"tanzu-java-web-app","apps.tanzu.vmware.com/worklo

ad-type":"web","kapp.k14s.io/app":"1638455805474051000","kapp.k14s.io/associati

on":"v1.5a9384bd7b93ca74ef494c4dec2caa4b","tanzu.app.live.view":"false"},"nam

e":"spring-petclinic","namespace":"default"},"spec":{"source":{"git":{"ref":{"b

ranch":"main"},"url":"https://github.com/ksankaranara-vmw/spring-petclini

c"}}}}'

Your Knative app is now set to a minimum scale of one so that Application Live View can observe
the instance of the app.

Application Live View on OpenShift

Application Live View must run with a custom SecurityContextConstraint (SCC) to enable
compliance with restricted Kubernetes Pod Security Standards on Openshift. Tanzu Application
Platform configures the following SCC for Application Live View back end, Application Live View
connector, and Application Live View convention service when you configure the
kubernetes_distribution: openshift key in the tap-values.yaml file.

The following is a SecurityContextConstraints specification for Application Live View connector:

---

apiVersion: security.openshift.io/v1

kind: SecurityContextConstraints

metadata:

  name: appliveview-connector-restricted-with-seccomp

allowHostDirVolumePlugin: false

allowHostIPC: false

allowHostNetwork: false

allowHostPID: false

allowHostPorts: false

allowPrivilegeEscalation: false

allowPrivilegedContainer: false

allowedCapabilities: null

defaultAddCapabilities: null

fsGroup:

  type: MustRunAs

priority: null

readOnlyRootFilesystem: false

requiredDropCapabilities:

  - ALL

runAsUser:

  type: MustRunAsNonRoot

seLinuxContext:

  type: MustRunAs

supplementalGroups:

  type: RunAsAny

volumes:

  - configMap

  - downwardAPI

  - emptyDir

  - persistentVolumeClaim

  - projected

  - secret

seccompProfiles:

  - runtime/default

The preceding SecurityContextConstraints specification is applicable to Application Live View
back end and Application Live View convention service as well.

Support for polyglot apps with Application Live View

Application Live View currently supports Spring Boot, Spring Cloud Gateway, and Steeltoe apps.

Tanzu Application Platform v1.5

VMware by Broadcom 833



To enable Application Live View on Spring Boot and Spring Cloud Gateway apps, see
Enable Application Live View for Spring Boot apps.

To enable Application Live View on Steeltoe apps, see Enable Application Live View for
Steeltoe apps.

Application Live View internal architecture

This topic describes the architecture of Application Live View and its components. You can deploy
this system on a Kubernetes stack and use it to monitor containerized apps on hosted cloud
platforms or on-premises.

Component overview

Application Live View includes the following components as shown in the architecture diagram:

Application Live View back end

Application Live View back end is the central server component that contains a list of
registered apps. It provides a REST API that fetches the actuator data for the applications.
The Application Live View UI plug-in, as part of Tanzu Application Platform GUI, queries this
back-end REST API to get live actuator information for the pod.

Application Live View connector

Application Live View connector is the component responsible for discovering the app pods
running on the Kubernetes cluster and registering the instances to the Application Live
View back end for it to be observed. The Application Live View connector is also
responsible for proxying the actuator queries to the app pods running in the Kubernetes
cluster. The actuator data is then displayed in the Application Live View UI plug-in as part of
Tanzu Application Platform GUI.

You can deploy Application Live View connector in two modes:

Cluster access: Deploy as a Kubernetes DaemonSet to discover apps across all the
namespaces running in a worker node of a Kubernetes cluster. This is the default
mode of Application Live View connector.

Namespace scoped: Deploy as a Kubernetes Deployment to discover apps running
within a namespace across worker nodes of Kubernetes cluster.

Application Live View convention server

Tanzu Application Platform v1.5

VMware by Broadcom 834



This component provides a webhook handler for the Tanzu convention controller. The
webhook handler is registered with Tanzu convention controller. The webhook handler
detects supply-chain workloads running a Spring Boot. Such workloads are annotated
automatically to enable Application Live View to monitor them. Download and install the
Application Live View conventions Webhook component with Tanzu Application Platform.

Application Live View APIServer

Application Live View APIServer generates a unique token when a user receives access
validation to a pod. The Application Live View connector component verifies the token
against the Application Live View APIServer before proxying the actuator data from the
application. This ensures that the actuator data is secured and only the user who has valid
access to view the live information for the pod can retrieve the data.

Design flow

As illustrated in the diagram, the applications run by the user are registered with Application Live
View back end by using Application Live View connector. After the application is registered, the
Application Live View back end offers the ability to serve actuator data from that registered
application through its REST API. Application Live View back end proxies the call to the connector
for querying actuator endpoint information.

Application Live View connector, which is a lean model, uses specific labels to discover apps across
cluster or namespace. Application Live View connector serves as the connection between running
applications and Application Live View back end. Application Live View connector communicates
with the Kubernetes API server requesting events for pod creation and termination, and then filters
out the events to find the pod of interest by using labels. Then Application Live View connector
registers the filtered app instances with Application Live View back end.

Application Live View back end and Application Live View connector communicate through a
bidirectional RSocket channel. Application Live View connector is implemented as a Java/Spring
Boot application and runs as a native executable file (Spring Native using GraalVM). Application Live
View connector runs as a DaemonSet by default on every node in the cluster.

Application Live View conventions identifies PodIntents for pods that can serve actuator data and
annotates the PodSpec with application-specific labels. Those labels are used by the Application
Live View connector to identify running pods that can serve actuator data. Application Live View
conventions reads the image metadata to determine the application-specific labels applied on the
PodSpec.

Troubleshoot Application Live View

This topic provides information to help you troubleshoot Application Live View.

App is not visible in Application Live View UI

Symptom

Your app is not visible in the Application Live View UI.

Solution

The connector component is responsible for discovering the app and registering it with Application
Live View.

To troubleshoot, confirm the following:

1. The app must be a Spring Boot Application.

Tanzu Application Platform v1.5

VMware by Broadcom 835

https://network.tanzu.vmware.com/products/tanzu-application-platform/


2. Confirm that an instance of a connector is located in the same namespace as your app.

kubectl get pods -n NAMESPACE | grep connector

Where NAMESPACE is the name of the namespace that your app is located in.

3. Confirm that the actuator endpoints are enabled for your app as follows:

management.endpoints.web.exposure.include: "*"

4. Confirm that you have included the following labels within your app deployment YAML file:

tanzu.app.live.view="true"

tanzu.app.live.view.application.name="APP-NAME"

Where APP-NAME is the name of your app.

5. Confirm that the Convention Service workload YAML file does not contain property
management.endpoints.web.exposure.include overrides.

See also:

App is not visible in Application Live View UI with actuator endpoints enabled

The UI does not show any information for an app with actuator endpoints exposed at root

App is not visible in Application Live View UI with actuator
endpoints enabled
Symptom

Your app is not visible in Application Live View UI, but the actuator endpoints are enabled.

Solution

To troubleshoot:

1. Check the port on which actuator endpoints are configured. By default, they are enabled on
the application port. If they are configured on a port different from the application port, set
the labels in your app deployment YAML file as follows:

tanzu.app.live.view.application.port: "APPLICATION-PORT"

tanzu.app.live.view.application.actuator.port: "ACTUATOR-PORT"

Where:

APPLICATION-PORT is the application port.

ACTUATOR-PORT is the actuator port.

2. Check the path on which the app and actuator endpoints are configured. If they are
configured on a different paths, set the labels in your app deployment YAML file as follows:

tanzu.app.live.view.application.path: "APPLICATION-PATH"

tanzu.app.live.view.application.actuator.path: "ACTUATOR-PATH"

Where:

APPLICATION-PATH is the application port.

ACTUATOR-PATH is the actuator port.

Tanzu Application Platform v1.5

VMware by Broadcom 836



The UI does not show any information for an app with
actuator endpoints exposed at root

Symptom

Your app has actuator endpoints exposed at root and the UI does not show any information.

Cause

Application Live View cannot display the app details when the app is exposing the actuator
endpoint on root (/) . This is due to conflict in the actuator context path and app default context
path.

No information shown on the Health page

Symptom

The app shows up in Application Live View UI, but the Health page does not show details of
health.

Solution

The information exposed by the health endpoint depends on the
management.endpoint.health.show-details property. This must be set to always as as follows:

management.endpoint.health.show-details: "always"

Stale information in Application Live View

Symptom

You can find your app in the UI, but it is an old instance that no longer exists while the new
instance doesn’t show up yet.

Solution

To troubleshoot:

1. View the Application Live View connector pod logs to see if the connector is sending
updates to the back end.

2. Delete the connector pod to recreate it by running:

kubectl -n app-live-view-connector delete pods -l=name=application-live-view-co

nnector

Unable to find CertificateRequests in Application Live View
convention

Symptom

The certificate request is missing for certificate app-live-view-conventions/appliveview-webhook-
cert.

Solution

To troubleshoot:

1. Run kubectl get certificaterequest -A to see if the certificate request is missing for
Application Live View convention.

Tanzu Application Platform v1.5

VMware by Broadcom 837



2. Delete the secret appliveview-webhook-cert that corresponds to the certificate in the app-
live-view-conventions namespace by running:

kubectl delete secret appliveview-webhook-cert -n app-live-view-conventions

This recreates the certificate request and updates the corresponding certificate.

No live information for pod with ID

Symptom

In Tanzu Application Platform GUI, you receive the error No live information for pod with id.

Cause

This might happen because of stale information in Application Live View because it is an old
instance that no longer exists while the new instance doesn’t show up yet.

Solution

The workaround is to delete the connector pod so it is re-created by running:

kubectl -n app-live-view-connector delete pods -l=name=application-live-view-connector

Cannot override the actuator path in the labels
Symptom

You are unable to override the actuator path in the labels as part of the workload deployment.

Cause

The changes to add or override the labels or annotations in the Workload are in progress. The
changes from the Workload must be propagated up through the supply chain for the PodIntent to
see the new changes.

Cannot configure SSL in appliveview-connector
Symptom

This might be because sslDeactivated flag in the values YAML file does not accept values without
quotes.

Cause

The sslDeactivated Boolean flag is treated as a string in the Kubernetes YAML file.

Solution

You must specify the value within double quotation marks for the configuration to be picked up.

Verify the labels in your workload YAML file
To verify that the labels in your workload YAML file are working:

1. Verify the app live view convention webhook is running properly by running:

kubectl get pods -n app-live-view | grep webhook

2. Verify the conventions controller is running properly by running:

Tanzu Application Platform v1.5

VMware by Broadcom 838



kubectl get pods -n conventions-system

3. Verify that the conventions are applied properly to the PodSpec by running:

kubectl get podintents.conventions.carto.run WORKLOAD-NAME -oyaml

Where WORKLOAD-NAME is the name of your workload.

If everything works correctly, the status will contain a transformed template that includes
the labels added as part of your workload YAML file. For example:

status:

conditions:

- lastTransitionTime: "2021-10-26T11:26:35Z"

  status: "True"

  type: ConventionsApplied

- lastTransitionTime: "2021-10-26T11:26:35Z"

  status: "True"

  type: Ready

observedGeneration: 1

template:

  metadata:

    annotations:

      conventions.carto.run/applied-conventions: |-

        appliveview-sample/app-live-view-connector

        appliveview-sample/app-live-view-appflavours

        appliveview-sample/app-live-view-systemproperties

    labels:

      tanzu.app.live.view: "true"

      tanzu.app.live.view.application.flavours: spring-boot

      tanzu.app.live.view.application.name: petclinic

  spec:

    containers:

    - env:

      - name: JAVA_TOOL_OPTIONS

        value: -Dmanagement.endpoint.health.show-details=always -Dmanagement.en

dpoints.web.exposure.include=*

    image: index.docker.io/kdvolder/alv-spring-petclinic:latest@sha256:1aa7bd22

8137471ea38ce36cbf5ffcd629eabeb8ce047f5533b7b9176ff51f98

    name: workload

    resources: {}

Override labels set by the Application Live View convention
service

It is not possible to override the labels set by the Application Live View convention service for the
workload deployment in Tanzu Application Platform. The labels tanzu.app.live.view,
tanzu.app.live.view.application.flavours and tanzu.app.live.view.application.name cannot
be overridden. The default values set by the Application Live View convention server are used.

However, if you want to override management.endpoints.web.exposure.include or
management.endpoint.health.show-details, you can override these environment properties in
application.properties or application.yml in the Spring Boot Application before deploying the
workload in Tanzu Application Platform. Environment properties updated in your app take
precedence over the default values set by Application Live View convention server.

Configure labels when management.endpoints.web.base-
path and management.server.port are set

Tanzu Application Platform v1.5

VMware by Broadcom 839



If the custom actuator context path is configured as follows:

management.endpoints.web.base-path=/manage

management.server.port=8085

Configure the connector as follows:

tanzu.app.live.view.application.actuator.path=/manage   (manage is the custom actuator 

path set on the application)

tanzu.app.live.view.application.actuator.port=8085   (8085 is the custom management se

rver port set on the application)

Uninstall Application Live View
This topic tells you how to uninstall Application Live View from Tanzu Application Platform
(commonly known as TAP).

To uninstall the Application Live View back end, Application Live View connector, and Application
Live View convention server, run:

tanzu package installed delete appliveview -n tap-install

tanzu package installed delete appliveview-connector -n tap-install

tanzu package installed delete appliveview-conventions -n tap-install

Overview of Application Single Sign-On for VMware Tanzu®
3.1
Application Single Sign-On for VMware Tanzu® (AppSSO) provides APIs for curating and
consuming a “Single Sign-On as a service” offering on Tanzu Application Platform.

To get started with AppSSO, see Get started with Application Single Sign-On.

With AppSSO, Service Operators can configure and deploy authorization servers. Application
Operators can then configure their Workloads with these authorization servers to provide Single
Sign-On to their end-users.

AppSSO allows integrating authentication and authorization decisions early in the software
development and release life cycle. It provides a seamless transition for workloads from
development to production when including Single Sign-On solutions in your software.

It’s easy to get started with AppSSO, deploy an authorization server with static test users, and
eventually progress to multiple authorization servers of production-grade scale with token key
rotation, multiple upstream identity providers, configured secure storage, and client restrictions.

AppSSO’s authorization server is based off of Spring Authorization Server project. For more
information, see Spring documentation.

Overview of Application Single Sign-On for VMware Tanzu®
3.1

Application Single Sign-On for VMware Tanzu® (AppSSO) provides APIs for curating and
consuming a “Single Sign-On as a service” offering on Tanzu Application Platform.

To get started with AppSSO, see Get started with Application Single Sign-On.

With AppSSO, Service Operators can configure and deploy authorization servers. Application
Operators can then configure their Workloads with these authorization servers to provide Single
Sign-On to their end-users.

Tanzu Application Platform v1.5

VMware by Broadcom 840

https://spring.io/projects/spring-authorization-server


AppSSO allows integrating authentication and authorization decisions early in the software
development and release life cycle. It provides a seamless transition for workloads from
development to production when including Single Sign-On solutions in your software.

It’s easy to get started with AppSSO, deploy an authorization server with static test users, and
eventually progress to multiple authorization servers of production-grade scale with token key
rotation, multiple upstream identity providers, configured secure storage, and client restrictions.

AppSSO’s authorization server is based off of Spring Authorization Server project. For more
information, see Spring documentation.

Get started with Application Single Sign-On

This topic tells you about concepts important to getting started with Application Single Sign-On
(commonly called AppSSO).

Use this topic to learn how to:

1. Set up your first authorization server.

2. Provision a ClientRegistration.

3. Deploy an application that uses the provisioned ClientRegistration to enable SSO.

After completing these steps, you can proceed with securing a Workload.

Prerequisites

You must install AppSSO on your Tanzu Application Platform cluster. For more information, see
Install AppSSO.

Key concepts

At the core of AppSSO is the concept of an Authorization Server, outlined by the AuthServer
custom resource. Service Operators create those resources to provision running Authorization
Servers, which are OpenID Connect Providers. They issue ID Tokens to Client applications, which
contain identity information about the end user such as email, first name, last name and so on.

When a Client application uses an AuthServer to authenticate an End-User, the typical steps are:

1. The End-User visits the Client application

2. The Client application redirects the End-User to the AuthServer, with an OAuth2 request

3. The End-User logs in with the AuthServer, usually using an external Identity Provider (e.g.
Google, Azure AD)

1. Identity Providers are set up by Service Operators

Tanzu Application Platform v1.5

VMware by Broadcom 841

https://spring.io/projects/spring-authorization-server
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html#IDToken


2. AuthServers may use various protocols to obtain identity information about the
user, such as OpenID Connect, SAML or LDAP, which may involve additional
redirects

4. The AuthServer redirects the End-User to the Client application with an authorization code

5. The Client application exchanges with the AuthServer for an id_token

1. The Client application does not know how the identity information was obtained by
the AuthServer, it only gets identity information in the form of an ID Token.

ID Tokens are JSON Web Tokens containing standard Claims about the identity of the user (e.g.
name, email, etc) and about the token itself (e.g. “expires at”, “audience”, etc.). Here is an example
of an id_token as issued by an Authorization Server:

{

"iss": "https://appsso.example.com",

"sub": "213435498y",

"aud": "my-client",

"nonce": "fkg0-90_mg",

"exp": 1656929172,

"iat": 1656928872,

"name": "Jane Doe",

"given_name": "Jane",

"family_name": "Doe",

"email": "jane.doe@example.com",

"roles": [

"developer",

"org-user"

]

}

roles claim can only be part of an id_token when user roles are mapped and ‘roles’ scope is
requested. For more information about mapping for OpenID Connect, LDAP and SAML, see:

OpenID external groups mapping

LDAP external groups mapping

SAML (experimental) external groups mapping

ID Tokens are signed by the AuthServer, using Token Signature Keys. Client applications may verify
their validity using the AuthServer’s public keys.

Next steps
Provision an AuthServer

Get started with Application Single Sign-On
This topic tells you about concepts important to getting started with Application Single Sign-On
(commonly called AppSSO).

Use this topic to learn how to:

1. Set up your first authorization server.

2. Provision a ClientRegistration.

3. Deploy an application that uses the provisioned ClientRegistration to enable SSO.

After completing these steps, you can proceed with securing a Workload.

Prerequisites

Tanzu Application Platform v1.5

VMware by Broadcom 842

https://openid.net/specs/openid-connect-core-1_0.html#IDToken


You must install AppSSO on your Tanzu Application Platform cluster. For more information, see
Install AppSSO.

Key concepts

At the core of AppSSO is the concept of an Authorization Server, outlined by the AuthServer
custom resource. Service Operators create those resources to provision running Authorization
Servers, which are OpenID Connect Providers. They issue ID Tokens to Client applications, which
contain identity information about the end user such as email, first name, last name and so on.

When a Client application uses an AuthServer to authenticate an End-User, the typical steps are:

1. The End-User visits the Client application

2. The Client application redirects the End-User to the AuthServer, with an OAuth2 request

3. The End-User logs in with the AuthServer, usually using an external Identity Provider (e.g.
Google, Azure AD)

1. Identity Providers are set up by Service Operators

2. AuthServers may use various protocols to obtain identity information about the
user, such as OpenID Connect, SAML or LDAP, which may involve additional
redirects

4. The AuthServer redirects the End-User to the Client application with an authorization code

5. The Client application exchanges with the AuthServer for an id_token

1. The Client application does not know how the identity information was obtained by
the AuthServer, it only gets identity information in the form of an ID Token.

ID Tokens are JSON Web Tokens containing standard Claims about the identity of the user (e.g.
name, email, etc) and about the token itself (e.g. “expires at”, “audience”, etc.). Here is an example
of an id_token as issued by an Authorization Server:

{

"iss": "https://appsso.example.com",

"sub": "213435498y",

"aud": "my-client",

"nonce": "fkg0-90_mg",

"exp": 1656929172,

"iat": 1656928872,

"name": "Jane Doe",

"given_name": "Jane",

"family_name": "Doe",

"email": "jane.doe@example.com",

"roles": [

"developer",

"org-user"

Tanzu Application Platform v1.5

VMware by Broadcom 843

https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html#IDToken
https://openid.net/specs/openid-connect-core-1_0.html#IDToken


]

}

roles claim can only be part of an id_token when user roles are mapped and ‘roles’ scope is
requested. For more information about mapping for OpenID Connect, LDAP and SAML, see:

OpenID external groups mapping

LDAP external groups mapping

SAML (experimental) external groups mapping

ID Tokens are signed by the AuthServer, using Token Signature Keys. Client applications may verify
their validity using the AuthServer’s public keys.

Next steps

Provision an AuthServer

Provision an AuthServer

This topic tells you how to provision an AuthServer for Application Single Sign-On (commonly called
AppSSO). Use this topic to learn how to:

1. Set up your first authorization server in the default namespace.

2. Ensure it is running so that users can log in.

Prerequisites

You must install AppSSO on your Tanzu Application Platform cluster and ensure that your Tanzu
Application Platform installation is correctly configured.

AppSSO is installed with the run, iterate, and full profiles, no extra steps required.

To verify AppSSO is installed on your cluster, run:

tanzu package installed list -A | grep "sso.apps.tanzu.vmware.com"

For more information about the Tanzu Application Platform installation, see Install Tanzu
Application Platform.

For more information about the AppSSO installation, see Install AppSSO.

Provision an AuthServer
Deploy your first Authorization Server along with an RSAKey key for signing tokens.

Tanzu Application Platform v1.5

VMware by Broadcom 844



---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  name: my-authserver-example

  namespace: default

  labels:

    name: my-first-auth-server

    env: tutorial

  annotations:

    sso.apps.tanzu.vmware.com/allow-client-namespaces: "default"

    sso.apps.tanzu.vmware.com/allow-unsafe-issuer-uri: ""

    sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider: ""

spec:

  replicas: 1

  tls:

    deactivated: true

  identityProviders:

    - name: "internal"

      internalUnsafe:

        users:

          - username: "user"

            password: "password"

            email: "user@example.com"

            emailVerified: true

            roles:

              - "user"

  tokenSignature:

    signAndVerifyKeyRef:

      name: "authserver-signing-key"

---

apiVersion: secretgen.k14s.io/v1alpha1

kind: RSAKey

metadata:

  name: authserver-signing-key

  namespace: default

spec:

  secretTemplate:

    type: Opaque

    stringData:

      key.pem: $(privateKey)

      pub.pem: $(publicKey)

You can wait for the AuthServer to become ready with:

kubectl wait --for=condition=Ready authserver my-authserver-example

Alternatively, you can inspect your AuthServer like any other resource:

kubectl get authservers.sso.apps.tanzu.vmware.com --all-namespaces

and you should see:

Caution

This AuthServer example uses an unsafe testing-only identity provider. Never use it
in production environments. For more information about identity providers, see
Identity providers.

Tanzu Application Platform v1.5

VMware by Broadcom 845



NAMESPACE NAME                  REPLICAS ISSUER URI                                         

CLIENTS STATUS

default   my-authserver-example 1        http://my-authserver-example.default.<your do

main> 0       Ready

As you can see your AuthServer gets an issuer URI templated. This is its entrypoint. You can find an
AuthServer’s issuer URI in its status:

kubectl get authservers.sso.apps.tanzu.vmware.com my-authserver-example -o jsonpath

='{.status.issuerURI}'

Open your AuthServer’s issuer URI in your browser. You should see a login page. Log in using
username = user and password = password.

You can review the standard OpenID information of your AuthServer by visiting http://my-
authserver-example.default.<your domain>/.well-known/openid-configuration.

The AuthServer spec in detail
Here is a detailed explanation of the AuthServer you have applied in the above section. This is
intended to give you an overview of the different configuration values that were passed in. It is not
intended to describe all the ins-and-outs, but there are links to related docs in each section.

Feel free to skip ahead.

Metadata

metadata:

  labels:

    name: my-first-auth-server

    env: tutorial

  annotations:

    sso.apps.tanzu.vmware.com/allow-client-namespaces: "default"

    sso.apps.tanzu.vmware.com/allow-unsafe-issuer-uri: ""

    sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider: ""

The metadata.labels uniquely identify the AuthServer. They are used as selectors by
ClientRegistrations, to declare from which authorization server a specific client obtains tokens
from.

The sso.apps.tanzu.vmware.com/allow-client-namespaces annotation restricts the namespaces in
which you can create a ClientRegistrations targeting this authorization server. In this case, the
authorization server will only pick up client registrations in the default namespace.

The sso.apps.tanzu.vmware.com/allow-unsafe-... annotations enable “development mode”
features, useful for testing. Those should not be used for production-grade authorization servers.

For more information about annotations and labels in AuthServer resource, see Annotation and
labels.

TLS & issuer URI

Important

If the issuer URIs domain is not yours, the AppSSO package installation must be
updated. For more information, see Install Application Single Sign-On.

Tanzu Application Platform v1.5

VMware by Broadcom 846



spec:

  tls:

    deactivated: true

The tls field configures whether and how to obtain a certificate for an AuthServer to secure its
issuer URI. If you deactivate tls, the issuer URI uses plain HTTP.

Token Signature

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

# ...

spec:

  tokenSignature:

    signAndVerifyKeyRef:

      name: "authserver-signing-key"

---

apiVersion: secretgen.k14s.io/v1alpha1

kind: RSAKey

metadata:

  name: authserver-signing-key

  namespace: default

spec:

  secretTemplate:

    type: Opaque

    stringData:

      key.pem: $(privateKey)

      pub.pem: $(publicKey)

The token signing key is the private RSA key used to sign ID Tokens, using JSON Web Signatures,
and clients use the public key to verify the provenance and integrity of the ID tokens. The public
keys used for validating messages are published as JSON Web Keys at
{.status.issuerURI}/oauth2/jwks.

The spec.tokenSignature.signAndVerifyKeyRef.name references a secret containing PEM-encoded
RSA keys, both key.pem and pub.pem. In this specific example, we are using Secretgen-Controller, a
TAP dependency, to generate the key for us.

Learn more about Token Signatures.

Identity providers

spec:

  identityProviders:

    - name: "internal"

      internalUnsafe:

        users:

          - username: "user"

            password: "password"

            email: "user@example.com"

            roles:

              - "user"

Caution

Plain HTTP access is for development purposes only and must never be used in
production. For more information about the production readiness with TLS, see
Issuer URI & TLS.

Tanzu Application Platform v1.5

VMware by Broadcom 847

https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7517
https://github.com/vmware-tanzu/carvel-secretgen-controller


AppSSO’s authorization server delegates login and user management to external identity providers
(IDP), such as Google, Azure Active Directory, Okta and so on. See diagram at the top of this topic
for more information.

In this example, we use an internalUnsafe identity provider. As the name implies, it is not an
external IDP, but rather a list of hardcoded user/passwords. As the name also implies, this is not
considered safe for production. Here, we declared a user with username = user, and password =
password. For production setups, consider using OpenID Connect IDPs instead.

The email and roles fields are optional for internal users. However, they will be useful when we
want to use SSO with a client application later in this guide.

Configuring storage

An AuthServer issues a Redis instance by default. It can be used for testing, prototyping and other
non-production purposes. No additional configuration is required.

To configure your own storage that is ready for production, see Storage.

Provision a client registration
This topic tells you how to provision a client registration for Application Single Sign-On (commonly
called AppSSO). Use this topic to learn how to:

1. Obtain credentials for the Authorization Server that you provisioned in Provision your first
AuthServer.

2. Verify that the credentials are valid using client-credentials flow.

Prerequisites

Complete the steps described in Get started with Application Single Sign-On.

Creating the ClientRegistration

Assuming you have deployed the AuthServer as described previously, you can create and apply the
following client registration:

Caution

VMware discourages using the internalUnsafe identity provider in production
environments.

Note

Tanzu Application Platform v1.5

VMware by Broadcom 848



apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: ClientRegistration

metadata:

   name: my-client-registration

   namespace: default

spec:

   authServerSelector:

      matchLabels:

         name: my-first-auth-server

         env: tutorial

   redirectURIs:

      - "http://test-app.example.com/oauth2/callback"

   requireUserConsent: false

   clientAuthenticationMethod: client_secret_basic

   authorizationGrantTypes:

      - "client_credentials"

      - "authorization_code"

   scopes:

      - name: "openid"

      - name: "email"

      - name: "profile"

      - name: "roles"

      - name: "message.read"

The AuthServer should now have this ClientRegistration registered. You can verify the status
either by looking at the ClientRegistrations .status field, or looking at the AuthServer itself.

# Check the client registration

kubectl get clientregistration my-client-registration -n default -o yaml

# Check the authserver

kubectl get authservers

# NAME                    REPLICAS   ISSUER URI                     CLIENTS   TOKEN KE

YS

# my-authserver-example   1          http://authserver.example.com  1         1 

#                                                                   ^

#                                 the AuthServer now has one client ^

AppSSO will create a secret containing the credentials that client applications will use, named after
the client registration. The type of the secret is servicebinding.io/oauth2. You can obtain the
values in the secret by running:

kubectl get secret my-client-registration -n default  -o json | jq ".data | map_values

(@base64d)"

# {

#   "authorization-grant-types": "client_credentials,authorization_code",

#   "client-authentication-method": "client_secret_basic",

#   "client-id": "default_my-client-registration",

#   "client-secret": "PLACEHOLDER",

#   "issuer-uri": "http://authserver.example.com",

#   "provider": "appsso",

#   "scope": "openid,email,profile,roles,message.read",

#   "type": "oauth2"

# }

Validating that the credentials are working

AppSSO uses test-app.example.com for
ClientRegistration.spec.redirectURIs[0]. You must customize the URL to match
the domain of your Tanzu Application Platform cluster. This is the URL to expose
your test application in the next section.

Tanzu Application Platform v1.5

VMware by Broadcom 849



Before you deploy an app and make use of SSO, you can try the credentials from your machine to
try and obtain an access_token using the client_credentials grant. You need the client_id and
client_secret that were created as part of the client registration.

CLIENT_ID=$(kubectl get secret my-client-registration -n default -o jsonpath="{.data.c

lient-id}" | base64 -d)

CLIENT_SECRET=$(kubectl get secret my-client-registration -n default -o jsonpath="{.da

ta.client-secret}" | base64 -d)

ISSUER_URI=$(kubectl get secret my-client-registration -n default -o jsonpath="{.data.

issuer-uri}" | base64 -d)

curl -XPOST "$ISSUER_URI/oauth2/token?grant_type=client_credentials&scope=message.rea

d" -u "$CLIENT_ID:$CLIENT_SECRET"

You can decode the access_token using an online service, such as JWT.io.

To learn more about grant types, see Grant Types

Deploy an application with Application Single Sign-On

This topic tells you how to deploy a minimal Kubernetes application that is protected by Application
Single Sign-On (commonly called AppSSO) by using the credentials that ClientRegistration creates.

For more information about how a Client application uses an AuthServer to authenticate an end
user, see AppSSO Overview.

Prerequisites
You must complete the steps described in Get started with Application Single Sign-On. If not, see
Provision a client registration.

Deploy a minimal application
You are going to deploy a two-container pod, as a test application.

---

apiVersion: apps/v1

kind: Deployment

Important

AppSSO uses test-app.example.com for HTTPProxy.spec.virtualhost.fqdn. You
must customize the URL to match the domain of your Tanzu Application Platform
cluster. This URL must match what was set up in
ClientRegistration.spec.redirectURIs[0] in Provision a client registration

Tanzu Application Platform v1.5

VMware by Broadcom 850

https://jwt.io/


metadata:

  name: test-application

  namespace: default

spec:

  replicas: 1

  selector:

    matchLabels:

      name: test-application

  template:

    metadata:

      labels:

        name: test-application

    spec:

      containers:

        - image: bitnami/oauth2-proxy:7.3.0

          name: proxy

          ports:

            - containerPort: 4180

              name: proxy-port

              protocol: TCP

          env:

            - name: ISSUER_URI

              valueFrom:

                secretKeyRef:

                  name: my-client-registration

                  key: issuer-uri

            - name: CLIENT_ID

              valueFrom:

                secretKeyRef:

                  name: my-client-registration

                  key: client-id

            - name: CLIENT_SECRET

              valueFrom:

                secretKeyRef:

                  name: my-client-registration

                  key: client-secret

          command: [ "oauth2-proxy" ]

          args:

            - --oidc-issuer-url=$(ISSUER_URI)

            - --client-id=$(CLIENT_ID)

            - --insecure-oidc-skip-issuer-verification=true

            - --client-secret=$(CLIENT_SECRET)

            - --cookie-secret=0000000000000000

            - --cookie-secure=false

            - --http-address=http://:4180

            - --provider=oidc

            - --scope=openid email profile roles

            - --email-domain=*

            - --insecure-oidc-allow-unverified-email=true

            - --oidc-groups-claim=roles

            - --upstream=http://127.0.0.1:8000

            - --redirect-url=http://test-app.example.com/oauth2/callback

            - --skip-provider-button=true

            - --pass-authorization-header=true

            - --prefer-email-to-user=true

        - image: python:3.9

          name: application

          resources:

            limits:

              cpu: 100m

              memory: 100Mi

          command: [ "python" ]

          args:

            - -c

            - |

              from http.server import HTTPServer, BaseHTTPRequestHandler

Tanzu Application Platform v1.5

VMware by Broadcom 851



              import base64

              import json

              class Handler(BaseHTTPRequestHandler):

                  def do_GET(self):

                      if self.path == "/token":

                          self.token()

                          return

                      else:

                          self.greet()

                          return

                  def greet(self):

                      username = self.headers.get("x-forwarded-user")

                      self.send_response(200)

                      self.send_header("Content-type", "text/html")

                      self.end_headers()

                      page = f"""

                      <h1>It Works!</h1>

                      <p>You are logged in as <b>{username}</b></p>

                      """

                      self.wfile.write(page.encode("utf-8"))

                  def token(self):

                      token = self.headers.get("Authorization").split("Bearer ")[-1]

                      payload = token.split(".")[1]

                      decoded = base64.b64decode(bytes(payload, "utf-8") + b'==').deco

de("utf-8")

                      self.send_response(200)

                      self.send_header("Content-type", "application/json")

                      self.end_headers()

                      self.wfile.write(decoded.encode("utf-8"))

              server_address = ('', 8000)

              httpd = HTTPServer(server_address, Handler)

              httpd.serve_forever()

---

apiVersion: v1

kind: Service

metadata:

  name: test-application

  namespace: default

spec:

  ports:

    - port: 80

      targetPort: 4180

  selector:

    name: test-application

---

apiVersion: projectcontour.io/v1

kind: HTTPProxy

metadata:

  name: test-application

  namespace: default

spec:

  virtualhost:

    fqdn: test-app.example.com

  routes:

    - conditions:

        - prefix: /

      services:

        - name: test-application

          port: 80

Tanzu Application Platform v1.5

VMware by Broadcom 852



Now you can navigate to http://test-app.example.com/. It may ask you to log into the AuthServer
you haven’t already. You can also navigate to http://test-app.example.com/token if you wish to
see the contents of the ID token.

Deployment manifest

The application was deployed as a two-container pod: one for the app, and one for handling login.

The main container is called application, and runs a bare-bones Python HTTP server, that
reads from the Authorization header from incoming requests and returns the decoded
id_token.

The second container, called proxy, is a sidecar container, an “Ambassador”. It receives
traffic for the Pod, performs OpenID authentication using OAuth2 Proxy, and proxies
requests to the application with some added headers containing identity information.

Along with this deployment, there is a Service + HTTPProxy, to expose the application to the
outside world.

OAuth2-Proxy

The setup of the above OAuth2 Proxy is minimal, and is not considered suitable for production use.
To configure it for production, please refer to the official documentation.

Note that OAuth2 Proxy requires some claims to be present in the id_token, notably the email
claim and the non-standard groups claim. The groups claim maps to AppSSO’s roles claim.
Therefore, for this proxy to work with AppSSO, users MUST have an e-mail defined, and at least
one entry in roles. If the proxy container logs an error stating Error redeeming code during
OAuth2 callback: could not get claim "groups" [...], make sure that the user has roles
provided in the identityProvider.

Application Single Sign-On for Platform Operators

This topic tells you how to manage the Application Single Sign-On (commonly called AppSSO)
package installation and what it installs. Use this topic to learn:

Install Application Single Sign-On

Configure Application Single Sign-On

RBAC for Application Single Sign-On

Application Single Sign-On for OpenShift clusters

Upgrade Application Single Sign-On

Uninstall Application Single Sign-On

Application Single Sign-On for Platform Operators

This topic tells you how to manage the Application Single Sign-On (commonly called AppSSO)
package installation and what it installs. Use this topic to learn:

Install Application Single Sign-On

Configure Application Single Sign-On

RBAC for Application Single Sign-On

Application Single Sign-On for OpenShift clusters

Upgrade Application Single Sign-On

Tanzu Application Platform v1.5

VMware by Broadcom 853

https://oauth2-proxy.github.io/oauth2-proxy/
https://oauth2-proxy.github.io/oauth2-proxy/


Uninstall Application Single Sign-On

Install Application Single Sign-On

This topic tells you how to install Application Single Sign-On (commonly called AppSSO) from the
Tanzu Application Platform (commonly called TAP) package repository.

What’s inside

The AppSSO package will install the following resources:

The appsso Namespace with a Deployment of the AppSSO controller and Services for
Webhooks

A ServiceAccount with RBAC outlined in detail here

AuthServer and ClientRegistration CRDs

Prerequisites

Before installing AppSSO, please ensure you have Tanzu Application Platform installed on your
Kubernetes cluster.

Installation

1. Learn more about the AppSSO package:

tanzu package available get sso.apps.tanzu.vmware.com --namespace tap-install

2. Install the AppSSO package:

tanzu package install appsso \

 --namespace tap-install \

 --package sso.apps.tanzu.vmware.com \

 --version 3.1

3. Confirm the package has reconciled successfully:

tanzu package installed get appsso --namespace tap-install

Configure Application Single Sign-On

This topic tells you how to configure Application Single Sign-On (commonly called AppSSO).

TAP values

Most commonly, the AppSSO package installation is configured through TAP’s meta package
installation. The TAP package has a shared top-level configuration key for sharing common
configuration between the packages it installs.

Note

Follow the steps in this topic if you do not want to use a profile to install Application
Single Sign-On. For more information about profiles, see Components and
installation profiles.

Tanzu Application Platform v1.5

VMware by Broadcom 854



AppSSO inherits the shared.{ingress_domain, ingress_issuer, ca_cert_data,
kubernetes_distribution} configuration values from Tanzu Application Platform. You can configure
the AppSSO-specific parameters under appsso. AppSSO-specific configuration has precedence
over the shared values of Tanzu Application Platform.

For example:

#! my-tap-values.yaml

shared:

# Shared configuration goes here.

appsso:

# AppSSO-specific configuration goes here.

domain_name

The AppSSO package has one required configuration value, its domain_name. It is used for
templating the issuer URI for AuthServer. domain_name must be the shared ingress domain of your
TAP package installation. If your TAP installation is configured with shared.ingress_domain, then
AppSSO will inherit the correct configuration.

domain_template
You can customize how AppSSO template’s issuerURIs with the domain_template configuration.
This is a Golang text/template. The default is "{{.Name}}.{{.Namespace}}.{{.Domain}}".

The domain template will be applied with the given domain_name and the AuthServer’s name and
namespace:

{{.Domain}} will evaluate to the configured domain_name

{{.Name}} will evaluate to AuthServer.metadata.name

{{.Namespace}} will evaluate to AuthServer.metadata.namespace

To be able to use a wild-card certificate, consider "{{.Name}}-{{.Namespace}}.{{.Domain}}".

It is strongly recommended to keep the name and namespace part of the template to avoid domain
name collisions.

default_authserver_clusterissuer
You can denote a cert-manager.io/v1/ClusterIssuer as a default issuer for
AuthServer.spec.tls.issuerRef and omit AuthServer.spec.tls. When the value of
AuthServer.spec.tls.issuerRef is the empty string "", no default issuer is assumed and
AuthServer.spec.tls is required.

If you configured shared.ingress_issuer and omitted default_authserver_clusterissuer while
installing Tanzu Application Platform, AppSSO uses the ingress issuer of Tanzu Application Platform
and sets default_authserver_clusterissuer to shared.ingress_issuer.

ca_cert_data

Note

If omitted, domain_name is set to shared.ingress_domain.

Tanzu Application Platform v1.5

VMware by Broadcom 855

https://pkg.go.dev/text/template


You can configure trust for custom CAs by providing their certificates as a PEM bundle to
ca_cert_data. As a result, all AuthServers trust your custom CAs.

This is useful if you have identity providers serving certificates from a custom CA and configuring
AuthServer storage.

Alternatively, you can configure trust for a single AuthServer.

kubernetes_distribution

This setting toggles behavior specific to Kubernetes distribution. Currently, the only supported
values are "" and openshift.

AppSSO installs OpenShift-specific RBAC and resources.

Configuration schema
The entire available configuration schema for AppSSO is:

#@schema/desc "Optional: Kubernetes platform distribution that this package is being i

nstalled on. Accepted values: ['','openshift']"

kubernetes_distribution: ""

#@schema/desc "Domain name for AuthServers"

domain_name: "example.com"

#@schema/desc "Optional: Golang template/text string for constructing AuthServer FQDN

s"

domain_template: "{{.Name}}.{{.Namespace}}.{{.Domain}}"

#@schema/desc "Optional: PEM-encoded certificate data for AuthServers to trust TLS con

nections with a custom CA"

ca_cert_data: ""

#@schema/desc "Optional: Interval at which the controller will re-synchronize applied 

resources"

resync_period: "2h"

#@schema/desc "Optional: Number of controller replicas to deploy"

replicas: 1

#@schema/desc "Optional: Resource requirements the controller deployment"

resources:

  requests:

    #@schema/desc "CPU request of the controller"

    cpu: "20m"

    #@schema/desc "Memory request of the controller"

    memory: "100Mi"

  limits:

    #@schema/desc "CPU limit of the controller"

Note

AppSSO-specific ca_cert_data is concatenated with shared.ca_cert_data. The
resulting PEM bundle contains both.

Note

If omitted, kubernetes_distribution is set to shared.kubernetes_distribution.

Tanzu Application Platform v1.5

VMware by Broadcom 856



    cpu: "500m"

    #@schema/desc "Memory limit of the controller"

    memory: "500Mi"

#@schema/desc "Optional: Schema-free extension point for internal, package-private con

figuration (Unsupported! Use at your own risk.)"

#@schema/type any=True

internal: { }

RBAC for Application Single Sign-On

The AppSSO package aggregates the following permissions into TAP’s well-known roles:

app-operator

- apiGroups:

  - sso.apps.tanzu.vmware.com

resources:

  - clientregistrations

verbs:

  - "*"

app-editor

- apiGroups:

  - sso.apps.tanzu.vmware.com

resources:

  - clientregistrations

verbs:

  - get

  - list

  - watch

app-viewer

- apiGroups:

  - sso.apps.tanzu.vmware.com

resources:

  - clientregistrations

verbs:

  - get

  - list

  - watch

service-operator

- apiGroups:

  - sso.apps.tanzu.vmware.com

resources:

  - authserver

verbs:

  - "*"

To manage the life cycle of AppSSO’s APIs, the AppSSO controller’s ServiceAccount has a
ClusterRole with the following permissions:

- apiGroups:

    - sso.apps.tanzu.vmware.com

  resources:

    - authservers

  verbs:

    - get

Tanzu Application Platform v1.5

VMware by Broadcom 857



    - list

    - watch

- apiGroups:

    - sso.apps.tanzu.vmware.com

  resources:

    - authservers/status

  verbs:

    - patch

    - update

- apiGroups:

    - sso.apps.tanzu.vmware.com

  resources:

    - authservers/finalizers

  verbs:

    - "*"

- apiGroups:

    - sso.apps.tanzu.vmware.com

  resources:

    - clientregistrations

  verbs:

    - get

    - list

    - watch

- apiGroups:

    - sso.apps.tanzu.vmware.com

  resources:

    - clientregistrations/status

  verbs:

    - patch

    - update

- apiGroups:

    - sso.apps.tanzu.vmware.com

  resources:

    - clientregistrations/finalizers

  verbs:

    - "*"

- apiGroups:

    - ""

  resources:

    - secrets

    - configmaps

    - services

    - serviceaccounts

  verbs:

    - "*"

- apiGroups:

    - apps

  resources:

    - deployments

  verbs:

    - "*"

- apiGroups:

    - rbac.authorization.k8s.io

  resources:

    - roles

    - rolebindings

  verbs:

    - "*"

- apiGroups:

    - cert-manager.io

  resources:

    - certificates

    - issuers

  verbs:

    - "*"

- apiGroups:

Tanzu Application Platform v1.5

VMware by Broadcom 858



    - cert-manager.io

  resources:

    - clusterissuers

  verbs:

    - get

    - list

    - watch

    - apiGroups:

        - networking.k8s.io

      resources:

        - ingresses

      verbs:

        - "*"

- apiGroups:

    - ""

  resources:

    - events

  verbs:

    - create

    - update

    - patch

- apiGroups:

    - coordination.k8s.io

  resources:

    - leases

  verbs:

    - create

    - get

    - update

AppSSO installs OpenShift-specific RBAC and resources.

Application Single Sign-On for OpenShift clusters

On OpenShift clusters, AppSSO must run with a custom SecurityContextConstraint (SCC) to enable
compliance with restricted Kubernetes Pod Security Standards. Tanzu Application Platform
configures the following SCC for AppSSO controller and its AuthServer managed resources when
you configure the kubernetes_distribution: openshift key in the tap-values.yaml file.

Specification follows:

---

kind: SecurityContextConstraints

apiVersion: security.openshift.io/v1

metadata:

  name: appsso-scc

allowHostDirVolumePlugin: false

allowHostIPC: false

allowHostNetwork: false

allowHostPID: false

allowHostPorts: false

allowPrivilegeEscalation: false

allowPrivilegedContainer: false

allowedCapabilities: null

defaultAddCapabilities: null

fsGroup:

  type: MustRunAs

priority: null

readOnlyRootFilesystem: false

requiredDropCapabilities:

  - KILL

  - MKNOD

  - SETUID

  - SETGID

Tanzu Application Platform v1.5

VMware by Broadcom 859



runAsUser:

  type: MustRunAsNonRoot

seLinuxContext:

  type: MustRunAs

volumes:

  - configMap

  - downwardAPI

  - emptyDir

  - persistentVolumeClaim

  - projected

  - secret

seccompProfiles:

  - 'runtime/default'

AppSSO controller’s ServiceAccount is given the following additional permissions, including a use
permission for AppSSO SCC, so AuthServer can use the custom SCC:

- apiGroups:

    - security.openshift.io

  resources:

    - securitycontextconstraints

  verbs:

    - "get"

    - "list"

    - "watch"

- apiGroups:

    - security.openshift.io

  resourceNames:

    - appsso-scc

  resources:

    - securitycontextconstraints

  verbs:

    - "use"

Upgrade Application Single Sign-On
This topic tells you how to upgrade Application Single Sign-On (commonly called AppSSO) outside
of a Tanzu Application Platform profile installation. If you installed Tanzu Application Platform
through a profile, see Upgrade Tanzu Application Platform instead.

For help on migrating your resources in between versions, see the migration guides.

If you installed the AppSSO package on its own, and not as part of TAP, you can upgrade it
individually by running:

tanzu package installed update PACKAGE-INSTALLATION-NAME -p sso.apps.tanzu.vmware.com 

-v 3.1 --values-file PATH-TO-YOUR-VALUES-YAML -n YOUR-INSTALL-NAMESPACE

Migration guides

v3.0.0 to v3.1.0

Note

You can also upgrade AppSSO as part of upgrading Tanzu Application Platform as a
whole. See Upgrading Tanzu Application Platform for more information.

Tanzu Application Platform v1.5

VMware by Broadcom 860



VMware recommends that you recreate your AuthServers after upgrading your AppSSO to v3.1.0
with the following changes:

Migrate field .spec.identityProviders[*].openid.claimMappings["roles"] to
.spec.identityProviders[*].openid.roles.fromUpstream.claim.

Migrate field .spec.identityProviders[*].ldap.group.roleAttribute to
.spec.identityProviders[*].ldap.roles.fromUpstream.attribute.

Migrate field .spec.identityProviders[*].ldap.group.search to
.spec.identityProviders[*].ldap.roles.fromUpstream.search.

Migrate field .spec.identityProviders[*].saml.claimMappings["roles"] to
.spec.identityProviders[*].saml.roles.fromUpstream.attribute.

(Optional) If you plan to run Spring Boot 3 based Workloads, you must perform the following
migration tasks in your existing ClientRegistration resources:

Migrate .spec.clientAuthenticationMethod values.

Migrate existing value post to client_secret_post or migrate existing value basic to
client_secret_basic.

v2.0.0 to v3.0.0

VMware recommends that you recreate your AuthServers after upgrading your AppSSO to v3.0.0
with the following changes:

Migrate field .spec.tls.disabled to .spec.tls.deactivated.

v1.0.0 to v2.0.0

VMware recommends that you recreate your AuthServers after upgrading your AppSSO to v2.0.0
with the following changes:

Migrate from .spec.issuerURI to .spec.tls:

1. Configure one of .spec.tls.{issuerRef, certificateRef, secretRef}. See Issuer
URI & TLS for more information.

2. (Optional) Disable TLS with .spec.tls.disabled.

3. Remove .spec.issuerURI.

4. Delete your AuthServer-specific Service and ingress resources.

5. Apply your AuthServer. You can find its issuer URI in .status.issuerURI.

6. Update the redirect URIs in your upstream identity providers.

If you use the internalUnsafe identity provider to migrate existing users by replacing the
bcrypt hash through the plain-text equivalent. You can still use existing bcrypt passwords
by prefixing them with {bcrypt}:

Note

AppSSO templates your issuer URI and enables TLS. When using the newer
.spec.tls, a custom Service and an ingress resource are no longer
required.

It is not recommended to continue using .spec.issuerURI in AppSSO
v2.0.0. To use .spec.issuerURI in AppSSO v2.0.0, you must provide a
Service and an ingress resource as in AppSSO v1.0.0.

Tanzu Application Platform v1.5

VMware by Broadcom 861



---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  # ...

spec:

  identityProviders:

    - name: internal

      internalUnsafe:

        users:

          # v1.0

          - username: test-user-1

            password: $2a$10$201z9o/tHlocFsHFTo0plukh03ApBYe4dRiXcqeyRQH6CNNtS8

jWK # bcrypt-encoded "password"

            # ...

          # v2.0

          - username: "test-user-1"

            password: "{bcrypt}$2a$10$201z9o/tHlocFsHFTo0plukh03ApBYe4dRiXcqeyR

QH6CNNtS8jWK" # same bcrypt hash, with {bcrypt} prefix

          - username: "test-user-2"

            password: "password" # plain text

  # ...

Uninstall Application Single Sign-On

This topic tells you how to uninstall Application Single Sign-On (commonly called AppSSO).

Delete the AppSSO package by running:

tanzu package installed delete appsso --namespace tap-install

To permanently delete and exclude AppSSO package from your Tanzu Application Platform install,
edit your Tanzu Application Platform values file by including the following configuration:

excluded_packages:

  - sso.apps.tanzu.vmware.com

For more information, navigate to Exclude packages from a Tanzu Application Platform profile.

Application Single Sign-On for Service Operators
The following topics tell you how to configure a fully operational authorization server for Application
Single Sign-On (commonly called AppSSO):

Annotations and labels

Issuer URI and TLS

TLS scenario guides

CA certificates

Configure Workloads to trust a custom CA

Identity providers

Configure authorization

Public clients and CORS

Token signatures

Storage

Tanzu Application Platform v1.5

VMware by Broadcom 862



AuthServer readiness

Scale AuthServer

AuthServer audit logs

AuthServer represents the request for an OIDC authorization server. It results in the deployment of
an authorization server backed by Redis over mutual TLS if no external storage is explicitly
configured.

You can configure the labels with which clients can select an AuthServer, the namespaces it allows
clients from, its issuer URI, its token signature keys, identity providers and further details for its
deployment.

For the full available configuration, spec and status see the API reference.

Application Single Sign-On for Service Operators

The following topics tell you how to configure a fully operational authorization server for Application
Single Sign-On (commonly called AppSSO):

Annotations and labels

Issuer URI and TLS

TLS scenario guides

CA certificates

Configure Workloads to trust a custom CA

Identity providers

Configure authorization

Public clients and CORS

Token signatures

Storage

AuthServer readiness

Scale AuthServer

AuthServer audit logs

AuthServer represents the request for an OIDC authorization server. It results in the deployment of
an authorization server backed by Redis over mutual TLS if no external storage is explicitly
configured.

You can configure the labels with which clients can select an AuthServer, the namespaces it allows
clients from, its issuer URI, its token signature keys, identity providers and further details for its
deployment.

For the full available configuration, spec and status see the API reference.

Annotations and labels for AppSSO

This topic tells you how to configure annotations and labels for Application Single Sign-On
(commonly called AppSSO).

An AuthServer is selectable by ClientRegistration through labels. The namespace an AuthServer
allows ClientRegistrations from is controlled with an annotation.

Labels

Tanzu Application Platform v1.5

VMware by Broadcom 863



ClientRegistrations select an AuthServer with spec.authServerSelector. Therefore, an
AuthServer must have a set of labels that uniquely identifies it amongst all AuthServer. A
ClientRegistration must match only one AuthServer. Registration fails if multiple or no AuthServer
resources are matched.

For example:

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  labels:

    env: dev

    ldap: True

    saml: True

# ...

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  labels:

    env: prod

    saml: True

# ...

Allowing client namespaces

AuthServer controls which namespace it allows ClientRegistrations with the annotation:

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  annotations:

    sso.apps.tanzu.vmware.com/allow-client-namespaces: "*"

To allow ClientRegistrations from all or a restricted set of namespaces this annotation must be
set. Its value is a comma-separated list of allowed Namespaces, e.g. "app-team-red,app-team-
green", or "*" if it should allow clients from all namespaces.

Unsafe configuration

AuthServer is designed to enforce secure and production-ready configuration. However,
sometimes it is necessary to opt-out of those constraints, e.g. when deploying AuthServer on an
iterate cluster.

Unsafe identity provider

Caution

If the annotation is missing, no clients are allowed.

Caution

Allowing unsafe is not recommended for production.

Tanzu Application Platform v1.5

VMware by Broadcom 864



The InternalUnsafe identity provider cannot be used unless explicitly allowed by including the
annotation sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider as follows:

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  annotations:

    sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider: ""

spec:

  identityProviders:

    - name: static-users

      internalUnsafe:

      # ...

If the annotation is not present and an InternalUnsafe identity provider is configured the
AuthServer will not apply.

Unsafe issuer URI

It’s not possible to use a plain HTTP issuer URI, unless it’s explicitly allowed by including the
annotation sso.apps.tanzu.vmware.com/allow-unsafe-issuer-uri as follows:

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  annotations:

    sso.apps.tanzu.vmware.com/allow-unsafe-issuer-uri: ""

spec:

  issuerURI: http://this.is.unsafe

If the annotation is not present and a plain HTTP issuer URI is configured, the AuthServer does not
apply.

Issuer URI and TLS for AppSSO

This topic tells you how to configure the issuer URI and TLS for Application Single Sign-On
(commonly called AppSSO).

Overview

An AuthServer entry point for its clients and their end-users is called issuer URI. AppSSO will
template the issuer URI and create a TLS-enabled Ingress for it. For this purpose, your platform
operator configures the domain name and template. Once you created and AuthServer you can
find the actual URL in .status.issuerURI.

You can configure whether and how to obtain a TLS certificate for the issuer URI by using
.spec.tls. Unless TLS is deactivated, HTTPS is enforced. For example, requests for http:// are
redirected to https://. You can observe the TLS configuration in .status.tls.

If AppSSO is installed with a default issuer, you can omit AuthServer.spec.tls and a TLS certificate
is obtained automatically. This is the recommended approach for TLS.

For example:

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  name: login

Tanzu Application Platform v1.5

VMware by Broadcom 865



  namespace: services

  # ...

spec:

# ...

status:

  issuerURI: https://login.services.example.com

  tls:

    issuerRef:

      name: my-default-issuer

      kind: ClusterIssuer

      group: cert-manager.io

  # ...

This AuthServer is reachable at its templated issuer URI https://login.services.example.com and
serves a TLS certificate obtained from my-default-issuer.

Learn how to configure TLS for your AuthServer:

Configure TLS by using a (Cluster)Issuer

Configure TLS by using a Certificate

Configure TLS by using a Secret

Deactivate TLS

There are many use-cases that pertain to TLS use. To find out which scenario applies to you and
how to configure it, see TLS scenario guides.

If your AuthServer obtains a certificate from a custom CA, you can enable App Operators to trust it.
See Allow Workloads to trust a custom CA AuthServer for more information.

Configure TLS by using a (Cluster)Issuer

You can obtain a TLS certificate for your AuthServer by referencing a cert-manager.io/v1/Issuer
or cert-manager.io/v1/ClusterIssuer. This enables AppSSO to retrieve a cert-
manager.io/v1/Certificate from the issuer and apply it to the Ingress configuration.

The composition of an AuthServer and a self-signed Issuer looks as follows:

---

apiVersion: cert-manager.io/v1

kind: Issuer

metadata:

  name: my-selfsigned-issuer

  namespace: services

spec:

  selfSigned: { }

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  name: login

  namespace: services

  # ...

spec:

  tls:

    issuerRef:

      name: my-selfsigned-issuer

      # 'kind: Issuer' can be omitted. It is the default. 

The composition of an AuthServer and a self-signed ClusterIssuer for looks as follows:

Tanzu Application Platform v1.5

VMware by Broadcom 866



---

apiVersion: cert-manager.io/v1

kind: ClusterIssuer

metadata:

  name: my-selfsigned-cluster-issuer

spec:

  selfSigned: { }

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  name: login

  namespace: services

  # ...

spec:

  tls:

    issuerRef:

      name: my-selfsigned-cluster-issuer

      kind: ClusterIssuer

Confirm that your AuthServer serves a TLS certificate from the specified issuer by visiting its
{.status.issuerURI}.

For more information about cert-manager and its APIs. see cert-manager documentation.

Configure TLS by using a Certificate

In order to configure TLS for your AuthServer using a cert-manager.io/v1/Certificate you must
know what its templated issuer URI will be. You can infer it from the AppSSO package’s domain
template.

The composition of an AuthServer and a Certificate looks as follows:

apiVersion: cert-manager.io/v1

kind: Certificate

metadata:

  name: login

  namespace: services

spec:

  dnsNames:

    - login.services.example.com

  issuerRef:

    name: my-cluster-issuer

    kind: ClusterIssuer

  secretName: login-cert

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  name: login

  namespace: services

  # ...

spec:

  tls:

    certificateRef:

      name: login

Confirm that your AuthServer serves the specified Certificate by visiting its {.status.issuerURI}.

For more information about cert-manager and its APIs. see cert-manager documentation.

Tanzu Application Platform v1.5

VMware by Broadcom 867

https://cert-manager.io/
https://cert-manager.io/


Configure TLS by using a Secret

If you don’t want to use cert-manager.io’s APIs or you have a raw TLS certificate in a TLS Secret,
you can compose it with your AuthServer by referencing it. The certificate must be for the issuer
URI that will be templated for the AuthServer. You can infer it from the AppSSO package’s domain
template.

The composition of an AuthServer and TLS Secret looks as follows:

apiVersion: v1

kind: Secret

metadata:

  name: my-tls-cert

  namespace: services

type: kubernetes.io/tls

data:

  tls.key: # ...

  tls.crt: # ...

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  name: login

  namespace: services

  # ...

spec:

  tls:

    secretRef:

      name: my-tls-cert

Deactivate TLS (unsafe)
If you deactivate TLS autoconfiguration, AuthServer only works over plain HTTP. You must
deactivate TLS with the sso.apps.tanzu.vmware.com/allow-unsafe-issuer-uri: "" annotation.

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  name: login

  namespace: services

  annotations:

    sso.apps.tanzu.vmware.com/allow-unsafe-issuer-uri: ""

  # ...

spec:

  tls:

    deactivated: true

Allow Workloads to trust a custom CA AuthServer

If your AuthServer obtains a certificate from a custom CA, its consumers do not trust it by default.
You can enable App Operators’ Workloads to trust your AuthServer by exporting a ca-certificates
service binding Secret to their Namespace.

Caution

Deactivating TLS is unsafe and not recommended for production.

Tanzu Application Platform v1.5

VMware by Broadcom 868



A composition of SecretTemplate and SecretExport are a way to achieve this. If your custom CA’s
TLS Secret is present in the namespace my-certs, then you can provide a ca-certificates service
binding Secret like so:

---

apiVersion: secretgen.carvel.dev/v1alpha1

kind: SecretTemplate

metadata:

  name: ca-cert

  namespace: my-certs

spec:

  inputResources:

    - name: my-custom-ca

      ref:

        apiVersion: v1

        kind: Secret

        name: my-custom-ca

  template:

    data:

      ca.crt: $(.my-custom-ca.data.tls\.crt)

    stringData:

      type: ca-certificates

---

apiVersion: secretgen.carvel.dev/v1alpha1

kind: SecretExport

metadata:

  name: ca-cert

  namespace: my-certs

spec:

  toNamespace: "*"

This templates a ca-certificates service binding Secret which Workload can claim to trust the
custom CA. It does not contain the CA’s private key and is generally safe to share.

However, be careful, this example exports to all namespace on the cluster. If this does not comply
with your policies, then adjust the target namespaces if required.

For more information about secretgen-controller and its APIs, see secretgen-controller
documentation in GitHub.

TLS scenario guides for AppSSO

This topic tells you how to obtain a TLS certificate in different scenarios for Application Single Sign-
On (commonly called AppSSO).

Overview

AuthServer is a piece of security infrastructure. It is imperative to configure TLS for it, so that its
issuer URI’s scheme is https://.

AuthServer.spec.tls accommodates different scenarios for obtaining a TLS certificate. Select the
scenario that matches your case.

The recommended path is to install AppSSO with a default issuer. In that case, you can omit
AuthServer.spec.tls and a TLS certificate is obtained automatically.

Prerequisites

Each of the scenarios requires that the AppSSO package is installed and configured. In particular,
its domain_name must match the ingress domain of your cluster. The presented YAML resources

Tanzu Application Platform v1.5

VMware by Broadcom 869

https://github.com/vmware-tanzu/carvel-secretgen-controller


assume my-tap.example.com as the ingress domain. Therefore, the AppSSO configuration values
look as follows:

#! AppSSO values

domain_name: "my-tap.example.com"

The default domain_template: "{{.Name}}.{{.Namespace}}.{{.Domain}}" works for most scenarios.
If a scenario requires a bespoke domain_template, it contains the relevant instructions.

After applying each scenario, wait for your AuthServer to become ready and then test it by running:

kubectl wait --namespace login authserver/sso --for condition=Ready=True --timeout 500

s

curl --location "$(kubectl get --namespace login authserver sso --output=jsonpath='{.s

tatus.issuerURI}')/.well-known/openid-configuration"

Alternatively, visit the AuthServer with your browser. You can obtain its issuer URI by running:

kubectl get --namespace login authserver sso --output=jsonpath='{.status.issuerURI}'

Using a default issuer

VMware recommend using a default issuer,
because this approach separates the responsibilities of platform operators and service operators. In
this case, the Authserver.spec.tls field is not required.

To verify whether AppSSO was installed with a default issuer, run:

kctrl package installed get --namespace tap-install --package-install tap --values-fil

e-output tap-values.yaml

If a shared.ingress_issuer appears in your tap-values.yaml file, you have a default issuer.

apiVersion: v1

kind: Namespace

metadata:

  name: login

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  name: sso

  namespace: login

  annotations:

    sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider: ""

    sso.apps.tanzu.vmware.com/allow-client-namespaces: "*"

    sso.apps.tanzu.vmware.com/documentation: Uses the default issuer for TLS

Caution

Before applying each scenario, you must configure your AppSSO correctly, and
make sure that all certificates and DNS names comply with your setup.

Important

Ensure kctrl is installed.

Tanzu Application Platform v1.5

VMware by Broadcom 870

https://carvel.dev/blog/kctrl-release-blog/


spec:

  identityProviders:

    - name: test-users

      internalUnsafe:

        users:

          - username: user

            password: password

  tokenSignature:

    signAndVerifyKeyRef:

      name: signing-key

---

apiVersion: secretgen.k14s.io/v1alpha1

kind: RSAKey

metadata:

  name: signing-key

  namespace: login

spec:

  secretTemplate:

    type: Opaque

    stringData:

      key.pem: $(privateKey)

      pub.pem: $(publicKey)

Using a ClusterIssuer

A ClusterIssuer is a cluster-scoped API provided by cert-manager from which certificates can be
obtained programmatically.

This scenario puts all resources into a single YAML file and uses Let’s Encrypt’s production API.
You might get the ClusterIssuer from your platform operators.

For more information, see cert-manager documentation.

---

apiVersion: cert-manager.io/v1

kind: ClusterIssuer

metadata:

  name: letsencrypt-production

spec:

  acme:

    privateKeySecretRef:

      name: letsencrypt-production

    server: https://acme-v02.api.letsencrypt.org/directory

    solvers:

      - http01:

          ingress:

            class: contour

---

apiVersion: v1

kind: Namespace

metadata:

  name: login

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

Caution

Let’s Encrypt’s production API rate limits apply.

Tanzu Application Platform v1.5

VMware by Broadcom 871

https://cert-manager.io/
https://letsencrypt.org/
https://cert-manager.io/docs/configuration/acme/
https://letsencrypt.org/
https://letsencrypt.org/docs/rate-limits/


metadata:

  name: sso

  namespace: login

  annotations:

    sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider: ""

    sso.apps.tanzu.vmware.com/allow-client-namespaces: "*"

spec:

  #! --- TLS ---

  tls:

    issuerRef:

      name: letsencrypt-production

      kind: ClusterIssuer

  #! -----------

  identityProviders:

    - name: test-users

      internalUnsafe:

        users:

          - username: user

            password: password

  tokenSignature:

    signAndVerifyKeyRef:

      name: signing-key

---

apiVersion: secretgen.k14s.io/v1alpha1

kind: RSAKey

metadata:

  name: signing-key

  namespace: login

spec:

  secretTemplate:

    type: Opaque

    stringData:

      key.pem: $(privateKey)

      pub.pem: $(publicKey)

Using an Issuer

This scenario is identical to Using a ClusterIssuer, except that the Issuer is scoped to a namespace
and must be located in the same namespace as the AuthServer.

---

apiVersion: v1

kind: Namespace

metadata:

  name: login

---

apiVersion: cert-manager.io/v1

kind: Issuer

metadata:

  name: letsencrypt-production

  namespace: login

spec:

  acme:

    privateKeySecretRef:

      name: letsencrypt-production

    server: https://acme-v02.api.letsencrypt.org/directory

    solvers:

      - http01:

          ingress:

            class: contour

---

Tanzu Application Platform v1.5

VMware by Broadcom 872



apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  name: sso

  namespace: login

  annotations:

    sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider: ""

    sso.apps.tanzu.vmware.com/allow-client-namespaces: "*"

spec:

  #! --- TLS ---

  tls:

    issuerRef:

      name: letsencrypt-production

  #! -----------

  identityProviders:

    - name: test-users

      internalUnsafe:

        users:

          - username: user

            password: password

  tokenSignature:

    signAndVerifyKeyRef:

      name: signing-key

---

apiVersion: secretgen.k14s.io/v1alpha1

kind: RSAKey

metadata:

  name: signing-key

  namespace: login

spec:

  secretTemplate:

    type: Opaque

    stringData:

      key.pem: $(privateKey)

      pub.pem: $(publicKey)

Using an existing Certificate

A Certificate is an API provided by cert-manager that is scoped to a namespace and represents a
TLS certificate obtained from a (Cluster)Issuer. To create a Certificate, you must know the
name and kind of your issuer.

These scenarios use Let’s Encrypt’s production API and require that a ClusterIssuer by the name
letsencrypt-production exists. See Using a ClusterIssuer for how to set up the issuer.

When using Certificate, its .spec.dnsNames must contain the FQDN of the templated issuer URI.
The domain_name and domain_template of your AppSSO package installation must comply with your
DNS name.

If you have an existing Certificate in the same Namespace where the AuthServer is installed, use
the following AppSSO configuration values:

---

apiVersion: v1

kind: Namespace

metadata:

  name: login

---

apiVersion: cert-manager.io/v1

kind: Certificate

metadata:

  name: sso

Tanzu Application Platform v1.5

VMware by Broadcom 873

https://cert-manager.io/
https://letsencrypt.org/


  namespace: login

spec:

  dnsNames:

    - "sso.login.my-tap.example.com"

  issuerRef:

    name: letsencrypt-production

    kind: ClusterIssuer

  secretName: sso-cert

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  name: sso

  namespace: login

  annotations:

    sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider: ""

    sso.apps.tanzu.vmware.com/allow-client-namespaces: "*"

spec:

  #! --- TLS ---

  tls:

    certificateRef:

      name: sso

  #! -----------

  identityProviders:

    - name: test-users

      internalUnsafe:

        users:

          - username: user

            password: password

  tokenSignature:

    signAndVerifyKeyRef:

      name: signing-key

---

apiVersion: secretgen.k14s.io/v1alpha1

kind: RSAKey

metadata:

  name: signing-key

  namespace: login

spec:

  secretTemplate:

    type: Opaque

    stringData:

      key.pem: $(privateKey)

      pub.pem: $(publicKey)

secretgen-controller allows you to export and import Secrets across namespaces. When your
Certificate is located in another namespace, for example, it’s controlled by another team, you can
import its Secret to other namespaces. If you have an existing Certificate in another Namespace,
use the following AppSSO configuration values:

---

apiVersion: v1

kind: Namespace

metadata:

  name: tls

---

apiVersion: cert-manager.io/v1

kind: Certificate

metadata:

  name: sso

  namespace: tls

spec:

Tanzu Application Platform v1.5

VMware by Broadcom 874

https://github.com/vmware-tanzu/carvel-secretgen-controller


  dnsNames:

    - "sso.login.my-tap.example.com"

  issuerRef:

    name: letsencrypt-production

    kind: ClusterIssuer

  secretName: sso-cert

---

apiVersion: secretgen.carvel.dev/v1alpha1

kind: SecretExport

metadata:

  name: sso-cert

  namespace: tls

spec:

  toNamespace: login

---

apiVersion: v1

kind: Namespace

metadata:

  name: login

---

apiVersion: secretgen.carvel.dev/v1alpha1

kind: SecretImport

metadata:

  name: sso-cert

  namespace: login

spec:

  fromNamespace: tls

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  name: sso

  namespace: login

  annotations:

    sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider: ""

    sso.apps.tanzu.vmware.com/allow-client-namespaces: "*"

spec:

  #! --- TLS ---

  tls:

    secretRef:

      name: sso-cert

  #! -----------

  identityProviders:

    - name: test-users

      internalUnsafe:

        users:

          - username: user

            password: password

  tokenSignature:

    signAndVerifyKeyRef:

      name: signing-key

---

apiVersion: secretgen.k14s.io/v1alpha1

kind: RSAKey

metadata:

  name: signing-key

  namespace: login

spec:

  secretTemplate:

    type: Opaque

    stringData:

Tanzu Application Platform v1.5

VMware by Broadcom 875



      key.pem: $(privateKey)

      pub.pem: $(publicKey)

Using an existing TLS certificate

If you have an existing TLS certificate and private key, for example, if your TLS certificate was
created outside the cluster, you can apply it directly.

If you don’t have a TLS certificate, there are numerous ways to obtain TLS certificates. One of the
simplest methods is to use a tool such as mkcert, step or openssl in GitHub.

If you have an existing TLS certificate in the same Namespace where the AuthServer is installed, use
the following AppSSO configuration values:

---

apiVersion: v1

kind: Namespace

metadata:

  name: login

---

apiVersion: v1

kind: Secret

type: kubernetes.io/tls

metadata:

  name: my-cert

  namespace: login

stringData:

  #! --- ReplaceMe - certificate and private key for "sso.login.my-tap.example.com ---

  tls.crt: |

    -----BEGIN CERTIFICATE-----

    # redacted

    -----END CERTIFICATE-----

  tls.key: |

    -----BEGIN PRIVATE KEY-----

    # redacted

    -----END PRIVATE KEY-----

  #! ------------------------------------------------------------------------

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  name: sso

  namespace: login

  annotations:

    sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider: ""

    sso.apps.tanzu.vmware.com/allow-client-namespaces: "*"

spec:

  #! --- TLS ---

  tls:

    secretRef:

      name: my-cert

  #! -----------

  identityProviders:

    - name: test-users

      internalUnsafe:

Caution

Be cautious when using SecretExport and SecretImport to facilitate the transfer
across namespaces.

Tanzu Application Platform v1.5

VMware by Broadcom 876

https://github.com/FiloSottile/mkcert
https://smallstep.com/docs/step-cli
https://www.openssl.org/


        users:

          - username: user

            password: password

  tokenSignature:

    signAndVerifyKeyRef:

      name: signing-key

---

apiVersion: secretgen.k14s.io/v1alpha1

kind: RSAKey

metadata:

  name: signing-key

  namespace: login

spec:

  secretTemplate:

    type: Opaque

    stringData:

      key.pem: $(privateKey)

      pub.pem: $(publicKey)

If you have an existing TLS certificate in another Namespace, use the following AppSSO
configuration values:

---

apiVersion: v1

kind: Namespace

metadata:

  name: tls

---

apiVersion: v1

kind: Secret

type: kubernetes.io/tls

metadata:

  name: my-cert

  namespace: tls

stringData:

  #! --- ReplaceMe - certificate and private key for "sso.login.my-tap.example.com ---

  tls.crt: |

    -----BEGIN CERTIFICATE-----

    # redacted

    -----END CERTIFICATE-----

  tls.key: |

    -----BEGIN PRIVATE KEY-----

    # redacted

    -----END PRIVATE KEY-----

  #! ------------------------------------------------------------------------

---

apiVersion: secretgen.carvel.dev/v1alpha1

kind: SecretExport

metadata:

  name: my-cert

  namespace: tls

spec:

  toNamespace: login

Important

The TLS certificate tls.crt and its corresponding private key tls.key must be
stored in a secret with these keys.

Tanzu Application Platform v1.5

VMware by Broadcom 877



---

apiVersion: v1

kind: Namespace

metadata:

  name: login

---

apiVersion: secretgen.carvel.dev/v1alpha1

kind: SecretImport

metadata:

  name: my-cert

  namespace: login

spec:

  fromNamespace: tls

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  name: sso

  namespace: login

  annotations:

    sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider: ""

    sso.apps.tanzu.vmware.com/allow-client-namespaces: "*"

spec:

  #! --- TLS ---

  tls:

    secretRef:

      name: my-cert

  #! -----------

  identityProviders:

    - name: test-users

      internalUnsafe:

        users:

          - username: user

            password: password

  tokenSignature:

    signAndVerifyKeyRef:

      name: signing-key

---

apiVersion: secretgen.k14s.io/v1alpha1

kind: RSAKey

metadata:

  name: signing-key

  namespace: login

spec:

  secretTemplate:

    type: Opaque

    stringData:

      key.pem: $(privateKey)

      pub.pem: $(publicKey)

Using an existing wildcard TLS certificate

Important

The TLS certificate tls.crt and its corresponding private key tls.key must be
stored in a secret with these keys.

Be cautious when using SecretExport and SecretImport to facilitate the transfer
across namespaces.

Tanzu Application Platform v1.5

VMware by Broadcom 878



To use wildcard certificates for DNS names such as *.my-tap.example.com, you must edit the
AppSSO’s domain_template so that the templated issuer URIs for AuthServer match the wildcard.
For example:

sso.login.my-tap.example.com does not match the wildcard.

sso-login.my-tap.example.com matches the wildcard.

The following AppSSO configuration values accommodates a wildcard certificate for *.my-
tap.example.com:

#! AppSSO values

domain_name: "my-tap.example.com"

domain_template: "{{.Name}}-{{.Namespace}}.{{.Domain}}"

#!                         ^ note the dash

The following scenarios require TLS Secrets, but the same concept applies to Certificate.

If you have an existing wildcard TLS certificate in the same Namespace where the AuthServer is
installed, use the following AppSSO configuration values:

---

apiVersion: v1

kind: Namespace

metadata:

  name: login

---

apiVersion: v1

kind: Secret

type: kubernetes.io/tls

metadata:

  name: my-wildcard-cert

  namespace: login

stringData:

  #! --- ReplaceMe - certificate and private key for "*.my-tap.example.com ---

  tls.crt: |

    -----BEGIN CERTIFICATE-----

    # redacted

    -----END CERTIFICATE-----

  tls.key: |

    -----BEGIN PRIVATE KEY-----

    # redacted

    -----END PRIVATE KEY-----

  #! ------------------------------------------------------------------------

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  name: sso

  namespace: login

  annotations:

    sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider: ""

    sso.apps.tanzu.vmware.com/allow-client-namespaces: "*"

spec:

  #! --- TLS ---

Important

When using a (Cluster)Issuer for Let’s Encrypt, you cannot request wildcard
certificates when it uses the http01 challenge solver.

Tanzu Application Platform v1.5

VMware by Broadcom 879

https://letsencrypt.org/
https://cert-manager.io/docs/reference/api-docs/#acme.cert-manager.io/v1.ACMEChallengeSolver


  tls:

    secretRef:

      name: my-wildcard-cert

  #! -----------

  identityProviders:

    - name: test-users

      internalUnsafe:

        users:

          - username: user

            password: password

  tokenSignature:

    signAndVerifyKeyRef:

      name: signing-key

---

apiVersion: secretgen.k14s.io/v1alpha1

kind: RSAKey

metadata:

  name: signing-key

  namespace: login

spec:

  secretTemplate:

    type: Opaque

    stringData:

      key.pem: $(privateKey)

      pub.pem: $(publicKey)

If you have an existing wildcard TLS certificate in another Namespace, use the following AppSSO
configuration values:

---

apiVersion: v1

kind: Namespace

metadata:

  name: tls

---

apiVersion: v1

kind: Secret

type: kubernetes.io/tls

metadata:

  name: my-wildcard-cert

  namespace: login

stringData:

  #! --- Certificate and private key for "*.my-tap.example.com ---

  tls.crt: |

    -----BEGIN CERTIFICATE-----

    # redacted

    -----END CERTIFICATE-----

  tls.key: |

    -----BEGIN PRIVATE KEY-----

    # redacted

    -----END PRIVATE KEY-----

  #! -------------------------------------------------------------

---

apiVersion: secretgen.carvel.dev/v1alpha1

Note

This scenario is similar to using an existing TLS certificate in the same namespace,
except that the certificate is a wildcard.

Tanzu Application Platform v1.5

VMware by Broadcom 880



kind: SecretExport

metadata:

  name: my-cert

  namespace: tls

spec:

  toNamespace: login

---

apiVersion: v1

kind: Namespace

metadata:

  name: login

---

apiVersion: secretgen.carvel.dev/v1alpha1

kind: SecretImport

metadata:

  name: my-cert

  namespace: login

spec:

  fromNamespace: tls

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  name: sso

  namespace: login

  annotations:

    sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider: ""

    sso.apps.tanzu.vmware.com/allow-client-namespaces: "*"

spec:

  #! --- TLS ---

  tls:

    secretRef:

      name: my-wildcard-cert

  #! -----------

  identityProviders:

    - name: test-users

      internalUnsafe:

        users:

          - username: user

            password: password

  tokenSignature:

    signAndVerifyKeyRef:

      name: signing-key

---

apiVersion: secretgen.k14s.io/v1alpha1

kind: RSAKey

metadata:

  name: signing-key

  namespace: login

spec:

  secretTemplate:

    type: Opaque

    stringData:

      key.pem: $(privateKey)

      pub.pem: $(publicKey)

Note

Tanzu Application Platform v1.5

VMware by Broadcom 881



CA certificates for AppSSO

This topic tells you how to configure CA certificates for AuthServer in Application Single Sign-On
(commonly called AppSSO).

An AuthServer can trust custom CAs. You can establish either for all AuthServers or for a single
AuthServer. This is useful when either your identity provider or storage serves certificates from a
custom CA.

In most cases, CA certificates are PEM-encoded and located in a Secret referred from
.spec.caCerts[].secretRef.name. The controller considers all Secret entries matching *.(crt|ca-
bundle). That means you can include multiple CA certificates in a single Secret or spread them
across multiple Secrets.

After being created, an AuthServer reports the trusted, total custom CA certificates in its
.status.caCerts together with the location where it sources them from. This includes the CA
certificates that are trusted by all AuthServers.

For example:

---

apiVersion: v1

kind: Secret

metadata:

  name: my-ca

  namespace: services

stringData:

  my.ca-bundle: |

    This is My Company's custom CA. It's common name is "My CA".

    -----BEGIN CERTIFICATE-----

    ...

    -----END CERTIFICATE-----

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  name: login

  namespace: services

  # ...

spec:

  caCerts:

    - secretRef:

        name: my-ca

  # ...

status:

  caCerts:

    - cert:

        subject: CN=My CA,O=My Company,C=Happyland

      source:

        secretEntry: service/my-ca[my.ca-bundle]

    - cert:

        subject: CN=My other CA,O=My Company,C=Happyland

      source:

        secretEntry: appsso/appsso-controller[controller.yaml]

  # ...

CA certificates configured for all AuthServers by using the package installation’s ca_cert_data are
sourced from secretEntry: appsso/appsso-controller[controller.yaml]. This denotes the

This scenario is similar to using an existing TLS certificate in another namespace,
except that the certificate is a wildcard.

Tanzu Application Platform v1.5

VMware by Broadcom 882



AppSSO controller’s configuration Secret.

Configure workloads to trust a custom CA

This topic tells you how to configure workloads to trust a custom Certificate Authority (commonly
called CA) for Application Single Sign-On (commonly called AppSSO).

Overview

If your ClientRegistration selects an AuthServer that serves a certificate from a custom CA, your
Workload does not trust it by default. This is because the certificate is not issued by a trusted
certificate authority from the Workload’s perspective.

To establish trust between a Workload and an AuthServer:

Step Task Link

1. Service Operator exports the custom CA certificate Secret resource from
the namespace in which it is issued.

Exporting custom CA certificate
Secret

2. Service Operator imports the custom CA certificate Secret to the
namespace in which the Workload is created.

Importing custom CA certificate
Secret

3. Append the deployed Workload as a service resource claim, denoting the
custom CA certificate Secret in the workload namespace.

Appending custom CA certificate
Secret reference to Workload

Exporting custom CA certificate Secret

A ca-certificates service binding Secret allows to configure trust for custom CAs.

For more information about exporting CA certificate Secrets, see Allow Workloads to trust a
custom CA AuthServer.

Example: Create a ca-certificates-type ServiceBinding Secret from template and offer Tanzu
Application Platform’s default self-signed CA certificate Secret to workloads namespace.

---

apiVersion: secretgen.carvel.dev/v1alpha1

kind: SecretTemplate

metadata:

  name: tap-ca-cert

  namespace: cert-manager                     # The namespace in which your custom CA 

Secret resides.

spec:

  inputResources:

    - name: tap-ingress-selfsigned-root-ca

      ref:

        apiVersion: v1                        # The custom CA certificate Secret.

        kind: Secret                          # ^^

        name: tap-ingress-selfsigned-root-ca  # ^^

  template:

    data:

      ca.crt: $(.tap-ingress-selfsigned-root-ca.data.tls\.crt)

    stringData:

      type: ca-certificates

Important

These steps are mandatory if Tanzu Application Platform is installed with the default
self-signed ClusterIssuer resource, in which the CA is custom.

Tanzu Application Platform v1.5

VMware by Broadcom 883



---

apiVersion: secretgen.carvel.dev/v1alpha1

kind: SecretExport

metadata:

  name: tap-ca-cert           # The name of the SecretTemplate that created the "ca-ce

rtificates" Secret.

  namespace: cert-manager     # The namespace in which Tanzu Application Platform's se

lf-signed ClusterIssuer stores its CA cert Secret.

spec:

  toNamespace: my-apps        # The namespace in which Workloads are deployed.

Importing custom CA certificate Secret

After the custom CA certificate Secret is exported from its original namespace, you can import it
into the workloads’ namespace.

Example: Accept Tanzu Application Platform’s default self-signed CA certificate Secret offer.

---

apiVersion: secretgen.carvel.dev/v1alpha1

kind: SecretImport

metadata:

  name: tap-ca-cert

  namespace: my-apps            # The namespace in which Workloads are deployed.

spec:

  fromNamespace: cert-manager   # The namespace in which your custom CA certificate Se

cret resides.

Appending custom CA certificate Secret reference to
Workload

With custom CA certificate available in the workloads’ namespace, you can append it to the
Workload as a service resource claim:

Example: Appending custom CA certificate Secret as a resource claim.

---

apiVersion: carto.run/v1alpha1

kind: Workload

# ...

spec:

  serviceClaims:

    - name: ca-cert

      ref:

        apiVersion: v1    # The custom CA Secret template that is imported into the wo

rkloads' namespace.

        kind: Secret      # ^^

        name: tap-ca-cert # ^^

    # ...

Alternatively, you can provide the workload with a --service-ref parameter for the same effect:

--service-ref "ca-cert=v1:Secret:tap-ca-cert"

For more information about secretgen-controller and its APIs, see secretgen-controller
documentation in GitHub.

Identity providers for AppSSO

Tanzu Application Platform v1.5

VMware by Broadcom 884

https://github.com/vmware-tanzu/carvel-secretgen-controller


This topic tells you how to configure Application Single Sign-On (commonly called AppSSO) to use
external identity providers (commonly called IdPs).

Users can log in by using external identity providers. OpenID Connect and LDAP providers are
supported. SAML providers have limited experimental support. An AuthServer does not manage
users internally. Developers can get started quickly without needing to connect to an IdP by using
static hard-coded users, which is for development purposes only.

Identity providers are configured under spec.identityProviders, learn more from the API
reference.

End-users will be able to log in with these providers when they go to {spec.issuerURI} in their
browser.

Learn how to configure identity providers for an AuthServer:

OpenID

LDAP

SAML (experimental)

Internal, static user

Roles claim filtering

Roles claim mapping and filtering explained

Configure authorization

Restrictions

OpenID Connect providers

To set up an OpenID Connect provider, provide the following information for your AuthServer:

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

# ...

spec:

  identityProviders:

    - name: my-oidc-provider

      openID:

        issuerURI: https://openid.example.com

        clientID: my-client-abcdef

        clientSecretRef:

          name: my-openid-client-secret

        scopes:

          - "openid"

          - "other-scope"

        authorizationUri: https://example.com/oauth2/authorize

        tokenUri: https://example.com/oauth2/token

        jwksUri: https://example.com/oauth2/jwks

        roles:

          fromUpstream:

            claim: "my-oidc-provider-groups"

  # ...

---

Caution

Changes to spec.identityProviders do not take effect immediately because the
operator will roll out a new deployment of the authorization server.

Tanzu Application Platform v1.5

VMware by Broadcom 885



apiVersion: v1

kind: Secret

metadata:

  name: my-openid-client-secret

  # ...

stringData:

  clientSecret: very-secr3t

Where:

openID is the issuer identifier. You can define as many OpenID providers as you like. If the
provider supports OpenID Connect Discovery, the value of openID is used to auto-configure
the provider by using information from https://openid.example.com/.well-known/openid-
configuration.

The value of issuerURI must not contain .well-known/openid-configuration and must
match the value of the issuer field. See OpenID Connect documentation at
https://openid.example.com/.well-known/openid-configuration for more information.

scopes is used in the authorization request. Its value must contain "openid". Other common
OpenID values include "profile" and "email". You can also run curl -s
"https://openid.example.com/.well-known/openid-configuration" | jq -r ".issuer" to
retrieve the correct issuerURI value.

The value of clientSecretRef must be a Secret with the entry clientSecret.

authorizationUri (optional) is the URI for performing an authorization request and
obtaining an authorization_code.

tokenUri (optional) is the URI for performing a token request and obtaining a token.

jwksUri (optional) is the JSON Web Key Set (JWKS) endpoint for obtaining the JSON Web
Keys to verify token signatures.

roles.fromUpstream.claim (optional) selects which claim in the id_token contains the roles
of the user. roles is a non-standard OpenID Connect claim. When ClientRegistrations has
a roles scope, it is used to populate the roles claim in the id_token issued by the
AuthServer. For more information, see OpenID external groups mapping.

my-oidc-provider-groups claim from the ID token issued by my-oidc-provider is
mapped into the roles claim in id tokens issued by AppSSO.

Verify the configuration by visiting the AuthServer’s issuer URI in your browser and select my-oidc-
provider.

OpenID external groups mapping

Service operators may map the identity provider’s “groups” (or equivalent) claim to the roles claim
within an AuthServer’s identity token.

Note

You can retrieve the values of issuerURI and clientID when registering a
client with the provider, which in most cases, is by using a web UI.

Note

Read more about roles claim mapping and filtering here

Tanzu Application Platform v1.5

VMware by Broadcom 886



App Operators may configure their ClientRegistration to have the roles claim included in the
id_token.

Configure AuthServer with OpenID Connect groups mapping:

spec:

  identityProviders:

    - name: "openid-idp"

      openid:

        scopes:

          - upstream-identity-providers-groups-claim # Optional based on the identity 

provider.

        roles:

          fromUpstream:

            claim: "upstream-identity-providers-groups-claim"

For every ClientRegistration that has the roles scope listed, the identity token will be populated
with the roles claim:

kind: ClientRegistration

metadata:

  name: my-client-registration

spec:

  scopes:

    - name: openid

    - name: roles

  # ...

When groups are mapped (as described above), all the groups provided by the identity provider are
retrieved, and the relevant groups that the logged-in user is part of are appended to the roles
claim of an id_token. To filter the available roles within an id_token, see Roles claim filtering
section.

Note for registering a client with the identity provider

The AuthServer will set up redirect URIs based on the provider name in the configuration. For
example, for a provider with name: my-provider, the redirect URI will be
{spec.issuerURI}/login/oauth2/code/my-provider. The externally accessible user URI for the
AuthServer, including scheme and port is spec.issuerURI. If the AuthServer is accessible on
https://appsso.company.example.com:1234/, the redirect URI registered with the identity provider
should be https://appsso.company.example.com:1234/login/oauth2/code/my-provider.

Supported token signing algorithms

AppSSO only supports the RS256 algorithm for token signature. For more information, see OpenID
Connect documentation.

You can find out the signing algorithms your OpenID provider supports by referring to the
id_token_signing_alg_values_supported response parameter in the OpenID Connect
documentation at .well-known/openid-configuration.

For example, you can run:

Caution

Some OpenID providers, such as Okta OpenID, might require requesting the roles
or groups scope from the identity provider, as a result, you must include it in the
.openid.scopes list.

Tanzu Application Platform v1.5

VMware by Broadcom 887

https://openid.net/specs/openid-connect-core-1_0.html#IDTokenValidation
https://openid.net/specs/openid-connect-discovery-1_0.html#ProviderConfig


curl -s "ISSUER-URI/.well-known/openid-configuration" | jq ".id_token_signing_alg_valu

es_supported"

LDAP

For example:

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

# ...

spec:

  identityProviders:

    - name: ldap

      ldap:

        url: "ldaps://example.com:636"

        bind:

          dn: uid=binduser,ou=Users,dc=example,dc=com

          passwordRef:

            name: ldap-password

        user:

          searchBase: ou=Users,dc=example,dc=com

          searchFilter: cn={0}

        roles:

          fromUpstream:

            attribute: cn

            search:

              filter: member={0}

              base: ou=Users,dc=example,dc=com

              searchSubTree: true

              depth: 10

          filterBy:

            - exactMatch: "users"

            - regex: "^admin"

        group: # DEPRECATED, use 'roles' instead

          search:

            filter: member={0}

            base: ou=Users,dc=example,dc=com

            searchSubTree: true

            depth: 10

          roleAttribute: cn

  # ...

---

apiVersion: v1

kind: Secret

metadata:

  name: ldap-password

  namespace: default

stringData:

  password: confidential-password-value

Where:

url is the URL of the LDAP server. It must be ldaps and must contain a port.

bind.dn is the DN to perform the bind.

Important

You can not configure more than one ldap identity provider.

Tanzu Application Platform v1.5

VMware by Broadcom 888



bind.passwordRef must be a secret with the entry password. That entry is the password to
perform the bind.

user.searchBase is the branch of tree where the users are located at. Search is performed
in nested entries.

user.seachFilter is the filter for LDAP search. It must contain the string {0}, which is
replaced by the dn of the user when performing a search. For example, when logging in
with the username marie, the filter for LDAP search is cn=marie.

roles (optional) defaults to unset. It configures how LDAP groups are mapped to user roles
in the id_token claims. If not set, the user has no roles.

fromUpstream.attribute selects which attribute of the group entry are mapped to a
user role. If an attribute has multiple values, the first value is selected.

fromUpstream.search (optional) toggles “OpenLDAP”-style group search, optionally
uses recursive search to find groups for a given user.

filterBy (optional) - applied roles claim filters. See Roles claim filtering section for
more details.

group (DEPRECATED, , use role instead, optional) defaults to unset. It configures how
LDAP groups are mapped to user roles in the id_token claims. If not set, the user has no
roles.

group.roleAttribute selects which attribute of the group entry are mapped to a
user role. If an attribute has multiple values, the first value is selected.

group.search (optional) toggles “Active Directory” search and uses recursive search
to find groups for a given user.

Verify the configuration by visiting the AuthServer’s issuer URI in your browser and log in with the
username and password from LDAP.

LDAP external groups mapping

Service operators may map the identity provider’s “groups” (or equivalent) attribute to the roles
claim within an AuthServer’s identity token.

Configure AuthServer with LDAP groups attribute mapping:

spec:

  identityProviders:

    - name: "ldap-idp"

      ldap:

        roles:

          fromUpstream:

            attribute: "upstream-identity-providers-groups-attribute" # e.g. "cn" or 

"dn"

For every ClientRegistration that has the roles scope listed, the identity token will be populated
with the roles claim:

kind: ClientRegistration

metadata:

  name: my-client-registration

spec:

Note

Read more about roles claim mapping and filtering here

Tanzu Application Platform v1.5

VMware by Broadcom 889



  scopes:

    - name: openid

    - name: roles

  # ...

When groups are mapped (as described above), all the groups provided by the identity provider are
retrieved, and the relevant groups that the logged-in user is part of are appended to the roles
claim of an id_token. To filter the available roles within an id_token, see Roles claim filtering
section.

ActiveDirectory group search

In ActiveDirectory groups, user entries have a multi-value memberOf attribute, which contains the
DNs pointing to the groups of a particular user. To enable this search mode, make sure
roles.fromUpstream.attribute is set and roles.fromUpstream.search is not set.

For example:

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

# ...

spec:

  identityProviders:

    - name: ldap

      ldap:

        # ...

        user:

          searchBase: OU=Cloud,DC=ad,DC=example,DC=com

          searchFilter: cn={0}

        roles:

          fromUpstream:

            attribute: sAMAccountName

The LDIF definition is as follows:

dn: CN=appsso-user,OU=Cloud,DC=ad,DC=example,DC=com

objectClass: top

objectClass: person

objectClass: organizationalPerson

objectClass: user

cn: appsso user

sn: user

givenName: appsso

distinguishedName: CN=appsso user,OU=Cloud,DC=ad,DC=example,DC=com

displayName: appsso user

memberOf: CN=ssogroup,OU=Cloud,DC=ad,DC=example,DC=com

memberOf: CN=developers,OU=Cloud,DC=ad,DC=example,DC=com

sAMAccountName: appssouser

userPrincipalName: appssouser@ad.example.com

objectCategory: CN=Person,CN=Schema,CN=Configuration,DC=ad,DC=example,DC=com

# ...

# Groups

dn: CN=ssogroup,OU=Cloud,DC=ad,DC=example,DC=com

objectClass: top

objectClass: group

cn: ssogroup

member: CN=appsso-user,OU=Cloud,DC=ad,DC=example,DC=com

sAMAccountName: SSO Group

# ...

dn: CN=developers,OU=Cloud,DC=ad,DC=example,DC=com

objectClass: top

Tanzu Application Platform v1.5

VMware by Broadcom 890



objectClass: group

cn: developers

sAMAccountName: Developers

# ...

The user appsso-user has two values for memberOf, pointing to two groups. Given the configuration
earlier, sAMAccountName is used for the role, so the user has SSO Group and Developers as roles. The
group is not required to have member attribute point to the user for the role to be mapped.

“Classic” group search

In non-ActiveDirectory LDAP, users generally do not have a memberOf attribute. Group search is
performed by looking up groups in a base branch and filtering based on the groups member
attribute.

An AuthServer can optionally perform:

group search in sub-branches.

nested group search, that is, find a hierarchy of groups, in which a group is a member of
another group.

The complete configuration is as follows:

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

# ...

spec:

  identityProviders:

    - name: ldap

      ldap:

        # ...

        roles:

          fromUpstream:

            attribute: description

            search:

              base: ou=Users,dc=example,dc=com

              filter: member={0}

              depth: 10

              searchSubTree: true

  # ...

Where:

search.base is the base for running an LDAP search for groups.

search.filter is the filter for running an LDAP search for groups. It must contain the string
{0}, which is replaced by the dn of the user when performing group search. For example,
member=cn=marie,ou=Users,dc=example,dc=org.

search.depth (optional) is the depth at which to perform nested group search. It defaults to
unset if left empty.

search.searchSubTree (optional) controls whether to look for groups in sub-trees of the
search.base. It defaults to unset if left empty.

Direct group search only

Given the following minimal configuration:

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

Tanzu Application Platform v1.5

VMware by Broadcom 891



kind: AuthServer

metadata:

# ...

spec:

  identityProviders:

    - name: ldap

      ldap:

        # ...

        user:

          searchBase: ou=Users,dc=example,dc=com

          searchFilter: uid={0}

        roles:

          fromUpstream:

            attribute: description

            search:

              base: ou=Users,dc=example,dc=com

              filter: member={0}

  # ...

The LDIF definition is as follows:

######################

## Users

######################

## User Marie Curie

## Marie Salomea Skłodowska Curie ; https://en.wikipedia.org/wiki/Marie_Curie

dn: cn=marie,ou=Users,dc=example,dc=org

cn: Marie

sn: Skłodowska Curie

objectClass: inetOrgPerson

objectClass: posixAccount

objectClass: shadowAccount

uid: marie

######################

## Groups

######################

dn: cn=nobels,ou=Users,dc=example,dc=org

objectClass: groupOfNames

description: Nobel Prizes

member: cn=marie,ou=Users,dc=example,dc=org

User marie has roles Nobel Prizes.

Groups in sub-trees

AppSSO can perform group search in sub-trees of the base for group search. This is enabled when
roles.fromUpstream.search.searchSubTree is explicitly set to true. For example:

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

# ...

spec:

  identityProviders:

    - name: ldap

      ldap:

        # ...

        roles:

          fromUpstream:

            attribute: description

            search:

              base: ou=Users,dc=example,dc=com

Tanzu Application Platform v1.5

VMware by Broadcom 892



              filter: member={0}

              searchSubTree: true

  # ...

The LDIF definition is as follows:

######################

## Users

######################

## User Corazon

## Maria Corazon Sumulong Cojuangco Aquino; https://en.wikipedia.org/wiki/Corazon_Aqui

no

dn: cn=corazon,ou=Users,dc=example,dc=com

cn: Maria Corazon

sn: Sumulong Cojuangco Aquino

objectClass: inetOrgPerson

objectClass: posixAccount

objectClass: shadowAccount

uid: corazon

######################

## Groups

######################

dn: cn=presidents,ou=Users,dc=example,dc=com

objectClass: groupOfNames

description: Presidents

member: cn=corazon,ou=Users,dc=example,dc=com

dn: cn=chief-commanders,ou=LegionHonor,ou=Users,dc=example,dc=com

objectClass: groupOfNames

description: Chief Commanders

member: cn=corazon,ou=Users,dc=example,dc=com

User corazon has roles Presidents and Chief Commanders, which are retrieved from
ou=LegionHonor,ou=Users,dc=example,dc=com, a subtree of the search base.

Nested group search

AppSSO can perform nested group search by going up a chain where a user is a member of a
group, which is itself a member of a group, and so on. This is enabled by setting
roles.fromUpstream.search.depth to greater than 1. roles.fromUpstream.search.depth controls
the number of “levels” that AppSSO fetches to get the groups of a user.

For example:

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

# ...

spec:

  identityProviders:

    - name: ldap

      ldap:

        # ...

        user:

          searchBase: ou=Users,dc=example,dc=com

          searchFilter: uid={0}

        roles:

          fromUpstream:

            attribute: description

            search:

              base: ou=Users,dc=example,dc=com

Tanzu Application Platform v1.5

VMware by Broadcom 893



              filter: member={0}

              depth: 2

  # ...

The LDIF definition is as follows:

######################

## Users

######################

## User Corazon

## Maria Corazon Sumulong Cojuangco Aquino; https://en.wikipedia.org/wiki/Corazon_Aqui

no

dn: cn=corazon,ou=Users,dc=example,dc=com

cn: Maria Corazon

sn: Sumulong Cojuangco Aquino

objectClass: inetOrgPerson

objectClass: posixAccount

objectClass: shadowAccount

uid: corazon

######################

## Groups

######################

# Citizen > Politicians > Presidents > corazon (depth = 3)

dn: cn=citizens,ou=Users,dc=example,dc=com

objectClass: groupOfNames

description: Citizens

member: cn=politicians,ou=Users,dc=example,dc=com

# Politicians > Presidents > corazon (depth = 2)

dn: cn=politicians,ou=Users,dc=example,dc=com

objectClass: groupOfNames

description: Politicians

member: cn=presidents,ou=Users,dc=example,dc=com

# Presidents > corazon (depth = 1, direct group)

dn: cn=presidents,ou=Users,dc=example,dc=com

objectClass: groupOfNames

description: Presidents

member: cn=corazon,ou=Users,dc=example,dc=com

User corazon has roles Presidents and Politicians. However, the search stops at depth 2, so they
do not have the role Citizens, which requires a depth greater or equal to 3.

SAML (experimental)

For SAML providers only autoconfiguration through metadataURI is supported.

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

# ...

spec:

  - name: my-saml-provider

    saml:

      metadataURI: https://saml.example.com/sso/saml/metadata # required

Caution

Support for SAML providers is experimental.

Tanzu Application Platform v1.5

VMware by Broadcom 894



      claimMappings: # optional

        # Map SAML attributes into claims in id_tokens issued by AppSSO. The key

        # on the left represents the claim, the value on the right the attribute.

        givenName: FirstName

        familyName: LastName

        emailAddress: email

SAML external groups mapping

Service operators may map the identity provider’s “groups” (or equivalent) attribute to the roles
claim within an AuthServer’s identity token.

Configure AuthServer with SAML role attribute:

spec:

  identityProviders:

    - name: "saml-idp"

      saml:

        roles:

          fromUpstream:

            attribute: "saml-group-attribute"

For every ClientRegistration that has the roles scope listed, the identity token will be populated
with the roles claim:

kind: ClientRegistration

metadata:

  name: my-client-registration

spec:

  scopes:

    - name: openid

    - name: roles

  # ...

When groups are mapped (as described above), all the groups provided by the identity provider are
retrieved, and the relevant groups that the logged-in user is part of are appended to the roles
claim of an id_token. To filter the available roles within an id_token, see Roles claim filtering
section.

Note for registering a client with the identity provider

The AuthServer will set up SSO and metadata URLs based on the provider name in the
configuration. For example, for a SAML provider with name: my-provider, the SSO URL will be
{spec.issuerURI}/login/saml2/sso/my-provider. The metadata URL will be
{spec.issuerURI}/saml2/service-provider-metadata/my-provider. spec.issuerURI is the
externally accessible issuer URI for an AuthServer, including scheme and port. If the AuthServer is
accessible on https://appsso.company.example.com:1234/, the SSO URL registered with the
identity provider should be https://appsso.company.example.com:1234/login/saml2/sso/my-
provider.

Internal users

Note

Read more about roles claim mapping and filtering here

Caution

Tanzu Application Platform v1.5

VMware by Broadcom 895



During development, static users can be useful for testing purposes. You can not configure more
than one internalUnsafe identity provider.

For example:

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  annotations:

    sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider: ""

  # ...

spec:

  identityProviders:

    - name: test-users

      internalUnsafe:

        users:

          - username: ernie

            password: "password" # plain text

            roles:

              - "silly"

          - username: bert

            password: "{bcrypt}$2a$10$201z9o/tHlocFsHFTo0plukh03ApBYe4dRiXcqeyRQH6CNNt

S8jWK" # bcrypt-hashed "password"

            roles:

              - "grumpy"

  # ...

InternalUnsafe needs to be explicitly allowed by setting the annotation
sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider: "".

The passwords can be plain text or bcrypt-hashed. When bcrypt-hashing passwords they have to
be prefixed with {bcrypt} . Learn how to bcrypt-hash string below.

Verify the configuration by visiting the AuthServer’s issuer URI in your browser and logging in as
ernie/password or bert/password.

Generating a bcrypt hash from a plain-text password

There are multiple options for generating bcrypt hashes:

1. Use an online bcrypt generator

2. On Unix platforms, use htpasswd. Note, you may need to install it, for example on Ubuntu
by running apt install apache2-utils

htpasswd -bnBC 12 "" your-password-here | tr -d ':\n'

Roles claim filtering

Once an external groups mapping has been applied (as described per identity provider above),
AppSSO is able to retrieve all the groups from an identity provider. An identity provider may have
hundreds of groups, and any particular user may be part of a large subset of those groups. When a

InternalUnsafe is unsafe and not recommended for production.

Note

This section is applicable to OpenID, LDAP, and SAML (experimental) identity
provider configurations.

Tanzu Application Platform v1.5

VMware by Broadcom 896

https://bcrypt-generator.com/


user logs in, those groups will be appended to their id_token’s roles claim. This section describes
how to filter the roles claim.

To filter groups, for a supported identity provider, apply:

spec:

  identityProviders:

    - name: my-provider

      <idp>:

        roles:

          filterBy:

            - exactMatch: ""

            - regex: ""

where <idp> may be openid, ldap, or saml.

Filters are disjunctive (“OR” operator), so each filter is applied to the entire set of groups, and
merged into a set of unique filtered groups values. See filter examples for more information.

Roles claim filters

Available filters are:

exactMatch - match the groups exactly. This filter is case-sensitive. e.g. exactMatch:
"developer" will match only the group named “developer” and no other.

regex - match groups according to the defined regular expression pattern. , and This filter is
case-insensitive. e.g. regex: ^admin will match groups starting with the word “admin”.

The regular expression pattern syntax used is RE2

Expressions should not be surrounded by forward slashes (/) and should only
contain the pattern (e.g. .*, ^dev, \w+).

Roles claim filter examples

Given an example set of groups retrieved from a hypothetical identity provider:

it-admin

it-developer

devops-user

devops-admin

devops-developer

product-user

product-developer

org-user

hr-user

hr-admin

Basic exact match filters

- exactMatch: "product-user"

- exactMatch: "org-user"

returns:

product-user

org-user

Basic regular expression (RegEx) filters

- regex: ".*-developer"

Tanzu Application Platform v1.5

VMware by Broadcom 897

https://golang.org/s/re2syntax


returns:

it-developer

devops-developer

product-developer

Multiple regular expression (RegEx) filters

- regex: ".*-developer"

- regex: "^it"    # starts with "it"

- regex: "admin$" # ends with "admin"

- regex: "\w+"    # at least one word or more

returns:

it-admin

it-developer

devops-admin

devops-developer

product-developer

hr-admin

Exact match and regular expression (RegEx) filters

- exact-match: "hr-admin"

- exact-match: "org-user"

- regex: "developer$"    # ends with "developer"

returns:

it-developer

devops-developer

product-developer

org-user

hr-admin

Roles claim mapping and filtering explained
When issuing an id_token, OpenID providers may include a (non-standard) claim describing the
“groups” the user belongs to, the “roles” of the user, or something similar. This claim is identity
provider specific. For example, Azure AD uses the “group” claim by default, and allows
administrators to select the name of the claim.

Service Operators may choose to make these “groups”, “roles”, or equivalent, available in the
id_token issued by an AppSSO AuthServer, in the roles claim, with filtering rules applied.

Note

filters are disjunctive and so multiple filters can filter down the same values, but the
resulting set will always have unique values.

Tanzu Application Platform v1.5

VMware by Broadcom 898



Restrictions

Each identity provider has a declared name. The following conditions apply:

the names must be unique

the names must not be blank

the names must follow Kubernetes’ DNS Subdomain Names guidelines

contain no more than 253 characters

contain only lowercase alphanumeric characters, ‘-’ or ‘.’

start with an alphanumeric character

end with an alphanumeric character

the names may not start with client or unknown

There can be at most one of each internalUnsafe and ldap.

Configure authorization for AppSSO

This topic tells you how to configure authorization for Application Single Sign-On (commonly called
AppSSO).

Overview

An application or Workload can protect certain resources based on user’s level of authorization.
Within OAuth 2, the application with protected resources, the Resource Server, verifies if the
access token provided contains the scopes to perform an action on a protected resource.

The following excerpt is from a Spring Boot application, OAuth2 Resource Server, protecting its
message API endpoints /message/**:

Note

This topic is applicable to Internal, OpenID, LDAP, and SAML (experimental) identity
provider AuthServer configurations. For more information, see AuthServer.

Tanzu Application Platform v1.5

VMware by Broadcom 899

https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#dns-subdomain-names


http.authorizeExchange(exchanges -> exchanges

.pathMatchers("/message/**").hasAuthority("SCOPE_message.rea

d")

.anyExchange().authenticated()

        )

The access token to access any endpoint under /message/ path must have message.read scope
within its access token.

For full example, see Spring Security documentation.

The following sections describe how to configure the mapping of user roles to authorization scopes
at AuthServer identity provider and ClientRegistration levels.

Retrieving external groups or roles

To configure authorization for an identity provider, you must define from which claim or attribute
the upstream identity provider supplies the groups or roles that a user is part of:

OpenID external groups mapping

LDAP external groups mapping

SAML (experimental) external groups mapping

After external groups mapping is complete, and groups or roles are retrievable, you can optionally
filter the roles that are appended to an identity token. For more information about how to filter
roles, see Roles claim filtering.

Mapping individual roles into authorization scopes

After external groups or roles are mapped to AppSSO’s roles claim, and optionally filtered for the
desired set of retrieved roles, you can map each role to the desired authorization scopes.

For example, given a retrieved role “hr”, any client authorizing by using my-openid-provider can
request scopes hr.read or hr.write, provided that the client registered the scopes in
ClientRegistration.spec.scopes:

kind: AuthServer

# ...

spec:

  identityProviders:

    - name: my-openid-provider

      openid:

        accessToken:

          scope:

            rolesToScopes:

              - fromRole: "hr" # -> Role "hr" is mapped to the "hr.read" and "hr.writ

e" scopes.

                toScopes:      #    Only users with the "hr" role can be issued access 

token with these scopes.

                  - "hr.read"  # ^^

                  - "hr.write" # ^^

For example, given that a ClientRegistration is applied to include hr.read or hr.write:

Important

Skip this section if you work with an internal unsafe provider. External groups
mapping is not required because roles are defined in the specifications.

Tanzu Application Platform v1.5

VMware by Broadcom 900

https://docs.spring.io/spring-security/reference/servlet/oauth2/resource-server/jwt.html#oauth2resourceserver-jwt-sansboot


kind: ClientRegistration

# ...

spec:

    scopes:

    - name: "roles" # Must request special 'roles' scope.

    - name: "hr.read"

    - name: "hr.write"

Any client can request an access token with the scopes, but an access token can be issued with
those scopes only if the user that is being authorized has the role hr in the upstream identity
provider.

If the user has the role hr, he or she must consent to allow the application to request the scopes.
After the consent is provided, the user can access resources limited to the hr.read and hr.write
scopes within the application by using their access token.

Default authorization scopes

You can define authorization scopes that are automatically granted to all users within an identity
provider, regardless of user role.

For example, given an AuthServer with an OpenID provider, with defined authorization scope
defaults:

kind: AuthServer

# ...

spec:

    identityProviders:

    - name: my-openid-provider

      openid:

        accessToken:

            scope:

                defaults:

                - "developer.read"

                - "developer.write"

                - "developer.delete"

For example, given that a ClientRegistration is applied to include any of the default scopes:

kind: ClientRegistration

# ...

spec:

    scopes:

    - name: "roles" # Must request special 'roles' scope.

    - name: "developer.read"

When an application or Workload is registered by using the ClientRegistration, that application, on
behalf of the user, can request and be granted with the scope developer.read automatically within
the issued access token. The user must consent to allow the application to request the scope. After
the consent is provided, the user can access resources limited to the developer.read scope within
the application by using their access token.

The following is a full sample of authorization configurations and the accompanying
ClientRegistration configurations to allow clients to request the scopes:

kind: AuthServer

# ...

spec:

  identityProviders:

    - name: my-openid-provider

      openid:

Tanzu Application Platform v1.5

VMware by Broadcom 901



        roles:

          fromUpstream:

            claim: "groups"            # -> Map the upstream identity provider's exter

nal groups or roles claim.

          filterBy:                    # -> Optionally filter the groups or roles retr

ieved from identity provider.

            - exactMatch: "finance"    # ^^

            - exactMatch: "hr"         # ^^

            - exactMatch: "marketing"  # ^^

        accessToken:

          scope:

            defaults:                  # -> Optional default scopes granted to any use

r within the identity provider.

              - "developer.read"       # ^^

              - "developer.write"      # ^^

              - "developer.delete"     # ^^

            rolesToScopes:

            - fromRole: "hr"           # -> Role "hr" is mapped to "hr.read", "hr.writ

e" scopes.

              toScopes:                #    Only users with "hr" role can be issued ac

cess token with these scopes.

                - "hr.read"            # ^^

                - "hr.write"           # ^^

            - fromRole: "finance"      # -> Role "finance" is mapped to "finance" scop

e.

              toScopes:                #    Only users with "finance" role can be issu

ed an access token with this scope.

                - "finance"            # ^^

            - fromRole: "marketing"    # -> Role "marketing" is mapped to "marketing-r

eader", "marketing-writer" scopes.

              toScopes:                #    Only users with "marketing" role can be is

sued an access token with these scopes.

                - "marketing-reader"   # ^^

                - "marketing-writer"   # ^^

kind: ClientRegistration

# ...

spec:

  scopes:

    - name: "roles" # Must request special 'roles' scope.

    - name: "developer.read"

    - name: "developer.write"

    - name: "developer.delete"

    - name: "hr.read"

    - name: "hr.write"

    - name: "finance"

    - name: "marketing-reader"

    - name: "marketing-writer"

Public clients and CORS for AppSSO

This topic tells you how to configure Application Single Sign-On (commonly called AppSSO) to use
public clients.

Overview

A public client is a client application that does not require credentials to obtain tokens, such as
single-page apps (SPAs) or mobile devices. Public clients rely on Proof Key for Code Exchange
(PKCE) Authorization Code flow extension.

Follow these steps to configure an AuthServer and ClientRegistrations for use with public clients:

1. Specify allowed HTTP origin (one or more) by using the AuthServer.spec.cors API.

Tanzu Application Platform v1.5

VMware by Broadcom 902



The authorization server relaxes the same-origin policy for the specified domain (one or
more), enabling browser-based, single-page applications to interact with the designated
authorization server. For more information, see CORS configuration.

2. Set clientAuthenticationMethod to none within ClientRegistration resource.

Native applications and browser-based applications are considered public clients and must
not rely on client credentials. Instead, PKCE must be used. Setting
clientAuthenticationMethod: none ensures client credentials are not used, and makes
PKCE mandatory for those clients. For more information, see Client authentication.

CORS configuration

A browser-based public client can interact with an AuthServer if the AuthServer has the public
clients’ origin (one or more) specified in AuthServer.spec.cors.

VMware recommends designating specific origins as follows:

kind: AuthServer

# ...

spec:

  cors:

    allowOrigins:

    - "https://example.com"        # Specific domain.

    - "https://mydept.example.com" # Specific subdomain.

    - "https://*.example.com"      # Subdomain wildcard notation.

    - "https://*.apps.example.com" # Subdomain wildcard notation.

You can also designate that all origins are allowed as follows:

kind: AuthServer

metadata:

  annotations:

    sso.apps.tanzu.vmware.com/allow-unsafe-cors: ""

spec:

  cors:

    allowAllOrigins: true

You must use the allow-unsafe-cors annotation when allowing all origin allowance. The
AuthServer sends the Access-Control-Allow-Origin: * HTTP response header.

Requirements for allowed origin designations include:

Only allowOrigins or allowAllOrigins is allowed to be set.

When using allowAllOrigins, you must explicitly set the annotation
sso.apps.tanzu.vmware.com/allow-unsafe-cors: "". This is an acknowledgement that
using allowAllOrigins is inherently unsafe.

Client authentication
When configuring a ClientRegistration for a public client, you must set your client authentication
method to none and ensure that your public client supports Authorization Code with PKCE. With
PKCE, the client does not authenticate, but presents a code challenge and subsequent code
verifier to establish trust with the authorization server.

Caution

Do not allow all origins in production environments.

Tanzu Application Platform v1.5

VMware by Broadcom 903



To set Client Authentication Method to none, ensure your ClientRegistration resource defines the
following:

kind: ClientRegistration

# ...

spec:

  clientAuthenticationMethod: none

Public clients supporting Authorization Code with PKCE flow ensure that:

On every OAuth authorize request, parameters code_challenge and
code_challenge_method are provided. Only code_challenge_method=S256 is supported.

On every OAuth token request, parameter code_verifier is provided. Public clients do not
provide a Client Secret because they are not tailored to retain any secrets in public view.

For public clients, the AuthServer only supports the Authorization Code Flow: response_type=code,
because public clients such as single page apps cannot safely store sensitive information such as
client secrets.

References

Proof Key for Code Exchange (PKCE) specification.

PKCE code challenge/verifier example.

Client types - OAuth 2.1 Draft 7 specification.

Token settings for Application Single Sign-On

This topic tells you how to configure token expiry settings for Application Single Sign-On
(commonly called AppSSO).

Token expiry

AppSSO allows you to optionally configure the token expiry settings in your AuthServer resource.

The default token expiry settings are as follows:

Token type Lifetime

Access token 12 hours

Identity token 12 hours

Refresh token 720 hours or 30 days

VMware recommends setting a shorter lifetime for access tokens, typically measured in hours, and
a longer lifetime for refresh tokens, typically measured in days. Refresh tokens acquire new access
tokens, so they have a longer lifespan.

To override the token expiry settings, configure the following in your AuthServer resource:

kind: AuthServer

# ...

spec:

  token:

    accessToken:

      expiry: "12h"

    idToken:

      expiry: "12h"

Tanzu Application Platform v1.5

VMware by Broadcom 904

https://www.rfc-editor.org/rfc/rfc7636.html
https://www.ietf.org/rfc/rfc7636.html#appendix-B
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-1-07#section-2.1


    refreshToken:

      expiry: "720h"

expiry field examples:

Type Example Definition

Seconds 10s 10 seconds

Minutes 10m 10 minutes

Hours 10h 10 hours

Constraints

The token expiry constraints are as follows:

The duration of the expiry field cannot be negative or zero.

The refresh token’s expiration time cannot be the same as or shorter than that of the
access token.

Verify token settings
After you set up an Application Single Sign-On AuthServer, you can verify that the token received
by applications looks as expected. For this purpose, you can create a simple application consuming
your AuthServer. The following YAML file creates such an application. When you access its URL, it
enables you to log in by using your AuthServer and displays the token it receives.

If you stored the following YAML in a file named token-viewer.yaml, you can apply it to your
cluster by running the following command:

  ytt -f token-viewer.yaml --data-value ingress_domain=YOUR-INGRESS-DOMAIN --data-valu

e-yaml 'authserver_selector=YOUR-AUTHSERVER-SELECTOR' | kubectl apply -f-

Where YOUR-AUTHSERVER-SELECTOR is the label name and its value. For example: {"name": "ci"}.

A full example is as follows:

#!

#! Token viewer

#!

#! usage:

Note

The expiry field adheres to the duration constraints of the Go standard time library
and does not support durations in units beyond hours, such as days or weeks. For
more information, see the Go documentation.

Caution

The simple application is not intended for production use. It only serves a
tool to help you verify your setup.

The following YAML file pulls an unvetted public image bitnami/oauth2-
proxy:7.3.0

This section does not apply to an air-gapped environment.

Tanzu Application Platform v1.5

VMware by Broadcom 905

https://pkg.go.dev/time#Duration


#!

#! ytt -f token-viewer.yaml --data-value ingress_domain=example.com --data-value-yaml 

'authserver_selector={"name": "ci"}'

#!

#! Then navigate to http://token-viewer.<INGRESS_DOMAIN>

#!

#@ load("@ytt:data", "data")

#@ fqdn = "token-viewer." + data.values.ingress_domain

#@ redirect_uri = "http://" + fqdn + "/oauth2/callback"

#@ namespace = data.values.namespace if "namespace" in data.values else "default"

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: ClientRegistration

metadata:

  name: my-client-registration

  namespace: #@ namespace

spec:

  authServerSelector:

    matchLabels: #@ data.values.authserver_selector

  redirectURIs:

    - #@ redirect_uri

  requireUserConsent: false

  clientAuthenticationMethod: client_secret_basic

  authorizationGrantTypes:

    - "authorization_code"

  scopes:

    - name: "openid"

    - name: "email"

    - name: "profile"

    - name: "roles"

---

apiVersion: apps/v1

kind: Deployment

metadata:

  name: token-viewer

  namespace: #@ namespace

spec:

  replicas: 1

  selector:

    matchLabels:

      name: token-viewer

  template:

    metadata:

      labels:

        name: token-viewer

    spec:

      securityContext:

        runAsNonRoot: true

        seccompProfile:

          type: RuntimeDefault

      containers:

        - image: bitnami/oauth2-proxy:7.3.0

          name: proxy

          securityContext:

            runAsNonRoot: true

            seccompProfile:

              type: RuntimeDefault

            allowPrivilegeEscalation: false

            capabilities:

              drop:

                - ALL

          ports:

            - containerPort: 4180

Tanzu Application Platform v1.5

VMware by Broadcom 906



              name: proxy-port

              protocol: TCP

          env:

            - name: ISSUER_URI

              valueFrom:

                secretKeyRef:

                  name: my-client-registration

                  key: issuer-uri

            - name: CLIENT_ID

              valueFrom:

                secretKeyRef:

                  name: my-client-registration

                  key: client-id

            - name: CLIENT_SECRET

              valueFrom:

                secretKeyRef:

                  name: my-client-registration

                  key: client-secret

          command: [ "oauth2-proxy" ]

          args:

            - --oidc-issuer-url=$(ISSUER_URI)

            - --client-id=$(CLIENT_ID)

            - --insecure-oidc-skip-issuer-verification=true

            - --client-secret=$(CLIENT_SECRET)

            - --cookie-secret=0000000000000000

            - --cookie-secure=false

            - --http-address=http://:4180

            - --provider=oidc

            - --scope=openid email profile roles

            - --email-domain=*

            - --insecure-oidc-allow-unverified-email=true

            - --oidc-groups-claim=roles

            - --upstream=http://127.0.0.1:8000

            - #@ "--redirect-url=" + redirect_uri

            - --ssl-upstream-insecure-skip-verify=true

            - --ssl-insecure-skip-verify=true

            - --skip-provider-button=true

            - --pass-authorization-header=true

            - --prefer-email-to-user=true

        - image: python:3.9

          name: application

          securityContext:

            runAsNonRoot: true

            runAsUser: 1001

            seccompProfile:

              type: RuntimeDefault

            allowPrivilegeEscalation: false

            capabilities:

              drop:

                - ALL

          resources:

            limits:

              cpu: 100m

              memory: 100Mi

          command: [ "python" ]

          args:

            - -c

            - |

              from http.server import HTTPServer, BaseHTTPRequestHandler

              import base64

              import json

              class Handler(BaseHTTPRequestHandler):

                  def do_GET(self):

                      if self.path == "/token":

                          self.token()

Tanzu Application Platform v1.5

VMware by Broadcom 907



                      elif self.path == "/jwt":

                          self.jwt()

                      else:

                          self.greet()

                  def greet(self):

                      username = self.headers.get("x-forwarded-user")

                      self.send_response(200)

                      self.send_header("Content-type", "text/html")

                      self.end_headers()

                      page = f"""

                      <h1>It Works!</h1>

                      <p>You are logged in as <b>{username}</b></p>

                      <p><a href="/jwt">Show me my id_token (JWT format)</a></p>

                      <p><a href="/token">Show me my id_token (JSON format)</a></p>

                      """

                      self.wfile.write(page.encode("utf-8"))

                  def token(self):

                      token = self.headers.get("Authorization").split("Bearer ")[-1]

                      payload = token.split(".")[1].replace("-","+").replace("_","/")

                      decoded = base64.b64decode(bytes(payload, "utf-8") + b'==').deco

de("utf-8")

                      self.send_response(200)

                      self.send_header("Content-type", "application/json")

                      self.end_headers()

                      self.wfile.write(decoded.encode("utf-8"))

                  def jwt(self):

                      token = self.headers.get("Authorization").split("Bearer ")[-1]

                      self.send_response(200)

                      self.send_header("Content-type", "text/plain")

                      self.end_headers()

                      self.wfile.write(token.encode("utf-8"))

              server_address = ('', 8000)

              httpd = HTTPServer(server_address, Handler)

              httpd.serve_forever()

---

apiVersion: v1

kind: Service

metadata:

  name: token-viewer

  namespace: #@ namespace

spec:

  ports:

    - port: 80

      targetPort: proxy-port

      name: proxy-svc-port

  selector:

    name: token-viewer

---

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

  name: token-viewer

  namespace: #@ namespace

spec:

  rules:

    - host: #@ fqdn

      http:

        paths:

          - path: "/"

            pathType: Prefix

Tanzu Application Platform v1.5

VMware by Broadcom 908



            backend:

              service:

                name: token-viewer

                port:

                  name: proxy-svc-port

Token signatures for AppSSO

This topic tells you how to configure token signatures keys for Application Single Sign-On
(commonly called AppSSO).

Overview

An AuthServer must have token signature keys configured to be able to mint tokens.

Learn about token signatures and how to manage keys of an AuthServer:

Token signature 101

Token signature in AppSSO

Creating keys

Rotating keys

Revoking keys

“Token signature key” or just “key” is AppSSO’s wording for a public/private key pair that is tasked
with signing and verifying JSON Web Tokens (JWTs). For more information, please refer to the
following resources:

JSON Web Signature (JWS) spec

JSON Web Algorithms (JWA) spec

JSON Web Token (JWT) spec

Token signature 101

Token signature keys are used by an AuthServer to sign JSON Web Tokens (JWTs), produce a JWS
Signature and attach it to the JOSE Header of a JWT. The client application can then verify the
JWT signature.

A private key signs a JWT. A public key verifies the signature of a signed JWT.

The sign-and-verify mechanism serves multiple security purposes:

Authenticity: signature verification ensures that the issuer of the JWT is from a source that
is advertised.

Integrity: signature verification ensures that the JWT has not been altered in transit or
during its issued lifetime. Integrity is a foundational pillar of the CIA triad concept in
Information Security.

Non-repudiation: signature verification ensures that the authorization server that signed
the JWT cannot deny that they have signed it after its issuance (granted that the signing
key that signed the JWT is available).

AppSSO only supports the RS256 algorithm for signing tokens. For more information, see JSON
Web Algorithms (JWA) documentation.

Token signature of an AuthServer

Tanzu Application Platform v1.5

VMware by Broadcom 909

https://www.rfc-editor.org/rfc/rfc7515
https://www.rfc-editor.org/rfc/rfc7518
https://www.rfc-editor.org/rfc/rfc7519
https://www.rfc-editor.org/rfc/rfc7515
https://www.rfc-editor.org/rfc/rfc7515#section-4
https://www.nccoe.nist.gov/publication/1800-25/VolA/index.html
https://www.rfc-editor.org/rfc/rfc7518#section-3


You must configure token signatures for AuthServer. An AuthServer receives its keys under
spec.tokenSignature. For example:

spec:

  tokenSignature:

    signAndVerifyKeyRef:

      name: sample-token-signing-key

    extraVerifyKeyRefs:

      - name: sample-token-verification-key-1

      - name: sample-token-verification-key-2

There can only be one token signing key spec.tokenSignature.signAngVerifyKeyRef at any given
time, and arbitrarily many token verification keys spec.tokenSignature.extraVerifyKeyRefs. The
token signing key is used to sign and verify actively issued JWTs in circulation, whereas token
verification keys are used to verify issued JWTs signatures. Token verification keys are thought to
be previous token signing keys but have been rotated into verify only mode as a rotation
mechanism measure, and can potentially be slated for eviction at a predetermined time.

The AuthServer serves its public keys at {spec.issuerURI}/oauth2/jwks. For example:

❯ curl -s authserver-sample.default/oauth2/jwks | jq

{

  "keys": [

    {

      "kty": "RSA",

      "e": "AQAB",

      "kid": "sample-token-signing-key",

      "n": "0iCinir7sWKZE_3QXq4eTub_GU-lvdAKFI9dzDlwX7XZwwSERuzzQQ_Fs7i9djMl5bpv2ma_3Z

B-j2W9pR9ZIa3nqBI29AHqx2zmVQ8w-GxPDGRMkBdMOWNwyDQGIRlQnJFpXRoSQ5_viM9gYA56WthkDghrupGU

iB_zqGFYlgnz7sd4lC-thgEkDi9vY68DLIFdsXOQIXFqakyEIo43n_0vg6JRGQW1LU_32Ok6OgA3r6bYcE8VQh

JW3sE1qOSFcP0JrPA3YgmTNuDV6GoCLZeMxDdMDKdDcH5UgERLQe1qMMKwlMCeKamOWgo9eBvcFnWNR0I_MJV6

F14U1WbIcQ"

    },

    {

      "kty": "RSA",

      "e": "AQAB",

      "kid": "sample-token-verification-key-1",

      "n": "wc7uOACU62Yu_zKT9YrI4v-_X3L47nbVlcByi4UTVhg8o001OkiYAPAEoDCEHnDg_54gTWxe3h

DRcOJrd72PkTAaxH8aFdikoyakRVG9NvAPbcfzvI8R8plepUbs1U7TPPDEDARm_fZX6QdVyz0CTSafrz-yktTA

DxJhYPgvFLeHq7g7RouB1szTWDCM1haoxKa4960_x9meghNn87z0uF3cAd7TM_k3capYnxNOUT5g1vjJ05Vk14

JUl4R294OpMXPCGcFuvu9auXeBqXyKxxTAnLkDdNrgtT0FJHwnh4RGnrNqjYZOwlRvGbzwQ7du97aU2-qgbKkJ

rWYZWcw2bQ"

    },

    {

      "kty": "RSA",

      "e": "AQAB",

      "kid": "sample-token-verification-key-2",

      "n": "qELrLiaD-IVp_nthVn2EsLuShtU9ovyVIPkLVf47AqKogPV2frE_6Sv8k7Zim-SgDXfjLEg-UG

lQrb4KFm_WkaK2Uf6PCapiBnMi1Q5P8qC0WC5LT6XyPY1exCQbMrEsyd89oS0sKxgoc3Qv0XV24jGYiWQyJ7I0

Rub_QEldGM_dSlfbI-1Qt_U6Ll22OEc1D6P1A3MdDrgbur6N7ZemxlKI26-OAdlbNi0u-lFNj3Ss-pfTVi_fD2

hAajRRmc4tmHejQjH36M4F1NSW_gTbb6VX5EerVuDwSCCK0EuGvhcb1hg6kYEoO-qws54AQ0PywBXT5qksCMBm

mzjP6qO4Ow"

    }

  ]

}

Caution Changes to spec.tokenSignature.signAngVerifyKeyRef have immediate effects.

As a service operator, you have control over which keys are used for certain purposes. Navigate to
the next few sections for more information.

Creating keys

Tanzu Application Platform v1.5

VMware by Broadcom 910



You can deploy an AuthServer without spec.tokenSignature but it won’t be able to mint tokens.
Therefore, keys must be configured to make it fully operational. The following describe how to
create and apply a keys for an AuthServer.

An RSA key can be created multiple ways. Below are two recommended approaches – choose
one.

Using secretgen-controller

An RSAKey CR allows for expedited creation of a Secret resource containing PEM-encoded public
and private keys required by an AuthServer.

1. Create an AuthServer with RSAKeys as follows:

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

 name: authserver-sample

 namespace: default

spec:

 tokenSignature:

   signAndVerifyKeyRef:

     name: my-token-signing-key

   extraVerifyKeyRefs:

     - name: my-token-verification-key

 # ...

---

apiVersion: secretgen.k14s.io/v1alpha1

kind: RSAKey

metadata:

 name: my-token-signing-key

 namespace: default

spec:

 secretTemplate:

   type: Opaque

   stringData:

     key.pem: $(privateKey)

     pub.pem: $(publicKey)

---

apiVersion: secretgen.k14s.io/v1alpha1

kind: RSAKey

metadata:

 name: my-token-verification-key

 namespace: default

spec:

 secretTemplate:

   type: Opaque

   stringData:

     key.pem: $(privateKey)

     pub.pem: $(publicKey)

2. Observe the creation of an underlying Secrets. The name of the each Secret is the same as
the RSAKey names:

# Verify Secret exists

kubectl get secret my-token-signing-key

Important

This section assumes you have Tanzu Application Platform running on your cluster
with secretgen-controller installed.

Tanzu Application Platform v1.5

VMware by Broadcom 911

https://github.com/vmware-tanzu/carvel-secretgen-controller/blob/develop/docs/rsa_key.md


# View the base64-encoded keys 

kubectl get secret my-token-signing-key -o jsonpath='{.data}'

You should be able to see two fields within the Secret resource: key.pem (private key) and
pub.pem (public key).

3. Verify that the AuthServer serves its keys

curl -s authserver-sample.default/oauth2/jwks | jq

If you encounter any issues with this approach, see Carvel Secretgen Controller documentation.

Using OpenSSL

You can generate an RSA key yourself using OpenSSL. Here are the steps:

1. Generate a PEM-encoded RSA key pair

This guide references the freely published OpenSSL Cookbook and the approaches
mentioned therein around generating a public and private key pair.

# Generate an 4096-bit RSA key

openssl genpkey -out privatekey.pem -algorithm RSA -pkeyopt rsa_keygen_bits:409

6

# -> privatekey.pem

# The resulting private key output is in the PKCS#8 format

# Next, extract the public key

openssl pkey -in privatekey.pem -pubout -out publickey.pem

# -> publickey.pem

# The resulting public key output is in the PKCS#8 format

# To view details of the private key

openssl pkey -in privatekey.pem -text -noout

For OpenSSL key generation examples, see the OpenSSL documentation.

2. Create a secret resource by using the key generated earlier in this procedure:

kubectl create secret generic my-key \

--from-file=key.pem=privatekey.pem \

--from-file=pub.pem=publickey.pem \

--namespace default

3. Apply your AuthServer:

  apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

  kind: AuthServer

  metadata:

    name: authserver-sample

    namespace: default

  spec:

    tokenSignature:

      signAndVerifyKeyRef:

        name: my-key

    # ...

Important

The minimum key size for an Authserver is 2048.

Tanzu Application Platform v1.5

VMware by Broadcom 912

https://github.com/vmware-tanzu/carvel-secretgen-controller
https://www.feistyduck.com/library/openssl-cookbook/online/ch-openssl.html#openssl-key-generation
https://www.openssl.org/docs/man1.1.1/man1/openssl-genpkey.html


4. Verify that the AuthServer serves its keys

curl -s authserver-sample.default/oauth2/jwks | jq

Rotating keys

This section describes how to “rotate” token signature keys for an AuthServer.

The action of “rotating” means moving the active token signing key into the set of token
verification keys, generating a new cryptographic key, and assigning it to be the designated token
signing key.

Assuming that you have an AuthServer with token signature keys configured, rotate keys as
follows:

1. Generate a new token signing key first. See creating keys. Verify that the new Secret exists
before proceeding to the next step.

2. Edit AuthServer.spec.tokenSignature, append the existing
spec.tokenSignature.signAndVerifyKeyRef to spec.tokenSignature.extraVerifyKeys and
set your new key as spec.tokenSignature.signAndVerifyKeyRef.

For example:

# Before

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

 name: authserver-sample

 namespace: default

spec:

 tokenSignature:

   signAndVerifyKeyRef:

     name: old-key

   extraVerifyKeys: []

 # ...

# After

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

 name: authserver-sample

 namespace: default

spec:

 tokenSignature:

   signAndVerifyKeyRef:

     name: new-key

   extraVerifyKeys:

     - name: old-key

 # ...

Once you apply your changes, key rotation is effective immediately.

Moving the active token signing key to be a token verification key is an optional step – check out
the Revoking keys section for more.

Revoking keys

This section describes how to “revoke” token signature keys for an AuthServer.

Tanzu Application Platform v1.5

VMware by Broadcom 913



The action of “revoking” a key means to entirely remove the key from circulation by an AuthServer,
whether it be a token signing key or a token verification key. This action might be needed if your
organization requires a complete key refresh where older keys are never retained. Another
scenario might be in the case of an emergency in which a key or a session has been compromised
and a complete revocation is warranted.

To revoke an existing key or keys, you may remove any references to the keys in the
spec.tokenSignature resource. By removing the reference to the key, the system shall no longer
acknowledge that the key is used for signing or verifying JWTs.

For example, if you have a token signing key and a few verification keys:

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  name: authserver-sample

  namespace: default

spec:

  tokenSignature:

    signAndVerifyKeyRef:

      name: key-3

    extraVerifyKeys:

      - name: key-2

      - name: key-1

  # ...

To revoke an existing verification key, remove it from the extraVerifyKeys list. In the example
above, you can remove “key-2” and “key-1” from the list; JWTs signed with those keys will no
longer be verifiable.

To revoke an existing token signing key, remove it from signAndVerifyKeyRef field. However, if you
remove an existing token signing key without a replacement key, the AuthServer will not be able to
issue access tokens until a valid token signing key is provided. In the example above, “key-3” would
be removed; the system will not be able to sign or verify JWTs.

References and further reading

JSON Web Signature (JWS) - rfc7515 (ietf.org)

JSON Web Algorithms (JWA) spec

JSON Web Token (JWT) - rfc7519 (ietf.org)

Storage for AppSSO

This topic tells you how to configure the storage for Application Single Sign-On (commonly called
AppSSO).

Overview

AppSSOs AuthServer handles data pertaining to user’s session, identity, access tokens and
approved or rejected consents. For production environments, it is critical to provide your own
storage source to enable enterprise functions such as data backup and recovery, auditing and long-
term persistence according to your organization’s data and security policies.

AppSSO currently only supports Redis v6.0 or above as a storage solution. v6.0 introduced TLS
support to ensure encrypted client-server communication - AppSSO enforces TLS by default.

Storage provided by default refers to an AuthServer resource where .spec.storage is not set.

Tanzu Application Platform v1.5

VMware by Broadcom 914

https://www.rfc-editor.org/rfc/rfc7515
https://www.rfc-editor.org/rfc/rfc7518
https://www.rfc-editor.org/rfc/rfc7519


Although data in motion is encrypted by using TLS, data at rest is not encrypted by default through
AuthServer. Each storage provider is responsible for encrypting their own data. See data types for
more information about storage.

Securing Data at rest

To be compliant with HIPAA, FISMA, PCI and GDPR, you must encrypt data at rest. Securing the
underlying infrastructure that Redis uses is crucial to protect against a potential attack. The National
Institute for Standards and Technology – Federal Information Processing Standards (NIST-FIPS)
sets the standard for best practice when it comes to data security in the US. Symmetric
cryptography can be used to protect data at rest. This means that the same key encrypts and
decrypts the data, so there is no need for a different private and public key. The Advanced
Encryption Standard (AES) encryption algorithm is an industry standard for securing data at rest.
For the highest level security, VMware recommends using a 256-bit key.

Configuring Redis

To configure Redis as authorization server storage, you must have the following information of your
Redis server:

Server CA certificate (optional): the Certificate Authority (CA) certificate to verify Redis
TLS connections. It is not required if Redis Server certificate is signed by a public CA.

host (required): the domain name, IP address, or host name of your Redis server.

port (optional): the port number of your Redis server. It default to 6379 and must be a
string.

username (optional): the username to authenticate against your Redis server.

password (optional): the password to authenticate against your Redis server.

AppSSO takes the secure-by-default approach and does not establish non-encrypted
communication channels. The AuthServer resource enters an error state if a non-encrypted
connection is attempted.

mTLS is not supported, however Vanilla Redis uses mTLS by default. It can be turned off by setting
tls-auth-clients no. For more information, see Redis documentation.

The following steps introduce the path to configuring Redis with AppSSO:

1. Configuring Redis Server CA certificate

2. Configuring a Redis Secret

3. Attaching storage to an AuthServer

Configuring Redis Server CA certificate

If your Redis includes a custom or non-public Server CA certificate, you must instruct AppSSO to
trust the CA certificate. This is required for the authorization server to communicate with your
Redis over TLS. See CA certificates for more information about configuring a CA certificate with
AppSSO.

Configuring a Redis Secret

To provide coordinates (the location details) of your Redis server, you must create a Secret
resource that follows well-known Secret entries conventions. For more information, see Service
Bindings 1.0.0 specification.

Example of a properly formatted Secret resource:

Tanzu Application Platform v1.5

VMware by Broadcom 915

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://redis.io/docs/management/security/encryption/#client-certificate-authentication
https://github.com/servicebinding/spec#well-known-secret-entries


apiVersion: v1

kind: Secret

metadata:

  name: redis-credentials

  namespace: my-authserver

type: servicebinding.io/redis        # optional, must equal 'servicebinding.io/redis' 

if defined

stringData:

  type: "redis"                      # required, must equal 'redis'

  ssl: "true"                        # required, must equal 'true'

  host: "redis01.prod.example.com"   # required

  port: "6379"                       # optional, must be a string, defaults to "6379" 

if left empty

  password: "!!veryStrongPassword!!" # optional

  username: "redis01-user"           # optional

Attaching storage to an AuthServer

After a Redis Secret resource is applied, you can reference the Secret in .spec.storage. An
example of an AuthServer with a reference to a Redis Secret is as follows:

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  name: my-authserver-example

  namespace: my-authserver

spec:

  # ...

  storage:

    redis:

      serviceRef:

        apiVersion: "v1"

        kind: "Secret"

        name: redis-credentials

After AuthServer is applied, ensure its Status is Ready.

Inspecting storage of an AuthServer

You can inspect the status of an AuthServer’s storage as follows:

kubectl get authserver <authserver-name> \

  --namespace <authserver-namespace> \

  --output jsonpath="{.status.storage.redis}" | jq

Expect to see the following output with the actual Redis host and port:

{

  "redis": {

    "host": "ci-redis.authservers.svc.cluster.local",

    "port": "6379"

  }

}

Storage provided by default

Important

The Secret must be created in the same namespace as your AuthServer.

Tanzu Application Platform v1.5

VMware by Broadcom 916



If no storage is defined, an AuthServer provides its own short-lived ephemeral storage solution,
Redis. The provided Redis is configured to never flush any data to any volume that might be
attached to the pods that operate the authorization server.

To view details for Redis of an AuthServer:

# Get the Redis image

kubectl get authserver <authserver-name> \

  --namespace <authserver-namespace> \

  --output jsonpath="{.status.deployments.redis}" | jq

# Get the Redis host and port

kubectl get authserver <authserver-name> \

  --namespace <authserver-namespace> \

  --output jsonpath="{.status.storage.redis}" | jq

Data types

The following data is stored in Redis:

Client information

Authorization grant type

Client id

User session

Session token

Refresh token

Identity and access tokens

Authentication token including the principal

Personally identifying information such as email and name

Approved or rejected consents

A client identifier

A reference to the user

A list of the Authorities that the user has granted to this client

Known limitations of storage providers

Redis Cluster

When your storage is provided by Redis Cluster, additional settings might be required.

Caution

The default storage configuration is desisged for prototyping or testing
environments and must not be used in production environments.

Note

This is the data that carries the highest level risk.

Tanzu Application Platform v1.5

VMware by Broadcom 917



The nodes and the maximum number of redirects must be set in your Service Bindings’ Secret. For
example, in addition to the entries in Configuring a Redis Secret, you must provide cluster settings
as follows:

apiVersion: v1

kind: Secret

metadata:

  name: redis-cluster-credentials

  namespace: authservers

type: servicebinding.io/redis

stringData:

  #...

  cluster.max-redirects: 5

  cluster.nodes: 100.90.1.10:6379,100.90.1.11:6379,100.90.1.12:6379

AuthServer readiness for AppSSO
This topic tells you how to use AuthServer.status as a reliable source to verify an AuthServer’s
readiness for Application Single Sign-On (commonly called AppSSO).

You can verify your AuthServer by ensuring:

there is at least one token signing key configured.

curl -X GET {spec.issuerURI}/oauth2/jwks

The response body should yield at least one key in the list. If there are no keys, please apply
a token signing key

OpenID discovery endpoint is available.

curl -X GET {spec.issuerURI}/.well-known/openid-configuration

The response body should yield a valid JSON body containing information about the
AuthServer.

Client registration check

It is helpful to verify an AuthServer by running a test run with a test ClientRegistration. It ensures
that app developers can register clients with the AuthServer successfully.

Follow the steps below to ensure that your installation can:

1. Add a test client.

2. Get an access token.

3. Invalidate/remove the test client.

Prerequisites

Ensure that you have successfully applied a token signing key to your AuthServer before
proceeding.

Define and apply a test client

Important

cluster.nodes must be a comma-separated list of <ip>:<port>.

Tanzu Application Platform v1.5

VMware by Broadcom 918



Apply a ClientRegistration to your cluster in a Namespace that the AuthServer should allow
clients from:

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: ClientRegistration

metadata:

  name: test-client

  namespace: default

spec:

  authServerSelector:

    matchLabels:

    # appropriate labels for your `AuthServer`

  authorizationGrantTypes:

    - client_credentials

  clientAuthenticationMethod: client_secret_basic

See the ClientRegistration API reference for more field definitions.

This defines a test ClientRegistration with the client_credentials OAuth grant type.

Apply the ClientRegistration:

kubectl apply -f appsso-test-client.yaml

Once the ClientRegistration is applied, inspects its status and verify it’s ready.

Get an access token

You should be able to get a token with the client credentials grant for example:

# Get client id (`base64` command has to be available on the command line)

export APPSSO_TEST_CLIENT_ID=$(kubectl get secret test-client -n default -o jsonpath="

{.data['client-id']}" | base64 --decode)

# Get client secret (`base64` command has to be available on the command line)

export APPSSO_TEST_CLIENT_SECRET=$(kubectl get secret test-client -n default -o jsonpa

th="{.data['client-secret']}" | base64 --decode)

# Attempt to fetch access token

curl \

 --request POST \

 --location "{spec.issuerURI}/oauth2/token" \

 --header "Content-Type: application/x-www-form-urlencoded" \

 --header "Accept: application/json" \

 --data "grant_type=client_credentials" \

 --basic \

 --user $APPSSO_TEST_CLIENT_ID:$APPSSO_TEST_CLIENT_SECRET

You should see a response JSON containing populated field access_token. If so, the system is
working as expected, and client registration check is successful.

Make sure to delete the test ClientRegistration once you are done.

Scale AuthServer for AppSSO

This topic tells you how to scale AuthServer for Application Single Sign-On (commonly called
AppSSO).

The number of authorization server replicas for an AuthServer can be specified under
spec.replicas.

Tanzu Application Platform v1.5

VMware by Broadcom 919



Furthermore, AuthServer implements the scale subresource. That means you can scale an
AuthServer with the existing tooling. For example:

kubectl scale authserver authserver-sample --replicas=3

The resource of the authorization server and Redis Deployments can be configured under
spec.resources and spec.redisResources respectively. See the API reference for details.

AuthServer audit logs for AppSSO

This topic tells you how to use AuthServer audit logs in Application Single Sign-On (commonly
called AppSSO).

Overview

AuthServers perform the following tasks:

Handle user authentication

Issue id_token and access_token

Each audit event contains the following information:

ts - date/time of the event

remoteIpAddress - the IP of the user-authentication or if not attainable, the IP of the last
proxy

Authentication

AuthServer produce the following authentication events:

AUTHENTICATION_SUCCESS

Trigger successful authentication

Data recorded Username, Provider ID, Provider Type (INTERNAL, OPENID, …)

AUTHENTICATION_LOGOUT

Trigger successful logout

Data recorded Username, Provider ID, Provider Type (INTERNAL, OPENID, …)

AUTHENTICATION_FAILURE

Trigger failed authentication using either internalUnsafe or ldap identity provider

Data recorded Username, Provider ID, Provider Type (INTERNAL or LDAP)

INVALID_IDENTITY_PROVIDER_CONFIGURATION

Trigger some cases of failed authentication with an openId or saml identity provider

Data recorded Provider ID, Provider Type, error

Note usually followed by a human-readable help message, with "logger":
"appsso.help"

Token flows
AuthServer produce the following authorization_code and token events:

AUTHORIZATION_CODE_ISSUED

Trigger authorization_code grant type, successful call to /oauth2/authorize

Tanzu Application Platform v1.5

VMware by Broadcom 920



Data recorded Username, Provider ID, Provider Type, Client ID, Scopes requested,
Redirect URI

AUTHORIZATION_CODE_REQUEST_REJECTED

Trigger authorization_code grant type, unsuccessful call to /oauth2/authorize, for
example invalid Client ID, invalid Redirect URI, …

Data recorded Error, Error Code (ex: invalid_scope), Client ID, Scopes requested
Redirect URI, Username (may be anonymousUser), Provider ID and Provider Type if
available

TOKEN_ISSUED

Trigger successful call to /oauth2/token

Data recorded Scopes, Client ID, Grant Type (authorization_code or
client_credentials), Username

TOKEN_REQUEST_REJECTED

Trigger unsuccessful call to /oauth2/token, for example invalid Client Secret

Data recorded Client ID, Scopes requested, Error

Application Single Sign-On for App Operators

The following topics tell you how to secure a sample app with Application Single Sign-On
(commonly called AppSSO):

Configure AppSSO for workloads

Secure a Spring Boot workload

Secure a single-page app workload

Application Single Sign-On for App Operators

The following topics tell you how to secure a sample app with Application Single Sign-On
(commonly called AppSSO):

Configure AppSSO for workloads

Secure a Spring Boot workload

Secure a single-page app workload

Configure AppSSO for workloads

This topic tells you how to configure Application Single Sign-On (commonly called AppSSO) when
defining workloads.

For specific stack implementations such as Spring Boot, see Application Single Sign-On for App
Operators.

An AppSSO AuthServer and your Workload must be able to detect each other and can
communicate bidirectionally:

To make AuthServer detect your Workload, for example, AuthServer is responsible for
authentication and authorization duties, you must create and apply a ClientRegistration
resource. For more information, see The ClientRegistration resource.

To make your Workload detect an AuthServer, for example, your application relies on
AppSSO for authentication and authorization requests, you must specify a service resource

Tanzu Application Platform v1.5

VMware by Broadcom 921



claim of a ClientRegistration, which produces the necessary credentials for your Workload
to consume. For more information, see Claim a ClientRegistration.

(Optional) Ensure your Workload trusts a TLS-enabled AuthServer. For more information,
see Configure Workloads to trust a custom Certificate Authority (CA).

The following sections elaborate on these concepts in detail.

The ClientRegistration resource

A ClientRegistration registers a client entity with an AuthServer.

Example: A ClientRegistration resource, residing in a workloads-ready namespace my-apps.

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: ClientRegistration

metadata:

  name: my-workload-client

  namespace: my-apps

spec:

  authServerSelector:

    matchLabels:

    # Ask your Service Operator for labels to target an `AuthServer`

    # or run `kubectl label --list authserver/<authserver-name> -n <authserver-ns>`

  authorizationGrantTypes:

    - authorization_code

  clientAuthenticationMethod: client_secret_basic

  requireUserConsent: true

  redirectURIs:

    - "<MY_WORKLOAD_HOSTNAME>/redirect-uri"

  scopes:

    - name: openid

To verify the status of the ClientRegistration, run:

kubectl get clientregistration my-workload-client --namespace my-apps

After a ClientRegistration is applied and has status of Ready, it is claimable by a Workload, which
provides the necessary credentials to your application. For more information, see Claim a
ClientRegistration.

For more information about the schema and specification of the resource, see ClientRegistration.

Redirect URIs

A client registration’s redirectURIs define the location for an AuthServer to send the user back to
after they are authenticated. You must configure the redirect locations based on your
implementation method.

Important

You must ensure Workload trusts the AuthServer if you use the default self-
signed certificate ClusterIssuer while installing Tanzu Application Platform.

Caution

Tanzu Application Platform v1.5

VMware by Broadcom 922



For servlet-based Spring Boot workloads using Spring Security OAuth 2 Client library, the default
redirect URI template is:
{workloadBaseUrl}/login/oauth2/code/{ClientRegistration.metadata.name}. For more
information about the format, see Spring documentation.

Example: If a Workload base domain is https://app.my-apps.prod.example.com, where
prod.example.com is your shared.ingress_domain value and ClientRegistration is named as my-
workload-client, the redirect URI is:

spec:

  redirectUris:

    - "https://app.my-apps.prod.example.com/login/oauth2/code/my-workload-client"

Authorization grant types

AppSSO supports the following OAuth grant types:

Authorization Code: authorization_code

This grant type is used by applications seeking to authenticate and authorize end-users. An
AuthServer issues identity and access tokens to applications to identify end users’ identity
and the level of access they have to protected resources.

Client Credentials: client_credentials

This grant type is used by applications seeking to communicate directly to other protected
applications, by using a client identifier and client secret, for example, service-to-service
communication. An AuthServer issues access tokens that define the level of access that the
requesting service has to the protected service they seek to communicate with.

Refresh Token: refresh_token

This grant type is used by applications seeking to obtain access tokens. If refresh_token
grant type is included, on every access token issue by an AuthServer, a refresh token is
included. You can use the refresh token to fetch new access tokens before older ones
expire to continue accessing protected resources.

Client authentication method

Client authentication method is the approach the client takes to authenticate with an authorization
server. The default value of client_secret_basic is the recommended method for authenticating
server-based applications such as Spring Boot or .NET Core apps (confidential clients).

For browser-based single-page apps, client authentication method must be set to none. For more
information, see Configure authorization and Client authentication methods.

Scopes

Redirect URIs might not contain loopback alias localhost, for example,
http://localhost:8080. You can use 127.0.0.1 instead, for example,
http://127.0.0.1:8080.

Note

Use cases for grant types authorization_code and client_credentials are
typically different, so VMware recommends creating separate client
registrations for each grant type.

Tanzu Application Platform v1.5

VMware by Broadcom 923

https://docs.spring.io/spring-security/reference/servlet/oauth2/login/core.html#oauth2login-sample-redirect-uri


The scopes field allows for configuring requested OAuth2 scopes including standard OpenID claims.
The scopes provided within this field can be mapped to upstream identity provider roles. For more
information, see Configure authorization.

To activate issuance of uers’ identity tokens and authentication, you must include the openid
scope.

To activate fetching of user roles or groups, you must include the roles scope.

Example: a ClientRegistration allows the client to request identity tokens with user information
and specific read, write, and delete developer privileges, given a user has any of the scopes listed.

kind: ClientRegistration

# ...

spec:

  scopes:

    - name: openid             # standard OpenID scope, containing claims "sub" (subje

ct), "aud" (audience), etc.

    - name: email              # standard OpenID scope, containing claims "email" and 

"email_verified"

    - name: profile            # standard OpenID scope, containing claims "name", "giv

en_name", "family_name", etc.

    - name: roles              # AppSSO special scope, requesting user roles/groups be 

populated in "roles" claim.

    - name: developer.read     # custom authorization scope

    - name: developer.write    # ^^

    - name: developer.delete   # ^^

Requiring user consent

The requireUserConsent field allows for toggling scopes approval for end-users. If activated, every
end user is prompted to consent to or reject scopes that the client requests on behalf of the user.
If deactivated, all scopes that the client requests are auto-approved or consented to without
prompt.

Claim a ClientRegistration

When a ClientRegistration resource is ready, you can claim it by using a ResourceClaim resource:

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ResourceClaim

metadata:

  name: my-client-claim

  namespace: my-apps

spec:

  ref:

    apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

    kind: ClientRegistration

    name: my-workload-client

    namespace: my-apps

Alternatively, you can also claim a ClientRegistration by using tanzu service CLI:

tanzu service resource-claim create my-client-claim \

  --namespace my-apps \

  --resource-api-version sso.apps.tanzu.vmware.com/v1alpha1 \

  --resource-kind ClientRegistration \

  --resource-name my-workload-client \

  --resource-namespace my-apps

Tanzu Application Platform v1.5

VMware by Broadcom 924



Verify the status of the service resource claim by running tanzu service resource-claim list -n
my-apps -o wide:

NAMESPACE   NAME             READY  REASON  CLAIM REF

my-apps     my-client-claim  True           services.apps.tanzu.vmware.com/v1alpha1:Re

sourceClaim:my-client-claim

Connecting a Workload to an AuthServer

Now you can reference the created service resource claim by a Workload.

Example: An example Workload in my-apps namespace.

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  labels:

    apps.tanzu.vmware.com/workload-type: web

  name: my-workload

  namespace: my-apps

spec:

  source:

    git:

      url: https://github.com/my-company/my-app.git

      ref:

        branch: main

  serviceClaims:

    - name: my-workload-client # Must match the name of the referenced `ClientRegistra

tion`.

      ref:

        apiVersion: services.apps.tanzu.vmware.com/v1alpha1

        kind: ResourceClaim

        name: my-client-claim

Alternatively, you can refer to your ClientRegistration when deploying your workload with the
tanzu CLI:

tanzu apps workload create my-workload \

  --service-ref "my-workload-client=services.apps.tanzu.vmware.com/v1alpha1:ResourceCl

aim:my-client-claim" \

  # ...

The service resource claim reference binding ensures that your Workload’s Pod (one or more) is
mounted with a volume containing the necessary credentials required by your application to detect
AppSSO.

The credentials provided by the service resource claim are:

client-id: the identifier of your Workload that AppSSO is registered with. This is a unique
identifier.

client-secret: secret string value used by AppSSO to verify your client. Keep this value
secret.

issuer-uri: web address of AppSSO AuthServer and the primary location that your
Workload navigates to when interacting with AppSSO.

Important

The service ref name must match the name of the referenced ClientRegistration.

Tanzu Application Platform v1.5

VMware by Broadcom 925



authorization-grant-types: list of the desired OAuth 2 grant types.

client-authentication-method: method in which the client is authenticated when
requesting an identity or access token.

scope: list of the desired scopes that your application’s users have access to.

These credentials are mounted onto your Workload’s Pod(one or more) as individual files at the
following locations:

/bindings

  /<name-of-service-claim>

    /client-id

    /client-secret

    /issuer-uri

    /authorization-grant-types

    /client-authentication-method

    /scope

Following the earlier example, you can find the location of mounted credentials on every Workload
Pod at:

/bindings/my-workload-client

Given these auto-generated values, your Workload can now load them at runtime and bind to an
AppSSO AuthServer at start-up time. Reading the values from the file system is left to the
implementor as to the approach taken.

Secure a Spring Boot workload
This topic tells you how to secure a sample Spring Boot Workload with Application Single Sign-On
(commonly called AppSSO), which runs on Tanzu Application Platform (commonly called TAP).

Follow these steps to deploy a sample Spring Boot Workload:

1. Get the sample application.

2. Create a namespace for workloads.

3. Apply a client registration.

4. Create a resource claim for the workload.

5. (Optional) Ensure Workload trusts AuthServer.

6. Deploy the workload.

Get the sample application
Follow these steps to fetch the AppSSO Spring Boot application source code:

1. Download the AppSSO Starter Java accelerator from the TAP GUI accelerators located on
your TAP cluster:

Option 1: Use the TAP GUI dashboard through browser.

Navigate to Application Accelerators and download the “AppSSO Starter Java”
accelerator.

Option 2: Use the Tanzu Accelerator CLI.

Download the zip file of the accelerator source code by running:

Tanzu Application Platform v1.5

VMware by Broadcom 926



tanzu accelerator generate appsso-starter-java --server-url <TAP_GUI_SERV

ER_URL>

2. Unzip the resulting .zip file into directory appsso-starter-java in your workspace.

unzip appsso-starter-java

3. With the resulting project, create an accessible remote Git repository and push your
accelerator to the Git remote repository.

Create a namespace for workloads

You must create a namespace for your workloads for the Workload resources to function properly. If
you have a workloads namespace already, you can skip this step.

kubectl create namespace my-apps

kubectl label namespaces my-apps apps.tanzu.vmware.com/tap-ns=""

For more information about provisioning namespaces for workloads, see Set up developer
namespaces.

Create a ClientRegistration

Example: A ClientRegistration named appsso-starter-java in the my-apps namespace. appsso-
starter-java is attached to an existing AuthServer with labels my-sso=true,env=dev and an
allowance of client registrations from the my-apps namespace.

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: ClientRegistration

metadata:

  name: appsso-starter-java

  namespace: my-apps

spec:

  authServerSelector:

    matchLabels:

      my-sso: "true"

      env: dev

  clientAuthenticationMethod: client_secret_basic

  authorizationGrantTypes:

  - authorization_code

  redirectURIs:

  - https://appsso-starter-java.my-apps.<TAP_CLUSTER_DOMAIN_NAME>/login/oauth2/code/ap

psso-starter-java

  - http://appsso-starter-java.my-apps.<TAP_CLUSTER_DOMAIN_NAME>/login/oauth2/code/app

sso-starter-java

  scopes:

  - name: openid

Note

You can choose redirectURIs that use http or https based on your need. The prefix
of the redirectURIs denotes the name and namespace of the Workload. In this
case, it is appsso-starter-java and my-apps. Keep the suffix formatted as
/login/oauth2/code/{ClientRegistration.metadata.name}. For more information
about the redirect URI format of Spring Security OAuth 2 Client library, see
Configure AppSSO for workloads.

Tanzu Application Platform v1.5

VMware by Broadcom 927



The accelerator is pre-packaged with a ytt-templated ClientRegistration that is located in
client.yaml. You can generate the same ClientRegistration as earlier with your specific values by
running:

ytt \

  --file client.yaml \

  --data-value namespace=my-apps \

  --data-value workload_name=appsso-starter-java \

  --data-value domain=<TAP_CLUSTER_DOMAIN_NAME> \

  --data-value authserver_label.my-sso=true \

  --data-value authserver_label.env=dev

Where:

namespace is the namespace where the workload runs.

workload_name is the distinct instance name of the deployed accelerator.

domain is the domain name where the workload is deployed. The workload instance uses a
subdomain to distinguish itself from other workloads. When working within a local cluster,
you can use 127.0.0.1.nip.io to establish a functional DNS route.

authserver_label.{matching-label} is the uniquely identifying label (one or more) for your
AuthServer. In this example, the AuthServer resource is assumed to have labels my-sso:
"true" and env: dev. You can add as many identifying labels as needed.

You can apply the ClientRegistration and verify its status by running:

kubectl get clientregistration appsso-starter-java --namespace my-apps

Claim the ClientRegistration

Follow these steps to claim the ClientRegistration:

1. Create a service resource claim for the ClientRegistration created earlier by using the
Tanzu Services plugin CLI:

tanzu service resource-claim create appsso-starter-java \

    --namespace my-apps \

    --resource-namespace my-apps \

    --resource-name appsso-starter-java \

    --resource-kind ClientRegistration \

    --resource-api-version "sso.apps.tanzu.vmware.com/v1alpha1"

2. Check the status of the claim by running:

tanzu service claim list --namespace my-apps

Expect to see the appsso-starter-java claim with the Ready status as True.

Ensure Workload trusts AuthServer

For TAP cluster with a custom or self-signed CA certificate, see Configure workloads to trust a
custom Certificate Authority (CA).

Deploy the Workload

Follow these steps to deploy the Workload:

1. Create the Spring Boot accelerator Workload by running:

Tanzu Application Platform v1.5

VMware by Broadcom 928



tanzu apps workload create appsso-starter-java \

    --namespace my-apps \

    --type web \

    --label app.kubernetes.io/part-of=appsso-starter-java \

    --build-env "BP_JVM_VERSION=17" \

    --service-ref "appsso-starter-java=services.apps.tanzu.vmware.com/v1alpha1:

ResourceClaim:appsso-starter-java" \

    --service-ref "ca-cert=v1:Secret:tap-ca-cert" \

    --git-repo "<GIT_LOCATION_OF_YOUR_ACCELERATOR>" \

    --git-branch main \

    --live-update

It might take a few minutes for the workload to become available through a browser-
accessible URL.

2. Query the latest status of the workload by running:

tanzu apps workload get appsso-starter-java --namespace my-apps

3. Monitor the Workload logs:

tanzu apps workload tail appsso-starter-java --namespace my-apps

After the status of the workload reaches the Ready state, you can navigate to the provided
URL, which looks similar to:

https://appsso-starter-java.my-apps.<TAP_CLUSTER_DOMAIN_NAME>

4. Open your preferred web browser and navigate to the URL.

Expect to see a large log-in button tailored for authenticating with AppSSO.

Cleaning up

Delete the running application by running the following commands:

1. Delete the sample application Workload:

tanzu apps workload delete appsso-starter-java --namespace my-apps

2. Delete the service resource claim for the ClientRegistration:

tanzu service resource-claim delete appsso-starter-java --namespace my-apps

3. Disconnect the client from AppSSO:

Important

Although you can assign any name to the ResourceClaim, the Workload’s
service reference name must match the ClientRegistration name.

--service-ref "**appsso-starter-java**=services.apps.tanzu.vmware.

com/v1alpha1:ResourceClaim:appsso-starter-java"

If the service reference name does not match the ClientRegistration
name, the Workload generates a redirect URI that the AuthServer will not
accept.

Tanzu Application Platform v1.5

VMware by Broadcom 929



kubectl delete clientregistration appsso-starter-java --namespace my-apps

Secure a single-page app workload

This topic tells you how to to secure a sample single-page Angular app Workload with Application
Single Sign-On (commonly called AppSSO), which runs on Tanzu Application Platform (commonly
known as TAP).

Follow these steps to deploy a sample single-page app Workload:

1. Get the sample application.

2. Create a namespace for workloads.

3. Apply a client registration.

4. Verify application authentication settings.

5. Start a sample back end.

6. Deploy the Workload.

Get the sample application

Follow these steps to fetch the single-page Angular app source code:

1. Download the Angular Frontend accelerator from the Tanzu Application Platform GUI
accelerators located on your Tanzu Application Platform cluster:

Option 1: Use the Tanzu Application Platform GUI dashboard by using a browser.

Navigate to Application Accelerators and choose the Angular Frontend accelerator
and then select the Single Sign-on option.

Option 2: Use the Tanzu Accelerator CLI.

Download the zip file of the accelerator source code and identify your AuthServer
Issuer URI by running:

kubectl get authserver -A

Generate the accelerator by using the tanzu accelerator CLI:

tanzu accelerator generate angular-frontend \

  --server-url TAP-GUI-SERVER-URL \

  --options '{

    "useSingleSignOn": true,

    "authority": "AUTHSERVER-ISSUER-URI",

    "namespace": "my-apps",

    "authorityLabelKey": "my-sso",

    "authorityLabelValue": "true"

  }'

2. Unzip the resulting .zip file into directory angular-frontend in your workspace:

unzip angular-frontend

cd angular-frontend

git init

git branch -M main

git remote add origin YOUR-ACCELERATOR-GIT-REPOSITORY

git push origin main -u

Tanzu Application Platform v1.5

VMware by Broadcom 930



For public clients, the AuthServer only supports the Authorization Code Flow:
response_type=code, because public clients such as single page apps cannot safely store
sensitive information such as client secrets.

3. Push the resulting directory to the remote Git repository.

Create a namespace for workloads

You must create a namespace for your workloads for the Workload resources to function properly. If
you have a workloads namespace already, you can skip this step.

kubectl create namespace my-apps

kubectl label namespaces my-apps apps.tanzu.vmware.com/tap-ns=""

For more information about provisioning namespaces for running Workloads, see Set up developer
namespaces.

Create a ClientRegistration

You must create a ClientRegistration to register the frontend application with the AuthServer.

Example: A ClientRegistration named angular-frontend in the my-apps namespace. angular-
frontend is attached to an existing AuthServer with labels my-sso=true and an allowance of client
registrations from the my-apps namespace.

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: ClientRegistration

metadata:

  name: angular-frontend

  namespace: my-apps

spec:

  authServerSelector:

    matchLabels:

      my-sso: "true"

  clientAuthenticationMethod: none

  authorizationGrantTypes:

  - authorization_code

  redirectURIs:

  - https://angular-frontend.my-apps.TAP-CLUSTER-DOMAIN-NAME/user-profile

  - https://angular-frontend.my-apps.TAP-CLUSTER-DOMAIN-NAME/customer-profiles/list

  - https://angular-frontend.my-apps.TAP-CLUSTER-DOMAIN-NAME/

  - http://angular-frontend.my-apps.TAP-CLUSTER-DOMAIN-NAME/user-profile

  - http://angular-frontend.my-apps.TAP-CLUSTER-DOMAIN-NAME/customer-profiles/list

  - http://angular-frontend.my-apps.TAP-CLUSTER-DOMAIN-NAME/

  scopes:

  - name: openid

  - name: email

  - name: profile

  - name: message.read

  - name: message.write

You can apply the ClientRegistration and verify the status is Ready by running:

Note

You can choose redirectURIs that use HTTP or HTTPS based on your need. The
prefix of the redirectURIs denotes the name and namespace of the Workload. In
this scenario, it is angular-frontend and my-apps.

Tanzu Application Platform v1.5

VMware by Broadcom 931



kubectl get clientregistration angular-frontend --namespace my-apps

Verify application authentication settings

Within the single-page Angular app accelerator, authentication configuration settings are located in
src/assets/auth.conf.json. After generating the accelerator, expect to observe the populated
settings.

Open the file and verify that it adheres to the following structure:

{

  "authority": "AUTHSERVER-ISSUER-URI",

  "clientId": "my-apps_angular-frontend",

  "scope": [ "openid", "profile", "email", "message.read", "message.write" ]

}

You can retrieve the clientId field by running:

kubectl get secret angular-frontend -n my-apps -o jsonpath="{.data.client-id}" | base6

4 -d

Start a sample back end

The angular-frontend sample application requires a back end application to start properly:

1. Start a sample simulated back end by running:

kubectl run sample-backend --image nginx:NGINX-VERSION -n my-apps

kubectl expose pod sample-backend --port 80 -n my-apps

2. In the angular-frontend source code, edit the .server.location[/api/].proxy_pass field
in the nginx.conf file at the root of the source directory.

3. After updating the value, commit the changes to the Git remote repository:

server {

 # ...

 location /api/ {

   proxy_pass http://sample-backend.my-apps/api/;

 }

 # ...

}

Deploy the Workload

Follow these steps to deploy the Workload:

1. Create the angular-frontend accelerator Workload by running:

tanzu apps workload create angular-frontend \

    --namespace my-apps \

    --type web \

    --param "clusterBuilder=base" \

Important

You can skip this step if you have a java-rest-service back end running already.

Tanzu Application Platform v1.5

VMware by Broadcom 932



    --param "annotations=autoscaling.knative.dev/minScale: \"1\"" \

    --label app.kubernetes.io/part-of=angular-frontend \

    --git-repo "GIT-LOCATION-OF-YOUR-ACCELERATOR" \

    --git-branch main

It might take a few minutes for the workload to become available through a browser-
accessible URL.

2. Query the latest status of the workload by running:

tanzu apps workload get angular-frontend --namespace my-apps

3. Monitor the Workload logs:

tanzu apps workload tail angular-frontend --namespace my-apps

After the status of the workload reaches the Ready state, you can navigate to the provided
URL, which looks similar to:

https://angular-frontend.my-apps.TAP-CLUSTER-DOMAIN-NAME/user-profile

4. Open your preferred web browser and navigate to the URL.

Expect to be prompted to sign in by using AppSSO. After successfully signing in, the profile
page displays your identifying information.

Clean up

Delete the running application by running these commands:

1. Delete the sample application Workload:

tanzu apps workload delete angular-frontend --namespace my-apps

2. Delete the service resource claim for the ClientRegistration:

tanzu service resource-claim delete angular-frontend --namespace my-apps

3. Disconnect the client from AppSSO:

kubectl delete clientregistration angular-frontend --namespace my-apps

4. Delete the sample back end if was previously applied:

kubectl delete svc sample-backend --namespace my-apps

kubectl delete pod sample-backend --namespace my-apps

Custom resource definitions (CRDs)

AuthServer

Note

As an alternative approach to creating the workload, you can declaratively
define a Workload resource by using config/workload.yaml within the
source repository.

Tanzu Application Platform v1.5

VMware by Broadcom 933



ClientRegistration

AuthServer API for AppSSO

In Application Single Sign-On (commonly called AppSSO), AuthServer represents the request for an
OIDC authorization server. It causes the deployment of an authorization server backed by Redis
over mutual TLS if no storage is defined.

An AuthServer should have labels which allow to uniquely match it amongst others.
ClientRegistration selects an AuthServer by label selector and needs a unique match to be
successful.

To allow ClientRegistrations from all or a restricted set of Namespaces, the annotation
sso.apps.tanzu.vmware.com/allow-client-namespaces must be set. Its value is a comma-separated
list of allowed Namespaces, e.g. "app-team-red,app-team-green", or "*" if it should allow clients
from all namespaces. If the annotation is missing, no clients are allowed.

The issuer URI, which is the point of entry for clients and end-users, is constructed through the
package’s domain_template. You can view the issuer URI by running kubectl get authserver -n
authservers.

See Issuer URI & TLS for more information.

Token signature keys are configured by using spec.tokenSignature. This is a required field. See
Token signatures for more context.

You can configure identity providers under spec.identityProviders. If there is none, end-users
can not log in. For more information about configuring identity providers, see Identity providers.

The deployment can be further customized by configuring replicas, resources, http server and
logging properties.

An AuthServer reconciles into the following resources in its namespace:

AuthServer/my-authserver

├─Certificate/my-authserver-redis-client                   # if no storage is defined

├─Certificate/my-authserver-redis-server                   # if no storage is defined

├─Certificate/my-authserver-root

├─ConfigMap/my-authserver-ca-cert

├─Deployment/my-authserver-auth-server

├─Deployment/my-authserver-redis                           # if no storage is defined

├─Issuer/my-authserver-bootstrap

├─Issuer/my-authserver-root

├─Role/my-authserver-auth-server

├─RoleBinding/my-authserver-auth-server

├─Secret/my-authserver-auth-server-clients

├─Secret/my-authserver-auth-server-keys

├─Secret/my-authserver-auth-server-properties

├─Secret/my-authserver-redis-service-binding               # if no storage is defined

├─Secret/my-authserver-redis-client-cert-keystore-password # if no storage is defined

├─Secret/my-authserver-registry-credentials

├─Service/my-authserver-redis                              # if no storage is defined

└─ServiceAccount/my-authserver-auth-server

Spec

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  name: ""

  namespace: ""

  labels: { } # required, must uniquely identify this AuthServer

Tanzu Application Platform v1.5

VMware by Broadcom 934



  annotations:

    sso.apps.tanzu.vmware.com/allow-client-namespaces: "" # required, must be "*" or a 

comma-separated list of allowed client namespaces

    sso.apps.tanzu.vmware.com/allow-unsafe-issuer-uri: "" # optional

    sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider: "" # optional

    sso.apps.tanzu.vmware.com/allow-unsafe-cors: "" # optional

spec:

  # .tls is optional if a default issuer is set

  tls:

    # must be one and only one of issuerRef, certificateRef or secretRef, unless deact

ivated

    issuerRef:

      name: ""

      kind: ""

      group: cert-manager.io

    certificateRef:

      name: ""

    secretRef:

      name: ""

    deactivated: false # If true, requires annotation `sso.apps.tanzu.vmware.com/allow

-unsafe-issuer-uri: ""`.

    disabled: false # deprecated, use 'deactivated' instead. If true, requires annotat

ion `sso.apps.tanzu.vmware.com/allow-unsafe-issuer-uri: ""`.

  cors:

    allowOrigins: # optional, cannot be combined with 'allowAllOrigins'.

      - ""

    allowAllOrigins: false # optional

                           # If true, requires annotation `sso.apps.tanzu.vmware.com/a

llow-unsafe-cors: ""`.

                           # Cannot be combined with 'allowOrigins'.

  tokenSignature: # required

    signAndVerifyKeyRef:

      name: "" # Must be a secret that contains an RSA private key with a minimum leng

th of 2048 bits.

    extraVerifyKeyRefs:

      - name: "" # Must be a secret that contains an RSA private key with a minimum le

ngth of 2048 bits.

  storage: # optional

    redis: # required if 'storage' is defined

      serviceRef: # Reference to a provisioned service within the same namespace as th

is AuthServer. Only supports Secret reference.

        apiVersion: "v1"

        kind: "Secret"

        name: ""

  caCerts: # optional

    - secretRef: # Reference to Secret resource within the same namespace as this Auth

Server.

        name: ""

  identityProviders: # optional

    # each must be one and only one of internalUnsafe, ldap, openID or saml

    - name: "" # must be unique

      internalUnsafe: # requires annotation `sso.apps.tanzu.vmware.com/allow-unsafe-id

entity-provider: ""`

        users:

          - username: ""

            password: ""

            givenName: ""

            familyName: ""

            email: ""

            emailVerified: false

            roles:

              - ""

        accessToken: # optional

          scope:

            defaults: # optional

            - ""

Tanzu Application Platform v1.5

VMware by Broadcom 935



            rolesToScopes: # optional

              - fromRole: ""

                toScopes:

                  - ""

    - name: "" # must be unique

      ldap:

        server:

          scheme: ""

          host: ""

          port: 0

          base: ""

        bind:

          dn: ""

          passwordRef:

            name: ldap-password

        user:

          searchFilter: ""

          searchBase: ""

        roles: # optional

          fromUpstream:

            attribute: "" # required

            search:

              filter: ""

              base: ""

              subTree: false

              depth: 0

          filterBy: # optional

            - exactMatch: ""

            - regex: "" # must be valid regular expression

        accessToken: # optional

          scope:

            defaults: # optional

            - ""

            rolesToScopes: # optional

              - fromRole: ""

                toScopes:

                - ""

        group:    # deprecated, use 'ldap.roles.fromUpstream' instead.

          search: # deprecated, use 'ldap.roles.fromUpstream.search' instead.

            filter: ""

            base: ""

            subTree: false

            depth: 0

          roleAttribute: "" # deprecated, use 'ldap.roles.fromUpstream.attribute' inst

ead.

    - name: "" # must be unique

      openID:

        issuerURI: ""

        clientID: ""

        clientSecretRef:

          name: ""

        scopes:

          - ""

        claimMappings: # deprecated, use 'openID.roles.fromUpstream.claim' instead.

          roles: ""

        roles: # optional

          fromUpstream:

            claim: "" # required

          filterBy: # optional

            - exactMatch: ""

            - regex: "" # must be valid regular expression

        accessToken: # optional

          scope:

            defaults: # optional

            - ""

            rolesToScopes: # optional

Tanzu Application Platform v1.5

VMware by Broadcom 936



              - fromRole: ""

                toScopes:

                - ""

    - name: "" # must be unique

      saml:

        metadataURI: ""

        claimMappings: { }

        roles: # optional

          fromUpstream:

            attribute: "" # required

          filterBy: # optional

            - exactMatch: ""

            - regex: "" # must be valid regular expressions

        accessToken: # optional

          scope:

            defaults: # optional

              - ""

            rolesToScopes: # optional

              - fromRole: ""

                toScopes:

                  - ""

  replicas: 1 # optional, default 2

  logging: "" # optional, must be valid YAML

  server: "" # optional, must be valid YAML

  resources: # optional, default {requests: {cpu: "256m", memory: "300Mi"}, limits: {c

pu: "2", memory: "768Mi"}}

    requests:

      cpu: ""

      mem: ""

    limits:

      cpu: ""

      mem: ""

  redisResources: # optional, default {requests: {cpu: "50m", memory: "100Mi"}, limit

s: {cpu: "100m", memory: "256Mi"}}

    requests:

      cpu: ""

      mem: ""

    limits:

      cpu: ""

      mem: ""

status:

  observedGeneration: 0

  issuerURI: ""

  clientRegistrationCount: 1

  tokenSignatureKeyCount: 0

  deployments:

    authServer:

      configHash: ""

      image: ""

      replicas: 0

    redis: # leave empty if storage is configured by the service operator

      image: ""

  storage:

    redis:

      host: "" # the hostname of the configured Redis

      port: "" # the port of the configured Redis

  tls:

    deactivated: false

    issuerRef:

      name: ""

      kind: ""

      group: cert-manager.io

  conditions:

    - lastTransitionTime:

      message: ""

      reason: ""

Tanzu Application Platform v1.5

VMware by Broadcom 937



      status: "True" # or "False"

      type: ""

Alternatively, you can interactively discover the spec with:

kubectl explain authservers.sso.apps.tanzu.vmware.com

Status & conditions

The .status subresource helps you to learn the AuthServer’s readiness, resulting deployments,
attached clients and to troubleshoot issues.

.status.issuerURI is the templated issuer URI. This is the entry point for any traffic.

.status.tls is the actual TLS configuration.

.status.tokenSignatureKeyCount is the number of currently configured token signature keys.

.status.clientRegistrationCount is the number of currently registered clients.

.status.deployments.authServer describes the current authorization server deployment by listing
the running image, its replicas, the hash of the current configuration and the generation which has
last resulted in a restart.

.status.deployments.redis describes the current provided Redis deployment by listing its running
image. This field is nil if storage is defined explicitly by using .spec.storage.

.status.storage.redis describes the configured Redis storage such as host name and port
number.

.status.conditions documents each step in the reconciliation:

Valid: Is the spec valid?

ImagePullSecretApplied: Has the image pull secret been applied?

SignAndVerifyKeyResolved: Has the single sign-and-verify key been resolved?

ExtraVerifyKeysResolved: Have the single extra verify keys been resolved?

IdentityProvidersResolved: Has all identity provider configuration been resolved?

ConfigResolved: Has the complete configuration for the authorization server been resolved?

AuthServerConfigured: Has the complete configuration for the authorization server been
applied?

IssuerURIReady: Is the authorization server yet responding to {.status.issuerURI}/.well-
known/openid-configuration?

Ready: whether all the previous conditions are “True”

The super condition Ready denotes a fully successful reconciliation of a given ClientRegistration.

If everything goes well you will see something like this:

issuerURI: "https://..."

observedGeneration: 1

tokenSignatureKeyCount: 0

clientRegistrationCount: 0

caCerts:

  - cert:

      subject: ""

    source:

      secretEntry: ""

deployments:

  authServer:

Tanzu Application Platform v1.5

VMware by Broadcom 938



    LastParentGenerationWithRestart: 1

    configHash: "11216479096262796218"

    image: "..."

    replicas: 1

  redis: # leave empty if external storage is defined

    image: "..."

storage:

  redis:

   host: "" # the host name of the configured Redis

   port: "" # the port of the configured Redis

tls:

  deactivated: false

  # One of issuerRef, certificateRef or secretRef is set if TLS is enabled 

  issuerRef:

    name: ""

    kind: ""

    group: ""

  certificateRef:

    name: ""

  secretRef:

    name: ""

conditions:

  - lastTransitionTime: "2022-08-24T09:58:10Z"

    message: ""

    reason: KeysConfigSecretUpdated

    status: "True"

    type: AuthServerConfigured

  - lastTransitionTime: "2022-08-24T09:58:10Z"

    message: ""

    reason: Resolved

    status: "True"

    type: ConfigResolved

  - lastTransitionTime: "2022-08-24T09:58:10Z"

    message: ""

    reason: ExtraVerifyKeysResolved

    status: "True"

    type: ExtraVerifyKeysResolved

  - lastTransitionTime: "2022-08-24T09:58:10Z"

    message: ""

    reason: Resolved

    status: "True"

    type: IdentityProvidersResolved

  - lastTransitionTime: "2022-08-24T09:58:10Z"

    message: ""

    reason: ImagePullSecretApplied

    status: "True"

    type: ImagePullSecretApplied

  - lastTransitionTime: "2022-08-24T09:58:28Z"

    message: ""

    reason: Ready

    status: "True"

    type: IssuerURIReady

  - lastTransitionTime: "2022-08-24T09:58:28Z"

    message: ""

    reason: Ready

    status: "True"

    type: Ready

  - lastTransitionTime: "2022-08-24T09:58:10Z"

    message: ""

    reason: SignAndVerifyKeyResolved

    status: "True"

    type: SignAndVerifyKeyResolved

  - lastTransitionTime: "2022-08-24T09:58:10Z"

    message: ""

    reason: Valid

Tanzu Application Platform v1.5

VMware by Broadcom 939



    status: "True"

    type: Valid

RBAC

The ServiceAccount of the authorization server has a Role with the following permissions:

- apiGroups:

    - ""

  resources:

    - secrets

  verbs:

    - get

    - list

    - watch

  resourceNames:

    - { name }-auth-server-keys

    - { name }-auth-server-clients

Example

This example requests an authorization server with two token signature keys and two identity
providers.

---

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: AuthServer

metadata:

  name: authserver-sample

  namespace: default

  labels:

    identifier: authserver-identifier

    sample: "true"

  annotations:

    sso.apps.tanzu.vmware.com/allow-client-namespaces: "*"

    sso.apps.tanzu.vmware.com/allow-unsafe-identity-provider: ""

    sso.apps.tanzu.vmware.com/allow-unsafe-cors: ""

spec:

  replicas: 1

  tls:

    issuerRef:

      name: my-cluster-issuer

      kind: ClusterIssuer

  tokenSignature:

    signAndVerifyKeyRef:

      name: sample-token-signing-key

    extraVerifyKeyRefs:

      - name: sample-token-verification-key

  cors:

    allowAllOrigins: true

  identityProviders:

    - name: internal

      internalUnsafe:

        users:

          - username: user

Note

The label used for matching to ClientRegistrations must be unique across
namespaces.

Tanzu Application Platform v1.5

VMware by Broadcom 940



            password: password

            roles:

              - message.write

    - name: okta

      openID:

        issuerURI: https://dev-xxxxxx.okta.com

        clientID: xxxxxxxxxxxxx

        clientSecretRef:

          name: okta-client-secret

        authorizationUri: https://dev-xxxxxx.okta.com/oauth2/v1/authorize

        tokenUri: https://dev-xxxxxx.okta.com/oauth2/v1/token

        jwksUri: https://dev-xxxxxx.okta.com/oauth2/v1/keys

        scopes:

          - openid

        roles:

          fromUpstream:

            claim: my_custom_okta_roles_claim

        accessToken:

          scope:

            defaults:

              - "developer.read"

              - "developer.write"

            rolesToScopes:

              - fromRole: "finance"

                toScopes:

                  - "finance.read"

                  - "finance.write"

---

apiVersion: secretgen.k14s.io/v1alpha1

kind: RSAKey

metadata:

  name: sample-token-signing-key

  namespace: default

spec:

  secretTemplate:

    type: Opaque

    stringData:

      key.pem: $(privateKey)

      pub.pem: $(publicKey)

---

apiVersion: secretgen.k14s.io/v1alpha1

kind: RSAKey

metadata:

  name: sample-token-verification-key

  namespace: default

spec:

  secretTemplate:

    type: Opaque

    stringData:

      key.pem: $(privateKey)

      pub.pem: $(publicKey)

---

apiVersion: v1

kind: Secret

metadata:

  name: okta-client-secret

  namespace: default

stringData:

  clientSecret: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

ClientRegistration API for AppSSO

Tanzu Application Platform v1.5

VMware by Broadcom 941



In Application Single Sign-On (commonly called AppSSO), ClientRegistration is the request for
client credentials for an AuthServer.

It implements the Service Bindings ProvisionedService. The credentials are returned as a Service
Bindings Secret.

A ClientRegistration must uniquely identify an AuthServer by using spec.authServerSelector. If it
matches none, too many or a disallowed AuthServer, it does not get credentials. The other fields
are for the configuration of the client on the AuthServer.

Spec

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: ClientRegistration

metadata:

  name: ""

  namespace: ""

spec:

  authServerSelector: # required

    matchLabels: { }

  redirectURIs: # required

    - ""

  scopes: # optional

    - name: ""

      description: ""

  authorizationGrantTypes: # optional

    - client_credentials

    - authorization_code

    - refresh_token

  clientAuthenticationMethod: "" # optional, values accepted are described in Client a

uthentication methods section 

  requireUserConsent: false # optional

status:

  authServerRef:

    apiVersion: ""

    issuerURI: ""

    kind: ""

    name: ""

    namespace: ""

  binding:

    name: ""

  clientID: ""

  clientSecretHelp: ""

  conditions:

    - lastTransitionTime: ""

      message: ""

      reason: ""

      status: "True" # or "False"

      type: ""

  observedGeneration: 0

Alternatively, you can interactively discover the spec with:

kubectl explain clientregistrations.sso.apps.tanzu.vmware.com

Client authentication methods

Client authentication methods supported by ClientRegistration resource are:

client_secret_basic: HTTP header based client authentication (default).

client_secret_post: HTTP POST body based client authentication.

Tanzu Application Platform v1.5

VMware by Broadcom 942

https://servicebinding.io/spec/core/1.0.0/
https://servicebinding.io/spec/core/1.0.0/


basic (deprecated): HTTP header based client authentication. Use client_secret_basic
instead.

post (deprecated): HTTP POST body based client authentication. Use client_secret_post
instead.

none: No client authentication. Required for public clients. For more information, see Public
clients and CORS.

Status & conditions

The .status subresource helps you to learn about your client credentials, the matched AuthServer
and to troubleshoot issues.

.status.authServerRef identifies the successfully matched AuthServer and its issuer URI.

.status.binding.name is the name of the Service Bindings Secret which contains the client
credentials.

.status.conditions documents each step in the reconciliation:

Valid: Is the spec valid?

AuthServerResolved: Has the targeted AuthServer been resolved?

ClientSecretResolved: Has the client secret been resolved?

ServiceBindingSecretApplied: Has the Service Bindings Secret with the client credentials
been applied?

AuthServerConfigured: Has the resolved AuthServer been configured with the client?

Ready: whether all the previous conditions are “True”

The super condition Ready denotes a fully successful reconciliation of a given ClientRegistration.

If everything goes well you will see something like this:

status:

  authServerRef:

    apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

    issuerURI: http://authserver-sample.default

    kind: AuthServer

    name: authserver-sample

    namespace: default

  binding:

    name: clientregistration-sample

  clientID: default_clientregistration-sample

  clientSecretHelp: 'Find your clientSecret: ''kubectl get secret clientregistration-s

ample --namespace default'''

  conditions:

    - lastTransitionTime: "2022-05-13T07:56:41Z"

      message: ""

      reason: Updated

      status: "True"

      type: AuthServerConfigured

    - lastTransitionTime: "2022-05-13T07:56:40Z"

      message: ""

Caution

When running Workloads using Spring Boot 3, you must use client_secret_basic
or client_secret_post. For more information, see Spring Boot 3 based Workloads
and ClientRegistration resources.

Tanzu Application Platform v1.5

VMware by Broadcom 943



      reason: Resolved

      status: "True"

      type: AuthServerResolved

    - lastTransitionTime: "2022-05-13T07:56:40Z"

      message: ""

      reason: ResolvedFromBindingSecret

      status: "True"

      type: ClientSecretResolved

    - lastTransitionTime: "2022-05-13T07:56:41Z"

      message: ""

      reason: Ready

      status: "True"

      type: Ready

    - lastTransitionTime: "2022-05-13T07:56:40Z"

      message: ""

      reason: Applied

      status: "True"

      type: ServiceBindingSecretApplied

    - lastTransitionTime: "2022-05-13T07:56:40Z"

      message: ""

      reason: Valid

      status: "True"

      type: Valid

  observedGeneration: 1

Example

apiVersion: sso.apps.tanzu.vmware.com/v1alpha1

kind: ClientRegistration

metadata:

  name: my-client-registration

  namespace: app-team

spec:

  authServerSelector:

    matchLabels:

      for: app-team

      ldap: "true"

  redirectURIs:

    - "https://127.0.0.1:8080/authorized"

    - "https://my-application.com/authorized"

  requireUserConsent: false

  clientAuthenticationMethod: client_secret_basic

  authorizationGrantTypes:

    - "client_credentials"

    - "refresh_token"

  scopes:

    - name: "openid"

      description: "To indicate that the application intends to use OIDC to verify the 

user's identity"

    - name: "email"

      description: "The user's email"

    - name: "profile"

      description: "The user's profile information"

The client is registered with the authorization server with the given spec. The resulting client
credentials are available in a Secret that the ClientRegistration owns.

apiVersion: v1

kind: Secret

type: servicebinding.io/oauth2

metadata:

  name: my-client-registration

  namespace: app-team

Tanzu Application Platform v1.5

VMware by Broadcom 944



data: # fields below are base64-decoded for display purposes only

  type: oauth2

  provider: appsso

  client-id: default_my-client-registration

  client-secret: c2VjcmV0 # auto-generated

  issuer-uri: https://appsso.example.com

  client-authentication-method: basic

  scope: openid,email,profile

  authorization-grant-types: client_credentials,refresh_token

Troubleshoot Application Single Sign-on

This topic tells you how to troubleshoot Application Single Sign-On (commonly called AppSSO).

Why is my AuthServer not working?

Generally, AuthServer.status is designed to provide you with helpful feedback to debug a faulty
AuthServer.

Find all AuthServer related Kubernetes resources

Identify all AuthServer components with Kubernetes common labels. For more information, see
Kubernetes documentation.

Query all related AuthServer sub-resources by using app.kubernetes.io/part-of label. For
example:

kubectl get all,ingress,service -A -l app.kubernetes.io/part-of=<authserver-name>

Logs of all AuthServers

With stern you can tail the logs of all AppSSO managed Pods inside your cluster with:

stern --all-namespaces --selector=app.kubernetes.io/managed-by=sso.apps.tanzu.vmware.c

om

Change propagation
When applying changes to an AuthServer, keep in mind that changes to issuer URI, IDP, server and
logging configuration take a moment to be effective as the operator will roll out the authorization
server Deployment.

Misconfigured clientSecret

Problem:

When attempting to sign in, you see This commonly happens due to an incorrect
[client_secret]. It might be because the client secret of an identity provider is misconfigured.

Solution:

Validate the AuthServer.spec.openid.clientSecretRef.

Misconfigured redirect URI

Tanzu Application Platform v1.5

VMware by Broadcom 945

https://kubernetes.io/docs/concepts/overview/working-with-objects/common-labels/#labels
https://github.com/stern/stern


Problem:

You see Error: [invalid_request] OAuth 2.0 Parameter: redirect_uri when signing in.

Solution:

The redirectURIs of a ClientRegistration must refer to the URI (one or more) of the registered
Workload. It does not refer to the URI of the AuthServer. For more information, see Redirect URIs.

Unsupported id_token_signed_response_alg with openid
identityProviders

Problem:

When trying to log in with an OpenID Connect identityProvider, you are unable to sign in and
observe the following error in the logs:

[invalid_id_token] An error occurred while attempting to decode the Jwt: Signed JWT re

jected: Another algorithm expected, or no matching key(s) found.

Solution:

Verify the identityProvider’s discovery endpoint at ISSUER-URI/.well-known/openid-
configuration where ISSUER-URI is the value set at spec.identityProviders.openid.issuerURI.

The value of id_token_signing_alg_values_supported must include RS256. If it is not in the list,
your identity configuration might not support AppSSO.

If RS256 is present, expect to see a jwks_uri key in the discovery endpoint. If you visit the URL
stored in this key, it must return at least one RSA key. Otherwise, your identity provider might be
misconfigured.

Refer to your identity provider’s documentation to enable RS256 token signing.

Misconfigured identity provider clientSecret

Problem:

When attempting to sign in, you see <WORKLOAD_URL> redirected you too many times. It
might be because the client secret of an identity provider is misconfigured.

If you have access to the authserver logs, verify if there is an entry with the text "error":"
[invalid_client] Client authentication failed: client_secret".

Solution:
Validate the secret referenced by the clientSecretRef for this particular identity provider in your
authserver.spec.

Missing scopes

Problem:

When attempting to fetch data after signing in to your application by using AppSSO, you see
[invalid_scope] OAuth 2.0 Parameter: scope.

Solution:

Tanzu Application Platform v1.5

VMware by Broadcom 946



Add the required scopes into your ClientRegistration yaml under spec.scopes.

Changes to the secret do not propagate to the ClientRegistration. If you recreated the Secret
that contains the clientSecret, you must re-deploy the ClientRegistration.

Misconfigured sub claim

Problem:

The sub claims in id_tokens and access_tokens follow the <providerId>_<userId> pattern. The
previous <providerId>/<userId> pattern might cause bugs in URLs without proper URL-encoding
in client applications.

Solution:

If your client application stores sub claims, you must update the sub claims to match the new
pattern <providerId>_<userId>.

Known Issues

Application Single Sign-On (commonly called AppSSO) has the following known issues.

Unregistration by deletion

You can only deregister an existing, ready ClientRegistration from its selected AuthServer by
deleting it. Breaking the match between the two resources by updating either the labels of the
AuthServer or the label selector on the ClientRegistration does not deregister the client from the
authorization server.

Limited number of ClientRegistrations per AuthServer

The number of ClientRegistration for an AuthServer is limited at ~2,000. This is a soft limitation,
and if you are attempting to apply more ClientRegistration resources than the limit, we cannot
guarantee those clients applied past the limit to be in working order. This is subject to change in
future product versions.

LetsEncrypt: domain name for Issuer URI limited to 64
characters maximum
If using LetsEncrypt to issue TLS certificates for an AuthServer, the domain name for the Issuer URI
(excluding the http{s} prefix) cannot exceed 64 characters in length. If exceeded, you may receive
a LetsEncrypt-specific error during Certificate issuance process. This limitation may be observed
when your base domain and subdomain joined together exceed the maximum limit.

Workaround - if your default Issuer URI is too long, utilize the domain_template field in AppSSO
values yaml to potentially shorten the domain.

For example, you may forgo the namespace in the Issuer URI like so:

domain_template: "{{.Name}}.{{.Domain}}"

Caution

By leaving out the namespace in your domain template, application routes might
conflict if there are multiple AuthServers with the same name but in different

Tanzu Application Platform v1.5

VMware by Broadcom 947



Spring Boot 3 based Workloads and ClientRegistration
resources
If you run a Workload based on Spring Boot 3 or use Spring Security OAuth2 Client 3 library in
conjunction with ResourceClaims, you must configure your ClientRegistration resource to use
either of the following client authentication methods:

client_secret_basic (default)

client_secret_post

The existing post and basic values do not work with Spring Boot 3 based Workloads with Spring
Cloud Bindings and are deprecated.

Overview of Default roles for Tanzu Application Platform
Tanzu Application Platform (commonly known as TAP) v1.5 includes:

Six default roles to help you set up permissions for users and service accounts within a
namespace on a cluster that runs one of the Tanzu Application Platform profiles.

A Tanzu CLI RBAC (role-based access control) plug-in for role binding. For more
information, see Bind a user or group to a default role.

Documentation for integrating with your existing identity management solution.

Default roles
Four roles are for users:

app-editor

app-viewer

app-operator

service-operator

Two roles are for service accounts associated with the Tanzu Supply Chain:

workload

deliverable

The default roles provide an opinionated starting point for the most common permissions that users
need when using Tanzu Application Platform. However, as described in the Kubernetes
documentation about RBAC, you can create customized roles and permissions that better meet
your needs. Aggregated cluster roles are used to build VMware Tanzu Application Platform default
roles.

Cluster admins must be careful when creating Roles or ClusterRoles. When changing roles or
adding new roles that carry one of the labels used by the default roles, the roles are automatically
updated to the aggregation state. It can lead to unintentional changes in functions and permissions
to all users.

The default roles are installed with every Tanzu Application Platform profile except for view. For an
overview of the different roles and their permissions, see Role Descriptions.

Working with roles using the RBAC CLI plug-in

namespaces.

Tanzu Application Platform v1.5

VMware by Broadcom 948

https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/


For more information about working with roles, see Bind a user or group to a default role.

Disclaimer

Tanzu Application Platform GUI does not make use of the described roles. Instead, it provides the
user with view access for each cluster.

Overview of Default roles for Tanzu Application Platform

Tanzu Application Platform (commonly known as TAP) v1.5 includes:

Six default roles to help you set up permissions for users and service accounts within a
namespace on a cluster that runs one of the Tanzu Application Platform profiles.

A Tanzu CLI RBAC (role-based access control) plug-in for role binding. For more
information, see Bind a user or group to a default role.

Documentation for integrating with your existing identity management solution.

Default roles

Four roles are for users:

app-editor

app-viewer

app-operator

service-operator

Two roles are for service accounts associated with the Tanzu Supply Chain:

workload

deliverable

The default roles provide an opinionated starting point for the most common permissions that users
need when using Tanzu Application Platform. However, as described in the Kubernetes
documentation about RBAC, you can create customized roles and permissions that better meet
your needs. Aggregated cluster roles are used to build VMware Tanzu Application Platform default
roles.

Cluster admins must be careful when creating Roles or ClusterRoles. When changing roles or
adding new roles that carry one of the labels used by the default roles, the roles are automatically
updated to the aggregation state. It can lead to unintentional changes in functions and permissions
to all users.

The default roles are installed with every Tanzu Application Platform profile except for view. For an
overview of the different roles and their permissions, see Role Descriptions.

Working with roles using the RBAC CLI plug-in

For more information about working with roles, see Bind a user or group to a default role.

Disclaimer

Tanzu Application Platform GUI does not make use of the described roles. Instead, it provides the
user with view access for each cluster.

Tanzu Application Platform v1.5

VMware by Broadcom 949

https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/


Set up authentication for your Tanzu Application Platform
deployment

There are multiple ways to set up authentication for your Tanzu Application Platform (commonly
known as TAP) deployment. You can manage authentication at the infrastructure level with your
Kubernetes provider, such as Tanzu Kubernetes Grid, EKS, AKS, or GKE.

VMware recommends Pinniped for integrating your identity management into Tanzu Application
Platform on multicloud. It provides many supported integrations for widely used identity providers.
To use Pinniped, see Installing Pinniped on Tanzu Application Platform and Log in by using
Pinniped.

See Integrating Azure Active Directory for Azure Active Directory Integration.

Tanzu Kubernetes Grid

For Tanzu Kubernetes Grid clusters, Pinniped is the default identity solution and is installed as a
core package. For more information, see Core Packages and Enable Identity Management in an
Existing Deployment in the Tanzu Kubernetes Grid documentation.

Set up authentication for your Tanzu Application Platform
deployment
There are multiple ways to set up authentication for your Tanzu Application Platform (commonly
known as TAP) deployment. You can manage authentication at the infrastructure level with your
Kubernetes provider, such as Tanzu Kubernetes Grid, EKS, AKS, or GKE.

VMware recommends Pinniped for integrating your identity management into Tanzu Application
Platform on multicloud. It provides many supported integrations for widely used identity providers.
To use Pinniped, see Installing Pinniped on Tanzu Application Platform and Log in by using
Pinniped.

See Integrating Azure Active Directory for Azure Active Directory Integration.

Tanzu Kubernetes Grid
For Tanzu Kubernetes Grid clusters, Pinniped is the default identity solution and is installed as a
core package. For more information, see Core Packages and Enable Identity Management in an
Existing Deployment in the Tanzu Kubernetes Grid documentation.

Install Pinniped on Tanzu Application Platform
Pinniped is used to support authentication on Tanzu Application Platform (commonly known as
TAP). This topic tells you how to install Pinniped on a single cluster of Tanzu Application Platform.

Use this topic to learn how to deploy two Pinniped components into the cluster:

Note

This topic only provides an example of one possible installation method for Pinniped
on Tanzu Application Platform by using the default Contour ingress controler
included in the platform. See Pinniped documentation for more information about
the specific installation method that suits your environment.

Tanzu Application Platform v1.5

VMware by Broadcom 950

https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/2/about-tkg/packages-index.html#auto
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/2.4/tkg-deploy-mc/mgmt-iam-configure-id-mgmt.html
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/2/about-tkg/packages-index.html#auto
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/2.4/tkg-deploy-mc/mgmt-iam-configure-id-mgmt.html
https://pinniped.dev/
https://pinniped.dev/docs/howto/


Pinniped Supervisor: An OIDC server which allows users to authenticate with an external
identity provider (IDP). It hosts an API for the concierge component to fulfill authentication
requests.

Pinniped Concierge: A credential exchange API that takes a credential from an identity
source, for example, Pinniped Supervisor, proprietary IDP, as input. The Pinniped Concierge
authenticates the user by using the credential, and returns another credential that is
parsable by the host Kubernetes cluster or by an impersonation proxy that acts on behalf of
the user.

Prerequisites

Meet these prerequisites:

Install the package certmanager. This is included in Tanzu Application Platform.

Install the package contour. This is included in Tanzu Application Platform.

Create a workspace directory to function as your workspace.

Environment planning

If you run Tanzu Application Platform on a single cluster, both Pinniped Supervisor and Pinniped
Concierge are installed to this cluster.

When running a multicluster setup, you must decide which cluster to deploy the Supervisor onto.
Furthermore, every cluster must have the Concierge deployed. Pinniped Supervisor runs as a
central component that is consumed by multiple Pinniped Concierge instances. As a result,
Pinniped Supervisor must be deployed to a single cluster that meets the prerequisites. You can
deploy Pinniped Supervisor to the View Cluster of your Tanzu Application Platform, because it is a
central single instance cluster. For more information, see Overview of multicluster Tanzu
Application Platform.

You must deploy the Pinniped Concierge to every cluster that you want to enable authentication
for, including the View Cluster itself.

Tanzu Application Platform v1.5

VMware by Broadcom 951



See the following diagram for a possible deployment model:

For more information about the Pinniped architecture and deployment model, see Pinniped
documentation.

Install Pinniped Supervisor by using Let’s Encrypt

Follow these steps to install pinniped-supervisor:

1. Switch tooling to the desired cluster.

2. Create the necessary certificate files.

3. Create the Ingress resources.

4. Create the pinniped-supervisor configuration.

5. Apply these resources to the cluster.

Create Certificates (letsencrypt or cert-manager)

Choose a fully qualified domain name (FQDN) that can resolve to the Contour instance in the
tanzu-system-ingress namespace. The FQDN pinniped-supervisor.example.com is used in the
following sections.

Create a ClusterIssuer for letsencrypt and a TLS certificate resource for Pinniped Supervisor by
creating the following resources and saving them into workspace/pinniped-

Tanzu Application Platform v1.5

VMware by Broadcom 952

https://pinniped.dev/docs/background/architecture/


supervisor/certificates.yaml:

---

apiVersion: cert-manager.io/v1

kind: ClusterIssuer

metadata:

  name: letsencrypt-staging

  namespace: cert-manager

spec:

  acme:

    email: "EMAIL"

    privateKeySecretRef:

      name: letsencrypt-staging

    server: https://acme-staging-v02.api.letsencrypt.org/directory

    solvers:

    - http01:

        ingress:

          class: contour

---

apiVersion: cert-manager.io/v1

kind: Certificate

metadata:

  name: pinniped-supervisor-cert

  namespace: pinniped-supervisor

spec:

  secretName: pinniped-supervisor-tls-cert

  dnsNames:

  - "DNS-NAME"

  issuerRef:

    name: letsencrypt-staging

    kind: ClusterIssuer

Where:

EMAIL is the user email address for letsencrypt. For example, your-mail@example.com

DNS-NAME is the domain in which the pinniped-supervisor is published. For example,
pinniped-supervisor.example.com

Create Ingress resources

Create a Service and Ingress resource to make the pinniped-supervisor accessible from outside
the cluster.

To do so, create the following resources and save them into workspace/pinniped-
supervisor/ingress.yaml:

---

apiVersion: v1

kind: Service

metadata:

  name: pinniped-supervisor

  namespace: pinniped-supervisor

spec:

  ports:

  - name: pinniped-supervisor

    port: 8443

    protocol: TCP

    targetPort: 8443

  selector:

    app: pinniped-supervisor

---

apiVersion: projectcontour.io/v1

Tanzu Application Platform v1.5

VMware by Broadcom 953



kind: HTTPProxy

metadata:

  name: pinniped-supervisor

  namespace: pinniped-supervisor

spec:

  virtualhost:

    fqdn: "DNS-NAME"

    tls:

      passthrough: true

  routes:

  - services:

    - name: pinniped-supervisor

      port: 8443

Where:

DNS-NAME is the domain in which the pinniped-supervisor is published. For example,
pinniped-supervisor.example.com

tls.passthrough: true specifies that the TLS connection is forwarded to and terminated in
the supervisor pod.

Create the pinniped-supervisor configuration

Create a FederationDomain to link the concierge to the supervisor instance and configure an
OIDCIdentityProvider to connect the supervisor to your OIDC Provider. The following example
uses auth0 as the OIDCIdentityProvider. For more information about how to configure different
identity providers, including OKTA, GitLab, OpenLDAP, Dex, Microsoft AD and more, see Pinniped
documentation.

To create the pinniped-supervisor configuration, create the following resources and save them
into workspace/pinniped-supervisor/oidc_identity_provider.yaml:

apiVersion: idp.supervisor.pinniped.dev/v1alpha1

kind: OIDCIdentityProvider

metadata:

  namespace: pinniped-supervisor

  name: auth0

spec:

  # Specify the upstream issuer URL associated with your auth0 application.

  issuer: https://"APPLICATION-SUBDOMAIN".auth0.com/

  # Specify how to form authorization requests. 

  authorizationConfig:

    additionalScopes: ["openid", "email"]

    allowPasswordGrant: false

  # Specify how claims are mapped to Kubernetes identities. This varies by provider.

  claims:

    username: email

    groups: groups

  # Specify the name of the Kubernetes Secret that contains your

  # application's client credentials (created as follows).

  client:

    secretName: auth0-client-credentials

---

apiVersion: v1

kind: Secret

metadata:

  namespace: pinniped-supervisor

  name: auth0-client-credentials

type: secrets.pinniped.dev/oidc-client

Tanzu Application Platform v1.5

VMware by Broadcom 954

https://pinniped.dev/docs/howto/


stringData:

  clientID: "AUTH0-CLIENT-ID"

  clientSecret: "AUTH0-CLIENT-SECRET"

---

apiVersion: config.supervisor.pinniped.dev/v1alpha1

kind: FederationDomain

metadata:

  name: pinniped-supervisor-federation-domain

  namespace: pinniped-supervisor

spec:

  issuer: "DNS-NAME"

  tls:

    secretName: pinniped-supervisor-tls-cert

Where:

APPLICATION-SUBDOMAIN is the application specific subdomain that is assigned after the
application registration.

AUTH0-CLIENT-ID and AUTH0-CLIENT-SECRET are the credentials retrieved from the
application registration.

DNS-NAME is the domain in which the pinniped-supervisor is published. For example,
pinniped-supervisor.example.com

Apply the resources

After creating the resource files, you can install them into the cluster. Follow these steps to deploy
them as a kapp application:

1. Install the pinniped-supervisor by running:

kapp deploy -y --app pinniped-supervisor -f pinniped-supervisor -f https://get.

pinniped.dev/v0.22.0/install-pinniped-supervisor.yaml

2. Get the external IP address of Ingress by running:

kubectl -n tanzu-system-ingress get svc/envoy -o jsonpath='{.status.loadBalance

r.ingress[0].ip}'

3. If not already covered by the Tanzu Application Platform wildcard DNS entry, add an entry
to the DNS system to bind the external IP address with.

Switch to production issuer (letsencrypt or cert-manager)

Follow these steps to switch to a letsencrypt production issuer so the generated TLS certificate is
recognized as valid by web browsers and clients:

1. Edit the ClusterIssuer for letsencrypt and add TLS certificate resource for pinniped-
supervisor by creating or updating the following resources and saving them into
workspace/pinniped-supervisor/certificates.yaml:

Note

To keep the security patches up to date, you must install the most recent
version of Pinniped. See Vmware Tanzu Pinniped Releases in GitHub for
more information.

Tanzu Application Platform v1.5

VMware by Broadcom 955

https://carvel.dev/kapp/
https://github.com/vmware-tanzu/pinniped/releases


---

apiVersion: cert-manager.io/v1

kind: ClusterIssuer

metadata:

  name: letsencrypt-prod

  namespace: cert-manager

spec:

  acme:

    server: https://acme-v02.api.letsencrypt.org/directory

    email: "EMAIL"

    privateKeySecretRef:

      name: letsencrypt-prod

    solvers:

    - http01:

        ingress:

          class: contour

---

apiVersion: cert-manager.io/v1

kind: Certificate

metadata:

  name: pinniped-supervisor-cert

  namespace: pinniped-supervisor

spec:

  secretName: pinniped-supervisor-tls-cert

  dnsNames:

  - "DNS-NAME"

  issuerRef:

    name: letsencrypt-prod

    kind: ClusterIssuer

Where:

EMAIL is the user email address for letsencrypt. For example, your-
mail@example.com

DNS-NAME is the domain in which the pinniped-supervisor is published. For
example, pinniped-supervisor.example.com

2. Create or update the pinniped-supervisor kapp application:

kapp deploy -y --app pinniped-supervisor -f pinniped-supervisor -f https://get.

pinniped.dev/v0.22.0/install-pinniped-supervisor.yaml

Install Pinniped Supervisor Private CA

Follow these steps to install pinniped-supervisor:

1. Switch tooling to the desired cluster.

2. Create the necessary certificate files.

3. Create the Ingress resources.

4. Create the pinniped-supervisor configuration.

5. Apply these resources to the cluster.

Create Certificate Secret

Choose a fully qualified domain name (FQDN) that can resolve to the Contour instance in the
tanzu-system-ingress namespace. Create a certificate by using a CA that the clients trust. This
FQDN can be under the ingress_domain in the TAP values file, or a dedicated DNS entry. The
FQDN pinniped-supervisor.example.com is used in the following sections.

Tanzu Application Platform v1.5

VMware by Broadcom 956



After the certificate files are available, they must be encoded to base64 format in a single-line
layout. For example, you can encode the certificate file my.crt by running:

cat my.crt | base64 -w 0

Create the following resource and save it into workspace/pinniped-supervisor/ingress.yaml:

---

apiVersion: v1

kind: Secret

metadata:

  name: pinniped-supervisor-tls-cert

  namespace: pinniped-supervisor

type: kubernetes.io/tls

data:

  tls.crt: PRIVATE-KEY

  tls.key: PUBLIC-KEY

Where:

PRIVATE-KEY is the base64 encoded public key.

PUBLIC-KEY is the base64 encoded public key.

Create Ingress resources

Create a Service and Ingress resource to make the pinniped-supervisor accessible from outside
the cluster.

To do so, create the following resources and save them into workspace/pinniped-
supervisor/ingress.yaml:

---

apiVersion: v1

kind: Service

metadata:

  name: pinniped-supervisor

  namespace: pinniped-supervisor

spec:

  ports:

  - name: pinniped-supervisor

    port: 8443

    protocol: TCP

    targetPort: 8080

  selector:

    app: pinniped-supervisor

---

apiVersion: projectcontour.io/v1

kind: HTTPProxy

metadata:

  name: pinniped-supervisor

  namespace: pinniped-supervisor

spec:

  virtualhost:

    fqdn: "DNS-NAME"

    tls:

      passthrough: true

  routes:

  - services:

    - name: pinniped-supervisor

      port: 8443

Where:

Tanzu Application Platform v1.5

VMware by Broadcom 957



DNS-NAME is the domain in which the pinniped-supervisor is published. For example,
pinniped-supervisor.example.com

tls.passthrough: true specifies that the TLS connection is forwarded to and terminated in
the supervisor pod.

Create the pinniped-supervisor configuration

Create a FederationDomain to link the concierge to the supervisor instance and configure an
OIDCIdentityProvider to connect the supervisor to your OIDC Provider. The following example
uses auth0 as the OIDCIdentityProvider. For more information about how to configure different
identity providers, including OKTA, GitLab, OpenLDAP, Dex, Microsoft AD and more, see Pinniped
documentation.

To create the pinniped-supervisor configuration, create the following resources and save them
into workspace/pinniped-supervisor/oidc_identity_provider.yaml:

apiVersion: idp.supervisor.pinniped.dev/v1alpha1

kind: OIDCIdentityProvider

metadata:

  namespace: pinniped-supervisor

  name: auth0

spec:

  # Specify the upstream issuer URL associated with your auth0 application.

  issuer: https://"APPLICATION-SUBDOMAIN".auth0.com/

  # Specify how to form authorization requests. 

  authorizationConfig:

    additionalScopes: ["openid", "email"]

    allowPasswordGrant: false

  # Specify how claims are mapped to Kubernetes identities. This varies by provider.

  claims:

    username: email

    groups: groups

  # Specify the name of the Kubernetes Secret that contains your

  # application's client credentials (created as follows).

  client:

    secretName: auth0-client-credentials

---

apiVersion: v1

kind: Secret

metadata:

  namespace: pinniped-supervisor

  name: auth0-client-credentials

type: secrets.pinniped.dev/oidc-client

stringData:

  clientID: "AUTH0-CLIENT-ID"

  clientSecret: "AUTH0-CLIENT-SECRET"

---

apiVersion: config.supervisor.pinniped.dev/v1alpha1

kind: FederationDomain

metadata:

  name: pinniped-supervisor-federation-domain

  namespace: pinniped-supervisor

spec:

  issuer: "DNS-NAME"

  tls:

    secretName: pinniped-supervisor-tls-cert

Where:

Tanzu Application Platform v1.5

VMware by Broadcom 958

https://pinniped.dev/docs/howto/


APPLICATION-SUBDOMAIN is the application specific subdomain that is assigned after the
application registration.

AUTH0-CLIENT-ID and AUTH0-CLIENT-SECRET are the credentials retrieved from the
application registration.

DNS-NAME is the domain in which the pinniped-supervisor is published. For example,
pinniped-supervisor.example.com

Apply the resources

After creating the resource files, you can install them into the cluster. Follow these steps to deploy
them as a kapp application:

1. Install the supervisor by running:

kapp deploy -y --app pinniped-supervisor -f pinniped-supervisor -f https://get.

pinniped.dev/v0.22.0/install-pinniped-supervisor.yaml

2. Get the external IP address of Ingress by running:

kubectl -n tanzu-system-ingress get svc/envoy -o jsonpath='{.status.loadBalance

r.ingress[0].ip}'

3. If not already covered by a Tanzu Application Platform wildcard DNS entry, add an entry to
the DNS system to bind the external IP address with.

Install Pinniped Concierge

To install Pinniped Concierge:

1. Switch tooling to the desired cluster.

2. Deploy the Pinniped Concierge by running:

kapp deploy -y --app pinniped-concierge \

  -f https://get.pinniped.dev/v0.22.0/install-pinniped-concierge.yaml

3. Get the CA certificate of the supervisor by running the following command against the
cluster running the pinniped-supervisor:

kubectl get secret pinniped-supervisor-tls-cert -n pinniped-supervisor -o 'go-t

emplate={{index .data "tls.crt"}}'

4. Create the following resource to workspace/pinniped-concierge/jwt_authenticator.yaml:

Note

To keep the security patches up to date, you must install the most recent
version of Pinniped. See Vmware Tanzu Pinniped Releases in GitHub for
more information.

Note

The tls.crt contains the entire certificate chain including the CA certificate
for letsencrypt generated certificates.

Tanzu Application Platform v1.5

VMware by Broadcom 959

https://carvel.dev/kapp/
https://github.com/vmware-tanzu/pinniped/releases


---

apiVersion: authentication.concierge.pinniped.dev/v1alpha1

kind: JWTAuthenticator

metadata:

  name: pinniped-jwt-authenticator

spec:

  issuer: "DNS-NAME"

  audience: concierge

  tls:

    certificateAuthorityData: "CA-DATA"

If you use the letsencrypt production issuer, you can omit the tls section:

---

apiVersion: authentication.concierge.pinniped.dev/v1alpha1

kind: JWTAuthenticator

metadata:

  name: pinniped-jwt-authenticator

spec:

  issuer: "DNS-NAME"

  audience: concierge

Where:

DNS-NAME is the domain in which the pinniped-supervisor is published. For
example, pinniped-supervisor.example.com

CA-DATA is the public key of the signing CA or the public key of the Pinniped
httpproxy certificate.

5. Deploy the resource by running:

kapp deploy -y --app pinniped-concierge-jwt --into-ns pinniped-concierge -f pin

niped-concierge/jwt_authenticator.yaml

Log in to the cluster
See Log in by using Pinniped.

Integrate your Azure Active Directory
This topic tells you how to integrate your Azure Active Directory (commonly known as AD).

Integrate Azure AD with a new or existing AKS without
Pinniped

Perform the following procedures to integrate Azure AD with a new or existing AKS without
Pinniped.

Prerequisites

Meet these prerequisites:

Download and install the Azure CLI

Download and install the Tanzu CLI

Download and install the Tanzu CLI RBAC plug-in

Set up a platform operator

Tanzu Application Platform v1.5

VMware by Broadcom 960

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli


To set up a platform operator:

1. Navigate to the Azure Active Directory Overview page.

2. Select Groups under the Manage side menu.

3. Identify or create an admin group for the AKS cluster.

4. Retrieve the object ID of the admin group.

5. Take one of the following actions.

Create an AKS Cluster with Azure AD enabled by running:

az group create --name RESOURCE-GROUP --location LOCATION

az aks create -g RESOURCE-GROUP -n MANAGED-CLUSTER --enable-aad --aad-adm

in-group-object-ids OBJECT-ID

Where:

RESOURCE-GROUP is your resource group

LOCATION is your location

MANAGED-CLUSTER is your managed cluster

OBJECT-ID is the object ID

Enable Azure AD integration on the existing cluster by running:

az aks update -g RESOURCE-GROUP -n MANAGED-CLUSTER --enable-aad --aad-adm

in-group-object-ids OBJECT-ID

Where:

RESOURCE-GROUP is your resource group

MANAGED-CLUSTER is your managed cluster

OBJECT-ID is the object ID

6. Add Platform Operators to the admin group.

7. Log in to the AKS cluster by running:

az aks get-credentials --resource-group RESOURCE-GROUP --name MANAGED-CLUSTER -

-admin

Where:

RESOURCE-GROUP is your resource group

MANAGED-CLUSTER is your managed cluster

Set up a Tanzu Application Platform default role group

To set up a Tanzu Application Platform default role group:

1. Navigate to the Azure Active Directory Overview page.

2. Select Groups under the Manage side menu.

3. Identify or create a list of groups in the Azure AD for each of the Tanzu Application Platform
default roles (app-operator, app-viewer, and app-editor).

4. Retrieve the corresponding object IDs for each group.

5. Add users to the groups accordingly.

Tanzu Application Platform v1.5

VMware by Broadcom 961



6. For each object ID retrieved earlier, use the Tanzu CLI RBAC plug-in to bind the object id
group to a role by running:

tanzu rbac binding add -g OBJECT-ID -r TAP-ROLE -n NAMESPACE

Where:

OBJECT-ID is the object ID

TAP-ROLE is the Tanzu Application Platform role

NAMESPACE is the namespace

Set up kubeconfig

To set up kubeconfig:

1. Set up the kubeconfig to point to the AKS cluster by running:

az aks get-credentials --resource-group RESOURCE-GROUP --name MANAGED-CLUSTER

Where:

RESOURCE-GROUP is your resource group

MANAGED-CLUSTER is your managed cluster

2. Run any kubectl command to trigger a browser login. For example:

kubectl get pods

Integrate Azure AD with Pinniped

Perform the following procedures to set up Azure AD with Pinniped.

Prerequisites

Meet these prerequisites:

Download and install the Tanzu CLI

Download and install the Tanzu CLI RBAC plug-in

Install Pinniped supervisor and concierge on the cluster without setting up the
OIDCIdentityProvider and secret.

Set up the Azure AD app

To set up the Azure AD app:

1. Navigate to the Azure Active Directory Overview page.

2. Select App registrations under the Manage side menu.

3. Select New Registration.

4. Enter the name of the application. For example, gke-pinniped-supervisor-app.

5. Under Supported account types, select Accounts in this organisational directory only
(VMware, Inc. only - Single tenant).

6. Under Redirect URI, select Web as the platform.

7. Enter the call URI to the supervisor. For example, https://pinniped-
supervisor.example.com/callback.

Tanzu Application Platform v1.5

VMware by Broadcom 962



8. Select Register to create the app.

9. If not already redirected, navigate to the app settings page.

10. Select Token configuration under the Manage menu.

11. Select Add groups claim > All groups (includes distribution lists but not groups
assigned to the application).

12. Select Add to create the group claim.

13. Select the app name in the breadcrumb navigation to return to the app settings page.

14. Select the Endpoints tab and record the value in the OpenID Connect metadata
document field.

15. Return to the app settings page.

16. Record the Application (client) ID.

17. Select Certificates & secrets under the Manage menu.

18. Create a new client secret and record this value.

19. Add the following YAML to oidc_identity_provider.yaml.

---

apiVersion: idp.supervisor.pinniped.dev/v1alpha1

kind: OIDCIdentityProvider

metadata:

  namespace: pinniped-supervisor

  name: azure-ad

spec:

  # Specify the upstream issuer URL.

  issuer: ISSUER-URL

  authorizationConfig:

    additionalScopes: ["openid", "email", "profile"]

    allowPasswordGrant: false

  # Specify how claims are mapped to Kubernetes identities.

  claims:

    username: preferred_username

    groups: groups

  # Specify the name of the Kubernetes Secret that contains your

  # application's client credentials (created below).

  client:

    secretName: azure-ad-client-credentials

---

apiVersion: v1

kind: Secret

metadata:

  namespace: pinniped-supervisor

  name: azure-ad-client-credentials

type: secrets.pinniped.dev/oidc-client

stringData:

  clientID: "AZURE-AD-CLIENT-ID"

  clientSecret: "AZURE-AD-CLIENT-SECRET"

Where:

ISSUER-URL is the OpenID Connect metadata document URL you recorded earlier,
but without the trailing /.well-known/openid-configuration

AZURE-AD-CLIENT-ID is the Azure AD client ID you recorded earlier

AZURE-AD-CLIENT-SECRET is the Azure AD client secret you recorded earlier

Tanzu Application Platform v1.5

VMware by Broadcom 963



20. Apply your changes from the kubectl CLI by running:

kubectl apply workspace/pinniped-supervisor/oidc_identity_provider.yaml

Set up the Tanzu Application Platform default role group

To set up a Tanzu Application Platform default role group:

1. Navigate to the Azure Active Directory Overview page.

2. Select Groups under the Manage side menu.

3. Identify or create a list of groups in the Azure AD for each of the Tanzu Application Platform
default roles (app-operator, app-viewer, and app-editor).

4. Retrieve the corresponding object IDs for each group.

5. Add users to the groups accordingly.

6. For each object ID retrieved earlier, use the Tanzu CLI RBAC plug-in to bind the object id
group to a role by running:

tanzu rbac binding add -g OBJECT-ID -r TAP-ROLE -n NAMESPACE

Where:

OBJECT-ID is the object ID

TAP-ROLE is the Tanzu Application Platform role

NAMESPACE is the namespace

Set up kubeconfig

Follow these steps to set up kubeconfig:

1. Set up kubeconfig using the Pinniped CLI by running:

pinniped get kubeconfig --kubeconfig-context YOUR-KUBECONFIG-CONTEXT > /tmp/con

cierge-kubeconfig

Where YOUR-KUBECONFIG-CONTEXT is your your kubeconfig context.

2. Run any kubectl command to trigger a browser login. For example:

export KUBECONFIG="/tmp/concierge-kubeconfig"

kubectl get pods

Role descriptions for Tanzu Application Platform

This topic is a high level overview of each default role. For more information about the specific
permissions of each role for every Tanzu Application Platform (commonly known as TAP)
component, see Detailed role permissions for Tanzu Application Platform.

app-editor

The app-editor role can create, edit, and delete a Tanzu workload or deliverable.

Assign this role to a user, for example an app developer, to give permissions to create running
workloads on the cluster. This allows them to deploy their applications. This role allows the user to:

Tanzu Application Platform v1.5

VMware by Broadcom 964



View, create, update, or delete a Tanzu workload or deliverable. This includes viewing the
logs of the pods spun up through the Tanzu workload and tracing a commit through the
build process.

Download the images associated with their Tanzu workload so they can test images locally,
or create a Tanzu workload from it instead of starting from source code in a repository.

View and use Application Accelerator templates.

View, create, update, or delete a Tanzu workload binding with an existing service.

app-viewer

The app-viewer role cannot create, edit, or delete a Tanzu workload or deliverable.

This role has a subset of the permissions of the app-editor role. Use it if you do not want a user to
create, edit, or delete a Tanzu workload or deliverable, but they need to view its status. For
example, give these permissions to an application developer that requires visibility into the state of
their Tanzu workload or micro-service, but does not have the permissions to deploy it, such as to
production or staging environments. This role cannot bind services with a Tanzu workload.

app-operator

The app-operator role can create, edit, and delete supply chain resources.

Assign this role to a user who defines the activities within a supply chain or the path to production.
For example, building, testing, or scanning. This role can view, create, update, or delete Tanzu
supply chain resources, including Tanzu Build Service control plane resources such as:

kpack’s builder, stack, and store

Scanning resources

Grype

The metadata store

If this person must create Tanzu workloads, you can bind the user with the app-editor role as well.

service-operator

The service-operator role can create, edit, and delete service instances, service instance classes,
and resource claim policies to permit the claimability of service instances across one or more
namespaces.

Assign this role to a user who is responsible for the life cycle (create, edit and delete) of service
instances. This role can also view resource claims across all namespaces as well as query for the list
of claimable service instances in a given namespace.

workload

This role provides the service account associated with the Tanzu workload the permissions needed
to execute the activities in the supply chain. This role is for a "robot” versus a user.

deliverable

This role gives the delivery “robot” service account the permissions needed to create running
workloads. This role is not for a user.

Tanzu Application Platform v1.5

VMware by Broadcom 965



Role descriptions for Tanzu Application Platform

This topic is a high level overview of each default role. For more information about the specific
permissions of each role for every Tanzu Application Platform (commonly known as TAP)
component, see Detailed role permissions for Tanzu Application Platform.

app-editor

The app-editor role can create, edit, and delete a Tanzu workload or deliverable.

Assign this role to a user, for example an app developer, to give permissions to create running
workloads on the cluster. This allows them to deploy their applications. This role allows the user to:

View, create, update, or delete a Tanzu workload or deliverable. This includes viewing the
logs of the pods spun up through the Tanzu workload and tracing a commit through the
build process.

Download the images associated with their Tanzu workload so they can test images locally,
or create a Tanzu workload from it instead of starting from source code in a repository.

View and use Application Accelerator templates.

View, create, update, or delete a Tanzu workload binding with an existing service.

app-viewer

The app-viewer role cannot create, edit, or delete a Tanzu workload or deliverable.

This role has a subset of the permissions of the app-editor role. Use it if you do not want a user to
create, edit, or delete a Tanzu workload or deliverable, but they need to view its status. For
example, give these permissions to an application developer that requires visibility into the state of
their Tanzu workload or micro-service, but does not have the permissions to deploy it, such as to
production or staging environments. This role cannot bind services with a Tanzu workload.

app-operator

The app-operator role can create, edit, and delete supply chain resources.

Assign this role to a user who defines the activities within a supply chain or the path to production.
For example, building, testing, or scanning. This role can view, create, update, or delete Tanzu
supply chain resources, including Tanzu Build Service control plane resources such as:

kpack’s builder, stack, and store

Scanning resources

Grype

The metadata store

If this person must create Tanzu workloads, you can bind the user with the app-editor role as well.

service-operator

The service-operator role can create, edit, and delete service instances, service instance classes,
and resource claim policies to permit the claimability of service instances across one or more
namespaces.

Assign this role to a user who is responsible for the life cycle (create, edit and delete) of service
instances. This role can also view resource claims across all namespaces as well as query for the list
of claimable service instances in a given namespace.

Tanzu Application Platform v1.5

VMware by Broadcom 966



workload

This role provides the service account associated with the Tanzu workload the permissions needed
to execute the activities in the supply chain. This role is for a "robot” versus a user.

deliverable

This role gives the delivery “robot” service account the permissions needed to create running
workloads. This role is not for a user.

Detailed role permissions for Tanzu Application Platform

This topic tells you the specific permissions of each role for every Tanzu Application Platform
(commonly known as TAP) component.

Native Kubernetes Resources

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

- apiGroups: [""]

  resources: ["configmaps","endpoints","events","persistentvolumeclaims","pods","pods/

log","resourcequotas","services"]

  verbs: ["get","list","watch"]

- apiGroups: ["apps"]

  resources: ["deployments","replicasets","statefulsets"]

  verbs: ["get","list","watch"]

- apiGroups: ["batch"]

  resources: ["cronjobs","jobs"]

  verbs: ["get","list","watch"]

- apiGroups: ["events.k8s.io"]

  resources: ["events"]

  verbs: ["get","list","watch"]

- apiGroups: ["networking.k8s.io"]

  resources: ["ingresses"]

  verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-operator: "true"

- apiGroups: [""]

  resources: ["configmaps","secrets"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

App Accelerator

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

- apiGroups: ["accelerator.apps.tanzu.vmware.com"]

  resources: ["accelerators"]

  verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-operator: "true"

- apiGroups: ["accelerator.apps.tanzu.vmware.com"]

  resources: ["accelerators"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

Tanzu Application Platform v1.5

VMware by Broadcom 967



Cartographer

apps.tanzu.vmware.com/aggregate-to-app-editor: "true"

- apiGroups: ["carto.run"]

  resources: ["deliverables","workloads"]

  verbs: ["create","patch","update","delete","deletecollection"]

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

- apiGroups: ["carto.run"]

  resources: ["deliverables","runnables","workloads"]

  verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access:
"true"

- apiGroups: ["carto.run"]

  resources: ["clusterconfigtemplates","clusterconfigtemplates","clusterdeliveries","c

lusterdeploymenttemplates","clusterimagetemplates","clusterruntemplates","clustersourc

etemplates","clustersupplychains","clustertemplates"]

  verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access

- apiGroups: ["carto.run"]

  resources: ["clusterconfigtemplates","clusterconfigtemplates","clusterdeliveries","c

lusterdeploymenttemplates","clusterimagetemplates","clusterruntemplates","clustersourc

etemplates","clustersupplychains","clustertemplates"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

Cloud Native Runtimes

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

- apiGroups: ["apps"]

  resources: ["deployments","replicasets","statefulsets"]

  verbs: ["get","list","watch"]

- apiGroups: ["batch"]

  resources: ["cronjobs","jobs"]

  verbs: ["get","list","watch"]

- apiGroups: ["networking.k8s.io"]

  resources: ["ingresses"]

  verbs: ["get","list","watch"]

- apiGroups: ["eventing.knative.dev"]

  resources: ["brokers","triggers"]

  verbs: ["get","list","watch"]

- apiGroups: ["serving.knative.dev"]

  resources: ["configurations","services","revisions","routes"]

  verbs: ["get","list","watch"]

- apiGroups: ["sources.*"]

  resources: ["(many)"]

  verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-operator: "true"

Tanzu Application Platform v1.5

VMware by Broadcom 968



- apiGroups: ["eventing.knative.dev"]

  resources: ["brokers"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

- apiGroups: ["sources.*"]

  resources: ["(many)"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

Convention Service

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

- apiGroups: ["conventions.carto.run"]

  resources: ["podintents"]

  verbs: ["get","list","watch"]

- apiGroups: ["conventions.apps.tanzu.vmware.com"]

  resources: ["podintents"]

  verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access:
"true"

- apiGroups: ["conventions.carto.run"]

  resources: ["clusterpodconventions"]

  verbs: ["get","list","watch"]

- apiGroups: ["conventions.apps.tanzu.vmware.com"]

  resources: ["clusterpodconventions"]

  verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access

- apiGroups: ["conventions.carto.run"]

  resources: ["clusterpodconventions"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

- apiGroups: ["conventions.apps.tanzu.vmware.com"]

  resources: ["clusterpodconventions"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

Developer Conventions

apps.tanzu.vmware.com/aggregate-to-app-editor: "true"

- apiGroups: [""]

  resources: ["pods"]

  verbs: ["get","list","watch"]

- apiGroups: [""]

  resources: ["pods/exec","pods/portforward"]

  verbs: ["get","list","create"]

- apiGroups: ["carto.run"]

  resources: ["workloads"]

  verbs: ["get","list","watch"]

OOTB Templates

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

Tanzu Application Platform v1.5

VMware by Broadcom 969



- apiGroups: [""]

  resources: ["configmaps"]

  verbs: ["get","list","watch"]

- apiGroups: ["carto.run"]

  resources: ["deliverables","runnables"]

  verbs: ["get","list","watch"]

- apiGroups: ["conventions.carto.run"]

  resources: ["podintents"]

- apiGroups: ["conventions.apps.tanzu.vmware.com"]

  resources: ["podintents"]

  verbs: ["get","list","watch"]

- apiGroups: ["kappctrl.k14s.io"]

  resources: ["apps"]

  verbs: ["get","list","watch"]

- apiGroups: ["kpack.io"]

  resources: ["images"]

  verbs: ["get","list","watch"]

- apiGroups: ["scanning.apps.tanzu.vmware.com"]

  resources: ["imagescans","sourcescans"]

  verbs: ["get","list","watch"]

- apiGroups: ["servicebinding.io"]

  resources: ["servicebindings"]

  verbs: ["get","list","watch"]

- apiGroups: ["services.apps.tanzu.vmware.com"]

  resources: ["resourceclaims"]

  verbs: ["get","list","watch"]

- apiGroups: ["serving.knative.dev"]

  resources: ["services"]

  verbs: ["get","list","watch"]

- apiGroups: ["source.apps.tanzu.vmware.com"]

  resources: ["imagerepositories","mavenartifacts"]

  verbs: ["get","list","watch"]

- apiGroups: ["source.toolkit.fluxcd.io"]

  resources: ["gitrepositories"]

  verbs: ["get","list","watch"]

- apiGroups: ["tekton.dev"]

  resources: ["pipelineruns","taskruns"]

  verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-workload: "true"

- apiGroups: ["carto.run"]

  resources: ["deliverables","runnables"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

- apiGroups: ["conventions.carto.run"]

  resources: ["podintents"]

- apiGroups: ["conventions.apps.tanzu.vmware.com"]

  resources: ["podintents"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

- apiGroups: ["kpack.io"]

  resources: ["images"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

- apiGroups: ["scanning.apps.tanzu.vmware.com"]

  resources: ["imagescans","sourcescans"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

- apiGroups: ["source.apps.tanzu.vmware.com"]

  resources: ["imagerepositories","mavenartifacts"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

- apiGroups: ["source.toolkit.fluxcd.io"]

  resources: ["gitrepositories"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

- apiGroups: ["tekton.dev"]

  resources: ["pipelineruns","taskruns"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

Tanzu Application Platform v1.5

VMware by Broadcom 970



apps.tanzu.vmware.com/aggregate-to-deliverable: "true"

- apiGroups: [""]

  resources: ["configmaps"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

- apiGroups: ["kappctrl.k14s.io"]

  resources: ["apps"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

- apiGroups: ["servicebinding.io"]

  resources: ["servicebindings"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

- apiGroups: ["services.apps.tanzu.vmware.com"]

  resources: ["resourceclaims"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

- apiGroups: ["serving.knative.dev"]

  resources: ["services"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

- apiGroups: ["source.apps.tanzu.vmware.com"]

  resources: ["imagerepositories","mavenartifacts"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

- apiGroups: ["source.toolkit.fluxcd.io"]

  resources: ["gitrepositories"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

Service Bindings

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

- apiGroups: ["servicebinding.io"]

  resources: ["servicebindings"]

  verbs: ["get","list","watch"]

Services Toolkit

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

- apiGroups: ["services.apps.tanzu.vmware.com"]

  resources: ["resourceclaims"]

  verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access:
"true"

- apiGroups: ["services.apps.tanzu.vmware.com"]

  resources: ["clusterresources"]

  verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-operator: "true"

- apiGroups: ["services.apps.tanzu.vmware.com"]

  resources: ["resourceclaims"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access

- apiGroups: ["services.apps.tanzu.vmware.com"]

  resources: ["clusterresources"]

Tanzu Application Platform v1.5

VMware by Broadcom 971



  verbs: ["get","list","watch"]

Source Controller

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

- apiGroups: ["source.apps.tanzu.vmware.com"]

  resources: ["imagerepositories","mavenartifacts"]

  verbs: ["get","list","watch"]

Supply Chain Security Tools — Scan

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

- apiGroups: ["scanning.apps.tanzu.vmware.com"]

  resources: ["imagescans","scanpolicies","scantemplates","sourcescans"]

  verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-operator: "true"

- apiGroups: ["scanning.apps.tanzu.vmware.com"]

  resources: ["scanpolicies","scantemplates"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

Tanzu Build Service

apps.tanzu.vmware.com/aggregate-to-app-editor: "true"

- apiGroups: ["kpack.io"]

  resources: ["builds"]

  verbs: ["patch"]

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

- apiGroups: ["kpack.io"]

  resources: ["builds","builders","images"]

  verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access:
"true"

- apiGroups: ["kpack.io"]

  resources: ["clusterbuilders","clusterstacks","clusterstores"]

  verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-operator: "true"

- apiGroups: ["kpack.io"]

  resources: ["builders"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access

Tanzu Application Platform v1.5

VMware by Broadcom 972



- apiGroups: ["kpack.io"]

  resources: ["clusterbuilders","clusterstacks","clusterstores"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

Tekton

apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

- apiGroups: ["tekton.dev"]

  resources: ["pipelineresources","pipelineruns","pipelines","taskruns","tasks"]

  verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access:
"true"

- apiGroups: ["tekton.dev"]

  resources: ["clustertasks"]

  verbs: ["get","list","watch"]

apps.tanzu.vmware.com/aggregate-to-app-operator: "true"

- apiGroups: ["tekton.dev"]

  resources: ["pipelineresources","pipelines","tasks"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access

- apiGroups: ["tekton.dev"]

  resources: ["clustertasks"]

  verbs: ["get","list","watch","create","patch","update","delete","deletecollection"]

Bind a user or group to a default role

You can choose one of the following two approaches to bind a user or group to a default role:

Use the Tanzu Application Platform RBAC CLI plug-in, which only supports binding Tanzu
Application Platform (commonly known as TAP) default roles.

Use Kubernetes role-based access control (RBAC) role binding.

VMware recommends that you use the Tanzu Application Platform RBAC CLI plug-in. This CLI
plug-in simplifies the process by binding the cluster-scoped resource permissions at the same time
as the namespace-scoped resource permissions, where applicable, for each default role. The
following sections cover the Tanzu Application Platform RBAC CLI plug-in.

Prerequisites

1. Download the latest Tanzu CLI version.

2. Download the Tanzu Application Platform RBAC CLI plug-in tar.gz file from Tanzu
Network.

3. Ensure you have admin access to the cluster.

4. Ensure you have configured an authentication solution for the cluster. You can use
Pinniped or the authentication service native to your Kubernetes distribution.

Tanzu Application Platform v1.5

VMware by Broadcom 973

https://network.tanzu.vmware.com/products/tap-auth
https://pinniped.dev/


Install the Tanzu Application Platform RBAC CLI plug-in

Follow these steps to install the Tanzu Application Platform RBAC CLI plug-in:

1. Untar the tar.gz file:

tar -zxvf NAME-OF-THE-TAR

2. Install the Tanzu Application Platform RBAC CLI plug-in locally on your operating system:

macOS

tanzu plugin install rbac --local darwin-amd64

Linux

tanzu plugin install rbac --local linux-amd64

Windows

tanzu plugin install rbac --local windows-amd64

(Optional) Use a different kubeconfig location

You can use a different kubeconfig location by running:

tanzu rbac --kubeconfig PATH-OF-KUBECONFIG binding add --user USER --role ROLE --names

pace NAMESPACE

For example:

$ tanzu rbac --kubeconfig /tmp/pinniped_kubeconfig.yaml binding add --user username@vm

ware.com --role app-editor --namespace user-ns

Add the specified user or group to a role

Add a user or group to a role by running:

tanzu rbac binding add --user USER --role ROLE --namespace NAMESPACE

Caution

The Tanzu Application Platform RBAC CLI plug-in is currently in beta and is
intended for evaluation and test purposes only.

Note

The environment variable KUBECONFIG is not implemented. You must use the --
kubeconfig flag to enter a different location. Otherwise the default ~/.kube/config
is used.

Tanzu Application Platform v1.5

VMware by Broadcom 974



tanzu rbac binding add --group GROUP --role ROLE --namespace NAMESPACE

For example:

$ tanzu rbac binding add --user username@vmware.com --role app-editor --namespace user

-ns

Get a list of users and groups from a role

Get a list of users and groups from a role by running:

tanzu rbac binding get --role ROLE --namespace NAMESPACE

For example:

$ tanzu rbac binding get --role app-editor --namespace user-ns

Remove the specified user or group from a role

Remove a user or group from a role by running:

tanzu rbac binding delete --user USER --role ROLE --namespace NAMESPACE

tanzu rbac binding delete --group GROUP --role ROLE --namespace NAMESPACE

For example:

$ tanzu rbac binding delete --user username@vmware.com --role app-editor --namespace u

ser-ns

Error logs

Authorization error logs might include the following errors:

Permission Denied:

The current user does not have permissions to create or edit rolebinding objects. Use an
admin account when using the RBAC CLI.

Error: rolebindings.rbac.authorization.k8s.io "app-operator" is forbidden: User 

"<subject>" cannot get resource "rolebindings" in API group "rbac.authorizatio

n.k8s.io" in the namespace "namespace"

Usage:

tanzu rbac binding add [flags]

Flags:

-g, --group string User Group

-h, --help help for add

-n, --namespace string Namespace

-r, --role string Role

-u, --user string User Name

Global Flags:

--kubeconfig string kubeconfig file

Already Bound Error:

Adding a subject, user or group, to a role that already has the subject produces the
following error:

Tanzu Application Platform v1.5

VMware by Broadcom 975



Error: User ‘test-user’ is already bound to 'app-operator' role

Usage:

tanzu rbac binding add [flags]

Flags:

-g, --group string User Group

-h, --help help for add

-n, --namespace string Namespace

-r, --role string Role

-u, --user string User Name

Global Flags:

--kubeconfig string kubeconfig file

Could Not Find Error:

When removing a subject from a role, this error can occur in the following two scenarios:

1. The rolebinding does not exist.

2. The subject does not exist in the rolebinding.

Ensure the rolebinding exists and that the subject name is correctly spelled.

Error: Did not find User 'test-user' in RoleBinding 'app-operator'

Usage:

tanzu rbac binding delete [flags]

Flags:

-g, --group string User Group

-h, --help help for delete

-n, --namespace string Namespace

-r, --role string Role

-u, --user string User Name

Global Flags:

--kubeconfig string kubeconfig file

Object Has Been Modified Error:

This error is a race condition caused by running multiple RBAC CLI actions at the same
time. Rerunning the RBAC CLI might fix the issue.

Removed User 'test-user' from RoleBinding 'app-operator'

Removed User 'test-user' from ClusterRoleBinding 'app-operator-cluster-access'

Error: Operation cannot be fulfilled on rolebindings.rbac.authorization.k8s.io 

"app-operator": the object has been modified; please apply your changes to the 

latest version and try again

Usage:

tanzu rbac binding delete [flags]

Flags:

-g, --group string User Group

-h, --help help for delete

-n, --namespace string Namespace

-r, --role string Role

-u, --user string User Name

Troubleshooting
1. Get a list of permissions for a user or a group:

export NAME=SUBJECT-NAME

kubectl get rolebindings,clusterrolebindings -A -o json | jq -r ".items[] | sel

Tanzu Application Platform v1.5

VMware by Broadcom 976



ect(.subjects[]?.name == \"${NAME}\") | .roleRef.name" | xargs -n1 kubectl desc

ribe clusterroles

2. Get a list of user or group for a specific role:

tanzu rbac binding get --role ROLE --namespace NAMESPACE

Log in to Tanzu Application Platform by using Pinniped

This topic tells you how to log in to your Tanzu Application Platform (commonly known as TAP) by
using Pinniped.

As a prerequisite, the administrator must provide users access to resources by using rolebindings.
It can be done with the tanzu rbac plug-in. For more information, see Bind a user or group to a
default role.

To log in to your cluster by using Pinniped, follow these steps:

1. Install the Pinniped CLI.

For more information, see Pinniped documentation.

2. Generate and distribute kubeconfig to users.

3. Login with the provided kubeconfig.

Download the Pinniped CLI

You must use a Pinniped CLI version that matches the installed Concierge or Supervisor. Use one
of the following links to download the Pinniped CLI version 0.22.0:

Mac OS with AMD64

Linux with AMD64

Windows with AMD64

You must install the command-line tool on your $PATH, such as /usr/local/bin on macOS or Linux.
You must also mark the file as executable.

Generate and distribute kubeconfig to users

As an administrator, you can generate the kubeconfig by using the following command:

pinniped get kubeconfig --kubeconfig-context <your-kubeconfig-context>  > /tmp/concier

ge-kubeconfig

Distribute this kubeconfig to your users so they can login by using pinniped.

Login with the provided kubeconfig
As a user of the cluster, you need the kubeconfig provided by your admin and the Pinniped CLI
installed on your local machine to log in. Logging in is required to request information from the

Important

The latest compatible version of Pinniped CLI is required not only for the
administrator to generate the kubeconfig, but also for the user to log in with
the provided configuration.

Tanzu Application Platform v1.5

VMware by Broadcom 977

https://pinniped.dev/docs/howto/install-cli/
https://get.pinniped.dev/v0.22.0/pinniped-cli-darwin-amd64
https://get.pinniped.dev/v0.22.0/pinniped-cli-linux-amd64
https://get.pinniped.dev/v0.22.0/pinniped-cli-windows-amd64.exe


cluster. You can execute any resource request with kubectl to enter the authentication flow. For
example:

kubectl --kubeconfig /tmp/concierge-kubeconfig get pods

If you do not want to explicitly use --kubeconfig in every command, you can also export an
environment variable to set the kubeconfig path in your shell session.

export KUBECONFIG="/tmp/concierge-kubeconfig"

kubectl get pods

This command enables pinniped to print a URL for you to visit in the browser. You can then log in,
copy the authentication code and paste it back to the terminal. After the login succeeds, you either
see the resources or a message indicating that you have no permission to access the resources.

If you use a Windows machine, the command referenced in the generated kubeconfig might not
work. In this case, you must change the path under user.exec.command in the kubeconfig to point
to the install path of the Pinniped CLI.

Additional resources about Tanzu Application Platform
authentication and authorization

Use this topic to learn additional information about authentication and authorization for Tanzu
Application Platform (commonly known as TAP).

See Default roles for Tanzu Application Platform overview to get started.

Install

Default roles are released as part of Tanzu Application Platform. Alternatively, you can also install
default roles independently. See Install default roles independently for more information.

Additional resources about Tanzu Application Platform
authentication and authorization

Use this topic to learn additional information about authentication and authorization for Tanzu
Application Platform (commonly known as TAP).

See Default roles for Tanzu Application Platform overview to get started.

Install

Default roles are released as part of Tanzu Application Platform. Alternatively, you can also install
default roles independently. See Install default roles independently for more information.

Note

The tanzu rbac CLI plug-in requires a separate installation.

Note

The tanzu rbac CLI plug-in requires a separate installation.

Tanzu Application Platform v1.5

VMware by Broadcom 978



Install default roles independently for your Tanzu
Application Platform

This topic tells you how to install default roles for Tanzu Application Platform (commonly known as
TAP) without deploying a TAP profile.

Prerequisites

Before installing default roles, complete all prerequisites to install Tanzu Application Platform. For
more information, see Prerequisites.

Install

To install default roles:

1. List version information for the package by running:

tanzu package available list tap-auth.tanzu.vmware.com --namespace tap-install

For example:

$ tanzu package available list tap-auth.tanzu.vmware.com --namespace tap-instal

l

- Retrieving package versions for tap-auth.tanzu.vmware.com...

  NAME                         VERSION       RELEASED-AT

  tap-auth.tanzu.vmware.com    1.0.1

2. Install the package by running:

tanzu package install tap-auth \

  --package tap-auth.tanzu.vmware.com \

  --version VERSION \

  --namespace tap-install

Where:

VERSION is the package version number. For example, 1.0.1.

For example:

$ tanzu package install tap-auth \

  --package tap-auth.tanzu.vmware.com \

  --version 1.0.1 \

  --namespace tap-install

Overview of Bitnami Services
Bitnami Services provides a of backing services for Tanzu Application Platform (commonly known as
TAP). The services are MySQL, PostgreSQL, RabbitMQ, and Redis, all of which are backed by the
corresponding Bitnami Helm Chart.

Note

Follow the steps in this topic if you do not want to use a profile to install default
roles. For more information about profiles, see Components and installation profiles.

Tanzu Application Platform v1.5

VMware by Broadcom 979



Through integration with Crossplane and Services Toolkit, these four services are immediately
ready for apps teams to consume, with no additional setup or configuration required from ops
teams. This makes it incredibly quick and easy to get started working with services on Tanzu
Application Platform.

Getting started

If this is your first time working with Bitnami Services on Tanzu Application Platform, you can start
with the tutorial Working with Bitnami Services. Otherwise, see the how-to guides and reference
material.

Overview of Bitnami Services

Bitnami Services provides a of backing services for Tanzu Application Platform (commonly known as
TAP). The services are MySQL, PostgreSQL, RabbitMQ, and Redis, all of which are backed by the
corresponding Bitnami Helm Chart.

Through integration with Crossplane and Services Toolkit, these four services are immediately
ready for apps teams to consume, with no additional setup or configuration required from ops
teams. This makes it incredibly quick and easy to get started working with services on Tanzu
Application Platform.

Getting started
If this is your first time working with Bitnami Services on Tanzu Application Platform, you can start
with the tutorial Working with Bitnami Services. Otherwise, see the how-to guides and reference
material.

Install Bitnami Services
This topic tells you how to install Bitnami Services from the Tanzu Application Platform (commonly
known as TAP) package repository.

Note

The Bitnami Services package provides unmanaged services that are not designed
to support long lived instances. Therefore, there is no supported path to upgrade
individual instances. Bitnami Services are instantiated using the configuration and
version of the package at creation time and so upgrading the Bitnami Services
package has no effect on existing instances. VMware discourages changing the
compositionUpdatePolicy and compositionRevisionRef on the individual composite
resources (XRs) because this might cause unintended side effects.

Note

The Bitnami Services package provides unmanaged services that are not designed
to support long lived instances. Therefore, there is no supported path to upgrade
individual instances. Bitnami Services are instantiated using the configuration and
version of the package at creation time and so upgrading the Bitnami Services
package has no effect on existing instances. VMware discourages changing the
compositionUpdatePolicy and compositionRevisionRef on the individual composite
resources (XRs) because this might cause unintended side effects.

Tanzu Application Platform v1.5

VMware by Broadcom 980



Prerequisites
Before installing Bitnami Services, you must:

Fulfill all prerequisites for installing Tanzu Application Platform

Install Crossplane

Install Services Toolkit

Install Bitnami Services
To install Bitnami Services:

1. See what versions of Bitnami Services are available to install by running:

tanzu package available list -n tap-install bitnami.services.tanzu.vmware.com

For example:

$ tanzu package available list -n tap-install bitnami.services.tanzu.vmware.com

  NAME                               VERSION           RELEASED-AT

  bitnami.services.tanzu.vmware.com  0.1.0             2023-03-10 14:35:15 +000

0 UTC

2. Install Bitnami Services by running:

tanzu package install bitnami-services \

  --package bitnami.services.tanzu.vmware.com \

  --version VERSION-NUMBER \

  --namespace tap-install

Where VERSION-NUMBER is the Bitnami Services version you want to install. For example,
0.1.0.

3. Verify that the package installed by running:

tanzu package installed get bitnami-services -n tap-install

In the output, confirm that the STATUS value is Reconcile succeeded.

For example:

$ tanzu package installed get bitnami-services -n tap-install

NAMESPACE:          tap-install

NAME:               bitnami-services

PACKAGE-NAME:       bitnami.services.tanzu.vmware.com

PACKAGE-VERSION:    0.1.0

STATUS:             Reconcile succeeded

CONDITIONS:         - type: ReconcileSucceeded

  status: "True"

  reason: ""

  message: ""

Note

Follow the steps in this topic if you do not want to use a profile to install Bitnami
Services. For more information about profiles, see Components and installation
profiles.

Tanzu Application Platform v1.5

VMware by Broadcom 981



Bitnami Services tutorials

This section contains tutorials for how to use Bitnami Services.

In this section:

Working with Bitnami Services

Working with Bitnami Services

In this tutorial you learn how application operators can discover, claim, and bind services to
application workloads.

Tanzu Application Platform has four services that are available in the Bitnami Services package.
These are MySQL, PostgreSQL, RabbitMQ, and Redis. The corresponding Bitnami Helm Chart
backs each of these services.

About this tutorial

Target user role: Application Operator
Complexity: Basic
Estimated time: 15 minutes
Topics covered: Classes, Claims, Bitnami,
Learning outcomes: An understanding of how work with the standard Bitnami services

Prerequisites

To follow this tutorial, you must have:

Access to a Tanzu Application Platform cluster v1.5.0 and later

The Tanzu services CLI plug-in v0.6.0 and later

Concepts

The following diagram provides an overview of the elements you will use during this tutorial and
how they all fit together.

In this diagram:

There are only two elements that require user input, which are creating a ClassClaim and
creating a Workload. The workload is configured to refer to the class claim`.

Tanzu Application Platform v1.5

VMware by Broadcom 982



The life cycles of the ClassClaim and the Workload are separate. This allows you to update
one without affecting the other.

The dynamic provisioning process is simplified. This is intentional because Application
Operators and Developers do not need to know about the inner workings and
configurations of service instances.

Procedure

The following steps explain how to work with Bitnami Services.

Step 1: Discover services

Application teams can discover the range of services on offer to them by running:

tanzu service class list

The expected output is similar to the following:

  NAME                  DESCRIPTION

  mysql-unmanaged       MySQL by Bitnami

  postgresql-unmanaged  PostgreSQL by Bitnami

  rabbitmq-unmanaged    RabbitMQ by Bitnami

  redis-unmanaged       Redis by Bitnami

Here the output shows four classes. These are the four Bitnami Services available in the Bitnami
services package. You can see from the names and descriptions that they are all unmanaged
services. This implies that the resulting service instances run on cluster, that is, they are not a
managed service running in the cloud. Other classes might be listed here as well.

As an Application Operator, you review the classes on offer and choose one that meets your
requirements.

You can learn and discover more about a class by running:

tanzu service class get postgresql-unmanaged

Example output:

NAME:           postgresql-unmanaged

DESCRIPTION:    PostgreSQL by Bitnami

READY:          true

PARAMETERS:

  KEY        DESCRIPTION                                                  TYPE     DEF

AULT  REQUIRED

  storageGB  The desired storage capacity of the database, in Gigabytes.  integer  1        

false

The output shows the name and a short description for the class, its current status, and the
parameters. The parameters represent the set of configuration options that are available to
application teams.

The postgresql-unmanaged class here has one parameter, which is storageGB. You can also see that
it is not required to pass this parameter when creating a claim for the class, in which case the
default value of 1 is used.

Step 2: Claim services

Tanzu Application Platform v1.5

VMware by Broadcom 983



In this example, you have an application workload that requires a PostgreSQL database to function
correctly. You can claim the PostgreSQL Bitnami Service to obtain such a database.

To create the claim in a namespace named dev-team-1, you must first create the namespace by
running:

kubectl create namespace dev-team-1

You can use the tanzu service class-claim create command to create a claim for the
postgresql-unmanaged class, then bind your application workload to the resulting claim. In this
example, you are also choosing to override the default value of 1 for the storageGB parameter,
setting it instead to 3. You can override any of the options as you see fit.

tanzu service class-claim create psql-1 --class postgresql-unmanaged --parameter stora

geGB=3 -n dev-team-1

Example output:

Creating claim 'psql-1' in namespace 'dev-team-1'.

Please run `tanzu service class-claim get psql-1 --namespace dev-team-1` to see the pr

ogress of create.

As the output states, you can then confirm the status of the claim by using the tanzu service
class-claim get command as follows:

tanzu service class-claim get psql-1 --namespace dev-team-1

Example output:

Name: psql-1

Namespace: dev-team-1

Claim Reference: services.apps.tanzu.vmware.com/v1alpha1:ClassClaim:psql-1

Class Reference:

  Name: postgresql-unmanaged

Parameters:

  storageGB: 3

Status:

  Ready: True

  Claimed Resource:

    Name: 7974379c-7b4d-41c3-af57-f4f1ae08c65d

    Namespace: dev-team-1

    Group:

    Version: v1

    Kind: Secret

It might take a moment or two before the claim reports Ready: True. After the claim is ready, you
then have a successful claim for a PostgreSQL database configured to your needs with 3 GB of
storage.

Step 3: Bind the claim to a workload
After creating the claim, you can bind it to one or more of your application workloads.

Important

If binding to more than one application workload then all application workloads must
exist in the same namespace. This is a known limitation. For more information, see

Tanzu Application Platform v1.5

VMware by Broadcom 984



1. Find the reference for the claim by running the following command.

tanzu service class-claim get psql-1

The reference is in the output under the heading Claim Reference.

2. Bind the claim to a workload of your choice by pass a reference to the claim to the --
service-ref flag of the tanzu apps workload create command. For example:

tanzu apps workload create my-workload --image my-registry/my-app-image --servi

ce-ref db=services.apps.tanzu.vmware.com/v1alpha1:ClassClaim:psql-1

You must pass the claim reference with a corresponding name that follows the format --
service-ref db=services.apps.tanzu.vmware.com/v1alpha1:ClassClaim:psql-1. The db=
prefix to this example reference is an arbitrary name for the reference.

Bitnami Services how-to guides

This section contains how-to guides for Bitnami Services.

In this section:

Configure private registry and VMware Tanzu Application Catalog integration for Bitnami
Services

Obtain credentials for VMware Tanzu Application Catalog integration

Troubleshooting and known limitations

Configure private registry and VMware Tanzu Application
Catalog integration for Bitnami Services

This topic tells you how to integrate Bitnami Services with private registries or with VMware Tanzu
Application Catalog. You can configure this globally for all services, or on a per-service basis.

Prerequisites

Before you integrate Bitnami Services with a private registry or VMware Tanzu Application Catalog,
you must:

Have your Helm Chart repository URL in the format oci://REGISTRY-HOSTNAME/REPOSITORY-
PATH/charts.

Have the credentials to access the private registry.

For how to obtain both of these prerequisites for VMware Tanzu Application Catalog integration,
see Obtain credentials for VMware Tanzu Application Catalog integration.

Procedure

1. Create two Kubernetes Secrets, one with credentials to pull Helm charts and the other
with credentials to pull images. The following examples put these in the default
namespace, but you can choose to place them in any namespace you prefer.

Cannot claim and bind to the same service instance from across multiple
namespaces.

Tanzu Application Platform v1.5

VMware by Broadcom 985



$ kubectl create secret generic tac-chart-pull \

  -n default \

  --from-literal=username='USERNAME' \

  --from-literal=password='TOKEN'

$ kubectl create secret docker-registry tac-container-pull \

  -n default \

  --docker-server='REGISTRY-HOSTNAME' \

  --docker-username='USERNAME' \

  --docker-password='TOKEN'

2. Apply the configuration either to all Bitnami services or to one specific service.

Apply configuration to all Bitnami services:

1. Add the following to your tap-values.yaml file:

bitnami_services:

  globals:

    helm_chart:

      repo: oci://REGISTRY-HOSTNAME/REPOSITORY-PATH/charts # Updat

e this value.

      chart_pull_secret_ref:

        name: tac-chart-pull

        namespace: default

      container_pull_secret_ref:

        name: tac-container-pull

        namespace: default

2. Update Tanzu Application Platform by running:

tanzu package installed update tap -p tap.tanzu.vmware.com --value

s-file tap-values.yaml -n tap-install

Apply configuration to one specific Bitnami service:

1. Add the following to your tap-values.yaml file:

bitnami_services:

  mysql: # choose from 'mysql', 'postgresql', 'rabbitmq' and 'redi

s'

    helm_chart:

      repo: oci://REGISTRY-HOSTNAME/REPOSITORY-PATH/charts # Updat

e this value.

      chart_pull_secret_ref:

        name: tac-chart-pull

        namespace: default

      container_pull_secret_ref:

        name: tac-container-pull

        namespace: default

2. Update Tanzu Application Platform by running:

tanzu package installed update tap -p tap.tanzu.vmware.com --value

s-file tap-values.yaml -n tap-install

Known issue
As of Tanzu Application Platform v1.5.0 there is a known issue that occurs if you try to configure
private registry integration for the Bitnami services after having already created a claim for one or
more of the Bitnami services using the default configuration. The issue is that the updated private

Tanzu Application Platform v1.5

VMware by Broadcom 986



registry configuration does not appear to take effect. This is due to caching behavior in the system
which is not currently accounted for during configuration updates.

Workaround

There is a temporary workaround to this issue, which is to delete the provider-helm-* pods in the
crossplane-system namespace and wait for new pods to come back online after having applied
updated registry configuration.

Obtain credentials for VMware Tanzu Application Catalog
integration with Bitnami Services

This topic tells you how to obtain credentials for VMware Tanzu Application Catalog to use when
following the procedure in Configure private registry and VMware Tanzu Application Catalog
integration for Bitnami Services.

Prerequisites

Before obtaining credentials, you must have a VMware Tanzu Application Catalog instance that can
create access tokens from within the VMware Tanzu Application Catalog UI.

Obtain the Helm chart repository for VMware Tanzu
Application Catalog

1. In VMware Tanzu Application Catalog, navigate to the Applications side tab.

2. Under Filter your catalog, search for Helm Charts in your catalog, for example, MySQL, and
click Details for one of the charts you found:

3. Take note of the repository shown under For Helm CLI >= 3.7.0. You must include the
oci:// prefix as shown on the page:

Tanzu Application Platform v1.5

VMware by Broadcom 987



Obtain pull credentials for VMware Tanzu Application
Catalog

1. In VMware Tanzu Application Catalog, navigate to the Registries side tab:

2. Click on the registry that contains your Helm Charts and container images and record the
Registry URL.

3. Click the Registry Credentials tab.

4. Click Generate New Credentials.

5. Record the user name and token you are presented with.

You can now take the repository, user name, and token and use it to configure VMware Tanzu
Application Catalog integration with the Bitnami services by following the steps in Configure Private
Registry and VMware Tanzu Application Catalog Integration for Bitnami Services.

Troubleshoot Bitnami Services

This topic explains how you troubleshoot issues related to Bitnami Services on Tanzu Application
Platform (commonly known as TAP).

Tanzu Application Platform v1.5

VMware by Broadcom 988



Private registry or VMware Tanzu Application Catalog
configuration does not take effect

Symptom:

If you configure private registry integration for the Bitnami services after creating a claim for a
Bitnami service using the default configuration, the updated private registry configuration does not
appear to take effect.

Cause:

This is due to caching behavior in the system that is not accounted for during configuration
updates.

Solution:

Delete the provider-helm-* pods in the crossplane-system namespace and wait for new pods to
come back online after having applied the updated registry configuration.

Bitnami Services reference

This section provides reference documentation for Bitnami Services.

In this section:

Dependencies

Package values

Dependencies for Bitnami Services

Bitnami Services is an integration package, which means that it provides configuration for other
Tanzu Application Platform (commonly known as TAP) components. As such, it has a number of
dependencies that must be met before you can use it.

The dependencies for Bitnami Services are:

Crossplane and the two providers provider-helm and provider-kubernetes: See Install
Crossplane

Services Toolkit: See Install Services Toolkit

These dependencies are met if you install Tanzu Application Platform using the full, iterate, or run
profiles.

Package values for Bitnami Services

This topic lists the keys and values that you can use to configure the behavior of the Bitnami
Services package. You can apply configuration globally to all services using the globals key, or on a
per-service basis using the mysql, postgresql, rabbitmq and redis keys.

If you are applying configuration to Tanzu Application Platform through the use of profiles and the
tap-values.yaml, all configuration must exist under the bitnami_services top-level key.

For example:

bitnami_services:

  globals:

    helm_chart:

      # If you choose to use a custom Helm Chart repo, it's possible you'll also need 

to configure specific versions

      # for each Chart as well, see example configuration below for postgresql.

Tanzu Application Platform v1.5

VMware by Broadcom 989



      repo: https://charts.mycompany.example.com

  mysql:

    enabled: false

  postgresql:

    helm_chart:

      version: 12.2.6

    instance_class:

      name: company-redis

      description: My company postgres

  rabbitmq:

    instance_class:

      name: company-redis

      description: My company rabbit

  redis:

    instance_class:

      name: company-redis

      description: My company redis

Globals

The following table lists configuration that applies to all services.

KEY DEFAULT TYPE DESCRIPTION

globals.create_clu
sterroles

true boole
an

Optional: Specifies whether to create default ClusterRoles that
grant claim permissions to all Tanzu Application Platform
Application operators.

globals.helm_char
t.chart_pull_secret
_ref.name

"" string Name of the pull secret. Can be overridden by individual services.

globals.helm_char
t.chart_pull_secret
_ref.namespace

"" string Namespace of the pull secret. Can be overridden by individual
services.

globals.helm_char
t.container_pull_s
ecret_ref.name

"" string Name of the secret. Can be overridden by individual services.

globals.helm_char
t.container_pull_s
ecret_ref.namespa
ce

"" string Namespace of the secret. Can be overridden by individual services.

globals.helm_char
t.repo

https://charts.

bitnami.com/bit

nami

string Optional: Repository hosting the Helm charts used to provision the
instances of all services. Can be overridden by individual services.

globals.shared_na
mespace

"" string Optional: Name of the namespace that is shared by all provisioned
instances of all services. By default, each instance is provisioned in
its own dedicated namespace. Can be overridden by individual
services.

MySQL

The following table lists configuration that applies to the mysql service.

KEY DEFAULT TYPE DESCRIPTION

mysql.defaults.storage
_size_gb

1 intege
r

Optional: The amount of storage to give each MySQL instance by
default, in Gigabytes.

mysql.enabled true boole
an

Optional: Provide developers an offering for unmanaged MySQL
instances.

Tanzu Application Platform v1.5

VMware by Broadcom 990



KEY DEFAULT TYPE DESCRIPTION

mysql.helm_chart.repo "" string Optional: Repository hosting the Helm chart used to provision
MySQL instances.

mysql.helm_chart.versi
on

9.5.0 string Optional: Version of the Helm chart used to provision MySQL
instances.

mysql.helm_chart.chart
_pull_secret_ref.name

"" string Name of the pull secret.

mysql.helm_chart.chart
_pull_secret_ref.names
pace

"" string Namespace of the pull secret.

mysql.helm_chart.cont
ainer_pull_secret_ref.n
ame

"" string Name of the secret. Can be overridden by individual services.

mysql.helm_chart.cont
ainer_pull_secret_ref.n
amespace

"" string Namespace of the secret. Can be overridden by individual services.

mysql.instance_class.d
escription

MySQL by

Bitnami

string Optional: Description of the ClusterInstanceClass that developers
use to provision and claim MySQL instances.

mysql.instance_class.n
ame

mysql-

unmanaged

string Optional: Name of the ClusterInstanceClass that developers use to
provision and claim MySQL instances.

mysql.shared_namespa
ce

"" string Optional: Name of the namespace that is shared by all provisioned
MySQL instances. By default, each instance is provisioned in its own
dedicated namespace.

PostgreSQL

The following table lists configuration that applies to the postgresql service.

KEY DEFAULT TYPE DESCRIPTION

postgresql.enabled true boole
an

Optional: Provide developers an offering for unmanaged
PostgreSQL instances.

postgresql.helm_chart.
chart_pull_secret_ref.n
ame

"" string Name of the pull secret.

postgresql.helm_chart.
chart_pull_secret_ref.n
amespace

"" string Namespace of the pull secret.

postgresql.helm_chart.
container_pull_secret_
ref.name

"" string Name of the secret. Can be overridden by individual services.

postgresql.helm_chart.
container_pull_secret_
ref.namespace

"" string Namespace of the secret. Can be overridden by individual
services.

postgresql.helm_chart.
repo

"" string Optional: Repository hosting the Helm chart used to provision
PostgreSQL instances.

postgresql.helm_chart.
version

12.2.0 string Optional: Version of the Helm chart used to provision PostgreSQL
instances.

postgresql.instance_cl
ass.description

PostgreSQL

by Bitnami

string Optional: Description of the ClusterInstanceClass that developers
use to provision and claim PostgreSQL instances.

Tanzu Application Platform v1.5

VMware by Broadcom 991



KEY DEFAULT TYPE DESCRIPTION

postgresql.instance_cl
ass.name

postgresql-

unmanaged

string Optional: Name of the ClusterInstanceClass that developers use to
provision and claim PostgreSQL instances.

postgresql.shared_nam
espace

"" string Optional: Name of the namespace that is shared by all
provisioned PostgreSQL instances. By default, each instance will
be provisioned in its own dedicated namespace.

postgresql.defaults.stor
age_size_gb

1 intege
r

Optional: The amount of storage to give each PostgreSQL
instance by default, in Gigabytes.

RabbitMQ

The following table lists configuration that applies to the rabbitmq service.

KEY DEFAULT TYPE DESCRIPTION

rabbitmq.enabled true boole
an

Optional: Provide developers an offering for unmanaged RabbitMQ
instances

rabbitmq.helm_chart.c
ontainer_pull_secret_r
ef.name

"" string Name of the secret. Can be overridden by individual services.

rabbitmq.helm_chart.c
ontainer_pull_secret_r
ef.namespace

"" string Namespace of the secret. Can be overridden by individual services.

rabbitmq.helm_chart.r
epo

"" string Optional: Repository hosting the Helm chart used to provision
RabbitMQ instances.

rabbitmq.helm_chart.v
ersion

11.10.0 string Optional: Version of the Helm chart used to provision RabbitMQ
instances.

rabbitmq.helm_chart.c
hart_pull_secret_ref.na
me

"" string Name of the pull secret.

rabbitmq.helm_chart.c
hart_pull_secret_ref.na
mespace

"" string Namespace of the pull secret.

rabbitmq.instance_clas
s.description

RabbitMQ by

Bitnami

string Optional: Description of the ClusterInstanceClass that developers
use to provision and claim RabbitMQ instances.

rabbitmq.instance_clas
s.name

rabbitmq-

unmanaged

string Optional: Name of the ClusterInstanceClass that developers use to
provision and claim RabbitMQ instances.

rabbitmq.shared_name
space

"" string Optional: Name of the namespace that is shared by all provisioned
RabbitMQ instances. By default, each instance will be provisioned
in its own dedicated namespace.

rabbitmq.defaults.repli
ca_count

1 intege
r

Optional: The number of replicas to create for each RabbitMQ
instance by default.

rabbitmq.defaults.stora
ge_size_gb

1 intege
r

Optional: The amount of storage to give each RabbitMQ instance
by default, in Gigabytes.

Redis

The following table lists configuration that applies to the redis service.

Tanzu Application Platform v1.5

VMware by Broadcom 992



KEY DEFAULT TYPE DESCRIPTION

redis.instance_class.de
scription

Redis by

Bitnami

string Optional: Description of the ClusterInstanceClass that is used by
developers to provision and claim Redis instances.

redis.instance_class.na
me

redis-

unmanaged

string Optional: Name of the ClusterInstanceClass that is used by
developers to provision and claim Redis instances.

redis.shared_namespa
ce

"" string Optional: Name of the namespace that is shared by all provisioned
Redis instances. By default, each instance will be provisioned in its
own dedicated namespace.

redis.defaults.storage_
size_gb

1 intege
r

Optional: The amount of storage to give each Redis instance by
default, in Gigabytes.

redis.enabled true boole
an

Optional: Provide developers an offering for unmanaged Redis
instances.

redis.helm_chart.chart
_pull_secret_ref.name

"" string Name of the pull secret.

redis.helm_chart.chart
_pull_secret_ref.name
space

"" string Namespace of the pull secret.

redis.helm_chart.conta
iner_pull_secret_ref.n
ame

"" string Name of the secret. Can be overridden by individual services.

redis.helm_chart.conta
iner_pull_secret_ref.n
amespace

"" string Namespace of the secret. Can be overridden by individual services.

redis.helm_chart.repo "" string Optional: Repository hosting the Helm chart used to provision Redis
instances.

redis.helm_chart.versi
on

17.8.0 string Optional: Version of the Helm chart used to provision Redis
instances.

Version matrix for Bitnami Services

This topic provides you with a version matrix for the Bitnami Services package and its open source
components in Tanzu Application Platform v1.5 (commonly known as TAP).

To view this information for another Tanzu Application Platform version, select the version from the
drop-down menu at the top of this page.

The following table has the component versions for the Bitnami Services package.

Component Version

Bitnami Services package 0.1.0

MySQL Chart 9.5.0

PostgreSQL Chart 12.2.0

RabbitMQ Chart 11.10.0

Redis Chart 17.8.0

Note

Tanzu Application Platform patch releases are only added to the table when there is
a change to one or more of the other versions in the table. Otherwise, the

Tanzu Application Platform v1.5

VMware by Broadcom 993



Overview of Cartographer Conventions

This topic describes an overview of Cartographer Conventions and how you can use it with Tanzu
Application Platform.

Overview

Cartographer Conventions provides a means for operators to express their knowledge about how
applications can run on Kubernetes as a convention. Cartographer Conventions supports defining
and applying conventions to pods. It applies these opinions to fleets of developer workloads as they
are deployed to the platform, saving operator and developer time.

The service is composed of two components

convention controller: The convention service’s convention controller provides the
metadata to the convention server and executes the updates to a PodTemplateSpec in
accordance with convention server’s requests.

convention server: The convention server receives and evaluates metadata associated with
a workload and requests updates to the PodTemplateSpec associated with that workload.
You can have one or more convention servers for a single controller instance.

About applying conventions

The convention server uses criteria defined in the convention to discover whether the
configuration of a workload must change. The server receives the OCI metadata from the
convention controller. If the metadata meets the criteria defined by the convention server, the
conventions are applied. A convention can apply to all workloads regardless of metadata.

Applying conventions by using image metadata

You can define conventions to target workloads by using properties of their OCI metadata.

Conventions can use this information to only apply changes to the configuration of workloads when
they match specific criteria. Such as, Spring Boot or .Net apps, or Spring Boot v2.3+. Targeted
conventions can ensure that uniformity across specific workload types deployed on the cluster.

You can use all the metadata details of an image when evaluating workloads. To see the metadata
details, use the Docker CLI command:

 docker image inspect IMAGE`.

Applying conventions without using image metadata

corresponding versions remain the same for each Tanzu Application Platform patch
release.

Note

Depending on how the image was built, metadata might not be available to reliably
identify the image type and match the criteria for a convention server. Images built
with Cloud Native Buildpacks reliably include rich descriptive metadata. Images built
by some other process might not include the same metadata.

Tanzu Application Platform v1.5

VMware by Broadcom 994

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec


Conventions can apply to workloads without targeting build service metadata. Examples of possible
uses of this type of convention include:

appending a logging or metrics sidecar,

adding environment variables, or

adding cached volumes.

These kinds of conventions ensure that infrastructure uniformity exists across workloads deployed
on the cluster while reducing developer toil.

Overview of Cartographer Conventions

This topic describes an overview of Cartographer Conventions and how you can use it with Tanzu
Application Platform.

Overview

Cartographer Conventions provides a means for operators to express their knowledge about how
applications can run on Kubernetes as a convention. Cartographer Conventions supports defining
and applying conventions to pods. It applies these opinions to fleets of developer workloads as they
are deployed to the platform, saving operator and developer time.

The service is composed of two components

convention controller: The convention service’s convention controller provides the
metadata to the convention server and executes the updates to a PodTemplateSpec in
accordance with convention server’s requests.

convention server: The convention server receives and evaluates metadata associated with
a workload and requests updates to the PodTemplateSpec associated with that workload.
You can have one or more convention servers for a single controller instance.

About applying conventions

The convention server uses criteria defined in the convention to discover whether the
configuration of a workload must change. The server receives the OCI metadata from the
convention controller. If the metadata meets the criteria defined by the convention server, the
conventions are applied. A convention can apply to all workloads regardless of metadata.

Applying conventions by using image metadata

You can define conventions to target workloads by using properties of their OCI metadata.

Conventions can use this information to only apply changes to the configuration of workloads when
they match specific criteria. Such as, Spring Boot or .Net apps, or Spring Boot v2.3+. Targeted
conventions can ensure that uniformity across specific workload types deployed on the cluster.

You can use all the metadata details of an image when evaluating workloads. To see the metadata
details, use the Docker CLI command:

Important

Adding a sidecar alone does not make the log or metrics collection work. This
requires having collector agents deployed and accessible from the Kubernetes
cluster, and configuring required access by using role-based access control (RBAC)
policy.

Tanzu Application Platform v1.5

VMware by Broadcom 995

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec


 docker image inspect IMAGE`.

Applying conventions without using image metadata

Conventions can apply to workloads without targeting build service metadata. Examples of possible
uses of this type of convention include:

appending a logging or metrics sidecar,

adding environment variables, or

adding cached volumes.

These kinds of conventions ensure that infrastructure uniformity exists across workloads deployed
on the cluster while reducing developer toil.

Install Cartographer Conventions

Cartographer Conventions is bundled with Supply Chain Choreographer as of the v0.4.0 release.
See Installing Supply Chain Choreographer.

Create conventions with Cartographer Conventions

This topic describes how you can create and deploy custom conventions to the Tanzu Application
Platform by using Cartographer Conventions.

Introduction

Tanzu Application Platform helps developers transform their code into containerized workloads with
a URL. The Supply Chain Choreographer for Tanzu manages this transformation. For more
information, see Supply Chain Choreographer.

Cartographer Conventions is a key component of the supply chain compositions the choreographer
calls into action. Cartographer Conventions enables people in operational roles to efficiently apply
their expertise. They can specify the runtime best practices, policies, and conventions of their
organization to workloads as they are created on the platform. The power of this component
becomes evident when the conventions of an organization are applied consistently, at scale, and
without hindering the velocity of application developers.

Opinions and policies vary from organization to organization. Cartographer Convention supports the
creation of custom conventions to meet the unique operational needs and requirements of an

Note

Depending on how the image was built, metadata might not be available to reliably
identify the image type and match the criteria for a convention server. Images built
with Cloud Native Buildpacks reliably include rich descriptive metadata. Images built
by some other process might not include the same metadata.

Important

Adding a sidecar alone does not make the log or metrics collection work. This
requires having collector agents deployed and accessible from the Kubernetes
cluster, and configuring required access by using role-based access control (RBAC)
policy.

Tanzu Application Platform v1.5

VMware by Broadcom 996



organization.

Before jumping into the details of creating a custom convention, you can view two distinct
components of Cartographer Conventions:

Convention controller

Convention server

Convention server

The convention server is the component that applies a convention already defined on the server.
For a golang example of creating a convention server to add Spring Boot conventions, see spring-
convention-server in GitHub. The resource that structures the request body of the request and
response from the server is the PodConventionContext.

The PodConventionContext is a webhooks.conventions.carto.run/v1alpha1 type that defines the
structure used to communicate internally by the webhook convention server. It does not exist on
the Kubernetes API Server.

PodConventionContext is a wrapper for two types:

PodConventionContextSpec which acts as a wrapper for a PodTemplateSpec and a list of
ImageConfigs provided in the request body of the server.

PodConventionContextStatus which is a status type used to represent the current status of
the context retrieved by the request.

For information about an example PodConventionContext, see PodConventionContext in GitHub.
For information about a Convention server and the structure of these types, see OpenAPI Spec in
GitHub.

How the convention server works

Each convention server can host one or more conventions. The application of each convention by a
convention server are controlled conditionally. The conditional criteria governing the application of
a convention is customizable and are based on the evaluation of a custom Kubernetes resource
called PodIntent. PodIntent is the vehicle by which Cartographer Conventions as a whole delivers
its value.

A PodIntent is created, or updated if already existing, when a workload is run by using a Tanzu
Application Platform supply chain. The custom resource includes both the PodTemplateSpec and
the OCI image metadata associated with a workload. See the Kubernetes documentation. The
conditional criteria for a convention are based on any property or value found in the
PodTemplateSpec or the Open Containers Initiative (OCI) image metadata available in the
PodIntent.

If a convention’s criteria are met, the convention server enriches the PodTemplateSpec in the
PodIntent. The convention server also updates the status section of the PodIntent with the name
of the convention that’s applied. You can figure out after the fact which conventions were applied
to the workload.

To provide flexibility in how conventions are organized, you can deploy multiple convention servers.
Each server can contain a convention or set of conventions focused on a specific class of runtime
modifications, on a specific language framework, and so on. How the conventions are organized,
grouped, and deployed is up to you and the needs of your organization.

Convention servers deployed to the cluster does not take action unless triggered to do so by the
second component of Cartographer Conventions, the Convention service’s controller.

Convention controller

Tanzu Application Platform v1.5

VMware by Broadcom 997

https://github.com/vmware-tanzu/cartographer-conventions/tree/main/samples/spring-convention-server
https://github.com/vmware-tanzu/cartographer-conventions/blob/main/webhook/api/v1alpha1/podconventioncontext_types.go
https://github.com/vmware-tanzu/cartographer-conventions/blob/main/docs/podconventioncontext-sample.yaml
https://github.com/vmware-tanzu/cartographer-conventions/blob/main/api/openapi-spec/conventions-server.yaml
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec


The convention controller is the orchestrator of one or many convention servers deployed to the
cluster. There are resources available on the conventions.carto.run/v1aplha1 API that allow the
controller to carry out its functions. These resources include:

ClusterPodConvention ClusterPodConvention is a resource type that allows the conventions
author to register a webhook server with the controller using its spec.webhook field.

...

spec:

  selectorTarget: PodTemplateSpec # optional field with options, defaults to Po

dTemplateSpec

  selectors: # optional, defaults to match all workloads

  - <metav1.LabelSelector>

  webhook:

    certificate:

      name: sample-cert

      namespace: sample-conventions

    clientConfig:

      <admissionregistrationv1.WebhookClientConfig>

PodIntent

PodIntent is a conventions.carto.run/v1alpha1 resource type that is continuously
reconciled and applies decorations to a workload PodTemplateSpec exposing the enriched
PodTemplateSpec on its status. Whenever the status of the PodIntent is updated, no side
effects are caused on the cluster.

As key types defined on the conventions.carto.run API, the
ClusterPodConventionandPodIntentresources are both present on the Kubernetes API Server
and are queried usingclusterpodconventions.conventions.carto.runfor the former
andpodintents.conventions.carto.run` for the later.

How the convention services’s controller works

When the Supply Chain Choreographer creates or updates a PodIntent for a workload, the
convention controller retrieves the OCI image metadata from the repository containing the
workload’s images and sets it in the PodIntent.

The convention controller then uses a webhook architecture to pass the PodIntent to each
convention server deployed to the cluster. The controller orchestrates the processing of the
PodIntent by the convention servers sequentially, based on the priority value that’s set on the
convention server. For more information, see ClusterPodConvention.

After all convention servers are finished processing a PodIntent for a workload, the convention
controller updates the PodIntent with the latest version of the PodTemplateSpec and sets
PodIntent.status.conditions[].status=True where PodIntent.status.conditions[].type=Ready.
This status change signals the Supply Chain Choreographer that Cartographer Conventions is
finished with its work. The status change also executes whatever steps are waiting in the supply
chain.

Getting started

With this high-level understanding of Cartographer Conventions components, you can create and
deploy a custom convention.

Note

Tanzu Application Platform v1.5

VMware by Broadcom 998



Prerequisites

The following prerequisites must be met before a convention is developed and deployed:

The Kubernetes command line interface tool (kubectl) CLI is installed. For more information,
see the Kubernetes documentation.

Tanzu Application Platform prerequisites are installed. For more information, see
Prerequisites

Tanzu Application Platform components are installed. For more information, see the
Installing the Tanzu CLI.

The default supply chain is installed. Download Supply Chain Security Tools for VMware
Tanzu from Tanzu Network.

Your kubeconfig context is set to the Tanzu Application Platform-enabled cluster:

kubectl config use-context CONTEXT_NAME

You use GitHub to install the ko CLI. See the google/ko GitHub repository. These
instructions use ko to build an image. If there is an existing image or build process, ko is
optional.)

Define convention criteria
The server.go file contains the configuration for the server and the logic the server applies when a
workload matches the defined criteria. For example, adding a Prometheus sidecar to web
applications, or adding a workload-type=spring-boot label to any workload that has metadata,
indicating it is a Spring Boot app.

1. The example server.go configures the ConventionHandler to ingest the webhook requests
from the convention controller. See PodConventionContext. Here the handler must only
deal with the existing PodTemplateSpec and ImageConfig.

...

import (

  corev1 "k8s.io/api/core/v1"

)

...

func ConventionHandler(template *corev1.PodTemplateSpec, images []model.ImageCo

nfig) ([]string, error) {

   // Create custom conventions

}

...

Where:

template is the predefined PodTemplateSpec that the convention edits. For more
information about PodTemplateSpec, see the Kubernetes documentation.

This topic covers developing conventions using GOLANG, but this is done using
other languages by following the specifications.

Important

For this example, the package model defines resource types.

Tanzu Application Platform v1.5

VMware by Broadcom 999

https://kubernetes.io/docs/tasks/tools/
https://network.tanzu.vmware.com/products/supply-chain-security-tools/
https://github.com/google/ko
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec
https://golang.org/


images are the ImageConfig used as reference to make decisions in the
conventions. In this example, the type was created within the model package.

2. The example server.go also configures the convention server to listen for requests:

...

import (

    "context"

    "fmt"

    "log"

    "net/http"

    "os"

    ...

)

...

func main() {

    ctx := context.Background()

    port := os.Getenv("PORT")

    if port == "" {

        port = "9000"

    }

    http.HandleFunc("/", webhook.ServerHandler(convention.ConventionHandler))

    log.Fatal(webhook.NewConventionServer(ctx, fmt.Sprintf(":%s", port)))

}

...

Where:

PORT is a possible environment variable, for this example, defined in the
Deployment.

ServerHandler is the handler function called when any request comes to the server.

NewConventionServer is the function in charge of configuring and creating the http
webhook server.

port is the calculated port of the server to listen for requests. It must match the
Deployment if the PORT variable is not defined in it.

The path or pattern (default to /) is the convention server’s default path. If it is
changed, it must be changed in the ClusterPodConvention.

1. Creating the Server Handler, which handles the request from the convention controller with
the PodConventionContext serialized to JSON.

package webhook

...

func ServerHandler(conventionHandler func(template *corev1.PodTemplateSpec, ima

ges []model.ImageConfig) ([]string, error)) http.HandlerFunc {

    return func(w http.ResponseWriter, r *http.Request) {

        ...

        // Check request method

        ...

        // Decode the PodConventionContext

        podConventionContext := &model.PodConventionContext{}

        err = json.Unmarshal(body, &podConventionContext)

Note

The Server Handler, func ConventionHandler(...), and the configure or start web
server, func NewConventionServer(...), is defined in the convention controller in
the webhook package, but you can use a custom one.

Tanzu Application Platform v1.5

VMware by Broadcom 1000



        if err != nil {

            w.WriteHeader(http.StatusBadRequest)

            return

        }

        // Validate the PodTemplateSpec and ImageConfig

        ...

        // Apply the conventions

        pts := podConventionContext.Spec.Template.DeepCopy()

        appliedConventions, err := conventionHandler(pts, podConventionContext.

Spec.Images)

        if err != nil {

            w.WriteHeader(http.StatusInternalServerError)

            return

        }

        // Update the applied conventions and status with the new PodTemplateSp

ec

        podConventionContext.Status.AppliedConventions = appliedConventions

        podConventionContext.Status.Template = *pts

        // Return the updated PodConventionContext

        w.Header().Set("Content-Type", "application/json")

        w.WriteHeader(http.StatusOK)

        json.NewEncoder(w).Encode(podConventionContext)

    }

}

...

2. Configure and start the web server by defining the NewConventionServer function, which
starts the server with the defined port and current context. The server uses the .crt and
.key files to handle TLS traffic.

package webhook

...

// Watch handles the security by certificates.

type certWatcher struct {

    CrtFile string

    KeyFile string

    m       sync.Mutex

    keyPair *tls.Certificate

}

func (w *certWatcher) Load() error {

    // Creates a X509KeyPair from PEM encoded client certificate and private ke

y.

    ...

}

func (w *certWatcher) GetCertificate() *tls.Certificate {

    w.m.Lock()

    defer w.m.Unlock()

    return w.keyPair

}

...

func NewConventionServer(ctx context.Context, addr string) error {

    // Define a health check endpoint to readiness and liveness probes.

    http.HandleFunc("/healthz", func(w http.ResponseWriter, r *http.Request) {

        w.WriteHeader(http.StatusOK)

    })

    if err := watcher.Load(); err != nil {

        return err

    }

    // Defines the server with the TLS configuration.

    server := &http.Server{

        Addr: addr,

        TLSConfig: &tls.Config{

Tanzu Application Platform v1.5

VMware by Broadcom 1001



            GetCertificate: func(_ *tls.ClientHelloInfo) (*tls.Certificate, err

or) {

                cert := watcher.GetCertificate()

                return cert, nil

            },

            PreferServerCipherSuites: true,

            MinVersion:               tls.VersionTLS13,

        },

        BaseContext: func(_ net.Listener) context.Context {

            return ctx

        },

    }

    go func() {

        <-ctx.Done()

        server.Close()

    }()

    return server.ListenAndServeTLS("", "")

}

Define the convention behavior

Any property or value within the PodTemplateSpec or OCI image metadata associated with a
workload defines the criteria for applying conventions. See PodTemplateSpec in the Kubernetes
documentation. The following are a few examples.

Matching criteria by labels or annotations

The conventions.carto.run/v1alpha1 API allows convention authors to use the selectorTarget
field which complements the ClusterPodConvention matchers to specify whether to consider labels
on either one of the following available options:

PodTemplateSpec

  ...

  template:

    metadata:

      labels:

        awesome-label: awesome-value

      annotations:

        awesome-annotation: awesome-value

  ...

PodIntent

    ...

    kind: PodIntent

    metadata:

      name: test-pod

      labels:

        environment: production

        ...

The selectorTarget field is configured on the ClusterPodConvention as follows:

...

spec:

  selectorTarget: PodIntent # optional, defaults to PodTemplateSpec

  selectors: # optional, defaults to match all workloads

  - <metav1.LabelSelector>

  webhook:

    certificate:

Tanzu Application Platform v1.5

VMware by Broadcom 1002

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec


      name: sample-cert

      namespace: sample-conventions

    clientConfig:

      <admissionregistrationv1.WebhookClientConfig>

If you do not provide a value for this optional field while using the conventions.carto.run/v1alpha1
API, the default value is set to PodTemplateSpec without the conventions author explicitly doing so.

Matching criteria by environment variables

When using environment variables to define whether the convention is applicable, it must be
present in the PodTemplateSpec, spec, containers, and env to validate the value.

PodTemplateSpec

...

template:

  spec:

    containers:

      - name: awesome-container

        env:

...

Handler

package convention

...

func conventionHandler(template *corev1.PodTemplateSpec, images []model.ImageCo

nfig) ([]string, error) {

    if len(template.Spec.Containers[0].Env) == 0 {

        template.Spec.Containers[0].Env = append(template.Spec.Containers[0].En

v, corev1.EnvVar{

            Name: "MY_AWESOME_VAR",

            Value: "MY_AWESOME_VALUE",

        })

        return []string{"awesome-envs-convention"}, nil

    }

    return []string{}, nil

    ...

}

Matching criteria by image metadata

For each image contained within the PodTemplateSpec, the convention controller fetches the OCI
image metadata and known bill of materials (BOMs), providing it to the convention server as
ImageConfig. This metadata is introspected to make decisions about how to configure the
PodTemplateSpec.

Configure and install the convention server

The server.yaml defines the Kubernetes components that enable the convention server in the
cluster. The next definitions are within the file.

1. A namespace is created for the convention server components and has the required objects
to run the server. It’s used in the ClusterPodConvention section to indicate to the controller
where the server is.

...

---

apiVersion: v1

kind: Namespace

Tanzu Application Platform v1.5

VMware by Broadcom 1003

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#PodSpec
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#Container
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#environment-variables


metadata:

  name: awesome-convention

---

...

2. (Optional) A certificate manager Issuer is created to issue the> certificate needed for TLS
communication.

...

---

# The following manifests contain a self-signed issuer CR and a certificate CR.

# More document can be found at https://docs.cert-manager.io

apiVersion: cert-manager.io/v1

kind: Issuer

metadata:

  name: awesome-selfsigned-issuer

  namespace: awesome-convention

spec:

  selfSigned: {}

---

...

3. (Optional) A self-signed Certificate is created.

...

---

apiVersion: cert-manager.io/v1

kind: Certificate

metadata:

  name: awesome-webhook-cert

  namespace: awesome-convention

spec:

  subject:

    organizations:

    - vmware

    organizationalUnits:

    - tanzu

  commonName: awesome-webhook.awesome-convention.svc

  dnsNames:

  - awesome-webhook.awesome-convention.svc

  - awesome-webhook.awesome-convention.svc.cluster.local

  issuerRef:

    kind: Issuer

    name: awesome-selfsigned-issuer

  secretName: awesome-webhook-cert

  revisionHistoryLimit: 10

---

...

4. A Kubernetes Deployment is created to run the webhook from. The Service uses the
container port defined by the Deployment to expose the server.

...

---

apiVersion: apps/v1

kind: Deployment

metadata:

  name: awesome-webhook

  namespace: awesome-convention

spec:

  replicas: 1

  selector:

    matchLabels:

    app: awesome-webhook

Tanzu Application Platform v1.5

VMware by Broadcom 1004



  template:

    metadata:

      labels:

        app: awesome-webhook

    spec:

      containers:

      - name: webhook

        # Set the prebuilt image of the convention or use ko to build an image 

from code.

        # see https://github.com/google/ko

        image: ko://awesome-repo/awesome-user/awesome-convention

      env:

      - name: PORT

        value: "8443"

      ports:

      - containerPort: 8443

        name: webhook

      livenessProbe:

        httpGet:

          scheme: HTTPS

          port: webhook

          path: /healthz

      readinessProbe:

        httpGet:

          scheme: HTTPS

          port: webhook

          path: /healthz

      volumeMounts:

      - name: certs

        mountPath: /config/certs

        readOnly: true

    volumes:

    - name: certs

      secret:

        defaultMode: 420

        secretName: awesome-webhook-cert

---

...

5. A Kubernetes Service to expose the convention deployment is created. For this example,
the exposed port is the default 443. If you change the port, the ClusterPodConvention must
be updated.

...

---

apiVersion: v1

kind: Service

metadata:

  name: awesome-webhook

  namespace: awesome-convention

  labels:

    app: awesome-webhook

spec:

  selector:

    app: awesome-webhook

  ports:

    - protocol: TCP

      port: 443

      targetPort: webhook

---

...

6. The ClusterPodConvention adds the convention to the cluster to make it available for the
convention controller:

Tanzu Application Platform v1.5

VMware by Broadcom 1005



...

---

apiVersion: conventions.carto.run/v1alpha1

kind: ClusterPodConvention

metadata:

  name: awesome-convention

  annotations:

    conventions.carto.run/inject-ca-from: "awesome-convention/awesome-webhook-c

ert"

spec:

  webhook:

    clientConfig:

      service:

        name: awesome-webhook

        namespace: awesome-convention

        # path: "/" # default

        # port: 443 # default

Deploy a convention server

To deploy a convention server:

1. Build and install the convention.

To build and deploy the convention, use the ko tool on GitHub. It compiles your Go
code into a Docker image and pushes it to the registry KO_DOCKER_REGISTRY.

ko apply -f dist/server.yaml

If a different tool builds the image, the configuration is also applied by using either
kubectl or kapp, setting the correct image in the Deployment descriptor.

kubectl

kubectl apply -f server.yaml

kapp

kapp deploy -y -a awesome-convention -f server.yaml

2. Verify the convention server. To verify the status of the convention server, confirm the
running convention pods:

If the server is running, kubectl get all -n awesome-convention returns output
such as:

NAME                                       READY   STATUS    RESTARTS   A

GE

pod/awesome-webhook-1234567890-12345       1/1     Running   0          8

h

NAME                          TYPE        CLUSTER-IP    EXTERNAL-IP   POR

T(S)   AGE

service/awesome-webhook       ClusterIP   10.56.12.49   <none>        44

3/TCP   28h

Important

The annotations block is only needed if you use a self-signed certificate.
See the cert-manager documentation.

Tanzu Application Platform v1.5

VMware by Broadcom 1006

https://github.com/google/ko
https://cert-manager.io/docs/


NAME                                  READY   UP-TO-DATE   AVAILABLE   AG

E

deployment.apps/awesome-webhook       1/1     1            1           28

h

NAME                                             DESIRED   CURRENT   READ

Y   AGE

replicaset.apps/awesome-webhook-1234563213       0         0         0       

23h

replicaset.apps/awesome-webhook-5b79d5cb59       0         0         0       

28h

replicaset.apps/awesome-webhook-5bf557c9f8       1         1         1       

20h

replicaset.apps/awesome-webhook-77c647c987       0         0         0       

23h

replicaset.apps/awesome-webhook-79d9c6f74c       0         0         0       

23h

replicaset.apps/awesome-webhook-7d9d667b8d       0         0         0       

9h

replicaset.apps/awesome-webhook-8668664d75       0         0         0       

23h

replicaset.apps/awesome-webhook-9b6957476        0         0         0       

24h

To verify that the conventions are applied, ensure that the PodIntent of a workload
that matches the convention criteria:

kubectl -o yaml get podintents.conventions.apps.tanzu.vmware.co awesome-a

pp

apiVersion: conventions.carto.run/v1alpha1

kind: PodIntent

metadata:

  creationTimestamp: "2021-10-07T13:30:00Z"

  generation: 1

  labels:

    app.kubernetes.io/component: intent

    carto.run/cluster-supply-chain-name: awesome-supply-chain

    carto.run/cluster-template-name: convention-template

    carto.run/component-name: config-provider

    carto.run/template-kind: ClusterConfigTemplate

    carto.run/workload-name: awesome-app

    carto.run/workload-namespace: default

  name: awesome-app

  namespace: default

ownerReferences:

- apiVersion: carto.run/v1alpha1

  blockOwnerDeletion: true

  controller: true

  kind: Workload

  name: awesome-app

  uid: "********"

resourceVersion: "********"

uid: "********"

spec:

imagePullSecrets:

  - name: registry-credentials

    serviceAccountName: default

    template:

      metadata:

        annotations:

          developer.conventions/target-containers: workload

        labels:

          app.kubernetes.io/component: run

Tanzu Application Platform v1.5

VMware by Broadcom 1007



          app.kubernetes.io/part-of: awesome-app

          carto.run/workload-name: awesome-app

      spec:

        containers:

        - image: awesome-repo.com/awesome-project/awesome-app@sha256:****

****

          name: workload

          resources: {}

          securityContext:

          runAsUser: 1000

status:

  conditions:

  - lastTransitionTime: "2021-10-07T13:30:00Z"

    status: "True"

    type: ConventionsApplied

  - lastTransitionTime: "2021-10-07T13:30:00Z"

    status: "True"

    type: Ready

observedGeneration: 1

template:

  metadata:

    annotations:

      awesome-annotation: awesome-value

      conventions.carto.run/applied-conventions: |-

        awesome-label-convention

        awesome-annotation-convention

        awesome-envs-convention

        awesome-image-convention

        developer.conventions/target-containers: workload

    labels:

      awesome-label: awesome-value

      app.kubernetes.io/component: run

      app.kubernetes.io/part-of: awesome-app

      carto.run/workload-name: awesome-app

      conventions.carto.run/framework: go

  spec:

    containers:

    - env:

      - name: MY_AWESOME_VAR

        value: "MY_AWESOME_VALUE"

      image: awesome-repo.com/awesome-project/awesome-app@sha256:********

      name: workload

      ports:

        - containerPort: 8080

          protocol: TCP

      resources: {}

      securityContext:

        runAsUser: 1000

Next Steps

Keep Exploring:

Try to use different matching criteria for the conventions or enhance the supply chain with
multiple conventions.

Troubleshoot Cartographer Conventions

This topic describes how you can troubleshoot Cartographer Conventions.

No server in the cluster

Tanzu Application Platform v1.5

VMware by Broadcom 1008



Symptoms

When a PodIntent is submitted, no convention is applied.

Cause

When there are no convention servers (ClusterPodConvention) deployed in the cluster or none of
the existing convention servers applied any conventions, the PodIntent is not being mutated.

Solution

Deploy a convention server (ClusterPodConvention) in the cluster.

Server with wrong certificates configured

Symptoms

When a PodIntent is submitted, the conventions are not applied.

The convention-controller logs reports an error failed to get CABundle as follows:

{

"level": "error",

"ts": 1638222343.6839523,

"logger": "controllers.PodIntent.PodIntent.ResolveConventions",

"msg": "failed to get CABundle",

"ClusterPodConvention": "base-convention",

"error": "unable to find valid certificaterequests for certificate \"convention

-template/webhook-certificate\"",

"stacktrace": "reflect.Value.Call\n\treflect/value.go:339\ngithub.com/vmware-la

bs/reconciler-runtime/reconcilers.(*SyncReconciler).sync\n\tgithub.com/vmware-l

abs/reconciler-runtime@v0.3.0/reconcilers/reconcilers.go:287\ngithub.com/vmware

-labs/reconciler-runtime/reconcilers.(*SyncReconciler).Reconcile\n\tgithub.com/

vmware-labs/reconciler-runtime@v0.3.0/reconcilers/reconcilers.go:276\ngithub.co

m/vmware-labs/reconciler-runtime/reconcilers.Sequence.Reconcile\n\tgithub.com/v

mware-labs/reconciler-runtime@v0.3.0/reconcilers/reconcilers.go:815\ngithub.co

m/vmware-labs/reconciler-runtime/reconcilers.(*ParentReconciler).reconcile\n\tg

ithub.com/vmware-labs/reconciler-runtime@v0.3.0/reconcilers/reconcilers.go:146

\ngithub.com/vmware-labs/reconciler-runtime/reconcilers.(*ParentReconciler).Rec

oncile\n\tgithub.com/vmware-labs/reconciler-runtime@v0.3.0/reconcilers/reconcil

ers.go:120\nsigs.k8s.io/controller-runtime/pkg/internal/controller.(*Controlle

r).Reconcile\n\tsigs.k8s.io/controller-runtime@v0.10.3/pkg/internal/controller/

controller.go:114\nsigs.k8s.io/controller-runtime/pkg/internal/controller.(*Con

troller).reconcileHandler\n\tsigs.k8s.io/controller-runtime@v0.10.3/pkg/interna

l/controller/controller.go:311\nsigs.k8s.io/controller-runtime/pkg/internal/con

troller.(*Controller).processNextWorkItem\n\tsigs.k8s.io/controller-runtime@v0.

10.3/pkg/internal/controller/controller.go:266\nsigs.k8s.io/controller-runtime/

pkg/internal/controller.(*Controller).Start.func2.2\n\tsigs.k8s.io/controller-r

untime@v0.10.3/pkg/internal/controller/controller.go:227"

Cause

convention server (ClusterPodConvention) is configured with wrong certificates. The convention-
controller cannot figure out the CA Bundle to perform the request to the server.

Solution

Ensure that the convention server (ClusterPodConvention) is configured with the correct
certificates. To do so, verify the value of annotation conventions.carto.run/inject-ca-from which
must be set to the used Certificate.

Tanzu Application Platform v1.5

VMware by Broadcom 1009



Server fails when processing a request

Symptoms

When a PodIntent is submitted, the convention is not applied.

The convention-controller logs reports failed to apply convention error like this.

{"level":"error","ts":1638205387.8813763,"logger":"controllers.PodIntent.PodInt

ent.ApplyConventions","msg":"failed to apply convention","Convention":{"Nam

e":"base-convention","Selectors":null,"Priority":"Normal","ClientConfig":{"serv

ice":{"namespace":"convention-template","name":"webhook","port":443},"caBundl

e":"..."}},"error":"Post \"https://webhook.convention-template.svc:443/?timeout

=30s\": EOF","stacktrace":"reflect.Value.call\n\treflect/value.go:543\nreflect.

Value.Call\n\treflect/value.go:339\ngithub.com/vmware-labs/reconciler-runtime/r

econcilers.(*SyncReconciler).sync\n\tgithub.com/vmware-labs/reconciler-runtime@

v0.3.0/reconcilers/reconcilers.go:287\ngithub.com/vmware-labs/reconciler-runtim

e/reconcilers.(*SyncReconciler).Reconcile\n\tgithub.com/vmware-labs/reconciler-

runtime@v0.3.0/reconcilers/reconcilers.go:276\ngithub.com/vmware-labs/reconcile

r-runtime/reconcilers.Sequence.Reconcile\n\tgithub.com/vmware-labs/reconciler-r

untime@v0.3.0/reconcilers/reconcilers.go:815\ngithub.com/vmware-labs/reconciler

-runtime/reconcilers.(*ParentReconciler).reconcile\n\tgithub.com/vmware-labs/re

conciler-runtime@v0.3.0/reconcilers/reconcilers.go:146\ngithub.com/vmware-labs/

reconciler-runtime/reconcilers.(*ParentReconciler).Reconcile\n\tgithub.com/vmwa

re-labs/reconciler-runtime@v0.3.0/reconcilers/reconcilers.go:120\nsigs.k8s.io/c

ontroller-runtime/pkg/internal/controller.(*Controller).Reconcile\n\tsigs.k8s.i

o/controller-runtime@v0.10.0/pkg/internal/controller/controller.go:114\nsigs.k8

s.io/controller-runtime/pkg/internal/controller.(*Controller).reconcileHandler

\n\tsigs.k8s.io/controller-runtime@v0.10.0/pkg/internal/controller/controller.g

o:311\nsigs.k8s.io/controller-runtime/pkg/internal/controller.(*Controller).pro

cessNextWorkItem\n\tsigs.k8s.io/controller-runtime@v0.10.0/pkg/internal/control

ler/controller.go:266\nsigs.k8s.io/controller-runtime/pkg/internal/controller.

(*Controller).Start.func2.2\n\tsigs.k8s.io/controller-runtime@v0.10.0/pkg/inter

nal/controller/controller.go:227"}

When a PodIntent status message is updated with failed to apply convention from
source base-convention: Post "https://webhook.convention-template.svc:443/?

timeout=30s": EOF.

Cause

An unmanaged error occurs in the convention server when processing a request.

Solution

1. Check the convention server logs to identify the cause of the error:

1. Use the following command to retrieve the convention server logs:

kubectl -n convention-template logs deployment/webhook

Where:

The convention server was deployed as a Deployment

webhook is the name of the convention server Deployment.

Important

Do not set annotation conventions.carto.run/inject-ca-from if no certificate is
used.

Tanzu Application Platform v1.5

VMware by Broadcom 1010



convention-template is the namespace where the convention server is
deployed.

2. Identify the error and deploy a fixed version of convention server.

Be aware that the new deployment is not applied to the existing PodIntents. It is
only applied to the new PodIntents.

To apply new deployment to exiting PodIntent, you must update the PodIntent, so
the reconciler applies if it matches the criteria.

Connection refused due to unsecured connection

Symptoms

When a PodIntent is submitted, the convention is not applied.

The convention-controller logs reports a connection refused error as follows:

{"level":"error","ts":1638202791.5734537,"logger":"controllers.PodIntent.PodInt

ent.ApplyConventions","msg":"failed to apply convention","Convention":{"Nam

e":"base-convention","Selectors":null,"Priority":"Normal","ClientConfig":{"serv

ice":{"namespace":"convention-template","name":"webhook","port":443},"caBundl

e":"..."}},"error":"Post \"https://webhook.convention-template.svc:443/?timeout

=30s\": dial tcp 10.56.13.206:443: connect: connection refused","stacktrace":"r

eflect.Value.call\n\treflect/value.go:543\nreflect.Value.Call\n\treflect/value.

go:339\ngithub.com/vmware-labs/reconciler-runtime/reconcilers.(*SyncReconcile

r).sync\n\tgithub.com/vmware-labs/reconciler-runtime@v0.3.0/reconcilers/reconci

lers.go:287\ngithub.com/vmware-labs/reconciler-runtime/reconcilers.(*SyncReconc

iler).Reconcile\n\tgithub.com/vmware-labs/reconciler-runtime@v0.3.0/reconciler

s/reconcilers.go:276\ngithub.com/vmware-labs/reconciler-runtime/reconcilers.Seq

uence.Reconcile\n\tgithub.com/vmware-labs/reconciler-runtime@v0.3.0/reconciler

s/reconcilers.go:815\ngithub.com/vmware-labs/reconciler-runtime/reconcilers.(*P

arentReconciler).reconcile\n\tgithub.com/vmware-labs/reconciler-runtime@v0.3.0/

reconcilers/reconcilers.go:146\ngithub.com/vmware-labs/reconciler-runtime/recon

cilers.(*ParentReconciler).Reconcile\n\tgithub.com/vmware-labs/reconciler-runti

me@v0.3.0/reconcilers/reconcilers.go:120\nsigs.k8s.io/controller-runtime/pkg/in

ternal/controller.(*Controller).Reconcile\n\tsigs.k8s.io/controller-runtime@v0.

10.0/pkg/internal/controller/controller.go:114\nsigs.k8s.io/controller-runtime/

pkg/internal/controller.(*Controller).reconcileHandler\n\tsigs.k8s.io/controlle

r-runtime@v0.10.0/pkg/internal/controller/controller.go:311\nsigs.k8s.io/contro

ller-runtime/pkg/internal/controller.(*Controller).processNextWorkItem\n\tsigs.

k8s.io/controller-runtime@v0.10.0/pkg/internal/controller/controller.go:266\nsi

gs.k8s.io/controller-runtime/pkg/internal/controller.(*Controller).Start.func2.

2\n\tsigs.k8s.io/controller-runtime@v0.10.0/pkg/internal/controller/controller.

go:227"}

The convention server fails to start due to server gave HTTP response to HTTPS client:

When checking the convention server events by running the following command:

kubectl -n convention-template describe pod webhook-594d75d69b-4w4s8

Where:

The convention server was deployed as a Deployment

webhook-594d75d69b-4w4s8 is the name of the convention server Pod.

convention-template is the namespace where the convention server is deployed.

For example:

Name:         webhook-594d75d69b-4w4s8

Namespace:    convention-template

Tanzu Application Platform v1.5

VMware by Broadcom 1011



...

Containers:

  webhook:

...

Events:

Type     Reason     Age                   From               Message

----     ------     ----                  ----               -------

Normal   Scheduled  14m                   default-scheduler  Successfully assig

ned convention-template/webhook-594d75d69b-4w4s8 to pool

Normal   Pulling    14m                   kubelet            Pulling image "awe

some-repo/awesome-user/awesome-convention-..."

Normal   Pulled     14m                   kubelet            Successfully pulle

d image "awesome-repo/awesome-user/awesome-convention..." in 1.06032653s

Normal   Created    13m (x2 over 14m)     kubelet            Created container 

webhook

Normal   Started    13m (x2 over 14m)     kubelet            Started container 

webhook

Warning  Unhealthy  13m (x9 over 14m)     kubelet            Readiness probe fa

iled: Get "https://10.52.2.74:8443/healthz": http: server gave HTTP response to 

HTTPS client

Warning  Unhealthy  13m (x6 over 14m)     kubelet            Liveness probe fai

led: Get "https://10.52.2.74:8443/healthz": http: server gave HTTP response to 

HTTPS client

Normal   Pulled     9m13s (x6 over 13m)   kubelet            Container image "a

wesome-repo/awesome-user/awesome-convention" already present on machine

Warning  BackOff    4m22s (x32 over 11m)  kubelet            Back-off restartin

g failed container

Cause

When a convention server is provided without using Transport Layer Security (TLS) but the
Deployment is configured to use TLS, Kubernetes fails to deploy the Pod because of the liveness
probe.

Solution

1. Deploy a convention server with TLS enabled.

2. Create ClusterPodConvention resource for the convention server with annotation
conventions.carto.run/inject-ca-from as a pointer to the deployed Certificate resource.

Self-signed certificate authority (CA) not propagated to the
Convention Service

Symptoms

The self-signed certificate authority (CA) for a registry is not propagated to the Convention Service.

Cause

When you provide the self-signed certificate authority (CA) for a registry through convention-
controller.ca_cert_data, it cannot be propagated to the Convention Service.

Solution

Define the CA by using the available .shared.ca_cert_data top-level key to supply the CA to the
Convention Service.

No imagePullSecrets configured

Tanzu Application Platform v1.5

VMware by Broadcom 1012



Symptoms

When a PodIntent is submitted:

No convention is applied.

You see an unauthorized to access repository or fetching metadata for Images failed
error when you inspect the workload.

Cause

The errors are seen when a workload is created in a developer namespace where
imagePullSecrets are not defined on the default serviceAccount or on the preferred
serviceAccount.

Solution

Add the imagePullSecrets name to the default serviceAccount or the preferred serviceAccount.

For example:

kind: ServiceAccount

metadata:

  name: default

  namespace: my-workload-namespace

imagePullSecrets:

  - name: registry-credentials # ensure this secret is defined

secrets:

- name: registry-credentials

Convention Service Resources for Cartographer
Conventions
This reference topic describes the convention service resources you can use with Cartographer
Conventions.

Overview
There are several resources involved in the application of conventions to workloads and these are
typically consumed by platform developers and operators rather than by application developers.

ClusterPodConvention

The following is an example conventions.carto.run/v1alpha1 type:

---

apiVersion: conventions.carto.run/v1alpha1

kind: ClusterPodConvention

metadata:

name: sample

spec:

selectorTarget: PodTemplateSpec # optional field with options, defaults to PodT

emplateSpec

selectors: # optional, defaults to match all workloads

- <metav1.LabelSelector>

webhook:

  certificate:

    name: sample-cert

    namespace: sample-conventions

  clientConfig:

    <admissionregistrationv1.WebhookClientConfig>

Tanzu Application Platform v1.5

VMware by Broadcom 1013



A ClusterPodConvention can target a one or more workloads of different types. You can
apply multiple conventions to a single workload. It is at the discretion of the “Conventions
Author” how a convention is applied.

To list out available conventions in your cluster, run the following kubectlcommand

$ kubectl get clusterpodconventions.conventions.carto.run

  NAME                     AGE

  appliveview-sample       23h

  developer-conventions    23h

  spring-boot-convention   23h

PodIntent

The following is an example conventions.carto.run/v1alpha1 resource:

apiVersion: conventions.carto.run/v1alpha1

kind: PodIntent

metadata:

name: sample

spec:

imagePullSecrets: <[]corev1.LocalObjectReference> # optional

serviceAccountName: <string> # optional, defaults to 'default'

template:

  <corev1.PodTemplateSpec>

status:

observedGeneration: 1 # reflected from .metadata.generation

conditions:

- <metav1.Condition>

template: # enriched PodTemplateSpec

  <corev1.PodTemplateSpec>

To list out available PodIntent resources in your cluster, run the following kubectl command

# specify relevant namespace

kubectl get podintents.conventions.carto.run -n my-apps

NAME            READY   REASON               AGE

spring-sample   True    ConventionsApplied   8m5s

When aPodIntent is created, the PodIntent reconciler lists all ClusterPodConventions
resources and applies them serially. To ensure that the consistency of the enriched
PodTemplateSpec, the list of ClusterPodConventionsis sorted alphabetically by name before
applying the conventions.

Tip : You can use strategic naming to control the order in which the conventions are
applied.

After the conventions are applied, the Ready status condition on the PodIntent resource is
used to indicate whether it is applied. A list of all applied conventions is stored under the
annotation conventions.carto.run/applied-conventions.

There are also a few other resources available to the Conventions Author that are not persisted in
your cluster, including:

ImageConfig

PodConventionContextSpec

PodConventionContextStatus

PodConventionContext

Tanzu Application Platform v1.5

VMware by Broadcom 1014

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec


BOM

Collecting Logs from the Controller

A successful deployment of the convention service creates it’s resources on the following
cartographer-system namespace:

$ kubectl get all -n cartographer-system

  NAME                                                               READY   STATUS    

RESTARTS   AGE

  ...

  pod/cartographer-conventions-controller-manager-76fd86789f-lzh86   1/1     Running   

0          20h

  NAME                                                                  TYPE        CL

USTER-IP     EXTERNAL-IP   PORT(S)    AGE

  ...

  service/cartographer-conventions-controller-manager-metrics-service   ClusterIP   1

0.0.250.231   <none>        8443/TCP   20h

  service/cartographer-conventions-webhook-service                      ClusterIP   1

0.0.6.254     <none>        443/TCP    20h

  ...

  NAME                                                          READY   UP-TO-DATE   A

VAILABLE   AGE

  ...

  deployment.apps/cartographer-conventions-controller-manager   1/1     1            1           

20h

  NAME                                                                     DESIRED   C

URRENT   READY   AGE

  ...

  replicaset.apps/cartographer-conventions-controller-manager-76fd86789f   1         1         

1       20h

In order to examine logs from the cartographer conventions controller to help identify issues,
inspect the cartographer conventions controller manager pod as follows

 kubectl -n cartographer-system logs -l control-plane=controller-manager

...

{"level":"info","ts":"2023-02-06T20:49:19.855086032Z","logger":"MetricsReconciler","ms

g":"reconciling builders configmap","controller":"configmap","controllerGroup":"","con

trollerKind":"ConfigMap","ConfigMap":{"name":"controller-manager-metrics-data","namesp

ace":"cartographer-system"},"namespace":"cartographer-system","name":"controller-manag

er-metrics-data","reconcileID":"6f5e38c7-0ce0-4c74-aff3-f938fb742dab","diff":"  map[st

ring]string{\n- \t\"clusterpodconventions_names\": \"appliveview-sample\",\n+ \t\"clus

terpodconventions_names\": \"appliveview-sample\nspring-boot-convention\",\n  \t\"podi

ntents_count\":            \"0\",\n  }\n"}

{"level":"info","ts":"2023-02-06T20:49:20.101742252Z","logger":"MetricsReconciler","ms

g":"reconciling builders configmap","controller":"configmap","controllerGroup":"","con

trollerKind":"ConfigMap","ConfigMap":{"name":"controller-manager-metrics-data","namesp

ace":"cartographer-system"},"namespace":"cartographer-system","name":"controller-manag

er-metrics-data","reconcileID":"3a1950bc-4c55-47bb-8380-2de574bd5d5e","diff":"  map[st

ring]string{\n  \t\"clusterpodconventions_names\": strings.Join({\n  \t\t\"appliveview

-sample\n\",\n+ \t\t\"developer-conventions\n\",\n  \t\t\"spring-boot-convention\",\n  

\t}, \"\"),\n  \t\"podintents_count\": \"0\",\n  }\n"}

...

Convention Service Resources for Cartographer
Conventions

Tanzu Application Platform v1.5

VMware by Broadcom 1015



This reference topic describes the convention service resources you can use with Cartographer
Conventions.

Overview

There are several resources involved in the application of conventions to workloads and these are
typically consumed by platform developers and operators rather than by application developers.

ClusterPodConvention

The following is an example conventions.carto.run/v1alpha1 type:

---

apiVersion: conventions.carto.run/v1alpha1

kind: ClusterPodConvention

metadata:

name: sample

spec:

selectorTarget: PodTemplateSpec # optional field with options, defaults to PodT

emplateSpec

selectors: # optional, defaults to match all workloads

- <metav1.LabelSelector>

webhook:

  certificate:

    name: sample-cert

    namespace: sample-conventions

  clientConfig:

    <admissionregistrationv1.WebhookClientConfig>

A ClusterPodConvention can target a one or more workloads of different types. You can
apply multiple conventions to a single workload. It is at the discretion of the “Conventions
Author” how a convention is applied.

To list out available conventions in your cluster, run the following kubectlcommand

$ kubectl get clusterpodconventions.conventions.carto.run

  NAME                     AGE

  appliveview-sample       23h

  developer-conventions    23h

  spring-boot-convention   23h

PodIntent

The following is an example conventions.carto.run/v1alpha1 resource:

apiVersion: conventions.carto.run/v1alpha1

kind: PodIntent

metadata:

name: sample

spec:

imagePullSecrets: <[]corev1.LocalObjectReference> # optional

serviceAccountName: <string> # optional, defaults to 'default'

template:

  <corev1.PodTemplateSpec>

status:

observedGeneration: 1 # reflected from .metadata.generation

conditions:

- <metav1.Condition>

template: # enriched PodTemplateSpec

  <corev1.PodTemplateSpec>

Tanzu Application Platform v1.5

VMware by Broadcom 1016



To list out available PodIntent resources in your cluster, run the following kubectl command

# specify relevant namespace

kubectl get podintents.conventions.carto.run -n my-apps

NAME            READY   REASON               AGE

spring-sample   True    ConventionsApplied   8m5s

When aPodIntent is created, the PodIntent reconciler lists all ClusterPodConventions
resources and applies them serially. To ensure that the consistency of the enriched
PodTemplateSpec, the list of ClusterPodConventionsis sorted alphabetically by name before
applying the conventions.

Tip : You can use strategic naming to control the order in which the conventions are
applied.

After the conventions are applied, the Ready status condition on the PodIntent resource is
used to indicate whether it is applied. A list of all applied conventions is stored under the
annotation conventions.carto.run/applied-conventions.

There are also a few other resources available to the Conventions Author that are not persisted in
your cluster, including:

ImageConfig

PodConventionContextSpec

PodConventionContextStatus

PodConventionContext

BOM

Collecting Logs from the Controller

A successful deployment of the convention service creates it’s resources on the following
cartographer-system namespace:

$ kubectl get all -n cartographer-system

  NAME                                                               READY   STATUS    

RESTARTS   AGE

  ...

  pod/cartographer-conventions-controller-manager-76fd86789f-lzh86   1/1     Running   

0          20h

  NAME                                                                  TYPE        CL

USTER-IP     EXTERNAL-IP   PORT(S)    AGE

  ...

  service/cartographer-conventions-controller-manager-metrics-service   ClusterIP   1

0.0.250.231   <none>        8443/TCP   20h

  service/cartographer-conventions-webhook-service                      ClusterIP   1

0.0.6.254     <none>        443/TCP    20h

  ...

  NAME                                                          READY   UP-TO-DATE   A

VAILABLE   AGE

  ...

  deployment.apps/cartographer-conventions-controller-manager   1/1     1            1           

20h

  NAME                                                                     DESIRED   C

URRENT   READY   AGE

  ...

Tanzu Application Platform v1.5

VMware by Broadcom 1017

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec


  replicaset.apps/cartographer-conventions-controller-manager-76fd86789f   1         1         

1       20h

In order to examine logs from the cartographer conventions controller to help identify issues,
inspect the cartographer conventions controller manager pod as follows

 kubectl -n cartographer-system logs -l control-plane=controller-manager

...

{"level":"info","ts":"2023-02-06T20:49:19.855086032Z","logger":"MetricsReconciler","ms

g":"reconciling builders configmap","controller":"configmap","controllerGroup":"","con

trollerKind":"ConfigMap","ConfigMap":{"name":"controller-manager-metrics-data","namesp

ace":"cartographer-system"},"namespace":"cartographer-system","name":"controller-manag

er-metrics-data","reconcileID":"6f5e38c7-0ce0-4c74-aff3-f938fb742dab","diff":"  map[st

ring]string{\n- \t\"clusterpodconventions_names\": \"appliveview-sample\",\n+ \t\"clus

terpodconventions_names\": \"appliveview-sample\nspring-boot-convention\",\n  \t\"podi

ntents_count\":            \"0\",\n  }\n"}

{"level":"info","ts":"2023-02-06T20:49:20.101742252Z","logger":"MetricsReconciler","ms

g":"reconciling builders configmap","controller":"configmap","controllerGroup":"","con

trollerKind":"ConfigMap","ConfigMap":{"name":"controller-manager-metrics-data","namesp

ace":"cartographer-system"},"namespace":"cartographer-system","name":"controller-manag

er-metrics-data","reconcileID":"3a1950bc-4c55-47bb-8380-2de574bd5d5e","diff":"  map[st

ring]string{\n  \t\"clusterpodconventions_names\": strings.Join({\n  \t\t\"appliveview

-sample\n\",\n+ \t\t\"developer-conventions\n\",\n  \t\t\"spring-boot-convention\",\n  

\t}, \"\"),\n  \t\"podintents_count\": \"0\",\n  }\n"}

...

ImageConfig for Cartographer Conventions

This reference topic describes the ImageConfig object you can use with Cartographer Conventions.

Overview

The image configuration object holds the name of the image, the BOM, and the OCI image
configuration with image metadata from the repository.

OCI image configuration contains the metadata from the image repository.

The BOM represents the content of the image and may be zero or more per image.

{

  "name": "oci-image-name",

  "boms": [{

      "name": "bom-name",

      "raw": "`a byte array`"

  }],

  "config": {

      {

        "created": "2015-10-31T22:22:56.015925234Z",

        "author": "Alyssa P. Hacker <alyspdev@example.com>",

        "architecture": "amd64",

        "os": "linux",

        "config": {

            "User": "alice",

            "ExposedPorts": {

                "8080/tcp": {}

            },

            "Env": [

                "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",

                "FOO=oci_is_a",

                "BAR=well_written_spec"

            ],

            "Entrypoint": [

                "/bin/my-app-binary"

Tanzu Application Platform v1.5

VMware by Broadcom 1018

https://github.com/opencontainers/image-spec/blob/main/config.md
https://github.com/opencontainers/image-spec/blob/main/config.md


            ],

            "Cmd": [

                "--foreground",

                "--config",

                "/etc/my-app.d/default.cfg"

            ],

            "Volumes": {

                "/var/job-result-data": {},

                "/var/log/my-app-logs": {}

            },

            "WorkingDir": "/home/alice",

            "Labels": {

                "com.example.project.git.url": "https://example.com/project.git",

                "com.example.project.git.commit": "45a939b2999782a3f005621a8d0f29aa387

e1d6b"

            }

        },

        "rootfs": {

        "diff_ids": [

            "sha256:c6f988f4874bb0add23a778f753c65efe992244e148a1d2ec2a8b664fb66bbd1",

            "sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef"

        ],

        "type": "layers"

        },

        "history": [

        {

            "created": "2015-10-31T22:22:54.690851953Z",

            "created_by": "/bin/sh -c #(nop) ADD file:a3bc1e842b69636f9df5256c49c5374f

b4eef1e281fe3f282c65fb853ee171c5 in /"

        },

        {

            "created": "2015-10-31T22:22:55.613815829Z",

            "created_by": "/bin/sh -c #(nop) CMD [\"sh\"]",

            "empty_layer": true

        },

        {

            "created": "2015-10-31T22:22:56.329850019Z",

            "created_by": "/bin/sh -c apk add curl"

        }

        ]

    }

  }

}

PodConventionContextSpec for Cartographer Conventions

This reference topic describes the PodConventionContextSpec you can use with Cartographer
Conventions.

Overview

The Pod convention context specification is a wrapper of the PodTemplateSpec and the
ImageConfig provided in the request body of the server. It represents the original PodTemplateSpec.
For more information on PodTemplateSpec, see the Kubernetes documentation.

{

"template": {

    "metadata": {

        ...

    },

    "spec": {

        ...

    }

Tanzu Application Platform v1.5

VMware by Broadcom 1019

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec


},

"imageConfig": {

    ...

  "name": "oci-image-name",

  "config": {

        ...

    }

  }

}

PodConventionContextStatus for Cartographer
Conventions
This reference topic describes the PodConventionContextStatus status type that you can use with
Cartographer Conventions.

Overview
The Pod convention context status type is used to represent the current status of the context
retrieved by the request. It holds the applied conventions by the server and the modified version of
the PodTemplateSpec. For more information about PodTemplateSpec, see the Kubernetes
documentation.

The field .template is populated with the enriched PodTemplateSpec. The field
.appliedConventions is populated with the names of any applied conventions.

{

    "template": {

        "metadata": {

            ...

        },

        "spec": {

            ...

        }

    },

    "appliedConventions": [

        "convention-1",

        "convention-2",

        "convention-4"

    ]

}

yaml version:

---

apiVersion: webhooks.conventions.carto.run/v1alpha1

kind: PodConventionContext

metadata:

  name: sample # the name of the ClusterPodConvention

spec: # the request

  imageConfig:

  template:

    <corev1.PodTemplateSpec>

status: # the response

  appliedConventions: # list of names of conventions applied

  - my-convention

  template:

  spec:

      containers:

      - name : workload

        image: helloworld-go-mod

Tanzu Application Platform v1.5

VMware by Broadcom 1020

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec


PodConventionContext for Cartographer Conventions

This reference topic describes the PodConventionContext that you can use with Cartographer
Conventions.

Overview

The Pod convention context is the body of the webhook request and response. The specification is
provided by the convention controller and the status is set by the convention server.

The context is a wrapper of the individual object description in an API (TypeMeta), the persistent
metadata of a resource (ObjectMeta), the PodConventionContextSpec and the
PodConventionContextStatus.

PodConventionContext Objects

In the PodConventionContext API resource:

Object path .spec.template field defines the PodTemplateSpec to be enriched by
conventions. For more information about PodTemplateSpec, see the Kubernetes
documentation.

Object path .spec.imageConfig[] field defines ImageConfig. Each entry of it is populated
with the name of the image (.spec.imageConfig[].image) and its OCI metadata
(.spec.imageConfig[].config). These entries are generated for each image referenced in
PodTemplateSpec (.spec.template).

The following is an example of a PodConventionContext resource request received by the
convention server. This resource is generated for a Go language-based application image in GitHub.
It is built with Cloud Native Paketo Buildpacks that use Go mod for dependency management.

---

apiVersion: webhooks.conventions.carto.run/v1alpha1

kind: PodConventionContext

metadata:

  name: sample # the name of the ClusterPodConvention

spec: # the request

  imageConfig: # one entry per image referenced by the PodTemplateSpec

  - image: sample/go-based-image

    boms:

    - name: cnb-app:.../sbom.cdx.json

      raw: ...

    config:

      entrypoint:

      - "/cnb/process/web"

      domainname: ""

      architecture: "amd64"

      image: "sha256:05b698a4949db54fdb36ea431477867abf51054abd0cbfcfd1bb81cda1842288"

      labels:

        "io.buildpacks.stack.distro.version": "18.04"

        "io.buildpacks.stack.homepage": "https://github.com/paketo-buildpacks/stacks"

        "io.buildpacks.stack.id": "io.buildpacks.stacks.bionic"

        "io.buildpacks.stack.maintainer": "Paketo Buildpacks"

        "io.buildpacks.stack.distro.name": "Ubuntu"

        "io.buildpacks.stack.metadata": `{"app":[{"sha":"sha256:ea4ec23266a3af1204fd64

3de0f3572dd8dbb5697a5ef15bdae844777c19bf8f"}],

        "buildpacks":[{"key":"paketo-buildpac`...,

        "io.buildpacks.build.metadata": `{"bom":[{"name":"go","metadata":{"licenses":

[],"name":"Go","sha256":"7fef8ba6a0786143efcce66b0bbfbfbab02afeef522b4e09833c5b550d7

`...

  template:

Tanzu Application Platform v1.5

VMware by Broadcom 1021

https://kubernetes.io/docs/reference/kubernetes-api/common-definitions/object-meta/#ObjectMeta
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec
https://github.com/paketo-buildpacks/samples/tree/main/go/mod


    spec:

      containers:

      - name : workload

        image: helloworld-go-mod

PodConventionContext Structure

This section introduces more information about the image configuration in PodConventionContext.
The convention-controller passes this information for each image in good faith. The controller is not
the source of the metadata, and there is no guarantee that the information is correct.

The config field in the image configuration passes through the OCI Image metadata in GitHub
loaded from the registry for the image.

The boms field in the image configuration passes through the BOMs of the image. Conventions
might parse the BOMs they want to inspect. There is no guarantee that an image contains a BOM
or that the BOM is in a certain format.

ClusterPodConvention for Cartographer Conventions

This reference topic describes the ClusterPodConvention that you can use with Cartographer
Conventions.

Overview

A ClusterPodConvention defines how to connect to convention servers. It provides a way to apply a
set of conventions to a PodTemplateSpec and artifact metadata. A convention typically focuses on
a particular application framework, but might be cross cutting. Applied conventions must be pure
functions.

Define conventions

Webhook servers are the only way to define conventions.

apiVersion: conventions.carto.run/v1alpha1

kind: ClusterPodConvention

metadata:

  name: base-convention

  annotations:

    conventions.carto.run/inject-ca-from: "convention-template/webhook-cert"

spec:

  selectorTarget: PodTemplateSpec # optional, defaults to PodTemplateSpec; field optio

ns include PodTemplateSpec|PodIntent  

  webhook:

    clientConfig:

      service:

        name: webhook

        namespace: convention-template

PodIntent for Cartographer Conventions

This reference topic describes PodIntent that you can use with Cartographer Conventions.

Overview

The conditional criteria governing the application of a convention is customizable and is based on
the evaluation of a custom Kubernetes resource called PodIntent.

Tanzu Application Platform v1.5

VMware by Broadcom 1022

https://github.com/opencontainers/image-spec/blob/main/config.md
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec


PodIntent applies conventions to a workload. A PodIntent is created, or updated, when a workload
is run by using a Tanzu Application Platform supply chain.

The .spec.template’s PodTemplateSpec is enriched by the conventions and exposed as the
.status.templates PodTemplateSpec. A log of which sources and conventions are applied is
captured with the conventions.carto.run/applied-conventions annotation on the
PodTemplateSpec.

apiVersion: conventions.carto.run/v1alpha1

kind: PodIntent

metadata:

  name: sample

spec:

  template:

    spec:

      containers:

      - name: workload

        image: ubuntu

BOM for Cartographer Conventions

This reference topic describes the BOM structure you can use with Cartographer Conventions.

Overview

The BOM is a type/structure wrapping a Software Bill of Materials (SBOM) describing the software
components and their dependencies.

Structure

The structure of the BOM is defined as follows:

{

  "name": "BOM-NAME",

  "raw": "BYTE-ARRAY"

}

Where:

BOM-NAME is the prefix cnb-sbom:, followed by the location of the BOM definition in the layer
for a cloud native buildpack (CNB) SBOM. For example: cnb-
sbom:/layers/sbom/launch/paketo-buildpacks_executable-jar/sbom.cdx.json. For a non-
CNB SBOM, the value of name might change.

BYTE-ARRAY: The content of the BOM. The content may be in any format or encoding.
Consult the name to infer how the content is structured.

The convention controller forwards BOMs to the convention servers that it can discover from
known sources, including:

CNB-SBOM

Overview of cert-manager
cert-manager adds certificates and certificate issuers as resource types to Kubernetes clusters. It
also helps you to obtain, renew, and use those certificates. For more information about cert-
manager, see cert-manager documentation.

Tanzu Application Platform v1.5

VMware by Broadcom 1023

https://github.com/buildpacks/rfcs/blob/main/text/0095-sbom.md
https://cert-manager.io/docs


The cert-manager package allows you to, optionally, configure a number of ClusterIssuer. When
you install Tanzu Application Platform by using profiles, a self-signed ClusterIssuer is included by
default.

As of cert-manager.tanzu.vmware.com/2.0.0, versioning departs from the upstream, open-source
project’s version. The contained cert-manager version is reflected in
Package.spec.includedSoftware. You can identify the version of cert-manager as follows:

kubectl get package -n tap-install cert-manager.tanzu.vmware.com.2.0.0 -ojsonpath='{.s

pec.includedSoftware}' | jq

[

 {

   "description": "X.509 certificate management for Kubernetes and OpenShift",

   "displayName": "cert-manager",

   "version": "1.9.1"

 }

]

Overview of cert-manager
cert-manager adds certificates and certificate issuers as resource types to Kubernetes clusters. It
also helps you to obtain, renew, and use those certificates. For more information about cert-
manager, see cert-manager documentation.

The cert-manager package allows you to, optionally, configure a number of ClusterIssuer. When
you install Tanzu Application Platform by using profiles, a self-signed ClusterIssuer is included by
default.

As of cert-manager.tanzu.vmware.com/2.0.0, versioning departs from the upstream, open-source
project’s version. The contained cert-manager version is reflected in
Package.spec.includedSoftware. You can identify the version of cert-manager as follows:

kubectl get package -n tap-install cert-manager.tanzu.vmware.com.2.0.0 -ojsonpath='{.s

pec.includedSoftware}' | jq

[

 {

   "description": "X.509 certificate management for Kubernetes and OpenShift",

   "displayName": "cert-manager",

   "version": "1.9.1"

 }

]

Install cert-manager

This topic tells you how to install cert-manager from the Tanzu Application Platform (commonly
known as TAP) package repository.

Caution

ACME HTTP01 challenges can fail under certain conditions. For more information,
see ACME challenges.

Caution

ACME HTTP01 challenges can fail under certain conditions. For more information,
see ACME challenges.

Tanzu Application Platform v1.5

VMware by Broadcom 1024

https://cert-manager.io/docs


The cert-manager package installs cert-manager and, optionally, a number of ClusterIssuer.

To install cert-manager with a self-signed ClusterIssuer from the Tanzu Application Platform
package repository:

1. List version information for the package by running:

tanzu package available list cert-manager.tanzu.vmware.com -n tap-install

For example:

$ tanzu package available list cert-manager.tanzu.vmware.com -n tap-install

/ Retrieving package versions for cert-manager.tanzu.vmware.com...

  NAME                           VERSION           RELEASED-AT

  cert-manager.tanzu.vmware.com  2.0.0             ...

2. Discover available configuration for the package by running:

tanzu package available get cert-manager.tanzu.vmware.com/2.0.0 --namespace tap

-install --values-schema

For example:

$ tanzu package available get cert-manager.tanzu.vmware.com/2.0.0 --namespace t

ap-install --values-schema

KEY                   DEFAULT  TYPE    DESCRIPTION

certManager.pspNames  []       array   PodSecurityPolicy names which cert-manag

er is allowed to use

issuers               []       array   The ClusterIssuers to install - default: 

[]

namespace                      string  Cert-manager's namespace - also used as 

its cluster resource namespace

https://cert-manager.io/v1.9-docs/faq/cluster-resource/

3. Create a file named cert-manager-rbac.yaml by using the following sample:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

  name: cert-manager-tap-install-cluster-admin-role

rules:

- apiGroups:

  - '*'

  resources:

  - '*'

  verbs:

  - '*'

---

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

  name: cert-manager-tap-install-cluster-admin-role-binding

roleRef:

  apiGroup: rbac.authorization.k8s.io

Note

Follow the steps in this topic if you do not want to use a profile to install cert-
manager. For more information about profiles, see Components and installation
profiles.

Tanzu Application Platform v1.5

VMware by Broadcom 1025



  kind: ClusterRole

  name: cert-manager-tap-install-cluster-admin-role

subjects:

- kind: ServiceAccount

  name: cert-manager-tap-install-sa

  namespace: tap-install

---

apiVersion: v1

kind: ServiceAccount

metadata:

  name: cert-manager-tap-install-sa

  namespace: tap-install

Apply the configuration:

kubectl apply -f cert-manager-rbac.yaml

4. Create a file named cert-manager-install.yaml by using the following sample:

---

apiVersion: packaging.carvel.dev/v1alpha1

kind: PackageInstall

metadata:

  name: cert-manager

  namespace: tap-install

spec:

  serviceAccountName: cert-manager-tap-install-sa

  packageRef:

    refName: cert-manager.tanzu.vmware.com

    versionSelection:

      constraints: "VERSION-NUMBER"

      prereleases: {}

  values:

    - secretRef:

        name: cert-manager-values

---

apiVersion: v1

kind: Secret

metadata:

  name: cert-manager-values

  namespace: tap-install

stringData:

  values.yaml: |

    issuers:

      - name: tap-ingress-selfsigned

        self_signed: {}

Where:

VERSION-NUMBER is the version of the package listed earlier.

Secret cert-manager-values contains your configuration of the cert-manager
package.

Apply the configuration:

kubectl apply -f cert-manager-install.yaml

5. Verify the package installation:

tanzu package installed get cert-manager -n tap-install

For example:

Tanzu Application Platform v1.5

VMware by Broadcom 1026



$ tanzu package installed get cert-manager -n tap-install

/ Retrieving installation details for cert-manager...

NAME:                    cert-manager

PACKAGE-NAME:            cert-manager.tanzu.vmware.com

PACKAGE-VERSION:         2.0.0

STATUS:                  Reconcile succeeded

CONDITIONS:              [{ReconcileSucceeded True}]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded

6. Verify that cert-manager is up and running:

kubectl get deployment -n cert-manager

For example:

$ kubectl get deployment -n cert-manager

NAME                      READY   UP-TO-DATE   AVAILABLE   AGE

cert-manager              1/1     1            1           5m

cert-manager-cainjector   1/1     1            1           5m

cert-manager-webhook      1/1     1            1           5m

7. Verify that the self-signed ClusterIssuer is present:

kubectl get clusterissuer

For example:

$ kubectl get clusterissuer

NAME                               READY   AGE

tap-ingress-selfsigned             True    5m

tap-ingress-selfsigned-bootstrap   True    5m

...

ACME challenges

cert-manager.io provides APIs for managing certificates on Kubernetes. It is one of the most
popular extensions for Kubernetes and has found ubiquitous adoption. Automatic Certificate
Management Environment (commonly called ACME) is a protocol for automatically obtaining
certificates from certificate authorities. LetsEncrypt has designed and pioneered ACME and is one
of the most-popular ACME-style, public CA.

You can use ACME with either an HTTP01 or a DNS01 challenge. In both cases the certificate
requester must prove ownership of the domain either by answering a plain HTTP request or by
setting a DNS record.

When using cert-manager’s (Cluster)Issuer with an ACME HTTP01 challenge solver, a Pod is run
and exposed to the network by using ingress. The Pod receives the challenge from the CA and
responds. If the challenge is solved successfully, the certificate is issued.

When using cert-manager’s (Cluster)Issuer with an ACME DNS01 challenge solver, the owner of
the domain answers the challenge by setting a TXT record under the domain name. If the challenge
is solved successfully, the certificate is issued.

Working with DNS01 challenges is harder than with HTTP01 challenges, but can work in situations
where HTTP01 can’t.

HTTP01 challenges can fail

Tanzu Application Platform v1.5

VMware by Broadcom 1027



All of components’ images of Tanzu Application Platform are relocated to and pulled from a private
registry. This also applies to cert-manager.tanzu.vmware.com, including the ACME HTTP01 solver
Pod’s image.

Due to the design of cert-manager’s (Cluster)Issuer resources, it is not easy to provide them with
credentials to your private registry in a way that works consistently across all namespaces in your
cluster.

You can deeply integrate a cluster with a private registry so that image pull secrets don’t have to
be provided explicitely. This is a common practice with popular cloud-based Kubernetes providers
such as GKE, AKS and EKS.

As a result, ACME HTTP01 challenges can fail when your cluster is not deeply integrated with your
private registry. In that case VMware recommends the following workarounds:

(Recommended) Use DNS01 challenges

Provide your (Cluster)Issuer with a ServiceAccount by using its pod template so that it
can pull from your registry. For example:

---

apiVersion: v1

kind: ServiceAccount

metadata:

 name: tap-acme-http01-solver

 namespace: #! ...

imagePullSecrets:

 - registry-credentials

---

apiVersion: cert-manager.io/v1

kind: ClusterIssuer

metadata: #! ...

spec:

 #! ...

 acme:

   solvers:

     - http01:

         ingress:

           podTemplate:

             spec:

               serviceAccountName: tap-acme-http01-solver

The challenge lies in ensuring that the same ServiceAccount is available in every namespace
that obtains Certificates from the ClusterIssuer.

Overview of Cloud Native Runtimes

Cloud Native Runtimes for Tanzu is a serverless application runtime for Kubernetes that is based on
Knative and runs on a single Kubernetes cluster.

To learn more about Cloud Native Runtimes, see Cloud Native Runtimes for VMware Tanzu.

Overview of Cloud Native Runtimes

Cloud Native Runtimes for Tanzu is a serverless application runtime for Kubernetes that is based on
Knative and runs on a single Kubernetes cluster.

To learn more about Cloud Native Runtimes, see Cloud Native Runtimes for VMware Tanzu.

Install Cloud Native Runtimes

Tanzu Application Platform v1.5

VMware by Broadcom 1028

https://cert-manager.io/docs/configuration/acme/dns01/
https://cert-manager.io/docs/configuration/acme/http01/#podtemplate
https://docs.vmware.com/en/Cloud-Native-Runtimes-for-VMware-Tanzu/index.html
https://docs.vmware.com/en/Cloud-Native-Runtimes-for-VMware-Tanzu/index.html


This topic describes how you can install Cloud Native Runtimes from the Tanzu Application Platform
package repository.

Prerequisites

Before installing Cloud Native Runtimes:

Complete all prerequisites to install Tanzu Application Platform. See Prerequisites.

Ensure that Contour v1.22.0 or later is installed. Tanzu Application Platform includes a
correctly versioned package of Contour if you do not have it installed already.

Install

To install Cloud Native Runtimes:

1. List version information for the package by running:

tanzu package available list cnrs.tanzu.vmware.com --namespace tap-install

For example:

$ tanzu package available list cnrs.tanzu.vmware.com --namespace tap-install

- Retrieving package versions for cnrs.tanzu.vmware.com...

  NAME                   VERSION  RELEASED-AT

  cnrs.tanzu.vmware.com  2.2.0    2023-03-08 16:00:00 -0800 PST

2. (Optional) Make changes to the default installation settings:

1. Gather values schema.

tanzu package available get cnrs.tanzu.vmware.com/2.2.0 --values-schema -

n tap-install

For example:

$ tanzu package available get cnrs.tanzu.vmware.com/2.2.0 --values-schema 

-n tap-install

| Retrieving package details for cnrs.tanzu.vmware.com/2.2.0...

  KEY                         DEFAULT                               TYPE     

DESCRIPTION

  https_redirection           true                                  boole

an  CNRs ingress will send a 301 redirect for all http connections, askin

g the clients to use HTTPS

  ingress.internal.namespace  tanzu-system-ingress                  strin

g   Required. Specify a namespace where an existing Contour is installed 

on your cluster. CNR will use this Contour instance for internal service

s.

  ingress.external.namespace  tanzu-system-ingress                  strin

g   Required. Specify a namespace where an existing Contour is installed 

on your cluster. CNR will use this Contour instance for external service

s.

  ingress_issuer                                                    strin

g   Cluster issuer to be used in CNRs. To use this property the domain_na

Note

Follow the steps in this topic if you do not want to use a profile to install Cloud
Native Runtimes. For more information about profiles, see Components and
installation profiles.

Tanzu Application Platform v1.5

VMware by Broadcom 1029



me or domain_config must be set. Under the hood, when this property is se

t auto-tls is Enabled.

  namespace_selector                                                strin

g   Specifies a LabelSelector which determines which namespaces should ha

ve a wildcard certificate provisioned. Set this property only if the Clus

ter issuer is type DNS-01 challenge.

  domain_config               <nil>                                 <nil>    

Optional. Overrides the Knative Serving "config-domain" ConfigMap, allowi

ng you to map Knative Services to specific domains. Must be valid YAML an

d conform to the "config-domain" specification.

  domain_template             {{.Name}}.{{.Namespace}}.{{.Domain}}  strin

g   Optional. Specifies the golang text template string to use when const

ructing the DNS name for a Knative Service.

  lite.enable                 false                                 <nil>    

Optional. Set to "true" to enable lite mode. Reduces CPU and Memory resou

rce requests for all cnrs Deployments, Daemonsets, and StatefulSets by ha

lf. Not recommended for production.

  pdb.enable                  true                                  <nil>    

Optional. Set to true to enable a PodDisruptionBudget for the Knative Ser

ving activator and webhook deployments.

  default_tls_secret                                                strin

g   Optional. Specify a fallback TLS Certificate for use by Knative Servi

ces if autoTLS is disabled. Will set default exterenal scheme for Knative 

Service URLs to "https". Requires either "domain_name" or "domain_config" 

to be set.

  kubernetes_version          0.0.0                                 <nil>    

Optional. Version of K8s infrastructure being used. Supported Values: val

id Kubernetes major.minor.patch versions

  ca_cert_data                                                      strin

g   Optional. PEM Encoded certificate data to trust TLS connections with 

a private CA.

  provider                    <nil>                                 <nil>    

Deprecated. Instead, use "lite.enable" and "pdb.enable" options combined. 

Supported Values: local

  domain_name                                                       strin

g   Optional. Default domain name for Knative Services.

  kubernetes_distribution     <nil>                                 <nil>    

Optional. Type of K8s infrastructure being used. Supported Values: opensh

ift

2. Create a cnr-values.yaml by using the following sample as a guide:

---

domain_name: example.com

ingress:

external:

    namespace: tanzu-system-ingress

internal:

    namespace: tanzu-system-ingress

If you are running on a single-node cluster, such as kind or minikube, set the
lite.enable: true option. This option reduces resources requests for Cloud Native
Runtimes deployments.

Cloud Native Runtimes uses the existing Contour installation in the tanzu-system-
ingress namespace by default for external and internal access.

Note

For most installations, you can leave the cnr-values.yaml empty,
and use the default values.

Tanzu Application Platform v1.5

VMware by Broadcom 1030



If your environment has Contour installed already, and it is not the Tanzu Application
Platform provided Contour, you can configure Cloud Native Runtimes to use it. See
Installing Cloud Native Runtimes for Tanzu with an Existing Contour Installation in
the Cloud Native Runtimes documentation.

3. Install the package by running:

tanzu package install cloud-native-runtimes \

  --package cnrs.tanzu.vmware.com \

  --version 2.2.0 \

  --namespace tap-install \

  --values-file cnr-values.yaml \

  --poll-timeout 30m

For example:

$ tanzu package install cloud-native-runtimes \

    --package cnrs.tanzu.vmware.com \

    --version 2.2.0 \

    --namespace tap-install \

    --values-file cnr-values.yaml \

    --poll-timeout 30m

| Installing package 'cnrs.tanzu.vmware.com'

| Getting package metadata for 'cnrs.tanzu.vmware.com'

| Creating service account 'cloud-native-runtimes-tap-install-sa'

| Creating cluster admin role 'cloud-native-runtimes-tap-install-cluster-role'

| Creating cluster role binding 'cloud-native-runtimes-tap-install-cluster-role

binding'

- Creating package resource

- Package install status: Reconciling

 Added installed package 'cloud-native-runtimes' in namespace 'tap-install'

Use an empty file for cnr-values.yaml if you want the default installation configuration.
Otherwise, see the earlier step to learn more about setting installation configuration values.

4. Verify the package install by running:

tanzu package installed get cloud-native-runtimes -n tap-install

For example:

tanzu package installed get cloud-native-runtimes -n tap-install

| Retrieving installation details for cc...

NAME:                    cloud-native-runtimes

PACKAGE-NAME:            cnrs.tanzu.vmware.com

PACKAGE-VERSION:         2.2.0

STATUS:                  Reconcile succeeded

CONDITIONS:              [{ReconcileSucceeded True  }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded

5. Configure a namespace to use Cloud Native Runtimes:

Important

This step covers configuring a namespace to run Knative services. If you rely
on a SupplyChain to deploy Knative services into your cluster, skip this step
because namespace configuration is covered in Set up developer

Tanzu Application Platform v1.5

VMware by Broadcom 1031

https://docs.vmware.com/en/Cloud-Native-Runtimes-for-VMware-Tanzu/2.2/tanzu-cloud-native-runtimes/contour.html


Service accounts that run workloads using Cloud Native Runtimes need access to the image
pull secrets for the Tanzu package. This includes the default service account in a
namespace, which is created automatically but not associated with any image pull secrets.
Without these credentials, attempts to start a service fail with a timeout and the pods
report that they are unable to pull the queue-proxy image.

1. Create an image pull secret in the current namespace and fill it from the tap-
registry secret mentioned in Add the Tanzu Application Platform package
repository. Run these commands to create an empty secret and annotate it as a
target of the secretgen controller:

kubectl create secret generic pull-secret --from-literal=.dockerconfigjso

n={} --type=kubernetes.io/dockerconfigjson

kubectl annotate secret pull-secret secretgen.carvel.dev/image-pull-secre

t=""

2. After you create a pull-secret secret in the same namespace as the service
account, run the following command to add the secret to the service account:

kubectl patch serviceaccount default -p '{"imagePullSecrets": [{"name": 

"pull-secret"}]}'

3. Verify that a service account is correctly configured by running:

kubectl describe serviceaccount default

For example:

kubectl describe sa default

Name:                default

Namespace:           default

Labels:              <none>

Annotations:         <none>

Image pull secrets:  pull-secret

Mountable secrets:   default-token-xh6p4

Tokens:              default-token-xh6p4

Events:              <none>

Overview of Contour

Contour is an ingress controller for Kubernetes that supports dynamic configuration updates and
multi-team ingress delegation. It provides the control plane for the Envoy edge and service proxy.
For more information about Contour, see Contour documentation.

Overview of Contour

namespaces to use your installed packages. Otherwise, you must follow
these steps for each namespace where you create Knative services.

Note

The service account has access to the pull-secret image pull
secret.

Tanzu Application Platform v1.5

VMware by Broadcom 1032

https://projectcontour.io/docs/v1.22.0/


Contour is an ingress controller for Kubernetes that supports dynamic configuration updates and
multi-team ingress delegation. It provides the control plane for the Envoy edge and service proxy.
For more information about Contour, see Contour documentation.

Install Contour

This topic tells you how to install Contour from the Tanzu Application Platform (commonly known as
TAP) package repository.

To install Contour from the Tanzu Application Platform package repository without a profile:

1. Install cert-manager.

2. List version information for the package by running:

tanzu package available list contour.tanzu.vmware.com -n tap-install

For example:

$  tanzu package available list contour.tanzu.vmware.com -n tap-install

- Retrieving package versions for contour.tanzu.vmware.com...

  NAME                      VERSION       RELEASED-AT

  contour.tanzu.vmware.com  1.22.0+tap.8  2022-12-05 19:00:00 -0500 EST

3. Create a file named contour-rbac.yaml by using the following sample and apply the
configuration:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

  name: contour-tap-install-cluster-admin-role

rules:

- apiGroups:

  - '*'

  resources:

  - '*'

  verbs:

  - '*'

---

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

  name: contour-tap-install-cluster-admin-role-binding

roleRef:

  apiGroup: rbac.authorization.k8s.io

  kind: ClusterRole

  name: contour-tap-install-cluster-admin-role

subjects:

- kind: ServiceAccount

  name: contour-tap-install-sa

  namespace: tap-install

---

apiVersion: v1

kind: ServiceAccount

metadata:

Note

Follow the steps in this topic if you do not want to use a profile to install Contour.
For more information about profiles, see Components and installation profiles.

Tanzu Application Platform v1.5

VMware by Broadcom 1033

https://projectcontour.io/docs/v1.22.0/


  name: contour-tap-install-sa

  namespace: tap-install

4. Apply the configuration by running:

kubectl apply -f contour-rbac.yaml

5. Create a file named contour-install.yaml by using the following sample and apply the
configuration:

apiVersion: packaging.carvel.dev/v1alpha1

kind: PackageInstall

metadata:

  name: contour

  namespace: tap-install

spec:

  serviceAccountName: contour-tap-install-sa

  packageRef:

    refName: contour.tanzu.vmware.com

    versionSelection:

      constraints: "VERSION-NUMBER"

      prereleases: {}

Where VERSION-NUMBER is the version of the package listed earlier.

6. (Optional) Make changes to the default installation settings:

1. Gather values schema by running:

tanzu package available get contour.tanzu.vmware.com/1.22.0+tap.8 --value

s-schema -n tap-install

For example:

$ tanzu package available get contour.tanzu.vmware.com/1.22.0+tap.8 --val

ues-schema -n tap-install

  KEY                                  DEFAULT               TYPE     DES

CRIPTION

  kubernetes_version                   0.0.0                 string   Opt

ional. Version of K8s infrastructure being used. Supported Values: valid 

Kubernetes major.minor.patch versions

  namespace                            tanzu-system-ingress  string   The 

namespace in which to deploy Contour and Envoy.

  certificates.duration                8760h                 string   If 

using cert-manager, how long the certificates should be valid for. If use

CertManager is false, this field is ignored.

  certificates.renewBefore             360h                  string   If 

using cert-manager, how long before expiration the certificates should be 

renewed. If useCertManager is false, this field is ignored.

  contour.configFileContents           <nil>                 <nil>    The 

YAML contents of the Contour config file. See https://projectcontour.io/d

ocs/v1.22.0/configuration/#configuration-file for more information.

  contour.logLevel                     info                  string   The 

Contour log level. Valid options are 'info' and 'debug'.

  contour.replicas                     2                     integer  How 

Note

The following configuration installs the Contour package with default
options. To make changes to the default installation settings, go to the next
step.

Tanzu Application Platform v1.5

VMware by Broadcom 1034



many Contour pod replicas to have.

  contour.useProxyProtocol             false                 boolean  Whe

ther to enable PROXY protocol for all Envoy listeners.

  envoy.terminationGracePeriodSeconds  300                   integer  The 

termination grace period, in seconds, for the Envoy pods.

  envoy.workload.replicas              2                     integer  The 

number of Envoy replicas to deploy when 'type' is set to 'Deployment'. If 

not specified, it will default to '2'.

  envoy.workload.type                  DaemonSet             string   The 

type of Kubernetes workload Envoy is deployed as. Options are 'Deploymen

t' or 'DaemonSet'. If not specified, will default to 'DaemonSet'.

  envoy.hostNetwork                    false                 boolean  Whe

ther to enable host networking for the Envoy pods.

  envoy.hostPorts.enable               true                  boolean  Whe

ther to enable host ports. If false, http & https are ignored.

  envoy.hostPorts.http                 80                    integer  If 

enable == true, the host port number to expose Envoy's HTTP listener on.

  envoy.hostPorts.https                443                   integer  If 

enable == true, the host port number to expose Envoy's HTTPS listener on.

  envoy.logLevel                       info                  string   The 

Envoy log level.

  envoy.service.nodePorts.https        0                     integer  The 

node port number to expose Envoy's HTTPS listener on. If not specified, a 

node port will be auto-assigned by Kubernetes.

  envoy.service.nodePorts.http         0                     integer  The 

node port number to expose Envoy's HTTP listener on. If not specified, a 

node port will be auto-assigned by Kubernetes.

  envoy.service.type                                         string   The 

type of Kubernetes service to provision for Envoy. If not specified, will 

default to 'NodePort' for docker and vsphere and 'LoadBalancer' for other

s.

  envoy.service.annotations            <nil>                 <nil>    Ann

otations to set on the Envoy service.

  envoy.service.aws.LBType             classic               string   AWS 

loadbalancer type.

  envoy.service.externalTrafficPolicy                        string   The 

external traffic policy for the Envoy service. If type is 'ClusterIP', th

is field is ignored. Otherwise, defaults to 'Cluster' for vsphere and 'Lo

cal' for others.

  envoy.service.loadBalancerIP                               string   The 

desired load balancer IP. If type is not 'LoadBalancer', this field is ig

nored. It is up to the cloud provider whether to honor this request. If n

ot specified, then load balancer IP will be assigned by the cloud provide

r.

  infrastructure_provider              vsphere               string   The 

underlying infrastructure provider. Valid values are `vsphere`, `aws` and 

`azure`.

  kubernetes_distribution                                    string   Kub

ernetes distribution that this package is being installed on. Supported v

alues: ['','openshift']

2. Create a contour-install.yaml file by using the following sample as a guide:

apiVersion: packaging.carvel.dev/v1alpha1

kind: PackageInstall

metadata:

  name: contour

  namespace: tap-install

Note

This sample is for installation in an AWS public cloud with
LoadBalancer services.

Tanzu Application Platform v1.5

VMware by Broadcom 1035



spec:

  serviceAccountName: contour-tap-install-sa

  packageRef:

    refName: contour.tanzu.vmware.com

    versionSelection:

      constraints: 1.22.0+tap.8

      prereleases: {}

  values:

  - secretRef:

      name: contour-values

---

apiVersion: v1

kind: Secret

metadata:

  name: contour-values

  namespace: tap-install

stringData:

  values.yaml: |

    envoy:

      service:

        type: LoadBalancer

    infrastructure_provider: aws

The LoadBalancer type is appropriate for most installations, but local clusters such as
kind or minikube can fail to complete the package install if LoadBalancer services
are not supported.

For local clusters, you can configure contour.envoy.service.type to be NodePort. If
your local cluster is set up with extra port mappings on the nodes, you might also
need configure envoy.service.nodePorts.http and envoy.service.nodePorts.https
to match the port mappings from your local machine into one of the nodes of your
local cluster. This pattern is seen when using the Learning Center on Kind.

Contour provides an Ingress implementation by default. If you have another Ingress
implementation in your cluster, you must explicitly specify an IngressClass to select
a particular implementation.

Cloud Native Runtimes programs Contour HTTPRoutes are based on the installed
namespace. The default installation of CNR uses a single Contour to provide
internet-visible services. You can install a second Contour instance with service type
ClusterIP if you want to expose some services to only the local cluster. The second
instance must be installed in a separate namespace. You must set the CNR value
ingress.internal.namespace to point to this namespace.

7. Install the package by running:

kubectl apply -f contour-install.yaml

8. Verify the package install by running:

tanzu package installed get contour -n tap-install

For example:

$ tanzu package installed get contour -n tap-install

/ Retrieving installation details for contour...

NAME:                    contour

PACKAGE-NAME:            contour.tanzu.vmware.com

PACKAGE-VERSION:         1.22.0+tap.8

STATUS:                  Reconcile succeeded

CONDITIONS:              [{ReconcileSucceeded True  }]

USEFUL-ERROR-MESSAGE:

Tanzu Application Platform v1.5

VMware by Broadcom 1036

https://kubernetes.io/docs/concepts/services-networking/ingress/#ingress-class


Verify that STATUS is Reconcile succeeded

9. Verify the installation by running:

kubectl get po -n tanzu-system-ingress

For example:

$  kubectl get po -n tanzu-system-ingress

NAME                       READY   STATUS    RESTARTS   AGE

contour-857d46c845-4r6c5   1/1     Running   1          18d

contour-857d46c845-p6bbq   1/1     Running   1          18d

envoy-mxkjk                2/2     Running   2          18d

envoy-qlg8l                2/2     Running   2          18d

Ensure that all pods are Running with all containers ready.

Configure Cipher Suites and TLS version in Contour
This topic tells you how to configure TLS options for Contour in Tanzu Application Platform
(commonly known as TAP).

Contour provides configuration options for TLS version and Cipher Suites. Rather than directly
exposed through a top level key in the pacakge, they fall into the category of advanced Contour
configurations by using the contour.configFileContents key. For more information about these
configuration options, see Contour documentation.

To configure TLS options for Contour in Tanzu Application Platform, edit the contour section of
your TAP values file as follows:

contour:

  # ... there maybe some configuration already here

  contour:

    configFileContents:

      tls:

        minimum-protocol-version: "1.2"

        cipher-suites:

        - '[ECDHE-ECDSA-AES128-GCM-SHA256|ECDHE-ECDSA-CHACHA20-POLY1305]'

        - '[ECDHE-RSA-AES128-GCM-SHA256|ECDHE-RSA-CHACHA20-POLY1305]'

        - 'ECDHE-ECDSA-AES256-GCM-SHA384'

        - 'ECDHE-RSA-AES256-GCM-SHA384'

Expect to see the following Cipher Suites and TLS version data in the Contour configmap:

$ kubectl -n tanzu-system-ingress get configmap contour -oyaml

apiVersion: v1

data:

  contour.yaml: |

    tls:

      minimum-protocol-version: "1.2"

      cipher-suites:

      - '[ECDHE-ECDSA-AES128-GCM-SHA256|ECDHE-ECDSA-CHACHA20-POLY1305]'

      - '[ECDHE-RSA-AES128-GCM-SHA256|ECDHE-RSA-CHACHA20-POLY1305]'

      - ECDHE-ECDSA-AES256-GCM-SHA384

      - ECDHE-RSA-AES256-GCM-SHA384

kind: ConfigMap

metadata:

...

Important

Tanzu Application Platform v1.5

VMware by Broadcom 1037

https://projectcontour.io/docs/v1.23.1/configuration/


Configure Contour

This topic tells you how to configure Contour to best suit your cluster.

By default, Contour installs with the Controllers as a Deployment and the Envoys as a DaemonSet. In
most cases, this is sufficient. However, VMware recommends running Envoy as a Deployment in the
following scenarios:

Smaller Clusters

Larger Clusters

Smaller Clusters

On most clusters, a DaemonSet works without any issues. However, if you limit resources per node
and the nodes are heavily used, deploying Envoy as a DaemonSet might consume unnecessary
resources on every node. In this case, VMware recommends using Deployment with a fixed number
of replicas.

Larger Clusters

On larger clusters, running Envoy as a DaemonSet might be inefficient. The more Envoys in the
cluster, the more resources the Contour controller needs to keep them updated. If the Contour
controllers use lots of resources, VMware recommends running Envoy as a Deployment.

Configuring Envoy as a Deployment

To configure Envoy as a Deployment, update your Contour values file as follows:

envoy:

  workload:

    type: Deployment

    replicas: N

If you use a Tanzu Application Platform values file, you can add the these configurations to the
contour section.

Overview of Crossplane

Crossplane is an open source, Cloud Native Computing Foundation (CNCF) project built on the
foundation of Kubernetes. Tanzu Application Platform (commonly known as TAP) uses Crossplane
to power a number of capabilities, such as dynamic provisioning of services instances with Services
Toolkit and the Bitnami Services.

Crossplane with Tanzu Application Platform

Tanzu Application Platform includes a Carvel package named crossplane.tanzu.vmware.com, which
is included by default in the full, iterate, and run profiles. The package installs Upbound Universal
Crossplane (UXP).

To update the configmap, you must configure it through Tanzu Application Platform
values file. If you change it directly in the configmap, kapp-controller reverts all the
changes you made.

Tanzu Application Platform v1.5

VMware by Broadcom 1038

https://github.com/upbound/universal-crossplane


In addition, the package includes two pre-configured Crossplane providers: provider-helm and
provider-kubernetes. Both of providers provide useful Managed Resources that you can use as part
of Composition. These are both used by Tanzu Application Platform’s Bitnami Services.

The package installs UXP and the providers to the crossplane-system namespace.

Getting started

To learn about working with Crossplane in general, see the Crossplane documentation. To learn
about how Tanzu Application Platform integrates with Crossplane, see one of the following tutorials
to get started.

For apps teams:

Tutorial: Working with Bitnami Services

For ops teams:

Tutorial: Setup Dynamic Provisioning of Service Instances

Alternatively, see the reference material.

Overview of Crossplane

Crossplane is an open source, Cloud Native Computing Foundation (CNCF) project built on the
foundation of Kubernetes. Tanzu Application Platform (commonly known as TAP) uses Crossplane
to power a number of capabilities, such as dynamic provisioning of services instances with Services
Toolkit and the Bitnami Services.

Crossplane with Tanzu Application Platform

Tanzu Application Platform includes a Carvel package named crossplane.tanzu.vmware.com, which
is included by default in the full, iterate, and run profiles. The package installs Upbound Universal
Crossplane (UXP).

In addition, the package includes two pre-configured Crossplane providers: provider-helm and
provider-kubernetes. Both of providers provide useful Managed Resources that you can use as part
of Composition. These are both used by Tanzu Application Platform’s Bitnami Services.

The package installs UXP and the providers to the crossplane-system namespace.

Getting started

To learn about working with Crossplane in general, see the Crossplane documentation. To learn
about how Tanzu Application Platform integrates with Crossplane, see one of the following tutorials
to get started.

For apps teams:

Tutorial: Working with Bitnami Services

For ops teams:

Tutorial: Setup Dynamic Provisioning of Service Instances

Alternatively, see the reference material.

Install Crossplane

This topic tells you how to install Crossplane from the Tanzu Application Platform (commonly known
as TAP) package repository.

Tanzu Application Platform v1.5

VMware by Broadcom 1039

https://github.com/crossplane-contrib/provider-helm
https://github.com/crossplane-contrib/provider-kubernetes
https://docs.crossplane.io/latest/concepts/managed-resources/
https://docs.crossplane.io/latest/concepts/composition/#compositions
https://docs.crossplane.io/
https://github.com/upbound/universal-crossplane
https://github.com/crossplane-contrib/provider-helm
https://github.com/crossplane-contrib/provider-kubernetes
https://docs.crossplane.io/latest/concepts/managed-resources/
https://docs.crossplane.io/latest/concepts/composition/#compositions
https://docs.crossplane.io/


Prerequisites
Before installing Crossplane:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

Install Crossplane
To install Crossplane:

1. See what versions of Crossplane are available to install by running:

tanzu package available list -n tap-install crossplane.tanzu.vmware.com

For example:

$ tanzu package available list -n tap-install crossplane.tanzu.vmware.com

  NAME                               VERSION           RELEASED-AT

  crossplane.tanzu.vmware.com        0.1.1             2023-03-10 14:24:35 +000

0 UTC

2. Install Crossplane by running:

tanzu package install crossplane \

  --package crossplane.tanzu.vmware.com \

  --version VERSION-NUMBER \

  --namespace tap-install

Where VERSION-NUMBER is the Crossplane version you want to install. For example, 0.1.1.

3. Verify that the package installed by running:

tanzu package installed get crossplane -n tap-install

In the output, confirm that the STATUS value is Reconcile succeeded.

For example:

$ tanzu package installed get crossplane -n tap-install

NAMESPACE:          tap-install

NAME:               crossplane

PACKAGE-NAME:       crossplane.tanzu.vmware.com

PACKAGE-VERSION:    0.1.1

STATUS:             Reconcile succeeded

CONDITIONS:         - type: ReconcileSucceeded

  status: "True"

  reason: ""

  message: ""

Crossplane reference

This section provides reference documentation for Crossplane.

Note

Follow the steps in this topic if you do not want to use a profile to install Crossplane.
For more information about profiles, see Components and installation profiles.

Tanzu Application Platform v1.5

VMware by Broadcom 1040



In this section:

Package values

Crossplane limitations

Package values for Crossplane

This topic lists the keys and values you can use to configure the behavior of the Crossplane
package. Configuration is split between configuration specific to Crossplane in Tanzu Application
Platform (commonly known as TAP) and configuration of the Upbound Universal Crossplane (UXP)
Helm Chart.

If you are applying configuration to Tanzu Application Platform through the use of profiles and the
tap-values.yaml, all configuration must exist under the crossplane top-level key.

For example:

crossplane:

  replicas: 3

Tanzu Application Platform configuration

The following table lists configuration specific to Crossplane in Tanzu Application Platform.

KEY DEFAULT TYPE DESCRIPTION

kubernetes_version "" string Optional: The Kubernetes version. Valid values are '' or take the form
'1.25.0'

kubernetes_distributi
on

"" string Optional: The Kubernetes distribution. Valid values are '' or 'openshift'

Standard Crossplane configuration

The following table lists configuration for the UXP Helm Chart.

KEY DEFAULT TYPE DESCRIPTION

replicas 1 integ
er

serviceAccount
.customAnnota
tions

'{}' objec
t

bootstrapper.re
sources

'{}' objec
t

bootstrapper.c
onfig.args

array

bootstrapper.c
onfig.debugMo
de

false boole
an

bootstrapper.c
onfig.envVars

'{}' objec
t

bootstrapper.i
mage.pullPolic
y

IfNotPresent string

Tanzu Application Platform v1.5

VMware by Broadcom 1041



KEY DEFAULT TYPE DESCRIPTION

bootstrapper.i
mage.repositor
y

xpkg.upbound.io

/upbound/uxp-

bootstrapper

string

bootstrapper.i
mage.tag

v1.11.0-up.1 string

maxReconcileR
ate

"" string How frequently Crossplane reconciles its resources in seconds.

metrics.enable
d

false boole
an

securityContext
Crossplane.allo
wPrivilegeEscal
ation

false boole
an

securityContext
Crossplane.rea
dOnlyRootFiles
ystem

true boole
an

securityContext
Crossplane.run
AsGroup

65532 integ
er

securityContext
Crossplane.run
AsUser

65532 integ
er

xfn.securityCont
ext.allowPrivile
geEscalation

false boole
an

xfn.securityCont
ext.capabilities.
add

array

xfn.securityCont
ext.readOnlyRo
otFilesystem

true boole
an

xfn.securityCont
ext.runAsGroup

65532 integ
er

xfn.securityCont
ext.runAsUser

65532 integ
er

xfn.securityCont
ext.seccompPr
ofile.type

Unconfined string

xfn.args '{}' objec
t

xfn.cache.confi
gMap

"" string

xfn.cache.medi
um

"" string

xfn.cache.pvc "" string

xfn.cache.sizeLi
mit

1Gi string

Tanzu Application Platform v1.5

VMware by Broadcom 1042



KEY DEFAULT TYPE DESCRIPTION

xfn.enabled false boole
an

xfn.extraEnvVar
s

'{}' objec
t

xfn.image.pullP
olicy

IfNotPresent string

xfn.image.repos
itory

crossplane/xfn string

xfn.image.tag v1.11.0-up.1 string

xfn.resources.re
quests.cpu

1000m string

xfn.resources.re
quests.memory

1Gi string

xfn.resources.li
mits.memory

2Gi string

xfn.resources.li
mits.cpu

2000m string

resourcesCross
plane.limits.cpu

500m string

resourcesCross
plane.limits.me
mory

1Gi string

resourcesCross
plane.requests.
cpu

250m string

resourcesCross
plane.requests.
memory

768Mi string

resourcesRBAC
Manager.limits.
memory

768Mi string

resourcesRBAC
Manager.limits.
cpu

100m string

resourcesRBAC
Manager.reques
ts.cpu

100m string

resourcesRBAC
Manager.reques
ts.memory

512Mi string

configuration.p
ackages

array

deploymentStr
ategy

RollingUpdate string

extraEnvVarsCr
ossplane

'{}' objec
t

List of extra environment variables to set in the Crossplane deployment.
For example, extraEnvironmentVars: sample.key: value1
ANOTHER.KEY: value2 results with - name: sample_key value:
"value1" - name: ANOTHER_KEY value: "value2"

Tanzu Application Platform v1.5

VMware by Broadcom 1043



KEY DEFAULT TYPE DESCRIPTION

registryCaBundl
eConfig

'{}' objec
t

billing.awsMark
etplace.iamRol
eARN

arn:aws:iam::AC

COUNT-

ID>:role/ROLE-

NAME

string

billing.awsMark
etplace.enable
d

false boole
an

image.pullPolic
y

IfNotPresent string

image.reposito
ry

upbound/crosspl

ane

string

image.tag v1.11.0-up.1 string

packageCache.
configMap

"" string

packageCache.
medium

"" string

packageCache.
pvc

"" string

packageCache.
sizeLimit

5Mi string

securityContext
RBACManager.
allowPrivilegeE
scalation

false boole
an

securityContext
RBACManager.r
eadOnlyRootFil
esystem

true boole
an

securityContext
RBACManager.r
unAsGroup

65532 integ
er

securityContext
RBACManager.r
unAsUser

65532 integ
er

rbacManager.m
anagementPoli
cy

Basic string

rbacManager.n
odeSelector

'{}' objec
t

rbacManager.af
finity

'{}' objec
t

rbacManager.ar
gs

'{}' objec
t

rbacManager.d
eploy

true boole
an

Tanzu Application Platform v1.5

VMware by Broadcom 1044



KEY DEFAULT TYPE DESCRIPTION

rbacManager.le
aderElection

true boole
an

rbacManager.re
plicas

1 integ
er

rbacManager.sk
ipAggregatedC
lusterRoles

true boole
an

rbacManager.to
lerations

array

customAnnotat
ions

'{}' objec
t

Custom annotations to add to the Crossplane deployment and pod.

customLabels '{}' objec
t

Custom labels to add into metadata.

leaderElection true boole
an

nodeSelector '{}' objec
t

podSecurityCo
ntextCrossplane

'{}' objec
t

webhooks.enab
led

false boole
an

args '{}' objec
t

podSecurityCo
ntextRBACMana
ger

'{}' objec
t

provider.packa
ges

array

tolerations array

upbound.contr
olPlane.permiss
ion

edit string

affinity '{}' objec
t

extraEnvVarsRB
ACManager

'{}' objec
t

List of extra environment variables to set in the Crossplane RBAC
manager deployment. For example, extraEnvironmentVars:
sample.key: value1 ANOTHER.KEY: value2 results with - name:
sample_key value: "value1" - name: ANOTHER_KEY value:

"value2"

nameOverride crossplane string

priorityClassNa
me

"" string

Version matrix for Crossplane

This topic provides you with a version matrix for the Crossplane package and its open source
components in Tanzu Application Platform v1.5 (commonly known as TAP).

Tanzu Application Platform v1.5

VMware by Broadcom 1045



To view this information for another Tanzu Application Platform version, select the version from the
drop-down menu at the top of this page.

The following table has the component versions for the Crossplane package.

Component Version

Crossplane package 0.1.1

UXP 1.11.0-up.1

Upbound Crossplane 1.11.1-up.1

provider-helm 0.14.0

provider-kubernetes commit SHA 725baeed

 Crossplane limitations

This topic tells you about the limitations related to Crossplane on Tanzu Application Platform
(commonly known as TAP).

For troubleshooting guidance, see Troubleshoot Crossplane.

Cluster performance degradation due to large number of
CRDs

Take care before installing extra Crossplane Providers into Tanzu Application Platform. Some
Providers install hundreds of additional CRDs into the cluster.

This is particularly true of the Providers for AWS, Azure, and GCP. For the number of CRDs
installed with these Providers, see:

provider-aws CRDs

provider-azure CRDs

provider-gcp CRDs

You must ensure that your cluster has sufficient resource to support this number of additional CRDs
if you choose to install them.

Troubleshoot Crossplane

This topic explains how you troubleshoot issues related to Crossplane on Tanzu Application
Platform (commonly known as TAP).

For the limitations of Crossplane, see Crossplane limitations.

Crossplane Providers do not transition to HEALTHY=True if
using a custom certificate for your registry

Note

Tanzu Application Platform patch releases are only added to the table when there is
a change to one or more of the other versions in the table. Otherwise, the
corresponding versions remain the same for each Tanzu Application Platform patch
release.

Tanzu Application Platform v1.5

VMware by Broadcom 1046

https://marketplace.upbound.io/providers/upbound/provider-aws/latest/managed-resources
https://marketplace.upbound.io/providers/upbound/provider-azure/latest/managed-resources
https://marketplace.upbound.io/providers/upbound/provider-gcp/latest/managed-resources


Symptom:

A known issue occurs when you install and configure Crossplane Providers while using a custom
certificate for your registry. The issue prevents the class claims used for dynamic provisioning from
reconciling. A common symptom of this issue is that class claims indefinitely report a status
condition of ResourceMatched=False with Reason=ResourceNotReady.

You can confirm the current status of the Crossplane Providers by running:

kubectl get providers

Example output:

NAME                  INSTALLED   HEALTHY   PACKAGE                                                               

AGE

provider-helm                               registry.example.com/tap/tap-packages:prov

ider-helm@sha256:a3a14b07b79a8983257d1a2cc0449a4806753868178055554cfa38de7b649467         

3d5h

provider-kubernetes                         registry.example.com/tap/tap-packages:prov

ider-kubernetes@sha256:8039f7e56376b46532e3ce0eb7fc4a4501f2d85decf4912bb5952083abb41b7

b   3d5h

In this example, the Providers are not reporting INSTALLED=True or HEALTHY=True. Therefore, they
might be affected by this issue.

Cause:

This issue occurs because the Providers are installed by Crossplane itself rather than directly by the
Tanzu Application Platform Crossplane Package. CA certificate data configured through the tap-
values.yaml file is not passed down to Crossplane, and therefore it is unable to pull the Provider
images.

Solution:

Create a ConfigMap with the PEM encoded certificate data for your CA certificate, and then set
crossplane.registryCaBundleConfig to refer to the ConfigMap in tap-values.yaml.

Crossplane Providers cannot communicate with systems
using a custom CA

Symptom:

A known issue occurs when a Crossplane Provider needs to communicate with systems that are set
up with a custom CA. For example, when the Crossplane Helm Provider uses
releases.helm.crossplane.io to try to pull a Helm chart from a registry that uses a custom CA, you
see that:

The releases.helm.crossplane.io never reports the status condition Ready=True.

The releases.helm.crossplane.io shows a certificate verification error either:

Under the status condition of type SYNCED.

For the event on the release.helm.crossplane.io.

Note

From Tanzu Application Platform v1.6, the Crossplane Package inherits the data
configured in shared.ca_cert_data of tap-values.yaml and this workaround will no
longer be needed.

Tanzu Application Platform v1.5

VMware by Broadcom 1047



To confirm whether you are affected by this issue:

1. Verify the status by running:

kubectl get releases.helm.crossplane.io

Example output if you are affected by the issue:

NAME                CHART   VERSION   SYNCED   READY   STATE   REVISION   DESCR

IPTION   AGE

wordpress-example           15.2.5    False    False                                    

7m37s

2. Find out more about the reason by running the following command, or similar:

kubectl get event --namespace default --field-selector involvedObject.name=word

press-example,involvedObject.kind=Release,type!=Normal | grep -e 'LAST SEEN' -e 

'failed to login'

Example output if you are affected by the issue:

LAST SEEN   TYPE      REASON                            OBJECT                      

MESSAGE

3m41s       Warning   CannotCreateExternalResource      release/wordpress-examp

le   failed to install release: failed to login to registry: Get "https://insec

ure-registry:443/v2/": tls: failed to verify certificate: x509: certificate sig

ned by unknown authority

Cause:

This issue occurs because the Providers are installed by Crossplane itself rather than directly by the
Tanzu Application Platform Crossplane Package. CA certificate data configured through the tap-
values.yaml file is not passed down to Crossplane Providers. Therefore, the Providers are unable to
connect to the systems they need to communicate with, such as, the Helm Provider connecting to
a registry hosting the Helm charts or the Kubernetes Provider connecting to a Kubernetes
APIServer. This issue might be resolved in a later release.

Solution:

Use admission control that allows you to mutate objects, in this case pods, and injects the
appropriate CA certificates. You can use any system that can mutate objects at admission to
mutate the Crossplane Provider pods. For example, to inject CA certificates you can use this
sample in the Kyverno documentation.

Developer Conventions overview

Developer Conventions is a set of conventions that enable your workloads to support live-update
and debug operations in Tanzu Application Platform (commonly known as TAP).

Prerequisites

Tanzu CLI Apps plug-in

Tanzu Dev Tools for VSCode IDE extension.

Features

Enabling Live Updates

Tanzu Application Platform v1.5

VMware by Broadcom 1048

https://kyverno.io/policies/other/add-certificates-volume/add-certificates-volume/


Developer Conventions modifies your workload to enable live updates in either of the following
situations:

You deploy a workload by using the Tanzu CLI Apps plug-in and include the flag --live-
update=true. For more information about how to deploy a workload with the CLI, see Tanzu
apps workload apply.

You deploy a workload by using the Tanzu: Live Update Start option through the Tanzu
Developer Tools for VS Code extension. For more information about live updating with the
extension, see Overview of Tanzu Developer Tools for Visual Studio Code.

When either of the preceding actions take place, the convention behaves as follows:

1. Looks for the apps.tanzu.vmware.com/live-update=true annotation on a PodTemplateSpec
associated with a workload.

2. Verifies that the image to which conventions are applied contains a process that can be live
updated.

3. Adds annotations to the PodTemplateSpec to modify the Knative properties minScale &
maxScale such that the minimum and maximum number of pods is 1. This ensures the
eventual running pod is not scaled down to 0 during a live update session.

After these changes are made, you can use the Tanzu Dev Tools extension or the Tilt CLI to make
live update changes to source code directly on the cluster.

Enabling debugging

Developer Conventions modifies your workload to enable debugging in either of the following
situations:

You deploy a workload by using the Tanzu CLI Apps plug-in and include the flag --
debug=true. For more information about how to deploy a workload with the CLI, see Tanzu
apps workload apply.

You deploy a workload by using the Tanzu Java Debug Start option through the Tanzu
Developer Tools for VS Code extension. For more information about debugging with the
extension, see Overview of Tanzu Developer Tools for Visual Studio Code.

When either of the preceding actions take place, the convention behaves as follows:

1. It looks for the apps.tanzu.vmware.com/debug=true annotation on a PodTemplateSpec
associated with a workload.

2. It checks for the debug-8 or debug-9 labels on the image configuration’s bill of materials
(BOM).

3. It sets the TimeoutSeconds of the Liveness, Readiness, and Startup probes to 600 if
currently set to a lower number.

4. It adds annotations to the PodTemplateSpec to modify the Knative properties minScale &
maxScale such that the minimum and maximum number of pods is 1. This ensures the
eventual running pod won’t be scaled down to 0 during a debug session.

After these changes are made, you can use the Tanzu Dev Tools extension or other CLI-based
debuggers to debug your workload directly on the cluster.

Note

Currently, Developer Conventions only supports debug operations for Java
applications.

Tanzu Application Platform v1.5

VMware by Broadcom 1049



Next steps

Install Developer Conventions

Developer Conventions overview

Developer Conventions is a set of conventions that enable your workloads to support live-update
and debug operations in Tanzu Application Platform (commonly known as TAP).

Prerequisites

Tanzu CLI Apps plug-in

Tanzu Dev Tools for VSCode IDE extension.

Features

Enabling Live Updates

Developer Conventions modifies your workload to enable live updates in either of the following
situations:

You deploy a workload by using the Tanzu CLI Apps plug-in and include the flag --live-
update=true. For more information about how to deploy a workload with the CLI, see Tanzu
apps workload apply.

You deploy a workload by using the Tanzu: Live Update Start option through the Tanzu
Developer Tools for VS Code extension. For more information about live updating with the
extension, see Overview of Tanzu Developer Tools for Visual Studio Code.

When either of the preceding actions take place, the convention behaves as follows:

1. Looks for the apps.tanzu.vmware.com/live-update=true annotation on a PodTemplateSpec
associated with a workload.

2. Verifies that the image to which conventions are applied contains a process that can be live
updated.

3. Adds annotations to the PodTemplateSpec to modify the Knative properties minScale &
maxScale such that the minimum and maximum number of pods is 1. This ensures the
eventual running pod is not scaled down to 0 during a live update session.

After these changes are made, you can use the Tanzu Dev Tools extension or the Tilt CLI to make
live update changes to source code directly on the cluster.

Enabling debugging

Developer Conventions modifies your workload to enable debugging in either of the following
situations:

You deploy a workload by using the Tanzu CLI Apps plug-in and include the flag --
debug=true. For more information about how to deploy a workload with the CLI, see Tanzu
apps workload apply.

You deploy a workload by using the Tanzu Java Debug Start option through the Tanzu
Developer Tools for VS Code extension. For more information about debugging with the
extension, see Overview of Tanzu Developer Tools for Visual Studio Code.

When either of the preceding actions take place, the convention behaves as follows:

Tanzu Application Platform v1.5

VMware by Broadcom 1050



1. It looks for the apps.tanzu.vmware.com/debug=true annotation on a PodTemplateSpec
associated with a workload.

2. It checks for the debug-8 or debug-9 labels on the image configuration’s bill of materials
(BOM).

3. It sets the TimeoutSeconds of the Liveness, Readiness, and Startup probes to 600 if
currently set to a lower number.

4. It adds annotations to the PodTemplateSpec to modify the Knative properties minScale &
maxScale such that the minimum and maximum number of pods is 1. This ensures the
eventual running pod won’t be scaled down to 0 during a debug session.

After these changes are made, you can use the Tanzu Dev Tools extension or other CLI-based
debuggers to debug your workload directly on the cluster.

Next steps

Install Developer Conventions

Install Developer Conventions

This document tells you how to install Developer Conventions from the Tanzu Application Platform
(commonly known as TAP) package repository.

Prerequisites
Before installing Developer Conventions:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

Install Supply Chain Choreographer.

Install
To install Developer Conventions:

1. Get the exact name and version information for the Developer Conventions package to be
installed by running:

tanzu package available list developer-conventions.tanzu.vmware.com --namespace 

tap-install

For example:

Note

Currently, Developer Conventions only supports debug operations for Java
applications.

Note

Follow the steps in this topic if you do not want to use a profile to install Developer
Conventions. For more information about profiles, see About Tanzu Application
Platform components and profiles.

Tanzu Application Platform v1.5

VMware by Broadcom 1051



$ tanzu package available list developer-conventions.tanzu.vmware.com --namespa

ce tap-install

- Retrieving package versions for developer-conventions.tanzu.vmware.com

  NAME                                    VERSION        RELEASED-AT

  developer-conventions.tanzu.vmware.com  0.3.0          2021-10-19T00:00:00Z

2. Install the package by running:

tanzu package install developer-conventions \

  --package developer-conventions.tanzu.vmware.com \

  --version 0.3.0 \

  --namespace tap-install

3. Verify the package install by running:

tanzu package installed get developer-conventions --namespace tap-install

For example:

tanzu package installed get developer-conventions -n tap-install

| Retrieving installation details for developer-conventions...

NAME:                    developer-conventions

PACKAGE-NAME:            developer-conventions.tanzu.vmware.com

PACKAGE-VERSION:         0.3.0

STATUS:                  Reconcile succeeded

CONDITIONS:              [{ReconcileSucceeded True  }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded

Resource limits

The following resource limits are set on the Developer Conventions service:

resources:

  limits:

  cpu: 100m

  memory: 256Mi

  requests:

  cpu: 100m

  memory: 20Mi

Uninstall

To uninstall Developer Conventions, follow the guide for Uninstall Tanzu Application Platform
packages. The package name for developer conventions is developer-conventions.

Run Developer Conventions on an OpenShift cluster

This topic tells you about considerations for running Developer Conventions on OpenShift.

On OpenShift clusters, Developer Conventions must run with a custom SecurityContextConstraint
(SCC) to enable compliance with restricted Kubernetes pod security standards. Tanzu Application
Platform configures the following SCC for the Developer Convention’s webhook when you
configure the kubernetes_distribution: openshift key in the tap-values.yaml file.

Specification follows:

Tanzu Application Platform v1.5

VMware by Broadcom 1052



---

apiVersion: security.openshift.io/v1

kind: SecurityContextConstraints

metadata:

  name: developer-conventions-scc

allowHostDirVolumePlugin: false

allowHostIPC: false

allowHostNetwork: false

allowHostPID: false

allowHostPorts: false

allowPrivilegeEscalation: false

allowPrivilegedContainer: false

defaultAddCapabilities: null

fsGroup:

  type: RunAsAny

priority: null

readOnlyRootFilesystem: false

requiredDropCapabilities: null

runAsUser:

  type: MustRunAsNonRoot

seLinuxContext:

  type: MustRunAs

supplementalGroups:

  type: RunAsAny

volumes:

  - secret

seccompProfiles: []

groups:

  - system:serviceaccounts:developer-conventions

Eventing Overview

Eventing in Tanzu Application Platform (commonly known as TAP) is a collection of APIs based on
Knative Eventing that allows the use of an event-driven architecture with your applications.

Eventing Overview

Eventing in Tanzu Application Platform (commonly known as TAP) is a collection of APIs based on
Knative Eventing that allows the use of an event-driven architecture with your applications.

Install Eventing

This topic tells you how to install the Eventing package from the Tanzu Application Platform
(commonly known as TAP) package repository.

Prerequisites

Before installing Eventing:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

Note

Follow the steps in this topic if you do not want to use a profile to install Eventing.
For more information about profiles, see Components and installation profiles.

Tanzu Application Platform v1.5

VMware by Broadcom 1053

https://knative.dev/docs/eventing/
https://knative.dev/docs/eventing/


Install

To install Eventing:

1. List version information for the package by running:

tanzu package available list eventing.tanzu.vmware.com --namespace tap-install

For example:

$ tanzu package available list eventing.tanzu.vmware.com --namespace tap-instal

l

- Retrieving package versions for eventing.tanzu.vmware.com...

  NAME                   VERSION  RELEASED-AT

  eventing.tanzu.vmware.com  2.0.1    2022-10-11T00:00:00Z

2. (Optional) Make changes to the default installation settings:

1. Gather values schema.

tanzu package available get eventing.tanzu.vmware.com/2.0.1 --values-sche

ma -n tap-install

For example:

$ tanzu package available get eventing.tanzu.vmware.com/2.0.1 --values-sc

hema -n tap-install

| Retrieving package details for eventing.tanzu.vmware.com/2.0.1...

  KEY           DEFAULT  TYPE     DESCRIPTION

  lite.enable   false    boolean  Optional: Not recommended for productio

n. Set to "true" to reduce CPU and Memory resource requests for all Event

ing Deployments, Daemonsets, and Statefulsets by half. On by default when 

"provider" is set to "local".

  pdb.enable    true     boolean  Optional: Set to true to enable Pod Dis

ruption Budget. If provider local is set to "local", the PDB will be disa

bled automatically.

  provider      <nil>    string   Optional: Kubernetes cluster provider. 

To be specified if deploying Eventing on a local Kubernetes cluster provi

der.

2. Create a eventing-values.yaml by using the following sample eventing-
values.yaml as a guide:

---

lite:

  enable: true

If you run on a single-node cluster, such as kind or minikube, set the lite.enable:
property to true. This option reduces resources requests for Eventing deployments.

3. Install the package by running:

tanzu package install eventing -p eventing.tanzu.vmware.com -v 2.0.1 -n tap-ins

tall -f eventing-values.yaml --poll-timeout 30m

Note

For most installations, you can leave the eventing-values.yaml
empty, and use the default values.

Tanzu Application Platform v1.5

VMware by Broadcom 1054



For example:

$ tanzu package install eventing -p eventing.tanzu.vmware.com -v 2.0.1 -n tap-i

nstall -f eventing-values.yaml --poll-timeout 30m

- Installing package 'eventing.tanzu.vmware.com'

| Getting package metadata for 'eventing.tanzu.vmware.com'

| Creating service account 'eventing-tap-install-sa'

| Creating cluster admin role 'eventing-tap-install-cluster-role'

| Creating cluster role binding 'eventing-tap-install-cluster-rolebinding'

| Creating secret 'eventing-tap-install-values'

| Creating package resource

| Waiting for 'PackageInstall' reconciliation for 'eventing'

| 'PackageInstall' resource install status: Reconciling

Added installed package 'eventing'

Use an empty file for eventing-values.yaml to enable default installation configuration.
Otherwise, see the previous step to set installation configuration values.

4. Verify the package install by running:

tanzu package installed get eventing -n tap-install

For example:

tanzu package installed get eventing -n tap-install

| Retrieving installation details for eventing...

NAME:                    eventing

PACKAGE-NAME:            eventing.tanzu.vmware.com

PACKAGE-VERSION:         2.0.1

STATUS:                  Reconcile succeeded

CONDITIONS:              [{ReconcileSucceeded True  }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded.

Overview of Flux CD Source Controller

Flux CD Source Controller provides you with APIs for acquiring resources such as Git, Helm
repositories and S3 buckets on the cluster. For more information, see Flux CD Source Controller
documentation.

The source-controller implements the source.toolkit.fluxcd.io API in GitHub and is a core
component of the GitOps toolkit.

Overview of Flux CD Source Controller

Flux CD Source Controller provides you with APIs for acquiring resources such as Git, Helm
repositories and S3 buckets on the cluster. For more information, see Flux CD Source Controller
documentation.

The source-controller implements the source.toolkit.fluxcd.io API in GitHub and is a core
component of the GitOps toolkit.

Install Flux CD Source Controller

This topic tells you how to install Flux CD Source Controller from the Tanzu Application Platform
(commonly known as TAP) package repository.

Tanzu Application Platform v1.5

VMware by Broadcom 1055

https://fluxcd.io/flux/components/source/
https://github.com/fluxcd/source-controller/tree/main/docs/spec/v1beta1
https://toolkit.fluxcd.io/
https://fluxcd.io/flux/components/source/
https://github.com/fluxcd/source-controller/tree/main/docs/spec/v1beta1
https://toolkit.fluxcd.io/


Prerequisites
Before installing Flux CD Source Controller:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

Install cert-manager on the cluster. For more information, see Install cert-manager.

Configuration
The Flux CD Source Controller package has no configuration values.

Installation
To install Flux CD Source Controller from the Tanzu Application Platform package repository:

1. List version information for the package by running:

tanzu package available list fluxcd.source.controller.tanzu.vmware.com -n tap-i

nstall

For example:

$ tanzu package available list fluxcd.source.controller.tanzu.vmware.com -n tap

-install

    \ Retrieving package versions for fluxcd.source.controller.tanzu.vmware.co

m...

      NAME                                       VERSION  RELEASED-AT

      fluxcd.source.controller.tanzu.vmware.com  0.16.0   2021-10-27 19:00:00 -

0500 -05

2. Install the package by running:

tanzu package install fluxcd-source-controller -p fluxcd.source.controller.tanz

u.vmware.com -v VERSION-NUMBER -n tap-install

Where:

VERSION-NUMBER is the version of the package listed in step 1.

For example:

tanzu package install fluxcd-source-controller -p fluxcd.source.controller.tanz

u.vmware.com -v 0.16.0 -n tap-install

\ Installing package 'fluxcd.source.controller.tanzu.vmware.com'

| Getting package metadata for 'fluxcd.source.controller.tanzu.vmware.com'

| Creating service account 'fluxcd-source-controller-tap-install-sa'

| Creating cluster admin role 'fluxcd-source-controller-tap-install-cluster-rol

e'

| Creating cluster role binding 'fluxcd-source-controller-tap-install-cluster-r

olebinding'

| Creating package resource

- Waiting for 'PackageInstall' reconciliation for 'fluxcd-source-controller'

Note

Follow the steps in this topic if you do not want to use a profile to install Flux CD
Source Controller. For more information about profiles, see Components and
installation profiles.

Tanzu Application Platform v1.5

VMware by Broadcom 1056



| 'PackageInstall' resource install status: Reconciling

  Added installed package 'fluxcd-source-controller'

This package creates a new namespace called flux-system. This namespace hosts all the
elements of fluxcd.

3. Verify the package install by running:

tanzu package installed get fluxcd-source-controller -n tap-install

For example:

tanzu package installed get fluxcd-source-controller -n tap-install

\ Retrieving installation details for fluxcd-source-controller...

NAME:                    fluxcd-source-controller

PACKAGE-NAME:            fluxcd.source.controller.tanzu.vmware.com

PACKAGE-VERSION:         0.16.0

STATUS:                  Reconcile succeeded

CONDITIONS:              [{ReconcileSucceeded True  }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded.

kubectl get pods -n flux-system

For example:

$ kubectl get pods -n flux-system

NAME                                 READY   STATUS    RESTARTS   AGE

source-controller-69859f545d-ll8fj   1/1     Running   0          3m38s

Verify that STATUS is Running.

Try fluxcd-source-controller

1. Verify the main components of fluxcd-source-controller were installed by running:

kubectl get all -n flux-system

Expect to see the following outputs or similar:

NAME                                     READY   STATUS    RESTARTS   AGE

pod/source-controller-7684c85659-2zfxb   1/1     Running   0          40m

NAME                        TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)   

AGE

service/source-controller   ClusterIP   10.108.138.74   <none>        80/TCP    

40m

NAME                                READY   UP-TO-DATE   AVAILABLE   AGE

deployment.apps/source-controller   1/1     1            1           40m

NAME                                           DESIRED   CURRENT   READY   AGE

replicaset.apps/source-controller-7684c85659   1         1         1       40m

2. Verify all the CRD were installedby running:

kubectl get crds -n flux-system | grep ".fluxcd.io"

buckets.source.toolkit.fluxcd.io                         2022-03-07T19:20:14Z

gitrepositories.source.toolkit.fluxcd.io                 2022-03-07T19:20:14Z

Tanzu Application Platform v1.5

VMware by Broadcom 1057



helmcharts.source.toolkit.fluxcd.io                      2022-03-07T19:20:14Z

helmrepositories.source.toolkit.fluxcd.io                2022-03-07T19:20:14Z

3. Follow these steps to consume a GitRepository object:

1. Create the following gitrepository-sample.yaml file:

apiVersion: source.toolkit.fluxcd.io/v1beta1

kind: GitRepository

metadata:

  name: gitrepository-sample

spec:

  interval: 1m

  url: https://github.com/vmware-tanzu/application-accelerator-samples

  ref:

    branch: main

2. Apply the created conf:

kubectl apply -f gitrepository-sample.yaml

gitrepository.source.toolkit.fluxcd.io/gitrepository-sample created

3. Verify the git-repository was fetched correctly:

kubectl get GitRepository

NAME                   URL                                                               

READY   STATUS                                                              

AGE

gitrepository-sample   https://github.com/vmware-tanzu/application-accele

rator-samples   True    Fetched revision: main/132f4e719209eb10b9485302f8

593fc0e680f4fc   4s

For more examples, see the samples directory on fluxcd/source-controller/samples in
GitHub.

Documentation

For documentation specific to fluxcd-source-controller, see the main repository fluxcd/source-
controller in GitHub.

Overview of Learning Center for Tanzu Application
Platform

Learning Center provides a platform for creating and self-hosting workshops. It allows you to create
workshops from markdown files that are displayed to the learner in a terminal shell environment
with an instructional wizard UI.

The UI can embed slide content, an integrated development environment (IDE), a web console for
accessing the Kubernetes cluster, and other custom web applications.

Although Learning Center requires Kubernetes to run, and is used to teach users about
Kubernetes, you can use it to host training for other purposes as well. For example, you can use it
to help train users in web-based applications, use of databases, or programming languages, where
the user has no interest or need for Kubernetes.

Note

You will communicate with fluxcd-source-controller through its CRDs.

Tanzu Application Platform v1.5

VMware by Broadcom 1058

https://github.com/fluxcd/source-controller/tree/main/config/samples
https://github.com/fluxcd/source-controller


Use cases

Use case scenarios that Learning Center supports include:

Supervised workshops. For example, a workshop run at a conference, at a customer site, or
online. The workshop has a set time period and you know the maximum number of users to
expect. After the training is complete, the Kubernetes cluster created for the workshop is
destroyed.

Temporary learning portal. This is for when you must provide access to a small set of
workshops for a short duration for hands on demos at a conference vendor booth. Users
select which topic they want to learn about and do that workshop. The workshop instance
is created on demand. When they have finished the workshop, that workshop instance is
destroyed to free up resources. After the conference has finished, the Kubernetes cluster is
destroyed.

Permanent learning portal. Similar to the temporary learning portal, but runs on an
extended basis as a public website where anyone can come and learn at any time.

Personal training or demos. This is where anyone who wants to run a workshop on their
own Kubernetes cluster to learn that topic, or where a product demo was packaged up as a
workshop and they want to use it to demonstrate the product to a customer. You can
destroy the workshop environment when complete, but there is no need for the cluster to
be destroyed.

When running workshops, wherever possible a shared Kubernetes cluster reduces the amount of
setup required. This works for developer-focused workshops, becauses it is usually not necessary to
provide elevated access to the Kubernetes cluster, and you can use role-based access controls
(RBAC) to prevent users from interfering with each other. You can also set quotas so users are
restricted as to how much resources they can use.

When you run workshops that deal with cluster operations, for which users need cluster admin
access, create a separate cluster for each user. Learning Center doesn’t deal with provisioning
clusters, only with deploying a workshop environment in a cluster after it exists.

Use case requirements

In implementing to the preceding scenarios, the primary requirements related to creation of
workshop content, and what you can do at runtime, are as follows:

You must store everything for the workshop in a Git repository, with no dependency on
using a special web application or service to create a workshop.

Use GitHub as a means to distribute workshop content. Alternatively, you can distribute the
workshop as a container image. The latter is necessary if special tools must be installed for
use in a workshop.

Provide instructions to the user to complete the workshop as Markdown or AsciiDoc files.

You can annotate instructions as executable commands so that when clicked in the
workshop dashboard, they execute for the user in the appropriate terminal to avoid
mistakes when commands are entered manually.

You can annotate text as copyable so when clicked in the workshop dashboard, it is copied
into the browser paste buffer ready for pasting into the terminal or other web application.

Provide each user access to one or more namespaces in the Kubernetes cluster unique to
their session. For Kubernetes based workshops, this is where applications are deployed as
part of the workshop.

Tanzu Application Platform v1.5

VMware by Broadcom 1059



You can create additional Kubernetes resources specific to a workshop session in advance
of the session. This enables the deployment of applications for each user session.

You can deploy additional Kubernetes resources common to all workshop sessions when
the workshop environment is first created. This enables deployment of applications shared
by all users.

Apply resource quotas on each workshop session to control how much resources users can
consume.

Apply role-based access control (RBAC) on each workshop session to control what users
can do.

Provide access to an editor (IDE) in the workshop dashboard in the web browser for users
to edit files during the workshop.

Provide access to a web-based console for accessing the Kubernetes cluster. Use of the
Kubernetes dashboard or Octant is supported.

Ability to integrate additional web-based applications into the workshop dashboard specific
to the topic of the workshop.

Ability for the workshop dashboard to display slides used by an instructor in support of the
workshop.

Platform architectural overview

The Learning Center relies on a Kubernetes Operator to perform the bulk of the work. The actions
of the operator are controlled by using a set of custom resources specific to the Learning Center.

There are multiple ways of using the custom resources to deploy workshops. The primary way is to
create a training portal, which in turn then triggers the setup of one or more workshop
environments, one for each distinct workshop. When users access the training portal and select the
workshop they want to do, the training portal allocates to that user a workshop session (creating
one if necessary) against the appropriate workshop environment, and the user is redirected to that
workshop session instance.

You can associate each workshop session with one or more Kubernetes namespaces specifically for
use during that session. Role-Based Access Control (RBAC) applied to the unique Kubernetes
service account for that session ensures that the user can only access the namespaces and other
resources that they are allowed to for that workshop.

Tanzu Application Platform v1.5

VMware by Broadcom 1060



In this scenario, the custom resource types that come into play are:

Workshop - Provides the definition of a workshop. Preloaded by an admin into the cluster, it
defines where the workshop content is hosted, or the location of a container image which
bundles the workshop content and any additional tools required for the workshop. The
definition also lists additional resources that must be created which are to be shared
between all workshop sessions, or for each session, with details of resources quotas and
access roles required by the workshop.

TrainingPortal - Created by an admin in the cluster to trigger the deployment of a training
portal. The training portal can provide access to one or more distinct workshops defined by
a Workshop resource. The training portal provides a web based interface for registering for
workshops and accessing them. It also provides a REST API for requesting access to
workshops, allowing custom front ends to be created which integrate with separate identity
providers and which provide an alternate means for browsing and accessing workshops.

WorkshopEnvironment - Used by the training portal to trigger the creation of a workshop
environment for a workshop. This causes the operator to set up a namespace for the
workshop into which shared resources are deployed, and where the workshop sessions are
run.

WorkshopSession - Used by the training portal to trigger the creation of a workshop session
against a specific workshop environment. This causes the operator to set up any
namespaces specific to the workshop session and pre-create additional resources required
for a workshop session. Workshop sessions can either be created up front in reserve, to be
handed out when requested, or created on demand.

Next steps

Learn more about:

Workshops

Get started with Learning Center

Installing Learning Center

Local install guides

Air-gapped environment requirements

Overview of Learning Center for Tanzu Application
Platform
Learning Center provides a platform for creating and self-hosting workshops. It allows you to create
workshops from markdown files that are displayed to the learner in a terminal shell environment
with an instructional wizard UI.

The UI can embed slide content, an integrated development environment (IDE), a web console for
accessing the Kubernetes cluster, and other custom web applications.

Although Learning Center requires Kubernetes to run, and is used to teach users about
Kubernetes, you can use it to host training for other purposes as well. For example, you can use it
to help train users in web-based applications, use of databases, or programming languages, where
the user has no interest or need for Kubernetes.

Use cases
Use case scenarios that Learning Center supports include:

Tanzu Application Platform v1.5

VMware by Broadcom 1061



Supervised workshops. For example, a workshop run at a conference, at a customer site, or
online. The workshop has a set time period and you know the maximum number of users to
expect. After the training is complete, the Kubernetes cluster created for the workshop is
destroyed.

Temporary learning portal. This is for when you must provide access to a small set of
workshops for a short duration for hands on demos at a conference vendor booth. Users
select which topic they want to learn about and do that workshop. The workshop instance
is created on demand. When they have finished the workshop, that workshop instance is
destroyed to free up resources. After the conference has finished, the Kubernetes cluster is
destroyed.

Permanent learning portal. Similar to the temporary learning portal, but runs on an
extended basis as a public website where anyone can come and learn at any time.

Personal training or demos. This is where anyone who wants to run a workshop on their
own Kubernetes cluster to learn that topic, or where a product demo was packaged up as a
workshop and they want to use it to demonstrate the product to a customer. You can
destroy the workshop environment when complete, but there is no need for the cluster to
be destroyed.

When running workshops, wherever possible a shared Kubernetes cluster reduces the amount of
setup required. This works for developer-focused workshops, becauses it is usually not necessary to
provide elevated access to the Kubernetes cluster, and you can use role-based access controls
(RBAC) to prevent users from interfering with each other. You can also set quotas so users are
restricted as to how much resources they can use.

When you run workshops that deal with cluster operations, for which users need cluster admin
access, create a separate cluster for each user. Learning Center doesn’t deal with provisioning
clusters, only with deploying a workshop environment in a cluster after it exists.

Use case requirements

In implementing to the preceding scenarios, the primary requirements related to creation of
workshop content, and what you can do at runtime, are as follows:

You must store everything for the workshop in a Git repository, with no dependency on
using a special web application or service to create a workshop.

Use GitHub as a means to distribute workshop content. Alternatively, you can distribute the
workshop as a container image. The latter is necessary if special tools must be installed for
use in a workshop.

Provide instructions to the user to complete the workshop as Markdown or AsciiDoc files.

You can annotate instructions as executable commands so that when clicked in the
workshop dashboard, they execute for the user in the appropriate terminal to avoid
mistakes when commands are entered manually.

You can annotate text as copyable so when clicked in the workshop dashboard, it is copied
into the browser paste buffer ready for pasting into the terminal or other web application.

Provide each user access to one or more namespaces in the Kubernetes cluster unique to
their session. For Kubernetes based workshops, this is where applications are deployed as
part of the workshop.

You can create additional Kubernetes resources specific to a workshop session in advance
of the session. This enables the deployment of applications for each user session.

You can deploy additional Kubernetes resources common to all workshop sessions when
the workshop environment is first created. This enables deployment of applications shared

Tanzu Application Platform v1.5

VMware by Broadcom 1062



by all users.

Apply resource quotas on each workshop session to control how much resources users can
consume.

Apply role-based access control (RBAC) on each workshop session to control what users
can do.

Provide access to an editor (IDE) in the workshop dashboard in the web browser for users
to edit files during the workshop.

Provide access to a web-based console for accessing the Kubernetes cluster. Use of the
Kubernetes dashboard or Octant is supported.

Ability to integrate additional web-based applications into the workshop dashboard specific
to the topic of the workshop.

Ability for the workshop dashboard to display slides used by an instructor in support of the
workshop.

Platform architectural overview

The Learning Center relies on a Kubernetes Operator to perform the bulk of the work. The actions
of the operator are controlled by using a set of custom resources specific to the Learning Center.

There are multiple ways of using the custom resources to deploy workshops. The primary way is to
create a training portal, which in turn then triggers the setup of one or more workshop
environments, one for each distinct workshop. When users access the training portal and select the
workshop they want to do, the training portal allocates to that user a workshop session (creating
one if necessary) against the appropriate workshop environment, and the user is redirected to that
workshop session instance.

You can associate each workshop session with one or more Kubernetes namespaces specifically for
use during that session. Role-Based Access Control (RBAC) applied to the unique Kubernetes
service account for that session ensures that the user can only access the namespaces and other
resources that they are allowed to for that workshop.

In this scenario, the custom resource types that come into play are:

Workshop - Provides the definition of a workshop. Preloaded by an admin into the cluster, it
defines where the workshop content is hosted, or the location of a container image which

Tanzu Application Platform v1.5

VMware by Broadcom 1063



bundles the workshop content and any additional tools required for the workshop. The
definition also lists additional resources that must be created which are to be shared
between all workshop sessions, or for each session, with details of resources quotas and
access roles required by the workshop.

TrainingPortal - Created by an admin in the cluster to trigger the deployment of a training
portal. The training portal can provide access to one or more distinct workshops defined by
a Workshop resource. The training portal provides a web based interface for registering for
workshops and accessing them. It also provides a REST API for requesting access to
workshops, allowing custom front ends to be created which integrate with separate identity
providers and which provide an alternate means for browsing and accessing workshops.

WorkshopEnvironment - Used by the training portal to trigger the creation of a workshop
environment for a workshop. This causes the operator to set up a namespace for the
workshop into which shared resources are deployed, and where the workshop sessions are
run.

WorkshopSession - Used by the training portal to trigger the creation of a workshop session
against a specific workshop environment. This causes the operator to set up any
namespaces specific to the workshop session and pre-create additional resources required
for a workshop session. Workshop sessions can either be created up front in reserve, to be
handed out when requested, or created on demand.

Next steps

Learn more about:

Workshops

Get started with Learning Center

Installing Learning Center

Local install guides

Air-gapped environment requirements

Install Learning Center

This topic describes how to install Learning Center from the Tanzu Application Platform (commonly
known as TAP) package repository.

To install Tanzu Learning Center, see the following sections.

For general information about Learning Center, see Learning Center. For information about
deploying Learning Center operator, see Install and configure the Learning Center operator.

Prerequisites

Before installing Learning Center:

Note

Follow the steps in this topic if you do not want to use a profile to install Learning
Center. For more information about profiles, see Components and installation
profiles.

Tanzu Application Platform v1.5

VMware by Broadcom 1064



Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

The cluster must have an ingress router configured. If you have installed Learning Center
through a profile, it already deploys a Contour ingress controller.

The operator, when deploying instances of the workshop environments, must be able to
expose them through an external URL for access. For the custom domain you are using,
DNS must have been configured with a wildcard domain to forward all requests for sub-
domains of the custom domain to the ingress router of the Kubernetes cluster.

By default, the workshop portal and workshop sessions are accessible over HTTP
connections. If you wish to use secure HTTPS connections, you must have access to a
wildcard SSL certificate for the domain under which you want to host the workshops. You
cannot use a self-signed certificate.

Any ingress routes created use the default ingress class if you have multiple ingress class
types available and you must override which is used.

Install Learning Center

To install Learning Center:

1. List version information for the package by running:

tanzu package available list learningcenter.tanzu.vmware.com --namespace tap-in

stall

Example output:

 NAME                             VERSION        RELEASED-AT

 learningcenter.tanzu.vmware.com  0.1.0          2021-12-01 08:18:48 -0500 EDT

2. (Optional) See all the configurable parameters on this package by running:

Remember to change the 0.x.x version

tanzu package available get learningcenter.tanzu.vmware.com/0.x.x --values-sche

ma --namespace tap-install

3. Create a config file named learning-center-config.yaml.

4. To override the shared.ingress_domain in the values file of Tanzu Application Platform, add
the parameter ingressDomain to learning-center-config.yaml. For example:

ingressDomain: YOUR-INGRESS-DOMAIN

Where YOUR-INGRESS-DOMAIN is the domain name for your Kubernetes cluster.

When deploying workshop environment instances, the operator must be able to expose the
instances through an external URL. You need this access to discover the domain name that
can be used as a suffix to host names for instances.

For the custom domain you are using, DNS must have been configured with a wildcard
domain to forward all requests for sub-domains of the custom domain to the ingress router
of the Kubernetes cluster.

If you are running Kubernetes on your local machine using a system such as minikube and
you don’t have a custom domain name that maps to the IP address for the cluster, you can
use a nip.io address. For example, if minikube ip returns 192.168.64.1, you can use the
192.168.64.1.nip.io domain. You cannot use an address of form 127.0.0.1.nip.io or

Tanzu Application Platform v1.5

VMware by Broadcom 1065



subdomain.localhost. This causes a failure. Internal services needing to connect to each
other connect to themselves instead, because the address resolves to the host loopback
address of 127.0.0.1.

5. Add the ingressSecret to learning-center-config.yaml, as in this example:

  ingressSecret:

  certificate: |

    -----BEGIN CERTIFICATE-----

    MIIFLTCCBBWgAwIBAgaSAys/V2NCTG9uXa9aAiYt7WJ3MA0GCSqGaIb3DQEBCwUA

                                    ...

    dHa6Ly9yMy5vamxlbmNyLm9yZzAiBggrBgEFBQawAoYWaHR0cDoaL3IzLmkubGVu

    -----END CERTIFICATE-----

  privateKey: |

    -----BEGIN PRIVATE KEY-----

    MIIEvQIBADAaBgkqhkiG9waBAQEFAASCBKcwggSjAgEAAoIBAaCx4nyc2xwaVOzf

                                    ...

    IY/9SatMcJZivH3F1a7SXL98PawPIOSR7986P7rLFHzNjaQQ0DWTaXBRt+oUDxpN

    -----END PRIVATE KEY-----

If you already have a TLS secret, follow these steps before deploying any workshop: -
Create the learningcenter namespace manually or the one you defined - Copy the TLS
secret to the learningcenter namespace or the one you defined and use the secretName
property as in this example:

ingressSecret:

 secretName: workshops.example.com-tls

By default, the workshop portal and workshop sessions are accessible over HTTP
connections.

To use secure HTTPS connections, you must have access to a wildcard SSL certificate for
the domain under which you want to host the workshops. You cannot use a self-signed
certificate.

You can create wildcard certificates by using letsencrypt https://letsencrypt.org/_. After
you have the certificate, you can define the certificate and privateKey properties under
the ingressSecret property to specify the certificate on the configuration YAML.

6. Any ingress routes created use the default ingress class. If you have multiple ingress class
types available, and you need to override which is used, define the ingressClass property
in learning-center-config.yaml before deploying any workshop:

ingressClass: contour

7. Install Learning Center operator by running:

Remember to change the 0.x.x version

tanzu package install learning-center --package-name learningcenter.tanzu.vmwar

e.com --version 0.x.x -f learning-center-config.yaml

The preceding command creates a default namespace in your Kubernetes cluster called
learningcenter, and the operator, and any required namespaced resources, are created in
it. A set of custom resource definitions and a global cluster role binding are also created.

You can confirm that the operator deployed successfully by running:

kubectl get all -n learningcenter

The pod for the operator should be marked as running.

Tanzu Application Platform v1.5

VMware by Broadcom 1066

https://letsencrypt.org/


Install the Self-Guided Tour Training Portal and Workshop

To install the Self-Guided Tour Training Portal and Workshop:

1. Confirm you have the workshop package installed by running:

tanzu package available list workshops.learningcenter.tanzu.vmware.com --namesp

ace tap-install

2. Install the Learning Center Training Portal with the Self-Guided Tour Workshop by running:

Remember to change the 0.x.x version

tanzu package install learning-center-workshop --package-name workshops.learnin

gcenter.tanzu.vmware.com --version 0.x.x -n tap-install

3. Check for the Training Portals available in your environment by running:

kubectl get trainingportals

Example output:

NAME                       URL                                           ADMINU

SERNAME         ADMINPASSWORD                      STATUS

    learningcenter-tutorials   http://learningcenter-tutorials.example.com   le

arningcenter        QGBaM4CF01toPiZLW5NrXTcIYSpw2UJK   Running

Supported Learning Center Values Configuration
Admins are provided the following sample learning-center-config.yaml file to see the possible
configurations supported by Learning Center. These configurations are additional ones that admins
can provide to the operator resource but are by no means necessary for Learning Center to work.
It is enough to follow the previous instructions on this page for Learning Center to run.

It is important to note that Learning Center has default values in place for the learning-center-
config.yaml file. Admins only need to provide the values they want to override. As in the example
above, overriding the ingressDomain property is enough to get Learning Center to work.

#! The namespace in which to deploy Learning Center. For now this must be "learningcen

ter" as

namespace: learningcenter

#! DNS parent subdomain used for training portal and workshop ingresses.

ingressDomain: workshops.example.com

#! Ingress class for where multiple ingress controllers exist and need to

#! use that which is not marked as the default.

ingressClass: null

#! SSL certificate for secure ingress. This must be a wildcard certificate for

#! children of DNS parent ingress subdomain.

ingressSecret:

  certificate: null

  privateKey: null

  secretName: null

#! Configuration for persistent volumes. The default storage class specified

#! by the cluster is used if not defined. You might need to set storage group

#! where a cluster has pod security policies enabled, usually

#! to one. Set storage user and storage group in exceptional cases

#! where storage class uses maps to NFS storage and storage server requires

#! that a specific user and group always be used.

storageClass: null

storageUser: null

storageGroup: null

Tanzu Application Platform v1.5

VMware by Broadcom 1067



#! Credentials for accessing training portal instances. If not specified,

#! random passwords are generated that you can obtain from the custom resource

#! for the training portal.

portalCredentials:

  systemAdmin:

    username: learningcenter

    password: null

  clientAccess:

    username: robot@learningcenter

    password: null

#! Container image versions for various components of Learning Center. The Learning Ce

nter

#! operator needs to be modified to read names of images for the registry

#! and docker-in-docker from config map to enable disconnected install.

#! Prepull images to nodes in cluster. Should be an empty list if no images

#! should be prepulled. Normally you would only want to prepull workshop

#! images. This is done to reduce start-up times for sessions.

prepullImages: ["base-environment"]

#! Docker daemon settings when building docker images in a workshop is

#! enabled. Proxy cache provides a way of partially getting around image

#! pull limits for Docker Hub image registry, with the remote URL being

#! set to "https://registry-1.docker.io".

dockerDaemon:

  networkMTU: 1500

  proxyCache:

    remoteURL: null

    username: null

    password: null

#! Used to restrict access to IP addresses or IP subnets. This must be a CIDR block ra

nge corresponding to the subnet or a portion of a

#! subnet you want to block. A Kubernetes `NetworkPolicy` is used to enforce the restr

iction. So the

#! Kubernetes cluster must use a network layer supporting network policies, and the ne

cessary Kubernetes

#! controllers supporting network policies must be enabled when the cluster is install

ed.

network:

  blockCIDRs:

  - 169.254.169.254/32

  - fd00:ec2::254/128

See Restricting Network Access for more information on blocking CIDRs.

About Learning Center workshops

This topic gives you an overview of Learning Center workshops.

The Learning Center workshop dashboard comprises a set of workshop instructions on the left-
hand side and a series of tabbed views on the right-hand side. For workshops that require users to
run commands, one or more terminal shells are provided. For more information about workshops
including creating your own, see Create workshops.

Tanzu Application Platform v1.5

VMware by Broadcom 1068



The terminals provide access to the editors vi and nano. To provide a UI based editor, you can
enable the embedded editor view and use the embedded IDE based on VS Code.

To complement the workshop instructions, or to be available for use by the instructor, you can
include slides with a workshop. For slides you can use HTML based slide presentation tools such as
reveal.js, or you can embed a PDF file.

Tanzu Application Platform v1.5

VMware by Broadcom 1069



If the workshop involves working with Kubernetes, you can enable a web console for accessing the
Kubernetes cluster. The default web console uses the Kubernetes dashboard.

Alternatively, you can enable Octant as the web console.

Tanzu Application Platform v1.5

VMware by Broadcom 1070



Get started with Learning Center

This topic describes how you can get started with Learning Center for Tanzu Application Platform.
For information about Learning Center and its use cases, see Learning Center for Tanzu Application
Platform.

Installing Learning Center

Before deploying workshops, you must install a Kubernetes operator for Learning Center. The
operator manages the setup of the environment for each workshop and deploys instances of a
workshop for each person.

For basic information about installing the Learning Center operator, see Install Learning Center.

Get started

See the following useful information about getting started with Learning Center:

Install and configure the Learning Center operator

Get started with workshops

Get started with training portals

Delete an operator

Get started with Learning Center

This topic describes how you can get started with Learning Center for Tanzu Application Platform.
For information about Learning Center and its use cases, see Learning Center for Tanzu Application
Platform.

Installing Learning Center

Before deploying workshops, you must install a Kubernetes operator for Learning Center. The
operator manages the setup of the environment for each workshop and deploys instances of a

Tanzu Application Platform v1.5

VMware by Broadcom 1071



workshop for each person.

For basic information about installing the Learning Center operator, see Install Learning Center.

Get started

See the following useful information about getting started with Learning Center:

Install and configure the Learning Center operator

Get started with workshops

Get started with training portals

Delete an operator

Install and configure the Learning Center operator

This topic gives you information about installing and configuring the Learning Center operator.

Before deploying workshops, you must install a Kubernetes operator for Learning Center. The
operator manages the setup of the environment for each workshop and deploys instances of a
workshop for each person.

For basic information about installing the operator, see Install Learning Center.

Installing and setting up Learning Center operator

You can deploy the Learning Center operator to any Kubernetes cluster supporting custom
resource definitions and the concept of operators. The cluster must have an ingress router
configured, though only a basic deployment of the ingress controller is usually required. You do not
need to configure the ingress controller to handle cluster wide edge termination of secure HTTP
connections. Learning Center creates Kubernetes Ingress resources and supplies any secret for use
with secure HTTP connections for each ingress.

For the ingress controller, VMware recommends the use of Contour over alternatives such as
nginx. An nginx-based ingress controller has a less than optimal design. Every time a new ingress is
created or deleted, the nginx config is reloaded. This causes websocket connections to terminate
after a period of time. Learning Center terminals reconnect automatically in the case of the
websocket connection being lost. However, not all applications you might use with specific
workshops can handle loss of websocket connections so gracefully, and they might be impacted
due to the use of an nginx ingress controller. This problem is not specific to Learning Center. It can
impact any application when an nginx ingress controller is used frequently and ingresses are
created or deleted frequently.

You can use a hosted Kubernetes solution from an IaaS provider such as Google, AWS, or Azure. If
you do, as needed increase any HTTP request timeout specified on the inbound load balancer for
the ingress controller so that you can use long-lived websocket connections. In some cases, load
balancers of hosted Kubernetes solutions only have a 30-second timeout. If possible, configure the
timeout applying to websockets to be 1 hour.

If you deploy the web-based training portal, the cluster must have available persistent volumes of
type ReadWriteOnce (RWO). A default storage class must be defined so that persistent volume claims
do not need to specify a storage class. For some Kubernetes distributions, including from IBM, you
must configure Learning Center as to what user and group must be used for persistent volumes. If
no default storage class is specified, or a specified storage class is required, you can configure
Learning Center with the name of the storage class.

To install the Learning Center operator, you must have cluster admin access.

Tanzu Application Platform v1.5

VMware by Broadcom 1072



Cluster pod security policies

The Learning Center operator defines pod security policies to limit what users can do from
workshops when deploying workloads to the cluster. The default policy prohibits running of images
as the root user or using a privileged pod. Specified workshops can relax these restrictions and
apply a policy that enables additional privileges required by the workshop.

To enforce a security policy around what a user can do, different mechanisms have been provided
with standard Kubernetes distributions and derivatives such as OpenShift. These are:

Pod security policies (Kubernetes <= 1.25)

Pod security standards (Kubernetes >= 1.22)

Security context constraints (OpenShift)

For pod security policies and pod security standards, these both must be enabled in the
Kubernetes cluster at the time the cluster is created. They cannot be enabled afterwards. For
some Kubernetes distributions, such as Tanzu Community Edition, it is not possible to enable pod
security policies. Because pod security standards are new, they might also not be supported.

VMware recommends that the pod security policy admission controller be enabled for the cluster
to ensure that the pod security policies are applied. If the admission controller is not enabled, users
can deploy workloads that run as the root user in a container, or run privileged pods.

If you are unable to enable the pod security policy admission controller, you should only provide
access to workshops deployed using the Learning Center operator to users you trust.

Whether the absence of the pod security policy admission controller causes issues with access to
persistent volumes depends on the cluster. Although minikube does not enable the pod security
policy admission controller, it works as persistent volumes when mounted to give write permissions
to all users.

No matter whether pod security policies are enabled, individual workshops must be reviewed as to
what added privileges they grant before allowing their use in a cluster.

Specifying the ingress domain

When deploying instances of workshop environments, the operator must expose the instances by
using an external URL for access to define the domain name that is used as a suffix to host names
for instances.

VMware recommends that you avoid using a .dev or .app domain name, because such domain
names require browsers to use HTTPS and not HTTP. Although you can provide a certificate for
secure connections under the domain name for use by Learning Center, this doesn’t extend to
what a workshop may do. If workshop instructions require that you create ingresses in Kubernetes
using HTTP only, a .dev or .app domain name cannot work in the browser.

Note

For the custom domain you are using, configure your DNS with a wildcard domain
to forward all requests for subdomains of the custom domain to the ingress router
of the Kubernetes cluster.

Note

If you are running Kubernetes on your local machine using a system such as
minikube and you don’t have a custom domain name that maps to the IP address

Tanzu Application Platform v1.5

VMware by Broadcom 1073



If needed, you can override the shared.ingress_domain in the values file of Tanzu Application
Platform with the ingressDomain parameter of learning center:

ingressDomain: learningcenter.my-domain.com

Set the environment variable manually

Set the INGRESS_DOMAIN environment variable on the operator deployment. To set the
INGRESS_DOMAIN environment variable, run:

kubectl set env deployment/learningcenter-operator -n learningcenter INGRESS_DOMAIN=te

st

Where test is the domain name for your Kubernetes cluster.

Or if using a nip.io address:

kubectl set env deployment/learningcenter-operator -n learningcenter INGRESS_DOMAIN=19

2.168.64.1.nip.io

Use of environment variables to configure the operator is a shortcut for a simple use. VMware
recommends using Tanzu CLI, or for more complicated scenarios, you can use the SystemProfile
custom resource.

Enforcing secure connections

By default, the workshop portal and workshop sessions are accessible over HTTP connections. To
use secure HTTPS connections, you must have access to a wildcard SSL certificate for the domain
under which you want to host the workshops. You cannot use a self-signed certificate.

You can create wildcard certificates by using letsencrypt <https://letsencrypt.org/>. After you
have the certificate, you can define it as follows.

Configuration YAML

The easiest way to define the certificate is with the configuration passed to Tanzu CLI. So define
the certificate and privateKey properties under the ingressSecret property to specify the
certificate on the configuration YAML passed to Tanzu CLI:

ingressSecret:

  certificate: |

    -----BEGIN CERTIFICATE-----

    MIIFLTCCBBWgAwIBAgaSAys/V2NCTG9uXa9aAiYt7WJ3MA0GCSqGaIb3DQEBCwUA

                                    ...

    dHa6Ly9yMy5vamxlbmNyLm9yZzAiBggrBgEFBQawAoYWaHR0cDoaL3IzLmkubGVu

    -----END CERTIFICATE-----

  privateKey: |

    -----BEGIN PRIVATE KEY-----

    MIIEvQIBADAaBgkqhkiG9waBAQEFAASCBKcwggSjAgEAAoIBAaCx4nyc2xwaVOzf

                                    ...

for the cluster, you can use a nip.io address. For example, if minikube ip returned
192.168.64.1, you can use the 192.168.64.1.nip.io domain. You cannot use an
address of form 127.0.0.1.nip.io or subdomain.localhost. This causes a failure as
internal services needing to connect to each other end up connecting to
themselves instead, because the address resolves to the host loopback address of
127.0.0.1.

Tanzu Application Platform v1.5

VMware by Broadcom 1074



    IY/9SatMcJZivH3F1a7SXL98PawPIOSR7986P7rLFHzNjaQQ0DWTaXBRt+oUDxpN

    -----END PRIVATE KEY-----

If you already have a TLS secret, follow these steps before deploying any workshops:

1. Create the learningcenter namespace manually or the one you defined.

2. Copy the TLS secret to the learningcenter namespace or to the one you defined, and use
the secretName property as in this example:

ingressSecret:

  secretName: workshops.example.com-tls

Create the TLS secret manually

To add the certificate as a secret in the learningcenter namespace or in the one you defined, the
secret must be of type tls. You can create it using the kubectl create secret tls command:

kubectl create secret tls -n learningcenter workshops.example.com-tls --cert=workshop

s.example.com/fullchain.pem --key=workshops.example.com/privkey.pem

Having created the secret, if it is the secret corresponding to the default ingress domain you
specified earlier, set the INGRESS_SECRET environment variable. This way you do not use the
configuration passed to Tanzu CLI on the operator deployment. This ensures the secret is applied
automatically to any ingress created:

kubectl set env deployment/learningcenter-operator -n learningcenter INGRESS_SECRET=wo

rkshops.example.com-tls

If the certificate isn’t that of the default ingress domain, you can supply the domain name and name
of the secret when creating a workshop environment or training portal. In either case, you must
create secrets for the wildcard certificates in the learningcenter namespace or the one that you
defined.

Specifying the ingress class

Any ingress routes created use the default ingress class. If you have multiple ingress class types
available, and you must override which is used, you can define the ingressClass property on the
configuration YAML as follows.

Configuration YAML

Define the ingressClass property on the configuration YAML passed to Tanzu CLI:

ingressClass: contour

Set the environment variable manually

Set the INGRESS_CLASS environment variable for the learningcenter operator:

kubectl set env deployment/learningcenter-operator -n learningcenter INGRESS_CLASS=con

tour

This applies only to the ingress created for the training portal and workshop sessions. It does not
apply to any ingress created from a workshop as part of the workshop instructions.

This can be necessary when a specific ingress provider is not reliable in maintaining websocket
connections. For example, in the case of the nginx ingress controller when there are frequent

Tanzu Application Platform v1.5

VMware by Broadcom 1075



creation or deletions of ingresses occurring in the cluster. See the earlier section, Installing and
setting up Learning Center operator.

Trusting unsecured registries

One of the options available for workshops is to automatically deploy a container image registry
each workshop session. When the Learning Center operator is configured to use a secure ingress
with a valid wildcard certificate, the image registry works out of the box.

If the Learning Center operator is not set up to use secure ingress, the image registry is accessed
over HTTP and is regarded as not secure.

When using the optional support for building container images using docker, the docker daemon
deployed for the workshop session is configured for the image registry being not secure yet
pushing images to the image registry still works.

In this case of an image registry that is not secure, deploying images from the image registry to the
Kubernetes cluster does not work unless the Kubernetes cluster is configured to trust the registry
that is not secure.

How you configure a Kubernetes cluster to trust an unsecured registry varies based on how the
Kubernetes cluster is deployed and what container runtime it uses.

If you are using minikube with dockerd, to ensure that the registry is trusted, you must set up the
trust the first time you create the minikube instance.

To do this, first determine which IP subnet minikube uses for the inbound ingress router of the
cluster. If you already have a minikube instance running, you can determine this by running
minikube ip. If, for example, this reported 192.168.64.1, the subnet used is 129.168.64.0/24.

With this information, when you create a fresh minikube instance, you must supply the --insecure-
registry option with the subnet:

minikube start --insecure-registry="129.168.64.0/24"

This option tells dockerd to regard as not secure any image registry deployed in the Kubernetes
cluster and accessed through a URL exposed using an ingress route of the cluster itself.

Currently, there is no way to configure containerd to treat as not secure image registries that
match a wildcard subdomain or reside in a subnet. It is therefore not possible to run workshops that
must deploy images from the per session image registry when using containerd as the underlying
Kubernetes cluster container runtime. This is a limitation of containerd, and there are no known
plans for containerd to support this ability. This limits your ability to use Kubernetes clusters
deployed with a tool such as kind, which relies on using containerd.

Get started with Learning Center workshops

This topic helps you to get started working with Learning Center workshops. Workshops are where
you create your content. You can create a workshop for individual use or group multiple workshops
together with a Training Portal.

For more detailed instructions, go to Working with Learning Center Workshops

Creating the workshop environment

With the definition of a workshop already in existence, the first step to deploying a workshop is to
create the workshop environment.

To create the workshop environment run:

Tanzu Application Platform v1.5

VMware by Broadcom 1076



kubectl apply -f {YOUR-GIT-REPO-URL}/lab-k8s-fundamentals/main/resources/workshop-envi

ronment.yaml

This results in a custom resource being created called WorkshopEnvironment:

workshopenvironment.learningcenter.tanzu.vmware.com/lab-k8s-fundamentals created

The custom resource created is cluster-scoped, and the command needs to be run as a cluster
admin or other appropriate user with permission to create the resource.

The Learning Center Operator reacts to the creation of this custom resource and initializes the
workshop environment.

For each distinct workshop environment, a separate namespace is created. This namespace is used
to hold the workshop instances. The namespace may also be used to provision any shared
application services the workshop definition describes which would be used across all workshop
instances. Such shared application services are automatically provisioned by the Learning Center
Operator when the workshop environment is created.

You can list the workshop environments which have been created by running:

kubectl get workshopenvironments

This results in the output:

NAME                   NAMESPACE              WORKSHOP               IMAGE                                        

URL

lab-k8s-fundamentals   lab-k8s-fundamentals   lab-k8s-fundamentals   {YOUR-REGISTRY-UR

L}/lab-k8s-fundamentals:main   {YOUR-GIT-REPO-URL}/lab-k8s-fundamentals

Additional fields give the name of the workshop environment, the namespace created for the
workshop environment, and the name of the workshop the environment was created from.

Requesting a workshop instance

To request a workshop instance, a custom resource of type WorkshopRequest needs to be created.

This is a namespaced resource allowing who can create them to be delegated using role-based
access controls. Further, in order to be able to request an instance of a specific workshop, you
need to know the secret token specified in the description of the workshop environment. If
necessary, raising requests against a specific workshop environment can also be constrained to a
specific set of namespaces on top of any defined role-based access control (RBAC) rules.

In the context of an appropriate namespace, run:

kubectl apply -f {YOUR-GIT-REPO-URL}/lab-k8s-fundamentals/main/resources/workshop-requ

est.yaml

This should result in the output:

workshoprequest.learningcenter.tanzu.vmware.com/lab-k8s-fundamentals created

You can list the workshop requests in a namespace by running:

kubectl get workshoprequests

This displays output similar to:

Tanzu Application Platform v1.5

VMware by Broadcom 1077



NAME                   URL                                      USERNAME   PASSWORD

lab-k8s-fundamentals   http://lab-k8s-fundamentals-cvh51.test   learningcenter     buQ

OgZvfHM7m

The additional fields provide the URL where the workshop instance can be accessed and the
username and password for you to provide when prompted by your web browser.

The user name and password only come into play when you use the lower-level resources to set
up workshops. If you use the TrainingPortal custom resource, you will see that these fields are
empty. This is because, for that case, the workshop instances are deployed so that they rely on
user registration and access mediated by the web-based training portal. Visiting the URL for a
workshop instance directly when using TrainingPortal, redirects you back to the web portal in
order to log in if necessary.

You can monitor the progress of this workshop deployment by listing the deployments in the
namespace created for the workshop environment:

kubectl get all -n lab-k8s-fundamentals

For each workshop instance a separate namespace is created for the session. This is linked to the
workshop instance, and is where any applications are deployed as part of the workshop. If the
definition of the workshop includes a set of resources that should be automatically created for each
session namespace, they are created by the Learning Center Operator. It is therefore possible to
pre-deploy applications for each session.

In this case, we used WorkshopRequest; whereas when using TrainingPortal, we created a
WorkshopSession. The workshop request does result in creating a WorkshopSession, but
TrainingPortal skips the workshop request and directly creates a WorkshopSession.

The purpose of having WorkshopRequest as a separate custom resource is to allow RBAC and other
controls to be used to allow non-cluster administrators to create workshop instances.

Deleting the workshop instance

When you have finished with the workshop instance, you can delete it by deleting the custom
resource for the workshop request:

kubectl delete workshoprequest/lab-k8s-fundamentals

Deleting the workshop environment
If you want to delete the whole workshop environment, it is recommended to first delete all
workshop instances. Once this has been done, you can then delete the custom resource for the
workshop environment:

kubectl delete workshopenvironment/lab-k8s-fundamentals

If you don’t delete the custom resources for the workshop requests, the workshop instances are
still cleaned up and removed when the workshop environment is removed. The custom resources
for the workshop requests still remain, however, and need to be deleted separately.

Get started with Learning Center training portals

This topic describes how you configure and use a TrainingPortal, which deploys a set of
workshops for attendees.

Tanzu Application Platform v1.5

VMware by Broadcom 1078



Working with multiple workshops

The quickest way to deploy a set of workshops to use in a training session is to deploy a
TrainingPortal. This deploys a set of workshops with one instance of each workshop for each
attendee. A web-based portal is provided for registering attendees and allocating them to
workshops.

The TrainingPortal custom resource provides a high-level mechanism for creating a set of
workshop environments and populating it with workshop instances. When the Learning Center
operator processes this custom resource, it creates other custom resources to trigger the creation
of the workshop environment and the workshop instances. If you want more control, you can use
these latter custom resources directly instead.

Loading the workshop definition

A custom resource of type Workshop describes each workshop. Before you can create a workshop
environment, you must load the definition of the workshop.

Here is an example Workshop custom resource:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-k8s-fundamentals

spec:

  title: Kubernetes Fundamentals

  description: Workshop on getting started with Kubernetes

  url: {YOUR-GIT-REPO-URL}/lab-k8s-fundamentals

  vendor: learningcenter.io

  authors:

  - Graham Dumpleton

  difficulty: intermediate

  duration: 1h

  tags:

  - kubernetes

  content:

    image: projects.registry.vmware.com/learningcenter/lab-k8s-fundamentals:latest

  session:

    namespaces:

      budget: medium

    applications:

      terminal:

        enabled: true

        layout: split

      console:

        enabled: true

      editor:

        enabled: true

To load the definition of the workshop, run:

kubectl apply -f {YOUR-GIT-REPO-URL}/lab-k8s-fundamentals/main/resources/workshop.yaml

The custom resource created is cluster-scoped. The command must be run as a cluster admin or
other appropriate user with permission to create the resource.

If successfully loaded, the command outputs:

workshop.learningcenter.tanzu.vmware.com/lab-k8s-fundamentals created

To list the workshop definitions that have been loaded and that can be deployed, run:

Tanzu Application Platform v1.5

VMware by Broadcom 1079



kubectl get workshops

For this workshop, this outputs:

NAME                  IMAGE                                            FILES  URL

lab-k8s-fundamentals  {YOUR-REGISTRY-URL}/lab-k8s-fundamentals:main         {YOUR-GIT-

REPO-URL}/lab-k8s-fundamentals

The added fields in this case give:

The name of the custom workshop container image deployed for the workshop.

A URL for more information about the workshop.

The definition of a workshop is loaded as a step of its own, rather than referring to a remotely
hosted definition. This allows a cluster admin to audit the workshop definition to ensure it isn’t
doing something the cluster admin doesn’t want to allow. After the cluster admin approves the
workshop definition, it can be used to create instances of the workshop.

Creating the workshop training portal

To deploy a workshop for one or more users, use the TrainingPortal custom resource. This
custom resource specifies a set of workshops to be deployed and the number of people taking the
workshops.

The TrainingPortal custom resource we use in this example is:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-k8s-fundamentals

spec:

  workshops:

  - name: lab-k8s-fundamentals

    capacity: 3

    reserved: 1

    expires: 1h

    orphaned: 5m

To create the custom resource, run:

kubectl apply -f {YOUR-GIT-REPO-URL}/lab-k8s-fundamentals/main/resources/training-port

al.yaml

The custom resource created is cluster-scoped. The command must be run as a cluster admin or
other appropriate user with permission to create the resource.

This results in the output:

trainingportal.learningcenter.tanzu.vmware.com/lab-k8s-fundamentals created

There is actually much more going on than this. To see all the resources created, run:

kubectl get learningcenter-training -o name

You should see:

workshop.learningcenter.tanzu.vmware.com/lab-k8s-fundamentals

trainingportal.learningcenter.tanzu.vmware.com/lab-k8s-fundamentals

workshopenvironment.learningcenter.tanzu.vmware.comlab-k8s-fundamentals-w01

workshopsession.learningcenter.tanzu.vmware.com/lab-k8s-fundamentals-w01-s001

Tanzu Application Platform v1.5

VMware by Broadcom 1080



In addition to the original Workshop custom resource providing the definition of the workshop, and
the TrainingPortal custom resource you just created, you’ve also created the
WorkshopEnvironment and WorkshopSession custom resources.

The WorkshopEnvironment custom resource sets up the environment for a workshop, including
deploying any application services that must exist and are shared by all workshop instances.

The WorkshopSession custom resource results in the creation of a single workshop instance.

To see a list of the workshop instances created and their details, run:

kubectl get workshopsessions

This yields output similar to:

NAME                            URL                                         USERNAME   

PASSWORD

lab-k8s-fundamentals-w01-s001   http://lab-k8s-fundamentals-w01-s001.test

Only one workshop instance is created. Though the maximum capacity is set to three, the reserved
number of instances (hot spares) is defined as one. Additional workshops instances are only created
as workshop sessions are allocated to users. One reserved instance is always maintained until
capacity is reached.

If you need a different number of workshop instances, set the portal.capacity field of the
TrainingPortal custom resource YAML input file before creating the resource. Changing the
values after the resource is created has no effect.

In this case, only one workshop is listed to be hosted by the training portal. You can deploy more
than one workshop at the same time by adding the names of other workshops to workshops.

The first time you deploy the workshop, it can take a few moments to pull down the workshop
image and start.

To access the workshops, attendees of a training session need to visit the web-based portal for the
training session. Find the URL for the web portal by running:

kubectl get trainingportals

This should yield output similar to:

NAME                  URL                                   ADMINUSERNAME  ADMINPASSWO

RD

lab-k8s-fundamentals  https://lab-k8s-fundamentals-ui.test  learningcenter         mGI

2C1TkHEBoFgKiZetxMnwAldRU80aN

Attendees should only be given the URL. The password listed is only for use by the instructor of
the training session if required.

Accessing workshops via the web portal

Attendees can access workshops through the web portal by following two steps:

1. The attendee visits the web-based portal for the training session and is presented with a
login page. However, before logging in, the attendee must register for an account. The
attendee clicks the link to the registration page and fills it in.

Tanzu Application Platform v1.5

VMware by Broadcom 1081



Registration is required so if the attendee’s web browser exits or the attendee needs to
switch web browsers, the attendee can log in again and access the same workshop
instance.

2. Upon registering, the attendee is presented with a list of workshops available for the
training session.

An orange dot beside a workshop means that no instance for that workshop has
been allocated to the user as yet, but that some are available.

A red dot indicates there are no more workshop instances available.

A green dot indicates a workshop instance has already been reserved by the
attendee.

The attendee clicks the “Start workshop” button. This allocates a workshop instance if one
hasn’t yet been reserved and redirects the attendee to that workshop instance.

Tanzu Application Platform v1.5

VMware by Broadcom 1082



Deleting the workshop training portal

The workshop training portal is intended for running workshops with a fixed time period where all
workshop instances are deleted when complete.

To delete all workshop instances and the web-based portal, run:

kubectl delete trainingportal/lab-k8s-fundamentals

Delete Learning Center

This topic describes how you can delete Learning Center.

1. Delete all current workshop environments by running:

kubectl delete workshops,trainingportals,workshoprequests,workshopsessions,work

shopenvironments --all

Ensure the Learning Center operator is still running when running this command.

2. Verify you have deleted all current workshop environments by running:

kubectl get workshops,trainingportals,workshoprequests,workshopsessions,worksho

penvironments --all-namespaces

This command does not delete the workshops in the
workshops.learningcenter.tanzu.vmware.com package.

3. Uninstall the Learning Center package by running:

tanzu package installed delete {NAME_OF_THE_PACKAGE} -n tap-install

This command also removes the added custom resource definitions and the learningcenter
namespace.

Tanzu Application Platform v1.5

VMware by Broadcom 1083



4. To remove the Learning Center package, add the following lines to your tap-values file.

excluded_packages:

- learningcenter.tanzu.vmware.com

- workshops.learningcenter.tanzu.vmware.com

Local install guides

The following topics describe how you install Learning Center on your local environment:

Install on Kind

Install on Minikube

Local install guides

The following topics describe how you install Learning Center on your local environment:

Install on Kind

Install on Minikube

Install Learning Center on Kind

This topic describes how you install Learning Center on your local machine with Kind.

Kind was developed as a means to support development and testing of Kubernetes. Though it
exists primarily for that purpose, Kind clusters are often used for local development of user
applications as well. For Learning Center, you can use a local Kind cluster to develop workshop
content or self-learning when deploying other people’s workshops.

Because you are deploying to a local machine, you are unlikely to have access to your own custom
domain name and certificate you can use with the cluster. If you don’t, you can be restricted as to
the sorts of workshops you can develop or run using the Learning Center in Kind. Kind uses
containerd, which lacks certain features that allow you to trust any image registries hosted within a
subnet. This means you cannot readily run workshops that use a local container image registry for
each workshop session. If you must run workshops on your local computer that uses an image
registry for each session, VMware recommends you use minikube with dockerd instead. For more
information, see Install on Minikube.

Also, since Kind has limited memory resources available, you may be prohibited from running
workshops that have large memory requirements. Workshops that demonstrate the use of third-
party applications requiring a multinode cluster also do not work unless the Kind cluster is
specifically configured to be multinode rather than single node.

Requirements and setup instructions specific to Kind are detailed in this document. Otherwise,
follow normal installation instructions for the Learning Center operator.

Prerequisites

You must complete the following installation prerequisites as a user prior to installation:

Note

If you have installed the Tanzu Application Platform package, Learning
Center will be recreated.

Tanzu Application Platform v1.5

VMware by Broadcom 1084



Create a VMware Tanzu Network account and have access to your Tanzu Network
credentials.

Install Kind on your local machine.

Install Tanzu CLI on your local machine.

Install Kubernetes command-line tool (kubectl) on your local machine.

Kind cluster creation

When initially creating the Kind cluster, you must configure it so that the ingress controller is
exposed. The Kind documentation provides the following command to do this, but check the
documentation in case the details have changed.

cat <<EOF | kind create cluster --config=-

kind: Cluster

apiVersion: kind.x-k8s.io/v1alpha4

nodes:

- role: control-plane

  kubeadmConfigPatches:

  - |

    kind: InitConfiguration

    nodeRegistration:

      kubeletExtraArgs:

        node-labels: "ingress-ready=true"

  extraPortMappings:

  - containerPort: 80

    hostPort: 80

    protocol: TCP

  - containerPort: 443

    hostPort: 443

    protocol: TCP

EOF

Once you have the Kind cluster up and running, you must install an ingress controller.

Ingress controller with DNS

The Kind documentation provides instructions for installing Ambassador, Contour, and Nginx-based
ingress controllers.

VMware recommends that you use Contour rather than Nginx, because Nginx drops websocket
connections whenever new ingresses are created. The Learning Center workshop environments do
include a workaround to re-establish websocket connections for the workshop terminals without
losing terminal state, but other applications used with workshops might not, such as terminals
available through Visual Studio Code.

Avoid using the Ambassador ingress controller, because it requires all ingresses created to be
annotated explicitly with an ingress class of “ambassador.” The Learning Center operator can be
configured to do this automatically for ingresses created for the training portal and workshop
sessions. However, any workshops that create ingresses as part of the workshop instructions do not
work unless they are written to have the user manually add the ingress class when required due to
the use of Ambassador.

If you have created a contour ingress controller, verify all pods have a running status. Run:

kubectl get pods -n projectcontour -o wide

For information about installing Contour, which comes with Tanzu Application Platform, see Install
cert-manager, Contour.

Tanzu Application Platform v1.5

VMware by Broadcom 1085

https://kind.sigs.k8s.io/docs/user/ingress#create-cluster
https://kind.sigs.k8s.io/docs/user/ingress#contour


Install carvel tools

You must install the kapp controller and secret-gen controller carvel tools in order to properly
install VMware tanzu packages.

To install kapp controller, run:

kapp deploy -a kc -f https://github.com/vmware-tanzu/carvel-kapp-controller/releases/l

atest/download/release.yml

To install secret-gen controller, run:

kapp deploy -a sg -f https://github.com/vmware-tanzu/carvel-secretgen-controller/relea

ses/latest/download/release.yml

Install Tanzu package repository

Follow these steps to install the Tanzu package repository:

1. To create a namespace, run:

kubectl create ns tap-install

2. Create a registry secret:

tanzu secret registry add tap-registry \

--username "TANZU-NET-USER" --password "TANZU-NET-PASSWORD" \

--server registry.tanzu.vmware.com \

--export-to-all-namespaces --yes --namespace tap-install

Where:

TANZU-NET-USER and TANZU-NET-PASSWORD are your credentials for Tanzu Network.

3. Add a vpackage repository to your cluster:

tanzu package repository add tanzu-tap-repository \

--url registry.tanzu.vmware.com/tanzu-application-platform/tap-packages:VERSION

-NUMBER \

--namespace tap-install

Where VERSION-NUMBER is your Tanzu Application Platform version. For example, 1.5.12.

4. To check the package repository install status, run:

tanzu package repository get tanzu-tap-repository --namespace tap-install

Note

Type “y” and enter to continue when prompted during installation of both kapp and
secret-gen controllers.

Note

We are currently on build 7. If this changes, we need to update the
command with the correct build version after the –url flag.

Tanzu Application Platform v1.5

VMware by Broadcom 1086



Wait for a reconciled successful status before attempting to install any other packages.

Create a configuration YAML file for Learning Center
package
To create a configuration YAML file:

See Supported yaml file configurations to see a list of configurations you can provide to Learning
Center.

1. Create a file called learningcenter-value.yaml in your current directory with the following
data:

ingressDomain: workshops.example.com

Where:

ingressDomain is <your-local-ip>.nip.io if you are using a nip.io DNS address. Details
about this are provided in the following section.

workshops.example.com with is <your-local-ip>.nip.io.

Using a nip.io DNS address

Before you can start deploying workshops, you must configure the operator to tell it what domain
name can be used to access anything deployed by the operator.

Being a local cluster that isn’t exposed to the Internet with its own custom domain name, you can
use a nip.io. address.

To calculate the nip.io address to use, first work out the IP address for the ingress controller
exposed by Kind. This is usually the IP address of the local machine itself, even when you use
Docker for Mac.

How you get the IP address for your local machine depends on the operating system you are using.

For example on a Mac, you can find your IP address by searching for network using spotlight and
selecting the network option under system preferences. Here you can see your IP address under
status.

After you have the IP address, add this as a prefix to the domain name nip.io. For example, if the
address was 192.168.1.1, use the domain name of 192.168.1.1.nip.io.

To configure the Learning Center operator with this cluster domain, run:

kubectl set env deployment/learningcenter-operator -n eduk8s INGRESS_DOMAIN=192.168.1.

1.nip.io

This causes the Learning Center operator to redeploy with the new configuration. You can now
deploy workshops.

Note

Some home Internet gateways implement what is called rebind protection. These
gateways do not allow DNS names from the public Internet bind to local IP address
ranges inside the home network. If your home Internet gateway has such a feature
and it is enabled, it blocks nip.io addresses from working. In this case, you must
configure your home Internet gateway to allow *.nip.io names to be bound to
local addresses. Also, you cannot use an address of form 127.0.0.1.nip.io or
subdomain.localhost. This causes a failure, because when internal services need to

Tanzu Application Platform v1.5

VMware by Broadcom 1087

https://nip.io/


Install Learning Center package onto a Kubernetes cluster

To install Learning Center on a Kubernetes cluster:

tanzu package install learningcenter --package-name learningcenter.tanzu.vmware.com --

version 0.1.0 -f ./learningcenter-value.yaml --namespace tap-install

This package installation uses the installed Package repository with a configuration learningcenter-
value.yaml to install our Learning Center package.

Install workshop tutorial package onto a Kubernetes cluster

To install a workshop tutorial on a Kubernetes cluster:

tanzu package install learningcenter-tutorials --package-name workshops.learningcente

r.tanzu.vmware.com --version 0.1.0 --namespace tap-install

Make sure you install the workshop package after the Learning Center package has reconciled and
successfully installed onto your cluster. In case of new versioning, to obtain package version
numbers, run:

kubectl get packages -n tap-install

Run the workshop

To get the training portal URL, run:

kubectl get trainingportals

You get a URL that you can paste into your browser.

Congratulations, you are now running our tutorial workshop using the Learning Center operator.

Trusting insecure registries

Workshops can optionally deploy a container image registry for a workshop session. This image
registry is secured with a password specific to the workshop session and is exposed through a
Kubernetes ingress so it can be accessed from the workshop session.

In a typical scenario, Kind uses insecure ingress routes. Even were you to generate a self-signed
certificate to use for ingress, it is not trusted by containerd that runs within Kind. You must tell
Kind to trust any insecure registry running inside of Kind.

You must configure Kind to trust insecure registries when you first create the cluster. Kind,
however, is that it uses containerd and not dockerd. The containerd runtime doesn’t provide a way
to trust any insecure registry hosted within the IP subnet used by the Kubernetes cluster. Instead,
containerd requires that you enumerate every single host name or IP address on which an
insecure registry is hosted. Because each workshop session created by the Learning Center for a
workshop uses a different host name, this becomes cumbersome.

If you must used Kind, find out the image registry host name for a workshop deployment and
configure containerd to trust a set of host names corresponding to low-numbered sessions for that
workshop. This allows Kind to work, but once the host names for sessions go beyond the range of

connect to each other, they connect to themselves instead. This happens because
the address resolves to the host loopback address of 127.0.0.1.

Tanzu Application Platform v1.5

VMware by Broadcom 1088



host names you set up, you need to delete the training portal and recreate it, so you can use the
same host names again.

For example, if the host name for the image registry were of the form:

lab-docker-testing-wMM-sNNN-registry.192.168.1.1.nip.io

where NNN changes per session, you must use a command to create the Kind cluster. For example:

cat <<EOF | kind create cluster --config=-

kind: Cluster

apiVersion: kind.x-k8s.io/v1alpha4

nodes:

- role: control-plane

  kubeadmConfigPatches:

  - |

    kind: InitConfiguration

    nodeRegistration:

      kubeletExtraArgs:

        node-labels: "ingress-ready=true"

  extraPortMappings:

  - containerPort: 80

    hostPort: 80

    protocol: TCP

  - containerPort: 443

    hostPort: 443

    protocol: TCP

containerdConfigPatches:

- |

  [plugins."io.containerd.grpc.v1.cri".registry.mirrors."lab-docker-testing-w01-s001-r

egistry.192.168.1.1.nip.io"]

    endpoint = ["http://lab-docker-testing-w01-s001-registry.192.168.1.1.nip.io"]

  [plugins."io.containerd.grpc.v1.cri".registry.mirrors."lab-docker-testing-w01-s002-r

egistry.192.168.1.1.nip.io"]

    endpoint = ["http://lab-docker-testing-w01-s002-registry.192.168.1.1.nip.io"]

  [plugins."io.containerd.grpc.v1.cri".registry.mirrors."lab-docker-testing-w01-s003-r

egistry.192.168.1.1.nip.io"]

    endpoint = ["http://lab-docker-testing-w01-s003-registry.192.168.1.1.nip.io"]

  [plugins."io.containerd.grpc.v1.cri".registry.mirrors."lab-docker-testing-w01-s004-r

egistry.192.168.1.1.nip.io"]

    endpoint = ["http://lab-docker-testing-w01-s004-registry.192.168.1.1.nip.io"]

  [plugins."io.containerd.grpc.v1.cri".registry.mirrors."lab-docker-testing-w01-s005-r

egistry.192.168.1.1.nip.io"]

    endpoint = ["http://lab-docker-testing-w01-s005-registry.192.168.1.1.nip.io"]

EOF

This allows you to run five workshop sessions before you have to delete the training portal and
recreate it.

If you use this, you can use the feature of the training portal to automatically update when a
workshop definition is changed. This is because the wMM value identifying the workshop
environment changes any time you update the workshop definition.

There is no other known workaround for this limitation of containerd. As such, VMware
recommends you use minikube with dockerd instead. For more information, see Install on
Minikube.

Install Learning Center on Minikube
This topic describes how you install Learning Center on your local machine with Minikube.

Minikube enables local deployment of Kubernetes for developing workshop content or for self-
learning when deploying other people’s workshops.

Tanzu Application Platform v1.5

VMware by Broadcom 1089



Because you are deploying to a local machine, you are unlikely to have access to your own custom
domain name and certificate you can use with the cluster. You must take extra steps over a
standard install of Minikube to ensure you can run certain types of workshops.

Also, because Minikube generally has limited memory resources available and is only a single-node
cluster, you might be restricted from running workshops that have large memory requirements or
that demonstrate the use of third-party applications requiring a multinode cluster.

Requirements and setup instructions specific to Minikube are detailed in this document. Otherwise,
you can follow normal installation instructions for the Learning Center operator.

Trusting insecure registries

Workshops can optionally deploy a container image registry for a workshop session. This image
registry is secured with a password specific to the workshop session and is exposed through a
Kubernetes ingress so it can be accessed from the workshop session.

In a typical scenario, Minikube uses insecure ingress routes. Even were you to generate a self-
signed certificate to use for ingress, it is not trusted by dockerd that runs within Minikube. You must
tell Minikube to trust any insecure registry running inside of Minikube.

You must configure Minikube to trust insecure registries the first time you start a new cluster with
it. That is, you must supply the details to minikube start, which means you must know the IP
subnet Minikube uses.

If you already have a cluster running using Minikube, run minikube ip to discover the IP address it
uses. From that you can discover the trusted subnet. For example, if minikube ip returned
192.168.64.1, the trusted subnet is 192.168.64.0/24.

With this information, when you start a new cluster with Minikube, run:

minikube start --insecure-registry=192.168.64.0/24

If you already have a cluster started with Minikube, you cannot stop it and then provide this option
when it is restarted. You can only use this option for a completely new cluster.

You must also use dockerd, not containerd, in the Minikube cluster. containerd does not accept an
IP subnet when defining insecure registries to be trusted. It allows only specific hosts or IP
addresses. Because you don’t know what IP address Minikube will use in advance, you can’t
provide the IP address on the command line when starting Minikube to create the cluster.

Prerequisites

You must complete the following installation prerequisites as a user prior to installation:

Create a tanzunet account and have access to your tanzunet credentials.

Install miniKube on your local machine.

Install tanzuCLI on your local machine.

Install kubectlCLI on your local machine.

Ingress controller with DNS

After the Minikube cluster is running, you must enable the ingress and ingress-dns add-ons for
Minikube. These deploy the nginx ingress controller along with support for integrating into DNS.

To enable these after the cluster has been created, run:

Tanzu Application Platform v1.5

VMware by Broadcom 1090



minikube addons enable ingress

minikube addons enable ingress-dns

You are now ready to install the Learning Center package.

Install carvel tools

You must install the kapp controller and secret-gen controller carvel tools in order to properly
install VMware tanzu packages.

To install kapp controller, run:

kapp deploy -a kc -f https://github.com/vmware-tanzu/carvel-kapp-controller/releases/l

atest/download/release.yml

To install secret-gen controller, run:

kapp deploy -a sg -f https://github.com/vmware-tanzu/carvel-secretgen-controller/relea

ses/latest/download/release.yml

Type “y” and enter to continue when prompted during installation of both kapp and secret-gen
controllers.

Install Tanzu package repository

Follow these steps to install the Tanzu package repository:

1. To create a namespace, run:

kubectl create ns tap-install

2. Create a registry secret:

tanzu secret registry add tap-registry \

  --username "TANZU-NET-USER" --password "TANZU-NET-PASSWORD" \

  --server registry.tanzu.vmware.com \

  --export-to-all-namespaces --yes --namespace tap-install

Where:

TANZU-NET-USER and TANZU-NET-PASSWORD are your credentials for Tanzu Network.

3. Add a package repository to your cluster:

tanzu package repository add tanzu-tap-repository \

  --url registry.tanzu.vmware.com/tanzu-application-platform/tap-packages:VERSI

ON-NUMBER \

  --namespace tap-install

Where VERSION-NUMBER is your Tanzu Application Platform version. For example, 1.5.12.

Note

The ingress add-ons for Minikube do not work when using Minikube on top of
Docker for Mac or Docker for Windows. On macOS you must use the Hyperkit VM
driver. On Windows you must use the Hyper-V VM driver.

Note

Tanzu Application Platform v1.5

VMware by Broadcom 1091



4. To check the package repository install status, run:

tanzu package repository get tanzu-tap-repository --namespace tap-install

Wait for a reconciled sucessful status before attempting to install any other packages.

Create a configuration YAML file for the Learning Center
package

Create a file called learningcenter-value.yaml in your current directory with the following data:

See Supported yaml file configurations to see a list of configurations you can provide to Learning
Center.

ingressDomain: workshops.example.com

Where:

ingressDomain is <your-local-ip>.nip.io if you are using a nip.io DNS address. Details
about this are provided in the following section.

workshops.example.com is <your-local-ip>.nip.io

Using a nip.io DNS address

After the Learning Center operator is installed, before you can start deploying workshops, you must
configure the operator to tell it what domain name can be used to access anything deployed by the
operator.

Being a local cluster that isn’t exposed to the Internet with its own custom domain name, you can
use a nip.io. address.

To calculate the nip.io address to use, first work out the IP address of the cluster created by
Minikube by running minikube ip. Add this as a prefix to the domain name nip.io. For example, if
minikube ip returns 192.168.64.1, use the domain name of 192.168.64.1.nip.io.

To configure the Learning Center operator with this cluster domain, run:

kubectl set env deployment/learningcenter-operator -n learningcenter INGRESS_DOMAIN=19

2.168.64.1.nip.io

This causes the Learning Center operator to redeploy with the new configuration. You should now
be able to start deploying workshops.

We are currently on build 7; if this changes, we need to update the
command with the correct build version after the –url flag.

Note

Some home Internet gateways implement what is called rebind protection. These
gateways do not let DNS names from the public Internet bind to local IP address
ranges inside the home network. If your home Internet gateway has such a feature
and it is enabled, it blocks nip.io addresses from working. In this case, you must
configure your home Internet gateway to allow *.nip.io names to be bound to
local addresses.

Tanzu Application Platform v1.5

VMware by Broadcom 1092

https://nip.io/


Install Learning Center package onto a minikube cluster

To install the Learning Center package onto a minikube cluster, run:

tanzu package install learningcenter --package-name learningcenter.tanzu.vmware.com --

version 0.1.0 -f ./learningcenter-value.yaml --namespace tap-install

This package installation uses the installed Package repository with a configuration learningcenter-
value.yaml to install the Learning Center package.

Install workshop tutorial package onto a minikube cluster
To install the workshop tutorial package onto a minikube cluster, run:

tanzu package install learningcenter-tutorials --package-name workshops.learningcente

r.tanzu.vmware.com --version 0.1.0 --namespace tap-install

Make sure you install the workshop package after the Learning Center package has reconciled and
successfully installed onto your cluster. In case of new versioning, to obtain package version
numbers, run:

kubectl get packages -n tap-install

Run the workshop

To get the training portal URL, run:

kubectl get trainingportals

You get a URL that you can paste into your browser.

Congratulations, you are now running the tutorial workshop using the Learning Center operator.

Working with large images
If you create or run workshops that work with the image registry created for a workshop session,
and you push images to that image registry that have large layers, you must configure the version
of nginx deployed for the ingress controller and increase the allowed size of request data for a
HTTP request.

To do this, run:

kubectl edit configmap nginx-load-balancer-conf -n kube-system

To the config map resource, add the following property under data:

proxy-body-size: 1g

If you don’t increase this, docker push fails when trying to push container images with large layers.

Limited resource availability

When deploying a cluster, by default Minikube only configures support for 2Gi of memory. This
usually isn’t adequate.

To view how much memory is available when a custom amount has been set as a default, run:

Tanzu Application Platform v1.5

VMware by Broadcom 1093



minikube config get memory

VMware recommends you configure Minikube to use 4Gi or more. This must be specified when the
cluster is first created. Do this by using the --memory option to minikube start or by specifying a
default memory value beforehand by using minikube config set memory.

In addition to increasing the memory available, you can increase the disk size, because fat container
images can quickly use disk space within the cluster.

Storage provisioner issue

v1.12.3 of Minikube introduced a bug in the storage provisioner that causes potential corruption of
data in persistent volumes where the same persistent volume claim name is used in two different
namespaces. This affects Learning Center when:

You deploy multiple training portals at the same time.

You run multiple workshops at the same time that have docker or image registry support
enabled.

The workshop session itself is backed by persistent storage and multiple sessions run at the
same time.

This issue is supposed to be fixed in Minikube v1.13.0; however, you can still encounter issues when
deleting a training portal instance and recreating it immediately with the same name. This occurs
because reclaiming of the persistent volume by the Minikube storage provisioner can be slow, and
the new instance can grab the same original directory on disk with old data in it. After deleting a
training portal instance, wait before recreating one with the same name to allow the storage
provisioner to delete the old persistent volume.

Create workshops for Learning Center

This section provides information about how you create Learning Center workshops.

Workshop configuration

Workshop images

Workshop content

Build an image

Workshop instructions

Workshop runtime

Workshop slides

Air-gapped environment requirements

Create workshops for Learning Center

This section provides information about how you create Learning Center workshops.

Workshop configuration

Workshop images

Workshop content

Build an image

Workshop instructions

Tanzu Application Platform v1.5

VMware by Broadcom 1094

https://github.com/kubernetes/minikube/issues/8987


Workshop runtime

Workshop slides

Air-gapped environment requirements

Configure your Learning Center workshop

This topic describes the two main steps required to configure your Learning Center workshop. The
first specifies the structure of the workshop content and the second defines the runtime
requirements for deploying the workshop.

Specifying structure of the content

There are multiple ways you can configure a workshop to specify the structure of the content. The
sample workshops use YAML files.

The workshop/modules.yaml file provides details about the list of available modules that make up
your workshop and data variables for use in content.

The list of available modules represents all of the modules available to you. You might not use all of
them. You might want to run variations of your workshop, such as for different programming
languages. As such, which modules are active and are used for a specific workshop are listed in the
separate workshop/workshop.yaml file. The active modules are listed with the name to be given to
that workshop.

By default the workshop.yaml file specifies what modules are used. When you want to deliver
different variations of the workshop content, you can provide multiple workshop files with different
names. For example, you can name the workshop files workshop-java.yaml and workshop-
python.yaml.

Where you have multiple workshop files and don’t have the default workshop.yaml file, you can
specify the default workshop file by setting the WORKSHOP_FILE environment variable in the runtime
configuration.

The format for listing the available modules in the workshop/modules.yaml file is:

modules:

  workshop-overview:

    name: Workshop Overview

    exit_sign: Setup Environment

  setup-environment:

    name: Setup Environment

    exit_sign: Start Workshop

  exercises/01-sample-content:

    name: Sample Content

  workshop-summary:

    name: Workshop Summary

    exit_sign: Finish Workshop

Each available module is listed under modules, where the name used corresponds to the path to
the file containing the content for that module. Any extension identifying the content type is left
off.

For each module, set the name field to the page title to be displayed for that module. If no fields are
provided and name is not set, the title for the module is derived from the name of the module file.

The corresponding workshop/workshop.yaml file, where all available modules are used, would have
the format:

Tanzu Application Platform v1.5

VMware by Broadcom 1095



name: Markdown Sample

modules:

  activate:

    - workshop-overview

    - setup-environment

    - exercises/01-sample-content

    - workshop-summary

The top-level name field in this file is the name of this variation of the workshop content.

The modules.activate field is a list of modules to be used for the workshop. The names in this list
must match the names as they appear in the modules file.

The order in which modules are listed under the modules.activate field in the workshop
configuration file dictates the order pages are traversed. The order in which modules appear in the
modules configuration file is not relevant.

At the bottom of each page, a Continue button is displayed to allow the user to go to the next
page in sequence. You can customize the label on this button by setting the exit_sign field in the
entry for the module in the modules configuration file.

In the last module in the workshop, a button is displayed, but where the user goes after clicking it
varies. If you want the user to go to a different website upon completion, you can set the
exit_link field of the final module to an external URL. Alternatively, you can set the RESTART_URL
environment variable in a workshop environment to control where the user goes. If a destination
for the final page is not provided, the user is redirected back to the starting page of the workshop.

When the user uses the training portal, the training portal overrides this environment variable so, at
the completion of a workshop, the user returns to the training portal.

VMware recommends that for the last page, the exit_sign be set to “Finish Workshop” and
exit_link not be specified. This enables the destination to be controlled from the workshop
environment or training portal.

Specifying the runtime configuration

You can deploy workshop images directly to a container runtime. The Learning Center Operator is
provided to manage deployments into a Kubernetes cluster. You define the configuration for the
Learning Center Operator with a Workshop CRD in the resources/workshop.yaml file:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-markdown-sample

spec:

  vendor: learningcenter.tanzu.vmware.com

  title: Markdown Sample

  description: A sample workshop using Markdown

  url: YOUR-GIT-URL-FOR-LAB-MARKDOWN-SAMPLE

  content:

    image: {YOUR-REGISTRY-URL}/lab-markdown-sample:main

  duration: 15m

  session:

    namespaces:

      budget: small

    applications:

      console:

        enabled: true

      editor:

        enabled: true

Where:

Tanzu Application Platform v1.5

VMware by Broadcom 1096



YOUR-GIT-URL-FOR-LAB-MARKDOWN-SAMPLE is the Git repository URL for lab-markdown-sample.
For example, {YOUR-GIT-REPO-URL}/lab-markdown-sample.

In this sample, a custom workshop image bundles the workshop content into its own container
image. The content.image setting specifies this. To instead download workshop content from a
GitHub repository at runtime, use:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-markdown-sample

spec:

  vendor: learningcenter.tanzu.vmware.com

  title: Markdown Sample

  description: A sample workshop using Markdown

  url: YOUR-GIT-URL-FOR-LAB-MARKDOWN-SAMPLE

  content:

    files: YOUR-GIT-URL-FOR-LAB-MARKDOWN-SAMPLE

  duration: 15m

  session:

    namespaces:

      budget: small

    applications:

      console:

        enabled: true

      editor:

        enabled: true

Where:

YOUR-GIT-URL-FOR-LAB-MARKDOWN-SAMPLE is the Git repository URL for lab-markdown-sample.
For example, {YOUR-GIT-REPO-URL}/lab-markdown-sample.

The difference is the use of the content.files setting. Here, the workshop content is overlaid on
top of the standard workshop base image. To use an alternate base image with additional
applications or packages installed, specify the alternate image against the content.image setting at
the same time you set content.files.

Next steps

Learn about configuration options for the workshop.yaml custom resource definitions (CRD)
in Workshop resource.

Create the image for your Learning Center workshop

The workshop environment for the Learning Center is packaged as a container image. This topic
describes how you create the Learning Center workshop image.

You can execute the image with remote content pulled down from GitHub or a web server.
Alternatively, you can bundle your workshop content, including any extra tools required, in a new
container image derived from the workshop environment base image.

Templates for creating a workshop

To get you started with your own workshop content, VMware provides a number of sample
workshops. Different templates in Markdown or AsciiDoc are available to use depending on the
syntax you use to create the workshop. These templates are available in a zip file called LEARNING-
CENTER-WORKSHOP-SAMPLES.ZIP on the Tanzu Network TAP Product Page. The zip file contains the
following projects that you can upload to your own Git repository:

Tanzu Application Platform v1.5

VMware by Broadcom 1097

https://network.tanzu.vmware.com/products/tanzu-application-platform


lab-markdown-sample

lab-asciidoc-sample

When creating your own workshops, a suggested convention is to prefix the directory name with
the Git repository name where it is hosted. For example, you can make the prefix lab-. This way it
stands out as a workshop or lab when you have a number of Git repositories on the same Git
hosting service account or organization.

Workshop content directory layout

After creating a copy of the sample workshop content, you can see a number of files located in the
top-level directory and a number of subdirectories forming a hierarchy. The files in the top-level
directory are:

README.md - A file stating what the workshop in your Git repository is about and how to
deploy it. Replace the current content provided in the sample workshop with your own.

LICENSE - A license file so people are clear about how they can use your workshop content.
Replace this with what license you want to apply to your workshop content.

Dockerfile - Steps to build your workshop into an image ready for deployment. Leave this
as is, unless you want to customize it to install additional system packages or tools.

kustomization.yaml - A kustomize resource file for loading the workshop definition. The
Learning Center operator must be deployed before using this file.

.dockerignore - List of files to ignore when building the workshop content into an image.

.eduk8signore - List of files to ignore when downloading workshop content into the
workshop environment at runtime.

Key subdirectories and the files contained within them are:

workshop - Directory under which your workshop files reside.

workshop/modules.yaml - Configuration file with details of available modules that make up
your workshop and data variables for use in content.

workshop/workshop.yaml - Configuration file that gives the name of the workshop, the list of
active modules for the workshop, and any overrides for data variables.

workshop/content - Directory under which your workshop content resides, including images
to be displayed in the content.

resources - Directory under which Kubernetes custom resources are stored for deploying
the workshop using the Learning Center.

resources/workshop.yaml - The custom resources for the Learning Center, which describe
your workshop and requirements for deployment.

Important

Do not make the name you use for a workshop too long. The DNS host name used
for applications deployed from the workshop, when using certain methods of
deployment, might exceed the 63 character limit. This is because the workshop
deployment name is used as part of the namespace for each workshop session. This
in turn is used in the DNS host names generated for the ingress host name.
VMware suggests keeping the workshop name, and so your repository name, to 25
characters or less.

Tanzu Application Platform v1.5

VMware by Broadcom 1098



resources/training-portal.yaml - A sample custom resource for the Learning Center for
creating a training portal for the workshop, encompassing the workshop environment and a
workshop instance.

A workshop can include other configuration files and directories with other types of content, but
this is the minimal set of files to get you started.

Directory for workshop exercises

The number of files and directories can quickly add up at the top level of your repository. The same
is true of the home directory for the user when running the workshop environment. To help with
this proliferation of files, you can push files required for exercises during the workshop into the
exercises subdirectory under the root of the repository.

With an exercises subdirectory, the initial working directory for the embedded terminal when
created is set to $HOME/exercises instead of $HOME. If the embedded editor is enabled, the
subdirectory is opened as the workspace for the editor. Only directories and files in that
subdirectory are visible through the default view of the editor.

However, the exercises directory isn’t set as the home directory of the user. This means if a user
inadvertently runs cd with no arguments from the terminal, they go back to the home directory.

To avoid confusion and help a user return to where they must be, VMware recommends that when
you instruct users to change directories, provide a full path relative to the home directory. For
example, use a path of the form ~/exercises/example-1 rather than example-1 for the cd command
when changing directories. By using a full path, users can execute the command and be assured of
going to the required location.

Working on your Learning Center workshop content

This topic tells you about the best practices for speeding up the iterative loop of editing and testing
a Learning Center workshop when developing the content.

Workshop content is either embedded in a custom workshop image or downloaded from a Git
repository or web server when the workshop session is created.

Deactivating reserved sessions

Deactivate the reserved sessions by setting the reserved field to 0 in your training portal instance:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-sample-workshop

spec:

  portal:

    sessions:

      maximum: 1

  workshops:

  - name: lab-sample-workshop

    reserved: 0

    expires: 120m

    orphaned: 15m

If you do not deactivate reserved sessions, a new session is always created ready for the next
workshop session when there is available capacity to do so. If you modify workshop content while
testing the current workshop session, terminate the session and start a new one, the workshop
picks up the reserved session. The reserved session has a copy of the old content.

Tanzu Application Platform v1.5

VMware by Broadcom 1099



By deactivating reserved sessions, a new workshop session is always created on demand. This
ensures the latest workshop content is used.

Because you might have to wait to create a new workshop, shut down the existing workshop
session first. The new workshop session might also take some time to start if an updated version of
the workshop image also has to be pulled down.

Live updates to the content

If you download workshop content from a Git repository or web server, and you are only doing
simple updates to workshop instructions, scripts, or files bundled with the workshop, you can
update the content in place without needing to restart the workshop session. To perform an
update, download the workshop content after you have pushed back any changes to the hosted
Git repository or updated the content available through the web server. From the workshop
session terminal, run:

update-workshop

This command downloads any workshop content from the Git repository or web server, unpacks it
into the live workshop session, and re-runs any script files found in the workshop/setup.d directory.

Find the location where the workshop content is downloading by viewing the file:

cat ~/.eduk8s/workshop-files.txt

You can change the location saved in this file if, for example, it references a specific version of the
workshop content and you want to test with a different version.

Once the workshop content has been updated, reload the current page of the workshop
instructions by clicking the reload icon on the dashboard while holding down the shift key.

If additional pages are added to the workshop instructions or pages are renamed, you must restart
the workshop renderer process by running:

restart-workshop

If you didn’t rename the current pager or if the name changed, you can trigger a reload of the
current page. Click the home icon or refresh the webpage if the name of the first page didn’t
change.

If action blocks within the workshop instructions are broken, to change and test the workshop
instructions within the live workshop session, you can edit the appropriate page under
/opt/workshop/content. Navigate to the modified page or reload it to verify the change.

To change set up scripts that create files specific to a workshop session, edit the script under
/opt/workshop/setup.d directory.

To trigger running of any setup scripts, run:

rebuild-workshop

If local changes to the workshop session take effect, you can restore the file in the original Git
repository.

Updating workshop content in a live session in this way does not undo any deployments or changes
you make in the Kubernetes cluster for that session. To retest parts of the workshop instructions,
you might have to manually undo the changes in the cluster to replay them. This depends on your
specific workshop content.

Tanzu Application Platform v1.5

VMware by Broadcom 1100



Custom workshop image changes

If your workshop uses a custom workshop image to provide additional tools and you have included
the workshop instructions as part of the workshop image, you must use an image tag of main,
develop, or latest during the development of workshop content. Do not use a version image
reference.

For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-sample-workshop

spec:

  title: Sample Workshop

  description: A sample workshop

  content:

    image: {YOUR-GIT-REPO-URL}/lab-sample-workshop:main

When you use an image tag of main, develop, or latest, the image pull policy is set to Always to
ensure that the custom workshop image is pulled down again for a new workshop session if the
remote image changes. If the image tag is for a specific version, you must change the workshop
definition every time when the workshop image changes.

Custom workshop image overlay
For a custom workshop image, you can set up the workshop definition to pull down the workshop
content from the hosted Git repository or web server as the follows:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-sample-workshop

spec:

  title: Sample Workshop

  description: A sample workshop

  content:

    image: {YOUR-REGISTRY-URL}/lab-sample-workshop:main

    files: {YOUR-GIT-REPO-URL}/lab-sample-workshop

By pulling down the workshop content as an overlay of the custom workshop image when the
workshop session starts, you only need to rebuild the custom workshop image when you need to
make changes such as to include additional tools or to ensure the latest workshop instructions are
included in the final custom workshop image.

Because the location of the workshop files is known, you can live update the workshop content in
the session by following Live updates to the content.

If the additional set of tools required for a workshop is not specific to a workshop, VMware
recommends that you create a standalone workshop base image where you can add the tools. You
can always pull down content for a specific workshop from a Git repository or web server when the
workshop session starts.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-sample-workshop

spec:

  title: Sample Workshop

  description: A sample workshop

Tanzu Application Platform v1.5

VMware by Broadcom 1101



  content:

    image: {YOUR-REGISTRY-URL}/custom-environment:main

    files: {YOUR-GIT-REPO-URL}/lab-sample-workshop

This separates generic tooling from specific workshops and so you can use the custom workshop
base image for multiple workshops on different, but related topics that require the same tooling.

Changes to workshop definition

By default, to modify the definition for a workshop, you need to delete the training portal instance,
update the workshop definition in the cluster, and recreate the training portal.

During the workshop content development, to change resource allocations, role access, or to
specify what resource objects to be automatically created for the workshop environment or a
specific workshop session, you can enable automatic updates in the training portal definition by
setting updates.workshop field as true:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-sample-workshop

spec:

  portal:

    sessions:

      maximum: 1

    updates:

      workshop: true

  workshops:

  - name: lab-sample-workshop

    expires: 120m

    orphaned: 15m

With automatic updates enabled, if the workshop definition in the cluster is modified, the existing
workshop environment managed by the training portal for that workshop is shut down and replaced
with a new workshop environment by using the updated workshop definition.

When an active workshop session is running, the actual deletion of the old workshop environment
is delayed until that workshop session is terminated.

Local build of workshop image

If you do not package a workshop into a custom workshop image, VMware recommends to build a
custom workshop image locally on your own machine by using docker to avoid keeping pushing
changes to a hosted Git repository and using a Kubernetes cluster for local workshop content
development.

Furthermore, to avoid pushing the image to a public image registry on the Internet, you must
deploy an image registry to your local Kubernetes cluster where you run the Learning Center. In
most cases, a basic deployment of an image registry in a local cluster access is not secure. As a
result, you have to configure the Kubernetes cluster to trust the registry that is not secure. This
can be difficult to do depending on the Kubernetes cluster you use, but it can enable quicker
turnaround because you do not have to push or pull the custom workshop image across the public
Internet.

After pushing the custom workshop image built locally to the local image registry, you can set the
image reference in the workshop definition to pull the custom workshop from the local registry in
the same cluster. To ensure that the custom workshop image is always pulled for a new workshop
session after update, use the latest tag when tagging and pushing the image to the local registry.

Tanzu Application Platform v1.5

VMware by Broadcom 1102



Build an image for your Learning Center workshop

This topic describes how you include an extra system, third-party tool, or configuration in your
image by bundling workshop content from the Learning Center workshop base image.

The following sample workshop template provides a Dockerfile.

Structure of the Dockerfile

The structure of the Dockerfile in the sample workshop template is:

FROM registry.tanzu.vmware.com/tanzu-application-platform/tap-packages@sha256:xxxxxxxx

xxxxxxxxxxxxxxx

COPY --chown=1001:0 . /home/eduk8s/

RUN mv /home/eduk8s/workshop /opt/workshop

RUN fix-permissions /home/eduk8s

The default Dockerfile action is to:

Copy all files from a registry to the /home/eduk8s directory.

You must build the custom workshop images on the base environment image
according to the version of Tanzu Application Platform. To get the image ID, run:

kubectl get ds -n learningcenter learningcenter-prepull -o=jsonpath="{.sp

ec.template.spec.initContainers[0].image}"

Example image ID:

registry.tanzu.vmware.com/tanzu-application-platform/tap-packages@sha256:

a8870aa60b45495d298df5b65c69b3d7972608da4367bd6e69d6e392ac969dd4

You can build the workshop images directly on the base environment image, or you
can create an intermediate base image to install extra packages required by a
number of different workshops.

The --chown=1001:0 option ensures that files are owned by the appropriate user and
group.

The workshop subdirectory is moved to /opt/workshop so that it is not visible to the user.
This subdirectory is in an area searchable for workshop content, in addition to
/home/eduk8s/workshop.

To customize your Dockerfile:

You can ignore other files or directories from the repository, by listing them in the
.dockerignore file.

You can include RUN statements in the Dockerfile to run custom-build steps, but the USER
inherited from the base image has user ID 1001 and is not the root user.

Custom workshop base images

The base-environment workshop images include language run times for Node.js and Python. If you
need a different language runtime or a different version of a language runtime, you must create a
custom workshop base image which includes the environment you need. This custom workshop
image is derived from base-environment but includes extra runtime components.

Tanzu Application Platform v1.5

VMware by Broadcom 1103



The following Dockerfile example creates a Java JDK11-customized image:

ARG IMAGE_REPOSITORY=dev.registry.tanzu.vmware.com/learning-center

FROM ${IMAGE_REPOSITORY}/pkgs-java-tools as java-tools

FROM registry.tanzu.vmware.com/tanzu-application-platform/tap-packages@sha256:xxxxxxxx

xxxxxxxxxx

COPY --from=java-tools --chown=1001:0 /opt/jdk11 /opt/java

COPY --from=java-tools --chown=1001:0 /opt/gradle /opt/gradle

COPY --from=java-tools --chown=1001:0 /opt/maven /opt/maven

COPY --from=java-tools --chown=1001:0 /opt/code-server/extensions/.  /opt/code-server/

extensions/

COPY --from=java-tools --chown=1001:0 /home/eduk8s/. /home/eduk8s/

COPY --from=java-tools --chown=1001:0 /opt/eduk8s/. /opt/eduk8s/

ENV PATH=/opt/java/bin:/opt/gradle/bin:/opt/maven/bin:$PATH \

    JAVA_HOME=/opt/java \

    M2_HOME=/opt/maven

Installing extra system packages

Installing extra system packages requires that you run the installation as root. You must switch the
user commands before running the command, and then switch the user back to user ID of 1001.

USER root

RUN ... commands to install system packages

USER 1001

VMware recommends that you only use the root user to install extra system packages. Don’t use
the root user when adding anything under /home/eduk8s. Otherwise, you must ensure the user ID
and group for directories and files are set to 1001:0 and then run the fix-permissions command if
necessary.

When you run any command as root, you must temporarily override the value of the HOME
environment variable and set it to /root.

If you don’t do this the root user drops configuration files in /home/eduk8s, thinking it is the root
home directory, because the HOME environment variable is by default set to /home/eduk8s. This can
cause commands run later during the workshop to fail if they try to update the configuration files as
they have wrong permissions.

Fixing the file and group ownership and running fix-permissions can help with this problem, but
not in every case, because of permissions the root user may apply and how container image layers
work. VMware recommends that you use the following:

USER root

RUN HOME=/root && \

    ... commands to install system packages

USER 1001

Installing third-party packages

If you are not using system packaging tools to install extra packages, but are manually downloading
packages and optionally compiling them to binaries, it is better to do this as the default user and
not root.

If compiling packages, VMware recommends working in a temporary directory under /tmp and
removing the directory as part of the same RUN statement when done.

Tanzu Application Platform v1.5

VMware by Broadcom 1104



If you are installing a binary, you can install it in /home/eduk8s/bin. This directory is in the
application search path defined by the PATH environment variable for the image.

To install a directory hierarchy of files, create a separate directory under /opt to install everything.
You can override the PATH environment variable in the Dockerfile to add an extra directory for
application binaries and scripts. You can override the LD_LIBRARY_PATH environment variable for the
location of shared libraries.

If installing any files from a RUN instruction into /home/eduk8s, VMware recommends that you run
fix-permissions as part of the same instruction to avoid copies of files being made into a new
layer, which applies to the case where fix-permissions is only run in a later RUN instruction. You
can still leave the final RUN instruction for fix-permissions as it is smart enough not to apply
changes if the file permissions are already set correctly and so it does not trigger a copy of a file
when run more than once.

Writing instructions for your Learning Center workshop

This topic describes how you write and format the instructions for a Learning Center workshop.
You can use either Markdown with file extension .md or AsciiDoc with file extension .adoc as the
markup format for the individual module files that comprise the workshop instructions.

Annotation of executable commands

In conjunction with the standard Markdown and AsciiDoc, you can apply additional annotations to
code blocks. The annotations indicate that a user can click the code block and have it copied to the
terminal and executed.

If using Markdown, to annotate a code block so it is copied to the terminal and executed, use:

```execute

echo "Execute command."

```

When the user clicks the code block, the command is executed in the first terminal of the
workshop dashboard.

If using AsciiDoc, you can instead use the role annotation in an existing code block:

[source,bash,role=execute]

----

echo "Execute command."

----

When the workshop dashboard is configured to display multiple terminals, you can qualify which
terminal the command must be executed in by adding a suffix to the execute annotation. For the
first terminal, use execute-1, for the second terminal execute-2, and so on:

```execute-1

echo "Execute command."

```

```execute-2

echo "Execute command."

```

To execute a command in all terminal sessions on the terminals tab of the dashboard, you can use
execute-all:

Tanzu Application Platform v1.5

VMware by Broadcom 1105

https://github.github.com/gfm/
http://asciidoc.org/


```execute-all

clear

```

In most cases, a command the user executes completes immediately. To run a command that
never returns, with the user needing to interrupt it to stop it, you can use the special string
<ctrl+c> in a subsequent code block.

```execute

<ctrl+c>

```

When the user clicks on this code block, the command running in the corresponding terminal is
interrupted.

Annotation of text to be copied
To copy the content of the code block into the paste buffer instead of running the command, you
can use:

```copy

echo "Text to copy."

```

After the user clicks this code block, they can then paste the content into another window.

If you have a situation where the text being copied must be modified before use, you can denote
this special case by using copy-and-edit instead of copy. The text is still copied to the paste buffer,
but is displayed in the browser in a way to highlight that it must be changed before use.

```copy-and-edit

echo "Text to copy and edit."

```

For AsciiDoc, similar to execute, you can add the role of copy or copy-and-edit:

[source,bash,role=copy]

----

echo "Text to copy."

----

[source,bash,role=copy-and-edit]

----

echo "Text to copy and edit."

----

For copy only, to mark an inline code section within a paragraph of text as copyable when clicked,
you can append the special data variable reference {{copy}} immediately after the inline code
block:

Text to `copy`{{copy}}.

Note

Using the special string <ctrl+c> is deprecated, and you must use the
terminal:interrupt clickable action instead.

Tanzu Application Platform v1.5

VMware by Broadcom 1106



Extensible clickable actions

The preceding means to annotate code blocks were the original methods used to indicate code
blocks to be executed or copied when clicked. To support a growing number of clickable actions
with different customizable purposes, annotation names are now name-spaced. The preceding
annotations are still supported, but the following are now recommended, with additional options
available to customize the way the actions are presented.

For code execution, instead of:

```execute

echo "Execute command."

```

you can use:

```terminal:execute

command: echo "Execute command."

```

The contents of the code block is YAML. The executable command must be set as the command
property. By default when the user clicks the command, it is executed in terminal session 1. To
select a different terminal session, you can set the session property.

```terminal:execute

command: echo "Execute command."

session: 1

```

To define a command the user clicks that executes in all terminal sessions on the terminals tab of
the dashboard, you can also use:

```terminal:execute-all

command: echo "Execute command."

```

For terminal:execute or terminal:execute-all, to clear the terminal before the command is
executed, set the clear property to true:

```terminal:execute

command: echo "Execute command."

clear: true

```

This clears the full terminal buffer and not just the displayed portion of the buffer.

With the new clickable actions, to indicate that a running command in a terminal session must be
interrupted, use:

```terminal:interrupt

session: 1

```

(Optional) Set the session property within the code block to indicate an alternate terminal session
to session 1.

To allow the user to send an interrupt to all terminals sessions on the terminals tab of the
dashboard, use:

Tanzu Application Platform v1.5

VMware by Broadcom 1107



```terminal:interrupt-all

```

Where you want the user to enter input into a terminal rather than a command, such as when a
running command prompts for a password, use:

```terminal:input

text: password

```

To allow the user to run commands or interrupt a command, set the session property to indicate a
specific terminal to send it to if you don’t want to send it to terminal session 1:

```terminal:input

text: password

session: 1

```

When providing terminal input in this way, the text by default still has a newline appended to the
end, making it behave the same as using terminal:execute. If you do not want a newline
appended, set the endl property to false.

```terminal:input

text: input

endl: false

```

To allow the user to clear all terminal sessions on the terminals tab of the dashboard, use:

```terminal:clear-all

```

This clears the full terminal buffer and not just the displayed portion of the terminal buffer. It does
not have any effect when an application is running in the terminal using visual mode. To clear only
the displayed portion of the terminal buffer when a command dialog box is displayed, use
terminal:execute and run the clear command.

To allow the user to copy content to the paste buffer, use:

```workshop:copy

text: echo "Text to copy."

```

or:

```workshop:copy-and-edit

text: echo "Text to copy and edit."

```

A benefit of using these over the original methods is that by using the appropriate YAML syntax,
you can control whether:

A multiline string value is concatenated into one line.

Line breaks are preserved.

Initial or terminating new lines are included.

In the original methods, the string was always trimmed before use. By using the different forms as
appropriate, you can annotate the displayed code block with a different message letting the user
know what will happen.

Tanzu Application Platform v1.5

VMware by Broadcom 1108



The method for using AsciiDoc is similar, using the role for the name of the annotation and YAML
as the content:

[source,bash,role=terminal:execute]

----

command: echo "Execute command."

----

Supported workshop editor

Learning Center currently only supports the code-server v4.4.0 of VS Code as an editor in
workshops.

Clickable actions for the dashboard

In addition to the clickable actions related to the terminal and copying of text to the paste buffer,
other actions are available for controlling the dashboard and opening URL links.

To allow the user to click in the workshop content to open a URL in a new browser, use:

```dashboard:open-url

url: https://www.example.com/

```

To allow the user to click in the workshop content to display a specific dashboard tab if hidden, use:

```dashboard:open-dashboard

name: Terminal

```

To allow the user to click in the workshop content to display the console tab, use:

```dashboard:open-dashboard

name: Console

```

To allow the user to click in the workshop content to display a specific view within the Kubernetes
web console by using a clickable action block, rather than requiring the user to find the correct
view, use:

```dashboard:reload-dashboard

name: Console

prefix: Console

title: List pods in namespace {{session_namespace}}

url: {{ingress_protocol}}://{{session_namespace}}-console.{{ingress_domain}}/#/pod?nam

espace={{session_namespace}}

description: ""

```

To allow the user to create a new dashboard tab with a specific URL, use:

```dashboard:create-dashboard

name: Example

url: https://www.example.com/

```

To allow the user to create a new dashboard tab with a new terminal session, use:

Tanzu Application Platform v1.5

VMware by Broadcom 1109



```dashboard:create-dashboard

name: Example

url: terminal:example

```

The value must be of the form terminal:<session>, where <session> is replaced with the name
you want to give the terminal session. The terminal session name must be restricted to lowercase
letters, numbers, and ‘-‘. You must avoid using numeric terminal session names such as “1”, “2”,
and “3”, because these are used for the default terminal sessions.

To allow the user to reload an existing dashboard, using the URL it is currently targeting, use:

```dashboard:reload-dashboard

name: Example

```

If the dashboard is for a terminal session, there is no effect unless the terminal session was
disconnected, in which case it is reconnected.

To allow the user to change the URL target of an existing dashboard by entering the new URL
when reloading a dashboard, use:

```dashboard:reload-dashboard

name: Example

url: https://www.example.com/

```

The user cannot change the target of a dashboard that includes a terminal session.

To allow the user to delete a dashboard, use:

```dashboard:delete-dashboard

name: Example

```

The user cannot delete dashboards corresponding to builtin applications provided by the workshop
environment, such as the default terminals, console, editor, or slides.

Deleting a custom dashboard including a terminal session does not destroy the underlying terminal
session, and the user can reconnect it by creating a new custom dashboard for the same terminal
session name.

Clickable actions for the editor

If the embedded editor is enabled, special actions are available that control the editor.

To allow the user to open an existing file you can use:

```editor:open-file

file: ~/exercises/sample.txt

```

You can use ~/ prefix to indicate the path relative to the home directory of the session. When the
user opens the file, if you want the insertion point left on a specific line, provide the line property.
Lines numbers start at 1.

```editor:open-file

file: ~/exercises/sample.txt

line: 1

```

Tanzu Application Platform v1.5

VMware by Broadcom 1110



To allow the user to highlight certain lines of a file based on an exact string match, use:

```editor:select-matching-text

file: ~/exercises/sample.txt

text: "int main()"

```

The region of the match is highlighted by default. To allow the user to highlight any number of lines
before or after the line with the match, you can set the before and after properties:

```editor:select-matching-text

file: ~/exercises/sample.txt

text: "int main()"

before: 1

after: 1

```

Setting both before and after to 0 causes the complete line that matched to be highlighted
instead of a region within the line.

To match based on a regular expression, rather than an exact match, set isRegex to true:

```editor:select-matching-text

file: ~/exercises/sample.txt

text: "image: (.*)"

isRegex: true

```

When a regular expression is used, and subgroups are specified within the pattern, you can indicate
which subgroup is selected:

```editor:select-matching-text

file: ~/exercises/sample.txt

text: "image: (.*)"

isRegex: true

group: 1

```

Where there are multiple possible matches in a file, and the one you want to match is not the first,
you can set a range of lines to search:

```editor:select-matching-text

file: ~/exercises/sample.txt

text: "image: (.*)"

isRegex: true

start: 8

stop: 12

```

Absence of start means start at the beginning of the file. Absence of stop means stop at the end
of the file. The line number given by stop is not included in the search.

For both an exact match and regular expression, the text to be matched must all be on one line. It
is not possible to match text that spans across lines.

To allow the user to replace text within the file, first match it exactly or use a regular expression so
it is marked as selected, then use:

```editor:replace-text-selection

file: ~/exercises/sample.txt

Tanzu Application Platform v1.5

VMware by Broadcom 1111

text: nginx:latest

```

To allow the user to append lines to the end of a file, use:

```editor:append-lines-to-file

file: ~/exercises/sample.txt

text: |

 Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed

 do eiusmod tempor incididunt ut labore et dolore magna aliqua.

```

If the user runs the action editor:append-lines-to-file and the file doesn’t exist, it is created.
You can use this to create new files for the user.

To allow the user to insert lines before a specified line in the file, use:

```editor:insert-lines-before-line

file: ~/exercises/sample.txt

line: 8

text: |

 Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed

 do eiusmod tempor incididunt ut labore et dolore magna aliqua.

```

To allow the user to insert lines after matching a line containing a specified string, use:

```editor:append-lines-after-match

file: ~/exercises/sample.txt

match: Lorem ipsum

text: |

 Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed

 do eiusmod tempor incididunt ut labore et dolore magna aliqua.

```

Where the file contains YAML, to allow the user to insert a new YAML value into an existing
structure, use:

```editor:insert-value-into-yaml

file: ~/exercises/deployment.yaml

path: spec.template.spec.containers

value:

- name: nginx

 image: nginx:latest

```

To allow the user to execute a registered VS code command, use:

```editor:execute-command

command: spring.initializr.maven-project

args:

- language: Java

 dependencies: ["actuator", "webflux"]

 artifactId: demo

 groupId: com.example

```

Clickable actions for file download
If file downloads are enabled for the workshop, you can use the files:download-file clickable
action:

Tanzu Application Platform v1.5

VMware by Broadcom 1112



```files:download-file

path: .kube/config

```

The action triggers saving the file to the user’s local computer, and the file is not displayed in the
user’s web browser.

Clickable actions for the examiner

If the test examiner is enabled, special actions are available to run verification checks to verify
whether a workshop user has performed a required step. You can trigger these verification checks
by clicking on the action, or you can configure them to start running when the page loads.

For a single verification check that the user must click to run, use:

```examiner:execute-test

name: test-that-pod-exists

title: Verify that pod named "one" exists.

args:

- one

```

The title field is displayed as the title of the clickable action and must describe the nature of the
test. If required, you can provide a description field for a longer explanation of the test. This is
displayed in the body of the clickable action but is shown as preformatted text.

There must be an executable program (script or compiled application) in the
workshop/examiner/tests directory with name matching the value of the name field.

The list of program arguments against the args field is passed to the test program.

The executable program for the test must exit with a status of 0 if the test is successful and
nonzero if the test is a failure. The test should aim to return as quickly as possible and should not be
a persistent program.

#!/bin/bash

kubectl get pods --field-selector=status.phase=Running -o name | egrep -e "^pod/$1$"

if [ "$?" != "0" ]; then

    exit 1

fi

exit 0

By default, the program for a test is stopped after a timeout of 15 seconds, and the test is deemed
to have failed. To adjust the timeout, you can set the timeout value, which is in seconds. A value of
0 causes the default 15 seconds timeout to be applied. It is not possible to deactivate stopping the
test program after running for the default or a specified timeout value.

```examiner:execute-test

name: test-that-pod-exists

title: Verify that pod named "one" exists

args:

- one

timeout: 5

```

To apply the test multiple times, you can enable the retry when a failure occurs. For this you must
set the number of times to retry and the delay between retries. The value for the delay is in

Tanzu Application Platform v1.5

VMware by Broadcom 1113



seconds.

```examiner:execute-test

name: test-that-pod-exists

title: Verify that pod named "one" exists

args:

- one

timeout: 5

retries: 10

delay: 1

```

When you use retries, the testing stops as soon as the test program returns that it was successful.

To have retries continue for as long as the page of the workshop instructions displays, set retries
to the special YAML value of .INF:

```examiner:execute-test

name: test-that-pod-exists

title: Verify that pod named "one" exists

args:

- one

timeout: 5

retries: .INF

delay: 1

```

Rather than require a workshop user to click the action to run the test, you can have the test start
as soon as the page is loaded, or when a section the page is contained in is expanded. Do this by
setting autostart to true:

```examiner:execute-test

name: test-that-pod-exists

title: Verify that pod named "one" exists

args:

- one

timeout: 5

retries: .INF

delay: 1

autostart: true

```

When a test succeeds, to immediately start the next test in the same page, set cascade to true.

```examiner:execute-test

name: test-that-pod-exists

title: Verify that pod named "one" exists

args:

- one

timeout: 5

retries: .INF

delay: 1

autostart: true

cascade: true

```

```examiner:execute-test

name: test-that-pod-does-not-exist

title: Verify that pod named "one" does not exist

args:

- one

retries: .INF

Tanzu Application Platform v1.5

VMware by Broadcom 1114

delay: 1

```

Clickable actions for sections

For optional instructions, or instructions you want to hide until the workshop user is ready for them,
you can designate sections to be hidden. When the user clicks the appropriate action, the section
expands to show its content. You can use this for examples that initially hide a set of questions or a
test at the end of each workshop page.

In order to designate a section of content as hidden, you must use two separate action code blocks
marking the beginning and end of the section:

```section:begin

title: Questions

```

To show you understand ...

```section:end

```

The title must be set to the text you want to include in the banner for the clickable action.

A clickable action is only shown for the beginning of the section, and the action for the end is
always hidden. Clicking the action for the beginning expands the section. The user can collapse the
section again by clicking the action.

To create nested sections, you must name the action blocks for the beginning and end so they are
correctly matched:

```section:begin

name: questions

title: Questions

```

To show you understand ...

```section:begin

name: question-1

prefix: Question

title: 1

```

...

```section:end

name: question-1

```

```section:end

name: questions

```

The prefix attribute allows you to override the default Section prefix used on the title for the
action.

If a collapsible section includes an examiner action block set to automatically run, it only starts when
the user expands the collapsible section.

In case you want a section header showing in the same style as other clickable actions, you can
use:

Tanzu Application Platform v1.5

VMware by Broadcom 1115



```section:heading

title: Questions

```

When the user clicks on this, the action is still marked as completed, but it does not trigger any
other action.

Overriding title and description

Clickable action blocks default to use a title with the prefix dictated by what the action block does.
The body of the action block also defaults to use a value commensurate with the action.

Especially for complicated scenarios involving editing of files, the defaults might not be the most
appropriate and be confusing, so you can override them. To override these defaults, set the prefix,
title, and description fields of a clickable action block:

```action:name

prefix: Prefix

title: Title

description: Description

```

The banner of the action block in this example displays “Prefix: Title”, with the body showing
“Description”.

Escaping of code block content
Because the Liquid template engine is applied to workshop content, you must escape content in
code blocks that conflict with the syntactic elements of the Liquid template engine. To escape such
elements, you can suspend processing by the template engine for that section of workshop
content to ensure it is rendered correctly. Do this by using a Liquid {% raw %}...{% endraw %}
block.

{% raw %}

```execute

echo "Execute command."

```

{% endraw %}

This has the side effect of preventing interpolation of data variables, so restrict it to only the
required scope.

Interpolation of data variables

When creating page content, you can reference a number of predefined data variables. The values
of the data variables are substituted into the page when rendered in the user’s browser.

The workshop environment provides the following built-in data variables:

workshop_name: The name of the workshop.

workshop_namespace: The name of the namespace used for the workshop environment.

Note

The description is always displayed as pre-formatted text within the rendered page.

Tanzu Application Platform v1.5

VMware by Broadcom 1116

https://www.npmjs.com/package/liquidjs


session_namespace: The name of the namespace the workshop instance is linked to and
into which any deployed applications run.

training_portal: The name of the training portal the workshop is hosted by.

ingress_domain: The host domain must be used in the any generated host name of ingress
routes for exposing applications.

ingress_protocol: The protocol (http/https) used for ingress routes created for workshops.

To use a data variable within the page content, surround it by matching pairs of brackets:

{{ session_namespace }}

Do this inside of code blocks, including clickable actions, as well as in URLs:

http://myapp-{{ session_namespace }}.{{ ingress_domain }}

When the workshop environment is hosted in Kubernetes and provides access to the underlying
cluster, the following data variables are also available.

kubernetes_token: The Kubernetes access token of the service account the workshop
session is running as.

kubernetes_ca_crt: The contents of the public certificate required when accessing the
Kubernetes API URL.

kubernetes_api_url: The URL for accessing the Kubernetes API. This is only valid when
used from the workshop terminal.

Adding custom data variables

You can introduce your own data variables by listing them in the workshop/modules.yaml file. A data
variable is defined as having a default value, but the value is overridden if an environment variable
of the same name is defined.

The field under which the data variables must be specified is config.vars:

config:

    vars:

    - name: LANGUAGE

      value: undefined

To use a name for a data variable that is different from the environment variable name, add a list of
aliases:

config:

    vars:

    - name: LANGUAGE

      value: undefined

      aliases:

      - PROGRAMMING_LANGUAGE

Note

An older version of the rendering engine required that data variables be surrounded
on each side with the character %. This is still supported for backwards compatibility,
but VMware recommends you use matched pairs of brackets instead.

Tanzu Application Platform v1.5

VMware by Broadcom 1117



The environment variables with names in the list of aliases are checked first, then the environment
variable with the same name as the data variable. If no environment variables with those names are
set, the default value is used.

You can override the default value for a data variable for a specific workshop by setting it in the
corresponding workshop file. For example, workshop/workshop-python.yaml might contain:

vars:

  LANGUAGE: python

For more control over setting the values of data variables, you can provide the file
workshop/config.js. The form of this file is:

function initialize(workshop) {

    workshop.load_workshop();

    if (process.env['WORKSHOP_FILE'] == 'workshop-python.yaml') {

        workshop.data_variable('LANGUAGE', 'python');

    }

}

exports.default = initialize;

module.exports = exports.default;

This JavaScript code is loaded and the initialize() function called to set up the workshop
configuration. You can then use the workshop.data_variable() function to set up any data
variables.

Because it is JavaScript, you can write any code to query process environment variables and set
data variables based on those. This might include creating composite values constructed from
multiple environment variables. You can even download data variables from a remote host.

Passing environment variables
You can pass environment variables, including remapping of variable names, by setting your own
custom data variables. If you don’t need to set default values or remap the name of an environment
variable, you can instead reference the name of the environment variable directly. You must prefix
the name with ENV_ when using it.

For example, to display the value of the KUBECTL_VERSION environment variable in the workshop
content, use ENV_KUBECTL_VERSION, as in:

{{ ENV_KUBECTL_VERSION }}

Handling embedded URL links

You can include URLs in workshop content. This can be the literal URL, or the Markdown or
AsciiDoc syntax for including and labelling a URL. What happens when a user clicks on a URL
depends on the specific URL.

In the case of the URL being an external website, when the URL is clicked, the URL opens in a new
browser tab or window. When the URL is a relative page referring to another page that is part of
the workshop content, the page replaces the current workshop page.

You can define a URL where components of the URL are provided by data variables. Data variables
useful for this are session_namespace and ingress_domain, because they can be used to create a
URL to an application deployed from a workshop:

Tanzu Application Platform v1.5

VMware by Broadcom 1118



https://myapp-{{ session_namespace }}.{{ ingress_domain }}

Conditional rendering of content

Rendering pages is in part handled by the Liquid template engine. So you can use any constructs
the template engine supports for conditional content:

{% if LANGUAGE == 'java' %}

....

{% endif %}

{% if LANGUAGE == 'python' %}

....

{% endif %}

Embedding custom HTML content

Custom HTML can be embedded in the workshop content by using the appropriate mechanism
provided by the content rendering engine used.

If using Markdown, HTML can be embedded directly without being marked as HTML:

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin justo.

<div>

<table style="width:100%">

  <thead>

  <tr>

    <th>Firstname</th>

    <th>Lastname</th>

    <th>Age</th>

  </tr>

  </thead>

  <tbody>

  <tr>

    <td>Jill</td>

    <td>Smith</td>

    <td>50</td>

  </tr>

  <tr>

    <td>Eve</td>

    <td>Jackson</td>

    <td>94</td>

  </tr>

  </tbody>

</table>

</div>

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin justo.

If using AsciiDoc, HTML can be embedded by using a passthrough block:

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin justo.

++++

<div>

<table style="width:100%">

  <thead>

  <tr>

    <th>Firstname</th>

    <th>Lastname</th>

    <th>Age</th>

Tanzu Application Platform v1.5

VMware by Broadcom 1119

https://www.npmjs.com/package/liquidjs


  </tr>

  </thead>

  <tbody>

  <tr>

    <td>Jill</td>

    <td>Smith</td>

    <td>50</td>

  </tr>

  <tr>

    <td>Eve</td>

    <td>Jackson</td>

    <td>94</td>

  </tr>

  </tbody>

</table>

</div>

++++

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin justo.

In both cases, VMware recommends that the HTML consist of only a single HTML element. If you
have more than one, include them all in a div element. The latter is necessary if any of the HTML
elements are marked as hidden and the embedded HTML is a part of a collapsible section. If you
don’t ensure the hidden HTML element is placed under the single top-level div element, the
hidden HTML element is visible when the collapsible section is expanded.

In addition to visual HTML elements, you can also include elements for embedded scripts or style
sheets.

If you have HTML markup that must be added to multiple pages, extract it into a separate file and
use the include file mechanism of the Liquid template engine. You can also use the partial render
mechanism of Liquid as a macro mechanism for expanding HTML content with supplied values.

Automate your Learning Center workshop runtime

Your workshop content can script the steps a user must run for a workshop. This topic tells you
how to set this up.

In some cases, you must parameterize that content with information from the runtime
environment. Data variables in workshop content allow this to a degree, but you can automate this
by using scripts executed in the workshop container to set up configuration files.

Do this by supplying setup scripts that run when the container is started. You can also run
persistent background processes in the container that perform extra work for you while a workshop
is being run.

Predefined environment variables

When you create the workshop content, you can use data variables to automatically insert values
corresponding to the specific workshop session or environment. For example: the name of the
namespace used for the session and the ingress domain when creating an ingress route.

These data variables can display a YAML/JSON resource file in the workshop content with values
already filled out. You can have executable commands that have the data variables substituted with
values given as arguments to the commands.

For commands run in the shell environment, you can also reference a number of predefined
environment variables.

Key environment variables are:

WORKSHOP_NAMESPACE - The name of the namespace used for the workshop environment.

Tanzu Application Platform v1.5

VMware by Broadcom 1120



SESSION_NAMESPACE - The name of the namespace the workshop instance is linked to and
into which any deployed applications run.

INGRESS_DOMAIN - The host domain that must be used in any generated host name of
ingress routes for exposing applications.

INGRESS_PROTOCOL - The protocol (http/https) used for ingress routes created for workshops.

Instead of having an executable command in the workshop content, use:

```execute

kubectl get all -n %session_namespace%

```

With the value of the session namespace filled out when the page is rendered, you can use:

```execute

kubectl get all -n $SESSION_NAMESPACE

```

The shell inserts the value of the environment variable.

Running steps on container start
To run a script that makes use of the earlier environment variables when the container is started,
and to perform tasks such as pre-create YAML/JSON resource definitions with values filled out,
you can add an executable shell script to the workshop/setup.d directory. The name of the
executable shell script must have a .sh suffix to be recognized and run.

If the container is restarted, the setup script runs again in the new container. If the shell script is
performing actions against the Kubernetes REST API using kubectl or by using another means, the
actions it performs must be tolerant of running more than once.

When using a setup script to fill out values in resource files, a useful utility is envsubst. You can use
this in a setup script as follows:

#!/bin/bash

envsubst < frontend/ingress.yaml.in > frontend/ingress.yaml

A reference of the form ${INGRESS_DOMAIN} in the input file is replaced with the value of the
INGRESS_DOMAIN environment variable.

Setup scripts have the /home/eduk8s directory as the current working directory.

If you are creating or updating files in the file system and using a custom workshop image, ensure
that the workshop image is created with correct file permissions to allow updates.

Running background applications

The setup scripts run once on container startup. You can use the script to start a background
application needed to run in the container for the life of the workshop, but if that application stops,
it does not restart.

If you must run a background application, you can integrate the management of the background
application with the supervisor daemon run within the container. To have the supervisor daemon
manage the application for you, add a configuration file snippet for the supervisor daemon in the
workshop/supervisor directory. This configuration file must have a .conf extension.

The form of the configuration file snippet must be:

Tanzu Application Platform v1.5

VMware by Broadcom 1121



[program:myapplication]

process_name=myapplication

command=/opt/myapplication/sbin/start-myapplication

stdout_logfile=/proc/1/fd/1

stdout_logfile_maxbytes=0

redirect_stderr=true

The application must send any logging output to stdout or stderr, and the configuration snippet
must direct log output to /proc/1/fd/1 so it is captured in the container log file. If you must restart
or shut down the application within the workshop interactive terminal, you can use the
supervisorctl control script.

Terminal user shell environment

Neither the setup scripts that run when the container starts nor background applications affect the
user environment of the terminal shell. The shell environment makes use of bash and the
$HOME/.bash_profile script is read to perform added setup for the user environment. Because
some default setup is included in $HOME/.bash_profile, you must not replace it, because you can
loose that configuration.

To provide commands to initialize each shell environment, you can provide the file
workshop/profile. When this file exists, it is sourced at the end of the $HOME/.bash_profile file
when it is processed.

Overriding terminal shell command

The user starts each terminal session by using the bash terminal shell. A terminal prompt dialog box
displays, allowing the user to manually enter commands or perform clickable actions targetting the
terminal session.

To specify the command to run for a terminal session, you can supply an executable shell script file
in the workshop/terminal directory.

The name of the shell script file for a terminal session must be of the form <session>.sh, where
<session> is replaced with the name of the terminal session. The session names of the default
terminals configured to be displayed with the dashboard are 1, 2, and 3.

The shell script file might be used to run a terminal-based application such as k9s, or to create an
SSH session to a remote system.

#!/bin/bash

exec k9s

If the command that is run exits, the terminal session is marked as exited and you need to reload
that terminal session to start over again. Alternatively, you could write the shell script file as a loop
so it restarts the command you want to run if it ever exits.

#!/bin/bash

while true; do

    k9s

    sleep 1

done

If you want to run an interactive shell and output a banner at the start of the session with special
information for the user, use a script file to output the banner and then run the interactive shell:

Tanzu Application Platform v1.5

VMware by Broadcom 1122



#!/bin/bash

echo

echo "Your session namespace is "$SESSION_NAMESPACE".

echo

exec bash

Add presenter slides to your Learning Center workshop

If your workshop includes a presentation, include slides by placing them in the workshop/slides
directory. Anything in this directory is served up as static files through a HTTP web server. The
default webpage must be provided as index.html.

Use reveal.js presentation tool

To support the use of reveal.js, static media assets for that package are already bundled and
available at the standard URL paths that the package expects. You can drop your slide presentation
using reveal.js into the workshop/slides directory and it will work with no additional setup.

If you are using reveal.js for the slides and you have history enabled or are using section IDs to
support named links, you can use an anchor to a specific slide and that slide will be opened when
clicked on:

%slides_url%#/questions

When using embedded links to the slides in workshop content, if the workshop content is displayed
as part of the dashboard, the slides open in the tab to the right rather than as a separate browser
window or tab.

Use a PDF file for presenter slides

For slides bundled as a PDF file, add the PDF file to workshop/slides and then add an index.html
which displays the PDF embedded in the page.

Requirements for Learning Center in an air-gapped
environment

This topic gives you the list of configurations required for Learning Center to properly function in an
air-gapped environment.

Learning Center can run in an air-gapped environment but workshops do not have this capability by
default. Users must therefore take the following steps to ensure Learning Center functions as
expected.

Workshop yaml changes

In an air-gapped environment a user has no Internet access, so workshop yamls should be modified
to use:

1. Private container registries.

2. Private Maven, NPM, Python, Go, or any other language repository.

For example, in NPM you can modify the npmrc file to use:

Tanzu Application Platform v1.5

VMware by Broadcom 1123

https://revealjs.com/
https://stackoverflow.com/questions/291813/recommended-way-to-embed-pdf-in-html


// .npmrc

registry=https://myregistry-url

Self-signed certificates

Air-gapped environments normally use private Certificate Authorities (CA) that may require the use
of self-signed certificates. You can allow the injection of CAs by:

1. Setting the env variable NODE_EXTRA_CA_CERTS to the path of the file that contains
one or more trusted certificates in PEM format.

2. Add the following to your workshop definition:

spec:

  session:

    env:

    - name: NODE_EXTRA_CA_CERTS

      value: "$my-cert-pathway"

Internet dependencies

If the workshop requires the installation of any Internet dependency, such as a Linux Tool or any
other tool, it must be done in the workshop image. See Build an image

Define custom resources for Learning Center

This topic describes how you define custom resources for Learning Center workshops and training
portals.

You can deploy workshop images directly to a container runtime. The Learning Center Operator
enables managing the deployments into a Kubernetes cluster. A set of Kubernetes custom
resource definitions (CRDs) controls the operation of the Learning Center Operator.

Workshop definition resource
The Workshop custom resource defines a workshop. It specifies the title and description of the
workshop, the location of the workshop content or container image that you deploy, any resources
that you pre-create in the workshop environment or for each instance of the workshop.

You can also define environment variables for the workshop image, the amount of CPU and
memory resources for the workshop instance, any overall quota you will apply to the created
namespaces and what the workshop uses.

A minimal example of the Workshop custom resource looks like this:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-markdown-sample

spec:

  title: Markdown Sample

Note

The examples do not show all the possible fields of each custom resource type.
Later documentation may go in-depth on possible fields and their definitions.

Tanzu Application Platform v1.5

VMware by Broadcom 1124



  description: A sample workshop using Markdown

  content:

    files: {YOUR-GIT-REPO-URL}/lab-markdown-sample

  session:

    namespaces:

      budget: small

    applications:

      console:

        enabled: true

      editor:

        enabled: true

When you create an instance of the Workshop custom resource, the Learning Center Operator does
not take any immediate action. This custom resource exists only to define the workshop.

You create the Workshop custom resource at the cluster scope.

Workshop environment resource

You must create a workshop environment first to deploy the instances of a workshop. The
WorkshopEnvironment custom resource defines the configuration of the workshop environment and
the details of the workshop that you deploy.

A minimal example of the WorkshopEnvironment custom resource looks like this:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

  name: lab-markdown-sample

spec:

  workshop:

    name: lab-markdown-sample

  request:

    token: lab-markdown-sample

  session:

    username: learningcenter

When you create an instance of the WorkshopEnvironment custom resource, the Learning Center
Operator responds by creating a namespace to host the workshop instances. The Workshop
resource defines the workshop instance and the spec.workshop.name field specifies the name of the
Workshop resource. The namespace you create uses the same name as that of the metadata.name
field in the WorkshopEnvironment resource.

The spec.request.token field defines a token with which you must supply a request to create an
instance of a workshop in this workshop environment. If necessary, you can also specify the
namespaces from which a request for a workshop instance to initiate.

The Workshop defines a set of common resources that must exist for the workshop. Learning Center
Operator creates these common resources after you created the namespace for the workshop
environment. If necessary, these resources can include creation of separate namespaces with
specific resources that you create in those namespaces instead.

You create the WorkshopEnvironment custom resource at the cluster scope.

Workshop request resource

To create an instance of the workshop under the workshop environment, the typical path is to
create an instance of the WorkshopRequest custom resource.

The WorkshopRequest custom resource is namespaced to allow who can create it. Role-based
access control (RBAC) controls the request to create a workshop instance. This means you can

Tanzu Application Platform v1.5

VMware by Broadcom 1125



allow non-privileged users to create workshops, although the deployment of the workshop instance
might require elevated privileges.

A minimal example of the WorkshopRequest custom resource looks like this:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopRequest

metadata:

  name: lab-markdown-sample

spec:

  environment:

    name: lab-markdown-sample

    token: lab-markdown-sample

Apart from appropriate access from RBAC, the user requesting a workshop instance must know the
name of the workshop environment and the secret token that permits workshop requests against
that specific workshop environment.

You do not need to create the WorkshopRequest resource when you use the TrainingPortal
resource to provide a web interface for accessing workshops. You only need to create the
WorkshopRequest resource when you create the WorkshopEnvironment resource manually and do
not use the training portal.

Workshop session resource

Although WorkshopRequest is the typical way to request workshop instances, the Learning Center
Operator itself creates an instance of a WorkshopSession custom resource when the request is
granted.

The WorkshopSession custom resource is the expanded definition of what the workshop instance is.
It combines details from Workshop and WorkshopEnvironment, and also links back to the
WorkshopRequest resource object that triggered the request. The Learning Center Operator reacts
to an instance of WorkshopSession and creates the workshop instance based on that definition.

You create the WorkshopSession custom resource at the cluster scope.

Training portal resource

The TrainingPortal custom resource provides a high-level mechanism for creating a set of
workshop environments and populating them with workshop instances.

A minimal example of the TrainingPortal custom resource looks like this:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

  workshops:

  - name: lab-markdown-sample

    capacity: 1

You can set the capacity of the training room, which dictates how many workshop instances are
created for each workshop.

You create the TrainingPortal custom resource at the cluster scope.

System profile resource

Tanzu Application Platform v1.5

VMware by Broadcom 1126



The SystemProfile custom resource provides a mechanism for configuring the Learning Center
Operator. This provides additional features that use environment variables to configure the
operator.

A minimal example of the SystemProfile custom resource looks like this:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

  name: default-system-profile

spec:

  ingress:

    domain: learningcenter.tanzu.vmware.com

    secret: learningcenter-tanzu-vmware-com-tls

    class: nginx

  environment:

    secrets:

      pull:

      - cluster-image-registry-pull

The operator, by default, looks for a default system profile called default-system-profile. Setting
the SYSTEM_PROFILE environment variable on the deployment for the operator or using the
system.profile setting on TrainingPortal, WorkshopEnvironment, or WorkshopSession custom
resources for specific deployments can override the default name globally.

As only a global deployment of the operator is supported, the SystemProfile custom resource is
created at cluster scope.

You can make changes to instances of the SystemProfile custom resource. The Learning Center
Operator uses these changes without needing to redeploy the custom resource.

You create the SystemProfile custom resource at the cluster scope.

Loading the workshop CRDs

The custom resource definitions for the custom resource described earlier are created in the
Kubernetes cluster when you deploy the Learning Center operator by using the Tanzu CLI.

This is because v1 versions of CRDs are only supported from Kubernetes v1.17. If you want to use
the v1 versions of the CRDs, you must create a copy of the Learning Center operator deployment
resources and override the configuration.

Define custom resources for Learning Center

This topic describes how you define custom resources for Learning Center workshops and training
portals.

You can deploy workshop images directly to a container runtime. The Learning Center Operator
enables managing the deployments into a Kubernetes cluster. A set of Kubernetes custom
resource definitions (CRDs) controls the operation of the Learning Center Operator.

Workshop definition resource

Note

The examples do not show all the possible fields of each custom resource type.
Later documentation may go in-depth on possible fields and their definitions.

Tanzu Application Platform v1.5

VMware by Broadcom 1127



The Workshop custom resource defines a workshop. It specifies the title and description of the
workshop, the location of the workshop content or container image that you deploy, any resources
that you pre-create in the workshop environment or for each instance of the workshop.

You can also define environment variables for the workshop image, the amount of CPU and
memory resources for the workshop instance, any overall quota you will apply to the created
namespaces and what the workshop uses.

A minimal example of the Workshop custom resource looks like this:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-markdown-sample

spec:

  title: Markdown Sample

  description: A sample workshop using Markdown

  content:

    files: {YOUR-GIT-REPO-URL}/lab-markdown-sample

  session:

    namespaces:

      budget: small

    applications:

      console:

        enabled: true

      editor:

        enabled: true

When you create an instance of the Workshop custom resource, the Learning Center Operator does
not take any immediate action. This custom resource exists only to define the workshop.

You create the Workshop custom resource at the cluster scope.

Workshop environment resource

You must create a workshop environment first to deploy the instances of a workshop. The
WorkshopEnvironment custom resource defines the configuration of the workshop environment and
the details of the workshop that you deploy.

A minimal example of the WorkshopEnvironment custom resource looks like this:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

  name: lab-markdown-sample

spec:

  workshop:

    name: lab-markdown-sample

  request:

    token: lab-markdown-sample

  session:

    username: learningcenter

When you create an instance of the WorkshopEnvironment custom resource, the Learning Center
Operator responds by creating a namespace to host the workshop instances. The Workshop
resource defines the workshop instance and the spec.workshop.name field specifies the name of the
Workshop resource. The namespace you create uses the same name as that of the metadata.name
field in the WorkshopEnvironment resource.

The spec.request.token field defines a token with which you must supply a request to create an
instance of a workshop in this workshop environment. If necessary, you can also specify the
namespaces from which a request for a workshop instance to initiate.

Tanzu Application Platform v1.5

VMware by Broadcom 1128



The Workshop defines a set of common resources that must exist for the workshop. Learning Center
Operator creates these common resources after you created the namespace for the workshop
environment. If necessary, these resources can include creation of separate namespaces with
specific resources that you create in those namespaces instead.

You create the WorkshopEnvironment custom resource at the cluster scope.

Workshop request resource

To create an instance of the workshop under the workshop environment, the typical path is to
create an instance of the WorkshopRequest custom resource.

The WorkshopRequest custom resource is namespaced to allow who can create it. Role-based
access control (RBAC) controls the request to create a workshop instance. This means you can
allow non-privileged users to create workshops, although the deployment of the workshop instance
might require elevated privileges.

A minimal example of the WorkshopRequest custom resource looks like this:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopRequest

metadata:

  name: lab-markdown-sample

spec:

  environment:

    name: lab-markdown-sample

    token: lab-markdown-sample

Apart from appropriate access from RBAC, the user requesting a workshop instance must know the
name of the workshop environment and the secret token that permits workshop requests against
that specific workshop environment.

You do not need to create the WorkshopRequest resource when you use the TrainingPortal
resource to provide a web interface for accessing workshops. You only need to create the
WorkshopRequest resource when you create the WorkshopEnvironment resource manually and do
not use the training portal.

Workshop session resource

Although WorkshopRequest is the typical way to request workshop instances, the Learning Center
Operator itself creates an instance of a WorkshopSession custom resource when the request is
granted.

The WorkshopSession custom resource is the expanded definition of what the workshop instance is.
It combines details from Workshop and WorkshopEnvironment, and also links back to the
WorkshopRequest resource object that triggered the request. The Learning Center Operator reacts
to an instance of WorkshopSession and creates the workshop instance based on that definition.

You create the WorkshopSession custom resource at the cluster scope.

Training portal resource

The TrainingPortal custom resource provides a high-level mechanism for creating a set of
workshop environments and populating them with workshop instances.

A minimal example of the TrainingPortal custom resource looks like this:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

Tanzu Application Platform v1.5

VMware by Broadcom 1129



metadata:

  name: lab-markdown-sample

spec:

  workshops:

  - name: lab-markdown-sample

    capacity: 1

You can set the capacity of the training room, which dictates how many workshop instances are
created for each workshop.

You create the TrainingPortal custom resource at the cluster scope.

System profile resource

The SystemProfile custom resource provides a mechanism for configuring the Learning Center
Operator. This provides additional features that use environment variables to configure the
operator.

A minimal example of the SystemProfile custom resource looks like this:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

  name: default-system-profile

spec:

  ingress:

    domain: learningcenter.tanzu.vmware.com

    secret: learningcenter-tanzu-vmware-com-tls

    class: nginx

  environment:

    secrets:

      pull:

      - cluster-image-registry-pull

The operator, by default, looks for a default system profile called default-system-profile. Setting
the SYSTEM_PROFILE environment variable on the deployment for the operator or using the
system.profile setting on TrainingPortal, WorkshopEnvironment, or WorkshopSession custom
resources for specific deployments can override the default name globally.

As only a global deployment of the operator is supported, the SystemProfile custom resource is
created at cluster scope.

You can make changes to instances of the SystemProfile custom resource. The Learning Center
Operator uses these changes without needing to redeploy the custom resource.

You create the SystemProfile custom resource at the cluster scope.

Loading the workshop CRDs

The custom resource definitions for the custom resource described earlier are created in the
Kubernetes cluster when you deploy the Learning Center operator by using the Tanzu CLI.

This is because v1 versions of CRDs are only supported from Kubernetes v1.17. If you want to use
the v1 versions of the CRDs, you must create a copy of the Learning Center operator deployment
resources and override the configuration.

Configure the Workshop resource

This topic describes how you configure the Workshop custom resource, which defines a Learning
Center workshop.

Tanzu Application Platform v1.5

VMware by Broadcom 1130



Workshop title and description

Each workshop must have the title and description fields. If you do not supply these fields, the
Workshop resource is rejected when you attempt to load it into the Kubernetes cluster.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-markdown-sample

spec:

  title: Markdown Sample

  description: A sample workshop using Markdown

  content:

    files: {YOUR-GIT-REPO-URL}/lab-markdown-sample

Where:

The title field has a single-line value specifying the subject of the workshop.

The description field has a longer description of the workshop.

You can also supply the following optional information for the workshop:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-markdown-sample

spec:

  title: Markdown Sample

  description: A sample workshop using Markdown

  url: YOUR-GIT-URL-FOR-LAB-MARKDOWN-SAMPLE

  difficulty: beginner

  duration: 15m

  vendor: learningcenter.tanzu.vmware.com

  authors:

  - John Smith

  tags:

  - template

  logo: data:image/png;base64,....

  content:

    files: YOUR-GIT-URL-FOR-LAB-MARKDOWN-SAMPLE

Where:

The url field is the Git repository URL for lab-markdown-sample. For example, {YOUR-GIT-
REPO-URL}/lab-markdown-sample. It must be a URL you can use to get more information
about the workshop.

The difficulty field indicates the target audiences of the workshop. The value can be
beginner, intermediate, advanced, or extreme.

The duration field gives the maximum amount of time the workshop takes to complete.
This field provides informational value and does not guarantee how long a workshop
instance lasts. The field format is an integer number with s, m, or h suffix.

The vendor field must be a value that identifies the company or organization with which the
authors are affiliated. This is a company or organization name or a DNS host name under
the control of whoever has created the workshop.

The authors field must list the people who create the workshop.

The tags field must list labels identifying what the workshop is about. This is used in a
searchable catalog of workshops.

Tanzu Application Platform v1.5

VMware by Broadcom 1131



The logo field must be an image provided in embedded data URI format that depicts the
topic of the workshop. The image must be 400 by 400 pixels. You can use it in a
searchable catalog of workshops.

The files field is the Git repository URL for lab-markdown-sample. For example, {YOUR-GIT-
REPO-URL}/lab-markdown-sample.

When referring to a workshop definition after you load it into a Kubernetes cluster, use the value of
the name field given in the metadata. To experiment with different variations of a workshop, copy
the original workshop definition YAML file and change the value of name. Make your changes and
load it into the Kubernetes cluster.

Downloading workshop content

You can download workshop content when you create the workshop instance. If the amount of
content is moderate, the download doesn’t increase startup time for the workshop instance. The
alternative is to bundle the workshop content in a container image you build from the Learning
Center workshop base image.

To download workshop content at the time the workshop instance starts, set the content.files
field to the location of the workshop content:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-markdown-sample

spec:

  title: Markdown Sample

  description: A sample workshop using Markdown

  content:

    files: {YOUR-GIT-REPO-URL}/lab-markdown-sample

The location is a GitHub or GitLab repository, a URL to a tarball hosted on a HTTP server, or a
reference to an OCI image artifact on a registry.

For a GitHub or GitLab repository, do not prefix the location with https:// as it uses symbolic
reference and is not a URL.

The format of the reference to a GitHub or GitLab repository is similar to what you use with
Kustomize when referencing remote repositories. For example:

github.com/organisation/project?ref=develop or github.com/organisation/project?
ref=main: Use the workshop content you host at the root of the GitHub repository. Use the
develop or main branch. Be sure to specify the ref branch, because not specifying the
branch may lead to content download errors.

github.com/organisation/project/subdir?ref=develop: Use the workshop content you
host at subdir of the GitHub repository. Use the develop branch.

gitlab.com/organisation/project: Use the workshop content you host at the root of the
GitLab repository. Use the main branch.

gitlab.com/organisation/project/subdir?ref=develop: Use the workshop content you
host at subdir of the GitLab repository. Use the develop branch.

For a URL to a tarball hosted on a HTTP server, the URL is in the following formats:

https://example.com/workshop.tar - Use the workshop content from the top-level
directory of the unpacked tarball.

https://example.com/workshop.tar.gz - Use the workshop content from the top-level
directory of the unpacked tarball.

Tanzu Application Platform v1.5

VMware by Broadcom 1132



https://example.com/workshop.tar?path=subdir - Use the workshop content from the
subdirectory path of the unpacked tarball.

https://example.com/workshop.tar.gz?path=subdir - Use the workshop content from the
subdirectory path of the unpacked tarball.

The tarball referenced by the URL is either uncompressed or compressed.

For GitHub, instead of referencing the Git repository containing the workshop content, use a URL
to refer directly to the downloadable tarball for a specific version of the Git repository:

https://github.com/organization/project/archive/develop.tar.gz?path=project-

develop

You must reference the .tar.gz download and cannot use the .zip file. The base name of the
tarball file is the branch or commit name. You must enter the path query string parameter where
the argument is the name of the project and branch or project and commit. You must supply the
path because the contents of the repository are not returned at the root of the archive.

GitLab also provides a means of downloading a package as a tarball:

https://gitlab.com/organization/project/-/archive/develop/project-develop.tar.gz?

path=project-develop

If the GitHub or GitLab repository is private, you can generate a personal access token providing
read-only access to the repository and include the credentials in the URL:

https://username@token:github.com/organization/project/archive/develop.tar.gz?

path=project-develop

With this method, you supply a full URL to request a tarball of the repository and it does not refer
to the repository itself. You can also reference private enterprise versions of GitHub or GitLab and
the repository doesn’t need to be on the public github.com or gitlab.com sites.

The last case is a reference to an OCI image artifact stored on a registry. This is not a full container
image with the operating system, but an image containing only the files making up the workshop
content. The URI formats for this are:

imgpkg+https://harbor.example.com/organisation/project:version - Use the workshop
content from the top-level directory of the unpacked OCI artifact. The registry in this case
must support https.

imgpkg+https://harbor.example.com/organisation/project:version?path=subdir - Use
the workshop content from the subdirectory path of the unpacked OCI artifact you specify.
The registry in this case must support https.

imgpkg+http://harbor.example.com/organisation/project:version - Use the workshop
content from the top-level directory of the unpacked OCI artifact. The registry in this case
can only support http.

imgpkg+http://harbor.example.com/organisation/project:version?path=subdir - Use the
workshop content from the subdirectory path of the unpacked OCI artifact you specify. The
registry in this case can only support http.

You can use imgpkg:// instead of the prefix imgpkg+https://. The registry in this case must still
support https.

For any of the formats, you can supply credentials as part of the URI:

imgpkg+https://username:password@harbor.example.com/organisation/project:version

Access to the registry using a secure connection of https must have a valid certificate.

You can create the OCI image artifact by using imgpkg from the Carvel tool set. For example, from
the top-level directory of the Git repository containing the workshop content, run:

Tanzu Application Platform v1.5

VMware by Broadcom 1133



imgpkg push -i harbor.example.com/organisation/project:version -f .

In all cases for downloading workshop content, the workshop subdirectory holding the actual
workshop content is relocated to /opt/workshop so that it is not visible to a user. If you want to
ignore other files so the user can not see them, you can supply a .eduk8signore file in your
repository or tarball and list patterns for the files in it.

The contents of the .eduk8signore file are processed as a list of patterns and each is applied
recursively to subdirectories. To ensure that a file is only ignored if it resides in the root directory,
prefix it with ./:

./.dockerignore

./.gitignore

./Dockerfile

./LICENSE

./README.md

./kustomization.yaml

./resources

Container image for the workshop

When you bundle the workshop content into a container image, the content.image field must
specify the image reference identifying the location of the container image that you will deploy for
the workshop instance:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-markdown-sample

spec:

  title: Markdown Sample

  description: A sample workshop using Markdown

  content:

    image: {YOUR-REGISTRY-URL}/lab-markdown-sample:main

Even though you can download workshop content when the workshop environment starts, you
might still want to override the workshop image that is used as a base. You can do this when you
have a custom workshop base image that includes added language runtimes or tools that the
specialized workshops require.

For example, if running a Java workshop, you can enter the jdk11-environment for the workshop
image. The workshop content is still downloaded from GitHub:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-spring-testing

spec:

  title: Spring Testing

  description: Playground for testing Spring development

  content:

    image: registry.tanzu.vmware.com/learning-center/jdk11-environment:latest

    files: {YOUR-GIT-REPO-URL}/lab-spring-testing

If you want to use the latest version of an image, always include the :latest tag. This is important
because the Learning Center Operator looks for version tags :main, :main, :develop and :latest.
When using these tags, the Operator sets the image pull policy to Always to ensure that a newer
version is always pulled if available. Otherwise, the image is cached on the Kubernetes nodes and
only pulled when it is initially absent. Any other version tags are always assumed to be unique and

Tanzu Application Platform v1.5

VMware by Broadcom 1134



are never updated. Be aware of image registries that use a content delivery network (CDN) as front
end. When using these image tags, the CDN can still regard them as unique and not do pull
through requests to update an image even if it uses a tag of :latest.

When special custom workshop base images are available as part of the Learning Center project,
instead of specifying the full location for the image, including the image registry, you can specify a
short name. The Learning Center Operator then fills in the rest of the details:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-spring-testing

spec:

  title: Spring Testing

  description: Playground for testing Spring development

  content:

    image: jdk11-environment:latest

    files: github.com/eduk8s-tests/lab-spring-testing

The supported short versions of the names are:

base-environment:*: A tagged version of the base-environment workshop image matched
with the current version of the Learning Center Operator.

The * variants of the short names map to the most up-to-date version of the image available when
the version of the Learning Center Operator was released. That version is guaranteed to work with
that version of the Learning Center Operator. The latest version can be newer, with possible
incompatibilities.

If required, you can remap the short names in the SystemProfile configuration of the Learning
Center Operator. You can map additional short names to your own custom workshop base images
for your own deployment of the Learning Center Operator, and with any of your own workshops.

Setting environment variables

To set or override environment variables for the workshop instance, you can supply the
session.env field:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-markdown-sample

spec:

  title: Markdown Sample

  description: A sample workshop using Markdown

  content:

    files: {YOUR-GIT-REPO-URL}/lab-markdown-sample

  session:

    env:

    - name: REPOSITORY-URL

      value: YOUR-GIT-URL-FOR-LAB-MARKDOWN-SAMPLE

Where:

The session.env field is a list of dictionaries with the name and value fields.

The value field is the Git repository for lab-markdown-sample. For example, {YOUR-GIT-
REPO-URL}/lab-markdown-sample.

Values of fields in the list of resource objects can reference a number of predefined parameters.
The available parameters are:

session_id: A unique ID for the workshop instance within the workshop environment.

Tanzu Application Platform v1.5

VMware by Broadcom 1135



session_namespace: The namespace you create for and bind to the workshop instance. This
is the namespace unique to the session. A workshop can create its own resources.

environment_name: The name of the workshop environment. Its current value is the name of
the namespace for the workshop environment and subject to change.

workshop_namespace: The namespace for the workshop environment. This is the namespace
where you create all deployments of the workshop instances. It is also the namespace
where the service account that the workshop instance runs.

service_account: The name of the service account that the workshop instance runs as. It
has access to the namespace you create for that workshop instance.

ingress_domain: The host domain under which you can create host names when creating
ingress routes.

ingress_protocol: The protocol (http/https) you use for ingress routes and create for
workshops.

The syntax for referencing the parameters is $(parameter_name).

Use the session.env field to override environment variables only when they are required for the
workshop. To set or override an environment for a specific workshop environment, set
environment variables in the WorkshopEnvironment custom resource for the workshop environment
instead.

Overriding the memory available

By default the container the workshop environment runs in is allocated 512Mi. If the editor is
enabled, a total of 1Gi is allocated.

The memory allocation is sufficient for the workshop that is mainly aimed at deploying workloads
into the Kubernetes cluster. If you run workloads in the workshop environment container and need
more memory, you can override the default by setting memory under session.resources:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-markdown-sample

spec:

  title: Markdown Sample

  description: A sample workshop using Markdown

  content:

    image: {YOUR-REGISTRY-URL}/lab-markdown-sample:main

  session:

    resources:

      memory: 2Gi

Mounting a persistent volume

In circumstances where a workshop needs persistent storage to ensure no loss of work, you can
request a persistent volume be mounted into the workshop container after the workshop
environment container is stopped and restarted:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-markdown-sample

spec:

  title: Markdown Sample

  description: A sample workshop using Markdown

Tanzu Application Platform v1.5

VMware by Broadcom 1136



  content:

    image: {YOUR-REGISTRY-URL}/lab-markdown-sample:main

  session:

    resources:

      storage: 5Gi

The persistent volume is mounted on top of the /home/eduk8s directory. Because this hides any
workshop content bundled with the image, an init container is automatically configured and run,
which copies the contents of the home directory to the persistent volume before the persistent
volume is mounted on top of the home directory.

Resource budget for namespaces

In conjunction with each workshop instance, a namespace is created during the workshop. From
the terminal of the workshop, you can deploy dashboard applications into the namespace through
the Kubernetes REST API by using tools such as kubectl.

By default, this namespace has all the limit ranges and resource quotas the Kubernetes cluster can
enforce. In most cases, this means there are no limits or quotas.

To control how much resources you can use when you set no limit ranges and resource quotas, or
override any default limit ranges and resource quotas, you can set a resource budget for any
namespace of the workshop instance in the session.namespaces.budget field:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-markdown-sample

spec:

  title: Markdown Sample

  description: A sample workshop using Markdown

  content:

    image: {YOUR-REGISTRY-URL}/lab-markdown-sample:main

  session:

    namespaces:

      budget: small

The resource budget sizings and quotas for CPU and memory are:

Budget CPU Memory

small 1000m 1Gi

medium 2000m 2Gi

large 4000m 4Gi

x-large 8000m 8Gi

xx-large 8000m 12Gi

xxx-large 8000m 16Gi

A value of 1000m is equivalent to 1 CPU.

Separate resource quotas for CPU and memory are applied for terminating and non-terminating
workloads.

Only the CPU and memory quotas are listed in the preceding table, but limits also apply to the
number of resource objects of certain types you can create, such as:

persistent volume claims

replication controllers

Tanzu Application Platform v1.5

VMware by Broadcom 1137



services

secrets

For each budget type, a limit range is created with fixed defaults. The limit ranges for CPU usage
on a container are as follows:

Budget Minimum Maximum Request Limit

small 50m 1000m 50m 250m

medium 50m 2000m 50m 500m

large 50m 4000m 50m 500m

x-large 50m 8000m 50m 500m

xx-large 50m 8000m 50m 500m

xxx-large 50m 8000m 50m 500m

The limit ranges for memory are as follows:

Budget Minimum Maximum Request Limit

small 32Mi 1Gi 128Mi 256Mi

medium 32Mi 2Gi 128Mi 512Mi

large 32Mi 4Gi 128Mi 1Gi

x-large 32Mi 8Gi 128Mi 2Gi

xx-large 32Mi 12Gi 128Mi 2Gi

xxx-large 32Mi 16Gi 128Mi 2Gi

The request and limit values are the defaults of a container when there is no resources specification
in a pod specification.

You can supply overrides in session.namespaces.limits to override the limit ranges and defaults
for request and limit values when a budget sizing for CPU and memory is sufficient and there is no
resources specification in a pod specification:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-markdown-sample

spec:

  title: Markdown Sample

  description: A sample workshop using Markdown

  content:

    image: {YOUR-REGISTRY-URL}/lab-markdown-sample:main

  session:

    namespaces:

      budget: medium

      limits:

        min:

          cpu: 50m

          memory: 32Mi

        max:

          cpu: 1

          memory: 1Gi

        defaultRequest:

          cpu: 50m

          memory: 128Mi

        default:

Tanzu Application Platform v1.5

VMware by Broadcom 1138



          cpu: 500m

          memory: 1Gi

Although all the configurable properties are listed in this example, you only need to supply the
property for the value that you want to override.

If you need more control over the limit ranges and resource quotas, you can set the resource
budget to custom. This removes any default limit ranges and resource quota that might be applied
to the namespace. You can enter your own LimitRange and ResourceQuota resources as part of the
list of resources created for each session.

Before disabling the quota and limit ranges or contemplating any switch to using a custom set of
LimitRange and ResourceQuota resources, consider if that is what is really required.

The default requests defined by these for memory and CPU are fallbacks only. In most cases,
instead of changing the defaults, you can enter the memory and CPU resources in the pod
template specification of your deployment resources used in the workshop to indicate what the
application requires. This allows you to control exactly what the application can use and so fit into
the minimum quota required for the task.

This budget setting and the memory values are distinct from the amount of memory the container
the workshop environment runs in. To change how much memory is available to the workshop
container, set the memory setting under session.resources.

Patching workshop deployment

In order to set or override environment variables, you can provide session.env. To make other
changes to the Pod template for the deployment used to create the workshop instance, provide an
overlay patch. You can use this patch to override the default CPU and memory limit applied to the
workshop instance or to mount a volume.

The patches are provided by setting session.patches. The patch is applied to the spec field of the
pod template:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-resource-testing

spec:

  title: Resource testing

  description: Play area for testing memory resources

  content:

    files: github.com/eduk8s-tests/lab-resource-testing

  session:

    patches:

      containers:

      - name: workshop

        resources:

          requests:

            memory: "1Gi"

          limits:

            memory: "1Gi"

In this example, the default memory limit of “512Mi” is increased to “1Gi”. Although memory is set
using a patch in this example, the session.resources.memory field is the preferred way to override
the memory allocated to the container the workshop environment is running in.

The patch works differently than overlay patches that you can find elsewhere in Kubernetes.
Specifically, when patching an array and the array contains a list of objects, a search is performed
on the destination array. If an object already exists with the same value for the name field, the item
in the source array is overlaid on top of the existing item in the destination array.

Tanzu Application Platform v1.5

VMware by Broadcom 1139



If there is no matching item in the destination array, the item in the source array is added to the
end of the destination array.

This means an array doesn’t outright replace an existing array, but a more intelligent merge is
performed of elements in the array.

Creation of session resources

When a workshop instance is created, the deployment running the workshop dashboard is created
in the namespace for the workshop environment. When more than one workshop instance is
created under that workshop environment, all those deployments are in the same namespace.

For each workshop instance, a separate empty namespace is created with name corresponding to
the workshop session. The workshop instance is configured so that the service account that the
workshop instance runs under can access and create resources in the namespace created for that
workshop instance. Each separate workshop instance has its own corresponding namespace and
cannot see the namespace for another instance.

To pre-create additional resources within the namespace for a workshop instance, you can supply a
list of the resources against the session.objects field within the workshop definition. You might
use this to add additional custom roles to the service account for the workshop instance when
working in that namespace or to deploy a distinct instance of an application for just that workshop
instance, such as a private image registry:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-registry-testing

spec:

  title: Registry Testing

  description: Play area for testing image registry

  content:

    files: github.com/eduk8s-tests/lab-registry-testing

  session:

    objects:

    - apiVersion: apps/v1

      kind: Deployment

      metadata:

        name: registry

      spec:

        replicas: 1

        selector:

          matchLabels:

            deployment: registry

        strategy:

          type: Recreate

        template:

          metadata:

            labels:

              deployment: registry

          spec:

            containers:

            - name: registry

              image: registry.hub.docker.com/library/registry:2.6.1

              imagePullPolicy: IfNotPresent

              ports:

              - containerPort: 5000

                protocol: TCP

              env:

              - name: REGISTRY_STORAGE_DELETE_ENABLED

                value: "true"

    - apiVersion: v1

Tanzu Application Platform v1.5

VMware by Broadcom 1140



      kind: Service

      metadata:

        name: registry

      spec:

        type: ClusterIP

        ports:

        - port: 80

          targetPort: 5000

        selector:

          deployment: registry

For namespaced resources, it is not necessary to enter the namespace field of the resource
metadata. When the namespace field is not present, the resource is created within the session
namespace for that workshop instance.

When resources are created, owner references are added, making the WorkshopSession custom
resource corresponding to the workshop instance the owner. This means that when the workshop
instance is deleted, any resources are deleted.

Values of fields in the list of resource objects can reference a number of predefined parameters.
The available parameters are:

session_id: A unique ID for the workshop instance within the workshop environment.

session_namespace: The namespace you create for and bound to the workshop instance.
This is the namespace unique to the session and where a workshop can create its own
resources.

environment_name: The name of the workshop environment. Its current value is the name of
the namespace for the workshop environment and subject to change.

workshop_namespace: The namespace for the workshop environment. This is the namespace
where you create all deployments of the workshop instances. It is also the namespace
where the service account that the workshop instance runs.

service_account: The name of the service account the workshop instance runs as and
which has access to the namespace you create for that workshop instance.

ingress_domain: The host domain under which you can create host names when creating
ingress routes.

ingress_protocol: The protocol (http/https) you use for ingress routes and create for
workshops.

The syntax for referencing the parameter is $(parameter_name).

For cluster-scoped resources, you must set the name of the created resource so that it embeds
the value of $(session_namespace). This way the resource name is unique to the workshop
instance, and you do not get a clash with a resource for a different workshop instance.

For examples of making use of the available parameters, see the following sections.

Overriding default role-based access control (RBAC) rules

By default the service account created for the workshop instance has admin role access to the
session namespace created for that workshop instance. This enables the service account to be
used to deploy applications to the session namespace and manage secrets and service accounts.

Where a workshop doesn’t require admin access for the namespace, you can reduce the level of
access it has to edit or view by setting the session.namespaces.role field:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

Tanzu Application Platform v1.5

VMware by Broadcom 1141



metadata:

  name: lab-role-testing

spec:

  title: Role Testing

  description: Play area for testing roles

  content:

    files: github.com/eduk8s-tests/lab-role-testing

  session:

    namespaces:

      role: view

To add additional roles to the service account, such as working with custom resource types added
to the cluster, you can add the appropriate Role and RoleBinding definitions to the
session.objects field described previously:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-kpack-testing

spec:

  title: Kpack Testing

  description: Play area for testing kpack

  content:

    files: github.com/eduk8s-tests/lab-kpack-testing

  session:

    objects:

    - apiVersion: rbac.authorization.k8s.io/v1

      kind: Role

      metadata:

        name: kpack-user

      rules:

      - apiGroups:

        - kpack.io

        resources:

        - builds

        - builders

        - images

        - sourceresolvers

        verbs:

        - get

        - list

        - watch

        - create

        - delete

        - patch

        - update

    - apiVersion: rbac.authorization.k8s.io/v1

      kind: RoleBinding

      metadata:

        name: kpack-user

      roleRef:

        apiGroup: rbac.authorization.k8s.io

        kind: Role

        name: kpack-user

      subjects:

      - kind: ServiceAccount

        namespace: $(workshop_namespace)

        name: $(service_account)

Because the subject of a RoleBinding must specify the service account name and namespace it is
contained within, both of which are unknown in advance, references to parameters for the
workshop namespace and service account for the workshop instance are used when defining the
subject.

Tanzu Application Platform v1.5

VMware by Broadcom 1142



You can add additional resources with session.objects to grant cluster-level roles and the service
account cluster-admin role:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-admin-testing

spec:

  title: Admin Testing

  description: Play area for testing cluster admin

  content:

    files: github.com/eduk8s-tests/lab-admin-testing

  session:

    objects:

    - apiVersion: rbac.authorization.k8s.io/v1

      kind: ClusterRoleBinding

      metadata:

        name: $(session_namespace)-cluster-admin

      roleRef:

        apiGroup: rbac.authorization.k8s.io

        kind: ClusterRole

        name: cluster-admin

      subjects:

      - kind: ServiceAccount

        namespace: $(workshop_namespace)

        name: $(service_account)

In this case, the name of the cluster role binding resource embeds $(session_namespace) so that its
name is unique to the workshop instance and doesn’t overlap with a binding for a different
workshop instance.

Running user containers as root

In addition to RBAC, which controls what resources a user can create and work with, Pod security
policies are applied to restrict what Pods/containers a user deploys can do.

By default the deployments that a workshop user can create are allowed only to run containers as a
non-root user. This means that many container images available on registries such as Docker Hub
cannot be used.

If you are creating a workshop where a user must run containers as the root user, you must
override the default nonroot security policy and select the anyuid security policy by using the
session.namespaces.security.policy setting:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-policy-testing

spec:

  title: Policy Testing

  description: Play area for testing security policies

  content:

    files: github.com/eduk8s-tests/lab-policy-testing

  session:

    namespaces:

      security:

        policy: anyuid

This setting applies to the primary session namespace and any secondary namespaces created.

Creating additional namespaces

Tanzu Application Platform v1.5

VMware by Broadcom 1143



For each workshop instance, a primary session namespace is created. You can deploy or pre-
deploy applications into this namespace as part of the workshop.

If you need more than one namespace per workshop instance, you can create secondary
namespaces in a couple of ways.

If the secondary namespaces are to be created empty, you can list the details of the namespaces
under the property session.namespaces.secondary:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-namespace-testing

spec:

  title: Namespace Testing

  description: Play area for testing namespaces

  content:

    files: github.com/eduk8s-tests/lab-namespace-testing

  session:

    namespaces:

      role: admin

      budget: medium

      secondary:

      - name: $(session_namespace)-apps

        role: edit

        budget: large

        limits:

          default:

            memory: 512mi

When secondary namespaces are created, by default, the role, resource quotas, and limit ranges
are set the same as the primary session namespace. Each namespace has a separate resource
budget and it is not shared.

If required, you can override what role, budget, and limits are applied within the entry for the
namespace.

Similarly, you can override the security policy for secondary namespaces on a case-by-case basis by
adding the security.policy setting under the entry for the secondary namespace.

To create resources in the namespaces you create, create the namespaces by adding an
appropriate Namespace resource to session.objects with the definitions of the resources you want
to create in the namespaces:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-namespace-testing

spec:

  title: Namespace Testing

  description: Play area for testing namespaces

  content:

    files: github.com/eduk8s-tests/lab-namespace-testing

  session:

    objects:

    - apiVersion: v1

      kind: Namespace

      metadata:

        name: $(session_namespace)-apps

When listing any other resources to be created within the added namespace, such as deployments,
ensure that the namespace is set in the metadata of the resource. For example,
$(session_namespace)-apps.

Tanzu Application Platform v1.5

VMware by Broadcom 1144



To override what role the service account for the workshop instance has in the added namespace,
you can set the learningcenter.tanzu.vmware.com/session.role annotation on the Namespace
resource:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-namespace-testing

spec:

  title: Namespace Testing

  description: Play area for testing namespaces

  content:

    files: github.com/eduk8s-tests/lab-namespace-testing

  session:

    objects:

    - apiVersion: v1

      kind: Namespace

      metadata:

        name: $(session_namespace)-apps

        annotations:

          learningcenter.tanzu.vmware.com/session.role: view

To have a different resource budget set for the additional namespace, you can add the annotation
learningcenter.tanzu.vmware.com/session.budget in the Namespace resource metadata and set
the value to the required resource budget:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-namespace-testing

spec:

  title: Namespace Testing

  description: Play area for testing namespaces

  content:

    files: github.com/eduk8s-tests/lab-namespace-testing

  session:

    objects:

    - apiVersion: v1

      kind: Namespace

      metadata:

        name: $(session_namespace)-apps

        annotations:

          learningcenter.tanzu.vmware.com/session.budget: large

To override the limit range values applied corresponding to the budget applied, you can add
annotations starting with learningcenter.tanzu.vmware.com/session.limits. for each entry:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-namespace-testing

spec:

  title: Namespace Testing

  description: Play area for testing namespaces

  content:

    files: github.com/eduk8s-tests/lab-namespace-testing

  session:

    objects:

    - apiVersion: v1

      kind: Namespace

      metadata:

        name: $(session_namespace)-apps

        annotations:

Tanzu Application Platform v1.5

VMware by Broadcom 1145



          learningcenter.tanzu.vmware.com/session.limits.min.cpu: 50m

          learningcenter.tanzu.vmware.com/session.limits.min.memory: 32Mi

          learningcenter.tanzu.vmware.com/session.limits.max.cpu: 1

          learningcenter.tanzu.vmware.com/session.limits.max.memory: 1Gi

          learningcenter.tanzu.vmware.com/session.limits.defaultrequest.cpu: 50m

          learningcenter.tanzu.vmware.com/session.limits.defaultrequest.memory: 128Mi

          learningcenter.tanzu.vmware.com/session.limits.request.cpu: 500m

          learningcenter.tanzu.vmware.com/session.limits.request.memory: 1Gi

You only must supply annotations for the values you want to override.

If you need more fine-grained control over the limit ranges and resource quotas, set the value of
the annotation for the budget to custom and add the LimitRange and ResourceQuota definitions to
session.objects.

In this case you must set the namespace for the LimitRange and ResourceQuota resource to the
name of the namespace, e.g., $(session_namespace)-apps so they are only applied to that
namespace.

To set the security policy for a specific namespace other than the primary session namespace, you
can add the annotation learningcenter.tanzu.vmware.com/session.security.policy in the
Namespace resource metadata and set the value to nonroot, anyuid, or custom as necessary.

Shared workshop resources

Adding a list of resources to session.objects causes the given resources to be created for each
workshop instance, whereas namespaced resources default to being created in the session
namespace for a workshop instance.

If instead you want to have one common shared set of resources created once for the whole
workshop environment, that is, used by all workshop instances, you can list them in the
environment.objects field.

This might, for example, be used to deploy a single container image registry used by all workshop
instances, with a Kubernetes job used to import a set of images into the container image registry,
which are then referenced by the workshop instances.

For namespaced resources, it is not necessary to enter the namespace field of the resource
metadata. When the namespace field is not present, the resource is created within the workshop
namespace for that workshop environment.

When resources are created, owner references are added, making the WorkshopEnvironment
custom resource correspond to the workshop environment of the owner. This means that when
the workshop environment is deleted, any resources are also deleted.

Values of fields in the list of resource objects can reference a number of predefined parameters.
The available parameters are:

workshop_name: The name of the workshop. This is the name of the Workshop definition the
workshop environment was created against.

environment_name: The name of the workshop environment. Its current value is the name of
the namespace for the workshop environment and subject to change.

environment_token: The value of the token that must be used in workshop requests against
the workshop environment.

workshop_namespace: The namespace for the workshop environment. This is the namespace
where all deployments of the workshop instances, and their service accounts, are created.
It is the same namespace that shared workshop resources are created.

Tanzu Application Platform v1.5

VMware by Broadcom 1146



service_account: The name of a service account you can use when creating deployments
in the workshop namespace.

ingress_domain: The host domain under which you can create host names when creating
ingress routes.

ingress_protocol: The protocol (http/https) used for ingress routes created for workshops.

ingress_secret: The name of the ingress secret stored in the workshop namespace when
secure ingress is used.

To create additional namespaces associated with the workshop environment, embed a reference to
$(workshop_namespace) in the name of the additional namespaces with an appropriate suffix. Be
careful that the suffix doesn’t overlap with the range of session IDs for workshop instances.

When creating deployments in the workshop namespace, set the serviceAccountName of the
Deployment resource to $(service_account). This ensures the deployment makes use of a special
Pod security policy set up by the Learning Center. If this isn’t used and the cluster imposes a more
strict default Pod security policy, your deployment might not work, especially if any image runs as
root.

Workshop pod security policy

The pod for the workshop session is set up with a pod security policy that restricts what you can do
from containers in the pod. The nature of the applied pod security policy is adjusted when enabling
support for doing Docker builds. This in turn enables Docker builds inside the sidecar container
attached to the workshop container.

If you are customizing the workshop by patching the pod specification using session.patches to
add your own sidecar container, and that sidecar container must run as the root user or needs a
custom pod security policy, you must override the default security policy for the workshop
container.

To allow a sidecar container to run as the root user with no extra privileges required, you can
override the default nonroot security policy and set it to anyuid:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-policy-testing

spec:

  title: Policy Testing

  description: Play area for testing security policies

  content:

    files: github.com/eduk8s-tests/lab-policy-testing

  session:

    security:

      policy: anyuid

This is a different setting than described previously for changing the security policy for deployments
made by a workshop user to the session namespaces. This setting applies only to the workshop
container itself.

If you need more fine-grained control of the security policy, you must provide your own resources
for defining the Pod security policy and map it so it is used. The details of the pod security policy
must be in environment.objects and mapped by definitions added to session.objects. For this to
be used, you must deactivate the application of the inbuilt pod security policies. You can do this by
setting session.security.policy to custom:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

Tanzu Application Platform v1.5

VMware by Broadcom 1147



metadata:

  name: lab-policy-testing

spec:

  title: Policy Testing

  description: Play area for testing policy override

  content:

    files: github.com/eduk8s-tests/lab-policy-testing

  session:

    security:

      policy: custom

    objects:

    - apiVersion: rbac.authorization.k8s.io/v1

      kind: RoleBinding

      metadata:

        namespace: $(workshop_namespace)

        name: $(session_namespace)-podman

      roleRef:

        apiGroup: rbac.authorization.k8s.io

        kind: ClusterRole

        name: $(workshop_namespace)-podman

      subjects:

      - kind: ServiceAccount

        namespace: $(workshop_namespace)

        name: $(service_account)

  environment:

    objects:

    - apiVersion: policy/v1beta1

      kind: PodSecurityPolicy

      metadata:

        name: aa-$(workshop_namespace)-podman

      spec:

        privileged: true

        allowPrivilegeEscalation: true

        requiredDropCapabilities:

        - KILL

        - MKNOD

        hostIPC: false

        hostNetwork: false

        hostPID: false

        hostPorts: []

        runAsUser:

          rule: MustRunAsNonRoot

        seLinux:

          rule: RunAsAny

        fsGroup:

          rule: RunAsAny

        supplementalGroups:

          rule: RunAsAny

        volumes:

        - configMap

        - downwardAPI

        - emptyDir

        - persistentVolumeClaim

        - projected

        - secret

    - apiVersion: rbac.authorization.k8s.io/v1

      kind: ClusterRole

      metadata:

        name: $(workshop_namespace)-podman

      rules:

      - apiGroups:

        - policy

        resources:

        - podsecuritypolicies

        verbs:

        - use

Tanzu Application Platform v1.5

VMware by Broadcom 1148



        resourceNames:

        - aa-$(workshop_namespace)-podman

By overriding the pod security policy, you are responsible for limiting what you can do from the
workshop pod. In other words, add only the extra capabilities you need. The pod security policy is
applied only to the pod the workshop session runs in. It does not change any pod security policy
applied to service accounts that exist in the session namespace or other namespaces you have
created.

There is a better way to set the priority of applied Pod security policies when a default Pod security
policy is applied globally by mapping it to the system:authenticated group. This causes priority
falling back to the order of the names of the Pod security policies. VMware recommends you use
aa- as a prefix to the custom Pod security name you create. This ensures it takes precedence over
any global default Pod security policy such as restricted, pks-restricted or vmware-system-tmc-
restricted, no matter what the name of the global policy default.

Custom security policies for user containers

You can also set the value of the session.namespaces.security.policy setting as custom. This
gives you more fine-grained control of the security policy applied to the pods and containers that a
user deploys during a session. In this case you must provide your own resources that define and
map the pod security policy.

For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-policy-testing

spec:

  title: Policy Testing

  description: Play area for testing policy override

  content:

    files: github.com/eduk8s-tests/lab-policy-testing

  session:

    namespaes:

      security:

        policy: custom

    objects:

    - apiVersion: rbac.authorization.k8s.io/v1

      kind: RoleBinding

      metadata:

        namespace: $(workshop_namespace)

        name: $(session_namespace)-security-policy

      roleRef:

        apiGroup: rbac.authorization.k8s.io

        kind: ClusterRole

        name: $(workshop_namespace)-security-policy

      subjects:

      - kind: Group

        namespace: $(workshop_namespace)

        name: system:serviceaccounts:$(workshop_namespace)

  environment:

    objects:

    - apiVersion: policy/v1beta1

      kind: PodSecurityPolicy

      metadata:

        name: aa-$(workshop_namespace)-security-policy

      spec:

        privileged: true

        allowPrivilegeEscalation: true

        requiredDropCapabilities:

Tanzu Application Platform v1.5

VMware by Broadcom 1149



        - KILL

        - MKNOD

        hostIPC: false

        hostNetwork: false

        hostPID: false

        hostPorts: []

        runAsUser:

          rule: MustRunAsNonRoot

        seLinux:

          rule: RunAsAny

        fsGroup:

          rule: RunAsAny

        supplementalGroups:

          rule: RunAsAny

        volumes:

        - configMap

        - downwardAPI

        - emptyDir

        - persistentVolumeClaim

        - projected

        - secret

    - apiVersion: rbac.authorization.k8s.io/v1

      kind: ClusterRole

      metadata:

        name: $(workshop_namespace)-security-policy

      rules:

      - apiGroups:

        - policy

        resources:

        - podsecuritypolicies

        verbs:

        - use

        resourceNames:

        - aa-$(workshop_namespace)-security-policy

You can also do this on secondary namespaces by either changing the
session.namespaces.secondary.security.policy setting to custom or using the
learningcenter.tanzu.vmware.com/session.security.policy: custom annotation.

Defining additional ingress points

If running additional background applications, by default they are only accessible to other processes
within the same container. For an application to be accessible to a user through their web browser,
an ingress must be created mapping to the port for the application.

You can do this by supplying a list of the ingress points and the internal container port they map to
by setting the session.ingresses field in the workshop definition:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    ingresses:

    - name: application

      port: 8080

The form of the host name used in the URL to access the service is:

Tanzu Application Platform v1.5

VMware by Broadcom 1150



$(session_namespace)-application.$(ingress_domain)

This name cannot be terminal, console, slides, editor, or the name of any built-in dashboard.
These values are reserved for the corresponding built-in capabilities providing those features.

In addition to specifying ingresses for proxying to internal ports within the same Pod, you can enter
a host, protocol and port corresponding to a separate service running in the Kubernetes cluster:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    ingresses:

    - name: application

      protocol: http

      host: service.namespace.svc.cluster.local

      port: 8080

You can use variables providing information about the current session within the host property if
required:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    ingresses:

    - name: application

      protocol: http

      host: service.$(session_namespace).svc.cluster.local

      port: 8080

Available variables are:

session_namespace: The namespace you create for and bind to the workshop instance. This
is the namespace unique to the session and where a workshop can create its own
resources.

environment_name: The name of the workshop environment. Its current value is the name of
the namespace for the workshop environment and subject to change.

workshop_namespace: The namespace for the workshop environment. This is the namespace
where you create all deployments of the workshop instances and where the service
account that the workshop instance runs.

ingress_domain: The host domain under which you can create host names when creating
ingress routes.

If the service uses standard http or https ports, you can leave out the port property, and the port
is set based on the value of protocol.

Tanzu Application Platform v1.5

VMware by Broadcom 1151



When a request is proxied, you can specify additional request headers that must be passed to the
service:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    ingresses:

    - name: application

      protocol: http

      host: service.$(session_namespace).svc.cluster.local

      port: 8080

      headers:

      - name: Authorization

        value: "Bearer $(kubernetes_token)"

The value of a header can reference the following variable:

kubernetes_token: The access token of the service account for the current workshop
session, used for accessing the Kubernetes REST API.

Access controls enforced by the workshop environment or training portal protect accessing any
service through the ingress. If you use the training portal, this must be transparent. Otherwise,
supply any login credentials for the workshop again when prompted by your web browser.

External workshop instructions

In place of using workshop instructions provided with the workshop content, you can use externally
hosted instructions instead. To do this set sessions.applications.workshop.url to the URL of an
external web site:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    applications:

      workshop:

        url: https://www.example.com/instructions

The external web site must displayed in an HTML iframe, is shown as is and must provide its own
page navigation and table of contents if required.

The URL value can reference a number of predefined parameters. The available parameters are:

session_namespace: The namespace you create for and bind to the workshop instance. This
is the namespace unique to the session and where a workshop can create its own
resources.

environment_name: The name of the workshop environment. Its current value is the name of
the namespace for the workshop environment and subject to change.

Tanzu Application Platform v1.5

VMware by Broadcom 1152



workshop_namespace: The namespace for the workshop environment. This is the namespace
where you create all deployments of the workshop instances and where the service
account that the workshop instance runs.

ingress_domain: The host domain under which you can create host names when creating
ingress routes.

ingress_protocol: The protocol (http/https) used for ingress routes that you create for
workshops.

These could be used, for example, to reference workshops instructions hosted as part of the
workshop environment:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    applications:

      workshop:

        url: $(ingress_protocol)://$(workshop_namespace)-instructions.$(ingress_domai

n)

  environment:

    objects:

    - ...

In this case environment.objects of the workshop spec must include resources to deploy the
application hosting the instructions and expose it through an appropriate ingress.

Deactivating workshop instructions

The aim of the workshop environment is to provide instructions for a workshop that users can
follow. If you want instead to use the workshop environment as a development environment or as
an administration console that provides access to a Kubernetes cluster, you can deactivate the
display of workshop instructions provided with the workshop content. In this case, only the work
area with the terminals, console, and so on, is displayed. To deactivate display of workshop
instructions, add a session.applications.workshop section and set the enabled property to false:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    applications:

      workshop:

        enabled: false

Enabling the Kubernetes console

Tanzu Application Platform v1.5

VMware by Broadcom 1153



By default the Kubernetes console is not enabled. To enable it and make it available through the
web browser when accessing a workshop, add a session.applications.console section to the
workshop definition, and set the enabled property to true:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    applications:

      console:

        enabled: true

The Kubernetes dashboard provided by the Kubernetes project is used. To use Octant as the
console, you can set the vendor property to octant:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    applications:

      console:

        enabled: true

        vendor: octant

When vendor is not set, kubernetes is assumed.

Enabling the integrated editor
By default the integrated web based editor is not enabled. To enable it and make it available
through the web browser when accessing a workshop, add a session.applications.editor section
to the workshop definition, and set the enabled property to true:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    applications:

      editor:

        enabled: true

The integrated editor used is based on Visual Studio Code. For more information about the editor,
see https://github.com/cdr/code-server in GitHub.

Tanzu Application Platform v1.5

VMware by Broadcom 1154

https://github.com/cdr/code-server


To install additional VS Code extensions, do this from the editor. Alternatively, if building a custom
workshop, you can install them from your Dockerfile into your workshop image by running:

code-server --install-extension vendor.extension

Replace vendor.extension with the name of the extension, where the name identifies the
extension on the VS Code extensions marketplace used by the editor or provide a path name to a
local .vsix file.

This installs the extensions into $HOME/.config/code-server/extensions.

If downloading extensions yourself and unpacking them or extensions are part of your Git
repository, you can instead locate them in the workshop/code-server/extensions directory.

Enabling workshop downloads

You can provide a way for a workshop user to download files as part of the workshop content.
Enable this by adding the session.applications.files section to the workshop definition and
setting the enabled property to true:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    applications:

      files:

        enabled: true

The recommended way of providing access to files from workshop instructions is using the
files:download-file clickable action block. This action ensures any file is downloaded to the local
machine and is not displayed in the browser in place of the workshop instructions.

By default the user can access any files located under the home directory of the workshop user
account. To restrict where the user can download files from, set the directory setting:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    applications:

      files:

        enabled: true

        directory: exercises

When the specified directory is a relative path, it is evaluated relative to the home directory of the
workshop user.

Enabling the test examiner

Tanzu Application Platform v1.5

VMware by Broadcom 1155



The test examiner is a feature that allows a workshop to have verification checks that the workshop
instructions can trigger. The test examiner is deactivated by default. To enable it, add a
session.applications.examiner section to the workshop definition and set the enabled property to
true:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    applications:

      examiner:

        enabled: true

You must provide any executable test programs for verification checks in the
workshop/examiner/tests directory.

The test programs must return an exit status of 0 if the test is successful and nonzero if it fails. Test
programs must not be persistent programs that can run forever.

Clickable actions for the test examiner are used within the workshop instructions to trigger the
verification checks. You can configure them to start when the page of the workshop instructions is
loaded.

Enabling session image registry

Workshops using tools such as kpack or tekton and which need a place to push container images
when built can enable a container image registry. A separate registry is deployed for each
workshop session.

The container image registry is currently fully usable only if workshops are deployed under a
Learning Center Operator configuration that uses secure ingress. This is because a registry that is
not secure is not trusted by the Kubernetes cluster as the source of container images when doing
deployments.

To enable the deployment of a registry per workshop session, add a
session.applications.registry section to the workshop definition and set the enabled property to
true:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    applications:

      registry:

        enabled: true

The registry mounts a persistent volume for storing of images. By default the size of that persistent
volume is 5Gi. To override the size of the persistent volume, add the storage property under the
registry section:

Tanzu Application Platform v1.5

VMware by Broadcom 1156



apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    applications:

      registry:

        enabled: true

        storage: 20Gi

The amount of memory provided to the registry defaults to 768Mi. To increase this, add the memory
property under the registry section.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    applications:

      registry:

        enabled: true

        memory: 1Gi

The registry is secured with a user name and password unique to the workshop session, and must
be accessed over a secure connection.

To allow access from the workshop session, the file $HOME/.docker/config.json containing the
registry credentials are injected into the workshop session. This is used by tools such as docker.

For deployments in Kubernetes, a secret of type kubernetes.io/dockerconfigjson is created in the
namespace and applied to the default service account in the namespace. This means deployments
made using the default service account can pull images from the registry without additional
configuration. If creating deployments using other service accounts, add configuration to the
service account or deployment to add the registry secret for pulling images.

If you need access to the raw registry host details and credentials, they are provided as
environment variables in the workshop session. The environment variables are:

REGISTRY_HOST: Contains the host name for the registry for the workshop session.

REGISTRY_AUTH_FILE: Contains the location of the docker configuration file. Must be the
equivalent of $HOME/.docker/config.json.

REGISTRY_USERNAME: Contains the user name for accessing the registry.

REGISTRY_PASSWORD: Contains the password for accessing the registry. This is different for
each workshop session.

REGISTRY_SECRET: Contains the name of a Kubernetes secret of type
kubernetes.io/dockerconfigjson added to the session namespace, which contains the
registry credentials.

The URL for accessing the registry adopts the HTTP protocol scheme inherited from the
environment variable INGRESS_PROTOCOL. This is the same HTTP protocol scheme the workshop

Tanzu Application Platform v1.5

VMware by Broadcom 1157



sessions use.

To use any of the variables as data variables in workshop content, use the same variable name but
in lowercase: registry_host, registry_auth_file, registry_username, registry_password and
registry_secret.

Enabling ability to use Docker

To build container images in a workshop using docker, first enable it. Each workshop session is
provided with its own separate Docker daemon instance running in a container.

Enabling support for running docker requires the use of a privileged container for running the
Docker daemon. Because of the security implications of providing access to Docker with this
configuration, VMware recommends that if you don’t trust the people taking the workshop, any
workshops that require Docker only be hosted in a disposable Kubernetes cluster that is destroyed
at the completion of the workshop. You must not enable Docker for workshops hosted on a public
service that is always kept running and where arbitrary users can access the workshops.

To enable support for using docker add a session.applications.docker section to the workshop
definition and set the enabled property to true:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    applications:

      docker:

        enabled: true

The container that runs the Docker daemon mounts a persistent volume for storing of images
which are pulled down or built locally. By default the size of that persistent volume is 5Gi. To
override the size of the persistent volume, add the storage property under the docker section:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    applications:

      docker:

        enabled: true

        storage: 20Gi

The amount of memory provided to the container running the Docker daemon defaults to 768Mi.
To increase this, add the memory property under the registry section:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

Tanzu Application Platform v1.5

VMware by Broadcom 1158



spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    applications:

      docker:

        enabled: true

        memory: 1Gi

Access to the Docker daemon from the workshop session uses a local UNIX socket shared with the
container running the Docker daemon. If it uses a local tool to access the socket connection for the
Docker daemon directly rather than by running docker, it must use the DOCKER_HOST environment
variable to set the location of the socket.

The Docker daemon is only available from within the workshop session and cannot be accessed
outside of the pod by any tools deployed separately to Kubernetes.

Enabling WebDAV access to files

You can access or update local files within the workshop session from the terminal command line or
editor of the workshop dashboard. The local files reside in the file system of the container the
workshop session is running in.

To access the files remotely, you can enable WebDAV support for the workshop session.

To enable support for accessing files over WebDAV, add a session.applications.webdav section to
the workshop definition, and set the enabled property to true:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    applications:

      webdav:

        enabled: true

This causes a WebDAV server running within the workshop session environment. A set of
credentials is also generated and are available as environment variables. The environment variables
are:

WEBDAV_USERNAME: Contains the user name that must be used when authenticating over
WebDAV.

WEBDAV_PASSWORD: Contains the password that must be used when authenticating over
WebDAV.

To use any of the environment variables related to the container image registry as data variables in
workshop content, declare this in the workshop/modules.yaml file in the config.vars section:

config:

  vars:

  - name: WEBDAV_USERNAME

  - name: WEBDAV_PASSWORD

Tanzu Application Platform v1.5

VMware by Broadcom 1159



The URL endpoint for accessing the WebDAV server is the same as the workshop session, with
/webdav/ path added. This can be constructed from the terminal using:

$INGRESS_PROTOCOL://$SESSION_NAMESPACE.$INGRESS_DOMAIN/webdav/

In workshop content it can be constructed using:

{{ingress_protocol}}://{{session_namespace}}.{{ingress_domain}}/webdav/

You can use WebDAV client support provided by your operating system or by using a standalone
WebDAV client, such as CyberDuck.

Using WebDAV can make it easier to transfer files to or from the workshop session.

Customizing the terminal layout
By default a single terminal is provided in the web browser when accessing the workshop. If
required, you can enable alternate layouts which provide additional terminals. To set the layout,
add the session.applications.terminal section and include the layout property with the desired
layout:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    applications:

      terminal:

        enabled: true

        layout: split

The options for the layout property are:

default: Single terminal.

split: Two terminals stacked above each other in ratio 60/40.

split/2: Three terminals stacked above each other in ratio 50/25/25.

lower: A single terminal is placed below any dashboard tabs, rather than being a tab of its
own. The ratio of dashboard tab to terminal is 70/30.

none: No terminal is displayed but can still be created from the drop down menu.

When adding the terminal section, you must include the enabled property and set it to true as it is
a required field when including the section.

If you don’t want a terminal displayed and also want to deactivate the ability to create terminals
from the drop-down menu, set enabled to false.

Adding custom dashboard tabs

Exposed applications, external sites and additional terminals, can be given their own custom
dashboard tab. This is done by specifying the list of dashboard panels and the target URL:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

Tanzu Application Platform v1.5

VMware by Broadcom 1160

https://cyberduck.io/


metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    ingresses:

    - name: application

      port: 8080

    dashboards:

    - name: Internal

      url: "$(ingress_protocol)://$(session_namespace)-application.$(ingress_domain)/"

    - name: External

      url: http://www.example.com

The URL values can reference a number of predefined parameters. The available parameters are:

session_namespace: The namespace you create for and bind to the workshop instance. This
is the namespace unique to the session and where a workshop can create its own
resources.

environment_name: The name of the workshop environment. Its current value is the name of
the namespace for the workshop environment and subject to change.

workshop_namespace: The namespace for the workshop environment. This is the namespace
where all deployments of the workshop instances you create and where the service
account that the workshop instance runs.

ingress_domain: The host domain under which you can create host names when creating
ingress routes.

ingress_protocol: The protocol (http/https) used for ingress routes that you create for
workshops.

The URL can reference an external web site, however, that web site must not prohibit being
embedded in an HTML iframe.

In the case of wanting to have a custom dashboard tab provide an additional terminal, the url
property must use the form terminal:<session>, where <session> is replaced with the name of the
terminal session. The name of the terminal session can be any name you choose, but must be
restricted to lowercase letters, numbers, and dashes. You should avoid using numeric terminal
session names such as “1”, “2”, and “3” as these are used for the default terminal sessions.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: Workshop

metadata:

  name: lab-application-testing

spec:

  title: Application Testing

  description: Play area for testing my application

  content:

    image: {YOUR-REGISTRY-URL}/lab-application-testing:main

  session:

    dashboards:

    - name: Example

      url: terminal:example

Configure the WorkshopEnvironment resource

This topic describes how you configure the WorkshopEnvironment custom resource, which defines a
Learning Center workshop environment.

Tanzu Application Platform v1.5

VMware by Broadcom 1161



Specifying the workshop definition

Creating a workshop environment is performed as a separate step to loading the workshop
definition. This allows multiple distinct workshop environments using the same workshop definition
to be created if necessary.

To specify which workshop definition is to be used for a workshop environment, set the
workshop.name field of the specification for the workshop environment.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

  name: lab-markdown-sample

spec:

  workshop:

    name: lab-markdown-sample

The workshop environment name specified in the workshop environment metadata does not need
to be the same. It has to be different if you create multiple workshop environments from the same
workshop definition.

When the workshop environment is created, the namespace created for the workshop
environment uses the name specified in the metadata. This name is also used in the unique names of
each workshop instance created under the workshop environment.

Overriding environment variables
A workshop definition can set a list of environment variables that must be set for all workshop
instances. To override an environment variable specified in the workshop definition. or one defined
in the container image, you can supply a list of environment variables as session.env.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

  name: lab-markdown-sample

spec:

  workshop:

    name: lab-markdown-sample

  session:

    env:

    - name: REPOSITORY-URL

      value: YOUR-GIT-URL-FOR-LAB-MARKDOWN-SAMPLE

Where YOUR-GIT-URL-FOR-LAB-MARKDOWN-SAMPLE is the Git repository URL for lab-markdown-sample.
For example, {YOUR-GIT-REPO-URL}/lab-markdown-sample.

You can use this to set the location of a back-end service, such as an image registry, used by the
workshop.

Values of fields in the list of resource objects can reference several predefined parameters. The
available parameters are:

session_ - A unique ID for the workshop instance within the workshop environment.

session_ - The namespace created for and bound to the workshop instance. This is the
namespace unique to the session and where a workshop can create its own resources.

environment_ - The name of the workshop environment. Currently, this is the same as the
name of the namespace for the workshop environment. It is suggested that you do not rely
on workshop environment name and namespace being the same, and use the most
appropriate to cope with any future change.

Tanzu Application Platform v1.5

VMware by Broadcom 1162



workshop_ - The namespace for the workshop environment. This is the namespace where
all deployments of the workshop instances are created and where the workshop instance
runs the service account exists.

service_ - The workshop instance service account’s name and access to the namespace
created for that workshop instance.

ingress_ - The host domain under which host names are created when creating ingress
routes.

ingress_ - The protocol (http/https) used for ingress routes created for workshops.

The syntax for referencing one of the parameters is $(parameter_name).

Overriding the ingress domain

To access a workshop instance using a public URL, you must specify an ingress domain. If an
ingress domain is not specified, the default ingress domain that the Learning Center operator
configured with is used.

When setting a custom domain, DNS must be configured with a wildcard domain to forward all
requests for subdomains of the custom domain to the ingress router of the Kubernetes cluster.

To provide the ingress domain, you can set the session.ingress.domain field.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

  name: lab-markdown-sample

spec:

  workshop:

    name: lab-markdown-sample

  session:

    ingress:

      domain: training.learningcenter.tanzu.vmware.com

By default, the workshop session is exposed using an HTTP connection if overriding the domain. If
you require a secure HTTPS connection, you must have access to a wildcard SSL certificate for the
domain. A secret of type tls must be created for the certificate in the learningcenter namespace
or the namespace where the Learning Center Operator is deployed. The name of that secret must
then be set in the session.ingress.secret field.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

  name: lab-markdown-sample

spec:

  workshop:

    name: lab-markdown-sample

  session:

    ingress:

      domain: training.learningcenter.tanzu.vmware.com

      secret: training.learningcenter.tanzu.vmware.com-tls

If HTTPS connections are terminated using an external load balancer and not by specifying a secret
for ingresses managed by the Kubernetes ingress controller, then routing traffic into the
Kubernetes cluster as HTTP connections, you can override the ingress protocol without specifying
an ingress secret by setting the session.ingress.protocol field.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

Tanzu Application Platform v1.5

VMware by Broadcom 1163



  name: lab-markdown-sample

spec:

  workshop:

    name: lab-markdown-sample

  session:

    ingress:

      domain: training.learningcenter.tanzu.vmware.com

      protocol: https

To override or set the ingress class, which dictates which ingress router is used when more than
one option is available, you can add session.ingress.class.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

  name: lab-markdown-sample

spec:

  workshop:

    name: lab-markdown-sample

  session:

    ingress:

      domain: training.learningcenter.tanzu.vmware.com

      secret: training.learningcenter.tanzu.vmware.com-tls

      class: nginx

Controlling access to the workshop

By default, requesting a workshop using the WorkshopRequest custom resource is deactivated and
must be enabled for a workshop environment by setting request.enabled to true.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

  name: lab-markdown-sample

spec:

  workshop:

    name: lab-markdown-sample

  request:

    enabled: true

With this enabled, anyone who can create a WorkshopRequest custom resource can request the
creation of a workshop instance for the workshop environment.

To further control who can request a workshop instance in the workshop environment, you can first
set an access token, which a user must know and supply with the workshop request. This is done
by setting the request.token field.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

  name: lab-markdown-sample

spec:

  workshop:

    name: lab-markdown-sample

  request:

    enabled: true

    token: lab-markdown-sample

The same name as the workshop environment is used in this example, which is probably not a good
practice. Use a random value instead. The token value may be multiline.

Tanzu Application Platform v1.5

VMware by Broadcom 1164



As a second control measure, you can specify what namespaces the WorkshopRequest must be
created. This means a user must have the specific ability to create WorkshopRequest resources in
one of those namespaces.

You can specify the list of namespaces from which workshop requests for the workshop
environment by setting request.namespaces.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

  name: lab-markdown-sample

spec:

  workshop:

    name: lab-markdown-sample

  request:

    enabled: true

    token: lab-markdown-sample

    namespaces:

    - default

To add the workshop namespace in the list, rather than list the literal name, you can reference a
predefined parameter specifying the workshop namespace by including $(workshop_namespace).

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

  name: lab-markdown-sample

spec:

  workshop:

    name: lab-markdown-sample

  request:

    enabled: true

    token: lab-markdown-sample

    namespaces:

    - $(workshop_namespace)

Overriding the login credentials
When requesting a workshop using WorkshopRequest, a login dialog box is presented to the user
when accessing the workshop instance URL. By default, the user name is learningcenter. The
password is a random value the user must query from the WorkshopRequest status after creating the
custom resource.

To override the user name, you can set the session.username field. To set the same fixed password
for all workshop instances, you can set the session.password field.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

  name: lab-markdown-sample

spec:

  workshop:

    name: lab-markdown-sample

  session:

    username: workshop

    password: lab-markdown-sample

Additional workshop resources

Tanzu Application Platform v1.5

VMware by Broadcom 1165



The workshop definition defined by the Workshop custom resource already declares a set of
resources to be created with the workshop environment. You can use this when you have shared
service applications the workshop needs, such as an container image registry or a Git repository
server.

To deploy additional applications related to a specific workshop environment, you can declare them
by adding them into the environment.objects field of the WorkshopEnvironment custom resource.
You might use this deploy a web application used by attendees of a workshop to access their
workshop instances.

For namespaced resources, it is not necessary to set the namespace field of the resource metadata.
When the namespace field is not present, the resource is created within the workshop namespace
for that workshop environment.

When resources are created, owner references are added, making the WorkshopEnvironment
custom resource correspond to the owner of the workshop environment. This means that any
resources are also deleted when the workshop environment is deleted.

Values of fields in the list of resource objects can reference several predefined parameters. The
available parameters are:

workshop_ - The name of the workshop. This is the name of the Workshop definition the
workshop environment was created against.

environment_ - The name of the workshop environment. Currently, this is the same as the
name of the namespace for the workshop environment. Do not rely on the name and the
workshop environment being the same, and use the most appropriate to cope with any
future change.

environment_ - The token value must be used against the workshop environment in
workshop requests.

workshop_ - The namespace for the workshop environment. This is the namespace where
all deployments of the workshop instances and their service accounts are created. It is the
same namespace that shared workshop resources are created.

service_ - The service account name is used when creating deployments in the workshop
namespace.

ingress_ - The host domain under which host names are created when creating ingress
routes.

ingress_ - The protocol (http/https) used for ingress routes created for workshops.

ingress_ - The name of the ingress secret stored in the workshop namespace when secure
ingress is being used.

To create additional namespaces associated with the workshop environment, embed a reference to
$(workshop_namespace) in the name of the additional namespaces, with an appropriate suffix. Be
mindful that the suffix doesn’t overlap with the range of session IDs for workshop instances.

When creating deployments in the workshop namespace, set the serviceAccountName of the
Deployment resource to $(service_account). This ensures the deployment uses a special Pod
security policy set up by the Learning Center. If this isn’t used and the cluster imposes a more strict
default Pod security policy, your deployment might not work, especially if any image expects to run
as root.

Creation of workshop instances

After a workshop environment is created, you can create the workshop instances. You can request
a workshop instance by using the WorkshopRequest custom resource. This can be a separate step,

Tanzu Application Platform v1.5

VMware by Broadcom 1166



or you can add them as resources under environment.objects.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopEnvironment

metadata:

  name: lab-markdown-sample

spec:

  workshop:

    name: lab-markdown-sample

  request:

    token: lab-markdown-sample

    namespaces:

    - $(workshop_namespace)

  session:

    username: learningcenter

    password: lab-markdown-sample

  environment:

    objects:

    - apiVersion: learningcenter.tanzu.vmware.com/v1beta1

      kind: WorkshopRequest

      metadata:

        name: user1

      spec:

        environment:

          name: $(environment_name)

          token: $(environment_token)

    - apiVersion: learningcenter.tanzu.vmware.com/v1beta1

      kind: WorkshopRequest

      metadata:

        name: user2

      spec:

        environment:

          name: $(environment_name)

          token: $(environment_token)

Using this method, the workshop environment is populated with workshop instances. You can
query the workshop requests from the workshop namespace to discover the URLs for accessing
each and the password if you didn’t set one and a random password was assigned.

If you need more control over how the workshop instances were created using this method, you
can use the WorkshopSession custom resource instead.

Configure the WorkshopRequest resource

This topic describes how you configure the WorkshopRequest custom resource, which defines a
Learning Center workshop request.

Specifying workshop environment

The WorkshopRequest custom resource is used to request a workshop instance. It does not provide
details needed to perform the deployment of the workshop instance. That information is sourced
by the Learning Center Operator from the WorkshopEnvironment and Workshop custom resources.

The minimum required information in the workshop request is the name of the workshop
environment. You supply this by setting the environment.name field.

For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopRequest

metadata:

  name: lab-markdown-sample

Tanzu Application Platform v1.5

VMware by Broadcom 1167



spec:

  environment:

    name: lab-markdown-sample

A request is successful only if requesting a workshop instance for a workshop environment is
enabled for that workshop. You can enable requests in the WorkshopEnvironment custom resource
for the workshop environment.

If multiple workshop requests, for the same workshop environment or different ones, are created in
the same namespace, the name defined in the metadata for the workshop request must be different
for each. The value of this name is not used to name workshop instances. You need the name value
to delete the workshop instance, which is done by deleting the workshop request.

Specifying required access token

If a workshop environment is configured to require an access token when making a workshop
request against that environment, you can specify decide the token by setting the
environment.token field.

For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopRequest

metadata:

  name: lab-markdown-sample

spec:

  environment:

    name: lab-markdown-sample

    token: lab-markdown-sample

Even with the token, the request fails if the following is true:

The workshop environment has restricted the namespaces from which a workshop request
was made

The workshop request was not created in one of the permitted namespaces

Configure the TrainingPortal resource

This topic describes how you configure the TrainingPortal custom resource, which triggers the
deployment of a set of Learning Center workshop environments and a set number of workshop
instances.

Specifying the workshop definitions

You run multiple workshop instances to perform training to a group of people by creating the
workshop environment and then creating each workshop instance. The TrainingPortal workshop
resource bundles that up as one step.

Before creating the training environment, you must load the workshop definitions as a separate
step.

To specify the names of the workshops to be used for the training, list them under the workshops
field of the training portal specification. Each entry needs to define a name property, matching the
name of the Workshop resource you created.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: sample-workshops

Tanzu Application Platform v1.5

VMware by Broadcom 1168



spec:

  portal:

    sessions:

      maximum: 8

  workshops:

  - name: lab-asciidoc-sample

  - name: lab-markdown-sample

When the training portal is created, it:

Sets up the underlying workshop environments.

Creates any workshop instances required to be created initially for each workshop.

Deploys a web portal for attendees of the training to access their workshop instances.

Limit the number of sessions

When defining the training portal, you can set a limit on the workshop sessions that can be run
concurrently. Set this limit by using the portal.sessions.maximum property:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: sample-workshops

spec:

  portal:

    sessions:

      maximum: 8

  workshops:

  - name: lab-asciidoc-sample

  - name: lab-markdown-sample

When you specify this, the maximum capacity of each workshop is set to the maximum value for
the training portal as a whole. This means that any one workshop can have as many sessions
running as specified by the maximum for the portal. However, to achieve this maximum for a given
workshop, only instances of that workshop can be created. In other words, the maximum capacity
can be spread across a number of workshops or it can be used in its entirety by a single workshop.

If you do not set portal.sessions.maximum, you must set the capacity for each individual workshop
as detailed in the following section. In only setting the capacities of each workshop and not an
overall maximum for sessions, you cannot share the overall capacity of the training portal across
multiple workshops.

Capacity of individual workshops

When you have more than one workshop, you can want to limit how many instances of each
workshop you can have so that they cannot grow to the maximum number of sessions for the
whole training portal. This means you can stop a specific workshop from using all of the capacity of
the training portal. To do this, set the capacity field under the entry for the workshop:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: sample-workshops

spec:

  portal:

    sessions:

      maximum: 8

  workshops:

  - name: lab-asciidoc-sample

Tanzu Application Platform v1.5

VMware by Broadcom 1169



    capacity: 4

  - name: lab-markdown-sample

    capacity: 6

The value of capacity limits the number of workshop sessions for a specific workshop to that value.
It must be less than or equal to the maximum number of workshops sessions for the portal,
because the latter always sets the absolute limit.

Set reserved workshop instances

By default one instance of each of the listed workshops is created so when the initial user requests
that workshop, it’s available for use immediately.

When such a reserved instance is allocated to a user, provided that the workshop capacity hasn’t
been reached, a new instance of the workshop is created as a reserve ready for the next user.
When a user ends a workshop and the workshop is at capacity, when the instance is deleted, a
new reserve is created. The total of allocated and reserved sessions for a workshop cannot exceed
the capacity for that workshop.

To override for a specific workshop how many reserved instances are kept on standby ready for
users, you can set the reserved setting against the workshop:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: sample-workshops

spec:

  portal:

    sessions:

      maximum: 8

  workshops:

  - name: lab-asciidoc-sample

    capacity: 4

    reserved: 2

  - name: lab-markdown-sample

    capacity: 6

    reserved: 4

You can set the value of reserved to 0 if you never want any reserved instances for a workshop
and only want instances of that workshop created on demand when required for a user. Creating
instances of a workshop on demand can result in a user waiting longer to access a workshop
session.

When workshop instances are always created on demand, the oldest reserved instance is
terminated to allow a new session of a desired workshop to be created. This also happens when
reserved instances tie up capacity that could be used for a new session of another workshop. This
occurs if any caps for specific workshops are met.

Override initial number of sessions

The initial number of workshop instances created for each workshop is specified by reserved or 1 if
the setting hasn’t been provided.

In the case where reserved is set in order to keep workshop instances on standby, you can indicate
that initially you want more than the reserved number of instances created. This is useful when
running a workshop for a set period of time. You might create up-front instances of the workshop
corresponding to 75% of the expected number of attendees but with a smaller reserve number.
With this configuration, new reserve instances only start to be created when the total number
approaches 75% and all extra instances created up front have been allocated to users. This ensures

Tanzu Application Platform v1.5

VMware by Broadcom 1170



you have enough instances ready for when most people come, but you can also create other
instances later if necessary:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: kubernetes-fundamentals

spec:

  portal:

    sessions:

      maximum: 100

  workshops:

  - name: lab-kubernetes-fundamentals

    initial: 75

    reserved: 5

Setting defaults for all workshops

If you have a list of workshops, and they all must be set with the same values for capacity,
reserved, and initial, rather than add settings to each, you can set defaults to apply to all
workshops under the portal section:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: sample-workshops

spec:

  portal:

    sessions:

      maximum: 10

    capacity: 6

    reserved: 2

    initial: 4

  workshops:

  - name: lab-asciidoc-sample

  - name: lab-markdown-sample

Set caps on individual users
By default a single user can run more than one workshop at a time. You can cap this to ensure that
workshops run only one at a time. This prevents a user from wasting resources by starting more
than one workshop and only working on one without shutting the other down.

To apply a limit on how many concurrent workshop sessions a user can start, use the
portal.sessions.registered setting:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: sample-workshops

spec:

  portal:

    sessions:

      maximum: 8

      registered: 1

  workshops:

  - name: lab-asciidoc-sample

    capacity: 4

    reserved: 2

  - name: lab-markdown-sample

Tanzu Application Platform v1.5

VMware by Broadcom 1171



    capacity: 6

    reserved: 4

This limit also applies to anonymous users when anonymous access is enabled through the training
portal web interface or if sessions are being created through the REST API. To set a limit on
anonymous users, you can set portal.sessions.anonymous instead:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: sample-workshops

spec:

  portal:

    sessions:

      maximum: 8

      anonymous: 1

  workshops:

  - name: lab-asciidoc-sample

    capacity: 4

    reserved: 2

  - name: lab-markdown-sample

    capacity: 6

    reserved: 4

Expiration of workshop sessions

After you reach the maximum capacity, no more workshops sessions can be created. After a
workshop session is allocated to a user, it cannot be reassigned to another user.

If you are running a supervised workshop, set the capacity higher than the anticipated number of
users in case you have more users than you expect. Use the setting for the reserved number of
instances. This way, even if you set a higher capacity than needed, workshop sessions are only
created as required and not all up front.

In supervised workshops, when the training is over, delete the whole training environment. All
workshop sessions are then deleted.

To host a training portal over an extended period but don’t know when users want to do a
workshop, you can set up workshop sessions to expire after a set time. When expired, the
workshop session is deleted and a new workshop session can be created in its place.

The maximum capacity is therefore the maximum at any one point in time, while the number can
grow and shrink over time. So over an extended time, you can handle many more sessions than the
set maximum capacity. The maximum capacity ensures you don’t try to allocate more workshop
sessions than you have resources for at a given time.

To set a maximum time allowed for a workshop session, use the expires setting:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

  workshops:

  - name: lab-markdown-sample

    capacity: 8

    reserved: 1

    expires: 60m

The value needs to be an integer, followed by a suffix of ‘s’, ‘m’ or ‘h’, corresponding to seconds,
minutes, or hours.

Tanzu Application Platform v1.5

VMware by Broadcom 1172



The time period is calculated from when the workshop session is allocated to a user. When the
time period is up, the workshop session is automatically deleted.

When an expiration period is specified, or when a user finishes a workshop or restarts the
workshop, the workshop is also deleted.

To cope with users who claim a workshop session, but leave and don’t use it, you can set a time
period for when a workshop session with no activity is deemed orphaned and so is deleted. Do this
using the orphaned setting:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

  workshops:

  - name: lab-markdown-sample

    capacity: 8

    reserved: 1

    expires: 60m

    orphaned: 5m

Avoid this setting for supervised workshops where the whole event only lasts a certain length of
time. This prevents a user’s session from being deleted when the user takes breaks and the
computer goes to sleep.

The expires and orphaned settings can also be set against portal to apply them to all workshops.

Updates to workshop environments

The list of workshops for an existing training portal can be changed by modifying the training portal
definition applied to the Kubernetes cluster.

If you remove a workshop from the list of workshops, the workshop environment is marked as
stopping and is deleted when all active workshop sessions have completed.

If you add a workshop to the list of workshops, a new workshop environment for it is created.

Changes to settings, such as the maximum number of sessions for the training portal or capacity
settings for individual workshops, are applied to existing workshop environments.

By default a workshop environment is left unchanged if the corresponding workshop definition is
changed. So in the default configuration, you must explicitly delete the workshop from the list of
workshops managed by the training portal and then add it back again if the workshop definition
changed.

If you prefer that workshop environments be replaced when the workshop definition changes,
enable this by using the portal.updates.workshop setting:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

  portal:

    sessions:

      maximum: 8

    updates:

      workshop: true

  workshops:

  - name: lab-markdown-sample

    reserved: 1

Tanzu Application Platform v1.5

VMware by Broadcom 1173



    expires: 60m

    orphaned: 5m

When using this option, use the portal.sessions.maximum setting to limit the number of workshop
sessions that can be run for the training portal as a whole. When replacing the workshop
environment, the old workshop environment is retained if there is still an active workshop session
being used. If the limit isn’t set, the new workshop environment is still able to grow to its specific
capacity and is not limited by how many workshop sessions are running against old instances of the
workshop environment.

Overall, VMware recommends updating workshop environments when workshop definitions
change only in development environments when working on workshop content. This is an
especially good practice until you are familiar with how the training portal replaces existing
workshop environments, and the resource implications of having old and new instances of a
workshop environment running at the same time.

Override the ingress domain

To access a workshop instance using a public URL, specify an ingress domain. If an ingress domain
isn’t specified, the default ingress domain that the Learning Center Operator is configured with is
used.

When setting a custom domain, DNS must have been configured with a wildcard domain to
forward all requests for sub-domains of the custom domain to the ingress router of the Kubernetes
cluster.

To provide the ingress domain, set the portal.ingress.domain field:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

  portal:

    ingress:

      domain: learningcenter.tanzu.vmware.com

  workshops:

  - name: lab-markdown-sample

    capacity: 3

    reserved: 1

If overriding the domain, by default the workshop session is exposed using a HTTP connection. For
a secure HTTPS connection, you must have access to a wildcard SSL certificate for the domain. A
secret of type tls should be created for the certificate in the learningcenter namespace or the
namespace where the Learning Center Operator is deployed. The name of that secret must be set
in the portal.ingress.secret field:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

  portal:

    ingress:

      domain: learningcenter.tanzu.vmware.com

      secret: learningcenter.tanzu.vmware.com-tls

  workshops:

  - name: lab-markdown-sample

    capacity: 3

    reserved: 1

Tanzu Application Platform v1.5

VMware by Broadcom 1174



You can terminate HTTPS connections by using an external load balancer instead of specifying a
secret for ingresses managed by the Kubernetes ingress controller. In that case, when routing
traffic into the Kubernetes cluster as HTTP connections, you can override the ingress protocol
without specifying an ingress secret. Instead, set the portal.ingress.protocol field:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

  portal:

    ingress:

      domain: learningcenter.tanzu.vmware.com

      protocol: https

  workshops:

  - name: lab-markdown-sample

    capacity: 3

    reserved: 1

To override or set the ingress class, which dictates which ingress router is used when more than
one option is available, you can add portal.ingress.class:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

  portal:

    ingress:

      domain: learningcenter.tanzu.vmware.com

      secret: learningcenter.tanzu.vmware.com-tls

      class: nginx

  workshops:

  - name: lab-markdown-sample

    capacity: 3

    reserved: 1

Override the portal host name
The default host name given to the training portal is the name of the resource with -ui suffix,
followed by the domain specified by the resource or the default inherited from the configuration of
the Learning Center Operator.

To override the generated host name, you can set portal.ingress.hostname:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

  portal:

    ingress:

      hostname: labs

      domain: learningcenter.tanzu.vmware.com

      secret: learningcenter.tanzu.vmware.com-tls

  workshops:

  - name: lab-markdown-sample

    capacity: 3

    reserved: 1

This causes the host name to be labs.learningcenter.tanzu.vmware.com rather than the default
generated name for this example of lab-markdown-sample-ui.learningcenter.tanzu.vmware.com.

Tanzu Application Platform v1.5

VMware by Broadcom 1175



Set extra environment variables

To override any environment variables for workshop instances created for a specific work, provide
the environment variables in the env field of that workshop:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

  workshops:

  - name: lab-markdown-sample

    capacity: 3

    reserved: 1

    env:

    - name: REPOSITORY-URL

      value: YOUR-GIT-URL-FOR-LAB-MARKDOWN-SAMPLE

Where YOUR-GIT-URL-FOR-LAB-MARKDOWN-SAMPLE is the Git repository URL for lab-markdown-sample.
For example, {YOUR-GIT-REPO-URL}/lab-markdown-sample.

Values of fields in the list of resource objects can reference a number of predefined parameters.
The available parameters are:

session_id - A unique ID for the workshop instance within the workshop environment.

session_namespace - The namespace created for and bound to the workshop instance. This
is the namespace unique to the session and where a workshop can create its own
resources.

environment_name - The name of the workshop environment. For now this is the same as
the name of the namespace for the workshop environment. Don’t rely on them being the
same, and use the most appropriate to cope with any future change.

workshop_namespace - The namespace for the workshop environment. This is the
namespace where all deployments of the workshop instances are created and where the
service account that the workshop instance runs as exists.

service_account - The name of the service account the workshop instance runs as and
which has access to the namespace created for that workshop instance.

ingress_domain - The host domain under which host names can be created when creating
ingress routes.

ingress_protocol - The protocol (http/https) used for ingress routes created for workshops.

The syntax for referencing one of the parameters is $(parameter_name).

Override portal credentials
When a training portal is deployed, the user name for the admin and robot accounts uses the
defaults of learningcenter and robot@learningcenter. The passwords for each account are
randomly set.

For the robot account, the OAuth application client details used with the REST API are also
randomly generated.

You can see what the credentials and client details are by running kubectl describe against the
training portal resource. This will yield output that includes:

Status:

  learningcenter:

    Clients:

Tanzu Application Platform v1.5

VMware by Broadcom 1176



      Robot:

        Id:      ACZpcaLIT3qr725YWmXu8et9REl4HBg1

        Secret:  t5IfXbGZQThAKR43apoc9usOFVDv2BLE

    Credentials:

      Admin:

        Password:  0kGmMlYw46BZT2vCntyrRuFf1gQq5ohi

        Username:  learningcenter

      Robot:

        Password:  QrnY67ME9yGasNhq2OTbgWA4RzipUvo5

        Username:  robot@learningcenter

To override any of these values to set them to a predetermined value, you can add credentials
and clients sections to the training portal specification.

To overload the credentials for the admin and robot accounts user:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

  portal:

    credentials:

      admin:

        username: admin-user

        password: top-secret

      robot:

        username: robot-user

        password: top-secret

  workshops:

  - name: lab-markdown-sample

    capacity: 3

    reserved: 1

To override the application client details for OAuth access by the robot account user:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

  portal:

    clients:

      robot:

        id: application-id

        secret: top-secret

  workshops:

  - name: lab-markdown-sample

    capacity: 3

    reserved: 1

Control registration type
By default the training portal web interface presents a registration page for users to create an
account before selecting a workshop. If you want to allow only the administrator to log in, you can
deactivate the registration page. Do this if you are using the REST API to create and allocate
workshop sessions from a separate application:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

Tanzu Application Platform v1.5

VMware by Broadcom 1177



  portal:

    registration:

      type: one-step

      enabled: false

  workshops:

  - name: lab-markdown-sample

    capacity: 3

    reserved: 1

If rather than requiring users to register, you want to allow anonymous access, you can switch the
registration type to anonymous:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

  portal:

    registration:

      type: anonymous

  workshops:

  - name: lab-markdown-sample

    capacity: 3

    reserved: 1

When a user visits the training portal home page in anonymous mode, an account for that user is
automatically created and the user is logged in.

Specify an event access code

When deploying the training portal with anonymous access or open registration, anyone who
knows the URL can access workshops. To at least restrict access to those who know a common
event access code or password, you can set portal.password:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

  portal:

    password: workshops-2020-07-01

  workshops:

  - name: lab-markdown-sample

    capacity: 3

    reserved: 1

When anonymous access is enabled and the training portal URL is accessed, users are asked to
enter an event access code before they are redirected to the list of workshops or to the login page.

Make a list of workshops public
By default the index page providing the catalog of available workshop images is only available after
a user has logged in, either through a registered account or as an anonymous user.

To make the catalog of available workshops public so they can be viewed before logging in, set the
portal.catalog.visibility property:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

Tanzu Application Platform v1.5

VMware by Broadcom 1178



spec:

  portal:

    catalog:

      visibility: public

  workshops:

  - name: lab-markdown-sample

    capacity: 3

    reserved: 1

By default the catalog has visibility set to private. Use public to expose it.

This also makes it possible to access the list of available workshops from the catalog through the
REST API, without authenticating against the REST API.

Use an external list of workshops

If you are using the training portal with registration deactivated, and you are using the REST API
from a separate website to control creation of sessions, you can specify an alternate URL for
providing the list of workshops.

This helps when the REST API creates a session and cookies are deleted or a session URL is shared
with a different user. This means the value for the index_url supplied with the REST API request is
lost.

To set the URL for the external site, use the portal.index property:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

  portal:

    index: https://www.example.com/

    registration:

      type: one-step

      enabled: false

  workshops:

  - name: lab-markdown-sample

    capacity: 3

    reserved: 1

If you supply this property, passing the index_url when creating a workshop session using the
REST API is optional, and the value of this property is used. You can still supply index_url when
using the REST API for a user to be redirected back to a sub-category of workshops on the site.
The URL provided in the training portal definition then acts only as a fallback. That is, when the
redirect URL becomes unavailable, it directs the user back to the top-level page for the external list
of workshops.

If a user has logged into the training portal as the admin user, the user is not redirected to the
external site and still sees the training portal’s list of workshops.

Override portal title and logo

By default the web interface for the training portal displays a generic Learning Center logo and a
page title of “Workshops.” To override these, you can set portal.title and portal.logo:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

Tanzu Application Platform v1.5

VMware by Broadcom 1179



  portal:

    title: Workshops

    logo: data:image/png;base64,....

  workshops:

  - name: lab-markdown-sample

    capacity: 3

    reserved: 1

The logo field should be a graphical image provided in embedded data URI format. The image is
displayed with a fixed height of “40px”. The field can also be a URL for an image stored on a
remote web server.

Allow the portal in an iframe

By default it is prohibited to display the web interface for the training portal in an iframe of another
web site, because of content security policies applying to the training portal website.

To enable the ability to iframe the full training portal web interface or even a specific workshop
session created using the REST API, provide the host name of the site that embeds it. Do this by
using the portal.theme.frame.ancestors property:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

  portal:

    theme:

      frame:

        ancestors:

        - https://www.example.com

  workshops:

  - name: lab-markdown-sample

    capacity: 3

    reserved: 1

The property is a list of hosts, not a single value. To use a URL for the training portal in an iframe of
a page, which, in turn, is embedded in another iframe of a page on a different site, list the host
names of all sites.

Because the sites that embed iframes must be secure and use HTTPS, they cannot use plain HTTP.
Browser policies prohibit promoting cookies to an insecure site when embedding using an iframe. If
cookies cannot be stored, a user cannot authenticate against the workshop session.

Collect analytics on workshops

To collect analytics data on usage of workshops, supply a webhook URL. When you supply a
webhook URL, events are posted to the webhook URL, including:

Workshops started

Pages of a workshop viewed

Expiration of a workshop

Completion of a workshop

Termination of a workshop

For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

Tanzu Application Platform v1.5

VMware by Broadcom 1180



metadata:

  name: lab-markdown-sample

spec:

  analytics:

    webhook:

      url: https://metrics.learningcenter.tanzu.vmware.com/?client=name&token=password

  workshops:

  - name: lab-markdown-sample

    capacity: 3

    reserved: 1

At present there is no metrics collection service compatible with the portal webhook reporting
mechanism, so create a custom service or integrate it with any existing web front end for the portal
REST API service.

If the collection service needs to be provided with a client ID or access token, it must accept using
query string parameters set in the webhook URL.

Include the details of the event as HTTP POST data by using the application/json content type:

{

  "portal": {

    "name": "lab-markdown-sample",

    "uid": "91dfa283-fb60-403b-8e50-fb30943ae87d",

    "generation": 3,

    "url": "https://lab-markdown-sample-ui.learningcenter.tanzu.vmware.com"

  },

  "event": {

    "name": "Session/Started",

    "timestamp": "2021-03-18T02:50:40.861392+00:00",

    "user": "c66db34e-3158-442b-91b7-25391042f037",

    "session": "lab-markdown-sample-w01-s001",

    "environment": "lab-markdown-sample-w01",

    "workshop": "lab-markdown-sample",

    "data": {}

  }

}

When an event has associated data, it is included in the data dictionary:

{

  "portal": {

    "name": "lab-markdown-sample",

    "uid": "91dfa283-fb60-403b-8e50-fb30943ae87d",

    "generation": 3,

    "url": "https://lab-markdown-sample-ui.learningcenter.tanzu.vmware.com"

  },

  "event": {

    "name": "Workshop/View",

    "timestamp": "2021-03-18T02:50:44.590918+00:00",

    "user": "c66db34e-3158-442b-91b7-25391042f037",

    "session": "lab-markdown-sample-w01-s001",

    "environment": "lab-markdown-sample-w01",

    "workshop": "lab-markdown-sample",

    "data": {

      "current": "workshop-overview",

      "next": "setup-environment",

      "step": 1,

      "total": 4

    }

  }

}

Tanzu Application Platform v1.5

VMware by Broadcom 1181



The user field is the same portal user identity returned by the REST API when creating workshop
sessions.

The event stream only produces events for things as they happen. For a snapshot of all current
workshop sessions, use the REST API to request the catalog of available workshop environments,
enabling the inclusion of current workshop sessions.

Track using Google Analytics

To record analytics data on usage of workshops by using Google Analytics, enable tracking by
supplying a tracking ID for Google Analytics:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

  analytics:

    google:

      trackingId: UA-XXXXXXX-1

  workshops:

  - name: lab-markdown-sample

    capacity: 3

    reserved: 1

Custom dimensions are used in Google Analytics to record details about the workshop a user is
taking, including through which training portal and cluster it was accessed. So you can use the
same Google Analytics tracking ID for multiple training portal instances running on different
Kubernetes clusters.

To support use of custom dimensions in Google Analytics, configure the Google Analytics property
with the following custom dimensions. They must be added in the order shown, because Google
Analytics doesn’t allow you to specify the index position for a custom dimension. It allocates them
for you. You can’t already have custom dimensions defined for the property, as the new custom
dimensions must start at index of 1.

Custom Dimension Name Index

workshop_name 1

session_namespace 2

workshop_namespace 3

training_portal 4

ingress_domain 5

ingress_protocol 6

In addition to custom dimensions against page accesses, events are also generated. These include:

Workshop/Start

Workshop/Finish

Workshop/Expired

If you provide a Google Analytics tracking ID with the TrainingPortal resource definition, it takes
precedence over the SystemProfile resource definition.

Note

Tanzu Application Platform v1.5

VMware by Broadcom 1182



Configure the SystemProfile resource

This topic describes how you use the SystemProfile custom resource to configure the Learning
Center operator.

You can use the default system profile to set defaults for ingress and image pull secrets. You can
also select an alternate profile for specific deployments if required.

Operator default system profile

The Learning Center Operator, by default, uses an instance of the SystemProfile custom resource
if it exists, named default-system-profile. You can override the name of the resource used by the
Learning Center Operator as the default by setting the SYSTEM_PROFILE environment variable on
the deployment for the Learning Center Operator. For example:

kubectl set env deployment/learningcenter-operator -e SYSTEM_PROFILE=default-system-pr

ofile -n learningcenter

The Learning Center Operator automatically detects and uses any changes to an instance of the
SystemProfile custom resource. You do not need to redeploy the operator when changes are
made.

Defining configuration for ingress
The SystemProfile custom resource replaces the use of environment variables to configure details
such as the ingress domain, secret, and class.

Instead of setting INGRESS_DOMAIN, INGRESS_SECRET, and INGRESS_CLASS environment variables,
create an instance of the SystemProfile custom resource named default-system-profile:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

  name: default-system-profile

spec:

  ingress:

    domain: learningcenter.tanzu.vmware.com

    secret: learningcenter.tanzu.vmware.com-tls

    class: nginx

If you terminate HTTPS connections by using an external load balancer and not by specifying a
secret for ingresses managed by the Kubernetes ingress controller, then routing traffic into the

Google Analytics is not a reliable way to collect data. Individuals or corporate
firewalls can block the reporting of Google Analytics data. For more precise
statistics, use the webhook URL for collecting analytics with a custom data
collection platform.

Important

Changes made to the SystemProfile custom resource, or changes made by means
of environment variables, don’t take effect on already deployed TrainingPortals.
You must recreate those for the changes to be applied. You only need to recreate
the TrainingPortal resources, because this resource takes care of recreating the
WorkshopEnvironments with the new values.

Tanzu Application Platform v1.5

VMware by Broadcom 1183



Kubernetes cluster as HTTP connections, you can override the ingress protocol without specifying
an ingress secret:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

  name: default-system-profile

spec:

  ingress:

    domain: learningcenter.tanzu.vmware.com

    protocol: https

    class: nginx

Defining container image registry pull secrets

To work with custom workshop images stored in a private image registry, the system profile can
define a list of image pull secrets. Add this to the service accounts used to deploy and run the
workshop images. Set the environment.secrets.pull property to the list of secret names:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

  name: default-system-profile

spec:

  environment:

    secrets:

      pull:

      - private-image-registry-pull

The secrets containing the image registry credentials must exist within the learningcenter
namespace or the namespace where the Learning Center Operator is deployed. The secret
resources must be of type kubernetes.io/dockerconfigjson.

The secrets are added to the workshop namespace and are not visible to a user. No secrets are
added to the namespace created for each workshop session.

Some container images are used as part of Learning Center itself, such as the container image for
the training portal web interface and the builtin base workshop images. If you have copied these
from the public image registries and stored them in a local private registry, use the registry
section instead of the above setting. For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

  name: default-system-profile

spec:

  registry:

    secret: learningcenter-image-registry-pull

The registry.secret is the name of the secret containing the image registry credentials. This must
be present in the learningcenter namespace or the namespace where the Learning Center
Operator is deployed.

Defining storage class for volumes

Deployments of the training portal web interface and the workshop sessions make use of persistent
volumes. By default the persistent volume claims do not specify a storage class for the volume.
Instead, they rely on the Kubernetes cluster to specify a default storage class that works. If the

Tanzu Application Platform v1.5

VMware by Broadcom 1184



Kubernetes cluster doesn’t define a suitable default storage class or you need to override it, you
can set the storage.class property. For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

  name: default-system-profile

spec:

  storage:

    class: default

This only applies to persistent volume claims setup by the Learning Center Operator. If a user
executes steps in a workshop that include making persistent volume claims, these are not
automatically adjusted.

Defining storage group for volumes

The cluster must apply pod security policies where persistent volumes are used by Learning Center
for the training portal web interface and workshop environments. These security policies ensure
that permissions of persistent volumes are set correctly so they can be accessed by containers
mounting the persistent volume. When the pod security policy admission controller is not enabled,
the cluster institutes a fallback to enable access to volumes by enabling group access using the
group ID of 0.

In situations where the only class of persistent storage available is NFS or similar, you might have to
override the group ID applied and set it to an alternate ID dictated by the file system storage
provider. If this is required, you can set the storage.group property. For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

  name: default-system-profile

spec:

  storage:

    group: 1

Overriding the group ID to match the persistent storage relies on the group having write
permission to the volume. If only the owner of the volume has permission, this does not work.

In this case, change the owner/group and permissions of the persistent volume such that the
owner matches the user ID a container runs at. Alternatively, set the group to a known ID that is
added as a supplemental group for the container and update the persistent volume to be writable
to this group. This must be done by an init container running in the pod mounting the persistent
volume.

To trigger this change of ownership and permissions, set the storage.user property. For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

  name: default-system-profile

spec:

  storage:

    user: 1

    group: 1

This results in:

The init container running as the root user.

The owner of the mount directory of the persistent volume being set to storage.user.

Tanzu Application Platform v1.5

VMware by Broadcom 1185



The group being set to storage.group.

The directory made group-writable.

The group is then added as the supplemental group to containers using the persistent volume. So
they can write to the persistent volume, regardless of what user ID the container runs as. To that
end, the specific value of storage.user doesn’t matter, but you might need to set it to a specific
user ID based on requirements of the storage provider.

Both these variations on the settings only apply to the persistent volumes used by Learning Center
itself. If a workshop asks users to create persistent volumes, those instructions, or the resource
definitions used, might need to be modified to work where the available storage class requires
access as a specific user or group ID.

Further, the second method using the init container to fix permissions does not work if pod
security policies are enforced. The ability to run a container as the root user is blocked in that case
due to the restricted PSP, which is applied to workshop instances.

Restricting network access

Any processes running from the workshop container, and any applications deployed to the session
namespaces associated with a workshop instance, can contact any network IP addresses accessible
from the cluster. To restrict access to IP addresses or IP subnets, set network.blockCIDRs. This
must be a CIDR block range corresponding to the subnet or a portion of a subnet you want to
block. A Kubernetes NetworkPolicy is used to enforce the restriction. So the Kubernetes cluster
must use a network layer supporting network policies, and the necessary Kubernetes controllers
supporting network policies must be enabled when the cluster is installed.

If deploying to AWS, it is important to block access to the AWS endpoint for querying EC2
metadata, because it can expose sensitive information that workshop users should not haves access
to. By default Learning Center will block the AWS endpoint on the TAP SystemProfile. If you need
to replicate this block to other SystemProfiles, the configuration is as follows:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

  name: default-system-profile

spec:

  network:

    blockCIDRs:

    - 169.254.169.254/32

    - fd00:ec2::254/128

Running Docker daemon rootless

If docker is enabled for workshops, Docker-in-Docker is run using a sidecar container. Because of
the current state of running Docker-in-Docker and portability across Kubernetes environments, the
docker daemon by default runs as root. Because a privileged container is also being used, this
represents a security risk. Only run workshops requiring docker in disposable Kubernetes clusters or
for users whom you trust.

You can partly mediate the risks of running docker in the Kubernetes cluster by running the docker
daemon in rootless mode. However, not all Kubernetes clusters can support this due to the Linux
kernel configuration or other incompatibilities.

To enable rootless mode, you can set the dockerd.rootless property to true:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

Tanzu Application Platform v1.5

VMware by Broadcom 1186



metadata:

  name: default-system-profile

spec:

  dockerd:

    rootless: true

Use of docker can be made even more secure by avoiding the use of a privileged container for the
docker daemon. This requires that you set up a specific configuration for nodes in the Kubernetes
cluster. With this configuration, you can disallow the use of a privileged container by setting
dockerd.privileged to false:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

  name: default-system-profile

spec:

  dockerd:

    rootless: true

    privileged: false

For further details about the requirements for running rootless Docker-in-Docker and using a non-
privileged container, see the Docker documentation.

Overriding network packet size

When you enable support for building container images using docker for workshops, because of
network layering that occurs when doing docker build or docker run, you must adjust the network
packet size (MTU) used for containers run from dockerd hosted inside the workshop container.

The default MTU size for networks is 1500, but, when containers are run in Kubernetes, the size
available to containers is often reduced. To deal with this possibility, the MTU size used when
dockerd is run for a workshop is set as 1400 instead of 1500.

You might need to override this value to an even lower value if you experience problems building
or running images with docker support. These problems could include errors or timeouts in pulling
images or when pulling software packages such as PyPi, npm, and so on.

To lower the value, set the dockerd.mtu property:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

  name: default-system-profile

spec:

  dockerd:

    mtu: 1400

To discover the maximum viable size, access the docker container run with a workshop and run
ifconfig eth0. This yields something similar to:

eth0      Link encap:Ethernet  HWaddr 02:42:AC:11:00:07

          inet addr:172.17.0.7  Bcast:172.17.255.255  Mask:255.255.0.0

          UP BROADCAST RUNNING MULTICAST  MTU:1350  Metric:1

          RX packets:270018 errors:0 dropped:0 overruns:0 frame:0

          TX packets:283882 errors:0 dropped:0 overruns:0 carrier:0

          collisions:0 txqueuelen:0

          RX bytes:86363656 (82.3 MiB)  TX bytes:65183730 (62.1 MiB)

If the MTU size is less than 1400, use the value given, or a smaller value, for the dockerd.mtu setting.

Tanzu Application Platform v1.5

VMware by Broadcom 1187

https://docs.docker.com/engine/security/rootless/


Image registry pull through cache

When running or building container images with docker, if the container image is hosted on Docker
Hub, it is pulled down directly from the Docker Hub for each separate workshop session of that
workshop.

Because the image is pulled from Docker Hub, this can be slow for all users, especially for large
images. With Docker Hub introducing limits on how many images can be pulled anonymously from
an IP address within a set period, this also can result in the cap on image pulls being reached. This
prevents the workshop from being used until the period expires.

Docker Hub has a higher limit when pulling images as an authenticated user, but with the limit
applied to the user rather than by IP address. For authenticated users with a paid plan on Docker
Hub, there is no limit.

To attempt to avoid the impact of the limit, the first thing you can do is enable an image registry
mirror with image pull-through. This is enabled globally and results in an instance of an image
registry mirror being created in the workshop environment of workshops that enable docker
support. This mirror is used for all workshops sessions created against that workshop environment.
When the first user attempts to pull an image, it is pulled down from Docker Hub and cached in the
mirror. Subsequent users are served up from the image registry mirror, avoiding the need to pull
the image from Docker Hub again. Subsequent users also see a speed up in pulling the image,
because the mirror is deployed to the same cluster.

To enable the use of an image registry mirror against Docker Hub, use:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

  name: default-system-profile

spec:

  dockerd:

    mirror:

      remote: https://registry-1.docker.io

For authenticated access to Docker Hub, create an access token under your Docker Hub account.
Then set the username and password using the access token as the password. Do not use the
password for the account itself. Using an access token makes it easier to revoke the token if
necessary.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

  name: default-system-profile

spec:

  dockerd:

    mirror:

      remote: https://registry-1.docker.io

      username: username

      password: access-token

An access token provides write access to Docker Hub. It is therefore also recommended you use a
separate robot account in Docker Hub that is not used to host images and doesn’t have write
access to any other organizations. In other words, use it purely for reading images from Docker
Hub.

If this is a free account, the higher limit on image pulls then applies. If the account is paid, there
might be higher limits or no limit all all.

Tanzu Application Platform v1.5

VMware by Broadcom 1188



The image registry mirror is only used when running or building images using support for running
docker. The mirror does not come into play when creating deployments in Kubernetes, which make
use of images hosted on Docker Hub. Use of images from Docker Hub in deployments is still
subject to the limit for anonymous access, unless you supply image registry credentials for the
deployment so an authenticated user is used.

Setting default access credentials

When deploying a training portal using the TrainingPortal custom resource, the credentials for
accessing the portal are unique for each instance. Find the details of the credentials by viewing
status information added to the custom resources by using kubectl describe.

To override the credentials for the portals so the same set of credentials are used for each, add the
desired values to the system profile.

To override the user name and password for the admin and robot accounts, use
portal.credentials:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

  name: default-system-profile

spec:

  portal:

    credentials:

      admin:

        username: learningcenter

        password: admin-password

      robot:

        username: robot@learningcenter

        password: robot-password

To override the client ID and secret used for OAuth access by the robot account, use
portal.clients:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

  name: default-system-profile

spec:

  portal:

    clients:

      robot:

        id: robot-id

        secret: robot-secret

If the TrainingPortal has specified credentials or client information, they still take precedence over
the values specified in the system profile.

Overriding the workshop images
When a workshop does not define a workshop image to use and instead downloads workshop
content from GitHub or a web server, it uses the base-environment workshop image. The workshop
content is then added to the container, overlaid on this image.

The version of the base-environment workshop image used is the most up-to-date, compatible
version of the image available for that version of the Learning Center Operator when it was
released.

Tanzu Application Platform v1.5

VMware by Broadcom 1189



If necessary you can override the version of the base-environment workshop image used by
defining a mapping under workshop.images. For workshop images supplied as part of the Learning
Center project, you can override the short names used to refer to them.

The short versions of the recognized names are:

base-environment:* is a tagged version of the base-environment workshop image matched
with the current version of the Learning Center Operator.

To override the version of the base-environment workshop image mapped to by the * tag, use:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

  name: default-system-profile

spec:

  workshop:

    images:

      "base-environment:*": "registry.tanzu.vmware.com/learning-center/base-environmen

t:latest"

It is also possible to override where images are pulled from for any arbitrary image. This could be
used where you want to cache the images for a workshop in a local image registry and avoid going
outside of your network, or the cluster, to get them. This means you wouldn’t need to override the
workshop definitions for a specific workshop to change it. For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

  name: default-system-profile

spec:

  workshop:

    images:

      "{YOUR-REGISTRY-URL}/lab-k8s-fundamentals:main": "registry.test/lab-k8s-fundamen

tals:main"

Tracking using Google Analytics
If you want to record analytics data on usage of workshops using Google Analytics, you can enable
tracking by supplying a tracking ID for Google Analytics. For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

  name: default-system-profile

spec:

  analytics:

    google:

      trackingId: UA-XXXXXXX-1

Custom dimensions are used in Google Analytics to record details about the workshop a user is
taking and through which training portal and cluster it was accessed. You can therefore use the
same Google Analytics tracking ID with Learning Center running on multiple clusters.

To support use of custom dimensions in Google Analytics, you must configure the Google Analytics
property with the following custom dimensions. They must be added in the order shown, because
Google Analytics doesn’t allow you to specify the index position for a custom dimension and
allocates them for you. You can’t already have defined custom dimensions for the property,
because the new custom dimensions must start at index of 1.

Tanzu Application Platform v1.5

VMware by Broadcom 1190



Custom Dimension Name Index

workshop_name 1

session_namespace 2

workshop_namespace 3

training_portal 4

ingress_domain 5

ingress_protocol 6

In addition to custom dimensions against page accesses, events are also generated. These include:

Workshop/Start

Workshop/Finish

Workshop/Expired

However, Google Analytics is not a reliable way to collect data. This is because individuals or
corporate firewalls can block the reporting of Google Analytics data. For more precise statistics, use
the webhook URL for collecting analytics with a custom data collection platform. Configuration of a
webhook URL for analytics can only be specified on the TrainingPortal definition and cannot be
specified globally on the SystemProfile configuration.

Overriding styling of the workshop

If using the REST API to create/manage workshop sessions, and the workshop dashboard is then
embedded into an iframe of a separate site, you can perform minor styling changes of the
dashboard, workshop content, and portal to match the separate site. To do this, provide CSS styles
under theme.dashboard.style, theme.workshop.style and theme.portal.style. For dynamic styling
or for adding hooks to report on progress through a workshop to a separate service, supply
JavaScript as part of the theme under theme.dashboard.script, theme.workshop.script, and
theme.portal.script. For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: SystemProfile

metadata:

  name: default-system-profile

spec:

  theme:

    dashboard:

      script: |

        console.log("Dashboard theme overrides.");

      style: |

        body {

          font-family: "Comic Sans MS", cursive, sans-serif;

        }

    workshop:

      script: |

        console.log("Workshop theme overrides.");

      style: |

        body {

          font-family: "Comic Sans MS", cursive, sans-serif;

        }

    portal:

      script: |

        console.log("Portal theme overrides.");

      style: |

        body {

Tanzu Application Platform v1.5

VMware by Broadcom 1191



          font-family: "Comic Sans MS", cursive, sans-serif;

        }

Additional custom system profiles

If the default system profile is specified, it is used by all deployments managed by the Learning
Center Operator, unless it was overridden by the system profile to use for a specific deployment.
You can set the name of the system profile for deployments by setting the system.profile
property of TrainingPortal, WorkshopEnvironment, and WorkshopSession custom resources. For
example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

  system:

    profile: learningcenter-tanzu-vmware-com-profile

  workshops:

  - name: lab-markdown-sample

    capacity: 1

Configure the WorkshopSession resource

This topic describes how you configure the WorkshopSession custom resource, which defines a
Learning Center workshop session.

Specifying the session identity

When running training for multiple people, typically you’ll use the TrainingPortal custom resource
to set up a training environment. Alternatively, you can set up a workshop environment by using
the WorkshopEnvironment custom resource, and then create requests for workshop instances by
using the WorkshopRequest custom resource. If you’re creating requests for workshop instances,
and you need more control over how the workshop instances are set up, you can use
WorkshopSession custom resource instead of WorkshopRequest.

To specify the workshop environment the workshop instance is created against, set the
environment.name field of the specification for the workshop session. You must also specify the
session ID for the workshop instance. For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopSession

metadata:

  name: lab-markdown-sample-user1

spec:

  environment:

    name: lab-markdown-sample

  session:

    id: user1

The name of the workshop specified in the metadata of the training environment must be globally
unique for the workshop instance you’re creating. You must create a separate WorkshopSession
custom resource for each workshop instance.

The session ID must be unique within the workshop environment that you’re creating the
workshop instance against.

Tanzu Application Platform v1.5

VMware by Broadcom 1192



Specifying the login credentials

You can control access to each workshop instance using login credentials. This ensures one
workshop attendee cannot interfere with another.

To set login credentials for a workshop instance, set the session.username and session.password
fields. For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopSession

metadata:

  name: lab-markdown-sample

spec:

  environment:

    name: lab-markdown-sample-user1

  session:

    username: learningcenter

    password: lab-markdown-sample

If you do not specify login credentials, the workshop instance has no access controls and anyone
can access it.

Specifying the ingress domain
To access the workshop instance by using a public URL, you must specify an ingress domain. If an
ingress domain isn’t specified, use the default ingress domain that the Learning Center operator
was configured with.

When setting a custom domain, configure DNS with a wildcard domain to forward all requests for
sub-domains of the custom domain to the ingress router of the Kubernetes cluster.

To provide the ingress domain, you can set the session.ingress.domain field. For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopSession

metadata:

  name: lab-markdown-sample

spec:

  environment:

    name: lab-markdown-sample-user1

  session:

    ingress:

      domain: training.learningcenter.tanzu.vmware.com

You can create a full host name for the session by prefixing the ingress domain with a host name
constructed from the name of the workshop environment and the session ID.

If overriding the domain, by default, the workshop session is exposed by using a HTTP connection.
If you require a secure HTTPS connection, you must have access to a wildcard SSL certificate for
the domain.

You must create a secret of type tls for the certificate in the learningcenter namespace or in the
namespace where the Learning Center operator is deployed. You must then set the name of that
secret in the session.ingress.secret field. For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopSession

metadata:

  name: lab-markdown-sample

spec:

  environment:

    name: lab-markdown-sample-user1

Tanzu Application Platform v1.5

VMware by Broadcom 1193



  session:

    ingress:

      domain: training.learningcenter.tanzu.vmware.com

      secret: training.learningcenter.tanzu.vmware.com-tls

You can terminate HTTPS connections by using an external load balancer rather than by specifying
a secret for ingresses managed by the Kubernetes ingress controller. When routing traffic into the
Kubernetes cluster as HTTP connections, you can override the ingress protocol without specifying
an ingress secret by setting the session.ingress.protocol field.

For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopSession

metadata:

  name: lab-markdown-sample

spec:

  environment:

    name: lab-markdown-sample-user1

  session:

    ingress:

      domain: training.learningcenter.tanzu.vmware.com

      protocol: https

To override or set the ingress class, add session.ingress.class. This dictates which ingress router
is used when more than one option is available.

For example:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopSession

metadata:

  name: lab-markdown-sample

spec:

  environment:

    name: lab-markdown-sample-user1

  session:

    ingress:

      domain: training.learningcenter.tanzu.vmware.com

      secret: training.learningcenter.tanzu.vmware.com-tls

      class: nginx

Setting the environment variables
To set the environment variables for the workshop instance, provide the environment variables in
the session.env field.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: WorkshopSession

metadata:

  name: lab-markdown-sample

spec:

  environment:

    name: lab-markdown-sample

  session:

    id: user1

    env:

    - name: REPOSITORY-URL

      value: YOUR-GIT-URL-FOR-LAB-MARKDOWN-SAMPLE

Where YOUR-GIT-URL-FOR-LAB-MARKDOWN-SAMPLE is the Git repository URL for lab-markdown-sample.
For example, {YOUR-GIT-REPO-URL}/lab-markdown-sample.

Tanzu Application Platform v1.5

VMware by Broadcom 1194



Values of fields in the list of resource objects can reference a number of predefined parameters.
Available parameters are:

session_id is a unique ID for the workshop instance within the workshop environment.

session_namespace is the namespace created for and bound to the workshop instance. This
is the namespace unique to the session and where a workshop can create their own
resources.

environment_name is the name of the workshop environment. For now this is the same as
the name of the namespace for the workshop environment. Don’t rely on them being the
same, and use the most appropriate to cope with any future change.

workshop_namespace is the namespace for the workshop environment. This is the
namespace where all deployments of the workshop instances are created, and where the
service account that the workshop instance runs as exists.

service_account is the name of the service account the workshop instance runs as, and
which has access to the namespace created for that workshop instance.

ingress_domain is the host domain under which host names can be created when creating
ingress routes.

ingress_protocol is the protocol (http/https) used for ingress routes created for workshops.

The syntax for referencing one of the parameters is $(parameter_name).

If the workshop environment had specified a set of extra environment variables to be set for
workshop instances, it is up to you to incorporate those in the set of environment variables you list
under session.env. That is, anything listed in session.env of the WorkshopEnvironment custom
resource of the workshop environment is ignored.

Enable anonymous access to a Learning Center training
portal
This topic describes how you enable anonymous access to a Learning Center training portal. The
REST API with client authentication provides a means to have the portal create and manage
workshop sessions on your behalf but allow a separate system handle user authentication.

If you do not need to authenticate users but still want to provide your own front end from which
users select a workshop, such as when integrating workshops into an existing web property, you
can enable anonymous mode and redirect users to a URL for workshop session creation.

Enabling anonymous access

Set the registration type to anonymous to enable full anonymous access to the training portal:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

  portal:

    registration:

Note

Anonymous mode is only recommended for temporary deployments and not for a
permanent web site providing access to workshops.

Tanzu Application Platform v1.5

VMware by Broadcom 1195



      type: anonymous

  workshops:

  ...

Triggering workshop creation

Direct users’ browsers to a URL that is specific to a workshop to trigger creation and allocation of
the workshop.

The URL format looks like this:

TRAINING-PORTAL-URL/workshops/environment/NAME/create/?index_url=INDEX

Where:

NAME is the name of the workshop environment corresponding to the workshop that you
creates.

INDEX is the URL of your custom index page that contains the workshops.

The user is redirected back to this index page when:

a user completes the workshop

an error occurs

When a user is redirected back to the index page, a query string parameter is supplied to display a
banner or other indication about why the user was returned.

The name of the query string parameter is notification and the possible values are:

session-deleted - Used when the workshop session is completed or restarted.

workshop-invalid - Used when the name of the workshop environment created is invalid.

session-unavailable - Used when capacity is reached and a workshop session cannot be
created.

session-invalid - Used when an attempt is made to access a session that doesn’t exist.
This can occur when the workshop dashboard is refreshed after the workshop session is
expired and deleted.

Enable anonymous access to a Learning Center training
portal

This topic describes how you enable anonymous access to a Learning Center training portal. The
REST API with client authentication provides a means to have the portal create and manage
workshop sessions on your behalf but allow a separate system handle user authentication.

If you do not need to authenticate users but still want to provide your own front end from which
users select a workshop, such as when integrating workshops into an existing web property, you
can enable anonymous mode and redirect users to a URL for workshop session creation.

Note

Users can still visit the training portal directly and view the catalog of available
workshops, so instead of linking to the main page of the training portal, link from
your custom index page to the individual links for creating each workshop.

Note

Tanzu Application Platform v1.5

VMware by Broadcom 1196



Enabling anonymous access

Set the registration type to anonymous to enable full anonymous access to the training portal:

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: lab-markdown-sample

spec:

  portal:

    registration:

      type: anonymous

  workshops:

  ...

Triggering workshop creation
Direct users’ browsers to a URL that is specific to a workshop to trigger creation and allocation of
the workshop.

The URL format looks like this:

TRAINING-PORTAL-URL/workshops/environment/NAME/create/?index_url=INDEX

Where:

NAME is the name of the workshop environment corresponding to the workshop that you
creates.

INDEX is the URL of your custom index page that contains the workshops.

The user is redirected back to this index page when:

a user completes the workshop

an error occurs

When a user is redirected back to the index page, a query string parameter is supplied to display a
banner or other indication about why the user was returned.

The name of the query string parameter is notification and the possible values are:

session-deleted - Used when the workshop session is completed or restarted.

workshop-invalid - Used when the name of the workshop environment created is invalid.

session-unavailable - Used when capacity is reached and a workshop session cannot be
created.

session-invalid - Used when an attempt is made to access a session that doesn’t exist.
This can occur when the workshop dashboard is refreshed after the workshop session is

Anonymous mode is only recommended for temporary deployments and not for a
permanent web site providing access to workshops.

Note

Users can still visit the training portal directly and view the catalog of available
workshops, so instead of linking to the main page of the training portal, link from
your custom index page to the individual links for creating each workshop.

Tanzu Application Platform v1.5

VMware by Broadcom 1197



expired and deleted.

Use the Learning Center workshop catalog

A single training portal can host one or more workshops. This topic describes how you use the
workshop catalog to list the available workshops and get information about them using the REST
API.

Listing available workshops

The URL sub path for accessing the list of available workshop environments is
/workshops/catalog/environments/. When making the request, you must supply the access token
in the HTTP Authorization header with type set as Bearer:

curl -v -H "Authorization: Bearer <access-token>" \

<training-portal-url>/workshops/catalog/environments/

The JSON response looks like this:

{

  "portal": {

    "name": "learningcenter-tutorials",

    "uid": "9b82a7b1-97db-4333-962c-97be6b5d7ee0",

    "generation": 451,

    "url": "<training_portal_url>",

    "sessions": {

      "maximum": 10,

      "registered": 0,

      "anonymous": 0,

      "allocated": 0

    }

  },

  "environments": [

    {

      "name": "learningcenter-tutorials-w01",

      "state": "RUNNING",

      "workshop": {

        "name": "lab-et-self-guided-tour",

        "id": "15e5f1a569496f335049bb00c370ee20",

        "title": "Workshop Building Tutorial",

        "description": "A guided tour of how to build a workshop for your team's learn

ing center.",

        "vendor": "",

        "authors": [],

        "difficulty": "",

        "duration": "",

        "tags": [],

        "logo": "",

        "url": "<workshop_repository_url>"

      },

      "duration": 1800,

      "capacity": 10,

      "reserved": 0,

      "allocated": 0,

      "available": 0

    }

  ]

}

For each workshop listed under environments, where a field listed under workshop has the same
name as appears in the Workshop custom resource, it has the same meaning. The id field is an

Tanzu Application Platform v1.5

VMware by Broadcom 1198



additional field that can uniquely identify a workshop based on the name of the workshop image,
the Git repository for the workshop, or the website hosting the workshop instructions. The value of
the id field does not rely on the name of the Workshop resource and must be the same if the same
workshop details are used but the name of the Workshop resource is different.

The duration field provides the time in seconds after which the workshop environment expires.
The value is null if there is no expiration time for the workshop.

The capacity field is the maximum number of workshop sessions that you can create for the
workshop.

The reserved field indicates how many instances of the workshop are reserved as hot spares. These
are used to service requests for a workshop session. If no reserved instances are available and
capacity has not been reached, a new workshop session is created on demand.

The allocated field indicates how many workshop sessions are active and currently allocated to a
user.

The available field indicates how many workshop sessions are available for immediate allocation.
This is never more than the number of reserved instances.

Under portal.sessions, the allocated field indicates the total number of allocated sessions across
all workshops hosted by the portal.

Where maximum, registered, and anonymous are nonzero, they are the limit on the number of
workshops run.

The maximum is the total number of workshop sessions that can be run by the portal across
all workshops. If allocated for the whole portal has reached maximum, no more workshop
sessions are created.

The value of registered when nonzero indicates a cap on the number of workshop sessions
a single registered portal user can have running at the one time.

The value of anonymous when nonzero indicates a cap on the number of workshop sessions
an anonymous user can have running at the one time. Anonymous users are users created
as a result of the REST API being used or if anonymous access is enabled when the user
accesses the portal through the web interface.

By default, only workshop environments currently marked with a state of RUNNING are returned,
that is, those workshop environments which are taking new workshop session requests. If you also
want to see the workshop environments which are currently in the process of being shut down,
you must provide the state query string parameter to the REST API call and indicate which states
workshop environments to return for.

curl -v -H "Authorization: Bearer <access-token>" \

https://lab-markdown-sample-ui.test/workshops/catalog/environments/?state=RUNNING&stat

e=STOPPING

You can include the state query string parameter more than once to see workshop environments
in both RUNNING and STOPPING states.

If anonymous access to the list of workshop environments is enabled and you are not authenticated
when using the REST API endpoint, only workshop environments in a running state are returned.

Use session management for your Learning Center
workshops

This topic describes how you use the REST API endpoints for session management, which allows
you to request a workshop session to be allocated.

Tanzu Application Platform v1.5

VMware by Broadcom 1199



Deactivating portal user registration

When you use the REST API to trigger creation of workshop sessions, VMware recommends that
you deactivate user registration through the training portal web interface. This means that only the
admin user is able to directly access the web interface for the training portal.

apiVersion: learningcenter.tanzu.vmware.com/v1beta1

kind: TrainingPortal

metadata:

  name: learningcenter-tutorials

spec:

  portal:

    registration:

      type: one-step

      enabled: false

  workshops:

  ...

Requesting a workshop session
The form of the URL sub path for requesting the allocation of a workshop environment by using the
REST API is /workshops/environment/<name>/request/. The name segment must be replaced with
the name of the workshop environment. When making the request, the access token must be
supplied in the HTTP Authorization header with type set as Bearer:

curl -v -H "Authorization: Bearer <access-token>" \

<training-portal-url>/workshops/environment/<name>/request/?index_url=https://hub.tes

t/

You can supply a query string parameter, index_url. When you restart the workshop session from
the workshop environment web interface, the session is deleted and the user is redirected to the
supplied URL. This URL is that of your front end web application that has requested the workshop
session, allowing users to select a different workshop.

The value of the index_url is not available if session cookies are cleared or a session URL is shared
with another user. In this case, a user is redirected back to the training portal URL instead. You can
override the global default for this case by specifying the index URL as part of the TrainingPortal
configuration.

When successful, the JSON response from the request is of the form:

{

    "name": "educaes-tutorials-w01-s001",

    "user": "8d2d0c8b-6ff5-4244-b136-110fd8d8431a",

    "url": "/workshops/session/learningcenter-tutorials-w01-s001/activate/?token=6UIW4

D8Bhf0egVmsEKYlaOcTywrpQJGi&index_url=https%3A%2F%2Fhub.test%2F",

    "workshop": "learningcenter-tutorials",

    "environment": "learningcenter-tutorials-w01",

    "namespace": "learningcenter-tutorials-w01-s001"

}

This includes the name of the workshop session, an ID for identifying the user, and both a URL path
with an activation token and an index URL included as query string parameters.

Redirect the user’s browser to this URL path on the training portal host. Accessing the URL
activates the workshop session and then redirects the user to the workshop dashboard.

If the workshop session is not activated, which confirms allocation of the session, the session is
deleted after 60 seconds.

Tanzu Application Platform v1.5

VMware by Broadcom 1200



When a user is redirected back to the URL for the index page, a query string parameter is supplied
to give the reason the user is being returned. You can use this to display a banner or other
indication as to why the user was returned.

The name of the query string parameter is notification and the possible values are:

session-deleted - Used when the workshop session is completed or restarted.

workshop-invalid - Used when the name of the workshop environment supplied while
attempting to create the workshop is invalid.

session-unavailable - Used when capacity is reached, and a workshop session cannot be
created.

session-invalid - Used when an attempt is made to access a session that doesn’t exist.
This can occur when the workshop dashboard is refreshed sometime after the workshop
session expired and was deleted.

In prior versions, the name of the session was returned through the “session” property, whereas
the “name” property is now used. To support older code using the REST API, the “session”
property is still returned, but it is deprecated.

Associating sessions with a user

When the workshop session is requested, a unique user account is created in the training portal
each time. You can identify this account by using the user identifier, which is returned in the
response.

The front end using the REST API to create workshop sessions can track user activity so that the
training portal associates all workshop sessions created by the same user. Supply the user identifier
with subsequent requests by the same user in the request parameter:

curl -v -H "Authorization: Bearer <access-token>" \

https://lab-markdown-sample-ui.test/workshops/environment/<name>/request/?index_url=ht

tps://hub.test/&user=<user>

If the supplied ID matches a user in the training portal, the training portal uses it internally and
returns the same value for user in the response.

When the user does match, and if there is already a workshop session allocated to the user for the
workshop being requested, the training portal returns a link to the existing workshop session,
rather than requesting that the user create a new workshop session.

If the user is not a match, possibly because the training portal was completely redeployed since the
last time it was accessed, the training portal returns a new user identifier.

The first time you make a request to create a workshop session for a user where user is not
supplied, you can optionally supply request parameters for the following to set these as the user
details in the training portal.

email - The email address of the user.

first_name - The first name of the user.

last_name - The last name of the user.

These details will be accessible through the admin pages of the training portal.

When sessions are associated with a user, you can query all active sessions for that user across the
different workshops hosted by the instance of the training portal:

curl -v -H "Authorization: Bearer <access-token>" \

<training-portal-url>/workshops/user/<user>/sessions/

Tanzu Application Platform v1.5

VMware by Broadcom 1201



The response is of the form:

{

  "user": "8d2d0c8b-6ff5-4244-b136-110fd8d8431a",

  "sessions": [

    {

      "name": "learningcenter-tutorials-w01-s001",

      "workshop": "learningcenter-tutorials",

      "environment": "learningcenter-tutorials-w01",

      "namespace": "learningcenter-tutorials-w01-s001",

      "started": "2020-07-31T03:57:33.942Z",

      "expires": "2020-07-31T04:57:33.942Z",

      "countdown": 3353,

      "extendable": false

    }

  ]

}

After a workshop has expired or has otherwise been shut down, the training portal no longer
returns an entry for the workshop.

Listing all workshop sessions

To get a list of all running workshops sessions allocated to users, provide the sessions=true flag to
the query string parameters of the REST API call. This lists the workshop environments available
through the training portal.

curl -v -H "Authorization: Bearer <access-token>" |

<training-portal-url>/workshops/catalog/environments/?sessions=true

The JSON response is of the form:

{

  "portal": {

    "name": "learningcenter-tutorials",

    "uid": "9b82a7b1-97db-4333-962c-97be6b5d7ee0",

    "generation": 476,

    "url": "<training-portal-url>",

    "sessions": {

      "maximum": 10,

      "registered": 0,

      "anonymous": 0,

      "allocated": 1

    }

  },

  "environments": [

    {

      "name": "learningcenter-tutorials-w01",

      "state": "RUNNING",

      "workshop": {

        "name": "lab-et-self-guided-tour",

        "id": "15e5f1a569496f335049bb00c370ee20",

        "title": "Workshop Building Tutorial",

        "description": "A guided tour of how to build a workshop for your team's learn

ing center.",

        "vendor": "",

        "authors": [],

        "difficulty": "",

        "duration": "",

        "tags": [],

        "logo": "",

        "url": "<workshop-repository-url>"

      },

Tanzu Application Platform v1.5

VMware by Broadcom 1202



      "duration": 1800,

      "capacity": 10,

      "reserved": 0,

      "allocated": 1,

      "available": 0,

      "sessions": [

        {

          "name": "learningcenter-tutorials-w01-s002",

          "state": "RUNNING",

          "namespace": "learningcenter-tutorials-w01-s002",

          "user": "672338f3-4085-4782-8d9b-ae1637e1c28c",

          "started": "2021-11-05T15:50:04.824Z",

          "expires": "2021-11-05T16:20:04.824Z",

          "countdown": 1737,

          "extendable": false

        }

      ]

    }

  ]

}

No workshop sessions are returned if anonymous access to this REST API endpoint is enabled and
you are not authenticated against the training portal.

Only workshop environments with a state of RUNNING are returned by default. To see workshop
environments that are shut down and any workshop sessions that still haven’t been completed,
supply the state query string parameter with value STOPPING.

curl -v -H "Authorization: Bearer <access-token>" \

<training-portal-url>/workshops/catalog/environments/?sessions=true&state=RUNNING&stat

e=STOPPING

Include the state query string parameter more than once to see workshop environments in both
RUNNING and STOPPING states.

Use client authentication for Learning Center

This topic describes how you can use the portal REST API to integrate access to workshops into an
existing website or to create a custom web interface for accessing workshops hosted across one or
more training portals.

The training portal web interface is a quick way of providing access to a set of workshops when
running a supervised training workshop. The REST API gives you access to the list of workshops
hosted by a training portal instance and allow you to request and access workshop sessions. This
bypasses the training portal’s own user registration and log in so you can implement whatever
access controls you need. This can include anonymous access or access integrated into an
organization’s single sign-on system.

Querying the credentials

To provide access to the REST API, a robot account is automatically provisioned. Obtain the login
credentials and details of the OAuth client endpoint used for authentication by querying the
resource definition for the training portal after it is created and the deployment completed. If using
kubectl describe, use:

kubectl describe trainingportal.learningcenter.tanzu.vmware.com/<training-portal-name>

The status section of the output reads:

Tanzu Application Platform v1.5

VMware by Broadcom 1203



Status:

  learningcenter:

    Clients:

      Robot:

        Id:      ACZpcaLIT3qr725YWmXu8et9REl4HBg1

        Secret:  t5IfXbGZQThAKR43apoc9usOFVDv2BLE

    Credentials:

      Admin:

        Password:  0kGmMlYw46BZT2vCntyrRuFf1gQq5ohi

        Username:  learningcenter

      Robot:

        Password:  QrnY67ME9yGasNhq2OTbgWA4RzipUvo5

        Username:  robot@learningcenter

Use the admin login credentials when you log in to the training portal web interface to access
admin pages.

Use the robot login credentials if you want to access the REST API.

Requesting an access token

Before you can make requests against the REST API to query details about workshops or request a
workshop session, you must log in through the REST API to get an access token.

This is done from any front-end web application or provisioning system, but the step is equivalent
to making a REST API call by using curl of:

curl -v -X POST -H \

"Content-Type: application/x-www-form-urlencoded" \

-d "grant_type=password&username=robot@learningcenter&password=<robot-password>" \

-u "<robot-client-id>:<robot-client-secret>" \

<training-portal-url>/oauth2/token/

The URL sub path is /oauth2/token/.

Upon success, the output is a JSON response consisting of:

{

    "access_token": "tg31ied56fOo4axuhuZLHj5JpUYCEL",

    "expires_in": 36000,

    "token_type": "Bearer",

    "scope": "user:info",

    "refresh_token": "1ryXhXbNA9RsTRuCE8fDAyZToJmp30"

}

Refreshing the access token
The access token that is provided expires: it needs to be refreshed before it expires if in use by a
long-running application.

To refresh the access token, use the equivalent of:

curl -v -X POST -H \

"Content-Type: application/x-www-form-urlencoded" \

-d "grant_type=refresh_token&refresh_token=<refresh-token>& \client_id=<robot-client-i

d>&client_secret=<robot-client-secret>" \

https://lab-markdown-sample-ui.test/oauth2/token/

As with requesting the initial access token, the URL sub path is /oauth2/token/.

The JSON response is of the same format as if a new token was requested.

Tanzu Application Platform v1.5

VMware by Broadcom 1204



Troubleshoot Learning Center

This topic gives you troubleshooting and recovery steps for Learning Center known issues.

Training portal stays in pending state

The training portal stays in a “pending” state.

The Training Portal custom resource (CR) has a status property. To see the status, run:

kubectl get trainingportals.learningcenter.tanzu.vmware.com

Explanation

If the status stays in a pending state, the TLS secret tls might not be available. Other errors can
also cause the status to stay in a pending state, so it is important to check the operator and portal
logs to execute the right steps.

Solution

1. Access the operator logs by running:

kubectl logs deployment/learningcenter-operator -n learningcenter

Access the portal logs by running:

kubectl logs deployment/learningcenter-portal -n {PORTAL_NAMESPACE}

2. Check whether the TLS secret tls is available. The TLS secret must be on the Learning
Center operator namespace (by default learningcenter). If the TLS secret is not on the
Learning Center operator namespace, the operator logs contain the following error:

ERROR:kopf.objects:Handler 'learningcenter' failed temporarily: TLS secret tls 

is not available

3. Follow the steps in Enforcing Secure Connections in Learning Center Operator to create
the TLS secret.

4. Redeploy the trainingPortal resource.

image-policy-webhook-service not found
You are installing a Tanzu Application Platform profile and you get this error:

Internal error occurred: failed calling webhook "image-policy-webhook.signing.run.tanz

u.vmware.com": failed to call webhook: Post "https://image-policy-webhook-service.imag

e-policy-system.svc:443/signing-policy-check?timeout=10s": service "image-policy-webho

ok-service" not found

Explanation

This is a race condition error among some Tanzu Application Platform packages.

Solution

To recover from this error you only need to redeploy the trainingPortal resource.

Updates to Tanzu Application Platform values file not
reflected in Learning Center Training Portal

Tanzu Application Platform v1.5

VMware by Broadcom 1205



If you installed Learning Center through Tanzu profiles, then your installation made use of a tap-
values.yaml file where configurations were specified for Learning Center. If you make updates to
these configurations using this command:

tanzu package installed update tap --package-name tap.tanzu.vmware.com --version {VERS

ION} -f tap-values.yml -n tap-install

then the changes are not reflected in the deployed Learning Center Training Portal resource. Tap
package updates currently DO NOT update running Learning Center Training Portal resources.

Run one of these commands to validate changes made to parameters provided to the Learning
Center Operator. These parameters include ingressDomain, TLS secret, ingressClass, and others.

Command:

kubectl describe systemprofile

Command:

kubectl describe pod  -n learningcenter

Explanation

By design, the training portal resources do not react to any changes on the parameters provided
when the training portals were created. This prevents any change on the trainingportal resource
from affecting any online user running a workshop.

Solution

You must restart the operator resource by first deleting the operator pod:

kubectl delete pod -n learningcenter learningcenter-operator-$OPERATOR_POD_NAME

Then delete the training portal resource. Redeploy trainingportal in a maintenance window
where Learning Center is unavailable while thesystemprofile is updated.

Increase your cluster’s resources

If you don’t have enough nodes or enough resources on nodes for deploying the workloads, node
pressure might occur. In this case, follow your cloud provider’s instructions on how to scale out or
scale up your cluster.

Kubernetes Api Timeout error

The following operator error log means there is a connection error with the Kubernetes API server:

operator-log: unexpected error occurred. Read timed out.

This error has been found when running Learning Center with the Azure AkS cloud provider.

Solution

To fix this error:

1. Delete the operator pod on the learningcenter namespace.

2. Delete the training portal once the operator is running again by using:

kubectl delete trainingportals $PORTAL_NAME

1. Redeploy the trainingPortal resource.

Tanzu Application Platform v1.5

VMware by Broadcom 1206



No URL returned to your trainingportal

After deploying the Learning Center Operator and Trainingportal resources, the following
command can yield the resource with no URL, even though your resources deployed correctly and
are running:

kubectl get trainingportals

You also already specified learningcenter.mydomain.com in your tap values YAML file if installed
through Tanzu Application Platform. See specifying ingress domain

Solution

Learning center requires that you use a wildcard domain (Wildcard DNS entry) to access your
training portal in the browser. This configuration must be done in your DNS provider with a rule
that points your wildcard domain to your IP/Load balancer.

For example, if using the default workshop on an Elastic Kubernetes Service (EKS) cluster, your
URL could look something like:

learning-center-guided.learningcenter.yourdomain.com

Where learningcenter.yourdomain.com needs a DNS configuration made to point to your default
ingress controller.

In this case, the wildcard domain configuration needed is *.learningcenter.yourdomain.com.

After this configuration is made, you might need to restart your operator resource by deleting and
redeploying to see the URL update.

Overview of Namespace Provisioner
Namespace Provisioner provides a secure, automated way for you to provision namespaces with
the resources and namespace-level privileges required for your workloads to function as intended.

Description
Namespace Provisioner enables platform operators to add additional customized namespace-
scoped resources using GitOps to meet their organization’s requirements and provides continuous
reconciliation using the kapp-controller to maintain the desired state of the namespace-scoped
resources.

Namespace Provisioner enables operators that are new to Kubernetes to automate the
provisioning of multiple developer namespaces in a shared cluster. For organizations that have
already adopted Kubernetes, Namespace Provisioner is also compatible with existing Kubernetes
tooling.

Modes
Use Namespace Provisioner with one of the following modes:

Controller mode
Controller mode has the following characteristics:

Tanzu Application Platform v1.5

VMware by Broadcom 1207



The list of developer namespaces is managed by the Namespace Provisioner controller
using a label selector apps.tanzu.vmware.com/tap-ns=""

Namespace Provisioner creates default resources that are shipped Out of the Box in all
managed namespaces.

Namespace Provisioner creates additional Platform Operator templated resources stored
in Git repository locations specified under the additional_sources section in Namespace
Provisioner configuration. For more information, see Customize Installation of
Namespace Provisioner.

GitOps mode
Gitops mode has the following characteristics

The list of developer namespaces is managed in a Git repository that is specified in the
gitops_install section of the Namespace Provisioner configuration.

Namespace Provisioner creates default resources that are shipped Out of the Box in all
managed namespaces.

Namespace Provisioner creates additional Platform Operator templated resources stored
in Git repository locations specified under additional_sources in Namespace Provisioner
configuration. For more information, see Customize Installation of Namespace
Provisioner.

Tanzu Application Platform v1.5

VMware by Broadcom 1208



Provisioner Carvel application

Namespace Provisioner consists of a Carvel application called provisioner that facilitates the
creation of resources in the managed developer namespaces. The provisioner application uses ytt
to templatize a set of resources into installations in multiple namespaces.

Desired namespaces

The following section describes how the list of desired developer namespaces is managed in
controller and GitOps modes.

Controller mode
In controller mode, the list of desired namespaces used by the provisioner application to create
resources in, is maintained in the desired-namespaces ConfigMap. This ConfigMap is managed by
the Namespace Provisioner controller and it provides a declarative way to indicate which
namespaces should be populated with resources. The ConfigMap consists of a list of namespace
objects, with a required name parameter, and optional additional parameters which are used as
data.values for customizing defined resources.

For example,

---

apiVersion: v1

kind: ConfigMap

metadata:

    name: desired-namespaces

    namespace: tap-namespace-provisioning

    annotations:

        kapp.k14s.io/create-strategy: fallback-on-update

        namespace-provisioner.apps.tanzu.vmware.com/no-overwrite: "" #! This annotat

ion tells the provisioner app to not override this configMap as this is your desired 

state.

data:

    namespaces.yaml: |

        #@data/values

        ---

        namespaces:

        - name: dev-ns1

        # additional parameters about dev-ns1 added via label/annotations or GitOps

        - name: dev-ns2

        # additional parameters about dev-ns1 added via label/annotations or GitOps

Tanzu Application Platform v1.5

VMware by Broadcom 1209

https://carvel.dev/kapp-controller/docs/latest/app-overview/


GitOps mode
In the GitOps mode, the list of desired namespaces used by the provisioner application to
create resources in, is maintained in a Git repository as a ytt data values file as shown in this
sample file. This file provides a declarative way to indicate which namespaces should be
populated with resources. For more information, see the Options if using GitOps section in
Customize Install.

Namespace Provisioner controller

The Namespace Provisioner controller (controller) is installed by default and manages the content
contained in the desired-namespaces ConfigMap. The controller watches namespaces in the cluster
and updates the desired-namespaces ConfigMap with a list of all namespaces that match the
namespace label selector.The defalut namespace label selector is apps.tanzu.vmware.com/tap-ns.
For more information, see Use a different label selector than default.

Overview of Namespace Provisioner

Namespace Provisioner provides a secure, automated way for you to provision namespaces with
the resources and namespace-level privileges required for your workloads to function as intended.

Description

Namespace Provisioner enables platform operators to add additional customized namespace-
scoped resources using GitOps to meet their organization’s requirements and provides continuous
reconciliation using the kapp-controller to maintain the desired state of the namespace-scoped
resources.

Namespace Provisioner enables operators that are new to Kubernetes to automate the
provisioning of multiple developer namespaces in a shared cluster. For organizations that have
already adopted Kubernetes, Namespace Provisioner is also compatible with existing Kubernetes
tooling.

Modes

Use Namespace Provisioner with one of the following modes:

Controller mode
Controller mode has the following characteristics:

Tanzu Application Platform v1.5

VMware by Broadcom 1210

https://github.com/vmware-tanzu/application-accelerator-samples/blob/main/ns-provisioner-samples/gitops-install/desired-namespaces.yaml


The list of developer namespaces is managed by the Namespace Provisioner controller
using a label selector apps.tanzu.vmware.com/tap-ns=""

Namespace Provisioner creates default resources that are shipped Out of the Box in all
managed namespaces.

Namespace Provisioner creates additional Platform Operator templated resources stored
in Git repository locations specified under the additional_sources section in Namespace
Provisioner configuration. For more information, see Customize Installation of
Namespace Provisioner.

GitOps mode
Gitops mode has the following characteristics

The list of developer namespaces is managed in a Git repository that is specified in the
gitops_install section of the Namespace Provisioner configuration.

Namespace Provisioner creates default resources that are shipped Out of the Box in all
managed namespaces.

Namespace Provisioner creates additional Platform Operator templated resources stored
in Git repository locations specified under additional_sources in Namespace Provisioner
configuration. For more information, see Customize Installation of Namespace
Provisioner.

Tanzu Application Platform v1.5

VMware by Broadcom 1211



Provisioner Carvel application

Namespace Provisioner consists of a Carvel application called provisioner that facilitates the
creation of resources in the managed developer namespaces. The provisioner application uses ytt
to templatize a set of resources into installations in multiple namespaces.

Desired namespaces

The following section describes how the list of desired developer namespaces is managed in
controller and GitOps modes.

Controller mode
In controller mode, the list of desired namespaces used by the provisioner application to create
resources in, is maintained in the desired-namespaces ConfigMap. This ConfigMap is managed by
the Namespace Provisioner controller and it provides a declarative way to indicate which
namespaces should be populated with resources. The ConfigMap consists of a list of namespace
objects, with a required name parameter, and optional additional parameters which are used as
data.values for customizing defined resources.

For example,

---

apiVersion: v1

kind: ConfigMap

metadata:

    name: desired-namespaces

    namespace: tap-namespace-provisioning

    annotations:

        kapp.k14s.io/create-strategy: fallback-on-update

        namespace-provisioner.apps.tanzu.vmware.com/no-overwrite: "" #! This annotat

ion tells the provisioner app to not override this configMap as this is your desired 

state.

data:

    namespaces.yaml: |

        #@data/values

        ---

        namespaces:

        - name: dev-ns1

        # additional parameters about dev-ns1 added via label/annotations or GitOps

        - name: dev-ns2

        # additional parameters about dev-ns1 added via label/annotations or GitOps

Tanzu Application Platform v1.5

VMware by Broadcom 1212

https://carvel.dev/kapp-controller/docs/latest/app-overview/


GitOps mode
In the GitOps mode, the list of desired namespaces used by the provisioner application to
create resources in, is maintained in a Git repository as a ytt data values file as shown in this
sample file. This file provides a declarative way to indicate which namespaces should be
populated with resources. For more information, see the Options if using GitOps section in
Customize Install.

Namespace Provisioner controller

The Namespace Provisioner controller (controller) is installed by default and manages the content
contained in the desired-namespaces ConfigMap. The controller watches namespaces in the cluster
and updates the desired-namespaces ConfigMap with a list of all namespaces that match the
namespace label selector.The defalut namespace label selector is apps.tanzu.vmware.com/tap-ns.
For more information, see Use a different label selector than default.

Get started with Namespace Provisioner

This topic provides a list of topics to help you get started with Namespace Provisioner.

Provision Developer Namespaces

Customize Installation of Namespace Provisioner

Setup for OOTB Supply Chains

Provision developer namespaces in Namespace
Provisioner
This topic describes how to use Namespace Provisioner to provision developer namespaces in
Tanzu Application Platform (commonly known as TAP).

Prerequisite
The Namespace Provisioner package is installed and reconciled.

The registry-credential secret referenced by the Supply chain components for pulling and
pushing images is added to tap-install and exported to all namespaces.

Example secret creation, exported to all namespaces:

tanzu secret registry add registry-credentials --server REGISTRY-SERVER --username REG

ISTRY-USERNAME --password REGISTRY-PASSWORD --export-to-all-namespaces --yes --namespa

ce tap-install

Manage a list of developer namespaces

There are two ways to manage the list of developer namespaces that are managed by Namespace
Provisioner.

Important

Namespace Provisioner creates a secret called registries-credentials in each
managed namespace which is a placeholder secret filled indirectly by secretgen-
controller with all the registry credentials exported for that managed namespace.

Tanzu Application Platform v1.5

VMware by Broadcom 1213

https://github.com/vmware-tanzu/application-accelerator-samples/blob/main/ns-provisioner-samples/gitops-install/desired-namespaces.yaml
https://github.com/carvel-dev/secretgen-controller


Using Namespace Provisioner Controller
Sample TAP values configuration:

namespace_provisioner:

  controller: true

The imperative way is to create the namespace using kubectl or using other means and label it
using the default selector.

1. Create a namespace using kubectl or any other means

kubectl create namespace YOUR-NEW-DEVELOPER-NAMESPACE

2. Label your new developer namespace with the default namespace_selector
apps.tanzu.vmware.com/tap-ns="".

kubectl label namespaces YOUR-NEW-DEVELOPER-NAMESPACE apps.tanzu.vmware.com/t

ap-ns=""

This label tells the Namespace Provisioner controller to add this namespace to
the desired-namespaces ConfigMap.

By default, the label’s value can be anything, including "".

If required, you can change the default label selector, see Customize Installation
of Namespace Provisioner.

3. Run the following command to verify the default resources have been created in the
namespace:

kubectl get secrets,serviceaccount,rolebinding,pods,workload,configmap,limitr

ange -n YOUR-NEW-DEVELOPER-NAMESPACE

For example:

NAME                            TYPE                             DATA   AGE

secret/app-tls-cert             kubernetes.io/tls                3      19s

secret/registries-credentials   kubernetes.io/dockerconfigjson   1      26s

secret/scanner-secret-ref       kubernetes.io/dockerconfigjson   1      20s

NAME                           SECRETS   AGE

serviceaccount/default         1         4h7m

serviceaccount/grype-scanner   2         20s

NAME                                                               ROLE                      

AGE

rolebinding.rbac.authorization.k8s.io/default-permit-deliverable   ClusterRol

e/deliverable   26s

rolebinding.rbac.authorization.k8s.io/default-permit-workload      ClusterRol

e/workload      26s

NAME                         DATA   AGE

configmap/kube-root-ca.crt   1      38h

NAME                            CREATED AT

limitrange/dev-lr   2023-03-08T04:18:58Z

Using GitOps
The GitOps approach provides a fully declarative way to create developer namespaces managed
by Namespace Provisioner.

Tanzu Application Platform v1.5

VMware by Broadcom 1214



Sample Tanzu Application Platform values configuration:

namespace_provisioner:

  controller: false

  gitops_install:

    ref: origin/main

    subPath: ns-provisioner-samples/gitops-install

    url: https://github.com/vmware-tanzu/application-accelerator-samples.git

This GitOps configuration does the following things:

controller: false - The Namespace Provisioner package does not install the controller.
The list of namespaces is managed in a GitOps repository instead.

The gitops-install directory specified as the subPath value includes two files:

1. desired-namespace.yaml contains the list of developer namespaces in a ytt
data.values format.

2. namespaces.yaml contains a Kubernetes namespace object.

Run the following command to verify the default resources are created in the namespace:

kubectl get secrets,serviceaccount,rolebinding,pods,workload,configmap,limitrange -n 

dev

For example:

NAME                            TYPE                             DATA   AGE

secret/app-tls-cert             kubernetes.io/tls                3      52s

secret/registries-credentials   kubernetes.io/dockerconfigjson   1      59s

secret/scanner-secret-ref       kubernetes.io/dockerconfigjson   1      53s

NAME                           SECRETS   AGE

serviceaccount/default         1         59s

serviceaccount/grype-scanner   2         53s

NAME                                                               ROLE                      

AGE

rolebinding.rbac.authorization.k8s.io/default-permit-deliverable   ClusterRole/deliv

erable   59s

rolebinding.rbac.authorization.k8s.io/default-permit-workload      ClusterRole/workl

oad      59s

NAME                         DATA   AGE

configmap/kube-root-ca.crt   1      59s

NAME                CREATED AT

limitrange/dev-lr   2023-03-08T04:22:20Z

Note

If you have another tool like Tanzu Mission Control or some other process that is
taking care of creating namespaces for you, and you don’t want a Namespace
Provisioner to create the namespaces, you can delete this file from your GitOps
install repository.

Important The GitOps sample creates the following two namespaces: dev and qa.
If these namespaces already exist in your cluster, remove them or rename the
namespaces in your GitOps repository so they do not conflict with existing
resources.

Tanzu Application Platform v1.5

VMware by Broadcom 1215

https://github.com/vmware-tanzu/application-accelerator-samples/blob/main/ns-provisioner-samples/gitops-install/desired-namespaces.yaml
https://github.com/vmware-tanzu/application-accelerator-samples/blob/main/ns-provisioner-samples/gitops-install/namespaces.yaml


For more information, see the GitOps section of Customize Installation of Namespace
Provisioner.

Enable additional users with Kubernetes RBAC

Namespace Provisioner does not support enabling additional users with Kubernetes RBAC. Support
is planned for an upcoming release. Until Namespace Provisioner support is provided, follow the
instructions in Enable additional users with Kubernetes RBAC.

Customize Namespace Provisioner installation

This topic tells you how to customize a standard installation of Namespace Provisioner in Tanzu
Application Platform (commonly known as TAP).

Namespace Provisioner is packaged and distributed using a set of Carvel tools. The Namespace
Provisioner package is installed as part of all the standard installation profiles except the View
profile. For more information about installation profiles, see Installation profiles in Tanzu Application
Platform.

The default set of resources provisioned in a namespace is based on a combination of the Tanzu
Application Platform installation profile employed and the supply chain that is installed on the
cluster. For a list of what resources are created for different profile and supply chain combinations,
see the Default Resources mapping table.

To see the Namespace Provisioner Package Schema for all configurable values, run:

tanzu package available get namespace-provisioner.apps.tanzu.vmware.com/0.3.0 --values

-schema -n tap-install

Different package customization options are available depending on what method you use to
manage the list of developer namespaces:

Options if using Controller
The following customization options are available if you are using the controller to manage the
list of developer namespaces:

Add additional resources to your namespaces from your GitOps repository

Adjust sync period of Namespace Provisioner

Import user defined secrets in YAML format as ytt data.values

Use a different label selector than default

Override default CPU and memory limits for controller pods

Use AWS IAM roles

Apply default parameters to all namespaces

Customize the label and annotation prefixes that controller watches

Import Overlay secrets

Add additional resources to your namespaces from your GitOps repository

additional_sources is an array of Git repository locations that contain Platform Operator
templated resources to create in the provisioned namespaces, in addition to the default
resources. See the “fetch” section of the kapp controller App specification for the
format. Only the Git type fetch is supported.

Tanzu Application Platform v1.5

VMware by Broadcom 1216

https://carvel.dev/kapp-controller/docs/v0.43.2/app-spec/


additional_sources[].git can have a secretRef specified for providing authentication
details for connecting to a private Git repository. For more information, see Git
Authentication for Private repository. The following parameters are available:

name: name of the secret to be imported to use as valuesFrom in kapp.

namespace: namespace where the secret exists.

create_export: Boolean flag to control creation of a SecretExport resource in the
namespace. The default value is false. If the secret is already exported, ensure
that it is exported to the tap-namespace-provisioning namespace.

path must start with the prefix _ytt_lib/. Namespace Provisioner mounts all the
additional sources as a ytt library so it can expand the manifests in the additional
sources for all managed namespaces using the logic in the expansion template.
The path after the _ytt_lib prefix can be any string value, and must be unique
across all additional sources.

namespace_provisioner:

 controller: true

 additional_sources:

 - git:

     ref: origin/main

     subPath: ns-provisioner-samples/testing-scanning-supplychain

     url: https://github.com/vmware-tanzu/application-accelerator-samples.git

     # secretRef section is only needed if connecting to a Private Git repo

     secretRef:

       name: git-auth

       namespace: tap-install

       create_export: true

   path: _ytt_lib/testing-scanning-supplychain-setup

See Git Authentication for Private repository.

Adjust sync period of Namespace Provisioner

sync_period defines the wait time for the Namespace Provisioner to reconcile. sync_period is
specified in time + unit format. The minimum sync_period allowed is 30 seconds. Namespace
Provisioner sets the sync_period value to 30s if a lesser value is specified in TAP values. If not
specified, the value defaults to 1m0s.

Sample TAP values configuration:

namespace_provisioner:

  sync_period: 2m0s

Import user defined secrets in YAML format as ytt data.values

import_data_values_secrets is an array of additional secrets in YAML format to import in the
provisioner as data.values under the data.values.imported key. SecretImport for the secrets listed
in the array is created in the tap-namespace-provisioning namespace by the Namespace

Important

Namespace Provisioner relies on kapp-controller for any tasks involving
communication with external services, such as registries or Git repositories. When
operating in air-gapped environments or other scenarios where external services
are secured by a Custom CA certificate, you must configure kapp-controller with
the CA certificate data to prevent X.509 certificate errors. For more information,
see Deploy onto Cluster in the Cluster Essentials for VMware Tanzu documentation.

Tanzu Application Platform v1.5

VMware by Broadcom 1217

https://carvel.dev/ytt/docs/v0.44.0/lang-ref-ytt-library/#what-is-a-library
https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.5/cluster-essentials/deploy.html#deploying-cluster-essentials-v156-0


Provisioner package. Either, create SecretExport for the same secrets manually and export it to the
tap-namespace-provisioning namespace, or let the Namespace Provisioner package create it. The
following parameters are available:

name: Name of the secret to be imported to use as valuesFrom in kapp.

namespace: Namespace where the secret exists.

create_export: Boolean flag to decide creation of a SecretExport resource in the
namespace. The default value is false. If the secret is already exported, ensure that it is
exported for the tap-namespace-provisioning namespace.

Example secret:

# Format of the secret that is importable under data.values.imported

apiVersion: v1

kind: Secret

metadata:

  name: user-defined-secrets

type: Opaque

stringData:

  # Key needs to have .yaml or .yml at the end

  content.yaml: |

    key1: value1

    key2: value2

Sample TAP values configuration:

namespace_provisioner:

  controller: true

  import_data_values_secrets:

  - name: user-defined-secrets

    namespace: tap-install

    create_export: true

Use a different label selector than default

namespace_selector defines the label selector used by the controller to determine which
namespaces should be added to the desired-namespaces ConfigMap.

Sample TAP values configuration:

namespace_provisioner:

  controller: true

  namespace_selector:

    matchExpressions:

    - key: apps.tanzu.vmware.com/tap-ns

      operator: Exists

Override default CPU and memory limits for controller pods

Use the controller_resources section in Namespace Provisioner configuration in TAP values to
configure Namespace Provisioner Compute Resources controllers.

Set controller_resources.resources.limits.cpu and
controller_resources.resources.limits.memory to configure the maximum CPU and memory
available for the controller.

Note

The stringData key of the secret must have .yaml or .yml suffix.

Tanzu Application Platform v1.5

VMware by Broadcom 1218

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors


Similarly, set controller_resources.resources.requests.cpu and
controller_resources.resources.requests.memory to configure the minimum CPU capacity and
memory available for the controller.

Sample TAP values configuration:

namespace_provisioner:

  controller: true

  controller_resources:

    resources:

      limits:

        cpu: 500m

        memory: 100Mi

      requests:

        cpu: 100m

        memory: 20Mi

Use AWS IAM roles

If the TAP installation is on AWS with EKS, use the IAM Role from aws_iam_role_arn for the
Kubernetes Service Account that is used by Workload and the Supply chain to create resources.

Sample TAP values configuration:

namespace_provisioner:

  controller: yes

  aws_iam_role_arn: "arn:aws:iam::123456789012:role/EKSIAMRole"

Apply default parameters to all namespaces

default_parameters is an array of parameters applied to all namespaces which can be used as ytt
(data.values.default_parameters) for templating default and additional resources.

Sample TAP values configuration:

namespace_provisioner:

  controller: yes

  default_parameters:

    limits:

      default:

        cpu: 1.7

        memory: 1Gi

      defaultRequest:

        cpu: 100m

        memory: 1Gi

Customize the label and annotation prefixes that controller watches

parameter_prefixes is an array of label/annotation prefixes the controller looks for to add
namespace specific parameters into the desired-namespaces ConfigMap which can be used as ytt
data.values for templating default and additional resources. For example, the value
tap.tanzu.vmware.com tells the Namespace Provisioner controller to look for the annotations/labels
on a provisioned namespace that start with the prefix tap.tanzu.vmware.com/ and use those as
parameters.

Sample TAP values configuration:

namespace_provisioner:

  controller: yes

  parameter_prefixes:

  - tmc.cloud.vmware.com

  - tap.tanzu.vmware.com

Tanzu Application Platform v1.5

VMware by Broadcom 1219



Import overlay secrets

overlay_secrets is a list of secrets which contains Carvel ytt overlay definitions that are applied to
the resources created by the Namespace Provisioner. The secrets are imported to namespace-
provisioner namespace if it is in another namespace.

Sample secret with overlay to be used:

cat << EOF | kubectl apply -f -

apiVersion: v1

kind: Secret

metadata:

  name: grype-package-overlay

  namespace: tap-install

  annotations:

    kapp.k14s.io/change-rule: "delete after deleting tap"

stringData:

  grype-package-overlay.yaml: |

    #@  load("@ytt:overlay", "overlay")

    #@

    #@  def matchGrypeScanners(index, left, right):

    #@    if left["apiVersion"] != "packaging.carvel.dev/v1alpha1" or left["kind"] != 

"PackageInstall":

    #@      return False

    #@    end

    #@    return "metadata" in left and "name" in left["metadata"] and left["metadat

a"]["name"].startswith("grype-scanner")

    #@  end

    #@overlay/match by=matchGrypeScanners, expects="0+"

    ---

    metadata:

      annotations:

        #@overlay/match expects="0+"

        ext.packaging.carvel.dev/ytt-paths-from-secret-name.0: my-grype-overlay-secret

EOF

Sample TAP values configuration:

namespace_provisioner:

  controller: true

  overlay_secrets:

  - name: grype-package-overlay

    namespace: tap-install

    create_export: true

Options if using GitOps
The following customization options are available if you are using GitOps to manage the
developer namespaces list:

Use GitOps to manage developer namespaces list

Add additional resources to your namespace from your GitOps repo

Adjust sync period of Namespace Provisioner

Import user defined secrets in YAML format as ytt data.values

Use for AWS IAM roles

Note

The stringData key of the secret must have .yaml or .yml suffix.

Tanzu Application Platform v1.5

VMware by Broadcom 1220

https://carvel.dev/ytt/docs/latest/lang-ref-ytt-overlay/


Apply default parameters to all namespaces

Import overlay secrets

Use GitOps to manage developer namespaces list

gitops_install is a Git repository configuration with the list of namespaces to be provisioned.

The gitops_install section must be used only when controller: false is set or else the
Namespace Provisioner package fails to reconcile with the following error message: controller:
false when using 'gitops_install' in provided values.

Files in the Git repository must have a .yaml or .yml extension.

The gitops_install section can have the following entries:

url: the Git repository URL (mandatory)

subPath: the Git repository subpath where the file is

ref: the Git repository reference, the default is origin/main

secretRef: if the repository needs authentication, the reference to the secret is set here

name: the name of the secret to be used for the repository authentication, see Git
Authentication for Private repository.

namespace: the namespace where the secret is created. Namespace Provisioner
creates a Carvel secretgen SecretImport from this given namespaces to
Namespace Provisioner namespace.

create_export: Boolean flag to create a Carvel secretgen SecretExport from the
given namespace to Namespace Provisioner namespace. The default value is
false.

Sample gitops_install repository file:

#@data/values

---

namespaces:

- name: dev

- name: qa

#@ load("@ytt:data", "data")

#! This loop will now loop over the namespace list in

#! in ns.yaml and will create those namespaces.

#@ for ns in data.values.namespaces:

---

apiVersion: v1

kind: Namespace

metadata:

  name: #@ ns.name

#@ end

This file in the sample repository creates the namespaces in the namespaces list so no manual
intervention is required.

Sample TAP values configuration:

Note

The Carvel data header (#@data/values) is required in this file.

Tanzu Application Platform v1.5

VMware by Broadcom 1221

https://github.com/carvel-dev/secretgen-controller/blob/develop/docs/secret-export.md#secretimport
https://github.com/carvel-dev/secretgen-controller/blob/develop/docs/secret-export.md#secretexport


namespace_provisioner:

  controller: false

  gitops_install:

    ref: origin/main

    subPath: ns-provisioner-samples/gitops-install

    url: https://github.com/vmware-tanzu/application-accelerator-samples.git

Add additional resources to your namespace from your GitOps repo

additional_sources is an array of locations of your Git repositories that contain Platform
Operator templated resources to be created on the provisioned namespaces, in addition
to the default resources.

See the “fetch” section of the kapp controller App specification for the format. Only the
Git type fetch is supported.

additional_sources[].git can have secretRef specified for providing authentication
details for connecting to a private Git repository. See Git Authentication for Private
repository for more details. The following parameters are available:

name: name of the secret to be imported to use as valuesFrom in kapp.

namespace: namespace where the secret exists.

create_export: Boolean flag to decide creation of a SecretExport resource in the
namespace. The default value is false. If the secret is already exported, ensure
that it is exported for the tap-namespace-provisioning namespace.

path must start with the prefix _ytt_lib/. Namespace Provisioner mounts all the
additional sources as a ytt library so it can expand the manifests in the additional sources
for all managed namespaces using the logic in the expansion template. The path after
the _ytt_lib prefix can be any string value and must be unique across all additional
sources.

Sample TAP values configuration:

namespace_provisioner:

  controller: false

  additional_sources:

  - git:

      ref: origin/main

      subPath: ns-provisioner-samples/testing-scanning-supplychain

      url: https://github.com/vmware-tanzu/application-accelerator-samples.git

      # secretRef section is only needed if connecting to a Private Git repo

      secretRef:

        name: git-auth

        namespace: tap-install

        create_export: true

    path: _ytt_lib/testing-scanning-supplychain-setup

  gitops_install:

    ref: origin/main

    subPath: ns-provisioner-samples/gitops-install

    url: https://github.com/vmware-tanzu/application-accelerator-samples.git

See Git Authentication for using a private Git repository guide.

Adjust sync period of Namespace Provisioner

sync_period defines the wait time for the Namespace Provisioner to reconcile. sync_period is
specified in time + unit format. If a value less than 30 seconds is specified, it defaults to 30
seconds. If not specified, the value defaults to 1m0s.

Sample TAP values configuration:

Tanzu Application Platform v1.5

VMware by Broadcom 1222

https://carvel.dev/kapp-controller/docs/v0.43.2/app-spec/
https://carvel.dev/ytt/docs/v0.44.0/lang-ref-ytt-library/#what-is-a-library


namespace_provisioner:

  sync_period: 1m0s

Import user defined secrets in YAML format as ytt data.values

import_data_values_secrets is an array of additional secrets in YAML format to import in the
provisioner as data.values under the data.values.imported key. SecretImport for the secrets
listed in the array are created in the tap-namespace-provisioning namespace by the Namespace
Provisioner package. Either, create SecretExport for the same secrets manually and export it to
tap-namespace-provisioning namespace or let the Namespace Provisioner package create it.
Parameters include:

name: Name of the secret to be imported to use as valuesFrom in kapp.

namespace: Namespace where the secret exists.

create_export: Boolean flag to decide creation of a SecretExport resource in the
namespace. The default value is false. If the secret is already exported, ensure that it is
exported for the tap-namespace-provisioning namespace.

Example secret:

# Format of the secret that is importable under data.values.imported

apiVersion: v1

kind: Secret

metadata:

  name: user-defined-secrets

type: Opaque

stringData:

  # Key needs to have .yaml or .yml at the end

  content.yaml: |

    key1: value1

    key2: value2

Sample TAP values configuration:

namespace_provisioner:

  controller: false

  import_data_values_secrets:

  - name: user-defined-secrets

    namespace: tap-install

    create_export: true

Use for AWS IAM roles

If the TAP installation is on AWS with EKS, use the IAM Role from aws_iam_role_arn for the
Kubernetes Service Account that is used by Workload and the Supply chain to create resources.

Sample TAP values configuration:

namespace_provisioner:

  controller: false

  aws_iam_role_arn: "arn:aws:iam::123456789012:role/EKSIAMRole"

Apply default parameters to all namespaces

Note

The stringData key of the secret must have .yaml or .yml suffix.

Tanzu Application Platform v1.5

VMware by Broadcom 1223



Default_parameters is an array of parameters applied to all namespaces which can be used as ytt
(data.values.default_parameters) for templating default and additional resources.

namespace_provisioner:

  controller: false

  default_parameters:

    limits:

      default:

        cpu: 1.7

        memory: 1Gi

      defaultRequest:

        cpu: 100m

        memory: 1Gi

Import Overlay secrets

overlay_secrets is a list of secrets which contains Carvel ytt overlay definitions that are applied
to the resources created by the Namespace Provisioner. The secrets are imported to the
namespace-provisioner namespace if it is in another namespace.

Sample secret with overlay to be used

cat << EOF | kubectl apply -f -

apiVersion: v1

kind: Secret

metadata:

  name: grype-package-overlay

  namespace: tap-install

  annotations:

    kapp.k14s.io/change-rule: "delete after deleting tap"

stringData:

  grype-package-overlay.yaml: |

    #@  load("@ytt:overlay", "overlay")

    #@

    #@  def matchGrypeScanners(index, left, right):

    #@    if left["apiVersion"] != "packaging.carvel.dev/v1alpha1" or left["kind"] !

= "PackageInstall":

    #@      return False

    #@    end

    #@    return "metadata" in left and "name" in left["metadata"] and left["metadat

a"]["name"].startswith("grype-scanner")

    #@  end

    #@overlay/match by=matchGrypeScanners, expects="0+"

    ---

    metadata:

      annotations:

        #@overlay/match expects="0+"

        ext.packaging.carvel.dev/ytt-paths-from-secret-name.0: my-grype-overlay-secr

et

EOF

Sample TAP values configuration:

namespace_provisioner:

  controller: false

  overlay_secrets:

  - name: grype-package-overlay

Note

The stringData key of the secret must have .yaml or .yml suffix.

Tanzu Application Platform v1.5

VMware by Broadcom 1224

https://carvel.dev/ytt/docs/latest/lang-ref-ytt-overlay/


    namespace: tap-install

    create_export: true

Set up Out of the Box Supply Chains in Namespace
Provisioner
This topic tells you how to set up Namespace Provisioner to automate the creation of resources
that are needed for workloads to run on Out of the Box Supply Chain Basic and Out of the Box
Supply Chain with Testing.

Out of the Box Supply Chain Basic
To create a developer namespace, see Provision Developer Namespaces.

Namespace Provisioner creates a set of default resources in all managed namespaces which are
sufficient to run a workload through the Out of the Box Supply Chain Basic.

Run the following Tanzu CLI command to create a workload in your developer namespace:

Using Tanzu CLI
Create workload using tanzu apps CLI command:

tanzu apps workload apply tanzu-java-web-app \

--git-repo https://github.com/sample-accelerators/tanzu-java-web-app \

--git-branch main \

--type web \

--app tanzu-java-web-app \

--namespace YOUR-NEW-DEVELOPER-NAMESPACE \

--tail \

--yes

Using workload yaml
Create a workload.yaml file with the details as below:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  labels:

    app.kubernetes.io/part-of: tanzu-java-web-app

    apps.tanzu.vmware.com/workload-type: web

  name: tanzu-java-web-app

  namespace: YOUR-NEW-DEVELOPER-NAMESPACE

spec:

  source:

    git:

      ref:

        branch: main

      url: https://github.com/sample-accelerators/tanzu-java-web-app

Out of the Box Supply Chain with Testing

The Out of the Box Supply Chain with Testing adds the source-tester step in the supply chain
which tests the source code pulled by the supply chain. For source code testing to work in the
supply chain, a Tekton Pipeline must exist in the same namespace as the Workload so that, at the
right moment, the Tekton PipelineRun object that is created to run the tests can reference the
developer-provided Pipeline.

Tanzu Application Platform v1.5

VMware by Broadcom 1225



By default, the workload is matched to the corresponding pipeline to run using labels. Pipelines
must have the label apps.tanzu.vmware.com/pipeline: test at a minimum. This provides a default
match if no other labels are provided, but you can add additional labels for granularity. The pipeline
expects two parameters:

source-url, an HTTP address with a .tar.gz file containing all the source code to be tested

source-revision, the revision of the commit or image reference (in case of
workload.spec.source.image being set instead of workload.spec.source.git)

For example:

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

  name: tekton-pipeline-java

  labels:

    apps.tanzu.vmware.com/pipeline: test      # (!) required

spec:

  params:

    - name: source-url                        # (!) required

    - name: source-revision                   # (!) required

  tasks:

    - name: test

      params:

        - name: source-url

          value: $(params.source-url)

        - name: source-revision

          value: $(params.source-revision)

      taskSpec:

        params:

          - name: source-url

          - name: source-revision

        steps:

          - name: test

            image: gradle

            script: |-

              cd `mktemp -d`

              wget -qO- $(params.source-url) | tar xvz -m

              ./mvnw test

Add a Java Tekton Pipeline to your developer namespace

To create a developer namespace, see the Provision Developer Namespaces.

Namespace Provisioner can automate the creation of a Tekton pipeline that is needed for the
workload to run on an Out of the Box Supply Chain with Testing. You can create a sample pipeline
in your GitOps repository and add your GitOps repository as an additional source in Namespace
Provisioner configuration in TAP values. See Customize Installation of Namespace Provisioner.

Add the following configuration to your TAP values to add this sample java pipeline to your
developer namespace:

Using Namespace Provisioner Controller
Sample TAP values configuration:

namespace_provisioner:

  controller: true

  additional_sources:

  - git:

      ref: origin/main

      subPath: ns-provisioner-samples/testing-supplychain

Tanzu Application Platform v1.5

VMware by Broadcom 1226

https://github.com/vmware-tanzu/application-accelerator-samples/blob/main/ns-provisioner-samples/testing-supplychain/tekton-pipeline-java.yaml


      url: https://github.com/vmware-tanzu/application-accelerator-samples.git

    path: _ytt_lib/testing-supplychain-setup

Using GitOps
Sample TAP values configuration:

namespace_provisioner:

  controller: false

  additional_sources:

  - git:

      ref: origin/main

      subPath: ns-provisioner-samples/testing-supplychain

      url: https://github.com/vmware-tanzu/application-accelerator-samples.git

    path: _ytt_lib/testing-supplychain-setup

  gitops_install:

    ref: origin/main

    subPath: ns-provisioner-samples/gitops-install

    url: https://github.com/vmware-tanzu/application-accelerator-samples.git

The sample pipeline resource has the following ytt logic which creates this pipeline only if the
following conditions are met:

supply_chain in your TAP values is either testing or testing_scanning

profile in your TAP values is either full, iterate, or build.

#@ load("@ytt:data", "data")

#@ def in_list(key, list):

#@  return hasattr(data.values.tap_values, key) and (data.values.tap_values[key] in li

st)

#@ end

#@ if/end in_list('supply_chain', ['testing', 'testing_scanning']) and in_list('profil

e', ['full', 'iterate', 'build']):

After adding the additional source to your TAP values, you can see the tekton-pipeline-java
created in your developer namespace. Run the following command to see if the pipeline is created
correctly.

kubectl get pipeline.tekton.dev -n YOUR-NEW-DEVELOPER-NAMESPACE

Run the following Tanzu CLI command to create a workload in your developer namespace:

Using Tanzu CLI
Create workload using tanzu apps CLI command.

tanzu apps workload apply tanzu-java-web-app \

--git-repo https://github.com/sample-accelerators/tanzu-java-web-app \

--git-branch main \

--type web \

--app tanzu-java-web-app \

--label apps.tanzu.vmware.com/has-tests="true" \

--namespace YOUR-NEW-DEVELOPER-NAMESPACE \

--tail \

--yes

Using workload yaml
Create a workload.yaml file with the details as below.

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

Tanzu Application Platform v1.5

VMware by Broadcom 1227



  labels:

    app.kubernetes.io/part-of: tanzu-java-web-app

    apps.tanzu.vmware.com/has-tests: "true"

    apps.tanzu.vmware.com/workload-type: web

  name: tanzu-java-web-app

  namespace: YOUR-NEW-DEVELOPER-NAMESPACE

spec:

  source:

    git:

      ref:

        branch: main

      url: https://github.com/sample-accelerators/tanzu-java-web-app

Out of the Box Supply Chain with Testing and Scanning

The Out of the Box Supply Chain with Testing and Scanning adds the source-tester, source-
scanner, and image-scanner steps in the supply chain which tests the source code pulled by the
supply chain and scans for CVEs on the source and the image built by the supply chain. For these
new testing and scanning steps to work, the following additional resources must exist in the same
namespace as the workload.

Pipeline: defines how to run the tests on the source code pulled by the supply chain and
which image to use that has the tools to run those tests.

ScanTemplate: defines how to run a scan, you can change how the scan is run, either for
images or source code.

A ScanTemplate defines the PodTemplateSpec used by a Job to run a particular
scan (image or source). When the supply chain initiates an ImageScan or
SourceScan, they reference these templates which must be in the same namespace
as the workload.

Although you can customize the templates, VMware recommends that you follow
what is provided in the installation of the grype.scanning.apps.tanzu.vmware.com
package. This is automatically created in all the namespaces managed by
Namespace Provisioner. For more information, see About Source and Image Scans.

ScanPolicy: define how to evaluate whether the artifacts scanned are compliant. For
example, allowing one to be either very strict, or restrictive about particular vulnerabilities
found.

When an ImageScan or a SourceScan is created to run a scan, they reference a
policy, the policy name must match the following sample ScanPolicy.

See Writing Policy Templates.

Add a Java Tekton Pipeline & Grype Scan Policy to your developer
namespace

To create a developer namespace, see Provision Developer Namespaces.

Namespace Provisioner can automate the creation of a Tekton pipeline and a ScanPolicy that is
needed for the workload to run on an Out of the Box Supply Chain with Testing and Scanning.
Create a sample Pipeline and a ScanPolicy in your GitOps repository and add your GitOps repository
as an additional source in Namespace Provisioner configuration in TAP values. See Customize
Installation of Namespace Provisioner for more details.

Add the following configuration to your TAP values to add the sample java pipeline and grype scan
policyto your developer namespace:

Tanzu Application Platform v1.5

VMware by Broadcom 1228

https://github.com/vmware-tanzu/application-accelerator-samples/blob/main/ns-provisioner-samples/testing-scanning-supplychain/scanpolicy-grype.yaml
https://github.com/vmware-tanzu/application-accelerator-samples/tree/main/ns-provisioner-samples/testing-scanning-supplychain


Using Namespace Provisioner Controller
Sample TAP values configuration:

namespace_provisioner:

  controller: true

  additional_sources:

  - git:

      ref: origin/main

      subPath: ns-provisioner-samples/testing-scanning-supplychain

      url: https://github.com/vmware-tanzu/application-accelerator-samples.git

    path: _ytt_lib/testing-scanning-supplychain-setup

Using GitOps
Sample TAP values configuration:

namespace_provisioner:

  controller: false

  additional_sources:

  - git:

      ref: origin/main

      subPath: ns-provisioner-samples/testing-scanning-supplychain

      url: https://github.com/vmware-tanzu/application-accelerator-samples.git

    path: _ytt_lib/testing-scanning-supplychain-setup

  gitops_install:

    ref: origin/main

    subPath: ns-provisioner-samples/gitops-install

    url: https://github.com/vmware-tanzu/application-accelerator-samples.git

The sample Pipeline resource have the following ytt logic which creates this pipeline only if

supply_chain in your TAP values is either testing or testing_scanning

profile in your TAP values is either full, iterate, or build.

#@ load("@ytt:data", "data")

#@ def in_list(key, list):

#@  return hasattr(data.values.tap_values, key) and (data.values.tap_values[key] in li

st)

#@ end

#@ if/end in_list('supply_chain', ['testing', 'testing_scanning']) and in_list('profil

e', ['full', 'iterate', 'build']):

The sample ScanPolicy resource have the following ytt logic which creates this pipeline only if

supply_chain in your TAP values is testing_scanning

profile in your TAP values is either full or build.

After adding the additional source to your TAP values, you can see the tekton-pipeline-java and
scan-policy created in your developer namespace. Run the following command to see if the
pipeline is created correctly.

kubectl get pipeline.tekton.dev,scanpolicies -n YOUR-NEW-DEVELOPER-NAMESPACE

Run the following Tanzu CLI command to create a workload in your developer namespace:

Using Tanzu CLI
Create workload using tanzu apps CLI command.

tanzu apps workload apply tanzu-java-web-app \

--git-repo https://github.com/sample-accelerators/tanzu-java-web-app \

Tanzu Application Platform v1.5

VMware by Broadcom 1229



--git-branch main \

--type web \

--app tanzu-java-web-app \

--label apps.tanzu.vmware.com/has-tests="true" \

--namespace YOUR-NEW-DEVELOPER-NAMESPACE \

--tail \

--yes

Using workload yaml
Create a workload.yaml file with the details as below.

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  labels:

    app.kubernetes.io/part-of: tanzu-java-web-app

    apps.tanzu.vmware.com/has-tests: "true"

    apps.tanzu.vmware.com/workload-type: web

  name: tanzu-java-web-app

  namespace: YOUR-NEW-DEVELOPER-NAMESPACE

spec:

  source:

    git:

      ref:

        branch: main

      url: https://github.com/sample-accelerators/tanzu-java-web-app

Namespace Provisioner use cases and examples

Review the following Namespace Provisioner uses cases:

Use multiple tekton pipelines and Scan policies in the same namespace in Namespace Provisioner

Add Tekton pipelines and scan policies using namespace parameters in Namespace Provisioner

Working with private Git repositories in Namespace Provisioner

Customize default resources in Namespace Provisioner

Install multiple scanners in the developer namespace in Namespace Provisioner

Use multiple Tekton pipelines and scan policies in the same
namespace in Namespace Provisioner

This topic tells you how to use Namespace Provisioner to configure developer namespaces to
include multiple Tekton pipelines and ScanPolices in Tanzu Application Platform (commonly known
as TAP).

For information about, how to create a developer namespace, see Provision Developer
Namespaces.

This sample GitOps location has a Java, Python and a Golang testing pipeline as well as a Strict and
a Lax grype ScanPolicy.

Using Namespace Provisioner Controller
Add the following configuration to your TAP values to add multiple tekton pipelines and scan
policies to your developer namespace:

namespace_provisioner:

  controller: true

Tanzu Application Platform v1.5

VMware by Broadcom 1230

https://github.com/vmware-tanzu/application-accelerator-samples/tree/main/ns-provisioner-samples/testing-scanning-supplychain-polyglot


  additional_sources:

  - git:

      ref: origin/main

      subPath: ns-provisioner-samples/testing-scanning-supplychain-polyglot

      url: https://github.com/vmware-tanzu/application-accelerator-samples.git

    path: _ytt_lib/testing-scanning-supplychain-polyglot-setup

Using GitOps
Add the following configuration to your TAP values to add multiple tekton pipelines and scan
policies to your developer namespace:

namespace_provisioner:

  controller: false

  additional_sources:

  - git:

      ref: origin/main

      subPath: ns-provisioner-samples/testing-scanning-supplychain-polyglot

      url: https://github.com/vmware-tanzu/application-accelerator-samples.git

    path: _ytt_lib/testing-scanning-supplychain-polyglot-setup

  gitops_install:

    ref: origin/main

    subPath: ns-provisioner-samples/gitops-install

    url: https://github.com/vmware-tanzu/application-accelerator-samples.git

The sample Pipeline resource have the following ytt logic which creates this pipeline only if

supply_chain in your TAP values is either testing or testing_scanning

profile in your TAP values is either full, iterate or build.

#@ load("@ytt:data", "data")

#@ def in_list(key, list):

#@  return hasattr(data.values.tap_values, key) and (data.values.tap_values[key] in li

st)

#@ end

#@ if/end in_list('supply_chain', ['testing', 'testing_scanning']) and in_list('profil

e', ['full', 'iterate', 'build']):

All pipelines have an additional label apps.tanzu.vmware.com/language to differentiate between
them.

The sample ScanPolicy resource have the following ytt logic which creates this pipeline only if

supply_chain in your TAP values is testing_scanning

profile in your TAP values is either full or build.

The strict ScanPolicy does not allow any workloads that have Critical and High vulnerabilities to pass
through the supply chain whereas the lax ScanPolicy allows the workloads to pass regardless of
CVEs detected. The allowed severity level is configured using the notAllowedSeverities := []
part of the rego file section of ScanPolicy.

After adding the additional source to your TAP values, you should be able to see the tekton-
pipeline-java, tekton-pipeline-golang, tekton-pipeline-python, scan-policy and lax-scan-

Caution

The lax ScanPolicy is just added for tutorial purposes but it is not advised to use
such a policy in Production workloads.

Tanzu Application Platform v1.5

VMware by Broadcom 1231

https://github.com/vmware-tanzu/application-accelerator-samples/blob/main/ns-provisioner-samples/testing-scanning-supplychain-polyglot/scanpolicy-grype.yaml
https://github.com/vmware-tanzu/application-accelerator-samples/blob/main/ns-provisioner-samples/testing-scanning-supplychain-polyglot/scanpolicy-grype-lax.yaml


policy created in your developer namespace. Run the following command to see if the pipelines
are created correctly.

kubectl get pipeline.tekton.dev,scanpolicies -n YOUR-NEW-DEVELOPER-NAMESPACE

Run the following Tanzu CLI command to create a workload in your developer namespace:

Using Tanzu CLI
Create workload using tanzu apps CLI command

tanzu apps workload apply tanzu-java-web-app \

--git-repo https://github.com/sample-accelerators/tanzu-java-web-app \

--git-branch main \

--type web \

--app tanzu-java-web-app \

--label apps.tanzu.vmware.com/has-tests="true" \

--param-yaml testing_pipeline_matching_labels='{"apps.tanzu.vmware.com/language": "j

ava"}' \

--param scanning_source_policy="lax-scan-policy" \

--param scanning_image_policy="lax-scan-policy" \

--namespace YOUR-NEW-DEVELOPER-NAMESPACE \

--tail \

--yes

Using workload yaml
Create a workload.yaml file with the details as below.

---

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  generation: 1

  labels:

    app.kubernetes.io/part-of: tanzu-java-web-app

    apps.tanzu.vmware.com/has-tests: "true"

    apps.tanzu.vmware.com/workload-type: web

  name: tanzu-java-web-app

  namespace: YOUR-NEW-DEVELOPER-NAMESPACE

spec:

  params:

  - name: scanning_source_policy

    value: lax-scan-policy

  - name: scanning_image_policy

    value: lax-scan-policy

  - name: testing_pipeline_matching_labels

    value:

      apps.tanzu.vmware.com/language: java

  source:

    git:

      ref:

        branch: main

      url: https://github.com/sample-accelerators/tanzu-java-web-app

Note

--param-yaml testing_pipeline_matching_labels tells the supply chain to use the
selector that matches the Java pipeline. To use the Python or Golang pipelines, use
the selector that matches the language label in those resources.--param

Tanzu Application Platform v1.5

VMware by Broadcom 1232



Add Tekton pipelines and scan policies using namespace
parameters in Namespace Provisioner
This topic tells you how to use Namespace Provisioner to parameterize your additional resources
and pass those parameters to namespaces in Tanzu Application Platform (commonly known as
TAP).

Instead of creating all the pipelines in all provisioned namespaces, create a Tekton pipeline and
ScanPolicy that is bespoke to namespaces that are running workloads using a specific language
stack.

For information about, how to create a developer namespace, see Provision Developer
Namespaces.

This use case looks at the pipelines and ScanPolicies in this sample GitOps location.

Using Namespace Provisioner Controller
When using the Namespace Provisioner controller, pass the parameters to a namespace via
labels and annotations on the namespace. To enable this, set the parameter_prefixes in TAP
configuration for Namespace Provisioner so the controller will look for labels/annotations starting
with that prefix to populate parameters for a given namespace. See Controller section of
Customize Installation of Namespace Provisioner guide for more information.

Add the following configuration to your TAP values to add parameterized tekton pipelines and
scan policies to your developer namespace:

namespace_provisioner:

  controller: true

  additional_sources:

  - git:

      ref: origin/main

      subPath: ns-provisioner-samples/testing-scanning-supplychain-parameterized

      url: https://github.com/vmware-tanzu/application-accelerator-samples.git

    path: _ytt_lib/testing-scanning-supplychain-parameterized-setup

  parameter_prefixes:

  - tap.tanzu.vmware.com

The sample pipelines have the following ytt logic which creates this pipeline only if

supply_chain in your TAP values is either testing or testing_scanning

profile in your TAP values is eitherfull, iterate or build. pipeline parameter that
matches the language for which the pipeline is for.

#@ load("@ytt:data", "data")

#@ def in_list(key, list):

#@  return hasattr(data.values.tap_values, key) and (data.values.tap_values[key] in 

scanning_source_policy="lax-scan-policy" tells the supply chain to use the lax
ScanPolicy for the workload.

Note

We added tap.tanzu.vmware.com as a parameter_prefixes in Namespace
Provisioner configuration. This tells the Namespace Provisioner controller to look
for the annotations/labels on a provisioned namespace that start with the prefix
tap.tanzu.vmware.com/ and use those as parameters.

Tanzu Application Platform v1.5

VMware by Broadcom 1233

https://github.com/vmware-tanzu/application-accelerator-samples/tree/main/ns-provisioner-samples/testing-scanning-supplychain-parameterized


list)

#@ end

#@ if/end in_list('supply_chain', ['testing', 'testing_scanning']) and in_list('prof

ile', ['full', 'iterate', 'build']) and hasattr(data.values, 'pipeline') and data.va

lues.pipeline == 'java':

The sample ScanPolicy resource have the following ytt logic which creates this pipeline only if

supply_chain in your TAP values is testing_scanning

profile in your TAP values is either full or build.

scanpolicyparameter matches either strict or lax

#@ load("@ytt:data", "data")

#@ def in_list(key, list):

#@  return hasattr(data.values.tap_values, key) and (data.values.tap_values[key] in 

list)

#@ end

#@ if/end in_list('supply_chain', ['testing_scanning']) and in_list('profile', ['ful

l', 'build']) and hasattr(data.values, 'scanpolicy') and data.values.scanpolicy == 

'lax':

Label your developer namespace using the parameter_prefixes with the parameter to be used
in the additional_sources as follows:

kubectl label namespaces YOUR-NEW-DEVELOPER-NAMESPACE tap.tanzu.vmware.com/scanpolic

y=lax

kubectl label namespaces YOUR-NEW-DEVELOPER-NAMESPACE tap.tanzu.vmware.com/pipeline=

java

Using GitOps
When using GitOps, pass the parameters to a namespace by adding them to the data.values file
located in our GitOps repo. Take a look at this sample file for an example.

Add the following configuration to your TAP values to add parameterized tekton pipelines and
scan policies to your developer namespace:

namespace_provisioner:

  controller: false

  additional_sources:

  - git:

      ref: origin/main

      subPath: ns-provisioner-samples/testing-scanning-supplychain-parameterized

      url: https://github.com/vmware-tanzu/application-accelerator-samples.git

    path: _ytt_lib/testing-scanning-supplychain-parameterized-setup

  gitops_install:

    ref: origin/main

    subPath: ns-provisioner-samples/gitops-install-with-params

    url: https://github.com/vmware-tanzu/application-accelerator-samples.git

Note We added gitops_install with this sample GitOps location to create the namespaces and
manage the desired namespaces from GitOps. See GitOps section of Customize Installation of
Namespace Provisioner guide for more information.

Sample of gitops_install files:

#@data/values

---

namespaces:

- name: dev

  scanpolicy: lax

Tanzu Application Platform v1.5

VMware by Broadcom 1234

https://github.com/vmware-tanzu/application-accelerator-samples/blob/main/ns-provisioner-samples/gitops-install-with-params/desired-namespaces.yaml#L7-L8
https://github.com/vmware-tanzu/application-accelerator-samples/tree/main/ns-provisioner-samples/gitops-install-with-params


  pipeline: java

- name: qa

  scanpolicy: strict

  pipeline: java

#@ load("@ytt:data", "data")

#! This loop will now loop over the namespace list in

#! in ns.yaml and will create those namespaces.

#@ for ns in data.values.namespaces:

---

apiVersion: v1

kind: Namespace

metadata:

  name: #@ ns.name

#@ end

The sample pipelines have the following ytt logic which creates this pipeline only if

supply_chain in your TAP values is either testing or testing_scanning

profile in your TAP values is eitherfull, iterate or build.

pipeline parameter that matches the language for which the pipeline is for.

#@ load("@ytt:data", "data")

#@ def in_list(key, list):

#@  return hasattr(data.values.tap_values, key) and (data.values.tap_values[key] in 

list)

#@ end

#@ if/end in_list('supply_chain', ['testing', 'testing_scanning']) and in_list('prof

ile', ['full', 'iterate', 'build']) and hasattr(data.values, 'pipeline') and data.va

lues.pipeline == 'java':

The sample ScanPolicy resource have the following ytt logic which creates this pipeline only if

supply_chain in your TAP values is testing_scanning

profile in your TAP values is either full or build.

scanpolicyparameter matches either strict or lax

#@ load("@ytt:data", "data")

#@ def in_list(key, list):

#@  return hasattr(data.values.tap_values, key) and (data.values.tap_values[key] in 

list)

#@ end

#@ if/end in_list('supply_chain', ['testing_scanning']) and in_list('profile', ['ful

l', 'build']) and hasattr(data.values, 'scanpolicy') and data.values.scanpolicy == 

'lax':

Run the following Tanzu CLI command to create a workload in your developer namespace:

Using Tanzu CLI
Create workload using tanzu apps CLI command

tanzu apps workload apply tanzu-java-web-app \

--git-repo https://github.com/sample-accelerators/tanzu-java-web-app \

--git-branch main \

--type web \

--app tanzu-java-web-app \

--label apps.tanzu.vmware.com/has-tests="true" \

--namespace YOUR-NEW-DEVELOPER-NAMESPACE \

Tanzu Application Platform v1.5

VMware by Broadcom 1235



--tail \

--yes

Using workload yaml
Create a workload.yaml file with the details as below.

---

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  labels:

    app.kubernetes.io/part-of: tanzu-java-web-app

    apps.tanzu.vmware.com/has-tests: "true"

    apps.tanzu.vmware.com/workload-type: web

  name: tanzu-java-web-app

  namespace: YOUR-NEW-DEVELOPER-NAMESPACE

spec:

  source:

    git:

      ref:

        branch: main

      url: https://github.com/sample-accelerators/tanzu-java-web-app

Run the following command to verify the resources have been created in the namespace: \

kubectl get secrets,serviceaccount,rolebinding,pods,workload,configmap,limitrange,pipe

line,scanpolicies -n YOUR-NEW-DEVELOPER-NAMESPACE

Work with private Git repositories in Namespace
Provisioner

This topic tells you how to configure Namespace Provisioner to use private Git repositories for
storing GitOps based installation files, and platform operator templated resources that you want to
create in your developer namespace in Tanzu Application Platform (commonly known as TAP).

Git Authentication for using a private Git repository

Namespaces Provisioner enables you to use private Git repositories for storing your GitOps based
installation files as well as additional platform operator templated resources that you want to create
in your developer namespace. Authentication is provided using a secret in tap-namespace-
provisioning namespace, or an existing secret in another namespace referred to in the secretRef
in the additional sources. For more information, see Customize Installation of Namespace
Provisioner.

Create the Git Authentication secret in tap-namespace-provisioning
namespace

The secrets for Git authentication allow the following keys: ssh-privatekey, ssh-knownhosts,
username, and password.

Note

If ssh-knownhosts is not specified, Git does not perform strict host checking.
Important Namespace Provisioner relies on kapp-controller for any tasks involving
communication with external services, such as registries or Git repositories. When
operating in air-gapped environments or other scenarios where external services

Tanzu Application Platform v1.5

VMware by Broadcom 1236



1. Create the Git secret.

Using HTTP(s) based Authentication
If you are using Username and Password for authentication:

cat << EOF | kubectl apply -f -

apiVersion: v1

kind: Secret

metadata:

  name: git-auth

  namespace: tap-namespace-provisioning

type: Opaque

stringData:

  username: GIT-USERNAME

  password: GIT-PASSWORD

EOF

Using SSH based Authentication
If you are using SSH private key for authentication:

cat << EOF | kubectl apply -f -

apiVersion: v1

kind: Secret

metadata:

  name: git-auth

  namespace: tap-namespace-provisioning

type: Opaque

stringData:

  ssh-privatekey: |

      -----BEGIN OPENSSH PRIVATE KEY-----

      ..

      -----END OPENSSH PRIVATE KEY-----

EOF

2. Add the secretRef section to the additional_sources and the gitops_install section of
the Namespace Provisioner configuration in your TAP values:

Using Namespace Provisioner Controller
Description

namespace_provisioner:

  controller: true

  additional_sources:

  - git:

      ref: origin/main

      subPath: sources

      # This example URL is for SSH auth. Use https:// path if using HTTPS au

th

      url: git@github.com:private-repo-org/repo.git

      secretRef:

        name: git-auth

    path: _ytt_lib/my-additional-source

Using GitOps

are secured by a Custom CA certificate, you must configure kapp-controller with
the CA certificate data to prevent X.509 certificate errors. For more information,
see Deploy onto Cluster in the Cluster Essentials for VMware Tanzu documentation.

Tanzu Application Platform v1.5

VMware by Broadcom 1237

https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.5/cluster-essentials/deploy.html#deploying-cluster-essentials-v156-0


Description

Caution There is a current limitation in kapp-controller which does not allow the users to
re-use the same git secret multiple times. If you have multiple additional sources using
private repo with the same credentials, you must create different secrets with the same
authentication details for each of them.

In this example, the location where the list of namespaces resides is also a private
repository. So you must create a secret named git-auth-install with the same
authentication details.

namespace_provisioner:

  controller: false

  additional_sources:

  - git:

      ref: origin/main

      subPath: tekton-pipelines

      # This example URL is for SSH auth. Use https:// path if using HTTPS au

th

      url: git@github.com:private-repo-org/repo.git

      secretRef:

        name: git-auth

    path: _ytt_lib/my-additional-source

  gitops_install:

    ref: origin/main

    subPath: gitops-install

    # This example URL is for SSH auth. Use https:// path if using HTTPS auth

    url: git@github.com:private-repo-org/repo.git

    secretRef:

      name: git-auth-install

Import from another namespace

If you already have a Git secret created in a namespace other than tap-namespace-provisioning
namespace and you want to refer to that, the secretRef section should have the namespace
mentioned along with the create_export flag. The default value for create_export is false as it
assumes the Secret is already exported for tap-namespace-provisioning namespace, but allows the
user to specify if they want the Namespace Provisioner to create a Carvel SecretExport for that
secret.

The example refers to git-auth secret from tap-install in the secretRef section.

Using Namespace Provisioner Controller
Description

namespace_provisioner:

  controller: true

  additional_sources:

  - git:

      ref: origin/main

      subPath: sources

      #! This example URL is for SSH auth. Use https:// path if using HTTPS auth

      url: git@github.com:private-repo-org/repo.git

      secretRef:

          name: git-auth

          namespace: tap-install

          #! If this secret is already exported for this namespace, you can ignore t

he create_export key as it defaults to false

          create_export: true

    path: _ytt_lib/my-additional-source

Tanzu Application Platform v1.5

VMware by Broadcom 1238



Using GitOps
Description

namespace_provisioner:

  controller: false

  additional_sources:

  - git:

      ref: origin/main

      subPath: tekton-pipelines

      #! This example URL is for SSH auth. Use https:// path if using HTTPS auth

      url: git@github.com:private-repo-org/repo.git

      secretRef:

          name: git-auth

          namespace: tap-install

          #! If this secret is already exported for this namespace, you can ignore t

he create_export key as it defaults to false

          create_export: true

    path: _ytt_lib/my-additional-source

  gitops_install:

    ref: origin/main

    subPath: gitops-install

    #! This example URL is for SSH auth. Use https:// path if using HTTPS auth

    url: git@github.com:private-repo-org/repo.git

    secretRef:

      name: git-auth-install

      namespace: tap-install

      #! If this secret is already exported for this namespace, you can ignore the c

reate_export key as it defaults to false

      create_export: true

After reconciling, Namespace Provisioner creates:

SecretExport for the secret in the provided namespace (tap-install in the above example) to
the Namespace Provisioner namespace.

SecretImport for the secret in Namespace Provisioning namespace (tap-namespace-
provisioning) so Carvel secretgen-controller can create the required secret for the
Provisioner to connect to the Private Git Repository.

Git Authentication for Private Repository for Workloads and
Supply chain

To either fetch or push source code from or to a repository that requires credentials, you must
provide those through a Kubernetes secret object referenced by the intended Kubernetes object
created for performing the action. The following sections provide details about how to appropriately
set up Kubernetes secrets for carrying those credentials forward to the proper resources.

This section provides instructions on how to configure the default service account to work with
private Git repositories for workloads and supply chain using Namespace Provisioner.

To configure the service account to work with private Git repositories, follow the steps below:

1. Create a secret in the tap-install namespace or any namespace of your preference, that
contains the Git credentials in the YAML format.

host, username and password or personal access token values for HTTP based Git
Authentication.

ssh-privatekey, identity, identity_pub, and known_hosts for SSH based Git
Authentication.

Tanzu Application Platform v1.5

VMware by Broadcom 1239

https://github.com/carvel-dev/secretgen-controller/blob/develop/docs/secret-export.md#secretexport
https://github.com/carvel-dev/secretgen-controller/blob/develop/docs/secret-export.md#secretimport
https://github.com/carvel-dev/secretgen-controller


Using HTTP(s) based Authentication
If using Username and Password for authentication.

cat << EOF | kubectl apply -f -

apiVersion: v1

kind: Secret

metadata:

  name: workload-git-auth

  namespace: tap-install

type: Opaque

stringData:

  content.yaml: |

    git:

      #! For HTTP Auth. Recommend using https:// for the git server.

      host: GIT-SERVER

      username: GIT-USERNAME

      password: GIT-PASSWORD

EOF

Using SSH based Authentication
If using SSH private key for authentication, create the git secret with authentication
details as follows:

cat << EOF | kubectl apply -f -

apiVersion: v1

kind: Secret

metadata:

  name: workload-git-auth

  namespace: tap-install

type: Opaque

stringData:

  content.yaml: |

    git:

      #! For SSH Auth

      ssh_privatekey: SSH-PRIVATE-KEY

      identity: SSH-PRIVATE-KEY

      identity_pub: SSH-PUBLIC-KEY

      known_hosts: GIT-SERVER-PUBLIC-KEYS

      host: GIT-SERVER

EOF

2. Create a scaffolding of a Git secret that needs to be added to the service account in the
developer namespace in the GitOps repository. See the sample secret here. An example
secret would look like the following. Instead of putting the actual username and password in
the secret in the Git repository, put the reference to the values in the git-auth secret
created in Step 1 by using the data.values.imported keys.

Using HTTP(s) based Authentication
If using Username and Password for authentication.

#@ load("@ytt:data", "data")

---

apiVersion: v1

kind: Secret

Note

stringData key of the secret must have .yaml or .yml suffix at the end.

Tanzu Application Platform v1.5

VMware by Broadcom 1240

https://github.com/vmware-tanzu/application-accelerator-samples/blob/main/ns-provisioner-samples/credentials/git.yaml


metadata:

  name: git

  annotations:

    tekton.dev/git-0: #@ data.values.imported.git.host

type: kubernetes.io/basic-auth

stringData:

  username: #@ data.values.imported.git.username

  password: #@ data.values.imported.git.token

Using SSH based Authentication
If using SSH private key for authentication:

#@ load("@ytt:data", "data")

---

apiVersion: v1

kind: Secret

metadata:

  name: git

  annotations:

    tekton.dev/git-0: #@ data.values.imported.git.host

type: kubernetes.io/ssh-auth

stringData:

  identity: #@ data.values.imported.git.identity

  identity.pub: #@ data.values.imported.git.identity_pub

  known_hosts: #@ data.values.imported.git.known_hosts

  ssh-privatekey: #@ data.values.imported.git.ssh_privatekey

3. Create a secret to specify an overlay to patch the default service account adding a
reference to the secret git.

cat << EOF | kubectl apply -f -

apiVersion: v1

kind: Secret

metadata:

  name: workload-git-auth-overlay

  namespace: tap-install

  annotations:

    kapp.k14s.io/change-rule: "delete after deleting tap"

stringData:

  workload-git-auth-overlay.yaml: |

    #@ load("@ytt:overlay", "overlay")

    #@overlay/match by=overlay.subset({"apiVersion": "v1", "kind": "ServiceAcco

unt","metadata":{"name":"default"}}), expects="0+"

    ---

    secrets:

    #@overlay/append

    - name: git

EOF

4. Put all this together in Namespace Provisioner configuration in TAP values as follows:

Using Namespace Provisioner Controller
Add the following configuration to your TAP values

namespace_provisioner:

  controller: true

  additional_sources:

  - git:

      ref: origin/main

      subPath: ns-provisioner-samples/credentials

      url: https://github.com/vmware-tanzu/application-accelerator-samples.gi

t

Tanzu Application Platform v1.5

VMware by Broadcom 1241



    path: _ytt_lib/credentials-setup

  import_data_values_secrets:

  - name: workload-git-auth

    namespace: tap-install

    create_export: true

  overlay_secrets:

  - name: workload-git-auth-overlay

    namespace: tap-install

    create_export: true

Using GitOps
Add the following configuration to your TAP values

namespace_provisioner:

  controller: false

  additional_sources:

  - git:

      ref: origin/main

      subPath: ns-provisioner-samples/credentials

      url: https://github.com/vmware-tanzu/application-accelerator-samples.gi

t

    path: _ytt_lib/credentials-setup

  gitops_install:

    ref: origin/main

    subPath: ns-provisioner-samples/gitops-install

    url: https://github.com/vmware-tanzu/application-accelerator-samples.git

  import_data_values_secrets:

  - name: workload-git-auth

    namespace: tap-install

    create_export: true

  overlay_secrets:

  - name: workload-git-auth-overlay

    namespace: tap-install

    create_export: true

5. First additional source points to the location where the templated git secret resides which is
created in all developer namespaces.

6. Second additional source points to the overlay file which adds the git secret onto the
default service account

7. Finally, import the newly created workload-git-auth secret into Namespace Provisioner to
use in data.values.imported by adding the secret to the import_data_values_secrets.

Customize default resources in Namespace Provisioner
This topic tells you how to deactivate Grype in Namespace Provisioner and how to configure the
default service account to work with private Git repositories in Tanzu Application Platform
(commonly known as TAP).

Note

create_export is set to true in import_data_values_secrets meaning that a
SecretExport is created for the workload-git-auth secret in the tap-install
namespace automatically by Namespace Provisioner. After the changes are
reconciled, the secret named git is in all provisioned namespaces and it is also
added to the default service account of those namespaces.

Tanzu Application Platform v1.5

VMware by Broadcom 1242



Disable Grype install

Namespace Provisioner creates Grype scanner install as one of the default resources. If you choose
to use another scanner for namespaces instead of Grype, you can disable the installation of the
Out-of-the-box Grype scanner as follows:

1. Create an overlay secret as follows which removes the Grype scanner and the secret that is
automatically created by Namespace Provisioner.

cat << EOF | kubectl apply -f -

apiVersion: v1

kind: Secret

metadata:

  name: disable-ootb-grype-overlay

  namespace: tap-install

  annotations:

    kapp.k14s.io/change-rule: "delete after deleting tap"

stringData:

  disable-ootb-grype-overlay.yaml: |

    #@ load("@ytt:overlay", "overlay")

    #@ def matchGrypeStuff(index, left, right):

    #@   if (left["apiVersion"] != "packaging.carvel.dev/v1alpha1" or left["kin

d"] != "PackageInstall") and (left["kind"] != "Secret"):

    #@     return False

    #@   end

    #@   return "metadata" in left and "name" in left["metadata"] and left["met

adata"]["name"].startswith("grype-scanner")

    #@ end

    #@overlay/match by=matchGrypeStuff, expects="0+"

    ---

EOF

2. Import this overlay secret onto Namespace Provisioner configuration so it gets applied to
the resources created by Namespace Provisioner for all managed namespaces.

Using Namespace Provisioner Controller
Add the following configuration to your TAP values

namespace_provisioner:

  controller: true

  overlay_secrets:

  - name: disable-ootb-grype-overlay

    namespace: tap-install

    create_export: true

Using GitOps
Add the following configuration to your TAP values

namespace_provisioner:

  controller: false

  overlay_secrets:

  - name: disable-ootb-grype-overlay

    namespace: tap-install

    create_export: true

  gitops_install:

    ref: origin/main

    subPath: ns-provisioner-samples/gitops-install

    url: https://github.com/vmware-tanzu/application-accelerator-samples.git

Tanzu Application Platform v1.5

VMware by Broadcom 1243



Customize service accounts

This section provides instructions on how to configure the default service account to work with
private Git repositories for workloads and supply chain using Namespace Provisioner.

To configure the service account to work with private Git repositories, follow the steps below:

1. Create a secret in the tap-install namespace (or any namespace of your preference) that
contains the Git credentials in the YAML format.

host, username and password values for HTTP based Git Authentication.

ssh-privatekey, identity, identity_pub, and known_hosts for SSH based Git
Authentication.

#! Example shows HTTP as well as SSH based authentication

cat << EOF | kubectl apply -f -

apiVersion: v1

kind: Secret

metadata:

  name: workload-git-auth

  namespace: tap-install

type: Opaque

stringData:

  content.yaml: |

    git:

      #! For HTTP Auth. Recommend using https:// for the git server.

      host: GIT-SERVER

      username: GIT-USERNAME

      token: GIT-PASSWORD

      #! For SSH Auth

      ssh_privatekey: SSH-PRIVATE-KEY

      identity: SSH-PRIVATE-KEY

      identity_pub: SSH-PUBLIC-KEY

      known_hosts: GIT-SERVER-PUBLIC-KEYS

EOF

2. Create a scaffolding of a Git secret that needs to be added to the service account in your
developer namespace in your GitOps repository. See the sample secret here. An example
secret would look like the following. Instead of putting the actual username and password in
the secret in your Git repository, put the reference to the values in the git-auth secret
created in Step 1 by using the data.values.imported keys.

#@ load("@ytt:data", "data")

#@ load("@ytt:base64", "base64")

---

apiVersion: v1

kind: Secret

metadata:

  name: git

  annotations:

    tekton.dev/git-0: #@ data.values.imported.git.host

type: kubernetes.io/basic-auth

stringData:

  username: #@ base64.encode(data.values.imported.git.username)

  password: #@ base64.encode(data.values.imported.git.token)

Note

stringData key of the secret must have .yaml or .yml suffix at the end.

Tanzu Application Platform v1.5

VMware by Broadcom 1244

https://github.com/vmware-tanzu/application-accelerator-samples/blob/main/ns-provisioner-samples/credentials/git.yaml


3. Create a secret to specify an overlay to patch the default service account adding reference
to the secret git.

cat << EOF | kubectl apply -f -

apiVersion: v1

kind: Secret

metadata:

  name: workload-git-auth-overlay

  namespace: tap-install

  annotations:

    kapp.k14s.io/change-rule: "delete after deleting tap"

stringData:

  workload-git-auth-overlay.yaml: |

    #@ load("@ytt:overlay", "overlay")

    #@overlay/match by=overlay.subset({"apiVersion": "v1", "kind": "ServiceAcco

unt","metadata":{"name":"default"}}), expects="0+"

    ---

    secrets:

    #@overlay/append

    - name: git

EOF

4. Put all this together in Namespace Provisioner configuration in TAP values as follows:

Using Namespace Provisioner Controller
Add the following configuration to your TAP values

namespace_provisioner:

  controller: true

  additional_sources:

  - git:

      ref: origin/main

      subPath: ns-provisioner-samples/credentials

      url: https://github.com/vmware-tanzu/application-accelerator-samples.git

    path: _ytt_lib/credentials-setup

  import_data_values_secrets:

  - name: workload-git-auth

    namespace: tap-install

    create_export: true

  overlay_secrets:

  - name: workload-git-auth-overlay

    namespace: tap-install

    create_export: true

Using GitOps
Add the following configuration to your TAP values

namespace_provisioner:

  controller: false

  additional_sources:

  - git:

      ref: origin/main

      subPath: ns-provisioner-samples/credentials

      url: https://github.com/vmware-tanzu/application-accelerator-samples.git

    path: _ytt_lib/credentials-setup

  gitops_install:

    ref: origin/main

    subPath: ns-provisioner-samples/gitops-install

    url: https://github.com/vmware-tanzu/application-accelerator-samples.git

  import_data_values_secrets:

  - name: workload-git-auth

    namespace: tap-install

    create_export: true

Tanzu Application Platform v1.5

VMware by Broadcom 1245



  overlay_secrets:

  - name: workload-git-auth-overlay

    namespace: tap-install

    create_export: true

First additional source points to the location where our templated git secret resides which
will be created in all developer namespaces.

Second additional source points to the overlay file which will add the git secret onto the
default service account

Finally, import the newly created workload-git-auth secret into Namespace Provisioner to
use in data.values.imported by adding the secret to the import_data_values_secrets.

Customize Limit Range defaults
Namespace Provisioner creates LimitRange resource, see Default Resources in all namespaces
managed by provisioner. Default values in LimitRange resource are as follows:

limits:

  default:

    cpu : 1500m

    memory : 1Gi

  defaultRequest:

    cpu : 100m

    memory : 1Gi

Update LimitRange defaults for all namespaces

Namespace Provisioner provides options for updating the values in LimitRange for all namespaces
managed by the provisioner by specifying the default_parameters configuration in Namespace
Provisioner TAP values as follows:

namespace_provisioner:

  default_parameters:

    # overwrite default limits set by the OOTB LimitRange for all namespaces

    limits:

      default:

        cpu: 1000m

        memory: 1Gi

      defaultRequest:

        cpu: 200m

        memory: 500Mi

Update LimitRange defaults for a specific namespace

If you wish to override the LimitRange for specific namespaces, you can do that via namespace
parameters that can be applied as follows.

Note

create_export is set to true in import_data_values_secrets meaning that a
SecretExport will be created for the workload-git-auth secret in the tap-install
namespace automatically by Namespace Provisioner. After the changes are
reconciled, you will see the secret named git in all provisioned namespaces and also
added to the default service account of those namespaces.

Tanzu Application Platform v1.5

VMware by Broadcom 1246

https://kubernetes.io/docs/concepts/policy/limit-range/


Using Namespace Provisioner Controller
User can annotate/label namespace using the default parameter_prefix param.nsp.tap/ followed
by the YAML path to cpu or memory limits as follows:

kubectl annotate ns YOUR-NEW-DEVELOPER-NAMESPACE param.nsp.tap/limits.default.cpu=11

00m

kubectl annotate ns YOUR-NEW-DEVELOPER-NAMESPACE param.nsp.tap/limits.default.memory

=2Gi

kubectl annotate ns YOUR-NEW-DEVELOPER-NAMESPACE param.nsp.tap/limits.defaultReques

t.cpu=1500m

kubectl annotate ns YOUR-NEW-DEVELOPER-NAMESPACE param.nsp.tap/limits.defaultReques

t.memory=1Gi

Controller will look at all the annotations/labels with prefix param.nsp.tap/ and add the
keys and its values in the desired-namespace configmaps as parameters for that
namespace.

Users can provide a custom prefix for the controller to look at if they do not want to use
the default param.nsp.tap using parameter_prefixes configuration in Namespace
Provisioner TAP values. See Controller Customization for more information on setting
parameter_prefixes.

Using GitOps
Add the following configuration to your TAP values to add parameterized limits to your
developer namespace:

namespace_provisioner:

  controller: false

  gitops_install:

    ref: origin/main

    subPath: ns-provisioner-samples/gitops-install-with-params

    url: https://github.com/vmware-tanzu/application-accelerator-samples.git

Sample of gitops_install files:

#@data/values

---

namespaces:

- name: dev

  limits:

    default:

      cpu: 1200m

      memory: 1.5Gi

Note

Labels take precedence over annotations if the same key is provided in both.

Note

We added gitops_install with this sample GitOps location to create the
namespaces and manage the desired namespaces from GitOps. See GitOps
section of Customize Installation of Namespace Provisioner guide for more
information.

Tanzu Application Platform v1.5

VMware by Broadcom 1247

https://github.com/vmware-tanzu/application-accelerator-samples/tree/main/ns-provisioner-samples/gitops-install-with-params


    defaultRequest:

      cpu: 300m

      memory: 30Mi

- name: qa

#@ load("@ytt:data", "data")

#! This loop will now loop over the namespace list in

#! in ns.yaml and will create those namespaces.

#@ for ns in data.values.namespaces:

---

apiVersion: v1

kind: Namespace

metadata:

  name: #@ ns.name

#@ end

The Namespace Provisioner will create a LimitRange with default values for qa namespace and
with the given values for dev namespace.

Install multiple scanners in the developer namespace in
Namespace Provisioner

This topic tells you how to use Namespace Provisioner to automate multiple scanner installations in
the developer namespace in Tanzu Application Platform (commonly known as TAP).

Grype scanner is installed by default in all namespaces managed by Namespace Provisioner.

The following step describe how to install Snyk scanner and Grype in the developer namespace and
use both together in the supply chain. Grype is used for Source scans and Snyk is used for Image
scans.

For information about, how to create a developer namespace, see Provision Developer
Namespaces.

1. Create a secret in the tap-install namespace or any namespace of your preference that
contains the Snyk token in the YAML format (must have .yaml or .yml in the key) as
shown below:

cat << EOF | kubectl apply -f -

apiVersion: v1

kind: Secret

metadata:

  name: scanner-auth

  namespace: tap-install

type: Opaque

stringData:

  content.yaml: |

    scanners:

      snyk_api_token: "" # Paste your snyk API token here

EOF

2. Add the following configuration to your TAP values to create the supply-chain and
scanners:

Using Namespace Provisioner Controller
Add the following configuration to your TAP values

namespace_provisioner:

  controller: true

  additional_sources:

Tanzu Application Platform v1.5

VMware by Broadcom 1248



  - git:

      ref: origin/main

      subPath: ns-provisioner-samples/testing-scanning-supplychain-multiple-scanners

      url: https://github.com/vmware-tanzu/application-accelerator-samples.git

    path: _ytt_lib/testing-scanning-supplychain-multiple-scanners-setup

  import_data_values_secrets:

  - name: scanner-auth

    namespace: tap-install

    create_export: true

Using GitOps
Add the following configuration to your TAP values

namespace_provisioner:

  controller: false

  additional_sources:

  - git:

      ref: origin/main

      subPath: ns-provisioner-samples/testing-scanning-supplychain-multiple-scanners

      url: https://github.com/vmware-tanzu/application-accelerator-samples.git

    path: _ytt_lib/testing-scanning-supplychain-multiple-scanners-setup

  import_data_values_secrets:

  - name: scanner-auth

    namespace: tap-install

    create_export: true

  gitops_install:

    ref: origin/main

    subPath: ns-provisioner-samples/gitops-install

    url: https://github.com/vmware-tanzu/application-accelerator-samples.git

Additional source points to the location of the sample GitOps repo where we have the following
custom resources:

tekton-pipeline-java.yaml - For creating a Tekton pipeline for running tests on our Java
workload

scanpolicy-grype.yaml and scanpolicy-snyk.yaml- For creating a Scan policies to be used
by Grype and Snyk scanners

snyk-token-secret.yaml -is a Snyk token secret that needs to be created in our developer
namespace. Instead of putting the actual snyk token in the secret in our Git repository, we
will put the reference to the values in the scanner-auth secret created in Step 1 by using
the data.values.imported keys.

snyk-scanner-install.yaml - contains the PackageInstall for installing the Snyk package for
our developer namespace. One particular thing to note on this file is that we have
mentioned the namespace: tap-install in the PackageInstall resource. This signals the
Namespace Provisioner to create a PackageInstall resource for all provisioned namespaces
in the same namespace (in our case tap-install) and add-{namespace} as the suffix in the
name to avoid name collisions.

Our setup is complete. Run the following Tanzu CLI command to apply a workload in your
developer namespace that uses Grype for source scan and Snyk for Image scan:

Using Tanzu CLI
Create workload using tanzu apps CLI command

tanzu apps workload apply tanzu-java-web-app \

--git-repo https://github.com/sample-accelerators/tanzu-java-web-app \

--git-branch main \

--type web \

Tanzu Application Platform v1.5

VMware by Broadcom 1249

https://github.com/vmware-tanzu/application-accelerator-samples/tree/main/ns-provisioner-samples/testing-scanning-supplychain-multiple-scanners


--app tanzu-java-web-app \

--label apps.tanzu.vmware.com/has-tests="true" \

--param scanning_image_policy=snyk-scan-policy \

--param scanning_image_template=snyk-private-image-scan-template \

--namespace YOUR-NEW-DEVELOPER-NAMESPACE \

--tail \

--yes

Using workload yaml
Create a workload.yaml file with the details as below.

---

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  labels:

    app.kubernetes.io/part-of: tanzu-java-web-app

    apps.tanzu.vmware.com/has-tests: "true"

    apps.tanzu.vmware.com/workload-type: web

  name: tanzu-java-web-app

  namespace: YOUR-NEW-DEVELOPER-NAMESPACE

spec:

  params:

  - name: scanning_image_policy

    value: snyk-scan-policy

  - name: scanning_image_template

    value: snyk-private-image-scan-template

  source:

    git:

      ref:

        branch: main

      url: https://github.com/sample-accelerators/tanzu-java-web-app

Work with Git repositories in air-gapped environments with
Namespace Provisioner

This topic provides instructions for configuring Namespace Provisioner to use air-gapped Git
repositories. This allows you to store GitOps-based installation files and platform operator-
templated resources intended for creation in your developer namespace in Tanzu Application
Platform (TAP).

Git authentication

Authentication is established through a secret in the tap-namespace-provisioning namespace or an
existing secret in another namespace referenced in the secretRef in additional_sources. For
more details, refer to Customize Installation of Namespace Provisioner.

Create the Git authentication secret in tap-namespace-provisioning
namespace

The Git authentication secrets support the following keys: ssh-privatekey, ssh-knownhosts,
username, and password. If ssh-knownhosts is not specified, Git does not perform strict host
checking.

Important

Tanzu Application Platform v1.5

VMware by Broadcom 1250



1. Create the Git secret:

Using HTTP(s) based authentication
If you are using user name and password for authentication:

cat << EOF | kubectl apply -f -

apiVersion: v1

kind: Secret

metadata:

  name: git-auth

  namespace: tap-namespace-provisioning

type: Opaque

stringData:

  username: GIT-USERNAME

  password: GIT-PASSWORD

EOF

Using SSH based Authentication
If you are using SSH private key for authentication:

cat << EOF | kubectl apply -f -

apiVersion: v1

kind: Secret

metadata:

  name: git-auth

  namespace: tap-namespace-provisioning

type: Opaque

stringData:

  ssh-privatekey: |

      -----BEGIN OPENSSH PRIVATE KEY-----

      ...

      -----END OPENSSH PRIVATE KEY-----

EOF

2. Add the secretRef section to the additional_sources and the gitops_install section of
your tap-values.yaml file:

Using Namespace Provisioner Controller
Description

namespace_provisioner:

  controller: true

  additional_sources:

  - git:

      ref: origin/main

      subPath: sources

      # This example URL is for SSH auth. Use https:// path if using HTTPS au

th

      url: git@git-airgap-server:private-repo-org/repo.git

      secretRef:

        name: git-auth

Using GitOps

In air-gapped environments or other scenarios where external services are secured
by a Custom CA certificate, configure kapp-controller with the CA certificate data to
prevent X.509 certificate errors. For detailed instructions, refer to Deploy onto
Cluster in the Cluster Essentials for VMware Tanzu documentation.

Tanzu Application Platform v1.5

VMware by Broadcom 1251

https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.5/cluster-essentials/deploy.html#deploying-cluster-essentials-v156-0


Description

Caution In kapp-controller v0.46.0 and earlier, there is a limitation that prevents the
reuse of the same Git secret multiple times. If you have multiple additional sources using
repositories with identical credentials, you must create distinct secrets, each with the
same authentication details.

In this example, the list of namespaces resides in a repository. Therefore, you must
create a secret named git-auth-install with the same authentication details for this
location.

namespace_provisioner:

  controller: false

  additional_sources:

  - git:

      ref: origin/main

      subPath: tekton-pipelines

      # This example URL is for SSH auth. Use https:// path if using HTTPS au

th

      url: git@git-airgap-server:private-repo-org/repo.git

      secretRef:

        name: git-auth

  gitops_install:

    ref: origin/main

    subPath: gitops-install

    # This example URL is for SSH auth. Use https:// path if using HTTPS auth

    url: git@git-airgap-server:private-repo-org/repo.git

    secretRef:

      name: git-auth-install

Import from another namespace

If you already have a Git secret created in a namespace other than the tap-namespace-
provisioning namespace and you want to refer to it, the secretRef section must include the
namespace and the create_export flag. The default value for create_export is false, assuming the
secret is already exported for the tap-namespace-provisioning namespace. However, you can
specify if you want Namespace Provisioner to create a Carvel SecretExport for that secret.

In this example, the secretRef section refers to the git-auth secret from the tap-install
namespace.

Using Namespace Provisioner Controller
Description

namespace_provisioner:

  controller: true

  additional_sources:

  - git:

      ref: origin/main

      subPath: sources

      #! This example URL is for SSH auth. Use https:// path if using HTTPS auth

      url: git@git-airgap-server:private-repo-org/repo.git

      secretRef:

          name: git-auth

          namespace: tap-install

          #! If this secret is already exported for this namespace, you can ignore t

he create_export key as it defaults to false

          create_export: true

Tanzu Application Platform v1.5

VMware by Broadcom 1252



Using GitOps
Description

namespace_provisioner:

  controller: false

  additional_sources:

  - git:

      ref: origin/main

      subPath: tekton-pipelines

      #! This example URL is for SSH auth. Use https:// path if using HTTPS auth

      url: git@git-airgap-server:private-repo-org/repo.git

      secretRef:

          name: git-auth

          namespace: tap-install

          #! If this secret is already exported for this namespace, you can ignore t

he create_export key as it defaults to false

          create_export: true

  gitops_install:

    ref: origin/main

    subPath: gitops-install

    #! This example URL is for SSH auth. Use https:// path if using HTTPS auth

    url: git@git-airgap-server:private-repo-org/repo.git

    secretRef:

      name: git-auth-install

      namespace: tap-install

      #! If this secret is already exported for this namespace, you can ignore the c

reate_export key as it defaults to false

      create_export: true

After reconciliation, Namespace Provisioner creates:

SecretExport for the secret in the provided namespace, exporting it to the Namespace
Provisioner namespace, for example, tap-install

SecretImport for the secret in the tap-namespace-provisioning namespace. This enables
Carvel secretgen-controller to create the required secret, allowing Namespace Provisioner
to connect to the Git repository.

Git authentication for workloads and supply chain

When fetching or pushing source code to a repository that requires credentials, it’s essential to
provide those credentials through a Kubernetes secret object referenced by the corresponding
Kubernetes object created for the action. The following sections describe setting up Kubernetes
secrets to securely pass these credentials to the relevant resources. This procedure provides the
steps to configure the default service account to interact with Git repositories for workloads and
supply chain using Namespace Provisioner.

Set up the service account to interact with Git repositories:

1. Create a secret in the tap-install namespace or any preferred namespace, containing Git
credentials in YAML format.

host, username, caFile and password or personal access token values for HTTP-
based Git authentication.

ssh-privatekey, identity, identity_pub, and known_hosts for SSH-based Git
authentication.

Note

Tanzu Application Platform v1.5

VMware by Broadcom 1253

https://github.com/carvel-dev/secretgen-controller/blob/develop/docs/secret-export.md#secretexport
https://github.com/carvel-dev/secretgen-controller/blob/develop/docs/secret-export.md#secretimport
https://github.com/carvel-dev/secretgen-controller


Using HTTP(s) based authentication
If using user name and password for authentication.

In this configuration for an air-gapped environment, the Git repository server has a
custom certificate of authority that cannot be verified against public issuers, so you must
provide the caFile content to log in against it.

cat << EOF | kubectl apply -f -

apiVersion: v1

kind: Secret

metadata:

  name: workload-git-auth

  namespace: tap-install

type: Opaque

stringData:

  content.yaml: |

    git:

      #! For HTTP Auth. Recommend using https:// for the git server.

      host: GIT-SERVER

      username: GIT-USERNAME

      password: GIT-PASSWORD

      caFile: |

        -----BEGIN CERTIFICATE-----

        ...

        -----END CERTIFICATE-----

EOF

Using SSH based authentication
To use an SSH private key for authentication, create the Git secret with the
authentication details as follows:

cat << EOF | kubectl apply -f -

apiVersion: v1

kind: Secret

metadata:

  name: workload-git-auth

  namespace: tap-install

type: Opaque

stringData:

  content.yaml: |

    git:

      host: GIT-SERVER

      #! For SSH Auth

      ssh_privatekey: SSH-PRIVATE-KEY

      identity: SSH-PRIVATE-KEY

      identity_pub: SSH-PUBLIC-KEY

      known_hosts: GIT-SERVER-PUBLIC-KEYS

EOF

2. To create a secret to be added to the service account in the developer namespace in the
GitOps repository, use this example for HTTP-based or this example for setings.xml-based,
or follow the example below.

Rather than directly including the actual user name and password in the Git repository
secret, use the data.values.imported keys to add references to the values from the git-
auth secret created in the previous step.

The stringData key of the secret must end with either the .yaml or .yml
suffix.

Tanzu Application Platform v1.5

VMware by Broadcom 1254

https://github.com/vmware-tanzu/application-accelerator-samples/blob/main/ns-provisioner-samples/gitops-airgap/resources/git.yaml
https://github.com/vmware-tanzu/application-accelerator-samples/blob/main/ns-provisioner-samples/gitops-airgap/resources/settings-xml.yaml


This secret represents the Git secret that is created by the Namespace Provisioner in each
managed namespace. It must be included in your Git repository linked in the
additional_sources section of tap-values.yaml mentioned in the next step.

Using HTTP(s) based authentication
If using user name and password for authentication.

In this configuration for an air-gapped environment, the Git repository server has a
custom certificate of authority that cannot be verified against public issuers, so you must
provide the caFile content to log in against it.

#@ load("@ytt:data", "data")

---

apiVersion: v1

kind: Secret

metadata:

 name: git

 annotations:

   tekton.dev/git-0: #@ data.values.imported.git.host

type: kubernetes.io/basic-auth

stringData:

 username: #@ data.values.imported.git.username

 password: #@ data.values.imported.git.token

 caFile: #@ data.values.imported.git.caFile

Using settings.xml based authentication for Java applications
If using user name and password for authentication.

#@ load("@ytt:data", "data")

apiVersion: v1

kind: Secret

metadata:

 name: settings-xml

type: service.binding/maven

stringData:

 type: maven

 provider: sample

 #@yaml/text-templated-strings

 settings.xml: |

   <settings xmlns="http://maven.apache.org/SETTINGS/1.0.0" xmlns:xsi="htt

p://www.w3.org/2001/XMLSchema-instance"

     xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0 https://mave

n.apache.org/xsd/settings-1.0.0.xsd">

       <mirrors>

           <mirror>

               <id>reposilite</id>

               <name>Accelerator samples</name>

               <url>(@= data.values.imported.git.host @)/vmware-tanzu/applica

tion-accelerator-samples</url>

               <mirrorOf>*</mirrorOf>

           </mirror>

       </mirrors>

       <servers>

           <server>

               <id>reposilite</id>

               <username>(@= data.values.imported.git.username @)</username>

               <password>(@= data.values.imported.git.password @)</password>

           </server>

       </servers>

   </settings>

Using SSH based authentication

Tanzu Application Platform v1.5

VMware by Broadcom 1255



If using SSH private key for authentication:

#@ load("@ytt:data", "data")

---

apiVersion: v1

kind: Secret

metadata:

  name: git

  annotations:

    tekton.dev/git-0: #@ data.values.imported.git.host

type: kubernetes.io/basic-auth

stringData:

  identity: #@ data.values.imported.git.identity

  identity.pub: #@ data.values.imported.git.identity_pub

  known_hosts: #@ data.values.imported.git.known_hosts

  ssh-privatekey: #@ data.values.imported.git.ssh_privatekey

3. Combine this tap-values.yaml:

Using Namespace Provisioner Controller
Add the following configuration to tap-values.yaml:

namespace_provisioner:

  controller: true

  additional_sources:

  - git:

      ref: origin/main

      subPath: ns-provisioner-samples/credentials

      url: https://git-airgap-server/application-accelerator-samples.git

  import_data_values_secrets:

  - name: workload-git-auth

    namespace: tap-install

    create_export: true

  default_parameters:

    supply_chain_service_account:

      secrets:

      - git

Where https://git-airgap-server/application-accelerator-samples.git is a fork of
the application-accelerator-samples repository.

Using GitOps
Add the following configuration to tap-values.yaml:

namespace_provisioner:

  controller: false

  additional_sources:

  - git:

      ref: origin/main

      subPath: ns-provisioner-samples/credentials

      url: https://git-airgap-server/vmware-tanzu/application-accelerator-sam

ples.git

  gitops_install:

    ref: origin/main

    subPath: ns-provisioner-samples/gitops-install

    url: https://git-airgap-server/vmware-tanzu/application-accelerator-sampl

es.git

  import_data_values_secrets:

  - name: workload-git-auth

    namespace: tap-install

    create_export: true

  default_parameters:

Tanzu Application Platform v1.5

VMware by Broadcom 1256

https://github.com/vmware-tanzu/application-accelerator-samples


    supply_chain_service_account:

      secrets:

      - git

Where https://git-airgap-server/application-accelerator-samples.git is a fork of
the application-accelerator-samples repository.

additional sources points to the location where the templated Git secret resides,
which is created in all developer namespaces.

Import the newly created workload-git-auth secret into Namespace Provisioner to
use in data.values.imported by adding the secret to import_data_values_secrets.

Add the secret to be included in the ServiceAccount in the default_parameters.
For more information, see Customize service accounts.

4. In your tap-values.yaml file, in the ootb_supply_chain_*.gitops.ssh_secret section,
specify the name of the Git secret containing the credentials. This is necessary for the
supply chain to include the secretRef when creating the Flux GitRepository resource. For
example:

ootb_supply_chain_testing_scanning:

  gitops:

    ssh_secret: git  # Replace with the actual name of your Git secret for the 

workload, if different

By providing this configuration, the supply chain associates the created GitRepository
resource with the specified Git secret managed by Namespace Provisioner.

5. Create the workload:

Using HTTP/HTTPS or SSH-based
If using user name and password for authentication.

tanzu apps workload apply APP-NAME \

--git-repo GIT-REPO \

--git-branch BRANCH \

--type web \

--app APP-NAME \

--label apps.tanzu.vmware.com/has-tests="true" \

--namespace DEV-NAMESPACE \

--tail \

--yes

Using settings.xml based authentication for Java applications
If using user name and password for authentication.

tanzu apps workload apply APP-NAME \

--git-repo GIT_REPO \

--git-branch BRANCH \

Note

create_export is set to true in import_data_values_secrets. As a result, a
SecretExport is automatically created for the workload-git-auth secret in
the tap-install namespace by Namespace Provisioner. After the changes
are reconciled, the secret named git is present in all provisioned
namespaces and is also added to the default service account of those
namespaces.

Tanzu Application Platform v1.5

VMware by Broadcom 1257

https://github.com/vmware-tanzu/application-accelerator-samples


--type web \

--app APP-NAME \

--label apps.tanzu.vmware.com/has-tests="true" \

--namespace DEV-NAMESPACE \

--param-yaml buildServiceBindings='[{"name": "settings-xml", "kind": "Secre

t"}]'

--tail \

--yes

Troubleshoot Namespace Provisioner

This topic tells you how to troubleshoot Namespace Provisioner in Tanzu Application Platform
(commonly known as TAP).

Air-gapped installation

Namespace Provisioner relies on kapp-controller for any tasks involving communication with
external services, such as registries or Git repositories. When operating in air-gapped environments
or other scenarios where external services are secured by a Custom CA certificate, you must
configure kapp-controller with the CA certificate data to prevent X.509 certificate errors. For more
information, see Deploy onto Cluster in the Cluster Essentials for VMware Tanzu documentation.

View controller logs

To get the logs when using the controller workflow, run the following kubectl command:

kubectl -n tap-namespace-provisioning logs deployments/controller-manager

Use -f to follow the log output.

Provisioner application error

After the Namespace Provisioner is installed in the Tanzu Application Platform cluster, the main
resource to check is the provisioner Carvel Application in the tap-namespace-provisioning
namespace. To check for the status of the Application, run the following kubectl command:

kubectl -n tap-namespace-provisioning get app/provisioner --template={{.status.usefulE

rrorMessage}}

Common errors
You might encounter one of the following errors:

Namespace selector malformed

When using the controller and customizing the namespace_selector from tap_values.yaml, the
match expression must be compliant with the Kubernetes label selector. If it is not compliant, the
Namespace Provisioner controller fails and log an error message in the controller logs.

For example, if the configured namespace_selector is as follows:

namespace_provisioner:

  controller: true

  namespace_selector:

    matchExpressions:

Tanzu Application Platform v1.5

VMware by Broadcom 1258

https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.5/cluster-essentials/deploy.html#deploying-cluster-essentials-v156-0
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors


    - key: apps.tanzu.vmware.com/tap-ns

      operator: exists

This is not compliant as the operator must be Exist instead of exists. When labeling the
namespace dev with apps.tanzu.vmware.com/tap-ns, the controller produces an error message
similar to the following, (followed by some reconciliation messages)

{"level":"error","ts":"2022-12-14T15:41:44.639402794Z","logger":".0.1.NamespaceSelecto

rReconciler","msg":"unable to sync","controller":"namespace","controllerGroup":"","con

trollerKind":"Namespace","Namespace":{"name":"dev"},"namespace":"","name":"dev","recon

cileID":"26395d34-418b-446d-9b5e-a4a73cc657ed","resourceType":"/v1, Kind=Namespace","e

rror":"\"exists\" is not a valid pod selector operator","stacktrace":"..."}

Debugging ytt templating errors in additional sources

When working with ytt, templating errors in the additional sources in your GitOps repository can
cause the Provisioner Carvel application to go into Reconcile Failed state. To debug the
Application, run the following command:

kubectl -n tap-namespace-provisioning get app/provisioner --template={{.status.usefulE

rrorMessage}}

Sample Error message from Application when there is a ytt templating error:

ytt: Error:

- library.eval: Evaluating library 'witherror':

    in <toplevel>

      template.yaml:155 | #@          instances = overlay.apply(instance.eval(), custo

mize())

    reason:

     - struct has no .gl_secret_user field or method

         in <toplevel>

           _ytt_lib/witherror/secrets.yaml:12 |   username: #@ data.values.gl_secret_u

ser

Unable to delete namespace

When a user tries to delete a namespace that was managed by Namespace Provisioner, it gets
stucks in the Terminating status.

Possible Cause 1: When a provisioned namespace that has a Cartographer Workload in it is
deleted, the namespace will likely remain in the Terminating state because some resources can not
be deleted. One of the causes of this behavior is that the Cartographer Workload using the Out of
the Box supply chains and delivery creates a Carvel Kapp App for the workload that references the
ServiceAccount in the namespace. Deleting the namespace deletes the Service Account that Kapp
relies on before the App itself is deleted. As a result, the Carvel App blocks the namespace
termination while waiting for the ServiceAccount to exist with a finalizer (finalizers.kapp-
ctrl.k14s.io/delete) message.

Solution: Remove the Kapp App finalizer in the Kapp App

Possible Cause 2: When a user tries to delete a namespace that was previously managed by the
Namespace Provisioner controller, and the namespace was not cleaned up before disabling the
controller, it gets stuck in the Terminating state. This happens because the Namespace Provisioner
controller adds a finalizer to the namespaces (namespace-
provisioner.apps.tanzu.vmware.com/finalizer) it manages, and is no longer there to clean up
that finalizer as it was disabled by the user.

Solution: Remove manually the finalizer in the namespace

Tanzu Application Platform v1.5

VMware by Broadcom 1259



Namespace Provisioner reference

This section tells you about the resources that are templated in the default-resources secret for
each installation profile and supply chain value combination.

If you are using a GitOps repository to manage the list of namespaces, all the namespaces in the list
must exist in the cluster. The provisioner application fails to reconcile if the namespaces do not
exist on the cluster.

If you switch from controller mode to GitOps mode, you must manually remove the finalizer on all
the namespaces previously managed by the controller. For more information on using controller
versus GitOps, see Modes.

To use different private repositories, the secret used for each entry (gitops_install,
additional_sources) must be a unique name. Re-using the same secret is not supported due to a
limitation in kapp-controller.

Default resources

Namespace Provisioner is installed as part of the standard installation profiles. The default set of
resources provisioned in a namespace is based on a combination of the installation profile employed
and the supply chain that is installed on the cluster. For more information about installation profiles,
see Installation profiles in Tanzu Application Platform

The following table shows the list of resources that are templated in the default-resources secret
for an installation profile and supply chain value combination:

Namespace Kind Name supply_chain Install Profile Reconcile

tap-install PackageI
nstall

grype-scanner-{ns} testing_scanni
ng

full, build Yes

tap-install Secret grype-scanner-{ns} testing_scanni
ng

full, build Yes

Developer
Namespace

Secret registries-credentials n/a full, iterate,
build, run

Yes

Developer
Namespace

ServiceA
ccount

From:
ootb_supply_chain_{supply_chain}.ser
vice_account (default: “default”)

n/a full, iterate,
build, run

No

Developer
Namespace

ServiceA
ccount

From:
ootb_delivery_basic.service_account
(default: “default”)

n/a full, iterate,
run

No

Developer
Namespace

RoleBindi
ng

default-permit-deliverable n/a full, iterate,
run

Yes

Developer
Namespace

RoleBindi
ng

default-permit-workload n/a full, iterate,
build

Yes

Developer
Namespace

LimitRan
ge

{namespace}-lr n/a full, iterate,
build

Yes

For installing additional resources for OOTB Supply Chain with Testing and Scanning, see Supply
Chain Security Tools - Scan.

Overview of Service Bindings

This topic tells you about using Service Bindings in Tanzu Application Platform (commonly know as
TAP).

Tanzu Application Platform v1.5

VMware by Broadcom 1260



Supported service binding specifications

Service Bindings packages the Service Binding for Kubernetes open source project.

It implements the Service Binding Specification for Kubernetes v1.0.

This implementation provides support for:

Provisioned Service

Workload Projection

Service Binding

Direct Secret Reference

Role-Based Access Control (RBAC)

The following are not supported:

Workload Resource Mapping

Extensions including:

Binding Secret Generation Strategies

Overview of Service Bindings
This topic tells you about using Service Bindings in Tanzu Application Platform (commonly know as
TAP).

Supported service binding specifications
Service Bindings packages the Service Binding for Kubernetes open source project.

It implements the Service Binding Specification for Kubernetes v1.0.

This implementation provides support for:

Provisioned Service

Workload Projection

Service Binding

Direct Secret Reference

Role-Based Access Control (RBAC)

The following are not supported:

Workload Resource Mapping

Extensions including:

Binding Secret Generation Strategies

Install Service Bindings

This topic tells you how to install Service Bindings from the Tanzu Application Platform (commonly
known as TAP) package repository.

Note

Tanzu Application Platform v1.5

VMware by Broadcom 1261

https://servicebinding.io/
https://servicebinding.io/spec/core/1.0.0/
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#provisioned-service
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#workload-projection
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#service-binding
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#direct-secret-reference
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#role-based-access-control-rbac
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#workload-resource-mapping
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#binding-secret-generation-strategies
https://servicebinding.io/
https://servicebinding.io/spec/core/1.0.0/
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#provisioned-service
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#workload-projection
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#service-binding
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#direct-secret-reference
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#role-based-access-control-rbac
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#workload-resource-mapping
https://github.com/k8s-service-bindings/spec/tree/12a9f2e376c50f051cc9aa913443bdecb0a24a01#binding-secret-generation-strategies


Prerequisites

Before installing Service Bindings:

Complete all prerequisites to install Tanzu Application Platform (commonly knows as TAP).
For more information, see Prerequisites.

Install Service Bindings

Use the following procedure to install Service Bindings:

1. List version information for the package by running:

tanzu package available list service-bindings.labs.vmware.com --namespace tap-i

nstall

For example:

$ tanzu package available list service-bindings.labs.vmware.com --namespace tap

-install

- Retrieving package versions for service-bindings.labs.vmware.com...

  NAME                              VERSION  RELEASED-AT

  service-bindings.labs.vmware.com  0.5.0    2021-09-15T00:00:00Z

2. Install the package by running:

tanzu package install service-bindings -p service-bindings.labs.vmware.com -v 

0.5.0 -n tap-install

Example output:

/ Installing package 'service-bindings.labs.vmware.com'

| Getting namespace 'tap-install'

- Getting package metadata for 'service-bindings.labs.vmware.com'

| Creating service account 'service-bindings-tap-install-sa'

| Creating cluster admin role 'service-bindings-tap-install-cluster-role'

| Creating cluster role binding 'service-bindings-tap-install-cluster-rolebindi

ng'

\ Creating package resource

| Package install status: Reconciling

 Added installed package 'service-bindings' in namespace 'tap-install'

3. Verify the package install by running:

tanzu package installed get service-bindings -n tap-install

Example output:

- Retrieving installation details for service-bindings...

NAME:                    service-bindings

PACKAGE-NAME:            service-bindings.labs.vmware.com

PACKAGE-VERSION:         0.5.0

STATUS:                  Reconcile succeeded

Follow the steps in this topic if you do not want to use a profile to install Service
Bindings. For more information about profiles, see Components and installation
profiles.

Tanzu Application Platform v1.5

VMware by Broadcom 1262



CONDITIONS:              [{ReconcileSucceeded True  }]

USEFUL-ERROR-MESSAGE:

4. Run the following command:

kubectl get pods -n service-bindings

For example:

$ kubectl get pods -n service-bindings

NAME                       READY   STATUS    RESTARTS   AGE

manager-6d85fffbcd-j4gvs   1/1     Running   0          22s

Verify that STATUS is Running

Troubleshoot Service Bindings
This topic tells you how to troubleshoot Service Bindings in Tanzu Application Platform (commonly
known as TAP).

Collect logs
To help identify issues when troubleshooting, you can retrieve and examine logs from the service
binding manager.

To retrieve pod logs from the manager running in the service-bindings namespace, run:

kubectl -n service-bindings logs -l role=manager

For example:

$ kubectl -n service-bindings logs -l role=manager

2021/11/05 15:25:28 Registering 3 clients

2021/11/05 15:25:28 Registering 3 informer factories

2021/11/05 15:25:28 Registering 7 informers

2021/11/05 15:25:28 Registering 8 controllers

{"severity":"INFO","timestamp":"2021-11-05T15:25:28.483823208Z","caller":"logging/nfi

g.go:116","message":"Successfully created the logger."}

{"severity":"INFO","timestamp":"2021-11-05T15:25:28.48392361Z","caller":"logging/confi

g.go:117","message":"Logging level set to: info"}

{"severity":"INFO","timestamp":"2021-11-05T15:25:28.483999911Z","caller":"logging/conf

ig.go:79","message":"Fetch GitHub commit ID from kodata failed","error":"open /var/ru

n/ko/HEAD: no such file or directory"}

{"severity":"INFO","timestamp":"2021-11-05T15:25:28.484035711Z","logger":"webhook","ca

ller":"profiling/server.go:64","message":"Profiling enabled: false"}

{"severity":"INFO","timestamp":"2021-11-05T15:25:28.522884909Z","logger":"webhook","ca

ller":"leaderelection/context.go:46","message":"Running with Standard leader electio

n"}

{"severity":"INFO","timestamp":"2021-11-05T15:25:28.523358615Z","logger":"webhook","ca

ller":"provisionedservice/controller.go:31","message":"Setting up event handlers."}

...

{"severity":"ERROR","timestamp":"2021-11-17T12:30:24.557178813Z","logger":"webhook","c

aller":"controller/controller.go:548","message":"Reconcile error","duration":"276.504µ

s","error":"deployments.apps \"spring-petclinic\" not found","stacktrace":"knative.de

v/pkg/controller.(*Impl).handleErr\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90db

b0/controller/controller.go:548\nknative.dev/pkg/controller.(*Impl).processNextWorkIte

m\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0/controller/controller.go:531\n

knative.dev/pkg/controller.(*Impl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-20210331

065221-952fdd90dbb0/controller/controller.go:468"}

{"severity":"ERROR","timestamp":"2021-11-17T12:47:04.558217679Z","logger":"webhook","c

aller":"controller/controller.go:548","message":"Reconcile error","duration":"249.103µ

Tanzu Application Platform v1.5

VMware by Broadcom 1263



s","error":"deployments.apps \"spring-petclinic\" not found","stacktrace":"knative.de

v/pkg/controller.(*Impl).handleErr\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90db

b0/controller/controller.go:548\nknative.dev/pkg/controller.(*Impl).processNextWorkIte

m\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0/controller/controller.go:531\n

knative.dev/pkg/controller.(*Impl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-20210331

065221-952fdd90dbb0/controller/controller.go:468"}

{"severity":"ERROR","timestamp":"2021-11-17T13:03:44.558683121Z","logger":"webhook","c

aller":"controller/controller.go:548","message":"Reconcile error","duration":"177.403µ

s","error":"deployments.apps \"spring-petclinic\" not found","stacktrace":"knative.de

v/pkg/controller.(*Impl).handleErr\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90db

b0/controller/controller.go:548\nknative.dev/pkg/controller.(*Impl).processNextWorkIte

m\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0/controller/controller.go:531\n

knative.dev/pkg/controller.(*Impl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-20210331

065221-952fdd90dbb0/controller/controller.go:468"}

{"severity":"ERROR","timestamp":"2021-11-17T13:20:24.559192644Z","logger":"webhook","c

aller":"controller/controller.go:548","message":"Reconcile error","duration":"223.203µ

s","error":"deployments.apps \"spring-petclinic\" not found","stacktrace":"knative.de

v/pkg/controller.(*Impl).handleErr\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90db

b0/controller/controller.go:548\nknative.dev/pkg/controller.(*Impl).processNextWorkIte

m\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0/controller/controller.go:531\n

knative.dev/pkg/controller.(*Impl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-20210331

065221-952fdd90dbb0/controller/controller.go:468"}

{"severity":"ERROR","timestamp":"2021-11-17T13:37:04.559648412Z","logger":"webhook","c

aller":"controller/controller.go:548","message":"Reconcile error","duration":"173.003µ

s","error":"deployments.apps \"spring-petclinic\" not found","stacktrace":"knative.de

v/pkg/controller.(*Impl).handleErr\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90db

b0/controller/controller.go:548\nknative.dev/pkg/controller.(*Impl).processNextWorkIte

m\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0/controller/controller.go:531\n

knative.dev/pkg/controller.(*Impl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-20210331

065221-952fdd90dbb0/controller/controller.go:468"}

{"severity":"ERROR","timestamp":"2021-11-17T13:53:44.56010516Z","logger":"webhook","ca

ller":"controller/controller.go:548","message":"Reconcile error","duration":"182.402µ

s","error":"deployments.apps \"spring-petclinic\" not found","stacktrace":"knative.de

v/pkg/controller.(*Impl).handleErr\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90db

b0/controller/controller.go:548\nknative.dev/pkg/controller.(*Impl).processNextWorkIte

m\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0/controller/controller.go:531\n

knative.dev/pkg/controller.(*Impl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-20210331

065221-952fdd90dbb0/controller/controller.go:468"}

{"severity":"ERROR","timestamp":"2021-11-17T14:10:24.560536033Z","logger":"webhook","c

aller":"controller/controller.go:548","message":"Reconcile error","duration":"155.603µ

s","error":"deployments.apps \"spring-petclinic\" not found","stacktrace":"knative.de

v/pkg/controller.(*Impl).handleErr\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90db

b0/controller/controller.go:548\nknative.dev/pkg/controller.(*Impl).processNextWorkIte

m\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0/controller/controller.go:531\n

knative.dev/pkg/controller.(*Impl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-20210331

065221-952fdd90dbb0/controller/controller.go:468"}

{"severity":"ERROR","timestamp":"2021-11-17T14:27:04.560960243Z","logger":"webhook","c

aller":"controller/controller.go:548","message":"Reconcile error","duration":"171.002µ

s","error":"deployments.apps \"spring-petclinic\" not found","stacktrace":"knative.de

v/pkg/controller.(*Impl).handleErr\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90db

b0/controller/controller.go:548\nknative.dev/pkg/controller.(*Impl).processNextWorkIte

m\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0/controller/controller.go:531\n

knative.dev/pkg/controller.(*Impl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-20210331

065221-952fdd90dbb0/controller/controller.go:468"}

{"severity":"ERROR","timestamp":"2021-11-17T14:43:44.56142548Z","logger":"webhook","ca

ller":"controller/controller.go:548","message":"Reconcile error","duration":"179.203µ

s","error":"deployments.apps \"spring-petclinic\" not found","stacktrace":"knative.de

v/pkg/controller.(*Impl).handleErr\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90db

b0/controller/controller.go:548\nknative.dev/pkg/controller.(*Impl).processNextWorkIte

m\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0/controller/controller.go:531\n

knative.dev/pkg/controller.(*Impl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-20210331

065221-952fdd90dbb0/controller/controller.go:468"}

{"severity":"ERROR","timestamp":"2021-11-17T15:00:24.561881861Z","logger":"webhook","c

aller":"controller/controller.go:548","message":"Reconcile error","duration":"167.902µ

s","error":"deployments.apps \"spring-petclinic\" not found","stacktrace":"knative.de

v/pkg/controller.(*Impl).handleErr\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90db

Tanzu Application Platform v1.5

VMware by Broadcom 1264



b0/controller/controller.go:548\nknative.dev/pkg/controller.(*Impl).processNextWorkIte

m\n\tknative.dev/pkg@v0.0.0-20210331065221-952fdd90dbb0/controller/controller.go:531\n

knative.dev/pkg/controller.(*Impl).RunContext.func3\n\tknative.dev/pkg@v0.0.0-20210331

065221-952fdd90dbb0/controller/controller.go:468"}

Service Bindings resource specification

This topic tells you about the Service Bindings resource specification in Tanzu Application Platform
(commonly known as TAP).

The ServiceBinding resource shape and behavior is defined by the following specification:

apiVersion: servicebinding.io/v1alpha3

kind: ServiceBinding

metadata:

  name: account-db

spec:

  service:

    apiVersion: mysql.example/v1alpha1

    kind: MySQL

    name: account-db

  workload:

    apiVersion: apps/v1

    kind: Deployment

    name: account-service

Overview of Services Toolkit

Services Toolkit is responsible for backing many of the most powerful service capabilities in Tanzu
Application Platform (commonly known as TAP).

From the integration of an extensive list of cloud-based and on-prem services, through to the
offering and discovery of those services, and finally to the claiming and binding of service instances
to application workloads, Services Toolkit has the tools you need to make working with services on
Tanzu Application Platform simple, easy, and effective.

Capabilities
The main capabilities on offer in Tanzu Application Platform through Services Toolkit are:

1. The classes and claims abstraction: provides a simple, but powerful, user experience to apps
teams, while promoting a strong separation of concerns between apps teams and ops
teams.

2. Dynamic provisioning of service instances: enables apps teams to create service instances
that adhere to company policy. Apps teams can create instances on-demand as needed.

3. Seamless integration of almost any service, cloud-based or on-prem, into Tanzu Application
Platform with minimal configuration overhead: provides a near-limitless range of services to
help boost developer productivity.

Getting started

Note

These docs apply to Services Toolkit v0.10 and later. To view the Services Toolkit
documentation for v0.9 and earlier, see the previous Services Toolkit site.

Tanzu Application Platform v1.5

VMware by Broadcom 1265

https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/index.html


If this is your first time working with services on Tanzu Application Platform, you might want to start
with Claim services on Tanzu Application Platform and Consume services on Tanzu Application
Platform in the getting started guide. These guides run through the basics, after which you can
return here to the Services Toolkit component documentation to continue your services journey on
Tanzu Application Platform.

How this documentation is organized

The Services Toolkit component documentation consists of the following sections that relate to
what you are want to achieve:

Concepts: To gain a deeper understanding of Services Toolkit.

Tutorials: To learn through following examples.

How-to guides: To find a set of steps to solve a specific problem.

Reference material: To find specific information such as Services Toolkit’s APIs, the Tanzu
Service CLI plug-in, and troubleshooting information.

Tutorials and concepts are of most relevance when studying, while how-to guides and reference
material are of most use while working.

The following is a selection of useful topics on offer:

For apps teams:

Tutorial: Working with Bitnami Services

For ops teams:

Tutorial: Setup Dynamic Provisioning of Service Instances

Tutorial: Integrating Cloud Services (AWS, Azure, GCP, etc.) into Tanzu Application Platform

How-to guide: Configure Dynamic Provisioning of AWS RDS Service Instances

For everyone:

Concept: Four Levels of Service Consumption in Tanzu Application Platform

Overview of Services Toolkit

Services Toolkit is responsible for backing many of the most powerful service capabilities in Tanzu
Application Platform (commonly known as TAP).

From the integration of an extensive list of cloud-based and on-prem services, through to the
offering and discovery of those services, and finally to the claiming and binding of service instances
to application workloads, Services Toolkit has the tools you need to make working with services on
Tanzu Application Platform simple, easy, and effective.

Capabilities

The main capabilities on offer in Tanzu Application Platform through Services Toolkit are:

1. The classes and claims abstraction: provides a simple, but powerful, user experience to apps
teams, while promoting a strong separation of concerns between apps teams and ops

Note

These docs apply to Services Toolkit v0.10 and later. To view the Services Toolkit
documentation for v0.9 and earlier, see the previous Services Toolkit site.

Tanzu Application Platform v1.5

VMware by Broadcom 1266

https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/index.html


teams.

2. Dynamic provisioning of service instances: enables apps teams to create service instances
that adhere to company policy. Apps teams can create instances on-demand as needed.

3. Seamless integration of almost any service, cloud-based or on-prem, into Tanzu Application
Platform with minimal configuration overhead: provides a near-limitless range of services to
help boost developer productivity.

Getting started

If this is your first time working with services on Tanzu Application Platform, you might want to start
with Claim services on Tanzu Application Platform and Consume services on Tanzu Application
Platform in the getting started guide. These guides run through the basics, after which you can
return here to the Services Toolkit component documentation to continue your services journey on
Tanzu Application Platform.

How this documentation is organized

The Services Toolkit component documentation consists of the following sections that relate to
what you are want to achieve:

Concepts: To gain a deeper understanding of Services Toolkit.

Tutorials: To learn through following examples.

How-to guides: To find a set of steps to solve a specific problem.

Reference material: To find specific information such as Services Toolkit’s APIs, the Tanzu
Service CLI plug-in, and troubleshooting information.

Tutorials and concepts are of most relevance when studying, while how-to guides and reference
material are of most use while working.

The following is a selection of useful topics on offer:

For apps teams:

Tutorial: Working with Bitnami Services

For ops teams:

Tutorial: Setup Dynamic Provisioning of Service Instances

Tutorial: Integrating Cloud Services (AWS, Azure, GCP, etc.) into Tanzu Application Platform

How-to guide: Configure Dynamic Provisioning of AWS RDS Service Instances

For everyone:

Concept: Four Levels of Service Consumption in Tanzu Application Platform

Install Services Toolkit

This topic tells you how to install Services Toolkit from the Tanzu Application Platform (commonly
known as TAP) package repository.

Note

Follow the steps in this topic if you do not want to use a profile to install Services
Toolkit. For more information about profiles, see Components and installation
profiles.

Tanzu Application Platform v1.5

VMware by Broadcom 1267



Prerequisites

Before installing Services Toolkit:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

Install cert-manager. For more information, see Install cert-manager.

Install Services Toolkit

To install Services Toolkit:

1. See what versions of Services Toolkit are available to install by running:

tanzu package available list -n tap-install services-toolkit.tanzu.vmware.com

For example:

$ tanzu package available list -n tap-install services-toolkit.tanzu.vmware.com

- Retrieving package versions for services-toolkit.tanzu.vmware.com...

  NAME                               VERSION           RELEASED-AT

  services-toolkit.tanzu.vmware.com  0.9.0             2022-09-08T00:00:00Z

2. Install Services Toolkit by running:

tanzu package install services-toolkit \

  --package services-toolkit.tanzu.vmware.com \

  --version VERSION-NUMBER \

  --namespace tap-install

Where VERSION-NUMBER is the Services Toolkit version you want to install. For example,
0.9.0.

3. Verify that the package installed by running:

tanzu package installed get services-toolkit -n tap-install

In the output, confirm that the STATUS value is Reconcile succeeded.

For example:

$ tanzu package installed get services-toolkit -n tap-install

| Retrieving installation details for services-toolkit...

NAME:                    services-toolkit

PACKAGE-NAME:            services-toolkit.tanzu.vmware.com

PACKAGE-VERSION:         0.9.0

STATUS:                  Reconcile succeeded

CONDITIONS:              [{ReconcileSucceeded True  }]

USEFUL-ERROR-MESSAGE:

Services Toolkit concepts

This section introduces you to Services Toolkit concepts.

In this section:

The four levels of service consumption in Tanzu Application Platform

Class claims vs resource claims

Tanzu Application Platform v1.5

VMware by Broadcom 1268



The four levels of service consumption in Tanzu Application
Platform

This topic describes the different levels of abstraction when using Services Toolkit and explains
when and why you might choose to use one level over the other.

As Tanzu Application Platform has evolved, so has the way to offer and consume services on the
platform. In this topic, the progress of this evolution is charted in terms of four levels of service
consumption.

The introduction of a higher level does not automatically mean that all lower levels are made
obsolete. In most cases, the higher levels build upon the foundations laid by the lower levels, and
represent an abstraction that is higher-level and more opinionated.

Level 1 - direct bindings

Tanzu Application Platform v1.0 included support for service bindings, which back the level 1
concept of direct bindings.

For example, if you deploy an application workload to Tanzu Application Platform, this results in a
Knative service in a namespace. An API resource in the same namespace that represents a service,
such as a database or a cache, is called a service resource.

Using a service binding you can bind that service resource with the Knative service. This injects the
credentials for the service resource into the Knative service, so that the application workload can
consume it.

In this relatively straightforward scenario, there are only a few resources involved and they directly
reference each other. In fact, users are not even directly exposed to the service binding. The
service binding is created automatically as part of the Out of the Box Supply Chains whenever an
application workload is configured to refer to a service.

However, there are a number of limitations with this setup. The first is that the service resource
must be bindable and which means it must adhere to the provisioned services definition in the
service binding specification for Kubernetes. For more information, see Provisioned Service. There
are some resources that adhere to this specification, primarily resources offered by VMware
Tanzu’s data services, but the overwhelming majority of resources don’t.

The second limitation is that all resources have to be in the same namespace.

The third limitation is that the service binding must have detailed and specific information about the
service resource, including its name, namespace, and API group, version, and kind. This is not a
clear separation of concerns as it introduces tight coupling between app teams, who create the
application workloads, and ops teams, who create the service resources.

Level 2 - resource claims

Tanzu Application Platform v1.5

VMware by Broadcom 1269

https://github.com/servicebinding/spec#provisioned-service


Level 2 addresses some limitations of direct bindings through the Services Toolkit feature resource
claims. This feature coincided with the release of Tanzu Application Platform v1.0.

For example, if you have the same setup as in Level 1 - direct bindings, but you want the service
resource to be in a separate namespace from the Knative service you cannot use direct bindings.
This is because the schema for ServiceBinding provides no option to configure a namespace for the
service.

Resource claims allow you to claim a bindable service resource that exists in another namespace,
and to then bind the application workload to the resource claim instead of to the service resource
directly. Because you are now crossing namespace tenancy boundaries, you are only permitted to
claim the service resource if you create a corresponding resource claim policy.

The advantage of level 2 over level 1 is that now the application workload and the service resource
do not have to exist in the same namespace. This helps to promote a better separation of
concerns. It is now possible for apps teams and ops teams to manage the life cycles of apps and
services independently.

However, it’s still not an ideal solution, and some limitations from level 1 still exist in level 2. The
service resource still must be bindable, and apps teams still must know the name, namespace, and
API group, version, and kind of the service resource. In addition, ops teams must ensure that the
service resources exist. These resources must be manually provisioned and permitted to be claimed
through policy, otherwise resource claims created by the apps teams remain in a pending state
indefinitely.

Level 3 - class claims and pool-based classes
Level 3 introduces class claims and pool-based classes. Originally released with Tanzu Application
Platform v1.4, class claims and pool-based classes help to alleviate the issue of apps teams having to
know detailed information about service resources.

Tanzu Application Platform v1.5

VMware by Broadcom 1270

https://github.com/servicebinding/spec#resource-type-schema-1


Level 3 builds on the example in level 2, which has an application workload in a namespace foo and
a service resource in a namespace bar. Rather than relying on resource claim and resource claim
policy, level 3 introduces a class claim and a pool-based class.

The pool-based class can pool service resources using label or field selectors from across all
namespaces on the cluster. Ops teams create the service resources and then create a class to
gather them all together into one logical group that apps teams can discover and claim from.

Apps teams can discover the available classes using the tanzu service class list command.
Rather than creating a resource claim, they instead create a higher-level abstraction - a class claim.
The class claim refers to the name of a class. You only need to create a class claim referring to a
class and then bind your application workload to the class claim. There is no longer a need to
provide detailed information such as the API group, version, and kind for the service resource
behind the class.

Level 3 is much simpler for apps teams to consume services and the separation of concerns is much
neater. A few limitations still remain. Service resources must still be bindable and ops teams still
must manually provision the service resources to fill the pool.

Level 4 - class claims and provisioner-based classes (aka
“Dynamic Provisioning”)
Level 4 is the current highest level of service consumption in Tanzu Application Platform. Released
in Tanzu Application Platform v1.5, it introduces provisioner-based classes, which, together with
class claims, power Tanzu Application Platform’s dynamic provisioning capability.

Tanzu Application Platform v1.5

VMware by Broadcom 1271



Level 4 builds on the example in level 3, but the class now defines a provisioner rather than a pool.
Services Toolkit in Tanzu Application Platform v1.5 supports one provisioner type - Crossplane.
Support for new provisioners might be added in the future.

When you create a class claim that refers to a provisioner-based class, the Services Toolkit
controller requests the provisioner to provision the resources necessary to create a service instance
that can then be bound to application workloads. In this example, the provisioner creates a
namespace, a service resource, and a secret that conforms to the binding specification. Then, that
secret is wired all the way back through to the application workload.

Two big advantages are realized at level 4. Firstly, ops teams no longer need to manually provision
service resources. They are now created on-demand as and when needed. This not only helps to
remove unnecessary burden from ops teams, but also helps to provide better use of resources
because service resources no longer need to remain in a pool waiting to be claimed. The second
advantage is that service resources no longer need to be bindable. The provisioner can act almost
like an adapter to bring pretty much any service you can think of into Tanzu Application Platform.
The only requirement is that the provisioner create a binding-conforming secret that holds
credentials for the provisioned service resources. You can configure this once during the dynamic
provisioning setup.

While level 4 is very powerful and seemingly solves the problems mentioned so far, it’s not entirely
without its drawbacks. The main one being that all this flexibility comes at the cost of added
complexity. There are many, many more moving parts involved at level 4 when compared to level 1.
However, it might be a price worth paying to benefit from all that is on offer.

Summary

By now you have seen how each new level builds and improves upon the last. All levels are also
valid use cases in their own right.

Tanzu Application Platform v1.5

VMware by Broadcom 1272

https://www.crossplane.io/


Tanzu Application Platform users can decide which level to operate at. Finding the level that is right
for your situation depends on a number of factors, such as, the size of the organization you work for
and the layout of apps teams and ops teams within the org.

If you work at a small startup in which there are no strict divides between apps teams and ops
teams, level 1 might be suitable for your needs. However, if you work for a large organization with
distinct and dedicated apps and ops teams, choosing one of the higher levels in which that
separation is better catered to might make more sense. If you are not sure, it’s probably best to
start with level 4. Level 4 provides the ultimate services experience on Tanzu Application Platform,
and as such will hopefully meet all your services needs.

Class claims compared to resource claims
There are two types of claim you can choose from when working with services on Tanzu
Application Platform (commonly known as TAP). These are ClassClaim and ResourceClaim. This
Services Toolkit topic explains the similarities and differences between the two and when using one
is preferable over the other.

It is usually advisable to work with a ClassClaim where possible as they are easier to create and are
more portable across multiple clusters. They are also used as the trigger mechanism for dynamic
provisioning of service instances.

Similarities
Both APIs express that you want to access to a service instance.

Both APIs adhere to the ProvisionedService duck type. They both have the field
.status.binding.name in their API. This means that you can target them using a
ServiceBinding and, therefore, you can feed them into Cartographer’s Workload API.

Both APIs ensure that mutual exclusivity of claims on service instances. After using either a
ClassClaim or a ResourceClaim to claim a service instance, no other ClassClaim or a
ResourceClaim can claim that same service instance.

Using a ResourceClaim
A ResourceClaim targets a specific resource in the Kubernetes cluster. To target that resource, the
ResourceClaim needs the name, namespace, kind, and API version of the resource.

The specificity of the ResourceClaim means it is most useful when you must guarantee which
service instance the application workload uses. For example, if the application must connect to the
exact same database instance while it advances through development, test, and production

Tanzu Application Platform v1.5

VMware by Broadcom 1273



environments. If you do not need this guarantee VMware recommends that you use the ClassClaim
API instead.

Using a ClassClaim

A ClassClaim targets a ClusterInstanceClass in the Kubernetes cluster. To target this class, the
ClassClaim only requires the name of the ClusterInstanceClass.

The ClusterInstanceClass can represent any set of service instances and therefore each time you
create a new ClassClaim, you can claim any of the service instances represented by that
ClusterInstanceClass. After a ClassClaim has claimed a service instance, it never looks for another.
This is true even if the ClassClaim’s spec is updated, or the ClusterInstanceClass is updated.
Therefore, the ClassClaim is performing a point-in-time lookup at its creation, using the
ClusterInstanceClass for that lookup.

The loose coupling between the ClassClaim and the service instances means that a ClassClaim is
best in situations where:

You must inject different service instances into the application workload at different points
in its advancement from development to production environments. For more information,
see Abstracting Service Implementations Behind A Class Across Clusters.

The ClassClaim, and also any workload referencing it, must be promoted from one
environment to the next without changing their specification.

The ClassClaim is the only type of claim that you can use to dynamically provision service instances.

Tutorials

In this section:

For apps teams:

Working with Bitnami Services

For ops teams:

Set up dynamic provisioning of service instances

Integrating cloud services into Tanzu Application Platform

Using direct secret references

Abstracting service implementations behind a class across clusters

Set up dynamic provisioning of service instances

In this Services Toolkit tutorial you learn how service operators can set up a new, self-serve, and
customized service for Tanzu Application Platform (commonly known as TAP). The example uses
VMware RabbitMQ for Kubernetes, but the steps and learnings can apply to almost any other
service.

About this tutorial

Target user role: Service Operator
Complexity: Advanced
Estimated time: 60 minutes
Topics covered: Dynamic Provisioning, Crossplane, VMware RabbitMQ for Kubernetes operator
Learning outcomes: Ability to offer new, on-demand, and customized services in your Tanzu
Application Platform clusters

Tanzu Application Platform v1.5

VMware by Broadcom 1274



Prerequisites

Access to a Tanzu Application Platform cluster v1.5.0 or later.

Basic familiarity with Crossplane, particularly the concepts of Composition and
CompositeResourceDefinitions.

Scenario

The tutorial is centered around the following hypothetical, but somewhat realistic, real-world
scenario.

You work at BigCorp and are tasked to provide an on-demand, self-serve RabbitMQ service for
BigCorp’s development teams who are working with Tanzu Application Platform. You have already
reviewed the RabbitMQ offering that is available with Bitnami Services, but have discovered that
while it is an excellent service for testing and for quickly getting started, it is not quite suitable for
BigCorp’s stringent and specific needs.

In particular, you must comply with BigCorp’s auditing and logging policy, and want to enforce that
every RabbitMQ cluster in use on the platform adheres to that policy. At the same time, you don’t
want to be a blocker for the application teams and want to offer them self-serve access to
RabbitMQ whenever they need it, without incurring any untoward delays. You have heard great
things about Tanzu Application Platform’s dynamic provisioning capability, and are now looking to
make use of it to help you complete your task.

In this tutorial you will learn how to:

Install the RabbitMQ Cluster Kubernetes operator

Create a CompositeResourceDefinition

Create a Composition

Create a provisioner-based class

Understand and create the necessary RBAC permissions

Create a claim for the class to test it all out

Understand how all the pieces fit together to power the dynamic provisioning capability in
Tanzu Application Platform

Concepts

The following diagram provides an overview of the elements of dynamic provisioning and how they
fit together.

Tanzu Application Platform v1.5

VMware by Broadcom 1275

https://docs.crossplane.io/v1.11/concepts/composition/


The following is a high-level overview of how the system works:

1. The service operator creates a CompositeResourceDefinition and a Composition, which
together define the configuration of the service instances that will be dynamically
provisioned.

2. The service operator creates a class pointing to the CompositeResourceDefinition. This
informs application development teams that the service is available.

3. The service operator applies necessary Role-Based Access Control (RBAC) to permit the
system to create the necessary resources, and to authorize application development teams
to create claims for the class.

4. The application developer creates a claim referring to the class, optionally passing through
parameters to override any default configuration where permissible.

5. The system creates a CompositeResource, merging information provided in the claim with
default configuration specified by the system and configuration defined in the Composition.

6. Crossplane reconciles the CompositeResource into a service instance and writes credentials
for the instance into a Secret.

7. The Secret is written back to the application developer’s namespace, so that application
workloads can use it.

As you follow this tutorial, it will address the parts of this diagram in more detail.

Procedure
The following steps show how to configure dynamic provisioning for a service.

Step 1: Install the operator

When adding any new service to Tanzu Application Platform, ensure that there are a suitable set of
APIs available in the cluster from which to construct the service instances. Usually, this involves
installing one or more Kubernetes Operators into the cluster.

Given the aim of this tutorial is to set up a new RabbitMQ service, install the RabbitMQ Cluster
Operator for Kubernetes.

Note

Tanzu Application Platform v1.5

VMware by Broadcom 1276



Use kapp to install the operator by running:

kapp -y deploy --app rmq-operator --file https://github.com/rabbitmq/cluster-operator/

releases/latest/download/cluster-operator.yml

This causes a new API Group/Version of rabbitmq.com/v1beta1 and Kind named RabbitmqCluster
to become available in the cluster. You can now use this API to create RabbitMQ cluster instances
as part of the dynamic provisioning setup.

Step 2: Creating a CompositeResourceDefinition

Tanzu Application Platform’s dynamic provisioning capability relies on Crossplane. You can find the
specific integration point at .spec.provisioner.crossplane.compositeResourceDefinition in Tanzu
Application Platform’s ClusterInstanceClass API.

As the name suggests, this field is looking for a CompositeResourceDefinition, which you create in
this step of the procedure. The CompositeResourceDefinition (XRD) defines the shape of a new,
custom API type that encompasses the specific set of requirements laid out by the scenario in this
tutorial.

Create a file named xrabbitmqclusters.messaging.bigcorp.org.xrd.yaml and copy in the following
contents.

# xrabbitmqclusters.messaging.bigcorp.org.xrd.yaml

---

apiVersion: apiextensions.crossplane.io/v1

kind: CompositeResourceDefinition

metadata:

  name: xrabbitmqclusters.messaging.bigcorp.org

spec:

  connectionSecretKeys:

  - host

  - password

  - port

  - provider

  - type

  - username

  group: messaging.bigcorp.org

  names:

    kind: XRabbitmqCluster

    plural: xrabbitmqclusters

  versions:

  - name: v1alpha1

    referenceable: true

    schema:

      openAPIV3Schema:

        properties:

          spec:

            description: The OpenAPIV3Schema of this Composite Resource Definition.

            properties:

              replicas:

                description: The desired number of replicas forming the cluster

                type: integer

              storageGB:

                description: The desired storage capacity of a single replica, in GB.

The steps in this tutorial use the open source version of the operator. For most
real-world deployments, VMware recommends using the official, supported version
provided by VMware. For more information, see VMware RabbitMQ for
Kubernetes.

Tanzu Application Platform v1.5

VMware by Broadcom 1277

https://www.crossplane.io/
https://docs.vmware.com/en/VMware-RabbitMQ-for-Kubernetes/index.html


                type: integer

            type: object

        type: object

    served: true

Then use kubectl to apply the file to the Tanzu Application Platform cluster.

kubectl apply -f xrabbitmqclusters.messaging.bigcorp.org.xrd.yaml

For a detailed explanation of CompositeResourceDefinition see, the Crossplane documentation.

The following is a condensed explanation of the most relevant pieces of the
CompositeResourceDefinition configuration, provided in this section, as it relates to dynamic
provisioning in Tanzu Application Platform.

The example in this tutorial does not specify .spec.claimNames in the XRD. Tanzu Application
Platform’s dynamic provisioning capability makes use of Crossplane’s cluster-scoped Composite
Resources, rather than the namespace-scoped Claims (“Claims” here not to be confused with
Tanzu Application Platform’s own concept of claims). As such, this configuration is not required,
although it does not cause any adverse effects if you add it.

Next, see the .spec.connectionKeys field. This field detects the keys that will exist in the Secret
resulting from the dynamic provisioning request. You likely want this Secret to conform with the
Service Binding Specification for Kubernetes, as this, in part, is what allows for automatic
configuration of the service instance by Tanzu Application Platform’s application workloads. This is
assuming that the application is using a binding-aware library such as Spring Cloud Bindings.
Specific key name requirements vary by service type, however all must provide the type key.

Finally, see the .spec.properties section in the schema for v1alpha1. This is where you, as the
service operator, can set which configuration options you want to expose to application
development teams. In the example in this section, there are two configuration options: replicas
and storageGB. By adding these properties to the specification, you are handing over control of
these specific configuration options to the development teams. For example, you might want to
add storageGB if the development teams have more knowledge about how much storage their
apps require than you do. By adding storageGB you can allow them to decide for themselves how
much storage they require.

You can choose to add as many or as few configuration options here as you like. You can also
choose to set default values. In highly regulated environments, you might not want to allow for any
configuration by developers at all.

In the scenario at the beginning of this tutorial, it says that you must comply with the auditing and
logging policy. You do not specify any configuration related to auditing or logging in the XRD in this
step. This is intentional as in this scenario there are strict auditing and logging requirements and
cannot permit developers to override those. In the next step you learn how to ensure that those
requirements get enforced on the resulting RabbitMQ clusters.

To verify the status of the XRD you created, run:

kubectl get xrds

If successful, the xrabbitmqclusters.messaging.bigcorp.org is listed with ESTABLISHED=True.

You might see some other XRDs listed as well. These are the *.bitnami.*.tanzu.vmware.com XRDs.
These are part of the bitnami.services.tanzu.vmware.com package with Tanzu Application
Platform and serve as the basis of the Bitnami Services. You can ignore these other XRDs for now,
but if you want to see how they are used in practice, see Claim services on Tanzu Application
Platform and Consume services on Tanzu Application Platform in the Tanzu Application Platform
getting started guide.

Tanzu Application Platform v1.5

VMware by Broadcom 1278

https://docs.crossplane.io/latest/concepts/composite-resource-definitions/
https://github.com/servicebinding/spec
https://github.com/spring-cloud/spring-cloud-bindings


As a result of creating the XRD, a new API Group/Version of messaging.bigcorp.org/v1alpha1 and
Kind named XRabbitmqCluster become available in the cluster. If you inspect this API further,
notice that the replicas and storageGB properties configured in the XRD are present in the
specification of XRabbitmqCluster.

kubectl explain --api-version=messaging.bigcorp.org/v1alpha1 xrabbitmqclusters.spec

You will also notice that Crossplane has injected some other fields into the specification as well, but
you can mostly ignore these for now.

Step 3: Creating a Crossplane Composition

You do most of the configuration for dynamic provisioning during the creation of the Composition.

For a more detailed explanation about the Composition, see the Crossplane documentation.

The following are the basics you must know to start to create a Composition for use in Tanzu
Application Platform.

Create a file named xrabbitmqclusters.messaging.bigcorp.org.composition.yaml and copy in the
following contents.

# xrabbitmqclusters.messaging.bigcorp.org.composition.yaml

---

apiVersion: apiextensions.crossplane.io/v1

kind: Composition

metadata:

  name: xrabbitmqclusters.messaging.bigcorp.org

spec:

  compositeTypeRef:

    apiVersion: messaging.bigcorp.org/v1alpha1

    kind: XRabbitmqCluster

  resources:

  - base:

      apiVersion: kubernetes.crossplane.io/v1alpha1

      kind: Object

      spec:

        forProvider:

          manifest:

            apiVersion: rabbitmq.com/v1beta1

            kind: RabbitmqCluster

            metadata:

              namespace: rmq-clusters

            spec:

              terminationGracePeriodSeconds: 0

              replicas: 1

              persistence:

                storage: 1Gi

              resources:

                requests:

                  cpu: 200m

                  memory: 1Gi

                limits:

                  cpu: 300m

                  memory: 1Gi

              rabbitmq:

                envConfig: |

                  RABBITMQ_LOGS=""

                additionalConfig: |

                  log.console = true

                  log.console.level = debug

                  log.console.formatter = json

                  log.console.formatter.json.field_map = verbosity:v time msg domain f

Tanzu Application Platform v1.5

VMware by Broadcom 1279

https://docs.crossplane.io/latest/concepts/composition/


ile line pid level:-

                  log.console.formatter.json.verbosity_map = debug:7 info:6 notice:5 w

arning:4 error:3 critical:2 alert:1 emergency:0

                  log.console.formatter.time_format = epoch_usecs

        connectionDetails:

        - apiVersion: v1

          kind: Secret

          namespace: rmq-clusters

          fieldPath: data.provider

          toConnectionSecretKey: provider

        - apiVersion: v1

          kind: Secret

          namespace: rmq-clusters

          fieldPath: data.type

          toConnectionSecretKey: type

        - apiVersion: v1

          kind: Secret

          namespace: rmq-clusters

          fieldPath: data.host

          toConnectionSecretKey: host

        - apiVersion: v1

          kind: Secret

          namespace: rmq-clusters

          fieldPath: data.port

          toConnectionSecretKey: port

        - apiVersion: v1

          kind: Secret

          namespace: rmq-clusters

          fieldPath: data.username

          toConnectionSecretKey: username

        - apiVersion: v1

          kind: Secret

          namespace: rmq-clusters

          fieldPath: data.password

          toConnectionSecretKey: password

        writeConnectionSecretToRef:

          namespace: rmq-clusters

    connectionDetails:

    - fromConnectionSecretKey: provider

    - fromConnectionSecretKey: type

    - fromConnectionSecretKey: host

    - fromConnectionSecretKey: port

    - fromConnectionSecretKey: username

    - fromConnectionSecretKey: password

    patches:

      - fromFieldPath: metadata.name

        toFieldPath: spec.forProvider.manifest.metadata.name

        type: FromCompositeFieldPath

      - fromFieldPath: spec.replicas

        toFieldPath: spec.forProvider.manifest.spec.replicas

        type: FromCompositeFieldPath

      - fromFieldPath: spec.storageGB

        toFieldPath: spec.forProvider.manifest.spec.persistence.storage

        transforms:

        - string:

            fmt: '%dGi'

            type: Format

          type: string

        type: FromCompositeFieldPath

      - fromFieldPath: metadata.name

        toFieldPath: spec.writeConnectionSecretToRef.name

        transforms:

        - string:

            fmt: '%s-rmq'

            type: Format

          type: string

Tanzu Application Platform v1.5

VMware by Broadcom 1280



        type: FromCompositeFieldPath

      - fromFieldPath: metadata.name

        toFieldPath: spec.connectionDetails[0].name

        transforms:

        - string:

            fmt: '%s-default-user'

            type: Format

          type: string

        type: FromCompositeFieldPath

      - fromFieldPath: metadata.name

        toFieldPath: spec.connectionDetails[1].name

        transforms:

        - string:

            fmt: '%s-default-user'

            type: Format

          type: string

        type: FromCompositeFieldPath

      - fromFieldPath: metadata.name

        toFieldPath: spec.connectionDetails[2].name

        transforms:

        - string:

            fmt: '%s-default-user'

            type: Format

          type: string

        type: FromCompositeFieldPath

      - fromFieldPath: metadata.name

        toFieldPath: spec.connectionDetails[3].name

        transforms:

        - string:

            fmt: '%s-default-user'

            type: Format

          type: string

        type: FromCompositeFieldPath

      - fromFieldPath: metadata.name

        toFieldPath: spec.connectionDetails[4].name

        transforms:

        - string:

            fmt: '%s-default-user'

            type: Format

          type: string

        type: FromCompositeFieldPath

      - fromFieldPath: metadata.name

        toFieldPath: spec.connectionDetails[5].name

        transforms:

        - string:

            fmt: '%s-default-user'

            type: Format

          type: string

        type: FromCompositeFieldPath

    readinessChecks:

      - type: MatchString

        fieldPath: status.atProvider.manifest.status.conditions[1].status # ClusterAva

ilable

        matchString: "True"

Use kubectl to apply the file to the Tanzu Application Platform cluster.

kubectl apply -f xrabbitmqclusters.messaging.bigcorp.org.composition.yaml

About .spec.compositeTypeRef

The .spec.compositeTypeRef is configured to refer to XRabbitmqCluster on the
messaging.bigcorp.org/v1alpha1 API group and version.

Tanzu Application Platform v1.5

VMware by Broadcom 1281



...

spec:

  compositeTypeRef:

    apiVersion: messaging.bigcorp.org/v1alpha1

    kind: XRabbitmqCluster

...

This is the API that was created when you applied the XRD in Step 2: Creating a
CompositeResourceDefinition. By configuring .spec.compositeTypeRef to refer to this API, you are
instructing Crossplane to use the configuration contained within this Composition to compose
subsequent managed resources whenever it observes that a new XRabbitmqCluster resource is
created in the cluster. Tanzu Application Platform’s dynamic provisioning system creates the
XRabbitmqCluster resources automatically. To visualize how these pieces fit together, see the
diagram in the Concepts section.

About .spec.resources

The .spec.resources section is where you specify the managed resources to be created. Managed
resources are tied to Crossplane’s Providers, with each Provider defining a set of managed
resources which can then be used in compositions. Tanzu Application Platform includes two
Providers with the Crossplane package: provider-helm and provider-kubernetes. This makes a
Release managed resource available, which is used to manage Helm releases, and makes an Object
managed resource available, which used to manage arbitrary Kubernetes resources. You can install
and use any other Provider. To find the latest providers, see the Upbound Marketplace. The more
providers you install, the more managed resources you can choose from in your compositions.

The Object managed resource

The overarching goal is to compose whatever resources are necessary to create functioning, usable
service instances and to surface the credentials and connectivity information required to connect to
those instances in a known and repeatable way. This tutorial uses the RabbitmqCluster resource,
which presents one single API to use to create fully functioning RabbitMQ clusters, credentials for
which get stored in Secrets in the cluster.

However, RabbitmqCluster is not a Crossplane managed resource so you cannot refer to this
resource directly under .spec.resources. To work around this, use provider-kubernetes and its
corresponding Object managed resource. Object enables you to wrap any arbitrary Kubernetes
resource, such as RabbitmqCluster, into a Crossplane managed resource and to then use them like
any other managed resource inside Compositions.

...

spec:

  resources:

  - base:

      apiVersion: kubernetes.crossplane.io/v1alpha1

      kind: Object

      spec:

        forProvider:

          manifest:

            apiVersion: rabbitmq.com/v1beta1

            kind: RabbitmqCluster

            metadata:

              namespace: rmq-clusters

            spec:

              terminationGracePeriodSeconds: 0

              replicas: 1

              persistence:

                storage: 1Gi

Tanzu Application Platform v1.5

VMware by Broadcom 1282

https://github.com/crossplane-contrib/provider-helm
https://github.com/crossplane-contrib/provider-kubernetes
https://marketplace.upbound.io/providers


              resources:

                requests:

                  cpu: 200m

                  memory: 1Gi

                limits:

                  cpu: 300m

                  memory: 1Gi

              rabbitmq:

                envConfig: |

                  RABBITMQ_LOGS=""

                additionalConfig: |

                  log.console = true

                  log.console.level = debug

                  log.console.formatter = json

                  log.console.formatter.json.field_map = verbosity:v time msg domain f

ile line pid level:-

                  log.console.formatter.json.verbosity_map = debug:7 info:6 notice:5 w

arning:4 error:3 critical:2 alert:1 emergency:0

                  log.console.formatter.time_format = epoch_usecs

...

The Object managed resource is where you configure RabbitmqCluster resources. This is the place
in which you can now fine-tune the configuration of the RabbitMQ Clusters to your needs.

Recall from the hypothetical scenario that you are particularly concerned about your company’s
logging policy. The configuration in the Object translates that hypothetical policy into default
configuration on the RabbitmqCluster resource by specifying .spec.rabbitmq.additionalConfig for
the resource. This was taken from one of the examples in the RabbitMQ Cluster Operator GitHub
repository. You can configure the resource however you want and to whatever requirements
necessary.

The patches section

The Object also sets default values for the number of replicas and the amount of persistent storage
for new RabbitmqClusters to one replica and 1 Gi. However, you want to allow these two values to
be configurable by the application development teams as specified in Step 2: Creating a
CompositeResourceDefinition. You can configure this using patches.

...

patches:

  - fromFieldPath: metadata.name

    toFieldPath: spec.forProvider.manifest.metadata.name

    type: FromCompositeFieldPath

...

The first thing to note is that all the patches are of type FromCompositeFieldPath, which allows you
to take values defined on the composite resource (XRabbitmqCluster in this case) and to pass them
through to the underlying managed resource (an Object wrapping RabbitmqCluster in this case).
The first patch sets the name of the RabbitmqCluster to the same name as the name of the
composite resource XRabbitmqCluster, which were created using generateName, thereby ensuring a
unique name for each dynamically provisioned RabbitmqCluster instance.

...

patches:

...

  - fromFieldPath: spec.replicas

    toFieldPath: spec.forProvider.manifest.spec.replicas

    type: FromCompositeFieldPath

  - fromFieldPath: spec.storageGB

    toFieldPath: spec.forProvider.manifest.spec.persistence.storage

    transforms:

Tanzu Application Platform v1.5

VMware by Broadcom 1283

https://github.com/rabbitmq/cluster-operator/blob/main/docs/examples/json-log/rabbitmq.yaml


    - string:

        fmt: '%dGi'

        type: Format

      type: string

    type: FromCompositeFieldPath

...

The second and third patches pass through configuration for the number of replicas and amount of
persistent storage, which overrides the default values already configured.

The remaining patches all do the same thing, which is to patch in the name of the Secret for the
fields in the connectionDetails section.

...

- fromFieldPath: metadata.name

  toFieldPath: spec.connectionDetails[0].name

  transforms:

  - string:

      fmt: '%s-default-user'

      type: Format

    type: string

  type: FromCompositeFieldPath

...

When creating a RabbitmqCluster resource using the RabbitMQ Cluster Kubernetes operator, the
operator creates a Secret containing credentials and connectivity information used to connect to
the cluster. That Secret is named x-default-user, where x is the name of the RabbitmqCluster
resource. Because the name of the RabbitmqCluster cannot be known upfront, you must use
patches to ensure that the connectionDetails section refers to the correctly-named Secret.

The connectionDetails sections are where you configure which keys and values to expose in the
resulting Secret. You must specify the same set of keys as defined in the original XRD.

The readinessChecks section

Configuring readiness checks helps to keep consumers of dynamic provisioning, that is, the
application teams, informed about when the resulting service instances are ready for application
workloads to use.

...

readinessChecks:

  - type: MatchString

    fieldPath: status.atProvider.manifest.status.conditions[1].status # ClusterAvailab

le

    matchString: "True"

Where possible it is simplest to use the Ready condition to verify readiness. However, the
RabbitmqCluster API doesn’t expose a simple Ready condition, so you must configure the ready
check on ClusterAvailable instead.

Check the namespace

One final important decision is the name of the namespace in which to create the dynamically
provisioned RabbitmqCluster resources. This tutorial uses the rmq-clusters namespace.

...

spec:

  resources:

  - base:

      apiVersion: kubernetes.crossplane.io/v1alpha1

Tanzu Application Platform v1.5

VMware by Broadcom 1284



      kind: Object

      spec:

        forProvider:

          manifest:

            apiVersion: rabbitmq.com/v1beta1

            kind: RabbitmqCluster

            metadata:

              namespace: rmq-clusters

...

To make sure that the rmq-clusters namespace exists.

kubectl create namespace rmq-clusters

This configuration says that all dynamically provisioned RabbitmqCluster resources must be placed
in the same rmq-clusters namespace. If you want to place each new cluster into a separate
namespace, you must create an additional Object managed resource to wrap the creation of a
Namespace and to apply patches to the resources accordingly. For this tutorial you only require one
namespace.

Step 4: Creating a provisioner-based class

The creation of the XRD and the Composition brings to an end the Crossplane-centric part of this
tutorial. What remains is to integrate all that you configured into Tanzu Application Platform’s
classes and claims model so that application teams can more easily make use of it. The first step
here is to create a provisioner-based class and to point it at the XRD you created.

Create a file named bigcorp-rabbitmq.class.yaml and copy in the following contents.

# bigcorp-rabbitmq.class.yaml

---

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ClusterInstanceClass

metadata:

  name: bigcorp-rabbitmq

spec:

  description:

    short: On-demand RabbitMQ clusters precision engineered to meet the needs of BigCo

rp!

  provisioner:

    crossplane:

      compositeResourceDefinition: xrabbitmqclusters.messaging.bigcorp.org

Then use kubectl to apply the file to the Tanzu Application Platform cluster.

kubectl apply -f bigcorp-rabbitmq.class.yaml

This is referred to as a provisioner-based class due to the configuration of .spec.provisioner. For
more information, see ClusterInstanceClass.

By creating this class you are informing application teams that the service is available. Application
teams can discover it by using the tanzu service class list command. They can also use tanzu
service class get bigcorp-rabbitmq, which provides detailed information about the class,
including details of the replicas and storageGB parameters that you configured earlier.

Step 5: Configure supporting RBAC

There are two parts of RBAC to consider when you set up a new service for dynamic provisioning in
Tanzu Application Platform. The first relates to granting permissions to the providers used in the
compositions. The Composition created earlier uses Object managed resources ultimately to create

Tanzu Application Platform v1.5

VMware by Broadcom 1285



RabbitmqCluster resources. Therefore, you must grant provider-kubernetes permission to create
RabbitmqCluster resources. You can do this by using an aggregating ClusterRole as follows.

Create a file named provider-kubernetes-rmqcluster-read-writer.rbac.yaml and copy in the
following contents.

# provider-kubernetes-rmqcluster-read-writer.rbac.yaml

---

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

  name: rmqcluster-read-writer

  labels:

    services.tanzu.vmware.com/aggregate-to-provider-kubernetes: "true"

rules:

- apiGroups:

  - rabbitmq.com

  resources:

  - rabbitmqclusters

  verbs:

  - "*"

Then use kubectl to apply the file to the Tanzu Application Platform cluster.

kubectl apply -f provider-kubernetes-rmqcluster-read-writer.rbac.yaml

While not necessary here, a corresponding label services.tanzu.vmware.com/aggregate-to-
provider-helm: "true" exists for aggregating RBAC permissions to provider-helm as well.

The second element of RBAC detects who is authorized to use the new service. This is an
important piece of configuration. You are configuring an on-demand service and making it available
to application teams. Without any other supporting policy in place, application teams can create as
many RabbitmqClusters as they like. This is of course the whole point of an on-demand service, but
you must be conscious of resource use, and might want to control who can create new service
instances on-demand.

You can grant authorization by using standard Kubernetes RBAC resources. Dynamic provisioning
uses a custom RBAC verb, claim, which you can apply to classes to permit claiming from classes.

Create a file named app-operator-claim-class-bigcorp-rabbitmq.rbac.yaml and copy in the
following contents.

# app-operator-claim-class-bigcorp-rabbitmq.rbac.yaml

---

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

  name: app-operator-claim-class-bigcorp-rabbitmq

  labels:

    apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access: "true"

rules:

- apiGroups:

  - services.apps.tanzu.vmware.com

  resources:

  - clusterinstanceclasses

  resourceNames:

  - bigcorp-rabbitmq

  verbs:

  - claim

Then use kubectl to apply the file to the Tanzu Application Platform cluster.

Tanzu Application Platform v1.5

VMware by Broadcom 1286



kubectl apply -f app-operator-claim-class-bigcorp-rabbitmq.rbac.yaml

This ClusterRole grants anyone holding the app-operator Tanzu Application Platform user role the
ability to claim from the bigcorp-rabbitmq class.

Step 6: Verify your configuration

To test your configuration, create a claim for the class and thereby trigger the dynamic provisioning
of a new RabbitMQ cluster. This step is typically performed by the application operator, rather than
the service operator, but it is important that you to confirm that everything is configured correctly.

Create a file named bigcorp-rmq-1.claim.yaml and copy in the following contents.

# bigcorp-rmq-1.claim.yaml

---

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ClassClaim

metadata:

  name: bigcorp-rmq-1

spec:

  classRef:

    name: bigcorp-rabbitmq

  parameters:

    storageGB: 2

    replicas: 3

Then use kubectl to apply the file to the Tanzu Application Platform cluster.

kubectl apply -f bigcorp-rmq-1.claim.yaml

After the RabbitMQ service is provisioned, the claim status reports Ready=True.

kubectl get classclaim bigcorp-rmq-1

Working with Bitnami Services

For the tutorial about working with Bitnami Services, see Working with Bitnami Services.

Integrating cloud services into Tanzu Application Platform

In this Services Toolkit tutorial you learn how service operators can integrate the cloud services of
their choice into Tanzu Application Platform (commonly known as TAP).

There are a multitude of cloud-based services available on the market for consumers today. AWS,
Azure, and GCP all provide support for a wide range of fully-managed, performant and on-demand
services ranging from databases, to message queues, to storage solutions and beyond. In this
tutorial you will learn how to integrate any one of these services into Tanzu Application Platform, so
that you can offer it for apps teams to consume in a simple and effective way.

This tutorial is written at a slightly higher level than the other tutorials in this documentation. This is
because it is not feasible to write detailed, step-by-step documentation for integrating every cloud-
based service into Tanzu Application Platform. Each service brings a different set of considerations
and concerns.

Instead, this tutorial guides you through the general approach to integrating cloud-based services
into Tanzu Application Platform. While specific configurations change between services, the overall
process remains the same through a consistent set of steps. The aim is to give you enough

Tanzu Application Platform v1.5

VMware by Broadcom 1287



understanding so that you can integrate any cloud-based service you want into Tanzu Application
Platform.

For a more specific and low-level procedure, see Configure dynamic provisioning of AWS RDS
service instances, which provides each step in detail for AWS RDS integration. It might be useful to
read through that guide even if you want to integrate with one of the other cloud providers.

About this tutorial

Target user role: Service Operator
Complexity: Advanced
Estimated time: 30 minutes
Topics covered: Dynamic Provisioning, Cloud-based Services, AWS, Azure, GCP, Crossplane
Learning outcomes: An understanding of the steps involved in integrating cloud-based services
into Tanzu Application Platform

Concepts

The following is a high-level workflow outlining what is required to integrate a cloud-based service
into Tanzu Application Platform.

1. Install Provider and create ProviderConfig:

Follow the official Upbound documentation to install the Provider and create a
ProviderConfig.

2. Create CompositeResourceDefinition:

Create a CompositeResourceDefinition to define the shape of a new API type
representing the service.

Choose which (if any) configuration parameters to expose to apps teams.

3. Create Composition:

Create a Composition using managed resources supplied by the Provider.

You can compose as many or as few managed resources as required to generate a
service instance that application workloads can connect to and use over the
network.

(Optional but recommended) Configure the connection secret to adhere to the
Service Binding Specification for Kubernetes.

4. Create provisioner-based ClusterInstanceClass:

Create a provisioner-based ClusterInstanceClass pointing to the
CompositeResourceDefinition created earlier.

5. Create required RBAC:

Create RBAC using the claim verb pointing to the provisioner-based
ClusterInstanceClass to permit claiming from the class.

6. Create ClassClaim:

Create a ClassClaim pointing to the provisioner-based ClusterInstanceClass to begin
a dynamic provisioning request.

Wait for the ClassClaim to report READY=True.

Procedure

Tanzu Application Platform v1.5

VMware by Broadcom 1288



This tutorial provides the steps required to integrate cloud services, and includes tips and
references to example configurations where appropriate.

Step 1: Install a Provider

Install a suitable Crossplane Provider for your cloud of choice. Upbound provides support for the
three main cloud providers:

provider-aws

provider-azure

provider-gcp

Choose the Provider you want, and then follow Upbound’s official documentation to install the
Provider and to create a corresponding ProviderConfig.

Step 2: Create a CompositeResourceDefinition

Create a CompositeResourceDefinition, which defines the shape of a new API type which is used
to create the cloud-based resources.

For help creating the CompositeResourceDefinition, see the Crossplane documentation, or see
Create a CompositeResourceDefinition in Configure dynamic provisioning of AWS RDS service
instances.

Step 3: Create a Composition

This step is likely to be the most time-consuming. The Composition is where you define the
configuration for the resources that make up the service instances for app teams to claim.
Configure the necessary resources for usable service instances that users can connect to and use
over the network.

To get started with creating a Composition, first read through Configuring Composition in the
Upbound documentation.

You can also see the following Composition examples:

For AWS RDS, see Define composite resource types (AWS).

Note

These cloud-based Providers often install many hundreds of additional CRDs onto
the cluster, which can have a negative impact on cluster performance. For more
information, see Cluster performance degradation due to large number of CRDs.

Important

The official documentation for the Provider includes a step to “Install Universal
Crossplane”. You can skip this step because Crossplane is already installed as part of
Tanzu Application Platform.

The documentation also assumes Crossplane is installed in the upbound-system
namespace. However, when working with Crossplane on Tanzu Application
Platform, it is installed to the crossplane-system namespace by default. Ensure that
you use the correct namespace when you create the Secret and the
ProviderConfig with credentials for the Provider.

Tanzu Application Platform v1.5

VMware by Broadcom 1289

https://marketplace.upbound.io/providers/upbound/provider-aws/latest
https://marketplace.upbound.io/providers/upbound/provider-azure/latest
https://marketplace.upbound.io/providers/upbound/provider-gcp/latest
https://docs.crossplane.io/latest/concepts/composition/#defining-composite-resources
https://docs.crossplane.io/v1.11/concepts/composition/#configuring-composition
https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.9/svc-tlk/usecases-consuming_aws_rds_with_crossplane.html#def-comp-rsrc-types


For Azure Flexible Server, see Define Composite Resource Types (Azure).

For GCP Cloud SQL, see Define Composite Resource Types (GCP).

Step 4: Create a provisioner-based ClusterInstanceClass

Create a provisioner-based ClusterInstanceClass which is configured to refer to the
CompositeResourceDefinition created earlier. For example:

---

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ClusterInstanceClass

metadata:

  name: cloud-service-foo

spec:

  description:

    short: FooDB by cloud provider Foo!

  provisioner:

    crossplane:

      compositeResourceDefinition: NAME-OF-THE-COMPOSITE-RESOURCE-DEFINITION

For a real-world example, see Make the service discoverable in Configure dynamic provisioning of
AWS RDS service instances.

Step 5: Configure RBAC

Create an Role-Based Access Control (RBAC) rule using the claim verb pointing to the
ClusterInstanceClass you created. For example:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

  name: app-operator-claim-foo-db

  labels:

    apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access: "true"

rules:

- apiGroups:

  - "services.apps.tanzu.vmware.com"

  resources:

  - clusterinstanceclasses

  resourceNames:

  - cloud-service-foo

  verbs:

  - claim

For a real-world example, see Configure RBAC in Configure dynamic provisioning of AWS RDS
service instances.

Step 6: Verify your integration

To test your integration, create a ClassClaim that points to the ClusterInstanceClass you created.
For example:

---

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ClassClaim

metadata:

  name: claim-1

spec:

  classRef:

    name: cloud-service-foo

Tanzu Application Platform v1.5

VMware by Broadcom 1290

https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.9/svc-tlk/usecases-consuming_azure_database_with_crossplane.html#define-composite-resource-types-7
https://docs.vmware.com/en/Services-Toolkit-for-VMware-Tanzu-Application-Platform/0.9/svc-tlk/usecases-consuming_gcp_sql_with_crossplane.html#define-composite-resource-types-5


  parameters:

    key: value

Verify that the ClassClaim eventually transitions into a READY=True state. If it doesn’t, debug the
ClassClaim using kubectl. For how to do this, see Troubleshoot Services Toolkit.

Abstracting service implementations behind a class across
clusters
In this Services Toolkit tutorial you learn how service operators can configure a class that allows for
claims to resolve to different backing implementations of a service, such as PostgreSQL, depending
on which cluster the class is claimed in.

This sort of setup allows the configurations of workloads and class claims to remain unchanged as
they are promoted through environments, whilst also enabling service operators to change the
implementations of the backing services without further configuration.

About this tutorial
Target user role: Service Operator
Complexity: Medium
Estimated time: 60 minutes
Topics covered: Classes, Claims, Claim-by-Class, Multi-Cluster
Learning outcomes: Ability to abstract the implementation (for example, helm, tanzu data service,
cloud) of a service (for example, RabbitMQ) across multiple clusters

Prerequisites
Access to three separate Tanzu Application Platform clusters v1.5.0 or later. This tutorial
refers to them as iterate, run-test, and run-production, but you can use different names
if required.

Scenario
The tutorial is centered around the following hypothetical, but somewhat realistic, real-world
scenario.

You work at BigCorp as a service operator. BigCorp uses three separate Tanzu Application Platform
clusters: iterate, run-test, and run-production. Application workloads begin on the iterate
cluster, before being promoted to the run-test cluster, and then finally to the run-production
cluster. The application development team have asked you for a PostgreSQL service they can use
with their workloads, which must be available on all three clusters.

You are aware that the service level objectives (SLOs) for each cluster are different and want to
tailor the implementation of the PostgreSQL service to each of the clusters accordingly. The
iterate cluster has low level SLOs, so you want to offer an unmanaged PostgreSQL service backed
by simple Helm chart. The run-test cluster has more robust requirements, so want to offer a
PostgreSQL service backed by VMware SQL with Postgres for Kubernetes. The run-production
cluster is critically important, so you want to use a fully managed, cloud-based PostgreSQL
implementation there.

You want to ensure that the differing implementations are completely opaque to development
teams. They do not need to know about the inner workings of the services, and must be able to
keep their workloads and class claims the same as they are promoted across clusters. You have

Tanzu Application Platform v1.5

VMware by Broadcom 1291



heard great things about Tanzu Application Platform’s claims and classes abstractions and want to
make use of them to help you complete your task.

Concepts

This section provides a high-level overview of the elements you will use during this tutorial and how
they all fit together.

In this diagram:

There are three clusters: iterate, run-test, and run-production.

In each cluster, the service operator creates a ClusterInstanceClass called postgres.

In the iterate cluster, this is a provisioner-based class that uses Bitnami Services to
provision Helm instances of PostgreSQL.

In the run-test cluster, this is a provisioner-based class that uses VMware SQL with
Postgres for Kubernetes to provision instances of PostgreSQL.

In the run-production cluster, this is a provisioner-based class that uses Amazon
RDS to provision instances running in Amazon AWS RDS.

The app operator creates a ClassClaim. This is applied with a consuming workload.

When it is applied in iterate it resolves to a Helm chart instance.

When it is promoted to run-test it resolves to a VMware PostgreSQL instance.

When it is promoted to run-production it resolves to an Amazon AWS RDS
instance.

The definition of the ClassClaim remains identical across the clusters, which is easier for the
application development team.

Although this tutorial uses provisioner-based classes on all three clusters, you can also use a
combination of provisioner-based and pool-based classes across the clusters. You might want to do
this in cases where, for example, you want to allow for dynamic provisioning of service instances in

Important

The backing service implementations and environment layouts used in this scenario
are arbitrary. They are not recommendations or requirements.

Tanzu Application Platform v1.5

VMware by Broadcom 1292



the iterate cluster, but want to be more considered about the approach in the run-production
cluster where you might want to ensure that workloads only ever connect to one specific service
instance. You can achieve this by using a provisioner-based class on the iterate cluster, and an
identically named pool-based class on the run-production cluster that is configured to only ever
select from a pool that consists of one service instance.

Procedure

The following steps explain how to set up a class that allows for claims to resolve to differing
implementations of PostgreSQL depending on the cluster it is in.

Step 1: Set up the run-test cluster

Configure the run-test cluster for dynamic provisioning of VMware PostgreSQL service instances.
To do that, see Configure dynamic provisioning of VMware SQL with Postgres for Kubernetes
service instances and complete the steps in the following sections only:

1. Install the Tanzu VMware Postgres Operator

2. Set up the namespace

3. Create a CompositeResourceDefinition

4. Create a Composition

5. Configure RBAC

You do not have to do any other sections in that topic.

Step 2: Set up the run-production cluster

Configure the run-production cluster for dynamic provisioning of AWS RDS PostgreSQL service
instances. To do that, see Configure Dynamic Provisioning of AWS RDS Service Instances and
complete the steps in the following sections only:

1. Install the AWS Provider for Crossplane

2. Create a CompositeResourceDefinition

3. Create a Composition

4. Configure RBAC

You do not have to do any other sections in that topic.

Step 3: Create the class

The ClusterInstanceClass acts as the abstraction fronting the differing service implementations
across the different clusters. You must create a class with the same name on all three of the
clusters, but the configuration of the class varies slightly on each. The ClassClaim refers to classes
by name. The fact that the class name remains consistent is what allows for the ClassClaim, which
the application development teams create, to remain unchanged as they are promoted across the
clusters.

Create a file named postgres.class.iterate-cluster.yaml and copy in the following contents.

# postgres.class.iterate-cluster.yaml

---

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ClusterInstanceClass

metadata:

  name: bigcorp-postgresql

Tanzu Application Platform v1.5

VMware by Broadcom 1293



spec:

  description:

    short: PostgreSQL by BigCorp

  provisioner:

    crossplane:

      compositeResourceDefinition: xpostgresqlinstances.bitnami.database.tanzu.vmware.

com

This class refers to the xpostgresqlinstances.bitnami.database.tanzu.vmware.com
CompositeResourceDefinition. This is installed as part of the Bitnami Services package and powers
the PostgreSQL service.

You are reusing the underlying CompositeResourceDefinition here from a different class using the
class name you want.

Use kubectl to apply the file to the iterate cluster.

kubectl apply -f postgres.class.iterate-cluster.yaml

Create a file named postgres.class.run-test-cluster.yaml and copy in the following contents.

# postgres.class.run-test-cluster.yaml

---

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ClusterInstanceClass

metadata:

  name: bigcorp-postgresql

spec:

  description:

    short: PostgreSQL by BigCorp

  provisioner:

    crossplane:

      compositeResourceDefinition: xpostgresqlinstances.database.tanzu.example.org

This class is almost identical to the previous one, however this one refers instead to the
xpostgresqlinstances.database.tanzu.example.org CompositeResourceDefinition.

Use kubectl to apply the file to the run-test cluster.

kubectl apply -f postgres.class.run-test-cluster.yaml

Create a file named postgres.class.run-production-cluster.yaml and copy in the following
contents.

# postgres.class.run-production-cluster.yaml

---

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ClusterInstanceClass

metadata:

  name: bigcorp-postgresql

spec:

  description:

    short: PostgreSQL by BigCorp

  provisioner:

    crossplane:

      compositeResourceDefinition: xpostgresqlinstances.database.rds.example.org

Again, this class is almost identical to the previous two, but this time refers to the
xpostgresqlinstances.database.rds.example.org CompositeResourceDefinition.

Use kubectl to apply the file to the run-production cluster.

Tanzu Application Platform v1.5

VMware by Broadcom 1294



kubectl apply -f postgres.class.run-production-cluster.yaml

Step 4: Create and promote the workload and class claim

After configuring the clusters and classes, switch roles from service operator to application operator
and developer to create the workload and class claim YAML and promote it through the three
clusters.

Create a file named app-with-postgres.yaml and copy in the following contents.

# app-with-postgres.yaml

---

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ClassClaim

metadata:

  name: postgres

  namespace: default

spec:

  classRef:

    name: bigcorp-postgresql

---

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  name: pet-clinic

  namespace: default

  labels:

    apps.tanzu.vmware.com/workload-type: web

    app.kubernetes.io/part-of: pet-clinic

spec:

  params:

  - name: annotations

    value:

      autoscaling.knative.dev/minScale: "1"

  env:

  - name: SPRING_PROFILES_ACTIVE

    value: postgres

  serviceClaims:

  - name: db

    ref:

      apiVersion: services.apps.tanzu.vmware.com/v1alpha1

      kind: ClassClaim

      name: postgres

  source:

    git:

      url: https://github.com/sample-accelerators/spring-petclinic

      ref:

        branch: main

        tag: tap-1.2

Then use kubectl to apply the file to the iterate cluster.

kubectl apply -f app-with-postgres.yaml

Wait for the workload to become ready and then inspect the cluster to see that the workload is
bound to a Helm-based PostgreSQL service instance. Target the iterate cluster then run helm
list -A to confirm.

Next, apply the exact same app-with-postgres.yaml to the run-test cluster. When it is ready,
confirm that the workload is bound to a Tanzu-based PostgreSQL service instance. Target the run-
test cluster then run kubectl get postgres -n tanzu-psql-service-instances to confirm.

Tanzu Application Platform v1.5

VMware by Broadcom 1295



Finally, apply the exact same app-with-postgres.yaml to the run-production cluster. When it is
ready, confirm that the workload is bound to a RDS-based PostgreSQL service instance. Target the
run-production cluster then run kubectl get RDSInstance -A to confirm.

Using direct secret references

In this Services Toolkit tutorial you learn how developers can use direct references to Kubernetes
Secret resources to connect their application workloads to almost any backing service.

This includes backing services that:

Run external to Tanzu Application Platform

Do not adhere to ProvisionedService in the Service Binding Specification for Kubernetes in
GitHub.

If you are familiar with Cloud Foundry and Tanzu Application Service, this capability is similar to the
concept of user-provided service instances. For more information about user-provided service
instances in Cloud Foundry, see the Cloud Foundry documentation.

This tutorial demonstrates a procedure to bind a new application on Tanzu Application Platform to
an existing PostgreSQL database that exists in Azure. However, the steps are applicable to any
backing service that you want to connect to.

About this tutorial

Target user role: Service Operator and Application Operator
Complexity: Easy
Estimated time: 10 minutes
Topics covered: Service Binding, Direct Secret References
Learning outcomes: Ability to bind workloads to almost any backing service using direct secret
references

Prerequisites

Before you can follow this tutorial, you must have:

Access to a Tanzu Application Platform cluster v1.5.0 or later.

An Azure PostgreSQL database to connect to.

Configured networking between the workload and the service endpoint and you must have
the credentials for the backing service. Whether this requires extra steps depends on your
Kubernetes distribution and the backing service you want to connect your Tanzu
Application Platform workloads to.

Create a binding-compatible secret

1. Create a file named external-azure-db-binding-compatible.yaml and enter a Kubernetes
secret resource similar to the following example:

# external-azure-db-binding-compatible.yaml

---

apiVersion: v1

kind: Secret

metadata:

  name: external-azure-db-binding-compatible

type: Opaque

stringData:

Tanzu Application Platform v1.5

VMware by Broadcom 1296

https://github.com/servicebinding/spec#provisioned-service
https://docs.cloudfoundry.org/devguide/services/user-provided.html


  type: postgresql

  provider: azure

  host: EXAMPLE.DATABASE.AZURE.COM

  port: "5432"

  database: "EXAMPLE-DB-NAME"

  username: "USER@EXAMPLE"

  password: "PASSWORD"

Substitute in the values as required.

When using direct secret references, the Secret values must abide by the Well-known
Secret Entries specifications as defined by the Service Binding Specification for Kubernetes.
If you plan to bind this secret to a Spring-based application workload and want to take
advantage of the auto-wiring feature, this secret must also contain the properties required
by Spring Cloud Bindings.

2. Apply the YAML file by running:

kubectl apply -f external-azure-db-binding-compatible.yaml

If you are using a multicluster Tanzu Application Platform topology, apply the YAML file to
all Run clusters.

3. In a file named stk-secret-reader.yaml, grant sufficient Role-Based Access Control (RBAC)
permissions to permit Services Toolkit to read the secrets specified by the class:

# stk-secret-reader.yaml

---

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

  name: stk-secret-reader

  labels:

    servicebinding.io/controller: "true"

rules:

- apiGroups:

  - ""

  resources:

  - secrets

  verbs:

  - get

  - list

  - watch

4. Apply your changes by running:

kubectl apply -f stk-secret-reader.yaml

If you are using a multicluster Tanzu Application Platform topology, apply the YAML file to
all Run clusters.

5. Create a claim for the newly created secret by running:

tanzu service resource-claim create external-azure-db-claim \

  --resource-name external-azure-db-binding-compatible \

  --resource-kind Secret \

  --resource-api-version v1

If you are using a multicluster Tanzu Application Platform topology, create the claim on the
Build cluster.

6. Obtain the claim reference of the claim by running:

Tanzu Application Platform v1.5

VMware by Broadcom 1297

https://github.com/servicebinding/spec#well-known-secret-entries
https://github.com/spring-cloud/spring-cloud-bindings


tanzu service resource-claim list -o wide

If you are using a multicluster Tanzu Application Platform topology, obtain the claim
reference on the Build cluster.

Expected output:

NAME                     READY  REASON  CLAIM REF

external-azure-db-claim  True           services.apps.tanzu.vmware.com/v1alpha

1:ResourceClaim:external-azure-db-claim

From the output, record the value of CLAIM REF.

7. Create an application workload by running a command similar to the following example:

tanzu apps workload create WORKLOAD-NAME \

  --git-repo https://github.com/sample-accelerators/spring-petclinic \

  --git-branch main \

  --git-tag tap-1.2 \

  --type web \

  --label app.kubernetes.io/part-of=spring-petclinic \

  --annotation autoscaling.knative.dev/minScale=1 \

  --env SPRING_PROFILES_ACTIVE=postgres \

  --service-ref db=REFERENCE

Where:

WORKLOAD-NAME is the name of the application workload. For example, pet-clinic.

REFERENCE is the value of the CLAIM REF for the newly created claim in the output of
the last step.

If you are using a multicluster Tanzu Application Platform topology, create the application
workload on the Build cluster.

Services Toolkit how-to guides
This section contains how-to guides for Services Toolkit.

In this section:

Authorize users and groups to claim from provisioner-based classes

Configure dynamic provisioning of AWS RDS service instances

Configure dynamic provisioning of VMware SQL with Postgres for Kubernetes service
instances

Configure private registry and VMware Tanzu Application Catalog integration for Bitnami
Services

Troubleshooting and known limitations

Authorize users and groups to claim from provisioner-
based classes

This Services Toolkit topic for service operators explains how you configure access control so that
the required users and groups have authorization to claim from provisioner-based classes.

By default, only users with cluster-admin privileges are authorized to create claims for provisioner-
based classes. This is because creating claims for provisioner-based classes creates new service

Tanzu Application Platform v1.5

VMware by Broadcom 1298



instances, all of which consume resources and might incur monetary cost. As such, you might want
to configure some form of access control.

There is one exception to this rule, which is that by default, users with the app-operator user role
are authorized to create claims for the provisioner-based classes that are part of the Bitnami
Services package. For how-to deactivate this default behavior, see Revoke default authorization for
claiming from the Bitnami Services classes later in this topic.

Access control is implemented through standard Kubernetes Role-Based Access Control (RBAC)
with the use of the custom verb claim. You must create a rule in a ClusterRole which specifies the
claim verb for one or more clusterinstanceclasses, and then bind the ClusterRole to the roles
that you want to authorize to create claims for classes with a ClusterRoleBinding. This approach is
particularly effective when paired with Tanzu Application Platform’s aggregated user roles. For
more information about user roles in Tanzu Application Platform, see Role descriptions.

Authorize all users with the app-operator user role to claim
from any namespace
Create a ClusterRole with a rule that specifies the claim verb for one or more
ClusterInstanceClass resources and apply the relevant label.

For example:

---

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

  name: app-operator-claim-class-bigcorp-rabbitmq

  labels:

    apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access: "true"

rules:

- apiGroups:

  - services.apps.tanzu.vmware.com

  resources:

  - clusterinstanceclasses

  resourceNames:

  - bigcorp-rabbitmq

  verbs:

  - claim

This example specifies a ClusterRole that permits claiming from a class named bigcorp-rabbitmq.
The example also includes the apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-
access: "true" label, which causes this ClusterRole to aggregate to Tanzu Application Platform’s
app-operator user role at the cluster scope.

The result is that any user who has the app-operator role is now authorized to claim from the
bigcorp-rabbitmq class. By default, the app-operator user role is authorized to create claims for the
provisioner-based class.

Authorize a user to claim from a specific namespace

Create a ClusterRole with a rule that specifies the claim verb for one or more
ClusterInstanceClass resource and a corresponding RoleBinding to bind it to a user.

For example:

---

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

Tanzu Application Platform v1.5

VMware by Broadcom 1299



  name: claim-class-bigcorp-rabbitmq

rules:

- apiGroups:

  - services.apps.tanzu.vmware.com

  resources:

  - clusterinstanceclasses

  resourceNames:

  - bigcorp-rabbitmq

  verbs:

  - claim

---

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

  name: alice-claim-class-bigcorp-rabbitmq

roleRef:

  apiGroup: rbac.authorization.k8s.io

  kind: ClusterRole

  name: claim-class-bigcorp-rabbitmq

subjects:

- kind: User

  name: "alice@example.com"

  apiGroup: rbac.authorization.k8s.io

This example specifies a ClusterRole that permits claiming from a class named bigcorp-rabbitmq.
The YAML also creates a ClusterRoleBindingthat binds the user alice@example.com to the
ClusterRole.

The result is that alice@example.com is now authorized to claim from bigcorp-rabbitmq class.

The user alice@example.com still needs permission to create ClassClaims in namespaces that they
want to consume the services from.

The following example gives alice@example.com permission to get, create, update, or delete
ClassClaims in the apps namespace:

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

   name: create-class-claim-example

   namespace: apps

rules:

  - apiGroups:

    - services.apps.tanzu.vmware.com

    resources:

    - classclaims

    verbs:

    - get

    - create

    - update

    - delete

---

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

  name: rbac-role-binding-role-binding

  namespace: apps

subjects:

  - kind: User

    name: "alice@example.com"

    apiGroup: rbac.authorization.k8s.io

roleRef:

  kind: Role

Tanzu Application Platform v1.5

VMware by Broadcom 1300



  name: create-class-claim-example

  apiGroup: rbac.authorization.k8s.io

Revoke default authorization for claiming from the Bitnami
Services classes
By default, users with the app-operator user role are authorized to create claims for the
provisioner-based classes which are part of the Bitnami Services package.

To revoke this authorization:

1. Add the following to your tap-values.yaml file:

bitnami_services:

  globals:

    create_clusterroles: false

2. Update Tanzu Application Platform by running:

tanzu package installed update tap -p tap.tanzu.vmware.com --values-file tap-va

lues.yaml -n tap-install

The result is that any user who has the app-operator role is now not authorized to create claims for
any of the Bitnami services in any namespace on the cluster.

Configure dynamic provisioning of AWS RDS service
instances

This Services Toolkit topic tells you how service operators can set up dynamic provisioning. This
enables app development teams to create self-serve AWS RDS service instances that are
customized to meet their needs.

If you are not already familiar with dynamic provisioning in Tanzu Application Platform, following the
tutorial Set up dynamic provisioning of service instances might help you to understand the steps
presented in this topic.

Prerequisites

Before you configure dynamic provisioning, you must have:

Access to a Tanzu Application Platform cluster v1.5.0 or later.

The Tanzu services CLI plug-in v0.6.0 or later.

Access to AWS.

Configure dynamic provisioning

To configure dynamic provisioning for AWS RDS service instances, you must:

1. Install the AWS Provider for Crossplane

2. Create a CompositeResourceDefinition

3. Create a Composition

4. Make the service discoverable

5. Configure RBAC

6. Verify your configuration

Tanzu Application Platform v1.5

VMware by Broadcom 1301



Install the AWS Provider for Crossplane

The first step is to install the AWS Provider for Crossplane.

There are two variants of the Provider:

crossplane-contrib/provider-aws

upbound/provider-aws

VMware recommends that you install the official Upbound variant. To install the Provider and to
create a corresponding ProviderConfig, see the Upbound documentation.

Create a CompositeResourceDefinition

To create the CompositeResourceDefinition (XRD):

1. Create a file named xpostgresqlinstances.database.rds.example.org.xrd.yaml and copy
in the following contents:

# xpostgresqlinstances.database.rds.example.org.xrd.yaml

---

apiVersion: apiextensions.crossplane.io/v1

kind: CompositeResourceDefinition

metadata:

  name: xpostgresqlinstances.database.rds.example.org

spec:

  claimNames:

    kind: PostgreSQLInstance

    plural: postgresqlinstances

  connectionSecretKeys:

  - type

  - provider

  - host

  - port

  - database

  - username

  - password

  group: database.rds.example.org

  names:

    kind: XPostgreSQLInstance

    plural: xpostgresqlinstances

  versions:

  - name: v1alpha1

    referenceable: true

    schema:

      openAPIV3Schema:

        properties:

          spec:

            properties:

Important

The official documentation for the Provider includes a step to “Install Universal
Crossplane”. You can skip this step because Crossplane is already installed as part of
Tanzu Application Platform.

The documentation also assumes Crossplane is installed in the upbound-system
namespace. However, when working with Crossplane on Tanzu Application
Platform, it is installed to the crossplane-system namespace by default. Ensure that
you use the correct namespace when you create the Secret and the
ProviderConfig with credentials for the Provider.

Tanzu Application Platform v1.5

VMware by Broadcom 1302

https://marketplace.upbound.io/providers/crossplane-contrib/provider-aws/
https://marketplace.upbound.io/providers/upbound/provider-aws/
https://marketplace.upbound.io/providers/upbound/provider-aws/latest/docs/quickstart


              storageGB:

                type: integer

                default: 20

            type: object

        type: object

    served: true

This XRD configures the parameter storageGB. This gives application teams the option to
choose a suitable amount of storage for the AWS RDS service instance when they create a
claim. You can choose to expose as many or as few parameters to application teams as you
like.

2. Apply the file to the Tanzu Application Platform cluster by running:

kubectl apply -f xpostgresqlinstances.database.rds.example.org.xrd.yaml

Create a Composition

To create the composition:

1. Create a file named xpostgresqlinstances.database.rds.example.org.composition.yaml
and copy in the following contents:

# xpostgresqlinstances.database.rds.example.org.composition.yaml

---

apiVersion: apiextensions.crossplane.io/v1

kind: Composition

metadata:

  labels:

    provider: "aws"

    vpc: "default"

  name: xpostgresqlinstances.database.rds.example.org

spec:

  compositeTypeRef:

    apiVersion: database.rds.example.org/v1alpha1

    kind: XPostgreSQLInstance

  publishConnectionDetailsWithStoreConfigRef:

    name: default

  resources:

  - base:

      apiVersion: database.aws.crossplane.io/v1beta1

      kind: RDSInstance

      spec:

        forProvider:

          # NOTE: configure this section to your specific requirements

          dbInstanceClass: db.t2.micro

          engine: postgres

          dbName: postgres

          engineVersion: "12"                     # <---- Refer to https://doc

s.aws.amazon.com/AmazonRDS/latest/PostgreSQLReleaseNotes/postgresql-release-cal

endar.html for latest

          masterUsername: masteruser

          publiclyAccessible: true                # <---- DANGER

          region: us-east-1

          skipFinalSnapshotBeforeDeletion: true

        writeConnectionSecretToRef:

          namespace: crossplane-system

    connectionDetails:

    - name: type

      value: postgresql

    - name: provider

      value: aws

    - name: database

Tanzu Application Platform v1.5

VMware by Broadcom 1303



      value: postgres

    - fromConnectionSecretKey: username

    - fromConnectionSecretKey: password

    - name: host

      fromConnectionSecretKey: endpoint

    - fromConnectionSecretKey: port

    name: rdsinstance

    patches:

    - fromFieldPath: metadata.uid

      toFieldPath: spec.writeConnectionSecretToRef.name

      transforms:

      - string:

          fmt: '%s-postgresql'

          type: Format

        type: string

      type: FromCompositeFieldPath

    - fromFieldPath: spec.storageGB

      toFieldPath: spec.forProvider.allocatedStorage

      type: FromCompositeFieldPath

2. Configure the Composition you just copied to your specific requirements.

In particular, you can deactivate the publiclyAccessible: true setting. When set to true,
this setting opens up public access to all dynamically provisioned RDS databases. When set
to false, only internal connectivity is allowed.

To help you configure the Composition, see this example in the Upbound documentation.
The example defines a composition that creates a separate VPC for each RDS PostgreSQL
instance and automatically configures inbound rules.

3. Apply the file to the Tanzu Application Platform cluster by running:

kubectl apply -f xpostgresqlinstances.database.rds.example.org.composition.yaml

Make the service discoverable

To make the service discoverable to application teams:

1. Create a file named rds.class.yaml and copy in the following contents:

# rds.class.yaml

---

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ClusterInstanceClass

metadata:

  name: aws-rds-psql

spec:

  description:

    short: Amazon AWS RDS PostgreSQL

  provisioner:

    crossplane:

      compositeResourceDefinition: xpostgresqlinstances.database.rds.example.or

g

2. Apply the file to the Tanzu Application Platform cluster by running:

kubectl apply -f rds.class.yaml

Configure RBAC

To configure Role-Based Access Control (RBAC) to authorize users with the app-operator role to
claim from the class:

Tanzu Application Platform v1.5

VMware by Broadcom 1304

https://marketplace.upbound.io/configurations/xp/getting-started-with-aws-with-vpc/latest/compositions/vpcpostgresqlinstances.aws.database.example.org/database.example.org/XPostgreSQLInstance


1. Create a file named app-operator-claim-aws-rds-psql.rbac.yaml and copy in the following
contents:

# app-operator-claim-aws-rds-psql.rbac.yaml

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

  name: app-operator-claim-aws-rds-psql

  labels:

    apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access: "true"

rules:

- apiGroups:

  - "services.apps.tanzu.vmware.com"

  resources:

  - clusterinstanceclasses

  resourceNames:

  - aws-rds-psql

  verbs:

  - claim

2. Apply the file to the Tanzu Application Platform cluster by running:

kubectl apply -f app-operator-claim-aws-rds-psql.rbac.yaml

Verify your configuration

To verify your configuration, create a claim for an AWS RDS service instance by running:

tanzu service class-claim create rds-psql-1 --class aws-rds-psql -p storageGB=30

Configure dynamic provisioning of VMware SQL with
Postgres for Kubernetes service instances

This Services Toolkit topic for service operators explains how you set up dynamic provisioning. This
enables app development teams to create self-serve VMware SQL with Postgres for Kubernetes
service instances that are customized to meet their needs.

If you are not already familiar with dynamic provisioning in Tanzu Application Platform, following the
tutorial Set up dynamic provisioning of service instances. might be help you understand the steps
presented in this topic.

Prerequisites

Before you configure dynamic provisioning, you must have:

Access to a Tanzu Application Platform cluster v1.5.0 or later.

The Tanzu services CLI plug-in v0.6.0 or later.

Note

Whether application workloads can establish network connectivity to the resulting
RDS database depends on a number of factors. This includes specifics about the
environment you’re working in and the configuration in the Composition file. At a
minimum, you can configure a securityGroup to permit inbound traffic. There might
be other requirements as well.

Tanzu Application Platform v1.5

VMware by Broadcom 1305



Configure dynamic provisioning

To configure dynamic provisioning for VMware SQL with Postgres for Kubernetes services
instances, you must:

1. Install the VMware Postgres Operator

2. Set up the namespace

3. Create a CompositeResourceDefinition

4. Create a Composition

5. Make the service discoverable

6. Configure RBAC

7. Verify your configuration

Install the VMware Postgres Operator

Install the VMware Postgres Operator by following the steps in Installing a VMware Postgres
Operator.

Set up the namespace

This topic configures dynamic provisioning to provision all PostgreSQL service instances into the
same namespace. This namespace is named tanzu-psql-service-instances.

To set up the namespace:

1. Ensure that the namespace exists by running the following:

kubectl create namespace tanzu-psql-service-instances

2. The VMware Postgres Operator also requires that a secret holding registry credentials
exists in the same namespace that the service instances will be created in. Ensure that the
secret exists in the namespace by running:

kubectl create secret --namespace=tanzu-psql-service-instances docker-registry 

regsecret \

  --docker-server=https://registry.tanzu.vmware.com \

  --docker-username=`USERNAME` \

  --docker-password=`PASSWORD`

Where:

USERNAME is your registry username.

PASSWORD is your registry password.

Create a CompositeResourceDefinition

To create the CompositeResourceDefinition (XRD):

1. Create a file named xpostgresqlinstances.database.tanzu.example.org.xrd.yaml and
copy in the following contents:

Note

You must update the --docker-server value if you relocated images as part
of the installation of the operator.

Tanzu Application Platform v1.5

VMware by Broadcom 1306

https://docs.vmware.com/en/VMware-SQL-with-Postgres-for-Kubernetes/2.0/vmware-postgres-k8s/GUID-install-operator.html


# xpostgresqlinstances.database.tanzu.example.org.xrd.yaml

---

apiVersion: apiextensions.crossplane.io/v1

kind: CompositeResourceDefinition

metadata:

  name: xpostgresqlinstances.database.tanzu.example.org

spec:

  connectionSecretKeys:

  - provider

  - type

  - database

  - host

  - password

  - port

  - uri

  - username

  group: database.tanzu.example.org

  names:

    kind: XPostgreSQLInstance

    plural: xpostgresqlinstances

  versions:

  - name: v1alpha1

    referenceable: true

    schema:

      openAPIV3Schema:

        properties:

          spec:

            properties:

              storageGB:

                type: integer

                default: 20

            type: object

        type: object

    served: true

This XRD configures the parameter storageGB. This gives application teams the option to
choose a suitable amount of storage for the Tanzu Postgres service instance when they
create a claim. You can choose to expose as many or as few parameters to application
teams as you like.

2. Apply the file to the Tanzu Application Platform cluster by running:

kubectl apply -f xpostgresqlinstances.database.tanzu.example.org.xrd.yaml

Create a Composition

To create the Composition:

1. Create a file named xpostgresqlinstances.database.tanzu.example.org.composition.yaml
and copy in the following contents:

# xpostgresqlinstances.database.tanzu.example.org.composition.yaml

---

apiVersion: apiextensions.crossplane.io/v1

kind: Composition

metadata:

  name: xpostgresqlinstances.database.tanzu.example.org

spec:

  compositeTypeRef:

    apiVersion: database.tanzu.example.org/v1alpha1

    kind: XPostgreSQLInstance

Tanzu Application Platform v1.5

VMware by Broadcom 1307



  publishConnectionDetailsWithStoreConfigRef:

    name: default

  resources:

  - base:

      apiVersion: kubernetes.crossplane.io/v1alpha1

      kind: Object

      spec:

        forProvider:

          manifest:

            apiVersion: sql.tanzu.vmware.com/v1

            kind: Postgres

            metadata:

              name: PATCHED

              namespace: tanzu-psql-service-instances

            spec:

              storageSize: 2G

        connectionDetails:

        - apiVersion: v1

          kind: Secret

          namespace: tanzu-psql-service-instances

          fieldPath: data.provider

          toConnectionSecretKey: provider

        - apiVersion: v1

          kind: Secret

          namespace: tanzu-psql-service-instances

          fieldPath: data.type

          toConnectionSecretKey: type

        - apiVersion: v1

          kind: Secret

          namespace: tanzu-psql-service-instances

          fieldPath: data.host

          toConnectionSecretKey: host

        - apiVersion: v1

          kind: Secret

          namespace: tanzu-psql-service-instances

          fieldPath: data.port

          toConnectionSecretKey: port

        - apiVersion: v1

          kind: Secret

          namespace: tanzu-psql-service-instances

          fieldPath: data.username

          toConnectionSecretKey: username

        - apiVersion: v1

          kind: Secret

          namespace: tanzu-psql-service-instances

          fieldPath: data.password

          toConnectionSecretKey: password

        - apiVersion: v1

          kind: Secret

          namespace: tanzu-psql-service-instances

          fieldPath: data.database

          toConnectionSecretKey: database

        - apiVersion: v1

          kind: Secret

          namespace: tanzu-psql-service-instances

          fieldPath: data.uri

          toConnectionSecretKey: uri

        writeConnectionSecretToRef:

          namespace: tanzu-psql-service-instances

    connectionDetails:

    - fromConnectionSecretKey: provider

    - fromConnectionSecretKey: type

    - fromConnectionSecretKey: host

    - fromConnectionSecretKey: port

    - fromConnectionSecretKey: username

    - fromConnectionSecretKey: password

Tanzu Application Platform v1.5

VMware by Broadcom 1308



    - fromConnectionSecretKey: database

    - fromConnectionSecretKey: uri

    patches:

      - fromFieldPath: metadata.name

        toFieldPath: spec.forProvider.manifest.metadata.name

        type: FromCompositeFieldPath

      - fromFieldPath: spec.storageSize

        toFieldPath: spec.forProvider.manifest.spec.persistence.storage

        transforms:

        - string:

            fmt: '%dG'

            type: Format

          type: string

        type: FromCompositeFieldPath

      - fromFieldPath: metadata.name

        toFieldPath: spec.writeConnectionSecretToRef.name

        transforms:

        - string:

            fmt: '%s-psql'

            type: Format

          type: string

        type: FromCompositeFieldPath

      - fromFieldPath: metadata.name

        toFieldPath: spec.connectionDetails[0].name

        transforms:

        - string:

            fmt: '%s-app-user-db-secret'

            type: Format

          type: string

        type: FromCompositeFieldPath

      - fromFieldPath: metadata.name

        toFieldPath: spec.connectionDetails[1].name

        transforms:

        - string:

            fmt: '%s-app-user-db-secret'

            type: Format

          type: string

        type: FromCompositeFieldPath

      - fromFieldPath: metadata.name

        toFieldPath: spec.connectionDetails[2].name

        transforms:

        - string:

            fmt: '%s-app-user-db-secret'

            type: Format

          type: string

        type: FromCompositeFieldPath

      - fromFieldPath: metadata.name

        toFieldPath: spec.connectionDetails[3].name

        transforms:

        - string:

            fmt: '%s-app-user-db-secret'

            type: Format

          type: string

        type: FromCompositeFieldPath

      - fromFieldPath: metadata.name

        toFieldPath: spec.connectionDetails[4].name

        transforms:

        - string:

            fmt: '%s-app-user-db-secret'

            type: Format

          type: string

        type: FromCompositeFieldPath

      - fromFieldPath: metadata.name

        toFieldPath: spec.connectionDetails[5].name

        transforms:

        - string:

Tanzu Application Platform v1.5

VMware by Broadcom 1309



            fmt: '%s-app-user-db-secret'

            type: Format

          type: string

        type: FromCompositeFieldPath

      - fromFieldPath: metadata.name

        toFieldPath: spec.connectionDetails[6].name

        transforms:

        - string:

            fmt: '%s-app-user-db-secret'

            type: Format

          type: string

        type: FromCompositeFieldPath

      - fromFieldPath: metadata.name

        toFieldPath: spec.connectionDetails[7].name

        transforms:

        - string:

            fmt: '%s-app-user-db-secret'

            type: Format

          type: string

        type: FromCompositeFieldPath

    readinessChecks:

      - type: MatchString

        fieldPath: status.atProvider.manifest.status.currentState

        matchString: "Running"

2. Configure the Composition you just copied to your specific requirements.

3. Apply the file to the Tanzu Application Platform cluster by running:

kubectl apply -f xpostgresqlinstances.database.tanzu.example.org.composition.ya

ml

Make the service discoverable

To make the service discoverable to application teams:

1. Create a file named tanzu-psql.class.yaml and copy in the following contents:

# tanzu-psql.class.yaml

---

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ClusterInstanceClass

metadata:

  name: tanzu-psql

spec:

  description:

    short: VMware SQL with Postgres

  provisioner:

    crossplane:

      compositeResourceDefinition: xpostgresqlinstances.database.tanzu.example.

org

2. Apply the file to the Tanzu Application Platform cluster by running:

kubectl apply -f tanzu-psql.class.yaml

Configure RBAC

To configure access control with RBAC:

1. Create a file named provider-kubernetes-tanzu-postgres-read-writer.rbac.yaml and
copy in the following contents:

Tanzu Application Platform v1.5

VMware by Broadcom 1310



# provider-kubernetes-tanzu-postgres-read-writer.rbac.yaml

---

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

  name: tanzu-postgres-read-writer

  labels:

    services.tanzu.vmware.com/aggregate-to-provider-kubernetes: "true"

rules:

- apiGroups:

  - sql.tanzu.vmware.com

  resources:

  - postgres

  verbs:

  - "*"

2. Apply the file to the Tanzu Application Platform cluster by running:

kubectl apply -f provider-kubernetes-tanzu-postgres-read-writer.rbac.yaml

3. Create a file named app-operator-claim-tanzu-psql.rbac.yaml and copy in the following
contents:

# app-operator-claim-tanzu-psql.rbac.yaml

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

  name: app-operator-claim-tanzu-psql

  labels:

    apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access: "true"

rules:

- apiGroups:

  - "services.apps.tanzu.vmware.com"

  resources:

  - clusterinstanceclasses

  resourceNames:

  - tanzu-psql

  verbs:

  - claim

4. Apply the file to the Tanzu Application Platform cluster by running:

kubectl apply -f app-operator-claim-tanzu-psql.rbac.yaml

Verify your configuration

To verify your configuration, create a claim for a PostgreSQL service instance by running:

tanzu service class-claim create tanzu-psql-1 --class tanzu-psql -p storageGB=5

Troubleshoot Services Toolkit
This topic explains how you can troubleshoot issues related to working with services on Tanzu
Application Platform (commonly known as TAP).

For the limitations of services on Tanzu Application Platform, see Services Toolkit limitations.

Tanzu Application Platform v1.5

VMware by Broadcom 1311



Debug ClassClaim and provisioner-based
ClusterInstanceClass

This section provides guidance on how to debug issues related to using ClassClaim and
provisioner-based ClusterInstanceClass. The approach starts by inspecting a ClassClaim and
tracing back through the chain of resources that are created when fulfilling the ClassClaim.

Prerequisites

To follow the steps in this section, you must have kubectl access to the cluster.

Step 1: Inspect the ClassClaim, ClusterInstanceClass, and
CompositeResourceDefinition

1. Inspect the status of ClassClaim by running:

kubectl describe classclaim claim-name -n NAMESPACE

Where NAMESPACE is your namespace.

From the output, check the following:

Check the status conditions for information that can lead you to the cause of the
issue.

Check .spec.classRef.name and record the value.

2. Inspect the status of the ClusterInstanceClass by running:

kubectl describe clusterinstanceclass CLASS-NAME

Where CLASS-NAME is the value of .spec.classRef.name you retrieved in the previous step.

From the output, check the following:

Check the status conditions for information that can lead you to the cause of the
issue.

Check that the Ready condition has status "True".

Check .spec.provisioner.crossplane and record the value.

3. Inspect the status of the CompositeResourceDefinition by running:

kubectl describe xrd XRD-NAME

Where XRD-NAME is the value of .spec.provisioner.crossplane you retrieved in the
previous step.

From the output, check the following:

Check the status conditions for information that can lead you to the cause of the
issue.

Check that the Established condition has status "True".

Check events for any errors or warnings that can lead you to the cause of the issue.

If both the ClusterInstanceClass reports Ready="True" and the
CompositeResourceDefinition reports Established="True", move on to the next
section.

Tanzu Application Platform v1.5

VMware by Broadcom 1312



Step 2: Inspect the Composite Resource, the Managed Resources
and the underlying resources

1. Check .status.provisionedResourceRef by running:

kubectl describe classclaim claim-name -n NAMESPACE

Where NAMESPACE is your namespace.

From the output, check the following:

Check .status.provisionedResourceRef, and record the values of kind, apiVersion,
and name.

2. Inspect the status of the Composite Resource by running:

kubectl describe KIND.API-GROUP NAME

Where:

KIND is the value of kind you retrieved in the previous step.

API-GROUP is the value of apiVersion you retrieved in the previous step without the
/<version> part.

NAME is the value of name you retrieved in the previous step.

From the output, check the following:

Check the status conditions for information that can lead you to the cause of the
issue.

Check that the Synced condition has status "True". If it doesn’t then there was an
issue creating the Managed Resources from which this Composite Resource is
composed. Refer to .spec.resourceRefs in the output and for each:

Use the values of kind, apiVersion, and name to inspect the status of the
Managed Resource.

Check the status conditions for information that can lead you to the cause of
the issue.

Check events for any errors or warnings that can lead you to the cause of the issue.

If all Managed Resources appear healthy, move on to the next section.

Step 3: Inspect the events log

Inspect the events log by running:

kubectl get events -A

From the output, check the following:

Check for any errors or warnings that can lead you to the cause of the issue.

If there are no errors or warnings, move on to the next section.

Step 4: Inspect the secret

1. Check .status.resourceRef by running:

kubectl get classclaim claim-name -n NAMESPACE -o yaml

Where NAMESPACE is your namespace.

Tanzu Application Platform v1.5

VMware by Broadcom 1313



From the output, check the following:

Check .status.resourceRef and record the values kind, apiVersion, name, and
namespace

2. Inspect the claimed resource, which is likely a secret, by running:

kubectl get secret NAME -n NAMESPACE -o yaml

Where:

NAME is the name you retrieved in the previous step.

NAMESPACE is the namespace you retrieved in the previous step.

If the secret is there and has data, then something else must be causing the issue.

Step 5: Contact support

If you have followed the steps in this section and are still unable to discover the cause of the issue,
contact VMware Support for further guidance and help to resolve the issue.

Unexpected error if additionalProperties is true in a
CompositeResourceDefinition

Symptom:

When creating a CompositeResourceDefinition, if you set additionalProperties: true in the
openAPIV3Schema section, an error occurs during the validation step of the creation of any
ClassClaim that refers to a class that refers to the CompositeResourceDefinitions.

The error appears as follows:

json: cannot unmarshal bool into Go struct field JSONSchemaProps.AdditionalProperties 

of type apiextensions.JSONSchemaPropsOrBool

Solution:

Rather than setting additionalProperties: true, you can set additionalProperties: {}. This has
the same effect, but does not cause unexpected errors.

Default cluster-admin IAM roles on GKE do not allow you to
claim Bitnami Services

Symptom:

For Tanzu Application Platform installations on Google Kubernetes Engine (GKE) clusters, users
with cluster-admin Role-Based Access Control (RBAC) permissions are not able to create class
claims for any of the Bitnami Services.

The following error occurs:

Error: admission webhook "vclassclaim.validation.resourceclaims.services.apps.tanzu.vm

ware.com" denied the request: user 'user@example.com' cannot 'claim' from clusterinsta

nceclass 'mysql-unmanaged'

Error: exit status 1

Solution:

Explicitly create a ClusterRoleBinding for your user or group to the corresponding app-operator-
claim-class-SERVICE ClusterRole, where SERVICE is one of mysql, postgresql, rabbitmq, or redis.

Tanzu Application Platform v1.5

VMware by Broadcom 1314



Cannot claim from clusterinstanceclass when creating a
ClassClaim

Symptom:

Users who were previously able to create a ClassClaim now get an admission error similar to:

user 'alice@example.com' cannot 'claim' from clusterinstanceclass 'bigcorp-rabbitmq'

This occurs even if users were granted the claim permission on ClusterInstanceClasses through
either:

A Role and a RoleBinding

A ClusterRole and a RoleBinding

Explanation:

You now need the cluster-level claim permission, granted through a ClusterRole and
ClusterRoleBinding. Namespace-scoped permissions are no longer enough. This is to protect
against unexpected access to resources in other namespaces.

This change was introduced with Services Toolkit v0.10.3 in Tanzu Application Platform v1.5.6. For
more information about this change, see The claim verb for ClusterInstanceClass.

Solution:

To allow users to create ClassClaims again, you must:

1. Move from a Role to a ClusterRole for granting users permission to claim a
ClusterInstanceClass.

2. Move from a RoleBinding to a ClusterRoleBinding for binding this permission to a user.

For more information, see Authorize users and groups to claim from provisioner-based classes.

Services Toolkit reference

This section provides reference documentation for Services Toolkit.

In this section:

API documentation

Tanzu Service CLI Plug-In

Services Toolkit terminology and user roles

Services Toolkit API documentation

This section of the documentation provides detailed information about Services Toolkit’s APIs.

ClusterInstanceClass and ClassClaim

ResourceClaim and ResourceClaimPolicy

InstanceQuery

RBAC

ClusterInstanceClass and ClassClaim

This topic provides Services Toolkit API documentation for ClusterInstanceClass and ClassClaim.

Tanzu Application Platform v1.5

VMware by Broadcom 1315



ClusterInstanceClass

You can configure ClusterInstanceClass to one of two variants - either pool-based or provisioner-
based.

Claims for pool-based classes are fulfilled by identifying service instances using the
configuration in .spec.pool.

Claims for provisioner-based classes are fulfilled by provisioning new service instances using
the configuration in .spec.provisioner.

A class can either be a pool-based class or a provisioner-based class, but never both.

The following snippet outlines the ClusterInstanceClass YAML:

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ClusterInstanceClass

metadata:

  # A name for the class. The class name is used by consumers (application operators

  # and developers) when creating claims.

  name: mysql-unmanaged

spec:

  # Provide information about the class in the description.

  description:

    # A short description for the class. Aim to provide just enough information

    # to help consumers (application operators and developers) to understand

    # what's on offer by the class.

    short: MySQL by Bitnami

  # (Optional) Configure a provisioner-based class.

  # Must specify one of either `provisioner` or `pool`.

  provisioner:

    # Configure provisioning using Crossplane (https://www.crossplane.io/).

    crossplane:

      # CompositeResourceDefinition refers to the name of a Composite Resource Definit

ion (XRD).

      # For example, "xpostgresqlinstances.database.example.org".

      compositeResourceDefinition: xmysqlinstances.bitnami.database.tanzu.vmware.com

      # (Optional) The compositionSelector allows you to match a Composition by

      # labels rather than naming one explicitly. It is used to set the compositionRef

      # if none is specified explicitly.

      compositionSelector:

        matchLabels:

          provider: bitnami

          type: mysql

      # (Optional) CompositionRef specifies which Composition this XR will use to

      # compose resources when it is created, updated, or deleted.

      # This can be omitted and is set automatically if the XRD has a default or

      # enforced composition reference, or if the below composition selector is set.

      compositionRef:

        name: composition-name

      # (Optional) CompositionUpdatePolicy specifies how existing XRs should be

      # updated to new revisions of their underlying composition.

      # One of either 'Automatic' or 'Manual'; default=Automatic.

      compositionUpdatePolicy: Manual

  # (Optional) Configure a pool-based class.

  # Must specify one of either `provisioner` or `pool`.

  pool:

    # (Optional) Group specifies the API group for the resources belonging to this cla

Tanzu Application Platform v1.5

VMware by Broadcom 1316



ss.

    group:

    # Kind specifies the API Kind for the resources belonging to this class.

    kind:

    # (Optional) FieldSelector specifies a set of fields that MUST match certain condi

tions.

    # See https://kubernetes.io/docs/concepts/overview/working-with-objects/field-sele

ctors/.

    fieldSelector:

    # (Optional) LabelSelector specifies a set of labels that MUST match.

    # See https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#la

bel-selectors.

    labelSelector:

# status is populated by the controller

status:

  # Conditions for the class.

  conditions:

    # The condition type. Currently only 'Ready'.

    - type: Ready

      # status can be either 'True' or 'False'.

      status: "True"

      # reason provides a reason for status: "False" for additional context.

      # One of 'PooledResourceNotFound', 'CompositeResourceDefinitionNotFound',

      # 'CompositeResourceDefinitionNotValid', or 'CompositeResourceDefinitionNotRead

y'.

      # Not set if status: "True".

      reason:

  # (Optional) claimParameters contains the OpenAPIV3Schema used to configure

  # claims for this class.

  # Not set on pool-based classes.

  claimParameters:

    openAPIV3Schema:

      description: The OpenAPIV3Schema of this Composite Resource Definition.

      properties:

        storageGB:

          default: 1

          description: The desired storage capacity of the database, in Gigabytes.

          type: integer

      type: object

  # instanceType holds information about the resource selected by this class.

  # If using the Crossplane provisioner, this refers to the CompositeResource (XR)

  # defined by the CompositeResourceDefinition (XRD) referred to in the class.

  instanceType:

    # (Optional) Group specifies the API group.

    group: bitnami.database.tanzu.vmware.com

    # Kind specifies the API Kind.

    kind: XMySQLInstance

    # Version specifies the API version.

    version: v1alpha1

  # Populated based on metadata.generation when controller observes a change to

  # the resource. If this value is out of date, other status fields do not

  # reflect latest state.

  observedGeneration: 1

ClassClaim

Tanzu Application Platform v1.5

VMware by Broadcom 1317



ClassClaim refers to a ClusterInstanceClass from which service instances are then either selected
(for pool-based classes) or provisioned (for provisioner-based classes) to fulfill the claim. ClassClaim
adheres to Provisioned Service as defined by the Service Binding Specification for Kubernetes.You
can bind a ClassClaim to an application workload by using a reference in the workload’s
.spec.serviceClaims configuration.

The following snippet outlines the ClassClaims YAML:

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ClassClaim

metadata:

  # The name for the claim.

  name: mysql-claim-1

  # The namespace in which to create the claim.

  namespace: my-apps

spec:

  # classRef holds a reference to a ClusterInstanceClass.

  classRef:

    # The name of the class from which to claim a service instance.

    # For information about the permissions users must have to claim from the class,

    # see the note below this snippet.

    name: mysql-unmanaged

  # (Optional) parameters are key-value pairs that are configuration inputs to the

  # instance obtained from the referenced ClusterInstanceClass. These parameters

  # only take effect when referring to a provisioner-based class.

  parameters:

    key: value

status:

  # Conditions for the claim.

  conditions:

    # The condition type. Can be one of 'Ready', 'ClassMatched', 'Validated', or

    # 'ResourceClaimCreated'. All condition types are initialized for all claims.

    # The Ready condition reports status: "True" once all other condition types are he

althy.

    - type: Ready

      # status can be either 'True' or 'False'.

      status: "True"

      # reason provides a reason for status: "False" for additional context.

      # One of 'UnableToFetchClass', 'ClassDoesNotExist', 'ClassNotReady',

      # 'UnableToQueryClaimableInstances', 'NoClaimableInstances',

      # 'UnableToCreateResourceClaim', 'UnableToCreateClaimableInstance', 'ResourceRea

dy',

      # 'ResourceNotReady', 'ResourceReadyUnsupported', or 'ReasonParametersInvalid'.

      # Not set if status: "True".

      reason:

  # binding holds a reference to a secret, in the same namespace, which contains

  # credentials for accessing the claimed service instance.

  binding:

    # The name of the `Secret`. The presence of the .status.binding.name field

    # marks this resource as a Provisioned Service.

    name: 770845b6-02f0-4c1b-8d0c-3dae81bad35c

  # provisionedResourceRef contains a reference to the provisioned resource.

  # Only set if the claim refers to a provisioner-based class.

  provisionedResourceRef:

    # The API Group/Version of the provisioned resource in the GROUP/VERSION format.

    apiVersion: bitnami.database.tanzu.vmware.com/v1alpha1

    # The API kind of the provisioned resource.

    kind: XMysqlInstance

    # The name of the provisioned resource.

Tanzu Application Platform v1.5

VMware by Broadcom 1318

https://github.com/servicebinding/spec#provisioned-service


    name: mysql-1-57dr7

  # resourceRef contains a reference to the claimed resource.

  resourceRef:

    # The API Group/Version of the claimed resource in the GROUP/VERSION format.

    apiVersion: v1

    # The API kind of the claimed resource.

    kind: Secret

    # The name of the claimed resource.

    name: 770845b6-02f0-4c1b-8d0c-3dae81bad35c

    # The namespace of the claimed resource.

    namespace: my-apps

  # Populated based on metadata.generation when controller observes a change to

  # the resource. If this value is out of date, other status fields do not reflect

  # latest state.

  observedGeneration: 1

ResourceClaim and ResourceClaimPolicy

This topic provides Services Toolkit API documentation for ResourceClaim and
ResourceClaimPolicy.

ResourceClaim

ResourceClaim is used to claim a specific Kubernetes resource by using a reference. ResourceClaim
adheres to Provisioned Service as defined by the Service Binding Specification for Kubernetes. you
can bind a ResourceClaim to an application workload by using a reference in the workload’s
.spec.serviceClaims configuration.

A ResourceClaim is exclusive by nature. This means that after a ResourceClaim has claimed a
resource, no other ResourceClaim can claim that same resource.

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ResourceClaim

metadata:

  # The name for the claim.

  name: claim-1

  # The namespace in which to create the claim.

  namespace: my-apps

  # Internal finalizers applied by the resource claim controller to ensure

  # resources are cleaned up.

  finalizers:

  - resourceclaims.services.apps.tanzu.vmware.com/finalizer

  - resourceclaims.services.apps.tanzu.vmware.com/lease-finalizer

spec:

  # ref is a reference to the resource to be claimed.

  ref:

    # The API Group/Version of the resource to claim in the GROUP/VERSION format.

    apiVersion: v1

    # The API Kind of the resource to claim.

    kind: Secret

Note

If you refer to a provisioner-based class in spec.classref.name, you must have
sufficient RBAC permission to claim from the class. For more information, see
Authorize users and groups to claim from provisioner-based classes.

Tanzu Application Platform v1.5

VMware by Broadcom 1319

https://github.com/servicebinding/spec#provisioned-service


    # The name of the resource to claim.

    name: 770845b6-02f0-4c1b-8d0c-3dae81bad35c

    # (Optional) The namespace of the resource to claim. If the resource exists

    # in a different namespace to the namespace of the claim, then you must configure

    # a corresponding ResourceClaimPolicy to permit claiming of the resource.

    namespace: service-instances

status:

  # Conditions for the claim.

  conditions:

    # The condition type. Can be one of 'Ready', 'ResourceMatched' or 'ResourceMatche

d'.

    # All condition types are initialized for all claims.

    # The Ready condition reports status: "True" once all other condition types are he

althy.

    - type: Ready

      # status can be either 'True' or 'False'.

      status: "True"

      # reason provides a reason for status: "False" for additional context.

      # One of 'ResourceNotFound', 'BindingNotCopyable', 'UnableToSetExclusiveClaim',

      # 'ResourceNonBindable', 'NoMatchingResourceClaimPolicy',

      # 'UnableToTrackReferencedResource', 'ResourceAlreadyClaimed',

      # 'UpdatedResourceReference', or 'ClaimMarkedForDeletion'.

      # Not set if status: "True".

      reason:

  # binding holds a reference to a secret in the same namespace which contains

  # credentials for accessing the claimed service instance.

  binding:

    # The name of the secret. The presence of the .status.binding.name field marks

    # this resource as a Provisioned Service.

    name: 770845b6-02f0-4c1b-8d0c-3dae81bad35c

  # claimedResourceRef holds a reference to the claimed resource.

  claimedResourceRef:

    # The API Group/Version of the claimed resource in the GROUP/VERSION format.

    apiVersion: v1

    # The API kind of the claimed resource.

    kind: Secret

    # The name of the claimed resource.

    name: 770845b6-02f0-4c1b-8d0c-3dae81bad35c

    # The namespace of the claimed resource.

    namespace: service-instances

  # Populated based on metadata.generation when controller observes a change to

  # the resource. If this value is out of date, other status fields do not

  # reflect latest state.

  observedGeneration: 1

ResourceClaimPolicy

ResourceClaimPolicy provides a mechanism to either permit or deny the claiming of resources
across namespaces.

apiVersion: services.apps.tanzu.vmware.com/v1alpha1

kind: ResourceClaimPolicy

metadata:

  # The name for the policy.

  name: default-ns-can-claim-secret-1

  # The namespace for the policy.

  # ResourceClaimPolicy resources must exist in the same namespace as the resources

  # they are permitting to be claimed.

  namespace: x-namespace-1

Tanzu Application Platform v1.5

VMware by Broadcom 1320



spec:

  # consumingNamespaces specifies the source namespace(s) to permit the claiming

  # of the resources from.

  # Use '*' to configure all namespaces.

  consumingNamespaces:

  - default

  # The API group of the resource to permit the claiming of.

  group: rabbitmq.com

  # The API kind of the resource to permit the claiming of.

  kind: RabbitmqCluster

  # (Optional) selector is a labelSelector to match resources to permit the claiming o

f.

  selector:

    matchLabels:

      "key": "value"

InstanceQuery

This topic provides Services Toolkit API documentation for InstanceQuery.

InstanceQuery

InstanceQuery is a create-only API that, given a pool-based ClusterInstanceClass, returns the
intersection of the set of service instances represented by that class and the claimable service
instances for the namespace of the InstanceQuery.

apiVersion: claimable.services.apps.tanzu.vmware.com/v1alpha1

kind: InstanceQuery

metadata:

  # An arbitrary name for the query.

  name: test

  # The namespace from which to run the query. The resulting list of instances is

  # specific to the namespace of the query itself.

  namespace: my-apps

spec:

  # The name of the class to query for claimable instances. Must refer to a

  # pool-based class and not a provisioner-based class.

  class: pooled-class-1

  # (Optional) A limit on the maximum number of instances to return.

  # The default is 50.

  limit: 1

status:

  # A list of service instances that you can claim by using ResourceClaims created

  # in the same namespace as the query.

  instances:

    # The API group/version of the claimable instance in the format GROUP/VERSION.

  - apiVersion: v1

    # The API kind of the claimable instance.

    kind: Secret

    # The name of the claimable instance.

    name: my-secret-two

    # The namespace of the claimable instance.

    namespace: default

RBAC

Tanzu Application Platform v1.5

VMware by Broadcom 1321



This topic provides API documentation for Role-Based Access Control (RBAC) relating to Services
Toolkit’s APIs.

Aggregation labels

This section describes the following Aggregation labels:

servicebinding.io/controller: “true”

services.tanzu.vmware.com/aggregate-to-provider-kubernetes: “true”

services.tanzu.vmware.com/aggregate-to-provider-helm: “true”

servicebinding.io/controller: “true”

Use this label to grant the Services Toolkit and service bindings controllers permission to get, list,
and watch resources to be claimed and bound in the cluster.

For example, the following ClusterRole grants the controllers permission to get, list, and watch
RabbitmqCluster resources. You cannot create ClassClaims or ResourceClaims unless the
controllers have at least these permissions for each resource type being claimed.

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

  name: resource-claims-rmq-role

  labels:

    servicebinding.io/controller: "true"

rules:

- apiGroups:

  - rabbitmq.com

  resources:

  - rabbitmqclusters

  verbs:

  - get

  - list

  - watch

services.tanzu.vmware.com/aggregate-to-provider-kubernetes:
“true”

Use this label to aggregate RBAC rules to provider-kubernetes, which is a Crossplane Provider
installed by default as part of the Crossplane package in Tanzu Application Platform. You must grant
relevant RBAC permissions for each API Group/Kind used during the creation of Compositions as
part of setting up dynamic provisioning.

For example, the following ClusterRole grants provider-kubernetes full control over
rabbitmqclusters on the rabbitmq.com API Group. This allows you to compose rabbitmqclusters
in Compositions. For a full example, see Setup Dynamic Provisioning of Service Instances.

---

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

  name: rmqcluster-read-writer

  labels:

    services.tanzu.vmware.com/aggregate-to-provider-kubernetes: "true"

rules:

- apiGroups:

  - rabbitmq.com

  resources:

  - rabbitmqclusters

Tanzu Application Platform v1.5

VMware by Broadcom 1322



  verbs:

  - "*"

services.tanzu.vmware.com/aggregate-to-provider-helm: “true”

Use this label to aggregate RBAC rules to provider-helm, which is a Crossplane Provider installed
by default as part of the Crossplane package in Tanzu Application Platform. You must grant relevant
RBAC permissions for each API Group/Kind used during the creation of Helm releases when using
the Release managed resource as part of Compositions.

For example, the following ClusterRole grants provider-helm full control over rabbitmqclusters on
the rabbitmq.com API Group. This allows you to compose Helm Releases which themselves
eventually deploy rabbitmqclusters in your Compositions.

---

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

  name: rmqcluster-read-writer

  labels:

    services.tanzu.vmware.com/aggregate-to-provider-helm: "true"

rules:

- apiGroups:

  - rabbitmq.com

  resources:

  - rabbitmqclusters

  verbs:

  - "*"

The claim verb for ClusterInstanceClass
Services Toolkit supports using the claim verb for RBAC rules that apply to a
ClusterInstanceClass. You can use this with relevant aggregating labels or ClusterRoleBindings
as a form of access control to specify who can claim from which ClusterInstanceClass.

For example:

---

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

  name: app-operator-claim-class-bigcorp-rabbitmq

  labels:

    # (Optional) Aggregates this ClusterRole to Tanzu Application Platform's

    # app-operator user role at the cluster scope. You can choose to aggregate

    # this to any of the other standard user roles as well.

    apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access: "true"

rules:

# Permits claiming from the 'bigcorp-rabbitmq' class

- apiGroups:

  - services.apps.tanzu.vmware.com

  resources:

  - clusterinstanceclasses

  resourceNames:

  - bigcorp-rabbitmq

  verbs:

  - claim

As of Services Toolkit v0.10.3 in Tanzu Application Platform v1.5.6, you must grant the permission
to claim from a ClusterInstanceClass at the cluster level. You now must use a ClusterRole and
ClusterRoleBinding. Namespace-scoped permissions, such as using a Role and RoleBinding or

Tanzu Application Platform v1.5

VMware by Broadcom 1323



ClusterRole and RoleBinding, are not sufficient. If you used Roles and RoleBindings, or
ClusterRoles and RoleBindings to grant claim permissions in specific namespaces only, this change
might affect you. For more information, see Authorize users and groups to claim from provisioner-
based classes.

Previously, Services Toolkit allowed you to claim from a ClusterInstanceClass with only
namespace-level permissions. However, this allowed users with only namespace-level permissions
to obtain or indirectly deploy resources into namespaces that they do not have access to according
to the RBAC permissions.

Services Toolkit limitations

This topic tells you about the limitations related to working with services on Tanzu Application
Platform (commonly known as TAP).

Cannot claim and bind to the same service instance from
across multiple namespaces
Two or more workloads located in two or more distinct namespaces cannot claim and bind to the
same service instance. This is due to the mutually exclusive nature of claims. After a claim has
claimed a service instance, no other claim can then claim that same service instance.

This limitation does not exist for two or more workloads located in the same namespace. In this
case, the workloads can all still all bind to one claim. This is not possible across the namespace
divide.

Tanzu Service CLI plug-in
This topic provides reference information about the Tanzu Service CLI plug-in for Services Toolkit.
The main use for the plug-in is for application operators and application developers to create claims.
It aims to offer you a service experience that is consistent with other Tanzu CLI commands.

The reference material in this topic is split by sub-command.

tanzu service class
Classes, sometimes called instance classes or service instance classes, are a means to discover and
describe groupings of similar service instances. They are analogous to the concept of storage
classes in Kubernetes.

You can discover the range of services on offer by listing the available classes on a cluster. See
tanzu service class list -h.

You can create a claim for a service instance of a particular class by running the tanzu service
class-claim create command.

When you get a class, you can see more detailed information about it, including, where available, a
list of parameters that you can pass to the tanzu service class-claim create command using the
--parameter flag.

tanzu service class list

This command lists the available classes.

Usage:

  tanzu service class list [flags]

Tanzu Application Platform v1.5

VMware by Broadcom 1324



Examples:

  tanzu service class list

Flags:

  -h, --help   help for list

Global Flags:

      --context string      name of the kubeconfig context to use (default is current-

context defined by kubeconfig)

      --kubeconfig string   kubeconfig file (default is /home/eking/.kube/config)

      --no-color            turn off color output in terminals

tanzu service class get

This command gets detailed information for a class.

The output includes more detailed information about the class, including, where available, a list of
parameters that you can pass to the tanzu service class-claim create command using the --
parameter flag.

Usage:

  tanzu service class get [name] [flags]

Examples:

  tanzu service class get rmq-small

Flags:

  -h, --help   help for get

Global Flags:

      --context string      name of the kubeconfig context to use (default is current-

context defined by kubeconfig)

      --kubeconfig string   kubeconfig file (default is /home/eking/.kube/config)

      --no-color            turn off color output in terminals

tanzu service class-claim
Class claims allow you to create claims by only referring to a class.

Class claims are an alternative approach to resource claims, which require you to refer to a specific
resource by name, namespace, kind and API group/version.

VMware recommends that you work with class claims wherever possible because they are easier to
create and are considered more portable across multiple clusters.

tanzu service class-claim create

This command creates a claim by referring to a class.

You can bind claims for service instances to application workloads.

Claims are mutually exclusive, meaning that after a service instance has been claimed, no other
claim can claim it. This prevents unauthorized application workloads from accessing a service
instance that your application workloads are using.

You can pass parameters with the --parameter key.subKey=value flag. You can provide this flag
multiple times. The value must be valid YAML. You can find available parameters for a class by
running tanzu service class get CLASS-NAME.

Usage:

  tanzu service class-claim create [name] [flags]

Tanzu Application Platform v1.5

VMware by Broadcom 1325



Examples:

  tanzu service class-claim create psql-claim-1 --class postgres

  tanzu service class-claim create rmq-claim-1 --class rmq --parameter durable=true --

parameter replicas=3

Flags:

      --class string            the name of a class to claim an instance of

  -h, --help                    help for create

  -n, --namespace name          kubernetes namespace (defaulted from kube config)

  -p, --parameter stringArray   claim parameters

Global Flags:

      --context string      name of the kubeconfig context to use (default is current-

context defined by kubeconfig)

      --kubeconfig string   kubeconfig file (default is /home/eking/.kube/config)

      --no-color            turn off color output in terminals

tanzu service class-claim get

This command gets detailed information for a class claim.

The output includes the name of the class the claim was created for and the claim ref. Pass claim
refs to the --service-ref flag of the tanzu apps workload create command to bind workloads to
claimed service instances.

Usage:

  tanzu service class-claim get [flags]

Examples:

  tanzu service class-claim get psql-claim-1

  tanzu service class-claim get psql-claim-1 --namespace app-ns-1

Flags:

  -h, --help             help for get

  -n, --namespace name   kubernetes namespace (defaulted from kube config)

Global Flags:

      --context string      name of the kubeconfig context to use (default is current-

context defined by kubeconfig)

      --kubeconfig string   kubeconfig file (default is /home/eking/.kube/config)

      --no-color            turn off color output in terminals

tanzu service class-claim delete

This command deletes a class claim.

You will be prompted to confirm the deletion unless you pass the --yes flag. Before you delete a
claim, you must be aware of the consequences of doing so.

When you create a claim, it signals a that you want a service instance. You usually create a service
instance to bind it to one or more application workload. If you delete a claim, it signals that you no
longer need the claimed service instance. At this point, other claims created by other users can
claim the service instance you previously claimed.

Usage:

  tanzu service class-claim delete [flags]

Examples:

  tanzu service class-claim delete psql-claim-1

  tanzu service class-claim delete psql-claim-1 --yes

  tanzu service class-claim delete psql-claim-1 --namespace app-ns-1

Flags:

Tanzu Application Platform v1.5

VMware by Broadcom 1326



  -h, --help             help for delete

  -n, --namespace name   kubernetes namespace (defaulted from kube config)

  -y, --yes              skip the confirmation of the deletion

Global Flags:

      --context string      name of the kubeconfig context to use (default is current-

context defined by kubeconfig)

      --kubeconfig string   kubeconfig file (default is /home/eking/.kube/config)

      --no-color            turn off color output in terminals

tanzu service class-claim list

This command lists class claims in a namespace or across all namespaces.

If you run this command with the -o wide flag, claim refs for each of the claims are printed. Pass
claim refs to the --service-ref flag of the tanzu apps workload create command to bind
workloads to claimed service instances.

Usage:

  tanzu service class-claim list [flags]

Examples:

  tanzu service class-claim list

  tanzu service class-claim list --class postgres

  tanzu service class-claim list -o wide

  tanzu service class-claim list -n app-ns-1 -o wide

Flags:

  -A, --all-namespaces   list class claims across all namespaces

  -c, --class string     list class claims referencing this class

  -h, --help             help for list

  -n, --namespace name   kubernetes namespace (defaulted from kube config)

  -o, --output string    output format (currently the only available option is 'wide')

Global Flags:

      --context string      name of the kubeconfig context to use (default is current-

context defined by kubeconfig)

      --kubeconfig string   kubeconfig file (default is /home/eking/.kube/config)

      --no-color            turn off color output in terminals

tanzu service resource-claim
Resource claims enable you to create claims by referring to a specific resource by name,
namespace, kind, and API group or version.

Resource claims are an alternative approach to class claims, which only require you to refer to a
class.

VMware recommends that you work with class claims wherever possible because they are easier to
create and are more portable across multiple clusters.

tanzu service resource-claim create

This command creates a claim for a specific resource.

It is common to create claims for resources that you can bind to application workloads using the
claim.

This approach to creating claims differs to that of class claims, in which the system ultimately finds
and supplies a claimable resource for you. You only have to work with resource claims if you want
full control over which resource is claimed. If not, it is simpler and more convenient to work with
class claims. See tanzu service class-claim --help.

Tanzu Application Platform v1.5

VMware by Broadcom 1327



Claims are mutually exclusive, meaning that after a service instance has been claimed, no other
claim can claim it. This prevents unauthorized application workloads from accessing a resource that
your application workloads are using.

To find resources you can create resource claims for, run the tanzu service claimable list
command.

Usage:

  tanzu service resource-claim create [name] [flags]

Examples:

  tanzu service resource-claim create psql-claim-1 --resource-name psql-instance-1 --r

esource-kind Postgres --resource-api-version sql.example.com/v1

  tanzu service resource-claim create psql-claim-1 --resource-name psql-instance-1 --r

esource-kind Postgres --resource-api-version sql.example.com/v1 --resource-namespace s

ervice-instances-1

  tanzu service resource-claim create psql-claim-1 --resource-name secret-1 --resource

-kind Secret --resource-api-version v1

Flags:

  -h, --help                          help for create

  -n, --namespace name                kubernetes namespace (defaulted from kube confi

g)

      --resource-api-version string   API group and version of the resource to claim 

(in the form '<GROUP>/<VERSION>')

      --resource-kind string          kind of the resource to claim

      --resource-name string          name of the resource to claim

      --resource-namespace string     namespace of the resource to claim

Global Flags:

      --context string      name of the kubeconfig context to use (default is current-

context defined by kubeconfig)

      --kubeconfig string   kubeconfig file (default is /home/eking/.kube/config)

      --no-color            turn off color output in terminals

tanzu service resource-claim get

This command gets detailed information for a resource claim.

The output includes the name of claimed resource and the claim ref. Pass claim refs to the --
service-ref flag of the tanzu apps workload create command to bind workloads to claimed
service instances.

Usage:

  tanzu service resource-claim get [name] [flags]

Examples:

  tanzu service resource-claim get psql-claim-1

  tanzu service resource-claim get psql-claim-1 --namespace app-ns-1

Flags:

  -h, --help             help for get

  -n, --namespace name   kubernetes namespace (defaulted from kube config)

Global Flags:

      --context string      name of the kubeconfig context to use (default is current-

context defined by kubeconfig)

      --kubeconfig string   kubeconfig file (default is /home/eking/.kube/config)

      --no-color            turn off color output in terminals

tanzu service resource-claim delete

This command deletes a resource claim.

Tanzu Application Platform v1.5

VMware by Broadcom 1328



You will be prompted to confirm the deletion unless you pass the --yes flag. Before you delete a
claim, you must be aware of the consequences of doing so.

When you create a claim, it signals a that you want a resource. You usually create a resource to
bind it to one or more application workload. If you delete a claim, it signals that you no longer need
the claimed resource. At this point, other claims created by other users can claim the resource you
previously claimed.

Usage:

  tanzu service resource-claim delete [name] [flags]

Examples:

  tanzu service resource-claim delete psql-claim-1

  tanzu service resource-claim delete psql-claim-1 --yes

  tanzu service resource-claim delete psql-claim-1 --namespace app-ns-1

Flags:

  -h, --help             help for delete

  -n, --namespace name   kubernetes namespace (defaulted from kube config)

  -y, --yes              skip the confirmation of the deletion

Global Flags:

      --context string      name of the kubeconfig context to use (default is current-

context defined by kubeconfig)

      --kubeconfig string   kubeconfig file (default is /home/eking/.kube/config)

      --no-color            turn off color output in terminals

tanzu service resource-claim list

This command lists resource claims in a namespace or across all namespaces.

If you run this command with the -o wide flag, claim refs for each of the claims are printed. Pass
claim refs to the --service-ref flag of the tanzu apps workload create command to bind
workloads to claimed service instances.

Usage:

  tanzu service resource-claim list [flags]

Examples:

  tanzu service resource-claim list

  tanzu service resource-claim list -o wide

  tanzu service resource-claim list -n app-ns-1 -o wide

Flags:

  -A, --all-namespaces   list resource claims across all namespaces

  -h, --help             help for list

  -n, --namespace name   kubernetes namespace (defaulted from kube config)

  -o, --output string    output format (currently the only available option is 'wide')

Global Flags:

      --context string      name of the kubeconfig context to use (default is current-

context defined by kubeconfig)

      --kubeconfig string   kubeconfig file (default is /home/eking/.kube/config)

      --no-color            turn off color output in terminals

tanzu service claimable

Searches for resources that are available to claim.

tanzu service claimable list

Tanzu Application Platform v1.5

VMware by Broadcom 1329



This command lists resources for a class that you can claim directly using the tanzu service
resource-claim create command.

Usage:

  tanzu service claimable list [flags]

Examples:

  tanzu service claimable list --class postgres

  tanzu service claimable list --class postgres --namespace app-ns-1

Flags:

      --class string     name of the class to list claimable resources for

  -h, --help             help for list

  -n, --namespace name   kubernetes namespace (defaulted from kube config)

Global Flags:

      --context string      name of the kubeconfig context to use (default is current-

context defined by kubeconfig)

      --kubeconfig string   kubeconfig file (default is /home/eking/.kube/config)

      --no-color            turn off color output in terminals

Services Toolkit terminology and user roles

This topic provides descriptions of the terms and user roles used in the Services Toolkit
documentation.

Terminology

The following terms are used in the Services Toolkit documentation.

Service

Service is broad, high-level term that describes something used in either the development of, or
running of application workloads. Often, but not exclusively, synonymous with the concept of a
backing service as defined by the Twelve Factor App:

“… any service the app consumes over the network as part of its normal operation”

For example:

A PostgreSQL service (implemented as a Kubernetes Operator provided by Tanzu Data
Services)

A PostgreSQL service (implemented as a process running on an Application Developer’s
laptop)

Object storage (implemented as SaaS running on AWS)

AppSSO

Service resource

A service resource is a Kubernetes resource that provides some of the functions related to a
Service.

For example:

A Kubernetes resource with API Kind PostgreSQL

A Kubernetes resource with API Kind FirewallRule

A Kubernetes resource with API Kind RabbitmqUser

Tanzu Application Platform v1.5

VMware by Broadcom 1330



A Kubernetes resource with API Kind ClientRegistration that provides access to an App
SSO service

A Kubernetes resource with API Kind Secret containing credentials and connectivity
information for a Service that may or may not be running on the cluster itself.

Provisioned service

A provisioned service is any service resource that defines a .status.binding.name which points to a
secret in the same namespace that contains credentials and connectivity information for the
resource.

This term is defined in the Service Binding Specification for Kubernetes. For the full definition, see
the Service Binding Specification in GitHub.

Service binding

A service binding is a mechanism in which service instance credentials and other related
connectivity information are automatically communicated to application workloads.

For example:

The Service binding concept implemented through the ServiceBinding service resource
provided by servicebinding in GitHub.

Service instance

A service instance is an abstraction over one or a group of interrelated service resources that
together provide the functions for a particular service.

One of the service resources that make up an instance must either adhere to the definition of
provisioned service, or be a secret conforming to the service binding specification for Kubernetes.
This guarantees that you can claim a service and subsequently bind service instances to application
workloads.

You make service instances discoverable through service instance classes.

For example:

The RabbitmqCluster service resource provided by the RabbitMQ Cluster Kubernetes
operator. This service resource adheres to provisioned service. Therefore, you can consider
any RabbitmqCluster resource on a Kubernetes cluster to be a service instance.

A logical grouping of the following service resources form a single AWS RDS service
instance:

An AWS RDS DBInstance

An AWS RDS DBSubnetGroup

A Carvel SecretTemplate configured to produce a secret conforming to the Service
Binding Specification for Kubernetes

A Role, RoleBinding, and ServiceAccount

A Kubernetes Secret conforming to the Service Binding Specification for Kubernetes
containing credentials for a Service running external to the cluster.

Service instance class

A service instance class is more commonly called a “class”. They provide a way to describe classes,
that is, categories, of service instances.

Tanzu Application Platform v1.5

VMware by Broadcom 1331

https://github.com/servicebinding/spec#provisioned-service
https://github.com/vmware-tanzu/servicebinding


A service instance class enables service instances belonging to the class to be discovered. They
come in one of two varieties: pool-based or provisioner-based.

Claims for pool-based classes are fulfilled by selecting a service instance from a pool.

Claims for provisioner-based classes are fulfilled by provisioning new service instances.

Different classes might map to different services or to different configurations of the same service.

For example:

A ClusterInstanceClass named “rabbitmq-dev” pointing to all RabbitmqCluster service
resources configured with .spec.replicas=1 identified by label class: rmq-dev.

A ClusterInstanceClass named “rabbitmq-prod” pointing to all RabbitmqCluster service
resources configured with .spec.replicas=3 identified by label class: rmq-prod.

A ClusterInstanceClass named “aws-rds-postgresql” pointing to secrets that conform with
the Binding Specification and identified by label class: aws-rds.

A ClusterInstanceClass named “mysql-on-demand” which provisions MySQL service
instances.

Claim

A claim is a mechanism in which requests for service instances can be declared and fulfilled without
requiring detailed knowledge of the service instances themselves.

Claims come in one of two varieties - resource claim and class claim:

Resource claims refer to a specific service instance.

Class claims refer to a class from which a service instance is then either selected (pool-
based) or provisioned (provisioner-based).

For example:

A resource claim pointing to a RabbitmqCluster service instance named rmq-1 in the
namespace service-instances.

A class claim pointing to a class named on-demand-rabbitmq.

Claimable service instance

A claimable service instance is any service instance that you are permitted to claim using a resource
claim from a namespace, taking into consideration:

Location (namespace) of the service instance in relation to the location of the resource
claim.

Any matching resource claim policies.

Exclusivity of resource claims, that is, you can only claim an instance once.

For example:

A RabbitmqCluster service resource located in the same namespace as a resource claim
and that has not already been claimed by another resource claim is a claimable service
instance.

A RabbitmqCluster service resource located in a different namespace to a resource claim,
for which a matching resource claim policy exists, and has not already been claimed by
another resource claim is a claimable service instance.

A RabbitmqCluster service resource located in the same namespace as a resource claim
that has already been claimed is not a claimable service instance due to the exclusive

Tanzu Application Platform v1.5

VMware by Broadcom 1332



nature of Resource Claims.

Dynamic provisioning

Dynamic provisioning is a capability of Services Toolkit in which class claims that refer to
provisioner-based classes are fulfilled automatically through the provisioning of new service
instances.

Service resource life cycle API

A service resource life cycle API is any Kubernetes API that you can use to manage the life cycle—
create, read, update and delete (CRUD)—of a service resource.

For example:

rabbitmqclusters.rabbitmq.com/v1beta1

Service cluster

A service cluster is applicable within the context of Service API Projection and Service Resource
Replication. It is a Kubernetes cluster that has Service Resource Lifecycle APIs installed and a
corresponding controller managing their life cycle.

Workload cluster

A workload cluster is applicable within the context of Service API Projection and Service Resource
Replication. It is a Kubernetes cluster that has developer-created applications running on it.

User roles

Services Toolkit caters to the following user roles.

These user roles are not user personas. It is possible, and even expected, that one person can be
associated with many user roles at any given time. The user roles align to Tanzu Application
Platform’s user roles. Services Toolkit is primarily responsible for defining the service operator role.
For more information about the user roles, see Role descriptions.

The user roles listed in this section consist of a short description and the tasks required. For
detailed information about the corresponding Role-Based Access Control (RBAC) associated with
each role, see Detailed role permissions breakdown.

Application developer (AD)

The application developer role encompasses both app-editor and app-viewer roles as defined by
Tanzu Application Platform. For more information about the app-editor and app-viewer roles, see
Role descriptions.

Application developers do the following:

Bind and unbind application workloads to and from resource claims.

Get, list, and watch ResourceClaims.

get, list, and watch ClusterInstanceClasses associated with ResourceClaims.

Application operator (AO)

Encompasses the app-operator role as defined by Tanzu Application Platform. For more
information about the app-operator role, see Role descriptions.

Application operators do the following:

Tanzu Application Platform v1.5

VMware by Broadcom 1333



Discover and learn about service instance classes available on a cluster.

Discover claimable service instances associated with service instance classes.

Life cycle management (CRUD) of resource claims.

Service operator (SO)

Service operators do the following:

Life cycle management (CRUD) of service instances.

Life cycle management (CRUD) of service instance classes.

Life cycle management (CRUD) of resource claim policies.

Identify pending resource claims and, if appropriate, help to fulfil such claims through a
combination of the previous tasks.

Setup and configure dynamic provisioning.

Overview of Source Controller

Tanzu Source Controller provides a standard interface for artifact acquisition and extends the
function of Flux CD Source Controller.

Tanzu Source Controller supports the following two resource types:

ImageRepository

MavenArtifact

An ImageRepository resource can resolve the source from the contents of an image in an image
registry. This enables app developers to create and update workloads from local source code or a
code repository.

A MavenArtifact resource can resolve a binary artifact from a Maven repository. This functionality
enables the supply chain to support artifacts produced externally.

Overview of Source Controller
Tanzu Source Controller provides a standard interface for artifact acquisition and extends the
function of Flux CD Source Controller.

Tanzu Source Controller supports the following two resource types:

ImageRepository

MavenArtifact

An ImageRepository resource can resolve the source from the contents of an image in an image
registry. This enables app developers to create and update workloads from local source code or a
code repository.

A MavenArtifact resource can resolve a binary artifact from a Maven repository. This functionality
enables the supply chain to support artifacts produced externally.

Note

Fetching RELEASE version from GitHub packages is not currently supported. The
metadata.xml in GitHub packages does not have the release tag that contains the
released version number. For more information, see Maven-metadata.xml is
corrupted on upload to registry on GitHub.

Tanzu Application Platform v1.5

VMware by Broadcom 1334

https://github.community/t/maven-metadata-xml-is-corrupted-on-upload-to-registry/177725


Install Source Controller
This topic tells you how to install Source Controller from the Tanzu Application Platform (commonly
known as TAP) package repository.

Prerequisites

Before installing Source Controller:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

Install cert-manager on the cluster. For more information, see Install cert-manager.

Install

To install Source Controller:

1. List version information for the package by running:

tanzu package available list controller.source.apps.tanzu.vmware.com --namespac

e tap-install

For example:

$ tanzu package available list controller.source.apps.tanzu.vmware.com --namesp

ace tap-install

- Retrieving package versions for controller.source.apps.tanzu.vmware.com...

  NAME                                     VERSION  RELEASED-AT

  controller.source.apps.tanzu.vmware.com  0.3.1    2022-01-23 19:00:00 -0500 -

05

  controller.source.apps.tanzu.vmware.com  0.3.2    2022-02-21 19:00:00 -0500 -

05

  controller.source.apps.tanzu.vmware.com  0.3.3    2022-03-03 19:00:00 -0500 -

05

  controller.source.apps.tanzu.vmware.com  0.4.1    2022-06-09 19:00:00 -0500 -

05

2. (Optional) Gather the values schema:

tanzu package available get controller.source.apps.tanzu.vmware.com/VERSION-NUM

BER --values-schema --namespace tap-install

Note

Fetching RELEASE version from GitHub packages is not currently supported. The
metadata.xml in GitHub packages does not have the release tag that contains the
released version number. For more information, see Maven-metadata.xml is
corrupted on upload to registry on GitHub.

Note

Follow the steps in this topic if you do not want to use a profile to install Source
Controller. For more information about profiles, see Components and installation
profiles.

Tanzu Application Platform v1.5

VMware by Broadcom 1335

https://github.community/t/maven-metadata-xml-is-corrupted-on-upload-to-registry/177725


Where VERSION-NUMBER is the version of the package listed in step 1 above.

For example:

tanzu package available get controller.source.apps.tanzu.vmware.com/0.4.1 --val

ues-schema --namespace tap-install

Retrieving package details for controller.source.apps.tanzu.vmware.com/0.4.1...

KEY               DEFAULT  TYPE    DESCRIPTION

aws_iam_role_arn           string  Optional: The AWS IAM Role ARN to attach to 

the Source Controller service account

ca_cert_data               string  Optional: PEM Encoded certificate data for i

mage registries with private CA.

3. (Optional) Create a file named source-controller-values.yaml to override the default
installation settings. You can configure the following fields:

ca_cert_data: Enables Source Controller to connect to image registries that use
self-signed or private certificate authorities. If a certificate error x509: certificate
signed by unknown authority occurs, use this option to trust additional certificate
authorities.

To provide a custom certificate, add the PEM-encoded CA certificate data to
source-controller-values.yaml. For example:

ca_cert_data: |

    -----BEGIN CERTIFICATE-----

    MIICpTCCAYUCBgkqhkiG9w0BBQ0wMzAbBgkqhkiG9w0BBQwwDgQIYg9x6gkCAggA

    ...

    9TlA7A4FFpQqbhAuAVH6KQ8WMZIrVxJSQ03c9lKVkI62wQ==

    -----END CERTIFICATE-----

aws_iam_role_arn: Annotates the Source Controller service with an AWS Identity
and Access Management (IAM) role. This allows Source Controller to pull images
from Amazon Elastic Container Registry (ECR).

To add the AWS IAM role Amazon Resource Name (ARN) to the Source Controller
service, add the ARN to source-controller-values.yaml. For example:

aws_iam_role_arn: "eks.amazonaws.com/role-arn: arn:aws:iam::112233445566:

role/source-controller-manager"

4. Install the package by running:

tanzu package install source-controller \

  --package controller.source.apps.tanzu.vmware.com \

  --version VERSION-NUMBER \

  --namespace tap-install \

  --values-file VALUES-FILE

Where:

VERSION-NUMBER is the version of the package listed in step 1 above.

VALUES-FILE is the path to the file created in step 3.

For example:

$ tanzu package install source-controller

    --package controller.source.apps.tanzu.vmware.com

    --version 0.4.1

    --namespace tap-install

    --values-file source-controller-values.yaml

Tanzu Application Platform v1.5

VMware by Broadcom 1336



\ Installing package 'controller.source.apps.tanzu.vmware.com'

| Getting package metadata for 'controller.source.apps.tanzu.vmware.com'

| Creating service account 'source-controller-default-sa'

| Creating cluster admin role 'source-controller-default-cluster-role'

| Creating cluster role binding 'source-controller-default-cluster-rolebinding'

| Creating secret 'source-controller-default-values'

| Creating package resource

- Waiting for 'PackageInstall' reconciliation for 'source-controller'

- 'PackageInstall' resource install status: Reconciling

 Added installed package 'source-controller'

5. Verify the package installation by running:

tanzu package installed get source-controller -n tap-install

For example:

tanzu package installed get source-controller -n tap-install

- Retrieving installation details for source-controller...

NAME:                    source-controller

PACKAGE-NAME:            controller.source.apps.tanzu.vmware.com

PACKAGE-VERSION:         0.4.1

STATUS:                  Reconcile succeeded

CONDITIONS:              [{ReconcileSucceeded True  }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded:

kubectl get pods -n source-system

For example:

$ kubectl get pods -n source-system

NAME                                        READY   STATUS    RESTARTS   AGE

source-controller-manager-f68dc7bb6-4lrn6   1/1     Running   0          100s

Verify that STATUS is Running.

Troubleshoot Source Controller

This topic gives you guidance about how to troubleshoot issues with Source Controller.

Collecting Logs from Source Controller Manager

To retrieve Pod logs from the controller-manager, run the following command in the source-
system namespace:

kubectl logs -n source-system -l control-plane=controller-manager

For example:

kubectl logs -n source-system -l control-plane=controller-manager

2021-11-18T17:59:43.152Z INFO controller.imagerepository Starting Event

Source {"reconciler group": "source.apps.tanzu.vmware.com", "reconciler kind": "Image

Repository", "source": "kind source: /, Kind="}

2021-11-18T17:59:43.152Z INFO controller.metarepository Starting Event

Source {"reconciler group": "source.apps.tanzu.vmware.com", "reconciler kind": "MetaR

epository", "source": "kind source: /, Kind="}

2021-11-18T17:59:43.152Z INFO controller.metarepository Starting Event

Tanzu Application Platform v1.5

VMware by Broadcom 1337



Source {"reconciler group": "source.apps.tanzu.vmware.com", "reconciler kind": "MetaR

epository", "source": "kind source: /, Kind="}

2021-11-18T17:59:43.152Z INFO controller.metarepository Starting Event

Source {"reconciler group": "source.apps.tanzu.vmware.com", "reconciler kind": "MetaR

epository", "source": "kind source: /, Kind="}

2021-11-18T17:59:43.152Z INFO controller.metarepository Starting Contr

oller {"reconciler group": "source.apps.tanzu.vmware.com", "reconciler kind": "MetaR

epository"}

2021-11-18T17:59:43.152Z INFO controller.imagerepository Starting Event

Source {"reconciler group": "source.apps.tanzu.vmware.com", "reconciler kind": "Image

Repository", "source": "kind source: /, Kind="}

2021-11-18T17:59:43.152Z INFO controller.imagerepository Starting Event

Source {"reconciler group": "source.apps.tanzu.vmware.com", "reconciler kind": "Image

Repository", "source": "kind source: /, Kind="}

2021-11-18T17:59:43.152Z INFO controller.imagerepository Starting Contr

oller {"reconciler group": "source.apps.tanzu.vmware.com", "reconciler kind": "Image

Repository"}

2021-11-18T17:59:43.389Z INFO controller.metarepository Starting worke

rs {"reconciler group": "source.apps.tanzu.vmware.com", "reconciler kind": "MetaR

epository", "worker count": 1}

2021-11-18T17:59:43.391Z INFO controller.imagerepository Starting worke

rs {"reconciler group": "source.apps.tanzu.vmware.com", "reconciler kind": "Image

Repository", "worker count": 1}

Source Controller reference

This topic provides reference documentation for Source Controller.

ImageRepository

---

apiVersion: source.apps.tanzu.vmware.com/v1alpha1

kind: ImageRepository

spec:

  image: registry.example/image/repository:tag

  # optional fields

  interval: 5m

  imagePullSecrets: []

  serviceAccountName: default

ImageRepository resolves source code defined in an Open Container Initiative (OCI) image
repository, exposing the resulting source artifact at a URL defined by .status.artifact.url.

The interval determines how often to check tagged images for changes. Setting this value too high
will result in delays in discovering new sources, while setting it too low may trigger a registry’s rate
limits.

Repository credentials can be defined as image pull secrets. You can reference them either directly
from the resources at .spec.imagePullSecrets or attach them to a service account referenced at
.spec.serviceAccountName. The default service account name "default" is used if not otherwise
specified. The default credential helpers for the registry are also used, for example, pulling from
Google Container Registry (GCR) on a Google Kubernetes Engine (GKE) cluster.

MavenArtifact

---

apiVersion: source.apps.tanzu.vmware.com/v1alpha1

kind: MavenArtifact

metadata:

  name: mavenartifact-sample

Tanzu Application Platform v1.5

VMware by Broadcom 1338



spec:

  artifact:

    groupId: org.springframework.boot

    artifactId: spring-boot

    version: "2.7.0"

  repository:

    url: https://repo1.maven.org/maven2

  interval: 5m0s

  timeout: 1m0s

MavenArtifact resolves artifact from a Maven repository, exposing the resulting artifact at a URL
defined by .status.artifact.url.

The interval determines how often to check artifact for changes. Setting this value too high
results in delays in discovering new sources, while setting it too low may trigger a repository’s rate
limits.

Repository credentials may be defined as secrets referenced from the resources at
.spec.repository.secretRef. Secrets referenced by spec.repository.secretRef is parsed as
follows:

---

apiVersion: v1

kind: Secret

metadata:

  name: auth-secret

type: Opaque

data:

  username: <BASE64>

  password: <BASE64>

  caFile:   <BASE64>   // PEM Encoded certificate data for Custom CA

  certFile: <BASE64>   // PEM-encoded client certificate

  keyFile:  <BASE64>   // Private Key

Maven supports a broad set of version syntax. Source Controller supports a strict subset of
Maven’s version syntax in order to ensure compatibility and avoid user confusion. The subset of
supported syntax may grow over time, but will never expand past the syntax defined directly by
Maven. This behavior means that we can use mvn as a reference implementation for artifact
resolution.

Version support implemented in the following order:

1. Pinned version - an exact match of a version in2 maven-metadata.xml
(versioning/versions/version).

2. RELEASE - metaversion defined in maven-metadata.xml (versioning/release).

3. *-SNAPSHOT - the newest artifact for a snapshot version.

4. LATEST - metaversion defined in maven-metadata.xml (versioning/latest).

5. Version ranges - https://maven.apache.org/enforcer/enforcer-rules/versionRanges.html.
Support is planned for a future release.

Overview of Spring Boot conventions

Note

Pinned versions should be immutable, all other versions are dynamic and can
change at any time. The .spec.interval defines how frequently to check for
updated artifacts.

Tanzu Application Platform v1.5

VMware by Broadcom 1339

https://maven.apache.org/enforcer/enforcer-rules/versionRanges.html


This topic tells you about the Spring Boot convention server.

The Spring Boot convention server is a bundle of small conventions applied to any Spring Boot
application that is submitted to the supply chain in which the convention controller is configured.

Run the docker inspect command to make the Spring Boot convention server look inside the
image. Example command:

$ docker inspect springio/petclinic

Example output:

[

    {

        "Id": "sha256:...",

        "RepoTags": [

            "springio/petclinic:latest"

        ],

        "RepoDigests": [

            "springio/petclinic@sha256:..."

        ],

        "Parent": "",

        "Container": "",

        ...

        "ContainerConfig": {

            "Hostname": "",

            "Domainname": "",

            "User": "",

            ...

            "Labels": null

        },

        "DockerVersion": "",

        "Author": "",

        "Config": {

...

]

The convention server searches inside the image for Config -> Labels ->
io.buildpacks.build.metadata to find the bom file. It looks inside the bom file for metadata to
evaluate whether the convention is to be applied.

For the list of conventions, see Conventions.

Overview of Spring Boot conventions
This topic tells you about the Spring Boot convention server.

The Spring Boot convention server is a bundle of small conventions applied to any Spring Boot
application that is submitted to the supply chain in which the convention controller is configured.

Run the docker inspect command to make the Spring Boot convention server look inside the
image. Example command:

$ docker inspect springio/petclinic

Example output:

[

    {

        "Id": "sha256:...",

        "RepoTags": [

            "springio/petclinic:latest"

        ],

Tanzu Application Platform v1.5

VMware by Broadcom 1340



        "RepoDigests": [

            "springio/petclinic@sha256:..."

        ],

        "Parent": "",

        "Container": "",

        ...

        "ContainerConfig": {

            "Hostname": "",

            "Domainname": "",

            "User": "",

            ...

            "Labels": null

        },

        "DockerVersion": "",

        "Author": "",

        "Config": {

...

]

The convention server searches inside the image for Config -> Labels ->
io.buildpacks.build.metadata to find the bom file. It looks inside the bom file for metadata to
evaluate whether the convention is to be applied.

For the list of conventions, see Conventions.

Install Spring Boot conventions

This topic tells you how to install Spring Boot conventions from the Tanzu Application Platform
package repository.

Prerequisites

Before installing Spring Boot conventions:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

Install Supply Chain Choreographer.

Install Spring Boot conventions

To install Spring Boot conventions:

1. Get the exact name and version information for the Spring Boot conventions package to
install by running:

tanzu package available list spring-boot-conventions.tanzu.vmware.com --namespa

ce tap-install

For example:

$ tanzu package available list spring-boot-conventions.tanzu.vmware.com --names

pace tap-install

Note

Follow the steps in this topic if you do not want to use a profile to install Spring
Boot conventions. For more information about profiles, see Components and
installation profiles.

Tanzu Application Platform v1.5

VMware by Broadcom 1341



/ Retrieving package versions for spring-boot-conventions.tanzu.vmware.com...

NAME                                       VERSION           RELEASED-AT

...

spring-boot-conventions.tanzu.vmware.com   1.4.0             2022-12-08T00:00:0

0Z

...

2. (Optional) Change the default installation settings by running:

tanzu package available get spring-boot-conventions.tanzu.vmware.com/VERSION-NU

MBER \

--values-schema --namespace tap-install

Where VERSION-NUMBER is the version of the package listed. For example: 1.5.12.

For example:

$ tanzu package available get spring-boot-conventions.tanzu.vmware.com/1.4.0 --

values-schema --namespace tap-install

  KEY                               DEFAULT             TYPE     DESCRIPTION

    autoConfigureActuators          false               boolean  Enable or disa

ble the automatic configuration of actuators on the TAP platform level

    kubernetes_distribution                             string   Kubernetes dis

tribution that this package is being installed on. Accepted

                                                                 values: 

['''',''openshift'']

    kubernetes_version                                  string   Optional: The 

Kubernetes Version. Valid values are '1.24.*', or ''

3. Install the package by running:

tanzu package install spring-boot-conventions \

 --package spring-boot-conventions.tanzu.vmware.com \

 --version VERSION-NUMBER \

 --namespace tap-install

Where VERSION-NUMBER is the version of the package you listed earlier.

4. Verify you installed the package by running:

tanzu package installed get spring-boot-conventions --namespace tap-install

For example:

tanzu package installed get spring-boot-conventions -n tap-install

| Retrieving installation details for spring-boot-conventions...

NAME:                    spring-boot-conventions

PACKAGE-NAME:            spring-boot-conventions.tanzu.vmware.com

PACKAGE-VERSION:         1.5.12

STATUS:                  Reconcile succeeded

CONDITIONS:              [{ReconcileSucceeded True  }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded

Configure and access Spring Boot actuators in Tanzu
Application Platform

This topic tells you how the Spring Boot conventions in Tanzu Application Platform configure Spring
Boot actuators automatically. With this feature, users can activate or deactivate the automatic
configuration of actuators on Tanzu Application Platform and on individual workloads.

Tanzu Application Platform v1.5

VMware by Broadcom 1342



Workload-level configuration

Developers can add a label to their workloads to activate or deactivate the automatic configuration
of actuators. By default, all existing and future accelerator projects are configured to activate
automatic configuration on the workload level.

To activate or deactivate the automatic configuration of actuators at the workload level, follow
these steps:

1. To activate automatic configuration of actuators, set the following label to true in your
workload YAML:

apps.tanzu.vmware.com/auto-configure-actuators: "true"

If the preceding label is set to true, the Spring Boot actuator convention sets the following
actuator configuration:

The JAVA_TOOL_OPTIONS property is set as -Dmanagement.server.port="8081".

The JAVA_TOOL_OPTIONS property is set as -Dmanagement.endpoints.web.base-
path="/actuator".

Annotation on the PodIntent is set as boot.spring.io/actuator:
http://:8081/actuator.

In addition to these settings, Application Live View is activated with the following actuator
configuration:

Label on the PodIntent is set as tanzu.app.live.view.application.actuator:
actuator.

Label on the PodIntent is set as tanzu.app.live.view.application.actuator.port:
8081.

2. To deactivate automatic configuration of actuators, set the following label to false in your
workload YAML:

apps.tanzu.vmware.com/auto-configure-actuators: "false"

If the preceding label is set to false, the Spring Boot actuator convention does not set any
JAVA_TOOL_OPTIONS and does not set the annotation boot.spring.io/actuator.

Application Live View is activated and configured with default values for Spring Boot web
applications, assuming that some actuators are activated on the default port. On activating
Application Live View, the following actuator settings are set:

The JAVA_TOOL_OPTIONS property is set as -Dserver.port="8080".

Label on the PodIntent is set as tanzu.app.live.view.application.actuator:
actuator.

Label on the PodIntent is set as tanzu.app.live.view.application.actuator.port:
8080.

The Application Live View GUI renders the pages with accessible information based on whether
the actuator endpoints are accessible for an application.

By default, as an additional security measure, Spring Boot conventions does not expose all the
actuator data over HTTP by exposing all the actuator endpoints. In addition, the information
exposed by the health endpoint is not set to always by default.

If the automatic configuration of actuators is set to true either at the workload level or platform
level, the Spring Boot convention then sets the runtime environment properties
management.endpoints.web.exposure.include="*" and management.endpoint.health.show-
details=true on to the PodSpec to expose all the actuator endpoints and detailed health

Tanzu Application Platform v1.5

VMware by Broadcom 1343



information. You do not need to add these properties manually in application.properties or
application.yml.

Platform-level configuration

In contrast to activating or deactivating the automatic configuration of actuators on the level of
individual workloads, you can set a global setting for the platform instead. This setting is taken into
account ONLY when there is no specific auto-configure-actuators setting on the individual
workload.

To activate or deactivate the automatic configuration of actuators at a global level, follow these
steps:

1. When you install Spring Boot conventions, you can provide an entry in the values.yaml file
to activate automatic configuration. For example:

springboot_conventions:

  autoConfigureActuators: true

2. To deactivate the automatic configuration, you can provide the following entry:

springboot_conventions:

  autoConfigureActuators: false

To run Application Live View with Spring Boot apps, the Spring Boot convention recognizes
PodIntents and adds the following metadata labels:

tanzu.app.live.view: "true": Activates the connector to observe application pod

tanzu.app.live.view.application.name: APPLICATION-NAME: Identifies the app name to be
used internally by Application Live View

tanzu.app.live.view.application.actuator.port: ACTUATOR-PORT: Identifies the port on
the pod at which the actuators are available for Application Live View

tanzu.app.live.view.application.flavours: spring-boot: Exposes the framework flavor
of the app

To run Application Live View with Spring Cloud Gateway apps, Spring Boot conventions recognizes
PodIntents and adds the following metadata labels:

tanzu.app.live.view: "true": Activates the connector to observe application pod

tanzu.app.live.view.application.name: APPLICATION-NAME: Identifies the app name to be
used internally by Application Live View

tanzu.app.live.view.application.actuator.port: ACTUATOR-PORT: Identifies the port on
the pod at which the actuators are available for Application Live View

tanzu.app.live.view.application.flavours: spring-boot,spring-cloud-gateway:
Exposes the framework flavors of the app

Enable Application Live View for Spring Boot applications

Note

The default values for both platform level and workload level configuration is false.

Tanzu Application Platform v1.5

VMware by Broadcom 1344



To run Application Live View for Spring Boot apps, Spring Boot conventions recognizes PodIntents
and automatically adds the following metadata labels:

tanzu.app.live.view: "true": Enables the connector to observe application pod

tanzu.app.live.view.application.name: APPLICATION-NAME: Identifies the app name to be
used internally by Application Live View

tanzu.app.live.view.application.actuator.port: ACTUATOR-PORT: Identifies the port on
the pod at which the actuators are available for Application Live View

tanzu.app.live.view.application.flavours: spring-boot: Exposes the framework flavor
of the app

To run Application Live View for Spring Cloud Gateway apps, Spring Boot conventions recognizes
PodIntents and adds the following metadata labels:

tanzu.app.live.view: "true": Enables the connector to observe application pod

tanzu.app.live.view.application.name: APPLICATION-NAME: Identifies the app name to be
used internally by Application Live View

tanzu.app.live.view.application.actuator.port: ACTUATOR-PORT: Identifies the port on
the pod at which the actuators are available for Application Live View

tanzu.app.live.view.application.flavours: spring-boot,spring-cloud-gateway:
Exposes the framework flavors of the app

These metadata labels allow Application Live View to identify pods that are enabled for Application
Live View. The metadata labels also tell the Application Live View connector what kind of app it is
and on which port the actuators are accessible for Application Live View. For more information, see
Configuring and accessing Spring Boot actuators in Tanzu Application Platform.

Verify the applied labels and annotations

To verify the applied labels and annotations, run:

kubectl get podintents.conventions.carto.run WORKLOAD-NAME -o yaml

Where WORKLOAD-NAME is the name of the deployed workload. For example: tanzu-java-web-app.

Expected output of Spring Boot workload:

apiVersion: conventions.carto.run/v1alpha1

kind: PodIntent

metadata:

  creationTimestamp: "2022-11-14T10:07:55Z"

  generation: 1

  labels:

    app.kubernetes.io/component: intent

    app.kubernetes.io/part-of: tanzu-java-web-app

    apps.tanzu.vmware.com/auto-configure-actuators: "true"

    apps.tanzu.vmware.com/workload-type: web

    carto.run/cluster-template-name: convention-template

    carto.run/resource-name: config-provider

    carto.run/supply-chain-name: source-to-url

    carto.run/template-kind: ClusterConfigTemplate

    carto.run/workload-name: tanzu-java-web-app

    carto.run/workload-namespace: default

  name: tanzu-java-web-app

  namespace: default

  ownerReferences:

  - apiVersion: carto.run/v1alpha1

    blockOwnerDeletion: true

Tanzu Application Platform v1.5

VMware by Broadcom 1345



    controller: true

    kind: Workload

    name: tanzu-java-web-app

    uid: dfd3c0c2-9d1f-4231-9390-3e16f23bb62d

  resourceVersion: "444497"

  uid: 224de2aa-307a-48e3-a826-2c474c435bb2

spec:

  serviceAccountName: default

  template:

    metadata:

      annotations:

        autoscaling.knative.dev/min-scale: "1"

        developer.conventions/target-containers: workload

      labels:

        app.kubernetes.io/component: run

        app.kubernetes.io/part-of: tanzu-java-web-app

        apps.tanzu.vmware.com/auto-configure-actuators: "true"

        apps.tanzu.vmware.com/workload-type: web

        carto.run/workload-name: tanzu-java-web-app

    spec:

      containers:

      - image: dev.registry.tanzu.vmware.com/app-live-view/test/tanzu-java-web-app-def

ault@sha256:444686bb8bfbaba5552676140619b00f43c8f85b6823b87676c0ccdcdead65ac

        name: workload

        resources: {}

        securityContext:

          runAsUser: 1000

      serviceAccountName: default

status:

  conditions:

  - lastTransitionTime: "2022-11-14T10:07:59Z"

    message: ""

    reason: Applied

    status: "True"

    type: ConventionsApplied

  - lastTransitionTime: "2022-11-14T10:07:59Z"

    message: ""

    reason: ConventionsApplied

    status: "True"

    type: Ready

  observedGeneration: 1

  template:

    metadata:

      annotations:

        autoscaling.knative.dev/min-scale: "1"

        boot.spring.io/actuator: http://:8081/actuator

        boot.spring.io/version: 2.7.3

        conventions.carto.run/applied-conventions: |-

          spring-boot-convention/auto-configure-actuators-check

          spring-boot-convention/spring-boot

          spring-boot-convention/spring-boot-graceful-shutdown

          spring-boot-convention/spring-boot-web

          spring-boot-convention/spring-boot-actuator

          spring-boot-convention/spring-boot-actuator-probes

          spring-boot-convention/app-live-view-appflavour-check

          spring-boot-convention/app-live-view-connector-boot

          spring-boot-convention/app-live-view-appflavours-boot

          appliveview-sample/app-live-view-appflavour-check

        developer.conventions/target-containers: workload

      labels:

        app.kubernetes.io/component: run

        app.kubernetes.io/part-of: tanzu-java-web-app

        apps.tanzu.vmware.com/auto-configure-actuators: "true"

        apps.tanzu.vmware.com/workload-type: web

        carto.run/workload-name: tanzu-java-web-app

        conventions.carto.run/framework: spring-boot

Tanzu Application Platform v1.5

VMware by Broadcom 1346



        tanzu.app.live.view: "true"

        tanzu.app.live.view.application.actuator.path: actuator

        tanzu.app.live.view.application.actuator.port: "8081"

        tanzu.app.live.view.application.flavours: spring-boot

        tanzu.app.live.view.application.name: tanzu-java-web-app

    spec:

      containers:

      - env:

        - name: JAVA_TOOL_OPTIONS

          value: -Dmanagement.endpoint.health.probes.add-additional-paths="true" -Dman

agement.endpoint.health.show-details="always"

            -Dmanagement.endpoints.web.base-path="/actuator" -Dmanagement.endpoints.we

b.exposure.include="*"

            -Dmanagement.health.probes.enabled="true" -Dmanagement.server.port="8081"

            -Dserver.port="8080" -Dserver.shutdown.grace-period="24s"

        image: dev.registry.tanzu.vmware.com/app-live-view/test/tanzu-java-web-app-def

ault@sha256:444686bb8bfbaba5552676140619b00f43c8f85b6823b87676c0ccdcdead65ac

        livenessProbe:

          httpGet:

            path: /livez

            port: 8080

            scheme: HTTP

        name: workload

        ports:

        - containerPort: 8080

          protocol: TCP

        readinessProbe:

          httpGet:

            path: /readyz

            port: 8080

            scheme: HTTP

        resources: {}

        securityContext:

          runAsUser: 1000

      serviceAccountName: default

Expected output of Spring Cloud Gateway workload:

apiVersion: conventions.carto.run/v1alpha1

kind: PodIntent

metadata:

  creationTimestamp: "2022-11-14T10:29:51Z"

  generation: 1

  labels:

    app.kubernetes.io/component: intent

    app.kubernetes.io/part-of: tanzu-scg-web-app

    apps.tanzu.vmware.com/auto-configure-actuators: "true"

    apps.tanzu.vmware.com/workload-type: web

    carto.run/cluster-template-name: convention-template

    carto.run/resource-name: config-provider

    carto.run/supply-chain-name: source-to-url

    carto.run/template-kind: ClusterConfigTemplate

    carto.run/workload-name: tanzu-scg-web-app

    carto.run/workload-namespace: default

  name: tanzu-scg-web-app

  namespace: default

  ownerReferences:

  - apiVersion: carto.run/v1alpha1

    blockOwnerDeletion: true

    controller: true

    kind: Workload

    name: tanzu-scg-web-app

    uid: 5d8cdc5b-0236-471d-8c1e-335e659f1ae6

  resourceVersion: "475756"

  uid: d086f02c-6ff0-47f8-8dee-4da8748d8adc

spec:

Tanzu Application Platform v1.5

VMware by Broadcom 1347



  serviceAccountName: default

  template:

    metadata:

      annotations:

        autoscaling.knative.dev/min-scale: "1"

        developer.conventions/target-containers: workload

      labels:

        app.kubernetes.io/component: run

        app.kubernetes.io/part-of: tanzu-scg-web-app

        apps.tanzu.vmware.com/auto-configure-actuators: "true"

        apps.tanzu.vmware.com/workload-type: web

        carto.run/workload-name: tanzu-scg-web-app

    spec:

      containers:

      - image: dev.registry.tanzu.vmware.com/app-live-view/test/tanzu-scg-web-app-defa

ult@sha256:7656f4ca56b7d0d6376b374643d6ac09c8cdcdbcc13d065f9224651b12724d0b

        name: workload

        resources: {}

        securityContext:

          runAsUser: 1000

      serviceAccountName: default

status:

  conditions:

  - lastTransitionTime: "2022-11-14T10:29:58Z"

    message: ""

    reason: Applied

    status: "True"

    type: ConventionsApplied

  - lastTransitionTime: "2022-11-14T10:29:58Z"

    message: ""

    reason: ConventionsApplied

    status: "True"

    type: Ready

  observedGeneration: 1

  template:

    metadata:

      annotations:

        autoscaling.knative.dev/min-scale: "1"

        boot.spring.io/actuator: http://:8081/actuator

        boot.spring.io/version: 2.6.3

        conventions.carto.run/applied-conventions: |-

          spring-boot-convention/auto-configure-actuators-check

          spring-boot-convention/spring-boot

          spring-boot-convention/spring-boot-web

          spring-boot-convention/spring-boot-actuator

          spring-boot-convention/spring-boot-actuator-probes

          spring-boot-convention/app-live-view-appflavour-check

          spring-boot-convention/app-live-view-connector-boot

          spring-boot-convention/app-live-view-appflavours-boot

          spring-boot-convention/app-live-view-connector-scg

          spring-boot-convention/app-live-view-appflavours-scg

          appliveview-sample/app-live-view-appflavour-check

        developer.conventions/target-containers: workload

      labels:

        app.kubernetes.io/component: run

        app.kubernetes.io/part-of: tanzu-scg-web-app

        apps.tanzu.vmware.com/auto-configure-actuators: "true"

        apps.tanzu.vmware.com/workload-type: web

        carto.run/workload-name: tanzu-scg-web-app

        conventions.carto.run/framework: spring-boot

        tanzu.app.live.view: "true"

        tanzu.app.live.view.application.actuator.path: actuator

        tanzu.app.live.view.application.actuator.port: "8081"

        tanzu.app.live.view.application.flavours: spring-boot_spring-cloud-gateway

        tanzu.app.live.view.application.name: tanzu-scg-web-app

    spec:

Tanzu Application Platform v1.5

VMware by Broadcom 1348



      containers:

      - env:

        - name: JAVA_TOOL_OPTIONS

          value: -Dmanagement.endpoint.health.probes.add-additional-paths="true" -Dman

agement.endpoint.health.show-details="always"

            -Dmanagement.endpoints.web.base-path="/actuator" -Dmanagement.endpoints.we

b.exposure.include="*"

            -Dmanagement.health.probes.enabled="true" -Dmanagement.server.port="8081"

            -Dserver.port="8080"

        image: dev.registry.tanzu.vmware.com/app-live-view/test/tanzu-scg-web-app-defa

ult@sha256:7656f4ca56b7d0d6376b374643d6ac09c8cdcdbcc13d065f9224651b12724d0b

        livenessProbe:

          httpGet:

            path: /livez

            port: 8080

            scheme: HTTP

        name: workload

        ports:

        - containerPort: 8080

          protocol: TCP

        readinessProbe:

          httpGet:

            path: /readyz

            port: 8080

            scheme: HTTP

        resources: {}

        securityContext:

          runAsUser: 1000

      serviceAccountName: default

List of Spring Boot conventions

This topic tells you about what the conventions do and how to apply them.

When submitting the following pod Pod Intent on each convention, the output can change
depending on the applied convention.

Before any Spring Boot conventions are applied, the pod intent looks similar to this YAML:

apiVersion: conventions.carto.run/v1alpha1

kind: PodIntent

metadata:

  name: spring-sample

spec:

  template:

    spec:

      containers:

      - name: workload

        image: springio/petclinic

Most of the Spring Boot conventions either edit or add properties to the environment variable
JAVA_TOOL_OPTIONS. You can override those conventions by providing the JAVA_TOOL_OPTIONS value
you want through the Tanzu CLI or workload.yaml.

When a JAVA_TOOL_OPTIONS property already exists for a workload, the convention uses the existing
value rather than the value that the convention applies by default. The property value that you
provide is used for the pod specification mutation.

Set a JAVA_TOOL_OPTIONS property for a workload

Do one of the following actions to set JAVA_TOOL_OPTIONS property and values:

Tanzu Application Platform v1.5

VMware by Broadcom 1349



Use the Tanzu CLI apps plug-in
When creating or updating a workload, set a JAVA_TOOL_OPTIONS property using the --env flag by
running:

tanzu apps workload create APP-NAME --env JAVA_TOOL_OPTIONS="-DPROPERTY-NAME=VALUE"

For example, to set the management port to 8080 rather than the spring-boot-actuator-
convention default port 8081, run:

tanzu apps workload create APP-NAME --env JAVA_TOOL_OPTIONS="-Dmanagement.server.por

t=8080"

Use workload.yaml
Follow these steps:

1. Provide one or more values for the JAVA_TOOL_OPTIONS property in the workload.yaml.
For example:

apiVersion: carto.run/v1alpha1

kind: Workload

...

spec:

env:

- name: JAVA_TOOL_OPTIONS

  value: -Dmanagement.server.port=8082

source:

...

2. Apply the workload.yaml file by running the command:

tanzu apps workload create -f workload.yaml

Spring Boot convention

If the spring-boot dependency is in the metadata within the SBOM file under dependencies, the
Spring Boot convention is applied to the PodTemplateSpec object.

The Spring Boot convention adds a label (conventions.carto.run/framework: spring-boot) to the
PodTemplateSpec that describes the framework associated with the workload, and adds an
annotation (boot.spring.io/version: VERSION-NO) that describes the Spring Boot version of the
dependency.

The label and annotation are added for informational purposes only.

Example of PodIntent after applying the convention:

apiVersion: conventions.carto.run/v1alpha1

kind: PodIntent

metadata:

 annotations:

   kubectl.kubernetes.io/last-applied-configuration: |

     {"apiVersion":"conventions.carto.run/v1alpha1","kind":"PodIntent","metadata":{"an

notations":{},"name":"spring-sample","namespace":"default"},"spec":{"template":{"spe

c":{"containers":[{"image":"springio/petclinic","name":"workload"}]}}}}

...

status:

 conditions:

Tanzu Application Platform v1.5

VMware by Broadcom 1350



 - lastTransitionTime: "..." # This status indicates that all worked as expected

   status: "True"

   type: ConventionsApplied

 - lastTransitionTime: "..."

   status: "True"

   type: Ready

 observedGeneration: 1

 template:

   metadata:

     annotations:

       boot.spring.io/version: 2.3.3.RELEASE

       conventions.carto.run/applied-conventions: |-

         spring-boot-convention/spring-boot

     labels:

       conventions.carto.run/framework: spring-boot

   spec:

     containers:

     - image: index.docker.io/springio/petclinic@sha256:...

       name: workload

       resources: {}

Spring boot graceful shut down convention

If any of the following dependencies are in the metadata within the SBOM file under dependencies,
the Spring Boot graceful shut down convention is applied to the PodTemplateSpec object:

spring-boot-starter-tomcat

spring-boot-starter-jetty

spring-boot-starter-reactor-netty

spring-boot-starter-undertow

tomcat-embed-core

The Graceful Shutdown convention spring-boot-graceful-shutdown adds a property in the
environment variable JAVA_TOOL_OPTIONS with the key server.shutdown.grace-period. The key
value is calculated to be 80% of the value set in .target.Spec.TerminationGracePeriodSeconds.
The default value for .target.Spec.TerminationGracePeriodSeconds is 30 seconds.

Example of PodIntent after applying the convention:

apiVersion: conventions.carto.run/v1alpha1

kind: PodIntent

metadata:

  annotations:

    kubectl.kubernetes.io/last-applied-configuration: |

      {"apiVersion":"conventions.carto.run/v1alpha1","kind":"PodIntent","metadata":{"a

nnotations":{},"name":"spring-sample","namespace":"default"},"spec":{"template":{"spe

c":{"containers":[{"image":"springio/petclinic","name":"workload"}]}}}}

...

status:

  conditions:

  - lastTransitionTime: "..." # This status indicates that all worked as expected

    status: "True"

    type: ConventionsApplied

  - lastTransitionTime: "..."

    status: "True"

    type: Ready

  observedGeneration: 1

  template:

    metadata:

Tanzu Application Platform v1.5

VMware by Broadcom 1351



      annotations:

        boot.spring.io/version: 2.3.3.RELEASE

        conventions.carto.run/applied-conventions: |-

          spring-boot-convention/spring-boot

          spring-boot-convention/spring-boot-graceful-shutdown

      labels:

        conventions.carto.run/framework: spring-boot

    spec:

      containers:

      - env:

        - name: JAVA_TOOL_OPTIONS

          value: -Dserver.shutdown.grace-period="24s"

        image: index.docker.io/springio/petclinic@sha256:...

        name: workload

        resources: {}

Spring Boot web convention

If any of the following dependencies are in the metadata within the SBOM file under dependencies,
the Spring Boot web convention is applied to the PodTemplateSpec object:

spring-boot

spring-boot-web

The web convention spring-boot-web obtains the server.port property from the
JAVA_TOOL_OPTIONS environment variable and sets it as a port in the PodTemplateSpec. If
JAVA_TOOL_OPTIONS environment variable does not contain a server.port property or value, the
convention adds the property and sets the value to 8080, which is the Spring Boot default.

Example of PodIntent after applying the convention:

apiVersion: conventions.carto.run/v1alpha1

kind: PodIntent

metadata:

  annotations:

    kubectl.kubernetes.io/last-applied-configuration: |

      {"apiVersion":"conventions.carto.run/v1alpha1","kind":"PodIntent","metadata":{"a

nnotations":{},"name":"spring-sample","namespace":"default"},"spec":{"template":{"spe

c":{"containers":[{"image":"springio/petclinic","name":"workload"}]}}}}

...

status:

  conditions:

  - lastTransitionTime: "..." # This status indicates that all worked as expected

    status: "True"

    type: ConventionsApplied

  - lastTransitionTime: "..."

    status: "True"

    type: Ready

  observedGeneration: 1

  template:

    metadata:

      annotations:

        boot.spring.io/version: 2.3.3.RELEASE

        conventions.carto.run/applied-conventions: |-

          spring-boot-convention/spring-boot

          spring-boot-convention/spring-boot-web

      labels:

        conventions.carto.run/framework: spring-boot

    spec:

      containers:

      - env:

Tanzu Application Platform v1.5

VMware by Broadcom 1352



        - name: JAVA_TOOL_OPTIONS

          value: -Dserver.port="8080"

        image: index.docker.io/springio/petclinic@sha256:...

        name: workload

        ports:

        - containerPort: 8080

          protocol: TCP

        resources: {}

Spring Boot Actuator convention

If the spring-boot-actuator dependency is in the metadata within the SBOM file under
dependencies, the Spring Boot actuator convention is applied to the PodTemplateSpec object.

The Spring Boot Actuator convention does the following actions:

If the workload-level or platform-level automatic configuration of actuators is enabled:

1. Sets the management port in the JAVA_TOOL_OPTIONS environment variable to 8081.

2. Sets the base path in the JAVA_TOOL_OPTIONS environment variable to /actuator.

3. Adds an annotation, boot.spring.io/actuator, to where the actuator is accessed.

The management port is set to port 8081 for security reasons. Although you can prevent public
access to the actuator endpoints that are exposed on the management port when it is set to the
default 8080, the threat of exposure through internal access remains. The best practice for security
is to set the management port to something other than 8080.

However, if a management port number value is provided using the -Dmanagement.server.port
property in JAVA_TOOL_OPTIONS, the Spring Boot actuator convention uses that value rather than its
default 8081 as the management port.

You can access the management context of a Spring Boot application by creating a service pointing
to port 8081 and base path /actuator.

If the workload-level or platform-level automatic configuration of actuators is deactivated, the
Spring Boot actuator convention does not set any JAVA_TOOLS_OPTIONS and does not set the
annotation boot.spring.io/actuator.

Example of PodIntent after applying the convention:

apiVersion: conventions.carto.run/v1alpha1

kind: PodIntent

metadata:

 annotations:

   kubectl.kubernetes.io/last-applied-configuration: |

     {"apiVersion":"conventions.carto.run/v1alpha1","kind":"PodIntent","metadata":{"an

notations":{},"name":"spring-sample","namespace":"default"},"spec":{"template":{"spe

c":{"containers":[{"image":"springio/petclinic","name":"workload"}]}}}}

...

Important

To override the management port setting applied by this convention, see How to
set a JAVA_TOOL_OPTIONS property for a workload earlier in this topic. Any
alternative methods for setting the management port are overwritten. For example,
if you configure the management port using application.properties/yml or config
server, the Spring Boot Actuator convention overrides your configuration.

Tanzu Application Platform v1.5

VMware by Broadcom 1353



status:

 conditions:

 - lastTransitionTime: "..." # This status indicates that all worked as expected

   status: "True"

   type: ConventionsApplied

 - lastTransitionTime: "..."

   status: "True"

   type: Ready

 observedGeneration: 1

 template:

   metadata:

     annotations:

       boot.spring.io/actuator: http://:8081/actuator

       boot.spring.io/version: 2.3.3.RELEASE

       conventions.carto.run/applied-conventions: |-

         spring-boot-convention/spring-boot

         spring-boot-convention/spring-boot-web

         spring-boot-convention/spring-boot-actuator

     labels:

       conventions.carto.run/framework: spring-boot

   spec:

     containers:

     - env:

       - name: JAVA_TOOL_OPTIONS

         value: Dmanagement.endpoints.web.base-path="/actuator" -Dmanagement.server.po

rt="8081" -Dserver.port="8080"

       image: index.docker.io/springio/petclinic@sha256:...

       name: workload

       ports:

       - containerPort: 8080

         protocol: TCP

       resources: {}

Spring Boot Actuator Probes convention

The Spring Boot Actuator Probes convention is applied only if all of the following conditions are
met:

The spring-boot-actuator dependency exists and is >= 2.6

The JAVA_TOOL_OPTIONS environment variable does not include the following properties or, if
either of the properties is included, it is set to a value of true:

-Dmanagement.health.probes.enabled

-Dmanagement.endpoint.health.probes.add-additional-paths

The Spring Boot Actuator Probes convention does the following actions:

1. Uses the main server port, which is the server.port value on JAVA_TOOL_OPTIONS, to set the
liveness and readiness probes. For more information see the Kubernetes documentation

2. Adds the following properties and values to the JAVA_TOOL_OPTIONS environment variable:

-Dmanagement.health.probes.enabled="true"

-Dmanagement.endpoint.health.probes.add-additional-paths="true"

When this convention is applied, the probes are exposed as follows:

Liveness probe: /livez

Readiness probe: /readyz

Example of PodIntent after applying the convention:

Tanzu Application Platform v1.5

VMware by Broadcom 1354

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/


apiVersion: conventions.carto.run/v1alpha1

kind: PodIntent

metadata:

  annotations:

    kubectl.kubernetes.io/last-applied-configuration: |

      {"apiVersion":"conventions.carto.run/v1alpha1","kind":"PodIntent","metadata":{"a

nnotations":{},"name":"spring-sample","namespace":"default"},"spec":{"template":{"spe

c":{"containers":[{"image":"springio/petclinic","name":"workload"}]}}}}

...

status:

  conditions:

  - lastTransitionTime: "..." # This status indicates that all worked as expected

    status: "True"

    type: ConventionsApplied

  - lastTransitionTime: "..."

    status: "True"

    type: Ready

  observedGeneration: 1

  template:

    metadata:

      annotations:

        boot.spring.io/actuator: http://:8080/actuator

        boot.spring.io/version: 2.6.0

        conventions.carto.run/applied-conventions: |-

          spring-boot-convention/spring-boot

          spring-boot-convention/spring-boot-web

          spring-boot-convention/spring-boot-actuator

      labels:

        conventions.carto.run/framework: spring-boot

    spec:

      containers:

      - env:

        - name: JAVA_TOOL_OPTIONS

          value: -Dmanagement.endpoint.health.probes.add-additional-paths="true" -Dman

agement.endpoints.web.base-path="/actuator" -Dmanagement.health.probes.enabled="true" 

-Dmanagement.server.port="8081" -Dserver.port="8080"

        image: index.docker.io/springio/petclinic@sha256:...

        name: workload

        livenessProbe:

          httpGet:

            path: /livez

            port: 8080

            scheme: HTTP

        ports:

        - containerPort: 8080

          protocol: TCP

        readinessProbe:

          httpGet:

            path: /readyz

            port: 8080

            scheme: HTTP

        resources: {}

Service intent conventions

The Service intent conventions do not change the behavior of the final deployment, but you can
use them as added information to process in the supply chain. For example, when an app requires
to be bound to database service. This convention adds an annotation and a label to the
PodTemplateSpec for each detected dependency. It also adds an annotation and a label to the
conventions.carto.run/applied-conventions.

Tanzu Application Platform v1.5

VMware by Broadcom 1355



The list of the supported intents are:

MySQL

Name: service-intent-mysql

Label: services.conventions.apps.tanzu.vmware.com/mysql

Dependencies: mysql-connector-java, r2dbc-mysql

PostgreSQL

Name: service-intent-postgres

Label: services.conventions.apps.tanzu.vmware.com/postgres

Dependencies: postgresql, r2dbc-postgresql

MongoDB

Name: service-intent-mongodb

Label: services.conventions.apps.tanzu.vmware.com/mongodb

Dependencies: mongodb-driver-core

RabbitMQ

Name: service-intent-rabbitmq

Label: services.conventions.apps.tanzu.vmware.com/rabbitmq

Dependencies: amqp-client

Redis

Name: service-intent-redis

Label: services.conventions.apps.tanzu.vmware.com/redis

Dependencies: jedis

Kafka

Name: service-intent-kafka

Label: services.conventions.apps.tanzu.vmware.com/kafka

Dependencies: kafka-clients

Kafka-streams

Name: service-intent-kafka-streams

Label: services.conventions.apps.tanzu.vmware.com/kafka-streams

Dependencies: kafka-streams

Example

When you apply the Pod Intent and the image contains a dependency, for example, of MySQL,
then the output of the convention is:

  apiVersion: conventions.carto.run/v1alpha1

  kind: PodIntent

  metadata:

    annotations:

      kubectl.kubernetes.io/last-applied-configuration: |

        {"apiVersion":"conventions.carto.run/v1alpha1","kind":"PodIntent","metadata":

{"annotations":{},"name":"spring-sample","namespace":"default"},"spec":{"template":{"s

pec":{"containers":[{"image":"springio/petclinic","name":"workload"}]}}}}

    creationTimestamp: "..."

Tanzu Application Platform v1.5

VMware by Broadcom 1356



    generation: 1

    name: spring-sample

    namespace: default

    resourceVersion: "..."

    uid: ...

  spec:

    serviceAccountName: default

    template:

      metadata: {}

      spec:

        containers:

        - image: springio/petclinic

          name: workload

          resources: {}

  status:

    conditions:

    - lastTransitionTime: "..." # This status indicates that all worked as expected

      status: "True"

      type: ConventionsApplied

    - lastTransitionTime: "..."

      status: "True"

      type: Ready

    observedGeneration: 1

    template:

      metadata:

        annotations:

          boot.spring.io/actuator: http://:8080/actuator

          boot.spring.io/version: 2.3.3.RELEASE

          conventions.carto.run/applied-conventions: |-

            spring-boot-convention/spring-boot

            spring-boot-convention/spring-boot-web

            spring-boot-convention/spring-boot-actuator

            spring-boot-convention/service-intent-mysql

          services.conventions.apps.tanzu.vmware.com/mysql: mysql-connector-java/8.0.2

1

        labels:

          conventions.apps.tanzu.vmware.com/framework: spring-boot

          services.conventions.apps.tanzu.vmware.com/mysql: workload

      spec:

        containers:

        - env:

          - name: JAVA_TOOL_OPTIONS

            value: Dmanagement.endpoints.web.base-path="/actuator" -Dmanagement.serve

r.port="8081" -Dserver.port="8080"

          image: index.docker.io/springio/petclinic@sha256:...

          name: workload

          ports:

          - containerPort: 8080

            protocol: TCP

          resources: {}

Troubleshoot Spring Boot conventions

This topic tells you how to troubleshoot Spring Boot conventions.

Collect logs

If you have trouble, you can retrieve and examine logs from the Spring Boot convention server as
follows:

1. The Spring Boot convention server creates a namespace to contain all of the associated
resources. By default the namespace is spring-boot-convention. To inspect the logs, run:

Tanzu Application Platform v1.5

VMware by Broadcom 1357



kubectl logs -l app=spring-boot-webhook -n spring-boot-convention

For example:

$ kubectl logs -l app=spring-boot-webhook -n spring-boot-convention

{"level":"info","timestamp":"2021-11-11T16:00:26.597Z","caller":"spring-boot-co

nventions/server.go:83","msg":"Successfully applied convention: spring-boot","c

omponent":"spring-boot-conventions"}

{"level":"info","timestamp":"2021-11-11T16:00:26.597Z","caller":"spring-boot-co

nventions/server.go:83","msg":"Successfully applied convention: spring-boot-gra

ceful-shutdown","component":"spring-boot-conventions"}

{"level":"info","timestamp":"2021-11-11T16:00:26.597Z","caller":"spring-boot-co

nventions/server.go:83","msg":"Successfully applied convention: spring-boot-we

b","component":"spring-boot-conventions"}

{"level":"info","timestamp":"2021-11-11T16:00:26.597Z","caller":"spring-boot-co

nventions/server.go:83","msg":"Successfully applied convention: spring-boot-act

uator","component":"spring-boot-conventions"}

{"level":"info","timestamp":"2021-11-11T16:00:26.597Z","caller":"spring-boot-co

nventions/server.go:83","msg":"Successfully applied convention: service-intent-

mysql","component":"spring-boot-conventions"}

2. For all of the conventions that were applied successfully, a log entry is added. If an error
occurs, a log entry is added with a description.

Overview of Spring Cloud Gateway for Kubernetes

Spring Cloud Gateway for Kubernetes is an API gateway solution based on the open-source Spring
Cloud Gateway project. It provides a simple means to route internal or external API requests to
application services that expose APIs.

Spring Cloud Gateway for Kubernetes handles cross-cutting concerns on behalf of API
development teams, including single sign-on (SSO), access control, rate limiting, resiliency, security,
and more.

It enables you to accelerate API delivery using modern cloud-native patterns with any
programming language you choose for API development. It also integrates with your existing CI/CD
pipeline strategy.

For more information about Spring Cloud Gateway for Kubernetes, see the Spring Cloud Gateway
for Kubernetes documentation.

Overview of Spring Cloud Gateway for Kubernetes

Spring Cloud Gateway for Kubernetes is an API gateway solution based on the open-source Spring
Cloud Gateway project. It provides a simple means to route internal or external API requests to
application services that expose APIs.

Spring Cloud Gateway for Kubernetes handles cross-cutting concerns on behalf of API
development teams, including single sign-on (SSO), access control, rate limiting, resiliency, security,
and more.

It enables you to accelerate API delivery using modern cloud-native patterns with any
programming language you choose for API development. It also integrates with your existing CI/CD
pipeline strategy.

For more information about Spring Cloud Gateway for Kubernetes, see the Spring Cloud Gateway
for Kubernetes documentation.

Install Spring Cloud Gateway for Kubernetes

Tanzu Application Platform v1.5

VMware by Broadcom 1358

https://docs.vmware.com/en/VMware-Spring-Cloud-Gateway-for-Kubernetes/index.html
https://docs.vmware.com/en/VMware-Spring-Cloud-Gateway-for-Kubernetes/index.html


This topic describes how to install Spring Cloud Gateway for Kubernetes from the Tanzu Application
Platform package repository.

Prerequisites

Before installing Spring Cloud Gateway, complete all prerequisites for installing Tanzu Application
Platform. For more information, see Prerequisites.

Install

To install Spring Cloud Gateway:

1. See which versions of Spring Cloud Gateway are available to install from the Tanzu
Application Platform repository by running:

tanzu package available list spring-cloud-gateway.tanzu.vmware.com --namespace 

tap-install

For example:

$ tanzu package available list spring-cloud-gateway.tanzu.vmware.com --namespac

e tap-install

NAME                                   VERSION  RELEASED-AT

spring-cloud-gateway.tanzu.vmware.com  2.0.0    2022-02-01T00:00:00Z

2. (Optional) View the changes you can make to the default installation settings by running:

tanzu package available get spring-cloud-gateway.tanzu.vmware.com/VERSION-NUMBE

R \

  --namespace tap-install --values-schema

Where VERSION-NUMBER is the version of the package listed earlier.

For example:

tanzu package available get spring-cloud-gateway.tanzu.vmware.com/2.0.0 \

  --namespace tap-install --values-schema

You can use the information to generate a values override file for use in the following
installation step.

For more information about values schema options, see the Spring Cloud Gateway for
Kubernetes documentation.

3. Install Spring Cloud Gateway by running:

Default values
Run this command to install Spring Cloud Gateway with the default values

tanzu package install spring-cloud-gateway \

  --package spring-cloud-gateway.tanzu.vmware.com \

Important

The value of deployment.namespace must always be set to the same value as
the --namespace flag.

Tanzu Application Platform v1.5

VMware by Broadcom 1359

https://docs.vmware.com/en/VMware-Spring-Cloud-Gateway-for-Kubernetes/index.html


  --version VERSION-NUMBER \

  --namespace tap-install

For example:

$ tanzu package install spring-cloud-gateway \

    --package spring-cloud-gateway.tanzu.vmware.com \

    --version 2.0.0 \

    --namespace tap-install

Installing package 'spring-cloud-gateway.tanzu.vmware.com'

Getting package metadata for 'spring-cloud-gateway.tanzu.vmware.com'

Creating service account 'spring-cloud-gateway-tap-install-sa'

Creating cluster admin role 'spring-cloud-gateway-tap-install-cluster-role'

Creating cluster role binding 'spring-cloud-gateway-tap-install-cluster-roleb

inding'

Creating package resource

Waiting for 'PackageInstall' reconciliation for 'spring-cloud-gateway'

'PackageInstall' resource install status: Reconciling

'PackageInstall' resource install status: ReconcileSucceeded

Added installed package 'spring-cloud-gateway'

Overriding values
Run this command to install Spring Cloud Gateway while overriding the default values

tanzu package install spring-cloud-gateway \

  --package spring-cloud-gateway.tanzu.vmware.com \

  --version VERSION-NUMBER \

  --namespace tap-install \

  --values-file values.yml

Overview of Supply Chain Choreographer for Tanzu
This topic introduces you to Supply Chain Choreographer.

Overview
Supply Chain Choreographer is based on open source Cartographer. It allows App Operators to
create pre-approved paths to production by integrating Kubernetes resources with the elements of
their existing toolchains, for example, Jenkins.

Each pre-approved supply chain creates a path to production. Orchestrating supply chain resources
including, test, build, scan, and deploy allows developers to focus on delivering value to their users
and provides App Operators the assurance that all code in production has passed through all the
steps of an approved workflow.

Out of the Box Supply Chains
Out of the box supply chains are provided with Tanzu Application Platform.

The following three supply chains are included:

Out of the Box Supply Chain Basic

Out of the Box Supply Chain with Testing

Out of the Box Supply Chain with Testing and Scanning

As auxiliary components, Tanzu Application Platform also includes:

Tanzu Application Platform v1.5

VMware by Broadcom 1360

https://cartographer.sh/docs/


Out of the Box Templates, for providing templates used by the supply chains to perform
common tasks such as fetching source code, running tests, and building container images.

Out of the Box Delivery Basic, for delivering to a Kubernetes cluster the configuration built
throughout a supply chain

Both Templates and Delivery Basic are requirements for the Supply Chains.

Supply Chain Choreographer supports the following pipeline types:

Tekton pipelines

Jenkins pipelines

Overview of Supply Chain Choreographer for Tanzu

This topic introduces you to Supply Chain Choreographer.

Overview

Supply Chain Choreographer is based on open source Cartographer. It allows App Operators to
create pre-approved paths to production by integrating Kubernetes resources with the elements of
their existing toolchains, for example, Jenkins.

Each pre-approved supply chain creates a path to production. Orchestrating supply chain resources
including, test, build, scan, and deploy allows developers to focus on delivering value to their users
and provides App Operators the assurance that all code in production has passed through all the
steps of an approved workflow.

Out of the Box Supply Chains

Out of the box supply chains are provided with Tanzu Application Platform.

The following three supply chains are included:

Out of the Box Supply Chain Basic

Out of the Box Supply Chain with Testing

Out of the Box Supply Chain with Testing and Scanning

As auxiliary components, Tanzu Application Platform also includes:

Out of the Box Templates, for providing templates used by the supply chains to perform
common tasks such as fetching source code, running tests, and building container images.

Out of the Box Delivery Basic, for delivering to a Kubernetes cluster the configuration built
throughout a supply chain

Both Templates and Delivery Basic are requirements for the Supply Chains.

Supply Chain Choreographer supports the following pipeline types:

Tekton pipelines

Jenkins pipelines

Install Supply Chain Choreographer

This topic describes how you can install Supply Chain Choreographer from the Tanzu Application
Platform package repository.

Note

Tanzu Application Platform v1.5

VMware by Broadcom 1361

https://cartographer.sh/docs/


Supply Chain Choreographer provides the custom resource definitions the supply chain uses. Each
pre-approved supply chain creates a clear road to production and orchestrates supply chain
resources. You can test, build, scan, and deploy. Developers can focus on delivering value to users.
Application operators can rest assured that all code in production has passed through an approved
workflow.

For example, Supply Chain Choreographer passes the results of fetching source code to the
component that builds a container image of it, and then passes the container image to a
component that deploys the image.

Prerequisites
Before installing Supply Chain Choreographer:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

Install
To install Supply Chain Choreographer:

1. Get the values schema to see what properties can be configured during installation. Run:

tanzu package available get cartographer.tanzu.vmware.com/0.7.1+tap.1 --values-

schema --namespace tap-install

KEY                                      DEFAULT  TYPE     DESCRIPTION

ca_cert_data                             ""       string   Optional: PEM Encode

d certificate data for image registries with private CA.

cartographer.concurrency.max_deliveries  2        integer  Optional: maximum nu

mber of Deliverables to process concurrently.

cartographer.concurrency.max_runnables   2        integer  Optional: maximum nu

mber of Runnables to process concurrently.

cartographer.concurrency.max_workloads   2        integer  Optional: maximum nu

mber of Workloads to process concurrently.

cartographer.resources.limits.cpu        1000m             Optional: maximum am

ount of cpu resources to allow the controller to use

cartographer.resources.limits.memory     128Mi             Optional: maximum am

ount of memory to allow the controller to use

cartographer.resources.requests.cpu      250m              Optional: minimum am

ount of cpu to reserve

cartographer.resources.requests.memory   128Mi             Optional: minimum am

ount of memory to reserve

conventions.resources.limits.cpu         1000m             Optional: maximum am

ount of cpu resources to allow the controller to use

conventions.resources.limits.memory      128Mi             Optional: maximum am

ount of memory to allow the controller to use

conventions.resources.requests.cpu       250m              Optional: minimum am

ount of cpu to reserve

conventions.resources.requests.memory    128Mi             Optional: minimum am

ount of memory to reserve

excluded_components                               array    Optional: List of co

mponents to exclude from installation (e.g. [conventions])

Follow the steps in this topic if you do not want to use a profile to install Supply
Chain Choreographer. For more information about profiles, see Components and
installation profiles..

The Supply Chain Choreographer is now bundled with the Cartographer
Conventions. For information on configuring and using Cartographer Conventions,
see Creating conventions.

Tanzu Application Platform v1.5

VMware by Broadcom 1362



aws_iam_role_arn                         ""       string   Optional: Arn role t

hat has access to pull images from ECR container registry

2. Install v0.4.0 of the cartographer.tanzu.vmware.com package, naming the installation
cartographer. Run:

tanzu package install cartographer \

  --namespace tap-install \

  --package cartographer.tanzu.vmware.com \

  --version 0.7.1+tap.1

Example output:

| Installing package 'cartographer.tanzu.vmware.com'

| Getting namespace 'tap-install'

| Getting package metadata for 'cartographer.tanzu.vmware.com'

| Creating service account 'cartographer-tap-install-sa'

| Creating cluster admin role 'cartographer-tap-install-cluster-role'

| Creating cluster role binding 'cartographer-tap-install-cluster-rolebinding'

- Creating package resource

\ Package install status: Reconciling

Added installed package 'cartographer' in namespace 'tap-install'

Out of the Box Supply Chain Basic for Supply Chain
Choreographer

This topic provides an overview of Out of the Box Supply Chain Basic for Supply Chain
Choreographer.

This package contains Cartographer supply chains that tie together a series of Kubernetes
resources that drive a developer-provided workload from source code to a Kubernetes
configuration ready to be deployed to a cluster. It contains the most basic supply chains that focus
on providing a quick path to deployment making no use of testing or scanning resources.

The supply chains in this package perform the following:

Building from source code:

1. Watching a Git repository, Maven repository, or local directory for changes

2. Building a container image out of the source code with Buildpacks

3. Applying operator-defined conventions to the container definition

4. Creating a deliverable object for deploying the application to a cluster

5. (Experimental) Alternatively, outputting a Carvel Package containing the application
to a Git Repository

Using a prebuilt application image:

1. Applying operator-defined conventions to the container definition

2. Creating a deliverable object for deploying the application to a cluster

3. (Experimental) Alternatively, outputting a Carvel Package containing the application
to a Git Repository

Prerequisites

To use this package, you must:

Tanzu Application Platform v1.5

VMware by Broadcom 1363



Install Out of the Box Templates.

Configure the Developer namespace with auxiliary objects that are used by the supply chain
as described in the following section.

(Optionally) install Out of the Box Delivery Basic, if you are willing to deploy the application
to the same cluster as the workload and supply chains.

Developer Namespace

The supply chains provide definitions of many of the objects that they create to transform the
source code to a container image and make it available as an application in a cluster.

The developer must provide or configure particular objects in the developer namespace so that the
supply chain can provide credentials and use permissions granted to a specific development team.

The objects that the developer must provide or configure include:

registries secrets: Kubernetes secrets of type kubernetes.io/dockerconfigjson that
contain credentials for pushing and pulling the container images built by the supply chain
and the installation of Tanzu Application Platform.

service account: The identity to be used for any interaction with the Kubernetes API made
by the supply chain.

rolebinding: Grant to the identity the necessary roles for creating the resources prescribed
by the supply chain.

Registries Secrets

Regardless of the supply chain that a workload goes through, there must be Kubernetes secrets in
the developer namespace containing credentials for both pushing and pulling the container image
that the supply chain builds when source code is provided. The developer namespace must also
contain registry credentials for Kubernetes to run pods using images from the installation of Tanzu
Application Platform.

1. Add read/write registry credentials for pushing and pulling application images:

tanzu secret registry add registry-credentials \

  --server REGISTRY-SERVER \

  --username REGISTRY-USERNAME \

  --password REGISTRY-PASSWORD \

  --namespace YOUR-NAMESPACE

Where:

YOUR-NAMESPACE is the name you want to use for the developer namespace. For
example, use default for the default namespace.

REGISTRY-SERVER is the URL of the registry. For Docker Hub, this must be
https://index.docker.io/v1/. Specifically, it must have the leading https://, the
v1 path, and the trailing /. For Google Container Registry (GCR), this is gcr.io.
Based on the information used in Installing the Tanzu Application Platform package
and profiles, you can use the same registry server as in ootb_supply_chain_basic -
registry - server.

2. Add a placeholder secret for gathering the credentials used for pulling container images
from the installation of Tanzu Application Platform:

cat <<EOF | kubectl -n YOUR-NAMESPACE apply -f -

apiVersion: v1

kind: Secret

Tanzu Application Platform v1.5

VMware by Broadcom 1364



metadata:

  name: tap-registry

  annotations:

    secretgen.carvel.dev/image-pull-secret: ""

type: kubernetes.io/dockerconfigjson

data:

  .dockerconfigjson: e30K

EOF

With the two secrets created:

tap-registry is a placeholder secret filled indirectly by secretgen-controller Tanzu
Application Platform credentials set up during the installation of Tanzu Application Platform.

registry-credentials is a secret providing credentials for the registry where application
container images are pushed to.

The following section discusses setting up the identity required for the workload.

ServiceAccount

In a Kubernetes cluster, a ServiceAccount provides a way of representing an actor within the
Kubernetes role-based access control (RBAC) system. In the case of a developer namespace, this
represents a developer or development team.

You can directly attach secrets to the ServiceAccount through both the secrets and
imagePullSecets fields. This allows you to provide indirect ways for resources to find credentials
without knowing the exact name of the secrets.

apiVersion: v1

kind: ServiceAccount

metadata:

  name: default

secrets:

  - name: registry-credentials

  - name: tap-registry

imagePullSecrets:

  - name: registry-credentials

  - name: tap-registry

RoleBinding

As the supply chain takes action in the cluster on behalf of the users who created the workload, it
needs permissions within Kubernetes’ RBAC system to do so.

Tanzu Application Platform v1.2 includes two ClusterRoles that describe all of the necessary
permissions to grant to the service account:

workload clusterrole, providing the necessary roles for the supply chains to manage the
resources prescribed by them.

deliverable clusterrole, providing the roles for deliveries to deploy to the cluster the
application Kubernetes objects produced by the supply chain.

Important

The ServiceAccount must have the secrets created earlier linked to it. If it does not,
services like Tanzu Build Service (used in the supply chain) lack the necessary
credentials for pushing the images it builds for that workload.

Tanzu Application Platform v1.5

VMware by Broadcom 1365



To provide those permissions to the identity you created for this workload, bind the workload
ClusterRole to the ServiceAccount you created above:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

  name: default-permit-workload

roleRef:

  apiGroup: rbac.authorization.k8s.io

  kind: ClusterRole

  name: workload

subjects:

  - kind: ServiceAccount

    name: default

If this is a Build cluster, and you do not intend to run the application in it, this single RoleBinding is
all that’s necessary.

If you intend to also deploy the application that’s been built, bind to the same ServiceAccount the
deliverable ClusterRole too:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

  name: default-permit-deliverable

roleRef:

  apiGroup: rbac.authorization.k8s.io

  kind: ClusterRole

  name: deliverable

subjects:

  - kind: ServiceAccount

    name: default

For more information about authentication and authorization in Tanzu Application Platform, see
Overview of Default roles for Tanzu Application Platform.

Developer workload

With the developer namespace set up with the preceding objects, such as secret, serviceaccount,
and rolebinding, you can create the workload object.

To do so, use the apps plug-in from the Tanzu CLI:

tanzu apps workload create FLAGS WORKLOAD-NAME

Where:

FLAGS are the one or more flags you want to include.

WORKLOAD-NAME is the name of the workload you want to target.

Depending on what you are aiming to achieve, you can set different flags. To know more about
those (including details about different features of the supply chains), see the following sections:

Building from source, for more information about different ways of creating a workload
where the application is built from source code.

Using an existing image, for more information about how to use prebuilt images in the
supply chains.

GitOps vs RegistryOps, for a description of the different ways of propagating the
deployment configuration through external systems (Git repositories and image registries).

Tanzu Application Platform v1.5

VMware by Broadcom 1366



Carvel Package Workflow, for information about how to configure workloads to output
Carvel Packages for delivery through Git repositories.

Out of the Box Supply Chain Basic for Supply Chain
Choreographer
This topic provides an overview of Out of the Box Supply Chain Basic for Supply Chain
Choreographer.

This package contains Cartographer supply chains that tie together a series of Kubernetes
resources that drive a developer-provided workload from source code to a Kubernetes
configuration ready to be deployed to a cluster. It contains the most basic supply chains that focus
on providing a quick path to deployment making no use of testing or scanning resources.

The supply chains in this package perform the following:

Building from source code:

1. Watching a Git repository, Maven repository, or local directory for changes

2. Building a container image out of the source code with Buildpacks

3. Applying operator-defined conventions to the container definition

4. Creating a deliverable object for deploying the application to a cluster

5. (Experimental) Alternatively, outputting a Carvel Package containing the application
to a Git Repository

Using a prebuilt application image:

1. Applying operator-defined conventions to the container definition

2. Creating a deliverable object for deploying the application to a cluster

3. (Experimental) Alternatively, outputting a Carvel Package containing the application
to a Git Repository

Prerequisites
To use this package, you must:

Install Out of the Box Templates.

Configure the Developer namespace with auxiliary objects that are used by the supply chain
as described in the following section.

(Optionally) install Out of the Box Delivery Basic, if you are willing to deploy the application
to the same cluster as the workload and supply chains.

Developer Namespace

The supply chains provide definitions of many of the objects that they create to transform the
source code to a container image and make it available as an application in a cluster.

The developer must provide or configure particular objects in the developer namespace so that the
supply chain can provide credentials and use permissions granted to a specific development team.

The objects that the developer must provide or configure include:

registries secrets: Kubernetes secrets of type kubernetes.io/dockerconfigjson that
contain credentials for pushing and pulling the container images built by the supply chain
and the installation of Tanzu Application Platform.

Tanzu Application Platform v1.5

VMware by Broadcom 1367



service account: The identity to be used for any interaction with the Kubernetes API made
by the supply chain.

rolebinding: Grant to the identity the necessary roles for creating the resources prescribed
by the supply chain.

Registries Secrets

Regardless of the supply chain that a workload goes through, there must be Kubernetes secrets in
the developer namespace containing credentials for both pushing and pulling the container image
that the supply chain builds when source code is provided. The developer namespace must also
contain registry credentials for Kubernetes to run pods using images from the installation of Tanzu
Application Platform.

1. Add read/write registry credentials for pushing and pulling application images:

tanzu secret registry add registry-credentials \

  --server REGISTRY-SERVER \

  --username REGISTRY-USERNAME \

  --password REGISTRY-PASSWORD \

  --namespace YOUR-NAMESPACE

Where:

YOUR-NAMESPACE is the name you want to use for the developer namespace. For
example, use default for the default namespace.

REGISTRY-SERVER is the URL of the registry. For Docker Hub, this must be
https://index.docker.io/v1/. Specifically, it must have the leading https://, the
v1 path, and the trailing /. For Google Container Registry (GCR), this is gcr.io.
Based on the information used in Installing the Tanzu Application Platform package
and profiles, you can use the same registry server as in ootb_supply_chain_basic -
registry - server.

2. Add a placeholder secret for gathering the credentials used for pulling container images
from the installation of Tanzu Application Platform:

cat <<EOF | kubectl -n YOUR-NAMESPACE apply -f -

apiVersion: v1

kind: Secret

metadata:

  name: tap-registry

  annotations:

    secretgen.carvel.dev/image-pull-secret: ""

type: kubernetes.io/dockerconfigjson

data:

  .dockerconfigjson: e30K

EOF

With the two secrets created:

tap-registry is a placeholder secret filled indirectly by secretgen-controller Tanzu
Application Platform credentials set up during the installation of Tanzu Application Platform.

registry-credentials is a secret providing credentials for the registry where application
container images are pushed to.

The following section discusses setting up the identity required for the workload.

ServiceAccount

Tanzu Application Platform v1.5

VMware by Broadcom 1368



In a Kubernetes cluster, a ServiceAccount provides a way of representing an actor within the
Kubernetes role-based access control (RBAC) system. In the case of a developer namespace, this
represents a developer or development team.

You can directly attach secrets to the ServiceAccount through both the secrets and
imagePullSecets fields. This allows you to provide indirect ways for resources to find credentials
without knowing the exact name of the secrets.

apiVersion: v1

kind: ServiceAccount

metadata:

  name: default

secrets:

  - name: registry-credentials

  - name: tap-registry

imagePullSecrets:

  - name: registry-credentials

  - name: tap-registry

RoleBinding

As the supply chain takes action in the cluster on behalf of the users who created the workload, it
needs permissions within Kubernetes’ RBAC system to do so.

Tanzu Application Platform v1.2 includes two ClusterRoles that describe all of the necessary
permissions to grant to the service account:

workload clusterrole, providing the necessary roles for the supply chains to manage the
resources prescribed by them.

deliverable clusterrole, providing the roles for deliveries to deploy to the cluster the
application Kubernetes objects produced by the supply chain.

To provide those permissions to the identity you created for this workload, bind the workload
ClusterRole to the ServiceAccount you created above:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

  name: default-permit-workload

roleRef:

  apiGroup: rbac.authorization.k8s.io

  kind: ClusterRole

  name: workload

subjects:

  - kind: ServiceAccount

    name: default

If this is a Build cluster, and you do not intend to run the application in it, this single RoleBinding is
all that’s necessary.

If you intend to also deploy the application that’s been built, bind to the same ServiceAccount the
deliverable ClusterRole too:

Important

The ServiceAccount must have the secrets created earlier linked to it. If it does not,
services like Tanzu Build Service (used in the supply chain) lack the necessary
credentials for pushing the images it builds for that workload.

Tanzu Application Platform v1.5

VMware by Broadcom 1369



apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

  name: default-permit-deliverable

roleRef:

  apiGroup: rbac.authorization.k8s.io

  kind: ClusterRole

  name: deliverable

subjects:

  - kind: ServiceAccount

    name: default

For more information about authentication and authorization in Tanzu Application Platform, see
Overview of Default roles for Tanzu Application Platform.

Developer workload

With the developer namespace set up with the preceding objects, such as secret, serviceaccount,
and rolebinding, you can create the workload object.

To do so, use the apps plug-in from the Tanzu CLI:

tanzu apps workload create FLAGS WORKLOAD-NAME

Where:

FLAGS are the one or more flags you want to include.

WORKLOAD-NAME is the name of the workload you want to target.

Depending on what you are aiming to achieve, you can set different flags. To know more about
those (including details about different features of the supply chains), see the following sections:

Building from source, for more information about different ways of creating a workload
where the application is built from source code.

Using an existing image, for more information about how to use prebuilt images in the
supply chains.

GitOps vs RegistryOps, for a description of the different ways of propagating the
deployment configuration through external systems (Git repositories and image registries).

Carvel Package Workflow, for information about how to configure workloads to output
Carvel Packages for delivery through Git repositories.

Install Out of the Box Supply Chain Basic for Supply Chain
Choreographer

This topic shows you how to install the Out of the Box Supply Chain Basic package for Supply Chain
Choreographer from the Tanzu Application Platform package repository.

The Out of the Box Supply Chain Basic package provides the most basic ClusterSupplyChain that
brings an application from source code to a deployed instance of it running in a Kubernetes
environment.

Note

Follow the steps in this topic if you do not want to use a profile to install Out of the
Box Supply Chain Basic. For more information about profiles, see Components and
installation profiles.

Tanzu Application Platform v1.5

VMware by Broadcom 1370



Prerequisites

Fulfill the following prerequisites:

Fulfill the prerequisites for installing Tanzu Application Platform.

Install Supply Chain Choreographer.

Install

To install Out of the Box Supply Chain Basic:

1. Familiarize yourself with the set of values of the package that can be configured by running:

tanzu package available get ootb-supply-chain-basic.tanzu.vmware.com/0.7.0 \

  --values-schema \

  -n tap-install

For example:

KEY                                   DESCRIPTION

registry.repository                    Name of the repository in the image regi

stry server where the application

                                       images from the workload should be pushe

d (required).

registry.server                        Name of the registry server where applic

ation images should be pushed to

                                       (required).

git_implementation                     Determines which git client library to u

se. Valid options are go-git or

                                       libgit2.

gitops.server_address                  Default server address to be used for fo

rming Git URLs for pushing

                                       Kubernetes configuration produced by the 

supply chain. This must

                                       include the scheme/protocol (e.g. http

s:// or ssh://)

gitops.repository_owner                Default project or user of the repositor

y. Used to create URLs for pushing

                                       Kubernetes configuration produced by the 

supply chain.

gitops.repository_name                 Default repository name used for forming 

Git URLs for pushing Kubernetes

                                       configuration produced by the supply cha

in.

gitops.username                        Default user name to be used for the com

mits produced by the supply chain.

gitops.branch                          Default branch to use for pushing Kubern

etes configuration files produced

                                       by the supply chain.

gitops.commit_message                  Default git commit message to write when 

publishing Kubernetes

                                       configuration files produces by the supp

ly chain to git.

Tanzu Application Platform v1.5

VMware by Broadcom 1371



gitops.email                           Default user email to be used for the co

mmits produced by the supply chain.

gitops.ssh_secret                      Name of the default Secret containing SS

H credentials to lookup in the

                                       developer namespace for the supply chain 

to fetch source code from and

                                       push configuration to.

gitops.commit_strategy                 Specification of how commits are made to 

the branch; directly or through a

                                       pull request.

gitops.repository_prefix               DEPRECATED: Use server_address and repos

itory_owner instead.

                                       Default prefix to be used for forming Gi

t SSH URLs for pushing Kubernetes

                                       configuration produced by the supply cha

in.

gitops.pull_request.server_kind        The git source control platform used

gitops.pull_request.commit_branch      The branch to which commits will be mad

e, before opening a pull request

                                       to the branch specified in .gitops.branc

h If the string "" is specified,

                                       an essentially random string will be use

d for the branch name, in order

                                       to prevent collisions.

gitops.pull_request.pull_request_title The title for the pull request

gitops.pull_request.pull_request_body  Any further information to add to the pu

ll request

cluster_builder                        Name of the Tanzu Build Service ClusterB

uilder to

                                       use by default on image objects managed 

by the supply chain.

service_account                        Name of the service account in the names

pace where the Workload

                                       is submitted to utilize for providing re

gistry credentials to

                                       Tanzu Build Service Image objects as wel

l as deploying the

                                       application.

maven.repository.url                   The URL of the Maven repository to be us

ed when pulling Maven

                                       artifacts.  HTTP is not supported.  e.

g.: "https://repo.maven.apache.org/maven"

maven.repository.secret_name           The name of the Secret resource that con

tains the credentials used

                                       to access the Maven repository.

2. Create a file named ootb-supply-chain-basic-values.yaml that specifies the corresponding
values to the properties you want to change. For example:

registry:

  server: REGISTRY-SERVER

  repository: REGISTRY-REPOSITORY

gitops:

Tanzu Application Platform v1.5

VMware by Broadcom 1372



  server_address: https://github.com/

  repository_owner: vmware-tanzu

  branch: main

  username: supplychain

  email: supplychain

  commit_message: supplychain@cluster.local

  ssh_secret: git-ssh

  commit_strategy: direct

maven:

  repository:

    url: https://my-maven-repository/releases

    secret_name: my-maven-repository-credentials

cluster_builder: default

service_account: default

3. With the configuration ready, install the package by running:

tanzu package install ootb-supply-chain-basic \

  --package ootb-supply-chain-basic.tanzu.vmware.com \

  --version 0.7.0 \

  --namespace tap-install \

  --values-file ootb-supply-chain-basic-values.yaml

Example output:

\ Installing package 'ootb-supply-chain-basic.tanzu.vmware.com'

| Getting package metadata for 'ootb-supply-chain-basic.tanzu.vmware.com'

| Creating service account 'ootb-supply-chain-basic-tap-install-sa'

| Creating cluster admin role 'ootb-supply-chain-basic-tap-install-cluster-rol

e'

| Creating cluster role binding 'ootb-supply-chain-basic-tap-install-cluster-ro

lebinding'

| Creating secret 'ootb-supply-chain-basic-tap-install-values'

| Creating package resource

- Waiting for 'PackageInstall' reconciliation for 'ootb-supply-chain-basic'

/ 'PackageInstall' resource install status: Reconciling

 Added installed package 'ootb-supply-chain-basic' in namespace 'tap-install'

Out of the Box Supply Chain with Testing for Supply Chain
Choreographer

This topic provides an overview of Out of the Box Supply Chain with Testing for Supply Chain
Choreographer.

This package contains Cartographer Supply Chains that tie together a series of Kubernetes
resources that drive a developer-provided workload from source code to a Kubernetes
configuration ready to be deployed to a cluster. It passes the source code forward to image
building only if the testing pipeline supplied by the developers runs successfully.

This package includes all the capabilities of the Out of the Box Supply Chain Basic, but adds testing
with Tekton.

For workloads that use either source code or prebuilt images, it performs the following:

Building from source code:

1. Watching a Git Repository or local directory for changes

2. Running tests from a developer-provided Tekton pipeline

Tanzu Application Platform v1.5

VMware by Broadcom 1373



3. Building a container image out of the source code with Buildpacks

4. Applying operator-defined conventions to the container definition

5. Deploying the application to the same cluster

Using a prebuilt application image:

1. Applying operator-defined conventions to the container definition

2. Creating a deliverable object for deploying the application to a cluster

Prerequisites

To use this supply chain, ensure:

Out of the Box Templates is installed.

Out of the Box Supply Chain With Testing is installed.

Out of the Box Supply Chain With Testing and Scanning is NOT installed.

Developer namespace is configured with the objects per Out of the Box Supply Chain Basic
guidance. This supply chain is in addition to the basic one.

(optionally) Install Out of the Box Delivery Basic, if you are willing to deploy the application
to the same cluster as the workload and supply chains.

To verify that you have the right set of supply chains installed (that is, the one with Scanning and
not the one with testing), run:

tanzu apps cluster-supply-chain list

NAME                      LABEL SELECTOR

source-test-to-url        apps.tanzu.vmware.com/has-tests=true,apps.tanzu.vmware.com/w

orkload-type=web

source-to-url             apps.tanzu.vmware.com/workload-type=web

If you see source-test-scan-to-url in the list, the setup is wrong: you must not have the source-
test-scan-to-url installed at the same time as source-test-to-url.

Developer Namespace
As mentioned in the prerequisites section, this supply chain builds on the previous Out of the Box
Supply Chain, so only additions are included here.

To make sure you have configured the namespace correctly, it is important that the namespace has
the following objects in it (including the ones marked with ‘new’ whose explanation and details are
provided below):

registries secrets: Kubernetes secrets of type kubernetes.io/dockerconfigjson that
contain credentials for pushing and pulling the container images built by the supply chain
and the installation of Tanzu Application Platform.

For more information, see Out of the Box Supply Chain Basic.

service account: The identity to be used for any interaction with the Kubernetes API made
by the supply chain

For more information, see Out of the Box Supply Chain Basic.

rolebinding: Grant to the identity the necessary roles for creating the resources prescribed
by the supply chain.

Tanzu Application Platform v1.5

VMware by Broadcom 1374



For more information, see Out of the Box Supply Chain Basic.

Tekton pipeline (new): A pipeline runs whenever the supply chain hits the stage of testing
the source code.

Below you will find details about the new objects compared to Out of the Box Supply Chain Basic.

Updates to the developer Namespace

For source code testing to be present in the supply chain, a Tekton Pipeline must exist in the same
namespace as the Workload so that, at the right moment, the Tekton PipelineRun object that gets
created to run the tests can reference such developer-provided Pipeline.

So, aside from the objects previously defined in the Out of the Box Supply Chain Basic section, you
need to include one more:

tekton/Pipeline: the definition of a series of tasks to run against the source code that has
been found by earlier resources in the Supply Chain.

Tekton/Pipeline

By default, the workload is matched to the corresponding pipeline to run using labels. Pipelines
must have the label apps.tanzu.vmware.com/pipeline: test at a minimum, but you can add
additional labels for granularity. This provides a default match in the event that no other labels are
provided. The pipeline expects two parameters:

source-url, an HTTP address where a .tar.gz file containing all the source code to be
tested can be found

source-revision, the revision of the commit or image reference (in case of
workload.spec.source.image being set instead of workload.spec.source.git)

For example:

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

  name: developer-defined-tekton-pipeline

  labels:

    apps.tanzu.vmware.com/pipeline: test      # (!) required

spec:

  params:

    - name: source-url                        # (!) required

    - name: source-revision                   # (!) required

  tasks:

    - name: test

      params:

        - name: source-url

          value: $(params.source-url)

        - name: source-revision

          value: $(params.source-revision)

      taskSpec:

        params:

          - name: source-url

          - name: source-revision

        steps:

          - name: test

            image: gradle

            script: |-

              cd `mktemp -d`

              wget -qO- $(params.source-url) | tar xvz -m

              ./mvnw test

Tanzu Application Platform v1.5

VMware by Broadcom 1375



At this point, changes to the developer-provided Tekton Pipeline do not automatically trigger a re-
run of the pipeline. That is, a new Tekton PipelineRun is not automatically created if a field in the
Pipeline object is changed. As a workaround, the latest PipelineRun created can be deleted, which
triggers a re-run.

Allow multiple Tekton pipelines in a namespace

You can configure your developer namespace to include more than one pipeline using either of the
following methods:

Use a single pipeline running on a container image that includes testing tools and runs a
common script to execute tests. This allows you to accommodate multiple workloads based
in different languages in the same namespace that use a common make test script, as
shown in the following example:

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

  name: developer-defined-tekton-pipeline

  labels:

    apps.tanzu.vmware.com/pipeline: test

spec:

  #...

        steps:

          - name: test

            image: <image_that_has_JDK_and_Go>

            script: |-

              cd `mktemp -d`

              wget -qO- $(params.source-url) | tar xvz -m

              make test

Update the pipeline resources to include labels that differentiate between the pipelines. For
example, differentiate between Java and Go pipelines by adding labels for Java and Go:

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

  name: java-tests

  labels:

    apps.tanzu.vmware.com/pipeline: test

    apps.tanzu.vmware.com/language: java

spec:

  #...

        steps:

          - name: test

            image: gradle

            script: |-

              # ...

              ./mvnw test

---

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

  name: go-tests

  labels:

    apps.tanzu.vmware.com/pipeline: test

    apps.tanzu.vmware.com/language: go

spec:

  #...

        steps:

          - name: test

            image: golang

            script: |-

Tanzu Application Platform v1.5

VMware by Broadcom 1376



              # ...

              go test -v ./...

To match the correct pipeline, you add a testing_pipeline_matching_labels parameter to the
workload. For example, if you want to match to the Java pipeline, you have the following
workload.yaml:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  name: sample-java-app

  labels:

    apps.tanzu.vmware.com/has-tests: true

    apps.tanzu.vmware.com/workload-type: web

    app.kubernetes.io/part-of: sample-java-app

spec:

  params:

    - name: testing_pipeline_matching_labels

      value:

        apps.tanzu.vmware.com/pipeline: test

        apps.tanzu.vmware.com/language: java

  ...

This matches the workload to the pipeline with the apps.tanzu.vmware.com/language: java label.

Developer Workload

With the Tekton Pipeline object submitted to the same namespace as the one where the Workload
will be submitted to, you can submit your Workload.

Regardless of the workflow being targeted (local development or gitops), the Workload
configuration details are the same as in Out of the Box Supply Chain Basic, except that you mark
the workload with tests enabled by means of the has-tests label.

For example:

tanzu apps workload create tanzu-java-web-app \

  --git-branch main \

  --git-repo https://github.com/vmware-tanzu/application-accelerator-samples \

  --sub-path tanzu-java-web-app \

  --label apps.tanzu.vmware.com/has-tests=true \

  --label app.kubernetes.io/part-of=tanzu-java-web-app \

  --type web

Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |    apps.tanzu.vmware.com/has-tests: "true"

      8 + |    app.kubernetes.io/part-of: tanzu-java-web-app

      9 + |  name: tanzu-java-web-app

     10 + |  namespace: default

     11 + |spec:

     12 + |  source:

     13 + |    git:

     14 + |      ref:

     15 + |        branch: main

     16 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

     17 + |    subPath: tanzu-java-web-app

Tanzu Application Platform v1.5

VMware by Broadcom 1377



Out of the Box Supply Chain with Testing for Supply Chain
Choreographer

This topic provides an overview of Out of the Box Supply Chain with Testing for Supply Chain
Choreographer.

This package contains Cartographer Supply Chains that tie together a series of Kubernetes
resources that drive a developer-provided workload from source code to a Kubernetes
configuration ready to be deployed to a cluster. It passes the source code forward to image
building only if the testing pipeline supplied by the developers runs successfully.

This package includes all the capabilities of the Out of the Box Supply Chain Basic, but adds testing
with Tekton.

For workloads that use either source code or prebuilt images, it performs the following:

Building from source code:

1. Watching a Git Repository or local directory for changes

2. Running tests from a developer-provided Tekton pipeline

3. Building a container image out of the source code with Buildpacks

4. Applying operator-defined conventions to the container definition

5. Deploying the application to the same cluster

Using a prebuilt application image:

1. Applying operator-defined conventions to the container definition

2. Creating a deliverable object for deploying the application to a cluster

Prerequisites

To use this supply chain, ensure:

Out of the Box Templates is installed.

Out of the Box Supply Chain With Testing is installed.

Out of the Box Supply Chain With Testing and Scanning is NOT installed.

Developer namespace is configured with the objects per Out of the Box Supply Chain Basic
guidance. This supply chain is in addition to the basic one.

(optionally) Install Out of the Box Delivery Basic, if you are willing to deploy the application
to the same cluster as the workload and supply chains.

To verify that you have the right set of supply chains installed (that is, the one with Scanning and
not the one with testing), run:

tanzu apps cluster-supply-chain list

NAME                      LABEL SELECTOR

source-test-to-url        apps.tanzu.vmware.com/has-tests=true,apps.tanzu.vmware.com/w

orkload-type=web

source-to-url             apps.tanzu.vmware.com/workload-type=web

If you see source-test-scan-to-url in the list, the setup is wrong: you must not have the source-
test-scan-to-url installed at the same time as source-test-to-url.

Developer Namespace

Tanzu Application Platform v1.5

VMware by Broadcom 1378



As mentioned in the prerequisites section, this supply chain builds on the previous Out of the Box
Supply Chain, so only additions are included here.

To make sure you have configured the namespace correctly, it is important that the namespace has
the following objects in it (including the ones marked with ‘new’ whose explanation and details are
provided below):

registries secrets: Kubernetes secrets of type kubernetes.io/dockerconfigjson that
contain credentials for pushing and pulling the container images built by the supply chain
and the installation of Tanzu Application Platform.

For more information, see Out of the Box Supply Chain Basic.

service account: The identity to be used for any interaction with the Kubernetes API made
by the supply chain

For more information, see Out of the Box Supply Chain Basic.

rolebinding: Grant to the identity the necessary roles for creating the resources prescribed
by the supply chain.

For more information, see Out of the Box Supply Chain Basic.

Tekton pipeline (new): A pipeline runs whenever the supply chain hits the stage of testing
the source code.

Below you will find details about the new objects compared to Out of the Box Supply Chain Basic.

Updates to the developer Namespace

For source code testing to be present in the supply chain, a Tekton Pipeline must exist in the same
namespace as the Workload so that, at the right moment, the Tekton PipelineRun object that gets
created to run the tests can reference such developer-provided Pipeline.

So, aside from the objects previously defined in the Out of the Box Supply Chain Basic section, you
need to include one more:

tekton/Pipeline: the definition of a series of tasks to run against the source code that has
been found by earlier resources in the Supply Chain.

Tekton/Pipeline

By default, the workload is matched to the corresponding pipeline to run using labels. Pipelines
must have the label apps.tanzu.vmware.com/pipeline: test at a minimum, but you can add
additional labels for granularity. This provides a default match in the event that no other labels are
provided. The pipeline expects two parameters:

source-url, an HTTP address where a .tar.gz file containing all the source code to be
tested can be found

source-revision, the revision of the commit or image reference (in case of
workload.spec.source.image being set instead of workload.spec.source.git)

For example:

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

  name: developer-defined-tekton-pipeline

  labels:

    apps.tanzu.vmware.com/pipeline: test      # (!) required

spec:

  params:

    - name: source-url                        # (!) required

Tanzu Application Platform v1.5

VMware by Broadcom 1379



    - name: source-revision                   # (!) required

  tasks:

    - name: test

      params:

        - name: source-url

          value: $(params.source-url)

        - name: source-revision

          value: $(params.source-revision)

      taskSpec:

        params:

          - name: source-url

          - name: source-revision

        steps:

          - name: test

            image: gradle

            script: |-

              cd `mktemp -d`

              wget -qO- $(params.source-url) | tar xvz -m

              ./mvnw test

At this point, changes to the developer-provided Tekton Pipeline do not automatically trigger a re-
run of the pipeline. That is, a new Tekton PipelineRun is not automatically created if a field in the
Pipeline object is changed. As a workaround, the latest PipelineRun created can be deleted, which
triggers a re-run.

Allow multiple Tekton pipelines in a namespace

You can configure your developer namespace to include more than one pipeline using either of the
following methods:

Use a single pipeline running on a container image that includes testing tools and runs a
common script to execute tests. This allows you to accommodate multiple workloads based
in different languages in the same namespace that use a common make test script, as
shown in the following example:

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

  name: developer-defined-tekton-pipeline

  labels:

    apps.tanzu.vmware.com/pipeline: test

spec:

  #...

        steps:

          - name: test

            image: <image_that_has_JDK_and_Go>

            script: |-

              cd `mktemp -d`

              wget -qO- $(params.source-url) | tar xvz -m

              make test

Update the pipeline resources to include labels that differentiate between the pipelines. For
example, differentiate between Java and Go pipelines by adding labels for Java and Go:

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

  name: java-tests

  labels:

    apps.tanzu.vmware.com/pipeline: test

    apps.tanzu.vmware.com/language: java

spec:

  #...

Tanzu Application Platform v1.5

VMware by Broadcom 1380



        steps:

          - name: test

            image: gradle

            script: |-

              # ...

              ./mvnw test

---

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

  name: go-tests

  labels:

    apps.tanzu.vmware.com/pipeline: test

    apps.tanzu.vmware.com/language: go

spec:

  #...

        steps:

          - name: test

            image: golang

            script: |-

              # ...

              go test -v ./...

To match the correct pipeline, you add a testing_pipeline_matching_labels parameter to the
workload. For example, if you want to match to the Java pipeline, you have the following
workload.yaml:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  name: sample-java-app

  labels:

    apps.tanzu.vmware.com/has-tests: true

    apps.tanzu.vmware.com/workload-type: web

    app.kubernetes.io/part-of: sample-java-app

spec:

  params:

    - name: testing_pipeline_matching_labels

      value:

        apps.tanzu.vmware.com/pipeline: test

        apps.tanzu.vmware.com/language: java

  ...

This matches the workload to the pipeline with the apps.tanzu.vmware.com/language: java label.

Developer Workload

With the Tekton Pipeline object submitted to the same namespace as the one where the Workload
will be submitted to, you can submit your Workload.

Regardless of the workflow being targeted (local development or gitops), the Workload
configuration details are the same as in Out of the Box Supply Chain Basic, except that you mark
the workload with tests enabled by means of the has-tests label.

For example:

tanzu apps workload create tanzu-java-web-app \

  --git-branch main \

  --git-repo https://github.com/vmware-tanzu/application-accelerator-samples \

  --sub-path tanzu-java-web-app \

  --label apps.tanzu.vmware.com/has-tests=true \

  --label app.kubernetes.io/part-of=tanzu-java-web-app \

  --type web

Tanzu Application Platform v1.5

VMware by Broadcom 1381



Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |    apps.tanzu.vmware.com/has-tests: "true"

      8 + |    app.kubernetes.io/part-of: tanzu-java-web-app

      9 + |  name: tanzu-java-web-app

     10 + |  namespace: default

     11 + |spec:

     12 + |  source:

     13 + |    git:

     14 + |      ref:

     15 + |        branch: main

     16 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

     17 + |    subPath: tanzu-java-web-app

Install Out of the Box Supply Chain with Testing for Supply
Chain Choreographer
This topic describes how you can install Out of the Box Supply Chain with Testing for Supply Chain
Choreographer from the Tanzu Application Platform package repository.

The Out of the Box Supply Chain with Testing package provides a ClusterSupplyChain that brings
an application from source code to a deployed instance that:

Runs in a Kubernetes environment.

Runs developer-provided tests in the form of Tekton/Pipeline objects to validate the source
code before building container images.

Prerequisites
Before installing Out of the Box Supply Chain with Testing:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

Install cartographer. For more information, see Install Supply Chain Choreographer.

Install Out of the Box Delivery Basic

Install Out of the Box Templates

Install
Install by following these steps:

1. Ensure you do not have Out of the Box Supply Chain With Testing and Scanning (ootb-
supply-chain-testing-scanning.tanzu.vmware.com) installed:

1. Run the following command:

Note

Follow the steps in this topic if you do not want to use a profile to install Out of the
Box Supply Chain with Testing. For more information about profiles, see
Components and installation profiles.

Tanzu Application Platform v1.5

VMware by Broadcom 1382



tanzu package installed list --namespace tap-install

2. Verify ootb-supply-chain-testing-scanning is in the output:

NAME                                PACKAGE-NAME

ootb-delivery-basic                 ootb-delivery-basic.tanzu.vmware.com

ootb-supply-chain-basic             ootb-supply-chain-basic.tanzu.vmware.

com

ootb-templates                      ootb-templates.tanzu.vmware.com

3. If you see ootb-supply-chain-testing-scanning in the list, uninstall it by running:

tanzu package installed delete ootb-supply-chain-testing-scanning --names

pace tap-install

Example output:

Deleting installed package 'ootb-supply-chain-testing-scanning' in namesp

ace 'tap-install'.

Are you sure? [y/N]: y

| Uninstalling package 'ootb-supply-chain-testing-scanning' from namespac

e 'tap-install'

\ Getting package install for 'ootb-supply-chain-testing-scanning'

- Deleting package install 'ootb-supply-chain-testing-scanning' from name

space 'tap-install'

| Deleting admin role 'ootb-supply-chain-testing-scanning-tap-install-clu

ster-role'

| Deleting role binding 'ootb-supply-chain-testing-scanning-tap-install-c

luster-rolebinding'

| Deleting secret 'ootb-supply-chain-testing-scanning-tap-install-values'

| Deleting service account 'ootb-supply-chain-testing-scanning-tap-instal

l-sa'

 Uninstalled package 'ootb-supply-chain-testing-scanning' from namespace 

'tap-install'

2. Verify that the values of the package can be configured by referencing the values below:

KEY                                   DESCRIPTION

registry.repository                    Name of the repository in the image regi

stry server where the application

                                       images from the workload should be pushe

d (required).

registry.server                        Name of the registry server where applic

ation images should be pushed to

                                       (required).

git_implementation                     Determines which git client library to u

se. Valid options are go-git or

                                       libgit2.

gitops.server_address                  Default server address to be used for fo

rming Git URLs for pushing

                                       Kubernetes configuration produced by the 

supply chain. This must

                                       include the scheme/protocol (e.g. http

s:// or ssh://)

gitops.repository_owner                Default project or user of the repositor

y. Used to create URLs for pushing

Tanzu Application Platform v1.5

VMware by Broadcom 1383



                                       Kubernetes configuration produced by the 

supply chain.

gitops.repository_name                 Default repository name used for forming 

Git URLs for pushing Kubernetes

                                       configuration produced by the supply cha

in.

gitops.username                        Default user name to be used for the com

mits produced by the supply chain.

gitops.branch                          Default branch to use for pushing Kubern

etes configuration files produced

                                       by the supply chain.

gitops.commit_message                  Default git commit message to write when 

publishing Kubernetes

                                       configuration files produces by the supp

ly chain to git.

gitops.email                           Default user email to be used for the co

mmits produced by the supply chain.

gitops.ssh_secret                      Name of the default Secret containing SS

H credentials to lookup in the

                                       developer namespace for the supply chain 

to fetch source code from and

                                       push configuration to.

gitops.commit_strategy                 Specification of how commits are made to 

the branch; directly or through a

                                       pull request.

gitops.repository_prefix               DEPRECATED: Use server_address and repos

itory_owner instead.

                                       Default prefix to be used for forming Gi

t SSH URLs for pushing Kubernetes

                                       configuration produced by the supply cha

in.

gitops.pull_request.server_kind         The git source control platform used

gitops.pull_request.commit_branch       The branch to which commits will be mad

e, before opening a pull request

                                       to the branch specified in .gitops.branc

h If the string "" is specified,

                                       an essentially random string will be use

d for the branch name, in order

                                       to prevent collisions.

gitops.pull_request.pull_request_title  The title for the pull request

gitops.pull_request.pull_request_body   Any further information to add to the p

ull request

cluster_builder           Name of the Tanzu Build Service ClusterBuilder to

                          use by default on image objects managed by the supply 

chain.

service_account           Name of the service account in the namespace where th

e Workload

                          is submitted to utilize for providing registry creden

tials to

                          Tanzu Build Service Image objects as well as deployin

g the

                          application.

Tanzu Application Platform v1.5

VMware by Broadcom 1384



3. Create a file named ootb-supply-chain-testing-values.yaml that specifies the
corresponding values to the properties you want to change. For example:

registry:

  server: REGISTRY-SERVER

  repository: REGISTRY-REPOSITORY

gitops:

  server_address: https://github.com/

  repository_owner: vmware-tanzu

  branch: main

  username: supplychain

  email: supplychain

  commit_message: supplychain@cluster.local

  ssh_secret: git-ssh

  commit_strategy: direct

cluster_builder: default

service_account: default

4. With the configuration ready, install the package by running:

tanzu package install ootb-supply-chain-testing \

  --package ootb-supply-chain-testing.tanzu.vmware.com \

  --version 0.7.0 \

  --namespace tap-install \

  --values-file ootb-supply-chain-testing-values.yaml

Example output:

\ Installing package 'ootb-supply-chain-testing.tanzu.vmware.com'

| Getting package metadata for 'ootb-supply-chain-testing.tanzu.vmware.com'

| Creating service account 'ootb-supply-chain-testing-tap-install-sa'

| Creating cluster admin role 'ootb-supply-chain-testing-tap-install-cluster-ro

le'

| Creating cluster role binding 'ootb-supply-chain-testing-tap-install-cluster-

rolebinding'

| Creating secret 'ootb-supply-chain-testing-tap-install-values'

| Creating package resource

- Waiting for 'PackageInstall' reconciliation for 'ootb-supply-chain-testing'

\ 'PackageInstall' resource install status: Reconciling

Added installed package 'ootb-supply-chain-testing' in namespace 'tap-install'

Out of the Box Supply Chain with Testing and Scanning for
Supply Chain Choreographer
This topic provides an overview of Out of the Box Supply Chain with Testing and Scanning for
Supply Chain Choreographer.

This package contains Cartographer Supply Chains that tie together a series of Kubernetes
resources that drive a developer-provided workload from source code to a Kubernetes
configuration ready to be deployed to a cluster. It contains supply chains that pass the source code
through testing and vulnerability scanning, and also the container image.

Important

it’s required that the gitops.repository_prefix field ends with a /.

Tanzu Application Platform v1.5

VMware by Broadcom 1385



This package includes all the capabilities of the Out of the Box Supply Chain With Testing, but adds
source and image scanning using Grype.

Workloads that use source code or prebuilt images perform the following:

Building from source code:

1. Watching a Git Repository or local directory for changes

2. Running tests from a developer-provided Tekton pipeline

3. Scanning the source code for known vulnerabilities using Grype

4. Building a container image out of the source code with Buildpacks

5. Scanning the image for known vulnerabilities

6. Applying operator-defined conventions to the container definition

7. Deploying the application to the same cluster

Using a prebuilt application image:

1. Scanning the image for known vulnerabilities

2. Applying operator-defined conventions to the container definition

3. Creating a deliverable object for deploying the application to a cluster

Prerequisites

To use this supply chain, verify that:

Tanzu Application Platform GUI is configured to enable CVE scan results. This configuration
enables the Supply Chain Choreographer Tanzu Application Platform GUI plug-in to retrieve
metadata about project packages and their vulnerabilities.

Out of the Box Templates is installed.

Out of the Box Supply Chain With Testing is NOT installed.

Out of the Box Supply Chain With Testing and Scanning is installed.

Developer namespace is configured with the objects according to Out of the Box Supply
Chain With Testing guidance. This supply chain is in addition to the Supply Chain with
testing.

(Optionally) install Out of the Box Delivery Basic, if you are willing to deploy the application
to the same cluster as the workload and supply chains.

Verify that you have the supply chains with scanning, not with testing, installed. Run:

tanzu apps cluster-supply-chain list

NAME                      LABEL SELECTOR

source-test-scan-to-url   apps.tanzu.vmware.com/has-tests=true,apps.tanzu.vmware.com/w

orkload-type=web

source-to-url             apps.tanzu.vmware.com/workload-type=web

If you see source-test-to-url in the list, the setup is wrong. You must not have the source-test-
to-url installed at the same time as source-test-scan-to-url.

Developer namespace
This example builds on the previous Out of the Box Supply Chain examples, so only additions are
included here.

Tanzu Application Platform v1.5

VMware by Broadcom 1386



To ensure that you configured the namespace correctly, it is important that the namespace has the
objects that you configured in the other supply chain setups:

registries secrets: Kubernetes secrets of type kubernetes.io/dockerconfigjson that
contain credentials for pushing and pulling the container images built by the supply chain
and the installation of Tanzu Application Platform.

service account: The identity to be used for any interaction with the Kubernetes API made
by the supply chain.

rolebinding: Grant to the identity the necessary roles for creating the resources prescribed
by the supply chain.

For more information about the preceding objects, see Out of the Box Supply Chain Basic.

Tekton pipeline: A pipeline runs whenever the supply chain hits the stage of testing the
source code.

For more information, see Out of the Box Supply Chain Testing.

And the new objects, that you create here:

scan policy: Defines what to do with the results taken from scanning the source code and
image produced. For more information, see ScanPolicy section.

source scan template: A template of how TaskRuns are created for scanning the source
code. See ScanTemplate section.

image scan template: A template of how TaskRuns are created for scanning the image
produced by the supply chain. See ScanTemplate section.

The following section includes details about the new objects, compared to Out of the Box Supply
Chain With Testing.

Updates to the developer namespace

For source and image scans, scan templates and scan policies must exist in the same namespace as
the workload. These define:

ScanTemplate: how to run a scan, allowing one to change details about the execution of the
scan (either for images or source code)

ScanPolicy: how to evaluate whether the artifacts scanned are compliant. For example,
allowing one to be either very strict, or restrictive about particular vulnerabilities found.

The names of the objects must match the names in the example with default installation
configurations. This is overriden either by using the ootb_supply_chain_testing_scanning package
configuration in the tap-values.yaml file or by using workload parameters:

To override by using the ootb_supply_chain_testing_scanning package configuration,
make the following modification to your tap-values.yaml file and perform a Tanzu
Application Platform update.

ootb_supply_chain_testing_scanning:

  scanning:

    source:

      policy: SCAN-POLICY

      template: SCAN-TEMPLATE

    image:

      policy: SCAN-POLICY

      template: SCAN-TEMPLATE

Where SCAN-POLICY and SCAN-TEMPLATE are the names of the ScanPolicy and ScanTemplate.

Tanzu Application Platform v1.5

VMware by Broadcom 1387



To override through workload parameters, use the following commands. For more
information, see Tanzu apps workload apply.

tanzu apps workload apply WORKLOAD --param "scanning_source_policy=SCAN-POLICY" 

-n DEV-NAMESPACE

tanzu apps workload apply WORKLOAD --param "scanning_source_template=SCAN-TEMPL

ATE" -n DEV-NAMESPACE

Where:

WORKLOAD is the name of the workload.

SCAN-POLICY and SCAN-TEMPLATE are the names of the ScanPolicy and ScanTemplate.

DEV-NAMESPACE is the developer namespace.

ScanPolicy

The ScanPolicy defines a set of rules to evaluate for a particular scan to consider the artifacts
(image or source code) either compliant or not.

When a ImageScan or SourceScan is created to run a scan, those reference a policy whose name
must match the following sample scan-policy:

---

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanPolicy

metadata:

  name: scan-policy

  labels:

    'app.kubernetes.io/part-of': 'enable-in-gui'

spec:

  regoFile: |

    package main

    # Accepted Values: "Critical", "High", "Medium", "Low", "Negligible", "UnknownSeve

rity"

    notAllowedSeverities := ["Critical", "High", "UnknownSeverity"]

    ignoreCves := []

    contains(array, elem) = true {

      array[_] = elem

    } else = false { true }

    isSafe(match) {

      severities := { e | e := match.ratings.rating.severity } | { e | e := match.rati

ngs.rating[_].severity }

      some i

      fails := contains(notAllowedSeverities, severities[i])

      not fails

    }

    isSafe(match) {

      ignore := contains(ignoreCves, match.id)

      ignore

    }

    deny[msg] {

      comps := { e | e := input.bom.components.component } | { e | e := input.bom.comp

onents.component[_] }

      some i

      comp := comps[i]

      vulns := { e | e := comp.vulnerabilities.vulnerability } | { e | e := comp.vulne

rabilities.vulnerability[_] }

      some j

Tanzu Application Platform v1.5

VMware by Broadcom 1388



      vuln := vulns[j]

      ratings := { e | e := vuln.ratings.rating.severity } | { e | e := vuln.ratings.r

ating[_].severity }

      not isSafe(vuln)

      msg = sprintf("CVE %s %s %s", [comp.name, vuln.id, ratings])

    }

See Writing Policy Templates.

ScanTemplate

A ScanTemplate defines the PodTemplateSpec used by a TaskRun to run a particular scan (image
or source). When the supply chain initiates an ImageScan or SourceScan, they reference these
templates which must live in the same namespace as the workload with the names matching the
following:

source scanning (blob-source-scan-template)

image scanning (private-image-scan-template)

If you are targeting a namespace that does not match the one configured in the Tanzu Application
Platform profiles, for example, if grype.namespace is not the same as the one you are writing the
workload to, you can install these in such namespace by making use of the tanzu package install
command as described in Install Supply Chain Security Tools - Scan:

1. Create a file named ootb-supply-chain-basic-values.yaml that specifies the corresponding
values to the properties you want to change. For example:

grype:

  namespace: YOUR-DEV-NAMESPACE

  targetImagePullSecret: registry-credentials

2. With the configuration ready, install the templates by running:

tanzu package install grype-scanner \

  --package grype.scanning.apps.tanzu.vmware.com \

  --version 1.0.0 \

  --namespace YOUR-DEV-NAMESPACE

Enable storing scan results

To enable SCST - Scan to store scan results by using SCST - Store, see Developer namespace
setup for exporting the SCST - Store CA certificate and authentication token to the developer
namespace.

Allow multiple Tekton pipelines in a namespace

You can configure your developer namespace to include more than one pipeline using either of the
following methods:

Note

Although you can customize the templates, if you are following the Getting Started
guide, VMware recommends that you follow what is provided in the installation of
grype.scanning.apps.tanzu.vmware.com. This is created in the same namespace as
configured by using grype.namespace in either Tanzu Application Platform profiles or
individual component installation as in the earlier example. For more information,
see About Source and Image Scans.

Tanzu Application Platform v1.5

VMware by Broadcom 1389



Use a single pipeline running on a container image that includes testing tools and runs a
common script to execute tests. This allows you to accommodate multiple workloads based
in different languages in the same namespace that use a common make test script. For
example:

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

  name: developer-defined-tekton-pipeline

  labels:

    apps.tanzu.vmware.com/pipeline: test

spec:

  #...

        steps:

          - name: test

            image: <image_that_has_JDK_and_Go>

            script: |-

              cd `mktemp -d`

              wget -qO- $(params.source-url) | tar xvz -m

              make test

Update the template to include labels that differentiate the pipelines. Then configure the
labels to differentiate between pipelines. For example:

  selector:

     resource:

       apiVersion: tekton.dev/v1beta1

       kind: Pipeline

     matchingLabels:

       apps.tanzu.vmware.com/pipeline: test

+         apps.tanzu.vmware.com/language: #@ data.values.workload.metadata.labe

ls["apps.tanzu.vmware.com/language"]

The following example shows one namespace per-language pipeline:

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

  name: java-tests

  labels:

    apps.tanzu.vmware.com/pipeline: test

    apps.tanzu.vmware.com/language: java

spec:

  #...

        steps:

          - name: test

            image: gradle

            script: |-

              # ...

              ./mvnw test

---

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

  name: go-tests

  labels:

    apps.tanzu.vmware.com/pipeline: test

    apps.tanzu.vmware.com/language: go

spec:

  #...

        steps:

          - name: test

            image: golang

Tanzu Application Platform v1.5

VMware by Broadcom 1390



            script: |-

              # ...

              go test -v ./...

Developer workload

With the ScanPolicy and ScanTemplate objects, with the required names set, submitted to the
same namespace where the workload are submitted, you are ready to submit your workload.

Regardless of the workflow being targeted, such as local development or gitops, the workload
configuration details are the same as in Out of the Box Supply Chain Basic, except that you mark
the workload as having tests enabled.

For example:

tanzu apps workload create tanzu-java-web-app \

  --git-branch main \

  --git-repo https://github.com/vmware-tanzu/application-accelerator-samples \

  --sub-path tanzu-java-web-app \

  --label apps.tanzu.vmware.com/has-tests=true \

  --label app.kubernetes.io/part-of=tanzu-java-web-app \

  --type web

Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |    apps.tanzu.vmware.com/has-tests: "true"

      8 + |    app.kubernetes.io/part-of: tanzu-java-web-app

      9 + |  name: tanzu-java-web-app

     10 + |  namespace: default

     11 + |spec:

     12 + |  source:

     13 + |    git:

     14 + |      ref:

     15 + |        branch: main

     16 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

     17 + |    subPath: tanzu-java-web-app

CVE triage workflow
The Supply Chain halts progression if either a SourceScan
(sourcescans.scanning.apps.tanzu.vmware.com) or an ImageScan
(imagescans.scanning.apps.tanzu.vmware.com) fails policy enforcement through the ScanPolicy
(scanpolicies.scanning.apps.tanzu.vmware.com). This can prevent source code from building or
images deploying that contain vulnerabilities that are in violation of the user-defined scan policy.
For information about learning how to handle these vulnerabilities and unblock your Supply Chain,
see Triaging and Remediating CVEs.

Scan Images using a different scanner
Supply Chain Security Tools - Scan includes additional integrations for running an image scan using
Snyk and VMware Carbon Black.

Tanzu Application Platform v1.5

VMware by Broadcom 1391



Out of the Box Supply Chain with Testing and Scanning for
Supply Chain Choreographer

This topic provides an overview of Out of the Box Supply Chain with Testing and Scanning for
Supply Chain Choreographer.

This package contains Cartographer Supply Chains that tie together a series of Kubernetes
resources that drive a developer-provided workload from source code to a Kubernetes
configuration ready to be deployed to a cluster. It contains supply chains that pass the source code
through testing and vulnerability scanning, and also the container image.

This package includes all the capabilities of the Out of the Box Supply Chain With Testing, but adds
source and image scanning using Grype.

Workloads that use source code or prebuilt images perform the following:

Building from source code:

1. Watching a Git Repository or local directory for changes

2. Running tests from a developer-provided Tekton pipeline

3. Scanning the source code for known vulnerabilities using Grype

4. Building a container image out of the source code with Buildpacks

5. Scanning the image for known vulnerabilities

6. Applying operator-defined conventions to the container definition

7. Deploying the application to the same cluster

Using a prebuilt application image:

1. Scanning the image for known vulnerabilities

2. Applying operator-defined conventions to the container definition

3. Creating a deliverable object for deploying the application to a cluster

Prerequisites

To use this supply chain, verify that:

Tanzu Application Platform GUI is configured to enable CVE scan results. This configuration
enables the Supply Chain Choreographer Tanzu Application Platform GUI plug-in to retrieve
metadata about project packages and their vulnerabilities.

Out of the Box Templates is installed.

Out of the Box Supply Chain With Testing is NOT installed.

Out of the Box Supply Chain With Testing and Scanning is installed.

Developer namespace is configured with the objects according to Out of the Box Supply
Chain With Testing guidance. This supply chain is in addition to the Supply Chain with
testing.

(Optionally) install Out of the Box Delivery Basic, if you are willing to deploy the application
to the same cluster as the workload and supply chains.

Verify that you have the supply chains with scanning, not with testing, installed. Run:

tanzu apps cluster-supply-chain list

Tanzu Application Platform v1.5

VMware by Broadcom 1392



NAME                      LABEL SELECTOR

source-test-scan-to-url   apps.tanzu.vmware.com/has-tests=true,apps.tanzu.vmware.com/w

orkload-type=web

source-to-url             apps.tanzu.vmware.com/workload-type=web

If you see source-test-to-url in the list, the setup is wrong. You must not have the source-test-
to-url installed at the same time as source-test-scan-to-url.

Developer namespace

This example builds on the previous Out of the Box Supply Chain examples, so only additions are
included here.

To ensure that you configured the namespace correctly, it is important that the namespace has the
objects that you configured in the other supply chain setups:

registries secrets: Kubernetes secrets of type kubernetes.io/dockerconfigjson that
contain credentials for pushing and pulling the container images built by the supply chain
and the installation of Tanzu Application Platform.

service account: The identity to be used for any interaction with the Kubernetes API made
by the supply chain.

rolebinding: Grant to the identity the necessary roles for creating the resources prescribed
by the supply chain.

For more information about the preceding objects, see Out of the Box Supply Chain Basic.

Tekton pipeline: A pipeline runs whenever the supply chain hits the stage of testing the
source code.

For more information, see Out of the Box Supply Chain Testing.

And the new objects, that you create here:

scan policy: Defines what to do with the results taken from scanning the source code and
image produced. For more information, see ScanPolicy section.

source scan template: A template of how TaskRuns are created for scanning the source
code. See ScanTemplate section.

image scan template: A template of how TaskRuns are created for scanning the image
produced by the supply chain. See ScanTemplate section.

The following section includes details about the new objects, compared to Out of the Box Supply
Chain With Testing.

Updates to the developer namespace

For source and image scans, scan templates and scan policies must exist in the same namespace as
the workload. These define:

ScanTemplate: how to run a scan, allowing one to change details about the execution of the
scan (either for images or source code)

ScanPolicy: how to evaluate whether the artifacts scanned are compliant. For example,
allowing one to be either very strict, or restrictive about particular vulnerabilities found.

The names of the objects must match the names in the example with default installation
configurations. This is overriden either by using the ootb_supply_chain_testing_scanning package
configuration in the tap-values.yaml file or by using workload parameters:

Tanzu Application Platform v1.5

VMware by Broadcom 1393



To override by using the ootb_supply_chain_testing_scanning package configuration,
make the following modification to your tap-values.yaml file and perform a Tanzu
Application Platform update.

ootb_supply_chain_testing_scanning:

  scanning:

    source:

      policy: SCAN-POLICY

      template: SCAN-TEMPLATE

    image:

      policy: SCAN-POLICY

      template: SCAN-TEMPLATE

Where SCAN-POLICY and SCAN-TEMPLATE are the names of the ScanPolicy and ScanTemplate.

To override through workload parameters, use the following commands. For more
information, see Tanzu apps workload apply.

tanzu apps workload apply WORKLOAD --param "scanning_source_policy=SCAN-POLICY" 

-n DEV-NAMESPACE

tanzu apps workload apply WORKLOAD --param "scanning_source_template=SCAN-TEMPL

ATE" -n DEV-NAMESPACE

Where:

WORKLOAD is the name of the workload.

SCAN-POLICY and SCAN-TEMPLATE are the names of the ScanPolicy and ScanTemplate.

DEV-NAMESPACE is the developer namespace.

ScanPolicy

The ScanPolicy defines a set of rules to evaluate for a particular scan to consider the artifacts
(image or source code) either compliant or not.

When a ImageScan or SourceScan is created to run a scan, those reference a policy whose name
must match the following sample scan-policy:

---

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanPolicy

metadata:

  name: scan-policy

  labels:

    'app.kubernetes.io/part-of': 'enable-in-gui'

spec:

  regoFile: |

    package main

    # Accepted Values: "Critical", "High", "Medium", "Low", "Negligible", "UnknownSeve

rity"

    notAllowedSeverities := ["Critical", "High", "UnknownSeverity"]

    ignoreCves := []

    contains(array, elem) = true {

      array[_] = elem

    } else = false { true }

    isSafe(match) {

      severities := { e | e := match.ratings.rating.severity } | { e | e := match.rati

ngs.rating[_].severity }

      some i

      fails := contains(notAllowedSeverities, severities[i])

Tanzu Application Platform v1.5

VMware by Broadcom 1394



      not fails

    }

    isSafe(match) {

      ignore := contains(ignoreCves, match.id)

      ignore

    }

    deny[msg] {

      comps := { e | e := input.bom.components.component } | { e | e := input.bom.comp

onents.component[_] }

      some i

      comp := comps[i]

      vulns := { e | e := comp.vulnerabilities.vulnerability } | { e | e := comp.vulne

rabilities.vulnerability[_] }

      some j

      vuln := vulns[j]

      ratings := { e | e := vuln.ratings.rating.severity } | { e | e := vuln.ratings.r

ating[_].severity }

      not isSafe(vuln)

      msg = sprintf("CVE %s %s %s", [comp.name, vuln.id, ratings])

    }

See Writing Policy Templates.

ScanTemplate

A ScanTemplate defines the PodTemplateSpec used by a TaskRun to run a particular scan (image
or source). When the supply chain initiates an ImageScan or SourceScan, they reference these
templates which must live in the same namespace as the workload with the names matching the
following:

source scanning (blob-source-scan-template)

image scanning (private-image-scan-template)

If you are targeting a namespace that does not match the one configured in the Tanzu Application
Platform profiles, for example, if grype.namespace is not the same as the one you are writing the
workload to, you can install these in such namespace by making use of the tanzu package install
command as described in Install Supply Chain Security Tools - Scan:

1. Create a file named ootb-supply-chain-basic-values.yaml that specifies the corresponding
values to the properties you want to change. For example:

grype:

  namespace: YOUR-DEV-NAMESPACE

  targetImagePullSecret: registry-credentials

2. With the configuration ready, install the templates by running:

tanzu package install grype-scanner \

  --package grype.scanning.apps.tanzu.vmware.com \

  --version 1.0.0 \

  --namespace YOUR-DEV-NAMESPACE

Note

Although you can customize the templates, if you are following the Getting Started
guide, VMware recommends that you follow what is provided in the installation of
grype.scanning.apps.tanzu.vmware.com. This is created in the same namespace as
configured by using grype.namespace in either Tanzu Application Platform profiles or

Tanzu Application Platform v1.5

VMware by Broadcom 1395



Enable storing scan results

To enable SCST - Scan to store scan results by using SCST - Store, see Developer namespace
setup for exporting the SCST - Store CA certificate and authentication token to the developer
namespace.

Allow multiple Tekton pipelines in a namespace

You can configure your developer namespace to include more than one pipeline using either of the
following methods:

Use a single pipeline running on a container image that includes testing tools and runs a
common script to execute tests. This allows you to accommodate multiple workloads based
in different languages in the same namespace that use a common make test script. For
example:

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

  name: developer-defined-tekton-pipeline

  labels:

    apps.tanzu.vmware.com/pipeline: test

spec:

  #...

        steps:

          - name: test

            image: <image_that_has_JDK_and_Go>

            script: |-

              cd `mktemp -d`

              wget -qO- $(params.source-url) | tar xvz -m

              make test

Update the template to include labels that differentiate the pipelines. Then configure the
labels to differentiate between pipelines. For example:

  selector:

     resource:

       apiVersion: tekton.dev/v1beta1

       kind: Pipeline

     matchingLabels:

       apps.tanzu.vmware.com/pipeline: test

+         apps.tanzu.vmware.com/language: #@ data.values.workload.metadata.labe

ls["apps.tanzu.vmware.com/language"]

The following example shows one namespace per-language pipeline:

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

  name: java-tests

  labels:

    apps.tanzu.vmware.com/pipeline: test

    apps.tanzu.vmware.com/language: java

spec:

  #...

        steps:

individual component installation as in the earlier example. For more information,
see About Source and Image Scans.

Tanzu Application Platform v1.5

VMware by Broadcom 1396



          - name: test

            image: gradle

            script: |-

              # ...

              ./mvnw test

---

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

  name: go-tests

  labels:

    apps.tanzu.vmware.com/pipeline: test

    apps.tanzu.vmware.com/language: go

spec:

  #...

        steps:

          - name: test

            image: golang

            script: |-

              # ...

              go test -v ./...

Developer workload

With the ScanPolicy and ScanTemplate objects, with the required names set, submitted to the
same namespace where the workload are submitted, you are ready to submit your workload.

Regardless of the workflow being targeted, such as local development or gitops, the workload
configuration details are the same as in Out of the Box Supply Chain Basic, except that you mark
the workload as having tests enabled.

For example:

tanzu apps workload create tanzu-java-web-app \

  --git-branch main \

  --git-repo https://github.com/vmware-tanzu/application-accelerator-samples \

  --sub-path tanzu-java-web-app \

  --label apps.tanzu.vmware.com/has-tests=true \

  --label app.kubernetes.io/part-of=tanzu-java-web-app \

  --type web

Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |    apps.tanzu.vmware.com/has-tests: "true"

      8 + |    app.kubernetes.io/part-of: tanzu-java-web-app

      9 + |  name: tanzu-java-web-app

     10 + |  namespace: default

     11 + |spec:

     12 + |  source:

     13 + |    git:

     14 + |      ref:

     15 + |        branch: main

     16 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

     17 + |    subPath: tanzu-java-web-app

CVE triage workflow

Tanzu Application Platform v1.5

VMware by Broadcom 1397



The Supply Chain halts progression if either a SourceScan
(sourcescans.scanning.apps.tanzu.vmware.com) or an ImageScan
(imagescans.scanning.apps.tanzu.vmware.com) fails policy enforcement through the ScanPolicy
(scanpolicies.scanning.apps.tanzu.vmware.com). This can prevent source code from building or
images deploying that contain vulnerabilities that are in violation of the user-defined scan policy.
For information about learning how to handle these vulnerabilities and unblock your Supply Chain,
see Triaging and Remediating CVEs.

Scan Images using a different scanner

Supply Chain Security Tools - Scan includes additional integrations for running an image scan using
Snyk and VMware Carbon Black.

Install Out of the Box Supply Chain with Testing and
Scanning for Supply Chain Choreographer
This topic describes how you can install Out of the Box Supply Chain with Testing and Scanning for
Supply Chain Choreographer from the Tanzu Application Platform package repository.

The Out of the Box Supply Chain with Testing and Scanning package provides a ClusterSupplyChain
that brings an application from source code to a deployed instance that:

Runs in a Kubernetes environment.

Performs validations in terms of running application tests.

Scans the source code and image for vulnerabilities.

Prerequisites
Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

Install cartographer. For more information, see Install Supply Chain Choreographer.

Install Out of the Box Delivery Basic

Install Out of the Box Templates

Install
To install Out of the Box Supply Chain with Testing and Scanning:

1. Ensure you do not have Out of The Box Supply Chain With Testing (ootb-supply-chain-
testing.tanzu.vmware.com) installed:

1. Run the following command:

tanzu package installed list --namespace tap-install

2. Verify ootb-supply-chain-testing is in the output:

Note

Follow the steps in this topic if you do not want to use a profile to install Out of the
Box Supply Chain with Testing and Scanning. For more information about profiles,
see Components and installation profiles.

Tanzu Application Platform v1.5

VMware by Broadcom 1398



NAME                                PACKAGE-NAME

ootb-delivery-basic                 ootb-delivery-basic.tanzu.vmware.com

ootb-supply-chain-basic             ootb-supply-chain-basic.tanzu.vmware.

com

ootb-templates                      ootb-templates.tanzu.vmware.com

3. If you see ootb-supply-chain-testing in the list, uninstall it by running:

tanzu package installed delete ootb-supply-chain-testing --namespace tap-

install

Example output:

Deleting installed package 'ootb-supply-chain-testing' in namespace 'tap-

install'.

Are you sure? [y/N]: y

| Uninstalling package 'ootb-supply-chain-testing' from namespace 'tap-in

stall'

\ Getting package install for 'ootb-supply-chain-testing'

- Deleting package install 'ootb-supply-chain-testing' from namespace 'ta

p-install'

| Deleting admin role 'ootb-supply-chain-testing-tap-install-cluster-rol

e'

| Deleting role binding 'ootb-supply-chain-testing-tap-install-cluster-ro

lebinding'

| Deleting secret 'ootb-supply-chain-testing-tap-install-values'

| Deleting service account 'ootb-supply-chain-testing-tap-install-sa'

 Uninstalled package 'ootb-supply-chain-testing' from namespace 'tap-inst

all'

2. Check the values of the package that can be configured by running:

tanzu package available get ootb-supply-chain-testing-scanning.tanzu.vmware.co

m/0.7.0 \

  --values-schema \

  -n tap-install

For example:

KEY                                   DESCRIPTION

registry.repository                    Name of the repository in the image regi

stry server where the application

                                       images from the workload should be pushe

d (required).

registry.server                        Name of the registry server where applic

ation images should be pushed to

                                       (required).

git_implementation                     Determines which git client library to u

se. Valid options are go-git or

                                       libgit2.

gitops.server_address                  Default server address to be used for fo

rming Git URLs for pushing

                                       Kubernetes configuration produced by the 

supply chain. This must

                                       include the scheme/protocol (e.g. http

s:// or ssh://)

Tanzu Application Platform v1.5

VMware by Broadcom 1399



gitops.repository_owner                Default project or user of the repositor

y. Used to create URLs for pushing

                                       Kubernetes configuration produced by the 

supply chain.

gitops.repository_name                 Default repository name used for forming 

Git URLs for pushing Kubernetes

                                       configuration produced by the supply cha

in.

gitops.username                        Default user name to be used for the com

mits produced by the supply chain.

gitops.branch                          Default branch to use for pushing Kubern

etes configuration files produced

                                       by the supply chain.

gitops.commit_message                  Default git commit message to write when 

publishing Kubernetes

                                       configuration files produces by the supp

ly chain to git.

gitops.email                           Default user email to be used for the co

mmits produced by the supply chain.

gitops.ssh_secret                      Name of the default Secret containing SS

H credentials to lookup in the

                                       developer namespace for the supply chain 

to fetch source code from and

                                       push configuration to.

gitops.commit_strategy                 Specification of how commits are made to 

the branch; directly or through a

                                       pull request.

gitops.repository_prefix               DEPRECATED: Use server_address and repos

itory_owner instead.

                                       Default prefix to be used for forming Gi

t SSH URLs for pushing Kubernetes

                                       configuration produced by the supply cha

in.

gitops.pull_request.server_kind         The git source control platform used

gitops.pull_request.commit_branch       The branch to which commits will be mad

e, before opening a pull request

                                       to the branch specified in .gitops.branc

h If the string "" is specified,

                                       an essentially random string will be use

d for the branch name, in order

                                       to prevent collisions.

gitops.pull_request.pull_request_title  The title for the pull request

gitops.pull_request.pull_request_body   Any further information to add to the p

ull request

cluster_builder           Name of the Tanzu Build Service ClusterBuilder to

                          use by default on image objects managed by the supply 

chain.

service_account           Name of the service account in the namespace where th

e Workload

                          is submitted to utilize for providing registry creden

tials to

                          Tanzu Build Service Image objects as well as deployin

Tanzu Application Platform v1.5

VMware by Broadcom 1400



g the

                          application.

3. Create a file named ootb-supply-chain-testing-scanning-values.yaml that specifies the
corresponding values to the properties you want to change. For example:

registry:

  server: REGISTRY-SERVER

  repository: REGISTRY-REPOSITORY

gitops:

  server_address: https://github.com/

  repository_owner: vmware-tanzu

  branch: main

  username: supplychain

  email: supplychain

  commit_message: supplychain@cluster.local

  ssh_secret: git-ssh

  commit_strategy: direct

cluster_builder: default

service_account: default

4. With the configuration ready, install the package by running:

tanzu package install ootb-supply-chain-testing-scanning \

  --package ootb-supply-chain-testing-scanning.tanzu.vmware.com \

  --version 0.7.0 \

  --namespace tap-install \

  --values-file ootb-supply-chain-testing-scanning-values.yaml

Example output:

\ Installing package 'ootb-supply-chain-testing-scanning.tanzu.vmware.com'

| Getting package metadata for 'ootb-supply-chain-testing-scanning.tanzu.vmwar

e.com'

| Creating service account 'ootb-supply-chain-testing-scanning-tap-install-sa'

| Creating cluster admin role 'ootb-supply-chain-testing-scanning-tap-install-c

luster-role'

| Creating cluster role binding 'ootb-supply-chain-testing-scanning-tap-install

-cluster-rolebinding'

| Creating secret 'ootb-supply-chain-testing-scanning-tap-install-values'

| Creating package resource

- Waiting for 'PackageInstall' reconciliation for 'ootb-supply-chain-testing-sc

anning'

\ 'PackageInstall' resource install status: Reconciling

Added installed package 'ootb-supply-chain-testing-scanning' in namespace 'tap-

install'

Out of the Box Templates for Supply Chain Choreographer

This topic describes the templates you can use with Supply Chain Choreographer.

Templates define Kubernetes objects based on configuration in the workload, supply chain Tanzu
Application Platform values, and results output from other templated objects. A supply chain

Important

The gitops.repository_prefix field must end with /.

Tanzu Application Platform v1.5

VMware by Broadcom 1401



organizes a set of templates into a directed acyclic graph. This package contains templates that are
used by the Out of the Box Supply Chains and the Out of the Box Delivery. You must install this
package to have Workloads delivered properly.

The OOTB Template package includes:

Cartographer Templates: See reference

Cartographer ClusterRunTemplates: See reference

Tekton ClusterTasks

ClusterRoles

openshift SecurityContextConstraints

For information about OOTB Supply Chains and Delivery, see:

Out of the Box Supply Chain Basic

Out of the Box Supply Chain with Testing

Out of the Box Supply Chain with Testing and Scanning

Out of the Box Delivery Basic

Out of the Box Templates for Supply Chain Choreographer

This topic describes the templates you can use with Supply Chain Choreographer.

Templates define Kubernetes objects based on configuration in the workload, supply chain Tanzu
Application Platform values, and results output from other templated objects. A supply chain
organizes a set of templates into a directed acyclic graph. This package contains templates that are
used by the Out of the Box Supply Chains and the Out of the Box Delivery. You must install this
package to have Workloads delivered properly.

The OOTB Template package includes:

Cartographer Templates: See reference

Cartographer ClusterRunTemplates: See reference

Tekton ClusterTasks

ClusterRoles

openshift SecurityContextConstraints

For information about OOTB Supply Chains and Delivery, see:

Out of the Box Supply Chain Basic

Out of the Box Supply Chain with Testing

Out of the Box Supply Chain with Testing and Scanning

Out of the Box Delivery Basic

Install Out of the Box Templates

This document describes how to install Out of the Box Templates from the Tanzu Application
Platform package repository.

Note

Follow the steps in this topic if you do not want to use a profile to install Out of the
Box Templates. For more information about profiles, see Components and

Tanzu Application Platform v1.5

VMware by Broadcom 1402

https://cartographer.sh/docs/v0.6.0/architecture/#templates
https://cartographer.sh/docs/v0.6.0/runnable/architecture/#clusterruntemplate
https://tekton.dev/docs/pipelines/tasks/#overview
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#role-and-clusterrole
https://docs.openshift.com/container-platform/3.11/admin_guide/manage_scc.html
https://cartographer.sh/docs/v0.6.0/architecture/#templates
https://cartographer.sh/docs/v0.6.0/runnable/architecture/#clusterruntemplate
https://tekton.dev/docs/pipelines/tasks/#overview
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#role-and-clusterrole
https://docs.openshift.com/container-platform/3.11/admin_guide/manage_scc.html


The Out of the Box Templates package is used by all the Out of the Box Supply Chains to provide
the templates that are used by the Supply Chains to create the objects that drive source code all
the way to a deployed application in a cluster.

Prerequisites
Before installing Out of the Box Templates:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

Install cartographer. For more information, see Install Supply Chain Choreographer.

Install Tekton Pipelines.

Install
To install Out of the Box Templates:

1. View the configurable values of the package by running:

tanzu package available get ootb-templates.tanzu.vmware.com/0.7.0 \

  --values-schema \

  -n tap-install

For example:

KEY                  DEFAULT  TYPE    DESCRIPTION

excluded_templates   []       array   List of templates to exclude from the

                                      installation (e.g. ['git-writer'])

2. Create a file named ootb-templates.yaml that specifies the corresponding values to the
properties you want to change.

For example, the contents of the file might look like this:

excluded_templates: []

3. After the configuration is ready, install the package by running:

tanzu package install ootb-templates \

  --package ootb-templates.tanzu.vmware.com \

  --version 0.7.0 \

  --namespace tap-install \

  --values-file ootb-templates-values.yaml

Example output:

\ Installing package 'ootb-templates.tanzu.vmware.com'

| Getting package metadata for 'ootb-templates.tanzu.vmware.com'

| Creating service account 'ootb-templates-tap-install-sa'

| Creating cluster admin role 'ootb-templates-tap-install-cluster-role'

| Creating cluster role binding 'ootb-templates-tap-install-cluster-rolebindin

g'

| Creating secret 'ootb-templates-tap-install-values'

| Creating package resource

- Waiting for 'PackageInstall' reconciliation for 'ootb-templates'

/ 'PackageInstall' resource install status: Reconciling

installation profiles.

Tanzu Application Platform v1.5

VMware by Broadcom 1403



 Added installed package 'ootb-templates' in namespace 'tap-install'

Out of the Box Delivery Basic for Supply Chain
Choreographer
This topic is an overview of the Out of the Box Delivery Basic package for Supply Chain
Choreographer.

This package provides a reusable ClusterDelivery object that delivers the Kubernetes configuration
that the Out of the Box Supply Chain produces to an environment, including Basic, Testing, and
Testing With Scanning supply chains.

Prerequisites
To make use of this package you must have installed:

Supply Chain Cartographer

Out of the Box Templates

Using Out of the Box Delivery Basic
Out of the Box Delivery Basic support both GitOps and local development workflows:

GITOPS

    Deliverable:

      points at a git repository where source code is found and

      kubernetes configuration is pushed to

LOCAL DEVELOPMENT

    Deliverable:

      points at a container image registry where the supplychain

      pushes source code and configuration to

---

DELIVERY

    takes a Deliverable (local or gitops) and passes is through

    a series of resources:

           config-provider  <---[config]--- deployer

                 .                             .

                 .                             .

    GitRepository/ImageRepository         kapp-ctrl/App

                                                - knative/Service

                                                - ResourceClaim

                                                - ServiceBinding

                                                ...

You must install this package to have Workloads delivered properly with the Basic, Testing, and
Testing With Scanning Out of the Box Supply Chains.

Tanzu Application Platform v1.5

VMware by Broadcom 1404



Consumers do not interact directly with this package. Instead, this package is used after the supply
chains create a carto.run/Deliverable object to express the intention of having the Workloads that
go through them delivered to an environment. The environment is the same Kubernetes cluster as
the Supply Chains.

More information

Reference

Installation

Out of the Box Delivery Basic for Supply Chain
Choreographer

This topic is an overview of the Out of the Box Delivery Basic package for Supply Chain
Choreographer.

This package provides a reusable ClusterDelivery object that delivers the Kubernetes configuration
that the Out of the Box Supply Chain produces to an environment, including Basic, Testing, and
Testing With Scanning supply chains.

Prerequisites

To make use of this package you must have installed:

Supply Chain Cartographer

Out of the Box Templates

Using Out of the Box Delivery Basic

Out of the Box Delivery Basic support both GitOps and local development workflows:

GITOPS

    Deliverable:

      points at a git repository where source code is found and

      kubernetes configuration is pushed to

LOCAL DEVELOPMENT

    Deliverable:

      points at a container image registry where the supplychain

      pushes source code and configuration to

---

DELIVERY

    takes a Deliverable (local or gitops) and passes is through

    a series of resources:

           config-provider  <---[config]--- deployer

                 .                             .

                 .                             .

    GitRepository/ImageRepository         kapp-ctrl/App

                                                - knative/Service

Tanzu Application Platform v1.5

VMware by Broadcom 1405

https://github.com/vmware-tanzu/cartographer


                                                - ResourceClaim

                                                - ServiceBinding

                                                ...

You must install this package to have Workloads delivered properly with the Basic, Testing, and
Testing With Scanning Out of the Box Supply Chains.

Consumers do not interact directly with this package. Instead, this package is used after the supply
chains create a carto.run/Deliverable object to express the intention of having the Workloads that
go through them delivered to an environment. The environment is the same Kubernetes cluster as
the Supply Chains.

More information

Reference

Installation

Install Out of the Box Delivery Basic for Supply Chain
Choreographer

This topic shows you how to install the Out of the Box Delivery Basic package for Supply Chain
Choreographer from the Tanzu Application Platform package repository.

The Out of the Box Delivery Basic package is used by all the Out of the Box Supply Chains to
deliver the objects that have been produced by them to a Kubernetes environment.

Prerequisites

Before installing Out of the Box Delivery Basic:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

Install cartographer. For more information, see Install Supply Chain Choreographer.

Install

To install Out of the Box Delivery Basic:

1. Familiarize yourself with the set of values of the package that can be configured by running:

tanzu package available get ootb-delivery-basic.tanzu.vmware.com/0.7.0 \

  --values-schema \

  -n tap-install

For example:

KEY                  DEFAULT  TYPE    DESCRIPTION

service_account      default  string  Name of the service account in the

                                      namespace where the Deliverable is

                                      submitted to.

Note

Follow the steps in this topic if you do not want to use a profile to install Out of the
Box Delivery Basic. For more information about profiles, see Components and
installation profiles.

Tanzu Application Platform v1.5

VMware by Broadcom 1406

https://github.com/vmware-tanzu/cartographer


git_implementation   go-git   string  Which git client library to use.

                                      Valid options are go-git or libgit2.

2. Create a file named ootb-delivery-basic-values.yaml that specifies the corresponding
values to the properties you want to change.

For example, the contents of the file might look like this:

service_account: default

3. With the configuration ready, install the package by running:

tanzu package install ootb-delivery-basic \

  --package ootb-delivery-basic.tanzu.vmware.com \

  --version 0.7.0 \

  --namespace tap-install \

  --values-file ootb-delivery-basic-values.yaml

Example output:

\ Installing package 'ootb-delivery-basic.tanzu.vmware.com'

| Getting package metadata for 'ootb-delivery-basic.tanzu.vmware.com'

| Creating service account 'ootb-delivery-basic-tap-install-sa'

| Creating cluster admin role 'ootb-delivery-basic-tap-install-cluster-role'

| Creating cluster role binding 'ootb-delivery-basic-tap-install-cluster-rolebi

nding'

| Creating secret 'ootb-delivery-basic-tap-install-values'

| Creating package resource

- Waiting for 'PackageInstall' reconciliation for 'ootb-delivery-basic'

/ 'PackageInstall' resource install status: Reconciling

 Added installed package 'ootb-delivery-basic' in namespace 'tap-install'

How-to guides for Supply Chain Choreographer for Tanzu

This topic describes the how-to guides you can use for Supply Chain Choreographer for Tanzu.

How-to guides

The following how-to guides apply to Supply Chain Choreographer for Tanzu:

Install Supply Chain Choreographer

Install Out of the Box Delivery Basic

Install Out of the Box Supply Chain Basic

Install Out of the Box Supply Chain with Testing

Install Out of the Box Supply Chain with Testing and Scanning

Install Out of the Box Templates

Tanzu Build Service Integration

Building from source

Git authentication

Output Carvel Packages from your Supply Chain

Deploy Carvel Packages using Carvel App CR

Tanzu Application Platform v1.5

VMware by Broadcom 1407



Deploy Carvel Packages using Flux CD Kustomization

Use Blue-green deployments with Contour and Carvel Packages

Out of the Box Supply Chain with testing on Jenkins for
Supply Chain Choreographer
This topic provides an overview of Out of the Box Supply Chain with testing on Jenkins for Supply
Chain Choreographer.

The Out of the Box templates package now includes a Tekton ClusterTask resource, which triggers
a build for a specified Jenkins job.

You can configure the Jenkins task in both the Out of the Box Supply Chain with Testing and Out
of the Box Supply Chain With Testing and Scanning to trigger a Jenkins job. The task is
implemented as a Tekton ClusterTask and can now run from a Tekton Pipeline.

Prerequisites
Follow the instructions from either Out of the Box Supply Chain With Testing or Out of the Box
Supply Chain With Testing and Scanning to install the required packages. You need to set up only
one of these packages.

Either of these Supply Chains is able to use the Jenkins service during the source-tester phase of
the pipeline.

Using the Out of the Box Jenkins Task

The intent of the Jenkins task provided via Out of the Box templates is to help Tanzu Application
Platform users to integrate with and make use of the modern application deployment pipeline
provided by our platform while maintaining their existing test suites on their Jenkins services.

The Out of the Box Jenkins task makes use of an existing Jenkins Job to run test suites on source
code.

1. Configuring a Jenkins job in an existing Jenkins Pipeline

This section of the guide shows how to configure a Jenkins job that can be kicked off by the Tanzu
Application Platform Jenkins task.

Example Jenkins Job

Here is an example of a script that can be added to your pipeline that specifies source url and
source revision information for your source code target. This example uses a Jenkins instance that
is deployed on a Kubernetes cluster although this is not the only possible configuration for a
Jenkins instance.

#!/bin/env groovy

pipeline {

  agent {

    // Use an agent that is appropriate 

    // for your Jenkins installation. 

    // This is only an example

    kubernetes { 

      label 'maven'

    }

  }

Tanzu Application Platform v1.5

VMware by Broadcom 1408



  stages {

    stage('Checkout code') {

      steps {

        script {

          sourceUrl = params.SOURCE-REVISION

          indexSlash = sourceUrl.indexOf("/")

          revision = sourceUrl.substring(indexSlash + 1)

        }

        sh "git clone ${params.GIT-URL} target"

        dir("target") {

          sh "git checkout ${revision}"

        }

      }

    }

    stage('Maven test') {

      steps {

        container('maven') {

          dir("target") {

            // Example tests with maven

            sh "mvn clean test --no-transfer-progress"

          }

        }

      }

    }

  }

}

Where:

SOURCE_URL string The URL of the source code being tested. The source-provider resource
in the supply chain provides this code and is only resolvable inside the Kubernetes cluster.
This URL is only useful if your Jenkins service is running inside the cluster or if there is
ingress set up and the Jenkins service can make requests to services inside the cluster.

SOURCE_REVISION string The revision of the source code being tested. The format of this
value can vary depending on the implementation of the source_provider resource. If the
source-provider is the Flux CD GitRepository resource, then the value of the
SOURCE_REVISION is the Git branch name followed by the commit SHA, both separated by a
(/) slash character. For example, main/2b1ed6c3c4f74f15b0e4de2732234eafd050eb1ca. Your
Jenkins pipeline script must extract the commit SHA from the SOURCE_REVISION to be
useful.

The following fields will also be required in the Jenkins Job definition

SOURCE-REVISION string

GIT-URL string

To configure your Workload to pass the GIT-URL parameter into the Jenkins task:

tanzu apps workload create workload \

  --namespace your-test-namespace \

  --git-branch main \

  --git-repo https://your.git/repository.git \

  --label apps.tanzu.vmware.com/has-tests=true \

Note

If you can’t use the SOURCE_URL because your Jenkins service cannot make requests
into the Kubernetes cluster, you can supply the source code URL to the Jenkins job
with other parameters instead.

Tanzu Application Platform v1.5

VMware by Broadcom 1409



  --label app.kubernetes.io/part-of=test-workload \

  --param-yaml testing_pipeline_matching_labels='{"apps.tanzu.vmware.com/pipeline":"je

nkins-pipeline"}' \

  --param-yaml testing_pipeline_params='{"secret-name":"my-secret","job-name":"jenkins

-job-name","job-params":"[{\"name\":\"GIT_URL\",\"value\":\"https://your.git/repositor

y.git\"}]"}' \

  --type web \

  --yes

The Workload is described in the later Developer Workload section.

2. Create a secret with auth credentials

A secret must be created in the developer namespace to contain the credentials required to
authenticate and interact with your Jenkins instance’s builds. The following properties are required:

url required: URL of the Jenkins instance that hosts the job, including the scheme. For
example: https://my-jenkins.com.

username required: User name of the user that has access to trigger a build on Jenkins.

password required: Password of the user that has access to trigger a build on Jenkins.

ca-cert optional: The PEM-encoded CA certificate to verify the Jenkins instance identity.

Use the Kubernetes CLI tool (kubectl) to create the above secret. You can provide the optional
PEM-encoded CA certificate as a file using the --from-file flag as shown below:

kubectl create secret generic my-secret \

  --from-literal=url=https://jenkins.instance \

  --from-literal=username=literal-username \

  --from-file=password=/path/to/file/with/password.txt \

  --from-file=ca-cert=/path/to/ca-certificate.pem \

The expected format of the secret is will be as follows:

apiVersion: v1

kind: Secret

metadata:

  name: MY-SECRET # secret name that will be referenced by the workload

type: Opaque

stringData:

  url: JENKINS-URL # target jenkins instance url

  username: USERNAME # jenkins username

  password: PASSWORD # jenkins password

  ca-cert: PEM-CA-CERT # PEM encoded certificate

3. Create a Tekton pipeline

The developer must create a Tekton Pipeline object with the following parameters:

source-url, required: An HTTP address where a .tar.gz file containing all the source code
being tested is supplied.

source-revision, required: The revision of the commit or image reference found by the
source-provider.

secret-name, required: The secret that contains the URL, user name, password, and
certificate (optional) to the Jenkins instance that houses the job that is required to run.

job-name, required: The name of the Jenkins job that is required to run.

job-params, required: A list of key-value pairs, encoded as a JSON string, that passes in
parameters needed for the Jenkins job.

Tanzu Application Platform v1.5

VMware by Broadcom 1410



Tasks:

jenkins-task, required: This ClusterTask is one of the tasks that the pipeline runs to
trigger the Jenkins job. It is installed in the cluster by the Out of the Box Templates
package.

Results:

jenkins-job-url: A string result that outputs the URL of the Jenkins build that the Tekton
task triggered. The jenkins-task ClusterTask populates the output.

Here is an example of how to create a tekton pipeline with the required parameters

cat <<EOF | kubectl apply -f -

---

apiVersion: tekton.dev/v1beta1

kind: Pipeline

metadata:

  name: developer-defined-jenkins-tekton-pipeline

  namespace: developer-namespace

  labels:

    #! This label should be provided to the Workload so that

    #! the supply chain can find this pipeline

    apps.tanzu.vmware.com/pipeline: jenkins-pipeline

spec:

  results:

  - name: jenkins-job-url   #! To show the job URL on the

    #! Tanzu Application Platform GUI

    value: $(tasks.jenkins-task.results.jenkins-job-url)

  params:

  - name: source-url        #! Required

  - name: source-revision   #! Required

  - name: secret-name       #! Required

  - name: job-name          #! Required

  - name: job-params        #! Required

  tasks:

  #! Required: Include the built-in task that triggers the

  #! given job in Jenkins

  - name: jenkins-task

    taskRef:

      name: jenkins-task

      kind: ClusterTask

    params:

      - name: source-url

        value: $(params.source-url)

      - name: source-revision

        value: $(params.source-revision)

      - name: secret-name

        value: $(params.secret-name)

      - name: job-name

        value: $(params.job-name)

      - name: job-params

        value: $(params.job-params)

EOF 

4. Patching the default Service Account

Tanzu Application Platform includes a Namespace Provisioner which is not enabled by default. This
section of the guide assumes that the user is not using the Namespace Provisioner.

The jenkins-task ClusterTask resource uses a container image with the Jenkins Adapter
application to trigger the Jenkins job and wait for it to complete. This container image is distributed
with Tanzu Application Platform on VMware Tanzu Network, but it is not installed at the same time

Tanzu Application Platform v1.5

VMware by Broadcom 1411



as the other packages. It is pulled at the time that the supply chain executes the job. As a result, it
does not implicitly have access to the imagePullSecrets with the required credentials.

kubectl patch serviceaccount default \

  --patch '{"imagePullSecrets": [{"name": "tap-registry"}]}' \

  --namespace developer-namespace

5. Create a Developer Workload

Submit your Workload to the same namespace as the Tekton Pipeline defined earlier.

To enable the supply chain to run Jenkins tasks, the Workload must include the following
parameters:

parameters:

  #! Required: selects the pipeline

  - name: testing_pipeline_matching_labels

    value:

      #! This label must match the label on the pipeline created earlier

      apps.tanzu.vmware.com/pipeline: jenkins-pipeline

  #! Required: Passes parameters to pipeline

  - name: testing_pipeline_params

    value:

      #! Required: Name of the Jenkins job

      job-name: my-jenkins-job

      #! Required: The secret created earlier to access Jenkins

      secret-name: my-secret

      #! Required: The `job-params` element is required, but the parameter string

      #! might be empty. If empty, then set this value to `[]`.  If non-empty then the

      #! value contains a JSON-encoded list of parameters to pass to the Jenkins job.

      #! Ensure that the quotation marks inside the JSON-encoded string are escaped.

      job-params: "[{\"name\":\"A\",\"value\":\"x\"},{\"name\":\"B\",\"value\":\"y

\"},...]"

You can create the workload by using the apps CLI plug-in as shown below:

readonly GIT_BRANCH="my-git-branch"

readonly WORKLOAD_NAME="my-workload-name"

readonly GITHUB_REPO="github-repository-url"

readonly DEVELOPER_WORKSPACE_NAME="my-developer-namespace"

tanzu apps workload create "${WORKLOAD_NAME}" \

  --namespace "${DEVELOPER_WORKSPACE_NAME}" \

  --git-branch "${GIT_BRANCH}" \

  --git-repo "${GITHUB_REPO}" \

  --label apps.tanzu.vmware.com/has-tests=true \

Important

The ServiceAccount that a developer can configure with their Workload is not
passed to the task and is not used to pull the Jenkins Adapter container image. If
you followed the Tanzu Application Platform Install Guide, then you have a Secret
named tap-registry in each of your cluster’s namespaces. You can patch the
default Service Account in your workload’s namespace so that your supply chain
can pull the Jenkins Adapter image. For example:

Tanzu Application Platform v1.5

VMware by Broadcom 1412



  --label app.kubernetes.io/part-of="${WORKLOAAD_NAME}" \

  --param-yaml testing_pipeline_matching_labels='{"apps.tanzu.vmware.com/pipeline":"je

nkins-pipeline"}' \

  --param-yaml testing_pipeline_params='{"secret-name":"jenkins-secret", "job-name": 

"jenkins-job", "job-params":"[{"name":"GIT-URL", "value":"https://github.com/spring-pr

ojects/spring-petclinic"}, {"name":"GIT-BRANCH", "value":"main"}]"}'\

  --type web

Where:

GIT-URL is the URL of your GitHub repository.

GIT-BRANCH is the branch you want to target.

The value of the job-params parameter is a list of zero-or-more parameters that are sent to the
Jenkins job. The parameter is entered into the Workload as a list of name-value pairs as shown in
the example above.

Watch the quoting of the job-params value closely. In the earlier tanzu apps workload create
example, the job-params value is a string with a JSON structure in it. The value of the --param-yaml
testing_pipeline_params parameter is a JSON string. Add backslash (\) escape characters before
the double quote characters (") in the job-params value.

Example output from the tanzu apps workload create command:

Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    app.kubernetes.io/part-of: my-workload-name

      7 + |    apps.tanzu.vmware.com/has-tests: "true"

      8 + |  name: my-workload-name

      9 + |  namespace: developer-namespace

     10 + |spec:

     11 + |  params:

     12 + |  - name: testing_pipeline_matching_labels

     13 + |    value:

     14 + |      apps.tanzu.vmware.com/pipeline: jenkins-pipeline

     15 + |  - name: testing_pipeline_params

     16 + |    value:

     17 + |      job-name: jenkins-job

     18 + |      job-params:

     19 + |      - name: param1

     20 + |        value: value1

     21 + |      secret-name: my-secret

     22 + |  source:

     23 + |    git:

     24 + |      ref:

Important

None of the fields in the Workload resource are implicitly passed to the Jenkins job.
You have to set them in the job-params explicitly. An exception to this is the
SOURCE_URL and SOURCE_REVISION parameters are sent to the Jenkins job implicitly
by the Jenkins Adapter trigger application. For example, you can use the
SOURCE_REVISION to verify which commit SHA to test. See Making a Jenkins Test
Job earlier for details about how to use the Git URL and source revision in a Jenkins
test job.

Tanzu Application Platform v1.5

VMware by Broadcom 1413



     25 + |        branch: my-branch

     26 + |      url: https://my-source-code-repository

Building container images with Supply Chain
Choreographer
This topic describes the methods you can use to build container images for Supply Chain
Choreographer for Tanzu.

Methods for building container images
You can build a container image by using:

A Maven artifact. See Building from source

A Dockerfile based build. See Dockerfile-based builds

Tanzu Build Service with buildpacks. See Tanzu Build Service Integration

Building from source with Supply Chain Choreographer
You can build from source by providing source code for the workload with any Supply Chain
package.

You can provide source code for the workload from one of three places:

1. A Git repository.

2. A directory in your local computer’s file system.

3. A Maven repository.

Supply Chain

-- fetch source                 * either from Git or local directory

  -- test

    -- build

      -- scan

        -- apply-conventions

          -- push config

This document provides details about each approach.

Git source

To provide source code from a Git repository to the supply chains, you must fill
workload.spec.source.git. With the Tanzu CLI, you can do so by using the following flags:

--git-branch: branch within the Git repository to checkout

--git-commit: commit SHA within the Git repository to checkout

--git-repo: Git URL to remote source code

--git-tag: tag within the Git repository to checkout

Note

To provide a prebuilt container image instead of building the application from the
beginning by using the supply chain, see Using an existing image.

Tanzu Application Platform v1.5

VMware by Broadcom 1414



For example, after installing ootb-supply-chain-basic, to create a Workload the source code for
which comes from the main branch of the github.com/vmware-tanzu/application-accelerator-
samples Git repository, and the subdirectory tanzu-java-web-app run:

tanzu apps workload create tanzu-java-web-app \

  --app tanzu-java-web-app \

  --type web \

  --git-repo https://github.com/vmware-tanzu/application-accelerator-samples \

  --sub-path tanzu-java-web-app \

  --git-branch main

Expect to see the following output:

Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    app.kubernetes.io/part-of: tanzu-java-web-app

      7 + |    apps.tanzu.vmware.com/workload-type: web

      8 + |  name: tanzu-java-web-app

      9 + |  namespace: default

    10 + |spec:

    11 + |  source:

    12 + |    git:

    13 + |      ref:

    14 + |        branch: main

    15 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

    16 + |    subPath: tanzu-java-web-app

Private GitRepository

To fetch source code from a repository that requires credentials, you must provide those by using a
Kubernetes secret object that the GitRepository object created for that workload references. See
How It Works to learn more about detecting changes to the repository.

Workload/tanzu-java-web-app

└─GitRepository/tanzu-java-web-app

                   └───────> secretRef: {name: GIT-SECRET-NAME}

                                                   |

                                      either a default from TAP installation or

                                           gitops_ssh_secret Workload parameter

Platform operators who install the Out of the Box Supply Chain packages by using Tanzu
Application Platform profiles can customize the default name of the secret (git-ssh) by editing the
corresponding ootb_supply_chain* property in the tap-values.yaml file:

ootb_supply_chain_basic:

  gitops:

    ssh_secret: GIT-SECRET-NAME

For platform operators who install the ootb-supply-chain-* package individually by using tanzu
package install, they can edit the ootb-supply-chain-*-values.yml as follows:

Important

The Git repository URL must include the scheme: http://, https://, or ssh://.

Tanzu Application Platform v1.5

VMware by Broadcom 1415



gitops:

  ssh_secret: GIT-SECRET-NAME

You can also override the default secret name directly in the workload by using the
gitops_ssh_secret parameter, regardless of how Tanzu Application Platform is installed. You can
use the --param flag in Tanzu CLI. For example:

tanzu apps workload create tanzu-java-web-app \

  --app tanzu-java-web-app \

  --type web \

  --git-repo https://github.com/vmware-tanzu/application-accelerator-samples \

  --sub-path tanzu-java-web-app \

  --git-branch main \

  --param gitops_ssh_secret=SECRET-NAME

Expect to see the following output:

Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    app.kubernetes.io/part-of: tanzu-java-web-app

      7 + |    apps.tanzu.vmware.com/workload-type: web

      8 + |  name: tanzu-java-web-app

      9 + |  namespace: default

    10 + |spec:

    11 + |  params:

    12 + |  - name: gitops_ssh_secret  #! parameter that overrides the default

    13 + |    value: GIT-SECRET-NAME     #! secret name

    14 + |  source:

    15 + |    git:

    16 + |      ref:

    17 + |        branch: main

    18 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

    19 + |    subPath: tanzu-java-web-app

After defining the name of the Kubernetes secret, you can define the secret.

HTTP(S) Basic-authentication and Token-based authentication

Despite both the package value and workload parameter being called gitops.ssh_secret, you can
use HTTP(S) transports as well:

1. Ensure that the repository in the Workload specification uses http:// or https:// schemes
in any URLs that relate to the repositories. For example, https://github.com/my-org/my-
repo instead of github.com/my-org/my-repo or ssh://github.com:my-org/my-repo.

2. In the same namespace as the workload, create a Kubernetes secret object of type
kubernetes.io/basic-auth with the name matching the one expected by the supply chain.
For example:

Note

A secret reference is only provided to GitRepository if gitops_ssh_secret is set to
a non-empty string in some fashion, either by a package property or a workload
parameter. To force a GitRepository to not reference a secret, set the value to an
empty string ("").

Tanzu Application Platform v1.5

VMware by Broadcom 1416



apiVersion: v1

kind: Secret

metadata:

  name: GIT-SECRET-NAME

  annotations:

    tekton.dev/git-0: GIT-SERVER        # ! required

type: kubernetes.io/basic-auth

stringData:

  username: GIT-USERNAME

  password: GIT-PASSWORD

3. With the secret created with the name matching the one configured for
gitops.ssh_secret, attach it to the ServiceAccount used by the workload. For example:

apiVersion: v1

kind: ServiceAccount

metadata:

  name: default

secrets:

  - name: registry-credentials

  - name: tap-registry

  - name: GIT-SECRET-NAME

imagePullSecrets:

  - name: registry-credentials

  - name: tap-registry

For more information about the credentials and setting up the Kubernetes secret, see Git
Authentication’s HTTP section.

SSH authentication

Aside from using HTTP(S) as a transport, you can also use SSH:

1. Ensure that the repository URL in the workload specification uses ssh:// as the scheme in
the URL, for example, ssh://git@github.com:my-org/my-repo.git

2. Create a Kubernetes secret object of type kubernetes.io/ssh-auth:

apiVersion: v1

kind: Secret

metadata:

  name: GIT-SECRET-NAME

  annotations:

    tekton.dev/git-0: GIT-SERVER

type: kubernetes.io/ssh-auth

stringData:

  ssh-privatekey: SSH-PRIVATE-KEY     # private key with push-permissions

  identity: SSH-PRIVATE-KEY           # private key with pull permissions

  identity.pub: SSH-PUBLIC-KEY        # public of the `identity` private key

  known_hosts: GIT-SERVER-PUBLIC-KEYS # git server public keys

3. With the secret created with the name matching the one configured for
gitops.ssh_secret, attach it to the ServiceAccount used by the workload. For example:

apiVersion: v1

kind: ServiceAccount

metadata:

  name: default

secrets:

  - name: registry-credentials

  - name: tap-registry

  - name: GIT-SECRET-NAME

imagePullSecrets:

Tanzu Application Platform v1.5

VMware by Broadcom 1417



  - name: registry-credentials

  - name: tap-registry

For information about how to generate the keys and set up SSH with the Git server, see Git
Authentication’s SSH section.

How it works

With the workload.spec.source.git filled, the supply chain takes care of managing a child
GitRepository object that keeps track of commits made to the Git repository stated in
workload.spec.source.git.

For each revision found, gitrepository.status.artifact gets updated providing information about
an HTTP endpoint that the controller makes available for other components to fetch the source
code from within the cluster.

The digest of the latest commit:

apiVersion: source.toolkit.fluxcd.io/v1beta1

kind: GitRepository

metadata:

  name: tanzu-java-web-app

spec:

  gitImplementation: go-git

  ignore: '!.git'

  interval: 1m0s

  ref: {branch: main}

  timeout: 20s

  url: https://github.com/vmware-tanzu/application-accelerator-samples

status:

  artifact:

    checksum: 375c2daee5fc8657c5c5b49711a8e94d400994d7

    lastUpdateTime: "2022-04-07T15:02:30Z"

    path: gitrepository/default/tanzu-java-web-app/d85df1fc.tar.gz

    revision: main/d85df1fc28c6b86ca54bd613f55991645d3b257c

    url: http://source-controller.flux-system.svc.cluster.local./gitrepository/defaul

t/tanzu-java-web-app/d85df1fc.tar.gz

  conditions:

  - lastTransitionTime: "2022-04-07T15:02:30Z"

    message: 'Fetched revision: main/d85df1fc28c6b86ca54bd613f55991645d3b257c'

    reason: GitOperationSucceed

    status: "True"

    type: Ready

  observedGeneration: 1

Cartographer passes the artifact URL and revision to further components in the supply chain. Those
components must consume the source code from an internal URL where a tarball with the source
code is fetched, without having to process any Git-specific details in multiple places.

Workload parameters

You can pass the following parameters by using the workload object’s workload.spec.params field
to override the default behavior of the GitRepository object created for keeping track of the
changes to a repository:

gitImplementation: name of the Git implementation (either libgit2 or go-git) to fetch the
source code.

gitops_ssh_secret: name of the secret in the same namespace as the workload where
credentials to fetch the repository are found.

You can also customize the following parameters with defaults for the whole cluster. Do this by
using properties for either tap-values.yaml when installing supply chains by using Tanzu

Tanzu Application Platform v1.5

VMware by Broadcom 1418



Application Platform profiles, or ootb-supply-chain-*-values.yml when installing the OOTB
packages individually):

git_implementation: the same as gitImplementation workload parameter

gitops.ssh_secret: the same as gitops_ssh_secret workload parameter

Local source

You can provide source code from a local directory such as, from a directory in the developer’s file
system. The Tanzu CLI provides two flags to specify the source code location in the file system and
where the source code is pushed to as a container image:

--local-path: path on the local file system to a directory of source code to build for the
workload

--source-image: destination image repository where source code is staged before being
built

This way, whether the cluster the developer targets is local (a cluster in the developer’s machine)
or not, the source code is made available by using a container image registry.

For example, if a developer has source code under the current directory (.) and access to a
repository in a container image registry, you can create a workload as follows:

tanzu apps workload create tanzu-java-web-app \

  --app tanzu-java-web-app \

  --type web \

  --local-path . \

  --source-image $REGISTRY/test

Publish source in "." to "REGISTRY-SERVER/REGISTRY-REPOSITORY"?

It may be visible to others who can pull images from that repository

  Yes

Publishing source in "." to "REGISTRY-SERVER/REGISTRY-REPOSITORY"...

Published source

Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    app.kubernetes.io/part-of: tanzu-java-web-app

      7 + |    apps.tanzu.vmware.com/workload-type: web

      8 + |  name: tanzu-java-web-app

      9 + |  namespace: default

    10 + |spec:

    11 + |  source:

    12 + |    image: REGISTRY-SERVER/REGISTRY-REPOSITORY:latest@<digest>

Where:

REGISTRY-SERVER is the container image registry.

REGISTRY-REPOSITORY is the repository in the container image registry.

Authentication

Both the cluster and the developer’s machine must be configured to properly provide credentials
for accessing the container image registry where the local source code is published to.

Tanzu Application Platform v1.5

VMware by Broadcom 1419



Developer

The Tanzu CLI must push the source code to the container image registry indicated by --source-
image. To do so, the CLI must find the credentials, so the developer must configure their machine
accordingly.

To ensure credentials are available, use docker to make the necessary credentials available for the
Tanzu CLI to perform the image push. Run:

docker login REGISTRY-SERVER -u REGISTRY-USERNAME -p REGISTRY-PASSWORD

Supply chain components

Aside from the developer’s ability to push source code to the container image registry, the cluster
must also have the proper credentials, so it can pull that container image, unpack it, run tests, and
build the application.

To provide the cluster with the credentials, point the ServiceAccount used by the workload at the
Kubernetes secret that contains the credentials.

If the registry that the developer targets is the same one for which credentials were provided while
setting up the workload namespace, no further action is required. Otherwise, follow the same steps
as recommended for the application image.

How it works

A workload specifies that source code must come from an image by setting
workload.spec.source.image to point at the registry provided by using --source-image. Instead of
having a GitRepository object created, an ImageRepository object is instantiated, with its
specification filled in such a way to keep track of images pushed to the registry provided by the
user.

Take the following workload as an example:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  name: app

  labels:

    app.kubernetes.io/part-of: app

    apps.tanzu.vmware.com/workload-type: web

spec:

  source:

    image: 10.188.0.3:5000/test:latest

Instead of a GitRepository object, an ImageRepository is created:

  Workload/app

  │

- ├─GitRepository/app

+ ├─ImageRepository/app

  │

  ├─Image/app

  │ ├─Build/app-build-1

  │ │ └─Pod/app-build-1-build-pod

  │ ├─PersistentVolumeClaim/app-cache

  │ └─SourceResolver/app-source

  │

  ├─PodIntent/app

  │

  ├─ConfigMap/app

Tanzu Application Platform v1.5

VMware by Broadcom 1420



  │

  └─Runnable/app-config-writer

    └─TaskRun/app-config-writer-2zj7w

      └─Pod/app-config-writer-2zj7w-pod

ImageRepository provides the same semantics as GitRepository, except that it looks for source
code in container image registries rather than Git repositories.

Maven Artifact

This approach aids integration with existing CI systems, such as Jenkins, and can pull artifacts from
existing Maven repositories, including Jfrog Artifactory.

There are no dedicated fields in the Workload resource for specifying the Maven artifact
configuration. You must fill in the name/value pairs in the params structure.

For example:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  name: my-workload

  labels:

    apps.tanzu.vmware.com/workload-type: web

spec:

  params:

  - name: maven

    value:

      groupId: com.example

      artifactId: springboot-initial

      version: RELEASE      # latest 'RELEASE' or a specific version (e.g.: '1.2.2')

      type: jar             # optional (defaults to 'jar')

      classifier: sources   # optional

There are two ways to create a workload that defines a specific version of a Maven artifact as
source in the Tanzu CLI.

The first way is to define the source through CLI flags. For example:

tanzu apps workload apply my-workload \

      --maven-artifact springboot-initial \

      --maven-version 2.6.0 \

      --maven-group com.example \

      --type web --app spring-boot-initial -y

Another flag that can be used alongside the others in this type of command is --maven-type, which
refers to the Maven packaging type and defaults to jar if not specified.

The second one is through complex params (in JSON or YAML format). To specify the Maven info
with this method, run:

tanzu apps workload apply my-workload \

      --param-yaml maven='{"artifactId": "springboot-initial", "version": "2.6.0", "gr

oupId": "com.example"}'\

      --type web --app spring-boot-initial -y

To create a workload that defines the RELEASE version of a maven artifact as source, run:

tanzu apps workload apply my-workload \

      --param-yaml maven='{"artifactId": "springboot-initial", "version": "RELEASE", 

"groupId": "com.example"}'\

      --type web --app spring-boot-initial -y

Tanzu Application Platform v1.5

VMware by Broadcom 1421



The Maven repository URL and required credentials are defined in the supply chain, not the
workload. For more information, see Installing OOTB Basic.

Maven Repository Secret

The MavenArtifact only supports authentication using basic authentication.

Additionally, MavenArtifact supports security using the TLS protocol. The Application Operator can
configure the MavenArtifact to use a custom, or self-signed certificate authority (CA).

The MavenArtifact expects that all of the earlier credentials are provided in one secret, formatted
as shown later:

---

apiVersion: v1

kind: Secret

metadata:

  name: maven-credentials

type: Opaque

data:

  username: <BASE64>  # basic auth user name

  password: <BASE64>  # basic auth password

  caFile: <BASE64>    # PEM Encoded certificate data for custom CA

You cannot use the Tanzu CLI to create secrets such as this, but you can use the kubectl CLI
instead.

For example:

kubectl create secret generic maven-credentials \

  --from-literal=username=literal-username \

  --from-file=password=/path/to/file/with/password.txt \

  --from-file=caFile=/path/to/ca-certificate.pem

Use Dockerfile-based builds with Supply Chain
Choreographer
This topic explains how you can use Dockerfile-based builds with Supply Chain Choreographer.

For any source-based supply chains, when you specify the new dockerfile parameter in a
workload, the builds switch from using Kpack to using Kaniko. Source-based supply chains are
supply chains that don’t take a pre-built image. Kaniko is an open-source tool for building container
images from a Dockerfile without running Docker inside a container.

Use Dockerfile-based builds with Supply Chain
Choreographer

Parameter name Description Example

dockerfile relative path to the Dockerfile file in the build context
./Dockerfile

docker_build_conte

xt

relative path to the directory where the build context is
.

docker_build_extra

_args

list of flags to pass directly to Kaniko (such as providing
arguments, and so on to a build) - --build-arg=MY_KEY

=MY_VALUE

Tanzu Application Platform v1.5

VMware by Broadcom 1422



To build a container image from the github.com/my-foo/bar repository where the Dockerfile
resides in the root of that repository, you can switch from using Kpack to building from that
Dockerfile by passing the dockerfile parameter:

$ tanzu apps workload create my-foo \

  --git-repo https://github.com/my-foo/bar \

  --git-branch dev \

  --param dockerfile=./Dockerfile \

  --type web

� Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |  name: my-foo

      8 + |  namespace: dev

      9 + |spec:

     10 + |  params:

     11 + |  - name: dockerfile

     12 + |    value: ./Dockerfile

     13 + |  source:

     14 + |    git:

     15 + |      ref:

     16 + |        branch: dev

     17 + |      url: https://github.com/my-foo/bar

Similarly, if the context to be used for the build must be set to a different directory within the
repository, you can make use of the docker_build_context to change that:

$ tanzu apps workload create my-foo \

  --git-repo https://github.com/my-foo/bar \

  --git-branch dev \

  --param dockerfile=MyDockerfile \

  --param docker_build_context=./src

OpenShift

Despite that Kaniko can perform container image builds without needing either a Docker daemon
or privileged containers, it does require the use of:

Capabilities usually dropped from the more restrictive SecurityContextConstraints (SCC)
enabled by default in OpenShift.

The root user.

To overcome such limitations imposed by the default unprivileged SecurityContextConstraints
(SCC), Tanzu Application Platform installs:

SecurityContextConstraints/ootb-templates-kaniko-restricted-v2-with-anyuid with
enough extra privileges for Kaniko to operate.

Important

This feature has no platform operator configurations to be passed through tap-
values.yaml, but if ootb-supply-chain-*.registry.ca_cert_data or
shared.ca_cert_data is configured in tap-values, the certificates are considered
when pushing the container image.

Tanzu Application Platform v1.5

VMware by Broadcom 1423



ClusterRole/ootb-templates-kaniko-restricted-v2-with-anyuid to permit the use of such
SCC to any actor binding to that cluster role.

Each developer namespace needs a role binding that binds the role to an actor: ServiceAccount.
For more information, see Set up developer namespaces to use your installed packages.

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

  name: workload-kaniko-scc

roleRef:

  apiGroup: rbac.authorization.k8s.io

  kind: ClusterRole

  name: ootb-templates-kaniko-restricted-v2-with-anyuid

subjects:

  - kind: ServiceAccount

    name: default

With the SCC created and the ServiceAccount bound to the role that permits the use of the SCC,
OpenShift accepts the pods created to run Kaniko to build the container images.

Tanzu Build Service integration for Supply Chain
Choreographer

This topic describes how you can configure and use the Tanzu Build Service integration for Supply
Chain Choreographer.

By default, the Out of the Box supply chains (ootb-supply-chain-*) in Tanzu Application Platform
make use of Tanzu Build Service for building container images out of source code.

You can configure a platform operator by using tap-values.yaml:

1. The default container image registry where application images must be pushed:

ootb_supply_chain_basic:

  registry:

    server: <>

    repository: <>

2. The name of the Kpack ClusterBuilder used by default:

ootb_supply_chain_basic:

  cluster_builder: my-custom-cluster-builder

You can configure an application operator by using Workload:

spec.build.env are the environment variables used during the build:

kind: Workload

apiVersion: carto.run/v1alpha1

metadata:

name: tanzu-java-web-app

spec:

# ...

Note

Such restrictions are due to well-known limitations in how Kaniko performs the
image builds, and there is currently no solution. For more information, see
kaniko#105.

Tanzu Application Platform v1.5

VMware by Broadcom 1424

https://github.com/GoogleContainerTools/kaniko/issues/105


build:

  env:

    - name: PORT

      value: "8080"

    - name: CA_CERTIFICATE

      valueFrom:

        secretKeyRef:

          name: secret-in-the-same-namespace-as-workload

          key: crt.pem

spec.params.clusterBuilder is the name of the ClusterBuilder to use for builds of that
Workload:

kind: Workload

apiVersion: carto.run/v1alpha1

metadata:

name: tanzu-java-web-app

spec:

# ...

params:

  - name: clusterBuilder

    value: nodejs-cluster-builder

spec.params.buildServiceBindings is the object carrying the definition of a list of service
bindings to use at build time:

---

kind: Workload

apiVersion: carto.run/v1alpha1

metadata:

name: tanzu-java-web-app

spec:

# ...

params:

  - name: buildServiceBindings

    value:

      - name: settings-xml

        kind: Secret

        apiVersion: v1

---

apiVersion: v1

kind: Secret

metadata:

name: settings-xml

type: service.binding/maven

stringData:

type: maven

provider: sample

settings.xml: <settings>...</settings>

Note

See the Kpack ServiceBinding documentation in GitHub for more details about
build-time service bindings.

these configuration only take effect when Kpack is used for building a container
image. If you use Dockerfile-based builds by leveraging the dockerfile parameter,
see dockerfile-based builds for more information.

Tanzu Application Platform v1.5

VMware by Broadcom 1425

https://github.com/buildpacks-community/kpack/blob/main/docs/servicebindings.md


Configure and deploy to multiple environments with custom
parameters

This topic describes how to use carvel packages, Git repositories, and Flux CD to deploy workloads
to multiple environments with Supply Chain Choreographer. By using a continuous delivery (CD)
tool, you can apply Carvel packages to a runtime.

Flux CD is the VMware recommended CD tool. You can configure different parameters for each
environment, such as replicas or host names. When you edit package parameters and commit them
to a Git repository, Flux CD watches the Git repository and applies the package to your runtime
environments.

Feature limits

To configure and deploy to multiple environments with custom parameters, ensure that your supply
chains are compatible with the feature limits.

This feature is in alpha and has the following limits:

Only the Out of the Box Basic Supply Chain package is supported.

The Testing and Scanning supply chains are not supported.

Only workloads of type server are supported.

Innerloop development is not supported.

Azure GitOps repositories are not supported.

Using Carvel packages

You can configure your supply chain to outputs Carvel packages and deliver configuration for each
environment. For information about using Carvel, see Carvel Package Supply Chains (alpha).

Using GitOps delivery with Flux CD

You can deliver packages created by the Carvel package supply chain, and add them to clusters, by
using a GitOps repository. For information about this delivery method, see Use Gitops Delivery with
Flux CD (alpha).

Using GitOps delivery with Carvel App

Alternatively, you can deliver packages created by the Carvel package supply chain, and add them
to clusters by using a GitOps repository. For information about this delivery method, see Use Gitops
Delivery with Carvel App

Configuring blue-green deployment

You can use blue-green deployment to transfer user traffic from one version of an app to a later
version while both are running. For information about setting up blue-green deployment, see Use
blue-green deployment with Contour and PackageInstall (alpha).

Carvel Package Supply Chains (alpha)

This topic explains what Carvel Package Supply Chains do, how they work, how operators can
enable them, and how to create a Workload that uses them. You can use the Carvel Package

Tanzu Application Platform v1.5

VMware by Broadcom 1426



Supply Chains with Supply Chain Choreographer to deliver applications to multiple production
environments with configuration for each environment.

The Out of the Box Basic Supply Chain package introduces a variation of the OOTB Basic supply
chains that outputs Carvel Packages.

Overview of the Carvel Package Supply Chains

The out of the box Basic Supply Chain outputs a Deliverable object. These Deliverables are
deployed to a cluster by the Out of the Box Delivery Supply Chain. The Carvel Package Supply
Chains output a Carvel Package object to a GitOps repository. These Packages have configurable
parameters such as hostname and replicas that are configured per environment. GitOps tools such
as Flux CD and Argo CD can deploy the Packages onto multiple environments.

What do the Carvel Package Supply Chains Do?

There are two Carvel Package Supply Chains, source-to-url-package and basic-image-to-url-
package in the Out of the Box Supply Chain Package. They are identical to source-to-url and
basic-image-to-url, except for three resources:

A new carvel-package resource is added. The supply chain stamps out a Tekton Task that
bundles all application Kubernetes resources into a Carvel Package.

config-writer is modified to write the Carvel Package to a GitOps repository.

deliverable resource is removed.

When a Workload is created and all Supply Chain resources are stamped out, a Carvel Package is
written to the GitOps repository at the path <package_name>/packages/<package_id>.yaml.
<package_name> defaults to <workload_name>.<workload_namespace>.tap, and is customized with
the name_suffix parameter. <package_id> is a SemVer compatible version generated by the Bash
command $(date "+%Y%m%d%H%M%S.0.0").

For example:

app.default.tap/

  packages/

    20230321004057.0.0.yaml

For example, the following Carvel Package definition is stored in <package_id>.yaml:

apiVersion: data.packaging.carvel.dev/v1alpha1

kind: Package

Note

The underlying Kubernetes resources created for your server Workload are the
same for source-to-url or basic-image-to-url, with the addition of a
networking.k8s.io/v1 Ingress resource. For example, Deployment. The Carvel
Package wraps these resources.

Note

By default, the <package_name> directory is created in the root directory of the
GitOps repository. You can optionally create this directory at a subpath by
configuring the gitops_subpath parameter.

Tanzu Application Platform v1.5

VMware by Broadcom 1427



metadata:

  name: app.default.tap.20230321004057.0.0

spec:

  refName: app.default.tap

  version: 20230321004057.0.0

  releaseNotes: |

    Release v20230321004057.0.0 of package app.default.tap

  template:

    spec:

      fetch:

      - imgpkgBundle:

          image: # imgpkg bundle containing all Kubernetes configuration

      template:

      - ytt:

          paths:

          - .

      - kbld:

          paths:

          - .imgpkg/images.yml

          - '-'

      deploy:

      - kapp: {}

The Carvel Package generated by the Supply Chain has three configurable parameters:

replicas: Number of pods that you want for the apps/v1 Deployment. Default is 1.

hostname: Host name for the networking.k8s.io/v1 Ingress. Default is example.com.

port: Port for the networking.k8s.io/v1 Ingress. Default is 8080.

When a new commit is pushed to the source code Git Repository, such as source-to-url-package,
or a new pre-built image is created, like basic-image-to-url-package, the Supply Chain stamps out
a new version of the Carvel Package. This definition is written to
<package_name>/packages/<package_id>.yaml with a new <package_id>.

The Carvel Package stored in GitOps repositories are deployed to multiple run clusters using GitOps
tools, such as Flux CD or Argo CD. See Deploy Carvel Packages using Flux CD Kustomization.

Installing the Carvel Package Supply Chains as an Operator

This section describes operator tasks for enabling and configuring the Carvel Package Supply
Chains.

Prerequisites

The Carvel Package Supply Chains require access to a GitOps repository and credentials. See
GitOps versus RegistryOps.

Installation

In tap-values, configure the Out of the Box Basic Supply Chain package with the following
parameters:

1. (Required) Enable the Carvel Package workflow.

ootb_supply_chain_basic:

  carvel_package:

    workflow_enabled: true

2. (Optional) Set a GitOps subpath. This verifies the path in your GitOps repository where
Carvel Packages are written. Defaults to "". See Template reference.

Tanzu Application Platform v1.5

VMware by Broadcom 1428



ootb_supply_chain_basic:

  carvel_package:

    workflow_enabled: true

    gitops_subpath: path/to/my/dir

3. (Optional) Set a name suffix. Carvel Package names are chosen using the <workload_name>.
<workload_namespace>.<name_suffix> template. Defaults to tap. See Template reference.

ootb_supply_chain_basic:

  carvel_package:

    workflow_enabled: true

    name_suffix: vmware.com

4. Configure the Out of the Box Basic Supply Chain package with your GitOps parameters. See
GitOps versus RegistryOps.

5. Install the Out of the Box Basic Supply Chain package.

Verifying the Carvel Package Supply Chains are Installed

1. Run kubectl get ClusterSupplyChains.

2. Confirm you see both source-to-url-package and basic-image-to-url-package with status
Ready: True.

Using the Carvel Package Supply Chains as a Developer
This section describes developer tasks for using the Carvel Package Supply Chains.

Prerequisites

Your operator must install the Carvel Package Supply Chains.

You must create your workload in a developer namespace. See Developer namespace.

Creating a Workload

To use the Carvel Package Supply Chains, you must add the label apps.tanzu.vmware.com/carvel-
package-workflow=true to your workload.

1. Use the --label apps.tanzu.vmware.com/carvel-package-workflow=true Tanzu CLI flag.

For example:

tanzu apps workload create tanzu-java-web-app \

--namespace DEVELOPER_NAMESPACE \

--app tanzu-java-web-app \

--type server \

--label apps.tanzu.vmware.com/carvel-package-workflow=true \

--image springcommunity/spring-framework-petclinic

Expect to see the following output:

Create workload:

    1 + |---

    2 + |apiVersion: carto.run/v1alpha1

    3 + |kind: Workload

    4 + |metadata:

    5 + |  labels:

    6 + |    app.kubernetes.io/part-of: tanzu-java-web-app

    7 + |    apps.tanzu.vmware.com/carvel-package-workflow: "true"

    8 + |    apps.tanzu.vmware.com/workload-type: server

Tanzu Application Platform v1.5

VMware by Broadcom 1429



    9 + |  name: tanzu-java-web-app

   10 + |  namespace: DEVELOPER_NAMESPACE

   11 + |spec:

   12 + |  image: springcommunity/spring-framework-petclinic

1. (Optional) You can override parameters set by the operator. Set a GitOps subpath. This
verifies the path in your GitOps repository to which Carvel Packages are written. Defaults to
"". See Template referemce.

Set this parameter by modifying workload.spec.params.carvel_package_gitops_subpath. With the
Tanzu CLI, you can do so by using the --param carvel_package_gitops_subpath=path/to/my/dir
flag.

1. (Optional) Set a name suffix. Carvel Package names are chosen using the template
<workload_name>.<workload_namespace>.<name_suffix>. Defaults to tap. See Template
reference.

Set this parameter by modifying workload.spec.params.carvel_package_name_suffix. With the
Tanzu CLI, you can do so by using the --param carvel_package_name_suffix=vmware.com flag.

1. (Optional) You can override GitOps parameters. See GitOps versus RegistryOps.

Verify the Carvel Package was Created

You now see a Carvel Package stored in your GitOps repository. For example, at the path tanzu-
java-web-app.default.tap/packages/20230321004057.0.0.yaml you see a valid Carvel Package
definition.

Next Steps

You can deploy the Carvel Package using tools such as Flux CD or Argo CD. See Deploy Carvel
Packages using Flux CD Kustomization.

Use Gitops Delivery with a Carvel App (alpha)
This topic explains how you can deliver Carvel Packages, created by the Carvel Package Supply
Chains, from a GitOps repository to one or more run clusters using Carvel App. You can use Carvel
Package Supply Chains with Supply Chain Choreographer.

Prerequisites
To use GitOps Delivery with Carvel App, you must complete the following prerequisites:

You must create a Workload that uses the Carvel Package supply chains. For information
about Carvel Packages, see Carvel Package Supply Chains. You must have at least one
Carvel Package generated by this Workload stored in your GitOps repository.

You must have at least one Run cluster. Run clusters serve as your deployment
environments. They can either be Tanzu Application Platform clusters, or Kubernetes
clusters, but they must have kapp-controller and Contour installed. See the Carvel
documentation and the Contour documentation.

If you plan to use a build cluster to control the deployment on all of the run clusters, you
must create a Build cluster that has network access to your run clusters. If you intend to
deploy directly on the run cluster without using a build cluster, a build cluster is only
necessary for building the package.

Set up Run cluster namespaces

Tanzu Application Platform v1.5

VMware by Broadcom 1430

https://carvel.dev/kapp-controller/
https://projectcontour.io/


Each Run cluster must have a namespace and ServiceAccount with the correct permissions to
deploy the Carvel Packages.

To set up a developer namespace if your Run cluster is also a Tanzu Application Platform cluster,
see Set up developer namespaces to use your installed packages.

If your Run cluster is not a Tanzu Application Platform cluster, create a namespace and
ServiceAccount with the following permissions:

---

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

  namespace: RUN-CLUSTER-NS

  name: app-cr-role

rules:

- apiGroups: ["apps"]

  resources: ["deployments"]

  verbs: ["get", "list", "create", "update", "delete"]

- apiGroups: [""]

  resources: ["configmaps", "services"]

  verbs: ["get", "list", "create", "update", "delete"]

- apiGroups: ["networking.k8s.io"]

  resources: ["ingresses"]

  verbs: ["get", "list", "create", "update", "delete"]

Where RUN-CLUSTER-NS is the name of your run cluster you want to create a namespace with.

Create Carvel PackageInstalls and secrets

For each Carvel Package and each Run cluster, you must create a Carvel PackageInstall and a
Secret. The Carvel PackageInstall and the Secret is stored in your GitOps repository and deployed
to Run clusters by the Carvel App.

The following example shows GitOps repository structure after completing the procedures in this
section:

app.default.tap/

  packages/

    20230321004057.0.0.yaml  # Package

  staging/

    packageinstall.yaml      # PackageInstall

    params.yaml              # Secret

  prod/

    packageinstall.yaml      # PackageInstall

    params.yaml              # Secret

1. For each Run cluster, create a Secret that has the values for each Package parameter. To
see the configurable properties of the Package, inspect the Package CR’s valuesSchema.
See Carvel Package Supply Chains. Store the Secret in your GitOps repository at PACKAGE-
NAME/RUN-CLUSTER/params.yaml.

---

apiVersion: v1

kind: Secret

metadata:

 name: app-values

stringData:

 values.yaml: |

   ---

   replicas: 2

   hostname: app.mycompany.com

Tanzu Application Platform v1.5

VMware by Broadcom 1431



Where:

PACKAGE-NAME is the name of your Carvel package you want to use.

RUN-CLUSTER is the name of the run cluster you want to use with the package.

2. For each Run cluster, create a PackageInstall. Reference the Secret you created earlier.
Store the PackageInstall in your GitOps repository at PACKAGE-NAME/RUN-
CLUSTER/packageinstall.yaml.

---

apiVersion: packaging.carvel.dev/v1alpha1

kind: PackageInstall

metadata:

 name: app

spec:

 serviceAccountName: RUN-CLUSTER-NS-SA # ServiceAccount on Run cluster with per

missions to deploy Package, see "Set up Run Cluster Namespaces"

 packageRef:

   refName: app.default.tap # name of the Package

   versionSelection:

     constraints: 20230321004057.0.0 # version of the Package

 values:

 - secretRef:

     name: app-values # Secret created in previous step

Where:

PACKAGE-NAME is the name of your Carvel package you want to use.

RUN-CLUSTER is the name of the run cluster you want to use with the package.

RUN-CLUSTER-NS-SA is the ServiceAccount on your run cluster with permissions to
deploy the package.

3. Push the newly created PackageInstalls and Secrets to your GitOps repository.

Create an App
1. You must give the Build cluster access to the Run clusters. On the Build cluster, for each

Run cluster, create a Secret containing the Run cluster’s kubeconfig:

kubectl create secret generic RUN-CLUSTER-kubeconfig \

   -n BUILD-CLUSTER-NS \

   --from-file=value.yaml=PATH-TO-RUN-CLUSTER-KUBECONFIG

Where:

RUN-CLUSTER is the name of the run cluster you want to use with your app.

Note

You can skip this step to use the default parameter values.

Note

To continuously deploy the latest version of your Package, set
versionSelection.constraints: >=0.0.0.

Important If you skipped creation of the Secret, omit the values key.

Tanzu Application Platform v1.5

VMware by Broadcom 1432



BUILD-CLUSTER-NS is the namespace of the build cluster you want to use.

PATH-TO-RUN-CLUSTER-KUBECONFIG is the location of your run cluster kubeconfig.

2. Each Carvel App custom resource (CR) must specify either a service account, by using
spec.serviceAccountName, in the same namespace where the App CR is located on the
Build cluster. Or specify a Secret with kubeconfig contents for a target destination Run
cluster, by using spec.cluster.kubeconfigSecretRef.name, to explicitly provide the needed
privileges for managing app resources. The example in this section uses a target Run
cluster.

3. The Carvel App custom resource represents a collection of Kubernetes resources that
kapp-controller can fetch and deploy to a cluster. The App points at the Git repository
branch where kapp-controller resources, such as PackageRepository and Packages, are
defined. By default, an App custom resource syncs the cluster with its fetch source every 30
seconds to prevent the cluster state from drifting from its source of truth, which is a Git
repository in this case. Create the following App on your Build cluster:

---

apiVersion: kappctrl.k14s.io/v1alpha1

kind: App

metadata:

 name: hello-app-app

 namespace: BUILD-CLUSTER-NS

spec:

 # specifies that app should be deployed to destination cluster;

 # by default, cluster is same as where this resource resides

 cluster:

   # specifies namespace in destination cluster

   namespace: ns2

   # specifies secret containing kubeconfig

   kubeconfigSecretRef:

     # specifies secret name within app's namespace

     name: cluster1

     # specifies key that contains kubeconfig

     key: value

 fetch:

 - git:

     url: # GitOps repo URL ex: https://github.com/mycompany/my-gitops

     ref: # GitOps repo branchex: origin/main

     subPath: PATH-FOR-PACKAGES # ex: hello-app.dev.tap/packages/

 - git:

     url: # GitOps repo URL ex: https://github.com/mycompany/my-gitops

     ref: # GitOps repo branch ex: origin/main

     subPath: PATH-FOR-PACKAGE-INSTALLS # ex: hello-app.dev.tap/runcluster1

 template:

 - ytt: {}

  deploy:

 - kapp:

     intoNs: DESIRED-NAMESPACE

     rawOptions: ["--dangerous-allow-empty-list-of-resources=true"]

Where:

DESIRED-NAMESPACE is the namespace you want to use with your app.

PATH-FOR-PACKAGE-INSTALLS is the package install path.

PATH-FOR-PACKAGES is the package path.

BUILD-CLUSTER-NS is the build cluster namespace.

Note

Tanzu Application Platform v1.5

VMware by Broadcom 1433

https://carvel.dev/kapp-controller/docs/v0.43.2/app-spec/


Verifying applications

To verify your installation:

1. Target a Run cluster. Confirm that all Packages from the GitOps repository are deployed:

kubectl get packages -A

2. Target a Run cluster. Confirm that all PackageInstalls are reconciled:

kubectl get packageinstalls -A

You can access your application on each Run cluster.

Use Gitops Delivery with Flux CD (alpha)
This topic explains how you can deliver Carvel Packages, created by the Carvel Package Supply
Chains, from a GitOps repository to one or more run clusters using Flux CD and Supply Chain
Choreographer.

Prerequisites
To use Gitops Delivery with Flux CD, you must complete the following prerequisites:

You must create a Workload that uses either the source-to-url-package or basic-image-
to-url-package Carvel Package Supply Chain. See the Carvel documentation. You must
have at least one Carvel Package generated by this Workload stored in your GitOps
repository.

You must have at least one run cluster. run clusters serve as your deployment
environments. They can either be Tanzu Application Platform clusters, or regular
Kubernetes clusters, but they must have kapp-controller and Contour installed. See the
Carvel documentation and the Contour documentation.

If you want to use a build cluster to control the deployment on all the run clusters, you
must create a build cluster that has network access to your run clusters. You must also
ensure that you installed Flux CD Kustomize Controller. See the Flux documentation for
installation instructions. If you intend to deploy directly on the run cluster without a build
cluster, a build cluster is only necessary for building the package.

Set up run cluster namespaces
Each run cluster must have a namespace and ServiceAccount with the correct permissions to
deploy the Carvel Packages.

If your run cluster is a Tanzu Application Platform cluster, see Set up developer namespaces to use
your installed packages.

If your run cluster is not a Tanzu Application Platform cluster, create a namespace and
ServiceAccount with the following permissions:

---

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

The fetch section can includes entries for all the locations in the GitOps
repository to deploy, and append with other run clusters if needed.

Tanzu Application Platform v1.5

VMware by Broadcom 1434

https://carvel.dev/kapp-controller/
https://projectcontour.io/
https://fluxcd.io/flux/installation/#dev-install


metadata:

  namespace: <run-cluster-ns>

  name: app-cr-role

rules:

- apiGroups: ["apps"]

  resources: ["deployments"]

  verbs: ["get", "list", "create", "update", "delete"]

- apiGroups: [""]

  resources: ["configmaps", "services"]

  verbs: ["get", "list", "create", "update", "delete"]

- apiGroups: ["networking.k8s.io"]

  resources: ["ingresses"]

  verbs: ["get", "list", "create", "update", "delete"]

Create Carvel PackageInstalls and secrets

For each Carvel Package and for each run cluster, you must create a Carvel PackageInstall and a
Secret. The Carvel PackageInstall and the Secret is stored in your GitOps repository and deployed
to run clusters by Flux CD.

The following example shows GitOps repository structure after completing this section:

app.default.tap/

  packages/

    20230321004057.0.0.yaml  # Package

  staging/

    packageinstall.yaml      # PackageInstall

    params.yaml              # Secret

  prod/

    packageinstall.yaml      # PackageInstall

    params.yaml              # Secret

1. For each run cluster, create a Secret that has the values for each Package parameter. You
can see the configurable properties of the Package by inspecting the Package CR’s
valuesSchema, or in the Carvel Package Supply Chains documentation. Store the Secret in
your GitOps repository at <package_name>/<run_cluster>/params.yaml.

---

apiVersion: v1

kind: Secret

metadata:

 name: app-values

stringData:

 values.yaml: |

   ---

   replicas: 2

   hostname: app.mycompany.com

2. For each run cluster, create a PackageInstall. Reference the Secret you created earlier.
Store the PackageInstall in your GitOps repository at
<package_name>/<run_cluster>/packageinstall.yaml.

---

apiVersion: packaging.carvel.dev/v1alpha1

kind: PackageInstall

Note

You can skip this step to use the default parameter values.

Tanzu Application Platform v1.5

VMware by Broadcom 1435



metadata:

 name: app

spec:

 serviceAccountName: <run-cluster-ns-sa> # ServiceAccount on run cluster with p

ermissions to deploy Package, see "Set up run Cluster Namespaces"

 packageRef:

   refName: app.default.tap # name of the Package

   versionSelection:

     constraints: 20230321004057.0.0 # version of the Package

 values:

 - secretRef:

     name: app-values # Secret created in previous step

3. Push the newly created PackageInstalls and Secrets to your GitOps repository.

Create Flux CD GitRepository and Flux CD Kustomizations
on the Build Cluster

Configure Flux CD on the Build cluster to deploy your Packages, PackageInstalls, and Secrets to
each of your run clusters.

1. Give your Build cluster access to your run clusters. On the Build cluster, for each run
cluster, create a Secret containing the run cluster’s kubeconfig:

kubectl create secret generic <run-cluster>-kubeconfig \

   -n <build-cluster-ns> \

   --from-file=value.yaml=<path-to-run-cluster-kubeconfig>

2. Configure your Build cluster to clone the GitOps repository. On the Build cluster, create the
following Flux CD GitRepository:

---

apiVersion: source.toolkit.fluxcd.io/v1beta2

kind: GitRepository

metadata:

 name: <package-name>-gitops-repo

 namespace: <build-cluster-ns>

spec:

 url: # GitOps repo URL

 gitImplementation: go-git

 ignore: |

   !.git

 interval: 30s

 ref:

   branch: # GitOps repo branch

 timeout: 60s

 # only required if GitOps repo is private (recommended)

 secretRef:

   name: <package-name>-gitops-auth

   namespace: <build-cluster-ns>

# only required if GitOps repo is private (recommended)

---

Note

To continuously deploy the latest version of your Package, you can set
versionSelection.constraints: >=0.0.0 If you skipped creation of the
Secret, omit the values key.

Tanzu Application Platform v1.5

VMware by Broadcom 1436



apiVersion: v1

kind: Secret

metadata:

 name: <package-name>-gitops-auth

 namespace: <build-cluster-ns>

type: Opaque

data:

 username: # base64 encoded GitHub (or other git remote) username

 password: # base64 encoded GitHub (or other git remote) personal access token

3. Configure your Build cluster to deploy your Package to the run clusters. For each run
cluster, on the Build cluster, create the following Flux CD Kustomization:

---

apiVersion: kustomize.toolkit.fluxcd.io/v1beta2

kind: Kustomization

metadata:

 name: <package-name>-<run-cluster>-packages

 namespace: <build-cluster-ns>

spec:

 sourceRef:

   kind: GitRepository

   name: <package-name>-gitops-repo

   namespace: <build-cluster-ns>

 path: "./<package-name>/packages"

 interval: 5m

 timeout: 5m

 prune: true

 wait: true

 # where to deploy

 kubeConfig:

   secretRef:

     name: <run-cluster>-kubeconfig

     namespace: <build-cluster-ns>

 targetNamespace: <run-cluster-ns>

 serviceAccountName: <run-cluster-ns-sa>

4. Configure your Build cluster to deploy your PackageInstalls and Secrets to the run
clusters. For each run cluster, on the Build cluster, create the following Flux CD
Kustomization:

---

apiVersion: kustomize.toolkit.fluxcd.io/v1beta2

kind: Kustomization

metadata:

 # for the second run cluster, for example hello-app-prod2-packages

 name: <package-name>-<run-cluster>-packageinstalls

 namespace: <build-cluster-ns>

spec:

 sourceRef:

   kind: GitRepository

   name: <package-name>-gitops-repo

   namespace: <build-cluster-ns>

 path: "./<package-name>/<run-cluster>"

 interval: 5m

 timeout: 5m

 prune: true

 wait: true

 # where to deploy

 kubeConfig:

   secretRef:

     name: <run-cluster>-kubeconfig

Tanzu Application Platform v1.5

VMware by Broadcom 1437



     namespace: <build-cluster-ns>

 targetNamespace: <run-cluster-ns>

 serviceAccountName: <run-cluster-ns-sa>

Verifying Installation

To verify your installation:

1. On your Build cluster, confirm that your Flux CD GitRepository and Kustomizations are
reconciling:

kubectl get gitrepositories,kustomizations -A

2. Target a run cluster. Confirm that all Packages from the GitOps repository are deployed:

kubectl get packages -A

3. Target a run cluster. Confirm that all PackageInstalls are reconciled:

kubectl get packageinstalls -A

Now you can access your application on each run cluster.

Use blue-green deployment with Contour and
PackageInstall for Supply Chain Choreographer (alpha)
Blue-green deployment is an application delivery model that lets you gradually transfer user traffic
from one version of your app to a later version while both are running in production. This topic
outlines how to use blue-green deployment with Packages and PackageInstalls.

Prerequisites
To use blue-green deployment, you must complete the following prerequisites:

Complete the prerequisites in Configure and deploy to multiple environments with custom
parameters.

Configure Carvel for your supply chain. See Carvel Package Supply Chains (alpha).

Configure Flux CD for your supply chain. See Deploy Package and PackageInstall using Flux
CD Kustomization.

Add HTTPProxy to the blue deployment
The following example deploys a sample application, hello-app, to production using a Carvel
Package and PackageInstall.

1. Create a Contour HTTPProxy resource to route traffic to the hello-app service from the
URL www.hello-app.mycompany.com.

apiVersion: projectcontour.io/v1

kind: HTTPProxy

metadata:

name: www

namespace: prod

spec:

virtualhost:

  fqdn: www.hello-app.mycompany.com

routes:

Tanzu Application Platform v1.5

VMware by Broadcom 1438

https://projectcontour.io/docs/main/config/fundamentals/


- conditions:

  - prefix: /

  services:

  - name: hello-app

    port: 8080

2. Apply the HTTPProxy to your cluster:

kubectl apply -f httpproxy.yaml

3. Verify that the HTTPProxy is present and the route serves traffic to your app.

kubectl get HTTPProxy --namespace=prod

This displays a list of all the HTTPproxies in the current namespace with their current
names.

kubectl get HTTPProxy --namespace=prod

NAMESPACE        NAME                     FQDN                                  

TLS SECRET            STATUS    STATUS DESCRIPTION

prod             www                      www.hello-app.mycompany.com          

hello-app-cert        valid     Valid HTTPProxy

Create the green deployment

After a new version of the package is added to the GitOps repository, create a new PackageInstall
for v1.0.1 to create the green deployment.

1. Create a green-secret.yaml file with a secret that contains the following ytt overlay.

---

apiVersion: v1

kind: Secret

metadata:

name: green-overlay-secret

namespace: prod

stringData:

custom-package-overlay.yaml: |

  #@ load("@ytt:overlay", "overlay")

  #@ kd = overlay.subset({"apiVersion":"apps/v1", "kind": "Deployment"})

  #@ ks = overlay.subset({"apiVersion":"v1", "kind": "Service"})

  #@ ki = overlay.subset({"apiVersion":"networking.k8s.io/v1", "kind": "Ingres

s"})

  #@ na = overlay.subset({"metadata":{"name":"hello-app"}})

  #@overlay/match by=overlay.and_op(kd, na)

  ---

  metadata:

    #@overlay/replace

    name: hello-app-green

  #@overlay/match by=overlay.and_op(ks, na)

  ---

Note

The services names used in HTTPProxy has to match the names of existing
services. In this case, the name hello-app matches the service installed by
the PackageInstall.

Tanzu Application Platform v1.5

VMware by Broadcom 1439



  metadata:

    #@overlay/replace

    name: hello-app-green

  #@overlay/match by=overlay.and_op(ki, na)

  ---

  metadata:

    #@overlay/replace

    name: hello-app-green

This secret changes the names of the service and deployment in the Carvel Package to
allow you to install another version of the app in the same namespace.

2. Apply the secret to your cluster by running:

kubectl apply -f green-secret.yaml

3. Create a parameter secret for the new PackageInstall:

---

apiVersion: v1

kind: Secret

metadata:

name: green-dev-values

namespace: prod

stringData:

values.yaml: |

  ---

  replicas: 2

  hostname: hello-app-green.mycompany.com

4. Apply the parameter secret to your cluster by running:

kubectl apply -f green-dev-values.yaml

5. Create a PackageInstall to include the ext.packaging.carvel.dev/ytt-paths-from-secret-
name.x annotation to reference your new overlay secret.

---

apiVersion: packaging.carvel.dev/v1alpha1

kind: PackageInstall

metadata:

name: green.hello-app.dev.tap

namespace: prod

annotations:

  ext.packaging.carvel.dev/ytt-paths-from-secret-name.0: green-overlay-secret

spec:

serviceAccountName: default

packageRef:

  refName: hello-app.dev.tap

  versionSelection:

    constraints: "1.0.1"

values:

- secretRef:

    name: green-dev-values

Divide traffic between the blue and green deployments

Use the following procedure to divide traffic between your blue and green deployments.

1. Update the HTTPproxy created with the blue deployment to route traffic to both the blue
and green deployments. The names of the services must match the names of the already

Tanzu Application Platform v1.5

VMware by Broadcom 1440



created services.

---

apiVersion: projectcontour.io/v1

kind: HTTPProxy

metadata:

name: www

namespace: prod

spec:

virtualhost:

  fqdn: www.hello-app.mycompany.com

routes:

- conditions:

  - prefix: /

  services:

  - name: hello-app-green

    port: 8080

    weight: 20

  - name: hello-app

    port: 8080

    weight: 80

2. Update the weights of traffic for each service by editing the HTTPProxy.

3. Access the service several times and confirm both versions are serving traffic in the same
percentage.

curl -k https://www.hello-app.mycompany.com

After the new green app is ready to handle the complete load and the -green version is not
required, use the following steps to remove the old version and rename the new version:

1. Ensure that all the traffic is using the correct version of the app. For example:

apiVersion: projectcontour.io/v1

kind: HTTPProxy

metadata:

  name: www

  namespace: prod

spec:

  virtualhost:

    fqdn: www.hello-app.mycompany.com

  routes:

    - conditions:

      - prefix: /

      services:

        - name: hello-app-green

          port: 8080

          weight: 100 # all traffic routed to the green app

2. Identify the name of the deployment and service that are part of the PackageInstall you no
longer need:

kubectl get PackageInstall --namespace=prod

This displays a list of all the deployments and services in the current Kubernetes
namespace, with their current names. For example:

NAME                     PACKAGE NAME       PACKAGE VERSION      DESCRIPTION

green.hello-app.dev.tap   hello-app.dev.tap   1.0.1            Reconcile succee

ded

hello-app.dev.tap         hello-app.dev.tap   1.0.0            Reconcile succee

Tanzu Application Platform v1.5

VMware by Broadcom 1441



ded

3. Delete the PackageInstall:

kubectl delete PackageInstall hello-app.dev.tap --namespace=prod

4. Rename the service and deployments without the green prefix. For example, update the
overlay secret:

---

apiVersion: v1

kind: Secret

metadata:

name: overlay-secret

namespace: prod

stringData:

custom-package-overlay.yaml: |

  #@ load("@ytt:overlay", "overlay")

  #@ load("@ytt:data", "data")

  #@ kd = overlay.subset({"apiVersion":"apps/v1", "kind": "Deployment"})

  #@ ks = overlay.subset({"apiVersion":"v1", "kind": "Service"})

  #@ ki = overlay.subset({"apiVersion":"networking.k8s.io/v1", "kind": "Ingres

s"})

  #@ na = overlay.subset({"metadata":{"name":"hello-app-green"}})

  #@overlay/match by=overlay.and_op(kd, na)

  ---

  metadata:

    #@overlay/replace

    name: hello-app

  #@overlay/match by=overlay.and_op(ks, na)

  ---

  metadata:

    #@overlay/replace

    name: hello-app

  #@overlay/match by=overlay.and_op(ki, na)

  ---

  metadata:

    #@overlay/replace

    name: hello-app

  ---

  apiVersion: projectcontour.io/v1

  kind: HTTPProxy

  metadata:

    name: www

    namespace: prod

  spec:

    virtualhost:

      fqdn: www.hello-app.mycompany.com

    routes:

      - conditions:

        - prefix: /

        services:

          - name: hello-app # note the name is changed back

            port: 8080

            weight: 100

5. Update your PackageInstall to include the ext.packaging.carvel.dev/ytt-paths-from-
secret-name.x annotation to reference your new overlay secret. For example:

Tanzu Application Platform v1.5

VMware by Broadcom 1442



---

apiVersion: packaging.carvel.dev/v1alpha1

kind: PackageInstall

metadata:

name: green.hello-app.dev.tap

namespace: prod

annotations:

  ext.packaging.carvel.dev/ytt-paths-from-secret-name.0: overlay-secret

spec:

serviceAccountName: default

packageRef:

  refName: hello-app.dev.tap

  versionSelection:

    constraints: "1.0.1"

values:

- secretRef:

    name: hello-app-values

6. After the deployment is complete, you can delete the secrets with the overlays.

Verify application

To verify the name of the deployment and service that are part of the PackageInstall:

1. Verify your application by running:

kubectl get PackageInstall --namespace=prod

This displays a list of all the deployments and services in the current Kubernetes namespace
with their current names. For example:

NAME                     PACKAGE NAME       PACKAGE VERSION      DESCRIPTION

hello-app.dev.tap       hello-app.dev.tap     1.0.1            Reconcile succee

ded

The name is back to the original name and the version is 1.0.1.

Use an existing image with Supply Chain Choreographer
This topic describes how you can use an existing image with Supply Chain Choreographer.

For apps that build container images in a predefined way, the supply chains in the Out of the Box
packages enable you to specify a prebuilt image. This uses the same stages as any other workload.

Requirements for prebuilt images
Supply chains aim at Knative as the runtime for the container image you provide. Your app must
adhere to the following Knative standards:

Container port listens on port 8080

The Knative service is created with the container port set to 8080 in the pod template spec
Therefore, your container image must have a socket listening on 8080.

ports:

  - containerPort: 8080

    name: user-port

    protocol: TCP

Non-privileged user ID

Tanzu Application Platform v1.5

VMware by Broadcom 1443



By default, the container initiated as part of the pod is run as user 1000.

securityContext:

  runAsUser: 1000

Arguments other than the image’s default ENTRYPOINT

In most cases the container image runs using the ENTRYPOINT it was configured with. In the
case of Dockerfiles, the combination of ENTRYPOINT and CMD.

If you need extra configuration for your image, use --env flags with the tanzu apps
workload create command or modify spec.env in your workload.yaml file.

Credentials for pulling the container image at runtime

The image you provide is not relocated to an internal container image registry. Any
components associated with the image must have the necessary credentials to pull it. For
the service accounts used for the workload and deliverable, you must attach a secret that
contains the credentials to pull the container image.

If the image is hosted in a registry that has certificates signed by a private certificate
authority, the components of the supply chains, delivery, and the Kubernetes nodes in the
run cluster must trust the certificate.

Configure your workload to use a prebuilt image

To select a prebuilt image, set the spec.image field in your workload.yaml file with the name of the
container image that contains the app to deploy by running:

tanzu apps workload create WORKLOAD-NAME \

  --app APP-NAME \

  --type TYPE \

  --image IMAGE

Where:

WORKLOAD-NAME is the name you choose for your workload.

APP-NAME is the name of your app.

TYPE is the type of your app.

IMAGE is the container image that contains the app you want to deploy.

For example, if you have an image named IMAGE, you can create a workload with the flag
mentioned earlier:

tanzu apps workload create tanzu-java-web-app \

  --app tanzu-java-web-app \

  --type web \

  --image IMAGE

Expected output:

Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    app.kubernetes.io/part-of: hello-world

      7 + |    apps.tanzu.vmware.com/workload-type: web

      8 + |  name: tanzu-java-web-app

Tanzu Application Platform v1.5

VMware by Broadcom 1444



      9 + |  namespace: default

     10 + |spec:

     11 + |  image: IMAGE

When you run tanzu apps workload create command with the --image field, the source resolution
and build phases of the supply chain are skipped.

Examples

The following examples show ways that you can build container images for a Java-based app and
complete the supply chains to a running service.

Using a Dockerfile

Using a Dockerfile is the most common way of building container images. You can select a base
image, on top of which certain operations must occur, such as compiling code, and mutate the
contents of the file system to a final container image that has a build of your app and any required
runtime dependencies.

Here you use the maven base image for compiling your app code, and then the minimal distroless
java17-debian11 image for providing a JRE that can run your app when it is built.

After building the image, you push it to a container image registry, and then reference it in the
workload.

1. Create a Dockerfile that describes how to build your app and make it available as a
container image:

ARG BUILDER_IMAGE=maven

ARG RUNTIME_IMAGE=gcr.io/distroless/java17-debian11

FROM $BUILDER_IMAGE AS build

        ADD . .

        RUN unset MAVEN_CONFIG && ./mvnw clean package -B -DskipTests

FROM $RUNTIME_IMAGE AS runtime

        COPY --from=build /target/demo-0.0.1-SNAPSHOT.jar /demo.jar

        CMD [ "/demo.jar" ]

2. Push the container image to a container image registry by running:

docker build -t IMAGE .

docker push IMAGE

3. Create a workload by running:

tanzu apps workload create tanzu-java-web-app \

  --type web \

  --app tanzu-java-web-app \

  --image IMAGE

Expected output:

Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

Tanzu Application Platform v1.5

VMware by Broadcom 1445



      4 + |metadata:

      5 + |  labels:

      6 + |    app.kubernetes.io/part-of: hello-world

      7 + |    apps.tanzu.vmware.com/workload-type: web

      8 + |  name: tanzu-java-web-app

      9 + |  namespace: default

     10 + |spec:

     11 + |  image: IMAGE

4. Run the following workload:

tanzu apps workload get tanzu-java-web-app

Expected output:

# tanzu-java-web-app: Ready

---

lastTransitionTime: "2022-04-06T19:32:46Z"

message: ""

reason: Ready

status: "True"

type: Ready

Workload pods

NAME                                                   STATUS      RESTARTS   A

GE

tanzu-java-web-app-00001-deployment-7d7df5ccf5-k58rt   Running     0          3

2s

tanzu-java-web-app-config-writer-xjmvw-pod             Succeeded   0          8

9s

Workload Knative Services

NAME                 READY   URL

tanzu-java-web-app   Ready   http://tanzu-java-web-app.default.example.com

Using Spring Boot’s build-image Maven target

You can use Spring Boot’s build-image target to build a container image that runs your app. The
build-image target must use a Dockerfile.

For example, using the same sample repository as mentioned before (https://github.com/vmware-
tanzu/application-accelerator-samples/tree/main/tanzu-java-web-app):

1. Build the image by running the following command from the root of the repository:

IMAGE=ghcr.io/kontinue/hello-world:tanzu-java-web-app

./mvnw spring-boot:build-image -Dspring-boot.build-image.imageName=$IMAGE

Expected output:

[INFO] Scanning for projects...

[INFO]

[INFO] --------------------------< com.example:demo >--------------------------

[INFO] Building demo 0.0.1-SNAPSHOT

[INFO] --------------------------------[ jar ]---------------------------------

[INFO]

...

[INFO]

[INFO] Successfully built image 'ghcr.io/kontinue/hello-world:tanzu-java-web-ap

p'

[INFO]

[INFO] ------------------------------------------------------------------------

[INFO] BUILD SUCCESS

Tanzu Application Platform v1.5

VMware by Broadcom 1446



[INFO] ------------------------------------------------------------------------

[INFO] Total time:  39.257 s

[INFO] Finished at: 2022-04-06T19:40:16Z

[INFO] ------------------------------------------------------------------------

2. Push the image you built to the container image registry by running:

IMAGE=ghcr.io/kontinue/hello-world:tanzu-java-web-app

docker push $IMAGE

Expected output:

The push refers to repository [ghcr.io/kontinue/hello-world]

1dc94a70dbaa: Preparing

...

9d6787a516e7: Pushed

tanzu-java-web-app: digest: sha256:7140722ea396af69fb3d0ad12e9b4419bc3e67d9c5d8

a2f6a1421decc4828ace size: 4497

After you push the container image, you see the same results as building the image using a
Dockerfile.

For more information about building container images for a Spring Boot app, see Spring Boot with
Docker

About Out of the Box Supply Chains
In Tanzu Application Platform, the ootb-supply-chain-basic, ootb-supply-chain-testing, and
ootb-supply-chain-testing-scanning packages each receive a new supply chain that provides a
prebuilt container image for your app.

ootb-supply-chain-basic

    (cluster)  basic-image-to-url   ClusterSupplyChain            (!) new

    ^          source-to-url        ClusterSupplyChain

ootb-supply-chain-testing

    (cluster)  testing-image-to-url  ClusterSupplyChain           (!) new

    ^          source-test-to-url    ClusterSupplyChain

ootb-supply-chain-testing-scanning

    (cluster)  scanning-image-scan-to-url    ClusterSupplyChain   (!) new

    ^          source-test-scan-to-url       ClusterSupplyChain

To leverage the supply chains that expect a prebuilt image, you must set the spec.image field in the
workload to the name of the container image that contains the app to deploy.

The new supply chains use a Cartographer feature that lets VMware increase the specificity of
supply chain selection by using the matchFields selector rule.

The selection takes place as follows:

ootb-supply-chain-basic

From source: label apps.tanzu.vmware.com/workload-type: web

Prebuilt image: label apps.tanzu.vmware.com/workload-type: web and set
spec.image in the workload.yaml

Tanzu Application Platform v1.5

VMware by Broadcom 1447

https://spring.io/guides/topicals/spring-boot-docker/


ootb-supply-chain-testing

From source: labels apps.tanzu.vmware.com/workload-type: web and
apps.tanzu.vmware.com/has-tests: true

Prebuilt image: label apps.tanzu.vmware.com/workload-type: web and set
spec.image in the workload.yaml

ootb-supply-chain-testing-scanning

From source: labels apps.tanzu.vmware.com/workload-type: web and
apps.tanzu.vmware.com/has-tests: true

Prebuilt image: label apps.tanzu.vmware.com/workload-type: web and set
spec.image in the workload.yaml

Workloads that already work with the supply chains before Tanzu Application Platform v1.1 continue
to work with the same supply chain. Workloads that bring a prebuilt container image must set
spec.image in the workload.yaml.

Understanding the supply chain for a prebuilt image

An ImageRepository object is created to keep track of new images pushed under that name.
ImageRepository makes the image available to further resources in the supply chain, providing the
final digest of the latest image.

Whenever a new image is pushed to the workload’s image location, the ImageRepository detects
the change. The image is then available to further resources by updating its
imagerepository.status.artifact.revision with an absolute reference to that image.

For example, if you create a workload using an image named hello-world, tagged tanzu-java-web-
app hosted under ghcr.io in the kontinue repository:

tanzu apps workload create tanzu-java-web-app \

  --app tanzu-java-web-app \

  --type web \

  --image ghcr.io/kontinue/hello-world:tanzu-java-web-app

After a couple seconds, you see the ImageRepository object created to keep track of images
named ghcr.io/kontinue/hello-world:tanzu-java-web-app:

Workload/tanzu-java-web-app

├─ImageRepository/tanzu-java-web-app

├─PodIntent/tanzu-java-web-app

├─ConfigMap/tanzu-java-web-app

└─Runnable/tanzu-java-web-app-config-writer

  └─TaskRun/tanzu-java-web-app-config-writer-p2lzv

    └─Pod/tanzu-java-web-app-config-writer-p2lzv-pod

If you inspect the status in status.resources in the workload.yaml, you see the image-provider
resource promoting the image it found to further resources:

apiVersion: carto.run/v1alpha1

kind: Workload

spec:

  image: ghcr.io/kontinue/hello-world:tanzu-java-web-app

status:

  resources:

    - name: image-provider

      outputs:

        # output being made available to further resources in the supply chain

        # (in this case, the latest image it found under that name).

Tanzu Application Platform v1.5

VMware by Broadcom 1448



        #

        - name: image

          lastTransitionTime: "2022-04-01T15:05:01Z"

          preview: ghcr.io/kontinue/hello-world:tanzu-java-web-app@sha256:9fb930a...

      # reference to the object managed by the supply chain for this

      # resource

      #

      stampedRef:

        apiVersion: source.apps.tanzu.vmware.com/v1alpha1

        kind: ImageRepository

        name: tanzu-java-web-app

        namespace: workload

      # reference to the template that defined how this object should look

      # like

      #

      templateRef:

        apiVersion: carto.run/v1alpha1

        kind: ClusterImageTemplate

        name: image-provider-template

The image found by the ImageRepository object is carried through the supply chain to the final
configuration. This is pushed to either a Git repository or image registry so that it is deployed in a
run cluster.

Use Git authentication with Supply Chain Choreographer

This topic describes how you can use Git authentication with Supply Chain Choreographer.

You can either fetch or push source code from or to a repository that requires credentials. You
must provide credentials through a Kubernetes secret object referenced by the intended
Kubernetes object created for performing the action.

The following sections provide details about how to appropriately set up Kubernetes secrets for
carrying those credentials forward to the proper resources.

HTTP
For any action upon an HTTP(s)-based repository, create a Kubernetes secret object of type
kubernetes.io/basic-auth as follows:

apiVersion: v1

kind: Secret

metadata:

  name: SECRET-NAME

Note

The image name matches the image name supplied in the spec.image field in the
workload.yaml, but also includes the digest of the latest image found under the tag.
If a new image is pushed to the same tag, you see the ImageRepository resolving
the name to a different digest corresponding to the new image pushed.

Important

For both HTTP(s) and SSH, do not use the same server for multiple secrets to avoid
a Tekton error.

Tanzu Application Platform v1.5

VMware by Broadcom 1449



  annotations:

    tekton.dev/git-0: GIT-SERVER        # ! required

type: kubernetes.io/basic-auth          # ! required

stringData:

  username: GIT-USERNAME

  password: GIT-PASSWORD

For example, assuming you have a repository called kontinue/hello-world on GitHub that requires
authentication, and you have an access token with the privileges of reading the contents of the
repository, you can create the secret as follows:

apiVersion: v1

kind: Secret

metadata:

  name: git-secret

  annotations:

    tekton.dev/git-0: https://github.com

type: kubernetes.io/basic-auth

stringData:

  username: GITHUB-USERNAME

  password: GITHUB-ACCESS-TOKEN

After you create the secret, attach it to the ServiceAccount configured for the workload by
including it in its set of secrets. For example:

apiVersion: v1

kind: ServiceAccount

metadata:

  name: default

secrets:

  - name: registry-credentials

  - name: tap-registry

  - name: GIT-SECRET-NAME

imagePullSecrets:

  - name: registry-credentials

  - name: tap-registry

SSH
Aside from using HTTP(S) as a transport, the supply chains also allow you to use SSH.

1. To provide the credentials for any Git operations with SSH, create the Kubernetes secret as
follows:

apiVersion: v1

kind: Secret

Note

In this example, you use an access token because GitHub deprecates basic
authentication with plain user name and password. For more information, see
Creating a personal access token on GitHub.

Important

To use the pull request feature, you must use HTTP(S) authentication with an
access token.

Tanzu Application Platform v1.5

VMware by Broadcom 1450

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token


metadata:

  name: GIT-SECRET-NAME

  annotations:

    tekton.dev/git-0: GIT-SERVER

type: kubernetes.io/ssh-auth

stringData:

  ssh-privatekey: SSH-PRIVATE-KEY     # private key with push-permissions

  identity: SSH-PRIVATE-KEY           # private key with pull permissions

  identity.pub: SSH-PUBLIC-KEY        # public of the `identity` private key

  known_hosts: GIT-SERVER-PUBLIC-KEYS # Git server public keys

2. Generate a new SSH keypair: identity and identity.pub.

ssh-keygen -t ecdsa -b 521 -C "" -f "identity" -N ""

3. Go to your Git provider and add the identity.pub as a deployment key for the repository of
interest or add to an account that has access to it. For example, for GitHub, visit
https://github.com/<repository>/settings/keys/new.

4. Gather public keys from the provider, for example, GitHub:

ssh-keyscan github.com > ./known_hosts

5. Create the Kubernetes secret by using the contents of the files in the first step:

apiVersion: v1

kind: Secret

metadata:

  name: GIT-SECRET-NAME

  annotations: {tekton.dev/git-0: GIT-SERVER}

type: kubernetes.io/ssh-auth

stringData:

  ssh-privatekey: SSH-PRIVATE-KEY

  identity: SSH-PRIVATE-KEY

  identity.pub: SSH-PUBLIC-KEY

  known_hosts: GIT-SERVER-PUBLIC-KEYS

For example, edit the credentials:

apiVersion: v1

kind: Secret

metadata:

  name: git-ssh

  annotations: {tekton.dev/git-0: github.com}

type: kubernetes.io/ssh-auth

stringData:

  ssh-privatekey: |

    -----BEGIN OPENSSH PRIVATE KEY-----

    AAAA

    ....

    ....

    -----END OPENSSH PRIVATE KEY-----

  known_hosts: |

    <known hosts entrys for git provider>

  identity: |

    -----BEGIN OPENSSH PRIVATE KEY-----

    AAAA

Note

Keys of type SHA-1/RSA are recently deprecated by GitHub.

Tanzu Application Platform v1.5

VMware by Broadcom 1451



    ....

    ....

    -----END OPENSSH PRIVATE KEY-----

  identity.pub: ssh-ed25519 AAAABBBCCCCDDDDeeeeFFFF user@example.com

6. After you create the secret, attach it to the ServiceAccount configured for the workload by
including it in its set of secrets. For example:

apiVersion: v1

kind: ServiceAccount

metadata:

  name: default

secrets:

  - name: registry-credentials

  - name: tap-registry

  - name: GIT-SECRET-NAME

imagePullSecrets:

  - name: registry-credentials

  - name: tap-registry

Read more on Git

For information about Git, see Git Reference.

Using Azure DevOps as a Git provider with your supply
chains

This topic describes how you can Azure DevOps as a Git provider with your Supply Chain
Choreographer supply chains.

Overview

There are two uses for Git in a supply chain:

As a source of code to build and deploy applications

As a repository of configuration created by the build cluster which is deployed on a run or
production cluster

Azure DevOps differs from other Git providers in the following ways:

Azure DevOps requires Git clients to support multi-ack.

Azure DevOps repository paths differ from other Git providers.

For information about how Azure DevOps is different from other Git providers, see Gitops write
path templates.

The operator requires special configuration to integrate Azure DevOps repositories into a supply
chain.

Azure authentication

You can use Azure authentication with Supply Chain Choreographer.

For information about configuring secrets to authenticate with your Azure DevOps Git repository,
see Use Git authentication with Supply Chain Choreographer.

Azure http and https authentication requires:

Tanzu Application Platform v1.5

VMware by Broadcom 1452



username: "_token"

password: AZURE-USER-TOKEN

Where AZURE-USER-TOKEN is your Azure personal access token. See Azure Devops Personal Access
Tokens in the Microsoft documentation.

Using Azure DevOps as a repository for committed code

Developers can use Azure DevOps to commit source code to a repository that the supply chain
pulls.

Azure DevOps example

The following example uses the Azure DevOps source repository:

https://dev.azure.com/my-company/app/_git/app

You can configure the supply chain by using tap-values:

ootb_supply_chain_testing_scanning:

  git_implementation: libgit2

or by using workload parameter:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  ...

spec:

  params:

    - name: gitImplementation

      value: libgit2

Configuring your Git implementation for Azure DevOps

The default configuration of the source controller does not use a Git implementation compatible
with Azure DevOps.

To resolve this, you must configure the source-template’s parameter gitImplementation to
libgit2. Use one of these options:

Use the tap-value git_implementation to set the parameter for the supply chain. See
source-provider.

Use the workload parameter gitImplementation to configure the parameter for the
individual workload. See Parameters.

If both methods are set and do not match, the workload’s parameter is respected.

Using Azure DevOps as a GitOps repository

The supply chain commits Kubernetes configuration to a Git repository. This configuration is then
applied to another cluster. This is the GitOps promotion pattern.

You must construct a path and configure your Git implementation to read and write to an Azure
DevOps repository.

GitOps write path example

The following example uses the Azure DevOps Git repository:

Tanzu Application Platform v1.5

VMware by Broadcom 1453

https://learn.microsoft.com/en-us/azure/devops/organizations/accounts/use-personal-access-tokens-to-authenticate


https://dev.azure.com/vmware-tanzu/tap/_git/tap

Set the gitops_server_kind workload parameters to azure.

ootb_supply_chain_testing_scanning:

  gitops:

    server_address: https://dev.azure.com

    repository_owner: vmware-tanzu/tap

    repository_name: tap

    pull_request:

      server_kind: azure

or the workload parameters:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  ...

spec:

  params:

    - name: gitops_server_address

      value: https://dev.azure.com

    - name: gitops_repository_owner

      value: vmware-tanzu/tap

    - name: gitops_repository_name

      value: tap

    - name: gitops_server_kind

      value: azure

    ...

  spec:

    params:

      - name: gitops_server_kind

        value: azure

      ...

Set other GitOps values in either tap-values or in the workload parameters.

By using tap-values:

ootb_supply_chain_testing_scanning:

  gitops:

    server_address: https://dev.azure.com

    repository_owner: vmware-tanzu/tap

    repository_name: tap

By using the workload parameters:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  ...

spec:

  params:

    - name: gitops_server_address

      value: https://dev.azure.com

    - name: gitops_repository_owner

      value: vmware-tanzu/tap

    - name: gitops_repository_name

      value: tap

    ...

Gitops write path templates

Azure DevOps and Git use different URL structures.

Tanzu Application Platform v1.5

VMware by Broadcom 1454



For example, the Git clone URL of an Azure DevOps repository is structured as:

https://dev.azure.com/<org_name>/<project_name>/_git/<repository_name>

GitHub uses the following address structure:

https://github.com/<org_name>/<repository_name>

In Azure DevOps, a project can have multiple repositories, but the project name and repository
name are often the same.

The config-writer and config-writer-and-pull-requester templates accept three parameters to build
the path of the repository. For Azure DevOps, configure them as follows:

gitops_server_address: https://dev.azure.com

gitops_repository_owner: <org_name>/<project_name>

gitops_repository_name: <repository_name>

Configure the template parameters as follows:

gitops.server_address tap-value during the Out of the Box Supply Chains package
installation or gitops_server_address configured as a workload parameter.

gitops.repository_owner tap-value during the Out of the Box Supply Chains package
installation or gitops_repository_owner configured as a workload parameter.

gitops.repository_name tap-value during the Out of the Box Supply Chains package
installation or gitops_repository_name configured as a workload parameter.

To properly contruct the write path, the template parameter gitops_server_kind must be
configured as azure.

Use the gitops.pull_request.server_kind tap-value during the Out of the Box Supply
Chains package installation

or configuregitops_server_kind as a workload parameter

For information about configuring the GitOps write operations, see GitOps versus RegistryOps.

Gitops read example

The following example uses the Azure DevOps GitOps repository:

https://dev.azure.com/vmware-tanzu/tap/_git/tap

You can configure the delivery tap-values:

ootb_delivery_basic:

  git_implementation: libgit2

or the deliverable parameter:

apiVersion: carto.run/v1alpha1

kind: Deliverable

Note

Even if the commit strategy is not pull-request, such as direct commits, to use an
Azure DevOps repository either the tap value gitops.pull_request.server_kind or
the workload parameter gitops_server_kind must be configured to azure.

When you use pull requests with GitOps, you can set the type of server with the
tap-value gitops.pull_request.server_kind. See GitOps versus RegistryOps.

Tanzu Application Platform v1.5

VMware by Broadcom 1455



metadata:

  ...

spec:

  params:

    - name: gitImplementation

      value: libgit2

Gitops read implementation templates

Similar to reading an Azure DevOps source repo, when reading an AzureDevOps GitOps repository,
you must configure the Git implementation for the delivery-source-template. This parameter’s
configuration comes from the delivery or the deliverable.

You can configure the delivery by using tap-values.

The supply chain creates the definition of a deliverable. Tanzu Application Platform users are
responsible for applying this definition to the run cluster. Users can choose to add the
gitImplementation parameter to the deliverable.

Author your supply chains

The Out of the Box Supply Chain, Delivery Basic, and Templates Supply Chain Choreographer
packages give you Kubernetes objects that cover a reference path to production. Because VMware
recognizes that you have your own needs, these objects are customizable, including individual
templates for each resource, whole supply chains, or delivery objects.

Depending on how you installed Tanzu Application Platform, there are different ways to customize
the Out of the Box Supply Chains. The following sections describe the ways supply chains and
templates are authored within the context of profile-based Tanzu Application Platform installations.

Providing your own supply chain

To create a new supply chain and make it available for workloads, ensure that the supply chain does
not conflict with those installed on the cluster, as those objects are cluster-scoped.

If this is your first time creating a supply chain, follow the tutorials from the Cartographer
documentation.

Any supply chain installed in a Tanzu Application Platform cluster might encounter two possible
cases of collisions:

object name: Supply chains are cluster scoped, such as any Cartographer resource prefixed
with Cluster. So the name of the custom supply chain must be different from the ones
provided by the Out of the Box packages.

Either create a supply chain whose name is different, or remove the installation of the
corresponding ootb-supply-chain-* from the Tanzu Application Platform.

workload selection: A workload is reconciled against a particular supply chain based on a
set of selection rules as defined by the supply chains. If the rules for the supply chain to
match a workload are ambiguous, the workload does not make any progress.

Either create a supply chain whose selection rules are different from the ones the Out of
the Box Supply Chain packages use, or remove the installation of the corresponding ootb-
supply-chain-* from Tanzu Application Platform.

See Selectors.

For Tanzu Application Platform 1.2, the following selection rules are in place for the supply chains of
the corresponding packages:

Tanzu Application Platform v1.5

VMware by Broadcom 1456

https://cartographer.sh/docs/v0.3.0/tutorials/first-supply-chain/
https://cartographer.sh/docs/v0.3.0/architecture/#selectors


ootb-supply-chain-basic

ClusterSupplyChain/basic-image-to-url

label apps.tanzu.vmware.com/workload-type: web

workload.spec.image text box set

ClusterSupplyChain/source-to-url

label apps.tanzu.vmware.com/workload-type: web

ClusterSupplyChain/basic-image-to-url-package (experimental)

label apps.tanzu.vmware.com/workload-type: server

label apps.tanzu.vmware.com/carvel-package-workflow: true

ClusterSupplyChain/source-to-url-package (experimental)

label apps.tanzu.vmware.com/workload-type: server

label apps.tanzu.vmware.com/carvel-package-workflow: true

ootb-supply-chain-testing

ClusterSupplyChain/testing-image-to-url

label apps.tanzu.vmware.com/workload-type: web

workload.spec.image text box set

ClusterSupplyChain/source-test-to-url

label apps.tanzu.vmware.com/workload-type: web

label apps.tanzu.vmware.com/has-test: true

ootb-supply-chain-testing-scanning

ClusterSupplyChain/scanning-image-scan-to-url

label apps.tanzu.vmware.com/workload-type: web

workload.spec.image text box set

ClusterSupplyChain/source-test-scan-to-url

label apps.tanzu.vmware.com/workload-type: web

label apps.tanzu.vmware.com/has-test: true

For details about how to edit an existing supply chain, see Modifying an Out of the Box Supply
Chain section.

You can exclude a supply chain package from the installation to prevent the conflicts mentioned
earlier, by using the excluded_packages property in tap-values.yaml. For example:

# add to exclued_packages `ootb-*` packages you DON'T want to install

# excluded_packages:

  - ootb-supply-chain-basic.apps.tanzu.vmware.com

  - ootb-supply-chain-testing.apps.tanzu.vmware.com

  - ootb-supply-chain-testing-scanning.apps.tanzu.vmware.com

# comment out remove the `supply_chain` property

#

# supply_chain: ""

Providing your own templates

Similar to supply chains, Cartographer templates (Cluster*Template resources) are cluster-scoped,
so you must ensure that the new templates submitted to the cluster do not conflict with those
installed by the ootb-templates package.

Tanzu Application Platform v1.5

VMware by Broadcom 1457



The following set of objects are provided by ootb-templates:

ClusterConfigTemplate/config-template

ClusterConfigTemplate/convention-template

ClusterDeploymentTemplate/app-deploy

ClusterImageTemplate/image-provider-template

ClusterImageTemplate/image-scanner-template

ClusterImageTemplate/kpack-template

ClusterTask/kaniko-build

ClusterImageTemplate/kaniko-template

ClusterRole/ootb-templates-app-viewer

ClusterRole/ootb-templates-deliverable

ClusterRole/ootb-templates-workload

ClusterRunTemplate/tekton-source-pipelinerun

ClusterRunTemplate/tekton-taskrun

ClusterSourceTemplate/delivery-source-template

ClusterSourceTemplate/source-scanner-template

ClusterSourceTemplate/source-template

ClusterSourceTemplate/testing-pipeline

ClusterTask/git-writer

ClusterTask/image-writer

ClusterTemplate/config-writer-template

ClusterTemplate/deliverable-template

ClusterTask/carvel-package (experimental)

ClusterConfigTemplate/carvel-package (experimental)

ClusterTemplate/package-config-writer-and-pull-requester-template (experimental)

ClusterTemplate/package-config-writer-template (experimental)

Before submitting your own, either ensure that the name and resource has no conflicts with those
installed by ootb-templates, or exclude from the installation the template you want to override by
using the excluded_templates property of ootb-templates.

For example, perhaps you want to override the ClusterConfigTemplate named config-template to
provide your own with the same name, so that you don’t need to edit the supply chain. In tap-
values.yaml, you can exclude template provided by Tanzu Application Platform:

ootb_templates:

  excluded_templates:

    - 'config-writer'

For details about how to edit an existing template, see Modifying an Out of the Box Supply
template section.

Modifying an Out of the Box Supply Chain

To change the shape of a supply chain or the template that it points to, do the following:

Tanzu Application Platform v1.5

VMware by Broadcom 1458



1. Copy one of the reference supply chains.

2. Remove the old supply chain. See preventing Tanzu Application Platform supply chains from
being installed.

3. Edit the supply chain object.

4. Submit the modified supply chain to the cluster.

Example

In this example, you have a new ClusterImageTemplate object named foo that you want use for
building container images instead of the out of the box object that makes use of Kpack. The supply
chain that you want to apply the modification to is source-to-url provided by the ootb-supply-
chain-basic package.

1. Find the image that contains the supply chain definition:

kubectl get app ootb-supply-chain-basic \

  -n tap-install \

  -o jsonpath={.spec.fetch[0].imgpkgBundle.image}

registry.tanzu.vmware.com/tanzu-application-platform/tap-packages@sha256:f2ad40

1bb3e850940...

2. Pull the contents of the bundle into a directory named ootb-supply-chain-basic:

imgpkg pull \

  -b registry.tanzu.vmware.com/tanzu-application-platform/tap-packages@sha256:f

2ad401bb3e850940... \

  -o ootb-supply-chain-basic

Pulling bundle 'registry.tanzu.vmware.com/tanzu-...

  Extracting layer 'sha256:542f2bb8eb946fe9d2c8a...

Locating image lock file images...

The bundle repo (registry.tanzu.vmware.com/tanzu...

Succeeded

3. Inspect the files obtained:

tree ./ootb-supply-chain-basic/

./ootb-supply-chain-basic/

├── config

│   ├── supply-chain-image.yaml

│   └── supply-chain.yaml

└── values.yaml

4. Edit the supply chain that you want to exchange the template with another:

--- a/supply-chain.yaml

+++ b/supply-chain.yaml

@@ -52,7 +52,7 @@ spec:

   - name: image-builder

     templateRef:

       kind: ClusterImageTemplate

-      name: kpack-template

+      name: foo

     params:

Tanzu Application Platform v1.5

VMware by Broadcom 1459



       - name: serviceAccount

         value: #@ data.values.service_account

5. Submit the supply chain to Kubernetes:

The supply chain definition found in the bundle expects the values you provided by using
tap-values.yaml to be interpolated by using YTT before they are submitted to Kubernetes.
So before applying the modified supply chain to the cluster, use YTT to interpolate those
values. After that, run:

ytt \

  --ignore-unknown-comments \

  --file ./ootb-supply-chain-basic/config \

  --data-value registry.server=REGISTRY-SERVER \

  --data-value registry.repository=REGISTRY-REPOSITORY |

  kubectl apply -f-

Modifying an Out of the Box Supply template
The Out of the Box Templates package (ootb-templates) includes all of the templates and shared
Tekton tasks used by the supply chains shipped by using ootb-supply-chain-* packages. Any
template that you want to edit, for example, to change details about the resources that are created
based on them, is part of this package.

The workflow for updating a template is as follows:

1. Copy one of the reference templates from ootb-templates.

2. Exclude that template from the set of objects provided by ootb-templates. For more
information, see excluded_templates in Providing your Own Templates.

3. Edit the template.

4. Submit the modified template to the cluster.

Example

In this example, you want to update the ClusterImageTemplate object called kpack-template, which
provides a template for creating kpack/Images to hardcode an environment variable.

1. Exclude the kpack-template from the set of templates that ootb-templates installs by
upating tap-values.yaml:

  ootb_templates:

  excluded_templates: ['kpack-template']

2. Find the image that contains the templates:

Important

The modified supply chain does not outlive the destruction of the cluster.
VMware recommends that you save it, for example, in a Git repository to
install on every cluster where you expect the supply chain to exist.

Note

You don’t need to change anything related to supply chains, because you’re
preserving the name of the object referenced by the supply chain.

Tanzu Application Platform v1.5

VMware by Broadcom 1460



kubectl get app ootb-templates \

  -n tap-install \

  -o jsonpath={.spec.fetch[0].imgpkgBundle.image}

registry.tanzu.vmware.com/tanzu-application-platform/tap-packages@sha256:a5e177

f38d7287f2ca7ee2afd67ff178645d8f1b1e47af4f192a5ddd6404825e

3. Pull the contents of the bundle into a directory named ootb-templates:

imgpkg pull \

  -b registry.tanzu.vmware.com/tanzu-application-platform/tap-packages@sha256:a

5e177f38d7.. \

  -o ootb-templates

Pulling bundle 'registry.tanzu.vmware.com/tanzu-...

  Extracting layer 'sha256:a5e177f38d7...

Locating image lock file images...

The bundle repo (registry.tanzu.vmware.com/tanzu...

Succeeded

4. Confirm that you downloaded all the templates:

tree ./ootb-templates

./ootb-templates

├── config

│   ├── cluster-roles.yaml

│   ├── config-template.yaml

│   ├── kpack-template.yaml         # ! the one we want to modify

...

│   └── testing-pipeline.yaml

└── values.yaml

5. Change the property you want to change:

--- a/config/kpack-template.yaml

+++ b/config/kpack-template.yaml

@@ -65,6 +65,8 @@ spec:

         subPath: #@ data.values.workload.spec.source.subPath

       build:

         env:

+        - name: FOO

+          value: BAR

         - name: BP_OCI_SOURCE

           value: #@ data.values.source.revision

         #@ if/end param("live-update"):

6. Submit the template.

The name of the template is preserved but the contents are changed. So after the template is
submitted, the supply chains are all embedded to the build of the application container images that
have FOO environment variable.

Live modification of supply chains and templates

Preceding sections covered how to update supply chains or templates installed in a cluster. This
section shows how you can experiment by making small changes in a live setup with kubectl edit.

Tanzu Application Platform v1.5

VMware by Broadcom 1461



When you install Tanzu Application Platform by using profiles, a PackageInstall object is created.
This in turn creates a set of children PackageInstall objects for installing the individual components
that make up the platform.

PackageInstall/tap

└─App/tap

  ├─ PackageInstall/cert-manager

  ├─ PackageInstall/cartographer

  ├─ ...

  └─ PackageInstall/tekton-pipelines

Because the installation is based on Kubernetes primitives, PackageInstall tries to achieve the
state where all packages are installed.

This is great but presents challenges for modifying the contents of some of the objects that the
installation submits to the cluster. Namely, such modifications cause the original definition persisting
instead of the changes.

For this reason, before you perform any customization to the Out of the Box packages, you must
pause the top-level PackageInstall/tap object. Run:

kubectl edit -n tap-install packageinstall tap

apiVersion: packaging.carvel.dev/v1alpha1

kind: PackageInstall

metadata:

  name: tap

  namespace: tap-install

spec:

  paused: true                    # ! set this field to `paused: true`.

  packageRef:

    refName: tap.tanzu.vmware.com

    versionSelection:

# ...

With the installation of Tanzu Application Platform paused, all of the installed components are still
there, but changes to those children PackageInstall objects are not overwritten.

Now you can pause the PackageInstall objects that relate to the templates or supply chains you
want to edit.

For example:

To edit templates: kubectl edit -n tap-install packageinstall ootb-templates

To edit the basic supply chains: kubectl edit -n tap-install packageinstall ootb-
supply-chain-basic

setting packageinstall.spec.paused: true.

With the installations paused, further live changes to templates or supply chains are persisted until
you revert the PackageInstalls to not being paused. To persist the changes, follow the steps
outlined in the earlier sections.

Adding custom behavior to Supply Chains

Most behaviors in supply chains are supplied by Kubernetes controllers. For example, Cloud Native
Buildpacks are created by the kpack controller when a kpack Image object is created. Sometimes
there is need for behavior and no controller for it exists. In these instances, you might want to write
a script that uses a CLI tool, or interact with an external API. To do this, you can bring the behavior
to the supply chain by using Tekton.

Tanzu Application Platform v1.5

VMware by Broadcom 1462



You can look at the kaniko image-building as an example. You create a Tekton ClusterTask kaniko-
build with instructions for how to build a Docker image using kaniko given a set of parameters. The
ClusterTask has a set of steps. Each step refers to a container image and a set of instructions to run
on the image. For example, it can be a Linux image against which a set of bash instructions are run.
The ClusterTask is installed on the cluster.

You create the ClusterImageTemplate kaniko-template to create Tekton TaskRuns. TaskRuns are
immutable, so you add the lifecycle: tekton field to the template’s specifications. This ensures
two things:

When inputs to the template change, rather than updating the TaskRun, a new TaskRun is
created.

Only the values from the most recently created TaskRun that is successful are propagated
forward in the supply chain.

To learn more about the lifecycle: tekton field, see the Cartographer tutorial Lifecycle:
Templating Objects That Cannot Update. To learn more about Tekton, see the Tekton
documentation.

Reference guides for Supply Chain Choreographer for
Tanzu
This topic describes the reference guides you can use for Supply Chain Choreographer for Tanzu.

Reference guides
The following reference guides apply to Supply Chain Choreographer for Tanzu:

Tanzu Build Service Integration

Events reference for Supply Chain Choreographer
This topic describes each event you can view with Supply Chain Choreographer.

Events are emitted when Choreographer edits resources or notices a change in their output or
healthy state. Don’t treat events like logs, however they can offer valuable insight into what’s
happening in a supply chain over time. For example, very high occurrences of events in a short
period of time might be a sign of slow application-level processing due to many page faults and a
lack of storage resources.

Events are published on Workload, Deliverable, and Runnable resources. You can view them
manually using:

kubectl describe workload.carto.run <workload-name> -n <workload-ns>

kubectl describe runnable.carto.run <runnable-name> -n <runnable-ns>

kubectl describe deliverable.carto.run <deliverable-name> -n <deliverable-ns>

Events

The following sections define the different events.

StampedObjectApplied

This event is emitted every time Choreographer creates or updates a resource. The created or
updated resource is referenced in the event message.

Example messages:

Tanzu Application Platform v1.5

VMware by Broadcom 1463

https://cartographer.sh/docs/v0.6.0/tutorials/lifecycle/
https://tekton.dev/docs/


Created object [gitrepositories.source.toolkit.fluxcd.io/my-project]

Updated object [apps.kappctrl.k14s.io/my-project-app]

StampedObjectRemoved

This event is emitted every time Choreographer deletes a resource. This currently only occurs
when Runnable resources expire. The deleted object is referenced in the event message.

Example message:

Deleted object [task.tekton.dev/my-project-a737bdf]

ResourceOutputChanged

This event is emitted every time Choreographer recognizes a new output from a resource.

Example message:

[source-provider] found a new output in [imagerepositories.source.apps.tanzu.vmware.co

m/app]

ResourceHealthyStatusChanged

This event is emitted every time Choreographer recognizes that the healthy status of a resource
has changed.

Example message:

[image-provider] found healthy status in [images.kpack.io/app] changed to [True]

[source-provider] found healthy status in [[gitrepositories.source.toolkit.fluxcd.io/m

y-project]] changed to [False]

Workload Reference for Supply Chain Choreographer

This topic describes the fields you can use for Supply Chain Choreographer workloads.

Standard Fields

Cartographer workloads have standard fields leveraged by supply chains. See Cartographer’s
Reference Documentation in the Cartographer documentation.

Labels

Workload labels affect which supply chain is selected. For information about which template is
defined for a particular reference, see Selectors in the Cartographer documentation. Individual
templates can also use workload labels.

The following are workload label keys whose values change the behavior of OOTB Supply Chains:

apps.tanzu.vmware.com/has-tests by Source-Test-to-URL and Source-Test-Scan-to-URL.

apps.tanzu.vmware.com/workload-type by all supply chains.

apis.apps.tanzu.vmware.com/register-api by the Api-Descriptors Template.

apps.tanzu.vmware.com/carvel-package-workflow by source-to-url-package (experimental)
and basic-image-to-url-package (experimental).

Tanzu Application Platform v1.5

VMware by Broadcom 1464

https://cartographer.sh/docs/v0.6.0/reference/workload/#workload
https://cartographer.sh/docs/v0.6.0/architecture/#selectors


Parameters

The OOTB templates are configured with parameters from the supply chain or workload. For
information about Cartographer parameters, including precedence rules, see Parameters in the
Cartographer documentation.

What parameters are relevant depends on the supply chain that selects the workload, for two
reasons:

1. The OOTB supply chains refer to overlapping sets of templates. A workload selected by the
Source-to-URL supply chain can provide a scanning_image_template parameter, but the
supply chain does not refer to a template that leverages that parameter.

2. You can write Supply Chains to provide a parameter value to a template and prevent the
workload from overriding the value. See Further Information in the Cartographer
documentation.

The following list of parameters are respected by some OOTB supply chains. Each provides the
templates that respect the parameter. The reference for the template details which supply chains
include the template.

gitImplementation: source-template

gitops_ssh_secret: source-template, deliverable-template, external-deliverable-template

serviceAccount: source-template, image-provider-template, kpack-template, kaniko-
template, convention-template, config-writer-template, config-writer-and-pull-requester-
template, deliverable-template, external-deliverable-template

maven: source-template

testing_pipeline_matching_labels: testing-pipeline

testing_pipeline_params: testing-pipeline

scanning_source_template: source-scanner-template

scanning_source_policy: source-scanner-template

clusterBuilder: kpack-template

buildServiceBindings: kpack-template

live-update: kpack-template, convention-template

dockerfile: kaniko-template

docker_build_context: kaniko-template

docker_build_extra_args: kaniko-template

scanning_image_template: image-scanner-template

scanning_image_policy: image-scanner-template

annotations: convention-template, service-bindings, api-descriptors

debug: convention-template

ports: server-template

api-descriptors: api-descriptors

gitops_branch: config-writer-template, config-writer-and-pull-requester-template,
deliverable-template, external-deliverable-template

gitops_user_name: config-writer-template, config-writer-and-pull-requester-template

gitops_user_email: config-writer-template, config-writer-and-pull-requester-template

Tanzu Application Platform v1.5

VMware by Broadcom 1465

https://cartographer.sh/docs/v0.6.0/templating/#parameters
https://cartographer.sh/docs/v0.6.0/tutorials/using-params/#further-information


gitops_commit_message: config-writer-template, config-writer-and-pull-requester-
template

gitops_repository: config-writer-template, deliverable-template, external-deliverable-
template

gitops_repository_prefix: config-writer-template, deliverable-template, external-
deliverable-template

gitops_server_address: config-writer-template, config-writer-and-pull-requester-template,
deliverable-template, external-deliverable-template

gitops_repository_owner: config-writer-template, config-writer-and-pull-requester-
template, deliverable-template, external-deliverable-template

gitops_repository_name: config-writer-template, config-writer-and-pull-requester-
template, deliverable-template, external-deliverable-template

gitops_commit_branch: config-writer-and-pull-requester-template

gitops_pull_request_title: config-writer-and-pull-requester-template

gitops_pull_request_body: config-writer-and-pull-requester-template

gitops_server_kind: config-writer-and-pull-requester-template

carvel_package_gitops_subpath (experimental): carvel-package, package-config-writer-
template, package-config-writer-and-pull-requester-template

carvel_package_name_suffix (experimental): carvel-package, package-config-writer-
template, package-config-writer-and-pull-requester-template

Service Account

To create the templated objects, Cartographer needs a reference to a service account with
permissions to manage resources. This service account might be provided in the workload’s
.spec.serviceAccountName field or in the supply chain’s spec.serviceAccountRef field. See Service
Account and Workload and Supply Chain Custom Resources in the Cartographer documentation.
When using the Tanzu CLI to create a workload, specify this service account’s name with the --
service-account flag.

After the templated objects are created, they often need a service account with permissions to do
work. In the OOTB Templates and Supply Chains, the parameter serviceAccount must reference
the service account for these objects. When using the Tanzu CLI to create a workload, specify this
service account’s name with --param serviceAccount=....

Supply chains for Supply Chain Choreographer

This topic describes the parameters for supply chains that you can use with Supply Chain
Choreographer.

Tanzu Application Platform includes a number of supply chains packages, each of which installs two
ClusterSupplyChains. You can only install one supply chain package at a time.

The supply chains provide some parameters to the referenced templates. The parameters provided
by the workload might override the parameters in this topic.

Source-to-URL

Purpose

Tanzu Application Platform v1.5

VMware by Broadcom 1466

https://cartographer.sh/docs/v0.6.0/tutorials/first-supply-chain/#service-account
https://cartographer.sh/docs/v0.6.0/reference/workload/
https://cartographer.sh/docs/v0.6.0/reference/workload/#clustersupplychain
https://cartographer.sh/docs/v0.6.0/templating/#parameters


Fetches application source code

Builds it into an image

Writes the Kubernetes configuration necessary to deploy the application

Commits that configuration to either a Git repository or a container image registry

Resources

This section describes the templates and their parameters.

source-provider

Refers to source-template.

Parameters provided:

serviceAccount from tap-value service_account. Overridable by workload.

gitImplementation from tap-value git_implementation. NOT overridable by workload.

image-provider

Refers to kaniko-template when the workload provides a parameter dockerfile. Refers to kpack-
template otherwise.

Parameters provided:

serviceAccount from tap-value service_account. Overridable by workload.

registry from tap-value registry. NOT overridable by workload.

clusterBuilder from tap-value cluster_builder. Overridable by workload.

dockerfile value ./Dockerfile. Overridable by workload.

docker_build_context value ./. Overridable by workload.

docker_build_extra_args value []. Overridable by workload.

Common resources

Config-Provider

App-Config

Service-Bindings

Api-Descriptors

Config-Writer

Deliverable

Parameters provided to all resources

maven_repository_url from tap-value maven.repository.url. NOT overridable by workload.

maven_repository_secret_name from tap-value maven.repository.secret_name. NOT
overridable by workload.

See Params provided by all Supply Chains to all Resources

Package

Out of the Box Supply Chain Basic

Tanzu Application Platform v1.5

VMware by Broadcom 1467



More information

See Install Out of the Box Supply Chain Basic for information about setting tap-values at installation
time.

Source-Test-to-URL

Fetches application source code

Runs user defined tests against the code

Builds the code into an image

Writes the Kubernetes configuration necessary to deploy the application

Commits that configuration to either a Git repository or a container image registry

Resources

source-provider

Refers to source-template.

Parameters provided:

serviceAccount from tap-value service_account. Overridable by workload.

gitImplementation from tap-value git_implementation. NOT overridable by workload.

source-tester

Refers to testing-pipeline.

No parameters are provided by the supply-chain.

image-provider

Refers to kaniko-template when the workload provides a parameter dockerfile. Refers to kpack-
template otherwise.

Parameters provided:

serviceAccount from tap-value service_account. Overridable by workload.

registry from tap-value registry. NOT overridable by workload.

clusterBuilder from tap-value cluster_builder. Overridable by workload.

dockerfile value ./Dockerfile. Overridable by workload.

docker_build_context value ./. Overridable by workload.

docker_build_extra_args value []. Overridable by workload.

Common resources

Config-Provider

App-Config

Service-Bindings

Api-Descriptors

Config-Writer

Tanzu Application Platform v1.5

VMware by Broadcom 1468



Deliverable

Parameters provided to all resources

maven_repository_url from tap-value maven.repository.url. NOT overridable by workload.

maven_repository_secret_name from tap-value maven.repository.secret_name. NOT
overridable by workload.

See Params provided by all Supply Chains to all Resources.

Package

Out of the Box Supply Chain Testing

More information

See Install Out of the Box Supply Chain with Testing for information about setting tap-values at
installation time.

Source-Test-Scan-to-URL

Fetches application source code

Runs user defined tests against the code

Scans the code for vulnerabilities

Builds the code into an image

Scans the image for vulnerabilities

Writes the Kubernetes configuration necessary to deploy the application

Commits that configuration to either a Git repository or an image registry

Resources

source-provider

Refers to source-template.

Parameters provided:

serviceAccount from tap-value service_account. Overridable by workload.

gitImplementation from tap-value git_implementation. NOT overridable by workload.

source-tester

Refers to testing-pipeline.

No parameters are provided by the supply-chain.

source-scanner

Refers to source-scanner-template.

Parameters provided:

scanning_source_policy from tap-value scanning.source.policy. Overridable by workload.

scanning_source_template from tap-value scanning.source.template. Overridable by
workload.

Tanzu Application Platform v1.5

VMware by Broadcom 1469



image-provider

Refers to kaniko-template when the workload provides a parameter dockerfile. Refers to kpack-
template otherwise.

Parameters provided:

serviceAccount from tap-value service_account. Overridable by workload.

registry from tap-value registry. NOT overridable by workload.

clusterBuilder from tap-value cluster_builder. Overridable by workload.

dockerfile value ./Dockerfile. Overridable by workload.

docker_build_context value ./. Overridable by workload.

docker_build_extra_args value []. Overridable by workload.

image-scanner

Refers to image-scanner-template.

Parameters provided:

scanning_image_policy from tap-value scanning.image.policy. Overridable by workload.

scanning_image_template from tap-value scanning.image.template. Overridable by
workload.

Common resources

Config-Provider

App-Config

Service-Bindings

Api-Descriptors

Config-Writer

Deliverable

Parameters provided to all resources

maven_repository_url from tap-value maven.repository.url. NOT overridable by workload.

maven_repository_secret_name from tap-value maven.repository.secret_name. NOT
overridable by workload.

See Params provided by all Supply Chains to all Resources

Package

Out of the Box Supply Chain Testing Scanning

More information

See Install Out of the Box Supply Chain with Testing and Scanning for information about setting
tap-values at installation time.

Basic-Image-to-URL

Fetches a prebuilt image.

Tanzu Application Platform v1.5

VMware by Broadcom 1470



Writes the Kubernetes configuration necessary to deploy the application.

Commits that configuration to either a Git repository or an image registry.

Resources

image-provider

Refers to image-provider-template.

Parameters provided:

serviceAccount from tap-value service_account. Overridable by workload.

Common resources

Config-Provider

App-Config

Service-Bindings

Api-Descriptors

Config-Writer

Deliverable

Parameters provided to all resources

See Params provided by all Supply Chains to all Resources

Package

Out of the Box Supply Chain Basic

More information

See Install Out of the Box Supply Chain Basic for information about setting tap-values at installation
time.

Testing-Image-to-URL

Fetches a prebuilt image.

Writes the Kubernetes configuration necessary to deploy the application.

Commits that configuration to either a Git repository or an image registry.

Resources

image-provider

Refers to image-provider-template.

Parameters provided:

serviceAccount from tap-value service_account. Overridable by workload.

Common resources

Config-Provider

Tanzu Application Platform v1.5

VMware by Broadcom 1471



App-Config

Service-Bindings

Api-Descriptors

Config-Writer

Deliverable

Parameters provided to all resources

See Params provided by all Supply Chains to all Resources

Package

Out of the Box Supply Chain Testing

More information

See Install Out of the Box Supply Chain with Testing for information about setting tap-values at
installation time.

Scanning-image-scan-to-URL

Fetches a prebuilt image.

Scans the image for vulnerabilities.

Writes the Kubernetes configuration necessary to deploy the application.

Commits the configuration to either a Git repository or an image registry.

Resources

image-provider

Refers to image-provider-template.

Parameters provided:

serviceAccount from tap-value service_account. Overridable by workload.

image-scanner

Refers to image-scanner-template.

Parameters provided:

scanning_image_policy from tap-value scanning.image.policy. Overridable by workload.

scanning_image_template from tap-value scanning.image.template. Overridable by
workload.

Common resources

Config-Provider

App-Config

Service-Bindings

Api-Descriptors

Tanzu Application Platform v1.5

VMware by Broadcom 1472



Config-Writer

Deliverable

Parameters provided to all resources

See Params provided by all Supply Chains to all Resources

Package

Out of the Box Supply Chain Testing Scanning

More information

See Install Out of the Box Supply Chain with Testing and Scanning for information about setting
tap-values at installation time.

Source-to-URL-Package (experimental)

Purpose

Fetches the application source code.

Builds the source code into an image.

Bundles the Kubernetes configuration necessary to deploy the application into a Carvel
Package.

Commits the Package to a Git Repository.

Resources

This section describes the templates and their parameters.

source-provider

Refers to source-template.

Parameters provided:

serviceAccount from tap-value service_account. Overridable by workload.

gitImplementation from tap-value git_implementation. NOT overridable by workload.

image-provider

Refers to kaniko-template when the workload provides a parameter dockerfile. Refers to kpack-
template otherwise.

Parameters provided:

serviceAccount from tap-value service_account. Overridable by workload.

registry from tap-value registry. NOT overridable by workload.

clusterBuilder from tap-value cluster_builder. Overridable by workload.

dockerfile value ./Dockerfile. Overridable by workload.

docker_build_context value ./. Overridable by workload.

docker_build_extra_args value []. Overridable by workload.

carvel-package

Tanzu Application Platform v1.5

VMware by Broadcom 1473



Refers to carvel-package.

Parameters provided:

serviceAccount from tap-value service_account. Overridable by workload.

registry from tap-value registry. NOT overridable by workload.

package-config-writer

Refers to the package-config-writer-and-pull-requester-template when the tap-value
gitops.commit_strategy is pull_request. Otherwise, this resource refers to the package-config-
writer-template.

Parameters provided:

serviceAccount from tap-value service_account. Overridable by workload.

registry from tap-value registry. NOT overridable by workload.

Common resources

Config-Provider

App-Config

Service-Bindings

Api-Descriptors

Parameters provided to all resources

maven_repository_url from tap-value maven.repository.url. NOT overridable by workload.

maven_repository_secret_name from tap-value maven.repository.secret_name. NOT
overridable by workload.

carvel_package_gitops_subpath from tap-value carvel_package.gitops_subpath.
Overridable by workload.

carvel_package_name_suffix from tap-value carvel_package.name_suffix. Overridable by
workload.

See Params provided by all Supply Chains to all Resources

Package

Out of the Box Supply Chain Basic

More information

See Install Out of the Box Supply Chain Basic for information about setting tap-values at installation
time.

Basic-Image-to-URL-Package (experimental)

Fetches a prebuilt image.

Bundles the Kubernetes configuration necessary to deploy the application into a Carvel
Package.

Commits the Package to a Git Repository.

Resources

Tanzu Application Platform v1.5

VMware by Broadcom 1474



image-provider

Refers to image-provider-template.

Parameters provided:

serviceAccount from tap-value service_account. Overridable by workload.

carvel-package

Refers to carvel-package.

Parameters provided:

serviceAccount from tap-value service_account. Overridable by workload.

registry from tap-value registry. NOT overridable by workload.

package-config-writer

Refers to the package-config-writer-and-pull-requester-template when the tap-value
gitops.commit_strategy is pull_request. Otherwise, this resource refers to the package-config-
writer-template

Parameters provided:

serviceAccount from tap-value service_account. Overridable by workload.

registry from tap-value registry. NOT overridable by workload.

Common resources

Config-Provider

App-Config

Service-Bindings

Api-Descriptors

Config-Writer

Deliverable

Parameters provided to all resources

carvel_package_gitops_subpath from tap-value carvel_package.gitops_subpath.
Overridable by workload.

carvel_package_name_suffix from tap-value carvel_package.name_suffix. Overridable by
workload.

See Params provided by all Supply Chains to all Resources

Package

Out of the Box Supply Chain Basic

More information

See Install Out of the Box Supply Chain Basic for information about setting tap-values at installation
time.

Resources common to all OOTB supply chains

Tanzu Application Platform v1.5

VMware by Broadcom 1475



config-provider

Refers to convention-template.

Parameters provided:

serviceAccount from tap-value service_account. Overridable by workload.

app-config

The tap-values field supported_workloads defines which templates are referred to by this resource.
Default configuration is:

supported_workloads:

- type: web

  cluster_config_template_name: config-template

- type: server

  cluster_config_template_name: server-template

- type: worker

  cluster_config_template_name: worker-template

The workload’s apps.tanzu.vmware.com/workload-type label determines which template is used at
this step. For example, when the workload has a label apps.tanzu.vmware.com/workload-type:web,
the supply chain references config-template.

No parameters are provided by the supply-chain.

service-bindings

Refers to the service-binding template.

No parameters are provided by the supply-chain.

api-descriptors

Refers to the api-descriptors template.

No parameters are provided by the supply-chain.

config-writer

Refers to the config-writer-and-pull-requester-template when the tap-value
gitops.commit_strategy is pull_request. Otherwise, this resource refers to the config-writer-
template

Parameters provided:

serviceAccount from tap-value service_account. Overridable by workload.

registry from tap-value registry. NOT overridable by workload.

deliverable

Refers to the external-deliverable-template when the tap-value external_delivery evaluates to
true. Otherwise the resource refers to the deliverable-template.

Parameters provided:

registry from tap-value registry. NOT overridable by workload.

Parameters provided by all supply chains to all resources

All of the following parameters are overridable by the workload.

Tanzu Application Platform v1.5

VMware by Broadcom 1476



gitops_branch from tap-value gitops.branch

gitops_user_name from tap-value gitops.username

gitops_user_email from tap-value gitops.email

gitops_commit_message from tap-value gitops.commit_message

gitops_ssh_secret from tap-value gitops.ssh_secret

gitops_repository_prefix from tap-value gitops.repository_prefix when present.

gitops_server_address from tap-value gitops.server_address when present.

gitops_repository_owner from tap-value gitops.repository_owner when present.

gitops_repository_name from tap-value gitops.repository_name when present.

gitops_server_kind from tap-value gitops.pull_request.server_kind when present.

gitops_commit_branch from tap-value gitops.pull_request.commit_branch when present.

gitops_pull_request_title from tap-value gitops.pull_request.pull_request_title
when present.

gitops_pull_request_body from tap-value gitops.pull_request.pull_request_body when
present.

Template reference for Supply Chain Choreographer

This topic describes the objects from templates that you can use with Supply Chain Choreographer.

All the objects referenced in this topic are Cartographer Templates packaged in Out of the Box
Templates.

This topic describes:

The purpose of the templates

The one or more objects that the templates create

The supply chains that include the templates

The parameters that the templates use

source-template

Purpose

Creates an object to fetch source code and make that code available to other objects in the supply
chain. See Building from Source.

Used by

Source-to-URL in the source-provider step.

Source-Test-to-URL in the source-provider step.

Source-Test-Scan-to-URL in the source-provider step.

Source-to-URL-Package (experimental) in the source-provider step.

Creates

The source-template creates one of three objects, either:

GitRepository. Created if the workload has .spec.source.git defined.

Tanzu Application Platform v1.5

VMware by Broadcom 1477

https://cartographer.sh/docs/v0.6.0/reference/template/


MavenArtifact. Created if the template is provided a value for the parameter maven.

ImageRepository. Created if the workload has .spec.source.image defined.

GitRepository

GitRepository makes source code from a particular commit available as a tarball in the cluster.
Other resources in the supply chain can then access that code.

Parameters

Template reference for Supply Chain Choreographer

Parameter
name

Meaning Example

gitImpleme

ntation

The library used to fetch source code. If not provided, Tanzu Application Platform's
default implementation uses go-git, which works with the providers supported by
Tanzu Application Platform: GitHub and GitLab. An alternate value that can be used
with other Git providers is libgit2.

      - na

me: gitImp

lementatio

n

        va

lue: libgi

t2

      

gitops_ssh

_secret

Name of the secret used to provide credentials for the Git repository. The secret
with this name must exist in the same namespace as the Workload. The credentials
must be sufficient to read the repository. If not provided, Tanzu Application
Platform defaults to look for a secret named git-ssh. See Git authentication.

      - na

me: gitops

_ssh_secre

t

        va

lue: git-c

redentials

      

More information

For an example using the Tanzu CLI to create a Workload using GitHub as the provider of source
code, see Create a workload from GitHub repository.

For information about GitRepository objects, see GitRepository.

ImageRepository

ImageRepository makes the contents of a container image available as a tarball on the cluster.

Parameters

Note

Some Git providers, notably Azure DevOps, require you to use libgit2 due to the
server-side implementation providing support only for git’s v2 protocol. For
information about the features supported by each implementation, see git
implementation in the flux documentation.

Tanzu Application Platform v1.5

VMware by Broadcom 1478

https://fluxcd.io/flux/components/source/gitrepositories/
https://git-scm.com/docs/protocol-v2
https://fluxcd.io/flux/components/source/gitrepositories/#git-implementation


Parameter
name

Meaning Example

serviceAcco

unt

Name of the service account, providing credentials to ImageRepository for
fetching container images. The service account must exist in the same
namespace as the Workload.

      - name: 

serviceAccount

        value: 

default

      

More information

For information about the ImageRepository resource, see the ImageRepository reference
documentation.

For information about how to use the Tanzu CLI to create a workload leveraging ImageRepository,
see Create a workload from local source code.

MavenArtifact

MavenArtifact makes a pre-built Java artifact available to as a tarball on the cluster.

While the source-template leverages the workload’s .spec.source field when creating a
GitRepository or ImageRepository object, the creation of the MavenArtifact relies only on
parameters in the Workload.

Parameters

Parameter name Meaning Example

maven Points to the Maven artifact to fetch and the polling interval.
      - name: maven

        value:

          artifactI

d: springboot-initia

l

          groupId: c

om.example

          version: R

ELEASE

          classifie

r: sources         # 

optional

          type: jar                   

# optional

          artifactRe

tryTimeout: 1m0s  # 

optional

      

Note

When using the Tanzu CLI to configure this serviceAccount parameter, use --param
serviceAccount=.... The similarly named --service-account flag sets a different
value: the spec.serviceAccountName key in the Workload object.

Tanzu Application Platform v1.5

VMware by Broadcom 1479



Parameter name Meaning Example

maven_repositor

y_url

Specifies the Maven repository from which to fetch
      - name: maven_

repository_url

        value: http

s://repo1.maven.org/

maven2/

      

maven_repositor

y_secret_name

Specifies the secret containing credentials necessary to fetch
from the Maven repository. The secret named must exist in the
same workspace as the workload.

      - name: maven_

repository_secret_na

me

        value: auth-

secret

      

More information

For information about the custom resource, see MavenArtifact reference docs.

For information about how to use the custom resource with the tanzu apps workload CLI plug-in
Create a Workload from Maven repository artifact.

testing-pipeline

Purpose

Tests the source code provided in the supply chain. Testing depends on a user provided Tekton
Pipeline. Parameters for this template allow for selection of the proper Pipeline and for specification
of additional values to pass to the Pipeline.

Used by

Source-Test-to-URL in the source-tester step.

Source-Test-Scan-to-URL in the source-tester step.

These are used as the source-tester resource.

Creates

testing-pipelinecreates a Runnable object. This Runnable provides inputs to the
ClusterRunTemplate named tekton-source-pipelinerun.

Parameters

Tanzu Application Platform v1.5

VMware by Broadcom 1480

https://tekton.dev/docs/pipelines/pipelines/#overview
https://cartographer.sh/docs/v0.4.0/reference/runnable/
https://cartographer.sh/docs/v0.4.0/reference/runnable/#clusterruntemplate


Parameter name Meaning Example

testing_pipeline

_matching_labels

Set of labels to use when searching for Tekton Pipeline objects in
the same namespace as the Workload. By default, a Pipeline
labeled as apps.tanzu.vmware.com/pipeline: test is selected.

      - name: tes

ting_pipeline_mat

ching_labels

        value:

          apps.ta

nzu.vmware.com/pi

peline: test

          my.comp

any/language: gol

ang

      

testing_pipeline

_params

Set of parameters to pass to the Tekton Pipeline. To this set of
parameters, the template always adds the source URL and revision
as source-url and source-revision.

      - name: tes

ting_pipeline_par

ams

        value:

        - name: v

erbose

          value: 

true

        - name: f

oo

          value: 

bar

      

More information

For information about the ClusterRunTemplate that pairs with the Runnable, read tekton-source-
pipelinerun

For information about the Tekton Pipeline that the user must create, read the OOTB Supply Chain
Testing documentation of the Pipeline

source-scanner-template

Purpose

Scans the source code for vulnerabilities.

Used by

Source-Test-Scan-to-URL in the source-scanner step.

This is used as the source-scanner resource.

Creates

SourceScan

Parameters

Tanzu Application Platform v1.5

VMware by Broadcom 1481



Parameter name Meaning Example

scanning_sourc

e_template

Name of the ScanTemplate object to use for running the scans. The
ScanTemplate must be in the same namespace as the Workload.       - name: scann

ing_source_template

        value: priv

ate-source-scan-tem

plate

      

scanning_sourc

e_policy

Name of the ScanPolicy object to use when evaluating the scan
results of a source scan. The ScanPolicy must be in the same
namespace as the Workload.

      - name: scann

ing_source_policy

        value: allo

wlist-policy

      

More information

For information about how to set up the Workload namespace with the ScanPolicy and
ScanTemplate required for this resource, see Out of the Box Supply Chain with Testing and
Scanning.

For information about the SourceScan custom resource, see SourceScan reference.

For information about how the artifacts found during scanning are catalogued, see Supply Chain
Security Tools for Tanzu – Store.

image-provider-template

Purpose

Fetches a container image of a prebuilt application, specified in the workload’s .spec.image field.
This makes the content-addressable name, (e.g. the image name containing the digest) available to
other resources in the supply chain.

Used by

Basic-Image-to-URL in the image-provider step.

Testing-Image-to-URL in the image-provider step.

Scanning-Image-Scan-to-URL in the image-provider step.

Basic-Image-to-URL-Package (experimental) in the image-provider step.

These are used as the image-provider resource.

Creates

ImageRepository.source.apps.tanzu.vmware.com

Parameters

Tanzu Application Platform v1.5

VMware by Broadcom 1482



Parameter
name

Meaning Example

serviceAcco

unt

Name of the service account providing credentials for the target image
registry. The service account must exist in the same namespace as the
Workload.

      - name: s

erviceAccount

        value: 

default

      

More information

For information about the ImageRepository resource, see ImageRepository reference docs.

For information about prebuilt images, see Using a prebuilt image.

kpack-template

Purpose

Builds an container image from source code using cloud native buildpacks.

Used by

Source-to-URL in the image-provider step.

Source-Test-to-URL in the image-provider step.

Source-Test-Scan-to-URL in the image-provider step.

Source-to-URL-Package (experimental) in the image-provider step.

These are used as the image-provider resource when the workload parameter dockerfile is not
defined.

Creates

Image.kpack.io

Parameters

Parameter
name

Meaning Example

serviceAccou

nt

Name of the service account providing credentials for the configured image
registry. Image uses these credentials to push built container images to the
registry. The service account must exist in the same namespace as the
Workload.

      - name: 

serviceAccount

        value: 

default

      

Note

When using the Tanzu CLI to configure this serviceAccount parameter, use --param
serviceAccount=.... The similarly named --service-account flag sets a different
value: the spec.serviceAccountName key in the Workload object.

Tanzu Application Platform v1.5

VMware by Broadcom 1483

https://buildpacks.io/
https://github.com/buildpacks-community/kpack/blob/main/docs/image.md


Parameter
name

Meaning Example

clusterBuild

er

Name of the Kpack Cluster Builder to use.
      - name: 

clusterBuilder

        value: 

nodejs-cluster

-builder

      

buildService

Bindings

Definition of a list of service bindings to make use at build time. For example,
providing credentials for fetching dependencies from repositories that
require credentials.

      - name: 

buildServiceBi

ndings

        value:

          - na

me: settings-x

ml

            ki

nd: Secret

            ap

iVersion: v1

      

live-update Enable the use of Tilt's live-update function.
      - name: 

live-update

        value: 

"true"

      

More information

For information about the integration with Tanzu Build Service, see Tanzu Build Service Integration.

For information about live-update, see Developer Conventions and Overview of Tanzu Developer
Tools for IntelliJ.

For information about using Kpack builders with clusterBuilder, see Builders.

For information about buildServiceBindings, see Service Bindings.

kaniko-template

Purpose

Build an image for source code that includes a Dockerfile.

Used by

Source-to-URL in the image-provider step.

Source-Test-to-URL in the image-provider step.

Note

When using the Tanzu CLI to configure this serviceAccount parameter, use --param
serviceAccount=.... The similarly named --service-account flag sets a different
value: the spec.serviceAccountName key in the Workload object.

Tanzu Application Platform v1.5

VMware by Broadcom 1484

https://github.com/buildpacks-community/kpack/blob/main/docs/builders.md
https://github.com/buildpacks-community/kpack/blob/main/docs/servicebindings.md


Source-Test-Scan-to-URL in the image-provider step.

Source-to-URL-Package (experimental) in the image-provider step.

These are used as the image-provider resource when the workload parameter dockerfile is
defined.

Creates

A taskrun.tekton.dev which provides configuration to a Tekton ClusterTask to build an image with
kaniko.

This template uses the lifecycle: tekton flag to create new immutable objects rather than updating
the previous object.

Parameters

Parameter
name

Meaning Example

dockerfile relative path to the Dockerfile file in the build context
./Dockerfil

e

docker_build

_context

relative path to the directory where the build context is
.

docker_build

_extra_args

List of flags to pass directly to kaniko,such as providing arguments to a build.
- --build-a

rg=FOO=BAR

serviceAccou

nt

Name of the service account to use for providing Docker credentials. The service
account must exist in the same namespace as the Workload. The service account
must have a secret associated with the credentials. See Configuring
authentication for Docker in the Tekton documentation.

      - nam

e: serviceA

ccount

        val

ue: default

      

registry Specification of the registry server and repository in which the built image is
placed.       - nam

e: registry

        val

ue:

          s

erver: inde

x.docker.io

          r

epository: 

web-team

      

More information

For information about how to use Dockerfile-based builds and limits associated with the function,
see Dockerfile-based builds.

For information about lifecycle:tekton, read Cartographer Lifecycle.

image-scanner-template

Tanzu Application Platform v1.5

VMware by Broadcom 1485

https://cartographer.sh/docs/v0.6.0/lifecycle/
https://tekton.dev/docs/pipelines/auth/#configuring-authentication-for-docker
https://cartographer.sh/docs/v0.6.0/lifecycle/


Purpose

Scans the container image for vulnerabilities, persists the results in a store, and prevents the image
from moving forward if CVEs are found which are not compliant with its referenced ScanPolicy.

Used by

Source-Test-Scan-to-URL in the image-scanner step.

Scanning-Image-Scan-to-URL in the image-scanner step.

Creates

ImageScan.scanning.apps.tanzu.vmware.com

Parameters

Parameter name Meaning Example

scanning_image

_template

Name of the ScanTemplate object for running the scans against a
container image. The ScanTemplate must be in the same
namespace as the Workload.

      - name: scann

ing_image_template

        value: priv

ate-image-scan-temp

late

      

scanning_image

_policy

Name of the ScanPolicy object for evaluating the scan results of an
image scan. The ScanPolicy must be in the same namespace as the
Workload.

      - name: scann

ing_image_policy

        value: allo

wlist-policy

      

More information

For information about the ImageScan custom resource, see ImageScan reference.

For information about how the artifacts found during scanning are catalogued, see Supply Chain
Security Tools for Tanzu – Store.

convention-template

Purpose

Create the PodTemplateSpec for the Kubernetes configuration (e.g. the knative service or
kubernetes deployment) which are applied to the cluster.

Used by
Source-to-URL in the config-provider step.

Basic-Image-to-URL in the config-provider step.

Source-Test-to-URL in the config-provider step.

Testing-Image-to-URL in the config-provider step.

Source-Test-Scan-to-URL in the config-provider step.

Scanning-Image-Scan-to-URL in the config-provider step.

Tanzu Application Platform v1.5

VMware by Broadcom 1486



Source-to-URL-Package (experimental) in the config-provider step.

Basic-Image-to-URL-Package (experimental) in the config-provider step.

Creates

Creates a PodIntent object. The PodIntent leverages conventions installed on the cluster. The
PodIntent object is responsible for generating a PodTemplateSpec. The PodTemplateSpec is used
in app configs, such as knative services and deployments, to represent the shape of the pods to run
the application in containers.

Parameters

Parameter
name

Meaning Example

serviceAc

count

Name of the serviceAccount providing necessary credentials to PodIntent. The
serviceAccount must be in the same namespace as the Workload. The serviceAccount
is set as the serviceAccountName in the podtemplatespec. The credentials associated
with the serviceAccount must allow fetching the container image used to inspect the
metadata passed to convention servers.

      - n

ame: serv

iceAccoun

t

        v

alue: def

ault

      

annotatio

ns

Extra set of annotations to pass down to the PodTemplateSpec.
      - n

ame: anno

tations

        v

alue:

          

name: my-

applicati

on

          

version: 

v1.2.3

          

team: sto

re

      

debug Put the workload in debug mode.
      - n

ame: debu

g

        v

alue: "tr

ue"

      

live-

update

Enable live-updating of the code (for innerloop development).
      - n

ame: live

-update

        v

alue: "tr

ue"

      

Tanzu Application Platform v1.5

VMware by Broadcom 1487



More information

For information about PodTemplateSpec, see PodTemplateSpec in the Kubernetes documentation.

For information about conventions, see Cartographer Conventions.

For information about the two convention servers enabled by default in Tanzu Application Platform
installations, see Developer Conventions and Spring Boot conventions.

config-template

Purpose

For workloads with the label apps.tanzu.vmware.com/workload-type: web, define a knative service.

Used by

Source-to-URL in the app-config step.

Basic-Image-to-URL in the app-config step.

Source-Test-to-URL in the app-config step.

Testing-Image-to-URL in the app-config step.

Source-Test-Scan-to-URL in the app-config step.

Scanning-Image-Scan-to-URL in the app-config step.

Creates

A ConfigMap, in which the data field has a key delivery.yaml whose value is the definition of a
knative service.

Parameters

None

More information

See workload types for more details about the three different types of workloads.

worker-template

Purpose

For workloads with the label apps.tanzu.vmware.com/workload-type: worker, define a Kubernetes
Deployment.

Used by

Source-to-URL in the app-config step.

Basic-Image-to-URL in the app-config step.

Note

When using the Tanzu CLI to configure this serviceAccount parameter, use --param
serviceAccount=.... The similarly named --service-account flag sets a different
value: the spec.serviceAccountName key in the Workload object.

Tanzu Application Platform v1.5

VMware by Broadcom 1488

https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-template-v1/#PodTemplateSpec


Source-Test-to-URL in the app-config step.

Testing-Image-to-URL in the app-config step.

Source-Test-Scan-to-URL in the app-config step.

Scanning-Image-Scan-to-URL in the app-config step.

Creates

A ConfigMap, in which the data field has a key delivery.yaml whose value is the definition of a
Kubernetes Deployment.

Parameters

None

More information

For information about the three different types of workloads, see workload types.

server-template

Purpose

For workloads with the label apps.tanzu.vmware.com/workload-type: server, define a Kubernetes
Deployment and a Kubernetes Service.

Used by

Source-to-URL in the app-config step.

Basic-Image-to-URL in the app-config step.

Source-Test-to-URL in the app-config step.

Testing-Image-to-URL in the app-config step.

Source-Test-Scan-to-URL in the app-config step.

Scanning-Image-Scan-to-URL in the app-config step.

Source-to-URL-Package (experimental) in the app-config step.

Basic-Image-to-URL-Package (experimental) in the app-config step.

Creates

A ConfigMap, in which the data field has a key delivery.yaml whose value is the definitions of a
Kubernetes Deployment and a Kubernetes Service to expose the pods.

Parameters

Tanzu Application Platform v1.5

VMware by Broadcom 1489



Parameter
name

Meaning Example

ports Set of network ports to expose from the application to the
Kubernetes cluster.       - name: ports

        value:

          - containerPor

t: 2025

            name: smtp

            port: 25

      

More information

For information about the three different types of workloads, see workload types.

For information about the ports parameter, see server-specific Workload parameters.

service-bindings

Purpose

Adds ServiceBindings to the set of Kubernetes configuration files.

Used by

Source-to-URL in the service-bindings step.

Basic-Image-to-URL in the service-bindings step.

Source-Test-to-URL in the service-bindings step.

Testing-Image-to-URL in the service-bindings step.

Source-Test-Scan-to-URL in the service-bindings step.

Scanning-Image-Scan-to-URL in the service-bindings step.

Source-to-URL-Package (experimental) in the service-bindings step.

Basic-Image-to-URL-Package (experimental) in the service-bindings step.

Creates

A ConfigMap. This template consumes input of multiple deployment YAML files and enriches the
input with ResourceClaims and ServiceBindings if the workload contains serviceClaims.

Parameters

Parameter
name

Meaning Example

annotations Extra set of annotations to pass down to the ServiceBinding and
ResourceClaim objects.       - name: annotati

ons

        value:

          name: my-app

lication

          version: v1.

2.3

          team: store

      

Tanzu Application Platform v1.5

VMware by Broadcom 1490



More information

For an example, see –service-ref in the Tanzu CLI documentation.

For an overview of the function, see Consume services on Tanzu Application Platform.

api-descriptors

Purpose

The api-descriptor resource takes care of adding an APIDescriptor to the set of Kubernetes
objects to deploy such that API auto registration takes place.

Used by

Source-to-URL in the api-descriptors step.

Basic-Image-to-URL in the api-descriptors step.

Source-Test-to-URL in the api-descriptors step.

Testing-Image-to-URL in the api-descriptors step.

Source-Test-Scan-to-URL in the api-descriptors step.

Scanning-Image-Scan-to-URL in the api-descriptors step.

Source-to-URL-Package (experimental) in the api-descriptors step.

Basic-Image-to-URL-Package (experimental) in the api-descriptors step.

Creates

A ConfigMap. This template consumes input of multiple YAML files and enriches the input with an
APIDescriptor if the workload has a label apis.apps.tanzu.vmware.com/register-api set to true.

Parameters

Parameter
name

Meaning Example

annotations Extra set of annotations to pass down to the
APIDescriptor object.       - name: annotations

        value:

          name: my-application

          version: v1.2.3

          team: store

      

api_descrip

tor

Information used to fill the state that you
want of the APIDescriptor object (its spec).       - name: api_descriptor

        value:

          type: openapi

          location:

            baseURL: http://petclinic-

hard-coded.my-apps.tapdemo.vmware.com/

            path: "/v3/api

          owner: team-petclinic

          system: pet-clinics

          description: "example"

      

More information

Tanzu Application Platform v1.5

VMware by Broadcom 1491



For information about API auto registration, see Use API Auto Registration.

config-writer-template

Purpose

Persist in an external system, such as a registry or git repository, the Kubernetes configuration
passed to the template.

Used by

Source-to-URL in the config-writer step.

Basic-Image-to-URL in the config-writer step.

Source-Test-to-URL in the config-writer step.

Testing-Image-to-URL in the config-writer step.

Source-Test-Scan-to-URL in the config-writer step.

Scanning-Image-Scan-to-URL in the config-writer step.

Creates

A runnable which creates a Tekton TaskRun that refers either to the Tekton Task git-writer or the
Tekton Task image-writer.

Parameters

Parameter
name

Meaning Example

serviceAccoun

t

Name of the service account which provides the
credentials to the registry or repository. The service
account must exist in the same namespace as the
Workload.

      - name: serviceAcco

unt

        value: default

      

gitops_branch Name of the branch to push the configuration to.
      - name: gitops_bran

ch

        value: main

      

gitops_user_n

ame

User name to use in the commits.
      - name: gitops_user

_name

        value: "Alice Le

e"

      

gitops_user_e

mail

User email address to use in the commits.
      - name: gitops_user

_email

        value: alice@exam

ple.com

      

Tanzu Application Platform v1.5

VMware by Broadcom 1492



Parameter
name

Meaning Example

gitops_commit

_message

Message to write as the body of the commits produced for
pushing configuration to the Git repository.       - name: gitops_comm

it_message

        value: "ci bump"

      

gitops_reposi

tory

The full repository URL to which the configuration is
committed. DEPRECATED       - name: gitops_repo

sitory

        value: "https://g

ithub.com/vmware-tanzu/ca

rtographer"

      

gitops_reposi

tory_prefix

The prefix of the repository URL. DEPRECATED
      - name: gitops_repo

sitory

        value: "https://g

ithub.com/vmware-tanzu/"

      

gitops_server

_address

The server URL of the Git repository to which configuration
is applied.       - name: gitops_serv

er_address

        value: "https://g

ithub.com/"

      

gitops_reposi

tory_owner

The owner/organization to which the repository belongs.
      - name: gitops_repo

sitory_owner

        value: vmware-tan

zu

      

gitops_reposi

tory_name

The name of the repository.
      - name: gitops_repo

sitory_name

        value: cartograph

er

      

registry Specification of the registry server and repository in which
the configuration is placed.       - name: registry

        value:

          server: index.d

ocker.io

          repository: web

-team

          ca_cert_data:

            -----BEGIN CE

RTIFICATE-----

            MIIFXzCCA0egA

wIBAgIJAJYm37SFocjlMA0GCS

qGSIb3DQEBDQUAMEY...

            -----END CERT

IFICATE-----

      

Tanzu Application Platform v1.5

VMware by Broadcom 1493



More information

For information about operating this template, see Gitops vs RegistryOps and the config-writer-
and-pull-requester-template.

config-writer-and-pull-requester-template

Purpose

Persist the passed in Kubernetes configuration to a branch in a repository and open a pull request
to another branch. This process allows for manual review of configuration before deployment to a
cluster.

Used by

Source-to-URL in the config-writer step.

Basic-Image-to-URL in the config-writer step.

Source-Test-to-URL in the config-writer step.

Testing-Image-to-URL in the config-writer step.

Source-Test-Scan-to-URL in the config-writer step.

Scanning-Image-Scan-to-URL in the config-writer step.

Creates

A runnable which provides configuration to the ClusterRunTemplate commit-and-pr-pipelinerun to
create a Tekton TaskRun. The Tekton TaskRun refers to the Tekton Task commit-and-pr.

Parameters

Parameter name Meaning Example

serviceAccount Name of the service account which provides the credentials to the
registry or repository. The service account must exist in the same
namespace as the Workload.

      - name: serv

iceAccount

        value: def

ault

      

gitops_commit_b

ranch

Name of the branch to which configuration is pushed.
      - name: gito

ps_commit_branch

        value: fea

ture

      

gitops_branch Name of the branch to which a pull request is opened.
      - name: gito

ps_branch

        value: mai

n

      

Tanzu Application Platform v1.5

VMware by Broadcom 1494



Parameter name Meaning Example

gitops_user_nam

e

User name to use in the commits.
      - name: gito

ps_user_name

        value: "Al

ice Lee"

      

gitops_user_ema

il

User email address to use in the commits.
      - name: gito

ps_user_email

        value: ali

ce@example.com

      

gitops_commit_m

essage

Message to write as the body of the commits produced for pushing
configuration to the Git repository.       - name: gito

ps_commit_message

        value: "ci 

bump"

      

gitops_pull_req

uest_title

Title of the pull request to be opened.
      - name: gito

ps_pull_request_ti

tle

        value: "re

ady for review"

      

gitops_pull_req

uest_body

Body of the pull request to be opened.
      - name: gito

ps_pull_request_bo

dy

        value: "ge

nerated by supply 

chain"

      

gitops_server_a

ddress

The server URL of the Git repository to which configuration is
applied.       - name: gito

ps_server_address

        value: "ht

tps://github.com/"

      

gitops_reposito

ry_owner

The owner/organization to which the repository belongs.
      - name: gito

ps_repository_owne

r

        value: vmw

are-tanzu

      

gitops_reposito

ry_name

The name of the repository.
      - name: gito

ps_repository_name

        value: car

tographer

      

Tanzu Application Platform v1.5

VMware by Broadcom 1495



Parameter name Meaning Example

gitops_server_k

ind

The kind of Git provider
      - name: gito

ps_server_kind

        value: git

lab

      

More information

For information about the operation of this template, see Gitops vs RegistryOps and the config-
writer-template.

deliverable-template

Purpose

Create a deliverable which pairs with a Delivery to deploy Kubernetes configuration on the cluster.

Used by

Source-to-URL in the deliverable step.

Basic-Image-to-URL in the deliverable step.

Source-Test-to-URL in the deliverable step.

Testing-Image-to-URL in the deliverable step.

Source-Test-Scan-to-URL in the deliverable step.

Scanning-Image-Scan-to-URL in the deliverable step.

Creates

A Deliverable preconfigured with reference to a repository or registry from which to fetch
Kubernetes configuration.

Parameters

Parameter
name

Meaning Example

serviceAccou

nt

Name of the service account providing the necessary permissions
for the Delivery to create children objects. Populates the
Deliverable's serviceAccount parameter. The service account must
be in the same namespace as the Deliverable.

      - name: service

Account

        value: defaul

t

      

gitops_ssh_s

ecret

Name of the secret where credentials exist for fetching the
configuration from a Git repository. Populates the Deliverable's
gitops_ssh_secret parameter. The service account must be in the
same namespace as the Deliverable.

      - name: gitops_

ssh_secret

        value: ssh-se

cret

      

Tanzu Application Platform v1.5

VMware by Broadcom 1496

https://cartographer.sh/docs/v0.6.0/architecture/#clusterdelivery
https://cartographer.sh/docs/v0.6.0/reference/deliverable/#deliverable


Parameter
name

Meaning Example

gitops_branc

h

Name of the branch from which to fetch the configuration.
      - name: gitops_

branch

        value: main

      

gitops_repos

itory

The full repository URL to which the configuration is fetched.
DEPRECATED       - name: gitops_

repository

        value: "http

s://github.com/vmware

-tanzu/cartographer"

      

gitops_repos

itory_prefix

The prefix of the repository URL. DEPRECATED
      - name: gitops_

repository

        value: "http

s://github.com/vmware

-tanzu/"

      

gitops_serve

r_address

The server URL of the Git repository from which configuration is
fetched.       - name: gitops_

server_address

        value: "http

s://github.com/"

      

gitops_repos

itory_owner

The owner/organization to which the repository belongs.
      - name: gitops_

repository_owner

        value: vmware

-tanzu

      

gitops_repos

itory_name

The name of the repository.
      - name: gitops_

repository_name

        value: cartog

rapher

      

Tanzu Application Platform v1.5

VMware by Broadcom 1497



Parameter
name

Meaning Example

registry Specification of the registry server and repository from which the
configuration is fetched.       - name: registr

y

        value:

          server: ind

ex.docker.io

          repository: 

web-team

          ca_cert_dat

a:

            -----BEGI

N CERTIFICATE-----

            MIIFXzCCA

0egAwIBAgIJAJYm37SFoc

jlMA0GCSqGSIb3DQEBDQU

AMEY...

            -----END 

CERTIFICATE-----

      

More information

For information about the ClusterDelivery shipped with ootb-delivery-basic, see Out of the Box
Delivery Basic.

external-deliverable-template

Purpose

Create a definition of a deliverable which a user can manually applied to an external kubernetes
cluster. When a properly configured Delivery is installed on that external cluster, the Deliverable
will pair with the Delivery to deploy Kubernetes configuration on the cluster. For example, the
OOTB Delivery.

Used by

Source-to-URL in the deliverable step.

Basic-Image-to-URL in the deliverable step.

Source-Test-to-URL in the deliverable step.

Testing-Image-to-URL in the deliverable step.

Source-Test-Scan-to-URL in the deliverable step.

Scanning-Image-Scan-to-URL in the deliverable step.

Creates

Note

When using the Tanzu CLI to configure this serviceAccount parameter, use --param
serviceAccount=.... The similarly named --service-account flag sets a different
value: the spec.serviceAccountName key in the Workload object.

Tanzu Application Platform v1.5

VMware by Broadcom 1498

https://cartographer.sh/docs/v0.6.0/architecture/#clusterdelivery


A configmap in which the .data field has a key deliverable for which the value is the YAML
definition of a Deliverable.

Parameters

Parameter
name

Meaning Example

serviceAccou

nt

Name of the service account providing the necessary permissions
for the Delivery to create children objects. Populates the
Deliverable's serviceAccount parameter. The service account must
be in the same namespace as the Deliverable.

      - name: service

Account

        value: defaul

t

      

gitops_ssh_s

ecret

Name of the secret where credentials exist for fetching the
configuration from a Git repository. Populates the Deliverable's
gitops_ssh_secret parameter. The service account must be in the
same namespace as the Deliverable.

      - name: gitops_

ssh_secret

        value: ssh-se

cret

      

gitops_branc

h

Name of the branch from which to fetch the configuration.
      - name: gitops_

branch

        value: main

      

gitops_repos

itory

The full repository URL to which the configuration is fetched.
DEPRECATED       - name: gitops_

repository

        value: "http

s://github.com/vmware

-tanzu/cartographer"

      

gitops_repos

itory_prefix

The prefix of the repository URL. DEPRECATED
      - name: gitops_

repository

        value: "http

s://github.com/vmware

-tanzu/"

      

gitops_serve

r_address

The server URL of the Git repository from which configuration is
fetched.       - name: gitops_

server_address

        value: "http

s://github.com/"

      

gitops_repos

itory_owner

The owner/organization to which the repository belongs.
      - name: gitops_

repository_owner

        value: vmware

-tanzu

      

Tanzu Application Platform v1.5

VMware by Broadcom 1499

https://cartographer.sh/docs/v0.6.0/reference/deliverable/#deliverable


Parameter
name

Meaning Example

gitops_repos

itory_name

The name of the repository.
      - name: gitops_

repository_name

        value: cartog

rapher

      

registry Specification of the registry server and repository from which the
configuration is fetched.       - name: registr

y

        value:

          server: ind

ex.docker.io

          repository: 

web-team

          ca_cert_dat

a:

            -----BEGI

N CERTIFICATE-----

            MIIFXzCCA

0egAwIBAgIJAJYm37SFoc

jlMA0GCSqGSIb3DQEBDQU

AMEY...

            -----END 

CERTIFICATE-----

      

More information

For information about the ClusterDelivery shipped with ootb-delivery-basic, see Out of the Box
Delivery Basic.

For information about using the Deliverable object in a multicluster environment, see Getting
started with multicluster Tanzu Application Platform.

delivery-source-template

Purpose

Continuously fetches Kubernetes configuration files from a Git repository or container image
registry and makes them available on the cluster.

Used by

Delivery-Basic

Creates

The source-template creates one of three objects, either: - GitRepository. Created if the
deliverable has .spec.source.git defined. - ImageRepository. Created if the deliverable has
.spec.source.image defined.

GitRepository

GitRepository makes source code from a particular commit available as a tarball in the cluster.
Other resources in the supply chain can then access that code.

Tanzu Application Platform v1.5

VMware by Broadcom 1500



Parameters

Parameter
name

Meaning Example

gitImpleme

ntation

The library used to fetch source code. If not provided, Tanzu Application Platform's
default implementation uses go-git, which works with the providers supported by
Tanzu Application Platform: GitHub and GitLab. An alternate value that you can use
with other Git providers is libgit2.

      - na

me: gitImp

lementatio

n

        va

lue: libgi

t2

      

gitops_ssh

_secret

Name of the secret used to provide credentials for the Git repository. The secret
with this name must exist in the same namespace as the Deliverable. The
credentials must be sufficient to read the repository. If not provided, Tanzu
Application Platform defaults to look for a secret named git-ssh. See Git
authentication.

      - na

me: gitops

_ssh_secre

t

        va

lue: git-c

redentials

      

More information

For an example using the Tanzu CLI to create a Workload using GitHub as the provider of source
code, see Create a workload from GitHub repository.

For information about GitRepository objects, see GitRepository.

ImageRepository

ImageRepository makes the contents of a container image available as a tarball on the cluster.

Parameters

Parameter
name

Meaning Example

serviceAcco

unt

Name of the service account, providing credentials to ImageRepository for
fetching container images. The service account must exist in the same
namespace as the Deliverable.

      - name: 

serviceAccoun

t

        valu

e: default

      

More information

Note

Some Git providers, notably Azure DevOps, require you to use libgit2 due to the
server-side implementation providing support only for git’s v2 protocol. For
information about the features supported by each implementation, see git
implementation in the flux documentation.

Tanzu Application Platform v1.5

VMware by Broadcom 1501

https://fluxcd.io/flux/components/source/gitrepositories/
https://git-scm.com/docs/protocol-v2
https://fluxcd.io/flux/components/source/gitrepositories/#git-implementation


For information about the ImageRepository resource, see ImageRepository reference docs.

app-deploy

Purpose

Applies Kubernetes configuration to the cluster.

Used by

Delivery-Basic

Creates

A kapp App.

Parameters

Parameter name Meaning Example

serviceAccount Name of the service account providing the necessary privileges for App to
apply the Kubernetes objects to the cluster. The service account must be in
the same namespace as the Deliverable.

      - name: 

serviceAccoun

t

        valu

e: default

      

gitops_sub_path

(deprecated)

Sub directory within the configuration bundle that is used for looking up
the files to apply to the Kubernetes cluster. DEPRECATED       - name: 

gitops_sub_pa

th

        valu

e: ./config

      

More information

For details about RBAC and how kapp-controller makes use of the ServiceAccount provided
through the Deliverable’s serviceAccount parameter, see kapp-controller’s Security Model.

carvel-package (experimental)

Purpose

Bundles Kubernetes configuration into a Carvel Package.

Used by

Source-to-URL-Package (experimental) in the carvel-package step.

Basic-Image-to-URL-Package (experimental) in the carvel-package step.

Note

The gitops_sub_path parameter is deprecated. Use
deliverable.spec.source.subPath instead.

Tanzu Application Platform v1.5

VMware by Broadcom 1502

https://carvel.dev/kapp-controller/docs/v0.41.0/app-overview/
https://carvel.dev/kapp-controller/docs/v0.41.0/security-model/


Creates

A taskrun.tekton.dev which provides configuration to a Tekton ClusterTask to bundle Kubernetes
configuration into a Carvel Package.

This template uses the lifecycle: tekton flag to create new immutable objects rather than updating
the previous object.

Parameters

Parameter
name

Meaning Example

serviceAccoun

t

Name of the service account to use for providing Docker
credentials. The service account must exist in the same
namespace as the Workload. The service account must have a
secret associated with the credentials. See Configuring
authentication for Docker in the Tekton documentation.

      - name: serviceA

ccount

        value: default

      

registry Specification of the registry server and repository in which the
built image is placed.       - name: registry

        value:

          server: inde

x.docker.io

          repository: 

web-team

      

carvel_packag

e_gitops_subp

ath

Specifies the subpath to which Carvel Packages should be
written.       - name: carvel_p

ackage_gitops_subpath

        value: path/t

o/my/dir

      

carvel_packag

e_name_suffix

Specifies the suffix to append to the Carvel Package name. The
format is
WORKLOAD_NAME.WORKLOAD_NAMESPACE.carvel_packa
ge_name_suffix The full Carvel Package name must be a valid
DNS subdomain name as defined in RFC 1123.

      - name: carvel_p

ackage_name_suffix

        value: vmware.

com

      

Tanzu Application Platform v1.5

VMware by Broadcom 1503

https://cartographer.sh/docs/v0.6.0/lifecycle/
https://tekton.dev/docs/pipelines/auth/#configuring-authentication-for-docker


Parameter
name

Meaning Example

carvel_packag

e_parameters

Specifies the custom Carvel Package parameters
      - name: carvel_p

ackage_parameters

        value: |

        - selector:

            matchLabel

s:

              apps.tan

zu.vmware.com/workload

-type: server

          schema: |

            #@data/val

ues-schema

            ---

            #@schema/t

itle "Workload name"

            #@schema/d

esc "Required. Name of 

the workload, used by 

K8s Ingress HTTP rule

s."

            #@schema/e

xample "tanzu-java-web

-app"

            #@schema/v

alidation min_len=1

            workload_n

ame: ""

            #@schema/t

itle "Replicas"

            #@schema/d

esc "Number of replica

s."

            replicas: 

1

            #@schema/t

itle "Port"

            #@schema/d

esc "Port number for t

he backend associated 

with K8s Ingress."

            port: 8080

            #@schema/t

itle "Hostname"

            #@schema/d

esc "If set, K8s Ingre

ss will be created wit

h HTTP rules for hostn

ame."

            #@schema/e

xample "app.tanzu.vmwa

re.com"

            hostname: 

""

            #@schema/t

itle "Cluster Issuer"

            #@schema/d

esc "CertManager Issue

r to use to generate c

Tanzu Application Platform v1.5

VMware by Broadcom 1504



Parameter
name

Meaning Example

ertificate for K8s Ing

ress."

            cluster_is

suer: "tap-ingress-sel

fsigned"

          overlays: |

            #@ load("@

ytt:overlay", "overla

y")

            #@ load("@

ytt:data", "data")

            #@overlay/

match by=overlay.subse

t({"apiVersion":"apps/

v1", "kind": "Deployme

nt"})

            ---

            spec:

              #@overla

y/match missing_ok=Tru

e

              replica

s: #@ data.values.repl

icas

            #@ if dat

a.values.hostname != 

"":

            ---

            apiVersio

n: networking.k8s.io/v

1

            kind: Ingr

ess

            metadata:

              name: #@ 

data.values.workload_n

ame

              annotati

ons:

                cert-m

anager.io/cluster-issu

er:  #@ data.values.cl

uster_issuer

                ingres

s.kubernetes.io/force-

ssl-redirect: "true"

                kubern

etes.io/ingress.class: 

contour

                kapp.k

14s.io/change-rule: "u

psert after upserting 

Services"

              labels:

                app.ku

bernetes.io/component: 

"run"

                carto.

run/workload-name:  #@ 

data.values.workload_n

ame

            spec:

Tanzu Application Platform v1.5

VMware by Broadcom 1505



Parameter
name

Meaning Example

              tls:

                - secr

etName: #@ data.value

s.workload_name

                  host

s:

                  - #@ 

data.values.hostname

              rules:

              - host: 

#@ data.values.hostnam

e

                http:

                  path

s:

                  - pa

thType: Prefix

                    pa

th: /

                    ba

ckend:

                      

service:

                        

name: #@ data.values.w

orkload_name

                        

port:

                          

number: #@ data.value

s.port

            #@ end              

        - selector:

            matchLabel

s:

              apps.tan

zu.vmware.com/workload

-type: web

          schema: |

            #@data/val

ues-schema

            ---

            #@schema/v

alidation min_len=1

            workload_n

ame: ""

          overlays: ""

        - selector:

            matchLabel

s:

              apps.tan

zu.vmware.com/workload

-type: worker

          schema: |

            #@data/val

ues-schema

            ---

            #@schema/v

alidation min_len=1

            workload_n

ame: ""

            replicas: 

1

Tanzu Application Platform v1.5

VMware by Broadcom 1506



Parameter
name

Meaning Example

          overlays: |

            #@ load("@

ytt:overlay", "overla

y")

            #@ load("@

ytt:data", "data")

            #@overlay/

match by=overlay.subse

t({"apiVersion":"apps/

v1", "kind": "Deployme

nt"})

            ---

            spec:

              #@overla

y/match missing_ok=Tru

e

              replica

s: #@ data.values.repl

icas

      

carvel_packag

e_openapiv3_e

nabled

Specifies whether the Carvel Package should include a
generated OpenAPIv3 specification       - name: carvel_p

ackage_openapiv3_enabl

ed

        value: true

      

More information

To read more about lifecycle:tekton, read Cartographer Lifecycle.

package-config-writer-template (experimental)

Purpose

Persist in an external git repository the Carvel Package Kubernetes configuration passed to the
template.

Used by

Source-to-URL-Package (experimental) in the config-writer step.

Basic-Image-to-URL-Package (experimental) in the config-writer step.

Creates

A runnable which creates a Tekton TaskRun that refers either to the Tekton Task git-writer.

Parameters

Tanzu Application Platform v1.5

VMware by Broadcom 1507

https://cartographer.sh/docs/v0.6.0/lifecycle/


Parameter
name

Meaning Example

serviceAccoun

t

Name of the service account which provides the credentials to the
registry or repository. The service account must exist in the same
namespace as the Workload.

      - name: servic

eAccount

        value: defau

lt

      

gitops_branch Name of the branch to push the configuration to.
      - name: gitops

_branch

        value: main

      

gitops_user_n

ame

User name to use in the commits.
      - name: gitops

_user_name

        value: "Alic

e Lee"

      

gitops_user_e

mail

User email address to use in the commits.
      - name: gitops

_user_email

        value: alice

@example.com

      

gitops_commit

_message

Message to write as the body of the commits produced for
pushing configuration to the Git repository.       - name: gitops

_commit_message

        value: "ci b

ump"

      

gitops_reposi

tory

The full repository URL to which the configuration is committed.
DEPRECATED       - name: gitops

_repository

        value: "http

s://github.com/vmwar

e-tanzu/cartographe

r"

      

gitops_reposi

tory_prefix

The prefix of the repository URL. DEPRECATED
      - name: gitops

_repository

        value: "http

s://github.com/vmwar

e-tanzu/"

      

gitops_server

_address

The server URL of the Git repository to which configuration is
applied.       - name: gitops

_server_address

        value: "http

s://github.com/"

      

Tanzu Application Platform v1.5

VMware by Broadcom 1508



Parameter
name

Meaning Example

gitops_reposi

tory_owner

The owner/organization to which the repository belongs.
      - name: gitops

_repository_owner

        value: vmwar

e-tanzu

      

gitops_reposi

tory_name

The name of the repository.
      - name: gitops

_repository_name

        value: carto

grapher

      

registry Specification of the registry server and repository in which the
configuration is placed.       - name: regist

ry

        value:

          server: in

dex.docker.io

          repositor

y: web-team

          ca_cert_da

ta:

            -----BEG

IN CERTIFICATE-----

            MIIFXzCC

A0egAwIBAgIJAJYm37SF

ocjlMA0GCSqGSIb3DQEB

DQUAMEY...

            -----END 

CERTIFICATE-----

      

carvel_packag

e_gitops_subp

ath

Specifies the subpath to which Carvel Packages should be written.
      - name: carvel

_package_gitops_subp

ath

        value: path/

to/my/dir

      

carvel_packag

e_name_suffix

Specifies the suffix to append to the Carvel Package name. The
format is
WORKLOAD_NAME.WORKLOAD_NAMESPACE.carvel_package
_name_suffix The full Carvel Package name must be a valid DNS
subdomain name as defined in RFC 1123.

      - name: carvel

_package_name_suffix

        value: vmwar

e.com

      

More information

See Gitops vs RegistryOps for more information about the operation of this template and of the
package-config-writer-and-pull-requester-template (experimental).

package-config-writer-and-pull-requester-template
(experimental)

Tanzu Application Platform v1.5

VMware by Broadcom 1509



Purpose

Persist the passed in Carvel Package Kubernetes configuration to a branch in a repository and open
a pull request to another branch. (This process allows for manual review of configuration before
deployment to a cluster)

Used by

Source-to-URL-Package (experimental) in the config-writer step.

Basic-Image-to-URL-Package (experimental) in the config-writer step.

Creates

A runnable which provides configuration to the ClusterRunTemplate commit-and-pr-pipelinerun to
create a Tekton TaskRun. The Tekton TaskRun refers to the Tekton Task commit-and-pr.

Parameters

Parameter name Meaning Example

serviceAccount Name of the service account which provides the credentials to the
registry or repository. The service account must exist in the same
namespace as the Workload.

      - name: 

serviceAccount

        value: 

default

      

gitops_commit_

branch

Name of the branch to which configuration is pushed.
      - name: 

gitops_commit_

branch

        value: 

feature

      

gitops_branch Name of the branch to which a pull request is opened.
      - name: 

gitops_branch

        value: 

main

      

gitops_user_na

me

User name to use in the commits.
      - name: 

gitops_user_na

me

        value: 

"Alice Lee"

      

gitops_user_em

ail

User email address to use in the commits.
      - name: 

gitops_user_em

ail

        value: 

alice@example.

com

      

Tanzu Application Platform v1.5

VMware by Broadcom 1510



Parameter name Meaning Example

gitops_commit_

message

Message to write as the body of the commits produced for pushing
configuration to the Git repository.       - name: 

gitops_commit_

message

        value: 

"ci bump"

      

gitops_pull_re

quest_title

Title of the pull request to be opened.
      - name: 

gitops_pull_re

quest_title

        value: 

"ready for rev

iew"

      

gitops_pull_re

quest_body

Body of the pull request to be opened.
      - name: 

gitops_pull_re

quest_body

        value: 

"generated by 

supply chain"

      

gitops_server_

address

The server URL of the Git repository to which configuration is applied.
      - name: 

gitops_server_

address

        value: 

"https://githu

b.com/"

      

gitops_reposit

ory_owner

The owner/organization to which the repository belongs.
      - name: 

gitops_reposit

ory_owner

        value: 

vmware-tanzu

      

gitops_reposit

ory_name

The name of the repository.
      - name: 

gitops_reposit

ory_name

        value: 

cartographer

      

gitops_server_

kind

The kind of Git provider
      - name: 

gitops_server_

kind

        value: 

gitlab

      

Tanzu Application Platform v1.5

VMware by Broadcom 1511



Parameter name Meaning Example

carvel_package

_gitops_subpat

h

Specifies the subpath to which Carvel Packages should be written.
      - name: 

carvel_package

_gitops_subpat

h

        value: 

path/to/my/dir

      

carvel_package

_name_suffix

Specifies the suffix to append to the Carvel Package name. The format is
WORKLOAD_NAME.WORKLOAD_NAMESPACE.carvel_package_name
_suffix The full Carvel Package name must be a valid DNS subdomain
name as defined in RFC 1123.

      - name: 

carvel_package

_name_suffix

        value: 

vmware.com

      

More information

See Gitops vs RegistryOps for more information about the operation of this template and of the
package-config-writer-template (experimental).

ClusterRunTemplate reference for Supply Chain
Choreographer

This topic lists the objects you can use with Supply Chain Choreographer. All the objects
referenced in this topic are Cartographer ClusterRunTemplates packaged in Out of the Box
Templates. This topic describes the one or more objects they create, the supply chains that include
them, and the parameters they use.

tekton-source-pipelinerun

Purpose

Tests source code.

Used by

testing-pipeline

Creates

This ClusterRunTemplate creates a Tekton PipelineRun referring to the user’s Tekton Pipeline.

Inputs

ClusterRunTemplate reference for Supply Chain
Choreographer

Tanzu Application Platform v1.5

VMware by Broadcom 1512

https://cartographer.sh/docs/v0.6.0/reference/runnable/#clusterruntemplate
https://tekton.dev/docs/pipelines/pipelineruns/


Input name Meaning Example

tekton-

params

Set of parameters to pass to the
Tekton Pipeline       - name: source-url

        value: https://github.com/vmware-tanz

u/cartographer.git

      - name: source-revision

        value: e4a53f49a92fc913d26f8cc23d5910

2a51a5e635

      - name: verbose

        value: true

      - name: foo

        value: bar

      

More information

For information about the runnable created in the OOTB Testing and OOTB Testing and Scanning,
see testing-pipeline.

For information about the Tekton Pipeline that the user must create, see Tekton/Pipeline.

tekton-taskrun

Purpose

Generic template for creating a Tekton TaskRun.

Used by

config-writer-template

Creates

A Tekton TaskRun.

Inputs

Input name Meaning Example

serviceAccou

nt

Service Account with permissions necessary for the Tekton
Task

default

taskRef Reference to the Tekton Task to which the TaskRun provides
parameters         kind: ClusterTask

        name: git-writer

        

params Parameters which are provided to the Tekton Task
        - name: git_branc

h

          value: main

        - name: git_user_

name

          value: "Some Na

me"

        

commit-and-pr-pipelinerun

Tanzu Application Platform v1.5

VMware by Broadcom 1513



Purpose

Commit configuration to a Git repository and open a pull request for review.

Used by

config-writer-and-pull-requester-template

Creates

Creates a Tekton TaskRun referring to the commit-and-pr Tekton Task.

Inputs

Input
name

Meaning Example

serviceA

ccount

Service Account with credentials for
the Git repository default

git_serv

er_kind

Type of Git provider
github

git_serv

er_addre

ss

Server URL
https://github.com

reposito

ry_owner

Owner or Organization in which the
repository resides vmware-tanzu

reposito

ry_name

Name of the repository
cartographer

commit_b

ranch

Name of the commit branch.
Recommended value is an empty
string.

""

pull_req

uest_tit

le

Title of the PR to be opened
 "Update" 

pull_req

uest_bod

y

Body of the PR to be opened
 "Ready for review" 

base_bra

nch

Branch into which the PR is merged
main

git_user

_name

User name associated with the commit
Waciuma Rasheed

git_user

_email

User email associated with the commit
Sam@todd.com

git_comm

it_messa

ge

Message on commit
 "App update" 

git_file

s

Base64 encoded JSON file where keys
equal the filename and the value is the
file contents.

 "eyJkZWxpdmVyeS55bWwiOiJhcGlWZXJzaW9uOiBzZX

J2aW5nLmtuYXRpdmUuZGV2L3YxXG5raW5kOiBTZXJ2aW

NlXG4ifQ==" 

Tanzu Application Platform v1.5

VMware by Broadcom 1514



sub_path The directory location in the repository
in which to write the files.  "." 

More information

For information about the template creating the related runnable, see config-writer-and-pull-
requester-template.

For information about gitops, see GitOps versus RegistryOps.

Delivery reference for Supply Chain Choreographer

This topic describes the delivery parameters and templates you can use with Supply Chain
Choreographer.

Tanzu Application Platform delivery package installs a single ClusterDelivery.

The delivery provides some parameters to the templates. The parameters provided by the
deliverable might override some of the delivery parameters in this topic. For more information
about how parameters work, including precedence rules, see the Cartographer documentation.

delivery-basic

Purpose

Fetches Kubernetes configuration created by a supply chain.

Deploys the configuration on the cluster.

Resources

The following resources describe the templates.

source-provider

Refers to delivery-source-template.

Parameters provided:

serviceAccount from tap-value service_account. Overridable by deliverable.

gitImplementation from tap-value git_implementation. Not overridable by deliverable.

Deployer

Refers to app-deploy template.

Parameter provided:

serviceAccount from tap-value service_account. Overridable by deliverable.

Package

Refers to Out of the Box Delivery Basic.

More information

For information about setting tap-values.yaml at installation time, see Install Out of the Box
Delivery Basic.

Tanzu Application Platform v1.5

VMware by Broadcom 1515

https://cartographer.sh/docs/v0.6.0/reference/deliverable/#clusterdelivery
https://cartographer.sh/docs/v0.6.0/templating/#parameters


Use Git with Supply Chain Choreographer

This topic explains how you can use Git with Supply Chain Choreographer.

The out of the box supply chains and delivery use Git in three ways:

To fetch the developers source code, using the template.

To store complete Kubernetes configuration, the write side of GitOps, using template 1,
template 2, template 3 (experimental), and template 4 (experimental).

To fetch stored Kubernetes configuration, the read side of GitOps, from either the same or
a different Kubernetes cluster, using the template.

Supported Git Repositories

Tanzu Application Platform supports three git providers:

Github

Gitlab

Azure DevOps

Related Articles

Git Authentication walks through the objects, such as secrets and service accounts, to create on
cluster to allow supply chain Git operations to succeed.

GitOps versus RegistryOps discusses the two methods of storing built Kubernetes configuration,
either in a Git repository or a container image registry, and walks through the parameters that must
be provided for each.

Configuration for Azure DevOps: discusses configuration necessary for working with this git
provider.

Use GitOps or RegistryOps with Supply Chain
Choreographer

You can use GitOps or RegistryOps to manage your Kubernetes configuration with Supply Chain
Choreographer.

Regardless of the supply chain that a workload goes through, in the end, some Kubernetes
configuration is pushed to an external entity, either to a Git repository or to a container image
registry.

For example:

Supply Chain

  -- fetch source

    -- test

      -- build

        -- scan

          -- apply-conventions

            -- push config        * either to Git or Registry

This topic dives into the specifics of that last phase of the supply chains by pushing configuration to
a Git repository or a container image registry.

Note

Tanzu Application Platform v1.5

VMware by Broadcom 1516



GitOps

The GitOps approach differs from local iteration in that GitOps configures the supply chains to push
the Kubernetes configuration to a remote Git repository. This allows users to compare configuration
changes and promote those changes through environments by using GitOps principles.

Typically associated with an outerloop workflow, the GitOps approach is only activated if a
collection of parameters are set:

gitops.server_address during the Out of the Box Supply Chains package installation or
gitops_server_address configured as a workload parameter.

gitops.repository_owner during the Out of the Box Supply Chains package installation or
gitops_repository_owner configured as a workload parameter.

gitops.repository_name during the Out of the Box Supply Chains package installation or
gitops_repository_name configured as a workload parameter.

With all three values set, Kubernetes configuration is written to the specified repository. If a value is
set at installation and the corresponding workload parameter is also set, the value of the workload
parameter is respected.

In the repository, files are located in the ./config/{workload-namespace}/{workload-name}
directory. This allows multiple workloads to commit configuration to the same repository.

Examples

tap-values.yaml

gitops:

  server_address:

  repository_owner:

  repository_name:

workload

  name: incrediApp

  namespace: awesomeTeam

  params:

    - name: gitops_server_address

      value: https://github.com/

    - name: gitops_repository_owner

      value: vmware-tanzu

    - name: gitops_repository_name

      value: cartographer

Resulting gitops repository: https://github.com/vmware-tanzu/cartographer

Directory containing configuration: ./config/awesomeTeam/incrediApp

tap-values.yaml

gitops:

  server_address: https://github.com/

For more information about providing source code either from a local directory or
Git repository, see Building from Source.

Tanzu Application Platform v1.5

VMware by Broadcom 1517



  repository_owner: vmware-tanzu

  repository_name: cartographer

workload

  name: superApp

  namespace: awesomeTeam

Resulting gitops repository: https://github.com/vmware-tanzu/cartographer

Directory containing configuration: ./config/awesomeTeam/superApp

tap-values.yaml

gitops:

  server_address: https://github.com/

  repository_owner: vmware-tanzu

workload

  name: superApp

  namespace: awesomeTeam

  params:

     - name: gitops_repository_owner

       value: buildpacks-community

     - name: gitops_repository_name

       value: kpack

Resulting GitOps repository: https://github.com/buildpacks-community/kpack

Directory containing configuration: ./config/awesomeTeam/superApp

tap-values.yaml

gitops:

  server_address:

  repository_owner:

  repository_name:

workload

  name: superApp

  namespace: awesomeTeam

  params:

     - name: gitops_repository_owner

       value: buildpacks-community

     - name: gitops_repository_name

       value: kpack

Resulting gitops repository: Fails to resolve as some, but not all, of the three required values are
provided.

Deprecated parameters

The following parameters are deprecated and no longer recommended for specifying gitops
repositories:

gitops.repository_prefix: configured during the Out of the Box Supply Chains package
installation.

gitops_repository: configured as a workload parameter.

Tanzu Application Platform v1.5

VMware by Broadcom 1518



For example, assuming the installation of the supply chain packages through Tanzu Application
Platform profiles and a tap-values.yaml:

ootb_supply_chain_basic:

  registry:

    server: REGISTRY-SERVER

    repository: REGISTRY-REPOSITORY

  gitops:

    repository_prefix: https://github.com/my-org/

Workloads in the cluster with the Kubernetes configuration produced throughout the supply chain
are pushed to the repository whose name is formed by concatenating gitops.repository_prefix
with the name of the workload. In this case, for example, https://github.com/my-
org/$(workload.metadata.name).git.

Supply Chain

  params:

      - gitops_repository_prefix: GIT-REPO_PREFIX

workload-1:

  `git push` to GIT-REPO-PREFIX/workload-1.git

workload-2:

  `git push` to GIT-REPO-PREFIX/workload-2.git

...

workload-n:

  `git push` to GIT-REPO-PREFIX/workload-n.git

Alternatively, you can force a workload to publish the configuration in a Git repository by providing
the gitops_repository parameter to the workload:

tanzu apps workload create tanzu-java-web-app \

  --app tanzu-java-web-app \

  --type web \

  --git-repo https://github.com/vmware-tanzu/application-accelerator-samples \

  --sub-path tanzu-java-web-app \

  --git-branch main \

  --param gitops_ssh_secret=GIT-SECRET-NAME \

  --param gitops_repository=https://github.com/my-org/config-repo

In this case, at the end of the supply chain, the configuration for this workload is published to the
repository provided under the gitops_repository parameter.

If you use deprecated parameters, Kubernetes configuration is committed to the ./config
directory in the repository. This can lead to collisions if two workloads specify the same repository,
or two workloads in different namespaces have the same name and the gitops.repository_prefix
is set in tap-values.yaml.

If the deprecated values are set and any of the suggested gitops values are set, the deprecated
values are ignored.

Examples

tap-values.yaml

gitops:

Tanzu Application Platform v1.5

VMware by Broadcom 1519



  repository_prefix: https://github.com/vmware-tanzu

workload

  name: superApp

  namespace: awesomeTeam

Resulting gitops repository: https://github.com/vmware-tanzu/incrediApp

Directory containing configuration: ./config

tap-values.yaml

gitops:

  server_address: https://github.com/

  repository_owner: vmware-tanzu

  repository_name: cartographer

workload

  name: superApp

  namespace: awesomeTeam

  params:

    - name: gitops_repository

      value: https://github.com/buildpacks-community/kpack

Resulting gitops repository: https://github.com/vmware-tanzu/cartographer (The deprecated
param gitops_repository is ignored.)

Directory containing configuration: ./config/awesomeTeam/superApp

tap-values.yaml

gitops:

  repository_prefix: https://github.com/vmware-tanzu

workload

  name: superApp

  namespace: awesomeTeam

  params:

    - name: gitops_repository_owner

      value: buildpacks-community

    - name: gitops_repository_name

      value: kpack

Resulting gitops repository: Fails to resolve as some, but not all, of the three gitops values are
provided. (The deprecated value repository_prefix is ignored because suggested values are
present)

Pull requests

In the standard git-ops approach, configuration is pushed to a repository and is immediately
applied to a cluster by any deliverable watching that repository. Operators might want to manually
review configuration before applying it to the cluster. To do this, operators must specify a
pull_request commit strategy. You can use this strategy with the following Git providers:

GitHub

GitLab

Tanzu Application Platform v1.5

VMware by Broadcom 1520



Azure DevOps

Authentication

The pull request approach requires HTTP(S) authentication with a token.

The pull request function is not a part of the Git specification, but most Git server providers include
it. You must authenticate with those providers using a token.

In the Kubernetes secret that holds the Git credentials, the password text box must contain a
token. When generating a token, ensure that it has the proper scope:

On GitHub, the token must have a Repo scope.

On GitLab, the token must have an API scope.

To use the pull_request commit strategy, set the following parameters:

commit_strategy == pull_request configured during the Out of the Box Supply Chains
package installation.

gitops.pull_request.server_kind configured during the Out of the Box Supply Chains
package installation or gitops_server_kind configured as a workload parameter. Supported
values are github, gitlab, and azure.

gitops.pull_request.commit_branch configured during the Out of the Box Supply Chains
package installation or gitops_commit_branch configured as a workload parameter.

gitops.pull_request.pull_request_title configured during the Out of the Box Supply
Chains package installation or gitops_pull_request_title configured as a workload
parameter.

gitops.pull_request.pull_request_body configured during the Out of the Box Supply
Chains package installation or gitops_pull_request_body configured as a workload
parameter.

If a value is set at both installation and in a workload parameter, the workload parameter is
respected.

The recommended value for commit_branch is an empty string. This generates a new branch for
each commit based on a hash of the time when the commit is created. This prevents collisions
between multiple workloads using a single Git repository.

For example, using the following Tanzu Application Platform values:

ootb_supply_chain_basic:

   gitops:

     server_address: https://github.com/

     repository_owner: vmware-tanzu

     repository_name: cartographer

     branch: main

     commit_strategy: pull_request

     pull_request:

       server_kind: github

       commit_branch: ""

       pull_request_title: ready for review

       pull_request_body: generated by supply chain

In a workload with the name app in the dev namespace, you find:

A commit to the https://github.com/vmware-tanzu/cartographer repository on a branch with a
random name. For example, MTY1MTYxMzE0NQo=. There is a pull request open to merge this branch
into the base branch main.

Tanzu Application Platform v1.5

VMware by Broadcom 1521

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html#personal-access-token-scopes


Authentication

Regardless of how the supply chains are configured, if the repository prefix or repository name is
configured to push to Git, you must provide credentials for the remote provider by using a
Kubernetes secret in the same namespace as the workload attached to the workload
ServiceAccount.

Because the operation of pushing requires elevated permissions, credentials are required by both
public and private repositories.

HTTP(S) Basic-auth or Token-based authentication

If the repository at which configuration is published uses https:// or http:// as the URL scheme,
the Kubernetes secret must provide the credentials for that repository as follows:

apiVersion: v1

kind: Secret

metadata:

  name: GIT-SECRET-NAME  # `git-ssh` is the default name.

                        #   - operators can change such default by using the

                        #     `gitops.ssh_secret` property in `tap-values.yaml`

                        #   - developers can override by using the workload parameter

                        #     named `gitops_ssh_secret`.

  annotations:

    tekton.dev/git-0: GIT-SERVER        # ! required

type: kubernetes.io/basic-auth          # ! required

stringData:

  username: GIT-USERNAME

  password: GIT-PASSWORD

Both the Tekton annotation and the basic-auth secret type must be set. GIT-SERVER must be
prefixed with the appropriate URL scheme and the Git server. For example, for
https://github.com/vmware-tanzu/cartographer, https://github.com must be provided as the
GIT-SERVER.

To use the pull request approach, the password text box must contain a token. See Pull Requests.

After the Secret is created, attach it to the ServiceAccount used by the workload. For example:

apiVersion: v1

kind: ServiceAccount

metadata:

  name: default

secrets:

  - name: registry-credentials

  - name: tap-registry

  - name: GIT-SECRET-NAME

imagePullSecrets:

  - name: registry-credentials

  - name: tap-registry

For more information about the credentials and setting up the Kubernetes secret, see Git
Authentication’s HTTP section.

SSH

If the repository to which configuration is published uses https:// or http:// as the URL scheme,
the Kubernetes secret must provide the credentials for that repository as follows:

apiVersion: v1

kind: Secret

metadata:

Tanzu Application Platform v1.5

VMware by Broadcom 1522



  name: GIT-SECRET-NAME  # `git-ssh` is the default name.

                        #   - operators can change such default through the

                        #     `gitops.ssh_secret` property in `tap-values.yaml`

                        #   - developers can override by using the workload parameter

                        #     named `gitops_ssh_secret`.

  annotations:

    tekton.dev/git-0: GIT-SERVER

type: kubernetes.io/ssh-auth

stringData:

  ssh-privatekey: SSH-PRIVATE-KEY     # private key with push-permissions

  identity: SSH-PRIVATE-KEY           # private key with pull permissions

  identity.pub: SSH-PUBLIC-KEY        # public of the `identity` private key

  known_hosts: GIT-SERVER-PUBLIC-KEYS # git server public keys

After the Secret is created, attach it to the ServiceAccount used by the workload. For example:

apiVersion: v1

kind: ServiceAccount

metadata:

  name: default

secrets:

  - name: registry-credentials

  - name: tap-registry

  - name: GIT-SECRET-NAME

imagePullSecrets:

  - name: registry-credentials

  - name: tap-registry

For information about the credentials and setting up the Kubernetes secret, see Git
Authentication’s SSH section.

GitOps workload parameters

While installing ootb-*, operators can configure gitops.repository_prefix to indicate what prefix
the supply chain must use when forming the name of the repository to push to the Kubernetes
configurations produced by the supply chains.

To change the behavior to use GitOps, set the source of the source code to a Git repository. As the
supply chain progresses, configuration is pushed to a repository named
$(gitops.repository_prefix) + $(workload.name).

For example, configure gitops.repository_prefix to git@github.com/foo/ and create a workload
as follows:

tanzu apps workload create tanzu-java-web-app \

  --git-branch main \

  --git-repo https://github.com/vmware-tanzu/application-accelerator-samples \

  --sub-path tanzu-java-web-app \

  --label app.kubernetes.io/part-of=tanzu-java-web-app \

  --type web

Expect to see the following output:

Create workload:

      1 + |---

      2 + |apiVersion: carto.run/v1alpha1

      3 + |kind: Workload

      4 + |metadata:

      5 + |  labels:

      6 + |    apps.tanzu.vmware.com/workload-type: web

      7 + |    app.kubernetes.io/part-of: tanzu-java-web-app

      8 + |  name: tanzu-java-web-app

      9 + |  namespace: default

Tanzu Application Platform v1.5

VMware by Broadcom 1523



    10 + |spec:

    11 + |  source:

    12 + |    git:

    13 + |      ref:

    14 + |        branch: main

    15 + |      url: https://github.com/vmware-tanzu/application-accelerator-samples

    16 + |    subPath: tanzu-java-web-app

As a result, the Kubernetes configuration is pushed to git@github.com/foo/tanzu-java-web-
app.git.

Regardless of the setup, developers can also manually override the repository where configuration
is pushed to by tweaking the following parameters:

gitops_ssh_secret: Name of the secret in the same namespace as the workload where
SSH credentials exist for pushing the configuration produced by the supply chain to a Git
repository. Example: ssh-secret

gitops_repository: SSH URL of the Git repository to push the Kubernetes configuration
produced by the supply chain to. Example: ssh://git@foo.com/staging.git

gitops_branch: Name of the branch to push the configuration to. Example: main

gitops_commit_message: Message to write as the body of the commits produced for pushing
configuration to the Git repository. Example: ci bump

gitops_user_name: User name to use in the commits. Example: Alice Lee

gitops_user_email: User email address to use in the commits. Example: alice@example.com

Read more on Git

See Git Reference

RegistryOps

RegistryOps is typically used for inner loop flows where configuration is treated as an artifact from
quick iterations by developers. In this scenario, at the end of the supply chain, configuration is
pushed to a container image registry in the form of an imgpkg bundle. You can think of it as a
container image whose sole purpose is to carry arbitrary files.

To enable this mode of operation, the supply chains must be configured without the following
parameters being configured during the installation of the ootb- packages or overwritten by the
workload by using the following parameters:

gitops_repository_prefix

gitops_repository

If none of the parameters are set, the configuration is pushed to the same container image registry
as the application image. That is, to the registry configured under the registry: {} section of the
ootb- values.

For example, assuming the installation of Tanzu Application Platform by using profiles, configure the
ootb-supply-chain* package as follows:

ootb_supply_chain_basic:

  registry:

    server: REGISTRY-SERVER

    repository: REGISTRY_REPOSITORY

The Kubernetes configuration produced by the supply chain is pushed to an image named after
REGISTRY-SERVER/REGISTRY-REPOSITORY including the workload name.

Tanzu Application Platform v1.5

VMware by Broadcom 1524

https://carvel.dev/imgpkg/docs/v0.27.0/


In this scenario, no extra credentials must be set up, because the secret containing the credentials
for the container image registry were already configured during the setup of the workload
namespace.

Overview of Supply Chain Security Tools for VMware Tanzu
- Policy Controller
Supply Chain Security Tools - Policy Controller is a security tool that helps you ensure that the
container images in their registry have not been tampered with. Policy Controller is a Kubernetes
Admission Controller that allows you to apply policies to verify signatures on container images
before being admitted to a cluster.

The Policy Controller:

Verifies signatures on container images used by Kubernetes resources

Enforces policies to allow or deny images being admitted a cluster

Allows operators to define multiple policies in the cluster

Allows operators to select which namespaces to enforce policies against

Supports cosign signatures and keyless signing

Supports storing public keys in a KMS

It enforces its policies against all resources that create Pods as part of their life cycle:

Pod

ReplicaSet

Deployment

Job

StatefulSet

DaemonSet

CronJob

Supply Chain Security Tools - Policy Controller is based on Sigstore’s Policy Controller and is
compatible only with cosign signatures. See Cosign and Policy Controller in GitHub. For information
about image signing and verification, see Sigstore open source community and the cosign project in
GitHub.

The Policy Controller component is a policy enforcement tool only. It does not sign images.
Operators can configure image signing for their containers in several ways, including:

By using Tanzu Build Service

By using kpack

By integrating cosign into their build pipelines

Image signatures generated by cosign are stored in the same registry location as the image itself
unless configured with the COSIGN_REPOSITORY environment variable. Policy Controller uses registry

Note

This component is the successor to Supply Chain Security Tools - Sign, which is
deprecated. Support and maintenance for Supply Chain Security Tools - Sign
continues. Monitor Release Notes for updates.

Tanzu Application Platform v1.5

VMware by Broadcom 1525

https://github.com/sigstore/cosign
https://github.com/sigstore/policy-controller
https://www.sigstore.dev/
https://docs.sigstore.dev/
https://github.com/buildpacks-community/kpack/blob/main/docs/tutorial.md
https://docs.sigstore.dev/cosign/overview


credentials provided in the admission request, Service Account, or signaturePullSecrets defined
in the policy to connect to the registry to verify a signature.

To Install Supply Chain Security Tools - Policy Controller, see Install Supply Chain Security Tools -
Policy Controller

Overview of Supply Chain Security Tools for VMware Tanzu
- Policy Controller
Supply Chain Security Tools - Policy Controller is a security tool that helps you ensure that the
container images in their registry have not been tampered with. Policy Controller is a Kubernetes
Admission Controller that allows you to apply policies to verify signatures on container images
before being admitted to a cluster.

The Policy Controller:

Verifies signatures on container images used by Kubernetes resources

Enforces policies to allow or deny images being admitted a cluster

Allows operators to define multiple policies in the cluster

Allows operators to select which namespaces to enforce policies against

Supports cosign signatures and keyless signing

Supports storing public keys in a KMS

It enforces its policies against all resources that create Pods as part of their life cycle:

Pod

ReplicaSet

Deployment

Job

StatefulSet

DaemonSet

CronJob

Supply Chain Security Tools - Policy Controller is based on Sigstore’s Policy Controller and is
compatible only with cosign signatures. See Cosign and Policy Controller in GitHub. For information
about image signing and verification, see Sigstore open source community and the cosign project in
GitHub.

The Policy Controller component is a policy enforcement tool only. It does not sign images.
Operators can configure image signing for their containers in several ways, including:

Important

This component does not work with insecure registries.

Note

This component is the successor to Supply Chain Security Tools - Sign, which is
deprecated. Support and maintenance for Supply Chain Security Tools - Sign
continues. Monitor Release Notes for updates.

Tanzu Application Platform v1.5

VMware by Broadcom 1526

https://github.com/sigstore/cosign
https://github.com/sigstore/policy-controller
https://www.sigstore.dev/
https://docs.sigstore.dev/


By using Tanzu Build Service

By using kpack

By integrating cosign into their build pipelines

Image signatures generated by cosign are stored in the same registry location as the image itself
unless configured with the COSIGN_REPOSITORY environment variable. Policy Controller uses registry
credentials provided in the admission request, Service Account, or signaturePullSecrets defined
in the policy to connect to the registry to verify a signature.

To Install Supply Chain Security Tools - Policy Controller, see Install Supply Chain Security Tools -
Policy Controller

Install Supply Chain Security Tools - Policy Controller

You install Supply Chain Security Tools - Policy Controller as part of Tanzu Application Platform’s
Full, Iterate, and Run profiles. You can use the instructions in this topic to manually install SCST -
Policy Controller.

Prerequisites

Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

A container image registry that supports TLS connections.

For keyless authorities support, you must set policy.tuf_enabled: true. By default, the
public official Sigstore The Update Framework (TUF) server is used. To target an alternative
Sigstore stack, specify policy.tuf_mirror and policy.tuf_root.

If you are installing in an air-gapped environment and require keyless authorities, you must
deploy a Sigstore Stack on the cluster or be accessible from the air-gapped environment.

During configuration, you provide a cosign public key to validate signed images. The Policy
Controller only supports ECDSA public keys. An example cosign public key is provided that
can validate an image from the public cosign registry. To provide your own key and images,
follow the Cosign Quick Start Guide in GitHub.

Important

This component does not work with insecure registries.

Note

Follow the steps in this topic if you do not want to use a profile to install Supply
Chain Security Tools - Policy Controller. For more information about profiles, see
Components and installation profiles.

Important

This component does not work with not secure registries.

Caution

Tanzu Application Platform v1.5

VMware by Broadcom 1527

https://github.com/buildpacks-community/kpack/blob/main/docs/tutorial.md
https://docs.sigstore.dev/cosign/overview
https://github.com/sigstore/cosign#quick-start


Install

To install Supply Chain Security Tools - Policy Controller:

1. List version information for the package by running:

tanzu package available list policy.apps.tanzu.vmware.com --namespace tap-insta

ll

For example:

$ tanzu package available list policy.apps.tanzu.vmware.com --namespace tap-ins

tall

- Retrieving package versions for policy.apps.tanzu.vmware.com...

  NAME                          VERSION        RELEASED-AT

  policy.apps.tanzu.vmware.com  1.2.0          2023-10-01 20:00:00 -0400 EDT

2. (Optional) Make changes to the default installation settings by running:

tanzu package available get policy.apps.tanzu.vmware.com/VERSION --values-schem

a --namespace tap-install

Where VERSION is the version number you discovered. For example, 1.2.0.

For example:

$ tanzu package available get policy.apps.tanzu.vmware.com/1.2.0 --values-schem

a --namespace tap-install

| Retrieving package details for policy.apps.tanzu.vmware.com/1.2.0...

KEY                        DEFAULT        TYPE     DESCRIPTION

custom_cas                 <nil>          array    List of custom CA contents t

hat should be included in the application container for registry communication.

                                                   An array of items containing 

a ca_content field with the PEM-encoded contents of a certificate authority.

deployment_namespace       cosign-system  string   Deployment namespace specifi

es the namespace where this component should be deployed to.

                                                   If not specified, "cosign-sy

stem" is assumed.

fail_on_empty_authorities  true           boolean  Configure if a ClusterImageP

olicy will fail or allow empty authorities

limits_cpu                 200m           string   The CPU limit defines a hard 

ceiling on how much CPU time

                                                   that the Policy Controller m

anager container can use.

                                                   https://kubernetes.io/docs/c

oncepts/configuration/manage-resources-containers/#meaning-of-cpu

no_match_policy            deny           string   The action when no policy ma

tches the admitting image digest. Valid values are "warn", "allow", or "deny".

quota.pod_number           6              string   The maximum number of Policy 

Controller Pods allowed to be created with the priority class

                                                   system-cluster-critical. Thi

s value must be enclosed in quotes (""). If this value is not

                                                   specified then a default val

ue of 6 is used.

replicas                   1              integer  The number of replicas to be 

created for the Policy Controller. This value must not be enclosed

This component rejects pods if they are not correctly configured. Test your
configuration in a test environment before applying policies to your production
cluster.

Tanzu Application Platform v1.5

VMware by Broadcom 1528



                                                   in quotes. If this value is 

not specified then a default value of 1 is used.

requests_memory            20Mi           string   The memory request defines t

he minium memory amount for the Policy Controller manager.

                                                   https://kubernetes.io/docs/c

oncepts/configuration/manage-resources-containers/#meaning-of-memory

tuf_root                                  string   The root.json file content o

f the TUF mirror

custom_ca_secrets          <nil>          array    List of custom CA secrets th

at should be included in the application container for registry communication.

                                                   An array of secret reference

s each containing a secret_name field with the secret name to be referenced

                                                   and a namespace field with t

he name of the namespace where the referred secret resides.

limits_memory              200Mi          string   The memory limit defines a h

ard ceiling on how much memory

                                                   that the Policy Controller m

anager container can use.

                                                   https://kubernetes.io/docs/c

oncepts/configuration/manage-resources-containers/#meaning-of-memory

requests_cpu               20m            string   The CPU request defines the 

minimum CPU time for the Policy

                                                   Controller manager. During C

PU contention, CPU request is used as

                                                   a weighting where higher CPU 

requests are allocated more CPU time.

                                                   https://kubernetes.io/docs/c

oncepts/configuration/manage-resources-containers/#meaning-of-cpu

tuf_mirror                                string   TUF mirror address

3. Create a file named scst-policy-values.yaml and add the settings you want to customize:

custom_ca_secrets: If your container registries are secured by self-signed
certificates, this setting controls which secrets are added to the application
container as custom certificate authorities (CAs). custom_ca_secrets consists of an
array of items. Each item contains two text boxes: the secret_name text box defines
the name of the secret, and the namespace text box defines the name of the
namespace where said secret is stored.

For example:

custom_ca_secrets:

- secret_name: first-ca

  namespace: ca-namespace

- secret_name: second-ca

  namespace: ca-namespace

custom_cas: This setting enables adding certificate content in PEM format. The
certificate content is added to the application container as custom certificate
authorities (CAs) to communicate with registries deployed with self-signed
certificates. custom_cas consists of an array of items. Each item contains a single
text box named ca_content. The value of this text box must be a PEM-formatted
certificate authority. The certificate content must be defined as a YAML block,

Note

This setting is allowed even if custom_cas is defined.

Tanzu Application Platform v1.5

VMware by Broadcom 1529



preceded by the literal indicator (|) to preserve line breaks and ensure that the
certificates are interpreted correctly.

For example:

custom_cas:

- ca_content: |

    ----- BEGIN CERTIFICATE -----

    first certificate content here...

    ----- END CERTIFICATE -----

- ca_content: |

    ----- BEGIN CERTIFICATE -----

    second certificate content here...

    ----- END CERTIFICATE -----

deployment_namespace: This setting controls the namespace to which this
component is deployed. When not specified, the namespace cosign-system is
assumed. This component creates the specified namespace to deploy required
resources. Select a namespace that is not used by any other components.

limits_cpu: This setting controls the maximum CPU resource allocated to the Policy
admission controller. The default value is “200m”. See Kubernetes documentation.

limits_memory: This setting controls the maximum memory resource allocated to
the Policy admission controller. The default value is “200Mi”. See Kubernetes
documentation.

quota.pod_number: This setting controls the maximum number of pods that are
allowed in the deployment namespace with the system-cluster-critical priority
class. This priority class is added to the pods to prevent preemption of this
component’s pods in case of node pressure.

The default value for this text box is 6. If your use requires more than 6 pods,
change this value to allow the number of replicas you intend to deploy.

replicas: This setting controls the default amount of replicas deployed by this
component. The default value is 1.

For production environments: VMware recommends you increase the number of
replicas to 3 to ensure that the availability of the component and better admission
performance.

requests_cpu: This setting controls the minimum CPU resource allocated to the
Policy admission controller. During CPU contention, this value is used as a weighting
where higher values indicate more CPU time is allocated. The default value is 20m.
See CPU resource units in the Kubernetes documentation.

Note

This setting is allowed even if custom_ca_secrets is defined.

Note

VMware recommends to run this component with a critical priority
level to prevent the cluster from rejecting all admission requests if
the component’s pods are evicted due to resource limits.

Tanzu Application Platform v1.5

VMware by Broadcom 1530

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#meaning-of-cpu
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#meaning-of-memory
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#meaning-of-cpu


requests_memory: This setting controls the minimum memory resource allocated to
the Policy admission controller. The default value is 20Mi. See Memory resource
units in the Kubernetes documentation.

tuf_enabled: This setting defines whether the TUF initialization is done on startup. It
is required for keyless verification support. The default value is false, which means
that keyless authorities of ClusterImagePolicy are not supported. Also, policy-
controller does not have an external dependency on setup.

tuf_root: The root.json file content of the TUF mirror.

tuf_mirror: This setting defines the TUF mirror address which is used for doing the
initialization.

no_match_policy: The action when no policy matches the admitting image digest.
Valid values are "warn", "allow", or "deny". Default value is "deny"

fail_on_empty_authorities: Failing or allowing empty authorities when adding a
new ClusterImagePolicy. Default value is true.

4. Install the package:

tanzu package install policy-controller \

  --package policy.apps.tanzu.vmware.com \

  --version VERSION \

  --namespace tap-install \

  --values-file scst-policy-values.yaml

Where VERSION is the version number you discovered earlier. For example, 1.2.0.

For example:

$ tanzu package install policy-controller \

    --package policy.apps.tanzu.vmware.com \

    --version 1.2.0 \

    --namespace tap-install \

    --values-file scst-policy-values.yaml

  Installing package 'policy.apps.tanzu.vmware.com'

  Getting package metadata for 'policy.apps.tanzu.vmware.com'

  Creating service account 'policy-controller-tap-install-sa'

  Creating cluster admin role 'policy-controller-tap-install-cluster-role'

  Creating cluster role binding 'policy-controller-tap-install-cluster-rolebind

ing'

  Creating package resource

  Waiting for 'PackageInstall' reconciliation for 'policy-controller'

  'PackageInstall' resource install status: Reconciling

  'PackageInstall' resource install status: ReconcileSucceeded

  'PackageInstall' resource successfully reconciled

  Added installed package 'policy-controller'

After you run the commands earlier the policy controller is running.

Policy Controller is now installed, but it does not enforce any policies by default. Policies must be
explicitly configured on the cluster. To configure signature verification policies, see Configuring
Supply Chain Security Tools - Policy.

Migration From Supply Chain Security Tools - Sign
This topic explains how you can migrate from Supply Chain Security Tools - Sign to Supply Chain
Security Tools - Policy.

Tanzu Application Platform v1.5

VMware by Broadcom 1531

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#meaning-of-memory


In Tanzu Application Platform v1.4, the Image Policy Webhook is removed. If the Image Policy
Webhook was used with the previous Tanzu Application Platform versions in your cluster, you must
migrate the ClusterImagePolicy resource from Image Policy Webhook to Policy Controller. For
information about additional features introduced in SCST - Policy, see Configuring Supply Chain
Security Tools - Policy.

Enable Policy Controller on Namespaces

Policy Controller works with an opt-in system. Operators must update namespaces with the label
policy.sigstore.dev/include: "true" to the namespace resource to enable Policy Controller
verification.

kubectl label namespace my-secure-namespace policy.sigstore.dev/include=true

Policy Controller ClusterImagePolicy
The Policy Controller ClusterImagePolicy does not have a name. Image Policy Controller required
that the ClusterImagePolicy be named image-policy and that there be only one
ClusterImagePolicy. Multiple Policy Controller ClusterImagePolicies are applied. During validation,
all ClusterImagePolicy that have an image glob pattern that matches the deploying image is
evaluated. All matched ClusterImagePolicies must be valid. For a ClusterImagePolicy to be valid,
at least one authority in the policy must validate the signature of the deploying image.

Excluding Namespaces
The namespaces listed in spec.verification.exclude.resources.namespaces[] must have
policy.sigstore.dev/include set to false or not be set. Therefore, they are exempted from Policy
Controller validation.

Image Policy Webhook:

---

apiVersion: signing.apps.tanzu.vmware.com/v1beta1

kind: ClusterImagePolicy

metadata:

  name: image-policy

spec:

  verification:

    ...

    exclude:

      resources:

        namespaces:

        - image-policy-system

        - kube-system

Caution

Without a Policy Controller ClusterImagePolicy applied, there are fallback behaviors
where images are validated against the public Sigstore Rekor and Fulcio servers by
using a keyless authority flow. Therefore, if the deploying image is signed publicly by
a third-party using the keyless authority flow, the image are admitted as it can
validate against the public Rekor and Fulcio. To avoid this behavior, develop, and
apply a ClusterImagePolicy that applies to the images being deployed in the
namespace.

Tanzu Application Platform v1.5

VMware by Broadcom 1532



        - cert-manager

    ...

Specifying Public Keys

spec.verification.keys[].publicKey from Image Policy Webhook is mapped to
spec.authorities[].key.data for Policy Controller.

The name associated with each key is no longer required. Image Policy Webhook has direct
association between key name and imagePattern. For Policy Controller, multiple
ClusterImagePolicy resources are defined to create direct association between image patterns and
key authorities.

Image patterns and keys are scoped to each ClusterImagePolicy resource.

Therefore, to have direct association be isolated between key and imagePattern, multiple Policy
Controller ClusterImagePolicy must be created. Each ClusterImagePolicy has the image glob
pattern defined and the associated key authorities defined.

Image Policy Webhook:

---

apiVersion: signing.apps.tanzu.vmware.com/v1beta1

kind: ClusterImagePolicy

metadata:

  name: image-policy

spec:

  verification:

    ...

    keys:

    - name: official-cosign-key

      publicKey: |

        -----BEGIN PUBLIC KEY-----

        MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEhyQCx0E9wQWSFI9ULGwy3BuRklnt

        IqozONbbdbqz11hlRJy9c7SG+hdcFl9jE9uE/dwtuwU2MqU9T/cN0YkWww==

        -----END PUBLIC KEY-----

    ...

Policy Controller:

---

apiVersion: policy.sigstore.dev/v1beta1

kind: ClusterImagePolicy

metadata:

  name: POLICY-NAME

spec:

  authorities:

  ...

  - key:

      data: |

        -----BEGIN PUBLIC KEY-----

        MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEhyQCx0E9wQWSFI9ULGwy3BuRklnt

        IqozONbbdbqz11hlRJy9c7SG+hdcFl9jE9uE/dwtuwU2MqU9T/cN0YkWww==

        -----END PUBLIC KEY-----

  ...

Where POLICY-NAME is the name of the cluster image policy you want to use.

Tanzu Application Platform v1.5

VMware by Broadcom 1533



Specifying Image Matching

spec.verification.images[].namePattern from Image Policy Webhook maps to
spec.images[].glob for Policy Controller.

Policy Controller follows more closely to glob matching. For the Image Policy Webhook,
registry.com/* wildcards all projects and images under the registry. However, glob matching uses
/ separator delimiting. Therefore, the glob wildcard matching equivalent is registry.com/**/*. The
** allows for recursive project path matching while the trailing * images found in the terminating
project path.

If only one level of pathing is required, the glob pattern is registry.com/*/*.

Policy Controller has defaults defined. If * is specified, the glob matching behavior is
index.docker.io/library/*. If */* is specified, the glob matching behavior is index.docker.io/*/*.
With these defaults, the glob pattern ** matches against all images.

Image Policy Webhook:

---

apiVersion: signing.apps.tanzu.vmware.com/v1beta1

kind: ClusterImagePolicy

metadata:

  name: image-policy

spec:

  verification:

    ...

    images:

    - namePattern: gcr.io/projectsigstore/cosign*

      keys:

      - name: official-cosign-key

      secretRef:

        name: your-secret

        namespace: your-namespace

    ...

Policy Controller:

---

apiVersion: policy.sigstore.dev/v1beta1

kind: ClusterImagePolicy

metadata:

  name: POLICY-NAME

spec:

  images:

  - glob: gcr.io/projectsigstore/cosign*

Where POLICY-NAME is the name of the cluster image policy you want to use.

Specifying policy mode

If AllowUnmatchedImages is set to true in the Image Policy Webhook deployment, create the
following policy in the cluster:

---

apiVersion: policy.sigstore.dev/v1beta1

kind: ClusterImagePolicy

metadata:

  name: allow-unmatched-image-policy

spec:

Tanzu Application Platform v1.5

VMware by Broadcom 1534



  images:

  - glob: "**"

    authorities:

    - static:

        action: pass

Configuring Supply Chain Security Tools - Policy

This topic describes how you can configure Supply Chain Security Tools - Policy. SCST - Policy
requires extra configuration steps to verify your container images.

Admission of Images

An image is admitted after it is validated against a policy with matching image pattern, and where
at least one valid signature is obtained from the authorities provided in a matched
ClusterImagePolicy.

If more than one policy exists with a matching image pattern, ALL of the policies must have at least
one passing authority for the image.

Including Namespaces

The Policy Controller only validates resources in namespaces that have chosen to opt-in. This is
done by adding the label policy.sigstore.dev/include: "true" to the namespace resource.

kubectl label namespace my-secure-namespace policy.sigstore.dev/include=true

Create a ClusterImagePolicy resource

The cluster image policy is a custom resource containing the following properties:

images

In a ClusterImagePolicy, spec.images specifies a list of glob matching patterns. These patterns are
matched against the image digest in PodSpec for resources attempting deployment.

Policy Controller defines the following globs by default:

If * is specified, the glob matching behavior is index.docker.io/library/*.

If */* is specified, the glob matching behavior is index.docker.io/*/*.

With these defaults, you require the glob pattern ** to match against all images. If your image is
hosted on Docker Hub, include index.docker.io as the host for the glob.

A sample ClusterImagePolicy which matches against all images using glob:

Caution

Without a Policy Controller ClusterImagePolicy applied, there are fallback behaviors
where images are validated against the public Sigstore Rekor and Fulcio servers by
using a keyless authority flow. Therefore, if the deploying image is signed publicly by
a third-party using the keyless authority flow, the image is admitted as it can
validate against the public Rekor and Fulcio. To avoid this behavior, develop, and
apply a ClusterImagePolicy that applies to the images being deployed in the
namespace.

Tanzu Application Platform v1.5

VMware by Broadcom 1535



apiVersion: policy.sigstore.dev/v1beta1

kind: ClusterImagePolicy

metadata:

  name: image-policy

spec:

  images:

  - glob: "**"

mode

In a ClusterImagePolicy, spec.mode specifies the action of a policy:

enforce: The default behavior. If the policy fails to validate the image, the policy fails.

warn: If the policy fails to validate the image, validation error messages are converted to
warnings and the policy passes.

A sample of a ClusterImagePolicy which has warn mode configured.

---

apiVersion: policy.sigstore.dev/v1beta1

kind: ClusterImagePolicy

metadata:

  name: POLICY-NAME

spec:

  mode: warn

Where POLICY-NAME is the name of the policy you want to configure your ClusterImagePolicy with.

When enforce mode is set, an image that fails validation is not admitted.

Sample output message:

error: failed to patch: admission webhook "policy.sigstore.dev" denied the request: va

lidation failed: failed policy: POLICY-NAME: spec.template.spec.containers[0].image

IMAGE-REFERENCE signature key validation failed for authority authority-0 for IMAGE-RE

FERENCE: GET IMAGE-SIGNATURE-REFERENCE: DENIED: denied; denied

failed policy: POLICY-NAME: spec.template.spec.containers[1].image

IMAGE-REFERENCE signature key validation failed for authority authority-0 for IMAGE-RE

FERENCE: GET IMAGE-SIGNATURE-REFERENCE: DENIED: denied; denied

When warn mode is set, an image that fails validation is admitted.

Sample output message:

Warning: failed policy: POLICY-NAME: spec.template.spec.containers[0].image

Warning: IMAGE-REFERENCE signature key validation failed for authority authority-0 for 

IMAGE-REFERENCE: GET IMAGE-SIGNATURE-REFERENCE: DENIED: denied; denied

Warning: failed policy: POLICY-NAME: spec.template.spec.containers[1].image

Warning: IMAGE-REFERENCE signature key validation failed for authority authority-0 for 

IMAGE-REFERENCE: GET IMAGE-SIGNATURE-REFERENCE: DENIED: denied; denied

If you don’t want a Warning output message, you can configure a static.action pass authority to
allow expected unsigned images. For example, you may want to allow unsigned images if your
policy controller runs on a development environment, and you need to iterate quickly. For
information about static action authorities, see Static Action.

match

You can use match to filter resources using group, version, kind, or labels in a selected namespace
to enforce the defined policy. If the list of matching resources is empty, all core resources are used
by default.

Tanzu Application Platform v1.5

VMware by Broadcom 1536



For example, you can filter all v1 cronjobs with the label app: tap in a namespace that is labeled
for policy enforcement:

spec:

  match:

  - group: batch

    resource: cronjobs

    version: v1

    selector:

      matchLabels:

        app: tap

authorities

Authorities listed in the authorities block of the ClusterImagePolicy are key or keyless
specifications.

key

Each key authority can contain a PEM-encoded ECDSA public key, a secretRef, or a kms path.

The policy resyncs with KMS referenced every 10 hours. Any updates to the secret in KMS is pulled
in during the refresh. To force a resync, the policy must be deleted and recreated.

spec:

  authorities:

    - key:

        data: |

          -----BEGIN PUBLIC KEY-----

          ...

          -----END PUBLIC KEY-----

    - key:

        secretRef:

          name: secretName

    - key:

        kms: KMSPATH

Where KMSPATH is the name of the KMS path you want to configure in your key authority.

keyless

Important

Only ECDSA public keys are supported.

Note

The secret referenced in key.secretRef.name must be created in the cosign-system
namespace or the namespace where the Policy Controller is installed. This secret
must only contain one data entry with the public key.

Note

Keyless support is deactivated by default. See Install Supply Chain Security Tools -
Policy Controller.

Tanzu Application Platform v1.5

VMware by Broadcom 1537



Each keyless authority can contain a Fulcio URL, a Rekor URL, a certificate, or an array of identities.

Identities are represented with a combination of issuer or issuerRegExp with subject or
subjectRegExp.

issuer: Defines the issuer for this identity.

issuerRegExp: Specifies a regular expression to match the issuer for this identity.

subject: Defines the subject for this identity.

subjectRegExp: Specifies a regular expression to match the subject for this identity.

An example of keyless authority structure:

spec:

  authorities:

    - keyless:

        url: https://fulcio.example.com

        ca-cert:

          data: Certificate Data

        identities:

          - issuer: https://accounts.google.com

            subjectRegExp: .*@example.com 

          - issuer: https://token.actions.githubusercontent.com

            subject: https://github.com/mycompany/*/.github/workflows/*@*

      ctlog:

        url: https://rekor.example.com

    - keyless:

        url: https://fulcio.example.com

        ca-cert:

          secretRef:

            name: secretName

        identities:

          - issuerRegExp: .*kubernetes.default.*

            subjectRegExp: .*kubernetes.io/namespaces/default/serviceaccounts/default

The authorities are evaluated using the any of operator to admit container images. For each pod,
the Policy Controller iterates over the list of containers and init containers. For every policy that
matches against the images, they must each have at least one valid signature obtained using the
authorities specified. If an image does not match any policy, the Policy Controller does not admit
the image.

static.action

ClusterImagePolicy authorities are configured to always pass or fail with static.action.

Sample ClusterImagePolicy with static action fail.

apiVersion: policy.sigstore.dev/v1beta1

kind: ClusterImagePolicy

metadata:

  name: POLICY-NAME

spec:

  authorities:

  - static:

      action: fail

Where POLICY-NAME is the name of the policy you want to configure your ClusterImagePolicy with.

A sample output of static action fail:

error: failed to patch: admission webhook "policy.sigstore.dev" denied the request: va

lidation failed: failed policy: POLICY-NAME: spec.template.spec.containers[0].image

IMAGE-REFERENCE disallowed by static policy

Tanzu Application Platform v1.5

VMware by Broadcom 1538



failed policy: POLICY-NAME: spec.template.spec.containers[1].image

IMAGE-REFERENCE disallowed by static policy

Images that are unsigned in a namespace with validation enabled are admitted with an authority
with static action pass.

This applies when you are configuring a policy with static.action pass for tap-packages images.
Another policy is then configured to validate signed images produced by Tanzu Build Service. This
allows images from tap-packages, which are unsigned and required by the platform, to be admitted
while still validating signed built images from Tanzu Build Service. See Configure your supply chain
to sign and verify your image builds.

If Warning messages are desirable for admitted images where validation failed, you can configure a
policy with warn mode and valid authorities. For information about ClusterImagePolicy modes, see
Mode.

Provide credentials for the package

There are three ways the package reads credentials to authenticate to registries protected by
authentication:

1. Reading imagePullSecrets directly from the resource being admitted. See Container image
pull secrets in the Kubernetes documentation.

2. Reading imagePullSecrets from the service account the resource is running as. See
Arranging for imagePullSecrets to be automatically attached in the Kubernetes
documentation.

3. Reading a secretRef from the ClusterImagePolicy resource’s signaturePullSecrets when
specifying the cosign signature source.

Authentication can fail for the following scenarios:

A not valid credential is specified in the imagePullSecrets of the resource or in the service
account the resource runs as.

A not valid credential is specified in the ClusterImagePolicy signaturePullSecrets text
box.

Provide secrets for authentication in your policy

You can provide secrets for authentication as part of the policy configuration. The oci location is
the image location or a remote location where signatures are configured to be stored during
signing. The signaturePullSecrets is available in the cosign-system namespace or the namespace
where the Policy Controller is installed.

By default, imagePullSecrets from the resource or service account is used while the default oci
location is the image location.

See the following example:

spec:

  authorities:

    - key:

        data: |

          -----BEGIN PUBLIC KEY-----

          ...

          -----END PUBLIC KEY-----

      source:

        - oci: registry.example.com/project/signature-location

          signaturePullSecrets:

            - name: MY-SECRET

Tanzu Application Platform v1.5

VMware by Broadcom 1539

https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets
https://kubernetes.io/docs/concepts/configuration/secret/#arranging-for-imagepullsecrets-to-be-automatically-attached


    - keyless:

        url: https://fulcio.example.com

      source:

        - oci: registry.example.com/project/signature-location

          signaturePullSecrets:

            - name: MY-SECRET

Where MY-SECRET is the name of the secret you want to use with your credentials.

VMware recommends using a set of credentials with the least amount of privilege that allows
reading the signature stored in your registry.

Verify your configuration

A sample policy:

apiVersion: policy.sigstore.dev/v1beta1

kind: ClusterImagePolicy

metadata:

  name: image-policy

spec:

  images:

  - glob: "gcr.io/projectsigstore/cosign*"

  authorities:

  - name: official-cosign-key

    key:

      data: |

        -----BEGIN PUBLIC KEY-----

        MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEhyQCx0E9wQWSFI9ULGwy3BuRklnt

        IqozONbbdbqz11hlRJy9c7SG+hdcFl9jE9uE/dwtuwU2MqU9T/cN0YkWww==

        -----END PUBLIC KEY-----

When using the sample policy, run these commands to verify your configuration:

1. Verify that the Policy Controller admits the signed image that validates with the configured
public key. Run:

kubectl run cosign \

  --image=gcr.io/projectsigstore/cosign:v1.2.1 \

  --dry-run=server

For example:

$ kubectl run cosign \

  --image=gcr.io/projectsigstore/cosign:v1.2.1 \

  --dry-run=server

pod/cosign created (server dry run)

2. Verify that the Policy Controller rejects the unmatched image. Run:

kubectl run busybox --image=busybox --dry-run=server

For example:

$ kubectl run busybox --image=busybox --dry-run=server

  Error from server (BadRequest): admission webhook "policy.sigstore.dev" denie

d the request: validation failed: no matching policies: spec.containers[0].imag

e

  index.docker.io/library/busybox@sha256:3614ca5eacf0a3a1bcc361c939202a974b4902

b9334ff36eb29ffe9011aaad83

Tanzu Application Platform v1.5

VMware by Broadcom 1540



In the output, it did not specify which authorities were used as there was no policy found
that matched the image. Therefore, the image fails to validate for a signature and fails to
deploy.

3. Verify that the Policy Controller rejects a matched image signed with a different key than
the one configured. Run:

kubectl run cosign-fail \

  --image=gcr.io/projectsigstore/cosign:v0.3.0 \

  --dry-run=server

For example:

$ kubectl run cosign-fail \

    --image=gcr.io/projectsigstore/cosign:v0.3.0 \

    --dry-run=server

  Error from server (BadRequest): admission webhook "policy.sigstore.dev" denie

d the request: validation failed: failed policy: image-policy: spec.containers

[0].image

  gcr.io/projectsigstore/cosign@sha256:135d8c5e27bdc917f04b415fc947d7d5b1137f99

bb8fa00bffc3eca1856e9c52 failed to validate public keys with authority official

-cosign-key for gcr.io/projectsigstore/cosign@sha256:135d8c5e27bdc917f04b415fc9

47d7d5b1137f99bb8fa00bffc3eca1856e9c52: no matching signatures:

In the output, it specifies which authorities were used for validation when a policy was
found that matched the image. In this case, the authority used was official-cosign-key. If
no name is specified, it is defaulted to authority-#.

Overview of Supply Chain Security Tools - Scan
This topic gives you an overview of use cases, features, and CVEs for Supply Chain Security Tools
(SCST) - Scan.

Overview
With Supply Chain Security Tools - Scan, you can build and deploy secure, trusted software that
complies with your corporate security requirements. Supply Chain Security Tools - Scan provides
scanning and gatekeeping capabilities that Application and DevSecOps teams can incorporate early
in their path to production as it is a known industry best practice for reducing security risk and
ensuring more efficient remediation.

Language support
For information about the languages and frameworks that are supported by Tanzu Application
Platform components, see the Language and framework support in Tanzu Application Platform
table.

Use cases
The following use cases apply to Supply Chain Security Tools - Scan:

Use your scanner as a plug-in to scan source code repositories and images for known
Common Vulnerabilities and Exposures (CVEs) before deploying to a cluster.

Identify CVEs by continuously scanning each new code commit or each new image built.

Analyze scan results against user-defined policies by using Open Policy Agent.

Tanzu Application Platform v1.5

VMware by Broadcom 1541

https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.3/tap/GUID-about-package-profiles.html#language-and-framework-support-in-tanzu-application-platform-2


Produce vulnerability scan results and post them to the Supply Chain Security Tools - Store
from where they are queried.

Supply Chain Security Tools - Scan features

The following Supply Chain Security Tools - Scan features enable the Use cases:

Kubernetes controllers to run scan TaskRuns.

Custom Resource Definitions (CRDs) for Image and Source Scan.

CRD for a scanner plug-in. Example is available by using Anchore’s Syft and Grype.

CRD for policy enforcement.

Enhanced scanning coverage by analyzing the Cloud Native Buildpack SBoMs that Tanzu
Build Service images provide.

A Note on Vulnerability Scanners

Although vulnerability scanning is an important practice in DevSecOps and the benefits of it are
widely recognized and accepted, it is important to remember that there are limitations present that
impact its efficacy. The following examples illustrate the limitations that are prevalent in most
scanners today:

Missed CVEs

One limitation of all vulnerability scanners is that there is no one tool that can find 100% of all CVEs,
which means there is always a risk that a missed CVE can be exploited. Some reasons for missed
CVEs include:

The scanner does not detect the vulnerability because it is just discovered and the CVE
databases that the scanner checks against are not updated yet.

Scanners verify different CVE sources based on the detected package type and OS.

The scanner might not fully support a particular programming language, packaging system
or manifest format.

The scanner might not implement binary analysis or fingerprinting.

The detected component does not always include a canonical name and vendor, requiring
the scanner to infer and attempt fuzzy matching.

When vendors register impacted software with NVD, the provided information might not
exactly match the values in the release artifacts.

False positives

Vulnerability scanners cannot always access the information to accurately identify whether a CVE
exists. This often leads to an influx of false positives where the tool mistakenly flags something as a
vulnerability when it isn’t. Unless a user is specialized in security or is deeply familiar with what is
deemed to be a vulnerable component by the scanner, assessing and determining false positives
becomes a challenging and time-consuming activity. Some reasons for a false positive flag include:

A component might be misidentified due to similar names.

A subcomponent might be identified as the parent component.

A component is correctly identified but the impacted function is not on a reachable code
path.

Tanzu Application Platform v1.5

VMware by Broadcom 1542



A component’s impacted function is on a reachable code path but is not a concern due to
the specific environment or configuration.

The version of a component might be incorrectly flagged as impacted.

The detected component does not always include a canonical name and vendor, requiring
the scanner to infer and attempt fuzzy matching.

So what can you do to protect yourselves and your software?

Although vulnerability scanning is not a perfect solution, it is an essential part of the process for
keeping your organization secure. You can take the following measures to maximize the benefits
while minimizing the impact of the limitations:

Scan more continuously and comprehensively to identify and remediate zero-day
vulnerabilities quicker. Comprehensive scanning can be achieved by:

scanning earlier in the development cycle to ensure issues can be addressed more
efficiently and do not delay a release. Tanzu Application Platform includes security
practices such as source and container image vulnerability scanning earlier in the
path to production for application teams.

scanning any base images in use. Tanzu Application Platform image scanning
includes the ability to recognize and scan the OS packages from a base image.

scanning running software in test, stage, and production environments at a regular
cadence.

generating accurate provenance at any level so that scanners have a complete
picture of the dependencies to scan. This is where a software bill of materials
(SBoM) comes into play. To help you automate this process, VMware Tanzu Build
Service, leveraging Cloud Native Buildpacks, generates an SBoM for buildpack-
based projects. Since this SBoM is generated during the image building stage, it is
more accurate and complete than one generated earlier or later in the release life
cycle. This is because it can highlight dependencies introduced at the time of build
that might introduce potential for compromise.

Scan by using multiple scanners to maximize CVE coverage.

Practice keeping your dependencies up-to-date.

Reduce overall surface area of attack by:

using smaller dependencies.

reducing the amount of third party dependencies when possible.

using distroless base images when possible.

Maintain a central record of false positives to ease CVE triaging and remediation efforts.

Overview of Supply Chain Security Tools - Scan
This topic gives you an overview of use cases, features, and CVEs for Supply Chain Security Tools
(SCST) - Scan.

Overview
With Supply Chain Security Tools - Scan, you can build and deploy secure, trusted software that
complies with your corporate security requirements. Supply Chain Security Tools - Scan provides
scanning and gatekeeping capabilities that Application and DevSecOps teams can incorporate early
in their path to production as it is a known industry best practice for reducing security risk and
ensuring more efficient remediation.

Tanzu Application Platform v1.5

VMware by Broadcom 1543



Language support

For information about the languages and frameworks that are supported by Tanzu Application
Platform components, see the Language and framework support in Tanzu Application Platform
table.

Use cases

The following use cases apply to Supply Chain Security Tools - Scan:

Use your scanner as a plug-in to scan source code repositories and images for known
Common Vulnerabilities and Exposures (CVEs) before deploying to a cluster.

Identify CVEs by continuously scanning each new code commit or each new image built.

Analyze scan results against user-defined policies by using Open Policy Agent.

Produce vulnerability scan results and post them to the Supply Chain Security Tools - Store
from where they are queried.

Supply Chain Security Tools - Scan features

The following Supply Chain Security Tools - Scan features enable the Use cases:

Kubernetes controllers to run scan TaskRuns.

Custom Resource Definitions (CRDs) for Image and Source Scan.

CRD for a scanner plug-in. Example is available by using Anchore’s Syft and Grype.

CRD for policy enforcement.

Enhanced scanning coverage by analyzing the Cloud Native Buildpack SBoMs that Tanzu
Build Service images provide.

A Note on Vulnerability Scanners

Although vulnerability scanning is an important practice in DevSecOps and the benefits of it are
widely recognized and accepted, it is important to remember that there are limitations present that
impact its efficacy. The following examples illustrate the limitations that are prevalent in most
scanners today:

Missed CVEs

One limitation of all vulnerability scanners is that there is no one tool that can find 100% of all CVEs,
which means there is always a risk that a missed CVE can be exploited. Some reasons for missed
CVEs include:

The scanner does not detect the vulnerability because it is just discovered and the CVE
databases that the scanner checks against are not updated yet.

Scanners verify different CVE sources based on the detected package type and OS.

The scanner might not fully support a particular programming language, packaging system
or manifest format.

The scanner might not implement binary analysis or fingerprinting.

The detected component does not always include a canonical name and vendor, requiring
the scanner to infer and attempt fuzzy matching.

Tanzu Application Platform v1.5

VMware by Broadcom 1544

https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.3/tap/GUID-about-package-profiles.html#language-and-framework-support-in-tanzu-application-platform-2


When vendors register impacted software with NVD, the provided information might not
exactly match the values in the release artifacts.

False positives

Vulnerability scanners cannot always access the information to accurately identify whether a CVE
exists. This often leads to an influx of false positives where the tool mistakenly flags something as a
vulnerability when it isn’t. Unless a user is specialized in security or is deeply familiar with what is
deemed to be a vulnerable component by the scanner, assessing and determining false positives
becomes a challenging and time-consuming activity. Some reasons for a false positive flag include:

A component might be misidentified due to similar names.

A subcomponent might be identified as the parent component.

A component is correctly identified but the impacted function is not on a reachable code
path.

A component’s impacted function is on a reachable code path but is not a concern due to
the specific environment or configuration.

The version of a component might be incorrectly flagged as impacted.

The detected component does not always include a canonical name and vendor, requiring
the scanner to infer and attempt fuzzy matching.

So what can you do to protect yourselves and your software?

Although vulnerability scanning is not a perfect solution, it is an essential part of the process for
keeping your organization secure. You can take the following measures to maximize the benefits
while minimizing the impact of the limitations:

Scan more continuously and comprehensively to identify and remediate zero-day
vulnerabilities quicker. Comprehensive scanning can be achieved by:

scanning earlier in the development cycle to ensure issues can be addressed more
efficiently and do not delay a release. Tanzu Application Platform includes security
practices such as source and container image vulnerability scanning earlier in the
path to production for application teams.

scanning any base images in use. Tanzu Application Platform image scanning
includes the ability to recognize and scan the OS packages from a base image.

scanning running software in test, stage, and production environments at a regular
cadence.

generating accurate provenance at any level so that scanners have a complete
picture of the dependencies to scan. This is where a software bill of materials
(SBoM) comes into play. To help you automate this process, VMware Tanzu Build
Service, leveraging Cloud Native Buildpacks, generates an SBoM for buildpack-
based projects. Since this SBoM is generated during the image building stage, it is
more accurate and complete than one generated earlier or later in the release life
cycle. This is because it can highlight dependencies introduced at the time of build
that might introduce potential for compromise.

Scan by using multiple scanners to maximize CVE coverage.

Practice keeping your dependencies up-to-date.

Reduce overall surface area of attack by:

using smaller dependencies.

reducing the amount of third party dependencies when possible.

Tanzu Application Platform v1.5

VMware by Broadcom 1545



using distroless base images when possible.

Maintain a central record of false positives to ease CVE triaging and remediation efforts.

Install Supply Chain Security Tools - Scan

This topic describes how you can install Supply Chain Security Tools - Scan from the Tanzu
Application Platform package repository.

Prerequisites

Before installing SCST - Scan:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

Install Supply Chain Security Tools - Store for scan results to persist. The integration with
SCST - Store are handled in:

Single Cluster: The SCST - Store is present in the same cluster where SCST - Scan
and the ScanTemplates are present.

Multi-Cluster: The SCST - Store is present in a different cluster (e.g.: view cluster)
where the SCST - Scan and ScanTemplates are present.

Integration Deactivated: The SCST - Scan deployment is not required to
communicate with SCST - Store.

For information about SCST - Store, see Using the Supply Chain Security Tools - Store.

Configure properties

When you install the SCST - Scan (Scan controller), you can configure the following optional
properties:

Key Default Type Description
ScanTemplate
Version

resources.limit
s.cpu

250m integer
/string

Limits describes the maximum amount of CPU
resources allowed.

n/a

resources.limit
s.memory

256Mi integer
/string

Limits describes the maximum amount of
memory resources allowed.

n/a

resources.requ
ests.cpu

100m integer
/string

Requests describes the minimum amount of CPU
resources required.

n/a

resources.requ
ests.memory

128Mi integer
/string

Requests describes the minimum amount of
memory resources required.

n/a

namespace scan-link-system string Deployment namespace for the Scan Controller n/a

metadataStor
e.caSecret.im
portFromNam
espace

metadata-store string Namespace from which you import the Insight
Metadata Store CA Cert

earlier than
v1.2.0

Note

Follow the steps in this topic if you do not want to use a profile to install SCST -
Scan. For information about profiles, see Components and installation profiles.

Tanzu Application Platform v1.5

VMware by Broadcom 1546



Key Default Type Description
ScanTemplate
Version

metadataStor
e.caSecret.na
me

app-tls-cert string Name of deployed secret with key ca.crt holding
the CA Cert of the Insight Metadata Store

earlier than
v1.2.0

metadataStor
e.clusterRole

metadata-store-
read-write

string Name of the deployed ClusterRole for read/write
access to the Insight Metadata Store deployed in
the same cluster

earlier than
v1.2.0

metadataStor
e.url

https://metadata-
store-
app.metadata-
store.svc.cluster.loc
al:8443

string URL of the Insight Metadata Store earlier than
v1.2.0

metadataStor
e.authSecret.i
mportFromNa
mespace

n/a string Namespace from which to import the Insight
Metadata Store auth_token

earlier than
v1.2.0

metadataStor
e.authSecret.n
ame

n/a string Name of deployed secret with key auth_token earlier than
v1.2.0

retryScanJobs
SecondsAfter
Error

60 integer Seconds to wait before retrying errored scans v1.3.1 and later

caCertData "" string The custom certificates trusted by the scans’
connections

v1.4.0 and later

certIssuer "" string The common certificate issuer for the cluster v1.5.0 and later

controller.pull
Secret

“controller-secret-
ref”

string Reference to the secret used for pulling the
controller image from private registry. Set to
empty if deploying from a public registry.

v1.5.0 and later

docker.import true Boolea
n

Import controller.pullSecret from another
namespace (requires secretgen-controller). Set
to false if the secret is present.

v1.5.0 and later

kubeRbacProx
y.certRef

"" string Reference to the secret which holds certificate for
kube-rbac-proxy. The Certificate enables secure
connection to the metric proxy.

v1.5.0 and later

kubeRbacProx
y.tls.minVersi
on

"" string Minimum TLS version supported by kube-rbac-
proxy. Value must match version names from
https://golang.org/pkg/crypto/tls/#pkg-
constants.

v1.5.0 and later

kubeRbacProx
y.tls.ciphers

empty array array
of
strings

Comma-separated list of cipher suites for the
server supported by kube-rbac-proxy. Values are
from tls package constants
(https://golang.org/pkg/crypto/tls/#pkg-
constants).

v1.5.0 and later

When you install the SCST - Scan (Grype scanner), you can configure the following optional
properties:

Key Default Type Description
ScanTemplate
Version

resources.request
s.cpu

250m integer
/string

Requests describes the minimum amount
of CPU resources required.

Tanzu Application Platform v1.5

VMware by Broadcom 1547



Key Default Type Description
ScanTemplate
Version

resources.request
s.memory

128Mi integer
/string

Requests describes the minimum amount
of memory resources required.

scanner.serviceA
ccount

grype-scanner string Name of scan pod’s service
ServiceAccount

scanner.serviceA
ccountAnnotatio
ns

nil object Annotations added to ServiceAccount

targetImagePullS
ecret

n/a string Reference to the secret used for pulling
images from private registry

targetSourceSsh
Secret

n/a string Reference to the secret containing SSH
credentials for cloning private
repositories

namespace default string Deployment namespace for the Scan
Templates

n/a

metadataStore.ur
l

https://metadata-store-
app.metadata-
store.svc.cluster.local:8
443

string URL of the Insight Metadata Store v1.2.0 and earlier

metadataStore.a
uthSecret.name

n/a string Name of deployed secret with key
auth_token

v1.2.0 and earlier

metadataStore.a
uthSecret.import
FromNamespace

n/a string Namespace from which to import the
Insight Metadata Store auth_token

v1.2.0 and earlier

metadataStore.c
aSecret.importFr
omNamespace

metadata-store string Namespace from which to import the
Insight Metadata Store CA Cert

v1.2.0 and earlier

metadataStore.c
aSecret.name

app-tls-cert string Name of deployed secret with key ca.crt
holding the CA Cert of the Insight
Metadata Store

v1.2.0 and earlier

metadataStore.cl
usterRole

metadata-store-read-
write

string Name of the deployed ClusterRole for
read/write access to the Insight Metadata
Store deployed in the same cluster

v1.2.0

Install

There are two options for installing Supply Chain Security Tools – Scan

Option 1: Install to multiple namespaces with the Namespace
Provisioner

The Namespace Provisioner enables operators to securely automate the provisioning of multiple
developer namespaces in a shared cluster. To install Supply Chain Security Tools – Scan by using
the Namespace Provisioner, see Namespace Provisioner.

The Namespace Provisioner can also create scan policies across multiple developer namespaces.
See Customize installation in the Namespace Provisioner documentation for configuration steps.

Option 2: Install manually to each individual namespace

The installation for Supply Chain Security Tools – Scan involves installing two packages:

Tanzu Application Platform v1.5

VMware by Broadcom 1548



Scan controller

Grype scanner

The Scan controller enables you to use a scanner, in this case, the Grype scanner. Ensure that both
the Grype scanner and the Scan controller are installed.

To install SCST - Scan (Scan controller):

1. List version information for the package by running:

tanzu package available list scanning.apps.tanzu.vmware.com --namespace tap-ins

tall

For example:

$ tanzu package available list scanning.apps.tanzu.vmware.com --namespace tap-i

nstall

/ Retrieving package versions for scanning.apps.tanzu.vmware.com...

  NAME                             VERSION       RELEASED-AT

  scanning.apps.tanzu.vmware.com   1.1.0

2. (Optional) Make changes to the default installation settings:

If you are using Grype Scanner v1.5.1 and later or other supported scanners included
with Tanzu Application Platform v1.5.1 and later, and do not want to use the default
SCST - Store integration, deactivate the integration by appending the following field to the
values.yaml file:

---

metadataStore:

  url: "" # Deactivate Supply Chain Security Tools - Store integration

If you are using Grype Scanner v1.5.0 or other supported scanners included with Tanzu
Application Platform v1.5.0, and do not want to use the default SCST - Store integration,
deactivate the integration by appending the following field to the values.yaml file:

---

metadataStore: {} # Deactivate Supply Chain Security Tools - Store integration

If you are using Grype Scanner v1.2.0 and earlier, or the Snyk Scanner, the following
scanning configuration might deactivate the embedded SCST - Store integration with a
scan-values.yaml file.

---

metadataStore:

  url: "" # Deactivate Supply Chain Security Tools - Store integration

If your Grype Scanner version is earlier than v1.2.0, the scanning configuration must
configure the store parameters. See v1.1 Install Supply Chain Security Tools - Scan.

Run to retrieve other configurable settings and append the key-value pair to the previous
scan-values.yaml file:

tanzu package available get scanning.apps.tanzu.vmware.com/VERSION --values-sch

ema -n tap-install

Where VERSION is your package version number. For example, 1.1.0.

3. Install the package by running:

Tanzu Application Platform v1.5

VMware by Broadcom 1549

https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.1/tap/GUID-scst-scan-install-scst-scan.html


tanzu package install scan-controller \

  --package scanning.apps.tanzu.vmware.com \

  --version VERSION \

  --namespace tap-install \

  --values-file scan-values.yaml

Where VERSION is your package version number. For example, 1.1.0.

To install SCST - Scan (Grype scanner):

1. List version information for the package by running:

tanzu package available list grype.scanning.apps.tanzu.vmware.com --namespace t

ap-install

For example:

$ tanzu package available list grype.scanning.apps.tanzu.vmware.com --namespace 

tap-install

/ Retrieving package versions for grype.scanning.apps.tanzu.vmware.com...

  NAME                                  VERSION       RELEASED-AT

  grype.scanning.apps.tanzu.vmware.com  1.1.0

2. (Optional) Make changes to the default installation settings:

To define the configuration for the SCST - Store integration in the grype-values.yaml file
for the Grype Scanner:

---

namespace: "DEV-NAMESPACE" # The developer namespace where the ScanTemplates ar

e going to be deployed

metadataStore:

  url: "METADATA-STORE-URL" # The base URL where the Store deployment can be re

ached

  caSecret:

    name: "CA-SECRET-NAME" # The name of the secret containing the ca.crt

    importFromNamespace: "SECRET-NAMESPACE" # The namespace where Store is depl

oyed (if single cluster) or where the connection secrets were created (if multi

-cluster)

  authSecret:

    name: "TOKEN-SECRET-NAME" # The name of the secret containing the auth toke

n to connect to Store

    importFromNamespace: "SECRET-NAMESPACE" # The namespace where the connectio

n secrets were created (if multi-cluster)

Note In a single cluster, the connection between the scanning pod and the metadata store
happens inside the cluster and does not pass through ingress. This is automatically
configured. You do not need to provide an ingress connection to the store. For information
about troubleshooting issues with scanner to metadata store connection configuration, see
Troubleshooting Scanner to MetadataStore Configuration.

Note

To install Grype in multiple namespaces, use a namespace provisioner. See
Namespace Provisioner.

Important

Tanzu Application Platform v1.5

VMware by Broadcom 1550



Where:

DEV-NAMESPACE is the namespace where you want to deploy the ScanTemplates. This
is the namespace where the scanning feature runs.

METADATA-STORE-URL is the base URL where the Supply Chain Security Tools (SCST) -
Store deployment is reached, for example, https://metadata-store-app.metadata-
store.svc.cluster.local:8443.

CA-SECRET-NAME is the name of the secret containing the ca.crt to connect to the
SCST - Store deployment.

SECRET-NAMESPACE is the namespace where SCST - Store is deployed, if you are
using a single cluster. If you are using multicluster, it is where the connection
secrets were created.

TOKEN-SECRET-NAME is the name of the secret containing the authentication token to
connect to the SCST - Store deployment when installed in a different cluster, if you
are using multicluster. If built images are pushed to the same registry as the Tanzu
Application Platform images, this can reuse the tap-registry secret created in Add
the Tanzu Application Platform package repository as described earlier.

Run to retrieve other configurable settings and append the key-value pair to the previous
grype-values.yaml file:

tanzu package available get grype.scanning.apps.tanzu.vmware.com/VERSION --valu

es-schema -n tap-install

Where VERSION is your package version number. For example, 1.1.0.

For example:

$ tanzu package available get grype.scanning.apps.tanzu.vmware.com/1.1.0 --valu

es-schema -n tap-install

| Retrieving package details for grype.scanning.apps.tanzu.vmware.com/1.1.0...

  KEY                        DEFAULT  TYPE    DESCRIPTION

  namespace                  default  string  Deployment namespace for the Scan 

Templates

  resources.limits.cpu       1000m    <nil>   Limits describes the maximum amou

nt of cpu resources allowed.

  resources.requests.cpu     250m     <nil>   Requests describes the minimum am

ount of cpu resources required.

  resources.requests.memory  128Mi    <nil>   Requests describes the minimum am

ount of memory resources required.

  targetImagePullSecret      <EMPTY>  string  Reference to the secret used for 

pulling images from private registry.

  targetSourceSshSecret      <EMPTY>  string  Reference to the secret containin

g SSH credentials for cloning private repositories.

3. Install the package by running:

You must either define both the METADATA-STORE-URL and CA-SECRET-NAME,
or not define them as they depend on each other.

Important

If targetSourceSshSecret is not set, the private source scan template is not
installed.

Tanzu Application Platform v1.5

VMware by Broadcom 1551



tanzu package install grype-scanner \

  --package grype.scanning.apps.tanzu.vmware.com \

  --version VERSION \

  --namespace tap-install \

  --values-file grype-values.yaml

Where VERSION is your package version number. For example, 1.1.0.

For example:

$ tanzu package install grype-scanner \

  --package grype.scanning.apps.tanzu.vmware.com \

  --version 1.1.0 \

  --namespace tap-install \

  --values-file grype-values.yaml

/ Installing package 'grype.scanning.apps.tanzu.vmware.com'

| Getting namespace 'tap-install'

| Getting package metadata for 'grype.scanning.apps.tanzu.vmware.com'

| Creating service account 'grype-scanner-tap-install-sa'

| Creating cluster admin role 'grype-scanner-tap-install-cluster-role'

| Creating cluster role binding 'grype-scanner-tap-install-cluster-rolebinding'

/ Creating package resource

- Package install status: Reconciling

 Added installed package 'grype-scanner' in namespace 'tap-install'

Upgrade Supply Chain Security Tools - Scan

This topic describes how you can upgrade Supply Chain Security Tools - Scan from the Tanzu
Application Platform package repository.

You can perform a fresh install of SCST - Scan by following the instructions in Install Supply Chain
Security Tools - Scan.

Prerequisites

Before you upgrade SCST - Scan, upgrade the Tanzu Application Platform by following the
instructions in Upgrading Tanzu Application Platform.

General Upgrades for SCST - Scan

When you’re upgrading to any version of SCST - Scan these are some factors to accomplish this
task:

1. Inspect the Release Notes for the version you’re upgrading to. There you can find any
breaking changes for the installation.

2. Get the values schema for the package version you’re upgrading to by running:

tanzu package available get scanning.apps.tanzu.vmware.com/$VERSION --values-sc

hema -n tap-install

Where $VERSION is the new version. This gives you insights on the values you can configure
in your tap-values.yaml for the new version.

Upgrading a scanner in all namespaces
This section describes how to upgrade a supported scanner in all namespaces. The procedure is
different depending on the installation method:

Tanzu Application Platform v1.5

VMware by Broadcom 1552



1. Installation by using Namespace Provisioner

2. Manual installation

Installation by using Namespace Provisioner

All scanners installed by the Namespace Provisioner in all managed namespaces are upgraded
automatically. For example, if you upgrade your installation of Tanzu Application Platform and the
version of Grype is updated, all Grype scanners installed by the Namespace Provisioner for all
managed namespaces are automatically upgraded.

Manual installation

1. If a scanner, such as Grype Scanner, was installed as part of Tanzu Application Platform by
using the full profile, run to upgrade:

tanzu package installed update tap -p tap.tanzu.vmware.com -v VERSION --values-

file tap-values.yaml -n tap-install

Where VERSION is your Tanzu Application Platform version.

2. If a scanner, such as Grype Scanner, was installed by using component installation you must
manually run:

tanzu package installed update grype -p grype.scanning.apps.tanzu.vmware.com -v 

GRYPE-VERSION --values-file grype-values.yaml -n NAMESPACE

Where:

GRYPE-VERSION is the version of Grype that you are upgrading to.

NAMESPACE is the namespace in which Grype is installed in.

Upgrade to Version v1.2.0

To upgrade from a previous version of SCST - Scan to the version v1.2.0:

1. Change the SecretExports from SCST - Store.

SCST - Scan needs information to connect to the SCST - Store deployment, you must
change where these secrets are exported to enable the connection with the version v1.2.0
of SCST - Scan.

For a single cluster deployment:

1. Edit the tap-values.yaml file you used to deploy SCST - Store to export the
CA certificate to your developer namespace.

metadata_store:

    ns_for_export_app_cert: "DEV-NAMESPACE"

Note

The ns_for_export_app_cert supports one namespace at a
time. If you have multiple namespaces you can replace this
value with a *, but this exports the CA certificate to all
namespaces. Consider whether this increased visibility
presents a risk.

Tanzu Application Platform v1.5

VMware by Broadcom 1553



2. Update Tanzu Application Platform to apply the changes:

tanzu package installed update tap -f tap-values.yaml -n tap-insta

ll

For a multi-cluster deployment:

You must reapply the SecretExport by changing the toNamespace: scan-link-
system to toNamespace: DEV-NAMESPACE:

---

apiVersion: secretgen.carvel.dev/v1alpha1

kind: SecretExport

metadata:

  name: store-ca-cert

  namespace: metadata-store-secrets

spec:

  toNamespace: "DEV-NAMESPACE"

---

apiVersion: secretgen.carvel.dev/v1alpha1

kind: SecretExport

metadata:

  name: store-auth-token

  namespace: metadata-store-secrets

spec:

  toNamespace: "DEV-NAMESPACE"

2. Update your tap-values.yaml file.

The installation of the SCST - Scan and the Grype scanner have some changes. The
connection to the SCST - Store component have moved to the Grype scanner package. To
deactivate the connection from the SCST - Scan, which is still present for backwards
compatibility, but is deprecated and is removed in v1.3.0.

# Deactivate scan controller embedded Supply Chain Security Tools - Store integ

ration

scanning:

  metadataStore:

    url: ""

# Install Grype Scanner v1.2.0

grype:

  namespace: "DEV-NAMESPACE" # The developer namespace where the ScanTemplates 

are going to be deployed

  metadataStore:

    url: "METADATA-STORE-URL" # The base URL where the Store deployment can be 

reached

    caSecret:

      name: "CA-SECRET-NAME" # The name of the secret containing the ca.crt

      importFromNamespace: "SECRET-NAMESPACE" # The namespace where Store is de

ployed (if single cluster) or where the connection secrets were created (if mul

ti-cluster)

    authSecret:

      name: "TOKEN-SECRET-NAME" # The name of the secret containing the auth to

ken to connect to Store

      importFromNamespace: "SECRET-NAMESPACE" # The namespace where the connect

ion secrets were created (if multi-cluster)

For more insights on how to install Grype, see Install Supply Chain Security Tools - Scan
(Grype Scanner).

Note

Tanzu Application Platform v1.5

VMware by Broadcom 1554



3. Update Tanzu Application Platform to apply the changes:

tanzu package installed update tap -f tap-values.yaml -n tap-install

4. Update the ScanPolicy to include the latest structure changes for v1.2.0.

To update to the latest valid Rego File in the ScanPolicy, Enforce compliance policy using
Open Policy Agent. v1.2.0 introduced some breaking changes in the Rego File structure
used for the ScanPolicies. For more information, see the Release Notes.

5. Verify the upgrade.

You can run any ImageScan or SourceScan in your DEV-NAMESPACE where the Grype Scanner
was installed, and it finishes. Here is a sample you can try to run to detect if everything
upgraded.

1. Create the verify-upgrade.yaml file in your system with the following content:

---

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanPolicy

metadata:

  name: scan-policy

  labels:

    'app.kubernetes.io/part-of': 'enable-in-gui'

spec:

  regoFile: |

    package main

    # Accepted Values: "Critical", "High", "Medium", "Low", "Negligible", 

"UnknownSeverity"

    notAllowedSeverities := ["Critical", "High", "UnknownSeverity"]

    ignoreCves := []

    contains(array, elem) = true {

      array[_] = elem

    } else = false { true }

    isSafe(match) {

      severities := { e | e := match.ratings.rating.severity } | { e | e 

:= match.ratings.rating[_].severity }

      some i

      fails := contains(notAllowedSeverities, severities[i])

      not fails

    }

    isSafe(match) {

      ignore := contains(ignoreCves, match.id)

      ignore

    }

    deny[msg] {

      comps := { e | e := input.bom.components.component } | { e | e := i

nput.bom.components.component[_] }

      some i

If a mix of Grype templates, such as earlier than v1.2.0 and v1.2.0 and later,
are used, both scanning and grype must configure the parameters. The
secret must also export to both scan-link-system and the developer
namespace. Do this by exporting to * or by defining multiple secrets and
exports. If Grype is installed to multiple namespaces there must be
corresponding exports. See Install Supply Chain Security Tools - Scan (Grype
Scanner).

Tanzu Application Platform v1.5

VMware by Broadcom 1555



      comp := comps[i]

      vulns := { e | e := comp.vulnerabilities.vulnerability } | { e | e 

:= comp.vulnerabilities.vulnerability[_] }

      some j

      vuln := vulns[j]

      ratings := { e | e := vuln.ratings.rating.severity } | { e | e := v

uln.ratings.rating[_].severity }

      not isSafe(vuln)

      msg = sprintf("CVE %s %s %s", [comp.name, vuln.id, ratings])

    }

---

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ImageScan

metadata:

  name: sample-public-image-scan

spec:

  registry:

    image: "nginx:1.16"

  scanTemplate: public-image-scan-template

  scanPolicy: scan-policy

2. Deploy the resources:

kubectl apply -f verify-upgrade.yaml -n DEV-NAMESPACE

3. View the scan results:

kubectl describe imagescan sample-public-image-scan -n DEV-NAMESPACE

If it is successful, the ImageScan goes to the Failed phase and shows the results of the scan
in the Status.

Install another scanner for Supply Chain Security Tools -
Scan

This topic describes how you can install scanners to work with Supply Chain Security Tools - Scan
from the Tanzu Application Platform package repository.

Follow the instructions in this topic to install a scanner other than the out of the box Grype Scanner
with SCST - Scan.

Prerequisites

Before installing a new scanner, install Supply Chain Security Tools - Scan. It must be present on
the same cluster. The prerequisites for Scan are also required.

Install
To install a new scanner, follow these steps:

1. Complete scanner specific prerequisites for the scanner you’re trying to install. For
example, creating an API token to connect to the scanner.

Note

Different scanners may have different limits. See Supported Scanner Matrix for
Supply Chain Security Tools - Scan.

Tanzu Application Platform v1.5

VMware by Broadcom 1556



Snyk Scanner (Beta) is available for image scanning.

Carbon Black Scanner (Beta) is available for image scanning.

2. List the available packages to discover what scanners you can use by running:

tanzu package available list --namespace tap-install

For example:

$ tanzu package available list --namespace tap-install

/ Retrieving available packages...

  NAME                                                 DISPLAY-NAME                                        

SHORT-DESCRIPTION

  grype.scanning.apps.tanzu.vmware.com                 Grype Scanner for Supply 

Chain Security Tools - Scan                      Default scan templates using A

nchore Grype

  snyk.scanning.apps.tanzu.vmware.com                  Snyk for Supply Chain Se

curity Tools - Scan                               Default scan templates using 

Snyk

  carbonblack.scanning.apps.tanzu.vmware.com           Carbon Black Scanner for 

Supply Chain Security Tools - Scan               Default scan templates using C

arbon Black

3. List version information for the scanner package by running:

tanzu package available list SCANNER-NAME --namespace tap-install

For example:

$ tanzu package available list snyk.scanning.apps.tanzu.vmware.com --namespace 

tap-install

/ Retrieving package versions for snyk.scanning.apps.tanzu.vmware.com...

  NAME                                  VERSION           RELEASED-AT

  snyk.scanning.apps.tanzu.vmware.com   1.0.0-beta.2

4. (Optional) Confirm that the secret created in Step 1 for scanner specific prerequisites is
created.

5. Create a values.yaml to apply custom configurations to the scanner:

To list the values you can configure for any scanner, run:

tanzu package available get SCANNER-NAME/VERSION --values-schema -n tap-install

Where:

SCANNER-NAME is the name of the scanner package you retrieved earlier.

VERSION is your package version number. For example,
snyk.scanning.apps.tanzu.vmware.com/1.0.0-beta.2.

For example:

$ tanzu package available get snyk.scanning.apps.tanzu.vmware.com/1.0.0-beta.2 

--values-schema -n tap-install

KEY                                           DEFAULT                                                      

Note

This step might be required for some scanners but optional for others.

Tanzu Application Platform v1.5

VMware by Broadcom 1557



TYPE    DESCRIPTION

metadataStore.authSecret.name                                                                              

string  Name of deployed Secret with key auth_token

metadataStore.authSecret.importFromNamespace                                                               

string  Namespace from which to import the Insight Metadata Store auth_token

metadataStore.caSecret.importFromNamespace    metadata-store                                               

string  Namespace from which to import the Insight Metadata Store CA Cert

metadataStore.caSecret.name                   app-tls-cert                                                 

string  Name of deployed Secret with key ca.crt holding the CA Cert of the Insi

ght Metadata Store

metadataStore.clusterRole                     metadata-store-read-write                                    

string  Name of the deployed ClusterRole for read/write access to the Insight M

etadata Store deployed in the same cluster

metadataStore.url                             https://metadata-store-app.metada

ta-store.svc.cluster.local:8443  string  Url of the Insight Metadata Store

namespace                                     default                                                      

string  Deployment namespace for the Scan Templates

resources.requests.cpu                        250m                                                         

<nil>   Requests describes the minimum amount of cpu resources required.

resources.requests.memory                     128Mi                                                        

<nil>   Requests describes the minimum amount of memory resources required.

resources.limits.cpu                          1000m                                                        

<nil>   Limits describes the maximum amount of cpu resources allowed.

snyk.tokenSecret.name                                                                                      

string  Reference to the secret containing a Snyk API Token as snyk_token.

targetImagePullSecret                                                                                      

string  Reference to the secret used for pulling images from private registry.

6. Define the --values-file flag to customize the default configuration:

The values.yaml file you created earlier is referenced with the --values-file flag when
running your Tanzu install command:

tanzu package install REFERENCE-NAME \

  --package SCANNER-NAME \

  --version VERSION \

  --namespace tap-install \

  --values-file PATH-TO-VALUES-YAML

Where:

REFERENCE-NAME is the name referenced by the installed package. For example,
grype-scanner, snyk-scanner.

SCANNER-NAME is the name of the scanner package you retrieved earlier. For
example, snyk.scanning.apps.tanzu.vmware.com.

VERSION is your package version number. For example, 1.0.0-beta.2.

PATH-TO-VALUES-YAML is the path that points to the values.yaml file created earlier.

For example:

$ tanzu package install snyk-scanner \

  --package snyk.scanning.apps.tanzu.vmware.com \

  --version 1.1.0 \

  --namespace tap-install \

  --values-file values.yaml

/ Installing package 'snyk.scanning.apps.tanzu.vmware.com'

| Getting namespace 'tap-install'

| Getting package metadata for 'snyk.scanning.apps.tanzu.vmware.com'

| Creating service account 'snyk-scanner-tap-install-sa'

| Creating cluster admin role 'snyk-scanner-tap-install-cluster-role'

| Creating cluster role binding 'snyk-scanner-tap-install-cluster-rolebinding'

/ Creating package resource

- Package install status: Reconciling

Tanzu Application Platform v1.5

VMware by Broadcom 1558



 Added installed package 'snyk-scanner' in namespace 'tap-install'

Verify Installation

To verify the installation create an ImageScan or SourceScan referencing one of the newly added
ScanTemplates for the scanner.

1. (Optional) Create a ScanPolicy formatted for the output specific to the scanner you are
installing, to reference in the ImageScan or SourceScan.

  kubectl apply -n $DEV_NAMESPACE -f SCAN-POLICY-YAML

2. Retrieve available ScanTemplates from the namespace where the scanner is installed:

kubectl get scantemplates -n DEV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

For example:

$ kubectl get scantemplates

NAME                               AGE

blob-source-scan-template          10d

private-image-scan-template        10d

public-image-scan-template         10d

public-source-scan-template        10d

snyk-private-image-scan-template   10d

snyk-public-image-scan-template    10d

3. Create the following ImageScan YAML:

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ImageScan

metadata:

  name: sample-scanner-public-image-scan

spec:

  registry:

    image: "nginx:1.16"

  scanTemplate: SCAN-TEMPLATE

  scanPolicy: SCAN-POLICY # Optional

Where:

SCAN-TEMPLATE is the name of the installed ScanTemplate in the DEV-NAMESPACE you
retrieved earlier.

Note

As vulnerability scanners output different formats, the ScanPolicies can
vary. For information about policies and samples, see Enforce compliance
policy using Open Policy Agent.

Note

Some scanners do not support both ImageScan and SourceScan.

Tanzu Application Platform v1.5

VMware by Broadcom 1559



SCAN-POLICY it’s an optional reference to an existing ScanPolicy in the same DEV-
NAMESPACE.

For example:

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ImageScan

metadata:

  name: sample-snyk-public-image-scan

spec:

  registry:

    image: "nginx:1.16"

  scanTemplate: snyk-public-image-scan-template

  scanPolicy: snyk-scan-policy

4. Create the following SourceScan YAML:

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: SourceScan

metadata:

  name: sample-scanner-public-source-scan

spec:

  git:

    url: "https://github.com/houndci/hound.git"

    revision: "5805c650"

  scanTemplate: SCAN-TEMPLATE

  scanPolicy: SCAN-POLICY # Optional

Where:

SCAN-TEMPLATE is the name of the installed ScanTemplate in the DEV-NAMESPACE you
retrieved earlier.

SCAN-POLICY is an optional reference to an existing ScanPolicy in the same DEV-
NAMESPACE.

For example:

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: SourceScan

metadata:

  name: sample-grype-public-source-scan

spec:

  git:

    url: "https://github.com/houndci/hound.git"

    revision: "5805c650"

  scanTemplate: public-source-scan-template

  scanPolicy: scan-policy

5. Apply the ImageScan and SourceScan YAMLs:

To run the scans, apply them to the cluster by running these commands:

ImageScan:

kubectl apply -f PATH-TO-IMAGE-SCAN-YAML -n DEV-NAMESPACE

Where PATH-TO-IMAGE-SCAN-YAML is the path to the YAML file created earlier.

Note

Some scanners do not support both ImageScan and SourceScan.

Tanzu Application Platform v1.5

VMware by Broadcom 1560



SourceScan:

kubectl apply -f PATH-TO-SOURCE-SCAN-YAML -n DEV-NAMESPACE

Where PATH-TO-SOURCE-SCAN-YAML is the path to the YAML file created earlier.

For example:

$ kubectl apply -f imagescan.yaml -n my-apps

imagescan.scanning.apps.tanzu.vmware.com/sample-snyk-public-image-scan created

$ kubectl apply -f sourcescan.yaml -n my-apps

sourcescan.scanning.apps.tanzu.vmware.com/sample-grype-public-source-scan creat

ed

6. To verify the integration, get the scan to see if it completed by running:

For ImageScan:

kubectl get imagescan IMAGE-SCAN-NAME -n DEV-NAMESPACE

Where IMAGE-SCAN-NAME is the name of the ImageScan as defined in the YAML file created
earlier.

For SourceScan:

kubectl get sourcescan SOURCE-SCAN-NAME -n DEV-NAMESPACE

Where SOURCE-SCAN-NAME is the name of the SourceScan as defined in the YAML file created
earlier.

For example:

$ kubectl get imagescan sample-snyk-public-image-scan -n my-apps

NAME                            PHASE       SCANNEDIMAGE   AGE   CRITICAL   HIG

H   MEDIUM   LOW   UNKNOWN   CVETOTAL

sample-snyk-public-image-scan   Completed   nginx:1.16     26h   0          114    

58       314   0         486

$ kubectl get sourcescan sample-grype-public-source-scan -n my-apps

NAME                                                                      PHASE       

SCANNEDREVISION   SCANNEDREPOSITORY                      AGE     CRITICAL   HIG

H   MEDIUM   LOW   UNKNOWN   CVETOTAL

sourcescan.scanning.apps.tanzu.vmware.com/grypesourcescan-sample-public   Compl

eted   5805c650          https://github.com/houndci/hound.git   8m34s   21         

121    112      9     0         263

7. Clean up:

kubectl delete -f PATH-TO-SCAN-YAML -n DEV-NAMESPACE

Where PATH-TO-SCAN-YAML is the path to the YAML file created earlier.

Install scanner to multiple namespaces

Note

If you define a ScanPolicy for the scans and the evaluation finds a violation,
the Phase is Failed instead of Completed. In both cases the scan finished.

Tanzu Application Platform v1.5

VMware by Broadcom 1561



To install a Scanner to multiple namespaces, VMware recommends using a namespace provisioner.
See Namespace Provisioner

Configure Tanzu Application Platform Supply Chain to use
new scanner
In order to scan your images with the new scanner installed in the Out of the Box Supply Chain
with Testing and Scanning, you must update your Tanzu Application Platform installation.

Add the ootb_supply_chain_testing_scanning.scanning section to your tap-values.yaml and
perform a Tanzu Application Platform update.

You can define which ScanTemplates is used for both SourceScan and ImageScan. The default values
are the Grype Scanner ScanTemplates, but they are overwritten by any other ScanTemplate present
in your DEV-NAMESPACE. The same applies to the ScanPolicies applied to each kind of scan.

ootb_supply_chain_testing_scanning:

  scanning:

    image:

      template: IMAGE-SCAN-TEMPLATE

      policy: IMAGE-SCAN-POLICY

    source:

      template: SOURCE-SCAN-TEMPLATE

      policy: SOURCE-SCAN-POLICY

For example:

ootb_supply_chain_testing_scanning:

  scanning:

    image:

      template: snyk-private-image-scan-template

      policy: snyk-scan-policy

    source:

      template: blob-source-scan-template

      policy: scan-policy

Uninstall Scanner

To replace the scanner in the Supply Chain, follow the steps mentioned in Configure TAP Supply
Chain to Use New Scanner. After the scanner is no longer required by the Supply Chain, you can
remove the package by running:

tanzu package installed delete REFERENCE-NAME \

    --namespace tap-install

Where REFERENCE-NAME is the name you identified the package with, when installing in the Install
section. For example, grype-scanner, snyk-scanner.

For example:

$ tanzu package installed delete snyk-scanner \

    --namespace tap-install

Note

For the Supply Chain to work properly, the SOURCE-SCAN-TEMPLATE must support
blob files and the IMAGE-SCAN-TEMPLATE must support private images.

Tanzu Application Platform v1.5

VMware by Broadcom 1562



Other Available Scanner Integrations

In addition to providing the above supported integrations, VMware encourages the broader
community to support VMware in our goal of integrating with customers’ preferred CVE scanners.

Additional integrations:

Prisma Scanner (Alpha) is available for source and image scanning.

Trivy Scanner (Alpha) is available for source and image scanning.

Supported Scanner Matrix for Supply Chain Security Tools -
Scan

This topic contains limits you observe with scanners which are provided for SCST - Scan. There
might be more limits which are not mentioned in the following table.

Grype

Work
load
Type

Impact Potential Workarounds

.Net
Observation:
Source Scans for .Net workloads do not show any results in the Tanzu
Application Platform GUI nor the CLI.

If scanning a mono repository that includes additional types of packages,
such as a front-end JavaScript package, source scans might report
vulnerabilities.

Reason:
Grype requires a ".deps.json" file for identifying the dependencies for
scanning. Given that this file is created after the .Net project is compiled
(which happens after the source scan step), doing Grype source scans on
.Net workloads might not report any vulnerabilities.

Review the upstream issue here.

Grype image scans for .Net
workloads function in most cases.

If using an out-of-the-box Supply
Chain with scanning, users can
select one of the following
options:

1. Do nothing. Source scan
might not report any
vulnerabilities but image
scan can.

2. Edit the Supply Chain to
use an alternative
scanner.

Java Observation:
Source Scans for Java workloads do not show any results in the Tanzu
Application Platform GUI nor the CLI.

Reason:
For Java using Gradle, dependency lock files are not guaranteed, so
Grype uses dependencies present in the built binaries, such as `.jar` or
`.war` files. Grype fails to find vulnerabilities during a source scan because
VMware discourages committing binaries to source code repositories.

Review the upstream issue here.

Grype image scans for Java
workloads function in most cases.

If using an out-of-the-box Supply
Chain with scanning, users can
select one of the following
options:

1. Do nothing. Source scan
might not report any
vulnerabilities but image
scan can.

2. Edit the Supply Chain to
use an alternative
scanner that supports
Java for source scans.

Prerequisites for Snyk Scanner for Supply Chain Security
Tools - Scan (Beta)

Tanzu Application Platform v1.5

VMware by Broadcom 1563

https://github.com/anchore/syft/issues/1522
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.5/tap/scst-scan-install-scanners.html
https://github.com/anchore/syft/issues/690
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.5/tap/scst-scan-install-scanners.html


This topic describes the prerequisites you must complete to install Supply Chain Security Tools -
Scan (Snyk Scanner) from the Tanzu Application Platform package repository.

Prepare the Snyk Scanner configuration

1. Obtain a Snyk API Token from the Snyk documentation.

2. Create a Snyk secret YAML file and insert the base64 encoded Snyk API token into the
snyk_token:

apiVersion: v1

kind: Secret

metadata:

  name: snyk-token-secret

  namespace: my-apps

data:

  snyk_token: BASE64-SNYK-API-TOKEN

Where BASE64-SNYK-API-TOKEN is the Snyk API Token obtained earlier.

3. Apply the Snyk secret YAML file by running:

kubectl apply -f YAML-FILE

Where YAML-FILE is the name of the Snyk secret YAML file you created.

4. Define the --values-file flag to customize the default configuration. You must define the
following fields in the values.yaml file for the Snyk Scanner configuration. You can add
fields as needed to activate or deactivate behaviors. You can append the values to this file
as shown later in this topic. Create a values.yaml file by using the following configuration:

---

namespace: DEV-NAMESPACE

targetImagePullSecret: TARGET-REGISTRY-CREDENTIALS-SECRET

snyk:

  tokenSecret:

    name: SNYK-TOKEN-SECRET

Where:

DEV-NAMESPACE is your developer namespace.

TARGET-REGISTRY-CREDENTIALS-SECRET is the name of the secret that contains the
credentials to pull an image from a private registry for scanning.

SNYK-TOKEN-SECRET is the name of the secret you created that contains the
snyk_token to connect to the Snyk API. This field is required.

Important

Snyk’s image scanning capability is in beta. Snyk might only return a partial list of
CVEs when scanning Buildpack images.

Note

To use a namespace other than the default namespace, ensure that
the namespace exists before you install. If the namespace does not
exist, the scanner installation fails.

Tanzu Application Platform v1.5

VMware by Broadcom 1564

https://docs.snyk.io/snyk-cli/authenticate-the-cli-with-your-account
https://docs.snyk.io/snyk-cli/configure-the-snyk-cli#environment-variables


The Snyk Scanner integration can work with or without the SCST - Store integration. The
values.yaml file is slightly different for each configuration.

SCST - Store integration

Using SCST - Store Integration: To persist the results found by the Snyk Scanner, you can enable
the SCST - Store integration by appending the fields to the values.yaml file.

The Grype and Snyk Scanner Integrations both enable the Metadata Store. To prevent conflicts,
the configuration values are slightly different based on whether the Grype Scanner Integration is
installed or not. If Tanzu Application Platform is installed using the Full Profile, the Grype Scanner
Integration is installed, unless it is explicitly excluded.

If the Grype Scanner Integration is installed in the same dev-namespace Snyk Scanner is
installed:

#! ...

metadataStore:

  #! The url where the Store deployment is accessible.

  #! Default value is: "https://metadata-store-app.metadata-store.svc.cluster.l

ocal:8443"

  url: "STORE-URL"

  caSecret:

    #! The name of the secret that contains the ca.crt to connect to the Store 

Deployment.

    #! Default value is: "app-tls-cert"

    name: "CA-SECRET-NAME"

    importFromNamespace: "" #! since both Snyk and Grype both enable store, one 

must leave importFromNamespace blank

  #! authSecret is for multicluster configurations.

  authSecret:

    #! The name of the secret that contains the auth token to authenticate to t

he Store Deployment.

    name: "AUTH-SECRET-NAME"

    importFromNamespace: "" #! since both Snyk and Grype both enable store, one 

must leave importFromNamespace blank

If the Grype Scanner Integration is not installed in the same dev-namespace Snyk Scanner is
installed:

#! ...

metadataStore:

  #! The url where the Store deployment is accessible.

  #! Default value is: "https://metadata-store-app.metadata-store.svc.cluster.l

ocal:8443"

  url: "STORE-URL"

  caSecret:

    #! The name of the secret that contains the ca.crt to connect to the Store 

Deployment.

    #! Default value is: "app-tls-cert"

    name: "CA-SECRET-NAME"

    #! The namespace where the secrets for the Store Deployment live.

    #! Default value is: "metadata-store"

    importFromNamespace: "STORE-SECRETS-NAMESPACE"

  #! authSecret is for multicluster configurations.

  authSecret:

    #! The name of the secret that contains the auth token to authenticate to t

he Store Deployment.

    name: "AUTH-SECRET-NAME"

    #! The namespace where the secrets for the Store Deployment live.

    importFromNamespace: "STORE-SECRETS-NAMESPACE"

Tanzu Application Platform v1.5

VMware by Broadcom 1565



Without SCST - Store Integration: The SCST - Store integration is enabled by default. If you don’t
want to use this integration, explicitly deactivate the integration by appending the following field to
the values.yaml file:

# ...

metadataStore:

   url: "" # Configuration is moved, so set this string to empty.

Sample ScanPolicy for Snyk in SPDX JSON format

1. Create a ScanPolicy YAML with a Rego file for scanner output in the SPDX JSON format.
Here is a sample scan policy resource:

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanPolicy

metadata:

  name: snyk-scan-policy

  labels:

    'app.kubernetes.io/part-of': 'enable-in-gui'

spec:

  regoFile: |

    package main

    # Accepted Values: "Critical", "High", "Medium", "Low", "Negligible", "Unkn

ownSeverity"

    notAllowedSeverities := ["Critical", "High", "UnknownSeverity"]

    ignoreCves := []

    contains(array, elem) = true {

      array[_] = elem

    } else = false { true }

    isSafe(match) {

      fails := contains(notAllowedSeverities, match.relationships[_].ratedBy.ra

ting[_].severity)

      not fails

    }

    isSafe(match) {

      ignore := contains(ignoreCves, match.id)

      ignore

    }

    deny[msg] {

      vuln := input.vulnerabilities[_]

      ratings := vuln.relationships[_].ratedBy.rating[_].severity

      comp := vuln.relationships[_].affect.to[_]

      not isSafe(vuln)

      msg = sprintf("CVE %s %s %s", [comp, vuln.id, ratings])

    }

2. Apply the YAML file by running:

kubectl apply -n $DEV_NAMESPACE -f SCAN-POLICY-YAML

Note

The Snyk Scanner integration is only available for an image scan, not a source scan.

Tanzu Application Platform v1.5

VMware by Broadcom 1566



After all prerequisites are completed, follow the steps in Install another scanner for Supply Chain
Security Tools - Scan to install the Snyk Scanner.

Prerequisites for Carbon Black Scanner for Supply Chain
Security Tools - Scan (Beta)
This topic describes prerequisites you must complete to install Supply Chain Security Tools - Scan
(Carbon Black Scanner) from the Tanzu Application Platform package repository. The Carbon Black
Scanner integration is only available for an image scan, not a source scan.

Prepare the Carbon Black Scanner configuration

To prepare the Carbon Black Scanner configuration before you install any scanners:

1. Obtain a Carbon Black API Token from Carbon Black Cloud.

2. Create a Carbon Black secret YAML file and insert the Carbon Black API configuration key.
Obtain all values from your CBC console.

apiVersion: v1

kind: Secret

metadata:

  name: CARBONBLACK-CONFIG-SECRET

  namespace: my-apps

stringData:

  cbc_api_id: CBC-API-ID

  cbc_api_key: CBC-API-KEY

  cbc_org_key: CBC-ORG-KEY

  cbc_saas_url: CBC-SAAS-URL

Where:

CBC-API-ID is the API ID obtained from CBC.

CBC-API-KEY is the API Key obtained from CBC.

CBC-ORG-KEY is the Org Key of your CBC organization.

CBC-SAAS-URL is the CBC Backend URL.

3. Apply the Carbon Black secret YAML file by running:

kubectl apply -f YAML-FILE

Where YAML-FILE is the name of the Carbon Black secret YAML file you created.

4. Define the --values-file flag to customize the default configuration. Create a values.yaml
file by using the following configuration:

You must define the following fields in the values.yaml file for the Carbon Black Scanner
configuration. You can add fields as needed to enable or deactivate behaviors. You can
append the values to this file as shown later in this topic.

---

namespace: DEV-NAMESPACE

Important

Carbon Black’s image scanning capability is in beta. Carbon Black might only return
a partial list of CVEs when scanning Buildpack images.

Tanzu Application Platform v1.5

VMware by Broadcom 1567



targetImagePullSecret: TARGET-REGISTRY-CREDENTIALS-SECRET

carbonBlack:

  configSecret:

    name: CARBONBLACK-CONFIG-SECRET

DEV-NAMESPACE is your developer namespace.

TARGET-REGISTRY-CREDENTIALS-SECRET is the name of the secret that contains the
credentials to pull an image from a private registry for scanning.

CARBONBLACK-CONFIG-SECRET is the name of the secret you created that contains the
Carbon Black configuration to connect to CBC. This field is required.

The Carbon Black Scanner integration can work with or without the SCST - Store
integration. The values.yaml file is slightly different for each configuration.

SCST - Store integration

To Integrate:

1. Do one of the following procedures:

Use the Supply Chain Security Tools - Store

Without using the Supply Chain Security Tools - Store

2. Apply the YAML.

Using SCST - Store Integration

To persist the results found by the Carbon Black Scanner, you can enable the SCST - Store
integration by appending the fields to the values.yaml file.

The Grype and Carbon Black Scanner Integrations both enable the Metadata Store. To prevent
conflicts, the configuration values are slightly different based on whether the Grype Scanner
Integration is installed or not. If Tanzu Application Platform was installed using the Full Profile, the
Grype Scanner Integration was installed, unless it was explicitly excluded.

If the Grype Scanner Integration is installed in the same dev-namespace Carbon Black
Scanner is installed:

#! ...

metadataStore:

  #! The url where the Store deployment is accessible.

  #! Default value is: "https://metadata-store-app.metadata-store.svc.cluster.l

ocal:8443"

  url: "STORE-URL"

  caSecret:

    #! The name of the secret that contains the ca.crt to connect to the Store 

Deployment.

    #! Default value is: "app-tls-cert"

    name: "CA-SECRET-NAME"

    importFromNamespace: "" #! since both Carbon Black and Grype both enable st

ore, one must leave importFromNamespace blank

  #! authSecret is for multicluster configurations.

  authSecret:

Important

To use a namespace other than the default namespace, ensure that
the namespace exists before you install. If the namespace does not
exist, the scanner installation fails.

Tanzu Application Platform v1.5

VMware by Broadcom 1568



    #! The name of the secret that contains the auth token to authenticate to t

he Store Deployment.

    name: "AUTH-SECRET-NAME"

    importFromNamespace: "" #! since both Carbon Black and Grype both enable st

ore, one must leave importFromNamespace blank

If the Grype Scanner Integration is not installed in the same dev-namespace Carbon Black
Scanner is installed:

#! ...

metadataStore:

  #! The url where the Store deployment is accessible.

  #! Default value is: "https://metadata-store-app.metadata-store.svc.cluster.l

ocal:8443"

  url: "STORE-URL"

  caSecret:

    #! The name of the secret that contains the ca.crt to connect to the Store 

Deployment.

    #! Default value is: "app-tls-cert"

    name: "CA-SECRET-NAME"

    #! The namespace where the secrets for the Store Deployment live.

    #! Default value is: "metadata-store"

    importFromNamespace: "STORE-SECRETS-NAMESPACE"

  #! authSecret is for multicluster configurations.

  authSecret:

    #! The name of the secret that contains the auth token to authenticate to t

he Store Deployment.

    name: "AUTH-SECRET-NAME"

    #! The namespace where the secrets for the Store Deployment live.

    importFromNamespace: "STORE-SECRETS-NAMESPACE"

Without SCST - Store Integration

The SCST - Store integration is enabled by default. If you don’t want to use this integration,
explicitly deactivate the integration by appending the following field to the values.yaml file:

# ...

metadataStore:

  url: "" # Disable Supply Chain Security Tools - Store integration

Sample ScanPolicy in CycloneDX format

1. Create a ScanPolicy YAML with a Rego file for scanner output in the CycloneDX format. For
example:

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanPolicy

metadata:

  name: scan-policy

  labels:

    'app.kubernetes.io/part-of': 'enable-in-gui'

spec:

  regoFile: |

    package main

    # Accepted Values: "Critical", "High", "Medium", "Low", "Negligible", "Unkn

ownSeverity"

    notAllowedSeverities := ["Critical", "High", "UnknownSeverity"]

    ignoreCves := []

    contains(array, elem) = true {

      array[_] = elem

Tanzu Application Platform v1.5

VMware by Broadcom 1569



    } else = false { true }

    isSafe(match) {

      severities := { e | e := match.ratings.rating.severity } | { e | e := mat

ch.ratings.rating[_].severity }

      some i

      fails := contains(notAllowedSeverities, severities[i])

      not fails

    }

    isSafe(match) {

      ignore := contains(ignoreCves, match.id)

      ignore

    }

    deny[msg] {

      comps := { e | e := input.bom.components.component } | { e | e := input.b

om.components.component[_] }

      some i

      comp := comps[i]

      vulns := { e | e := comp.vulnerabilities.vulnerability } | { e | e := com

p.vulnerabilities.vulnerability[_] }

      some j

      vuln := vulns[j]

      ratings := { e | e := vuln.ratings.rating.severity } | { e | e := vuln.ra

tings.rating[_].severity }

      not isSafe(vuln)

      msg = sprintf("CVE %s %s %s", [comp.name, vuln.id, ratings])

    }

2. Apply the YAML:

kubectl apply -n $DEV_NAMESPACE -f SCAN-POLICY-YAML

After you complete all prerequisites, install the Carbon Black Scanner. See Install another scanner
for Supply Chain Security Tools - Scan.

Prerequisites for Prisma Scanner for Supply Chain Security
Tools - Scan (Alpha)

This topic describes prerequisites you must complete to install SCST - Scan (Prisma) from the
VMware package repository.

Verify the latest alpha package version

Run this command to output a list of available tags.

imgpkg tag list -i projects.registry.vmware.com/tanzu_practice/tap-scanners-package/pr

isma-repo-scanning-bundle | sort -V

Use the latest version returned in place of the sample version in this topic. For example, 0.1.5-
alpha.13 in the following output.

Important

This integration is in Alpha, which means that it is still in active development by the
Tanzu Practices Global Tech Team and might be subject to change at any point.
Users might encounter unexpected behavior.

Tanzu Application Platform v1.5

VMware by Broadcom 1570



imgpkg tag list -i projects.registry.vmware.com/tanzu_practice/tap-scanners-package/pr

isma-repo-scanning-bundle | sort -V

0.1.4-alpha.11  

0.1.4-alpha.12  

0.1.4-alpha.15  

0.1.5-alpha.11  

0.1.5-alpha.12  

0.1.5-alpha.13  

Relocate images to a registry

VMware recommends relocating the images from VMware Tanzu Network registry to your own
container image registry before installing. The Prisma Scanner is in the Alpha development phase,
and not packaged as part of Tanzu Application Platform. It is hosted on the VMware Project
Repository instead of VMware Tanzu Network. If you relocated the Tanzu Application Platform
images, you can also relocate the Prisma Scanner package. If you don’t relocate the images, the
Prisma Scanner installation depends on VMware Tanzu Network for continued operation, and
VMware Tanzu Network offers no uptime guarantees. The option to skip relocation is documented
for evaluation and proof-of-concept only.

For information about supported registries, see each registry’s documentation.

To relocate images from the VMware Project Registry to your registry:

1. Set up environment variables for installation:

export IMGPKG_REGISTRY_HOSTNAME_0=registry.tanzu.vmware.com

export IMGPKG_REGISTRY_USERNAME_0=MY-TANZUNET-USERNAME

export IMGPKG_REGISTRY_PASSWORD_0=MY-TANZUNET-PASSWORD

export INSTALL_REGISTRY_USERNAME=MY-REGISTRY-USER

export INSTALL_REGISTRY_PASSWORD=MY-REGISTRY-PASSWORD

export INSTALL_REGISTRY_HOSTNAME=MY-REGISTRY

export VERSION=VERSION-NUMBER

export INSTALL_REPO=TARGET-REPOSITORY

Where:

MY-REGISTRY-USER is the user with write access to MY-REGISTRY.

MY-REGISTRY-PASSWORD is the password for MY-REGISTRY-USER.

MY-REGISTRY is your own registry.

VERSION is your Prisma Scanner version. For example, 0.1.4-alpha.12.

TARGET-REPOSITORY is your target repository, a directory or repository on MY-
REGISTRY that serves as the location for the installation files for Prisma Scanner.

2. Install the Carvel tool imgpkg CLI. See Deploying Cluster Essentials.

3. Relocate images with the imgpkg CLI by running:

imgpkg copy -b projects.registry.vmware.com/tanzu_practice/tap-scanners-packag

e/prisma-repo-scanning-bundle:${VERSION} --to-repo ${INSTALL_REGISTRY_HOSTNAM

E}/${INSTALL_REPO}/prisma-repo-scanning-bundle

Add the Prisma Scanner package repository
Tanzu CLI packages are available on repositories. Adding the Prisma Scanning package repository
makes the Prisma Scanning bundle and its packages available for installation.

Tanzu Application Platform v1.5

VMware by Broadcom 1571

https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.4/cluster-essentials/deploy.html#optionally-install-clis-onto-your-path-6


VMware recommends installing the Prisma Scanner objects in the existing tap-install namespace
to keep the Prisma Scanner grouped logically with the other Tanzu Application Platform
components.

1. Add the Prisma Scanner package repository to the cluster by running:

tanzu package repository add prisma-scanner-repository \

  --url ${INSTALL_REGISTRY_HOSTNAME}/${INSTALL_REPO}/prisma-repo-scanning-bundl

e:$VERSION \

  --namespace tap-install

2. Get the status of the Prisma Scanner package repository, and ensure that the status
updates to Reconcile succeeded by running:

tanzu package repository get prisma-scanner-repository --namespace tap-install

For example:

$ tanzu package repository get prisma-scanning-repository --namespace tap-insta

ll

- Retrieving repository prisma-scanner-repository...

NAME:          prisma-scanner-repository

VERSION:       71091125

REPOSITORY:    projects.registry.vmware.com/tanzu_practice/tap-scanners-packag

e/prisma-repo-scanning-bundle

TAG:           0.1.4-alpha.12

STATUS:        Reconcile succeeded

REASON:

3. List the available packages by running:

tanzu package available list --namespace tap-install

For example:

$ tanzu package available list --namespace tap-install

/ Retrieving available packages...

  NAME                                                 DISPLAY-NAME                                        

SHORT-DESCRIPTION

  prisma.scanning.apps.tanzu.vmware.com                Prisma for Supply Chain 

Security Tools - Scan                             Default scan templates using 

Prisma

Prepare the Prisma Scanner configuration

Before installing the Prisma scanner, you must create the configuration and a Kubernetes secret
that contains credentials to access Prisma Cloud.

Obtain Console URL and Access Keys and Token

The Prisma Scanner supports two methods of authentication:

Note

VMware recommends, but does not require, relocating images to a registry for
installation. This section assumes that you relocated images to a registry. See the
earlier section to fill in the variables.

Tanzu Application Platform v1.5

VMware by Broadcom 1572



1) Basic Authentication with API Key and Secret 2) Token Based Authentication

The steps to configure both are outlined to allow you to decide which option you use.

To obtain your Prisma Compute Console URL and Access Keys and Token. See Access keys in the
Palo Alto Networks documentation.

Access key and secret authentication

To create a Prisma secret, use the following instructions.

1. Create a Prisma secret YAML file and insert the base64 encoded Prisma API token into the
prisma_token:

apiVersion: v1

kind: Secret

metadata:

  name: PRISMA-ACCESS-KEY-SECRET

  namespace: APP-NAME

data:

  username: BASE64-PRISMA-ACCESS-KEY-ID

  password: BASE64-PRISMA-ACCESS-KEY-PASSWORD

Where:

PRISMA-ACCESS-KEY-SECRET is the name of your Prisma token secret.

APP-NAME is the namespace you want to use.

BASE64-PRISMA-ACCESS-KEY-ID is your base64 encoded Prisma Access Key ID.

BASE64-PRISMA-ACCESS-KEY-PASSWORD is your base64 encoded Prisma Access Key
Password.

2. Apply the Prisma secret YAML file by running:

kubectl apply -f YAML-FILE

Where YAML-FILE is the name of the Prisma secret YAML file you created.

3. Define the --values-file flag to customize the default configuration. You must define the
following fields in the values.yaml file for the Prisma Scanner configuration. You can add
fields to activate or deactivate behaviors. You can append the values to this file as shown
later in this topic. Create a values.yaml file by using the following configuration:

---

namespace: DEV-NAMESPACE

targetImagePullSecret: TARGET-REGISTRY-CREDENTIALS-SECRET

prisma:

  url: PRISMA-URL

Note

The token method issued by Prisma Cloud has a expiration of 1 hour, so it requires
frequent refreshing.

Note

Generated tokens expire after an hour.

Tanzu Application Platform v1.5

VMware by Broadcom 1573

https://docs.paloaltonetworks.com/prisma/prisma-cloud/prisma-cloud-admin-compute/authentication/access_keys


  basicAuth:

    name: PRISMA-ACCESS-KEY-SECRET

Where:

DEV-NAMESPACE is your developer namespace.

TARGET-REGISTRY-CREDENTIALS-SECRET is the name of the secret that contains the
credentials to pull an image from a private registry for scanning.

PRISMA-URL is the FQDN of your Twistlock server.

PRISMA-CONFIG-SECRET is the name of the secret you created that contains the
Prisma configuration to connect to Prisma. This field is required.

The Prisma integration can work with or without the SCST - Store integration. The values.yaml file
is slightly different for each configuration.

Access Token Authentication

1. Create a Prisma secret YAML file and insert the base64 encoded Prisma API token into the
prisma_token:

apiVersion: v1

kind: Secret

metadata:

  name: PRISMA-TOKEN-SECRET

  namespace: APP-NAME

data:

  prisma_token: BASE64-PRISMA-API-TOKEN

Where:

PRISMA-TOKEN-SECRET is the name of your Prisma token secret.

APP-NAME is the namespace you want to use.

BASE64-PRISMA-API-TOKEN is the name of your base64 encoded Prisma API token.

2. Apply the Prisma secret YAML file by running:

kubectl apply -f YAML-FILE

Where YAML-FILE is the name of the Prisma secret YAML file you created.

3. Define the --values-file flag to customize the default configuration. You must define the
following fields in the values.yaml file for the Prisma Scanner configuration. You can add
fields as needed to activate or deactivate behaviors. You can append the values to this file
as shown later in this topic. Create a values.yaml file by using the following configuration:

---

namespace: DEV-NAMESPACE

targetImagePullSecret: TARGET-REGISTRY-CREDENTIALS-SECRET

prisma:

  url: PRISMA-URL

Note

To use a namespace other than the default namespace, ensure that the
namespace exists before you install. If the namespace does not exist, the
scanner installation fails.

Tanzu Application Platform v1.5

VMware by Broadcom 1574



  tokenSecret:

    name: PRISMA-CONFIG-SECRET

Where:

DEV-NAMESPACE is your developer namespace.

TARGET-REGISTRY-CREDENTIALS-SECRET is the name of the secret that contains the
credentials to pull an image from a private registry for scanning.

PRISMA-URL is the FQDN of your Twistlock server.

PRISMA-CONFIG-SECRET is the name of the secret you created that contains the
Prisma configuration to connect to Prisma. This field is required.

SCST - Store integration

The Prisma Scanner integration can work with or without the SCST - Store integration. The
values.yaml file is slightly different for each configuration.

When using SCST - Store integration, to persist the results found by the Prisma Scanner, you can
enable the SCST - Store integration by appending the fields to the values.yaml file.

The Grype, Snyk, and Prisma Scanner Integrations enable the Metadata Store. To prevent conflicts,
the configuration values are slightly different based on whether the Grype Scanner Integration is
installed or not. If Tanzu Application Platform is installed using the Full Profile, the Grype Scanner
Integration is installed unless it is explicitly excluded.

Multiple Scanners installed

In order to find your CA secret name and authentication token secret name as needed for your
values.yaml when installing Prisma Scanner you must look at the configuration of a prior installed
scanner in the same namespace as it already exists.

For information about how the scanner was likely initially created, see Multicluster Setup

An example values.yaml when there are other scanners already installed in the same dev-
namespace where the Prisma Scanner is installed:

#! ...

metadataStore:

  #! The url where the Store deployment is accessible.

  #! Default value is: "https://metadata-store-app.metadata-store.svc.cluster.local:84

43"

  url: "STORE-URL"

  caSecret:

    #! The name of the secret that contains the ca.crt to connect to the Store Deploym

ent.

    #! Default value is: "app-tls-cert"

    name: "CA-SECRET-NAME"

    importFromNamespace: "" #! since both Prisma and Grype/Snyk both enable store, one 

must leave importFromNamespace blank

  #! authSecret is for multicluster configurations.

  authSecret:

    #! The name of the secret that contains the auth token to authenticate to the Stor

Note

To use a namespace other than the default namespace, ensure that the
namespace exists before you install. If the namespace does not exist, the
scanner installation fails.

Tanzu Application Platform v1.5

VMware by Broadcom 1575



e Deployment.

    name: "AUTH-SECRET-NAME"

    importFromNamespace: "" #! since both Prisma and Grype/Snyk both enable store, one 

must leave importFromNamespace blank

Where:

STORE-URL is the URL where the Store deployment is accessible.

CA-SECRET-NAME is the name of the secret that contains the ca.crt to connect to the Store
Deployment. Default is app-tls-cert.

AUTH-SECRET-NAME is the name of the secret that contains the authentication token to
authenticate to the Store Deployment.

Prisma Only Scanner Installed

For information about creating and exporting secrets for the Metadata Store CA and authentication
token referenced in the data values when installing Prisma Scanner, see Multicluster Setup.

An example values.yaml when no other scanner integrations installed in the same dev-namespace
where the Prisma Scanner is installed:

#! ...

metadataStore:

  #! The url where the Store deployment is accessible.

  #! Default value is: "https://metadata-store-app.metadata-store.svc.cluster.local:84

43"

  url: "STORE-URL"

  caSecret:

    #! The name of the secret that contains the ca.crt to connect to the Store Deploym

ent.

    #! Default value is: "app-tls-cert"

    name: "CA-SECRET-NAME"

    #! The namespace where the secrets for the Store Deployment live.

    #! Default value is: "metadata-store"

    importFromNamespace: "STORE-SECRETS-NAMESPACE"

  #! authSecret is for multicluster configurations.

  authSecret:

    #! The name of the secret that contains the auth token to authenticate to the Stor

e Deployment.

    name: "AUTH-SECRET-NAME"

    #! The namespace where the secrets for the Store Deployment live.

    importFromNamespace: "STORE-SECRETS-NAMESPACE"

Where:

STORE-URL is the URL where the Store deployment is accessible.

CA-SECRET-NAME is the name of the secret that contains the ca.crt to connect to the Store
Deployment. Default is app-tls-cert.

STORE-SECRETS-NAMESPACE is the namespace where the secrets for the Store Deployment
live. Default is metadata-store.

AUTH-SECRET-NAME is the name of the secret that contains the authentication token to
authenticate to the Store Deployment.

No Store Integration

If you do not want to enable the SCST - Store integration, explicitly deactivate the integration by
appending the following field to the values.yaml file that is enabled by default:

Tanzu Application Platform v1.5

VMware by Broadcom 1576



# ...

metadataStore:

  url: "" # Deactivate Supply Chain Security Tools - Store integration

Prepare the ScanPolicy

To prepare the ScanPolicy, use the instructions in the following sections.

Sample ScanPolicy using Prisma Policies

The following sample ScanPolicy allows you to control whether the SupplyChain passes or fails
based on the compliance and vulnerability rules configured in the Prisma Compute Console.

The policy reads the complianceScanPassed and vulnerabilityScanPassed fields returned from
Prisma scanner output to control the results of the scan.

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanPolicy

metadata:

  name: prisma-scan-policy

  labels:

    'app.kubernetes.io/part-of': 'enable-in-gui'

spec:

  regoFile: |

    package main

    

    import future.keywords.in

    

    deny[msg] {

      vulnerabilityAndComplianceScanResults := {e | e := input.bom.metadata.propertie

s.property[_]}

      some result in vulnerabilityAndComplianceScanResults

      failedScans:= "false" in result

      failedScans

      vulnerabilityMessages := { message |

        components := {e | e := input.bom.components.component} | {e | e := input.bom.

components.component[_]}

        some component in components

        vulnerabilities := {e | e := component.vulnerabilities.vulnerability} | {e | e 

:= component.vulnerabilities.vulnerability[_]}

        some vulnerability in vulnerabilities

        ratings := {e | e := vulnerability.ratings.rating.severity} | {e | e := vulner

ability.ratings.rating[_].severity}

        formattedRatings := concat(", ", ratings)

        message := sprintf("Vulnerability - Component: %s CVE: %s Severity: %s", [comp

onent.name, vulnerability.id, formattedRatings])

      }

      complianceMessages := { message |

        compliances := {e | e := input.bom.metadata.component.compliances.compliance} 

| {e | e := input.bom.metadata.component.compliances.compliance[_]}

        some compliance in compliances

        message := sprintf("Compliance - %s \\nId: %s Severity: %s Category: %s", [com

pliance.title, compliance.id, compliance.severity, compliance.category])

      }

      combinedMessages := complianceMessages | vulnerabilityMessages

      some message in combinedMessages

      msg := message

    }

Sample ScanPolicy using Local Policies

Tanzu Application Platform v1.5

VMware by Broadcom 1577



The following sample ScanPolicy allows you to control whether the SupplyChain passes or fails
based on the Prisma Scanner CycloneDX vulnerability results returned from the Prisma Scanner.

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanPolicy

metadata:

  name: prisma-scan-policy

  labels:

    'app.kubernetes.io/part-of': 'enable-in-gui'

spec:

  regoFile: |

    package main

    # Accepted Values: "Critical", "High", "Medium", "Low", "Negligible", "UnknownSeve

rity"

    notAllowedSeverities := ["Critical", "High", "UnknownSeverity"]

    ignoreCves := []

    contains(array, elem) = true {

      array[_] = elem

    } else = false { true }

    isSafe(match) {

      severities := { e | e := match.ratings.rating.severity } | { e | e := match.rati

ngs.rating[_].severity }

      some i

      fails := contains(notAllowedSeverities, severities[i])

      not fails

    }

    isSafe(match) {

      ignore := contains(ignoreCves, match.id)

      ignore

    }

    deny[msg] {

      comps := { e | e := input.bom.components.component } | { e | e := input.bom.comp

onents.component[_] }

      some i

      comp := comps[i]

      vulns := { e | e := comp.vulnerabilities.vulnerability } | { e | e := comp.vulne

rabilities.vulnerability[_] }

      some j

      vuln := vulns[j]

      ratings := { e | e := vuln.ratings.rating.severity } | { e | e := vuln.ratings.r

ating[_].severity }

      not isSafe(vuln)

      msg = sprintf("CVE %s %s %s", [comp.name, vuln.id, ratings])

    }

Apply the YAML:

kubectl apply -n $DEV-NAMESPACE -f SCAN-POLICY-YAML

Where:

DEV-NAMESPACE is the name of the developer namespace you want to use.

SCAN-POLICY-YAML is the name of your SCST - Scan YAML.

Install Prisma Scanner
After all prerequisites are completed, install the Prisma Scanner. See Install another scanner for
Supply Chain Security Tools - Scan.

Tanzu Application Platform v1.5

VMware by Broadcom 1578



Self-Signed Registry Certificate

When attempting to pull an image from a registry with a self-signed certificate during image scans
additional configuration is necessary.

Tanzu Application Platform Values Shared CA

If your tap-values.yaml used during install has the following shared section filled out, Prisma
Scanner uses this and enable it to connect to your registry without additional configuration.

shared:

   ca_cert_data: | # To be passed if using custom certificates.

      -----BEGIN CERTIFICATE-----

      MIIFXzCCA0egAwIBAgIJAJYm37SFocjlMA0GCSqGSIb3DQEBDQUAMEY...

      -----END CERTIFICATE-----

Secret within Developer Namespace

1. Create a secret that holds the registry’s CA certificate data.

An example of the secret:

apiVersion: v1

kind: Secret

metadata:

 name: prisma-registry-cert

 namespace: dev

type: Opaque

data:

 ca_cert_data: BASE64_CERT

2. Update your Prisma Scanner install values.yaml.

Add caCertSecret to the root of your prisma-values.yaml when installing Prisma Scanner

Example:

namespace: dev

targetImagePullSecret: tap-registry

caCertSecret: prisma-registry-cert

Connect to Prisma through a Proxy

To connect to Prisma through a proxy, you must add environmentVariables configuration to your
prisma-values.yaml.

Note All valid container env configurations are supported.

For example:

 namespace: dev

 targetImagePullSecret: tap-registry

 environmentVariables:

 - name: HTTP_PROXY

   value: "test.proxy.com"

 - name: HTTPS_PROXY

   value: "test.proxy.com"

 - name: NO_PROXY

   value: "127.0.0.1,.svc,.svc.cluster.local,demo.app"

Tanzu Application Platform v1.5

VMware by Broadcom 1579



Known Limits

OpenShift is not supported

Install Trivy for Supply Chain Security Tools - Scan (alpha)

This topic describes how you can install SCST - Scan (Trivy) from the VMware package repository.

Verify the latest alpha package version
Run the following command to output a list of available tags.

imgpkg tag list -i projects.registry.vmware.com/tanzu_practice/tap-scanners-package/tr

ivy-repo-scanning-bundle | sort -V

For example:

imgpkg tag list -i projects.registry.vmware.com/tanzu_practice/tap-scanners-package/tr

ivy-repo-scanning-bundle | sort -V

0.1.4-alpha.6

0.1.4-alpha.1

0.1.4-alpha.3

0.1.4-alpha.5

0.1.4-alpha.6

In this topic, use the latest version returned by the command above.

Relocate images to a registry

VMware recommends relocating the images from VMware Tanzu Network registry to your own
container image registry before installing.

Trivy is in the Alpha development phase, is not packaged as part of the Tanzu Application Platform
package, and is hosted on the VMware Project Repository instead of VMware Tanzu Network. If
you relocated the Tanzu Application Platform images, you might also want to relocate the Trivy
package.

If you don’t relocate the images, Trivy installation depends on VMware Tanzu Network for
continued operation, and VMware Tanzu Network offers no uptime guarantees. The option to skip
relocation is documented for evaluation and proof-of-concept only.

For information about supported registries, see the registry’s documentation.

To relocate images from the VMware Project Registry to your registry:

1. Install Docker if it is not already installed.

2. Set up environment variables for installation by running:

export INSTALL_REGISTRY_USERNAME=MY-REGISTRY-USER

export INSTALL_REGISTRY_PASSWORD=MY-REGISTRY-PASSWORD

export INSTALL_REGISTRY_HOSTNAME=MY-REGISTRY

Important

This integration is in Alpha, which means that it is still in active development by the
Tanzu Practice Global Tech Team and might be subject to change at any point.
Users might encounter unexpected behavior.

Tanzu Application Platform v1.5

VMware by Broadcom 1580



export VERSION=VERSION-NUMBER

export INSTALL_REPO=TARGET-REPOSITORY

Where:

MY-REGISTRY-USER is the user with write access to MY-REGISTRY.

MY-REGISTRY-PASSWORD is the password for MY-REGISTRY-USER.

MY-REGISTRY is your own registry.

VERSION is your Trivy version. For example, 0.1.4-alpha.6.

TARGET-REPOSITORY is your target repository, a directory or repository on MY-
REGISTRY that serves as the location for the installation files for Trivy.

3. Install the Carvel tool imgpkg CLI. See Deploying Cluster Essentials v1.4.

4. Relocate the images with the imgpkg CLI by running:

imgpkg copy -b projects.registry.vmware.com/tanzu_practice/tap-scanners-packag

e/trivy-repo-scanning-bundle:${VERSION} --to-repo ${INSTALL_REGISTRY_HOSTNAME}/

${INSTALL_REPO}/trivy-repo-scanning-bundle

Add Trivy package repository
Tanzu CLI packages are available on repositories. Adding the Trivy scanning package repository
makes the Trivy scanning bundle and its packages available for installation.

VMware recommends installing Trivy objects in the existing tap-install namespace to keep Trivy
grouped logically with the other Tanzu Application Platform components.

1. Add Trivy package repository to the cluster by running:

tanzu package repository add trivy-scanner-repository \

--url ${INSTALL_REGISTRY_HOSTNAME}/${INSTALL_REPO}/trivy-repo-scanning-bundl

e:$VERSION \

--namespace tap-install

2. Get the status of Trivy package repository, and ensure that the status updates to Reconcile
succeeded by running:

tanzu package repository get trivy-scanner-repository --namespace tap-install

For example:

tanzu package repository get trivy-scanner-repository --namespace tap-install

Note

The VMware project repository does not require authentication, so you don’t need
to perform a Docker login.

Note

VMware recommends, but does not require, relocating images to a registry for
installation. The following section requires that you relocated images to a registry.
See the earlier section to fill in the variables.

Tanzu Application Platform v1.5

VMware by Broadcom 1581

https://docs.vmware.com/en/Cluster-Essentials-for-VMware-Tanzu/1.4/cluster-essentials/deploy.html#optionally-install-clis-onto-your-path-6


NAME:          trivy-scanner-repository

VERSION:       7750726

REPOSITORY:    projects.registry.vmware.com/tanzu_practice/tap-scanners-packag

e/trivy-repo-scanning-bundle

TAG:           0.1.4-alpha.6

STATUS:        Reconcile succeeded

REASON:

3. List the available packages by running:

tanzu package available list --namespace tap-install

For example:

$ tanzu package available list --namespace tap-install

/ Retrieving available packages...

NAME                                                 DISPLAY-NAME                       

SHORT-DESCRIPTION

trivy.scanning.apps.tanzu.vmware.com                   trivy                              

Default scan templates using Trivy

Prepare Trivy configuration
Before installing the Trivy, you must create the configuration necessary to install Trivy.

1. Define the --values-file flag to customize the default configuration. You must define the
following fields in the values.yaml file for the Trivy Scanner configuration. You can add
fields as needed to activate or deactivate behaviors. You can append the values to the
values.yaml file. Create a values.yaml file by using the following configuration:

  ---

  namespace: DEV-NAMESPACE

  targetImagePullSecret: TARGET-REGISTRY-CREDENTIALS-SECRET

  targetSourceSshSecret: TARGET-SOURCE-SSH-SECRET

Where:

DEV-NAMESPACE is your developer namespace.

TARGET-REGISTRY-CREDENTIALS-SECRET is the name of the secret that contains the
credentials to pull an image from a private registry for scanning.

TARGET-SOURCE-SSH-SECRET is the name of the secret containing SSH credentials for
cloning private repositories

2. To see all available values, run the following command using the version that you want:

VERSION="0.1.4-alpha.6"

tanzu package available get trivy.scanning.apps.tanzu.vmware.com/$VERSION --val

ues-schema -n tap-install

Example output:

Note

To use a namespace other than the default namespace, ensure that the
namespace exists before you install. If the namespace does not exist, the
scanner installation fails.

Tanzu Application Platform v1.5

VMware by Broadcom 1582



KEY                                           DEFAULT                                                      

TYPE    DESCRIPTION

environmentVariables                          <nil>                                                        

<nil>   Environment Variables you want added to the scan container to impact tr

ivy behavior

resources.limits.cpu                          1000m                                                        

string  Limits describes the maximum amount of cpu resources allowed.

resources.requests.cpu                        250m                                                         

string  Requests describes the minimum amount of cpu resources required.

resources.requests.memory                     128Mi                                                        

string  Requests describes the minimum amount of memory resources

scanner.docker.server                                                                                      

string  <nil>

scanner.docker.username                                                                                    

string  <nil>

scanner.docker.password                                                                                    

string  <nil>

scanner.pullSecret                                                                                         

string  <nil>

scanner.serviceAccount                        trivy-scanner                                                

string  Name of scan pod's service ServiceAccount

scanner.serviceAccountAnnotations             <nil>                                                        

<nil>   Annotations added to ServiceAccount

trivy.cli.image.additionalArguments                                                                        

string  additional arguments to be appended to the image scan command

trivy.cli.plugins.aqua.repositoryUrl                                                                       

string  location of the aqua plugin tar in an OCI registry to be used in place 

of the embedded version

trivy.cli.repositoryUrl                                                                                    

string  location of the CLI tar in an OCI registry to be used in place of the e

mbedded version

trivy.cli.source.additionalArguments                                                                       

string  additional arguments to be appended to the fs scan command

trivy.db.repositoryUrl                                                                                     

string  location of the vulnerability database in an OCI registry to be used as 

the download location prior to running a scan

caCertSecret                                                                                               

string  Reference to the secret containing the registry ca cert set as ca_cert_

data

metadataStore.authSecret.importFromNamespace                                                               

string  Namespace from which to import the Insight Metadata Store auth_token

metadataStore.authSecret.name                                                                              

string  Name of deployed Secret with key auth_token

metadataStore.caSecret.importFromNamespace    metadata-store                                               

string  Namespace from which to import the Insight Metadata Store CA Cert

metadataStore.caSecret.name                   app-tls-cert                                                 

string  Name of deployed Secret with key ca.crt holding the CA Cert of the Insi

ght Metadata Store

metadataStore.clusterRole                     metadata-store-read-write                                    

string  Name of the deployed ClusterRole for read/write access to the Insight M

etadata Store deployed in the same cluster

metadataStore.url                             https://metadata-store-app.metada

ta-store.svc.cluster.local:8443  string  Url of the Insight Metadata Store

namespace                                     default                                                      

string  Deployment namespace for the Scan Templates

targetImagePullSecret                                                                                      

string  Reference to the secret used for pulling images from private registry

targetSourceSshSecret                                                                                      

string  Reference to the secret containing SSH credentials for cloning private 

repositories

SCST - Store integration

Tanzu Application Platform v1.5

VMware by Broadcom 1583



Trivy integration can work with or without the SCST - Store integration. The values.yaml file is
slightly different for each configuration.

To persist the results found by the Trivy, enable the SCST - Store integration by appending the
SCST- scan fields to Trivyvalues.yaml file.

The Grype, Snyk, Prisma, Carbon Black, and Trivy integrations enable the Metadata Store. To
prevent conflicts, the configuration values are slightly different based on whether another scanner
integration is installed or not. If Tanzu Application Platform is installed using the Full Profile, the
Grype Scanner Integration is installed unless it is explicitly excluded.

Multiple scanners installed

When installing Trivy, find your CA secret name and authentication token secret name for your
values.yaml ny looking at the configuration of a prior installed scanner in the same namespace as it
already exists.

For information about how the scanner was initially created, see Multicluster Setup.

The following example values.yaml has other scanners already installed in the same dev-namespace
where Trivy is installed:

#! ...

metadataStore:

  #! The url where the Store deployment is accessible.

  #! Default value is: "https://metadata-store-app.metadata-store.svc.cluster.local:84

43"

  url: "STORE-URL"

  caSecret:

    #! The name of the secret that contains the ca.crt to connect to the Store Deploym

ent.

    #! Default value is: "app-tls-cert"

    name: "CA-SECRET-NAME"

    importFromNamespace: "" #! since both Trivy and Grype/Snyk both enable store, one 

must leave importFromNamespace blank

  #! authSecret is for multicluster configurations.

  authSecret:

    #! The name of the secret that contains the auth token to authenticate to the Stor

e Deployment.

    name: "AUTH-SECRET-NAME"

    importFromNamespace: "" #! since both Trivy and Grype/Snyk both enable store, one 

must leave importFromNamespace blank

Where:

STORE-URL is the URL where the Store deployment is accessible.

CA-SECRET-NAME is the name of the secret that contains the ca.crt to connect to the Store
Deployment. Default is app-tls-cert.

AUTH-SECRET-NAME is the name of the secret that contains the authentication token to
authenticate to the Store Deployment.

Trivy is the only scanner installed

For a walk through of creating and exporting secrets for the Metadata Store CA and authentication
token which referenced in the data values, see Multicluster Setup.

The following example values.yaml has no other scanner integrations installed in the same dev-
namespace where Trivy is installed:

#! ...

metadataStore:

Tanzu Application Platform v1.5

VMware by Broadcom 1584



  #! The url where the Store deployment is accessible.

  #! Default value is: "https://metadata-store-app.metadata-store.svc.cluster.local:84

43"

  url: "STORE-URL"

  caSecret:

    #! The name of the secret that contains the ca.crt to connect to the Store Deploym

ent.

    #! Default value is: "app-tls-cert"

    name: "CA-SECRET-NAME"

    #! The namespace where the secrets for the Store Deployment live.

    #! Default value is: "metadata-store"

    importFromNamespace: "STORE-SECRETS-NAMESPACE"

  #! authSecret is for multicluster configurations.

  authSecret:

    #! The name of the secret that contains the auth token to authenticate to the Stor

e Deployment.

    name: "AUTH-SECRET-NAME"

    #! The namespace where the secrets for the Store Deployment live.

    importFromNamespace: "STORE-SECRETS-NAMESPACE"

Where:

STORE-URL is the URL where the Store deployment is accessible.

CA-SECRET-NAME is the name of the secret that contains the ca.crt to connect to the Store
Deployment. Default is app-tls-cert.

STORE-SECRETS-NAMESPACE is the namespace where the secrets for the Store Deployment
live. Default is metadata-store.

AUTH-SECRET-NAME is the name of the secret that contains the authentication token to
authenticate to the Store Deployment.

No store integration

If you do not want to enable the SCST - Store integration, deactivate the integration by appending
the following field to the values.yaml file that is enabled by default:

# ...

metadataStore:

  url: "" # Deactivate Supply Chain Security Tools - Store integration

Prepare the ScanPolicy
The following sample ScanPolicy allows you to control whether the SupplyChain passes or fails
based on the CycloneDX vulnerability results returned from the Trivy.

---

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanPolicy

metadata:

   name: trivy-scan-policy

   labels:

      app.kubernetes.io/part-of: enable-in-gui

spec:

   regoFile: |

      package main

      import future.keywords.in

      import future.keywords.every

      # Accepted Values: "critical", "high", "medium", "low", unknown"

      notAllowedSeverities := ["critical", "high", "unknown"]

Tanzu Application Platform v1.5

VMware by Broadcom 1585



      notAllowedSet := {x | x := notAllowedSeverities[_]}

      ignoreCves := []

      isSafe(match) {

        severities := { e | e := match.ratings.rating.severity } | { e | e := match.ra

tings.rating[_].severity }

        every severity in severities {

            not severity in notAllowedSet

        }

      }

      isIgnored(match) {

        match.id in ignoreCves

      }

      deny[msg] {

        notAllowedVulnerabilities := { vulnerability |

          vulnerabilities := {e | e := input.bom.vulnerabilities.vulnerability} | {e | 

e := input.bom.vulnerabilities.vulnerability[_]}

          some vulnerability in vulnerabilities

          not isIgnored(vulnerability)

          not isSafe(vulnerability)

        }

        formattedVulnerabilityMessages := { message |

          some vulnerability in notAllowedVulnerabilities

          ratings := {e | e := vulnerability.ratings.rating.severity} | {e | e := vuln

erability.ratings.rating[_].severity}

          formattedRatings := concat(", ", ratings)

          affectedComponents := {e | e := vulnerability.affects.target.ref} | {e | e :

= vulnerability.affects.target[_].ref}

          formattedComponents := concat("\\n", affectedComponents)

          message = sprintf("CVE: %s \\nRatings: %s\\nAffected Components: \\n%s", [vu

lnerability.id, formattedRatings, formattedComponents])

        }

        some formattedVulnerabilityMessage in formattedVulnerabilityMessages

        msg := formattedVulnerabilityMessage

      }

To prepare the ScanPolicy:

1. Apply the following to the YAML:

kubectl apply -n $DEV-NAMESPACE -f SCAN-POLICY-YAML

Where:

DEV-NAMESPACE is the name of the developer namespace you want to use.

SCAN-POLICY-YAML is the name of your SCST - Scan YAML.

Install Trivy

After the following prerequisites are completed, install the Trivy:

Prerequisites listed in Install another scanner for Supply Chain Security Tools - Scan.

Install the ORAS CLI. See the ORAS documentation.

Air-gap configuration

This section explains how to configure Trivy in an air-gapped environment.

For information about additional flags and configuration, see Air-Gapped Environment in the Trivy
documentation.

Tanzu Application Platform v1.5

VMware by Broadcom 1586

https://oras.land/docs/
https://aquasecurity.github.io/trivy/latest/docs/advanced/air-gap/


Relocate a Trivy database to your registry

If you have a host with access, you can use the ORAS CLI to perform a copy.

oras copy -r ghcr.io/aquasecurity/trivy-db:2 registry.company.com/project_name/trivy-d

b:2 # the tag of 2 is required

Copying 4a39b38cf2fd db.tar.gz

Copied  4a39b38cf2fd db.tar.gz

Copied ghcr.io/aquasecurity/trivy-db:2 => registry.company.com/project_name/trivy-db:2

Digest: sha256:ed57874a80499e858caac27fc92e4952346eb75a2774809ee989bcd2ce48897a

If not, you can use the ORAS CLI to download the database and manifest and then push to your
registry.

1. Download the trivy-db.

oras pull ghcr.io/aquasecurity/trivy-db:2

Example output:

oras pull ghcr.io/aquasecurity/trivy-db:2

Downloading 1612cc15d377 db.tar.gz

Downloaded  1612cc15d377 db.tar.gz

Pulled ghcr.io/aquasecurity/trivy-db:2

Digest: sha256:af903c7ddbe7516f18b06254b6297cf53c0ece918def07322925c71d2f694860

2. Download the manifest for trivy-db.

oras manifest fetch ghcr.io/aquasecurity/trivy-db:2 > trivy-db-manifest.json

3. Add the media type to the manifest.

jq '.mediaType="application/vnd.oci.image.manifest.v1+json"' trivy-db-manifest.

json > updated-trivy-db-manifest.json

4. Push the prior downloaded trivy-db to your registry.

oras push registry.company.com/project_name/trivy-db:2 ./db.tar.gz

Example output:

oras push registry.company.com/project_name/trivy-db:2 \

./db.tar.gz

Uploading 1612cc15d377 db.tar.gz

Uploaded  1612cc15d377 db.tar.gz

Pushed registry.company.com/project_name/trivy-db:2

Digest: sha256:41a7eeab8837e90d8a5afd56cfce73936e15d3db04c5294f992ecff9492971dc

5. Push the updated trivy-db manifest to your registry

Note

Using a relocated database means you are taking responsibility for keeping it up to
date to ensure that security scans are relevant. Stale databases weaken your
security posture.

Tanzu Application Platform v1.5

VMware by Broadcom 1587



oras manifest push registry.company.com/project_name/trivy-db:2 updated-trivy-d

b-manifest.json

Example output:

oras manifest push registry.company.com/project_name/trivy-db:2 updated-trivy-d

b-manifest.json

Pushed registry.company.com/project_name/trivy-db:2

Digest: sha256:b51a2fccf38e723aac1a7217ba36ca52398b2b20e3d74c9d5089dfdcd9bb2f11

6. Cleanup files

rm trivy-db-manifest.json updated-trivy-db-manifest.json db.tar.gz

7. Update data values with the database repository URL. Edit your values.yaml to add the
following:

trivy:

db:

  repositoryUrl: "registry.company.com/project_name/trivy-db"

The URL leaves off the tag of 2.

Use another Trivy version

This section describes how to use a different Trivy CLI version than what is bundled with the
package.

To use another Trivy version:

1. Install the ORAS CLI. See the ORAS documentation.

2. Download the version of the CLI you are interested in from their GitHub releases page. For
example:
https://github.com/aquasecurity/trivy/releases/download/v0.36.0/trivy_0.36.0_Linux-
64bit.tar.gz

wget -c https://github.com/aquasecurity/trivy/releases/download/v0.36.0/trivy_

0.36.0_Linux-64bit.tar.gz -O trivy.tar.gz

Length: 48363295 (46M) [application/octet-stream]

Saving to: ‘trivy.tar.gz’

trivy.tar.gz 100%[==>]  46.12M  50.7MB/s    in 0.9s

2023-01-25 10:47:55 (50.7 MB/s) - ‘trivy.tar.gz’ saved [48363295/48363295]

3. Relocate the CLI to your registry.

Run the following to relocate the CLI to your registry:

oras push registry.company.com/project_name/trivy-cli:0.36.0 \

--artifact-type trivy/cli \

./trivy.tar.gz:application/gzip

Uploading 121f4d8282aa trivy.tar.gz

Uploaded  121f4d8282aa trivy.tar.gz

Pushed registry.company.com/project_name/trivy-cli:0.36.0

Digest: sha256:5bdb18378e8f66a72f4bef4964edeccfcc2f21883e7a6caca6dbf7a3d7233696

4. Edit your values.yaml to add the location of your CLI.

Tanzu Application Platform v1.5

VMware by Broadcom 1588

https://oras.land/docs/
https://github.com/aquasecurity/trivy/releases


trivy:

cli:

  repositoryUrl: "registry.company.com/project_name/trivy-cli:0.36.0"

Use another Trivy Aqua plug-in version

Trivy Aqua plug-in enables Aqua SaaS integration with your Trivy scans.

To use another Trivy Aqua plug-in version:

1. Install the ORAS CLI. See the ORAS documentation.

2. Download the version of Trivy Aqua plug-in you want from the GitHub releases page. See
trivy-plugin-aqua in GitHub.

For example, v0.115.14 in GitHub:

TRIVY-AQUA-PLUGIN-VERSION="v0.115.6"

wget -c "https://github.com/aquasecurity/trivy-plugin-aqua/releases/download/

${TRIVY-AQUA-PLUGIN-VERSION}/linux_amd64_${TRIVY-AQUA-PLUGIN-VERSION}.tar.gz" -

O trivy-aqua-plugin.tar.gz

--2023-01-30 10:44:05--  https://github.com/aquasecurity/trivy-plugin-aqua/rele

ases/download/v0.115.6/linux_amd64_v0.115.6.tar.gz

HTTP request sent, awaiting response... 200 OK

Length: 50915539 (49M) [application/octet-stream]

Saving to: ‘trivy-aqua-plugin.tar.gz’

trivy-aqua-plugin.tar.gz 100%[==>]  48.56M  35.3MB/s    in 1.4s

2023-01-30 10:44:07 (35.3 MB/s) - ‘trivy-aqua-plugin.tar.gz’ saved [50915539/50

915539]

3. The YAML file is a necessary component to tell Trivy it has the plug-in already installed.
Download the plugin.yml file associated with Trivy Aqua plug-in version you downloaded.

TRIVY-AQUA-PLUGIN-VERSION="v0.115.6"

wget -c "https://raw.githubusercontent.com/aquasecurity/trivy-plugin-aqua/${TRI

VY-AQUA-PLUGIN-VERSION}/plugin.yaml" -O plugin.yaml

--2023-01-30 10:46:32--  https://raw.githubusercontent.com/aquasecurity/trivy-p

lugin-aqua/v0.115.6/plugin.yaml

HTTP request sent, awaiting response... 200 OK

Length: 909 [text/plain]

Saving to: ‘plugin.yaml’

plugin.yaml 100%[==>]     909  --.-KB/s    in 0s

2023-01-30 10:46:32 (54.2 MB/s) - ‘plugin.yaml’ saved [909/909]

4. Relocate the plug-in and YAML to your registry:

TRIVY-AQUA-PLUGIN-VERSION="v0.115.6"

REPOSITORY-URL="registry.company.com/project_name/trivy-aqua-plugin:$TRIVY-AQUA

-PLUGIN-VERSION"

oras push ${REPOSITORY-URL} \

--artifact-type trivy/aqua-plugin \

./trivy-aqua-plugin.tar.gz:application/gzip \

./plugin.yaml:text/yaml

Uploading 6fb65adbfde2 plugin.yaml

Uploading 7340855e31ff trivy-aqua-plugin.tar.gz

Uploaded  6fb65adbfde2 plugin.yaml

Tanzu Application Platform v1.5

VMware by Broadcom 1589

https://oras.land/docs/
https://github.com/aquasecurity/trivy-plugin-aqua/releases
https://github.com/aquasecurity/trivy-plugin-aqua/releases/download/v0.115.5/linux_amd64_v0.115.5.tar.gz


Uploaded  7340855e31ff trivy-aqua-plugin.tar.gz

Pushed registry.company.com/project_name/trivy-aqua-plugin:v0.115.6

Digest: sha256:791274e44b97fad98edf570205fddc1b0bc21c56d3d54565ad9475fd4da969ae

Where:

TRIVY-AQUA-PLUGIN-VERSION is the version of Trivy Aqua plug-in you are using.

REPOSITORY-URL is the repository where you want to relocate the plug-in.

5. Edit your values.yaml to add the location of your CLI.

trivy:

plugins:

  aqua:

    repositoryUrl: "registry.company.com/project_name/trivy-aqua-plugin:v0.115.

6"

Integrate with the Aqua SaaS platform

To integrate with the Aqua SaaS platform:

1. In order to connect to the SaaS Platform you must have an API key. To create an API key:

1. Log into Aqua SaaS.

2. Enter CSPM.

3. Click Settings -> API Keys.

4. Click Generate Key.

5. Save the information for the next steps.

2. To integrate with the Aqua SaaS Platform you must have an API key. You pass this to the
scanner through environment variables, referenced in a secret. Create an auth secret:

Example secret:

apiVersion: v1

kind: Secret

metadata:

name: aqua-creds

namespace: APP-NAMESPACE

stringData:

aqua-key: API-KEY

aqua-secret: API-KEY-SECRET

Where:

APP-NAMESPACE is the developer namespace your app uses.

API-KEY is the Aqua Platform API key.

API-KEY-SECRET is the Aqua Platform API key’s Secret.

3. Set environment variables to tell Trivy to connect and report to Aqua SaaS.

You can find plug-in options in the README.md in GitHub.

Here is an example of referencing your API key and secret from a Kubernetes Secret created
earlier:

namespace: dev

targetImagePullSecret: registry-credentials

environmentVariables:

  - name: TRIVY-RUN-AS-PLUGIN

Tanzu Application Platform v1.5

VMware by Broadcom 1590

https://github.com/aquasecurity/trivy-plugin-aqua/blob/master/README.md


    value: aqua

  - name: AQUA-KEY

    valueFrom:

      secretKeyRef:

        name: aqua-creds

        key: aqua-key

  - name: AQUA-SECRET

    valueFrom:

      secretKeyRef:

        name: aqua-creds

        key: aqua-secret

Where:

TRIVY-RUN-AS-PLUGIN is the Trivy plug-in you want to enable without using the
subcommand.

AQUA-KEY is the Aqua Platform API key.

AQUA-SECRET is the Aqua Platform API key’s Secret.

Self-signed registry certificate

You need additional configuration when attempting to pull an image from a registry with a self-
signed certificate during image scans.

1. If your tap-values.yaml used during install has the following shared section filled out, Trivy
uses this to connect to your registry without additional configuration. Use the following
YAML with a Tanzu Application Platform values shared CA:

shared:

ca_cert_data: | # To be passed if using custom certificates.

    -----BEGIN CERTIFICATE-----

    MIIFXzCCA0egAwIBAgIJAJYm37SFocjlMA0GCSqGSIb3DQEBDQUAMEY...

    -----END CERTIFICATE-----

2. Create a secret that holds the registry’s CA certificate data.

An example secret:

apiVersion: v1

kind: Secret

metadata:

name: trivy-registry-cert

namespace: dev

type: Opaque

data:

ca_cert_data: BASE64_CERT

3. Update your Trivy install trivy-values.yaml.

Add caCertSecret to the root of your trivy-values.yaml.

For example:

namespace: dev

targetImagePullSecret: tap-registry

caCertSecret: trivy-registry-cert

Spec reference

Tanzu Application Platform v1.5

VMware by Broadcom 1591



This topic describes the specifications and custom resources you can use with Supply Chain
Security Tools - Scan.

With the Scan Controller and Grype Scanner installed the following Custom Resource Definitions
(CRDs) are now available:

$ kubectl get crds | grep scanning.apps.tanzu.vmware.com

imagescans.scanning.apps.tanzu.vmware.com                2021-09-09T15:22:07Z

scanpolicies.scanning.apps.tanzu.vmware.com              2021-09-09T15:22:07Z

scantemplates.scanning.apps.tanzu.vmware.com             2021-09-09T15:22:07Z

sourcescans.scanning.apps.tanzu.vmware.com               2021-09-09T15:22:07Z

For more information about installing SCST - Scan, see Installing Individual Packages.

About source and image scans

Both SourceScan (sourcescans.scanning.apps.tanzu.vmware.com) and ImageScan
(imagescans.scanning.apps.tanzu.vmware.com) define what will be scanned, and ScanTemplate
(scantemplates.scanning.apps.tanzu.vmware.com) will define how to run a scan. We have provided
five custom resources (CRs) pre-installed for use. You can either use them as-is or as samples to
create your own.

To view the pre-installed Scan Template CRs, run:

kubectl get scantemplates

You will see the following scan templates:

CR Name Use Case

public-source-scan-

template

Clones and scans source code from a public repository.

private-source-scan-

template

Connects with SSH credentials to clone and scan source code from a private repository.

public-image-scan-

template

Pulls and scans images from a public registry.

private-image-scan-

template

Connects with the registry credentials to pull and scan images from a private registry.

blob-source-scan-

template

To be used in a Supply Chain. Gets a .tar.gz available file with wget, uncompresses it, and
scans the source code inside it.

By default, three scan templates are deployed (public-source-scan-template, public-image-scan-
template, and blob-source-scan-template).

If targetImagePullSecret is set in tap-values.yaml, private-image-scan-template is also deployed.
If targetSourceSshSecret is set in tap-values.yaml, private-source-scan-template is also
deployed.

The private scan templates reference secrets created using the Docker server and credentials you
provided, which means they are ready to use immediately.

For more information about the SourceScan and ImageScan CRDs and how to customize your own,
refer to Configuring Code Repositories and Image Artifacts to be Scanned.

About policy enforcement around vulnerabilities found
The Scan Controller supports policy enforcement by using an Open Policy Agent (OPA) engine.
ScanPolicy (scanpolicies.scanning.apps.tanzu.vmware.com) allows scan results to be validated for

Tanzu Application Platform v1.5

VMware by Broadcom 1592



company policy compliance and can prevent source code from being built or images from being
deployed.

For more information, see Configuring Policy Enforcement using Open Policy Agent (OPA).

Scan samples for Supply Chain Security Tools - Scan

This section provides samples on multiple use cases for SCST - Scan that you can copy to your
cluster for testing purposes.

Running a sample public image scan with compliance check

Running a sample public source scan with compliance check

Running a sample private image scan

Running a sample private source scan

Running a sample public source scan of a blob/tar file

Scan samples for Supply Chain Security Tools - Scan

This section provides samples on multiple use cases for SCST - Scan that you can copy to your
cluster for testing purposes.

Running a sample public image scan with compliance check

Running a sample public source scan with compliance check

Running a sample private image scan

Running a sample private source scan

Running a sample public source scan of a blob/tar file

Sample public image scan with compliance check for Supply
Chain Security Tools - Scan
This topic includes an example public image scan with compliance check for SCST - Scan.

Public image scan
The following example performs an image scan on an image in a public registry. This image revision
has 223 known vulnerabilities (CVEs), spanning a number of severities. ImageScan uses the
ScanPolicy to run a compliance check against the CVEs.

The policy in this example is set to only consider Critical severity CVEs as a violation, which
returns 21 Critical Severity Vulnerabilities.

In this example, the scan does the following:

Finds all 223 of the CVEs

Ignores any CVEs with severities that are not critical

Indicates in the Status.Conditions that 21 CVEs have violated policy compliance

Note

This example ScanPolicy is deliberately constructed to showcase the features
available and must not be considered an acceptable base policy.

Tanzu Application Platform v1.5

VMware by Broadcom 1593



Define the ScanPolicy and ImageScan

Create sample-public-image-scan-with-compliance-check.yaml:

---

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanPolicy

metadata:

  name: sample-scan-policy

  labels:

    'app.kubernetes.io/part-of': 'enable-in-gui'

spec:

  regoFile: |

    package main

    # Accepted Values: "Critical", "High", "Medium", "Low", "Negligible", "UnknownSeve

rity"

    notAllowedSeverities := ["Critical"]

    ignoreCves := []

    contains(array, elem) = true {

      array[_] = elem

    } else = false { true }

    isSafe(match) {

      severities := { e | e := match.ratings.rating.severity } | { e | e := match.rati

ngs.rating[_].severity }

      some i

      fails := contains(notAllowedSeverities, severities[i])

      not fails

    }

    isSafe(match) {

      ignore := contains(ignoreCves, match.id)

      ignore

    }

    deny[msg] {

      comps := { e | e := input.bom.components.component } | { e | e := input.bom.comp

onents.component[_] }

      some i

      comp := comps[i]

      vulns := { e | e := comp.vulnerabilities.vulnerability } | { e | e := comp.vulne

rabilities.vulnerability[_] }

      some j

      vuln := vulns[j]

      ratings := { e | e := vuln.ratings.rating.severity } | { e | e := vuln.ratings.r

ating[_].severity }

      not isSafe(vuln)

      msg = sprintf("CVE %s %s %s", [comp.name, vuln.id, ratings])

    }

---

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ImageScan

metadata:

  name: sample-public-image-scan-with-compliance-check

spec:

  registry:

    image: "nginx:1.16"

  scanTemplate: public-image-scan-template

  scanPolicy: sample-scan-policy

(Optional) Set up a watch

Tanzu Application Platform v1.5

VMware by Broadcom 1594



Before deploying the resources to a user specified namespace, set up a watch in another terminal
to view the progression:

watch kubectl get sourcescans,imagescans,pods,taskruns,scantemplates,scanpolicies -n D

EV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

For more information about setting up a watch, see Observing and Troubleshooting.

Deploy the resources

kubectl apply -f sample-public-image-scan-with-compliance-check.yaml -n DEV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

View the scan results

kubectl describe imagescan sample-public-image-scan-with-compliance-check -n DEV-NAMES

PACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

For more information about scan status conditions, see Viewing and Understanding Scan Status
Conditions.

Edit the ScanPolicy

To edit the Scan Policy, see Step 5: Sample Public Source Code Scan with Compliance Check.

Clean up

To clean up, run:

kubectl delete -f sample-public-image-scan-with-compliance-check.yaml -n DEV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

Sample public source code scan with compliance check for
Supply Chain Security Tools - Scan
This topic includes an example public source code scan with compliance check for SCST - Scan.

Public source scan
This example performs a source scan on a public repository. The source revision has 192 known
Common Vulnerabilities and Exposures (CVEs), spanning several severities. SourceScan uses the
ScanPolicy to run a compliance check against the CVEs.

The example policy is set to only consider Critical severity CVEs as violations, which returns 7
Critical Severity Vulnerabilities.

Note

The Status.Conditions includes a Reason: EvaluationFailed and Message: Policy
violated because of 21 CVEs.

Tanzu Application Platform v1.5

VMware by Broadcom 1595



For this example, the scan (at the time of writing):

Finds all 192 of the CVEs.

Ignores any CVEs that have severities that are not critical.

Indicates in the Status.Conditions that 7 CVEs have violated policy compliance.

Run an example public source scan

To perform an example source scan on a public repository:

1. Create sample-public-source-scan-with-compliance-check.yaml to define the ScanPolicy
and SourceScan:

---

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanPolicy

metadata:

  name: sample-scan-policy

  labels:

    'app.kubernetes.io/part-of': 'enable-in-gui'

spec:

  regoFile: |

    package main

    # Accepted Values: "Critical", "High", "Medium", "Low", "Negligible", "Unkn

ownSeverity"

    notAllowedSeverities := ["Critical"]

    ignoreCves := []

    contains(array, elem) = true {

      array[_] = elem

    } else = false { true }

    isSafe(match) {

      severities := { e | e := match.ratings.rating.severity } | { e | e := mat

ch.ratings.rating[_].severity }

      some i

      fails := contains(notAllowedSeverities, severities[i])

      not fails

    }

    isSafe(match) {

      ignore := contains(ignoreCves, match.id)

      ignore

    }

    deny[msg] {

      comps := { e | e := input.bom.components.component } | { e | e := input.b

om.components.component[_] }

      some i

      comp := comps[i]

      vulns := { e | e := comp.vulnerabilities.vulnerability } | { e | e := com

p.vulnerabilities.vulnerability[_] }

      some j

      vuln := vulns[j]

      ratings := { e | e := vuln.ratings.rating.severity } | { e | e := vuln.ra

tings.rating[_].severity }

Note

This example ScanPolicy is deliberately constructed to showcase the features
available and must not be considered an acceptable base policy.

Tanzu Application Platform v1.5

VMware by Broadcom 1596



      not isSafe(vuln)

      msg = sprintf("CVE %s %s %s", [comp.name, vuln.id, ratings])

    }

---

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: SourceScan

metadata:

  name: sample-public-source-scan-with-compliance-check

spec:

  git:

    url: "https://github.com/houndci/hound.git"

    revision: "5805c650"

  scanTemplate: public-source-scan-template

  scanPolicy: sample-scan-policy

2. (Optional) Before deploying the resources to a user specified namespace, set up a watch in
another terminal to view the progression:

watch kubectl get sourcescans,imagescans,pods,taskruns,scantemplates,scanpolici

es -n DEV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

For more information, see Observing and Troubleshooting.

3. Deploy the resources by running:

kubectl apply -f sample-public-source-scan-with-compliance-check.yaml -n DEV-NA

MESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

4. When the scan completes, view the results by running:

kubectl describe sourcescan sample-public-source-scan-with-compliance-check -n 

DEV-NAMESPACE

The Status.Conditions includes a Reason: EvaluationFailed and Message: Policy
violated because of 7 CVEs. For more information, see Viewing and Understanding Scan
Status Conditions.

5. If the failing CVEs are acceptable or the build must be deployed regardless of these CVEs,
the app is patched to remove the vulnerabilities. Update the ignoreCVEs array in the
ScanPolicy to include the CVEs to ignore:

...

spec:

  regoFile: |

    package policies

    default isCompliant = false

    # Accepted Values: "UnknownSeverity", "Critical", "High", "Medium", "Low", 

"Negligible"

    violatingSeverities := ["Critical"]

    # Adding the failing CVEs to the ignore array

    ignoreCVEs := ["CVE-2018-14643", "GHSA-f2jv-r9rf-7988", "GHSA-w457-6q6x-cgp

9", "CVE-2021-23369", "CVE-2021-23383", "CVE-2020-15256", "CVE-2021-29940"]

...

6. The changes applied to the new ScanPolicy trigger the scan to run again. Reapply the
resources by running:

Tanzu Application Platform v1.5

VMware by Broadcom 1597



kubectl apply -f sample-public-source-scan-with-compliance-check.yaml -n DEV-NA

MESPACE

7. Re-describe the SourceScan CR by running:

kubectl describe sourcescan sample-public-source-scan-with-compliance-check -n 

DEV-NAMESPACE

8. Ensure that Status.Conditions now includes a Reason: EvaluationPassed and No CVEs
were found that violated the policy. You can update the violatingSeverities array in
the ScanPolicy if you want. For reference, the Grype scan returns the following Severity
spread of vulnerabilities:

Critical: 7

High: 88

Medium: 92

Low: 5

Negligible: 0

UnknownSeverity: 0

9. Clean up by running:

kubectl delete -f sample-public-source-scan-with-compliance-check.yaml -n DEV-N

AMESPACE

Sample private image scan for Supply Chain Security Tools
- Scan

This example describes how you can perform a scan against an image located in a private registry
for SCST - Scan.

Define the resources

Set up target image pull secret

1. Confirm that target image secret is configured. This is completed during Tanzu Application
Platform installation. If the target image secret exists, see Create the private image scan.

2. If the target image secret was not configured, create a secret containing the credentials
used to pull the target image you want to scan. For information about secret creation, see
the Kubernetes documentation.

kubectl create secret docker-registry TARGET-REGISTRY-CREDENTIALS-SECRET \

--docker-server=YOUR-REGISTRY-SERVER \

--docker-username=YOUR-NAME \

--docker-password=YOUR-PASSWORD \

--docker-email=YOUR-EMAIL \

-n DEV-NAMESPACE

Where:

TARGET-REGISTRY-CREDENTIALS-SECRET is the name of the secret that is created.

DEV-NAMESPACE is the developer namespace where the scanner is installed.

YOUR-REGISTRY-SERVER is the registry server you want to use.

Tanzu Application Platform v1.5

VMware by Broadcom 1598

https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/#create-a-secret-by-providing-credentials-on-the-command-line


YOUR-NAME is the name associated with the secret.

YOUR-PASSWORD is the password associated with the secret.

YOUR-EMAIL is the email associated with the secret.

3. Update the tap-values.yaml file to include the name of secret created earlier.

grype:

namespace: "MY-DEV-NAMESPACE"

targetImagePullSecret: "TARGET-REGISTRY-CREDENTIALS-SECRET"

4. Upgrade Tanzu Application Platform with the modified tap-values.yaml file.

tanzu package installed update tap -p tap.tanzu.vmware.com -v ${TAP-VERSION}  -

-values-file tap-values.yaml -n tap-install

Where TAP-VERSION is the Tanzu Application Platform version.

Create the private image scan

Create sample-private-image-scan.yaml:

---

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ImageScan

metadata:

  name: sample-private-image-scan

spec:

  registry:

    image: IMAGE-URL

  scanTemplate: private-image-scan-template

Where IMAGE-URL is the URL of an image in a private registry.

(Optional) Set up a watch

Before deploying the resources to a user specified namespace, set up a watch in another terminal
to view the progression:

watch kubectl get sourcescans,imagescans,pods,taskruns,scantemplates,scanpolicies -n D

EV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

For more information, see Observing and Troubleshooting.

Deploy the resources

kubectl apply -f sample-private-image-scan.yaml -n DEV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

View the scan results
When the scan completes, run:

kubectl describe imagescan sample-private-image-scan -n DEV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

Tanzu Application Platform v1.5

VMware by Broadcom 1599



Clean up

kubectl delete -f sample-private-image-scan.yaml -n DEV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

View vulnerability reports
After completing the scans, query the Supply Chain Security Tools - Store to view your vulnerability
results.

Sample private source scan for Supply Chain Security Tools
- Scan

This example shows how you can perform a private source scan for SCST - Scan.

Define the resources

1. Create a Kubernetes secret with an SSH key for cloning a Git repository. See the
Kubernetes documentation.

cat <<EOF | kubectl create -f -

apiVersion: v1

kind: Secret

metadata:

name: SECRET-SSH-AUTH

namespace: DEV-NAMESPACE

annotations:

  tekton.dev/git-0: https://github.com

  tekton.dev/git-1: https://gitlab.com

type: kubernetes.io/ssh-auth

stringData:

ssh-privatekey: |

  -----BEGIN OPENSSH PRIVATE KEY-----

  ....

  ....

  -----END OPENSSH PRIVATE KEY-----

EOF

Where:

SECRET-SSH-AUTH is the name of the secret that is being created.

DEV-NAMESPACE is the developer namespace where the scanner is installed.

.stringData.ssh-privatekey contains the private key with pull-permissions.

2. Update the tap-values.yaml file to include the name of secret created above.

grype:

namespace: "MY-DEV-NAMESPACE"

targetSourceSshSecret: "SECRET-SSH-AUTH"

Note

The Status.Conditions includes a Reason: JobFinished and Message: The scan job
finished. See Viewing and Understanding Scan Status Conditions.

Tanzu Application Platform v1.5

VMware by Broadcom 1600

https://kubernetes.io/docs/concepts/configuration/secret/#use-case-pod-with-ssh-keys


3. Upgrade Tanzu Application Platform with the modified tap-values.yaml file.

tanzu package installed update tap -p tap.tanzu.vmware.com -v ${TAP-VERSION}  -

-values-file tap-values.yaml -n tap-install

Where TAP-VERSION is the Tanzu Application Platform version.

4. Create sample-private-source-scan.yaml:

---

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: SourceScan

metadata:

name: sample-private-source-scan

spec:

git:

  url: URL

  revision: REVISION

  knownHosts: |

    KNOWN-HOSTS

scanTemplate: private-source-scan-template

Where:

URL is the Git clone repository using SSH.

REVISION is the commit hash.

KNOWN-HOSTS are the SSH client stored host keys generated by ssh-keyscan.

For example, ssh-keyscan github.com produces:

github.com ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEAq2A7hRGmdnm9tUDbO9I

DSwBK6TbQa+PXYPCPy6rbTrTtw7PHkccKrpp0yVhp5HdEIcKr6pLlVDBfOLX9QUsyC

OV0wzfjIJNlGEYsdlLJizHhbn2mUjvSAHQqZETYP81eFzLQNnPHt4EVVUh7VfDESU8

4KezmD5QlWpXLmvU31/yMf+Se8xhHTvKSCZIFImWwoG6mbUoWf9nzpIoaSjB+weqqU

UmpaaasXVal72J+UX2B+2RPW3RcT0eOzQgqlJL3RKrTJvdsjE3JEAvGq3lGHSZXy28

G3skua2SmVi/w4yCE6gbODqnTWlg7+wC604ydGXA8VJiS5ap43JXiUFFAaQ==

github.com ecdsa-sha2-nistp256 AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAA

IbmlzdHAyNTYAAABBBEmKSENjQEezOmxkZMy7opKgwFB9nkt5YRrYMjNuG5N87uRgg

6CLrbo5wAdT/y6v0mKV0U2w0WZ2YB/++Tpockg=

github.com ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAIOMqqnkVzrm0SdG6UOo

qKLsabgH5C9okWi0dh2l9GKJl

For example:

---

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: SourceScan

metadata:

name: sample-private-source-scan

spec:

git:

  url: git@github.com:acme/website.git

  revision: 25as5e7df56c6401111be514a2f3666179ba04d0

  knownHosts: |

    10.254.171.53 ecdsa-sha2-nistp256 AAAAE2VjZHNhLXNoYTItb

POVVQF/CzuAeQNv4fZVf2pLxpGHle15zkpxOosckequUDxoq

scanTemplate: private-source-scan-template

(Optional) Set up a watch

Tanzu Application Platform v1.5

VMware by Broadcom 1601

https://www.ssh.com/academy/ssh/host-key#known-host-keys
https://man.openbsd.org/ssh-keyscan


Before deploying the resources to a user specified namespace, set up a watch in another terminal
to view the progression:

watch kubectl get sourcescans,imagescans,pods,taskruns,scantemplates,scanpolicies -n D

EV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

See Observing and Troubleshooting.

Deploy the resources

kubectl apply -f sample-private-source-scan.yaml -n DEV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

View the scan status

After the scan has completed, run:

kubectl describe sourcescan sample-private-source-scan -n DEV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

Notice the Status.Conditions includes a Reason: JobFinished and Message: The scan job
finished. See Viewing and Understanding Scan Status Conditions.

Clean up

kubectl delete -f sample-private-source-scan.yaml -n DEV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

View vulnerability reports
After completing the scans, query the Supply Chain Security Tools - Store to view your vulnerability
results.

Sample public source scan of a blob for Supply Chain
Security Tools - Scan

You can do a public source scan of a blob for SCST - Scan. This example performs a scan against
source code in a .tar.gz file. This is helpful in a Supply Chain, where there is a GitRepository step
that handles cloning a repository and outputting the source code as a compressed archive.

Define the resources

Create public-blob-source-example.yaml:

---

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: SourceScan

metadata:

  name: public-blob-source-example

spec:

  blob:

Tanzu Application Platform v1.5

VMware by Broadcom 1602



    url: "https://gitlab.com/nina-data/ckan/-/archive/master/ckan-master.tar.gz"

  scanTemplate: blob-source-scan-template

(Optional) Set up a watch

Before deploying the resources to a user specified namespace, set up a watch in another terminal
to view the progression:

watch kubectl get sourcescans,imagescans,pods,taskruns,scantemplates,scanpolicies -n D

EV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

For more information, see Observing and Troubleshooting.

Deploy the resources

kubectl apply -f public-blob-source-example.yaml -n DEV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

View the scan results

When the scan completes, perform:

kubectl describe sourcescan public-blob-source-example -n DEV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

Notice the Status.Conditions includes a Reason: JobFinished and Message: The scan job
finished.

For more information, see Viewing and Understanding Scan Status Conditions.

Clean up

kubectl delete -f public-blob-source-example.yaml -n DEV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

View vulnerability reports
After completing the scans, query the Supply Chain Security Tools - Store to view your vulnerability
results.

Using Grype in air-gapped (offline) environments for Supply
Chain Security Tools - Scan

This topic tells you how to use Grype in air-gapped (offline) environments for Supply Chain Security
Tools (SCST) - Scan.

The grype CLI attempts to perform two over the Internet calls:

One to verify for later versions of the CLI.

One to update the vulnerability database before scanning.

Tanzu Application Platform v1.5

VMware by Broadcom 1603



For the grype CLI to function in an offline or air-gapped environment, the vulnerability database
must be hosted within the environment. You must configure the grype CLI with the internal URL.

The grype CLI accepts environment variables to satisfy these needs.

Host the Grype vulnerability database

To host Grype’s vulnerability database in an air-gapped environment:

1. Retrieve Grype’s listing file from its public endpoint: https://toolbox-
data.anchore.io/grype/databases/listing.json.

2. Create your own listing.json file.

Note Different Grype versions require specific database schema versions. To avoid
compatibility issues between different versions, include a database schema for each version.
For example:

    {

      "available": {

        "1": [

          {

            "built": "2023-06-16T01:33:30Z",

            "version": 1,

            "url": "https://toolbox-data.anchore.io/grype/databases/vulnerabili

ty-db_v1_2023-06-16T01:33:30Z_1621f4169ffd15bea9e5.tar.gz",

            "checksum": "sha256:3f2c1b432945cca9a69b2e604f6fb231fec450fdd27f494

6fc5608692b63a9d1"

          }

        ],

        "2": [

          {

            "built": "2023-06-16T01:33:30Z",

            "version": 2,

            "url": "https://toolbox-data.anchore.io/grype/databases/vulnerabili

ty-db_v2_2023-06-16T01:33:30Z_d6eee5e78d9b78285e1a.tar.gz",

            "checksum": "sha256:7b7e3a2a7712c72b8c5cc777733c4d8d140d8cfee65e4f0

4540abbdfe3ef1f65"

          }

        ],

        "3": [

          {

            "built": "2023-06-16T01:33:30Z",

            "version": 3,

            "url": "https://toolbox-data.anchore.io/grype/databases/vulnerabili

ty-db_v3_2023-06-16T01:33:30Z_f96ae38a7b05987c3ece.tar.gz",

            "checksum": "sha256:8ea9fae3fda3bf3bf35bd5e5eb656fc127b59cd3c42db4c

36795556aab8a9cf0"

          }

        ],

        "4": [

          {

            "built": "2023-06-16T01:33:30Z",

            "version": 4,

            "url": "https://toolbox-data.anchore.io/grype/databases/vulnerabili

ty-db_v4_2023-06-16T01:33:30Z_13bba2fa8ff62b7f8b26.tar.gz",

            "checksum": "sha256:3b53d20241b88e5aa45feb817b325c53d6efbe9fa1fc5a6

7eeddaecafa7687e0"

          }

        ],

        "5": [

          {

            "built": "2023-06-16T01:33:30Z",

            "version": 5,

            "url": "https://toolbox-data.anchore.io/grype/databases/vulnerabili

Tanzu Application Platform v1.5

VMware by Broadcom 1604

https://toolbox-data.anchore.io/grype/databases/listing.json


ty-db_v5_2023-06-16T01:33:30Z_e07da3853f6db6eb1104.tar.gz",

            "checksum": "sha256:93d4d9d2f9e39f86570f832cf85b7149a949ca6f1613581

b10c12393509d884f"

          }

        ]

      }

    }

Where url points to a tarball containing Grype’s vulnerability, db, and metadata.json files.

3. Download and host the tarballs in your internal file server.

4. Update the download url to point at your internal endpoint.

For information about setting up an offline vulnerability database, see the Anchore Grype
README in GitHub.

To enable Grype in offline air-gapped environments

1. Add the following to your tap-values.yaml file:

grype:

  db:

    dbUpdateUrl: INTERNAL-VULN-DB-URL

Where INTERNAL-VULN-DB-URL is the URL that points to the internal file server.

2. Update Tanzu Application Platform:

tanzu package installed update tap -f tap-values.yaml -n tap-install

Configure Grype environmental variables
1. Create a secret that contains the ytt overlay to add the Grype environment variable to the

ScanTemplates.

apiVersion: v1

kind: Secret

metadata:

  name: grype-airgap-environmental-variables

  namespace: tap-install

stringData:

  patch.yaml: |

    #@ load("@ytt:overlay", "overlay")

    #@overlay/match by=overlay.subset({"kind":"ScanTemplate"}),expects="1+"

    ---

    spec:

      template:

        initContainers:

          #@overlay/match by=overlay.subset({"name": "scan-plugin"}), expects

Note

Some storage solutions for internal file servers change the name of TAR files
automatically because of their limits. Notice these modified names and
reflect the changes in the url. Ensure that the timestamp in the name is
correctly formatted because Grype parses the name of TAR artifact to get
the timestamp.

Tanzu Application Platform v1.5

VMware by Broadcom 1605

https://github.com/anchore/grype#offline-and-air-gapped-environments


="1+"

          - name: scan-plugin

            #@overlay/match missing_ok=True

            env:

              #@overlay/append

              - name: GRYPE_CHECK_FOR_APP_UPDATE

                value: "false"

Where spec.template.initContainers[] specifies setting one or more environment variables in the
scan-plugin initContainer.

Troubleshooting

ERROR failed to fetch latest cli version

The Grype CLI checks for later versions of the CLI by contacting the anchore endpoint over the
Internet.

ERROR failed to fetch latest version: Get "https://toolbox-data.anchore.io/grype/relea

ses/latest/VERSION": dial tcp: lookup toolbox-data.anchore.io on [::1]:53: read udp 

[::1]:65010->[::1]:53: read: connection refused

Solution

To deactivate this check, set the environment variable GRYPE_CHECK_FOR_APP_UPDATE to false by
using a package overlay with the following steps:

1. Create a secret that contains the ytt overlay to add the Grype environment variable to the
ScanTemplates.

apiVersion: v1

kind: Secret

metadata:

  name: grype-airgap-deactivate-cli-check-overlay

  namespace: tap-install #! namespace where tap is installed

stringData:

  patch.yaml: |

    #@ load("@ytt:overlay", "overlay")

    #@overlay/match by=overlay.subset({"kind":"ScanTemplate"}),expects="1+"

    ---

    spec:

      template:

        initContainers:

          #@overlay/match by=overlay.subset({"name": "scan-plugin"}), expects

="1+"

          - name: scan-plugin

Note

If you are using the Namespace Provisioner to provision a new developer
namespace and want to apply a package overlay for Grype, you must import the
overlay Secret. See Import overlay secrets.

Note

This message is a warning and the Grype scan still runs with this message.

Tanzu Application Platform v1.5

VMware by Broadcom 1606



            #@overlay/match missing_ok=True

            env:

              #@overlay/append

              - name: GRYPE_CHECK_FOR_APP_UPDATE

                value: "false"

2. Configure tap-values.yaml to use package_overlays. Add the following to your tap-
values.yaml file:

package_overlays:

  - name: "grype"

    secrets:

        - name: "grype-airgap-deactivate-cli-check-overlay"

3. Update Tanzu Application Platform:

tanzu package installed update tap -f tap-values.yaml -n tap-install

Database is too old

1 error occurred:

  * db could not be loaded: the vulnerability database was built N days/weeks ago (max 

allowed age is 5 days)

Grype needs up-to-date vulnerability information to provide accurate matches. By default, it fails to
run if the local database was not built in the last 5 days.

Solution

Two options to resolve this:

1. Stale databases weaken your security posture. VMware recommends updating the
database daily as the first recommended solution.

2. If updating the database daily is not an option, the data staleness check is configurable by
using the environment variable GRYPE_DB_MAX_ALLOWED_BUILT_AGE and is addressed using a
package overlay with the following steps:

1. Create a secret that contains the ytt overlay to add the Grype environment variable
to the ScanTemplates.

apiVersion: v1

kind: Secret

metadata:

  name: grype-airgap-override-stale-db-overlay

  namespace: tap-install #! namespace where tap is installed

stringData:

  patch.yaml: |

    #@ load("@ytt:overlay", "overlay")

    #@overlay/match by=overlay.subset({"kind":"ScanTemplate"}),expects="1

+"

    ---

    spec:

      template:

        initContainers:

          #@overlay/match by=overlay.subset({"name": "scan-plugin"}), exp

ects="1+"

          - name: scan-plugin

            #@overlay/match missing_ok=True

            env:

              #@overlay/append

Tanzu Application Platform v1.5

VMware by Broadcom 1607



              - name: GRYPE_DB_MAX_ALLOWED_BUILT_AGE #! see note on best 

practices

                value: "120h"

2. Configure tap-values.yaml to use package_overlays. Add the following to your tap-
values.yaml file:

package_overlays:

  - name: "grype"

    secrets:

        - name: "grype-airgap-override-stale-db-overlay"

3. Update Tanzu Application Platform:

tanzu package installed update tap -f tap-values.yaml -n tap-install

Vulnerability database is invalid

scan-pod[scan-plugin]  1 error occurred:

scan-pod[scan-plugin]  * failed to load vulnerability db: vulnerability database is in

valid (run db update to correct): database metadata not found: /.cache/grype/db/5

Solution

Examine the listing.json file you created. This matches the format of the listing file. The listing file
is located at Anchore Grype’s public endpoint. See the Grype README.md in GitHub.

An example listing.json:

{

  "available": {

    "5": [

      {

        "built": "2023-03-28T01:29:38Z",

        "version": 5,

        "url": "https://toolbox-data.anchore.io/grype/databases/vulnerability-db_v5_20

23-03-28T01:29:38Z_e49d318c32a6113eed07.tar.gz",

        "checksum": "sha256:408ce2932f04dee929a5df524e92494f2d635c6b19e30ff9f0a50425b1

fc29a1"

      },

      .....

    ]

  }

}

Where:

5 refers to the Grype’s vulnerability database schema.

built is the build timestamp in the format yyyy-MM-ddTHH:mm:ssZ.

Note

The default maximum allowed built age of Grype’s vulnerability
database is 5 days. This means that scanning with a 6 day old
database causes the scan to fail. You can use the
GRYPE_DB_MAX_ALLOWED_BUILT_AGE parameter to override the default
in accordance with your security posture.

Tanzu Application Platform v1.5

VMware by Broadcom 1608

https://github.com/anchore/grype#how-database-updates-work


url is the download URL for the tarball containing the database. This points at your internal
endpoint. The tarball contains the following files:

vulnerability.db is an SQLite file that is Grype’s vulnerability database. Each time
the data shape of the vulnerability database changes, a new schema is created.
Different Grype versions require specific database schema versions. For example,
Grype v0.54.0 requires database schema version v5.

metadata.json file

checksum is the SHA used to verify the database’s integrity.

Verify these possible reasons why the vulnerability database is not valid:

1. The database schema is invalid. Confirm that the required database schema for the installed
Grype version is used. Confirm that the top level version key matches the nested version.
For example, the top level version 1 in the following snippet does not match the nested
version: 5.

{

  "available": {

    "1": [{

           "built": "2023-02-08T08_17_20Z",

           "version": 5,

           "url": "https://INTERNAL-ENDPOINT/PATH-TO-TARBALL/vulnerability-db_v

5_2023-02-08T08_17_20Z_6ef73016d160043c630f.tar.gz",

           "checksum": "sha256:aab8d369933c845878ef1b53bb5c26ee49b91ddc5cd87c9e

b57ffb203a88a72f"

    }]

  }

}

Where PATH-TO-TARBALL is the path to the tarball containing the vulnerability database.

As stale databases weaken your security posture, VMware recommends using the newest
entry of the relevant schema version in the listing.json file. See Anchore’s grype-db in
GitHub.

2. The built parameters in the listing.json file are incorrectly formatted. The proper format
is yyyy-MM-ddTHH:mm:ssZ.

3. The url that you modified to point at an internal endpoint is not reachable from within the
cluster. For information about verifying connectivity, see Debug Grype database in a
cluster.

4. Verify if there are syntax errors in the listing.json:

grype db check

5. Validate the configured listing.json:

grype db list -o raw

Debug Grype database in a cluster

1. Describe the failed source scan or image scan to verify the name of the ScanTemplate
being used.

For sourcescan, run:

kubectl describe sourcescan SCAN-NAME -n DEV-NAMESPACE

Tanzu Application Platform v1.5

VMware by Broadcom 1609

https://github.com/anchore/grype-db


For imagescan, run:

kubectl describe imagescan SCAN-NAME -n DEV-NAMESPACE

Where SCAN-NAME is the name of the source or image scan that failed.

2. Pause reconciliation of the grype.scanning.apps.tanzu.vmware.com package:

kctrl package installed pause -i <PACKAGE-INSTALL-NAME> -n tap-install

Where PACKAGE-INSTALL-NAME is the name of the grype.scanning.apps.tanzu.vmware.com
package (e.g. grype)

3. Edit the ScanTemplate’s scan-plugin container to include a “sleep” entrypoint which allows
you to troubleshoot inside the container:

- name: scan-plugin

  volumeMounts:

    ...

  image: #@ data.values.scanner.image

  imagePullPolicy: IfNotPresent

  env:

    ...

  command: ["/bin/bash"]

  args:

  - "sleep 1800" # insert 30 min sleep here

4. Re-run the scan.

5. Get the name of the scan-plugin pod.

kubectl get pods -n DEV-NAMESPACE

6. Get a shell to the container.

kubectl exec --stdin --tty SCAN-PLUGIN-POD -c step-scan-plugin -- /bin/bash

Where SCAN-PLUGIN-POD is the name of the scan-plugin pod. For more information, see the
Kubernetes documentation.

7. Inside the container, run Grype CLI commands to report database status and verify
connectivity from the cluster to the mirror. See the Grype documentation in GitHub.

Report current status of Grype’s database, such as location, build date, and
checksum:

grype db status

8. Ensure that the built parameters in the listing.json has timestamps in this proper format
yyyy-MM-ddTHH:mm:ssZ.

9. After you complete troubleshooting, use the following command to trigger reconciliation:

kctrl package installed kick -i <PACKAGE-INSTALL-NAME> -n tap-install

Where PACKAGE-INSTALL-NAME is the name of the grype.scanning.apps.tanzu.vmware.com
package, such as Grype.

Grype package overlays are not applied to scantemplates created by
Namespace Provisioner

Tanzu Application Platform v1.5

VMware by Broadcom 1610

https://kubernetes.io/docs/tasks/debug/debug-application/get-shell-running-container/
https://github.com/anchore/grype#cli-commands-for-database-management


If you used the Namespace Provisioner to provision a new developer namespace and want to apply
a package overlay for Grype, see Import overlay secrets.

Triage and Remediate CVEs for Supply Chain Security Tools
- Scan
This topic explains how you can triage and remediate CVEs related to SCST - Scan.

Confirm that Supply Chain stopped due to failed policy
enforcement

To confirm that Supply Chain failure is related to policy enforcement:

1. Verify that the status of the workload is MissingValueAtPath due to waiting on a
.status.compliantArtifact from either the SourceScan or ImageScan:

kubectl describe workload WORKLOAD-NAME -n DEVELOPER-NAMESPACE

2. Describe the SourceScan or ImageScan to determine what CVE(s) violated the ScanPolicy:

kubectl describe sourcescan NAME -n DEVELOPER-NAMESPACE

kubectl describe imagescan NAME -n DEVELOPER-NAMESPACE

Triage

The goal of triage is to analyze and prioritize the reported vulnerability data to discover the
appropriate course of action to take at the remediation step. To remediate efficiently and
appropriately, you need context on the vulnerabilities that are blocking your supply chain, the
packages that are affected, and the impact they can have.

During triage, review which packages are impacted by the CVEs that violated your scan policy.
Enabling CVE scan causes Supply Chain Choreographer by using Tanzu Application Platform GUI to
visualize your supply chain, including the scans, scan policy, and CVEs. See Enable CVE scan
results. You can also use the Tanzu Insight plug-in to query packages and CVEs using a CLI. See
Tanzu Insight plug-in.

During this stage, VMware recommends reviewing information pertaining to the CVEs from sources
such as the National Vulnerability Database or the release page of a package.

Remediation

After triage is complete, the next step is to remediate the blocking vulnerabilities quickly. Some
common methods for CVE remediation are as follows:

Updating the affected component to remove the CVE

Amending the scan policy with an exception if you decide to accept the CVE and unblock
your supply chain

Updating the affected component

Vulnerabilities that occur in older versions of a package might be resolved in later versions. Apply a
patch by upgrading to a later version. You can further adopt security best practices by using your
project’s package manager tools, such as go mod graph for projects in Go, to identify transitive or
indirect dependencies that can affect CVEs.

Tanzu Application Platform v1.5

VMware by Broadcom 1611

https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.5/tap/namespace-provisioner-customize-installation.html
https://nvd.nist.gov/vuln


Amending the scan policy

If you decide to proceed without remediating the CVE, for example, when a CVE is evaluated to be
a false positive or when a fix is not available, you can amend the ScanPolicy to ignore one or more
CVEs. For information about common scanner limitations, see Note on Vulnerability Scanners. For
information about templates, see Writing Policy Templates.

Under RBAC, users with the app-operator-scanning role that is part of the app-operator aggregate
role, have permission to edit the ScanPolicy. See Detailed role permissions breakdown.

Observe Supply Chain Security Tools - Scan

This topic outlines observability and troubleshooting methods and issues you can use with SCST -
Scan components.

Observability

The scans run inside a Tekton TaskRun where the TaskRun creates a pod. Both the TaskRun and
pod are cleaned up after completion.

Before applying a new scan, you can set a watch on the TaskRuns, Pods, SourceScans, and
Imagescans to observe their progression:

watch kubectl get sourcescans,imagescans,pods,taskruns,scantemplates,scanpolicies -n D

EV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where the scanner is installed.

Troubleshoot Supply Chain Security Tools - Scan

This topic describes troubleshooting methods you can use with SCST - Scan.

Debugging commands

Run these commands to get more logs and details about the errors around scanning. The TaskRuns
and pods persist for a predefined amount of seconds before getting deleted.
(deleteScanJobsSecondsAfterFinished is the tap pkg variable that defines this)

Debugging Tekton TaskRun

To retrieve TaskRun events:

kubectl describe taskrun TASKRUN-NAME -n DEV-NAMESPACE

Where:

TASKRUN-NAME is the name of the TaskRun.

DEV-NAMESPACE is the name of the developer namespace you want to use.

Debugging Scan pods

Run the following to get error logs from a pod when scan pods are in a failing state:

kubectl logs scan-pod-name -n DEV-NAMESPACE

Where DEV-NAMESPACE is the name of the developer namespace you want to use.

Tanzu Application Platform v1.5

VMware by Broadcom 1612



See here for more details about debugging Kubernetes pods.

The following is an example of a successful scan run output:

scan:

  cveCount:

    critical: 20

    high: 120

    medium: 114

    low: 9

    unknown: 0

  scanner:

    name: Grype

    vendor: Anchore

    version: v0.37.0

  reports:

  - /workspace/scan.xml

eval:

  violations:

  - CVE node-fetch GHSA-w7rc-rwvf-8q5r Low

store:

  locations:

  - https://metadata-store-app.metadata-store.svc.cluster.local:8443/api/sources?repo=

hound&sha=5805c6502976c10f5529e7f7aeb0af0c370c0354&org=houndci

A scan run that has an error means that one of the init containers: scan-plugin, metadata-store-
plugin, compliance-plugin, summary, or any other additional containers had a failure.

To inspect for a specific init container in a pod:

kubectl logs scan-pod-name -n DEV-NAMESPACE -c init-container-name

Where DEV-NAMESPACE is the name of the developer namespace you want to use.

See Debug Init Containers in the Kubernetes documentation for debug init container tips.

Debugging SourceScan and ImageScan

To retrieve status conditions of an SourceScan and ImageScan, run:

kubectl describe sourcescan SOURCE-SCAN -n DEV-NAMESPACE

Where:

DEV-NAMESPACE is the name of the developer namespace you want to use.

SOURCE-SCAN is the name of the SourceScan you want to use.

kubectl describe imagescan IMAGE-SCAN -n DEV-NAMESPACE

Where:

DEV-NAMESPACE is the name of the developer namespace you want to use.

IMAGE-SCAN is the name of the ImageScan you want to use.

Under Status.Conditions, for a condition look at the “Reason”, “Type”, “Message” values that use
the keyword “Error” to investigate issues.

Debugging Scanning within a SupplyChain

See here for Tanzu workload commands for tailing build and runtime logs and getting workload
status and details.

Tanzu Application Platform v1.5

VMware by Broadcom 1613

https://jamesdefabia.github.io/docs/user-guide/kubectl/kubectl_logs/
https://kubernetes.io/docs/tasks/debug/debug-application/debug-init-containers/


Viewing the Scan-Controller manager logs

To retrieve scan-controller manager logs:

kubectl -n scan-link-system logs -f deployment/scan-link-controller-manager -c manager

Restarting Deployment

If you encounter an issue with the scan-link controller not starting, run the following to restart the
deployment to see if it’s reproducible or flaking upon starting:

kubectl rollout restart deployment scan-link-controller-manager -n scan-link-system

Troubleshooting scanner to MetadataStore configuration

Insight CLI failed to post scan results to metadata store due to failed
certificate verification

If you encounter this issue:

✖  Error: Post "https://metadata-store.tap.tanzu.example.com/api/sourceReport?": tls: 

failed to verify certificate: x509: certificate signed by unknown authority

To ensure that the caSecret from the scanner DEV-NAMESPACE matches the caSecret from the
METADATASTORE-NAMESPACE namespace:

1. In a single cluster, the connection between the scanning pod and the metadata store
happens inside the cluster and does not pass through ingress. This is automatically
configured. You do not need to provide an ingress connection to the store. If you provided
an ingress connection to the store, delete it.

2. Get the caSecret.name depending if your setup is single or multicluster.

1. If you are using a single cluster setup, the default value for
grype.metadataStore.caSecret.name is app-tls-cert. See Install Supply Chain
Security Tools - Scan.

2. If you are using a multicluster setup, retrieve grype.metadataStore.caSecret.name
from the Grype config:

grype:

metadataStore:

  caSecret:

    name: store-ca-cert

    importFromNamespace: metadata-store-secrets

Note caSecret.name is set to store-ca-cert. See Multicluster setup.

3. Verify that the CA-SECRET secret exists in the DEV-NAMESPACE.

kubectl get secret CA-SECRET -n DEV-NAMESPACE

4. If the secret CA-SECRET doesn’t exist in your DEV-NAMESPACE, verify that the CA-SECRET exists
in the METADATASTORE-NAMESPACE namespace:

kubectl get secret CA-SECRET -n METADATASTORE-NAMESPACE

Tanzu Application Platform v1.5

VMware by Broadcom 1614



Where METADATASTORE-NAMESPACE is the namespace that contains the secret CA-SECRET. If
you are using a single cluster, it is configured using the metadata-store namespace. If
multicluster, it is configured using the metadata-store-secrets.

If CA-SECRET doesn’t exist in the metadata store namespace, configure the
certificate. See Custom certificate configuration.

5. Check if the secretexport and secretimport exist and are reconciling successfully:

kubectl get secretexports.secretgen.carvel.dev -n `METADATASTORE-NAMESPACE`

kubectl get secretimports.secretgen.carvel.dev -n `DEV-NAMESPACE`

6. Check that the ca.crt field in both secrets from METADATASTORE-NAMESPACE and DEV-
NAMESPACE match, or that the ca.crt field of the secret in the METADATASTORE-NAMESPACE
includes the ca.crt field of the secret from the DEV-NAMESPACE.

Confirm this by base64 decoding both secrets and verifying that there is a match:

kubectl get secret CA-SECRET -n DEV-NAMESPACE -o json | jq -r '.data."ca.crt"' 

| base64 -d

kubectl get secret CA-SECRET -n METADATASTORE-NAMESPACE -o json | jq -r '.dat

a."ca.crt"' | base64 -d

The certificates in the METADATASTORE-NAMESPACE and DEV-NAMESPACE must have a match for
the scanner to connect to the metadata-store.

Troubleshooting issues

Troubleshooting Grype in air gap Environments

For information about issues with Grype in air gap environments, see Using Grype in offline and air-
gapped environments.

Missing target SSH secret

Scanning source code from a private source repository requires an SSH secret present in the
namespace and referenced as grype.targetSourceSshSecret in tap-values.yaml. See Installing the
Tanzu Application Platform Package and Profiles.

If a private source scan is triggered and the secret cannot be found, the scan pod includes a
FailedMount warning in Events with the message MountVolume.SetUp failed for volume "ssh-
secret" : secret "secret-ssh-auth" not found, where secret-ssh-auth is the value specified in
grype.targetSourceSshSecret.

Missing target image pull secret

Scanning an image from a private registry requires an image pull secret to exist in the Scan CRs
namespace and be referenced as grype.targetImagePullSecret in tap-values.yaml. See Installing
the Tanzu Application Platform Package and Profiles.

If a private image scan is triggered and the secret is not configured, the scan TaskRun’s pod’s step-
scan-plugin container fails with the following error:

Error: GET https://dev.registry.tanzu.vmware.com/v2/vse-dev/spring-petclinic/manifest

s/sha256:128e38c1d3f10401a595c253743bee343967c81e8f22b94e30b2ab8292b3973f: UNAUTHORIZE

D: unauthorized to access repository: vse-dev/spring-petclinic, action: pull: unauthor

ized to access repository: vse-dev/spring-petclinic, action: pull

Deactivate Supply Chain Security Tools (SCST) - Store

Tanzu Application Platform v1.5

VMware by Broadcom 1615



SCST - Store is required to install SCST - Scan. If you install without the SCST - Store, you must
edit the configurations to deactivate the Store:

---

metadataStore:

  url: ""

Install the package with the edited configurations by running:

tanzu package install scan-controller \

  --package scanning.apps.tanzu.vmware.com \

  --version VERSION \

  --namespace tap-install \

  --values-file tap-values.yaml

Resolving Incompatible Syft Schema Version

You might encounter the following error:

The provided SBOM has a Syft Schema Version which doesn't match the version that is su

pported by Grype...

This means that the Syft Schema Version from the provided SBOM doesn’t match the version
supported by the installed grype-scanner. There are two different methods to resolve this
incompatibility issue:

(Preferred method) Install a version of Tanzu Build Service that provides an SBOM with a
compatible Syft Schema Version.

Deactivate the failOnSchemaErrors in grype-values.yaml. See Install Supply Chain Security
Tools - Scan. Although this change bypasses the check on Syft Schema Version, it does not
resolve the incompatibility issue and produces a partial scanning result.

syft:

  failOnSchemaErrors: false

Resolving incompatible scan policy

If your scan policy appears to not be enforced, it might be because the Rego file defined in the
scan policy is incompatible with the scanner that is being used. For example, the Grype Scanner
outputs in the CycloneDX XML format while the Snyk Scanner outputs SPDX JSON.

See Sample ScanPolicy for Snyk in SPDX JSON format for an example of a ScanPolicy formatted for
SPDX JSON.

Could not find CA in secret

If you encounter the following issue, it might be due to not exporting app-tls-cert to the correct
namespace:

{"level":"error","ts":"2022-06-08T15:20:48.43237873Z","logger":"setup","msg":"Could no

t find CA in Secret","err":"unable to set up connection to Supply Chain Security Tools 

- Store"}

Configure ns_for_export_app_cert in your tap-values.yaml.

metadata_store:

  ns_for_export_app_cert: "DEV-NAMESPACE"

Tanzu Application Platform v1.5

VMware by Broadcom 1616



Where DEV-NAMESPACE is the name of the developer namespace you want to use.

If there are multiple developer namespaces, use ns_for_export_app_cert: "*".

Blob Source Scan is reporting wrong source URL

A Source Scan for a blob artifact can cause reporting in the status.artifact and
status.compliantArtifact the wrong URL for the resource, passing the remote SSH URL instead
of the cluster local fluxcd one. One symptom of this issue is the image-builder failing with a ssh://
is an unsupported protocol error message.

You can confirm you’re having this problem by running kubectl describe in the affected resource
and comparing the spec.blob.url value against the status.artifact.blob.url. The problem
occurs if they are different URLs. For example:

kubectl describe sourcescan SOURCE-SCAN-NAME -n DEV-NAMESPACE

Where:

SOURCE-SCAN-NAME is the name of the source scan you want to configure.

DEV-NAMESPACE is the name of the developer namespace you want to use. And compare the
output:

...

spec:

  blob:

    ...

    url: http://source-controller.flux-system.svc.cluster.local./gitrepository/sample/

repo/8d4cea98b0fa9e0112d58414099d0229f190f7f1.tar.gz

    ...

status:

  artifact:

    blob:

      ...

      url: ssh://git@github.com:sample/repo.git

  compliantArtifact:

    blob:

      ...

      url: ssh://git@github.com:sample/repo.git

Workaround: This problem happens in SCST - Scan v1.2.0 when you use a Grype Scanner
ScanTemplates earlier than v1.2.0, because this is a deprecated path. To fix this problem, upgrade
your Grype Scanner deployment to v1.2.0 or later. See Upgrading Supply Chain Security Tools -
Scan for step-by-step instructions.

Resolving failing scans that block a Supply Chain

If the Supply Chain is not progressing due to CVEs found in either the SourceScan or ImageScan,
see the CVE triage workflow in Triaging and Remediating CVEs.

Policy not defined in the Tanzu Application Platform GUI

If you encounter No policy has been defined, it might be because the Tanzu Application Platform
GUI is unable to view the Scan Policy resource.

Confirm that the Scan Policy associated with a SourceScan or ImageScan exists. For example, the
scanPolicy in the scan matches the name of the Scan Policy.

kubectl describe sourcescan NAME -n DEV-NAMESPACE

kubectl describe imagescan NAME -n DEV-NAMESPACE

Tanzu Application Platform v1.5

VMware by Broadcom 1617



kubectl get scanpolicy NAME -n DEV-NAMESPACE

Where DEV-NAMESPACE is the name of the developer namespace you want to use.

Add the app.kubernetes.io/part-of label to the Scan Policy. See Enable Tanzu Application
Platform GUI to view ScanPolicy Resource.

Lookup error when connecting to SCST - Store

If your scan pod is failing, you might see the following connection error in the logs:

dial tcp: lookup metadata-store-app.metadata-store.svc.cluster.local on 10.100.0.10:5

3: no such host

A connection error while attempting to connect to the local cluster URL causes this error. If this is a
multicluster deployment, set the grype.metadataStore.url property in your Build profile
values.yaml. You must set the ingress domain of SCST - Store which is deployed in the View
cluster. For information about this configuration, see Install Build profile.

Sourcescan error with SCST - Store endpoint without a prefix

If your Source Scan resource is failing, the status might show this error:

Error: endpoint require 'http://' or 'https://' prefix

This is because the grype.metadataStore.url value in the Tanzu Application Platform profile
values.yaml was not configured with the correct prefix. Verify that the URL starts with either
http:// or https://.

Deprecated pre-v1.2 templates

If the scan phase is in Error and the status condition message is:

Summary logs could not be retrieved: . error opening stream pod logs reader: container 

summary is not valid for pod scan-grypeimagescan-sample-public-zmj2g-hqv5g

This error might be a consequence of using Grype Scanner ScanTemplates shipped with SCST -
Scan v1.1 or earlier. These ScanTemplates are deprecated and are not supported in Tanzu
Application Platform v1.4.0 and later.

There are two options to resolve this issue:

Option 1: Upgrade to the latest Grype Scanner version. This automatically replaces the old
ScanTemplates with the upgraded ScanTemplates.

Option 2: Create a ScanTemplate. Follow the steps in Create a scan template.

Incorrectly configured self-signed certificate

The following error in the pod logs indicate that the self-signed certificate might be incorrectly
configured:

x509: certificate signed by unknown authority

To resolve this issue, ensure that shared.ca_cert_data contains the required certificate. For an
example of setting up the shared self-signed certificate, see Build profile.

For information about shared.ca_cert_data, see View possible configuration settings for your
package.

Tanzu Application Platform v1.5

VMware by Broadcom 1618



Unable to pull scan controller and scanner images from a specified
registry

The docker field and related sub-fields by SCST - Scan Controller, Grype Scanner, or Snyk Scanner
are deprecated in Tanzu Application Platform v1.4.0. Previously these text boxes might be used to
populate the registry-credentials secret. You might encounter the following error during
installation:

UNAUTHORIZED: unauthorized to access repository

The recommended migration path for users setting up their namespaces manually is to add registry
credentials to both the developer namespace and the scan-link-system namespace, using these
instructions.

Grype database not available

Before running a scan, the Grype scanner downloads a copy of its database. If the database fails to
download, the following log entry might appear.

Vulnerability DB [no update available] New version of grype is available: 0.50.2 [000

0] WARN unable to check for vulnerability database update 1 error occurred: * failed t

o load vulnerability db: vulnerability database is corrupt (run db update to correct): 

database metadata not found: ~/Library/Caches/grype/db/3

To resolve this issue, ensure that Grype has access to its vulnerability database:

If you have set up a mirror of the vulnerability database, verify that it is populated and
reachable.

If you did not set up a mirror, Grype manages its database behind the scenes. Verify that
the cluster has access to https://anchore.com/.

This issue is unrelated to Supply Chain Security Tools for Tanzu – Store.

Scanner Pod restarts once in SCST - Scan v1.5.0 or later

For SCST - Scan v1.5.0 or later, you see scanner pods restart:

Pods

   NAME                                  READY   STATUS      RESTARTS   AGE

   my-scan-45smk-pod                     0/9     Completed   1          14m

One restart in scanner pods is expected with successful scans. To support Tanzu Service Mesh
(TSM) integration, jobs were replaced with TaskRuns. This restart is an artifact of how Tekton cleans
up sidecar containers by patching the container specifications.

Troubleshoot Rego files with a scan policy for Supply Chain
Security Tools - Scan

This topic describes how you can use an example output to troubleshoot your Rego file for SCST -
Scan. You use a Rego file in a scan policy custom resource. See Enforce compliance policy using
Open Policy Agent.

Important

This step does not apply to users who used --export-to-all-namespaces when
setting up the Tanzu Application Platform package repository.

Tanzu Application Platform v1.5

VMware by Broadcom 1619



For information about how to write Rego, see Open Policy Agent documentation.

Using the Rego playground

Use the Rego Playground, to evaluate your Rego file against an input. In this example, use the
example output of an image or source scan custom resource.

Sample input in CycloneDX’s XML re-encoded as JSON format

The following is an example scan custom resource output in CycloneDX’s XML structure re-
encoded as JSON. This example output contains CVEs at low, medium, high, and critical severities.

To troubleshoot using this example output:

1. Paste your Rego file and the example output into the Rego Playground.

2. Evaluate your Rego file against the example output and verify that your Rego file detects
the intended CVEs. See this Rego example.

{

    "bom": {

        "-serialNumber": "urn:uuid:123",

        "-v": "http://cyclonedx.org/schema/ext/vulnerability/1.0",

        "-version": "1",

        "-xmlns": "http://cyclonedx.org/schema/bom/1.2",

        "components": {

            "component": [

                {

                    "-type": "library",

                    "licenses": {

                        "license": {

                            "name": "GPL-2"

                        }

                    },

                    "name": "adduser",

                    "version": "3.118",

                    "vulnerabilities": {

                        "vulnerability": [

                            {

                                "-ref": "urn:uuid:3d7c61c6-9cfa-494c-858a-9668a318ff2

3",

                                "advisories": {

                                    "advisory": "https://security-tracker.debian.org/t

racker/CVE-2011-3374"

                                },

                                "id": "CVE-2011-3374-a",

                                "ratings": {

                                    "rating": {

                                        "severity": "Low"

                                    }

                                },

                                "source": {

                                    "-name": "debian:10",

                                    "url": "http://cve.mitre.org/cgi-bin/cvename.cgi?n

ame=CVE-2011-3374"

                                }

                            },

                            {

                                "-ref": "urn:uuid:ebabaa92-2bf9-4d33-8181-595b0fdf55b

d",

                                "advisories": {

                                    "advisory": "https://security-tracker.debian.org/t

racker/CVE-2020-27350"

                                },

Tanzu Application Platform v1.5

VMware by Broadcom 1620

https://www.openpolicyagent.org/docs/latest/policy-language/
https://play.openpolicyagent.org/
https://play.openpolicyagent.org/
https://play.openpolicyagent.org/p/wwkyrYbHAv


                                "id": "CVE-2020-27350-a",

                                "ratings": {

                                    "rating": {

                                        "severity": "Medium"

                                    }

                                },

                                "source": {

                                    "-name": "debian:10",

                                    "url": "http://cve.mitre.org/cgi-bin/cvename.cgi?n

ame=CVE-2020-27350"

                                }

                            },

                            {

                                "-ref": "urn:uuid:07c58c81-1e01-459d-9e9d-0e10456a9bf

0",

                                "advisories": {

                                    "advisory": "https://security-tracker.debian.org/t

racker/CVE-2020-3810"

                                },

                                "id": "CVE-2020-3810-a",

                                "ratings": {

                                    "rating": {

                                        "severity": "Medium"

                                    }

                                },

                                "source": {

                                    "-name": "debian:10",

                                    "url": "http://cve.mitre.org/cgi-bin/cvename.cgi?n

ame=CVE-2020-3810"

                                }

                            }

                        ]

                    }

                },

                {

                    "-type": "library",

                    "licenses": {

                        "license": [

                            {

                                "name": "GPL-2"

                            },

                            {

                                "name": "GPLv2+"

                            }

                        ]

                    },

                    "name": "apt",

                    "version": "1.8.2",

                    "vulnerabilities": {

                        "vulnerability": [

                            {

                                "-ref": "urn:uuid:3d7c61c6-9cfa-494c-858a-9668a318ff2

3",

                                "advisories": {

                                    "advisory": "https://security-tracker.debian.org/t

racker/CVE-2011-3374"

                                },

                                "id": "CVE-2011-3374",

                                "ratings": {

                                    "rating": {

                                        "severity": "Low"

                                    }

                                },

                                "source": {

                                    "-name": "debian:10",

                                    "url": "http://cve.mitre.org/cgi-bin/cvename.cgi?n

Tanzu Application Platform v1.5

VMware by Broadcom 1621



ame=CVE-2011-3374"

                                }

                            },

                            {

                                "-ref": "urn:uuid:ebabaa92-2bf9-4d33-8181-595b0fdf55b

d",

                                "advisories": {

                                    "advisory": "https://security-tracker.debian.org/t

racker/CVE-2020-27350"

                                },

                                "id": "CVE-2020-27350",

                                "ratings": {

                                    "rating": {

                                        "severity": "High"

                                    }

                                },

                                "source": {

                                    "-name": "debian:10",

                                    "url": "http://cve.mitre.org/cgi-bin/cvename.cgi?n

ame=CVE-2020-27350"

                                }

                            },

                            {

                                "-ref": "urn:uuid:07c58c81-1e01-459d-9e9d-0e10456a9bf

0",

                                "advisories": {

                                    "advisory": "https://security-tracker.debian.org/t

racker/CVE-2020-3810"

                                },

                                "id": "CVE-2020-3810",

                                "ratings": {

                                    "rating": {

                                        "severity": "Critical"

                                    }

                                },

                                "source": {

                                    "-name": "debian:10",

                                    "url": "http://cve.mitre.org/cgi-bin/cvename.cgi?n

ame=CVE-2020-3810"

                                }

                            }

                        ]

                    }

                }

            ]

        },

        "metadata": {

            "component": {

                "-type": "container",

                "name": "nginx:1.16",

                "version": "sha256:123"

            },

            "timestamp": "2022-01-28T13:30:43-08:00",

            "tools": {

                "tool": {

                    "name": "grype",

                    "vendor": "anchore",

                    "version": "[not provided]"

                }

            }

        }

    }

}

Example input in SPDX JSON format

Tanzu Application Platform v1.5

VMware by Broadcom 1622



The example in this section is a modified scan custom resource input, in .spdx.json, that contains
CVEs at low, medium, high, and critical severities. You can use this example input to evaluate your
Rego file.

To troubleshoot using this example output:

1. Paste your Rego file and the example input into the Rego Playground.

2. Evaluate your Rego file against the output and verify that your Rego file detects the
intended CVEs. See this Rego example.

{

  "id": "SPDXRef-docker-image|nginx",

  "specVersion": "SPDX-3.0",

  "creator": "Organization: Snyk Ltd",

  "created": "2023-03-01T16:10:08Z",

  "profile": [

    "base",

    "vulnerabilities"

  ],

  "description": "Snyk test result for project docker-image|nginx in SPDX SBOM forma

t",

  "vulnerabilities": [

    {

      "id": "SNYK-DEBIAN10-APT-1049974",

      "name": "SNYK-DEBIAN10-APT-1049974",

      "summary": "Integer Overflow or Wraparound",

      "details": "## NVD Description\n**_Note:_** _Versions mentioned in the descripti

on apply only to the upstream `apt` package and not the `apt` package as distributed b

y `Debian:10`._\n_See `How to fix?` for `Debian:10` relevant fixed versions and statu

s._\n\nAPT had several integer overflows and underflows while parsing .deb packages, a

ka GHSL-2020-168 GHSL-2020-169, in files apt-pkg/contrib/extracttar.cc, apt-pkg/deb/de

bfile.cc, and apt-pkg/contrib/arfile.cc. This issue affects: apt 1.2.32ubuntu0 version

s prior to 1.2.32ubuntu0.2; 1.6.12ubuntu0 versions prior to 1.6.12ubuntu0.2; 2.0.2ubun

tu0 versions prior to 2.0.2ubuntu0.2; 2.1.10ubuntu0 versions prior to 2.1.10ubuntu0.

1;\n## Remediation\nUpgrade `Debian:10` `apt` to version 1.8.2.2 or higher.\n## Refere

nces\n- [ADVISORY](https://security-tracker.debian.org/tracker/CVE-2020-27350)\n- [CON

FIRM](https://bugs.launchpad.net/bugs/1899193)\n- [CONFIRM](https://security.netapp.co

m/advisory/ntap-20210108-0005/)\n- [DEBIAN](https://www.debian.org/security/2020/dsa-4

808)\n- [UBUNTU](https://usn.ubuntu.com/usn/usn-4667-1)\n",

      "relationships": [

        {

          "affect": {

            "to": [

              "docker-image|nginx@1.16",

              "apt/libapt-pkg5.0@1.8.2"

            ],

            "type": "AFFECTS"

          },

          "foundBy": {

            "to": [

              ""

            ],

            "type": "FOUND_BY"

          },

          "suppliedBy": {

            "to": [

              ""

            ],

            "type": "SUPPLIED_BY"

          },

          "ratedBy": {

            "to": [

              ""

            ],

            "type": "RATED_BY",

Tanzu Application Platform v1.5

VMware by Broadcom 1623

https://play.openpolicyagent.org/
https://play.openpolicyagent.org/p/gp0fUfaxOC


            "cwes": [

              190

            ],

            "rating": [

              {

                "method": "CVSS_3",

                "score": [

                  {

                    "base": 5.7

                  }

                ],

                "severity": "Medium",

                "vector": "CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:C/C:L/I:L/A:L"

              }

            ]

          }

        }

      ],

      "externalReferences": [

        {

          "category": "ADVISORY",

          "locator": "https://security-tracker.debian.org/tracker/CVE-2020-27350"

        },

        {

          "category": "ADVISORY",

          "locator": "https://bugs.launchpad.net/bugs/1899193"

        },

        {

          "category": "ADVISORY",

          "locator": "https://security.netapp.com/advisory/ntap-20210108-0005/"

        },

        {

          "category": "ADVISORY",

          "locator": "https://www.debian.org/security/2020/dsa-4808"

        },

        {

          "category": "ADVISORY",

          "locator": "https://usn.ubuntu.com/usn/usn-4667-1"

        }

      ],

      "modified": "2022-10-29T13:11:02.438923Z",

      "published": "2020-12-10T03:10:23.901831Z"

    },

    {

      "id": "SNYK-DEBIAN10-APT-407502",

      "name": "SNYK-DEBIAN10-APT-407502",

      "summary": "Improper Verification of Cryptographic Signature",

      "details": "## NVD Description\n**_Note:_** _Versions mentioned in the descripti

on apply only to the upstream `apt` package and not the `apt` package as distributed b

y `Debian:10`._\n_See `How to fix?` for `Debian:10` relevant fixed versions and statu

s._\n\nIt was found that apt-key in apt, all versions, do not correctly validate gpg k

eys with the primary keyring, leading to a potential man-in-the-middle attack.\n## Rem

ediation\nThere is no fixed version for `Debian:10` `apt`.\n## References\n- [ADVISOR

Y](https://security-tracker.debian.org/tracker/CVE-2011-3374)\n- [Debian Bug Report](h

ttps://bugs.debian.org/cgi-bin/bugreport.cgi?bug=642480)\n- [MISC](https://people.cano

nical.com/~ubuntu-security/cve/2011/CVE-2011-3374.html)\n- [MISC](https://seclists.or

g/fulldisclosure/2011/Sep/221)\n- [MISC](https://snyk.io/vuln/SNYK-LINUX-APT-116518)\n

- [MISC](https://ubuntu.com/security/CVE-2011-3374)\n- [RedHat CVE Database](https://a

ccess.redhat.com/security/cve/cve-2011-3374)\n",

      "relationships": [

        {

          "affect": {

            "to": [

              "docker-image|nginx@1.16",

              "apt/libapt-pkg5.0@1.8.2"

            ],

Tanzu Application Platform v1.5

VMware by Broadcom 1624



            "type": "AFFECTS"

          },

          "foundBy": {

            "to": [

              ""

            ],

            "type": "FOUND_BY"

          },

          "suppliedBy": {

            "to": [

              ""

            ],

            "type": "SUPPLIED_BY"

          },

          "ratedBy": {

            "to": [

              ""

            ],

            "type": "RATED_BY",

            "cwes": [

              347

            ],

            "rating": [

              {

                "method": "CVSS_3",

                "score": [

                  {

                    "base": 3.7

                  }

                ],

                "severity": "Low",

                "vector": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:L/A:N"

              }

            ]

          }

        }

      ],

      "externalReferences": [

        {

          "category": "ADVISORY",

          "locator": "https://security-tracker.debian.org/tracker/CVE-2011-3374"

        },

        {

          "category": "ADVISORY",

          "locator": "https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=642480"

        },

        {

          "category": "ADVISORY",

          "locator": "https://people.canonical.com/~ubuntu-security/cve/2011/CVE-2011-

3374.html"

        },

        {

          "category": "ADVISORY",

          "locator": "https://seclists.org/fulldisclosure/2011/Sep/221"

        },

        {

          "category": "ADVISORY",

          "locator": "https://snyk.io/vuln/SNYK-LINUX-APT-116518"

        },

        {

          "category": "ADVISORY",

          "locator": "https://ubuntu.com/security/CVE-2011-3374"

        },

        {

          "category": "ADVISORY",

          "locator": "https://access.redhat.com/security/cve/cve-2011-3374"

Tanzu Application Platform v1.5

VMware by Broadcom 1625



        }

      ],

      "modified": "2022-11-01T00:08:27.375895Z",

      "published": "2018-06-27T16:20:45.037549Z"

    },

    {

      "id": "SNYK-DEBIAN10-APT-568926",

      "name": "SNYK-DEBIAN10-APT-568926",

      "summary": "Improper Input Validation",

      "details": "## NVD Description\n**_Note:_** _Versions mentioned in the descripti

on apply only to the upstream `apt` package and not the `apt` package as distributed b

y `Debian:10`._\n_See `How to fix?` for `Debian:10` relevant fixed versions and statu

s._\n\nMissing input validation in the ar/tar implementations of APT before version 2.

1.2 could result in denial of service when processing specially crafted deb files.\n## 

Remediation\nUpgrade `Debian:10` `apt` to version 1.8.2.1 or higher.\n## References\n- 

[ADVISORY](https://security-tracker.debian.org/tracker/CVE-2020-3810)\n- [FEDORA](http

s://lists.fedoraproject.org/archives/list/package-announce@lists.fedoraproject.org/mes

sage/U4PEH357MZM2SUGKETMEHMSGQS652QHH/)\n- [GitHub Issue](https://github.com/Debian/ap

t/issues/111)\n- [MISC](https://bugs.launchpad.net/bugs/1878177)\n- [MISC](https://lis

ts.debian.org/debian-security-announce/2020/msg00089.html)\n- [MISC](https://salsa.deb

ian.org/apt-team/apt/-/commit/dceb1e49e4b8e4dadaf056be34088b415939cda6)\n- [MISC](http

s://tracker.debian.org/news/1144109/accepted-apt-212-source-into-unstable/)\n- [UBUNT

U](https://usn.ubuntu.com/4359-2/)\n- [Ubuntu CVE Tracker](http://people.ubuntu.com/~u

buntu-security/cve/CVE-2020-3810)\n- [Ubuntu Security Advisory](https://usn.ubuntu.co

m/4359-1/)\n",

      "relationships": [

        {

          "affect": {

            "to": [

              "docker-image|nginx@1.16",

              "apt/libapt-pkg5.0@1.8.2"

            ],

            "type": "AFFECTS"

          },

          "foundBy": {

            "to": [

              ""

            ],

            "type": "FOUND_BY"

          },

          "suppliedBy": {

            "to": [

              ""

            ],

            "type": "SUPPLIED_BY"

          },

          "ratedBy": {

            "to": [

              ""

            ],

            "type": "RATED_BY",

            "cwes": [

              20

            ],

            "rating": [

              {

                "method": "CVSS_3",

                "score": [

                  {

                    "base": 5.5

                  }

                ],

                "severity": "Medium",

                "vector": "CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:N/I:N/A:H"

              }

            ]

Tanzu Application Platform v1.5

VMware by Broadcom 1626



          }

        }

      ],

      "externalReferences": [

        {

          "category": "ADVISORY",

          "locator": "https://security-tracker.debian.org/tracker/CVE-2020-3810"

        },

        {

          "category": "ADVISORY",

          "locator": "https://lists.fedoraproject.org/archives/list/package-announce@l

ists.fedoraproject.org/message/U4PEH357MZM2SUGKETMEHMSGQS652QHH/"

        },

        {

          "category": "ADVISORY",

          "locator": "https://github.com/Debian/apt/issues/111"

        },

        {

          "category": "ADVISORY",

          "locator": "https://bugs.launchpad.net/bugs/1878177"

        },

        {

          "category": "ADVISORY",

          "locator": "https://lists.debian.org/debian-security-announce/2020/msg00089.

html"

        },

        {

          "category": "ADVISORY",

          "locator": "https://salsa.debian.org/apt-team/apt/-/commit/dceb1e49e4b8e4dad

af056be34088b415939cda6"

        },

        {

          "category": "ADVISORY",

          "locator": "https://tracker.debian.org/news/1144109/accepted-apt-212-source-

into-unstable/"

        },

        {

          "category": "ADVISORY",

          "locator": "https://usn.ubuntu.com/4359-2/"

        },

        {

          "category": "ADVISORY",

          "locator": "http://people.ubuntu.com/~ubuntu-security/cve/CVE-2020-3810"

        },

        {

          "category": "ADVISORY",

          "locator": "https://usn.ubuntu.com/4359-1/"

        }

      ],

      "modified": "2022-11-01T00:08:51.907776Z",

      "published": "2020-05-12T14:19:01.052295Z"

    },

    {

      "id": "SNYK-DEBIAN10-APT-1049974",

      "name": "SNYK-DEBIAN10-APT-1049974",

      "summary": "Integer Overflow or Wraparound",

      "details": "## NVD Description\n**_Note:_** _Versions mentioned in the descripti

on apply only to the upstream `apt` package and not the `apt` package as distributed b

y `Debian:10`._\n_See `How to fix?` for `Debian:10` relevant fixed versions and statu

s._\n\nAPT had several integer overflows and underflows while parsing .deb packages, a

ka GHSL-2020-168 GHSL-2020-169, in files apt-pkg/contrib/extracttar.cc, apt-pkg/deb/de

bfile.cc, and apt-pkg/contrib/arfile.cc. This issue affects: apt 1.2.32ubuntu0 version

s prior to 1.2.32ubuntu0.2; 1.6.12ubuntu0 versions prior to 1.6.12ubuntu0.2; 2.0.2ubun

tu0 versions prior to 2.0.2ubuntu0.2; 2.1.10ubuntu0 versions prior to 2.1.10ubuntu0.

1;\n## Remediation\nUpgrade `Debian:10` `apt` to version 1.8.2.2 or higher.\n## Refere

nces\n- [ADVISORY](https://security-tracker.debian.org/tracker/CVE-2020-27350)\n- [CON

Tanzu Application Platform v1.5

VMware by Broadcom 1627



FIRM](https://bugs.launchpad.net/bugs/1899193)\n- [CONFIRM](https://security.netapp.co

m/advisory/ntap-20210108-0005/)\n- [DEBIAN](https://www.debian.org/security/2020/dsa-4

808)\n- [UBUNTU](https://usn.ubuntu.com/usn/usn-4667-1)\n",

      "relationships": [

        {

          "affect": {

            "to": [

              "docker-image|nginx@1.16",

              "apt@1.8.2",

              "apt/libapt-pkg5.0@1.8.2"

            ],

            "type": "AFFECTS"

          },

          "foundBy": {

            "to": [

              ""

            ],

            "type": "FOUND_BY"

          },

          "suppliedBy": {

            "to": [

              ""

            ],

            "type": "SUPPLIED_BY"

          },

          "ratedBy": {

            "to": [

              ""

            ],

            "type": "RATED_BY",

            "cwes": [

              190

            ],

            "rating": [

              {

                "method": "CVSS_3",

                "score": [

                  {

                    "base": 5.7

                  }

                ],

                "severity": "Medium",

                "vector": "CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:C/C:L/I:L/A:L"

              }

            ]

          }

        }

      ],

      "externalReferences": [

        {

          "category": "ADVISORY",

          "locator": "https://security-tracker.debian.org/tracker/CVE-2020-27350"

        },

        {

          "category": "ADVISORY",

          "locator": "https://bugs.launchpad.net/bugs/1899193"

        },

        {

          "category": "ADVISORY",

          "locator": "https://security.netapp.com/advisory/ntap-20210108-0005/"

        },

        {

          "category": "ADVISORY",

          "locator": "https://www.debian.org/security/2020/dsa-4808"

        },

        {

Tanzu Application Platform v1.5

VMware by Broadcom 1628



          "category": "ADVISORY",

          "locator": "https://usn.ubuntu.com/usn/usn-4667-1"

        }

      ],

      "modified": "2022-10-29T13:11:02.438923Z",

      "published": "2020-12-10T03:10:23.901831Z"

    },

    {

      "id": "SNYK-DEBIAN10-APT-407502",

      "name": "SNYK-DEBIAN10-APT-407502",

      "summary": "Improper Verification of Cryptographic Signature",

      "details": "## NVD Description\n**_Note:_** _Versions mentioned in the descripti

on apply only to the upstream `apt` package and not the `apt` package as distributed b

y `Debian:10`._\n_See `How to fix?` for `Debian:10` relevant fixed versions and statu

s._\n\nIt was found that apt-key in apt, all versions, do not correctly validate gpg k

eys with the primary keyring, leading to a potential man-in-the-middle attack.\n## Rem

ediation\nThere is no fixed version for `Debian:10` `apt`.\n## References\n- [ADVISOR

Y](https://security-tracker.debian.org/tracker/CVE-2011-3374)\n- [Debian Bug Report](h

ttps://bugs.debian.org/cgi-bin/bugreport.cgi?bug=642480)\n- [MISC](https://people.cano

nical.com/~ubuntu-security/cve/2011/CVE-2011-3374.html)\n- [MISC](https://seclists.or

g/fulldisclosure/2011/Sep/221)\n- [MISC](https://snyk.io/vuln/SNYK-LINUX-APT-116518)\n

- [MISC](https://ubuntu.com/security/CVE-2011-3374)\n- [RedHat CVE Database](https://a

ccess.redhat.com/security/cve/cve-2011-3374)\n",

      "relationships": [

        {

          "affect": {

            "to": [

              "docker-image|nginx@1.16",

              "apt@1.8.2",

              "apt/libapt-pkg5.0@1.8.2"

            ],

            "type": "AFFECTS"

          },

          "foundBy": {

            "to": [

              ""

            ],

            "type": "FOUND_BY"

          },

          "suppliedBy": {

            "to": [

              ""

            ],

            "type": "SUPPLIED_BY"

          },

          "ratedBy": {

            "to": [

              ""

            ],

            "type": "RATED_BY",

            "cwes": [

              347

            ],

            "rating": [

              {

                "method": "CVSS_3",

                "score": [

                  {

                    "base": 3.7

                  }

                ],

                "severity": "Low",

                "vector": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:L/A:N"

              }

            ]

          }

Tanzu Application Platform v1.5

VMware by Broadcom 1629



        }

      ],

      "externalReferences": [

        {

          "category": "ADVISORY",

          "locator": "https://security-tracker.debian.org/tracker/CVE-2011-3374"

        },

        {

          "category": "ADVISORY",

          "locator": "https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=642480"

        },

        {

          "category": "ADVISORY",

          "locator": "https://people.canonical.com/~ubuntu-security/cve/2011/CVE-2011-

3374.html"

        },

        {

          "category": "ADVISORY",

          "locator": "https://seclists.org/fulldisclosure/2011/Sep/221"

        },

        {

          "category": "ADVISORY",

          "locator": "https://snyk.io/vuln/SNYK-LINUX-APT-116518"

        },

        {

          "category": "ADVISORY",

          "locator": "https://ubuntu.com/security/CVE-2011-3374"

        },

        {

          "category": "ADVISORY",

          "locator": "https://access.redhat.com/security/cve/cve-2011-3374"

        }

      ],

      "modified": "2022-11-01T00:08:27.375895Z",

      "published": "2018-06-27T16:20:45.037549Z"

    },

    {

      "id": "SNYK-DEBIAN10-EXPAT-2329087",

      "name": "SNYK-DEBIAN10-EXPAT-2329087",

      "summary": "Incorrect Calculation",

      "details": "## NVD Description\n**_Note:_** _Versions mentioned in the descripti

on apply only to the upstream `expat` package and not the `expat` package as distribut

ed by `Debian:10`._\n_See `How to fix?` for `Debian:10` relevant fixed versions and st

atus._\n\nIn Expat (aka libexpat) before 2.4.3, a left shift by 29 (or more) places in 

the storeAtts function in xmlparse.c can lead to realloc misbehavior (e.g., allocating 

too few bytes, or only freeing memory).\n## Remediation\nUpgrade `Debian:10` `expat` t

o version 2.2.6-2+deb10u2 or higher.\n## References\n- [ADVISORY](https://security-tra

cker.debian.org/tracker/CVE-2021-45960)\n- [MISC](https://bugzilla.mozilla.org/show_bu

g.cgi?id=1217609)\n- [MISC](https://github.com/libexpat/libexpat/issues/531)\n- [MISC]

(https://github.com/libexpat/libexpat/pull/534)\n- [cve@mitre.org](http://www.openwal

l.com/lists/oss-security/2022/01/17/3)\n- [cve@mitre.org](https://security.netapp.com/

advisory/ntap-20220121-0004/)\n- [cve@mitre.org](https://www.tenable.com/security/tns-

2022-05)\n- [cve@mitre.org](https://www.debian.org/security/2022/dsa-5073)\n- [cve@mit

re.org](https://cert-portal.siemens.com/productcert/pdf/ssa-484086.pdf)\n- [cve@mitre.

org](https://security.gentoo.org/glsa/202209-24)\n",

      "relationships": [

        {

          "affect": {

            "to": [

              "docker-image|nginx@1.16",

              "nginx-module-image-filter@1.16.1-1~buster",

              "libgd2/libgd3@2.2.5-5.2",

              "fontconfig/libfontconfig1@2.13.1-2",

              "expat/libexpat1@2.2.6-2+deb10u1"

            ],

            "type": "AFFECTS"

Tanzu Application Platform v1.5

VMware by Broadcom 1630



          },

          "foundBy": {

            "to": [

              ""

            ],

            "type": "FOUND_BY"

          },

          "suppliedBy": {

            "to": [

              ""

            ],

            "type": "SUPPLIED_BY"

          },

          "ratedBy": {

            "to": [

              ""

            ],

            "type": "RATED_BY",

            "cwes": [

              682

            ],

            "rating": [

              {

                "method": "CVSS_3",

                "score": [

                  {

                    "base": 8.8

                  }

                ],

                "severity": "High",

                "vector": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H"

              }

            ]

          }

        }

      ],

      "externalReferences": [

        {

          "category": "ADVISORY",

          "locator": "https://security-tracker.debian.org/tracker/CVE-2021-45960"

        },

        {

          "category": "ADVISORY",

          "locator": "https://bugzilla.mozilla.org/show_bug.cgi?id=1217609"

        },

        {

          "category": "ADVISORY",

          "locator": "https://github.com/libexpat/libexpat/issues/531"

        },

        {

          "category": "ADVISORY",

          "locator": "https://github.com/libexpat/libexpat/pull/534"

        },

        {

          "category": "ADVISORY",

          "locator": "http://www.openwall.com/lists/oss-security/2022/01/17/3"

        },

        {

          "category": "ADVISORY",

          "locator": "https://security.netapp.com/advisory/ntap-20220121-0004/"

        },

        {

          "category": "ADVISORY",

          "locator": "https://www.tenable.com/security/tns-2022-05"

        },

        {

Tanzu Application Platform v1.5

VMware by Broadcom 1631



          "category": "ADVISORY",

          "locator": "https://www.debian.org/security/2022/dsa-5073"

        },

        {

          "category": "ADVISORY",

          "locator": "https://cert-portal.siemens.com/productcert/pdf/ssa-484086.pdf"

        },

        {

          "category": "ADVISORY",

          "locator": "https://security.gentoo.org/glsa/202209-24"

        }

      ],

      "modified": "2023-02-14T13:37:37.505975Z",

      "published": "2022-01-02T01:41:26.770663Z"

    },

    {

      "id": "SNYK-DEBIAN10-EXPAT-2331803",

      "name": "SNYK-DEBIAN10-EXPAT-2331803",

      "summary": "Integer Overflow or Wraparound",

      "details": "## NVD Description\n**_Note:_** _Versions mentioned in the descripti

on apply only to the upstream `expat` package and not the `expat` package as distribut

ed by `Debian:10`._\n_See `How to fix?` for `Debian:10` relevant fixed versions and st

atus._\n\ndefineAttribute in xmlparse.c in Expat (aka libexpat) before 2.4.3 has an in

teger overflow.\n## Remediation\nUpgrade `Debian:10` `expat` to version 2.2.6-2+deb10u

2 or higher.\n## References\n- [ADVISORY](https://security-tracker.debian.org/tracker/

CVE-2022-22824)\n- [cve@mitre.org](https://github.com/libexpat/libexpat/pull/539)\n- 

[cve@mitre.org](http://www.openwall.com/lists/oss-security/2022/01/17/3)\n- [cve@mitr

e.org](https://www.tenable.com/security/tns-2022-05)\n- [cve@mitre.org](https://www.de

bian.org/security/2022/dsa-5073)\n- [cve@mitre.org](https://cert-portal.siemens.com/pr

oductcert/pdf/ssa-484086.pdf)\n- [cve@mitre.org](https://security.gentoo.org/glsa/2022

09-24)\n",

      "relationships": [

        {

          "affect": {

            "to": [

              "docker-image|nginx@1.16",

              "nginx-module-image-filter@1.16.1-1~buster",

              "libgd2/libgd3@2.2.5-5.2",

              "fontconfig/libfontconfig1@2.13.1-2",

              "expat/libexpat1@2.2.6-2+deb10u1"

            ],

            "type": "AFFECTS"

          },

          "foundBy": {

            "to": [

              ""

            ],

            "type": "FOUND_BY"

          },

          "suppliedBy": {

            "to": [

              ""

            ],

            "type": "SUPPLIED_BY"

          },

          "ratedBy": {

            "to": [

              ""

            ],

            "type": "RATED_BY",

            "cwes": [

              190

            ],

            "rating": [

              {

                "method": "CVSS_3",

Tanzu Application Platform v1.5

VMware by Broadcom 1632



                "score": [

                  {

                    "base": 9.8

                  }

                ],

                "severity": "Critical",

                "vector": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H"

              }

            ]

          }

        }

      ],

      "externalReferences": [

        {

          "category": "ADVISORY",

          "locator": "https://security-tracker.debian.org/tracker/CVE-2022-22824"

        },

        {

          "category": "ADVISORY",

          "locator": "https://github.com/libexpat/libexpat/pull/539"

        },

        {

          "category": "ADVISORY",

          "locator": "http://www.openwall.com/lists/oss-security/2022/01/17/3"

        },

        {

          "category": "ADVISORY",

          "locator": "https://www.tenable.com/security/tns-2022-05"

        },

        {

          "category": "ADVISORY",

          "locator": "https://www.debian.org/security/2022/dsa-5073"

        },

        {

          "category": "ADVISORY",

          "locator": "https://cert-portal.siemens.com/productcert/pdf/ssa-484086.pdf"

        },

        {

          "category": "ADVISORY",

          "locator": "https://security.gentoo.org/glsa/202209-24"

        }

      ],

      "modified": "2023-02-14T13:39:18.516672Z",

      "published": "2022-01-08T13:52:14.479733Z"

    }

  ],

  "name": "docker-image|nginx-sha256:d20aa6d1cae56fd17cd458f4807e0de462caf2336f0b70b5e

eb69fcaaf30dd9c",

  "dataLicense": "CC0-1.0",

  "documentNamespace": "spdx.org/spdxdocs/docker-image|nginx-feb02ce6-cd47-49c2-9a97-2

b4833b4a1f0",

  "relationships": [

    {

      "from": "SPDXRef-docker-image|nginx",

      "to": [

        "SPDXRef-index.docker.io/library/nginx-sha256:d20aa6d1cae56fd17cd458f4807e0de4

62caf2336f0b70b5eeb69fcaaf30dd9c"

      ],

      "type": "DESCRIBES"

    }

  ],

  "packages": [

    {

      "SPDXID": "SPDXRef-index.docker.io/library/nginx-sha256:d20aa6d1cae56fd17cd458f4

807e0de462caf2336f0b70b5eeb69fcaaf30dd9c",

      "versionInfo": "sha256:d20aa6d1cae56fd17cd458f4807e0de462caf2336f0b70b5eeb69fcaa

Tanzu Application Platform v1.5

VMware by Broadcom 1633



f30dd9c",

      "id": "SPDXRef-index.docker.io/library/nginx-sha256:d20aa6d1cae56fd17cd458f4807e

0de462caf2336f0b70b5eeb69fcaaf30dd9c",

      "name": "index.docker.io/library/nginx",

      "checksums": [

        {

          "algorithm": "SHA256",

          "checksumValue": "d20aa6d1cae56fd17cd458f4807e0de462caf2336f0b70b5eeb69fcaaf

30dd9c"

        }

      ]

    }

  ]

}

Configure code repositories and image artifacts for Supply
Chain Security Tools - Scan
This topic describes how you can configure code repositories and image artifacts for SCST - Scan.

Prerequisite
Both the source and image scans require you to define a ScanTemplate. Run kubectl get
scantemplates for the ScanTemplates provided with the scanner installation. For information about
how to reference these ScanTemplates, see How to create a ScanTemplate.

Deploy scan custom resources
The scan controller defines two custom resources to create scans:

SourceScan

ImageScan

SourceScan

The SourceScan custom resource helps you define and trigger a scan for a given repository. You
can deploy SourceScan with source code existing in a public repository or a private one:

1. Create the SourceScan custom resource.

Example:

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: SourceScan

metadata:

  # set the name of the source scan CR

  name: sample-source-scan

spec:

  # At least one of these fields (blob or git) must be defined.

  blob:

    # location to a file with the source code compressed (supported files: .ta

r.gz)

    url:

  git:

    # A multiline string defining the known hosts that are going to be used for 

the SSH client on the container

    knownHosts:

    # Branch, tag, or commit digest

    revision:

    # The name of the kubernetes secret containing the private SSH key informat

ion.

Tanzu Application Platform v1.5

VMware by Broadcom 1634



    sshKeySecret:

    # A string containing the repository URL.

    url:

    # The username needed to SSH connection. Default value is “git”

    username:

  # A string defining the name of an existing ScanTemplate custom resource. 

  scanTemplate: my-scan-template

   # A string defining the name of an existing ScanPolicy custom resource. See 

"Enforcement Policies (OPA)" section.

  scanPolicy: my-scan-policy

2. Deploy the SourceScan custom resource to the desired namespace on cluster by running:

kubectl apply -f <path_to_the_cr>/<custom_resource_filename>.yaml -n <desired_n

amespace>

After the scanning completes, the following fields appear in the custom resource and are
filled by the scanner:

# These fields are populated from the source scan results

status:

  # The source code information as provided in the CycloneDX `bom>metadata>comp

onent>*` fields

  artifact:

    blob:

      url:

    git:

      url:

      revision:

  # An array populated with information about the scanning status

  # and the policy validation. These conditions might change in the lifecycle

  # of the scan, refer to the "View Scan Status and Understanding Conditions" s

ection to learn more.

  conditions: []

  # The URL of the vulnerability scan results in the Metadata Store integratio

n.

  # Only available when the integration is configured.

  metadataUrl:

  # When the CRD is updated to point at new revisions, this lets you know

  # if the status reflects the latest one or not

  observedGeneration: 1

  observedPolicyGeneration: 1

  observedTemplateGeneration: 1

  # The latest datetime when the scanning was successfully finished.

  scannedAt:

  # Information about the scanner that was used for the latest image scan.

  # This information reflects what's in the CycloneDX `bom>metadata>tools>tool>

*` fields.

  scannedBy:

    scanner:

      # The name of the scanner that was used.

      name: my-image-scanner

      # The name of the scanner's development company or team

      vendor: my-image-scanner-provider

      # The version of the scanner used.

      version: 1.0.0

Tanzu Application Platform v1.5

VMware by Broadcom 1635



ImageScan

The ImageScan custom resource helps you define and trigger a scan for a given image. You can
deploy ImageScan with an image existing in a public or private registry:

1. Create the ImageScan custom resource.

Example:

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ImageScan

metadata:

  # set the name of the image scan CR

  name: sample-image-scan

spec:

  registry:

    # Required. A string containing the image name can additionally add its tag 

or its digest

    image: nginx:1.16

    # A string containing the secret needed to pull the image from a private re

gistry.

    # The secret needs to be deployed in the same namespace as the ImageScan

    imagePullSecret: my-image-pull-secret

  # A string defining the name of an existing ScanTemplate custom resource. See 

"How To Create a ScanTemplate" section.

  scanTemplate: my-scan-template

  # A string defining the name of an existing ScanPolicy custom resource. See 

"Enforcement Policies (OPA)" section.

  scanPolicy: my-scan-policy

2. Deploy the ImageScan custom resource to the desired namespace on cluster by running:

kubectl apply -f <path_to_the_cr>/<custom_resource_filename>.yaml -n <desired_n

amespace>

After the scanning completes, the following fields appear in the custom resource and are
filled by the scanner:

 # These fields are populated from the image scan results

status:

  artifact:

    registry:

      # The image name with its digest as provided in the CycloneDX `bom>metada

ta>component>*` fields

      image:

      imagePullSecret:

  # An array that is populated with information about the scanning status

  # and the policy validation. These conditions might change in the lifecycle

  # of the scan, refer to the "View Scan Status and Understanding Conditions" s

ection to learn more.

  conditions: []

  # The URL of the vulnerability scan results in the Metadata Store integratio

n.

  # Only available when the integration is configured.

  metadataUrl:

  # When the CRD is updated to point at new revisions, this lets you know

  # whether the status reflects the latest one

  observedGeneration: 1

  observedPolicyGeneration: 1

Tanzu Application Platform v1.5

VMware by Broadcom 1636



  observedTemplateGeneration: 1

  # The latest datetime when the scanning was successfully finished.

  scannedAt:

  # Information about the scanner used for the latest image scan.

  # This information reflects what's in the CycloneDX `bom>metadata>tools>tool>

*` fields.

  scannedBy:

    scanner:

      # The name of the scanner that was used.

      name: my-image-scanner

      # The name of the scanner's development company or team

      vendor: my-image-scanner-provider

      # The version of the scanner used.

      version: 1.0.0

Configure code repositories and image artifacts for Supply
Chain Security Tools - Scan
This topic describes how you can configure code repositories and image artifacts for SCST - Scan.

Prerequisite
Both the source and image scans require you to define a ScanTemplate. Run kubectl get
scantemplates for the ScanTemplates provided with the scanner installation. For information about
how to reference these ScanTemplates, see How to create a ScanTemplate.

Deploy scan custom resources
The scan controller defines two custom resources to create scans:

SourceScan

ImageScan

SourceScan

The SourceScan custom resource helps you define and trigger a scan for a given repository. You
can deploy SourceScan with source code existing in a public repository or a private one:

1. Create the SourceScan custom resource.

Example:

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: SourceScan

metadata:

  # set the name of the source scan CR

  name: sample-source-scan

spec:

  # At least one of these fields (blob or git) must be defined.

  blob:

    # location to a file with the source code compressed (supported files: .ta

r.gz)

    url:

  git:

    # A multiline string defining the known hosts that are going to be used for 

the SSH client on the container

    knownHosts:

    # Branch, tag, or commit digest

Tanzu Application Platform v1.5

VMware by Broadcom 1637



    revision:

    # The name of the kubernetes secret containing the private SSH key informat

ion.

    sshKeySecret:

    # A string containing the repository URL.

    url:

    # The username needed to SSH connection. Default value is “git”

    username:

  # A string defining the name of an existing ScanTemplate custom resource. 

  scanTemplate: my-scan-template

   # A string defining the name of an existing ScanPolicy custom resource. See 

"Enforcement Policies (OPA)" section.

  scanPolicy: my-scan-policy

2. Deploy the SourceScan custom resource to the desired namespace on cluster by running:

kubectl apply -f <path_to_the_cr>/<custom_resource_filename>.yaml -n <desired_n

amespace>

After the scanning completes, the following fields appear in the custom resource and are
filled by the scanner:

# These fields are populated from the source scan results

status:

  # The source code information as provided in the CycloneDX `bom>metadata>comp

onent>*` fields

  artifact:

    blob:

      url:

    git:

      url:

      revision:

  # An array populated with information about the scanning status

  # and the policy validation. These conditions might change in the lifecycle

  # of the scan, refer to the "View Scan Status and Understanding Conditions" s

ection to learn more.

  conditions: []

  # The URL of the vulnerability scan results in the Metadata Store integratio

n.

  # Only available when the integration is configured.

  metadataUrl:

  # When the CRD is updated to point at new revisions, this lets you know

  # if the status reflects the latest one or not

  observedGeneration: 1

  observedPolicyGeneration: 1

  observedTemplateGeneration: 1

  # The latest datetime when the scanning was successfully finished.

  scannedAt:

  # Information about the scanner that was used for the latest image scan.

  # This information reflects what's in the CycloneDX `bom>metadata>tools>tool>

*` fields.

  scannedBy:

    scanner:

      # The name of the scanner that was used.

      name: my-image-scanner

      # The name of the scanner's development company or team

      vendor: my-image-scanner-provider

Tanzu Application Platform v1.5

VMware by Broadcom 1638



      # The version of the scanner used.

      version: 1.0.0

ImageScan

The ImageScan custom resource helps you define and trigger a scan for a given image. You can
deploy ImageScan with an image existing in a public or private registry:

1. Create the ImageScan custom resource.

Example:

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ImageScan

metadata:

  # set the name of the image scan CR

  name: sample-image-scan

spec:

  registry:

    # Required. A string containing the image name can additionally add its tag 

or its digest

    image: nginx:1.16

    # A string containing the secret needed to pull the image from a private re

gistry.

    # The secret needs to be deployed in the same namespace as the ImageScan

    imagePullSecret: my-image-pull-secret

  # A string defining the name of an existing ScanTemplate custom resource. See 

"How To Create a ScanTemplate" section.

  scanTemplate: my-scan-template

  # A string defining the name of an existing ScanPolicy custom resource. See 

"Enforcement Policies (OPA)" section.

  scanPolicy: my-scan-policy

2. Deploy the ImageScan custom resource to the desired namespace on cluster by running:

kubectl apply -f <path_to_the_cr>/<custom_resource_filename>.yaml -n <desired_n

amespace>

After the scanning completes, the following fields appear in the custom resource and are
filled by the scanner:

 # These fields are populated from the image scan results

status:

  artifact:

    registry:

      # The image name with its digest as provided in the CycloneDX `bom>metada

ta>component>*` fields

      image:

      imagePullSecret:

  # An array that is populated with information about the scanning status

  # and the policy validation. These conditions might change in the lifecycle

  # of the scan, refer to the "View Scan Status and Understanding Conditions" s

ection to learn more.

  conditions: []

  # The URL of the vulnerability scan results in the Metadata Store integratio

n.

  # Only available when the integration is configured.

  metadataUrl:

Tanzu Application Platform v1.5

VMware by Broadcom 1639



  # When the CRD is updated to point at new revisions, this lets you know

  # whether the status reflects the latest one

  observedGeneration: 1

  observedPolicyGeneration: 1

  observedTemplateGeneration: 1

  # The latest datetime when the scanning was successfully finished.

  scannedAt:

  # Information about the scanner used for the latest image scan.

  # This information reflects what's in the CycloneDX `bom>metadata>tools>tool>

*` fields.

  scannedBy:

    scanner:

      # The name of the scanner that was used.

      name: my-image-scanner

      # The name of the scanner's development company or team

      vendor: my-image-scanner-provider

      # The version of the scanner used.

      version: 1.0.0

Enforce compliance policy using Open Policy Agent

This topic describes how you can use Open Policy Agent to enforce compliance policy for Supply
Chain Security Tools - Scan.

Writing a policy template

The Scan Policy custom resource (CR) allows you to define a Rego file for policy enforcement that
you can reuse across image scan and source scan CRs.

The Scan Controller supports policy enforcement by using an Open Policy Agent (OPA) engine with
Rego files. This allows you to validate scan results for company policy compliance and can prevent
source code from being built or images from being deployed.

Rego file contract

To define a Rego file for an image scan or source scan, you must comply with the requirements
defined for every Rego file for the policy verification to work properly. See Open Policy Agent
documentation on how to write Rego.

Package main: The Rego file must define a package in its body called main. The system
looks for this package to verify the scan results compliance.

Input match: The Rego file evaluates one vulnerability match at a time, iterating as many
times as the Rego file finds vulnerabilities in the scan. The match structure is accessed in
the input.currentVulnerability object inside the Rego file and has the CycloneDX format.

deny rule: The Rego file must define a deny rule inside its body. deny is a set of error
messages that are returned to the user. Each rule you write adds to that set of error
messages. If the conditions in the body of the deny statement are true then the user is
handed an error message. If false, the vulnerability is allowed in the Source or Image scan.

Define a Rego file for policy enforcement

Follow these steps to define a Rego file for policy enforcement that you can reuse across image
scan and source scan CRs that output in the CycloneDX XML format.

Tanzu Application Platform v1.5

VMware by Broadcom 1640

https://www.openpolicyagent.org/docs/latest/policy-language/
https://cyclonedx.org/docs/1.3/


1. Create a scan policy with a Rego file. The following is an example scan policy resource:

---

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanPolicy

metadata:

  name: scan-policy

  labels:

    app.kubernetes.io/part-of: enable-in-gui

spec:

  regoFile: |

    package main

    # Accepted Values: "Critical", "High", "Medium", "Low", "Negligible", "Unkn

ownSeverity"

    notAllowedSeverities := ["Critical", "High", "UnknownSeverity"]

    ignoreCves := []

    contains(array, elem) = true {

      array[_] = elem

    } else = false { true }

    isSafe(match) {

      severities := { e | e := match.ratings.rating.severity } | { e | e := mat

ch.ratings.rating[_].severity }

      some i

      fails := contains(notAllowedSeverities, severities[i])

      not fails

    }

    isSafe(match) {

      ignore := contains(ignoreCves, match.id)

      ignore

    }

    deny[msg] {

      comps := { e | e := input.bom.components.component } | { e | e := input.b

om.components.component[_] }

      some i

      comp := comps[i]

      vulns := { e | e := comp.vulnerabilities.vulnerability } | { e | e := com

p.vulnerabilities.vulnerability[_] }

      some j

      vuln := vulns[j]

      ratings := { e | e := vuln.ratings.rating.severity } | { e | e := vuln.ra

tings.rating[_].severity }

      not isSafe(vuln)

      msg = sprintf("CVE %s %s %s", [comp.name, vuln.id, ratings])

    }

You can edit the following text boxes of the Rego file as part of the CVE triage workflow:

notAllowedSeverities contains the categories of CVEs that cause the SourceScan
or ImageScan failing policy enforcement. The following example shows an app-
operator blocking only Critical, High and UnknownSeverity CVEs.

...

spec:

Note

The Snyk Scanner outputs SPDX JSON. For an example of a ScanPolicy formatted
for SPDX JSON output, see Sample ScanPolicy for Snyk in SPDX JSON format.

Tanzu Application Platform v1.5

VMware by Broadcom 1641



regoFile: |

  package main

  # Accepted Values: "Critical", "High", "Medium", "Low", "Negligible", 

"UnknownSeverity"

  notAllowedSeverities := ["Critical", "High", "UnknownSeverity"]

  ignoreCves := []

...

ignoreCves contains individual ignored CVEs when determining policy enforcement.
In the following example, an app-operator ignores CVE-2018-14643 and GHSA-f2jv-
r9rf-7988 if they are false positives. See A Note on Vulnerability Scanners.

...

spec:

regoFile: |

  package main

  notAllowedSeverities := []

  ignoreCves := ["CVE-2018-14643", "GHSA-f2jv-r9rf-7988"]

...

2. Deploy the scan policy to the cluster:

kubectl apply -f <path_to_scan_policy>/<scan_policy_filename>.yaml -n <desired_

namespace>

For information about how scan policies are used in the CVE triage workflow, see Triaging and
Remediating CVEs.

Further refine the Scan Policy for use
The scan policy earlier demonstrates how vulnerabilities are ignored during a compliance check. It
is not possible to audit why a vulnerability is ignored. You might want to allow an exception, where
a build with a failing vulnerability is allowed to progress through a supply chain. You can allow this
exception for a certain period of time, requiring an expiration date. Vulnerability Exploitability
Exchange (VEX) documents are gaining popularity to capture security advisory information
pertaining to vulnerabilities. You can use Rego for these use cases.

For example, the following scan policy includes an additional text box to capture comments
regarding why the scan ignores a vulnerability. The notAllowedSeverities array remains an array of
strings, but the ignoreCves array updates from an array of strings to an array of objects. This causes
a change to the contains function, splitting it into separate functions for each array.

---

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanPolicy

metadata:

  name: scan-policy

  labels:

    app.kubernetes.io/part-of: enable-in-gui

spec:

  regoFile: |

    package main

    # Accepted Values: "Critical", "High", "Medium", "Low", "Negligible", "UnknownSeve

rity"

    notAllowedSeverities := ["Critical", "High", "UnknownSeverity"]

    # List of known vulnerabilities to ignore when deciding whether to fail complianc

e. Example:

Tanzu Application Platform v1.5

VMware by Broadcom 1642



    # ignoreCves := [

    #   {

    #     "id": "CVE-2018-14643",

    #     "detail": "Determined affected code is not in the execution path."

    #   }

    # ]

    ignoreCves := []

    containsSeverity(array, elem) = true {

      array[_] = elem

    } else = false { true }

    isSafe(match) {

      severities := { e | e := match.ratings.rating.severity } | { e | e := match.rati

ngs.rating[_].severity }

      some i

      fails := containsSeverity(notAllowedSeverities, severities[i])

      not fails

    }

    containsCve(array, elem) = true {

      array[_].id = elem

    } else = false { true }

    isSafe(match) {

      ignore := containsCve(ignoreCves, match.id)

      ignore

    }

    deny[msg] {

      comps := { e | e := input.bom.components.component } | { e | e := input.bom.comp

onents.component[_] }

      some i

      comp := comps[i]

      vulns := { e | e := comp.vulnerabilities.vulnerability } | { e | e := comp.vulne

rabilities.vulnerability[_] }

      some j

      vuln := vulns[j]

      ratings := { e | e := vuln.ratings.rating.severity } | { e | e := vuln.ratings.r

ating[_].severity }

      not isSafe(vuln)

      msg = sprintf("CVE %s %s %s", [comp.name, vuln.id, ratings])

    }

The following example includes an expiration text box and only allows the vulnerability to be
ignored for a period of time:

---

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanPolicy

metadata:

  name: scan-policy

  labels:

    app.kubernetes.io/part-of: enable-in-gui

spec:

  regoFile: |

    package main

    # Accepted Values: "Critical", "High", "Medium", "Low", "Negligible", "UnknownSeve

rity"

    notAllowedSeverities := ["Critical", "High", "UnknownSeverity"]

    # List of known vulnerabilities to ignore when deciding whether to fail complianc

e. Example:

    # ignoreCves := [

Tanzu Application Platform v1.5

VMware by Broadcom 1643



    #   {

    #     "id": "CVE-2018-14643",

    #     "detail": "Determined affected code is not in the execution path.",

    #     "expiration": "2022-Dec-31"

    #   }

    # ]

    ignoreCves := []

    containsSeverity(array, elem) = true {

      array[_] = elem

    } else = false { true }

    isSafe(match) {

      severities := { e | e := match.ratings.rating.severity } | { e | e := match.rati

ngs.rating[_].severity }

      some i

      fails := containsSeverity(notAllowedSeverities, severities[i])

      not fails

    }

    containsCve(array, elem) = true {

      array[_].id = elem

      curr_time := time.now_ns()

      date_format := "2006-Jan-02"

      expire_time := time.parse_ns(date_format, array[_].expiration)

      curr_time < expire_time

    } else = false { true }

    isSafe(match) {

      ignore := containsCve(ignoreCves, match.id)

      ignore

    }

    deny[msg] {

      comps := { e | e := input.bom.components.component } | { e | e := input.bom.comp

onents.component[_] }

      some i

      comp := comps[i]

      vulns := { e | e := comp.vulnerabilities.vulnerability } | { e | e := comp.vulne

rabilities.vulnerability[_] }

      some j

      vuln := vulns[j]

      ratings := { e | e := vuln.ratings.rating.severity } | { e | e := vuln.ratings.r

ating[_].severity }

      not isSafe(vuln)

      msg = sprintf("CVE %s %s %s", [comp.name, vuln.id, ratings])

    }

Troubleshooting Rego files (Scan Policy)

To troubleshoot or confirm that any modifications made to the rego file in the provided sample scan
policy are functioning as intended, see Troubleshooting Rego Files.

Enable Tanzu Application Platform GUI to view ScanPolicy
Resource
For the Tanzu Application Platform GUI to view the ScanPolicy resource, it must have a matching
kubernetes-label-selector with a part-of prefix.

The following example is portion of a ScanPolicy that is viewable by the Tanzu Application Platform
GUI:

Tanzu Application Platform v1.5

VMware by Broadcom 1644



---

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanPolicy

metadata:

  name: scan-policy

  labels:

    app.kubernetes.io/part-of: enable-in-gui

spec:

  regoFile: |

    ...

Deprecated Rego file Definition

Before Scan Controller v1.2.0, you must use the following format where the rego file differences
are:

The package name must be package policies instead of package main.

The deny rule is a Boolean isCompliant instead of deny[msg].

isCompliant rule: The Rego file must define inside its body an isCompliant rule.
This must be a Boolean type containing the result whether the vulnerability violates
the security policy or not. If isCompliant is true, the vulnerability is allowed in the
Source or Image scan. Otherwise, false is considered. Any scan that finds at least
one vulnerability that evaluates to isCompliant=false makes the PolicySucceeded
condition set to false.

The following is an example scan policy resource:

apiVersion: scanning.apps.tanzu.vmware.com/v1alpha1

kind: ScanPolicy

metadata:

  name: v1alpha1-scan-policy

  labels:

    app.kubernetes.io/part-of: enable-in-gui

spec:

  regoFile: |

    package policies

    default isCompliant = false

    ignoreSeverities := ["Critical", "High"]

    contains(array, elem) = true {

      array[_] = elem

    } else = false { true }

    isCompliant {

      ignore := contains(ignoreSeverities, input.currentVulnerability.Ratings.Rating

[_].Severity)

      ignore

    }

Note

Anything van be a value for the label. The Tanzu Application Platform GUI is looking
for the existence of the part-of prefix string and doesn’t match for anything else
specific.

Tanzu Application Platform v1.5

VMware by Broadcom 1645



Create a ScanTemplate with Supply Chain Security Tools -
Scan

This topic describes how to create a ScanTemplate with Supply Chain Security Tools - Scan.

Overview

The ScanTemplate custom resource (CR) defines how the scan Pod fulfills the task of vulnerability
scanning. There are default ScanTemplates provided out of the box using the Tanzu Application
Platform default scanner, Anchore Grype. One or more initContainers run to complete the scan
and must save results to a shared volume. After the initContainers completes, a single container
on the scan Pod called summary combines the result of the initContainers so that the Scan CR status
is updated.

A customized ScanTemplate is created by editing or replacing initContainer definitions and
reusing the summary container from the grype package. A container can read the out.yaml from an
earlier step to locate relevant inputs.

Output Model

Each initContainer can create a subdirectory in /workspace to use as a scratch space. Before
terminating the container must create an out.yaml file in the subdirectory containing the relevant
subset of fields from the output model:

fetch:

  git: 

    url:

    revision:

    path:

  blob:

    url:

    revision:

    path:

  image:

    url:

    revision:

    path:

sbom:

    packageCount:

    reports: []

scan:

  cveCount:

    critical:

    high:

    medium:

    low:

    unknown:

  scanner:

    name:

    vendor:

    version:

    db:

      version:

  reports: []

eval:

  violations: []

store:

  locations: []

Tanzu Application Platform v1.5

VMware by Broadcom 1646



The scan portion of the earlier output is required and if missing the scan controller fails to properly
update the final status of the Scan CR. Other portions of the output, including those of store and
policy evaluation, are optional and can be omitted if not applicable in a custom supply chain
setup.

ScanTemplate Structure

apiVersion: scanning.apps.tanzu.vmware.com/v1beta1

kind: ScanTemplate

spec:

    template: # a core/v1 PodSpec

      # Here are list volumes mounted for writing to or 

      # reading from during different stages of the scan

      volumes:

        # required the results of different scan stages 

        # should be saved in files digestible by the scan 

        # controller in this volume

        - name: workspace

        emptyDir: { }

      # different steps required for a scanning can be staged 

      # in sequential stages through initContainers. 

      initContainers:

      # Summary container will take results of initContainers 

      # and will let Controller to update Scan CR status.

      containers:

        - name: summary

Note: You cannot name a container sleep because there is already a container named sleep which
comes from the scan-link controller.

Sample Outputs

# example for a typical git clone (source scan fetch stage)

# saved at: /workspace/git-clone/out.yaml

fetch:

  git:

    url: github.com/my/repo

    revision: aee9f8

    path: /workspace/git-clone/cloned-repository

# an example of typical scan stage

# saved at: /workspace/grype-scan/out.yaml

scan:

  cveCount:

    critical: 0

    high: 1

    medium: 3

    low: 25

    unknown: 0

  scanner:

    name: grype

    vendor: Anchore

    version: 0.33.0

    db:

      version: 2022-04-13

  reports:

  - /workspace/grype-scan/repo.cyclonedx.xml

  - /workspace/grype-scan/app.cyclonedx.xml

  - /workspace/grype-scan/base.cyclonedx.xml

Tanzu Application Platform v1.5

VMware by Broadcom 1647



# example of a typical evaluation stage

# saved at: /workspace/policy-eval/out.yaml

eval:

  violations:

    - banned package log4j

    - critical CVE 2022-01-01-3333

    - number of critical CVEs over threshold

# example of a typical upload to store stage

# saved at: /workspace/upload-to-store/out.yaml

store:

  locations:

    - http://metadata-store.cluster.local:8080/reports/3

View scan status conditions for Supply Chain Security Tools
- Scan

This topic explains how you can view scan status conditions for Supply Chain Security Tools - Scan.

Viewing scan status

You can view the scan status by using kubectl describe on a SourceScan or ImageScan. You can
see information about the scan status under the Status field for each scan CR.

Overview of conditions

The Status.Conditions array is populated with the scan status information during and after
scanning execution, and the policy validation (if defined for the scan) after the results are available.

Condition types for the scans

Scanning

The Condition with type Scanning indicates running the scanning TaskRun. The Status field
indicates whether the scan is running or has already finished. For example, if Status: True, the
scan TaskRun is still running and if Status: False, the scan is done.

The Reason field is JobStarted while the scan is running and JobFinished when it is done.

The Message fieldcan either be The scan job is running or The scan job terminated depending
on the current Status and Reason.

Succeeded

The Condition with type Succeeded indicates the scanning TaskRun result. The Status field indicates
whether the scan finished successfully or if it encountered an error. For example, the status is
Status: True if it completed successfully or Status: False otherwise.

The Reason field is JobFinished if the scanning was successful or Error if otherwise.

The Message and Error fields have more information about the last seen status of the scan
TaskRun.

SendingResults

The condition with type SendingResults indicates sending the scan results to the metadata store.
In addition to a successful process of sending the results, the condition can also indicate that the

Tanzu Application Platform v1.5

VMware by Broadcom 1648



metadata store integration has not been configured or that there was an error sending. An error is
usually a misconfigured metadata store URL or that the metadata store is inaccessible. Verify the
installation steps to ensure that the configuration is correct regarding secrets being set within the
scan-link-system namespace.

PolicySucceeded

The Condition with type PolicySucceeded indicates the compliance of the scanning results against
the defined policies. See Code Compliance Policy Enforcement using Open Policy Agent (OPA).
The Status field indicates whether the results are compliant or not (Status: True or Status: False
respectively) or Status: Unknown in case an error occurred during the policy verification.

The Reason field is EvaluationPassed if the scan complies with the defined policies. The Reason
field is EvaluationFailed if the scan is not compliant, or Error if something went wrong.

The Message and Error fields are populated with An error has occurred and an error message if
something went wrong during policy verification. Otherwise, the Message field displays No CVEs
were found that violated the policy if there are no non-compliant vulnerabilities found or Policy
violated because of X CVEs indicating the count of unique vulnerabilities found.

Overview of CVECount
The status.CVECount is populated with the number of CVEs in each category (CRITICAL, HIGH,
MEDIUM, LOW, UNKNOWN) and the total (CVETOTAL).

Overview of MetadataURL

The status.metadataURL is populated with the URL of the vulnerability scan results in> the
metadata store integration. This is only available when the integration is configured.

Overview of Phase

The status.phase field is populated with the current phase of the scan. The phases are: Pending,
Scanning, Completed, Failed, and Error.

Pending: initial phase of the scan.

Scanning: execution of the scan TaskRun is running.

Completed: scan completed and no CVEs were found that violated the scan policy.

Failed: scan completed but CVEs were found that violated the scan policy.

Error: indication of an error (e.g., an invalid scantemplate or scan policy).

Note

You can also view scan CVE summary in print columns with kubectl get on a
SourceScan or ImageScan.

Note

The PHASE print column also shows this with kubectl get on a SourceScan or
ImageScan.

Tanzu Application Platform v1.5

VMware by Broadcom 1649



Overview of ScannedBy

The status.scannedBy field is populated with the name, vendor, and scanner version that
generates the security assessment report.

Overview of ScannedAt

The status.scannedAt field is populated with the latest date when the scanning finishes.

Troubleshoot Rego files with a scan policy for Supply Chain
Security Tools - Scan

This topic describes how you can use an example output to troubleshoot your Rego file for SCST -
Scan. You use a Rego file in a scan policy custom resource. See Enforce compliance policy using
Open Policy Agent.

For information about how to write Rego, see Open Policy Agent documentation.

Using the Rego playground

Use the Rego Playground, to evaluate your Rego file against an input. In this example, use the
example output of an image or source scan custom resource.

Sample input in CycloneDX’s XML re-encoded as JSON format

The following is an example scan custom resource output in CycloneDX’s XML structure re-
encoded as JSON. This example output contains CVEs at low, medium, high, and critical severities.

To troubleshoot using this example output:

1. Paste your Rego file and the example output into the Rego Playground.

2. Evaluate your Rego file against the example output and verify that your Rego file detects
the intended CVEs. See this Rego example.

{

    "bom": {

        "-serialNumber": "urn:uuid:123",

        "-v": "http://cyclonedx.org/schema/ext/vulnerability/1.0",

        "-version": "1",

        "-xmlns": "http://cyclonedx.org/schema/bom/1.2",

        "components": {

            "component": [

                {

                    "-type": "library",

                    "licenses": {

                        "license": {

                            "name": "GPL-2"

                        }

                    },

                    "name": "adduser",

                    "version": "3.118",

                    "vulnerabilities": {

                        "vulnerability": [

                            {

                                "-ref": "urn:uuid:3d7c61c6-9cfa-494c-858a-9668a318ff2

3",

                                "advisories": {

                                    "advisory": "https://security-tracker.debian.org/t

racker/CVE-2011-3374"

                                },

Tanzu Application Platform v1.5

VMware by Broadcom 1650

https://www.openpolicyagent.org/docs/latest/policy-language/
https://play.openpolicyagent.org/
https://play.openpolicyagent.org/
https://play.openpolicyagent.org/p/wwkyrYbHAv


                                "id": "CVE-2011-3374-a",

                                "ratings": {

                                    "rating": {

                                        "severity": "Low"

                                    }

                                },

                                "source": {

                                    "-name": "debian:10",

                                    "url": "http://cve.mitre.org/cgi-bin/cvename.cgi?n

ame=CVE-2011-3374"

                                }

                            },

                            {

                                "-ref": "urn:uuid:ebabaa92-2bf9-4d33-8181-595b0fdf55b

d",

                                "advisories": {

                                    "advisory": "https://security-tracker.debian.org/t

racker/CVE-2020-27350"

                                },

                                "id": "CVE-2020-27350-a",

                                "ratings": {

                                    "rating": {

                                        "severity": "Medium"

                                    }

                                },

                                "source": {

                                    "-name": "debian:10",

                                    "url": "http://cve.mitre.org/cgi-bin/cvename.cgi?n

ame=CVE-2020-27350"

                                }

                            },

                            {

                                "-ref": "urn:uuid:07c58c81-1e01-459d-9e9d-0e10456a9bf

0",

                                "advisories": {

                                    "advisory": "https://security-tracker.debian.org/t

racker/CVE-2020-3810"

                                },

                                "id": "CVE-2020-3810-a",

                                "ratings": {

                                    "rating": {

                                        "severity": "Medium"

                                    }

                                },

                                "source": {

                                    "-name": "debian:10",

                                    "url": "http://cve.mitre.org/cgi-bin/cvename.cgi?n

ame=CVE-2020-3810"

                                }

                            }

                        ]

                    }

                },

                {

                    "-type": "library",

                    "licenses": {

                        "license": [

                            {

                                "name": "GPL-2"

                            },

                            {

                                "name": "GPLv2+"

                            }

                        ]

                    },

                    "name": "apt",

Tanzu Application Platform v1.5

VMware by Broadcom 1651



                    "version": "1.8.2",

                    "vulnerabilities": {

                        "vulnerability": [

                            {

                                "-ref": "urn:uuid:3d7c61c6-9cfa-494c-858a-9668a318ff2

3",

                                "advisories": {

                                    "advisory": "https://security-tracker.debian.org/t

racker/CVE-2011-3374"

                                },

                                "id": "CVE-2011-3374",

                                "ratings": {

                                    "rating": {

                                        "severity": "Low"

                                    }

                                },

                                "source": {

                                    "-name": "debian:10",

                                    "url": "http://cve.mitre.org/cgi-bin/cvename.cgi?n

ame=CVE-2011-3374"

                                }

                            },

                            {

                                "-ref": "urn:uuid:ebabaa92-2bf9-4d33-8181-595b0fdf55b

d",

                                "advisories": {

                                    "advisory": "https://security-tracker.debian.org/t

racker/CVE-2020-27350"

                                },

                                "id": "CVE-2020-27350",

                                "ratings": {

                                    "rating": {

                                        "severity": "High"

                                    }

                                },

                                "source": {

                                    "-name": "debian:10",

                                    "url": "http://cve.mitre.org/cgi-bin/cvename.cgi?n

ame=CVE-2020-27350"

                                }

                            },

                            {

                                "-ref": "urn:uuid:07c58c81-1e01-459d-9e9d-0e10456a9bf

0",

                                "advisories": {

                                    "advisory": "https://security-tracker.debian.org/t

racker/CVE-2020-3810"

                                },

                                "id": "CVE-2020-3810",

                                "ratings": {

                                    "rating": {

                                        "severity": "Critical"

                                    }

                                },

                                "source": {

                                    "-name": "debian:10",

                                    "url": "http://cve.mitre.org/cgi-bin/cvename.cgi?n

ame=CVE-2020-3810"

                                }

                            }

                        ]

                    }

                }

            ]

        },

        "metadata": {

Tanzu Application Platform v1.5

VMware by Broadcom 1652



            "component": {

                "-type": "container",

                "name": "nginx:1.16",

                "version": "sha256:123"

            },

            "timestamp": "2022-01-28T13:30:43-08:00",

            "tools": {

                "tool": {

                    "name": "grype",

                    "vendor": "anchore",

                    "version": "[not provided]"

                }

            }

        }

    }

}

Example input in SPDX JSON format

The example in this section is a modified scan custom resource input, in .spdx.json, that contains
CVEs at low, medium, high, and critical severities. You can use this example input to evaluate your
Rego file.

To troubleshoot using this example output:

1. Paste your Rego file and the example input into the Rego Playground.

2. Evaluate your Rego file against the output and verify that your Rego file detects the
intended CVEs. See this Rego example.

{

  "id": "SPDXRef-docker-image|nginx",

  "specVersion": "SPDX-3.0",

  "creator": "Organization: Snyk Ltd",

  "created": "2023-03-01T16:10:08Z",

  "profile": [

    "base",

    "vulnerabilities"

  ],

  "description": "Snyk test result for project docker-image|nginx in SPDX SBOM forma

t",

  "vulnerabilities": [

    {

      "id": "SNYK-DEBIAN10-APT-1049974",

      "name": "SNYK-DEBIAN10-APT-1049974",

      "summary": "Integer Overflow or Wraparound",

      "details": "## NVD Description\n**_Note:_** _Versions mentioned in the descripti

on apply only to the upstream `apt` package and not the `apt` package as distributed b

y `Debian:10`._\n_See `How to fix?` for `Debian:10` relevant fixed versions and statu

s._\n\nAPT had several integer overflows and underflows while parsing .deb packages, a

ka GHSL-2020-168 GHSL-2020-169, in files apt-pkg/contrib/extracttar.cc, apt-pkg/deb/de

bfile.cc, and apt-pkg/contrib/arfile.cc. This issue affects: apt 1.2.32ubuntu0 version

s prior to 1.2.32ubuntu0.2; 1.6.12ubuntu0 versions prior to 1.6.12ubuntu0.2; 2.0.2ubun

tu0 versions prior to 2.0.2ubuntu0.2; 2.1.10ubuntu0 versions prior to 2.1.10ubuntu0.

1;\n## Remediation\nUpgrade `Debian:10` `apt` to version 1.8.2.2 or higher.\n## Refere

nces\n- [ADVISORY](https://security-tracker.debian.org/tracker/CVE-2020-27350)\n- [CON

FIRM](https://bugs.launchpad.net/bugs/1899193)\n- [CONFIRM](https://security.netapp.co

m/advisory/ntap-20210108-0005/)\n- [DEBIAN](https://www.debian.org/security/2020/dsa-4

808)\n- [UBUNTU](https://usn.ubuntu.com/usn/usn-4667-1)\n",

      "relationships": [

        {

          "affect": {

            "to": [

              "docker-image|nginx@1.16",

              "apt/libapt-pkg5.0@1.8.2"

Tanzu Application Platform v1.5

VMware by Broadcom 1653

https://play.openpolicyagent.org/
https://play.openpolicyagent.org/p/gp0fUfaxOC


            ],

            "type": "AFFECTS"

          },

          "foundBy": {

            "to": [

              ""

            ],

            "type": "FOUND_BY"

          },

          "suppliedBy": {

            "to": [

              ""

            ],

            "type": "SUPPLIED_BY"

          },

          "ratedBy": {

            "to": [

              ""

            ],

            "type": "RATED_BY",

            "cwes": [

              190

            ],

            "rating": [

              {

                "method": "CVSS_3",

                "score": [

                  {

                    "base": 5.7

                  }

                ],

                "severity": "Medium",

                "vector": "CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:C/C:L/I:L/A:L"

              }

            ]

          }

        }

      ],

      "externalReferences": [

        {

          "category": "ADVISORY",

          "locator": "https://security-tracker.debian.org/tracker/CVE-2020-27350"

        },

        {

          "category": "ADVISORY",

          "locator": "https://bugs.launchpad.net/bugs/1899193"

        },

        {

          "category": "ADVISORY",

          "locator": "https://security.netapp.com/advisory/ntap-20210108-0005/"

        },

        {

          "category": "ADVISORY",

          "locator": "https://www.debian.org/security/2020/dsa-4808"

        },

        {

          "category": "ADVISORY",

          "locator": "https://usn.ubuntu.com/usn/usn-4667-1"

        }

      ],

      "modified": "2022-10-29T13:11:02.438923Z",

      "published": "2020-12-10T03:10:23.901831Z"

    },

    {

      "id": "SNYK-DEBIAN10-APT-407502",

      "name": "SNYK-DEBIAN10-APT-407502",

Tanzu Application Platform v1.5

VMware by Broadcom 1654



      "summary": "Improper Verification of Cryptographic Signature",

      "details": "## NVD Description\n**_Note:_** _Versions mentioned in the descripti

on apply only to the upstream `apt` package and not the `apt` package as distributed b

y `Debian:10`._\n_See `How to fix?` for `Debian:10` relevant fixed versions and statu

s._\n\nIt was found that apt-key in apt, all versions, do not correctly validate gpg k

eys with the primary keyring, leading to a potential man-in-the-middle attack.\n## Rem

ediation\nThere is no fixed version for `Debian:10` `apt`.\n## References\n- [ADVISOR

Y](https://security-tracker.debian.org/tracker/CVE-2011-3374)\n- [Debian Bug Report](h

ttps://bugs.debian.org/cgi-bin/bugreport.cgi?bug=642480)\n- [MISC](https://people.cano

nical.com/~ubuntu-security/cve/2011/CVE-2011-3374.html)\n- [MISC](https://seclists.or

g/fulldisclosure/2011/Sep/221)\n- [MISC](https://snyk.io/vuln/SNYK-LINUX-APT-116518)\n

- [MISC](https://ubuntu.com/security/CVE-2011-3374)\n- [RedHat CVE Database](https://a

ccess.redhat.com/security/cve/cve-2011-3374)\n",

      "relationships": [

        {

          "affect": {

            "to": [

              "docker-image|nginx@1.16",

              "apt/libapt-pkg5.0@1.8.2"

            ],

            "type": "AFFECTS"

          },

          "foundBy": {

            "to": [

              ""

            ],

            "type": "FOUND_BY"

          },

          "suppliedBy": {

            "to": [

              ""

            ],

            "type": "SUPPLIED_BY"

          },

          "ratedBy": {

            "to": [

              ""

            ],

            "type": "RATED_BY",

            "cwes": [

              347

            ],

            "rating": [

              {

                "method": "CVSS_3",

                "score": [

                  {

                    "base": 3.7

                  }

                ],

                "severity": "Low",

                "vector": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:L/A:N"

              }

            ]

          }

        }

      ],

      "externalReferences": [

        {

          "category": "ADVISORY",

          "locator": "https://security-tracker.debian.org/tracker/CVE-2011-3374"

        },

        {

          "category": "ADVISORY",

          "locator": "https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=642480"

        },

Tanzu Application Platform v1.5

VMware by Broadcom 1655



        {

          "category": "ADVISORY",

          "locator": "https://people.canonical.com/~ubuntu-security/cve/2011/CVE-2011-

3374.html"

        },

        {

          "category": "ADVISORY",

          "locator": "https://seclists.org/fulldisclosure/2011/Sep/221"

        },

        {

          "category": "ADVISORY",

          "locator": "https://snyk.io/vuln/SNYK-LINUX-APT-116518"

        },

        {

          "category": "ADVISORY",

          "locator": "https://ubuntu.com/security/CVE-2011-3374"

        },

        {

          "category": "ADVISORY",

          "locator": "https://access.redhat.com/security/cve/cve-2011-3374"

        }

      ],

      "modified": "2022-11-01T00:08:27.375895Z",

      "published": "2018-06-27T16:20:45.037549Z"

    },

    {

      "id": "SNYK-DEBIAN10-APT-568926",

      "name": "SNYK-DEBIAN10-APT-568926",

      "summary": "Improper Input Validation",

      "details": "## NVD Description\n**_Note:_** _Versions mentioned in the descripti

on apply only to the upstream `apt` package and not the `apt` package as distributed b

y `Debian:10`._\n_See `How to fix?` for `Debian:10` relevant fixed versions and statu

s._\n\nMissing input validation in the ar/tar implementations of APT before version 2.

1.2 could result in denial of service when processing specially crafted deb files.\n## 

Remediation\nUpgrade `Debian:10` `apt` to version 1.8.2.1 or higher.\n## References\n- 

[ADVISORY](https://security-tracker.debian.org/tracker/CVE-2020-3810)\n- [FEDORA](http

s://lists.fedoraproject.org/archives/list/package-announce@lists.fedoraproject.org/mes

sage/U4PEH357MZM2SUGKETMEHMSGQS652QHH/)\n- [GitHub Issue](https://github.com/Debian/ap

t/issues/111)\n- [MISC](https://bugs.launchpad.net/bugs/1878177)\n- [MISC](https://lis

ts.debian.org/debian-security-announce/2020/msg00089.html)\n- [MISC](https://salsa.deb

ian.org/apt-team/apt/-/commit/dceb1e49e4b8e4dadaf056be34088b415939cda6)\n- [MISC](http

s://tracker.debian.org/news/1144109/accepted-apt-212-source-into-unstable/)\n- [UBUNT

U](https://usn.ubuntu.com/4359-2/)\n- [Ubuntu CVE Tracker](http://people.ubuntu.com/~u

buntu-security/cve/CVE-2020-3810)\n- [Ubuntu Security Advisory](https://usn.ubuntu.co

m/4359-1/)\n",

      "relationships": [

        {

          "affect": {

            "to": [

              "docker-image|nginx@1.16",

              "apt/libapt-pkg5.0@1.8.2"

            ],

            "type": "AFFECTS"

          },

          "foundBy": {

            "to": [

              ""

            ],

            "type": "FOUND_BY"

          },

          "suppliedBy": {

            "to": [

              ""

            ],

            "type": "SUPPLIED_BY"

          },

Tanzu Application Platform v1.5

VMware by Broadcom 1656



          "ratedBy": {

            "to": [

              ""

            ],

            "type": "RATED_BY",

            "cwes": [

              20

            ],

            "rating": [

              {

                "method": "CVSS_3",

                "score": [

                  {

                    "base": 5.5

                  }

                ],

                "severity": "Medium",

                "vector": "CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:N/I:N/A:H"

              }

            ]

          }

        }

      ],

      "externalReferences": [

        {

          "category": "ADVISORY",

          "locator": "https://security-tracker.debian.org/tracker/CVE-2020-3810"

        },

        {

          "category": "ADVISORY",

          "locator": "https://lists.fedoraproject.org/archives/list/package-announce@l

ists.fedoraproject.org/message/U4PEH357MZM2SUGKETMEHMSGQS652QHH/"

        },

        {

          "category": "ADVISORY",

          "locator": "https://github.com/Debian/apt/issues/111"

        },

        {

          "category": "ADVISORY",

          "locator": "https://bugs.launchpad.net/bugs/1878177"

        },

        {

          "category": "ADVISORY",

          "locator": "https://lists.debian.org/debian-security-announce/2020/msg00089.

html"

        },

        {

          "category": "ADVISORY",

          "locator": "https://salsa.debian.org/apt-team/apt/-/commit/dceb1e49e4b8e4dad

af056be34088b415939cda6"

        },

        {

          "category": "ADVISORY",

          "locator": "https://tracker.debian.org/news/1144109/accepted-apt-212-source-

into-unstable/"

        },

        {

          "category": "ADVISORY",

          "locator": "https://usn.ubuntu.com/4359-2/"

        },

        {

          "category": "ADVISORY",

          "locator": "http://people.ubuntu.com/~ubuntu-security/cve/CVE-2020-3810"

        },

        {

          "category": "ADVISORY",

Tanzu Application Platform v1.5

VMware by Broadcom 1657



          "locator": "https://usn.ubuntu.com/4359-1/"

        }

      ],

      "modified": "2022-11-01T00:08:51.907776Z",

      "published": "2020-05-12T14:19:01.052295Z"

    },

    {

      "id": "SNYK-DEBIAN10-APT-1049974",

      "name": "SNYK-DEBIAN10-APT-1049974",

      "summary": "Integer Overflow or Wraparound",

      "details": "## NVD Description\n**_Note:_** _Versions mentioned in the descripti

on apply only to the upstream `apt` package and not the `apt` package as distributed b

y `Debian:10`._\n_See `How to fix?` for `Debian:10` relevant fixed versions and statu

s._\n\nAPT had several integer overflows and underflows while parsing .deb packages, a

ka GHSL-2020-168 GHSL-2020-169, in files apt-pkg/contrib/extracttar.cc, apt-pkg/deb/de

bfile.cc, and apt-pkg/contrib/arfile.cc. This issue affects: apt 1.2.32ubuntu0 version

s prior to 1.2.32ubuntu0.2; 1.6.12ubuntu0 versions prior to 1.6.12ubuntu0.2; 2.0.2ubun

tu0 versions prior to 2.0.2ubuntu0.2; 2.1.10ubuntu0 versions prior to 2.1.10ubuntu0.

1;\n## Remediation\nUpgrade `Debian:10` `apt` to version 1.8.2.2 or higher.\n## Refere

nces\n- [ADVISORY](https://security-tracker.debian.org/tracker/CVE-2020-27350)\n- [CON

FIRM](https://bugs.launchpad.net/bugs/1899193)\n- [CONFIRM](https://security.netapp.co

m/advisory/ntap-20210108-0005/)\n- [DEBIAN](https://www.debian.org/security/2020/dsa-4

808)\n- [UBUNTU](https://usn.ubuntu.com/usn/usn-4667-1)\n",

      "relationships": [

        {

          "affect": {

            "to": [

              "docker-image|nginx@1.16",

              "apt@1.8.2",

              "apt/libapt-pkg5.0@1.8.2"

            ],

            "type": "AFFECTS"

          },

          "foundBy": {

            "to": [

              ""

            ],

            "type": "FOUND_BY"

          },

          "suppliedBy": {

            "to": [

              ""

            ],

            "type": "SUPPLIED_BY"

          },

          "ratedBy": {

            "to": [

              ""

            ],

            "type": "RATED_BY",

            "cwes": [

              190

            ],

            "rating": [

              {

                "method": "CVSS_3",

                "score": [

                  {

                    "base": 5.7

                  }

                ],

                "severity": "Medium",

                "vector": "CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:C/C:L/I:L/A:L"

              }

            ]

          }

Tanzu Application Platform v1.5

VMware by Broadcom 1658



        }

      ],

      "externalReferences": [

        {

          "category": "ADVISORY",

          "locator": "https://security-tracker.debian.org/tracker/CVE-2020-27350"

        },

        {

          "category": "ADVISORY",

          "locator": "https://bugs.launchpad.net/bugs/1899193"

        },

        {

          "category": "ADVISORY",

          "locator": "https://security.netapp.com/advisory/ntap-20210108-0005/"

        },

        {

          "category": "ADVISORY",

          "locator": "https://www.debian.org/security/2020/dsa-4808"

        },

        {

          "category": "ADVISORY",

          "locator": "https://usn.ubuntu.com/usn/usn-4667-1"

        }

      ],

      "modified": "2022-10-29T13:11:02.438923Z",

      "published": "2020-12-10T03:10:23.901831Z"

    },

    {

      "id": "SNYK-DEBIAN10-APT-407502",

      "name": "SNYK-DEBIAN10-APT-407502",

      "summary": "Improper Verification of Cryptographic Signature",

      "details": "## NVD Description\n**_Note:_** _Versions mentioned in the descripti

on apply only to the upstream `apt` package and not the `apt` package as distributed b

y `Debian:10`._\n_See `How to fix?` for `Debian:10` relevant fixed versions and statu

s._\n\nIt was found that apt-key in apt, all versions, do not correctly validate gpg k

eys with the primary keyring, leading to a potential man-in-the-middle attack.\n## Rem

ediation\nThere is no fixed version for `Debian:10` `apt`.\n## References\n- [ADVISOR

Y](https://security-tracker.debian.org/tracker/CVE-2011-3374)\n- [Debian Bug Report](h

ttps://bugs.debian.org/cgi-bin/bugreport.cgi?bug=642480)\n- [MISC](https://people.cano

nical.com/~ubuntu-security/cve/2011/CVE-2011-3374.html)\n- [MISC](https://seclists.or

g/fulldisclosure/2011/Sep/221)\n- [MISC](https://snyk.io/vuln/SNYK-LINUX-APT-116518)\n

- [MISC](https://ubuntu.com/security/CVE-2011-3374)\n- [RedHat CVE Database](https://a

ccess.redhat.com/security/cve/cve-2011-3374)\n",

      "relationships": [

        {

          "affect": {

            "to": [

              "docker-image|nginx@1.16",

              "apt@1.8.2",

              "apt/libapt-pkg5.0@1.8.2"

            ],

            "type": "AFFECTS"

          },

          "foundBy": {

            "to": [

              ""

            ],

            "type": "FOUND_BY"

          },

          "suppliedBy": {

            "to": [

              ""

            ],

            "type": "SUPPLIED_BY"

          },

          "ratedBy": {

Tanzu Application Platform v1.5

VMware by Broadcom 1659



            "to": [

              ""

            ],

            "type": "RATED_BY",

            "cwes": [

              347

            ],

            "rating": [

              {

                "method": "CVSS_3",

                "score": [

                  {

                    "base": 3.7

                  }

                ],

                "severity": "Low",

                "vector": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:L/A:N"

              }

            ]

          }

        }

      ],

      "externalReferences": [

        {

          "category": "ADVISORY",

          "locator": "https://security-tracker.debian.org/tracker/CVE-2011-3374"

        },

        {

          "category": "ADVISORY",

          "locator": "https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=642480"

        },

        {

          "category": "ADVISORY",

          "locator": "https://people.canonical.com/~ubuntu-security/cve/2011/CVE-2011-

3374.html"

        },

        {

          "category": "ADVISORY",

          "locator": "https://seclists.org/fulldisclosure/2011/Sep/221"

        },

        {

          "category": "ADVISORY",

          "locator": "https://snyk.io/vuln/SNYK-LINUX-APT-116518"

        },

        {

          "category": "ADVISORY",

          "locator": "https://ubuntu.com/security/CVE-2011-3374"

        },

        {

          "category": "ADVISORY",

          "locator": "https://access.redhat.com/security/cve/cve-2011-3374"

        }

      ],

      "modified": "2022-11-01T00:08:27.375895Z",

      "published": "2018-06-27T16:20:45.037549Z"

    },

    {

      "id": "SNYK-DEBIAN10-EXPAT-2329087",

      "name": "SNYK-DEBIAN10-EXPAT-2329087",

      "summary": "Incorrect Calculation",

      "details": "## NVD Description\n**_Note:_** _Versions mentioned in the descripti

on apply only to the upstream `expat` package and not the `expat` package as distribut

ed by `Debian:10`._\n_See `How to fix?` for `Debian:10` relevant fixed versions and st

atus._\n\nIn Expat (aka libexpat) before 2.4.3, a left shift by 29 (or more) places in 

the storeAtts function in xmlparse.c can lead to realloc misbehavior (e.g., allocating 

too few bytes, or only freeing memory).\n## Remediation\nUpgrade `Debian:10` `expat` t

Tanzu Application Platform v1.5

VMware by Broadcom 1660



o version 2.2.6-2+deb10u2 or higher.\n## References\n- [ADVISORY](https://security-tra

cker.debian.org/tracker/CVE-2021-45960)\n- [MISC](https://bugzilla.mozilla.org/show_bu

g.cgi?id=1217609)\n- [MISC](https://github.com/libexpat/libexpat/issues/531)\n- [MISC]

(https://github.com/libexpat/libexpat/pull/534)\n- [cve@mitre.org](http://www.openwal

l.com/lists/oss-security/2022/01/17/3)\n- [cve@mitre.org](https://security.netapp.com/

advisory/ntap-20220121-0004/)\n- [cve@mitre.org](https://www.tenable.com/security/tns-

2022-05)\n- [cve@mitre.org](https://www.debian.org/security/2022/dsa-5073)\n- [cve@mit

re.org](https://cert-portal.siemens.com/productcert/pdf/ssa-484086.pdf)\n- [cve@mitre.

org](https://security.gentoo.org/glsa/202209-24)\n",

      "relationships": [

        {

          "affect": {

            "to": [

              "docker-image|nginx@1.16",

              "nginx-module-image-filter@1.16.1-1~buster",

              "libgd2/libgd3@2.2.5-5.2",

              "fontconfig/libfontconfig1@2.13.1-2",

              "expat/libexpat1@2.2.6-2+deb10u1"

            ],

            "type": "AFFECTS"

          },

          "foundBy": {

            "to": [

              ""

            ],

            "type": "FOUND_BY"

          },

          "suppliedBy": {

            "to": [

              ""

            ],

            "type": "SUPPLIED_BY"

          },

          "ratedBy": {

            "to": [

              ""

            ],

            "type": "RATED_BY",

            "cwes": [

              682

            ],

            "rating": [

              {

                "method": "CVSS_3",

                "score": [

                  {

                    "base": 8.8

                  }

                ],

                "severity": "High",

                "vector": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H"

              }

            ]

          }

        }

      ],

      "externalReferences": [

        {

          "category": "ADVISORY",

          "locator": "https://security-tracker.debian.org/tracker/CVE-2021-45960"

        },

        {

          "category": "ADVISORY",

          "locator": "https://bugzilla.mozilla.org/show_bug.cgi?id=1217609"

        },

        {

Tanzu Application Platform v1.5

VMware by Broadcom 1661



          "category": "ADVISORY",

          "locator": "https://github.com/libexpat/libexpat/issues/531"

        },

        {

          "category": "ADVISORY",

          "locator": "https://github.com/libexpat/libexpat/pull/534"

        },

        {

          "category": "ADVISORY",

          "locator": "http://www.openwall.com/lists/oss-security/2022/01/17/3"

        },

        {

          "category": "ADVISORY",

          "locator": "https://security.netapp.com/advisory/ntap-20220121-0004/"

        },

        {

          "category": "ADVISORY",

          "locator": "https://www.tenable.com/security/tns-2022-05"

        },

        {

          "category": "ADVISORY",

          "locator": "https://www.debian.org/security/2022/dsa-5073"

        },

        {

          "category": "ADVISORY",

          "locator": "https://cert-portal.siemens.com/productcert/pdf/ssa-484086.pdf"

        },

        {

          "category": "ADVISORY",

          "locator": "https://security.gentoo.org/glsa/202209-24"

        }

      ],

      "modified": "2023-02-14T13:37:37.505975Z",

      "published": "2022-01-02T01:41:26.770663Z"

    },

    {

      "id": "SNYK-DEBIAN10-EXPAT-2331803",

      "name": "SNYK-DEBIAN10-EXPAT-2331803",

      "summary": "Integer Overflow or Wraparound",

      "details": "## NVD Description\n**_Note:_** _Versions mentioned in the descripti

on apply only to the upstream `expat` package and not the `expat` package as distribut

ed by `Debian:10`._\n_See `How to fix?` for `Debian:10` relevant fixed versions and st

atus._\n\ndefineAttribute in xmlparse.c in Expat (aka libexpat) before 2.4.3 has an in

teger overflow.\n## Remediation\nUpgrade `Debian:10` `expat` to version 2.2.6-2+deb10u

2 or higher.\n## References\n- [ADVISORY](https://security-tracker.debian.org/tracker/

CVE-2022-22824)\n- [cve@mitre.org](https://github.com/libexpat/libexpat/pull/539)\n- 

[cve@mitre.org](http://www.openwall.com/lists/oss-security/2022/01/17/3)\n- [cve@mitr

e.org](https://www.tenable.com/security/tns-2022-05)\n- [cve@mitre.org](https://www.de

bian.org/security/2022/dsa-5073)\n- [cve@mitre.org](https://cert-portal.siemens.com/pr

oductcert/pdf/ssa-484086.pdf)\n- [cve@mitre.org](https://security.gentoo.org/glsa/2022

09-24)\n",

      "relationships": [

        {

          "affect": {

            "to": [

              "docker-image|nginx@1.16",

              "nginx-module-image-filter@1.16.1-1~buster",

              "libgd2/libgd3@2.2.5-5.2",

              "fontconfig/libfontconfig1@2.13.1-2",

              "expat/libexpat1@2.2.6-2+deb10u1"

            ],

            "type": "AFFECTS"

          },

          "foundBy": {

            "to": [

              ""

Tanzu Application Platform v1.5

VMware by Broadcom 1662



            ],

            "type": "FOUND_BY"

          },

          "suppliedBy": {

            "to": [

              ""

            ],

            "type": "SUPPLIED_BY"

          },

          "ratedBy": {

            "to": [

              ""

            ],

            "type": "RATED_BY",

            "cwes": [

              190

            ],

            "rating": [

              {

                "method": "CVSS_3",

                "score": [

                  {

                    "base": 9.8

                  }

                ],

                "severity": "Critical",

                "vector": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H"

              }

            ]

          }

        }

      ],

      "externalReferences": [

        {

          "category": "ADVISORY",

          "locator": "https://security-tracker.debian.org/tracker/CVE-2022-22824"

        },

        {

          "category": "ADVISORY",

          "locator": "https://github.com/libexpat/libexpat/pull/539"

        },

        {

          "category": "ADVISORY",

          "locator": "http://www.openwall.com/lists/oss-security/2022/01/17/3"

        },

        {

          "category": "ADVISORY",

          "locator": "https://www.tenable.com/security/tns-2022-05"

        },

        {

          "category": "ADVISORY",

          "locator": "https://www.debian.org/security/2022/dsa-5073"

        },

        {

          "category": "ADVISORY",

          "locator": "https://cert-portal.siemens.com/productcert/pdf/ssa-484086.pdf"

        },

        {

          "category": "ADVISORY",

          "locator": "https://security.gentoo.org/glsa/202209-24"

        }

      ],

      "modified": "2023-02-14T13:39:18.516672Z",

      "published": "2022-01-08T13:52:14.479733Z"

    }

  ],

Tanzu Application Platform v1.5

VMware by Broadcom 1663



  "name": "docker-image|nginx-sha256:d20aa6d1cae56fd17cd458f4807e0de462caf2336f0b70b5e

eb69fcaaf30dd9c",

  "dataLicense": "CC0-1.0",

  "documentNamespace": "spdx.org/spdxdocs/docker-image|nginx-feb02ce6-cd47-49c2-9a97-2

b4833b4a1f0",

  "relationships": [

    {

      "from": "SPDXRef-docker-image|nginx",

      "to": [

        "SPDXRef-index.docker.io/library/nginx-sha256:d20aa6d1cae56fd17cd458f4807e0de4

62caf2336f0b70b5eeb69fcaaf30dd9c"

      ],

      "type": "DESCRIBES"

    }

  ],

  "packages": [

    {

      "SPDXID": "SPDXRef-index.docker.io/library/nginx-sha256:d20aa6d1cae56fd17cd458f4

807e0de462caf2336f0b70b5eeb69fcaaf30dd9c",

      "versionInfo": "sha256:d20aa6d1cae56fd17cd458f4807e0de462caf2336f0b70b5eeb69fcaa

f30dd9c",

      "id": "SPDXRef-index.docker.io/library/nginx-sha256:d20aa6d1cae56fd17cd458f4807e

0de462caf2336f0b70b5eeb69fcaaf30dd9c",

      "name": "index.docker.io/library/nginx",

      "checksums": [

        {

          "algorithm": "SHA256",

          "checksumValue": "d20aa6d1cae56fd17cd458f4807e0de462caf2336f0b70b5eeb69fcaaf

30dd9c"

        }

      ]

    }

  ]

}

Supply Chain Security Tools - Scan 2.0 (alpha)

This topic describes how you can install and configure Supply Chain Security Tools - Scan 2.0.

Overview

SCST - Scan 2.0 is responsible for providing the framework to scan applications for their security
posture. Scanning container images for known Common Vulnerabilities and Exposures (CVEs)
implements this framework. This framework simplifies integration for new plug-ins by allowing users
to integrate new scan engines by minimizing the scope of the scan engine to only scan and push
results to an OCI compliant registry.

During scanning:

A GrypeImageVulnerabilityScan creates the child resource ImageVulnerabilityScan.

The ImageVulnerabilityScan then creates a Tekton PipelineRun which instantiates a
Pipeline. The Pipeline Spec specifies the tasks workspace-setup-task, scan-task, and

Important

SCST - Scan 2.0 is in Alpha, which means that it is still in active development by
VMware and might be subject to change at any point. Users might encounter
unexpected behavior due to capability gaps. This is an opt-in component to gather
early feedback from alpha testers and is not installed by default with any profile.

Tanzu Application Platform v1.5

VMware by Broadcom 1664

https://tekton.dev/docs/pipelines/pipelineruns/


publish-task to set up the workspace and environment configuration, run a scan, and
publish results to an OCI compliant registry.

Each Task contains steps which execute commands to achieve the goal of the Task.

The PipelineRun creates corresponding TaskRuns for every Task in the Pipeline and
executes them.

A Tekton Sidecar as a no-op sidecar triggers Tekton’s injected sidecar cleanup.

Features

SCST - Scan 2.0 includes the following features:

Tekton is used as the orchestrator of the scan to align with overall Tanzu Application
Platform use of Tekton for multi-step activities.

New scans are defined as Custom Resource Definitions (CRDs) that represent specific
scanners, such as GrypeImageVulnerabilityScan. Mapping logic turns the domain-specific
specifications into a Tekton PipelineRun.

CycloneDX-formatted scan results are pushed to an OCI registry for long-term storage.

Installing SCST - Scan 2.0 in a cluster

The following sections describe how to install SCST - Scan 2.0.

Prerequisites

SCST - Scan 2.0 requires the following prerequisites:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

Install the Tekton component. Tekton is in the Full and Build profiles of Tanzu Application
Platform.

Configure properties

When you install SCST - Scan 2.0, you can configure the following optional properties:

Key Default Type Description

caCertData "" string The custom certificates trusted by the scan’s connections

docker.import true Boole
an

Import docker.pullSecret from another namespace (requires secretgen-
controller). Set to false if the secret is already present.

docker.pullSec
ret

registries-
credentials

string Name of a Docker pull secret in the deployment namespace to pull the
scanner images

workspace.sto
rageSize

100Mi string Size of the PersistentVolume that the Tekton pipelineruns uses

workspace.sto
rageClass

"" string Name of the storage class to use while creating the PersistentVolume
claims used by tekton pipelineruns

Note

SCST - Scan 2.0 is in Alpha and supersedes the SCST - Scan component.

Tanzu Application Platform v1.5

VMware by Broadcom 1665

https://tekton.dev/docs/pipelines/pipelineruns/
https://github.com/tektoncd/pipeline/blob/main/cmd/nop/README.md#stopping-sidecar-containers


Install

To install SCST - Scan 2.0:

1. List version information for the package by running:

tanzu package available list app-scanning.apps.tanzu.vmware.com --namespace tap

-install

For example:

$ tanzu package available list app-scanning.apps.tanzu.vmware.com --namespace t

ap-install

- Retrieving package versions for app-scanning.apps.tanzu.vmware.com...

    NAME                                VERSION              RELEASED-AT

    app-scanning.apps.tanzu.vmware.com  0.1.0-alpha          2023-03-01 20:00:0

0 -0400 EDT

2. (Optional) Make changes to the default installation settings:

Create an app-scanning-values-file.yaml file which contains any changes to the default
installation settings.

Retrieve the configurable settings and append the key-value pairs to be modified to the
app-scanning-values-file.yaml file:

tanzu package available get app-scanning.apps.tanzu.vmware.com/VERSION --values

-schema --namespace tap-install

Where VERSION is your package version number. For example, 0.1.0-alpha.

For example:

tanzu package available get app-scanning.apps.tanzu.vmware.com/0.1.0-alpha --va

lues-schema --namespace tap-install

| Retrieving package details for app-scanning.apps.tanzu.vmware.com/0.1.0-alph

a...

  KEY                     DEFAULT                 TYPE     DESCRIPTION

  docker.import           true                    boolean  Import `docker.pullS

ecret` from another namespace (requires

                                                           secretgen-controlle

r). Set to false if the secret will already be present.

  docker.pullSecret       registries-credentials  string   Name of a docker pul

l secret in the deployment namespace to pull the scanner

                                                           images.

  workspace.storageSize   100Mi                   string   Size of the Persiste

nt Volume to be used by the tekton pipelineruns

  workspace.storageClass                          string   Name of the storage 

class to use while creating the Persistent Volume Claims

                                                           used by tekton pipel

ineruns

  caCertData                                      string   The custom certifica

tes to be trusted by the scan's connections

3. Install the package by running:

tanzu package install app-scanning-alpha --package-name app-scanning.apps.tanz

u.vmware.com \

    --version VERSION \

    --namespace tap-install \

    --values-file app-scanning-values-file.yaml

Where VERSION is your package version number. For example, 0.1.0-alpha.

Tanzu Application Platform v1.5

VMware by Broadcom 1666



For example:

tanzu package install app-scanning-alpha --package-name app-scanning.apps.tanz

u.vmware.com \

    --version 0.1.0-alpha \

    --namespace tap-install \

    --values-file app-scanning-values-file.yaml

    Installing package 'app-scanning.apps.tanzu.vmware.com'

    Getting package metadata for 'app-scanning.apps.tanzu.vmware.com'

    Creating service account 'app-scanning-default-sa'

    Creating cluster admin role 'app-scanning-default-cluster-role'

    Creating cluster role binding 'app-scanning-default-cluster-rolebinding'

    Creating package resource

    Waiting for 'PackageInstall' reconciliation for 'app-scanning'

    'PackageInstall' resource install status: Reconciling

    'PackageInstall' resource install status: ReconcileSucceeded

Configure namespace

The following sections describe how to configure service accounts and registry credentials.

The following access is required:

Read access to the registry containing the Tanzu Application Platform bundles. This is the
registry from the Relocate images to a registry step or registry.tanzu.vmware.com.

Read access to the registry containing the image to scan, if scanning a private image

Write access to the registry to which results are published

Create a secret scanning-tap-component-read-creds with read access to the registry
containing the Tanzu Application Platform bundles. This pulls the SCST - Scan 2.0 images.

read -s TAP_REGISTRY_PASSWORD

kubectl create secret docker-registry scanning-tap-component-read-creds \

  --docker-username=TAP-REGISTRY-USERNAME \

  --docker-password=$TAP_REGISTRY_PASSWORD \

  --docker-server=TAP-REGISTRY-URL \

  -n DEV-NAMESPACE

Where DEV-NAMESPACE is the developer namespace where scanning occurs.

If you are scanning a private image, create a secret scan-image-read-creds with read
access to the registry containing that image.

read -s REGISTRY_PASSWORD

kubectl create secret docker-registry scan-image-read-creds \

Important

If you followed the directions for Install Tanzu Application Platform, skip this
step and use the tap-registry secret with your service account.

Important

If you followed the directions for Install Tanzu Application Platform, you can
skip this step and use the targetImagePullSecret secret with your service
account as referenced in your tap-values.yaml here.

Tanzu Application Platform v1.5

VMware by Broadcom 1667



  --docker-username=REGISTRY-USERNAME \

  --docker-password=$REGISTRY_PASSWORD \

  --docker-server=REGISTRY-URL \

  -n DEV-NAMESPACE

Create a secret write-creds with write access to the registry for the scanner to upload the
scan results to.

read -s WRITE_PASSWORD

kubectl create secret docker-registry write-creds \

  --docker-username=WRITE-USERNAME \

  --docker-password=$WRITE_PASSWORD \

  --docker-server=DESTINATION-REGISTRY-URL \

  -n DEV-NAMESPACE

Create the service account scanner which enables SCST - Scan 2.0 to pull the image to
scan. Attach the read secret created earlier under imagePullSecrets and the write secret
under secrets.

apiVersion: v1

kind: ServiceAccount

metadata:

  name: scanner

  namespace: DEV-NAMESPACE

imagePullSecrets:

- name: scanning-tap-component-read-creds

secrets:

- name: scan-image-read-creds

Where:

imagePullSecrets.name is the name of the secret used by the component to pull
the scan component image from the registry.

secrets.name is the name of the secret used by the component to pull the image to
scan. This is required if the image you are scanning is private.

Create the service account publisher which enables SCST - Scan 2.0 to push the scan
results to a user specified registry.

apiVersion: v1

kind: ServiceAccount

metadata:

  name: publisher

  namespace: DEV-NAMESPACE

imagePullSecrets:

- name: scanning-tap-component-read-creds

secrets:

- name: write-creds

Where: - imagePullSecrets.name is the name of the secret used by the component to pull
the scan component image from the registry. - secrets.name is the name of the secret used
by the component to publish the scan results.

Scan an image

The following section describes how to scan an image with SCST - Scan 2.0.

Retrieving an image digest

Tanzu Application Platform v1.5

VMware by Broadcom 1668



SCST - Scan 2.0 custom resources require the digest form of the URL. For example,
nginx@sha256:aa0afebbb3cfa473099a62c4b32e9b3fb73ed23f2a75a65ce1d4b4f55a5c2ef2.

Use the Docker documentation to pull and inspect an image digest:

docker pull nginx:latest

docker inspect --format='{{index .RepoDigests 0}}' nginx:latest

Alternatively, you can install krane to retrieve the digest without pulling the image:

krane digest nginx:latest

Integrating with the Out of the Box Supply Chain

Authoring a ClusterImageTemplate

To create a ClusterImageTemplate to which you can incorporate a scanner of your choice, follow
steps in Authoring a ClusterImageTemplate.

Configuring the supply chain

The ImageVulnerabilityScan is available to integrate into the Out of the Box Supply Chain with
Testing and Scanning via either a user created ClusterImageTemplate or the following packaged
ClusterImageTemplates: - image-vulnerability-scan-grype - image-vulnerability-scan-trivy

1. Complete the steps for Install Out of the Box Supply Chain with Testing and Scanning for
Supply Chain Choreographer or confirm installation.

2. View available ClusterImageTemplates by running:

kubectl get clusterimagetemplates | grep grype

3. Update your tap-values.yaml file to specify the ClusterImageTemplate. For example:

ootb_supply_chain_testing_scanning:

image_scanner_template_name: image-vulnerability-scan-grype

4. Update the TAP installation by running:

tanzu package installed update tap -p tap.tanzu.vmware.com -v TAP-VERSION  --va

lues-file tap-values.yaml -n tap-install

Where TAP-VERSION is the version of Tanzu Application Platform installed.

5. Create a sample workload using a pre-built image by using the tanzu apps workload create
command:

tanzu apps workload create WORKLOAD-NAME \

--app APP-NAME \

--type TYPE \

--image IMAGE \

--namespace DEV-NAMESPACE

Where: - WORKLOAD-NAME is the name you choose for your workload. - APP-NAME is the name of your
app. - TYPE is the type of your app. - IMAGE is the container image that contains the app you want
to deploy. - DEV-NAMESPACE is the name of the developer namespace where scanning occurs.

Note: There are specific requirements for pre-built images. For more details see Configure your
workload to use a prebuilt image

Tanzu Application Platform v1.5

VMware by Broadcom 1669

https://docs.docker.com/engine/install/
https://github.com/google/go-containerregistry/tree/main/cmd/krane


1. (Optional) Results will be pushed to the Artifactory Metadata Repository but if you wish to
verify independently, you can use the following command to review the scan results.

results=$(kubectl get imagevulnerabilityscan <IVS-NAME> -n DEV-NAMESPACE -o jso

npath="{.status.scanResult}")

imgpkg pull -b $results -o /tmp/scan-results

Where:

IVS-NAME is the name of the ImageVulnerabilityScan.

DEV-NAMESPACE is the name of the developer namespace where scanning occurs.

Note: SCST - Scan 2.0 is in Beta and active keychains and workspace bindings are not modifiable in
the packaged ClusterImageTemplates.

Using the provided Grype scanner

The following sections describe how to use Grype with SCST - Scan 2.0.

Sample Grype scan

To create a sample Grype scan:

1. Create a file named grype-image-vulnerability-scan.yaml. Configure the image and
scanResults.location:

apiVersion: app-scanning.apps.tanzu.vmware.com/v1alpha1

kind: GrypeImageVulnerabilityScan

metadata:

  name: grypescan

  namespace: DEV-NAMESPACE

spec:

  image: nginx@sha256:... # The image to be scanned. Digest must be specified.

  scanResults:

    location: registry/project/scan-results # Registry to upload scan results

  serviceAccountNames:

    scanner: scanner # Service account that enables scanning component to pull 

the image to be scanned

    publisher: publisher # Service account has the secrets to push the scan res

ults

Configuration Options

This section describes optional and required GrypeImageVulnerabilityScan specifications.

Required fields:

image is the registry URL and digest of the scanned image. For example,
nginx@sha256:aa0afebbb3cfa473099a62c4b32e9b3fb73ed23f2a75a65ce1d4b4f55a5c2ef2.

scanResults.location is the registry URL where results are uploaded. For example,
my.registry/scan-results.

Optional fields:

activeKeychains is an array of enabled credential helpers to authenticate against registries
using workload identity mechanisms. For more information, see the documentation for your
cloud registry.

activeKeychains:

- name: acr  # Azure Container Registry

Tanzu Application Platform v1.5

VMware by Broadcom 1670



- name: ecr  # Elastic Container Registry

- name: gcr  # Google Container Registry

- name: ghcr # Github Container Registry

advanced is the adjusted configuration of Grype for your needs. See the Grype
documentation.

serviceAccountNames includes:

scanner is the service account that runs the scan. It must have read access to image.

publisher is the service account that uploads results. It must have write access to
scanResults.location.

workspace includes:

size is the size of the PersistentVolumeClaim the scan uses to download the image
and vulnerability database.

bindings are additional array of secrets, ConfigMaps, or EmptyDir volumes to mount
to the running scan. The name is used as the mount path.

bindings:

- name: additionalconfig

  configMap:

    name: my-configmap

- name: additionalsecret

  secret:

    secretName: my-secret

- name: scratch

  emptyDir: {}

For information about workspace bindings, see Using other types of volume sources. Only
Secrets, ConfigMaps, and EmptyDirs are supported.

Trigger a Grype scan

To trigger a Grype scan:

1. Apply the GrypeImageVulnerabilityScan to the cluster.

kubectl apply -f grype-image-vulnerability-scan.yaml -n DEV-NAMESPACE

2. The Grype scan creates child resources.

View the child ImageVulnerabilityScan by running:

kubectl get imagevulnerabilityscan -n DEV-NAMESPACE

View the child PipelineRun, TaskRuns, and pods by running:

kubectl get -l imagevulnerabilityscan pipelinerun,taskrun,pod -n DEV-NAME

SPACE

3. When the scanning completes, the status is shown. Use -o wide to see the digest of the
image scanned and the location of the published results.

kubectl get grypeimagevulnerabilityscans grypescan -n DEV-NAMESPACE -o wide

NAME        SCANRESULT                           SCANNEDIMAGE          SUCCEEDE

D   REASON

grypescan   registry/project/scan-results@digest nginx:latest@digest   True        

Tanzu Application Platform v1.5

VMware by Broadcom 1671

https://github.com/anchore/grype#configuration
https://tekton.dev/docs/pipelines/workspaces/#using-other-types-of-volumesources


Succeeded

Integrate your own scanner

To scan with any other scanner, use the generic ImageVulnerabilityScan. ImageVulnerabilityScans
can also change the version of a scanner or customize the behavior of provided scanners.

ImageVulnerabilityScans allow you to define your scan as a Tekton step

Sample ImageVulnerabilityScan

To create a sample Sample ImageVulnerabilityScan:

1. Create a file named image-vulnerability-scan.yaml. Configure the image,
scanResults.location of the scan, and define the scanner image, command, and args for your
scanner step:

apiVersion: app-scanning.apps.tanzu.vmware.com/v1alpha1

kind: ImageVulnerabilityScan

metadata:

  name: generic-image-scan

  namespace: DEV-NAMESPACE

spec:

  image: nginx@sha256:...

  scanResults:

    location: registry/project/scan-results

  serviceAccountNames:

    scanner: scanner

    publisher: publisher

  steps:

  - name: scan

    image: anchore/grype:latest

    command: ["grype"]

    args:

    - registry:$(params.image)

    - -o

    - cyclonedx

    - --file

    - $(params.scan-results-path)/scan.cdx

Where DEV-NAMESPACE is the developer namespace where scanning occurs.

Note: Do not define write-certs or cred-helper as step names. These names are already
used in steps during scanning.

Configuration options

This section lists optional and required ImageVulnerabilityScan specifications fields.

Required fields:

image is the registry URL and digest of the image to scan. For example,
nginx@sha256:aa0afebbb3cfa473099a62c4b32e9b3fb73ed23f2a75a65ce1d4b4f55a5c2ef2.

scanResults.location is the registry URL where results are uploaded. For example,
my.registry/scan-results.

Optional fields:

activeKeychains is an array of enabled credential helpers to authenticate against registries
using workload identity mechansims. See cloud registry documentation for details.

Tanzu Application Platform v1.5

VMware by Broadcom 1672

https://tekton.dev/docs/pipelines/tasks/#defining-steps


activeKeychains:

- name: acr  # Azure Container Registry

- name: ecr  # Elastic Container Registry

- name: gcr  # Google Container Registry

- name: ghcr # Github Container Registry

serviceAccountNames includes:

scanner is the service account that runs the scan. It must have read access to image.

publisher is the service account that uploads results. It must have write access to
scanResults.location.

workspace includes:

size is size of the PersistentVolumeClaim the scan uses to download the image and
vulnerability database.

bindings are additional array of secrets, ConfigMaps, or EmptyDir volumes to mount
to the running scan. The name is used as the mount path.

bindings:

- name: additionalconfig

  configMap:

    name: my-configmap

- name: additionalsecret

  secret:

    secretName: my-secret

- name: scratch

  emptyDir: {}

For information about workspace bindings, see Using other types of volume sources. Only
Secrets, ConfigMaps, and EmptyDirs are supported.

Default environment

Tekton Workspaces:

/home/app-scanning: a memory-backed EmptyDir mount that contains service account
credentials loaded by Tekton

/cred-helper: a memory-backed EmptyDir mount containing:

config.json which combines static credentials with workload identity credentials
when activeKeychains is enabled

trusted-cas.crt when SCST - Scan 2.0 is deployed with caCertData

/workspace: a PersistentVolumeClaim to hold scan artifacts and results

The working directory for all Steps is by default located at /workspace/scan-results

Environment Variables: If undefined by your step definition the environment uses the following
default variables:

HOME=/home/app-scanning

DOCKER_CONFIG=/cred-helper

XDG_CACHE_HOME=/workspace/.cache

TMPDIR=/workspace/tmp

SSL_CERT_DIR=/etc/ssl/certs:/cred-helper

Tekton Pipelines Parameters:

Tanzu Application Platform v1.5

VMware by Broadcom 1673

https://tekton.dev/docs/pipelines/workspaces/#using-other-types-of-volumesources


These parameters are populated after creating the GrypeImageVulnerabilityScan. For information
about parameters, see the Tekton documentation.

Parameters Default Type Description

image "" string The scanned image

scan-results-path /workspace/scan-results string Location to save scanner output

trusted-ca-certs "" string PEM data from the installation’s caCertData

Trigger your scan

To trigger your scan:

1. Deploy your ImageVulnerabilityScan to the cluster by running:

kubectl apply -f image-vulnerability-scan.yaml -n DEV-NAMESPACE

2. Child resources are created.

view the child PipelineRun, TaskRuns, and pods

kubectl get -l imagevulnerabilityscan pipelinerun,taskrun,pod -n DEV-NAME

SPACE

3. When the scanning completes, the status is shown. Specify -o wide to see the digest of the
image scanned and the location of the published results.

$ kubectl get imagevulnerabilityscans -n DEV-NAMESPACE -o wide

NAME                 SCANRESULT                           SCANNEDIMAGE          

SUCCEEDED   REASON

generic-image-scan   registry/project/scan-results@digest nginx:latest@digest   

True        Succeeded

Retrieving results
Scan results are uploaded to the container image registry as an imgpkg bundle. To retrieve a
vulnerability report:

1. Retrieve the result location from the ImageVulnerabilityScan CR Status

SCAN_RESULT_URL=$(kubectl get imagevulnerabilityscan my-scan -o jsonpath='{.sta

tus.scanResult}')

2. Download the bundle to a local directory and list the content

imgpkg pull -b $SCAN_RESULT_URL -o myresults/

ls myresults/

Observability

To watch the status of the scanning custom resources and child resources:

kubectl get grypeimagevulnerabilityscan,imagevulnerabilityscan

kubectl get -l imagevulnerabilityscan pipelinerun,taskrun,pod

View the status, reason, and urls:

Tanzu Application Platform v1.5

VMware by Broadcom 1674

https://tekton.dev/docs/pipelines/pipelines/#specifying-parameters
https://carvel.dev/imgpkg/


kubectl get grypeimagevulnerabilityscan -o wide

kubectl get imagevulnerabilityscan -o wide

View the complete status and events of scanning custom resources:

kubectl describe grypeimagevulnerabilityscan

kubectl describe imagevulnerabilityscan

List the child resources of a scan:

kubectl get -l grypeimagevulnerabilityscan=$NAME pipelinerun,taskrun,pod,configmap

kubectl get -l imagevulnerabilityscan=$NAME pipelinerun,taskrun,pod

Get the logs of the controller:

kubectl logs -f deployment/app-scanning-controller-manager -n app-scanning-system -c m

anager

Troubleshooting

Debugging commands

The following sections describe commands you can run to get logs and details about scanning
errors.

Debugging resources

If a resource fails or has errors, inspect the resource.

To get status conditions on a resource:

kubectl describe RESOURCE RESOURCE-NAME -n DEV-NAMESPACE

Where:

RESOURCE is one of the following: GrypeImageVulnerabilityScan, ImageVulnerabilityScan,
PipelineRun, or TaskRun.

RESOURCE-NAME is the name of the RESOURCE.

DEV-NAMESPACE is the name of the developer namespace you want to use.

Debugging scan pods

To get error logs from a pod when scan pods fail:

kubectl logs SCAN-POD-NAME -n DEV-NAMESPACE

Where SCAN-POD-NAME is the name of the scan pod.

For information about debugging Kubernetes pods, see the Kubernetes documentation.

A scan run that has an error means that one of the following step containers has a failure:

step-write-certs

step-cred-helper

step-publisher

sidecar-sleep

Tanzu Application Platform v1.5

VMware by Broadcom 1675

https://jamesdefabia.github.io/docs/user-guide/kubectl/kubectl_logs/


working-dir-initializer

To determine which step container had a failed exit code:

kubectl get taskrun TASKRUN-NAME -o json | jq .status

Where TASKRUN-NAME is the name of the TaskRun.

To inspect a specific step container in a pod:

kubectl logs scan-pod-name -n DEV-NAMESPACE -c step-container-name

Where DEV-NAMESPACE is your developer namespace.

For information about debugging a TaskRun, see the Tekton documentation.

Viewing the Scan-Controller manager logs

To retrieve scan-controller manager logs:

kubectl logs deployment/app-scanning-controller-manager -n app-scanning-system

To tail scan-controller manager logs:

kubectl logs -f deployment/app-scanning-controller-manager -n app-scanning-system

Author a ClusterImageTemplate for Supply Chain
integration

This topic tells you how to create your own ClusterImageTemplate and customize the embedded
ImageVulnerabilityScan to use the scanner of your choice.

Create a ClusterImageTemplate

To create a ClusterImageTemplate using an ImageVulnerabilityScan with Trivy:

1. Create a file with the following content and name it custom-ivs-template.yaml

apiVersion: carto.run/v1alpha1

kind: ClusterImageTemplate

metadata:

name: image-vulnerability-scan-custom # input name of your ClusterImageTemplate

spec:

imagePath: .status.scannedImage

retentionPolicy:

  maxFailedRuns: 10

  maxSuccessfulRuns: 10

lifecycle: immutable

healthRule:

  multiMatch:

    healthy:

      matchConditions:

        - status: "True"

          type: ScanCompleted

        - status: "True"

          type: Succeeded

    unhealthy:

      matchConditions:

        - status: "False"

          type: ScanCompleted

Tanzu Application Platform v1.5

VMware by Broadcom 1676

https://tekton.dev/docs/pipelines/tasks/#specifying-onerror-for-a-step
https://tekton.dev/docs/pipelines/taskruns/#debugging-a-taskrun


        - status: "False"

          type: Succeeded

params:

  - name: image_scanning_workspace_size

    default: 3Gi

  - name: image_scanning_service_account_scanner

    default: scanner

  - name: image_scanning_service_account_publisher

    default: publisher

  - name: trivy_db_repository

    default: ghcr.io/aquasecurity/trivy-db

  - name: trivy_java_db_repository

    default: ghcr.io/aquasecurity/trivy-java-db

  - name: registry-server

    default: my-registry.io    # input your registry server

  - name: registry-repository

    default: my-registry-repository    # input your registry repository

ytt: |

  #@ load("@ytt:data", "data")

  #@ def merge_labels(fixed_values):

  #@   labels = {}

  #@   if hasattr(data.values.workload.metadata, "labels"):

  #@     labels.update(data.values.workload.metadata.labels)

  #@   end

  #@   labels.update(fixed_values)

  #@   return labels

  #@ end

  #@ def scanResultsLocation():

  #@   return "/".join([

  #@    data.values.params.registry-server,

  #@    data.values.params.registry-repository,

  #@    "-".join([

  #@      data.values.workload.metadata.name,

  #@      data.values.workload.metadata.namespace,

  #@      "scan-results",

  #@    ])

  #@   ]) + ":" + data.values.workload.metadata.uid

  #@ end

  ---

  apiVersion: app-scanning.apps.tanzu.vmware.com/v1alpha1

  kind: ImageVulnerabilityScan

  metadata:

    labels: #@ merge_labels({ "app.kubernetes.io/component": "image-scan" })

    generateName: #@ data.values.workload.metadata.name + "-trivy-scan-"

  spec:

    image: #@ data.values.image

    scanResults:

      location: #@ scanResultsLocation()

    workspace:

      size: #@ data.values.params.image_scanning_workspace_size

    serviceAccountNames:

      scanner: #@ data.values.params.image_scanning_service_account_scanner

      publisher: #@ data.values.params.image_scanning_service_account_publisher

    steps:

    - name: trivy-generate-report

      image: my.registry.com/aquasec/trivy:0.41.0     # input the location of y

our trivy scanner image

      env:

      - name: TRIVY_DB_REPOSITORY

        value: #@ data.values.params.trivy_db_repository

      - name: TRIVY_JAVA_DB_REPOSITORY

Tanzu Application Platform v1.5

VMware by Broadcom 1677



        value: #@ data.values.params.trivy_java_db_repository

      - name: TRIVY_CACHE_DIR

        value: /workspace/trivy-cache

      - name: XDG_CACHE_HOME

        value: /workspace/.cache

      - name: TMPDIR

        value: /workspace

      args:

      - image

      - $(params.image)

      - --exit-code=0

      - --no-progress

      - --scanners=vuln

      - --format=cyclonedx

      - --output=scan.cdx.json

    - name: trivy-display-report

      image: my.registry.com/aquasec/trivy:0.41.0     # input the location of y

our trivy scanner image

      env:

      - name: TRIVY_DB_REPOSITORY

        value: #@ data.values.params.trivy_db_repository

      - name: TRIVY_JAVA_DB_REPOSITORY

        value: #@ data.values.params.trivy_java_db_repository

      - name: TRIVY_CACHE_DIR

        value: /workspace/trivy-cache

      - name: XDG_CACHE_HOME

        value: /workspace/.cache

      - name: TMPDIR

        value: /workspace

      args:

      - image

      - $(params.image)

      - --skip-db-update

      - --skip-java-db-update

      - --exit-code=0

      - --scanners=vuln

      - --severity=HIGH

      - --no-progress

Where:

.metadata.name is the name of your ClusterImageTemplate. It must not conflict with
the names of packaged templates. See Author your supply chains.

registry-server is the registry server.

registry-repository is the registry repository.

2. Edit your custom-ivs-template.yaml to update the name of your ClusterImageTemplate,
the registry fields for your registry, and the location of your Trivy scanner image.

3. Create the ClusterImageTemplate:

kubectl apply -f custom-ivs-template.yaml

4. After you created your custom ClusterImageTemplate, you can proceed to integrating it in
the Supply Chain

Overview of Supply Chain Security Tools for VMware Tanzu
- Sign

This component is removed in Tanzu Application Platform v1.4 in favor of Supply Chain Security
Tools - Policy Controller.

Tanzu Application Platform v1.5

VMware by Broadcom 1678



To migrate from Supply Chain Security Tools - Sign to Supply Chain Security Tools - Policy
Controller, see Migration From Supply Chain Security Tools - Sign

Overview of Supply Chain Security Tools for Tanzu – Store

This topic gives you an overview of Supply Chain Security Tools (SCST) – Store.

Overview

Supply Chain Security Tools - Store saves software bills of materials (SBoMs) to a database and
allows you to query for image, source code, package, and vulnerability relationships. It integrates
with Supply Chain Security Tools - Scan to automatically store the resulting source code and image
vulnerability reports. It accepts CycloneDX input and outputs in both human-readable and
machine-readable formats, including JSON, text, and CycloneDX.

The following is a quick demo of configuring the tanzu insight plug-in and querying the metadata
store for CVEs and scan results.

Tanzu Application Platform - Querying with InsighTanzu Application Platform - Querying with Insigh……

Using the Tanzu Insight CLI plug-in

The Tanzu Insight CLI plug-in is the primary way to view results from the Supply Chain Security
Tools - Scan of source code and image files. Use it to query by source code commit, image digest,
and CVE identifier to understand security risks.

See Tanzu Insight plug-in overview to install, configure, and use tanzu insight.

Multicluster configuration

See Multicluster setup for information about how to set up SCST - Store in a multicluster setup.

Integrating with Tanzu Application Platform GUI

Using the Supply Chain Choreographer in Tanzu Application Platform GUI, you can visualize your
supply chain. It uses SCST - Store to show the packages and vulnerabilities in your source code and
images.

To enable this feature, see Supply Chain Choreographer in Tanzu Application Platform GUI - Enable
CVE scan results.

Additional documentation

Tanzu Application Platform v1.5

VMware by Broadcom 1679

https://www.youtube.com/watch?v=qBBv3YKwH2E


Additional documentation includes information about the API, deployment details and
configuration, AWS RDS configuration, other database backup recommendations, known issues,
and other topics.

Overview of Supply Chain Security Tools for Tanzu – Store

This topic gives you an overview of Supply Chain Security Tools (SCST) – Store.

Overview

Supply Chain Security Tools - Store saves software bills of materials (SBoMs) to a database and
allows you to query for image, source code, package, and vulnerability relationships. It integrates
with Supply Chain Security Tools - Scan to automatically store the resulting source code and image
vulnerability reports. It accepts CycloneDX input and outputs in both human-readable and
machine-readable formats, including JSON, text, and CycloneDX.

The following is a quick demo of configuring the tanzu insight plug-in and querying the metadata
store for CVEs and scan results.

Tanzu Application Platform - Querying with InsighTanzu Application Platform - Querying with Insigh……

Using the Tanzu Insight CLI plug-in

The Tanzu Insight CLI plug-in is the primary way to view results from the Supply Chain Security
Tools - Scan of source code and image files. Use it to query by source code commit, image digest,
and CVE identifier to understand security risks.

See Tanzu Insight plug-in overview to install, configure, and use tanzu insight.

Multicluster configuration

See Multicluster setup for information about how to set up SCST - Store in a multicluster setup.

Integrating with Tanzu Application Platform GUI

Using the Supply Chain Choreographer in Tanzu Application Platform GUI, you can visualize your
supply chain. It uses SCST - Store to show the packages and vulnerabilities in your source code and
images.

To enable this feature, see Supply Chain Choreographer in Tanzu Application Platform GUI - Enable
CVE scan results.

Tanzu Application Platform v1.5

VMware by Broadcom 1680

https://www.youtube.com/watch?v=qBBv3YKwH2E


Additional documentation

Additional documentation includes information about the API, deployment details and
configuration, AWS RDS configuration, other database backup recommendations, known issues,
and other topics.

Configure your target endpoint and certificate for Supply
Chain Security Tools - Store

This topic describes how you can configure your target endpoint and certificate for Supply Chain
Security Tools (SCST) - Store.

Overview

The connection to Supply Chain Security Tools - Store requires TLS encryption, and the
configuration depends on the kind of installation.

For a production environment, VMware recommends that SCST - Store is installed with ingress
enabled. The following instructions help set up the TLS connection, assuming that you deployed
with ingress enabled.

Using Ingress

When using an Ingress setup, SCST - Store creates a specific TLS Certificate for HTTPS
communications under the metadata-store namespace.

Set the endpoint host to metadata-store.INGRESS-DOMAIN, such as metadata-
store.example.domain.com. Where INGRESS-DOMAIN isthe value of the ingress_domain property in
your deployment yaml.

Note In a multi-cluster setup, a DNS record is required for the domain. The below instructions for
single cluster setup do not apply, skip to Set Target section.

Single Cluster setup

In a single-cluster setup, a DNS record is still recommended. However, if no accessible DNS record
exists for the domain, edit the /etc/hosts file to add a local record:

ENVOY_IP=$(kubectl get svc envoy -n tanzu-system-ingress -o jsonpath="{.status.loadBal

ancer.ingress[0].ip}")

# Replace with your domain

METADATA_STORE_DOMAIN="metadata-store.example.domain.com"

# Delete any previously added entry

sudo sed -i '' "/$METADATA_STORE_DOMAIN/d" /etc/hosts

echo "$ENVOY_IP $METADATA_STORE_DOMAIN" | sudo tee -a /etc/hosts > /dev/null

Set Target

To get the certificate, run:

kubectl get secret tap-ingress-selfsigned-root-ca -n cert-manager -o json | jq -r '.da

ta."ca.crt"' | base64 -d > insight-ca.crt

Tanzu Application Platform v1.5

VMware by Broadcom 1681



Set the target by running:

tanzu insight config set-target https://$METADATA_STORE_DOMAIN --ca-cert insight-ca.cr

t

Next Step
Configure access token

Additional Resources
For information about deploying SCST - Store without Ingress, see:

Using LoadBalancer

Using NodePort

Configure your access tokens for Supply Chain Security
Tools - Store

This topic describes how to configure your access tokens for Supply Chain Security Tools - Store.

The access token is a Bearer token used in the http request header Authorization. For example,
Authorization: Bearer eyJhbGciOiJSUzI1NiIsImtpZCI6IjhMV0....

Service accounts are required to have associated access tokens. Before Kubernetes 1.24, service
accounts generated access tokens automatically. Since Kubernetes 1.24, a secret must be applied
manually.

By default, Supply Chain Security Tools - Store includes a read-write service account installed with
an access token generated. This service account is cluster-wide. If you want to create your own
service accounts, see Create Service Accounts.

Setting the Access Token

When using the insight plug-in, you must set the METADATA_STORE_ACCESS_TOKEN environment
variable, or use the --access-token flag. VMware discourages using the --access-token flag as the
token appears in your shell history.

The following command retrieves the access token from the default metadata-store-read-write-
client service account and stores it in METADATA_STORE_ACCESS_TOKEN:

export METADATA_STORE_ACCESS_TOKEN=$(kubectl get secrets metadata-store-read-write-cli

ent -n metadata-store -o jsonpath="{.data.token}" | base64 -d)

Additional Resources
Retrieve access tokens

Important

The tanzu insight config set-target does not initiate a test connection. Use
tanzu insight health to test connecting using the configured endpoint and CA
certificate. Neither commands test whether the access token is correct. For that
you must use the plug-in to add data and query data.

Tanzu Application Platform v1.5

VMware by Broadcom 1682



Create service accounts

Create a service account with a custom cluster role

Security details for Supply Chain Security Tools - Store

This topic describes the security details for Supply Chain Security Tools (SCST) - Store.

Application security

TLS encryption

Supply Chain Security Tools - Store requires TLS connection. If certificates are not provided, the
application does not start. It supports TLS v1.2 and TLS v1.3. It does not support TLS 1.0, so a
downgrade attack cannot happen. TLS 1.0 is prohibited under Payment Card Industry Data Security
Standard (PCI DSS).

Cryptographic algorithms

Elliptic Curve:

CurveP521

CurveP384

CurveP256

Cipher Suites:

TLS_AES_128_GCM_SHA256

TLS_AES_256_GCM_SHA384

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

Access controls

SCST - Store uses kube-rbac-proxy as the only entry point to its API. Authentication and
Authorization must be completed by using the kube-rbac-proxy before its API is accessible.

Authentication

The kube-rbac-proxy uses Token Review to verify that the token is valid. Token Review is a
Kubernetes API to ensure that a trusted vendor issued the access token provided by the user. To
issue an access token using Kubernetes, the user can create a Kubernetes Service Account and
retrieve the corresponding generated secret for the access token.

To create a service account and use its access token, see the Create Service Account Docs.

Authorization

The kube-rbac-proxy uses Subject Access Review to ensure that users access certain operations.
Subject Access Review is a Kubernetes API that uses Kubernetes RBAC to verify that the user can
perform specific actions. See Create Service Account Doc.

There are two supported roles:

Read Only cluster role

Read and Write cluster role

Tanzu Application Platform v1.5

VMware by Broadcom 1683

https://github.com/brancz/kube-rbac-proxy
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authorization/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/


These cluster roles are deployed by default. Additionally, a service account is created and bound to
the Read and Write cluster role by default. If you do not want this service account, set the
add_default_rw_service_account property to false in the metadata-store-values.yaml file durring
deployment. See Install SCST - Store.

There is no default service account bound to the Read Only cluster role. You must create your
service account and cluster role binding to bind to the Read Only role.

Container security

Non-root user

All containers shipped do not use root user accounts or accounts with root access. Using
Kubernetes Security Context ensures that applications do not run with root users.

Security Context for the API server:

allowPrivilegeEscalation: false

runAsUser: 65532

fsGroup: 65532

Security Context for the PostgreSQL database pod:

allowPrivilegeEscalation: false

runAsUser: 999

fsGroup: 999

Security scanning

There are two types of security scans that are performed before every release.

Static Application Security Testing (SAST)

A Coverity Scan is run on the source code of the API server, CLI, and all their dependencies. There
are no high or critical items outstanding at the time of release.

Software Composition Analysis (SCA)

A Black Duck scan is run on the compiled binary to check for vulnerabilities and license data. There
are no high or critical items outstanding at the time of release.

A Grype scan is run against the source code and the compiled container for dependencies
vulnerabilities. There are no high or critical items outstanding at the time of release.

Important

There is no support for roles with access to only specific types of resources For
example, images, packages, and vulnerabilities.

Note

65532 is the UUID for the nobody user. 999 is the UUID for the PostgreSQL user.

Tanzu Application Platform v1.5

VMware by Broadcom 1684



Additional documentation for Supply Chain Security Tools -
Store

This topic describes additional documentation you can use with Supply Chain Security Tools - Store.

Use and operate

Multicluster setup

Developer namespace setup

API details

API walkthrough

Failover, redundancy, and backups

Troubleshooting and logging

Troubleshooting upgrading

Log configuration and usage

Connecting to the Postgres Database

Configuration

Deployment details and configuration

Access control

Retrieve access tokens

Create service accounts

Create a service account with a custom cluster role

Certificates

Ingress support

Using LoadBalancer

Using NodePort

Custom certificate configuration

TLS configuration

Certificate rotation

Scanners cluster specific configurations

Database

Use external postgres database

AWS RDS postgres configuration

Database backup recommendations

Other

Install SCST - Store independent from TAP profiles

Tanzu Application Platform v1.5

VMware by Broadcom 1685



Additional documentation for Supply Chain Security Tools -
Store

This topic describes additional documentation you can use with Supply Chain Security Tools - Store.

Use and operate

Multicluster setup

Developer namespace setup

API details

API walkthrough

Failover, redundancy, and backups

Troubleshooting and logging

Troubleshooting upgrading

Log configuration and usage

Connecting to the Postgres Database

Configuration

Deployment details and configuration

Access control

Retrieve access tokens

Create service accounts

Create a service account with a custom cluster role

Certificates

Ingress support

Using LoadBalancer

Using NodePort

Custom certificate configuration

TLS configuration

Certificate rotation

Scanners cluster specific configurations

Database

Use external postgres database

AWS RDS postgres configuration

Database backup recommendations

Other

Install SCST - Store independent from TAP profiles

Tanzu Application Platform v1.5

VMware by Broadcom 1686



API reference for Supply Chain Security Tools - Store

This topic contains API reference information for Supply Chain Security Tools - Store. See API
walkthrough for an SCST - Store example.

Information

Version

1.4.1

Content negotiation

URI Schemes

http

https

Consumes

application/json

Produces

application/json

All endpoints

images

Method URI Name Summary

POST /api/imageReport create image
report

Create a new image report. Related packages and
vulnerabilities are also created.

GET /api/images get images Search image by id, name or digest .

GET /api/packages/{IDorNam
e}/images

get package
images

List the images that contain the given package.

GET /api/vulnerabilities/{CVEI
D}/images

get vulnerability
images

List the images that contain the given vulnerability.

Operations

Method URI Name Summary

GET /api/health health check

Packages

Method URI Name Summary

GET /api/images/{IDorDigest}/packages get image packages List the packages in an image.

GET /api/images/packages get image packages
query

List packages of the given image.

Tanzu Application Platform v1.5

VMware by Broadcom 1687



Method URI Name Summary

GET /api/packages get packages Search packages by id, name and/or
version.

GET /api/sources/{IDorRepoorSha}/pack
ages

get source packages

GET /api/sources/packages get source packages
query

List packages of the given source.

GET /api/vulnerabilities/{CVEID}/packag
es

get vulnerability
packages

List packages that contain the given CVE
id.

Sources

Method URI Name Summary

POST /api/sourceReport create source
report

Create a new source report. Related packages and
vulnerabilities are also created.

GET /api/packages/{IDorNam
e}/sources

get package
sources

List the sources containing the given package.

GET /api/sources get sources Search for sources by ID, repository, commit sha and/or
organization.

GET /api/vulnerabilities/{CVEI
D}/sources

get vulnerability
sources

List sources that contain the given vulnerability.

v1artifact_groups

Method URI Name Summary

POST /api/v1/artifa
ct-groups

create
artifact
group

Create an artifact group with specified labels and entity

POST /api/v1/artifa
ct-
groups/_sea
rch

search
artifact
groups

Query for a list of artifact group that contains image(s) with specified
digests, and or source(s) with specified shas. At least one image digest or
source sha must be provided. This query can be further refined by matching
images and sources with a specific combination of package name and/or
cve id.

POST /api/v1/artifa
ct-
groups/vulne
rabilities/_re
ach

search
artifact
groups vuln
reach

Search for how many artifact groups are affected by vulnerabilities
associated with the specified image(s) digests, and/or source(s) shas. At
least one image digest or source sha must be provided.

POST /api/v1/artifa
ct-
groups/vulne
rabilities/_se
arch

search
artifact
groups
vulnerabilitie
s

Search for all vulnerabilities associated with an artifact group that contains
image(s) with specified digests, and/or source(s) with specified shas. At least
one image digest or source sha must be provided.

v1images

Method URI Name Summary

GET /api/v1/images/{I
D}

get image by
ID

Search image by ID

GET /api/v1/images v1 get images Query for images. If no parameters are given, this endpoint will return
all images.

Tanzu Application Platform v1.5

VMware by Broadcom 1688



v1packages

Method URI Name Summary

GET /api/v1/packag
es/{ID}

get package by
ID

Search package by ID

GET /api/v1/images
/packages

v1 get images
packages

Query for packages with images parameters. If no parameters are given,
this endpoint will return all packages related to images.

GET /api/v1/packag
es

v1 get
packages

Query for packages. If no parameters are given, this endpoint will return
all packages.

GET /api/v1/source
s/packages

v1 get sources
packages

Query for packages with source parameters. If no parameters are given,
this endpoint will return all packages related to sources.

v1sources

Method URI Name Summary

GET /api/v1/sources/{I
D}

get source by ID Search source by ID

GET /api/v1/sources v1 get sources Query for sources. If no parameters are given, this endpoint will
return all sources.

GET /api/v1/sources/v
ulnerabilities

v1 get sources
vulnerabilities

Query for vulnerabilities with source parameters. If no parameters
are given, this endpoint will return all vulnerabilities.

v1vulnerabilities

Method URI Name Summary

GET /api/v1/vulnerabil
ities/{ID}

get vulnerability
by ID

Search vulnerability by ID

GET /api/v1/images/v
ulnerabilities

v1 get images
vulnerabilities

Query for vulnerabilities with image parameters. If no parameters
are give, this endpoint will return all vulnerabilities.

vulnerabilities

Method URI Name Summary

GET /api/images/{IDorDigest}/vulnerabiliti
es

get image vulnerabilities List vulnerabilities from the given
image.

GET /api/packages/{IDorName}/vulnerabili
ties

get package vulnerabilities List vulnerabilities from the given
package.

GET /api/sources/{IDorRepoorSha}/vulnera
bilities

get source vulnerabilities

GET /api/sources/vulnerabilities get source vulnerabilities
query

List vulnerabilities of the given
source.

GET /api/vulnerabilities get vulnerabilities Search for vulnerabilities by CVE id.

Paths

Create an artifact group with specified labels and entity
(CreateArtifactGroup)

Tanzu Application Platform v1.5

VMware by Broadcom 1689



POST /api/v1/artifact-groups

Parameters

Name Source Type Go type Separator Required Default Description

ArtifactGroupPo
stRequest

body ArtifactGroupPo
stRequest

models.ArtifactGro

upPostRequest

✓

All responses

Code Status Description Has headers Schema

201 Created ArtifactGroupPostResponse schema

400 Bad Request ErrorMessage schema

default ErrorMessage schema

Responses

201 - ArtifactGroupPostResponse

Status: Created

Schema

ArtifactGroupPostResponse

400 - ErrorMessage

Status: Bad Request

Schema

ErrorMessage

Default Response

ErrorMessage

Schema

ErrorMessage

Create a new image report. Related packages and vulnerabilities are
also created. (CreateImageReport)

POST /api/imageReport

Parameters

Tanzu Application Platform v1.5

VMware by Broadcom 1690



Name Source Type Go type Separator Required Default Description

Image body Image models.Image ✓

All responses

Code Status Description Has headers Schema

200 OK Image schema

default ErrorMessage schema

Responses

200 - Image

Status: OK

Schema

Image

Default Response

ErrorMessage

Schema

ErrorMessage

Create a new source report. Related packages and vulnerabilities
are also created. (CreateSourceReport)

POST /api/sourceReport

Parameters

Name Source Type Go type Separator Required Default Description

Image body Source models.Source ✓

All responses

Code Status Description Has headers Schema

200 OK Source schema

default ErrorMessage schema

Responses

200 - Source

Status: OK

Tanzu Application Platform v1.5

VMware by Broadcom 1691



Schema

Source

Default Response

ErrorMessage

Schema

ErrorMessage

Search image by ID (GetImageByID)

GET /api/v1/images/{ID}

Parameters

Name Source Type Go type Separator Required Default Description

ID path uint64 (formatted integer) uint64 ✓

All responses

Code Status Description Has headers Schema

200 OK Image schema

404 Not Found ErrorMessage schema

default ErrorMessage schema

Responses

200 - Image

Status: OK

Schema

Image

404 - ErrorMessage

Status: Not Found

Schema

ErrorMessage

Default Response

ErrorMessage

Schema

Tanzu Application Platform v1.5

VMware by Broadcom 1692



ErrorMessage

List the packages in an image. (GetImagePackages)

GET /api/images/{IDorDigest}/packages

Parameters

Name Source Type Go type Separator Required Default Description

IDorDigest path string string ✓

All responses

Code Status Description Has headers Schema

200 OK Package schema

default ErrorMessage schema

Responses

200 - Package

Status: OK

Schema

[]Package

Default Response

ErrorMessage

Schema

ErrorMessage

List packages of the given image. (GetImagePackagesQuery)

GET /api/images/packages

Parameters

Name Source Type Go type Separator Required Default Description

digest query string string

id query int64 (formatted integer) int64

name query string string

All responses

Tanzu Application Platform v1.5

VMware by Broadcom 1693



Code Status Description Has headers Schema

200 OK Package schema

default ErrorMessage schema

Responses

200 - Package

Status: OK

Schema

[]Package

Default Response

ErrorMessage

Schema

ErrorMessage

List vulnerabilities from the given image. (GetImageVulnerabilities)

GET /api/images/{IDorDigest}/vulnerabilities

Parameters

Name Source Type
Go
type

Separator Required Default Description

IDorDig
est

path strin
g

strin

g

✓

Severit
y

query strin
g

strin

g

Case insensitive vulnerabilities severity filter.
Possible values are: low, medium, high, critical,
unknown.

All responses

Code Status Description Has headers Schema

200 OK Vulnerability schema

default ErrorMessage schema

Responses

200 - Vulnerability

Status: OK

Schema

Tanzu Application Platform v1.5

VMware by Broadcom 1694



[]Vulnerability

Default Response

ErrorMessage

Schema

ErrorMessage

Search image by id, name or digest . (GetImages)

GET /api/images

All responses

Code Status Description Has headers Schema

200 OK Image schema

default ErrorMessage schema

Responses

200 - Image

Status: OK

Schema

Image

Default Response

ErrorMessage

Schema

ErrorMessage

Search package by ID (GetPackageByID)

GET /api/v1/packages/{ID}

Parameters

Name Source Type Go type Separator Required Default Description

ID path uint64 (formatted integer) uint64 ✓

All responses

Tanzu Application Platform v1.5

VMware by Broadcom 1695



Code Status Description Has headers Schema

200 OK Package schema

404 Not Found ErrorMessage schema

default ErrorMessage schema

Responses

200 - Package

Status: OK

Schema

Package

404 - ErrorMessage

Status: Not Found

Schema

ErrorMessage

Default Response

ErrorMessage

Schema

ErrorMessage

List the images that contain the given package. (GetPackageImages)

GET /api/packages/{IDorName}/images

Parameters

Name Source Type Go type Separator Required Default Description

IDorName path string string ✓

All responses

Code Status Description Has headers Schema

200 OK Image schema

default ErrorMessage schema

Responses

200 - Image

Tanzu Application Platform v1.5

VMware by Broadcom 1696



Status: OK

Schema

[]Image

Default Response

ErrorMessage

Schema

ErrorMessage

List the sources containing the given package. (GetPackageSources)

GET /api/packages/{IDorName}/sources

Parameters

Name Source Type Go type Separator Required Default Description

IDorName path string string ✓

All responses

Code Status Description Has headers Schema

200 OK Source schema

default ErrorMessage schema

Responses

200 - Source

Status: OK

Schema

[]Source

Default Response

ErrorMessage

Schema

[]ErrorMessage

List vulnerabilities from the given package.
(GetPackageVulnerabilities)

GET /api/packages/{IDorName}/vulnerabilities

Tanzu Application Platform v1.5

VMware by Broadcom 1697



Parameters

Name Source Type
Go
type

Separator Required Default Description

IDorNa
me

path strin
g

strin

g

✓

Severit
y

query strin
g

strin

g

Case insensitive vulnerabilities severity filter.
Possible values are: low, medium, high, critical,
unknown.

All responses

Code Status Description Has headers Schema

200 OK Vulnerability schema

default ErrorMessage schema

Responses

200 - Vulnerability

Status: OK

Schema

[]Vulnerability

Default Response

ErrorMessage

Schema

ErrorMessage

Search packages by id, name and/or version. (GetPackages)

GET /api/packages

Parameters

Name Source Type
Go
type

Separator Required Default Description

id query int64 (formatted
integer)

int64 Any of id or name must be
provided

name query string string Any of id or name must be
provided

versio
n

query string string

All responses

Tanzu Application Platform v1.5

VMware by Broadcom 1698



Code Status Description Has headers Schema

200 OK Package schema

default ErrorMessage schema

Responses

200 - Package

Status: OK

Schema

[]Package

Default Response

ErrorMessage

Schema

ErrorMessage

Search source by ID (GetSourceByID)

GET /api/v1/sources/{ID}

Parameters

Name Source Type Go type Separator Required Default Description

ID path uint64 (formatted integer) uint64 ✓

All responses

Code Status Description Has headers Schema

200 OK Source schema

404 Not Found ErrorMessage schema

default ErrorMessage schema

Responses

200 - Source

Status: OK

Schema

Source

404 - ErrorMessage

Tanzu Application Platform v1.5

VMware by Broadcom 1699



Status: Not Found

Schema

ErrorMessage

Default Response

ErrorMessage

Schema

ErrorMessage

get source packages (GetSourcePackages)

GET /api/sources/{IDorRepoorSha}/packages

Parameters

Name Source Type Go type Separator Required Default Description

IDorRepoorSha path string string ✓

All responses

Code Status Description Has headers Schema

200 OK Package schema

default ErrorMessage schema

Responses

200 - Package

Status: OK

Schema

[]Package

Default Response

ErrorMessage

Schema

ErrorMessage

List packages of the given source. (GetSourcePackagesQuery)

GET /api/sources/packages

Tanzu Application Platform v1.5

VMware by Broadcom 1700



Parameters

Name Source Type Go type Separator Required Default Description

id query uint64 (formatted integer) uint64

repo query string string

sha query string string

All responses

Code Status Description Has headers Schema

200 OK Package schema

default ErrorMessage schema

Responses

200 - Package

Status: OK

Schema

[]Package

Default Response

ErrorMessage

Schema

ErrorMessage

get source vulnerabilities (GetSourceVulnerabilities)

GET /api/sources/{IDorRepoorSha}/vulnerabilities

Parameters

Name Source Type Go type Separator Required Default Description

IDorRepoorSha path string string ✓

All responses

Code Status Description Has headers Schema

200 OK Vulnerability schema

default ErrorMessage schema

Responses

Tanzu Application Platform v1.5

VMware by Broadcom 1701



200 - Vulnerability

Status: OK

Schema

[]Vulnerability

Default Response

ErrorMessage

Schema

ErrorMessage

List vulnerabilities of the given source.
(GetSourceVulnerabilitiesQuery)

GET /api/sources/vulnerabilities

Parameters

Name Source Type
Go
type

Separator Required Default Description

Severi
ty

query string stri

ng

Case insensitive vulnerabilities severity
filter. Possible values are: low, medium,
high, critical, unknown.

id query uint64
(formatted
integer)

uint

64

repo query string stri

ng

sha query string stri

ng

All responses

Code Status Description Has headers Schema

200 OK Vulnerability schema

default ErrorMessage schema

Responses

200 - Vulnerability

Status: OK

Schema

[]Vulnerability

Tanzu Application Platform v1.5

VMware by Broadcom 1702



Default Response

ErrorMessage

Schema

ErrorMessage

Search for sources by ID, repository, commit sha and/or
organization. (GetSources)

GET /api/sources

Parameters

Name Source Type Go type Separator Required Default Description

id query int64 (formatted integer) int64

org query string string

repo query string string

sha query string string

All responses

Code Status Description Has headers Schema

200 OK Source schema

default ErrorMessage schema

Responses

200 - Source

Status: OK

Schema

[]Source

Default Response

ErrorMessage

Schema

ErrorMessage

Search for vulnerabilities by CVE id. (GetVulnerabilities)

GET /api/vulnerabilities

Tanzu Application Platform v1.5

VMware by Broadcom 1703



Parameters

Name Source Type
Go
type

Separator Required Default Description

CVEID query strin
g

strin

g

✓

Severi
ty

query strin
g

strin

g

Case insensitive vulnerabilities severity filter.
Possible values are: low, medium, high, critical,
unknown.

All responses

Code Status Description Has headers Schema

200 OK Vulnerability schema

default ErrorMessage schema

Responses

200 - Vulnerability

Status: OK

Schema

[]Vulnerability

Default Response

ErrorMessage

Schema

ErrorMessage

Search vulnerability by ID (GetVulnerabilityByID)

GET /api/v1/vulnerabilities/{ID}

Parameters

Name Source Type Go type Separator Required Default Description

ID path uint64 (formatted integer) uint64 ✓

All responses

Code Status Description Has headers Schema

200 OK Vulnerability schema

404 Not Found ErrorMessage schema

default ErrorMessage schema

Tanzu Application Platform v1.5

VMware by Broadcom 1704



Responses

200 - Vulnerability

Status: OK

Schema

Vulnerability

404 - ErrorMessage

Status: Not Found

Schema

ErrorMessage

Default Response

ErrorMessage

Schema

ErrorMessage

List the images that contain the given vulnerability.
(GetVulnerabilityImages)

GET /api/vulnerabilities/{CVEID}/images

Parameters

Name Source Type Go type Separator Required Default Description

CVEID path string string ✓

All responses

Code Status Description Has headers Schema

200 OK Image schema

default ErrorMessage schema

Responses

200 - Image

Status: OK

Schema

[]Image

Tanzu Application Platform v1.5

VMware by Broadcom 1705



Default Response

ErrorMessage

Schema

ErrorMessage

List packages that contain the given CVE id.
(GetVulnerabilityPackages)

GET /api/vulnerabilities/{CVEID}/packages

Parameters

Name Source Type Go type Separator Required Default Description

CVEID path string string ✓

All responses

Code Status Description Has headers Schema

200 OK Package schema

default ErrorMessage schema

Responses

200 - Package

Status: OK

Schema

[]Package

Default Response

ErrorMessage

Schema

ErrorMessage

List sources that contain the given vulnerability.
(GetVulnerabilitySources)

GET /api/vulnerabilities/{CVEID}/sources

Parameters

Tanzu Application Platform v1.5

VMware by Broadcom 1706



Name Source Type Go type Separator Required Default Description

CVEID path string string ✓

All responses

Code Status Description Has headers Schema

200 OK Source schema

default ErrorMessage schema

Responses

200 - Source

Status: OK

Schema

[]Source

Default Response

ErrorMessage

Schema

ErrorMessage

health check (HealthCheck)

GET /api/health

All responses

Code Status Description Has headers Schema

200 OK schema

default ErrorMessage schema

Responses

200

Status: OK

Schema

Default Response

ErrorMessage

Schema

Tanzu Application Platform v1.5

VMware by Broadcom 1707



ErrorMessage

Query for a list of artifact group that contains image(s) with specified
digests, and or source(s) with specified shas. At least one image
digest or source sha must be provided. This query can be further
refined by matching images and sources with a specific combination
of package name and/or cve id. (SearchArtifactGroups)

POST /api/v1/artifact-groups/_search

Query for a list of artifact group that contains image(s) with specified digests, and or source(s) with
specified shas.

Parameters

Name Source Type Go type Separator Required Default Description

ArtifactGroupFilter
sPostRequest

body ArtifactGroupS
earchFilters

models.ArtifactGro

upSearchFilters

✓

All responses

Code Status Description Has headers Schema

200 OK PaginatedArtifactGroupResponse schema

400 Bad Request ErrorMessage schema

default ErrorMessage schema

Responses

200 - PaginatedArtifactGroupResponse

Status: OK

Schema

PaginatedArtifactGroupResponse

400 - ErrorMessage

Status: Bad Request

Schema

ErrorMessage

Default Response

ErrorMessage

Schema

ErrorMessage

Tanzu Application Platform v1.5

VMware by Broadcom 1708



Search for how many artifact groups are affected by vulnerabilities
associated with the specified image(s) digests, and/or source(s) shas.
At least one image digest or source sha must be provided.
(SearchArtifactGroupsVulnReach)

POST /api/v1/artifact-groups/vulnerabilities/_reach

Parameters

Name Source Type Go type Separator Required Default Description

ArtifactGroupVul
nReachFiltersPos
tRequest

body ArtifactGroupVul
nReachFiltersPos
tRequest

models.ArtifactGr

oupVulnReachFilte

rsPostRequest

✓

All responses

Code Status Description Has headers Schema

200 OK PaginatedArtifactGroupVulnReachResponse schema

400 Bad Request ErrorMessage schema

default ErrorMessage schema

Responses

200 - PaginatedArtifactGroupVulnReachResponse

Status: OK

Schema

PaginatedArtifactGroupVulnReachResponse

400 - ErrorMessage

Status: Bad Request

Schema

ErrorMessage

Default Response

ErrorMessage

Schema

ErrorMessage

Search for all vulnerabilities associated with an artifact group that
contains image(s) with specified digests, and/or source(s) with

Tanzu Application Platform v1.5

VMware by Broadcom 1709



specified shas. At least one image digest or source sha must be
provided. (SearchArtifactGroupsVulnerabilities)

POST /api/v1/artifact-groups/vulnerabilities/_search

The result can be further refined by matching the images and sources with a package name and/or
an artifact group UID

Parameters

Name Source Type Go type Separator Required Default Description

ArtifactGroupVulnSe
archFiltersPostRequ
est

body ArtifactGroupV
ulnSearchFilter
s

models.ArtifactG

roupVulnSearchFi

lters

✓

All responses

Code Status Description Has headers Schema

200 OK PaginatedArtifactGroupVulnerabilityResponse schema

400 Bad Request ErrorMessage schema

default ErrorMessage schema

Responses

200 - PaginatedArtifactGroupVulnerabilityResponse

Status: OK

Schema

PaginatedArtifactGroupVulnerabilityResponse

400 - ErrorMessage

Status: Bad Request

Schema

ErrorMessage

Default Response

ErrorMessage

Schema

ErrorMessage

Query for images. If no parameters are given, this endpoint will
return all images. (V1GetImages)

Tanzu Application Platform v1.5

VMware by Broadcom 1710



GET /api/v1/images

Parameters

Name Source Type
Go
type

Separator Required Default Description

all query boolean bool If no pagination parameters are
provided, defaults to true and returns all
available results.

digest query string stri

ng

name query string stri

ng

page query int64
(formatted
integer)

int6

4

1

page_s
ize

query int64
(formatted
integer)

int6

4

20

registry query string stri

ng

All responses

Code Status Description Has headers Schema

200 OK PaginatedImageResponse schema

404 Not Found ErrorMessage schema

default ErrorMessage schema

Responses

200 - PaginatedImageResponse

Status: OK

Schema

PaginatedImageResponse

404 - ErrorMessage

Status: Not Found

Schema

ErrorMessage

Default Response

ErrorMessage

Tanzu Application Platform v1.5

VMware by Broadcom 1711



Schema

ErrorMessage

Query for packages with images parameters. If no parameters are
given, this endpoint will return all packages related to images.
(V1GetImagesPackages)

GET /api/v1/images/packages

Parameters

Name Source Type
Go
type

Separator Required Default Description

all query boolean bool If no pagination parameters are
provided, defaults to true and returns all
available results.

digest query string stri

ng

name query string stri

ng

package
_name

query string stri

ng

Substring package name filter. For
example, setting name=cur would match
curl and libcurl.

page query int64
(formatted
integer)

int6

4

1

page_siz
e

query int64
(formatted
integer)

int6

4

20

registry query string stri

ng

All responses

Code Status Description Has headers Schema

200 OK PaginatedPackageResponse schema

404 Not Found ErrorMessage schema

default ErrorMessage schema

Responses

200 - PaginatedPackageResponse

Status: OK

Schema

PaginatedPackageResponse

Tanzu Application Platform v1.5

VMware by Broadcom 1712



404 - ErrorMessage

Status: Not Found

Schema

ErrorMessage

Default Response

ErrorMessage

Schema

ErrorMessage

Query for vulnerabilities with image parameters. If no parameters
are give, this endpoint will return all vulnerabilities.
(V1GetImagesVulnerabilities)

GET /api/v1/images/vulnerabilities

Parameters

Name Source Type
Go
type

Separator Required Default Description

Severit
y

query string stri

ng

Case insensitive vulnerabilities severity
filter. Possible values are: low, medium,
high, critical, unknown.

all query boolean bool If no pagination parameters are provided,
defaults to true and returns all available
results.

digest query string stri

ng

name query string stri

ng

page query int64
(formatted
integer)

int6

4

1

page_
size

query int64
(formatted
integer)

int6

4

20

registr
y

query string stri

ng

All responses

Code Status Description Has headers Schema

200 OK PaginatedVulnerabilityResponse schema

404 Not Found ErrorMessage schema

Tanzu Application Platform v1.5

VMware by Broadcom 1713



Code Status Description Has headers Schema

default ErrorMessage schema

Responses

200 - PaginatedVulnerabilityResponse

Status: OK

Schema

PaginatedVulnerabilityResponse

404 - ErrorMessage

Status: Not Found

Schema

ErrorMessage

Default Response

ErrorMessage

Schema

ErrorMessage

Query for packages. If no parameters are given, this endpoint will
return all packages. (V1GetPackages)

GET /api/v1/packages

Parameters

Name Source Type
Go
type

Separator Required Default Description

all query boolean bool If no pagination parameters are provided,
defaults to true and returns all available
results.

name query string stri

ng

Name filter works as a substring match on
the package name. For example, setting
name=cur would match curl and libcurl.

package
_manag
er

query string stri

ng

page query int64
(formatte
d integer)

int6

4

1

Tanzu Application Platform v1.5

VMware by Broadcom 1714



Name Source Type
Go
type

Separator Required Default Description

page_siz
e

query int64
(formatte
d integer)

int6

4

20

version query string stri

ng

All responses

Code Status Description Has headers Schema

200 OK PaginatedPackageResponse schema

404 Not Found ErrorMessage schema

default ErrorMessage schema

Responses

200 - PaginatedPackageResponse

Status: OK

Schema

PaginatedPackageResponse

404 - ErrorMessage

Status: Not Found

Schema

ErrorMessage

Default Response

ErrorMessage

Schema

ErrorMessage

Query for sources. If no parameters are given, this endpoint will
return all sources. (V1GetSources)

GET /api/v1/sources

Parameters

Tanzu Application Platform v1.5

VMware by Broadcom 1715



Name Source Type
Go
type

Separator Required Default Description

all query boolean bool If no pagination parameters are
provided, defaults to true and returns all
available results.

org query string stri

ng

page query int64
(formatted
integer)

int6

4

1

page_s
ize

query int64
(formatted
integer)

int6

4

20

repo query string stri

ng

sha query string stri

ng

All responses

Code Status Description Has headers Schema

200 OK PaginatedSourceResponse schema

404 Not Found ErrorMessage schema

default ErrorMessage schema

Responses

200 - PaginatedSourceResponse

Status: OK

Schema

PaginatedSourceResponse

404 - ErrorMessage

Status: Not Found

Schema

ErrorMessage

Default Response

ErrorMessage

Schema

ErrorMessage

Tanzu Application Platform v1.5

VMware by Broadcom 1716



Query for packages with source parameters. If no parameters are
given, this endpoint will return all packages related to sources.
(V1GetSourcesPackages)

GET /api/v1/sources/packages

All responses

Code Status Description Has headers Schema

200 OK PaginatedPackageResponse schema

404 Not Found ErrorMessage schema

default ErrorMessage schema

Responses

200 - PaginatedPackageResponse

Status: OK

Schema

PaginatedPackageResponse

404 - ErrorMessage

Status: Not Found

Schema

ErrorMessage

Default Response

ErrorMessage

Schema

ErrorMessage

Query for vulnerabilities with source parameters. If no parameters
are given, this endpoint will return all vulnerabilities.
(V1GetSourcesVulnerabilities)

GET /api/v1/sources/vulnerabilities

Parameters

Tanzu Application Platform v1.5

VMware by Broadcom 1717



Name Source Type
Go
type

Separator Required Default Description

Severit
y

query string stri

ng

Case insensitive vulnerabilities severity
filter. Possible values are: low, medium,
high, critical, unknown.

all query boolean bool If no pagination parameters are provided,
defaults to true and returns all available
results.

org query string stri

ng

page query int64
(formatted
integer)

int6

4

1

page_
size

query int64
(formatted
integer)

int6

4

20

repo query string stri

ng

sha query string stri

ng

All responses

Code Status Description Has headers Schema

200 OK PaginatedVulnerabilityResponse schema

404 Not Found ErrorMessage schema

default ErrorMessage schema

Responses

200 - PaginatedVulnerabilityResponse

Status: OK

Schema

PaginatedVulnerabilityResponse

404 - ErrorMessage

Status: Not Found

Schema

ErrorMessage

Default Response

ErrorMessage

Tanzu Application Platform v1.5

VMware by Broadcom 1718



Schema

ErrorMessage

Models

ArtifactGroupPostRequest

Properties

Name Type Go type Required Default Description Example

EntityI
D

uint64
(formatted
integer)

uint64 The database ID of the source or
image being associated with this
artifact group

24

Labels map of
string

map[stri

ng]strin

g

Key-Value pair of labels associated
with the Artifact Group

{"env":"production

","namespace":"def

ault"}

Type string string The entity type being associated
with this artifact group. Allowable
values: image, source

image

UID string string ✓ Unique identifier for the Artifact
Group such as workload UID

8b1cc5da-fabe-

45a6-ab8c-

49260bbeef99

ArtifactGroupResponse

Properties

Name Type Go type Required Default Description Example

Entitie
s

[]Entity []*Entity Entities associated with the
Artifact Group

Labels map of
string

map[strin

g]string

Key-Value pair of labels
associated with the Artifact
Group

{"env":"production","n

amespace":"default"}

UID string string Unique identifier for the Artifact
Group such as workload UID

8b1cc5da-fabe-45a6-

ab8c-49260bbeef99

ArtifactGroupSearchFilters

Properties

Name Type
Go
type

Required Default Description Example

All boolea
n

bool If no pagination parameters are provided,
defaults to true and returns all available
results.

CVEID string stri

ng

An optional CVE ID that the image and
source must contain. Only packages, and
their images and sources, with this CVE
ID will be returned. If both package name
and CVE ID are provided, then only the
images and sources with the specified
package name and CVE ID will be
returned.

CVE-7467-2020

Tanzu Application Platform v1.5

VMware by Broadcom 1719



Name Type
Go
type

Required Default Description Example

Digest
s

[]strin
g

[]st

ring

A list of image digests. At least one
image digest or source sha must be
provided.

["9n38274ods897fmay487

gsdyfga678wr82","7n382

74ods897fmay487gsdyfga

678wr82"]

Packa
geNa
me

string stri

ng

An optional package name that the
image and source must contain. Only
packages, and their images and sources,
with this name will be returned. If both
package name and CVE ID are provided,
then only the images and sources with
the specified package name and CVE ID
will be returned.

package1

Page int64
(forma
tted
integer
)

int6

4

1

PageS
ize

int64
(forma
tted
integer
)

int6

4

20

Shas []strin
g

[]st

ring

A list of source shas. At least one image
digest or source sha must be provided.

["sha256:2c11624a8d9c9

071996a886a4acaf09939e

f3386e4c07735c6a2532f0

2eed4ea","sha256:04baf

e0d8df23ec342edb72acc3

fb02f61c418bc6e8d70931

49956a9aad2d12a"]

ArtifactGroupVulnReachFiltersPostRequest

Properties

Name Type
Go
type

Required Default Description Example

All boolean bool If no pagination
parameters are provided,
defaults to true and
returns all available
results.

Digest
s

[]string []st

ring

A list of image digests. ["sha256:2c11624a8d9c9071996a886a4

acaf09939ef3386e4c07735c6a2532f02e

ed4ea","sha256:04bafe0d8df23ec342e

db72acc3fb02f61c418bc6e8d709314995

6a9aad2d12a"]

Page int64
(formatt
ed
integer)

int6

4

1

PageS
ize

int64
(formatt
ed
integer)

int6

4

20

Tanzu Application Platform v1.5

VMware by Broadcom 1720



Name Type
Go
type

Required Default Description Example

Shas []string []st

ring

A list of source shas. ["9n38274ods897fmay487gsdyfga678wr

82","7n38274ods897fmay487gsdyfga67

8wr82"]

ArtifactGroupVulnReachPostResponse

Properties

Name Type Go type Required Default Description Example

AgCount uint64 (formatted
integer)

uint64 Number of artifact groups affected by
the vulnerability

5

Vulnerabil
ity

VulnResponse VulnRespo

nse

ArtifactGroupVulnSearchFilters

Properties

Name Type
Go
type

Required Default Description Example

All boole
an

bool If no pagination parameters are provided,
defaults to true and returns all available
results.

Artifac
tGroup
UID

string stri

ng

An optional artifact group UID that the
image and source must contain. Only
artifact groups, and their images and
sources, with this artifact group UID will be
returned. If both package name and artifact
group UID are provided, then only the
images and sources with the specified
package name and artifact group UID will
be returned.

9aa3548e-5fae-11ed-

9b6a-0242ac120002

Digest
s

[]strin
g

[]st

ring

A list of image digests. At least one image
digest or source sha must be provided.

["9n38274ods897fmay48

7gsdyfga678wr82","7n3

8274ods897fmay487gsdy

fga678wr82"]

Packa
geNa
me

string stri

ng

An optional package name that the image
and source must contain. Only packages,
and their images and sources, with this
name will be returned. If both package
name and artifact group UID are provided,
then only the images and sources with the
specified package name and artifact group
UID will be returned.

package1

Page int64
(forma
tted
intege
r)

int6

4

1

PageSi
ze

int64
(forma
tted
intege
r)

int6

4

20

Tanzu Application Platform v1.5

VMware by Broadcom 1721



Name Type
Go
type

Required Default Description Example

Shas []strin
g

[]st

ring

A list of source shas. At least one image
digest or source sha must be provided.

["sha256:2c11624a8d9c

9071996a886a4acaf0993

9ef3386e4c07735c6a253

2f02eed4ea","sha256:0

4bafe0d8df23ec342edb7

2acc3fb02f61c418bc6e8

d7093149956a9aad2d12a

"]

DeletedAt

composed type NullTime

Entity

Properties

Name Type
Go
type

Required Default Description Example

Digest string strin

g

The digest of the image entity.
Only visible if the entity is of
image type

sha256:f7de1564f13da1ef7

e5720ebce14006793242c0d8

d7d60c343632bcf3bc5306d

Host string strin

g

The dns name where the source
entity is hosted on. Only visible if
the entity type is of source type

gitlab.com

ID uint64
(formatte
d integer)

uint6

4

✓ The database ID of the source or
image

24

Name string strin

g

The name of the image entity. Only
visible if the entity is of image
type.

checkr/flagr

Org string strin

g

The organization name of the
source entity. Only visible if the
entity type is of source type

my-organization

Packa
ges

[]Package []*Pa

ckage

Regist
ry

string strin

g

The DNS name of the registry that
stores the image entity. Only
visible if the entity is of image type

docker.io

Repo string strin

g

The repository name of the source
entity. Only visible if the entity
type is of source type

my-sample-repo

Sha string strin

g

The commit sha of the source
entity. Only visible if the entity
type is of source type

d6cd1e2bd19e03a81132a23b

2025920577f84e37

Type string strin

g

✓ The entity Type of scan that is
stored. This is set to either
“image” or “source”.

image

ErrorMessage

Tanzu Application Platform v1.5

VMware by Broadcom 1722



ErrorMessage wraps an error message in a struct so responses are properly marshalled as a JSON
object.

Properties

Name Type Go type Required Default Description Example

Message string string in: body something went wrong

Image

Properties

Name Type Go type Required Default Description Example

Digest string string ✓ 9n38274ods897fmay487gsdyfga67

8wr82

ID uint64 (formatted
integer)

uint64

Name string string ✓ myorg/application

Package
s

[]Package []*Packa

ge

Registry string string ✓ docker.io

Sources []Source []*Sourc

e

MethodType

Properties

Name Type Go type Required Default Description Example

CreatedAt date-time (formatted string) strfmt.DateTime

DeletedAt DeletedAt DeletedAt

ID uint64 (formatted integer) uint64

Name string string

Rating []Rating []*Rating

UpdatedAt date-time (formatted string) strfmt.DateTime

Model

Model a basic GoLang struct which includes the following fields: ID, CreatedAt, UpdatedAt,
DeletedAt It may be embedded into your model or you may build your own model without it type
User struct { gorm.Model }

Properties

Name Type Go type Required Default Description Example

CreatedAt date-time (formatted string) strfmt.DateTime

DeletedAt DeletedAt DeletedAt

ID uint64 (formatted integer) uint64

Tanzu Application Platform v1.5

VMware by Broadcom 1723



Name Type Go type Required Default Description Example

UpdatedAt date-time (formatted string) strfmt.DateTime

NullTime

NullTime implements the Scanner interface so it can be used as a scan destination, similar to
NullString.

Properties

Name Type Go type Required Default Description Example

Time date-time (formatted string) strfmt.DateTime

Valid boolean bool

Package

Properties

Name Type Go type Required Default Description Example

Homepage string string

ID uint64 (formatted integer) uint64

Images []Image []*Image

Name string string

PackageManager string string

Sources []Source []*Source

Version string string

Vulnerabilities []Vulnerability []*Vulnerability

PaginatedArtifactGroupVulnReachResponse

Properties

Name Type Go type Required Default Description Example

Count int64 (formatted integer) int64 10

CurrentPa
ge

int64 (formatted integer) int64 1

LastPage int64 (formatted integer) int64 2

PageSize int64 (formatted integer) int64 20

Results []ArtifactGroupVulnReachP
ostResponse

[]*ArtifactGroupVulnReach

PostResponse

PaginatedResponse

Properties

Name Type Go type Required Default Description Example

Count int64 (formatted integer) int64 10

Tanzu Application Platform v1.5

VMware by Broadcom 1724



Name Type Go type Required Default Description Example

CurrentPage int64 (formatted integer) int64 1

LastPage int64 (formatted integer) int64 2

PageSize int64 (formatted integer) int64 20

Results []interface{} []interface{}

Rating

Properties

Name Type Go type Required Default Description Example

ID uint64 (formatted integer) uint64

MethodType MethodType MethodType

MethodTypeID uint64 (formatted integer) uint64

Score double (formatted number) float64

Severity string string

Vector string string

RatingResponse

Properties

Name Type
Go
type

Required Default Description Example

ID uint64 (formatted
integer)

uint64 Rating ID 3

Score double (formatted
number)

float6

4

CVSS score 9.7

Severit
y

string string Threat level of
vulnerability

High

Vector string string CVSS score in vector
format

AV:L/AC:L/Au:N/C:C/I:

C/A:C

Source

Properties

Name Type Go type Required Default Description Example

DeletedAt DeletedAt DeletedAt

Host string string gitlab.com

ID uint64 (formatted integer) uint64

Images []Image []*Image

Organization string string vmware

Packages []Package []*Package

Repository string string ✓ myproject

Tanzu Application Platform v1.5

VMware by Broadcom 1725



Name Type Go type Required Default Description Example

Sha string string ✓ 0eb5fcd1

StringArray

[]string

VulnResponse

Properties

Name Type
Go
type

Required Default Description Example

CNA string strin

g

CVE
Numbering
Authority

GitHub, Inc.

CVEID string strin

g

CVE ID of the
vulnerability

CVE-7467-2020

Descri
ption

string strin

g

Description of
the
vulnerability

IBM Datapower Gateway 10.0.2.0 through

10.0.4.0, 10.0.1.0 through 10.0.1.5, and

2018.4.1.0 through 2018.4.1.18 could allow

unauthorized viewing of logs and files due

to insufficient authorization checks. IBM

X-Force ID: 218856.

ID uint64
(formatt
ed
integer)

uint6

4

Vulnerability
ID

12

Rating
s

[]Rating
Respons
e

[]*Ra

tingR

espon

se

Rating
information

Refere
nces

[]string []str

ing

Additional
external links

https://github.com/example/repo/issues/11

URL string strin

g

Related url to
the
vulnerability

https://nvd.nist.gov/vuln/detail/CVE-7467-

2020

Vulnerability

Properties

Name Type Go type Required Default Description Example

CNA string string GitHub, Inc.

CVEID string string ✓ CVE-7467-2020

Descripti
on

string string A description of CVE-7467-2020

ID uint64 (formatted
integer)

uint64

Package
s

[]Package []*Packa

ge

Tanzu Application Platform v1.5

VMware by Broadcom 1726



Name Type Go type Required Default Description Example

Ratings []Rating []*Ratin

g

Referenc
es

StringArray StringAr

ray

URL string string https://nvd.nist.gov/vuln/detail

/CVE-7467-2020

artifactGroupPostEntity

Properties

Name Type
Go
type

Required Default Description Example

ID uint64
(formatted
integer)

uint6

4

✓ The database ID of the source or image 24

Type string strin

g

✓ The entity Type of scan that is stored. This is set
to either “image” or “source”.

image

artifactGroupPostResponse

Properties

Name Type Go type Required Default Description Example

Entitie
s

[]ArtifactGro
upPostEntit
y

[]*ArtifactG

roupPostEnti

ty

Entities associated with the
Artifact Group

Labels map of
string

map[string]s

tring

Key-Value pair of labels
associated with the Artifact
Group

{"env":"production",

"namespace":"default

"}

UID string string Unique identifier for the
Artifact Group such as
workload UID

8b1cc5da-fabe-45a6-

ab8c-49260bbeef99

artifactGroupVulnArtifactGroup

Properties

Name Type Go type Required Default Description Example

Entitie
s

[]ArtifactGro
upVulnEntit
y

[]*ArtifactG

roupVulnEnti

ty

Entities associated with the
Artifact Group

Labels map of
string

map[string]s

tring

Key-Value pair of labels
associated with the Artifact
Group

{"env":"production",

"namespace":"default

"}

UID string string Unique identifier for the
Artifact Group such as
workload UID

8b1cc5da-fabe-45a6-

ab8c-49260bbeef99

artifactGroupVulnEntity

Properties

Tanzu Application Platform v1.5

VMware by Broadcom 1727



Name Type
Go
type

Required Default Description Example

Digest string stri

ng

The digest of the image entity.
Only visible if the entity is of image
type

sha256:f7de1564f13da1ef7

e5720ebce14006793242c0d8

d7d60c343632bcf3bc5306d

Host string stri

ng

The dns name where the source
entity is hosted on. Only visible if
the entity type is of source type

gitlab.com

ID uint64
(formatted
integer)

uint

64

✓ The database ID of the source or
image

24

Name string stri

ng

The name of the image entity. Only
visible if the entity is of image type.

checkr/flagr

Org string stri

ng

The organization name of the
source entity. Only visible if the
entity type is of source type

my-organization

Regist
ry

string stri

ng

The DNS name of the registry that
stores the image entity. Only
visible if the entity is of image type

docker.io

Repo string stri

ng

The repository name of the source
entity. Only visible if the entity type
is of source type

my-sample-repo

Sha string stri

ng

The commit sha of the source
entity. Only visible if the entity type
is of source type

d6cd1e2bd19e03a81132a23b

2025920577f84e37

Type string stri

ng

✓ The entity Type of scan that is
stored. This is set to either “image”
or “source”.

image

artifactGroupVulnPackage

Properties

Name Type Go type Required Default Description Example

Homepage string string

ID uint64 (formatted
integer)

uint64

Images []Image []*Image This field will always be
empty

[]

Name string string

PackageMana
ger

string string

Sources []Source []*Source This field will always be
empty

[]

Version string string

Vulnerabilities []Vulnerability []*Vulnerabil

ity

This field will always be
empty

[]

artifactGroupVulnResult

Tanzu Application Platform v1.5

VMware by Broadcom 1728



Properties

Name Type Go type Required Default Description Example

ArtifactGr
oups

[]ArtifactGroupV
ulnArtifactGroup

[]*ArtifactGroup

VulnArtifactGrou

p

CNA string string GitHub, Inc.

CVEID string string ✓ CVE-7467-2020

Descripti
on

string string A description of CVE-

7467-2020

ID uint64
(formatted
integer)

uint64

Packages []ArtifactGroupV
ulnPackage

[]*ArtifactGroup

VulnPackage

Ratings []Rating []*Rating

Reference
s

StringArray StringArray

URL string string https://nvd.nist.gov/vul

n/detail/CVE-7467-2020

paginatedArtifactGroupResponse

Properties

Name Type Go type Required Default Description Example

Count int64 (formatted integer) int64 10

CurrentPage int64 (formatted integer) int64 1

LastPage int64 (formatted integer) int64 2

PageSize int64 (formatted integer) int64 20

Results []ArtifactGroupResponse []*ArtifactGroupResponse

paginatedArtifactGroupVulnerabilityResponse

Properties

Name Type Go type Required Default Description Example

Count int64 (formatted integer) int64 10

CurrentPag
e

int64 (formatted integer) int64 1

LastPage int64 (formatted integer) int64 2

PageSize int64 (formatted integer) int64 20

Results []ArtifactGroupVulnResul
t

[]*ArtifactGroupVulnResul

t

paginatedImageResponse

Properties

Tanzu Application Platform v1.5

VMware by Broadcom 1729



Name Type Go type Required Default Description Example

Count int64 (formatted integer) int64 10

CurrentPage int64 (formatted integer) int64 1

LastPage int64 (formatted integer) int64 2

PageSize int64 (formatted integer) int64 20

Results []ResponseImage []*ResponseImage

paginatedPackageResponse

Properties

Name Type Go type Required Default Description Example

Count int64 (formatted integer) int64 10

CurrentPage int64 (formatted integer) int64 1

LastPage int64 (formatted integer) int64 2

PageSize int64 (formatted integer) int64 20

Results []ResponsePackage []*ResponsePackage

paginatedSourceResponse

Properties

Name Type Go type Required Default Description Example

Count int64 (formatted integer) int64 10

CurrentPage int64 (formatted integer) int64 1

LastPage int64 (formatted integer) int64 2

PageSize int64 (formatted integer) int64 20

Results []ResponseSource []*ResponseSource

paginatedVulnerabilityResponse

Properties

Name Type Go type Required Default Description Example

Count int64 (formatted integer) int64 10

CurrentPage int64 (formatted integer) int64 1

LastPage int64 (formatted integer) int64 2

PageSize int64 (formatted integer) int64 20

Results []ResponseVulnerability []*ResponseVulnerability

responseImage

Properties

Tanzu Application Platform v1.5

VMware by Broadcom 1730



Name Type Go type Required Default Description Example

CreatedA
t

date-time (formatted
string)

strfmt.Date

Time

Digest string string ✓ 9n38274ods897fmay487gsdyfg

a678wr82

ID uint64 (formatted
integer)

uint64

Name string string ✓ myorg/application

Packages []Package []*Package

Registry string string ✓ docker.io

Sources []Source []*Source

Updated
At

date-time (formatted
string)

strfmt.Date

Time

responsePackage

Properties

Name Type Go type Required Default Description Example

CreatedAt date-time (formatted string) strfmt.DateTime

Homepage string string

ID uint64 (formatted integer) uint64

Images []Image []*Image

Name string string

PackageManager string string

Sources []Source []*Source

UpdatedAt date-time (formatted string) strfmt.DateTime

Version string string

Vulnerabilities []Vulnerability []*Vulnerability

responseSource

Properties

Name Type Go type Required Default Description Example

CreatedAt date-time (formatted string) strfmt.DateTime

DeletedAt DeletedAt DeletedAt

Host string string gitlab.com

ID uint64 (formatted integer) uint64

Images []Image []*Image

Organization string string vmware

Packages []Package []*Package

Repository string string ✓ myproject

Tanzu Application Platform v1.5

VMware by Broadcom 1731



Name Type Go type Required Default Description Example

Sha string string ✓ 0eb5fcd1

UpdatedAt date-time (formatted string) strfmt.DateTime

responseVulnerability

Properties

Name Type Go type Required Default Description Example

CNA string string GitHub, Inc.

CVEID string string ✓ CVE-7467-2020

Created
At

date-time
(formatted string)

strfmt.Dat

eTime

Descripti
on

string string A description of CVE-7467-2020

ID uint64 (formatted
integer)

uint64

Package
s

[]Package []*Package

Ratings []Rating []*Rating

Referenc
es

StringArray StringArra

y

URL string string https://nvd.nist.gov/vuln/deta

il/CVE-7467-2020

Updated
At

date-time
(formatted string)

strfmt.Dat

eTime

API walkthrough for Supply Chain Security Tools - Store

This topic tells you how to make an API call that you can use with Supply Chain Security Tools
(SCST) - Store. For information about using the SCST - Store API, see API reference for Supply
Chain Security Tools - Store.

Use curl to post an image report

This procedure uses Ingress, if Tanzu Application Platform is deployed without Ingress, see Use
your NodePort with Supply Chain Security Tools - Store and Use your LoadBalancer with Supply
Chain Security Tools - Store. Complete the following steps:

1. Switch to the kubectl context or kubeconfig to target the View cluster.

2. Retrieve the CA certificate and store it locally. Run:

kubectl get secret ingress-cert -n metadata-store -o json | jq -r '.data."ca.cr

t"' | base64 -d > /tmp/ca.crt

3. Using the health endpoint as an example, run:

curl -i https://metadata-store.INGRESS-DOMAIN/api/HEALTH \

   --cacert /tmp/ca.crt

Tanzu Application Platform v1.5

VMware by Broadcom 1732



For example:

$ curl -i https://metadata-store.example.com/api/health \

  --cacert /tmp/ca.crt

HTTP/2 200

content-length: 0

date: Tue, 23 Jan 2024 22:50:57 GMT

x-envoy-upstream-service-time: 0

server: envoy

4. To make a request to an authenticated endpoint an access token is required. To retrieve
the metadata-store-read-write-client access token, run:

export METADATA_STORE_ACCESS_TOKEN=$(kubectl get secrets metadata-store-read-wr

ite-client -n metadata-store -o jsonpath="{.data.token}" | base64 -d)

For more information, see Retrieve access tokens for Supply Chain Security Tools - Store.

5. Using the api/imageReport endpoint as an example, create a post request:

curl https://metadata-store.INGRESS-DOMAIN/API/IMAGE-REPORT \

    --cacert /tmp/ca.crt \

    -H "Authorization: Bearer ${METADATA_STORE_ACCESS_TOKEN}" \

    -H "Content-Type: application/json" \

    -X POST \

    --data "@ABSOLUTE-PATH-TO-THE-POST-BODY"

Where ABSOLUTE-PATH-TO-THE-POST-BODY is the absolute filepath of the API JSON for an
image report.

For example, the following is a sample post body of an image report API JSON:

{

  "Name" : "burger-image-2",

  "Registry" : "test-registry",

  "Digest" : "test-digest@45asd61asasssdfsdfddssghjkdfsdfasdfasdsdasdassdfghjdd

asfddfsadfadfgfshdasdfsdfsdfsdasdsdfsdfadsdassdfdasdfaasdsdfsddfsdasgsasddffdgf

dasddfgdfssdfakasdasdasdsdasddasdsd23",

  "Sources" : [

    {

      "Repository" : "aaaaoslfdfggo",

      "Organization" : "pivotal",

      "Sha" : "1235assdfssadfacfddxdf41",

      "Host" : "http://oslo.io",

      "Packages" : [

        {

          "Name" : "Source package5",

          "Version" : "v2sfsfdd34",

          "PackageManager" : "test-manager",

          "Vulnerabilities" : [

            {

              "CVEID" : "0011",

              "PrimaryURL" : "http://www.mynamejeff.comm",

              "Description" : "Bye",

              "CNA" : "NVD",

              "Ratings": [{

                "Vector" : "AV:L/AC:L/Au:N/C:P/I:P/A:P",

                "Score" : 0,

                "MethodTypeID" : 1,

                "Severity":   "High"

              }],

              "References" : [""]

            }

Tanzu Application Platform v1.5

VMware by Broadcom 1733



          ]

        }

      ]

    }

  ],

  "Packages" : [

    {

      "Name" : "bob-dependency-35daasds56j",

      "Version" : "v2",

      "PackageManager" : "test-manager",

      "Vulnerabilities" : [

        {

          "CVEID" : "002",

          "PrimaryURL" : "http://www.mynamejeff.comm",

          "Description" : "Bye",

          "CNA" : "NVD",

          "Ratings": [{

            "Vector" : "AV:L/AC:L/Au:N/C:P/I:P/A:P",

            "Score" : 0,

            "MethodTypeID" : 1,

            "Severity":   "High"

          }],

          "References" : [""]

        }

      ]

    }

  ]

}

Connect to the PostgreSQL database

You can use a PostgreSQL database with Supply Chain Security Tools - Store. To connect to the
PostgreSQL database, you need the following values:

database name

user name

password

database host

database port

database CA certificate

Connect to the PostgreSQL database:

1. Obtain the database name, user name, password, and CA certificate. Run:

db_name=$(kubectl get secret postgres-db-secret -n metadata-store -o json | jq 

-r '.data.POSTGRES_DB' | base64 -d)

db_username=$(kubectl get secret postgres-db-secret -n metadata-store -o json | 

jq -r '.data.POSTGRES_USER' | base64 -d)

db_password=$(kubectl get secret postgres-db-secret -n metadata-store -o json | 

jq -r '.data.POSTGRES_PASSWORD' | base64 -d)

db_ca_dir=$(mktemp -d -t ca-cert-XXXX)

db_ca_path="$db_ca_dir/ca.crt"

kubectl get secrets postgres-db-tls-cert -n metadata-store -o json | jq -r '.da

ta."ca.crt"' | base64 -d > $db_ca_path

If the password was auto-generated, the password command returns an empty string. Run:

db_password=$(kubectl get secret postgres-db-password -n metadata-store -o json 

Tanzu Application Platform v1.5

VMware by Broadcom 1734



| jq -r '.data.DB_PASSWORD' | base64 -d)

2. In a separate terminal, run:

kubectl port-forward service/metadata-store-db 5432:5432 -n metadata-store

3. Set the database host and port values on the first terminal:

db_host="localhost"

db_port=5432

4. To port forward to a different local port number, use the following command template:

kubectl port-forward service/metadata-store-db <LOCAL_PORT>:5432 -n metadata-st

ore

Where LOCAL-PORT is the port number for the database you want to use.

You can now connect to the database and make queries. For example:

psql "host=$db_host port=$db_port user=$db_username dbname=$db_name sslmode=verify-ca 

sslrootcert=$db_ca_path" -c "SELECT * FROM images"

You can use GUI clients such as Postico or DBeaver to interact with the database.

Deployment details and configuration for Supply Chain
Security Tools - Store

This topic describes how you can deploy and configure your Kubernetes cluster for Supply Chain
Security Tools (SCST) - Store.

What is deployed

The installation creates the following in your Kubernetes cluster:

Two components — an API back end and a database. Each component includes:

service

deployment

replicaset

Pod

Persistent volume claim

External IP address (based on a deployment configuration set to use LoadBalancer).

A Kubernetes secret to allow pulling SCST - Store images from a registry.

A namespace called metadata-store.

A service account with read-write privileges named metadata-store-read-write-client,
and a corresponding secret for the service account. It’s bound to a ClusterRole named
metadata-store-read-write.

A read-only ClusterRole named metadata-store-read-only that isn’t bound to a service
account. See Service Accounts.

(Optional) An HTTPProxy object for ingress support.

Deployment configuration

Tanzu Application Platform v1.5

VMware by Broadcom 1735

https://eggerapps.at/postico2/
https://dbeaver.io/


All configurations are nested inside of metadata_store in your tap values deployment YAML.

Supported Network Configurations

The following connection methods are recommended based on Tanzu Application Platform setup:

Single or multicluster with Contour = Ingress

Single cluster without Contour and with LoadBalancer support = LoadBalancer

Single cluster without Contour and without LoadBalancer = NodePort

Multicluster without Contour = Not supported

For a production environment, VMware recommends that you install SCST - Store with ingress
enabled.

App service type

Supported values include LoadBalancer, ClusterIP, NodePort. The app_service_type is set to
LoadBalancer by default. If your environment does not support LoadBalancer, and you want to use
ClusterIP, configure the app_service_type property in your deployment YAML:

app_service_type: "ClusterIP"

If you set the ingress_enabled to "true", VMware recommends setting the app_service_type
property to "ClusterIP".

Ingress support

SCST - Store’s values file allows you to enable ingress support and to configure a custom domain
name to use Contour to provide external access to SCST - Store’s API. For example:

ingress_enabled: "true"

ingress_domain: "example.com"

app_service_type: "ClusterIP" # recommended setting

An HTTPProxy object is installed with metadata-store.example.com as the fully qualified domain
name. See Ingress.

Database configuration

The default database included with the deployment is meant to get users started using the
metadata store. The default database deployment does not support many enterprise production
requirements, including scaling, redundancy, or failover. However, it is a secure deployment.

Using AWS RDS PostgreSQL database

Users can also configure the deployment to use their own RDS database instead of the default. See
AWS RDS Postgres Configuration.

Using external PostgreSQL database

Note

The ingress_enabled property expects a string value of "true" or "false", not a
Boolean value.

Tanzu Application Platform v1.5

VMware by Broadcom 1736



Users can configure the deployment to use any other PostgreSQL database. See Use external
postgres database.

Custom database password

By default, a database password is generated upon deployment. To configure a custom password,
use the db_password property in the deployment YAML.

db_password: "PASSWORD-0123"

Where PASSWORD-0123 is the same password used between deployments.

Service accounts

By default, a service account with read-write privileges to the metadata store app is installed. This
service account is a cluster-wide account that uses ClusterRole. If you don’t want the service
account and role, set the add_default_rw_service_account property to "false". To create a
custom service account, see Create Service Account.

The store creates a read-only cluster role, which is bound to a service account by using
ClusterRoleBinding. To create service accounts to bind to this cluster role, see Create Service
Account.

Exporting certificates
SCST - Store creates a Secret Export for exporting certificates to Supply Chain Security Tools -
Scan to securely post scan results. These certificates are exported to the namespace where Supply
Chain Security Tools - Scan is installed.

Configure your AWS RDS PostgreSQL configuration
This topic describes how you can configure your AWS RDS PostgreSQL configuration for Supply
Chain Security Tools (SCST) - Store.

Prerequisites
AWS Account

Setup certificate and configuration
1. Create an Amazon RDS Postgres using the Amazon RDS Getting Started Guide

2. Once the database instance starts, retrieve the following information:

1. DB Instance Endpoint

2. Master Username

3. Master Password

4. Database Name

Important

There is a known issue related to changing database passwords Persistent Volume
Retains Data.

Tanzu Application Platform v1.5

VMware by Broadcom 1737

https://github.com/vmware-tanzu/carvel-secretgen-controller/blob/develop/docs/secret-export.md
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_GettingStarted.CreatingConnecting.PostgreSQL.html#CHAP_GettingStarted.Creating.PostgreSQL


3. Create a security group to allow inbound connections from the cluster to the Postgres DB

4. Retrieve the corresponding CA Certificate that signed the Postgres TLS Certificate using
the following link

5. In the metadata-store-values.yaml fill the following settings:

db_host: "<DB Instance Endpoint>"

db_user: "<Master Username>"

db_password: "<Master Password>"

db_name: "<Database Name>"

db_port: "5432"

db_sslmode: "verify-full"

db_max_open_conns: 10

db_max_idle_conns: 100

db_conn_max_lifetime: 60

db_ca_certificate: |

  <Corresponding CA Certification>

  ...

  ...

  ...

deploy_internal_db: "false"

Use external PostgreSQL database for Supply Chain
Security Tools - Store

This topic describes how you can configure and use your external PostgreSQL database for Supply
Chain Security Tools (SCST) - Store.

Prerequisites

Set up your external PostgreSQL database. After the database instance starts, retrieve the
following information:

1. Database Instance Endpoint

2. Main User name

3. Main Password

4. Database Name

Set up certificate and configuration

1. Create a security group to allow inbound connections from the cluster to the PostgreSQL
database.

2. Retrieve the corresponding CA Certificate that signed the PostgreSQL TLS Certificate.

Note

If the database name is - in the AWS RDS UI, the value is likely
postgres.

Note

If deploy_internal_db is set to false, an instance of Postgres will not be deployed
in the cluster.

Tanzu Application Platform v1.5

VMware by Broadcom 1738

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.SSL.html


3. In the metadata-store-values.yaml fill the following settings:

db_host: "<DB Instance Endpoint>"

db_user: "<Master Username>"

db_password: "<Master Password>"

db_name: "<Database Name>"

db_port: "5432"

db_sslmode: "verify-full"

db_max_open_conns: 10

db_max_idle_conns: 100

db_conn_max_lifetime: 60

db_ca_certificate: |

  <Corresponding CA Certification>

  ...

  ...

  ...

deploy_internal_db: "false"

Validation
Verification was done using bitnami PostgreSQL. You can get more information from the bitnami
documentation.

Database backup recommendations for Supply Chain
Security Tools - Store

This topic describes database backup recommendations for Supply Chain Security Tools - Store.

By default, the metadata store uses a PersistentVolume mounted on a Postgres instance, making it
a stateful component of Tanzu Application Platform. VMware recommends implementing a regular
backup strategy as part of your disaster recovery plan when using the provided Postgres instance.

Backup

You can use Velero to create regular backups.

velero install --provider PROVIDER --bucket BUCKET-NAME --plugins PLUGIN-IMAGE-LOCATIO

N --secret-file SECRET-FILE

Where:

PROVIDER is the name of the provider you want to use.

BUCKET-NAME is the name of the bucket you want to use.

PLUGIN-IMAGE-LOCATION is the location of the plug ins you want to use.

Note

If deploy_internal_db is set to false, an instance of PostgreSQL is not deployed in
the cluster.

Note

Backup support for PersistentVolume depends on the used StorageClass and
existing provider plug-ins. See the officially supported plug-ins here.

Tanzu Application Platform v1.5

VMware by Broadcom 1739

https://github.com/bitnami/charts/tree/main/bitnami/postgresql
https://velero.io/
https://velero.io/plugins/


SECRET-FILE is the file where the secret is located.

Velero CLI can then be used to create a backup of all the resources in the metadata-store
namespace, including PersistentVolumeClaim and PersistentVolume.

velero backup create metadata-store-$(date '+%s') --include-namespaces=metadata-store

Restore

Velero CLI can restore the Store in the same or a different cluster. The same namespace can be
used to restore, but may collide with other Supply Chain Security Tools – Store installations.
Furthermore, restoring into the same namespace restores a fully functional instance of Supply
Chain Security Tools – Store; however, this instance is not managed by Tanzu Application Platform
and can cause conflicts with future installations.

velero restore create restore-metadata-store-$timestamp --from-backup metadata-store

-$timestamp --namespace-mappings metadata-store:metadata-store

Alternatively, a different namespace can be used to restore Supply Chain Security Tools – Store. In
this case, Supply Chain Security Tools – Store API is not available due to conflicting definitions in
the RBAC proxy configuration, causing all requests to fail with an Unauthorized error. In this
scenario, the postgres instance is still accessible, and tools such as pg_dump can be used to retrieve
table contents and restore in a new live installation of Supply Chain Security Tools – Store.

velero restore create restore-metadata-store-$timestamp --from-backup metadata-store

-$timestamp --namespace-mappings metadata-store:restored-metadata-store

Currently, mounting an existing PersistentVolume or PersistentVolumeClaim during installation is
not supported.

The minimum suggested resources for backups are PersistentVolume, PersistentVolumeClaim and
Secret. The database password Secret is needed to set up a Postgres instance with the correct
password to properly read data from the restored volume.

Log configuration and usage for Supply Chain Security
Tools - Store
This topic describes how you can configure Supply Chain Security Tools (SCST) - Store to output
and interpret detailed log information.

Verbosity levels
There are six verbosity levels that Supply Chain Security Tools - Store supports.

Level Description

Trace Output extended debugging logs.

Debug Output standard debugging logs.

More Output more verbose informational logs.

Default Output standard informational logs.

Less Outputs less verbose informational logs.

Minimum Outputs a minimal set of informational logs.

Tanzu Application Platform v1.5

VMware by Broadcom 1740



When SCST - Store is deployed at a specific verbosity level, all logs of that level and lower are
output to the console. For example, setting the verbosity level to More outputs logs from Minimal
to More, while Debug and Trace logs are muted.

Currently, the application logs output at these levels:

Minimum does not output any logs.

Less outputs a single log line indicating the current verbosity level is configured in Metadata
Store when the application starts.

Default outputs API endpoint access information.

Debug outputs API endpoint payload information, both for requests and responses.

Trace outputs verbose debug information about the actual SQL queries for the database.

Other log levels do not output any additional log information and are present for future
extensibility.

If you don’t specify a verbosity level when the Store is installed, the level is set to default.

Slow SQL

A slow SQL statement is logged only when verbosity level is set to trace and the SQL query takes
more than 200 milliseconds to execute. You can change this default by setting the
db_slow_threshold_ms value in values.yaml file and redeploying metadata store.

Error logs

Error logs are always output regardless of the verbosity level, even when set to minimum.

Obtaining logs
Kubernetes pods emit logs. The deployment has two pods, one for the database and one for the
API back end.

Use kubectl get pods to obtain the names of the pods:

kubectl get pods -n metadata-store

For example:

$ kubectl get pods -n metadata-store

NAME                                  READY   STATUS    RESTARTS   AGE

metadata-store-app-67659bbc66-2rc6k   2/2     Running   0          4d3h

metadata-store-db-64d5b88587-8dns7    1/1     Running   0          4d3h

The database pod has the prefix metadata-store-db-. The API backend pod has the prefix
metadata-store-app-. Use kubectl logs to get the logs from the pod you’re interested in. For
example, to get the logs of the database pod, run:

$ kubectl logs metadata-store-db-64d5b88587-8dns7 -n metadata-store

The files belonging to this database system will be owned by user "postgres".

This user must also own the server process.

...

The API backend pod has two containers, one for kube-rbac-proxy, and one for the API server.
Use the --all-containers flag to see logs from both containers. For example:

$ kubectl logs metadata-store-app-67659bbc66-2rc6k --all-containers -n metadata-store

I1206 18:34:17.686135       1 main.go:150] Reading config file: /etc/kube-rbac-proxy/c

Tanzu Application Platform v1.5

VMware by Broadcom 1741



onfig-file.yaml

I1206 18:34:17.784900       1 main.go:180] Valid token audiences:

...

{"level":"info","ts":"2022-05-27T13:47:52.54099339Z","logger":"MetadataStore","msg":"L

og settings","hostname":"metadata-store-app-5c9d6bccdb-kcrt2","LOG_LEVEL":"default"}

{"level":"info","ts":"2022-05-27T13:47:52.541133699Z","logger":"MetadataStore","ms

g":"Server Settings","hostname":"metadata-store-app-5c9d6bccdb-kcrt2","bindingaddres

s":"localhost:9443"}

{"level":"info","ts":"2022-05-27T13:47:52.541150096Z","logger":"MetadataStore","ms

g":"Database Settings","hostname":"metadata-store-app-5c9d6bccdb-kcrt2","maxopenconnec

tion":10,"maxidleconnection":100,"connectionmaxlifetime":60}

API endpoint log output

When an API endpoint handles a request, the Store generates two and five log entries:

When the endpoint receives a request, it outputs a Processing request line. This logline is
shown at the default verbosity level.

If the endpoint includes query or path parameters, it outputs a Request parameters line.
This line logs the parameters passed in the request. This line is shown at the default
verbosity level.

If the endpoint takes in a request body, it outputs a Request body line. This line outputs the
entire request body as a string. This line is shown at the debug verbosity level.

When the endpoint returns a response, it outputs a Request response line. This line is
shown at the default verbosity level.

If the endpoint returns a response body, it outputs a second Request response line with an
extra key payload, and its value is set to the entire response body. This line is shown at the
debug verbosity level.

Format

The logs use JSON output format.

When the Store handles a request, it outputs API endpoint access information in the following
format:

{"level":"info","ts":"2022-05-27T15:41:36.051991749Z","logger":"MetadataStore","ms

g":"Processing request","hostname":"metadata-store-app-c7c8648f7-8dmdl","method":"GE

T","endpoint":"/api/images?digest=sha256%3A20521f76ff3d27f436e03dc666cc97a511bbe71e8e8

495f851d0f4bf57b0bab6"}

Key-value pairs

Because JSON output format uses key-value pairs, the tables in the following sections list each key
and the meaning of their values.

Common to all logs

The following key-value pairs are common for all logs.

Note

The kube-rbac-proxy container uses a different log format than the Store. For
information about the proxy’s container log format, see Logging Formats in
GithHub.

Tanzu Application Platform v1.5

VMware by Broadcom 1742

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-instrumentation/logging.md#logging-formats


Key Type
Verbosity
Level

Description

level string all The log level of the message. This is either error for error messages, or info for all
other messages.

ts string all The timestamp when the log entry was generated. It uses RFC 3339 format with
nanosecond precision and 00:00 offset from UTC, meaning Zulu time.

logge
r

string all Used to identify what produced the log entry. For Store, the name always starts with
MetadataStore. For log entries that display the raw SQL queries, the name is
MetadataStore.gorm

msg string all A short description of the logged event

hostn
ame

string all The Kubernetes host name of the pod handling the request. This helps identify the
specific instance of the Store when you deploy multiple instances on a cluster.

error string all The error message which is only available in error log entries

endpo
int

string default The API endpoint the Metadata Store attempts to handle the request. This also includes
any query and path parameters passed in.

metho
d

string default The HTTP verb to access the endpoint. For example, GET or POST.

code integ
er

default The HTTP response code

respo
nse

string default The HTTP response in human-readable format. For example, OK, Bad Request, or
Internal Server Error.

functi
on

string debug The function name that handles the request.

Logging query and path parameter values

Those endpoints that use query or path parameters are logged on the Request parameters log
entry as key-value pairs. They are appended to all other log entries of the same request as key-
value pairs.

The key names are the query or path parameter’s name, while the value is set to the value of those
parameters in string format.

For example, the following log entry contains the digest and id key, which represents the
respective digest and id query parameters, and their values:

{"level":"info","ts":"2022-05-27T15:41:36.052063176Z","logger":"MetadataStore","ms

g":"Request parameters","hostname":"metadata-store-app-c7c8648f7-8dmdl","method":"GE

T","endpoint":"/api/images?digest=sha256%3A20521f76ff3d27f436e03dc666cc97a511bbe71e8e8

495f851d0f4bf57b0bab6","id":0,"digest":"sha256:20521f76ff3d27f436e03dc666cc97a511bbe71

e8e8495f851d0f4bf57b0bab6","name":""}

These key-value pairs show up in all subsequent log entries of the same call. For example:

{"level":"info","ts":"2022-05-27T15:41:36.057393519Z","logger":"MetadataStore","ms

g":"Request response","hostname":"metadata-store-app-c7c8648f7-8dmdl","method":"GE

T","endpoint":"/api/images?digest=sha256%3A20521f76ff3d27f436e03dc666cc97a511bbe71e8e8

495f851d0f4bf57b0bab6","id":0,"digest":"sha256:20521f76ff3d27f436e03dc666cc97a511bbe71

e8e8495f851d0f4bf57b0bab6","name":"","code":200,"response":"OK"}

This is done to:

Ensure that the application interprets the values of the query or path parameters correctly.

Tanzu Application Platform v1.5

VMware by Broadcom 1743



Figure out which log entries are associated with a particular API request. Because there
might be several simultaneous endpoint calls, this is a first attempt at grouping logs by
specific calls.

API payload log output

As mentioned at the start of this section, by setting the verbosity level to debug, the Store logs the
body payload data for both the request and response of an API call.

The debug verbosity level, instead of the default, displays this information instead of default
because:

Body payloads can contain full CycloneDX and SBOM information. Moving the payload
information at this level helps keep the production log output to a reasonable size.

Some information in these payloads might be sensitive, and the user might not want them
exposed in production environment logs.

GraphQL endpoint log output

When an GraphQL endpoint handles a request, the AMR generates following types of logs:

Every request received produces a Processing request log, which includes the name of the
operation called and the requested fields.

Every response will produces a log containing the actual query and the return status

If the endpoint returns a response body, it outputs a second Request response line with an
extra key payload, and its value is set to the entire response body. This line is shown at the
debug verbosity level

Format

The logs output are in JSON format.

When the AMR handles a request, it outputs some GraphQL endpoint access information in the
following format:

{"level":"info","ts":"2023-03-23T13:11:31.161531-06:00","logger":"Artifact Metadata Re

pository","msg":"Processing request","hostname":"xyzp2DMD6R.vmware.com","getAllApp

s":"query getAllApps {\n  apps(latest:true) {\n    \n    timestamp\n    location {\n      

alias\n    }\n  }\n}"}

{"level":"info","ts":"2023-03-23T13:11:31.172953-06:00","logger":"Artifact Metadata Re

pository","msg":"Request response","hostname":"xyzp2DMD6R.vmware.com","getAllApps":"qu

ery getAllApps {\n  apps(latest:true) {\n    \n    timestamp\n    location {\n      al

ias\n    }\n  }\n}","code":200,"response":"OK"}

Key-value pairs

The following tables list the meaning of each key found in the logs.

Common to all logs

The following key-value pairs are common for all logs.

Note

This section is only applicable to Artifactory Metadata Repository (AMR) logs.

Tanzu Application Platform v1.5

VMware by Broadcom 1744



Key Type
Verbosity
Level

Description

level string all The log level of the message. This is either error for error messages, or info for all
other messages.

ts string all The timestamp when the log entry was generated. It uses RFC 3339 format with
nanosecond precision and 00:00 offset from UTC, meaning Zulu time.

logge
r

string all Used to identify what produced the log entry. For Store, the name always starts with
MetadataStore. For log entries that display the raw SQL queries, the name is
MetadataStore.gorm.

msg string all A short description of the logged event

hostn
ame

string all The Kubernetes host name of the pod handling the request. This helps identify the
specific instance of the Store when you deploy multiple instances on a cluster.

error string all The error message which is only available in error log entries

code integ
er

default The HTTP response code

respo
nse

string default The HTTP response in human-readable format. For example, OK, Bad Request, or
Internal Server Error.

query string debug The operation name is the key and value fields that the fields requested.

API payload log output

By setting the verbosity level to debug, the AMR logs the body payload data for both the request
and response of an API call.

The debug verbosity level, instead of the default, displays this information instead of default
because body payloads can be large and some information in these payloads might be sensitive.
You might not want the sensitive payloads exposed in production environment logs.

Logs containing payload information might be in the following format:

{"level":"info","ts":"2023-03-23T13:11:31.172966-06:00","logger":"Artifact Metadata Re

pository","msg":"Request response","hostname":"xyzp2DMD6R.vmware.com","getAllApps":"qu

ery getAllApps {\n  apps(latest:true) {\n    \n    timestamp\n    location {\n      al

ias\n    }\n  }\n}","payload":{"apps":[{"timestamp":"2023-03-22T15:09:38.867371-06:0

0","location":{"alias":"1-Alias"}}]}}

Slow SQL query log output

When the verbosity level is set to trace, you see log entries containing slow SQL queries.

SQL Query log output

Slow SQL query logs are displayed in the following format when verbosity level is set to trace:

{"level":"info","ts":"2023-03-23T12:48:12.337749-06:00","logger":"Artifact Metadata Re

pository.gorm","msg":"slow sql >= 200ms","hostname":"xyzp2DMD6R.vmware.com","rows":500

00,"sql":"SELECT \"artifact_apps\".\"id\",\"artifact_apps\".\"created_at\",\"artifact_

Note

Some information in these SQL Query trace logs might be sensitive, and you might
not want them exposed in production environment logs.

Tanzu Application Platform v1.5

VMware by Broadcom 1745



apps\".\"updated_at\",\"artifact_apps\".\"deleted_at\",\"artifact_apps\".\"location_id

\",\"artifact_apps\".\"correlation_id\",\"artifact_apps\".\"image_url\",\"artifact_app

s\".\"image_digest\",\"artifact_apps\".\"namespace\",\"artifact_apps\".\"name\",\"arti

fact_apps\".\"instances\",\"artifact_apps\".\"status\",\"artifact_apps\".\"timestamp\" 

FROM \"artifact_apps\" INNER JOIN (select max(timestamp) as timestamp, name, namespac

e, location_id from artifact_apps group by location_id, name, namespace) as argo on ar

go.timestamp = artifact_apps.timestamp and argo.name = artifact_apps.name and argo.loc

ation_id = artifact_apps.location_id and argo.namespace = artifact_apps.namespace WHER

E \"artifact_apps\".\"deleted_at\" IS NULL"}

It is similar to the API endpoint log output format, but uses the following key-value pairs:

Key Type
Log
Level

Description

row
s

integ
er

trace Indicates the number of rows affected by the SQL query

sql string trace Displays the raw SQL query for the database

data
#

string all Used in error log entries. You can replace # with an integer because multiples of these keys
can appear in the same log entry. These keys contain extra information related to the error.

SQL Query log output

Some Store logs display the executed SQL query commands when you set the verbosity level to
trace or a SQL call fails.

Format

When the Store display SQL query logs, it uses the following format:

{"level":"info","ts":"2022-05-27T15:37:26.186960324Z","logger":"MetadataStore.gorm","m

sg":"sql call","hostname":"metadata-store-app-c7c8648f7-8dmdl","rows":1,"sql":"SELECT 

count(*) FROM information_schema.tables WHERE table_schema = CURRENT_SCHEMA() AND tabl

e_name = 'images' AND table_type = 'BASE TABLE'"}

It is similar to the API endpoint log output format, but uses the following key-value pairs:

Key Type
Log
Level

Description

row
s

integ
er

trace Indicates the number of rows affected by the SQL query

sql string trace Displays the raw SQL query for the database

data
#

string all Used in error log entries. You can replace # with an integer because multiples of these keys
can appear in the same log entry. These keys contain extra information related to the error.

Connect to the PostgreSQL database

You can use a PostgreSQL database with Supply Chain Security Tools - Store. To connect to the
PostgreSQL database, you need the following values:

database name

Note

Some information in these SQL Query trace logs might be sensitive, and you might
not want them exposed in production environment logs.

Tanzu Application Platform v1.5

VMware by Broadcom 1746



user name

password

database host

database port

database CA certificate

Connect to the PostgreSQL database:

1. Obtain the database name, user name, password, and CA certificate. Run:

db_name=$(kubectl get secret postgres-db-secret -n metadata-store -o json | jq 

-r '.data.POSTGRES_DB' | base64 -d)

db_username=$(kubectl get secret postgres-db-secret -n metadata-store -o json | 

jq -r '.data.POSTGRES_USER' | base64 -d)

db_password=$(kubectl get secret postgres-db-secret -n metadata-store -o json | 

jq -r '.data.POSTGRES_PASSWORD' | base64 -d)

db_ca_dir=$(mktemp -d -t ca-cert-XXXX)

db_ca_path="$db_ca_dir/ca.crt"

kubectl get secrets postgres-db-tls-cert -n metadata-store -o json | jq -r '.da

ta."ca.crt"' | base64 -d > $db_ca_path

If the password was auto-generated, the password command returns an empty string. Run:

db_password=$(kubectl get secret postgres-db-password -n metadata-store -o json 

| jq -r '.data.DB_PASSWORD' | base64 -d)

2. In a separate terminal, run:

kubectl port-forward service/metadata-store-db 5432:5432 -n metadata-store

3. Set the database host and port values on the first terminal:

db_host="localhost"

db_port=5432

4. To port forward to a different local port number, use the following command template:

kubectl port-forward service/metadata-store-db <LOCAL_PORT>:5432 -n metadata-st

ore

Where LOCAL-PORT is the port number for the database you want to use.

You can now connect to the database and make queries. For example:

psql "host=$db_host port=$db_port user=$db_username dbname=$db_name sslmode=verify-ca 

sslrootcert=$db_ca_path" -c "SELECT * FROM images"

You can use GUI clients such as Postico or DBeaver to interact with the database.

Troubleshooting Supply Chain Security Tools - Store

This topic contains ways you can troubleshoot known issues for Supply Chain Security Tools (SCST)
- Store.

Querying by insight source returns zero CVEs even though
there are CVEs in the source scan

Tanzu Application Platform v1.5

VMware by Broadcom 1747

https://eggerapps.at/postico2/
https://dbeaver.io/


Symptom

The insight source get and other insight source commands return zero results.

Solution

You might have to include different combinations of --repo, --org, --commit due to how the scan-
controller populates the software bill of materials (SBOM). For more information see Query
vulnerabilities, images, and packages.

Persistent volume retains data

Symptom

If Supply Chain Security Tools - Store is deployed, deleted, redeployed, and the database
password is changed during the redeployment, the metadata-store-db pod fails to start. This is
caused by the persistent volume used by postgres retaining old data, even though the retention
policy is set to DELETE.

Solution

To redeploy the app, either use the same database password or follow these steps to erase the
data on the volume:

1. Deploy metadata-store app by using kapp.

2. Verify that the metadata-store-db-* pod fails.

3. Run:

kubectl exec -it metadata-store-db-<some-id> -n metadata-store /bin/bash

Where <some-id> is the ID generated by Kubernetes and appended to the pod name.

4. Run rm -rf /var/lib/postgresql/data/* to delete all database data.

Where /var/lib/postgresql/data/* is the path found in postgres-db-deployment.yaml.

5. Delete the metadata-store app by using kapp.

6. Deploy the metadata-store app by using kapp.

Missing persistent volume

Symptom

After SCST - Store is deployed, metadata-store-db pod might fail for missing volume while
postgres-db-pv-claim pvc is in PENDING state.

This is because the cluster where SCST - Store is deployed does not have storageclass defined.
storageclass’s provisioner is responsible for creating the persistent volume after metadata-store-
db attaches postgres-db-pv-claim.

Solution

Caution

Changing the database password deletes your Supply Chain Security Tools - Store
data.

Tanzu Application Platform v1.5

VMware by Broadcom 1748



1. Verify that your cluster has storageclass by running kubectl get storageclass.

2. Create a storageclass in your cluster before deploying SCST - Store. For example:

# This is the storageclass that Kind uses

kubectl apply -f https://raw.githubusercontent.com/rancher/local-path-provision

er/master/deploy/local-path-storage.yaml

# set the storage class as default

kubectl patch storageclass local-path -p '{"metadata": {"annotations":{"storage

class.kubernetes.io/is-default-class":"true"}}}'

Builds fail due to volume errors on EKS running Kubernetes
v1.23

Symptom

When installing SCST - Store on or upgrading an existing EKS cluster to Kubernetes v1.23, the
satabase pod shows:

running PreBind plugin "VolumeBinding": binding volumes: provisioning failed for PVC 

"postgres-db-pv-claim"

Explanation

This is due to the CSIMigrationAWS in this Kubernetes version which requires users to install the
Amazon Elastic Block Store (EBS) CSI Driver to use EBS volumes.

SCST - Store uses the default storage class which uses EBS volumes by default on EKS.

Solution

Follow the AWS documentation to install the Amazon EBS CSI Driver before installing SCST - Store
or before upgrading to Kubernetes v1.23.

Certificate Expiries

Symptom

The Insight CLI or the Scan Controller fails to connect to SCST - Store.

The logs of the metadata-store-app pod show the following error:

$ kubectl logs deployment/metadata-store-app -c metadata-store-app -n metadata-store

...

2022/09/12 21:22:07 http: TLS handshake error from 127.0.0.1:35678: write tcp 127.0.0.

1:9443->127.0.0.1:35678: write: broken pipe

...

or

The logs of metadata-store-db show the following error:

$ kubectl logs statefulset/metadata-store-db -n metadata-store

...

2022-07-20 20:02:51.206 UTC [1] LOG:  database system is ready to accept connections

2022-09-19 18:05:26.576 UTC [13097] LOG:  could not accept SSL connection: sslv3 alert 

bad certificate

...

Tanzu Application Platform v1.5

VMware by Broadcom 1749

https://aws.amazon.com/blogs/containers/amazon-eks-now-supports-kubernetes-1-23/
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html


Explanation

cert-manager rotates the certificates, but the metadata-store and the PostgreSQL db are unaware
of the change, and are using the old certificates.

Solution

If you see TLS handshake error in the metadata-store-app logs, delete the metadata-store-app
pod and wait for it to come back up.

kubectl delete pod metadata-store-app-xxxx -n metadata-store

If you see could not accept SSL connection in the metadata-store-db logs, delete the metadata-
store-db pod and wait for it to come back up.

kubectl delete pod metadata-store-db-0 -n metadata-store

Troubleshooting errors from Tanzu Application Platform
GUI related to SCST - Store
Different Tanzu Application Platform GUI plug-ins use SCST - Store to display information about
vulnerabilities and packages. Some errors visible in Tanzu Application Platform GUI are related to
this connection.

An error occurred while loading data from the Metadata Store

Symptom

In the Supply Chain Choreographer plug-in, you see the error message An error occurred while
loading data from the Metadata Store.

Cause

There are multiple potential causes. The most common cause is tap-values.yaml missing the
configuration that enables Tanzu Application Platform GUI to communicate with Supply Chain
Security Tools - Store.

Tanzu Application Platform v1.5

VMware by Broadcom 1750



Solution

See Supply Chain Choreographer - Enable CVE scan results for the necessary configuration to add
to tap-values.yaml. After adding the configuration, update your Tanzu Application Platform
deployment or Tanzu Application Platform GUI deployment with the new values.

Troubleshoot upgrading Supply Chain Security Tools -
Store

This topic describes how you can troubleshoot upgrading issues Supply Chain Security Tools (SCST)
- Store.

Database deployment does not exist

To prevent issues with the metadata store database, such as the ones described in this topic, the
database deployment is StatefulSet in

Tanzu Application Platform v1.2 and later

Metadata Store v1.1 and later

If you have scripts searching for a metadata-store-db deployment, edit the scripts to instead search
for StatefulSet.

Invalid checkpoint record

When using Tanzu to upgrade to a new version of the store, there is occasionally data corruption.
Here is an example of how this shows up in the log:

PostgreSQL Database directory appears to contain a database; Skipping initialization

2022-01-21 21:53:38.799 UTC [1] LOG:  starting PostgreSQL 13.5 (Ubuntu 13.5-1.pgdg18.0

4+1) on x86_64-pc-linux-gnu, compiled by gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0, 64-b

it

2022-01-21 21:53:38.799 UTC [1] LOG:  listening on IPv4 address "0.0.0.0", port 5432

2022-01-21 21:53:38.799 UTC [1] LOG:  listening on IPv6 address "::", port 5432

2022-01-21 21:53:38.802 UTC [1] LOG:  listening on Unix socket "/var/run/postgresql/.

s.PGSQL.5432"

2022-01-21 21:53:38.807 UTC [14] LOG:  database system was shut down at 2022-01-21 21:

21:12 UTC

2022-01-21 21:53:38.807 UTC [14] LOG:  invalid record length at 0/1898BE8: wanted 24, 

got 0

2022-01-21 21:53:38.807 UTC [14] LOG:  invalid primary checkpoint record

2022-01-21 21:53:38.807 UTC [14] PANIC:  could not locate a valid checkpoint record

2022-01-21 21:53:39.496 UTC [1] LOG:  startup process (PID 14) was terminated by signa

l 6: Aborted

2022-01-21 21:53:39.496 UTC [1] LOG:  aborting startup due to startup process failure

2022-01-21 21:53:39.507 UTC [1] LOG:  database system is shut down

The log shows a database pod in a failure loop. For steps to fix the issue so that the upgrade can
proceed, see the SysOpsPro documentation.

Upgraded pod hanging

Because the default access mode in the PVC is ReadWriteOnce, if you are deploying in an
environment with multiple nodes then each pod might be on a different node. This causes the
upgraded pod to spin up but then get stuck initializing because the original pod does not stop. To

Tanzu Application Platform v1.5

VMware by Broadcom 1751

https://sysopspro.com/fix-postgresql-error-panic-could-not-locate-a-valid-checkpoint-record/


resolve this issue, find and delete the original pod so that the new pod can attach to the persistent
volume:

1. Discover the name of the app pod that is not in a pending state by running:

kubectl get pods -n metadata-store

2. Delete the pod by running:

kubectl delete pod METADATA-STORE-APP-POD-NAME -n metadata-store

Failover, redundancy, and backups for Supply Chain
Security Tools - Store

This topic describes how you can configure and use failover, redundancy, and backups for Supply
Chain Security Tools (SCST) - Store.

API Server

By default the API server has 1 replica. If the pod fails, the single instance restarts by normal
Kubernetes behavior, but there is downtime. If you upgrade, some downtime is possible.

You can configure the number of replicas by using the app_replicas text box in the scst-store-
values.yaml file.

Database

By default, the database has one replica, and restarts with some downtime if it fails.

Use external postgres database

AWS RDS postgres configuration

For the default PostgreSQL database deployment, with deploy_internal_db set to true, you can
use Velero as the backup method. For information about using Velero as the backup method, see
Backups.

Custom certificate configuration for Supply Chain Security
Tools - Store

This topic describes how you can configure the following certificates for Supply Chain Security Tools
(SCST) - Store:

1. Default configuration

2. Custom certificate

Default configuration

Caution

Although you can configure db_replicas in scst-store-values.yaml, this is
discouraged because db_replicas is still experimental. The default internal database
is not for production use. For production deployments, use an external database.

Tanzu Application Platform v1.5

VMware by Broadcom 1752



By default, SCST - Store creates a self-signed certificate and TLS communication is automatically
enabled.

If ingress support is enabled, SCST - Store installation creates an HTTPProxy entry with host
routing by using the qualified name metadata-store.<ingress_domain>. For example, metadata-
store.example.com. The created route supports HTTPS communication using the self-signed
certificate with the same subject Alternative Name.

(Optional) Setting up custom ingress TLS certificate

(Optional) Users can configure TLS to use a custom certificate. To do that:

1. Place the certificates in the secret.

2. Edit the tap-values.yaml to use this secret.

Place the certificates in secret

1. Create the certificate secret before deploying SCST - Store.

2. Create a Kubernetes object with kind Secret and type kubernetes.io/tls.

Update tap-values.yaml

1. In the tap-values.yaml file, you can configure the metadata store to use the namespace and
secretName from the secret created in the last step.

metadata_store:

  tls:

    namespace: "namespace"

    secretName: "secretName"

Where:

namespace is the targeted namespace for secret consumption by the HTTPProxy.

secretName is the name of secret for consumption by the HTTPProxy.

Additional resources

Ingress support

TLS configuration

TLS configuration for Supply Chain Security Tools - Store

This topic describes how you can configure TLS for Supply Chain Security Tools (SCST) - Store.

Setting up custom ingress TLS ciphers

In the tap-values.yaml file, tls.server.rfcCiphers are set as shown in the following YAML:

metadata_store:

  tls:

    server:

Important

SCST - Store only supports TLS v1.2.

Tanzu Application Platform v1.5

VMware by Broadcom 1753



      rfcCiphers:

        - TLS_AES_128_GCM_SHA256

        - TLS_AES_256_GCM_SHA384

        - TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

        - TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

        - TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

        - TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

Where tls.server.rfcCiphers is a list of cipher suites for the server. Values are from the Go TLS
package constants. If you omit values, the default Go cipher suites are used. These are the default
values:

TLS_AES_128_GCM_SHA256

TLS_AES_256_GCM_SHA384

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

Example custom TLS settings

The following is a complete example of TLS configuration:

metadata_store:

  tls:

    namespace: NAMESPACE

    secretName: SECRET-NAME

    server:

      rfcCiphers:

        - TLS_AES_128_GCM_SHA256

        - TLS_AES_256_GCM_SHA384

        - TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

        - TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

        - TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

        - TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

Where:

NAMESPACE is the name of the namespace you want to configure TLS with.

SECRET-NAME is the name of the secret you want to configure TLS with.

Additional resources

Custom certificate configuration

Ingress support

Certificate rotation for Supply Chain Security Tools - Store

This topic describes how you can rotate TLS certificates for Supply Chain Security Tools (SCST) -
Store.

Certificates

By default, the use_cert_manager setting is set to "true". When the setting use_cert_manager is
"true" the Store uses cert-manager to generate a CA certificate, an API certificate, and a database

Tanzu Application Platform v1.5

VMware by Broadcom 1754

https://golang.org/pkg/crypto/tls/#pkg-constants


Certificate.

To see these certificates:

$ kubectl get certificate -n metadata-store

NAME                    READY   SECRET                  AGE

app-tls-ca-cert         True    app-tls-ca-cert         38d

app-tls-cert            True    app-tls-cert            38d

postgres-db-tls-cert    True    postgres-db-tls-cert    38d

The earlier certificates are automatically rotated by cert-manager.

The Store can run these certificates automatically once cert-manager rotates them.

If the environment is a multi-cluster setup, the operator must manually copy over the new CA
certificate to the build cluster.

Certificate duration setting

In the tap-values.yaml file, api_cert_duration, api_cert_renew_before, ca_cert_duration, and
ca_cert_renew_before are configurable as shown in the following YAML:

metadata_store:

  ca_cert_duration: CA-DURATION

  ca_cert_renew_before: CA-RENEW

  api_cert_duration: API-DURATION

  api_cert_renew_before: API-RENEW

Where:

CA-DURATION is the duration that the ca certificate is valid for. Must be given in h, m, or s.
Default value is 8760h.

CA-RENEW is how long before the expiry of the ca certificate is renewed. Must be given in h,
m, or s. Default value is 1h.

API-DURATION is the duration that the API certificate is valid for. Must be given in h, m, or s.
Default value is 2160h.

API-RENEW is how long before the expiry of the API certificate is renewed. Must be given in
h, m, or s. Default value is 24h.

Ingress support for Supply Chain Security Tools - Store

This topic describes how to configure ingress for Supply Chain Security Tools (SCST) - Store.

Ingress configuration

Supply Chain Security Tools (SCST) - Store has ingress support by using Contour’s HTTPProxy
resources. To enable ingress support, a Contour installation must be available in the cluster.

Important

The *_cert_duration and the corresponding *_renew_before settings must not be
close. For more information, see the cert-manager documentation. This can lead to
a renewal loop. The *_cert_duration must be greater than the corresponding
*_renew_before. The earlier settings only take effect when use_cert_manager is
"true". If the use_cert_manager is not set, it defaults to "true".

Tanzu Application Platform v1.5

VMware by Broadcom 1755

https://cert-manager.io/docs/usage/certificate/#renewal


To change ingress configuration, edit your tap-values.yaml when you install a Tanzu Application
Platform profile. When you configure the shared.ingress_domain property, SCST - Store
automatically uses that setting.

Alternatively, you can customize SCST - Store’s configuration under the metadata_store property.
Under metadata_store, there are two values to configure the proxy:

ingress_enabled

ingress_domain

This is an example snippet in a tap-values.yaml:

...

metadata_store:

  ingress_enabled: "true"

  ingress_domain: "example.com"

  app_service_type: "ClusterIP"  # Defaults to `LoadBalancer`. If ingress is enabled t

hen this must be set to `ClusterIP`.

...

SCST - Store installation creates an HTTPProxy entry with host routing by using the qualified name
METADATA-STORE.INGRESS-DOMAIN. For example, metadata-store.example.com. The route supports
HTTPS communication using a certificate. By default, a self-signed certificate is used with the same
subject alternative name. For more information, see Custom certificate configuration.

Contour and DNS setup are not part of SCST - Store installation. Access to SCST - Store using
Contour depends on the correct configuration of these two components.

Make the proper DNS record available to clients to resolve metadata-store and set ingress_domain
to Envoy service’s external IP address.

DNS setup example:

$ kubectl describe svc envoy -n tanzu-system-ingress

> ...

  Type:                     LoadBalancer

  ...

  LoadBalancer Ingress:     100.2.3.4

  ...

  Port:                     https  443/TCP

  ...

$ nslookup metadata-store.example.com

> Server:    8.8.8.8

  Address:  8.8.8.8#53

  Non-authoritative answer:

  Name:  metadata-store.example.com

  Address: 100.2.3.4

$ curl https://metadata-store.example.com/api/health -k -v

> ...

  < HTTP/2 200

  ...

Note

The preceding curl example uses the not secure -k flag to skip TLS verification
because the Store installs a self-signed certificate. The following section shows how
to access the CA certificate to enable TLS verification for HTTP clients.

Tanzu Application Platform v1.5

VMware by Broadcom 1756



Get the TLS CA certificate

To get SCST - Store’s TLS CA certificate, use kubectl get secret. In this example, you save the
certificate for the environment variable to a file.

kubectl get secret CERT-NAME -n metadata-store -o json | jq -r '.data."ca.crt"' | base

64 -d > OUTPUT-FILE

Where:

CERT-NAME is the name of the certificate. This must be ingress-cert if no custom certificate
is used.

OUTPUT-FILE is the file you want to create to store the certificate.

For example:

$ kubectl get secret tap-ingress-selfsigned-root-ca -n cert-manager -o json | jq -r '.

data."ca.crt"' | base64 -d > insight-ca.crt

$ cat insight-ca.crt

Additional Resources

Custom certificate configuration

TLS configuration

Certificate rotation

Configure target endpoint and certificate

Use your LoadBalancer with Supply Chain Security Tools -
Store
This topic describes how to use your LoadBalancer with Supply Chain Security Tools (SCST) - Store.

Configure LoadBalancer

To configure a LoadBalancer:

1. Edit /etc/hosts/ to use the external IP address of the metadata-store-app service.

METADATA_STORE_IP=$(kubectl get service/metadata-store-app --namespace metadata

-store -o jsonpath="{.status.loadBalancer.ingress[0].ip}")

METADATA_STORE_PORT=$(kubectl get service/metadata-store-app --namespace metada

ta-store -o jsonpath="{.spec.ports[0].port}")

METADATA_STORE_DOMAIN="metadata-store-app.metadata-store.svc.cluster.local"

# Delete any previously added entry

sudo sed -i '' "/$METADATA_STORE_DOMAIN/d" /etc/hosts

echo "$METADATA_STORE_IP $METADATA_STORE_DOMAIN" | sudo tee -a /etc/hosts > /de

v/null

Note

LoadBalancer is not the recommended service type. Consider the recommended
configuration of enabling Ingress.

Tanzu Application Platform v1.5

VMware by Broadcom 1757



2. Select one of the IP addresses returned from the dig command and write it to the
/etc/hosts file.

Port forwarding
If you want to use port forwarding instead of the external IP address from the LoadBalancer, follow
these steps:

Configure port forwarding for the service so the insight plug-in can access SCST - Store. Run:

kubectl port-forward service/metadata-store-app 8443:8443 -n metadata-store

Note: You must run the port forwarding command in a separate terminal window, or run the
command in the background: kubectl port-forward service/metadata-store-app 8443:8443 -n
metadata-store &

Edit your /etc/hosts file for Port Forwarding

Use the following script to add a new local entry to /etc/hosts:

METADATA_STORE_PORT=$(kubectl get service/metadata-store-app --namespace metadata-stor

e -o jsonpath="{.spec.ports[0].port}")

METADATA_STORE_DOMAIN="metadata-store-app.metadata-store.svc.cluster.local"

# delete any previously added entry

sudo sed -i '' "/$METADATA_STORE_DOMAIN/d" /etc/hosts

echo "127.0.0.1 $METADATA_STORE_DOMAIN" | sudo tee -a /etc/hosts > /dev/null

Configure the Insight plug-in
Because you deployed Supply Chain Security Tools (SCST) - Store without using Ingress, you must
use the Certificate resource app-tls-cert for HTTPS communication.

To get the CA Certificate:

kubectl get secret app-tls-cert -n metadata-store -o json | jq -r '.data."ca.crt"' | b

ase64 -d > insight-ca.crt

Set the target by running:

tanzu insight config set-target https://$METADATA_STORE_DOMAIN:$METADATA_STORE_PORT --

ca-cert insight-ca.crt

Note

On EKS, you must get the IP address for the LoadBalancer. Find the IP
address by running something similar to the following: dig RANDOM-SHA.us-
east-2.elb.amazonaws.com. Where RANDOM-SHA is the EXTERNAL-IP
received for the LoadBalancer.

Important

The tanzu insight config set-target does not initiate a test connection. Use
tanzu insight health to test connecting using the configured endpoint and CA

Tanzu Application Platform v1.5

VMware by Broadcom 1758



Use your NodePort with Supply Chain Security Tools -
Store
This topic describes how you can use your NodePort with Supply Chain Security Tools (SCST) -
Store.

Overview

You must use port forwarding when using the NodePort configuration.

Configure port forwarding for the service so the insight plug-in can access SCST - Store. Run:

kubectl port-forward service/metadata-store-app 8443:8443 -n metadata-store

Note: You must run the port forwarding command in a separate terminal window, or run the
command in the background: kubectl port-forward service/metadata-store-app 8443:8443 -n
metadata-store &

Edit your /etc/hosts file for Port Forwarding

Use the following script to add a new local entry to /etc/hosts:

METADATA_STORE_PORT=$(kubectl get service/metadata-store-app --namespace metadata-stor

e -o jsonpath="{.spec.ports[0].port}")

METADATA_STORE_DOMAIN="metadata-store-app.metadata-store.svc.cluster.local"

# delete any previously added entry

sudo sed -i '' "/$METADATA_STORE_DOMAIN/d" /etc/hosts

echo "127.0.0.1 $METADATA_STORE_DOMAIN" | sudo tee -a /etc/hosts > /dev/null

Configure the Insight plug-in

Because you deployed Supply Chain Security Tools (SCST) - Store without using Ingress, you must
use the Certificate resource app-tls-cert for HTTPS communication.

To get the CA Certificate:

kubectl get secret app-tls-cert -n metadata-store -o json | jq -r '.data."ca.crt"' | b

ase64 -d > insight-ca.crt

Set the target by running:

tanzu insight config set-target https://$METADATA_STORE_DOMAIN:$METADATA_STORE_PORT --

certificate. Neither commands test whether the access token is correct. For that
you must use the plug-in to add data and query data.

Note

The recommended service type is Ingress. NodePort is only recommended when
the cluster does not support Ingress or the cluster does not support the
LoadBalancer service type. NodePort is not supported for a multicluster setup, as
certificates cannot be modified.

Tanzu Application Platform v1.5

VMware by Broadcom 1759



ca-cert insight-ca.crt

Multicluster setup for Supply Chain Security Tools - Store

This topic describes how you can deploy Supply Chain Security Tools (SCST) - Store in a
multicluster setup, including installing multiple profiles such as, View, Build, Run, and Iterate.

Overview

SCST - Store is deployed with the View profile. After installing the View profile, but before installing
the Build profile, you must add configuration for SCST - Store to the Kubernetes cluster where you
intend to install the Build profile. This topic explains how to add configuration which allows
components in the Build cluster to communicate with SCST - Store in the View cluster.

Prerequisites
You must install the View profile. See Install View profile.

Procedure summary
1. Copy SCST - Store CA certificate from the View cluster.

2. Copy SCST - Store authentication token from the View cluster.

3. Apply the CA certificate and authentication token to the Kubernetes cluster where you
intend to install the Build profile.

4. Install the Build profile.

Copy SCST - Store CA certificate from View cluster
With your kubectl targeted at the View cluster, you can view SCST - Store’s TLS CA certificate.
Run these commands to copy the CA certificate into a file store_ca.yaml.

CA_CERT=$(kubectl get secret -n metadata-store CERT-NAME -o json | jq -r ".data.\"ca.c

rt\"")

cat <<EOF > store_ca.yaml

---

apiVersion: v1

kind: Secret

type: Opaque

Important

The tanzu insight config set-target does not initiate a test connection. Use
tanzu insight health to test connecting using the configured endpoint and CA
certificate. Neither commands test whether the access token is correct. For that
you must use the plug-in to add data and query data.

Note

If you already deployed the Build profile, you can follow this procedure. However, in
the Install Build profile step, instead of deploying the Build profile again, update your
deployment using tanzu package installed update.

Tanzu Application Platform v1.5

VMware by Broadcom 1760



metadata:

  name: store-ca-cert

  namespace: metadata-store-secrets

data:

  ca.crt: $CA_CERT

EOF

Where CERT-NAME is the name of the certificate you want to reference in store_ca.yaml.

For example:

$ CA_CERT=$(kubectl get secret -n metadata-store ingress-cert -o json | jq -r ".dat

a.\"ca.crt\"")

$ cat <<EOF > store_ca.yaml

---

apiVersion: v1

kind: Secret

type: Opaque

metadata:

  name: store-ca-cert

  namespace: metadata-store-secrets

data:

  ca.crt: $CA_CERT

EOF

Copy SCST - Store authentication token from the View
cluster

Copy the SCST - Store authentication token into an environment variable. You use this
environment variable in the next step.

AUTH_TOKEN=$(kubectl get secrets metadata-store-read-write-client -n metadata-store -o 

jsonpath="{.data.token}" | base64 -d)

Apply the CA certificate and authentication token to a new
Kubernetes cluster

Before you deploy the Build profile, you must apply the CA certificate and authentication token
from the earlier steps. Then the Build profile deployment has access to these values.

To apply the CA certificate and authentication token:

1. With your kubectl targeted at the Build cluster, create a namespace for the CA certificate
and authentication token.

kubectl create ns metadata-store-secrets

2. Apply the CA certificate store_ca.yaml secret YAML you generated earlier.

kubectl apply -f store_ca.yaml

3. Create a secret to store the access token. This uses the AUTH_TOKEN environment variable.

kubectl create secret generic store-auth-token \

  --from-literal=auth_token=$AUTH_TOKEN -n metadata-store-secrets

The cluster now has a CA certificate named store-ca-cert and authentication token named store-
auth-token in the namespace metadata-store-secrets.

Tanzu Application Platform v1.5

VMware by Broadcom 1761



Install Build profile

If you came to this topic from the Install multicluster Tanzu Application Platform profiles topic after
installing the View profile, return to that topic to install the Build profile.

The Build profile values.yaml contains configuration that references the secrets in the metadata-
store-secrets namespace you created in this guide. The names of these secrets are hard coded in
the example values.yaml.

More information about how Build profile uses the configuration

The secrets you created are used in the Build profile values.yaml to configure the Grype scanner
which talks to SCST - Store. After performing a vulnerabilities scan, the Grype scanner sends the
results to SCST - Store. Here’s a snippet of what the configuration might look like.

...

grype:

  namespace: "MY-DEV-NAMESPACE" # (Optional) Defaults to default namespace.

  targetImagePullSecret: "TARGET-REGISTRY-CREDENTIALS-SECRET"

  metadataStore:

    url: METADATA-STORE-URL-ON-VIEW-CLUSTER # Url with http / https

    caSecret:

        name: store-ca-cert

        importFromNamespace: metadata-store-secrets # Must match with `ingress-cert.da

ta."ca.crt"` of store on view cluster

    authSecret:

        name: store-auth-token # Must match with valid store token of metadata-store o

n view cluster

        importFromNamespace: metadata-store-secrets

...

Where:

METADATA-STORE-URL-ON-VIEW-CLUSTER is the ingress URL of SCST - Store deployed to the
View cluster. For example, https://metadata-store.example.com. See Ingress support.

TARGET-REGISTRY-CREDENTIALS-SECRET is the name of the secret that contains the
credentials to pull an image from the registry for scanning.

MY-DEV-NAMESPACE is the name of the developer namespace. SCST - Scan deploys the
ScanTemplates there. This allows the scanning feature to run in this namespace.

Configure developer namespaces

After you finish the entire Tanzu Application Platform installation process, you are ready to
configure developer namespaces. To prepare developer namespaces, you must export the secrets
you created earlier to those namespaces.

Exporting SCST - Store secrets to a developer namespace in a Tanzu
Application Platform multicluster deployment

Export secrets to a developer namespace by creating SecretExport resources on the developer
namespace. Run the following command to create the SecretExport resources. You must have
created and populated the metadata-store-secrets namespace.

cat <<EOF | kubectl apply -f -

---

apiVersion: secretgen.carvel.dev/v1alpha1

kind: SecretExport

metadata:

  name: store-ca-cert

Tanzu Application Platform v1.5

VMware by Broadcom 1762



  namespace: metadata-store-secrets

spec:

  toNamespaces: [DEV-NAMESPACES]

---

apiVersion: secretgen.carvel.dev/v1alpha1

kind: SecretExport

metadata:

  name: store-auth-token

  namespace: metadata-store-secrets

spec:

  toNamespaces: [DEV-NAMESPACES]

EOF

Where [DEV-NAMESPACES] is an array of developer namespaces where the secrets are exported.

More detailed description of metadata configuration can be found at Cluster Specific Store
Configuration

Additional resources

Ingress support

Custom certificate configuration

Developer namespace setup for Supply Chain Security
Tools - Store
This topic describes how you can set up your developer namespace for Supply Chain Security Tools
(SCST) - Store.

Overview
After you finish the entire Tanzu Application Platform installation process, you are ready to
configure the developer namespace. When you configure a developer namespace, you must
export the Supply Chain Security Tools (SCST) - Store CA certificate and authentication token to
the namespace. This enables SCST - Scan to find the credentials to send scan results to SCST -
Store.

There are two ways to deploy Tanzu Application Platform:

Single cluster, which entails using the Tanzu Application Platform values file

Multicluster, which entails using SecretExport

Single cluster - Using the Tanzu Application Platform values
file

When deploy the Tanzu Application Platform Full or Build profile, edit the tap-values.yaml file you
used to deploy Tanzu Application Platform.

metadata_store:

  ns_for_export_app_cert: "DEV-NAMESPACE"

Where DEV-NAMESPACE is the name of the developer namespace.

The ns_for_export_app_cert supports one namespace at a time. If you have multiple namespaces
you can replace this value with a "*", but this exports the CA to all namespaces. Consider whether
this increased visibility presents a risk.

Tanzu Application Platform v1.5

VMware by Broadcom 1763



metadata_store:

  ns_for_export_app_cert: "*"

Update Tanzu Application Platform to apply the changes by running:

$ tanzu package installed update tap -f tap-values.yaml -n tap-install

Multicluster - Using SecretExport

In a multicluster deployment, follow the steps in Multicluster setup. It describes how to create
secrets and export secrets to developer namespaces.

Next steps

If you arrived in this topic from Setting up the Out of the Box Supply Chain with testing and
scanning, return to that topic and continue with the instructions.

Retrieve access tokens for Supply Chain Security Tools -
Store

This topic describes how you can retrieve access tokens for Supply Chain Security Tools (SCST) -
Store.

Overview

When you install Tanzu Application Platform, the Supply Chain Security Tools (SCST) - Store
deployment automatically includes a read-write service account. This service account is bound to
the metadata-store-read-write role.

There are two types of SCST - Store service accounts:

1. Read-write service account - full access to the POST and GET API requests

2. Read-only service account - can only use GET API requests

This topic shows how to retrieve the access token for these service accounts.

Retrieving the read-write access token

To retrieve the read-write access token, run:

kubectl get secrets metadata-store-read-write-client -n metadata-store -o jsonpath="{.

data.token}" | base64 -d

Retrieving the read-only access token

In order retrieve the read-only access token, you must first have a read-only service account. See
Create read-only service account.

To retrieve the read-only access token, run:

kubectl get secrets metadata-store-read-client -n metadata-store -o jsonpath="{.data.t

oken}" | base64 -d

Using an access token

Tanzu Application Platform v1.5

VMware by Broadcom 1764



The access token is a Bearer token used in the http request header Authorization. For example,
Authorization: Bearer eyJhbGciOiJSUzI1NiIsImtpZCI6IjhMV0....

Additional Resources

Create service accounts

Create a service account with a custom cluster role

Retrieve and create service accounts for Supply Chain
Security Tools - Store
This topic explains how you can create service accounts for Supply Chain Security Tools (SCST) -
Store.

Overview
When you install Tanzu Application Platform, the Supply Chain Security Tools (SCST) - Store
deployment automatically includes a read-write service account. This service account is bound to
the metadata-store-read-write role.

There are two types of SCST - Store service accounts:

1. Read-write service account - full access to the POST and GET API requests

2. Read-only service account - can only use GET API requests

Create read-write service account
When you install Tanzu Application Platform, the SCST - Store deployment automatically includes a
read-write service account. This service account is already bound to the metadata-store-read-
write role.

To create an additional read-write service account, run the following command. The command
creates a service account called metadata-store-read-write-client:

kubectl apply -f - -o yaml << EOF

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

  name: metadata-store-read-write

  namespace: metadata-store

rules:

- resources: ["all"]

  verbs: ["get", "create", "update"]

  apiGroups: [ "metadata-store/v1" ]

---

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

  name: metadata-store-read-write

  namespace: metadata-store

roleRef:

  apiGroup: rbac.authorization.k8s.io

  kind: Role

  name: metadata-store-read-write

subjects:

- kind: ServiceAccount

  name: metadata-store-read-write-client

  namespace: metadata-store

---

Tanzu Application Platform v1.5

VMware by Broadcom 1765



apiVersion: v1

kind: ServiceAccount

metadata:

  name: metadata-store-read-write-client

  namespace: metadata-store

  annotations:

    kapp.k14s.io/change-group: "metadata-store.apps.tanzu.vmware.com/service-account"

automountServiceAccountToken: false

---

apiVersion: v1

kind: Secret

type: kubernetes.io/service-account-token

metadata:

  name: metadata-store-read-write-client

  namespace: metadata-store

  annotations:

    kapp.k14s.io/change-rule: "upsert after upserting metadata-store.apps.tanzu.vmwar

e.com/service-account"

    kubernetes.io/service-account.name: "metadata-store-read-write-client"

EOF

Create a read-only service account

You can create a read-only service account with a default cluster role or with a custom cluster role.

With a default cluster role

During Store installation, the metadata-store-read-only cluster role is created by default. This
cluster role allows the bound user to have get access to all resources. To bind to this cluster role,
run the following command:

kubectl apply -f - -o yaml << EOF

---

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

  name: metadata-store-read-only

roleRef:

  apiGroup: rbac.authorization.k8s.io

  kind: ClusterRole

  name: metadata-store-read-only

subjects:

- kind: ServiceAccount

  name: metadata-store-read-client

  namespace: metadata-store

---

apiVersion: v1

kind: ServiceAccount

metadata:

  name: metadata-store-read-client

  namespace: metadata-store

  annotations:

    kapp.k14s.io/change-group: "metadata-store.apps.tanzu.vmware.com/service-account"

automountServiceAccountToken: false

---

apiVersion: v1

kind: Secret

type: kubernetes.io/service-account-token

metadata:

  name: metadata-store-read-client

  namespace: metadata-store

  annotations:

    kapp.k14s.io/change-rule: "upsert after upserting metadata-store.apps.tanzu.vmwar

Tanzu Application Platform v1.5

VMware by Broadcom 1766



e.com/service-account"

    kubernetes.io/service-account.name: "metadata-store-read-client"

EOF

With a custom cluster role

If using the default role is not sufficient, see Create a service account with a custom cluster role.

Additional Resources

Retrieve access tokens

Create a service account with a custom cluster role

Create a service account with a custom cluster role for
Supply Chain Security Tools - Store

This topic describes how you can create a service account with a custom cluster role for Supply
Chain Security Tools (SCST)- Store.

Example service account

If you do not want to bind to the default cluster role, create a read-only role in the metadata-store
namespace with a service account. The following example creates a service account named
metadata-store-read-client:

kubectl apply -f - -o yaml << EOF

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

  name: metadata-store-ro

  namespace: metadata-store

rules:

- resources: ["all"]

  verbs: ["get"]

  apiGroups: [ "metadata-store/v1" ]

---

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

  name: metadata-store-ro

  namespace: metadata-store

roleRef:

  apiGroup: rbac.authorization.k8s.io

  kind: Role

  name: metadata-store-ro

subjects:

- kind: ServiceAccount

  name: metadata-store-read-client

  namespace: metadata-store

---

apiVersion: v1

kind: ServiceAccount

metadata:

  name: metadata-store-read-client

  namespace: metadata-store

  annotations:

    kapp.k14s.io/change-group: "metadata-store.apps.tanzu.vmware.com/service-account"

automountServiceAccountToken: false

---

apiVersion: v1

Tanzu Application Platform v1.5

VMware by Broadcom 1767



kind: Secret

type: kubernetes.io/service-account-token

metadata:

  name: metadata-store-read-client

  namespace: metadata-store

  annotations:

    kapp.k14s.io/change-rule: "upsert after upserting metadata-store.apps.tanzu.vmwar

e.com/service-account"

    kubernetes.io/service-account.name: "metadata-store-read-client"

EOF

Additional Resources

Retrieve access tokens

Create service accounts

Install Supply Chain Security Tools - Store independent
from Tanzu Application Platform profiles
This topic describes how you can install Supply Chain Security Tools (SCST) - Store from the Tanzu
Application Platform package repository.

Prerequisites

Before installing SCST - Store:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

Install cert-manager on the cluster. See Install cert-manager.

See Deployment Details and Configuration to review what resources are deployed. For
more information, see the overview.

Create ClusterIssuer

kubectl apply -f - <<EOF

apiVersion: cert-manager.io/v1

  kind: ClusterIssuer

  metadata:

    name: tap-ingress-selfsigned

  spec:

    selfSigned: {}

EOF

Install

To install SCST - Store:

1. To use this deployment, the user must have set up the Kubernetes cluster to provision
persistent volumes on demand. Ensure that a default storage class is available in your

Note

Follow the steps in this topic if you do not want to use a profile to install Supply
Chain Security Tools - Store. For more information about profiles, see Components
and installation profiles.

Tanzu Application Platform v1.5

VMware by Broadcom 1768



cluster. Verify whether default storage class is set in your cluster using kubectl get
storageClass.

kubectl get storageClass

For example:

$ kubectl get storageClass

NAME                 PROVISIONER             RECLAIMPOLICY   VOLUMEBINDINGMODE      

ALLOWVOLUMEEXPANSION   AGE

standard (default)   rancher.io/local-path   Delete          WaitForFirstConsum

er   false                  7s

2. List version information for the package using tanzu package available list.

tanzu package available list metadata-store.apps.tanzu.vmware.com --namespace t

ap-install

For example:

$ tanzu package available list metadata-store.apps.tanzu.vmware.com --namespace 

tap-install

- Retrieving package versions for metadata-store.apps.tanzu.vmware.com...

  NAME                         VERSION       RELEASED-AT

  metadata-store.apps.tanzu.vmware.com  1.0.2

3. (Optional) List all the available deployment configuration options.

tanzu package available get metadata-store.apps.tanzu.vmware.com/VERSION --valu

es-schema -n tap-install

Where VERSION is the your package version number.

For example:

$ tanzu package available get metadata-store.apps.tanzu.vmware.com/1.0.2 --valu

es-schema -n tap-install

| Retrieving package details for metadata-store.apps.tanzu.vmware.com/1.0.2...

  KEY                             DEFAULT                                                                  

TYPE     DESCRIPTION

  pg_limit_memory                 4Gi                                                                      

string   Memory limit for postgres container in metadata-store-db deployment

  tls.namespace                                                                                            

string   The targeted namespace for secret consumption by the HTTPProxy.

  add_default_rw_service_account  true                                                                     

string   Adds a read-write service account which can be used to obtain access t

oken to use metadata-store CLI

  api_host                        localhost                                                                

string   The internal hostname for the metadata api endpoint. This will be used 

by the kube-rbac-proxy sidecar.

  app_replicas                    1                                                                        

integer  The number of replicas for the metadata-store-app

  ingress_domain                                                                                           

string   Domain to be used by the HTTPProxy ingress object. The "metadata-stor

e" subdomain will be prepended to the value provided. For example: "example.co

m" would become "metadata-store.example.com". Required if ingress_enabled is tr

ue.

  kube_rbac_proxy_limit_cpu       250m                                                                     

string   CPU limit for kube-rbac-proxy container in the metadata-store-app depl

oyment

  pg_limit_cpu                    2Gi                                                                      

string   CPU limit for postgres container in metadata-store-db deployment

  tls.server.minTLSVersion        VersionTLS12                                                             

Tanzu Application Platform v1.5

VMware by Broadcom 1769



string   Minimum TLS version supported. Value must match version names from htt

ps://golang.org/pkg/crypto/tls/#pkg-constants. (default "VersionTLS12")

  db_host                         metadata-store-db                                                        

string   The address to the postgres database host that the metadata-store app 

uses to connect. The default is set to metadata-store-db which is the postgres 

service name. Changing this does not change the postgres service name

  db_replicas                     1                                                                        

integer  The number of replicas for the metadata-store-db

  pg_req_cpu                      1Gi                                                                      

string   CPU request for postgres container in metadata-store-db deployment

  priority_class_name                                                                                      

string   If specified, this value is the name of the desired PriorityClass for 

the metadata-store-db deployment

  tls.secretName                                                                                           

string   The name of secret for consumption by the HTTPProxy.

  db_ca_certificate                                                                                        

string   This should only be set in the case when 'deploy_internal_db' is 'fals

e'. Set this to the trusted CA Certificate that signed the Postgres DB TLS Cert

ificate

  db_password                                                                                              

string   The database user password. If no value is provided, a 32 character va

lue will be generated.

  db_port                         5432                                                                     

string   The database port to use. This is the port to use when connecting to t

he database pod.

  app_limit_cpu                   250m                                                                     

string   CPU limit for metadata-store-app container

  auth_proxy_host                 0.0.0.0                                                                  

string   The binding ip address of the kube-rbac-proxy sidecar

  db_max_open_conns               10                                                                       

integer  Sets the maximum number of open database connections from the Metadata 

Store to the database.

  db_name                         metadata-store                                                           

string   The name of the database to use.

  db_user                         metadata-store-user                                                      

string   The database user to create and use for updating and querying. The met

adata postgres section create this user. The metadata api server uses this user

name to connect to the database.

  kube_rbac_proxy_req_memory      128Mi                                                                    

string   Memory request for kube-rbac-proxy container in the metadata-store-app 

deployment

  auth_proxy_port                 8443                                                                     

integer  The external port address of the of the kube-rbac-proxy sidecar

  db_conn_max_lifetime            60                                                                       

integer  Sets the maximum amount of time a database connection may be reused in 

seconds.

  ingress_enabled                 false                                                                    

string   Contour is required to be installed to use this flag. When true, this 

creates an HTTPProxy object for the metadata-store. If false, then no ingress i

s configured.

  storage_class_name                                                                                       

string   The storage class name of the persistent volume used by Postgres datab

ase for storing data. The default value will use the default class name defined 

on the cluster.

  api_port                        9443                                                                     

integer  The internal port for the metadata app api endpoint. This will be used 

by the kube-rbac-proxy sidecar.

  app_service_type                LoadBalancer                                                             

string   The type of service to use for the metadata app service. This can be s

et to 'Nodeport', 'ClusterIP' or 'LoadBalancer'.

  db_sslmode                      verify-full                                                              

string   Determines the security connection between API server and Postgres dat

abase. This can be set to 'verify-ca' or 'verify-full'

  use_cert_manager                true                                                                     

string   Cert manager is required to be installed to use this flag. When true, 

this creates certificates object to be signed by cert manager for the API serve

Tanzu Application Platform v1.5

VMware by Broadcom 1770



r and Postgres database. If false, the certificate object have to be provided b

y the user.

  app_req_cpu                     100m                                                                     

string   CPU request for metadata-store-app container

  database_request_storage        10Gi                                                                     

string   The storage requested of the persistent volume used by Postgres databa

se for storing data.

  deploy_internal_db              true                                                                     

string   If set to 'true', a postgres deployment will be created. If set to 'fa

lse', db_host and db_port should point to an accessible postgres instance. Post

gres connections require TLS, so the corresponding db_ca_certification must be 

provided

  kube_rbac_proxy_req_cpu         100m                                                                     

string   CPU request for kube-rbac-proxy container in the metadata-store-app de

ployment

  ns_for_export_app_cert          scan-link-system                                                         

string   The namespace where the "Supply Chain Security Tools for VMware Tanzu 

- Scan" component is installed in. Certain certificates will be exported to tha

t namespace so that scan reports can be posted to the Metadata Store.

  pg_req_memory                   1Gi                                                                      

string   Memory request for postgres container in metadata-store-db deployment

  app_limit_memory                512Mi                                                                    

string   Memory limit for metadata-store-app container

  app_req_memory                  128Mi                                                                    

string   Memory request for metadata-store-app container

  db_max_idle_conns               100                                                                      

integer  Sets the maximum number of database connections from the Metadata Stor

e in the idle connection pool.

  kube_rbac_proxy_limit_memory    512Mi                                                                    

string   Memory limit for kube-rbac-proxy container in the metadata-store-app d

eployment

  kubernetes_distribution                                                                                  

string   Kubernetes platform distribution where the metadata-store is being ins

talled on. Accepted values: ["", "openshift"]

  log_level                       default                                                                  

string   Sets the log level. This can be set to "minimum", "less", "default", 

"more", "debug" or "trace". "minimum" currently does not output logs. "less" ou

tputs log configuration options only. "default" and "more" outputs API endpoint 

access information. "debug" and "trade" outputs extended API endpoint

                                                                                                           

access information(such as body payload) and other debug information.

  tls.server.rfcCiphers           [TLS_AES_128_GCM_SHA256 TLS_AES_256_GCM_SHA38

4 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA3

84 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384]  

array    List of cipher suites for the server. Values are from tls package cons

tants (https://golang.org/pkg/crypto/tls/#pkg-constants). If omitted, the defau

lt Go cipher suites will be used

  ingress_issuer                  tap-ingress-selfsigned                                                   

string   tap-ingress-selfsigned is the default value when installed via any TAP 

profile. When installing only the metadata-store package, a ClusterIssuer needs 

to be installed and its name needs to be specified as this value.

4. (Optional) Edit one of the deployment configurations by creating a configuration YAML with
the custom configuration values you want. For example, if your environment does not
support LoadBalancer, and you want to use ClusterIP, then create a metadata-store-
values.yaml and configure the app_service_type property.

---

app_service_type: "ClusterIP"

See Deployment details and configuration for more information about configuration options.

For information about ingress and custom domain name support, see Ingress support.

5. Install the package using tanzu package install.

Tanzu Application Platform v1.5

VMware by Broadcom 1771



tanzu package install metadata-store \

  --package metadata-store.apps.tanzu.vmware.com \

  --version VERSION \

  --namespace tap-install \

  --values-file metadata-store-values.yaml

Where:

--values-file is an optional flag. Only use it to customize the deployment
configuration.

VERSION is the package version number.

For example:

$ tanzu package install metadata-store \

  --package metadata-store.apps.tanzu.vmware.com \

  --version 1.0.2 \

  --namespace tap-install \

  --values-file metadata-store-values.yaml

- Installing package 'metadata-store.apps.tanzu.vmware.com'

/ Getting namespace 'tap-install'

- Getting package metadata for 'metadata-store.apps.tanzu.vmware.com'

/ Creating service account 'metadata-store-tap-install-sa'

/ Creating cluster admin role 'metadata-store-tap-install-cluster-role'

/ Creating cluster role binding 'metadata-store-tap-install-cluster-rolebindin

g'

/ Creating secret 'metadata-store-tap-install-values'

| Creating package resource

- Package install status: Reconciling

Added installed package 'metadata-store' in namespace 'tap-install'

Overview of Tanzu Application Platform GUI

Tanzu Application Platform GUI (commonly called TAP GUI) is a tool for your developers to view
your applications and services running for your organization. This portal provides a central location
in which you can view dependencies, relationships, technical documentation, and the service
status.

Tanzu Application Platform GUI is built from the Cloud Native Computing Foundation’s project
Backstage.

Tanzu Application Platform GUI consists of the following components:

Your organization catalog:

The catalog serves as the primary visual representation of your running services
(components) and applications (systems).

Tanzu Application Platform GUI plug-ins:

These plug-ins expose capabilities regarding specific Tanzu Application Platform tools.
Initially the included plug-ins are:

Runtime Resources Visibility

Application Live View

Application Accelerator

API Documentation

Supply Chain Choreographer

Tanzu Application Platform v1.5

VMware by Broadcom 1772

https://www.cncf.io/
https://backstage.io/


TechDocs:

This plug-in enables you to store your technical documentation in Markdown format in a
source-code repository and display it alongside the relevant catalog entries.

Search:

This plug-in enables you to search your organization’s catalog, including domains, systems,
components, APIs, accelerators, and TechDocs.

A Git repository:

Tanzu Application Platform GUI stores the following in a Git repository:

The structure for your application catalog.

Your technical documentation about the catalog items, if you enable Tanzu
Application Platform GUI TechDocs capabilities.

You can host the structure for your application catalog and your technical documentation in the
same repository as your source code.

Overview of Tanzu Application Platform GUI

Tanzu Application Platform GUI (commonly called TAP GUI) is a tool for your developers to view
your applications and services running for your organization. This portal provides a central location
in which you can view dependencies, relationships, technical documentation, and the service
status.

Tanzu Application Platform GUI is built from the Cloud Native Computing Foundation’s project
Backstage.

Tanzu Application Platform GUI consists of the following components:

Your organization catalog:

The catalog serves as the primary visual representation of your running services
(components) and applications (systems).

Tanzu Application Platform GUI plug-ins:

These plug-ins expose capabilities regarding specific Tanzu Application Platform tools.
Initially the included plug-ins are:

Runtime Resources Visibility

Application Live View

Application Accelerator

API Documentation

Tanzu Application Platform v1.5

VMware by Broadcom 1773

https://www.cncf.io/
https://backstage.io/


Supply Chain Choreographer

TechDocs:

This plug-in enables you to store your technical documentation in Markdown format in a
source-code repository and display it alongside the relevant catalog entries.

Search:

This plug-in enables you to search your organization’s catalog, including domains, systems,
components, APIs, accelerators, and TechDocs.

A Git repository:

Tanzu Application Platform GUI stores the following in a Git repository:

The structure for your application catalog.

Your technical documentation about the catalog items, if you enable Tanzu
Application Platform GUI TechDocs capabilities.

You can host the structure for your application catalog and your technical documentation in the
same repository as your source code.

Install Tanzu Application Platform GUI

This topic tells you how to install Tanzu Application Platform GUI (commonly called TAP GUI) from
the Tanzu Application Platform package repository.

Prerequisites
Before installing Tanzu Application Platform GUI:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
the Tanzu Application Platform Prerequisites.

Create a Git repository for Tanzu Application Platform GUI software catalogs, with a token
allowing read access. Supported Git infrastructure includes:

GitHub

Note

Follow the steps in this topic if you do not want to use a profile to install Tanzu
Application Platform GUI. For more information about profiles, see Components and
installation profiles.

Tanzu Application Platform v1.5

VMware by Broadcom 1774



GitLab

Azure DevOps

Install Tanzu Application Platform GUI Blank Catalog

1. Go to the Tanzu Application Platform section of VMware Tanzu Network.

2. Under the list of available files to download, open the tap-gui-catalogs-latest
folder.

3. Extract Tanzu Application Platform GUI Blank Catalog to your Git repository. This
serves as the configuration location for your organization’s Catalog inside Tanzu
Application Platform GUI.

Procedure

To install Tanzu Application Platform GUI on a compliant Kubernetes cluster:

1. List version information for the package by running:

tanzu package available list tap-gui.tanzu.vmware.com --namespace tap-install

For example:

$ tanzu package available list tap-gui.tanzu.vmware.com --namespace tap-install

- Retrieving package versions for tap-gui.tanzu.vmware.com...

  NAME                      VERSION     RELEASED-AT

  tap-gui.tanzu.vmware.com  1.0.1       2022-01-10T13:14:23Z

2. (Optional) Make changes to the default installation settings by running:

tanzu package available get tap-gui.tanzu.vmware.com/VERSION-NUMBER --values-sc

hema --namespace \

tap-install

Where VERSION-NUMBER is the number you discovered previously. For example, 1.0.1.

For more information about values schema options, see the individual product
documentation.

3. Create tap-gui-values.yaml and paste in the following YAML:

ingressEnabled: true

ingressDomain: "INGRESS-DOMAIN"

app_config:

  catalog:

    locations:

      - type: url

        target: https://GIT-CATALOG-URL/catalog-info.yaml

Where:

INGRESS-DOMAIN is the subdomain for the host name that you point at the tanzu-
shared-ingress service’s External IP address.

GIT-CATALOG-URL is the path to the catalog-info.yaml catalog definition file. It is
from either the included Blank catalog (provided as an additional download named
Blank Tanzu Application Platform GUI Catalog) or a Backstage-compliant catalog
that you’ve already built and posted on the Git infrastructure specified in Adding
Tanzu Application Platform GUI integrations.

4. Install the package by running:

Tanzu Application Platform v1.5

VMware by Broadcom 1775

https://network.tanzu.vmware.com/products/tanzu-application-platform/


tanzu package install tap-gui \

 --package tap-gui.tanzu.vmware.com \

 --version VERSION -n tap-install \

 --values-file tap-gui-values.yaml

Where VERSION is the version that you want. For example, 1.0.1.

For example:

$ tanzu package install tap-gui --package tap-gui.tanzu.vmware.com --version 1.

0.1 -n \

tap-install --values-file tap-gui-values.yaml

- Installing package 'tap-gui.tanzu.vmware.com'

| Getting package metadata for 'tap-gui.tanzu.vmware.com'

| Creating service account 'tap-gui-default-sa'

| Creating cluster admin role 'tap-gui-default-cluster-role'

| Creating cluster role binding 'tap-gui-default-cluster-rolebinding'

| Creating secret 'tap-gui-default-values'

- Creating package resource

- Package install status: Reconciling

 Added installed package 'tap-gui' in namespace 'tap-install'

5. Verify that the package installed by running:

tanzu package installed get tap-gui -n tap-install

For example:

$ tanzu package installed get tap-gui -n tap-install

| Retrieving installation details for cc...

NAME:                    tap-gui

PACKAGE-NAME:            tap-gui.tanzu.vmware.com

PACKAGE-VERSION:         1.0.1

STATUS:                  Reconcile succeeded

CONDITIONS:              [{ReconcileSucceeded True  }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded.

6. To access Tanzu Application Platform GUI, use the service you exposed in the service_type
field in the values file.

Runtime configuration options for Tanzu Application
Platform GUI
You can provide a series of options to the Tanzu Application Platform GUI (commonly called TAP
GUI) package to configure it and do some basic runtime customization.

Identify the Tanzu Application Platform GUI version you
have available

From the Tanzu CLI, discover the Tanzu Application Platform GUI package version that is available
to configure by running:

tanzu package available get tap-gui.tanzu.vmware.com -n INSTALL-NAMESPACE

Where INSTALL-NAMESPACE is the namespace in which you configured the Tanzu Application
Platform installation. In most cases the namespace is tap-install.

Tanzu Application Platform v1.5

VMware by Broadcom 1776



For example:

$ tanzu package available get tap-gui.tanzu.vmware.com -n tap-install

NAME:                   tap-gui.tanzu.vmware.com

DISPLAY-NAME:           Tanzu Application Platform GUI

CATEGORIES:

SHORT-DESCRIPTION:      web app graphical user interface for Tanzu Application Platfor

m

LONG-DESCRIPTION:       web app graphical user interface for Tanzu Application Platfor

m

PROVIDER:               VMware

MAINTAINERS:            - name: VMware

SUPPORT-DESCRIPTION:    https://tanzu.vmware.com/support

  VERSION  RELEASED-AT

  1.7.6    2023-10-17 00:25:21 +0000 UTC

Display the possible values options for Tanzu Application
Platform GUI

From the Tanzu CLI, identify possible values options for Tanzu Application Platform GUI by running:

tanzu package available get tap-gui.tanzu.vmware.com/VERSION --values-schema -n INSTAL

L-NAMESPACE

Where:

VERSION is the Tanzu Application Platform GUI package version you learned earlier

INSTALL-NAMESPACE is the namespace in which you configured the Tanzu Application
Platform installation. In most cases the namespace is tap-install.

For example:

$ tanzu package available get tap-gui.tanzu.vmware.com/1.7.6 --values-schema -n tap-in

stall

  KEY                                                                 DEFAULT   TYPE     

DESCRIPTION

  #Details of all the possible configuration values

  ...

Customize the Tanzu Application Platform GUI portal
This section describes how to customize the Tanzu Application Platform GUI portal.

Customize branding
To customize the branding in your portal, you can choose the name of the portal and the logo for it.
To make these customizations:

1. Provide additional configuration parameters to the app_config section of tap-values.yaml:

tap_gui:

  app_config:

    customize:

      custom_logo: 'BASE-64-IMAGE'

      custom_name: 'PORTAL-NAME'

Tanzu Application Platform v1.5

VMware by Broadcom 1777



Where:

BASE-64-IMAGE is the image encoded in base64. A 512-pixel by 512-pixel PNG image
with a transparent background is optimal.

PORTAL-NAME is the name of your portal, such as Our Custom Developer Experience
Portal.

2. Reinstall your Tanzu Application Platform GUI package by following steps in Upgrading
Tanzu Application Platform.

After the updated values configuration file is applied in Tanzu Application Platform GUI, you see the
customized version of your portal.

If there is an error in any of the supplied images encoded in base64 or in your choice of portal
name, Tanzu Application Platform GUI reverts to the original branding template.

Customize the Software Catalog page

You can customize the name of your organization on the Software Catalog page of Tanzu
Application Platform GUI portal. By default, the portal displays Your Organization next to Catalog
and in the selection box.

Customize the name of the organization

To customize the name of the organization for the software catalog in your portal:

1. Provide additional configuration parameters to the app_config section of your tap-
values.yaml file:

Tanzu Application Platform v1.5

VMware by Broadcom 1778



tap_gui:

  app_config:

    organization:

      name: 'ORG-NAME'

Where ORG-NAME is the name of your organization for the software catalog, such as Our
Organization Name. You don’t need to add Catalog to the ORG-NAME.

2. Reinstall your Tanzu Application Platform GUI package by following the steps in Upgrading
Tanzu Application Platform.

After the updated values configuration file is applied in Tanzu Application Platform GUI, you see the
customized version of your portal.

If there is an error in the provided configuration parameters, Tanzu Application Platform GUI reverts
to the original organization name.

Prevent changes to the software catalog

You can deactivate the Register Entity button to prevent a user from making changes to the
software catalog, including registering and deregistering locations. To do so, add readonly: true to
the catalog section in tap-values.yaml, as in this example:

tap_gui:

  app_config:

    catalog:

      readonly: true

Customize the Authentication page

To customize the portal name on the Authentication page and the name of the browser tab for
Tanzu Application Platform GUI:

1. Provide additional configuration parameters to the app_config section of your tap-
values.yaml file:

tap_gui:

  app_config:

    app:

      title: 'CUSTOM-TAB-NAME'

Where CUSTOM-TAB-NAME is the name on the Authentication page and the browser tab of
your portal, such as Our Organization Full Name.

Tanzu Application Platform v1.5

VMware by Broadcom 1779



2. Reinstall your Tanzu Application Platform GUI package by following the steps in Upgrading
Tanzu Application Platform.

After the updated values configuration file is applied in Tanzu Application Platform GUI, you see the
customized version of your portal.

Customize the default view

You can set your default route when the user is accessing your portal. Without this customization,
when the user accesses the Tanzu Application Platform GUI URL, it displays the list of owned
components of the software catalog.

To change the default view:

1. Provide additional configuration parameters to the app_config section of your tap-
values.yaml file:

tap_gui:

  app_config:

    customize:

      default_route: 'YOUR-PREFERRED-ROUTE'

Where YOUR-PREFERRED-ROUTE is the path to the route that the portal uses by default. For
example, you can type /catalog?filters%5Bkind%5D=component&filters%5Buser%5D=all to
show all components of the software catalog instead of defaulting to owned components.
As another example, you can type /create to show Application Accelerator when the portal
starts.

2. Reinstall your Tanzu Application Platform GUI package by following the steps in Upgrading
Tanzu Application Platform.

After the updated values configuration file is applied in Tanzu Application Platform GUI, you see the
customized version of your portal.

Customize security banners

You can instruct Tanzu Application Platform GUI to create security banners on the top and bottom
of the page. To add security banners to Tanzu Application Platform GUI:

1. Provide additional configuration parameters to the app_config section of your tap-
values.yaml file, as in the following example:

tap_gui:

  app_config:

    customize:

      banners:

        text: 'CUSTOM-TEXT'

        color: 'OPTIONAL-CUSTOM-TEXT-COLOR'

        bg: 'CUSTOM-BACKGROUND-COLOR'

        link: 'OPTIONAL-LINK'

Where:

Caution

Tanzu Application Platform GUI redirects you to tap-gui.INGRESS-
DOMAIN/YOUR-PREFERRED-ROUTE even if there is an error in YOUR-PREFERRED-
ROUTE.

Tanzu Application Platform v1.5

VMware by Broadcom 1780



CUSTOM-TEXT is the text that is displayed in the banner. Keep this text short to
accommodate various screen sizes.

OPTIONAL-CUSTOM-TEXT-COLOR is the color of the text displayed in the banner. Setting
this is optional. It accepts CSS colors, such as #ffffff. The default color is #FFFFFF.

CUSTOM-BACKGROUND-COLOR is the color of the banner itself. Setting this is optional. It
accepts CSS colors, such as #ffffff. The default color is #C23B2E

OPTIONAL-LINK is the link to which your text redirects. Setting this is optional.

2. Reinstall your Tanzu Application Platform GUI package by following the steps in Upgrading
Tanzu Application Platform.

After the updated values configuration file is applied in Tanzu Application Platform GUI, the
customized version of your portal is displayed.

Customize the Tanzu Application Platform GUI portal

This section describes how to customize the Tanzu Application Platform GUI portal.

Customize branding

To customize the branding in your portal, you can choose the name of the portal and the logo for it.
To make these customizations:

1. Provide additional configuration parameters to the app_config section of tap-values.yaml:

tap_gui:

  app_config:

    customize:

      custom_logo: 'BASE-64-IMAGE'

      custom_name: 'PORTAL-NAME'

Where:

BASE-64-IMAGE is the image encoded in base64. A 512-pixel by 512-pixel PNG image
with a transparent background is optimal.

PORTAL-NAME is the name of your portal, such as Our Custom Developer Experience
Portal.

2. Reinstall your Tanzu Application Platform GUI package by following steps in Upgrading
Tanzu Application Platform.

After the updated values configuration file is applied in Tanzu Application Platform GUI, you see the
customized version of your portal.

If there is an error in any of the supplied images encoded in base64 or in your choice of portal
name, Tanzu Application Platform GUI reverts to the original branding template.

Tanzu Application Platform v1.5

VMware by Broadcom 1781



Customize the Software Catalog page

You can customize the name of your organization on the Software Catalog page of Tanzu
Application Platform GUI portal. By default, the portal displays Your Organization next to Catalog
and in the selection box.

Customize the name of the organization

To customize the name of the organization for the software catalog in your portal:

1. Provide additional configuration parameters to the app_config section of your tap-
values.yaml file:

tap_gui:

  app_config:

    organization:

      name: 'ORG-NAME'

Where ORG-NAME is the name of your organization for the software catalog, such as Our
Organization Name. You don’t need to add Catalog to the ORG-NAME.

2. Reinstall your Tanzu Application Platform GUI package by following the steps in Upgrading
Tanzu Application Platform.

After the updated values configuration file is applied in Tanzu Application Platform GUI, you see the
customized version of your portal.

Tanzu Application Platform v1.5

VMware by Broadcom 1782



If there is an error in the provided configuration parameters, Tanzu Application Platform GUI reverts
to the original organization name.

Prevent changes to the software catalog

You can deactivate the Register Entity button to prevent a user from making changes to the
software catalog, including registering and deregistering locations. To do so, add readonly: true to
the catalog section in tap-values.yaml, as in this example:

tap_gui:

  app_config:

    catalog:

      readonly: true

Customize the Authentication page

To customize the portal name on the Authentication page and the name of the browser tab for
Tanzu Application Platform GUI:

1. Provide additional configuration parameters to the app_config section of your tap-
values.yaml file:

tap_gui:

  app_config:

    app:

      title: 'CUSTOM-TAB-NAME'

Where CUSTOM-TAB-NAME is the name on the Authentication page and the browser tab of
your portal, such as Our Organization Full Name.

2. Reinstall your Tanzu Application Platform GUI package by following the steps in Upgrading
Tanzu Application Platform.

After the updated values configuration file is applied in Tanzu Application Platform GUI, you see the
customized version of your portal.

Customize the default view

You can set your default route when the user is accessing your portal. Without this customization,
when the user accesses the Tanzu Application Platform GUI URL, it displays the list of owned
components of the software catalog.

To change the default view:

Tanzu Application Platform v1.5

VMware by Broadcom 1783



1. Provide additional configuration parameters to the app_config section of your tap-
values.yaml file:

tap_gui:

  app_config:

    customize:

      default_route: 'YOUR-PREFERRED-ROUTE'

Where YOUR-PREFERRED-ROUTE is the path to the route that the portal uses by default. For
example, you can type /catalog?filters%5Bkind%5D=component&filters%5Buser%5D=all to
show all components of the software catalog instead of defaulting to owned components.
As another example, you can type /create to show Application Accelerator when the portal
starts.

2. Reinstall your Tanzu Application Platform GUI package by following the steps in Upgrading
Tanzu Application Platform.

After the updated values configuration file is applied in Tanzu Application Platform GUI, you see the
customized version of your portal.

Customize security banners

You can instruct Tanzu Application Platform GUI to create security banners on the top and bottom
of the page. To add security banners to Tanzu Application Platform GUI:

1. Provide additional configuration parameters to the app_config section of your tap-
values.yaml file, as in the following example:

tap_gui:

  app_config:

    customize:

      banners:

        text: 'CUSTOM-TEXT'

        color: 'OPTIONAL-CUSTOM-TEXT-COLOR'

        bg: 'CUSTOM-BACKGROUND-COLOR'

        link: 'OPTIONAL-LINK'

Where:

CUSTOM-TEXT is the text that is displayed in the banner. Keep this text short to
accommodate various screen sizes.

OPTIONAL-CUSTOM-TEXT-COLOR is the color of the text displayed in the banner. Setting
this is optional. It accepts CSS colors, such as #ffffff. The default color is #FFFFFF.

CUSTOM-BACKGROUND-COLOR is the color of the banner itself. Setting this is optional. It
accepts CSS colors, such as #ffffff. The default color is #C23B2E

OPTIONAL-LINK is the link to which your text redirects. Setting this is optional.

2. Reinstall your Tanzu Application Platform GUI package by following the steps in Upgrading
Tanzu Application Platform.

Caution

Tanzu Application Platform GUI redirects you to tap-gui.INGRESS-
DOMAIN/YOUR-PREFERRED-ROUTE even if there is an error in YOUR-PREFERRED-
ROUTE.

Tanzu Application Platform v1.5

VMware by Broadcom 1784



After the updated values configuration file is applied in Tanzu Application Platform GUI, the
customized version of your portal is displayed.

Customize the Support menu

This topic describes how to customize the support menu.

Overview

Many important pages of Tanzu Application Platform GUI have a Support button that displays a
pop-out menu. This menu contains a one-line description of the page the user is looking at, and a
list of support item groupings.

As standard, there are two support item groupings:

Contact Support, which is marked with an email icon and contains a link to VMware Tanzu’s
support portal.

Documentation, which is marked with a docs icon and contains a link to the Tanzu
Application Platform documentation that you are currently reading.

Customizing

The set of support item groupings is completely customizable. However, you might want to offer
custom in-house links for your Tanzu Application Platform users rather than simply sending them to
VMware support and documentation. You can provide this configuration by using your tap-
values.yaml. Here is a configuration snippet, which produces the default support menu:

tap_gui:

  app_config:

    app:

      support:

        url: https://tanzu.vmware.com/support

        items:

          - title: Contact Support

Tanzu Application Platform v1.5

VMware by Broadcom 1785



            icon: email

            links:

              - url: https://tanzu.vmware.com/support

                title: Tanzu Support Page

          - title: Documentation

            icon: docs

            links:

              - url: https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/inde

x.html

                title: Tanzu Application Platform Documentation

Structure of the support configuration

URL

The url field under the support section, for example,

      support:

        url: https://tanzu.vmware.com/support

provides the address of the contact support link that appears on error pages.

Items

The items field under the support section, for example, provides the set of support item groupings
to display when the support menu is expanded.

Title

The title field on a support item grouping, for example,

        items:

          - title: Contact Support

provides the label for the grouping.

Icon

The icon field on a support item grouping, for example,

Tanzu Application Platform v1.5

VMware by Broadcom 1786



        items:

          - icon: email

provides the icon to use for that grouping. The valid choices are:

brokenImage

catalog

chat

dashboard

docs

email

github

group

help

user

warning

Links

The links field on a support item grouping, for example,

        items:

          - links:

              - url: https://tanzu.vmware.com/support

                title: Tanzu Support Page

is a list of YAML objects that render as links. Each link has the text given by the title field and links
to the value of the url field.

Access Tanzu Application Platform GUI

This topic tells you how to access Tanzu Application Platform GUI (commonly called TAP GUI) by
using one of the following methods:

Access with the LoadBalancer method (default)

Access with the shared Ingress method

Access with the LoadBalancer method (default)

1. Verify that you specified the service_type for Tanzu Application Platform GUI in tap-
values.yaml, as in this example:

tap_gui:

  service_type: LoadBalancer

2. Obtain the external IP address of your LoadBalancer by running:

kubectl get svc -n tap-gui

3. Access Tanzu Application Platform GUI by using the external IP address with the default
port of 7000. It has the following form:

Tanzu Application Platform v1.5

VMware by Broadcom 1787



http://EXTERNAL-IP:7000

Where EXTERNAL-IP is the external IP address of your LoadBalancer.

Access with the shared Ingress method

The Ingress method of access for Tanzu Application Platform GUI uses the shared tanzu-system-
ingress instance of Contour that is installed as part of the Profile installation.

1. The Ingress method of access requires that you have a DNS host name that you can point
at the External IP address of the envoy service that the shared tanzu-system-ingress uses.
Retrieve this IP address by running:

kubectl get service envoy -n tanzu-system-ingress

This returns a value similar to this example:

$ kubectl get service envoy -n tanzu-system-ingress

NAME    TYPE           CLUSTER-IP     EXTERNAL-IP      PORT(S)                      

AGE

envoy   LoadBalancer   10.0.242.171   40.118.168.232   80:31389/TCP,443:31780/T

CP   27h

The IP address in the EXTERNAL-IP field is the one that you point a DNS host record to.
Tanzu Application Platform GUI prepends tap-gui to your provided subdomain. This makes
the final host name tap-gui.YOUR-SUBDOMAIN. You use this host name in the appropriate
fields in the tap-values.yaml file mentioned later.

2. Specify parameters in tap-values.yaml related to Ingress. For example:

shared:

  ingress_domain: "example.com"

3. Update your other host names in the tap_gui section of your tap-values.yaml with the
new host name. For example:

shared:

  ingress_domain: "example.com"

tap_gui:

# Existing tap-values.yaml above

  app_config:

    app:

      baseUrl: http://tap-gui.example.com # No port needed with Ingress

    integrations:

      github: # Other are integrations available

        - host: github.com

          token: GITHUB-TOKEN

    catalog:

      locations:

        - type: url

          target: https://GIT-CATALOG-URL/catalog-info.yaml

    backend:

      baseUrl: http://tap-gui.example.com # No port needed with Ingress

      cors:

        origin: http://tap-gui.example.com # No port needed with Ingress

4. Update your package installation with your changed tap-values.yaml file by running:

tanzu package installed update tap --package tap.tanzu.vmware.com --version VER

SION-NUMBER \

Tanzu Application Platform v1.5

VMware by Broadcom 1788



--values-file tap-values.yaml -n tap-install

Where VERSION-NUMBER is your Tanzu Application Platform version. For example, 1.5.12.

5. Use a web browser to access Tanzu Application Platform GUI at the host name that you
provided.

Catalog operations

The software catalog setup procedures in this topic make use of Backstage. For more information
about Backstage, see the Backstage documentation.

Adding catalog entities

This section describes how you can format your own catalog. Creating catalogs consists of building
metadata YAML files stored together with the code. This information is read from a Git-compatible
repository consisting of these YAML catalog definition files. Changes made to the catalog
definitions on your Git infrastructure are automatically reflected every 200 seconds or when
manually registered.

For each catalog entity kind you create, there is a file format you must follow. For information
about all types of entities, see the Backstage documentation.

You can use the example blank catalog described in the Tanzu Application Platform GUI
prerequisites as a foundation for creating user, group, system, and main component YAML files.

The organization contains Group 1, and Group 1 contains Users 1 and 2. System contains
Components 1 and 2. User 1 owns Component 2. Group 1 owns System.

Users and groups

A user entity describes a specific person and is used for identity purposes. Users are members of
one or more groups. A group entity describes an organizational team or unit.

Users and groups have different descriptor requirements in their descriptor files:

User descriptor files require apiVersion, kind, metadata.name, and spec.memberOf.

Group descriptor files require apiVersion, kind, and metadata.name. They also require
spec.type and spec.children where spec.children is another group.

To link a logged-in user to a user entity, include the optional spec.profile.email field.

Sample user entity:

apiVersion: backstage.io/v1alpha1

kind: User

Tanzu Application Platform v1.5

VMware by Broadcom 1789

https://backstage.io/docs/features/software-catalog/
https://backstage.io/docs/features/software-catalog/descriptor-format


metadata:

  name: default-user

spec:

  profile:

    displayName: Default User

    email: guest@example.com

    picture: https://avatars.dicebear.com/api/avataaars/guest@example.com.svg?backgrou

nd=%23fff

  memberOf: [default-team]

Sample group entity:

apiVersion: backstage.io/v1alpha1

kind: Group

metadata:

  name: default-team

  description: Default Team

spec:

  type: team

  profile:

    displayName: Default Team

    email: team-a@example.com

    picture: https://avatars.dicebear.com/api/identicon/team-a@example.com.svg?backgro

und=%23fff

  parent: default-org

  children: []

For more information about user entities and group entities, see the Backstage documentation.

Systems

A system entity is a collection of resources and components.

System descriptor files require values for apiVersion, kind, metadata.name, and also spec.owner
where spec.owner is a user or group.

A system has components when components specify the system name in the field spec.system.

Sample system entity:

apiVersion: backstage.io/v1alpha1

kind: System

metadata:

  name: backstage

  description: Tanzu Application Platform GUI System

spec:

  owner: default-team

For more information about system entities, see the Backstage documentation.

Components

A component describes a software component, or what might be described as a unit of software.

Component descriptor files require values for apiVersion, kind, metadata.name, spec.type,
spec.lifecycle, and spec.owner.

Some useful optional fields are spec.system and spec.subcomponentOf, both of which link a
component to an entity that it is part of.

apiVersion: backstage.io/v1alpha1

kind: Component

metadata:

  name: backstage-component

Tanzu Application Platform v1.5

VMware by Broadcom 1790

https://backstage.io/docs/features/software-catalog/descriptor-format#kind-group
https://backstage.io/docs/features/software-catalog/descriptor-format#kind-system


  description: Tanzu Application Platform GUI Component

  annotations:

    'backstage.io/kubernetes-label-selector': 'app=backstage' #Identifies the Kubernet

es objects that make up this component

    'backstage.io/techdocs-ref': dir:. #TechDocs label

spec:

  type: service

  lifecycle: alpha

  owner: default-team

  system: backstage

For more information about component entities, see the Backstage documentation.

Update software catalogs

The following procedures describe how to update software catalogs.

Register components

To update your software catalog with new entities without re-deploying the entire tap-gui
package:

1. Go to your Software Catalog page.

2. Click Register Entity at the top-right of the page.

3. Enter the full path to link to an existing entity file and start tracking your entity.

4. Import the entities and view them in your Software Catalog page.

Deregister components

To deregister an entity:

1. Go to your Software Catalog page.

2. Select the entity to deregister, such as component, group, or user.

3. Click the three dots at the top-right of the page and then click Unregister….

Add or change organization catalog locations

To add or change organization catalog locations, you can use static configuration or you can use
GitLabDiscoveryProcessor to discover and register catalog entities that match the configured path.

Use static configuration
To use static configuration to add or change catalog locations:

1. Update components by changing the catalog location in either the app_config section of
tap-gui-values.yaml or the custom values file you used when installing. For example:

tap_gui:

  app_config:

    catalog:

      locations:

        - type: url

          target: UPDATED-CATALOG-LOCATION

2. Register components by adding the new catalog location in either the app_config
section of tap-gui-values.yaml or the custom values file you used when installing. For
example:

Tanzu Application Platform v1.5

VMware by Broadcom 1791

https://backstage.io/docs/features/software-catalog/descriptor-format#kind-component


tap_gui:

  app_config:

    catalog:

      locations:

        - type: url

          target: EXISTING-CATALOG-LOCATION

        - type: url

          target: EXTRA-CATALOG-LOCATION

When targeting GitHub, don’t write the raw URL. Instead, use the URL that appears
when you navigate to the file in the browser. The catalog processor cannot set up the
files properly if you use the raw URL.

Example raw URL:
https://raw.githubusercontent.com/user/repo/catalog.yaml

Example target URL: https://github.com/user/repo/blob/main/catalog.yaml

When targeting GitLab, use a scoped route to the catalog file. This is a route with the
/-/ separator after the project name. If you don’t use a scoped route, your entity fails to
appear in the catalog.

Example unscoped URL:
https://gitlab.com/group/project/blob/main/catalog.yaml

Example target URL:
https://gitlab.com/group/project/-/blob/main/catalog.yaml

For more information about static catalog configuration, see the Backstage
documentation.

Use GitLabDiscoveryProcessor
To use GitLabDiscoveryProcessor to discover and register catalog entities:

1. Use type: gitlab-discovery to make GitLabDiscoveryProcessor crawl the GitLab
instance to discover and register catalog entities that match the configured path. For
more information, see the Backstage documentation.

2. Update the package to include the catalog:

If you installed Tanzu Application Platform GUI by using a profile, run:

tanzu package installed update tap \

--package tap.tanzu.vmware.com \

--version PACKAGE-VERSION \

--values-file tap-values.yaml \

--namespace tap-install

If you installed Tanzu Application Platform GUI as an individual package, run:

tanzu package installed update tap-gui \

--package tap-gui.tanzu.vmware.com \

--version PACKAGE-VERSION \

--values-file tap-gui-values.yaml \

--namespace tap-install

3. Verify the status of this update by running:

tanzu package installed list -n tap-install

Install demo apps and their catalogs

Tanzu Application Platform v1.5

VMware by Broadcom 1792

https://docs.gitlab.com/ee/development/routing.html#project-routes
https://backstage.io/docs/features/software-catalog/configuration#static-location-configuration
https://backstage.io/docs/integrations/gitlab/discovery#alternative-processor


To set up one of the demos, you can choose a blank catalog or a sample catalog.

Yelb system

The Yelb demo catalog in GitHub includes all the components that make up the Yelb system and
the default Backstage components.

Install Yelb

To install Yelb:

1. Download the necessary file for running the Yelb application itself from GitHub.

2. Install the application on the Kubernetes cluster that you used for Tanzu Application
Platform. Preserve the metadata labels on the Yelb application objects.

Install the Yelb catalog

To install the Yelb catalog:

1. In Tanzu Network, select your release from the drop-down menu.

2. Click tap-gui-catalogs-latest > Tanzu Application Platform GUI Yelb Catalog and
download the catalog.

3. Unpack the downloaded TAR archive to a local drive.

4. Follow the earlier steps for Register components to register the catalog-info.yaml in the
root of the unpacked archive and register all the catalog entities that constitute the Yelb
system.

View resources on multiple clusters in Tanzu Application
Platform GUI

You can configure Tanzu Application Platform GUI (commonly called TAP GUI) to retrieve
Kubernetes object details from multiple clusters and then surface those details in the various Tanzu
Application Platform GUI plug-ins.

Set up a Service Account to view resources on a cluster
To view resources on the Build or Run clusters, create a service account on the View cluster that
can get, watch, and list resources on those clusters.

You first create a ClusterRole with these rules and a ServiceAccount in its own Namespace, and
then bind the ClusterRole to the ServiceAccount. Depending on your topology, not every cluster

Important

In this topic the terms Build, Run, and View describe the cluster’s roles and
distinguish which steps to apply to which cluster.

Build clusters are where the code is built and packaged, ready to be run.

Run clusters are where the Tanzu Application Platform workloads themselves run.

View clusters are where the Tanzu Application Platform GUI is run from.

In multicluster configurations, these can be separate clusters. However, in many
configurations these can also be the same cluster.

Tanzu Application Platform v1.5

VMware by Broadcom 1793

https://github.com/mreferre/yelb/tree/master/deployments/platformdeployment/Kubernetes/yaml
https://github.com/mreferre/yelb/tree/master/deployments/platformdeployment/Kubernetes/yaml
https://network.tanzu.vmware.com/products/tanzu-application-platform


has all of the following objects. For example, the Build cluster doesn’t have any of the
serving.knative.dev objects, by design, because it doesn’t run the workloads themselves. You can
edit the following object lists to reflect your topology.

To set up a Service Account to view resources on a cluster:

1. Copy this YAML content into a file called tap-gui-viewer-service-account-rbac.yaml.

apiVersion: v1

kind: Namespace

metadata:

  name: tap-gui

---

apiVersion: v1

kind: ServiceAccount

metadata:

  namespace: tap-gui

  name: tap-gui-viewer

---

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

  name: tap-gui-read-k8s

subjects:

- kind: ServiceAccount

  namespace: tap-gui

  name: tap-gui-viewer

roleRef:

  kind: ClusterRole

  name: k8s-reader

  apiGroup: rbac.authorization.k8s.io

---

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

  name: k8s-reader

rules:

- apiGroups: ['']

  resources: ['pods', 'pods/log', 'services', 'configmaps', 'limitranges']

  verbs: ['get', 'watch', 'list']

- apiGroups: ['metrics.k8s.io']

  resources: ['pods']

  verbs: ['get', 'watch', 'list']

- apiGroups: ['apps']

  resources: ['deployments', 'replicasets', 'statefulsets', 'daemonsets']

  verbs: ['get', 'watch', 'list']

- apiGroups: ['autoscaling']

  resources: ['horizontalpodautoscalers']

  verbs: ['get', 'watch', 'list']

- apiGroups: ['networking.k8s.io']

  resources: ['ingresses']

  verbs: ['get', 'watch', 'list']

- apiGroups: ['networking.internal.knative.dev']

  resources: ['serverlessservices']

  verbs: ['get', 'watch', 'list']

- apiGroups: [ 'autoscaling.internal.knative.dev' ]

  resources: [ 'podautoscalers' ]

  verbs: [ 'get', 'watch', 'list' ]

- apiGroups: ['serving.knative.dev']

  resources:

  - configurations

  - revisions

  - routes

  - services

  verbs: ['get', 'watch', 'list']

- apiGroups: ['carto.run']

Tanzu Application Platform v1.5

VMware by Broadcom 1794



  resources:

  - clusterconfigtemplates

  - clusterdeliveries

  - clusterdeploymenttemplates

  - clusterimagetemplates

  - clusterruntemplates

  - clustersourcetemplates

  - clustersupplychains

  - clustertemplates

  - deliverables

  - runnables

  - workloads

  verbs: ['get', 'watch', 'list']

- apiGroups: ['source.toolkit.fluxcd.io']

  resources:

  - gitrepositories

  verbs: ['get', 'watch', 'list']

- apiGroups: ['source.apps.tanzu.vmware.com']

  resources:

  - imagerepositories

  - mavenartifacts

  verbs: ['get', 'watch', 'list']

- apiGroups: ['conventions.apps.tanzu.vmware.com']

  resources:

  - podintents

  verbs: ['get', 'watch', 'list']

- apiGroups: ['kpack.io']

  resources:

  - images

  - builds

  verbs: ['get', 'watch', 'list']

- apiGroups: ['scanning.apps.tanzu.vmware.com']

  resources:

  - sourcescans

  - imagescans

  - scanpolicies

  - scantemplates

  verbs: ['get', 'watch', 'list']

- apiGroups: ['tekton.dev']

  resources:

  - taskruns

  - pipelineruns

  verbs: ['get', 'watch', 'list']

- apiGroups: ['kappctrl.k14s.io']

  resources:

  - apps

  verbs: ['get', 'watch', 'list']

- apiGroups: [ 'batch' ]

  resources: [ 'jobs', 'cronjobs' ]

  verbs: [ 'get', 'watch', 'list' ]

- apiGroups: ['conventions.carto.run']

  resources:

  - podintents

  verbs: ['get', 'watch', 'list']

- apiGroups: ['appliveview.apps.tanzu.vmware.com']

  resources:

  - resourceinspectiongrants

  verbs: ['get', 'watch', 'list', 'create']

This YAML content creates Namespace, ServiceAccount, ClusterRole, and
ClusterRoleBinding.

2. On the Build and Run clusters, create Namespace, ServiceAccount, ClusterRole, and
ClusterRoleBinding by running:

Tanzu Application Platform v1.5

VMware by Broadcom 1795



kubectl create -f tap-gui-viewer-service-account-rbac.yaml

3. Again, on the Build and Run clusters, discover the CLUSTER_URL and CLUSTER_TOKEN values.

v1.23 or earlier Kubernetes cluster
If you’re watching a v1.23 or earlier Kubernetes cluster, run:

CLUSTER_URL=$(kubectl config view --minify -o jsonpath='{.clusters[0].cluste

r.server}')

CLUSTER_TOKEN=$(kubectl -n tap-gui get secret $(kubectl -n tap-gui get sa tap

-gui-viewer -o=json \

| jq -r '.secrets[0].name') -o=json \

| jq -r '.data["token"]' \

| base64 --decode)

echo CLUSTER_URL: $CLUSTER_URL

echo CLUSTER_TOKEN: $CLUSTER_TOKEN

v1.24 or later Kubernetes cluster
If you’re watching a v1.24 or later Kubernetes cluster, run:

CLUSTER_URL=$(kubectl config view --minify -o jsonpath='{.clusters[0].cluste

r.server}')

kubectl apply -f - <<EOF

apiVersion: v1

kind: Secret

metadata:

  name: tap-gui-viewer

  namespace: tap-gui

  annotations:

    kubernetes.io/service-account.name: tap-gui-viewer

type: kubernetes.io/service-account-token

EOF

CLUSTER_TOKEN=$(kubectl -n tap-gui get secret tap-gui-viewer -o=json \

| jq -r '.data["token"]' \

| base64 --decode)

echo CLUSTER_URL: $CLUSTER_URL

echo CLUSTER_TOKEN: $CLUSTER_TOKEN

4. (Optional) Configure the Kubernetes client to verify the TLS certificates presented by a
cluster’s API server. To do this, discover CLUSTER_CA_CERTIFICATES by running:

CLUSTER_CA_CERTIFICATES=$(kubectl config view --raw -o jsonpath='{.clusters[?

(@.name=="CLUSTER-NAME")].cluster.certificate-authority-data}')

echo CLUSTER_CA_CERTIFICATES: $CLUSTER_CA_CERTIFICATES

Where CLUSTER-NAME is your cluster name.

Note

You can create a short-lived token with the kubectl create token
command if that is the preferred method. This method requires frequent
token rotation.

Tanzu Application Platform v1.5

VMware by Broadcom 1796



5. Record the Build and Run clusters’ CLUSTER_URL and CLUSTER_TOKEN values for when you
Update Tanzu Application Platform GUI to view resources on multiple clusters later.

Update Tanzu Application Platform GUI to view resources
on multiple clusters
The clusters must be identified to Tanzu Application Platform GUI with the ServiceAccount token
and the cluster Kubernetes control plane URL.

You must add a kubernetes section to the app_config section in the tap-values.yaml file that
Tanzu Application Platform used when you installed it. This section must have an entry for each
Build and Run cluster that has resources to view.

To do so:

1. Copy this YAML content into tap-values.yaml:

tap_gui:

## Previous configuration above

  app_config:

    kubernetes:

      serviceLocatorMethod:

        type: 'multiTenant'

      clusterLocatorMethods:

        - type: 'config'

          clusters:

          ## Cluster 1

            - url: CLUSTER-URL

              name: CLUSTER-NAME

              authProvider: serviceAccount

              serviceAccountToken: "CLUSTER-TOKEN"

              skipTLSVerify: true

              skipMetricsLookup: true

          ## Cluster 2+

            - url: CLUSTER-URL

              name: CLUSTER-NAME

              authProvider: serviceAccount

              serviceAccountToken: "CLUSTER-TOKEN"

              skipTLSVerify: true

              skipMetricsLookup: true

Where:

CLUSTER-URL is the value you discovered earlier.

CLUSTER-TOKEN is the value you discovered earlier.

CLUSTER-NAME is a unique name of your choice.

If there are resources to view on the View cluster that hosts Tanzu Application Platform
GUI, add an entry to clusters for it as well.

If you would like the Kubernetes client to verify the TLS certificates presented by a cluster’s
API server, set the following properties for the cluster:

skipTLSVerify: false

caData: CLUSTER-CA-CERTIFICATES

Where CLUSTER-CA-CERTIFICATES is the value you discovered earlier.

2. Update the tap package by running this command:

tanzu package installed update tap -n tap-install --values-file tap-values.yaml

Tanzu Application Platform v1.5

VMware by Broadcom 1797



3. Wait a moment for the tap and tap-gui packages to update and then verify that STATUS is
Reconcile succeeded by running:

tanzu package installed get all -n tap-install

View resources on multiple clusters in the Runtime
Resources Visibility plug-in

To view resources on multiple clusters in the Runtime Resources Visibility plug-in:

1. Go to the Runtime Resources Visibility plug-in for a component that is running on multiple
clusters.

2. View the multiple resources and their statuses across the clusters.

Set up authentication for Tanzu Application Platform GUI
Tanzu Application Platform GUI (commonly called TAP GUI) extends the current Backstage
authentication plug-in so that you can see a login page based on the authentication providers
configured at installation. This feature is a work in progress.

Tanzu Application Platform GUI currently supports the following authentication providers:

Auth0

Azure

Bitbucket

GitHub

GitLab

Google

Okta

OneLogin

You can also configure a custom OpenID Connect (OIDC) provider.

View your Backstage Identity
A Backstage identity is defined as a combination of:

Tanzu Application Platform v1.5

VMware by Broadcom 1798

https://backstage.io/docs/auth/auth0/provider/
https://backstage.io/docs/auth/microsoft/provider/
https://backstage.io/docs/auth/bitbucket/provider/
https://backstage.io/docs/auth/github/provider/
https://backstage.io/docs/auth/gitlab/provider/
https://backstage.io/docs/auth/google/provider/
https://backstage.io/docs/auth/okta/provider/
https://backstage.io/docs/auth/onelogin/provider/


The user reference: each entity in the catalog is uniquely identified by the triplet of its kind

A namespace

A name

For example, the user Jane can be assigned to the user entity user:default/jane and an
ownership reference, which is used to determine what that user owns. Jane (user:default/jane)
might have the ownership references user:default/jane, group:default/team-a, and
group:default/admins. This would mean that Jane belongs to those groups and, therefore, owns
those references.

To view your current Backstage identity, in the Settings section of the left side navigation pane
click the General tab.

Tanzu Application Platform v1.5

VMware by Broadcom 1799

https://backstage.io/docs/features/software-catalog/descriptor-format/#apiversion-and-kind-required
https://backstage.io/docs/features/software-catalog/descriptor-format/#namespace-optional
https://backstage.io/docs/features/software-catalog/descriptor-format/#name-required


Configure an authentication provider

Configure a supported authentication provider or a custom OIDC provider:

To configure a supported authentication provider, see the Backstage authentication
documentation.

Tanzu Application Platform v1.5

VMware by Broadcom 1800

https://backstage.io/docs/auth/


To configure a custom OIDC provider, edit your tap-values.yaml file or your custom
configuration file to include an OIDC authentication provider. Configure the OIDC provider
with your OAuth App values. For example:

shared:

  ingress_domain: "INGRESS-DOMAIN"

# ... any existing values

tap_gui:

  # ... any other TAP GUI values

  app_config:

    auth:

      environment: development

      session:

        secret: custom session secret

      providers:

        oidc:

          development:

            metadataUrl: AUTH-OIDC-METADATA-URL

            clientId: AUTH-OIDC-CLIENT-ID

            clientSecret: AUTH-OIDC-CLIENT-SECRET

            tokenSignedResponseAlg: AUTH-OIDC-TOKEN-SIGNED-RESPONSE-ALG # defau

lt='RS256'

            scope: AUTH-OIDC-SCOPE # default='openid profile email'

            prompt: auto # default=none (allowed values: auto, none, consent, l

ogin)

Where AUTH-OIDC-METADATA-URL is a JSON file with generic OIDC provider configuration. It
contains authorizationUrl and tokenUrl. Tanzu Application Platform GUI reads these
values from metadataUrl, so you must not specify these values explicitly in the earlier
authentication configuration.

You must also the provide the redirect URI of the Tanzu Application Platform GUI instance
to your identity provider. The redirect URI is sometimes called the redirect URL, the
callback URL, or the callback URI. The redirect URI takes the following form:

SCHEME://tap-gui.INGRESS-DOMAIN/api/auth/oidc/handler/frame

Where:

SCHEME is the URI scheme, most commonly http or https

INGRESS-DOMAIN is the host name you selected for your Tanzu Application Platform
GUI instance

When using https and example.com as examples for the two placeholders respectively, the
redirect URI reads as follows:

https://tap-gui.example.com/api/auth/oidc/handler/frame

For more information, see this example in GitHub.

(Optional) Configure offline access scope for the OIDC provider by adding the scope
parameter offline_access to either tap-values.yaml or your custom configuration file. For
example:

auth:

  providers:

    oidc:

      development:

Tanzu Application Platform v1.5

VMware by Broadcom 1801

https://github.com/backstage/backstage/blob/e4ab91cf571277c636e3e112cd82069cdd6fca1f/app-config.yaml#L333-L347


        ... # auth configs

        scope: 'openid profile email offline_access'

By default, scope is not configured to provide persistence to user login sessions, such as in
the case of a page refresh. Not all identity providers support the offline_access scope. For
more information, see your identity provider documentation.

(Optional) Allow guest access

Enable guest access with other providers by adding the following flag under your authentication
configuration:

auth:

  allowGuestAccess: true

(Optional) Customize the login page

Change the card’s title or description for a specific provider with the following configuration:

auth:

  environment: development

  providers:

    ... # auth providers config

  loginPage:

    github:

      title: Github Login

      message: Enter with your GitHub account

For a provider to appear on the login page, ensure that it is properly configured under the
auth.providers section of your values file.

View resources on remote clusters
You can control the access to Kubernetes runtime resources on Tanzu Application Platform GUI
(commonly called TAP GUI) based on user roles and permissions for each of the visible remote
clusters.

RBAC is currently supported for the following Kubernetes cluster providers:

EKS (Elastic Kubernetes Service) on AWS

GKE (Google Kubernetes Engine) on GCP

Support for other Kubernetes providers is planned for future releases of Tanzu Application Platform.

Tanzu Application Platform GUI is designed under the assumption that the roles and permissions for
the Kubernetes clusters are already defined and that the users are already assigned to their roles.
For information about assigning roles and permissions to users, see Assigning roles and permissions
on Kubernetes clusters.

Adding access-controlled visibility for a remote cluster is similar to Setting up unrestricted remote
cluster visibility.

Caution

Setting up role-based access control (RBAC) might impact the user’s ability to view
workloads in the Security Analysis GUI and the Workloads table of the Supply Chain
Choreographer plug-in GUI.

Tanzu Application Platform v1.5

VMware by Broadcom 1802



The steps are:

1. Set up the OIDC provider

2. Configure the Kubernetes cluster with the OIDC provider

3. Configure the Tanzu Application Platform GUI to view the remote cluster

4. Upgrade the Tanzu Application Platform GUI package

After following these steps, you can view your runtime resources on a remote cluster in Tanzu
Application Platform GUI. For more information, see View runtime resources on remote clusters.

View resources on remote clusters

You can control the access to Kubernetes runtime resources on Tanzu Application Platform GUI
(commonly called TAP GUI) based on user roles and permissions for each of the visible remote
clusters.

RBAC is currently supported for the following Kubernetes cluster providers:

EKS (Elastic Kubernetes Service) on AWS

GKE (Google Kubernetes Engine) on GCP

Support for other Kubernetes providers is planned for future releases of Tanzu Application Platform.

Tanzu Application Platform GUI is designed under the assumption that the roles and permissions for
the Kubernetes clusters are already defined and that the users are already assigned to their roles.
For information about assigning roles and permissions to users, see Assigning roles and permissions
on Kubernetes clusters.

Adding access-controlled visibility for a remote cluster is similar to Setting up unrestricted remote
cluster visibility.

The steps are:

1. Set up the OIDC provider

2. Configure the Kubernetes cluster with the OIDC provider

3. Configure the Tanzu Application Platform GUI to view the remote cluster

4. Upgrade the Tanzu Application Platform GUI package

After following these steps, you can view your runtime resources on a remote cluster in Tanzu
Application Platform GUI. For more information, see View runtime resources on remote clusters.

View resources on remote EKS clusters

This topic tells you how to view your runtime resources on a remote EKS cluster in Tanzu
Application Platform GUI (commonly called TAP GUI). For more information, see View runtime
resources on remote clusters.

Set up the OIDC provider

Caution

Setting up role-based access control (RBAC) might impact the user’s ability to view
workloads in the Security Analysis GUI and the Workloads table of the Supply Chain
Choreographer plug-in GUI.

Tanzu Application Platform v1.5

VMware by Broadcom 1803



You must set up the OIDC provider to enable RBAC visibility of remote EKS clusters. You can see
the list of supported OIDC providers in Setting up a Tanzu Application Platform GUI authentication
provider.

Tanzu Application Platform GUI supports multiple OIDC providers. Auth0 is used here as an
example.

1. Log in to the Auth0 dashboard.

2. Go to Applications.

3. Create an application of the type Single Page Web Application named TAP-GUI or a name
of your choice.

4. Click the Settings tab.

5. Under Application URIs > Allowed Callback URLs, add

https://tap-gui.INGRESS-DOMAIN/api/auth/auth0/handler/frame

Where INGRESS-DOMAIN is the domain you chose for your Tanzu Application Platform GUI in
Installing the Tanzu Application Platform package and profiles.

6. Click Save Changes.

After creating an application with your OIDC provider, you receive the following credentials for
setting up RBAC for your remote cluster:

Domain, which is used as ISSUER-URL in the following sections (AUTH0_DOMAIN for Auth0)

Client ID, which is used as CLIENT-ID in the following sections

Client Secret, which is used as CLIENT-SECRET in the following sections

For more information, see Auth0 Setup Walkthrough in the Backstage documentation. To
configure other OIDC providers, see Authentication in Backstage in the Backstage documentation.

Configure the Kubernetes cluster with the OIDC provider

To configure the cluster with the OIDC provider’s credentials:

1. Create a file with the following content and name it rbac-setup.yaml. This content applies
to EKS clusters.

apiVersion: eksctl.io/v1alpha5

kind: ClusterConfig

metadata:

  name: "CLUSTER-NAME"

  region: "AWS-REGION"

identityProviders:

  - name: auth0

    type: oidc

    issuerUrl: "ISSUER-URL"

    clientId: "CLIENT-ID"

    usernameClaim: email

Where:

CLUSTER-NAME is the cluster name for your EKS cluster as an AWS identifier

AWS-REGION is the AWS region of the EKS cluster

CLIENT-ID is the Client ID you obtained while setting up the OIDC provider

ISSUER-URL is the Issuer URL you obtained while setting up the OIDC provider. For
Auth0, this is https://${AUTH0_DOMAIN}/.

Tanzu Application Platform v1.5

VMware by Broadcom 1804

https://backstage.io/docs/auth/auth0/provider
https://backstage.io/docs/auth/


2. Using eksctl, run:

eksctl associate identityprovider -f rbac-setup.yaml

3. Verify that the association of the OIDC provider with the EKS cluster was successful by
running:

eksctl get identityprovider --cluster CLUSTER-NAME

Where CLUSTER-NAME is the cluster name for your EKS cluster as an AWS identifier

Verify that the output shows ACTIVE in the STATUS column.

Configure the Tanzu Application Platform GUI
Configure visibility of the remote cluster in Tanzu Application Platform GUI:

1. Obtain your cluster’s URL by running:

CLUSTER_URL=$(kubectl config view --minify -o jsonpath='{.clusters[0].cluster.s

erver}')

echo CLUSTER-URL: $CLUSTER_URL

This command returns the URL of the first configured cluster in your kubeconfig file. To
view other clusters one by one, edit the number in .clusters[0].cluster.server or edit
the command to view all the configured clusters.

2. Ensure you have an auth section in the app_config section that Tanzu Application Platform
GUI uses. In the example for Auth0, copy this YAML content into tap-values.yaml:

auth:

  environment: development

  providers:

    auth0:

      development:

        clientId: "CLIENT-ID"

        clientSecret: "CLIENT-SECRET"

        domain: "ISSUER-URL"

Where:

CLIENT-ID is the Client ID you obtained while setting up the OIDC provider.

CLIENT-SECRET is the Client Secret you obtained while setting up the OIDC provider.

ISSUER-URL is the Issuer URL you obtained while setting up the OIDC provider. For
Auth0, it is only AUTH0_DOMAIN.

3. Add a kubernetes section to the app_config section that Tanzu Application Platform GUI
uses. This section must have an entry for each cluster that has resources to view. To do so,
copy this YAML content into tap-values.yaml:

kubernetes:

  serviceLocatorMethod:

    type: 'multiTenant'

  clusterLocatorMethods:

    - type: 'config'

      clusters:

        - name: "CLUSTER-NAME-UNCONSTRAINED"

          url: "CLUSTER-URL"

          authProvider: oidc

Tanzu Application Platform v1.5

VMware by Broadcom 1805



          oidcTokenProvider: auth0

          skipTLSVerify: true

          skipMetricsLookup: true

Where:

CLUSTER-NAME-UNCONSTRAINED is the cluster name of your choice for your EKS cluster

CLUSTER-URL is the URL for the remote cluster you are connecting to Tanzu
Application Platform GUI. You obtained this earlier in the procedure.

If there are any other clusters that you want to make visible in Tanzu Application Platform
GUI, add their entries to clusters as well.

Upgrade the Tanzu Application Platform GUI package

After the new configuration file is ready, update the tap package:

1. Run:

tanzu package installed update tap --values-file tap-values.yaml

2. Wait a moment for the tap-gui package to update and then verify that STATUS is Reconcile
succeeded by running:

tanzu package installed get tap-gui -n tap-install

View resources on remote GKE clusters
This topic tells you about two supported options to add access-controlled visibility for a remote
GKE cluster:

Leverage an external OIDC provider

Leveraging Google’s OIDC provider

After the authorization is enabled, you can view your runtime resources on a remote cluster in
Tanzu Application Platform GUI. For more information, see View runtime resources on remote
clusters.

Leverage an external OIDC provider
To leverage an external OIDC provider, such as Auth0:

1. Set up the OIDC provider

2. Configure the GKE cluster with the OIDC provider

3. Configure Tanzu Application Platform GUI to view the remote GKE cluster

4. Upgrade tap-gui package

Set up the OIDC provider

You must set up the OIDC provider to enable RBAC visibility of remote clusters. You can see the
list of supported OIDC providers in Setting up a Tanzu Application Platform GUI authentication
provider.

Tanzu Application Platform GUI supports multiple OIDC providers. Auth0 is used here as an
example.

1. Log in to the Auth0 dashboard.

Tanzu Application Platform v1.5

VMware by Broadcom 1806



2. Go to Applications.

3. Create an application of the type Single Page Web Application named TAP-GUI or a name
of your choice.

4. Click the Settings tab.

5. Under Application URIs > Allowed Callback URLs, add

https://tap-gui.INGRESS-DOMAIN/api/auth/auth0/handler/frame

Where INGRESS-DOMAIN is the domain you chose for your Tanzu Application Platform GUI in
Installing the Tanzu Application Platform package and profiles.

6. Click Save Changes.

After creating an application with your OIDC provider, you receive the following credentials for
setting up RBAC for your remote cluster:

Domain, which is used as issuerURL in the following sections

Client ID, which is used as CLIENT-ID in the following sections

Client Secret, which is used as CLIENT-SECRET in the following sections

For more information, see Auth0 Setup Walkthrough in the Backstage documentation. To
configure other OIDC providers, see Authentication in Backstage in the Backstage documentation.

Configure the GKE cluster with the OIDC provider

Add redirect configuration on the OIDC side by following the Google Cloud documentation.

Configure visibility of the remote cluster

Configure visibility of the remote cluster in Tanzu Application Platform GUI:

1. Obtain your cluster’s URL by running:

CLUSTER_URL=$(kubectl config view --minify -o jsonpath='{.clusters[0].cluster.s

erver}')

echo CLUSTER-URL: $CLUSTER_URL

This command returns the URL of the first configured cluster in your kubeconfig file. To
view other clusters one by one, edit the number in .clusters[0].cluster.server or edit
the command to view all the configured clusters.

2. Ensure you have an auth section in the app_config section that Tanzu Application Platform
GUI uses. In the example for Auth0, copy this YAML content into tap-values.yaml:

auth:

  environment: development

  providers:

    auth0:

      development:

        clientId: "CLIENT-ID"

        clientSecret: "CLIENT-SECRET"

        domain: "ISSUER-URL"

Where:

CLIENT-ID is the Client ID you obtained while setting up the OIDC provider

CLIENT-SECRET is the Client Secret you obtained while setting up the OIDC provider

Tanzu Application Platform v1.5

VMware by Broadcom 1807

https://backstage.io/docs/auth/auth0/provider
https://backstage.io/docs/auth/
https://cloud.google.com/kubernetes-engine/docs/how-to/oidc


ISSUER-URL is the Issuer URL you obtained while setting up the OIDC provider

3. Add a kubernetes section to the app_config section that Tanzu Application Platform GUI
uses. This section must have an entry for each cluster that has resources to view. To do so,
copy this YAML content into tap-values.yaml:

kubernetes:

  serviceLocatorMethod:

    type: 'multiTenant'

  clusterLocatorMethods:

    - type: 'config'

      clusters:

        - name: "CLUSTER-NAME-UNCONSTRAINED"

          url: "CLUSTER-URL"

          authProvider: oidc

          oidcTokenProvider: auth0

          skipTLSVerify: true

          skipMetricsLookup: true

Where:

CLUSTER-NAME-UNCONSTRAINED is the cluster name of your choice for your GKE cluster

CLUSTER-URL is the URL for the remote cluster you are connecting to Tanzu
Application Platform GUI. You obtained this earlier in the procedure.

If there are any other clusters that you want to make visible in Tanzu Application Platform
GUI, add their entries to clusters as well.

Update the tap-gui package to finish leveraging the external OIDC
provider

After the new configuration file is ready, update the tap-gui package:

1. Run:

tanzu package installed update tap --values-file tap-values.yaml

2. Wait a moment for the tap-gui package to update and then verify that STATUS is Reconcile
succeeded by running:

tanzu package installed get tap-gui -n tap-install

Leverage Google’s OIDC provider

When leveraging Google’s OIDC provider, fewer steps are needed to enable authorization:

1. Add redirect configuration on the OIDC side.

2. Configure the Tanzu Application Platform GUI to view the remote GKE cluster

3. Upgrade the Tanzu Application Platform GUI package

Add redirect configuration on the OIDC side

Add redirect configuration on the OIDC side by following the Google Cloud documentation.

Configure visibility of the remote GKE cluster

Configure visibility of the remote GKE cluster in Tanzu Application Platform GUI:

1. Obtain your cluster’s URL by running:

Tanzu Application Platform v1.5

VMware by Broadcom 1808

https://cloud.google.com/kubernetes-engine/docs/how-to/oidc


CLUSTER_URL=$(kubectl config view --minify -o jsonpath='{.clusters[0].cluster.s

erver}')

echo CLUSTER-URL: $CLUSTER_URL

This command returns the URL of the first configured cluster in your kubeconfig file. To
view other clusters one by one, edit the number in .clusters[0].cluster.server or edit
the command to view all the configured clusters.

2. Ensure you have an auth section in the app_config section that Tanzu Application Platform
GUI uses. In the example for Auth0, copy this YAML content into tap-values.yaml:

auth:

  environment: development

  providers:

    google:

      development:

        clientId: "CLIENT-ID"

        clientSecret: "CLIENT-SECRET"

Where:

CLIENT-ID is the Client ID you obtained while setting up the OIDC provider

CLIENT-SECRET is the Client Secret you obtained while setting up the OIDC provider

3. Add a kubernetes section to the app_config section that Tanzu Application Platform GUI
uses. This section must have an entry for each cluster that has resources to view. To do so,
copy this YAML content into tap-values.yaml:

kubernetes:

  clusterLocatorMethods:

    - type: 'config'

      clusters:

        - name: "CLUSTER-NAME-UNCONSTRAINED"

          url: "CLUSTER-URL"

          authProvider: google

          caData: "CA-DATA"

Where:

CLUSTER-NAME-UNCONSTRAINED is the cluster name of your choice for your GKE
cluster.

CLUSTER-URL is the URL for the remote cluster you are connecting to Tanzu
Application Platform GUI. You obtained this earlier in the procedure.

CA-DATA is the CA certificate data.

If there are any other clusters that you want to make visible in Tanzu Application Platform
GUI, add their entries to clusters as well.

Update the tap-gui package to finish leveraging the Google OIDC
provider

After the new configuration file is ready, update the tap-gui package:

1. Run:

tanzu package installed update tap --values-file tap-values.yaml

2. Wait a moment for the tap-gui package to update and then verify that STATUS is Reconcile
succeeded by running:

Tanzu Application Platform v1.5

VMware by Broadcom 1809



tanzu package installed get tap-gui -n tap-install

View runtime resources on authorization-enabled clusters

To visualize runtime resources on authorization-enabled clusters in Tanzu Application Platform GUI
(commonly called TAP GUI), proceed to the software catalog component of choice and click the
Runtime Resources tab on top of the ribbon.

After you click Runtime Resources, Tanzu Application Platform GUI uses your credentials to query
the clusters for the respective runtime resources. The system verifies that you are authenticated
with the OIDC providers configured for the remote clusters. If you are not authenticated, the
system prompts you for your OIDC credentials.

Remote clusters that are not restricted by authorization are visible by using the general Service
Account of Tanzu Application Platform GUI. It is not restricted for users. For more information
about how to set up unrestricted remote cluster visibility, see Viewing resources on multiple
clusters in Tanzu Application Platform GUI.

The type of query to the remote cluster depends on the definition of the software catalog
component. In Tanzu Application Platform GUI, there are globally-scoped components and
namespace-scoped components.

This property of the component affects runtime resource visibility, depending on your permissions
on a specific cluster.

If your permissions on the authorization-enabled cluster are limited to specific namespaces, you do
not have visibility into runtime resources of globally-scoped components.

You need cluster-scoped access to have visibility into runtime resources of globally-scoped
components.

Globally-scoped components

For globally-scoped components, when you access Runtime Resources Tanzu Application Platform
GUI queries all Kubernetes namespaces for runtime resources that have a matching kubernetes-
label-selector, usually with a part-Of prefix.

For example, demo-component-a does not have a backstage.io/kubernetes-namespace in the
metadata.annotations section. This makes it a globally-scoped component. See the following

Tanzu Application Platform v1.5

VMware by Broadcom 1810



example YAML.

apiVersion: backstage.io/v1alpha1

kind: Component

metadata:

  name: demo-component-a

  description: Demo Component A

  tags:

    - java

  annotations:

    'backstage.io/kubernetes-label-selector': 'app.kubernetes.io/part-of=component-a'

spec:

  type: service

  lifecycle: experimental

  owner: team-a

Namespace-scoped components

If a component is namespace-scoped, when you access Runtime Resources Tanzu Application
Platform GUI queries only the associated Kubernetes namespace for each remote cluster that is
visible to Tanzu Application Platform GUI.

To make a component namespace-scoped, pass the following annotation to the definition YAML
file of the component:

annotations:

  'backstage.io/kubernetes-namespace': NAMESPACE-NAME

Where NAMESPACE-NAME is the Kubernetes namespace you want to associate your component with.

For example, demo-component-b has a kubernetes-namespace in the metadata.annotations section,
which associates it with the component-b namespaces on each of the visible clusters. This makes it a
namespace-scoped component. See the following example YAML.

apiVersion: backstage.io/v1alpha1

kind: Component

metadata:

  name: demo-component-b

  description: Demo Component B

  tags:

    - java

  annotations:

    'backstage.io/kubernetes-label-selector': 'app.kubernetes.io/part-of=component-b'

    'backstage.io/kubernetes-namespace': component-b

spec:

  type: service

  lifecycle: experimental

  owner: team-b

When the kubernetes-namespace annotation is absent, the component is considered globally-
scoped by default. For more information, see Adding Namespace Annotation in the Backstage
documentation.

Assign roles and permissions on Kubernetes clusters

This topic gives you an overview of creating roles and permissions on Kubernetes clusters and
assigning these roles to users. For more information, see Using RBAC Authorization in the
Kubernetes documentation.

The steps to define and assign roles are:

Tanzu Application Platform v1.5

VMware by Broadcom 1811

https://backstage.io/docs/features/kubernetes/configuration#adding-the-namespace-annotation
https://kubernetes.io/docs/reference/access-authn-authz/rbac/


1. Create roles

2. Create users

3. Assign users to their roles

Create roles

To control the access to Kubernetes runtime resources on Tanzu Application Platform GUI based
on users’ roles and permissions for each of visible remote clusters, VMware recommends two role
types:

Cluster-scoped roles

Namespace-scoped roles

Cluster-scoped roles

Cluster-scoped roles provide cluster-wide privileges. They enable visibility into runtime resources
across all of a cluster’s namespaces.

In this example YAML snippet, the pod-viewer role enables pod visibility on the cluster:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

  name: pod-viewer

rules:

- apiGroups: [""]

  resources: ["pods"]

  verbs: ["get", "watch", "list"]

Namespace-scoped roles

Namespace-scoped roles provide privileges that are limited to a certain namespace. They enable
visibility into runtime resources inside namespaces.

In this example YAML snippet, the pod-viewer-app1 role enables pod visibility in the app1
namespace:

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

  namespace: app1

  name: pod-viewer-app1

rules:

- apiGroups: [""]

  resources: ["pods"]

  verbs: ["get", "list"]

Create users

You can create users by running the kubectl create command. In this example YAML snippet, the
user john is defined:

apiVersion: rbac.authorization.k8s.io/v1

kind: User

metadata:

  namespace: default

  name: john

Tanzu Application Platform v1.5

VMware by Broadcom 1812



Assign users to their roles

After the users and role are created, the next step is to bind them together.

To bind a Tanzu Application Platform default role, see Bind a user or group to a default role.

In this example YAML snippet, the user john is bound with the pod-viewer cluster role:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

  name: john-pod-viewer

  namespace: default

subjects:

- kind: User

  name: john

  apiGroup: rbac.authorization.k8s.io

roleRef:

  kind: ClusterRole

  name: pod-viewer

  apiGroup: rbac.authorization.k8s.io

In this example YAML snippet, the user john is bound with the pod-viewer-app1 namespace-
specific role:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

  name: john-pod-viewer-app1

  namespace: app1

subjects:

- kind: User

  name: john

  apiGroup: rbac.authorization.k8s.io

roleRef:

  kind: Role

  name: pod-viewer-app1

  apiGroup: rbac.authorization.k8s.io

To verify the user’s permissions, run the can-i commands to get a yes or no answer. To verify that
you can list pods in your cluster-wide role, run:

kubectl auth can-i get pods --all-namespaces

To verify that you can list pods in namespace app1 in your namespace-specific role, run:

kubectl auth can-i get pods --namespace app1

Add Tanzu Application Platform GUI integrations
You can integrate Tanzu Application Platform GUI (commonly called TAP GUI) with several Git
providers. To use an integration, you must enable it and provide the necessary token or credentials
in tap-values.yaml.

Add a GitHub provider integration
To add a GitHub provider integration, edit tap-values.yaml as in this example:

app_config:

  app:

Tanzu Application Platform v1.5

VMware by Broadcom 1813



    baseUrl: http://EXTERNAL-IP:7000

  # Existing tap-values.yaml above

  integrations:

    github: # Other integrations available see NOTE below

      - host: github.com

        token: GITHUB-TOKEN

Where:

EXTERNAL-IP is the external IP address.

GITHUB-TOKEN is a valid token generated from your Git infrastructure of choice. Ensure that
GITHUB-TOKEN has the necessary read permissions for the catalog definition files you
extracted from the blank software catalog introduced in the Tanzu Application Platform GUI
prerequisites.

Add a Git-based provider integration that isn’t GitHub

To enable Tanzu Application Platform GUI to read Git-based non-GitHub repositories containing
component information:

1. Add the following YAML to tap-values.yaml:

app_config:

  # Existing tap-values.yaml above

  backend:

    reading:

      allow:

        - host: "GIT-CATALOG-URL-1"

        - host: "GIT-CATALOG-URL-2" # Including more than one URL is optional

Where GIT-CATALOG-URL-1 and GIT-CATALOG-URL-2 are URLs in a list of URLs that Tanzu
Application Platform GUI can read when registering new components. For example,
git.example.com. For more information about registering new components, see Adding
catalog entities.

2. Adding the YAML from the previous step currently causes the Accelerators page to break
and not show any accelerators. Provide a value for Application Accelerator as a
workaround, as in this example:

app_config:

  # Existing tap-values.yaml above

  backend:

    reading:

      allow:

        - host: acc-server.accelerator-system.svc.cluster.local

Add a non-Git provider integration
To add an integration for a provider that isn’t associated with GitHub, see the Backstage
documentation.

Update the package profile
After changing tap-values.yaml, update the package profile by running:

tanzu package installed update  tap --package tap.tanzu.vmware.com --version VERSION-N

UMBER \

--values-file tap-values.yaml -n tap-install

Tanzu Application Platform v1.5

VMware by Broadcom 1814

https://backstage.io/docs/integrations/


Where VERSION-NUMBER is the Tanzu Application Platform version. For example, 1.5.12.

For example:

$ tanzu package installed update  tap --package tap.tanzu.vmware.com --version \

1.5.12 --values-file tap-values.yaml -n tap-install

| Updating package 'tap'

| Getting package install for 'tap'

| Getting package metadata for 'tap.tanzu.vmware.com'

| Updating secret 'tap-tap-install-values'

| Updating package install for 'tap'

/ Waiting for 'PackageInstall' reconciliation for 'tap'

Updated package install 'tap' in namespace 'tap-install'

Configure the Tanzu Application Platform GUI database

The Tanzu Application Platform GUI (commonly called TAP GUI) catalog gives you two approaches
for storing catalog information:

In-memory database:

The default option uses an in-memory database and is suitable for test and development
scenarios only. The in-memory database reads the catalog data from Git URLs that you
write in tap-values.yaml.

This data is temporary. Any operations that cause the server pod in the tap-gui namespace
to be re-created also cause this data to be rebuilt from the Git location.

This can cause issues when you manually register entities by using the UI because they only
exist in the database and are lost when that in-memory database is rebuilt. If you choose
this method, you lose all user preferences and any manually registered entities when the
Tanzu Application Platform GUI server pod is re-created.

PostgreSQL database:

For production use-cases, use a PostgreSQL database that exists outside the Tanzu
Application Platform packaging. The PostgreSQL database stores all the catalog data
persistently both from the Git locations and the UI manual entity registrations.

For production or general-purpose use-cases, a PostgreSQL database is recommended.

Configure a PostgreSQL database

See the following sections for configuring Tanzu Application Platform GUI to use a PostgreSQL
database.

Edit tap-values.yaml

Apply the following values in tap-values.yaml:

# ... existing tap-values.yaml above

tap_gui:

  # ... existing tap_gui values

  app_config:

    backend:

      database:

        client: pg

        connection:

          host: PG-SQL-HOSTNAME

          port: 5432

Tanzu Application Platform v1.5

VMware by Broadcom 1815



          user: PG-SQL-USERNAME

          password: PG-SQL-PASSWORD

          ssl: {rejectUnauthorized: false} # Set to true if using SSL

Where:

PG-SQL-HOSTNAME is the host name of your PostgreSQL database

PG-SQL-USERNAME is the user name of your PostgreSQL database

PG-SQL-PASSWORD is the password of your PostgreSQL database

(Optional) Configure extra parameters

Beyond the minimum configuration options needed to make Tanzu Application Platform GUI work
with the pg driver, there are many more configuration options for other purposes. For example, you
can restrict Tanzu Application Platform GUI to a single database. For more information about this
restriction, see the Backstage documentation.

By default, Tanzu Application Platform GUI creates a database for each plug-in, but you can
configure it to divide plug-ins based on different PostgreSQL schemas and use a single specified
database.

See the following example of extra configuration parameters:

# ... existing tap-values.yaml above

tap_gui:

  # ... existing tap_gui values

  app_config:

    backend:

      # ... other backend details

      database:

        client: pg

        # This parameter tells Tanzu Application Platform GUI to put plug-ins in their 

own schema instead

        # of their own database.

        # default: database

        pluginDivisionMode: schema

        connection:

          # ... other connection details

          database: PG-SQL-DATABASE

Where PG-SQL-DATABASE is the database name for Tanzu Application Platform GUI to use

For the complete list of these configuration options, see the node-postgres documentation.

Update the package profile

You can apply your new configuration by updating Tanzu Application Platform with your modified
values. Doing so updates Tanzu Application Platform GUI because it belongs to Tanzu Application
Platform.

To apply your new configuration, run:

tanzu package installed update  tap --package tap.tanzu.vmware.com --version VERSION-N

UMBER --values-file tap-values.yaml -n tap-install

Where VERSION-NUMBER is your Tanzu Application Platform version. For example, 1.5.12.

For example:

Tanzu Application Platform v1.5

VMware by Broadcom 1816

https://backstage.io/docs/tutorials/switching-sqlite-postgres#using-a-single-database
https://node-postgres.com/apis/client


$ tanzu package installed update  tap --package tap.tanzu.vmware.com --version {{ var

s.tap_version }} --values-file tap-values.yaml -n tap-install

| Updating package 'tap'

| Getting package install for 'tap'

| Getting package metadata for 'tap.tanzu.vmware.com'

| Updating secret 'tap-tap-install-values'

| Updating package install for 'tap'

/ Waiting for 'PackageInstall' reconciliation for 'tap'

Updated package install 'tap' in namespace 'tap-install'

Generate and publish TechDocs

This topic tells you how to generate and publish TechDocs for catalogs as part of Tanzu Application
Platform GUI (commonly called TAP GUI). For more information about TechDocs, see the
Backstage.io documentation.

Create an Amazon S3 bucket

To create an Amazon S3 bucket:

1. Go to Amazon S3.

2. Click Create bucket.

3. Give the bucket a name.

4. Select the AWS region.

5. Keep Block all public access checked.

6. Click Create bucket.

Configure Amazon S3 access

The TechDocs are published to the S3 bucket that was recently created. You need an AWS user’s
access key to read from the bucket when viewing TechDocs.

Create an AWS IAM user group

To create an AWS IAM User Group:

1. Click Create Group.

2. Give the group a name.

3. Click Create Group.

4. Click the new group and navigate to Permissions.

5. Click Add permissions and click Create Inline Policy.

6. Click the JSON tab and replace contents with this JSON replacing BUCKET-NAME with the
bucket name.

{

  "Version": "2012-10-17",

  "Statement": [

      {

          "Sid": "ReadTechDocs",

          "Effect": "Allow",

          "Action": [

Tanzu Application Platform v1.5

VMware by Broadcom 1817

https://backstage.io/docs/features/techdocs/
https://s3.console.aws.amazon.com/s3/home
https://console.aws.amazon.com/iamv2/home#/groups


              "s3:ListBucket",

              "s3:GetObject"

          ],

          "Resource": [

              "arn:aws:s3:::BUCKET-NAME",

              "arn:aws:s3:::BUCKET-NAME/*"

          ]

      }

  ]

}

7. Click Review policy.

8. Give the policy a name and click Create policy.

Create an AWS IAM user

To create an AWS IAM User to add to this group:

1. Click Add users.

2. Give the user a name.

3. Verify Access key - Programmatic access and click Next: Permissions.

4. Verify the IAM Group to add the user to and click Next: Tags.

5. Click Next: Review then click Create user.

6. Record the Access key ID (AWS_READONLY_ACCESS_KEY_ID) and the Secret access key
(AWS_READONLY_SECRET_ACCESS_KEY) and click Close.

Find the catalog locations and their entities’ namespace,
kind, and name

TechDocs are generated for catalogs that have Markdown source files for TechDocs. To find the
catalog locations and their entities’ namespace, kind, and name:

1. The catalogs appearing in Tanzu Application Platform GUI are listed in the config values
under app_config.catalog.locations.

2. For a catalog, clone the catalog’s repository to the local file system.

3. Find the mkdocs.yml that is at the root of the catalog. There is a YAML file describing the
catalog at the same level called catalog-info.yaml.

4. Record the values for namespace, kind, and metadata.name, and the directory path
containing the YAML file.

5. Record the spec.targets in that file.

6. Find the namespace, kind, or name for each of the targets:

1. Go to the target’s YAML file.

2. The namespace value is the value of namespace. If it is not specified, it has the value
default.

3. The kind value is the value of kind.

4. The name value is the value of metadata.name.

5. Record the directory path containing the YAML file.

Use the TechDocs CLI to generate and publish TechDocs

Tanzu Application Platform v1.5

VMware by Broadcom 1818

https://console.aws.amazon.com/iamv2/home#/users


VMware uses npx to run the TechDocs CLI, which requires Node.js and npm. To generate and
publish TechDocs by using the TechDocs CLI:

1. Download and install Node.js and npm.

2. Install npx by running:

npm install -g npx

3. Generate the TechDocs for the root of the catalog by running:

npx @techdocs/cli generate --source-dir DIRECTORY-CONTAINING-THE-ROOT-YAML-FILE 

--output-dir ./site

4. Review the contents of the site directory to verify the TechDocs were generated.

5. Set environment variables for authenticating with Amazon S3 with an account that has
read/write access:

export AWS_ACCESS_KEY_ID=AWS-ACCESS-KEY-ID

export AWS_SECRET_ACCESS_KEY=AWS-SECRET-ACCESS-KEY

export AWS_REGION=AWS-REGION

6. Publish the TechDocs for the root of the catalog to the Amazon S3 bucket you created
earlier by running:

npx @techdocs/cli publish --publisher-type awsS3 --storage-name BUCKET-NAME --e

ntity \

NAMESPACE/KIND/NAME --directory ./site

Where NAMESPACE/KIND/NAME are the values for namespace, kind, and metadata.name you
recorded earlier. For example, default/location/yelb-catalog-info.

7. For each of the spec.targets found earlier, repeat the generate and publish commands.

Update the techdocs section in app-config.yaml to point to
the Amazon S3 bucket

Update the config values you used during installation to point to the Amazon S3 bucket that has
the published TechDocs files:

1. Add or edit the techdocs section under app_config in the config values with the following
YAML, replacing placeholders with the appropriate values.

Note

This creates a temporary site directory in your current working directory
that contains the generated TechDocs files.

Note

The generate command erases the contents of the site directory before
creating new TechDocs files. Therefore, the publish command must follow
the generate command for each target.

Tanzu Application Platform v1.5

VMware by Broadcom 1819

https://docs.npmjs.com/downloading-and-installing-node-js-and-npm


techdocs:

  builder: 'external'

  publisher:

    type: 'awsS3'

    awsS3:

      bucketName: BUCKET-NAME

      accountId: ACCOUNT-ID

      region: AWS-REGION

aws:

  accounts:

    - accountId: ACCOUNT-ID

      accessKeyId: AWS-READONLY-ACCESS-KEY-ID

      secretAccessKey: AWS-READONLY-SECRET-ACCESS-KEY

For more information about authentication to an Amazon S3 bucket through an assumed
role, see the Backstage documentation.

2. Update your installation from the Tanzu CLI:

Tanzu Application Platform package installation
If you installed Tanzu Application Platform GUI as part of the Tanzu Application Platform
package (in other words, if you installed it by running tanzu package install tap ...)
then run:

tanzu package installed update tap \

  --version PACKAGE-VERSION \

  --values-file VALUES-FILE

Where PACKAGE-VERSION is your package version and VALUES-FILE is your values file

Separate package installation
If you installed Tanzu Application Platform GUI as its own package (in other words, if you
installed it by running tanzu package install tap-gui ...) then run:

tanzu package installed update tap-gui \

  --version PACKAGE-VERSION \

  --values-file VALUES-FILE

Where PACKAGE-VERSION is your package version and VALUES-FILE is your values file

3. Verify the status of the update by running:

tanzu package installed list

4. Go to the Docs section of your catalog and view the TechDocs pages to verify the content
is loaded from the S3 bucket.

Overview of Tanzu Application Platform GUI plug-ins

Tanzu Application Platform GUI (commonly called TAP GUI) has many pre-integrated plug-ins. You
need not configure the plug-ins. To use a plug-in, you must install the relevant Tanzu Application
Platform component.

Tanzu Application Platform has the following GUI plug-ins:

Runtime Resources Visibility

Application Live View

Application Accelerator

Tanzu Application Platform v1.5

VMware by Broadcom 1820

https://backstage.io/docs/features/techdocs/using-cloud-storage/#configuring-aws-s3-bucket-with-techdocs


API Documentation

Security Analysis

Supply Chain Choreographer

Overview of Tanzu Application Platform GUI plug-ins

Tanzu Application Platform GUI (commonly called TAP GUI) has many pre-integrated plug-ins. You
need not configure the plug-ins. To use a plug-in, you must install the relevant Tanzu Application
Platform component.

Tanzu Application Platform has the following GUI plug-ins:

Runtime Resources Visibility

Application Live View

Application Accelerator

API Documentation

Security Analysis

Supply Chain Choreographer

Runtime resources visibility in Tanzu Application Platform
GUI
This topic tells you about runtime resources visibility.

The Runtime Resources Visibility plug-in enables users to visualize their Kubernetes resources
associated with their workloads.

Prerequisite
Do one of the following actions to access the Runtime Resources Visibility plug-in:

Install the Tanzu Application Platform Full or View profile

Install Tanzu Application Platform without using a profile and then install Tanzu Application
Platform GUI separately

Review the section If you have a metrics server

If you have a metrics server
By default, the Kubernetes API does not attempt to use any metrics servers on your clusters. To
access metrics information for a cluster, set skipMetricsLookup to false for that cluster in the
kubernetes section of app-config.yaml. Example:

tap_gui:

  # ... existing configuration

  app_config:

    # ... existing configuration

    kubernetes:

      clusterLocatorMethods:

        - type: 'config'

          clusters:

            - url: https://KUBERNETES-SERVICE-HOST:KUBERNETES-SERVICE-PORT

              name: host

              authProvider: serviceAccount

              serviceAccountToken: KUBERNETES-SERVICE-ACCOUNT-TOKEN

Tanzu Application Platform v1.5

VMware by Broadcom 1821



              skipTLSVerify: true

              skipMetricsLookup: false

Where:

KUBERNETES-SERVICE-HOST and KUBERNETES-SERVICE-PORT are the URL and ports of your
Kubernetes cluster. You can gather these through kubectl cluster-info.

KUBERNETES-SERVICE-ACCOUNT-TOKEN is the token from your tap-gui-token-id.

You can retrieve this secret’s ID by running:

kubectl get secrets -n tap-gui

and then running

kubectl describe secret tap-gui-token-ID

Where ID is the secret name from the first step.

Visualize Workloads on Tanzu Application Platform GUI

In order to view your applications on Tanzu Application Platform GUI, use the following steps:

1. Deploy your first application on the Tanzu Application Platform

2. Add your application to Tanzu Application Platform GUI Software Catalog

Navigate to the Runtime Resources Visibility screen

You can view the list of running resources and the details of their status, type, namespace, cluster,
and public URL if applicable for the resource type.

To view the list of your running resources:

1. Select your component from the Catalog index page.

2. Select the Runtime Resources tab.

Caution

If you enable metrics for a cluster but do not have a metrics server running on it,
Tanzu Application Platform web interface users see an error notifying them that
there is a problem connecting to the back end.

Tanzu Application Platform v1.5

VMware by Broadcom 1822



Resources

Built-in Kubernetes resources in this view are:

Services

Deployments

ReplicaSets

Pods

Jobs

Cronjobs

DaemonSets

ReplicaSets

The Runtime Resource Visibility plug-in also displays CRDs created with the Supply Chain,
including:

Cartographer Workloads

Knative Services, Configurations, Revisions, and Routes

For more information, see Supply Chain Choreographer in Tanzu Application Platform GUI.

CRDs from Supply Chain are associated with Knative Resources, further down the chain, and built-
in resources even further down the chain.

Resources details page

To get more information about a particular workload, select it from the table on the main Runtime
Resources page to visit a page that provides details about the workload. These details include the
workload status, ownership, and resource-specific information.

Tanzu Application Platform v1.5

VMware by Broadcom 1823



Overview card

All detail pages provide an overview card with information related to the selected resource. Most of
the information feeds from the metadata attribute in each object. The following are some attributes
that are displayed in the overview card:

View Pod Logs button

View .YAML button

URL, which is for Knative and Kubernetes service detail pages

Type

System

Namespace

Cluster

Tanzu Application Platform v1.5

VMware by Broadcom 1824



Status card

The status section displays all of the conditions in the resource’s attribute status.conditions. Not
all resources have conditions, and they can vary from one resource to the other.

For more information about object spec and status, see the Kubernetes documentation.

Note

The VIEW CPU AND MEMORY DETAILS and VIEW THREADS sections are only
available for applications supporting Application Live View.

Tanzu Application Platform v1.5

VMware by Broadcom 1825

https://kubernetes.io/docs/concepts/_print/#object-spec-and-status


Ownership card

Depending on the resource that you are viewing, the ownership section displays all the resources
specified in metadata.ownerReferences. You can use this section to navigate between resources.

For more information about owners and dependents, see the Kubernetes documentation.

Annotations and Labels

Tanzu Application Platform v1.5

VMware by Broadcom 1826

https://kubernetes.io/docs/concepts/overview/working-with-objects/owners-dependents/


The Annotations and Labels card displays information about metadata.annotations and
metadata.labels.

Selecting completed supply chain pods

Completed supply chain pods (build pods and ConfigWriter pods) are hidden by default in the index
table. Users can choose to display them from the Show Additional Resources drop-down menu
above the Resources index table. This drop-down menu is only visible if the resources include Build
or ConfigWriter pods.

Navigating to the pod Details page
Users can see the pod table in each resource details page.

Overview of pod metrics

If you have a metrics server running on your cluster, the overview card displays realtime metrics for
pods.

If you do not have a metrics server, the overview card displays the user-configured resource limits
on the pod, defined in accordance with the Kubernetes documentation.

Tanzu Application Platform v1.5

VMware by Broadcom 1827

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/


For applications built using Spring Boot, you can also monitor the actual real-time resource use
using Screenshot of Application Live View for Spring Boot Applications in Tanzu Application
Platform GUI..

Metrics and limits are also displayed for each container on a pod details page. If a particular
container’s current limit conflicts with a namespace-level LimitRange, a small warning indicator is
displayed next to the container limit. Most conflicts are due to creating a container before applying
a LimitRange.

Pods display the sum of the limits of all their containers. If a limit is not specified for a container,
both the container and its pod are deemed to require unlimited resources.

Namespace-level resource limits, such as default memory limits and default CPU limits, are not
considered as part of these calculations.

For more information about default memory limits and default CPU limits see the Kubernetes
documentation.

These limits apply only for Memory and CPU that a pod or container can use. Kubernetes manages
these resource units by using a binary base, which is explained in the Kubernetes documentation.

Navigating to Application Live View

To view additional information about your running applications, see the Application Live View
section in the Pod Details page.

Viewing pod logs

Tanzu Application Platform v1.5

VMware by Broadcom 1828

https://kubernetes.io/docs/tasks/administer-cluster/manage-resources/memory-default-namespace/
https://kubernetes.io/docs/tasks/administer-cluster/manage-resources/cpu-default-namespace/
https://kubernetes.io/docs/reference/kubernetes-api/common-definitions/quantity/


To view logs for a pod, click View Pod Logs from the Pod Details page. By default, logs for the
pod’s first container are displayed, dating back to when the pod was created.

Pausing and resuming logs

Log entries are streamed in real time. New entries appear at the bottom of the log content area.
Click or scroll the log content area to pause the log stream. Pausing the log stream enables you to
focus on specific entries.

To resume the stream, click the Follow Latest button that appears after pausing.

Filtering by container

To display logs for a different container, select the container that you want from the Container
drop-down menu.

Filtering by date and time

To see logs since a specific date and time, select or type the UTC timestamp in the Since date
field. If no logs are displayed, adjust the timestamp to an earlier time. If you do not select a
timestamp, all logs produced since the pod was created are displayed.

For optimal performance, the pod logs page limits the total log entries displayed to the last 10,000,
at most.

Changing log levels

If the pod is associated with an application that supports Application Live View, you can change the
application’s log levels by clicking the Change Log Levels button. You then see a panel that
enables you to select levels for each logger associated with your application.

Tanzu Application Platform v1.5

VMware by Broadcom 1829



To change the levels for your application, select the desired level for each logger presented, and
then click X in the upper-right corner of the panel, or press the Escape key, to close the panel.

Because adjusting log levels makes a real-time configuration change to your application, log-level
adjustments are only reflected in log entries that your application produces after the change.

If no log entries for the expected levels appear, ensure that:

1. You adjusted the correct application loggers

2. You are viewing logs for the correct container and time frame

3. Your application is currently producing logs at the expected levels

Line wrapping

By default, log entries are not wrapped. To activate or deactivate line wrapping, click the Wrap
lines toggle.

Downloading logs

To download current log content, click the Download logs button.

For optimal performance, the pod logs page limits the total log entries downloaded to the last
10,000, at most.

Connection interruptions

If the log stream connection is interrupted for any reason, such as a network error, a notification
appears after the most recent log entry, and the page attempts to reconnect to the log stream. If
reconnection fails, an error message displays at the top of the page, and you can click the Refresh
button at the upper-right of the page to attempt to reconnect.

Tanzu Application Platform v1.5

VMware by Broadcom 1830



If you notice frequent disconnections at regular intervals, contact your administrator. Your
administrator might need to update the back-end configuration for your installation to allow long-
lived HTTP connections to log endpoints (endpoints starting with BACKEND-HOST/api/k8s-logging/).

Application Live View in Tanzu Application Platform GUI

This topic tells you about Application Live View in Tanzu Application Platform GUI (commonly called
TAP GUI).

Overview

The Application Live View features of Tanzu Application Platform include sophisticated components
to give developers and operators a view into their running workloads on Kubernetes.

Application Live View shows an individual running process, for example, a Spring Boot application
deployed as a workload resulting in a JVM process running inside of a pod. This is an important
concept of Application Live View. Application Live View only recognizes running processes. If there
is not a running process inside of a running pod, Application Live View does not show anything.

Under the hood, Application Live View uses the concept of actuators to gather data from those
running processes. It visualizes them in a semantically meaningful way and allows users to interact
with the inner workings of the running processes within limited boundaries.

The actuator data serves as the source of truth. Application Live View provides a live view of the
data from inside of the running processes only. It does not store any of that data for further analysis
or historical views.

This easy-to-use interface provides ways to troubleshoot, learn, and maintain an overview of
certain aspects of the running processes. It gives a level of control to the users to change some
parameters, such as environment properties, without a restart (where the Spring Boot application,
for example, supports that).

Entry point to Application Live View plug-in

The Application Live View UI plug-in is part of Tanzu Application Platform GUI. To use the
Application Live View plug-in:

1. Select the relevant component under the Organization Catalog in Tanzu Application
Platform GUI.

2. Select the desired service under the Runtime Resources tab.

3. Select the desired pod from the Pods section under the Runtime Resources tab.

4. You can now see all the details, do some lightweight troubleshooting, and interact with the
application within certain boundaries under the Live View section.

Application Live View in Tanzu Application Platform GUI

This topic tells you about Application Live View in Tanzu Application Platform GUI (commonly called
TAP GUI).

Overview

The Application Live View features of Tanzu Application Platform include sophisticated components
to give developers and operators a view into their running workloads on Kubernetes.

Tanzu Application Platform v1.5

VMware by Broadcom 1831



Application Live View shows an individual running process, for example, a Spring Boot application
deployed as a workload resulting in a JVM process running inside of a pod. This is an important
concept of Application Live View. Application Live View only recognizes running processes. If there
is not a running process inside of a running pod, Application Live View does not show anything.

Under the hood, Application Live View uses the concept of actuators to gather data from those
running processes. It visualizes them in a semantically meaningful way and allows users to interact
with the inner workings of the running processes within limited boundaries.

The actuator data serves as the source of truth. Application Live View provides a live view of the
data from inside of the running processes only. It does not store any of that data for further analysis
or historical views.

This easy-to-use interface provides ways to troubleshoot, learn, and maintain an overview of
certain aspects of the running processes. It gives a level of control to the users to change some
parameters, such as environment properties, without a restart (where the Spring Boot application,
for example, supports that).

Entry point to Application Live View plug-in

The Application Live View UI plug-in is part of Tanzu Application Platform GUI. To use the
Application Live View plug-in:

1. Select the relevant component under the Organization Catalog in Tanzu Application
Platform GUI.

2. Select the desired service under the Runtime Resources tab.

3. Select the desired pod from the Pods section under the Runtime Resources tab.

4. You can now see all the details, do some lightweight troubleshooting, and interact with the
application within certain boundaries under the Live View section.

Application Live View for Spring Boot applications in Tanzu
Application Platform GUI
This topic tells you about the Application Live View pages for Spring Boot Applications in Tanzu
Application Platform GUI (commonly called TAP GUI).

Details page
This is the default page loaded in the Live View section. This page gives a tabular overview
containing the following information:

application name

instance ID

location

actuator location

health endpoint

direct actuator access

framework

version

new patch version

new major version

Tanzu Application Platform v1.5

VMware by Broadcom 1832



build version

You can navigate between Information Categories by selecting from the drop-down menu on the
top right corner of the page.

Health page

To go to the health page, select the Health option from the Information Category drop-down
menu. The health page provides detailed information about the health of the application. It lists all
the components that make up the health of the application such as readiness, liveness, and disk
space. It displays the status and details associated with each component.

Environment page

To go to the Environment page, select the Environment option from the Information Category
drop-down menu. The Environment page contains details of the applications’ environment. It
contains properties including, but not limited to, system properties, environment variables, and
configuration properties (such as application.properties) in a Spring Boot application.

The page includes the following capabilities for viewing configured environment properties:

The UI has a search feature that enables you to search for a property or values.

Each property has a search icon at the right corner which helps you quickly see all the
occurrences of a specific property key without manually typing in the search box. Clicking
the search button locates the property name.

The Refresh Scope button on the top right corner of the page probes the application to
refresh all the environment properties.

The page also includes the following capabilities for editing configured environment properties:

The UI allows you to edit environment properties and see the live changes in the
application. These edits are temporary and go away if the underlying pod is restarted.

For each configured environment property, you can edit its value by clicking on the
Override button in the same row. After the value is saved, you can view the message that
the property was overridden from the initial value. The updated property is visible in the

Tanzu Application Platform v1.5

VMware by Broadcom 1833



Applied Overrides section at the top of the page. The Reset button in the same row
resets the environment property to the initial state.

You can edit or remove the overridden environment variables in the Applied Overrides
section.

The Applied Overrides section also enables you to add new environment properties to the
application.

Log Levels page
To go to the Log Levels page, select the Log Levels option from the Information Category drop-
down menu. The log levels page provides access to the application’s loggers and the configuration
of their levels.

You can configure the log levels such as INFO, DEBUG, and TRACE in real time from the UI. You
can search for a package and edit its respective log level. You can configure the log levels at a
specific class and package. They can deactivate all the log levels by modifying the log level of root
logger to OFF.

The toggle Changes Only displays the changed log levels. Use the search feature to search by
logger name. The Reset resets the log levels to the original state. The Reset All on top right corner
of the page resets all the loggers to default state.

Note

management.endpoint.env.post.enabled=true must be set in the application config
properties of the application and a corresponding, editable environment must be
present in the application.

Note

Use the UI to change the log levels and see the live changes on the application.
These changes are temporary and go away if the underlying pod is restarted.

Tanzu Application Platform v1.5

VMware by Broadcom 1834



Threads page

To go to the Threads page, select the Threads option from the Information Category drop-down
menu.

This page displays all details related to Java Virtual Machine (JVM) threads and running processes of
the application. This tracks live threads and daemon threads real-time. It is a snapshot of different
thread states. Navigating to a thread state displays all the information about a particular thread and
its stack trace.

Use the search feature to search for threads by thread ID or state. The refresh icon refreshes to the
latest state of the threads. You can view more thread details by clicking on the Thread ID. The
page also has a feature to download thread dump data for analysis purposes.

Memory page

Tanzu Application Platform v1.5

VMware by Broadcom 1835



To go to the Memory page, select the Memory option from the Information Category drop-down
menu.

The memory page highlights the memory use inside of the JVM. It displays a graphical
representation of the different memory regions within heap and non-heap memory. This
visualizes data from inside of the JVM (in case of Spring Boot apps running on a JVM) and
therefore provides memory insights into the application in contrast to “outside” information
about the Kubernetes pod level.

The real-time graphs displays a stacked overview of the different spaces in memory with
the total memory used and total memory size. The page contains graphs to display the GC
pauses and GC events.

The Heap Dump at the top-right corner enables you to download heap dump data.

Request Mappings page
To go to the Request Mappings page, select the Request Mappings option from the Information
Category drop-down menu.

This page provides information about the application’s request mappings. For each mapping, it
displays the request handler method. You can view more details of the request mapping, such as
the header metadata of the application.

When you click on the request mapping, a side panel appears. This panel contains information
about the mapping-media types Produces and Consumes. The panel also displays the Handler class
for the request. Use the search feature to search for the request mapping or the method. The
toggle /actuator/** Request Mappings displays the actuator related mappings of the application.

Note

This graphical visualization happens in real time and shows real-time data only. As
mentioned at the top, the Application Live View features do not store any
information. That means the graphs visualize the data over time only for as long as
you stay on that page.

Note

Tanzu Application Platform v1.5

VMware by Broadcom 1836



HTTP Requests page

To go to the HTTP Requests page, click HTTP Requests from the Information Category drop-
down menu. The HTTP Requests page provides information about HTTP request-response
exchanges to the application.

The graph visualizes the requests per second indicating the response status of all the requests. You
can filter the response statuses, which include info, success, redirects, client-errors, and server-
errors. The trace data is captured in detail in a tabular format with metrics such as timestamp,
method, path, status, content-type, length, time.

The search feature on the table filters the traces based on the search field value. You can view
more details of the request, such as method, headers, and response of the application by clicking
on the timestamp. The refresh icon above the graph loads the latest traces of the application. The
toggle /actuator/** on the top right corner of the page displays the actuator related traces of the
application.

When application actuator endpoint is exposed on management.server.port, the
application does not return any actuator request mappings data in the context. The
application displays a message when the actuator toggle is enabled.

Note

When application actuator endpoint is exposed on management.server.port, no
actuator HTTP Traces data is returned for the application. In this case, a message is
displayed when the actuator toggle is enabled.

Tanzu Application Platform v1.5

VMware by Broadcom 1837



Caches page

To go to the Caches page, select the Caches option from the Information Category drop-down
menu.

The Caches page provides access to the application’s caches. It gives the details of the cache
managers associated with the application including the fully qualified name of the native cache.

Use the search feature in the Caches Page to search for a specific cache/cache manager. You can
clear individual caches by clicking Evict. You can clear all the caches completely by clicking Evict
All. If there are no cache managers for the application, the message No cache managers available
for the application is displayed.

Configuration Properties page

To go to the Configuration Properties page, select the Configuration Properties option from the
Information Category drop-down menu.

The configuration properties page provides information about the configuration properties of the
application. In case of Spring Boot, it displays application’s @ConfigurationProperties beans. It
gives a snapshot of all the beans and their associated configuration properties. Use the search
feature to search for a property’s key/value or the bean name.

Tanzu Application Platform v1.5

VMware by Broadcom 1838



Conditions page

To go to the Conditions page, select the Conditions option from the Information Category drop-
down menu. The conditions evaluation report provides information about the evaluation of
conditions on configuration and auto-configuration classes.

In the case of Spring Boot, this gives you a view of all the beans configured in the application.
When you click on the bean name, the conditions and the reason for the conditional match is
displayed.

In the case of non-configured beans, it shows both the matched and unmatched conditions of the
bean if any. In addition to this, it also displays names of unconditional auto configuration classes if
any. You can use the search feature to filter out the beans and the conditions.

Scheduled Tasks page
To go to the Scheduled Tasks page, select the Scheduled Tasks option from the Information
Category drop-down menu.

Tanzu Application Platform v1.5

VMware by Broadcom 1839



The scheduled tasks page provides information about the application’s scheduled tasks. It includes
cron tasks, fixed delay tasks and fixed rate tasks, custom tasks and the properties associated with
them.

You can search for a particular property or a task in the search bar to retrieve the task or property
details.

Beans page
To go to the Beans page, select the Beans option from the Information Category drop-down
menu. The beans page provides information about a list of all application beans and its
dependencies. It displays the information about the bean type, dependencies, and its resource.
You can search by the bean name or its corresponding fields.

Metrics page

To go to the Metrics page, select the Metrics option from the Information Category drop-down
menu.

The metrics page provides access to application metrics information. You can choose from the list
of various metrics available for the application, such as jvm.memory.used, jvm.memory.max,
http.server.request, and so on.

Tanzu Application Platform v1.5

VMware by Broadcom 1840



After the metric is chosen, you can view the associated tags. You can choose the value of each tag
based on filtering criteria. Clicking Add Metric adds the metric to the page which is refreshed every
5 seconds by default.

You can pause the auto refresh feature by deactivating the Auto Refresh toggle. You can refresh
the metrics manually by clicking Refresh All. The format of the metric value can be changed
according to your needs. They can delete a particular metric by clicking the minus symbol in the
same row.

Actuator page
To go to the Actuator page, select the Actuator option from the Information Category drop-
down menu. The actuator page provides a tree view of the actuator data. You can choose from a
list of actuator endpoints and parse through the raw actuator data.

Troubleshooting

You might run into cases where a workload running on your cluster does not appear in the
Application Live View overview, the detail pages do not load any information while running, or
similar issues. If you encounter issues, see Troubleshooting in the Application Live View
documentation.

Application Live View for Spring Cloud Gateway
applications in Tanzu Application Platform GUI

Tanzu Application Platform v1.5

VMware by Broadcom 1841



This topic tells you about the Application Live View pages for Spring Cloud Gateway applications in
Tanzu Application Platform GUI (commonly called TAP GUI).

API Success Rate page

To access to the API Success Rate page, select the API Success Rate option from the Information
Category drop-down menu.

The API success rate page displays the total successes, average response time, and maximum
response time for the gateway routes. It also displays the details of each successful route path.

API Overview page
To access the API Overview page, select the API Overview option from the Information Category
drop-down menu.

The API Overview page provides route count, number of successes, errors, and the rate-limited
requests. It also provides an auto refresh feature to get the updated results. These metrics are
depicted in a line graph.

API Authentications By Path page

To access the API Authentications By Path page, select the API Authentications By Path option
from the Information Category drop-down menu.

The API Authentications By Path page displays the total requests, number of successes, and
forbidden and unsuccessful authentications grouped by the HTTP method and gateway route path.
The page also displays the success rate for each route.

Tanzu Application Platform v1.5

VMware by Broadcom 1842



Troubleshooting
You might run into cases where a workload running on your cluster does not appear in the
Application Live View overview, or the detail pages do not load any information while running, or
other similar issues. For more information about such issues, see Troubleshooting in the Application
Live View documentation.

Application Live View for Steeltoe applications in Tanzu
Application Platform GUI

This topic tells you about the Application Live View pages for Steeltoe applications in Tanzu
Application Platform GUI (commonly called TAP GUI).

Details page

This is the default page loaded in the Live View section. This page gives a tabular overview
containing the following information:

Application name

Instance ID

Location

Actuator location

Health endpoint

Direct actuator access

Framework

Version

New patch version

New major version

Build version

You can navigate between Information Categories by selecting from the drop-down menu on the
top right corner of the page.

Health page

Note

In addition to the preceding three pages, the Spring Boot actuator pages are also
displayed.

Tanzu Application Platform v1.5

VMware by Broadcom 1843



To access the health page, select the Health option from the Information Category drop-down
menu.

The health page provides detailed information about the health of the application. It lists all the
components that make up the health of the application, such as readiness, liveness, and disk space.
It displays the status and details associated with each component.

Environment page
To access the Environment page, select the Environment option from the Information Category
drop-down menu.

The Environment page contains details of the applications’ environment. It contains properties
including, but not limited to, system properties, environment variables, and configuration properties
(such as appsettings.json) in a Steeltoe application.

The page includes the following capabilities for viewing configured environment properties:

The UI has a search feature that enables you to search for a property or values.

Each property has a search icon at the right corner which helps you quickly see all the
occurrences of a specific property key without manually typing in the search box. Clicking
the search button locates the property name.

The Refresh Scope button on the top right corner of the page probes the application to
refresh all the environment properties.

The page also includes the following capabilities for editing configured environment properties:

The UI allows you to edit environment properties and see the live changes in the
application. These edits are temporary and go away if the underlying pod is restarted.

For each of the configured environment properties, you can edit its value by clicking on the
Override button in the same row. After the value is saved, you can view the message that
the property was overridden from the initial value. Also, the updated property is visible in
the Applied Overrides section at the top of the page. The Reset button in the same row
resets the environment property to the initial state.

You can also edit or remove the overridden environment variables in the Applied
Overrides section.

The Applied Overrides section also enables you to add new environment properties to the
application.

Note

The management.endpoint.env.post.enabled=true must be set in the application
config properties of the application, and a corresponding editable environment must
be present in the application.

Tanzu Application Platform v1.5

VMware by Broadcom 1844



Log Levels page
To go to the Log Levels page, select the Log Levels option from the Information Category drop-
down menu. The Log Levels page provides access to the application’s loggers and the
configuration of the levels.

You can:

Configure log levels, such as INFO, DEBUG, and TRACE, in real time from the UI

Search for a package and edit its respective log level

Configure the log levels at a specific class and package

Deactivate all the log levels by changing the log level of root logger to OFF

Use the Changes Only toggle to display the changed log levels. Use the search feature to search
by logger name. Click Reset All to reset all the loggers to the default state.

Note

The UI allows you to change the log levels and see the live changes on the
application. These changes are temporary and go away if the underlying pod is
restarted.

Tanzu Application Platform v1.5

VMware by Broadcom 1845



Threads page

To access the Threads page, select the Threads option from the Information Category drop-
down menu.

This page displays all details related to CLR threads and running processes of the application. This
tracks worker threads and completion port threads in real time. Navigating to a thread state
displays all the information about a particular thread and its stack trace.

The refresh icon refreshes to the latest state of the threads.

To view more thread details, click the thread ID.

The page has a feature to download the thread dump for analysis.

The page has a feature to view the CPU stats for a Steeltoe application.

Memory page

To access the Memory page, select the Memory option from the Information Category drop-
down menu.

This page displays all details related to used and committed memory of the application. This also
displays the garbage collection count by generation (gen0/gen1). The page also has a feature to
download the heap dump for analysis. The page also has a feature to view the CPU stats for a
Steeltoe application

Request Mappings page

Tanzu Application Platform v1.5

VMware by Broadcom 1846



To access the Request Mappings page, select the Request Mappings option from the
Information Category drop-down menu.

This page provides information about the application’s request mappings. For each mapping, the
page displays the request handler method. You can view more details of the request mapping, such
as the header metadata of the application.

When you click on the request mapping, a side panel appears. This panel contains information
about the mapping-media types Produces and Consumes. The panel also displays the Handler class
for the request. The search feature enables you to search for the request mapping or the method.
The toggle /actuator/** Request Mappings displays the actuator-related mappings of the
application.

HTTP Requests page

To access the HTTP Requests page, select the HTTP Requests option from the Information
Category drop-down menu.

The HTTP Requests page provides information about HTTP request-response exchanges to the
application.

The graph visualizes the requests per second, which indicates the response status of all the
requests. You can filter by the response statuses, which include info, success, redirects, client-
errors, and server-errors. The trace data is captured in detail in a tabular format with metrics,
such as timestamp, method, path, status, content-type, length, and time.

The search feature on the table filters the traces based on the search text box value. By clicking on
the timestamp, you can view more details of the request, such as method, headers, and the
response of the application.

The refresh icon above the graph loads the latest traces of the application. The toggle /actuator/**
on the top-right corner of the page displays the actuator-related traces of the application.

Metrics page

Tanzu Application Platform v1.5

VMware by Broadcom 1847



To access the Metrics page, select the Metrics option from the Information Category drop-down
menu.

The metrics page provides access to application metrics information. You can choose from the list
of various metrics available for the application, such as clr.memory.used, System.Runtime.gc-
committed, clr.threadpool.active, and so on.

After you choose the metric, you can view the associated tags. You can choose the value of each
of the tags based on filtering criteria. Click Add Metric to add the metric to the page. The page is
refreshed every 5 seconds by default.

The UI on the Metrics page includes features that enable you to:

Pause the auto refresh feature by deactivating the Auto Refresh toggle.

Refresh the metrics manually by clicking Refresh All.

Change the format of the metric value according to your needs.

Delete a particular metric by clicking the minus-sign button in the relevant row.

Actuator page

To access the Actuator page, select the Actuator option from the Information Category drop-
down menu. The actuator page provides a tree view of the actuator data. You can choose from a
list of actuator endpoints and parse through the raw actuator data.

Troubleshooting

You might run into cases where a workload running on your cluster does not appear in the
Application Live View overview, or the Details pages do not load any information while running, or
other similar issues. For help with troubleshooting common issues, see Troubleshooting.

Application Accelerator in Tanzu Application Platform GUI

Tanzu Application Platform v1.5

VMware by Broadcom 1848



This topic tells you how to use Application Accelerator in Tanzu Application Platform GUI
(commonly called TAP GUI).

Overview

Application Accelerator for VMware Tanzu helps you bootstrap developing and deploying your
applications in a discoverable and repeatable way.

Enterprise architects author and publish accelerator projects that provide developers and operators
with ready-made, enterprise-conforming code and configurations. You can then use Application
Accelerator to create new projects based on those accelerator projects.

The Application Accelerator UI enables you to discover available accelerators, configure them, and
generate new projects to download.

Access Application Accelerator

To open the Application Accelerator UI plug-in and select an accelerator:

1. Within Tanzu Application Platform, click Create in the left navigation pane to open the
Accelerators page.

Here you can view accelerators already registered with the system. Developers can add
new accelerators by registering them with Kubernetes.

2. Every accelerator has a title and short description. Click VIEW REPOSITORY to view an
accelerator definition. This opens the accelerator’s Git repository in a new browser tab.

3. Search and filter based on text and tags associated with the accelerators to find the
accelerator representing the project you want to create.

4. Click CHOOSE for the accelerator you want. This opens the Generate Accelerators page.

Configure project generation
To configure how projects are generated:

1. On the Generate Accelerators page, add any configuration values needed to generate the
project. The application architect defined these values in accelerator.yaml in the

Tanzu Application Platform v1.5

VMware by Broadcom 1849



accelerator definition. Filling some text boxes can cause other text boxes to appear. Fill
them all in.

2. Click EXPLORE to open the Explore Project page and view the project before it is
generated.

3. After configuring your project, click NEXT STEP to see the project summary page.

4. Review the values you specified for the configurable options.

5. Click BACK to make more changes, if necessary. Otherwise, proceed to create the project.

Create the project

To create the project:

1. Click Create to start generating your project. See the progress on the Task Activity page.
A detailed log is displayed on the right.

2. After the project is generated, click EXPLORE ZIP FILE to open the Explore Project page
to verify configuration.

3. Click DOWNLOAD ZIP FILE to download the project in a ZIP file.

Develop your code

To develop your code:

1. Expand the ZIP file.

Tanzu Application Platform v1.5

VMware by Broadcom 1850



2. Open the project in your integrated development environment (IDE).

Next steps

To learn more about Application Accelerator for VMware Tanzu, see the Application Accelerator
documentation.

Application Accelerator in Tanzu Application Platform GUI

This topic tells you how to use Application Accelerator in Tanzu Application Platform GUI
(commonly called TAP GUI).

Overview

Application Accelerator for VMware Tanzu helps you bootstrap developing and deploying your
applications in a discoverable and repeatable way.

Enterprise architects author and publish accelerator projects that provide developers and operators
with ready-made, enterprise-conforming code and configurations. You can then use Application
Accelerator to create new projects based on those accelerator projects.

The Application Accelerator UI enables you to discover available accelerators, configure them, and
generate new projects to download.

Access Application Accelerator

To open the Application Accelerator UI plug-in and select an accelerator:

1. Within Tanzu Application Platform, click Create in the left navigation pane to open the
Accelerators page.

Tanzu Application Platform v1.5

VMware by Broadcom 1851



Here you can view accelerators already registered with the system. Developers can add
new accelerators by registering them with Kubernetes.

2. Every accelerator has a title and short description. Click VIEW REPOSITORY to view an
accelerator definition. This opens the accelerator’s Git repository in a new browser tab.

3. Search and filter based on text and tags associated with the accelerators to find the
accelerator representing the project you want to create.

4. Click CHOOSE for the accelerator you want. This opens the Generate Accelerators page.

Configure project generation
To configure how projects are generated:

1. On the Generate Accelerators page, add any configuration values needed to generate the
project. The application architect defined these values in accelerator.yaml in the
accelerator definition. Filling some text boxes can cause other text boxes to appear. Fill
them all in.

2. Click EXPLORE to open the Explore Project page and view the project before it is
generated.

3. After configuring your project, click NEXT STEP to see the project summary page.

4. Review the values you specified for the configurable options.

5. Click BACK to make more changes, if necessary. Otherwise, proceed to create the project.

Tanzu Application Platform v1.5

VMware by Broadcom 1852



Create the project

To create the project:

1. Click Create to start generating your project. See the progress on the Task Activity page.
A detailed log is displayed on the right.

2. After the project is generated, click EXPLORE ZIP FILE to open the Explore Project page
to verify configuration.

3. Click DOWNLOAD ZIP FILE to download the project in a ZIP file.

Develop your code
To develop your code:

1. Expand the ZIP file.

2. Open the project in your integrated development environment (IDE).

Next steps

Tanzu Application Platform v1.5

VMware by Broadcom 1853



To learn more about Application Accelerator for VMware Tanzu, see the Application Accelerator
documentation.

Install Application Accelerator

This topic tells you how to install Application Accelerator from the Tanzu Application Platform
(commonly known as TAP) package repository.

Prerequisites

Before installing Application Accelerator:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

Install Flux SourceController on the cluster. See Install Flux CD Source Controller.

Install Source Controller on the cluster. See Install Source Controller.

Install

To install Application Accelerator:

1. List version information for the package by running:

tanzu package available list accelerator.apps.tanzu.vmware.com --namespace tap-

install

For example:

$ tanzu package available list accelerator.apps.tanzu.vmware.com --namespace ta

p-install

- Retrieving package versions for accelerator.apps.tanzu.vmware.com...

  NAME                               VERSION  RELEASED-AT

  accelerator.apps.tanzu.vmware.com  1.4.0    2022-12-08 12:00:00 -0500 EST

2. (Optional) View the changes you can make to the default installation settings by running:

tanzu package available get accelerator.apps.tanzu.vmware.com/VERSION-NUMBER \

  --values-schema \

  --namespace tap-install

Where VERSION-NUMBER is the version of the Application Accelerator package listed earlier.

For example:

$ tanzu package available get accelerator.apps.tanzu.vmware.com/1.4.0 \

    --values-schema \

    --namespace tap-install

Note

Follow the steps in this topic if you do not want to use a profile to install Application
Accelerator. For more information about profiles, see About Tanzu Application
Platform components and profiles.

Tanzu Application Platform v1.5

VMware by Broadcom 1854



For more information about values schema options, see the properties listed in Configure
properties and resource use later.

3. Create a file named app-accelerator-values.yaml using the following example code:

server:

  service_type: "LoadBalancer"

  watched_namespace: "accelerator-system"

samples:

  include: true

4. Edit the values in your app-accelerator-values.yaml if needed, or leave the default values.
You can add values you want from Configure properties and resource use.

5. Install the package by running:

tanzu package install app-accelerator \

  --package accelerator.apps.tanzu.vmware.com \

  --version VERSION-NUMBER \

  --namespace tap-install \

  --values-file app-accelerator-values.yaml

Where VERSION-NUMBER is the version of the Application Accelerator package listed earlier.

For example:

$ tanzu package install app-accelerator \

    --package accelerator.apps.tanzu.vmware.com \

    --version 1.4.0 \

    --namespace tap-install \

    --values-file app-accelerator-values.yaml

- Installing package 'accelerator.apps.tanzu.vmware.com'

| Getting package metadata for 'accelerator.apps.tanzu.vmware.com'

| Creating service account 'app-accelerator-tap-install-sa'

| Creating cluster admin role 'app-accelerator-tap-install-cluster-role'

| Creating cluster role binding 'app-accelerator-tap-install-cluster-rolebindin

g'

| Creating secret 'app-accelerator-tap-install-values'

- Creating package resource

- Package install status: Reconciling

 Added installed package 'app-accelerator' in namespace 'tap-install'

6. Verify the package install by running:

tanzu package installed get app-accelerator -n tap-install

For example:

$ tanzu package installed get app-accelerator -n tap-install

| Retrieving installation details for cc...

NAME:                    app-accelerator

PACKAGE-NAME:            accelerator.apps.tanzu.vmware.com

PACKAGE-VERSION:         1.4.0

STATUS:                  Reconcile succeeded

CONDITIONS:              [{ReconcileSucceeded True  }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded.

Tanzu Application Platform v1.5

VMware by Broadcom 1855



7. To see the IP address for the Application Accelerator API when the server.service_type is
set to LoadBalancer, run:

kubectl get service -n accelerator-system

This lists an external IP address for use with the --server-url Tanzu CLI flag for the
Accelerator plug-in generate & generate-from-local command.

For how to troubleshoot installation issues, see Troubleshoot Application Accelerator.

Configure properties and resource use

When you install the Application Accelerator, you can configure the following optional properties
from within your app-accelerator-values.yaml configuration file:

Property Default Description

registry.secret_ref registry.tanzu.vmware.com The secret used for accessing the registry where the
App-Accelerator images are located

server.service_type ClusterIP The service type for the acc-ui-server service including
LoadBalancer, NodePort, or ClusterIP

server.watched_namesp

ace

accelerator-system The namespace the server watches for accelerator
resources

server.engine_invocat

ion_url

http://acc-

engine.accelerator-

system.svc.cluster.local/inv

ocations

The URL to use for invoking the accelerator engine

engine.service_type ClusterIP The service type for the acc-engine service including
LoadBalancer, NodePort, or ClusterIP

engine.max_direct_mem

ory_size

32M The maximum size for the Java -
XX:MaxDirectMemorySize setting

samples.include True Option to include the bundled sample Accelerators in
the installation

ingress.include False Option to include the ingress configuration in the
installation

ingress.enable_tls False Option to include TLS for the ingress configuration

domain tap.example.com Top-level domain to use for ingress configuration,
default is shared.ingress_domain

tls.secret_name tls The name of the secret

tls.namespace tanzu-system-ingress The namespace for the secret

telemetry.retain_invo

cation_events_for_no_

days

30 The number of days to retain recorded invocation
events resources

telemetry.record_invo

cation_events

true The system records each engine invocation when
generating files for an accelerator?

git_credentials.secre

t_name

git-credentials The name to use for the secret storing Git credentials
for accelerators

git_credentials.usern

ame

null The user name to use in secret storing Git credentials
for accelerators

git_credentials.passw

ord

null The password to use in secret storing Git credentials
for accelerators

Tanzu Application Platform v1.5

VMware by Broadcom 1856



Property Default Description

git_credentials.ca_fi

le

null The CA certificate data to use in secret storing Git
credentials for accelerators

managed_resources.ena

ble

false Whether to enable the App used to control managed
accelerator resources

managed_resources.git

.url

none Required if managed_resources are enabled. Git
repository URL containing manifests for managed
accelerator resources

managed_resources.git

.ref

origin/main Required if managed_resources are enabled. Git ref to
use for repository containing manifests for managed
accelerator resources

managed_resources.git

.sub_path

null Git subPath to use for repository containing manifests
for managed accelerator resources

managed_resources.git

.secret_ref

git-credentials Secret name to use for repository containing manifests
for managed accelerator resources

VMware recommends that you do not override the default setting for registry.secret_ref,
server.engine_invocation_url, or engine.service_type. These properties are only used to
configure non-standard installations.

The following table is the resource use configurations for the components of Application
Accelerator.

Component Resource requests Resource limits

acc-controller CPU: 100m
memory: 20Mi

CPU: 100m
memory: 30Mi

acc-server CPU: 100m
memory:20Mi

CPU: 100m
memory: 30Mi

acc-engine CPU: 500m
memory: 1Gi

CPU: 500m
memory: 2Gi

Create an Application Accelerator Git repository during
project creation
This topic tells you how to enable and use GitHub repository creation in the Application Accelerator
plug-in of Tanzu Application Platform GUI (commonly called TAP GUI).

Overview
The Application Accelerator plug-in uses the Backstage GitHub provider integration and the
authentication mechanism to retrieve an access token. Then it can interact with the provider API to
create GitHub repositories.

Supported Providers
The supported Git providers are GitHub and GitLab.

Note

To create a repository in a self-hosted GitLab, you must add a custom GitLab
integration in tap-values.yaml as described in the Full Profile sample.

Tanzu Application Platform v1.5

VMware by Broadcom 1857



Configure

The following steps describe an example configuration that uses GitHub:

1. Create an OAuth App in GitHub based on the configuration described in this Backstage
documentation. GitHub Apps are not supported. For more information about creating an
OAuth App in GitHub, see the GitHub documentation.

These values appear in your app-config.yaml or app-config.local.yaml for local
development. For example:

auth:

 environment: development

 providers:

   github:

     development:

       clientId: GITHUB-CLIENT-ID

       clientSecret: GITHUB-CLIENT-SECRET

2. Add a GitHub integration in your app-config.yaml configuration. For example:

app_config:

 integrations:

   github:

     - host: github.com

For more information, see the Backstage documentation.

(Optional) Deactivate Git repository creation

As of Tanzu Application Platform v1.5, you can deactivate Git repository creation by setting the
property customize.features.accelerators.gitRepoCreation to false in tap-values.yaml. This
also deactivates Git repository creation in the Application Accelerator extension for VS Code.

See the following example configuration for deactivating Git repository creation:

app_config:

  customize:

    features:

      accelerators:

        gitRepoCreation: false

Create a Project
To create a project:

1. Go to Tanzu Application Platform GUI, access the Accelerators section, and then select an
accelerator. The accelerator form now has a second step named Git repository.

2. Fill in the accelerator options and click Next.

3. Select the Create Git repo? check box.

4. Fill in the Owner, Repository, and Default Branch text boxes.

Tanzu Application Platform v1.5

VMware by Broadcom 1858

https://backstage.io/docs/auth/github/provider
https://docs.github.com/en/developers/apps/building-oauth-apps/creating-an-oauth-app
https://backstage.io/docs/integrations/github/locations


5. After entering the repository name, a dialog box appears that requests GitHub credentials.
Log in and then click Next.

6. Click GENERATE ACCELERATOR. A link to the repository location appears.

API documentation plug-in in Tanzu Application Platform
GUI

This topic gives you an overview of the API documentation plug-in of Tanzu Application Platform
GUI (commonly called TAP GUI). For more information, see Get started with the API
documentation plug-in.

Tanzu Application Platform v1.5

VMware by Broadcom 1859



Overview

The API documentation plug-in provides a standalone list of APIs that can be connected to
components and systems of the Tanzu Application Platform GUI software catalog.

Each API entity can reflect the components that provide that API and the list of components that
are consumers of that API. Also, an API entity can be associated with systems and appear on the
system diagram. To show this dependency, make the spec.providesApis: and spec.consumesApis:
sections of the component definition files reference the name of the API entity.

Here’s a sample of how you can add providesApis and consumesApis to an existing component’s
catalog definition, linking them together.

apiVersion: backstage.io/v1alpha1

kind: Component

metadata:

  name: example-component

  description: Example Component

spec:

  type: service

  lifecycle: experimental

  owner: team-a

  system: example-system

  providesApis: # list of APIs provided by the Component

    - example-api-1

  consumesApis: # list of APIs consumed by the Component

    - example-api-2

For more information about the structure of the definition file for an API entity, see the Backstage
Kind: API documentation. For more information about the API documentation plug-in, see the
Backstage API documentation in GitHub.

Use the API documentation plug-in
The API documentation plug-in is part of Tanzu Application Platform GUI.

The first way to use the API documentation plug-in is API-first. Click APIs in the left navigation
pane of Tanzu Application Platform GUI. This opens the API catalog page.

On that page, you can view all the APIs already registered in the catalog regardless of whether
they are associated with components or systems.

The second way to use the API documentation plug-in is to use components and systems of the
software catalog, listed on the home page of Tanzu Application Platform GUI. If there is an API
entity associated with the selected component or system, the VIEW API icon is active.

Tanzu Application Platform v1.5

VMware by Broadcom 1860

https://backstage.io/docs/features/software-catalog/descriptor-format#kind-api
https://github.com/backstage/backstage/blob/master/plugins/api-docs/README.md


The VIEW API tab displays which APIs are being consumed by a component and which APIs are
being provided by the component.

Clicking on the API itself takes you to the catalog entry for the API, which the Kind type listed in
the upper-left corner denotes. Every API entity has a title and short description, including a
reference to the team that owns the definition of that API and the software catalog objects that are
connected to it.

Select the Definition tab on the top of the API page to see the definition of that API in human-
readable and machine-readable format.

Tanzu Application Platform v1.5

VMware by Broadcom 1861



The API documentation plug-in supports the following API formats:

OpenAPI 2 & 3

AsyncAPI

GraphQL

Plain (to support any other format)

Create a new API entry
You can create a new API entry manually or automatically.

Manually create a new API entry

Manually creating a new API entity is similar to registering any other software catalog entity. To
manually create a new API entity:

1. Click the Home button on the left navigation pane to access the home page of Tanzu
Application Platform GUI.

2. Click REGISTER ENTITY.

3. Register an existing component prompts you to type a repository URL. Paste the link to
the catalog-info.yaml file of your choice that contains the definition of your API entity. For
example, you can copy the following YAML content and save it as catalog-info.yaml on a
Git repository of your choice.

apiVersion: backstage.io/v1alpha1

kind: API

metadata:

name: demo-api

description: The demo API for Tanzu Application Platform GUI

links:

  - url: https://api.agify.io

    title: API Definition

    icon: docs

spec:

type: openapi

lifecycle: experimental

owner: demo-team

system: demo-app # Or specify system name of your choice

definition: |

  openapi: 3.0.1

  info:

    title: defaultTitle

    description: defaultDescription

Tanzu Application Platform v1.5

VMware by Broadcom 1862



    version: '0.1'

  servers:

    - url: https://api.agify.io

  paths:

    /:

      get:

        description: Auto generated using Swagger Inspector

        parameters:

          - name: name

            in: query

            schema:

              type: string

            example: type_any_name

        responses:

          '200':

            description: Auto generated using Swagger Inspector

            content:

              application/json; charset=utf-8:

                schema:

                  type: string

                examples: {}

4. Click ANALYZE and then review the catalog entities to be added.

5. Click IMPORT.

6. Click APIs on the left navigation pane to view entries on the API page.

Automatically create a new API entry

Tanzu Application Platform v1.3 introduced a feature called API Auto Registration that can
automatically register your APIs. For more information, see API Auto Registration.

API documentation plug-in in Tanzu Application Platform
GUI

Tanzu Application Platform v1.5

VMware by Broadcom 1863



This topic gives you an overview of the API documentation plug-in of Tanzu Application Platform
GUI (commonly called TAP GUI). For more information, see Get started with the API
documentation plug-in.

Overview

The API documentation plug-in provides a standalone list of APIs that can be connected to
components and systems of the Tanzu Application Platform GUI software catalog.

Each API entity can reflect the components that provide that API and the list of components that
are consumers of that API. Also, an API entity can be associated with systems and appear on the
system diagram. To show this dependency, make the spec.providesApis: and spec.consumesApis:
sections of the component definition files reference the name of the API entity.

Here’s a sample of how you can add providesApis and consumesApis to an existing component’s
catalog definition, linking them together.

apiVersion: backstage.io/v1alpha1

kind: Component

metadata:

  name: example-component

  description: Example Component

spec:

  type: service

  lifecycle: experimental

  owner: team-a

  system: example-system

  providesApis: # list of APIs provided by the Component

    - example-api-1

  consumesApis: # list of APIs consumed by the Component

    - example-api-2

For more information about the structure of the definition file for an API entity, see the Backstage
Kind: API documentation. For more information about the API documentation plug-in, see the
Backstage API documentation in GitHub.

Use the API documentation plug-in

The API documentation plug-in is part of Tanzu Application Platform GUI.

The first way to use the API documentation plug-in is API-first. Click APIs in the left navigation
pane of Tanzu Application Platform GUI. This opens the API catalog page.

Tanzu Application Platform v1.5

VMware by Broadcom 1864

https://backstage.io/docs/features/software-catalog/descriptor-format#kind-api
https://github.com/backstage/backstage/blob/master/plugins/api-docs/README.md


On that page, you can view all the APIs already registered in the catalog regardless of whether
they are associated with components or systems.

The second way to use the API documentation plug-in is to use components and systems of the
software catalog, listed on the home page of Tanzu Application Platform GUI. If there is an API
entity associated with the selected component or system, the VIEW API icon is active.

The VIEW API tab displays which APIs are being consumed by a component and which APIs are
being provided by the component.

Clicking on the API itself takes you to the catalog entry for the API, which the Kind type listed in
the upper-left corner denotes. Every API entity has a title and short description, including a
reference to the team that owns the definition of that API and the software catalog objects that are
connected to it.

Select the Definition tab on the top of the API page to see the definition of that API in human-
readable and machine-readable format.

Tanzu Application Platform v1.5

VMware by Broadcom 1865



The API documentation plug-in supports the following API formats:

OpenAPI 2 & 3

AsyncAPI

GraphQL

Plain (to support any other format)

Create a new API entry
You can create a new API entry manually or automatically.

Manually create a new API entry

Manually creating a new API entity is similar to registering any other software catalog entity. To
manually create a new API entity:

1. Click the Home button on the left navigation pane to access the home page of Tanzu
Application Platform GUI.

2. Click REGISTER ENTITY.

3. Register an existing component prompts you to type a repository URL. Paste the link to
the catalog-info.yaml file of your choice that contains the definition of your API entity. For
example, you can copy the following YAML content and save it as catalog-info.yaml on a
Git repository of your choice.

apiVersion: backstage.io/v1alpha1

kind: API

metadata:

name: demo-api

description: The demo API for Tanzu Application Platform GUI

links:

  - url: https://api.agify.io

    title: API Definition

    icon: docs

spec:

type: openapi

lifecycle: experimental

owner: demo-team

system: demo-app # Or specify system name of your choice

definition: |

  openapi: 3.0.1

  info:

    title: defaultTitle

    description: defaultDescription

Tanzu Application Platform v1.5

VMware by Broadcom 1866



    version: '0.1'

  servers:

    - url: https://api.agify.io

  paths:

    /:

      get:

        description: Auto generated using Swagger Inspector

        parameters:

          - name: name

            in: query

            schema:

              type: string

            example: type_any_name

        responses:

          '200':

            description: Auto generated using Swagger Inspector

            content:

              application/json; charset=utf-8:

                schema:

                  type: string

                examples: {}

4. Click ANALYZE and then review the catalog entities to be added.

5. Click IMPORT.

6. Click APIs on the left navigation pane to view entries on the API page.

Automatically create a new API entry

Tanzu Application Platform v1.3 introduced a feature called API Auto Registration that can
automatically register your APIs. For more information, see API Auto Registration.

Get started with the API documentation plug-in

Tanzu Application Platform v1.5

VMware by Broadcom 1867



This topic tells you how to get started with the API documentation plug-in in Tanzu Application
Platform GUI (commonly called TAP GUI).

API entries

This section describes API entities, how to add them, and how to update them.

About API entities

The list of API entities is visible on the left side navigation pane of Tanzu Application Platform GUI.
It is also visible on the Overview page of specific components on the home page. APIs are a
definition of the interface between components.

Their definition is provided in raw machine-readable and human-readable formats. For more
information, see the API plug-in documentation.

Add a demo API entity to the Tanzu Application Platform GUI
software catalog

To add a demo API entity and its related Catalog objects, follow the steps used for registering any
other software catalog entity:

1. Go to the Home page of Tanzu Application Platform GUI by clicking Home on the left-side
navigation pane.

2. Click REGISTER ENTITY.

3. In the repository URL text box, type the link to the catalog-info.yaml file of your choice or
use the following sample definition.

4. Save this code block as catalog-info.yaml.

5. Upload it to the Git repository of your choice and copy the link to catalog-info.yaml. This
demo setup includes a domain named demo-domain with a single system named demo-
system. This systems consists of two microservices (demo-app-ms-1 and demo-app-ms-1) and
one API named demo-api that demo-app-ms-1 provides and that demo-app-ms-2 consumes.

apiVersion: backstage.io/v1alpha1

kind: Domain

metadata:

  name: demo-domain

  description: Demo Domain for Tanzu Application Platform

  annotations:

    'backstage.io/techdocs-ref': dir:.

spec:

  owner: demo-team

---

apiVersion: backstage.io/v1alpha1

kind: Component

metadata:

  name: demo-app-ms-1

  description: Demo Application's Microservice-1

  tags:

    - microservice

  annotations:

    'backstage.io/kubernetes-label-selector': 'app.kubernetes.io/part-of=demo-a

pp-ms-1'

    'backstage.io/techdocs-ref': dir:.

spec:

  type: service

Tanzu Application Platform v1.5

VMware by Broadcom 1868



  providesApis:

   - demo-api

  lifecycle: alpha

  owner: demo-team

  system: demo-app

---

apiVersion: backstage.io/v1alpha1

kind: Component

metadata:

  name: demo-app-ms-2

  description: Demo Application's Microservice-2

  tags:

    - microservice

  annotations:

    'backstage.io/kubernetes-label-selector': 'app.kubernetes.io/part-of=demo-a

pp-ms-2'

    'backstage.io/techdocs-ref': dir:.

spec:

  type: service

  consumesApis:

   - demo-api

  lifecycle: alpha

  owner: demo-team

  system: demo-app

---

apiVersion: backstage.io/v1alpha1

kind: System

metadata:

  name: demo-app

  description: Demo Application for Tanzu Application Platform

  annotations:

    'backstage.io/techdocs-ref': dir:.

spec:

  owner: demo-team

  domain: demo-domain

---

apiVersion: backstage.io/v1alpha1

kind: API

metadata:

  name: demo-api

  description: The demo API for Tanzu Application Platform GUI

  links:

    - url: https://api.agify.io

      title: API Definition

      icon: docs

spec:

  type: openapi

  lifecycle: experimental

  owner: demo-team

  system: demo-app # Or specify system name of your choice

  definition: |

    openapi: 3.0.1

    info:

      title: Demo API

      description: defaultDescription

      version: '0.1'

    servers:

      - url: https://api.agify.io

    paths:

      /:

Tanzu Application Platform v1.5

VMware by Broadcom 1869



        get:

          description: Auto generated using Swagger Inspector

          parameters:

            - name: name

              in: query

              schema:

                type: string

              example: type_any_name

          responses:

            '200':

              description: Auto generated using Swagger Inspector

              content:

                application/json; charset=utf-8:

                  schema:

                    type: string

                  examples: {}

6. Paste the link to catalog-info.yaml and click ANALYZE.

7. Review the catalog entities and click IMPORT.

8. Go to the API page by clicking APIs on the left side navigation pane. The catalog changes
and entries are visible for further inspection. If you select the system demo-app, the
diagram appears as follows:

Tanzu Application Platform v1.5

VMware by Broadcom 1870



Update your demo API entry

To update your demo API entity, click on demo-api from the list of available APIs in your software
catalog and click the Edit icon on the Overview page.

It opens the source catalog-info.yaml file that you can edit. For example, you can change the
spec.paths.parameters.example from type_any_name to Tanzu and then save your changes.

![Screenshot of the overview of demo dash api. The edit button on the card labeled Abo

ut is framed in red.](../images/api-plugin-9.png)

It opens the source `catalog-info.yaml` file that you can edit. For example, you can c

hange the

`spec.paths.parameters.example` from `type_any_name` to `Tanzu` and then save your cha

nges.

After making any edits, Tanzu Application Platform GUI re-renders the API entry with the next
refresh cycle.

Validation Analysis of API specifications
This section describes the Validation Analysis card, the data format needed to populate the card,
and how to get automatic scores for your OpenAPI entities.

About the Validation Analysis card

When viewing entities of the kind API on the Overview tab, you see the Validation Analysis card
that displays the health of an API through various scoring parameters.

Tanzu Application Platform v1.5

VMware by Broadcom 1871



To display the health scores, an API entity must contain the following metadata structure:

apiVersion: backstage.io/v1alpha1

kind: API

metadata:

  name: NAME

  description: DESCRIPTION

  apiscores:

    scores:

    - id: documentationReport

      label: "Documentation Health"

      value: 34.375

      valueType: percentage

      status: failed

    - id: securityReport

      label: "Security Score"

      value: 70.0

      valueType: percentage

      status: warning

    - id: openApiHealthReport

      label: "OpenAPI Health"

      value: 89.0625

      valueType: percentage

      status: passed

    scoreDetailsURL:  VALIDATION-REPORT-URL-FOR-MORE-DETAILS

# Other API Entity parameters

If an API entity follows this schema, the Validation Analysis card displays helpful information about
the API.

    - id:        # Unique ID

      label:     # Descriptive label displayed as a title over the numerical value

      value:     # Any number value

      valueType: # One of the types (percentage or other). Displays the % symbol or di

splays nothing.

      status:    # One of the statuses (passed, warning, or failed). Displays the numb

er in green, yellow, or red.

Automatic OpenAPI specification validation

To receive automatic validation analysis for OpenAPI specifications by using API Validation Scoring:

1. Install API Validation and Scoring.

Tanzu Application Platform v1.5

VMware by Broadcom 1872



2. Use API Auto Registration or API Validation Scoring Design GitOps to automatically
generate the API entities in Tanzu Application Platform GUI.

The automatic scoring cannot score or replace API entities created through other methods, such as
regular GitOps or manual registration. You might see the following message signaling that the
OpenAPI specification was registered with regular GitOps methods or manual registration.

Validation analysis is currently unavailable for APIs registered via TAP GUI without b

eing attached \

to a workload.

Security Analysis in Tanzu Application Platform GUI

This topic tells you about the Security Analysis plug-in in Tanzu Application Platform GUI
(commonly called TAP GUI).

Overview

The Security Analysis plug-in summarizes vulnerability data across all workloads running in Tanzu
Application Platform, enabling faster identification and remediation of CVEs.

Installing and configuring

The Security Analysis plug-in is installed by default. It is tightly coupled with the Supply Chain
Choregrapher plug-in. After installing and configuring the Supply Chain Choreographer GUI plug-in,
there is no additional configuration needed for the Security Analysis plug-in.

The Security Analysis plug-in is part of the Tanzu Application Platform Full and View profiles.

Accessing the plug-in

The Security Analysis plug-in is always accessible from the left navigation pane. Click the Security
Analysis button to open the Security Analysis dashboard.

Tanzu Application Platform v1.5

VMware by Broadcom 1873



Viewing vulnerability data

The Security Analysis dashboard provides a summary of all vulnerabilities across all clusters for
single-cluster and multicluster deployments.

Tanzu Application Platform v1.5

VMware by Broadcom 1874



The Vulnerabilities by Severity widget quickly counts the number of critical, high, medium, low,
and unknown severity CVEs, based on the CVSS severity rating of each CVE.

It includes a sum of all workloads’ source and image scan vulnerabilities. For example, if CVE-123
exists in the latest source scans and image scans of Workload ABC and Workload DEF, it is counted
four times.

The Workload Build Vulnerabilities tables, with the Violates Policy tab and Does Not Violate
tab, separate workloads based on the scan policy. For more information, see Enforce compliance
policy using Open Policy Agent The Unique CVEs column uses the same sum logic as described
earlier, but for individual workloads.

The sum of a workload’s CVEs might not match the Supply Chain Choreographer’s Vulnerability
Scan Results. The data on this dashboard is based on kubectl describe for SourceScan and
ImageScan. The data on the Supply Chain Choreographer’s Vulnerability Scan Results is based on
Metadata Store data.

Only vulnerability scans associated with a Cartographer workload appear. Use tanzu insight to view
results for non-workload scan results.

Viewing CVE and package details
The Security Analysis plug-in has a CVE page and a Package page. These are accessed by clicking
on a workload name, which opens the Supply Chain Choregrapher plug-in. Clicking on the CVE or
Package name opens the CVE or Package page, respectively.

Note

The sum includes any CVEs on the allowlist (ignoreCVEs).

Tanzu Application Platform v1.5

VMware by Broadcom 1875



The CVE page contains basic information about the vulnerability and includes a table with all
affected packages and versions.

The Package page contains basic information about a package and includes a table with all CVEs
and the affected package versions.

Supply Chain Choreographer in Tanzu Application Platform
GUI
This topic tells you about Supply Chain Choreographer in Tanzu Application Platform GUI
(commonly called TAP GUI).

Overview
The Supply Chain Choreographer (SCC) plug-in enables you to visualize the execution of a workload
by using any of the installed Out-of-the-Box supply chains. For more information about the Out-of-
the-Box (OOTB) supply chains that are available in Tanzu Application Platform, see Supply Chain
Choreographer for Tanzu.

Prerequisites
To use Supply Chain Choreographer in Tanzu Application Platform GUI you must have:

One of the following installed on your cluster:

Tanzu Application Platform Full profile

Tanzu Application Platform View profile

Tanzu Application Platform GUI package and a metadata store package

One of the following installed on the target cluster where you want to deploy your
workload:

Tanzu Application Platform Run profile

Tanzu Application Platform Full profile

For more information, see Overview of multicluster Tanzu Application Platform

Tanzu Application Platform v1.5

VMware by Broadcom 1876



Enable CVE scan results

To see CVE scan results within Tanzu Application Platform GUI, connect Tanzu Application Platform
GUI to the Tanzu Application Platform component Supply Chain Security Tools - Store (SCST -
Store).

Automatically connect Tanzu Application Platform GUI to the
Metadata Store

Tanzu Application Platform GUI has automation for enabling connection between Tanzu Application
Platform GUI and SCST - Store. To use this automation, add it to the Tanzu Application Platform
GUI section within your tap-values.yaml file.

The default value for tap_gui.metadataStoreAutoconfiguration is false. See the following
example:

# tap-values.yaml

# ...

tap_gui:

  # ...

  metadataStoreAutoconfiguration: true

This file change creates a service account for the connection with privileges scoped only to the
Metadata Store. In addition it mounts the token of the service account into the Tanzu Application
Platform GUI pod and produces for you the app_config section necessary for Tanzu Application
Platform GUI to communicate with SCST - Store.

Manually connect Tanzu Application Platform GUI to the Metadata
Store

To manually enable CVE scan results:

1. Obtain the read-write token, which is created by default when installing Tanzu Application
Platform. Alternatively, create an additional read-write service account.

2. Add this proxy configuration to the tap-gui: section of tap-values.yaml:

tap_gui:

  app_config:

    proxy:

      /metadata-store:

        target: https://metadata-store-app.metadata-store:8443/api/v1

        changeOrigin: true

        secure: false

        headers:

          Authorization: "Bearer ACCESS-TOKEN"

          X-Custom-Source: project-star

Where ACCESS-TOKEN is the token you obtained after creating a read-write service account.

Important

If your configuration includes a /metadata-store block, the automation doesn’t
overwrite the proxy block that you provide. To use the automation you must delete
the block at tap_gui.app_config.proxy["/metadata-store"].

Important

Tanzu Application Platform v1.5

VMware by Broadcom 1877



Enable GitOps Pull Request Flow

Set up for GitOps and pull requests to enable the supply chain box-and-line diagram to show
Approve a Request in the Config Writer stage details view when the Config Writer stage is
clicked. For more information, see GitOps vs. RegistryOps.

Supply Chain Visibility

Before using the Supply Chain Visibility (SCC) plug-in to visualize a workload, you must create a
workload.

The workload must have the app.kubernetes.io/part-of label specified, whether you manually
create the workload or use one supplied with the OOTB supply chains.

Use the left sidebar navigation to access your workload and visualize it in the supply chain that is
installed on your cluster.

The example workload described in this topic is named tanzu-java-web-app.

Click tanzu-java-web-app in the WORKLOADS table to navigate to the visualization of the supply
chain.

There are two sections within this view:

The box-and-line diagram at the top shows all the configured CRDs that this supply chain
uses, and any artifacts that the supply chain’s execution outputs

The Stage Detail section at the bottom shows source data for each part of the supply chain
that you select in the diagram view

The Authorization value must start with the word Bearer.

Tanzu Application Platform v1.5

VMware by Broadcom 1878



When a workload is deployed to a cluster that has the deliverable package installed, a new section
appears in the supply chain that shows Pull Config boxes and Delivery boxes.

When you have a Pull Request configured in your environment, access the merge request from
the supply chain by clicking APPROVE A REQUEST. This button is displayed after you click Config
Writer in the supply chain diagram.

View Vulnerability Scan Results
Click the Source Scan stage or Image Scan stage to view vulnerability source scans and image
scans for workload builds. The data is from Supply Chain Security Tools - Store.

CVE issues represent any vulnerabilities associated with a package or version found in the source
code or image, including vulnerabilities from past scans.

Note

Tanzu Application Platform v1.5

VMware by Broadcom 1879



Overview of enabling TLS for Tanzu Application Platform
GUI
Many users want inbound traffic to Tanzu Application Platform GUI (commonly called TAP GUI) to
be properly encrypted. These topics tell you how to enable TLS encryption either with an existing
certificate or by using the included cert-manager instance.

Concepts
The two key concepts are certificate delegation and the relationship between cert-manager,
certificates, and ClusterIssuers.

Certificate delegation

Tanzu Application Platform GUI uses the established shared Contour ingress for TLS termination.

This enables you to store the certificate in a Kubernetes secret and then pass that secret and
namespace to the httpProxy that was created during installation. To do this, see Configuring a TLS
certificate by using an existing certificate.

cert-manager, certificates, and ClusterIssuers

Tanzu Application Platform GUI can also use the cert-manager package that is installed when the
profile was installed.

This tool allows cert-manager to automatically acquire a certificate from a clusterIssuer entity.

For example, the log4shell package is found in image ABC on 1 January without
any CVEs. On 15 January, the log4j CVE issue is found while scanning image DEF. If
a user returns to the Image Scan stage for image ABC, the log4j CVE issue appears
and is associated with the log4shell package.

Tanzu Application Platform v1.5

VMware by Broadcom 1880



This external entity can be an external certificate authority, such as Let’s Encrypt, or a self-signed
certificate.

Guides
The following topics describe different ways to configure TLS:

Configuring a TLS certificate by using an existing certificate

Configuring a TLS certificate by using a self-signed certificate

Configuring a TLS certificate by using cert-manager and a ClusterIssuer

Overview of enabling TLS for Tanzu Application Platform
GUI

Many users want inbound traffic to Tanzu Application Platform GUI (commonly called TAP GUI) to
be properly encrypted. These topics tell you how to enable TLS encryption either with an existing
certificate or by using the included cert-manager instance.

Concepts

The two key concepts are certificate delegation and the relationship between cert-manager,
certificates, and ClusterIssuers.

Certificate delegation

Tanzu Application Platform GUI uses the established shared Contour ingress for TLS termination.

Tanzu Application Platform v1.5

VMware by Broadcom 1881



This enables you to store the certificate in a Kubernetes secret and then pass that secret and
namespace to the httpProxy that was created during installation. To do this, see Configuring a TLS
certificate by using an existing certificate.

cert-manager, certificates, and ClusterIssuers

Tanzu Application Platform GUI can also use the cert-manager package that is installed when the
profile was installed.

This tool allows cert-manager to automatically acquire a certificate from a clusterIssuer entity.

This external entity can be an external certificate authority, such as Let’s Encrypt, or a self-signed
certificate.

Tanzu Application Platform v1.5

VMware by Broadcom 1882



Guides
The following topics describe different ways to configure TLS:

Configuring a TLS certificate by using an existing certificate

Configuring a TLS certificate by using a self-signed certificate

Configuring a TLS certificate by using cert-manager and a ClusterIssuer

Configure a TLS certificate by using an existing certificate
This topic tells you how to use the certificate information from your external certificate authority to
encrypt inbound traffic to Tanzu Application Platform GUI (commonly called TAP GUI).

Prerequisites
Your certificate authority gave you a certificate file, of the form CERTIFICATE-FILE-NAME.crt, and a
signing key, of the form KEY-FILE-NAME.key. Ensure that these files are present on the host from
which you run the CLI commands.

Tanzu Application Platform v1.5

VMware by Broadcom 1883



Procedure

To configure Tanzu Application Platform GUI with an existing certificate:

1. Create the Kubernetes secret by running:

kubectl create secret tls tap-gui-cert --key="KEY-FILE-NAME.key" --cert="CERTIF

ICATE-FILE-NAME.crt" -n tap-gui

Where:

KEY-FILE-NAME is the name of the key file that your certificate issuer gave you

CERTIFICATE-FILE-NAME is the name of the crt file that your certificate issuer gave
you

2. Configure Tanzu Application Platform GUI to use the newly created secret. Do so by editing
the tap-values.yaml file that you used during installation to include the following under the
tap-gui section:

A top-level tls key with subkeys for namespace and secretName

A namespace referring to the namespace used earlier

A secret name referring to the secretName value defined earlier

Example:

tap_gui:

 tls:

   namespace: tap-gui

   secretName: tap-gui-cert

# Additional configuration below this line as needed

3. Update the Tanzu Application Platform package with the new values in tap-values.yaml by
running:

Tanzu Application Platform v1.5

VMware by Broadcom 1884



tanzu package installed update tap -p tap.tanzu.vmware.com -v TAP-VERSION  --va

lues-file tap-values.yaml -n tap-install

Where TAP-VERSION is the version number that matches the values you used when you
installed your profile.

Configure a TLS certificate by using a self-signed certificate

This topic tells you how to use cert-manager to create a self-signed certificate issuer and then
generate a certificate for Tanzu Application Platform GUI to use based on that issuer.

Some browsers and corporate policies do not allow you to visit webpages that have self-signed
certificates. You might need to navigate through a series of error messages to visit the page.

Prerequisite
Install a Tanzu Application Platform profile that includes cert-manager. Verify you did this by
running the following command to detect the cert-manager namespace:

kubectl get ns

Procedure

To configure a self-signed TLS certificate for Tanzu Application Platform GUI:

1. Create a certificate.yaml file that defines an issuer and a certificate. For example:

apiVersion: cert-manager.io/v1

kind: Issuer

Tanzu Application Platform v1.5

VMware by Broadcom 1885



metadata:

 name: ca-issuer

 namespace: tap-gui

spec:

 selfSigned: {}

---

apiVersion: cert-manager.io/v1

kind: Certificate

metadata:

 name: tap-gui-cert

 namespace: tap-gui

spec:

 secretName: tap-gui-cert

 dnsNames:

 - tap-gui.INGRESS-DOMAIN

 issuerRef:

   name: ca-issuer

Where INGRESS-DOMAIN is your domain value that matches the values you used when you
installed the profile.

2. Add the issuer and certificate to your cluster by running:

kubectl apply -f certificate.yaml

3. Configure Tanzu Application Platform GUI to use the newly created certificate. Update the
tap-values.yaml file used during installation to include the following under the tap-gui
section:

A top-level tls key with subkeys for namespace and secretName

A namespace referring to the namespace containing the Certificate object
mentioned earlier

A secret name referring to the secretName value defined in your Certificate
resource earlier

Example:

tap_gui:

 tls:

   namespace: tap-gui

   secretName: tap-gui-cert

# Additional configuration below this line as needed

4. Update the Tanzu Application Platform package with the new values in tap-values.yaml:

tanzu package installed update tap -p tap.tanzu.vmware.com -v TAP-VERSION  --va

lues-file tap-values.yaml -n tap-install

Where TAP-VERSION is the version that matches the values you used when you installed the
profile.

Configure a TLS certificate by using cert-manager and a
ClusterIssuer
This topic tells you how to use cert-manager to create a certificate issuer and then generate a
certificate for Tanzu Application Platform GUI (commonly called TAP GUI) to use based on that
issuer.

This topic uses the free certificate issuer Let’s Encrypt. You can use other certificate issuers
compatible with cert-manager in a similar fashion.

Tanzu Application Platform v1.5

VMware by Broadcom 1886

https://letsencrypt.org/


Prerequisites
Fulfil these prerequisites:

Install a Tanzu Application Platform profile that includes cert-manager. Verify you did this by
running the following command to detect the cert-manager namespace:

kubectl get ns

Obtain a domain name that you control or own and have proof that you control or own it. In
most cases, this domain name is the one you used for the INGRESS-DOMAIN values when you
installed Tanzu Application Platform and Tanzu Application Platform GUI.

If cert-manager cannot perform the challenge to verify your domain’s compatibility, you
must do so manually. For more information, see How It Works and Getting Started in the
Let’s Encrypt documentation.

Ensure that your domain name is pointed at the shared Contour ingress for the installation.
Find the IP address by running:

kubectl -n tanzu-system-ingress get services envoy -o jsonpath='{.status.loadBa

lancer.ingress[0].ip}'

Procedure

To configure a self-signed TLS certificate for Tanzu Application Platform GUI:

1. Create a certificate.yaml file that defines an issuer and a certificate. For example:

Tanzu Application Platform v1.5

VMware by Broadcom 1887

https://letsencrypt.org/how-it-works/
https://letsencrypt.org/getting-started/


apiVersion: cert-manager.io/v1

kind: ClusterIssuer

metadata:

  name: letsencrypt-http01-issuer

  namespace: cert-manager

spec:

  acme:

    server: https://acme-v02.api.letsencrypt.org/directory

    email: EMAIL-ADDRESS

    privateKeySecretRef:

      name: letsencrypt-http01-issuer

    solvers:

    - http01:

        ingress:

          class: contour

---

apiVersion: cert-manager.io/v1

kind: Certificate

metadata:

  namespace: cert-manager

  name: tap-gui

spec:

  commonName: tap-gui.INGRESS-DOMAIN

  dnsNames:

    - tap-gui.INGRESS-DOMAIN

  issuerRef:

    name: letsencrypt-http01-issuer

    kind: ClusterIssuer

  secretName: tap-gui

Where:

EMAIL-ADDRESS is the email address that Let’s Encrypt shows as responsible for this
certificate

INGRESS-DOMAIN is your domain value that matches the values you used when you
installed the profile

2. Add the issuer and certificate to your cluster by running:

kubectl apply -f certificate.yaml

By applying the certificate, cert-manager attempts to perform an HTTP01 challenge by
creating an Ingress resource specifically for the challenge. This is automatically removed
from your cluster after the challenge is completed. For more information about how this
works, and when it might not, see the cert-manager documentation.

3. Validate the certificate was created and is ready by running:

kubectl get certs -n cert-manager

Wait a few moments for this to take place, if need be.

4. Configure Tanzu Application Platform GUI to use the newly created certificate. To do so,
update the tap-values.yaml file that you used during installation to include the following
items under the tap-gui section:

A top-level tls key with subkeys for namespace and secretName

A namespace referring to the namespace containing the Certificate object from
earlier

A secret name referring to the secretName value defined in your Certificate
resource earlier

Tanzu Application Platform v1.5

VMware by Broadcom 1888

https://cert-manager.io/docs/configuration/acme/http01/


Example:

tap_gui:

 tls:

   namespace: cert-manager

   secretName: tap-gui

# Additional configuration below this line as needed

5. Update the Tanzu Application Platform package with the new values in tap-values.yaml by
running:

tanzu package installed update tap -p tap.tanzu.vmware.com -v TAP-VERSION  --va

lues-file tap-values.yaml -n tap-install

Where TAP-VERSION is the version that matches the values you used when you installed the
profile.

Upgrade Tanzu Application Platform GUI
This topic tells you how to upgrade Tanzu Application Platform GUI (commonly called TAP GUI)
outside of a Tanzu Application Platform profile installation. If you installed Tanzu Application
Platform through a profile, see Upgrading Tanzu Application Platform instead.

Considerations
As part of the upgrade, Tanzu Application Platform updates its container with the new version.

As a result, if you installed Tanzu Application Platform GUI without the support of a backing
database, you lose your in-memory data for any manual component registrations when the
container restarts. While the update is pulling the new pod from the registry, users might
experience a short UI interruption and might need to re-authenticate because the in-memory
session data is rebuilt.

Upgrade within a Tanzu Application Platform profile
If you installed Tanzu Application Platform GUI as part of a Tanzu Application Platform profile, see
Upgrading Tanzu Application Platform.

Upgrade Tanzu Application Platform GUI individually
These steps only apply to installing Tanzu Application Platform GUI individually, not as part of a
Tanzu Application Platform profile.

To upgrade Tanzu Application Platform GUI outside of a Tanzu Application Platform profile:

1. Ensure that your repository has access to the new version of the package by running:

tanzu package available list tap-gui.tanzu.vmware.com -n tap-install

For example:

$ tanzu package available list tap-gui.tanzu.vmware.com -n tap-install

- Retrieving package versions for tap-gui.tanzu.vmware.com...

  NAME                      VERSION  RELEASED-AT

  tap-gui.tanzu.vmware.com  1.0.1    2021-12-22 17:45:51 +0000 UTC

  tap-gui.tanzu.vmware.com  1.0.2    2022-01-25 01:57:19 +0000 UTC

2. Perform the package upgrade by using the targeted package update version. Run:

Tanzu Application Platform v1.5

VMware by Broadcom 1889



tanzu package installed update tap-gui -p tap-gui.tanzu.vmware.com -v VERSION  

--values-file \

TAP-GUI-VALUES.yaml -n tap-install

Where:

VERSION is the target version of Tanzu Application Platform GUI that you want.

TAP-GUI-VALUES is the configuration values file that contains the configuration used
when you installed Tanzu Application Platform GUI.

3. Verify that you upgraded your application by running:

tanzu package installed get tap-gui -n tap-install

Troubleshoot Tanzu Application Platform GUI

This topic tells you how to troubleshoot issues encountered when installing Tanzu Application
Platform GUI (commonly called TAP GUI). The topic is divided into sections:

General issues

Runtime Resources tab issues

Accelerators page issues

Security Analysis plug-in issues

Supply Chain Choreographer plug-in issues

General issues

The following are general issues:

Tanzu Developer Portal reports that the port range is not valid

Symptom

You provided a full URL in a backend.reading.allow entry, as in this example tap-values.yaml
snippet:

tap_gui:

  app_config:

    backend:

      reading:

        allow:

          - host: http://gitlab.example.com/some-group/some-repo/-/blob/main/catalog-i

nfo.yaml

and you see the following error message:

Backend failed to start up, Error: Port range is not valid: //gitlab.example.com/some-

group/some-repo/-/blob/main/catalog-info.yaml

Cause

Tanzu Application Platform GUI expects a host name to be passed into the field
backend.reading.allow[].host.

Solution

Tanzu Application Platform v1.5

VMware by Broadcom 1890



Edit your tap-values.yaml file as in the following example:

tap_gui:

  app_config:

    backend:

      reading:

        allow:

          - host: gitlab.example.com

            paths: ['/some-group/some-repo/']

Tanzu Application Platform GUI does not load the catalog

Symptom

You are able to visit Tanzu Application Platform GUI, but it does not load the catalog and you see
the following error message.

> Error: Could not fetch catalog entities.

> TypeError: Failed to fetch

When viewing your network tab you see that your browser has not downloaded mixed content.
This might look different on different browsers.

Chrome
In the Status column you see (blocked:mixed-content)

Firefox
In the Transferred column you see Mixed Block

Cause

As of Tanzu Application Platform v1.5, Tanzu Application Platform GUI provides TLS connections by
default. Because of this, if you visit a Tanzu Application Platform GUI site your connection is
automatically upgraded to https.

You might have manually set the fields app.baseUrl, backend.baseUrl, and backend.cors.origin in
your tap-values.yaml file. Tanzu Application Platform GUI uses the baseUrl to determine how to
create links to fetch from its APIs. The combination of these two factors causes your browser to
attempt to fetch mixed content.

Solution

The solution is to delete these fields or update your values in tap-values.yaml to reflect that your
Tanzu Application Platform GUI instance is serving https, as in the following example:

tap_gui:

  app_config:

    app:

      baseUrl: https://tap-gui.INGRESS-DOMAIN/

    backend:

      baseUrl: https://tap-gui.INGRESS-DOMAIN/

      cors:

        origin: https://tap-gui.INGRESS-DOMAIN/

Tanzu Application Platform v1.5

VMware by Broadcom 1891



Where INGRESS-DOMAIN is the ingress domain you have configured for Tanzu Application Platform.

The installer determines acceptable values based on your tap_gui.ingressDomain or
shared.ingress_domain and the TLS status of the installation.

Updating a supply chain causes an error (Can not create edge...)

Symptom

Updating a supply chain causes an error (Can not create edge...) when an existing workload is
clicked in the Workloads table and that supply chain is no longer present.

Solution

Recreate the same workload to execute through the new or updated supply chain.

Catalog not found

Symptom

When you pull up Tanzu Application Platform GUI, you get the error Catalog Not Found.

Cause

The catalog plug-in can’t read the Git location of your catalog definition files.

Solution

1. Ensure you have built your own Backstage-compatible catalog or that you have
downloaded one of the Tanzu Application Platform GUI catalogs from VMware Tanzu
Network.

2. Ensure you defined the catalog in the values file that you input as part of installation. To
update this location, change the definition file:

Change the Tanzu Application Platform profile file if installed by using a profile.

Change the standalone Tanzu Application Platform GUI values file if you’re only
installing that package on its own.

    namespace: tap-gui

    service_type: SERVICE-TYPE

    app_config:

      catalog:

        locations:

          - type: url

            target: https://GIT-CATALOG-URL/catalog-info.yaml

3. Provide the proper integration information for the Git location you specified earlier.

    namespace: tap-gui

    service_type: SERVICE-TYPE

    app_config:

      app:

        baseUrl: https://EXTERNAL-IP:PORT

      integrations:

        gitlab: # Other integrations available

          - host: GITLAB-HOST

Tanzu Application Platform v1.5

VMware by Broadcom 1892

https://backstage.io/


            apiBaseUrl: https://GITLAB-URL/api/v4

            token: GITLAB-TOKEN

You can substitute for other integrations as defined in the Backstage documentation.

Issues updating the values file

Symptom

After updating the configuration of Tanzu Application Platform GUI, either by using a profile or as a
standalone package installation, you don’t know whether the configuration has reloaded.

Solution

1. Get the name you need by running:

kubectl get pods -n tap-gui

For example:

$ kubectl get pods -n tap-gui

NAME                      READY   STATUS    RESTARTS   AGE

server-6b9ff657bd-hllq9   1/1     Running   0          13m

2. Read the log of the pod to see if the configuration reloaded by running:

kubectl logs NAME -n tap-gui

Where NAME is the value you recorded earlier, such as server-6b9ff657bd-hllq9.

3. Search for a line similar to this one:

2021-10-29T15:08:49.725Z backstage info Reloaded config from app-config.yaml, a

pp-config.yaml

4. If need be, delete and re-instantiate the pod.

To delete and re-instantiate the pod, run:

kubectl delete pod -l app=backstage -n tap-gui

Pull logs from Tanzu Application Platform GUI

Symptom

You have a problem with Tanzu Application Platform GUI, such as Catalog: Not Found, and don’t
have enough information to diagnose it.

Caution

Depending on your database configuration, deleting, and re-instantiating
the pod might cause the loss of user preferences and manually registered
entities. If you have configured an external PostgreSQL database, tap-gui
pods are not stateful. In most cases, state is held in ConfigMaps, Secrets, or
the database. For more information, see Configuring the Tanzu Application
Platform GUI database and Register components.

Tanzu Application Platform v1.5

VMware by Broadcom 1893

https://backstage.io/docs/integrations/


Solution

Get timestamped logs from the running pod and review the logs:

1. Pull the logs by using the pod label by running:

kubectl logs -l app=backstage -n tap-gui

2. Review the logs.

Ad-blocking software interference

Symptom

One or both of the following is true:

You cannot access some, or all, of Tanzu Application Platform GUI.

Telemetry collection within the VMware Customer Experience Improvement Program is
failing.

Cause

Your ad-blocking browser extension or standalone ad-blocking software is causing interference.

Solution

Add Tanzu Application Platform GUI to your ad-blocking allowlist. Alternatively, deactivate the ad-
blocking software or turn off Pendo telemetry collection.

TechDocs content does not load

Symptom

You navigate to the Docs page, click a document, and the content does not load. The loading bar
does not disappear. The browser console shows the error message:

Refused to load the stylesheet 'https://fonts.googleapis.com/css?family=Roboto:300,40

0,400i,700%7CRoboto+Mono&display=fallback' because it violates the following Content S

ecurity Policy directive...

Cause

The Content Security Policy used by Tanzu Application Platform GUI is blocking
fonts.googleapis.com.

Solution

Edit your tap-values.yaml file to include the CSP configuration, as in this example:

tap_gui:

  app_config:

    backend:

      csp:

        connect-src: ["'self'", 'http:', 'https:']

        img-src: ["'self'", 'https:', 'data:']

        style-src: ["'self'", "https:", "'unsafe-inline'"]

        upgrade-insecure-requests: false

Tanzu Application Platform v1.5

VMware by Broadcom 1894

https://www.vmware.com/solutions/trustvmware/ceip.html


Runtime Resources tab issues

Here are some common troubleshooting steps for errors presented in the Runtime Resources tab.

Error communicating with Tanzu Application Platform web server

Symptom

When accessing the Runtime Resource Visibility tab, the system displays Error communicating
with TAP GUI back end.

Causes

An interrupted Internet connection

Error with the back end service

Solution

1. Confirm that you have Internet access.

2. Confirm that the back-end service is running correctly.

3. Confirm the cluster configuration is correct.

No data available

Symptom

When accessing the Runtime Resource Visibility tab, the system displays

One or more resources are missing. This could be due to a label mismatch. \

Please make sure your resources have the label(s) "LABEL_SELECTOR".

Cause

No communications error has occurred, but no resources were found.

Solution

Confirm that you are using the correct label:

1. Verify the Component definition includes the annotation backstage.io/kubernetes-label-
selector.

2. Confirm your Kubernetes resources correspond to that label drop-down menu.

Errors retrieving resources

Symptom

When opening the Runtime Resource Visibility tab, the system displays One or more resources
might be missing because of cluster query errors.

The reported errors might not indicate a real problem. A build cluster might not have runtime CRDs
installed, such as Knative Service, and a run cluster might not have build CRDs installed, such as a
Cartographer workload. In these cases, 403 and 404 errors might be false positives.

Tanzu Application Platform v1.5

VMware by Broadcom 1895



You might receive the following error messages because these resources might not be required for
your specific Tanzu Application Platform profile. These error messages are known issues:

Access error when querying cluster CLUSTER_NAME for resource

KUBERNETES_RESOURCE_PATH (status: 401). Contact your administrator.

Access error when querying cluster CLUSTER_NAME for resource

KUBERNETES_RESOURCE_PATH (status: 403). Contact your administrator.

Knative is not installed on CLUSTER_NAME (status: 404). Contact your

administrator.

Error when querying cluster CLUSTER_NAME for resource KUBERNETES_RESOURCE_PATH

(status: 404). Contact your administrator.

Accelerators page issues

Here are some common troubleshooting steps for errors displayed on the Accelerators page.

No accelerators

Symptom

When the app_config.backend.reading.allow section is configured in the tap-values.yaml file
during the tap-gui package installation, there are no accelerators on the Accelerators page.

Cause

This section in tap-values.yaml overrides the default configuration that gives Tanzu Application
Platform GUI access to the accelerators.

Solution

As a workaround, provide a value for Application Accelerator in this section. For example:

app_config:

  # Existing tap-values yaml above

  backend:

    reading:

      allow:

      - host: acc-server.accelerator-system.svc.cluster.local

Security Analysis plug-in issues

These are troubleshooting issues for the Security Analysis plug-in.

Empty Impacted Workloads table

Symptom

The Impacted Workloads table is empty on the CVE and Package Details pages.

Cause

The relevant CVE belongs to a workload that has only completed one type of vulnerability scan
(either image or source).

Tanzu Application Platform v1.5

VMware by Broadcom 1896



Solution

A fix is planned for Tanzu Application Platform GUI v1.5.1.

Supply Chain Choreographer plug-in issues

These are troubleshooting issues for the Supply Chain Choreographer plug-in.

An error occurred while loading data from the Metadata Store

Symptom

In the Supply Chain Choreographer plug-in, you see the error message An error occurred while
loading data from the Metadata Store.

Cause

There are multiple potential causes. The most common cause is tap-values.yaml missing the
configuration that enables Tanzu Application Platform GUI to communicate with Supply Chain
Security Tools - Store.

Solution

See Supply Chain Choreographer - Enable CVE scan results for the necessary configuration to add
to tap-values.yaml. After adding the configuration, update your Tanzu Application Platform
deployment or Tanzu Application Platform GUI deployment with the new values.

Overview of Tanzu Application Platform Telemetry
Tanzu Application Platform Telemetry (commonly known as TAP Telemetry) is a set of objects that
collect data about the usage of Tanzu Application Platform (commonly known as TAP) and send it
back to VMware for product improvements.

A benefit of remaining enrolled in telemetry and identifying your company during Tanzu Application
Platform installation is that VMware can provide your organization with usage reports about Tanzu
Application Platform.

Tanzu Application Platform v1.5

VMware by Broadcom 1897



For more information about enrolling in telemetry reports, see Tanzu Application Platform usage
reports.

For more information about how to install the telemetry component, see Install Tanzu Application
Platform Telemetry.

Tanzu Application Platform usage reports

VMware offers the option to enroll in a usage reporting program that offers a summary of usage of
your Tanzu Application Platform. You can enroll in the program by providing the Entitlement
Account Number (EAN). An EAN is a unique ID assigned to all VMware customers. VMware uses
EAN to identify data about Tanzu Application Platform. See Locate the Entitlement Account
number for new orders for more details.

After locating the EAN, pass the number under the telemetry header in the tap-values.yaml file as
a value for the customer_entitlement_account_number key.

tap_telemetry:

  customer_entitlement_account_number: "CUSTOMER-ENTITLEMENT-ACCOUNT-NUMBER"

You must repeat the process for each Tanzu Application Platform Cluster included in the telemetry
report. For more information, see Full profile.

After enrollment, alert your VMware account team that you have configured the EAN field and
want telemetry reports. This allows VMware to identify who the newly added EAN belongs to.

The following screenshots show the sample telemetry reports.

Note

Usage report is only supported for non-airgapped deployments of Tanzu Application
Platform and the Cluster must participate in Tanzu Application Platform telemetry.
You are enrolled in telemetry by default. You can opt out of telemetry collection by
following the instructions in Opt out of telemetry collection.

Tanzu Application Platform v1.5

VMware by Broadcom 1898

https://kb.vmware.com/s/article/2148565


Overview of Tanzu Application Platform Telemetry

Tanzu Application Platform Telemetry (commonly known as TAP Telemetry) is a set of objects that
collect data about the usage of Tanzu Application Platform (commonly known as TAP) and send it
back to VMware for product improvements.

A benefit of remaining enrolled in telemetry and identifying your company during Tanzu Application
Platform installation is that VMware can provide your organization with usage reports about Tanzu
Application Platform.

For more information about enrolling in telemetry reports, see Tanzu Application Platform usage
reports.

For more information about how to install the telemetry component, see Install Tanzu Application
Platform Telemetry.

Tanzu Application Platform usage reports

VMware offers the option to enroll in a usage reporting program that offers a summary of usage of
your Tanzu Application Platform. You can enroll in the program by providing the Entitlement

Tanzu Application Platform v1.5

VMware by Broadcom 1899



Account Number (EAN). An EAN is a unique ID assigned to all VMware customers. VMware uses
EAN to identify data about Tanzu Application Platform. See Locate the Entitlement Account
number for new orders for more details.

After locating the EAN, pass the number under the telemetry header in the tap-values.yaml file as
a value for the customer_entitlement_account_number key.

tap_telemetry:

  customer_entitlement_account_number: "CUSTOMER-ENTITLEMENT-ACCOUNT-NUMBER"

You must repeat the process for each Tanzu Application Platform Cluster included in the telemetry
report. For more information, see Full profile.

After enrollment, alert your VMware account team that you have configured the EAN field and
want telemetry reports. This allows VMware to identify who the newly added EAN belongs to.

The following screenshots show the sample telemetry reports.

Note

Usage report is only supported for non-airgapped deployments of Tanzu Application
Platform and the Cluster must participate in Tanzu Application Platform telemetry.
You are enrolled in telemetry by default. You can opt out of telemetry collection by
following the instructions in Opt out of telemetry collection.

Tanzu Application Platform v1.5

VMware by Broadcom 1900

https://kb.vmware.com/s/article/2148565


Install Tanzu Application Platform Telemetry

This topic tells you how to install Tanzu Application Platform Telemetry from the Tanzu Application
Platform (commonly known as TAP) package repository.

Prerequisites

Before installing Tap Telemetry:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

Note

Follow the steps in this topic if you do not want to use a profile to install Telemetry.
For more information about profiles, see Components and installation profiles.

Tanzu Application Platform v1.5

VMware by Broadcom 1901



Install cert-manager on the cluster. For more information, see the cert-manager
documentation.

See Deployment Details and Configuration to review what resources will be deployed.

Install

To install Tanzu Application Platform Telemetry:

1. List version information for the package by running:

tanzu package available list tap-telemetry.tanzu.vmware.com --namespace tap-ins

tall

For example:

$ tanzu package available list tap-telemetry.tanzu.vmware.com --namespace tap-i

nstall

- Retrieving package versions for tap-telemetry.tanzu.vmware.com...

  NAME                         VERSION       RELEASED-AT

  tap-telemetry.tanzu.vmware.com  0.3.1

2. (Optional) List all the available deployment configuration options:

tanzu package available get tap-telemetry.tanzu.vmware.com/VERSION --values-sch

ema -n tap-install

Where VERSION is the your package version number. For example, 0.3.1.

For example:

$ tanzu package available get tap-telemetry.tanzu.vmware.com/0.3.1 --values-sch

ema -n tap-install

| Retrieving package details for tap-telemetry.tanzu.vmware.com/0.3.1...

KEY                                  DEFAULT  TYPE    DESCRIPTION

kubernetes_distribution                       string  Kubernetes platform flavo

r where the tap-telemetry is being installed on. Accepted values are ['', 'open

shift']

customer_entitlement_account_number           string  Account number used to di

stinguish data by customer.

installed_for_vmware_internal_use             string  Indication of if the depl

oyment is for vmware internal user. Accepted values are ['true', 'false']

3. (Optional) Modify the deployment configurations by creating a configuration YAML with the
desired custom configuration values. For example, if you want to provide your Customer
Entitlement Number, create a tap-telemetry-values.yaml and configure the
customer_entitlement_account_number property:

---

customer_entitlement_account_number: "12345"

See Deployment details and configuration for more information about the configuration
options.

4. Install the package by running:

tanzu package install tap-telmetry \

  --package tap-telemetry.tanzu.vmware.com \

  --version VERSION \

  --namespace tap-install \

  --values-file tap-telemetry-values.yaml

Tanzu Application Platform v1.5

VMware by Broadcom 1902

https://cert-manager.io/next-docs/


Where:

--values-file is an optional flag. Only use it to customize the deployment
configuration.

VERSION is the package version number. For example, 0.3.1.

For example:

$ tanzu package install tap-telmetry \

  --package tap-telemetry.tanzu.vmware.com \

  --version 0.3.1 \

  --namespace tap-install \

  --values-file tap-telemetry-values.yaml

  Installing package 'tap-telemetry.tanzu.vmware.com'

  Getting package metadata for 'tap-telemetry.tanzu.vmware.com'

  Creating service account 'tap-telemetry-tap-install-sa'

  Creating cluster admin role 'tap-telemetry-tap-install-cluster-role'

  Creating cluster role binding 'tap-telemetry-tap-install-cluster-rolebinding'

  Creating secret 'tap-telemetry-tap-install-values'

  Creating package resource

  Waiting for 'PackageInstall' reconciliation for 'tap-telemetry'

  'PackageInstall' resource install status: Reconciling

  'PackageInstall' resource install status: ReconcileSucceeded

  'PackageInstall' resource successfully reconciled

Added installed package 'tap-telemetry'

Deployment details and configurations of Tanzu Application
Platform Telemetry

Use this topic to learn the deployment details and configurations of your Tanzu Application Platform
Telemetry (commonly known as TAP Telemetry).

What is deployed

The installation creates the following in your Kubernetes cluster:

A deployment.

A pod.

A namespace tap-telemetry.

A service account with read-write privileges named informer, and a corresponding secret
for the service account. This secret is bound to a ClusterRole named tap-telemetry-admin.

A Role tap-telemetry-informer to retrieve the deployment ID, which is sent as sender ID
in heartbeat metrics.

A RoleBinding tap-telemetry-informer-admin that binds the informer service account to
the tap-telemetry-informer role.

A ClusterRole tap-telemetry-admin that has access to each Tanzu Application Platform
component to gather information from.

A ClusterRoleBinding tap-telemetry-informer-admin that binds the informer service
account to the tap-telemetry-informer cluster role.

Deployment configuration

Tanzu Application Platform v1.5

VMware by Broadcom 1903



customer_entitlement_account_number is the unique identifier to differentiate between the data
from your cluster and the data from other clusters. You can configure this property in your tap-
telemetry-values.yaml:

customer_entitlement_account_number: "12345"

It creates a config map named vmware-telemetry-identifiers in the vmware-system-telemetry
namespace, which is used internally to log your information.

Repeat these steps for the Build, Run, and View Cluster. For more information, see Install
multicluster Tanzu Application Platform profiles.

Overview of Tanzu Build Service

This topic provides you with an overview of VMware Tanzu Build Service in Tanzu Application
Platform (commonly known as TAP).

Overview

Tanzu Build Service automates container creation, management, and governance at enterprise
scale. Tanzu Build Service uses the open-source Cloud Native Buildpacks project to turn application
source code into container images. It executes reproducible builds aligned with modern container
standards and keeps images up to date.

For more information about Tanzu Build Service, see the Tanzu Build Service documentation. For
more information about Tanzu Buildpacks and their configuration, see the Tanzu Buildpack
documentation.

Tanzu Application Platform v1.5 includes Tanzu Build Service v1.10.

Overview of Tanzu Build Service

This topic provides you with an overview of VMware Tanzu Build Service in Tanzu Application
Platform (commonly known as TAP).

Overview

Tanzu Build Service automates container creation, management, and governance at enterprise
scale. Tanzu Build Service uses the open-source Cloud Native Buildpacks project to turn application
source code into container images. It executes reproducible builds aligned with modern container
standards and keeps images up to date.

For more information about Tanzu Build Service, see the Tanzu Build Service documentation. For
more information about Tanzu Buildpacks and their configuration, see the Tanzu Buildpack
documentation.

Tanzu Application Platform v1.5 includes Tanzu Build Service v1.10.

Install Tanzu Build Service

This topic describes how to install Tanzu Build Service from the Tanzu Application Platform
(commonly known as TAP) package repository by using the Tanzu CLI.

Before you begin

Tanzu Application Platform v1.5

VMware by Broadcom 1904

https://buildpacks.io/
https://docs.vmware.com/en/VMware-Tanzu-Build-Service/index.html
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-index.html
https://buildpacks.io/
https://docs.vmware.com/en/VMware-Tanzu-Build-Service/index.html
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-index.html


Use this topic if you do not want to use a Tanzu Application Platform profile that includes Tanzu
Build Service. The Full, Iterate, and Build profiles include Tanzu Build Service. For more information
about profiles, see Components and installation profiles.

The following procedure might not include some configurations required for your environment. For
advanced information about installing Tanzu Build Service, see the Tanzu Build Service
documentation.

Prerequisites

Before installing Tanzu Build Service:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

You must have access to a Docker registry that Tanzu Build Service can use to create
builder images. Approximately 10 GB of registry space is required when using the full
dependencies.

Your Docker registry must be accessible with user name and password credentials.

Deprecated Features

The Cloud Native Buildpack Bill of Materials (CNB BOM) format: For more information,
see Deactivate the CNB BOM format.

Install the Tanzu Build Service package

To install Tanzu Build Service by using the Tanzu CLI:

1. Get the latest version of the Tanzu Build Service package by running:

tanzu package available list buildservice.tanzu.vmware.com --namespace tap-inst

all

2. Gather the values schema by running:

tanzu package available get buildservice.tanzu.vmware.com/VERSION --values-sche

ma --namespace tap-install

Where VERSION is the version of the Tanzu Build Service package you retrieved in the
previous step.

3. Create the secret for the kp-default-repository credentials using the tanzu cli:

tanzu secret registry add kp-default-repository-creds \

  --server "${REGISTRY_HOSTNAME}" \

  --username "${REGISTRY_USERNAME}" \

  --password "${REGISTRY_PASSWORD}" \

  --namespace tap-install

Where: - REGISTRY_HOST is the hostname for the registry that will contain your
kp_default_repository. Examples: - Harbor has the form server: "my-harbor.io". -
Docker Hub has the form server: "index.docker.io". - Google Cloud Registry has the
form server: "gcr.io". - REGISTRY_USERNAME and REGISTRY_PASSWORD are the username and
password for the user that can write to the repo used in the following step. For Google
Cloud Registry, use _json_key as the username and the contents of the service account
JSON file for the password.

Tanzu Application Platform v1.5

VMware by Broadcom 1905

https://docs.vmware.com/en/VMware-Tanzu-Build-Service/index.html


4. Create a tbs-values.yaml file using the following template. If
shared.image_registry.project_path and shared.image_registry.secret are configured in
the tap-values.yaml file, Tanzu Build Service inherits all three values in that section. This
can be disabled by setting any of the following three values.

---

kp_default_repository: "REPO-NAME"

kp_default_repository_secret:

  name: kp-default-repository-creds

  namespace: tap-install

Where:

REPO-NAME is a writable repository in your registry. Tanzu Build Service dependencies are
written to this location. Examples:

Harbor has the form "my-harbor.io/my-project/build-service".

Docker Hub has the form "my-dockerhub-user/build-service" or
"index.docker.io/my-user/build-service".

Google Cloud Registry has the form "gcr.io/my-project/build-service".

5. If you are running on Openshift, add kubernetes_distribution: openshift to your tbs-
values.yaml file.

6. (Optional) Under the ca_cert_data key in the tbs-values.yaml file, provide a PEM-encoded
CA certificate for Tanzu Build Service. This certificate is used for accessing the container
image registry and is also provided to the build process.

For example:

---

kp_default_repository: "REPO-NAME"

kp_default_repository_secret:

  name: kp-default-repository-creds

  namespace: tap-install

ca_cert_data: |

  -----BEGIN CERTIFICATE-----

  ...

  -----END CERTIFICATE-----

7. (Optional) Tanzu Build Service is bootstrapped with the lite set of dependencies. To
configure full dependencies, add the key-value pair exclude_dependencies: true to your
tbs-values.yaml file. This is to exclude the default lite dependencies from the installation.
For example:

---

kp_default_repository: "REPO-NAME"

kp_default_repository_secret:

Note

If shared.ca_cert_data is configured in the tap-values.yaml file, Tanzu Build
Service inherits that value.

Configuring ca_cert_data key in the tbs-values.yaml file adds the CA
certificates at build time. To add CA certificates to the built image, see
Configure custom CA certificates for a single workload using service
bindings.

Tanzu Application Platform v1.5

VMware by Broadcom 1906



  name: kp-default-repository-creds

  namespace: tap-install

exclude_dependencies: true

For more information about the differences between full and lite dependencies, see
About lite and full dependencies.

8. Install the Tanzu Build Service package by running:

tanzu package install tbs \

  --package buildservice.tanzu.vmware.com \

  --version VERSION \

  --namespace tap-install \

  --values-file tbs-values.yaml

Where VERSION is the version of the Tanzu Build Service package you retrieved earlier.

For example:

$ tanzu package install tbs \

    --package buildservice.tanzu.vmware.com \

    --version 1.12.4 \

    --namespace tap-install \

    --vaules-file tbs-values.yaml

| Installing package 'buildservice.tanzu.vmware.com'

| Getting namespace 'tap-install'

| Getting package metadata for 'buildservice.tanzu.vmware.com'

| Creating service account 'tbs-tap-install-sa'

| Creating cluster admin role 'tbs-tap-install-cluster-role'

| Creating cluster role binding 'tbs-tap-install-cluster-rolebinding'

| Creating secret 'tbs-tap-install-values'

- Creating package resource

- Package install status: Reconciling

 Added installed package 'tbs' in namespace 'tap-install'

9. (Optional) Verify the cluster builders that the Tanzu Build Service installation created by
running:

tanzu package installed get tbs -n tap-install

10. If you configured full dependencies in your tbs-values.yaml file, install the full
dependencies by following the procedure in Install full dependencies.

Use AWS IAM authentication for registry credentials

Tanzu Build Service supports using AWS IAM roles to authenticate with Amazon Elastic Container
Registry (ECR) on Amazon Elastic Kubernetes Service (EKS) clusters.

To use AWS IAM authentication:

1. Configure an AWS IAM role that has read and write access to the repository in the
container image registry used when installing Tanzu Application Platform.

2. Use the following alternative configuration for tbs-values.yaml:

Note

Tanzu Application Platform v1.5

VMware by Broadcom 1907



---

  kp_default_repository: "REPO-NAME"

  kp_default_repository_aws_iam_role_arn: "IAM-ROLE-ARN"

Where:

REPO-NAME is a writable repository in your registry. Tanzu Build Service dependencies
are written to this location.

IAM-ROLE-ARN is the AWS IAM role Amazon Resource Name (ARN) for the role
configured in the previous step. For example, arn:aws:iam::xyz:role/my-install-
role.

3. The developer namespace requires configuration for Tanzu Application Platform to use
AWS IAM authentication for ECR. Configure an AWS IAM role that has read and write
access to the registry for storing workload images.

4. Using the supply chain service account, add an annotation including the role ARN
configured earlier by running:

kubectl annotate serviceaccount -n DEVELOPER-NAMESPACE SERVICE-ACCOUNT-NAME \

  eks.amazonaws.com/role-arn=IAM-ROLE-ARN

Where:

DEVELOPER-NAMESPACE is the namespace where workloads are created.

SERVICE-ACCOUNT-NAME is the supply chain service account. This is default if unset.

IAM-ROLE-ARN is the AWS IAM role ARN for the role configured earlier. For example,
arn:aws:iam::xyz:role/my-developer-role.

5. Apply this configuration by continuing the steps in Install the Tanzu Build Service package.

Install full dependencies

If you configured full dependencies in your tbs-values.yaml file, you must install the full
dependencies package.

For a more information about lite and full dependencies, see About lite and full dependencies.

To install full Tanzu Build Service dependencies:

1. If you have not done so already, add the key-value pair exclude_dependencies: true to
your tbs-values.yaml file. For example:

---

  kp_default_repository: "REPO-NAME"

  kp_default_repository_secret:

    name: kp-default-repository-creds

if you are installing Tanzu Build Service as part of a Tanzu Application
Platform profile, you configure this in your tap-values.yaml file under the
buildservice section.

Note

if you are installing Tanzu Build Service as part of a Tanzu Application
Platform profile, you configure this in your tap-values.yaml file under the
buildservice section.

Tanzu Application Platform v1.5

VMware by Broadcom 1908



    namespace: tap-install

  exclude_dependencies: true

2. Get the latest version of the Tanzu Build Service package by running:

tanzu package available list buildservice.tanzu.vmware.com --namespace tap-inst

all

3. Relocate the Tanzu Build Service full dependencies package repository by running:

imgpkg copy -b registry.tanzu.vmware.com/tanzu-application-platform/full-tbs-de

ps-package-repo:VERSION \

--to-repo INSTALL-REGISTRY-HOSTNAME/TARGET-REPOSITORY/tbs-full-deps

Where:

VERSION is the version of the Tanzu Build Service package you retrieved in the
previous step.

INSTALL-REGISTRY-HOSTNAME is your container image registry.

TARGET-REPOSITORY is your target repository.

4. Add the Tanzu Build Service full dependencies package repository by running:

tanzu package repository add tbs-full-deps-repository \

  --url INSTALL-REGISTRY-HOSTNAME/TARGET-REPOSITORY/tbs-full-deps:VERSION \

  --namespace tap-install

Where:

VERSION is the version of the Tanzu Build Service package you retrieved earlier.

INSTALL-REGISTRY-HOSTNAME is your container image registry.

TARGET-REPOSITORY is your target repository.

5. Install the full dependencies package by running:

tanzu package install full-tbs-deps -p full-tbs-deps.tanzu.vmware.com -v VERSIO

N -n tap-install

Where VERSION is the version of the Tanzu Build Service package you retrieved earlier.

(Optional) Deactivate the CNB BOM format

The legacy CNB BOM format is deprecated, but is enabled by default in Tanzu Application Platform.

To manually deactivate the format, add include_legacy_bom=false to either the tbs-values.yaml
file, or to the tap-values.yaml file under the buildservice section.

Install Tanzu Build Service on an air-gapped environment

This topic tells you how to install Tanzu Build Service on a Kubernetes cluster and registry that are
air-gapped from external traffic.

Before you begin

Use this topic if you do not want to use a Tanzu Application Platform profile that includes Tanzu
Build Service.

Tanzu Application Platform v1.5

VMware by Broadcom 1909



The Full, Iterate, and Build profiles include Tanzu Build Service. For more information about
profiles, see Components and installation profiles.

Prerequisites

Before installing Tanzu Build Service:

Complete all prerequisites to install Tanzu Application Platform. For more information, see
Prerequisites.

You must have access to a Docker registry that Tanzu Build Service can use to create
builder images. Approximately 10 GB of registry space is required when using the full
dependencies.

Your Docker registry must be accessible with user name and password credentials.

Deprecated Features

The Cloud Native Buildpack Bill of Materials (CNB BOM) format: For more information, see
Deactivate the CNB BOM format.

Install the Tanzu Build Service package

These steps assume that you have installed the Tanzu Application Platform packages in your air-
gapped environment.

To install the Tanzu Build Service package on an air-gapped environment:

1. Get the latest version of the Tanzu Build Service package by running:

tanzu package available list buildservice.tanzu.vmware.com --namespace tap-inst

all

2. Gather the values schema by running:

tanzu package available get buildservice.tanzu.vmware.com/VERSION --values-sche

ma --namespace tap-install

Where VERSION is the version of the Tanzu Build Service package you retrieved in the
previous step.

3. Create a tbs-values.yaml file. The required fields for an air-gapped installation are as
follows:

---

kp_default_repository: REPO-NAME

kp_default_repository_secret:

  name: "SECRET_NAME"

  namespace: "SECRET_NAMESPACE"

ca_cert_data: CA-CERT-CONTENTS

exclude_dependencies: true

Where:

REPO-NAME is the fully qualified path to a writeable repository in your internal registry.
Tanzu Build Service dependencies are written to this location. For example:

For Harbor: harbor.io/my-project/build-service

For Artifactory: artifactory.com/my-project/build-service

Tanzu Application Platform v1.5

VMware by Broadcom 1910



SECRET_NAME/SECRET_NAMESPACE is the name/namespace of the secret containing
credentials that can write to REPO-NAME.

CA-CERT-CONTENTS are the contents of the PEM-encoded CA certificate for the
internal registry.

4. Install the package by running:

tanzu package install tbs \

  --package buildservice.tanzu.vmware.com \

  --version VERSION \

  --namespace tap-install \

  --values-file tbs-values.yaml

Where VERSION is the version of the Tanzu Build Service package you retrieved earlier.

For example:

$ tanzu package install tbs \

    --package buildservice.tanzu.vmware.com \

    --version 1.12.4 \

    --namespace tap-install \

    --values-file tbs-values.yaml

| Installing package 'buildservice.tanzu.vmware.com'

| Getting namespace 'tap-install'

| Getting package metadata for 'buildservice.tanzu.vmware.com'

| Creating service account 'tbs-tap-install-sa'

| Creating cluster admin role 'tbs-tap-install-cluster-role'

| Creating cluster role binding 'tbs-tap-install-cluster-rolebinding'

| Creating secret 'tbs-tap-install-values'

- Creating package resource

- Package install status: Reconciling

 Added installed package 'tbs' in namespace 'tap-install'

Install the Tanzu Build Service dependencies
By default, Tanzu Build Service is installed with lite dependencies.

When installing Tanzu Build Service on an air-gapped environment, the lite dependencies cannot
be used as they require Internet access. You must install the full dependencies.

To install full dependencies:

1. Relocate the Tanzu Build Service full dependencies package repository by running:

imgpkg copy -b registry.tanzu.vmware.com/tanzu-application-platform/full-tbs-de

ps-package-repo:VERSION \

  --to-tar=tbs-full-deps.tar

# move tbs-full-deps.tar to environment with registry access

imgpkg copy --tar tbs-full-deps.tar \

  --to-repo=INSTALL-REGISTRY-HOSTNAME/TARGET-REPOSITORY/tbs-full-deps

Where:

VERSION is the version of the Tanzu Build Service package you retrieved earlier.

INSTALL-REGISTRY-HOSTNAME is your container registry.

TARGET-REPOSITORY is your target repository.

2. Add the Tanzu Build Service full dependencies package repository by running:

tanzu package repository add tbs-full-deps-repository \

  --url INSTALL-REGISTRY-HOSTNAME/TARGET-REPOSITORY/tbs-full-deps:VERSION \

Tanzu Application Platform v1.5

VMware by Broadcom 1911



  --namespace tap-install

Where:

INSTALL-REGISTRY-HOSTNAME is your container registry.

TARGET-REPOSITORY is your target repository.

VERSION is the version of the Tanzu Build Service package you retrieved earlier.

3. Install the full dependencies package by running:

tanzu package install full-tbs-deps -p full-tbs-deps.tanzu.vmware.com -v VERSIO

N -n tap-install

Where VERSION is the version of the Tanzu Build Service package you retrieved earlier.

Configure Tanzu Build Service properties on a workload

This topic tells you how to configure your workload with Tanzu Build Service properties.

Overview

Tanzu Build Service builds registry images from source code for Tanzu Application Platform. You
can configure these build configurations by using a workload.

Tanzu Build Service is only applicable to the build process. Configurations, such as environment
variables and service bindings, might require a different process for runtime.

Configure build-time service bindings

You can configure build-time service bindings for Tanzu Build Service.

Tanzu Build Service supports using the Service Binding Specification for Kubernetes for application
builds. For more information, see the service binding specification for Kubernetes in GitHub.

Service binding configuration is specific to the buildpack that is used to build the app. For more
information about configuring buildpack service bindings for the buildpack you are using, see the
VMware Tanzu Buildpacks documentation.

To configure a service binding for a Tanzu Application Platform workload, follow these steps:

1. Create a YAML file named service-binding-secret.yaml for a secret as follows:

apiVersion: v1

kind: Secret

metadata:

  name: settings-xml

  namespace: DEVELOPER-NAMESPACE

type: service.binding/maven

stringData:

  type: maven

  provider: sample

  settings.xml: |

  MY-SETTINGS

Where: - DEVELOPER-NAMESPACE is the namespace where workloads are created. - MY-
SETTINGS is the contents of your service bindings file.

2. Apply the YAML file by running:

kubectl apply -f service-binding-secret.yaml

Tanzu Application Platform v1.5

VMware by Broadcom 1912

https://github.com/k8s-service-bindings/spec
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-index.html


3. Create the workload with buildServiceBindings configured by running:

tanzu apps workload create WORKLOAD-NAME \

  --param-yaml buildServiceBindings='[{"name": "settings-xml", "kind": "Secre

t"}]' \

  ...

Where WORKLOAD-NAME is the name of the workload you want to configure.

Configure environment variables

If you have build-time environment variable dependencies, you can set environment variables that
are available at build-time.

You can also configure buildpacks with environment variables. Buildpack configuration depends on
the specific buildpack being used. For more information about configuring environment variables
for the buildpack you are using, see the VMware Tanzu Buildpacks documentation.

For example:

tanzu apps workload create WORKLOAD-NAME \

  --build-env "ENV_NAME=ENV_VALUE" \

  --build-env "BP_MAVEN_BUILD_ARGUMENTS=-Dmaven.test.skip=true"

Where WORKLOAD-NAME is the name of the workload you want to configure.

Configure the service account
Using the Tanzu CLI, you can configure the service account used during builds. This service
account is the one configured for the developer namespace. If unset, default is used.

To configure the service account used during builds, run:

tanzu apps workload create WORKLOAD-NAME \

  --param serviceAccount=SERVICE-ACCOUNT-NAME \

Where:

WORKLOAD-NAME is the name of the workload you want to configure.

SERVICE-ACCOUNT-NAME is the name of the service account you want to use during builds.

Configure the cluster builder

To configure the ClusterBuilder used during builds:

1. View the available ClusterBuilds by running:

kubectl get clusterbuilder

2. Set the ClusterBuilder used during builds by running:

tanzu apps workload create WORKLOAD-NAME \

  --param clusterBuilder=CLUSTER-BUILDER-NAME \

Where:

WORKLOAD-NAME is the name of the workload you want to configure.

CLUSTER-BUILDER-NAME is the ClusterBuilder you want to use.

Tanzu Application Platform v1.5

VMware by Broadcom 1913

https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-index.html


Configure the workload container image registry

Using the Tanzu CLI, you can configure the registry where workload images are saved. The service
account used for this workload must have read and write access to this registry location.

To configure the registry where workload images are saved, run:

tanzu apps workload create WORKLOAD-NAME \

  --param-yaml registry={"server": SERVER-NAME, "repository": REPO-NAME}

Where:

SERVER-NAME is the host name of the registry server. Examples:

Harbor has the form "my-harbor.io".

Docker Hub has the form "index.docker.io".

Google Cloud Registry has the form "gcr.io".

REPO-NAME is where workload images are stored in the registry. Images are written to
SERVER-NAME/REPO-NAME/workload-name. Examples:

Harbor has the form "my-project/supply-chain".

Docker Hub has the form "my-dockerhub-user".

Google Cloud Registry has the form "my-project/supply-chain".

Configure custom CA certificates for a single workload
using service bindings

If the language family buildpack you are using includes the Paketo CA certificates buildpack, you
can use a service binding to provide custom certificates during the build and run process. For more
information about language family buildpacks, see the Tanzu Buildpacks documentation.

To create a service binding to provide custom CA certificates for a workload:

1. Create a YAML file named service-binding-ca-cert.yaml for a secret as follows:

apiVersion: v1

kind: Secret

metadata:

  name: my-ca-certs

data:

  type: ca-certificates

  provider: sample

  CA-CERT-FILENAME: |

    -----BEGIN CERTIFICATE-----

    ...

    -----END CERTIFICATE-----

Where CA-CERT-FILENAME is the name of your PEM encoded CA certificate file. For
example, arbitrary-file-name.pem.

2. Apply the YAML file by running:

kubectl apply -f service-binding-ca-cert.yaml

3. To build with the custom certificate, create the workload with --param-yaml
buildServiceBindings flag:

tanzu apps workload create WORKLOAD-NAME \

  --param-yaml buildServiceBindings='[{"apiVersion": "v1", "kind": "Secret", "n

Tanzu Application Platform v1.5

VMware by Broadcom 1914

https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-index.html


ame": "my-ca-certs"}]' \

  ...

Where WORKLOAD-NAME is the name of the workload you want to create.

4. To deploy with the custom certificate, create the workload with the --service-ref flag:

tanzu apps workload create WORKLOAD-NAME \

  --service-ref my-ca-certs=v1:Secret:my-ca-certs \

  ...

Where WORKLOAD-NAME is the name of the workload you want to create.

Using custom CA certificates for all workloads

To provide custom CA certificates to the build process for all workloads, see the optional step to
add the ca_cert_data key Install the Tanzu Build Service package.

Create a signed container image with Tanzu Build Service

This topic tells you how to create a Tanzu Build Service image resource that builds a container
image from source code signed with Cosign.

Prerequisites

Before you can configure Tanzu Build Service to sign your image builds, you must:

Install Tanzu Build Service. The Full, Iterate, and Build profiles include Tanzu Build Service
by default. If you have not installed Tanzu Application Platform with one of these profiles,
see Installing Tanzu Build Service.

Install Cosign. For instructions, see the Cosign documentation.

Have a Builder or ClusterBuilder resource configured.

Have an image resource configured.

Review the kpack tutorial. This topic builds upon the steps in this tutorial.

Configure Tanzu Build Service to sign your image builds

To configure Tanzu Build Service to sign your image builds:

1. Ensure that you are in a Kubernetes context where you are authenticated and authorized
to create and edit secret and service account resources.

2. Generate a Cosign keypair and store it as a Kubernetes secret by running:

cosign generate-key-pair k8s://NAMESPACE/COSIGN-KEYPAIR-NAME

Where:

NAMESPACE is the namespace to store the Kubernetes secret in.

COSIGN-KEYPAIR-NAME is the name of the Kubernetes secret.

For example:

cosign generate-key-pair k8s://default/tutorial-cosign-key-pair

Tanzu Application Platform v1.5

VMware by Broadcom 1915

https://github.com/sigstore/cosign#installation
https://docs.vmware.com/en/Tanzu-Build-Service/1.10/vmware-tanzu-build-service/managing-builders.html
https://docs.vmware.com/en/Tanzu-Build-Service/1.10/vmware-tanzu-build-service/managing-images.html
https://github.com/buildpacks-community/kpack/blob/main/docs/tutorial.md


3. Enter a password for the private key. Enter any password you want. After the command
has completed, you will see the following output:

Successfully created secret tutorial-cosign-key-pair in namespace default

Public key written to cosign.pub

You will also see a cosign.pub file in your current directory. Keep this file as you will need it
to verify the signature of the images that are built.

4. If you are using Docker Hub or a registry that does not support OCI media types, add the
annotation kpack.io/cosign.docker-media-types: "1" to the Cosign secret as follows:

apiVersion: v1

kind: Secret

type: Opaque

metadata:

  name: tutorial-cosign-key-pair

  namespace: default

  annotations:

    kpack.io/cosign.docker-media-types: "1"

data:

  cosign.key: PRIVATE-KEY-DATA

  cosign.password: COSIGN-PASSWORD

  cosign.pub: PUBLIC-KEY-DATA

For more information about configuring Cosign key pairs, see the Tanzu Build Service
documentation.

5. To enable Cosign signing, create or edit the service account resource that is referenced in
the image resource so that it includes the Cosign keypair secret created earlier. The service
account is in the same namespace as the image resource and is directly referenced by the
image or default if there isn’t one. The default is the default service account in the workload
namespace.

apiVersion: v1

kind: ServiceAccount

metadata:

  name: SERVICE-ACCOUNT-NAME

  namespace: default

secrets:

- name: REGISTRY-CREDENTIALS

- name: COSIGN-KEYPAIR-NAME

imagePullSecrets:

- name: REGISTRY-CREDENTIALS

Where:

SERVICE-ACCOUNT-NAME is the name of your service account resource. For example,
tutorial-cosign-service-account.

COSIGN-KEYPAIR-NAME is the name of the Cosign keypair secret generated earlier.
For example, tutorial-cosign-key-pair.

REGISTRY-CREDENTIALS is the secret that provides credentials for the container
registry where application container images are pushed to.

6. Apply the service account resource to the cluster by running:

kubectl apply -f cosign-service-account.yaml

7. Create an image resource file named image-cosign.yaml. For example:

Tanzu Application Platform v1.5

VMware by Broadcom 1916

https://hub.docker.com/
https://docs.vmware.com/en/Tanzu-Build-Service/1.10/vmware-tanzu-build-service/managing-images.html#image-signing-with-cosign


apiVersion: kpack.io/v1alpha2

kind: Image

metadata:

  name: tutorial-cosign-image

  namespace: default

spec:

  tag: IMAGE-REGISTRY

  serviceAccountName: tutorial-cosign-service-account

  builder:

    name: my-builder

    kind: Builder

  source:

    git:

      url: https://github.com/spring-projects/spring-petclinic

      revision: 82cb521d636b282340378d80a6307a08e3d4a4c4

Where:

IMAGE-REGISTRY with a writable repository in your registry. The secret referenced in
the service account is a secret providing credentials for the registry where
application container images are pushed to. For example:

Harbor has the form "my-harbor.io/my-project/my-repo"

Docker Hub has the form "my-dockerhub-user/my-repo" or
"index.docker.io/my-user/my-repo"

Google Cloud Registry has the form "gcr.io/my-project/my-repo"

8. If you are using Out of the Box Supply Chains, edit the respective ClusterImageTemplate to
enable signing in your supply chain. For more information, see Authoring supply chains.

9. Apply the image resource to the cluster by running:

kubectl apply -f image-cosign.yaml

10. After the image resource finishes building, you can get the fully resolved and built OCI
image by running:

kubectl -n default get image tutorial-cosign-image

Example output:

NAME                  LATESTIMAGE                                        READY

tutorial-cosign-image index.docker.io/your-project/app@sha256:6744b...   True

11. Verify image signature by running:

cosign verify --insecure-ignore-tlog --key cosign.pub LATEST-IMAGE-WITH-DIGEST

Where LATEST-IMAGE-WITH-DIGEST is the value of LATESTIMAGE you retrieved in the previous
step. For example, index.docker.io/your-project/app@sha256:6744b....

Expected output:

Important

VMware discourages referencing the service account using the
service_account value when installing the Out of the Box Supply Chain. This
is because it gives your run cluster access to the private signing key.

Tanzu Application Platform v1.5

VMware by Broadcom 1917



Verification for index.docker.io/your-project/app@sha256:6744b... --

The following checks were performed on each of these signatures:

- The cosign claims were validated

- The signatures were verified against the specified public key

- Any certificates were verified against the Fulcio roots.

12. Configure Supply Chain Security Tools for VMware Tanzu - Policy Controller to ensure that
only signed images are allowed in your cluster. For more information, see the Supply Chain
Security Tools for VMware Tanzu - Policy Controller documentation.

Tanzu Build Service Dependencies

This topic tells you about Tanzu Build Service dependencies.

To build OCI images, Tanzu Build Service has the following dependencies: Cloud Native Buildpacks,
Stacks, and Lifecycles.

How dependencies are installed

When Tanzu Application Platform is installed with Tanzu Build Service, it is bootstrapped with a set
of dependencies. No extra configuration is required. Each version of Tanzu Application Platform
and Tanzu Build Service contains new dependencies.

When Tanzu Application Platform is upgraded, new dependencies are installed which might cause
workload images to rebuild. To ensure dependency compatibility, Tanzu Build Service only releases
patches for dependencies in patch versions of Tanzu Application Platform. For upgrade instructions,
see Upgrade the full dependencies package.

By default, Tanzu Build Service is installed with the lite set of dependencies, which are smaller-
footprint and contain a subset of the buildpacks and stacks in the full set of dependencies. For a
comparison of lite and full dependencies, see Dependency comparison later in this topic.

View installed dependencies

To view the set of dependencies installed with Tanzu Build Service, inspect the status of the cluster
builders by running:

kubectl get clusterbuilder -o yaml

Cluster builders contain stack and buildpack metadata.

Bionic and Jammy stacks

Note

You must use the --insecure-ignore-tlog flag because the supply chain
does not write the signature attestation to a transparency log.

Important

Ubuntu Bionic will stop receiving support in April 2023. The Bionic stack is
deprecated and will be removed in a future release. VMware recommends that you
migrate builds to Jammy stacks. For Tanzu Application Platform v1.5 and later, the
default stack for Tanzu Build Service is Jammy.

Tanzu Application Platform v1.5

VMware by Broadcom 1918

https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/index.html
https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-stacks.html
https://docs.vmware.com/en/Tanzu-Build-Service/1.10/vmware-tanzu-build-service/managing-builders.html#update-lifecycle


Tanzu Application Platform v1.3 and later supports Ubuntu v22.04 (Jammy) based builds and will
default to it from Tanzu Application Platform v1.5 and later.

Ubuntu Bionic will stop receiving support in April 2023. VMware recommends that you migrate
builds to Jammy.

For more information about support for Jammy stacks, see About lite and full dependencies later in
this topic.

About lite and full dependencies

Each version of Tanzu Application Platform is released with two types of Tanzu Build Service
dependencies: lite and full. These dependencies consist of the buildpacks and stacks required for
application builds. Each type serves different use cases. Both types are suitable for production
workloads.

By default, Tanzu Build Service is installed with lite dependencies, which do not contain all
buildpacks and stacks. To use all buildpacks and stacks, you must install the full dependencies. For
instructions about installing full dependencies, see Install full dependencies.

For a table comparing the differences between full and lite dependencies, see Dependency
comparison.

Lite dependencies

The lite dependencies are the default set installed with Tanzu Build Service.

lite dependencies contain a smaller footprint to speed up installation time, but do not support all
workload types. For example, lite dependencies do not contain the PHP buildpack and cannot be
used to build PHP workloads.

Lite dependencies: stacks

The lite dependencies contain the following stacks:

base (Ubuntu Bionic)

base-jammy (Ubuntu Jammy)

default (identical to base-jammy)

For more information, see Stacks in the VMware Tanzu Buildpacks documentation.

Lite dependencies: buildpacks

The lite dependencies contain the following buildpacks in Tanzu Application Platform v1.5:

Buildpack Version Supported Stacks

Java Buildpack for VMware Tanzu (Lite) 8.8.0 Bionic, Jammy

Java Native Image Buildpack for Tanzu (Lite) 6.42.3 Bionic, Jammy

Note

While upgrading apps to a newer stack, you might encounter the build platform
erroneously reusing the old build cache. If you encounter this issue, delete and
recreate the workload in Tanzu Application Platform, or delete and recreate the
image in Tanzu Build Service.

Tanzu Application Platform v1.5

VMware by Broadcom 1919

https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-stacks.html


Buildpack Version Supported Stacks

.NET Core Buildpack for VMware Tanzu (Lite) 2.3.0 Bionic, Jammy

Node.js Buildpack for VMware Tanzu (Lite) 2.1.0 Bionic, Jammy

Python Buildpack for VMware Tanzu (Lite) 2.3.3 Bionic, Jammy

Go Buildpack for VMware Tanzu (Lite) 2.0.8 Bionic, Jammy

Web Servers Buildpack for VMware Tanzu (Lite) 0.8.0 Bionic, Jammy

Ruby Buildpack for VMware Tanzu (Lite) 2.1.0 Bionic, Jammy

Procfile Buildpack for VMware Tanzu (Lite) 5.4.0 Bionic, Jammy

And the following components:

Component Version Supported Stacks

CNB Lifecycle 0.16.0 Bionic, Jammy

Base Stack of Ubuntu Bionic for VMware Tanzu 1.2.45 Bionic

Base Stack of Ubuntu Jammy for VMware Tanzu 0.1.25 Jammy

Full dependencies

The Tanzu Build Service full set of dependencies contain more buildpacks and stacks, which allows
for more workload types.

The dependencies are pre-packaged, so builds do not have to download them from the Internet.
This can speed up build times and allows builds to occur in air-gapped environments. Due to the
larger footprint of full, installations might take longer.

The full dependencies are not installed with Tanzu Build Service by default, you must install them.
For instructions for installing full dependencies, see Install Tanzu Build Service with full
dependencies.

Full dependencies: stacks

The full dependencies contain the following stacks, which support different use cases:

base (Ubuntu Bionic)

full (Ubuntu Bionic)

tiny (Ubuntu Bionic)

base-jammy (Ubuntu Jammy)

full-jammy (Ubuntu Jammy)

tiny-jammy (Ubuntu Jammy)

default (identical to base-jammy)

For more information, see Stacks in the VMware Tanzu Buildpacks documentation.

Full dependencies: buildpacks

The full dependencies contain the following buildpacks in Tanzu Application Platform v1.5:

Buildpack Version Supported Stacks

Java Buildpack for VMware Tanzu 8.8.0 Bionic, Jammy

Tanzu Application Platform v1.5

VMware by Broadcom 1920

https://docs.vmware.com/en/VMware-Tanzu-Buildpacks/services/tanzu-buildpacks/GUID-stacks.html


Buildpack Version Supported Stacks

Java Native Image Buildpack for Tanzu 6.42.3 Bionic, Jammy

.NET Core Buildpack for VMware Tanzu 2.3.0 Bionic, Jammy

Node.js Buildpack for VMware Tanzu 2.1.0 Bionic, Jammy

Python Buildpack for VMware Tanzu 2.3.3 Bionic, Jammy

Ruby Buildpack for VMware Tanzu 2.1.0 Bionic, Jammy

Go Buildpack for VMware Tanzu 2.0.8 Bionic, Jammy

PHP Buildpack for VMware Tanzu 2.0.0 Bionic, Jammy

Web Servers Buildpack for VMware Tanzu 0.8.0 Bionic, Jammy

Procfile Buildpack for VMware Tanzu 5.4.0 Bionic, Jammy

And the following components:

Component Version Supported Stacks

CNB Lifecycle 0.16.0 Bionic, Jammy

Tiny Stack of Ubuntu Bionic for VMware Tanzu 1.3.99 Bionic

Base Stack of Ubuntu Bionic for VMware Tanzu 1.2.45 Bionic

Full Stack of Ubuntu Bionic for VMware Tanzu 1.3.141 Bionic

Tiny Stack of Ubuntu Jammy for VMware Tanzu 0.1.26 Jammy

Base Stack of Ubuntu Jammy for VMware Tanzu 0.1.25 Jammy

Full Stack of Ubuntu Jammy for VMware Tanzu 0.1.54 Jammy

Dependency comparison

The following table compares the contents of the lite and full dependencies.

lite full

Faster installation time Yes No

Dependencies pre-packaged (faster builds) No Yes

Supports air-gapped installation No Yes

Contains base stack Yes Yes

Contains full stack No Yes

Contains tiny stack No Yes

Contains Jammy stack Yes Yes

Supports Java workloads Yes Yes

Supports Node.js workloads Yes Yes

Supports Go workloads Yes Yes

Supports Python workloads Yes Yes

Supports Ruby workloads No Yes

Supports .NET Core workloads Yes Yes

Tanzu Application Platform v1.5

VMware by Broadcom 1921



lite full

Supports PHP workloads No Yes

Supports static workloads Yes Yes

Supports binary workloads Yes Yes

Supports web servers buildpack Yes Yes

Updating dependencies

New versions of dependencies such as buildpacks, and stacks are available in new versions of Tanzu
Application Platform. To update dependencies, VMware recommends that you update to the latest
patch version of Tanzu Application Platform.

If you are using lite or full dependencies, upgrade to the latest patch version of Tanzu
Application Platform to update your dependencies.

If you are using full dependencies, you must complete some extra steps after you upgrade
to the latest patch. For more information, see Upgrading the full dependencies package.

Updating buildpack, and stack dependencies outside of upgrades to Tanzu Application Platform is
possible but VMware does not recommend it, as we cannot guarantee those dependencies are
compatible with the other components of Tanzu Application Platform. For more information about
updating a stack and a buildpack, see Cluster stacks update and Cluster store update in the Tanzu
Build Service documentation. Both workflows require the kp CLI.

Security context constraint for OpenShift

This topic tells you about running Tanzu Build Service on OpenShift clusters.

On OpenShift clusters Tanzu Build Service must run with a custom Security Context Constraint
(SCC) to enable compliance. Tanzu Application Platform configures the following SCC for Tanzu
Build Service when you configure the kubernetes_distribution: openshift key in the tap-
values.yaml file.

---

kind: SecurityContextConstraints

apiVersion: security.openshift.io/v1

metadata:

  name: tbs-restricted-scc-with-seccomp

allowHostDirVolumePlugin: false

allowHostIPC: false

allowHostNetwork: false

allowHostPID: false

allowHostPorts: false

allowPrivilegeEscalation: false

allowPrivilegedContainer: false

allowedCapabilities:

  - NET_BIND_SERVICE

defaultAddCapabilities: null

fsGroup:

  type: RunAsAny

Note

When Tanzu Application Platform is upgraded, new dependencies are installed
which might cause workload images to rebuild.

Tanzu Application Platform v1.5

VMware by Broadcom 1922

https://docs.vmware.com/en/Tanzu-Build-Service/1.10/vmware-tanzu-build-service/updating-deps.html#cluster-stacks-update
https://docs.vmware.com/en/Tanzu-Build-Service/1.10/vmware-tanzu-build-service/updating-deps.html#cluster-store-update
https://network.tanzu.vmware.com/products/build-service
https://docs.openshift.com/container-platform/4.10/authentication/managing-security-context-constraints.html


groups: []

priority: null

readOnlyRootFilesystem: false

requiredDropCapabilities:

  - ALL

runAsUser:

  type: MustRunAsNonRoot

seLinuxContext:

  type: MustRunAs

seccompProfiles:

  - runtime/default

supplementalGroups:

  type: RunAsAny

users: []

volumes:

  - configMap

  - downwardAPI

  - emptyDir

  - persistentVolumeClaim

  - projected

  - secret

It also applies the following RBAC to allow Tanzu Build Service services to use the SCC:

---

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

  labels:

    apps.tanzu.vmware.com/aggregate-to-workload: "true"

  annotations:

    rbac.authorization.kubernetes.io/autoupdate: "true"

  name: system:tbs:scc:restricted-with-seccomp

rules:

  - apiGroups:

      - security.openshift.io

    resourceNames:

      - tbs-restricted-scc-with-seccomp

    resources:

      - securitycontextconstraints

    verbs:

      - use

---

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

  name: system:tbs:scc:restricted-with-seccomp

roleRef:

  apiGroup: rbac.authorization.k8s.io

  kind: ClusterRole

  name: system:tbs:scc:restricted-with-seccomp

subjects:

  - kind: ServiceAccount

    namespace: build-service

    name: dependency-updater-serviceaccount

  - kind: ServiceAccount

    namespace: build-service

    name: dependency-updater-controller-serviceaccount

  - kind: ServiceAccount

    namespace: build-service

    name: secret-syncer-service-account

  - kind: ServiceAccount

    namespace: build-service

    name: warmer-service-account

  - kind: ServiceAccount

    namespace: build-service

Tanzu Application Platform v1.5

VMware by Broadcom 1923



    name: build-service-daemonset-serviceaccount

  - kind: ServiceAccount

    namespace: cert-injection-webhook

    name: cert-injection-webhook-sa

  - kind: ServiceAccount

    namespace: kpack

    name: kp-default-repository-serviceaccount

  - kind: ServiceAccount

    namespace: kpack

    name: kpack-pull-lifecycle-serviceaccount

  - kind: ServiceAccount

    namespace: kpack

    name: controller

  - kind: ServiceAccount

    namespace: kpack

    name: webhook

  - kind: ServiceAccount

    namespace: stacks-operator-system

    name: controller-manager

Troubleshoot Tanzu Build Service

This topic tells you how to troubleshoot Tanzu Build Service when used with Tanzu Application
Platform (commonly known as TAP).

Builds fail due to volume errors on EKS running Kubernetes
v1.23

Symptom

After installing or upgrading Tanzu Application Platform on an Amazon Elastic Kubernetes Service
(EKS) cluster running Kubernetes v1.23, build pods show:

'running PreBind plugin "VolumeBinding": binding volumes: timed out waiting

 for the condition'

Cause

This is due to the CSIMigrationAWS in this Kubernetes version, which requires users to install the
Amazon EBS CSI driver to use AWS Elastic Block Store (EBS) volumes. For more information about
EKS support for Kubernetes v1.23, see the Amazon blog post.

Tanzu Application Platform uses the default storage class which uses EBS volumes by default on
EKS.

Solution

Follow the AWS documentation to install the Amazon EBS CSI driver before installing Tanzu
Application Platform, or before upgrading to Kubernetes v1.23.

Smart-warmer-image-fetcher reports ErrImagePull due to
dockerd’s layer depth limitation

Symptom

When using dockerd as the cluster’s container runtime, you might see the smart-warmer-image-
fetcher pods report a status of ErrImagePull.

Tanzu Application Platform v1.5

VMware by Broadcom 1924

https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://aws.amazon.com/blogs/containers/amazon-eks-now-supports-kubernetes-1-23/
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html


Cause

This error might be due to dockerd’s layer depth limitation, in which the maximum supported
image layer depth is 125.

To verify that the ErrImagePull status is due to dockerd’s maximum supported image layer depth,
check for event messages containing the words max depth exceeded. For example:

$ kubectl get events -A | grep "max depth exceeded"

  build-service        73s         Warning     Failed         pod/smart-warmer-image-f

etcher-wxtr8     Failed to pull image

  "harbor.somewhere.com/aws-repo/build-service:clusterbuilder-full@sha256:065bb361fd91

4a3970ad3dd93c603241e69cca214707feaa6

  d8617019e20b65e":  rpc error: code = Unknown desc = failed to register layer: max de

pth exceeded

Solution

To work around this issue, configure your cluster to use containerd or CRI-O as its default container
runtime. For instructions, refer to the following documentation for your Kubernetes cluster
provider.

For AWS, see:

The Amazon blog

The eksctl CLI documentation

For AKS, see:

The Microsoft Azure documentation

The Microsoft Azure blog

For GKE, see:

The GKE documentation

For OpenShift, see:

The Red Hat Hybrid Cloud blog

The Red Hat Openshift documentation

Nodes fail due to “trying to send message larger than max”
error

Symptom

You see the following error, or similar, in a node status:

Warning ContainerGCFailed 119s (x2523 over 42h) kubelet rpc error: code = ResourceExha

usted desc = grpc: trying to send message larger than max (16779959 vs. 16777216)

Cause

This is due to the way that the container runtime interface (CRI) handles garbage collection for
unused images and containers.

Solution

Tanzu Application Platform v1.5

VMware by Broadcom 1925

https://docs.aws.amazon.com/eks/latest/userguide/dockershim-deprecation.html
https://eksctl.io/usage/container-runtime/
https://docs.microsoft.com/en-us/azure/aks/cluster-configuration#container-runtime-configuration
https://techcommunity.microsoft.com/t5/apps-on-azure-blog/dockershim-deprecation-and-aks/ba-p/3055902
https://cloud.google.com/kubernetes-engine/docs/concepts/using-containerd
https://cloud.redhat.com/blog/containerd-support-for-windows-containers-in-openshift
https://docs.openshift.com/container-platform/3.11/crio/crio_runtime.html


Do not use Docker as the CRI because it is not supported. Some versions of EKS default to Docker
as the runtime.

Build platform uses the old build cache after upgrade to
new stack

Symptom

While upgrading apps to a newer stack, you might encounter the build platform erroneously
reusing the old build cache.

Solution

If you encounter this issue, delete, and recreate the workload in Tanzu Application Platform, or
delete and recreate the image in Tanzu Build Service.

Switching from buildservice.kp_default_repository to
shared.image_registry

Symptom

After switching to using the shared.image_registry fields in tap-values.yaml, your workloads
might start failing with a TemplateRejectedByAPIServer error, with the error message: admission
webhook "validation.webhook.kpack.io" denied the request: validation failed: Immutable

field changed: spec.tag.

Cause

Tanzu Application Platform automatically appends /buildservice to the end of the repository
specified in shared.image_registry.project_path. This updates the existing workload image tags,
which is not allowed by Tanzu Build Service.

Solution

Delete the images.kpack.io, it has the same name as the workload. The workload then recreates it
with valid values.

Alternatively, re-add the buildservice.kp_default_repository_* fields in the tap-values.yaml.
You must set both the repository and the authentication fields to override the shared values. Set
kp_default_repository, kp_default_repository_secret.name, and
kp_default_repository_secret.namespace.

Create a GitHub build action (Alpha)
This topic tells you how to use a GitHub action to create a Tanzu Build Service build on a cluster.

Prerequisites

Important

Alpha features are experimental and are not ready for production use. Configuration
and behavior is likely to change, and functionality might be removed in a future
release.

Tanzu Application Platform v1.5

VMware by Broadcom 1926



Ensure that Tanzu Application Platform is installed.

Procedure

Developer namespace

1. Create a developer namespace where the build resource will be created.

kubectl create namespace DEVELOPER-NAMESPACE

2. Create a service account in the DEVELOPER-NAMESPACE that has access to the registry
credentials. This service account name will be used in the action.

Access to Kubernetes API server

The GitHub action talks directly to the Kubernetes API server, if you are running this on github.com
with the default action runners, ensure that your API server is accessible from GitHub’s IP ranges.
Alternatively, it might be possible to run the action on a custom runner within your firewall (with
access to the Tanzu Application Platform cluster).

Permissions Required

These are the minimum permissions required on the Tanzu Build Service cluster:

```bash

ClusterRole

 └ kpack.io

 └ clusterbuilders verbs=[get]

Role (DEVELOPER NAMESPACE)

 ├ ''

 │ ├ pods verbs=[get watch list] ✔

 │ └ pods/log verbs=[get] ✔

 └ kpack.io

 └ builds verbs=[get watch list create delete] ✔

```

This example contains the minimum required permissions:

```yaml

apiVersion: v1

kind: Namespace

metadata:

 name: DEVELOPER_NAMESPACE

apiVersion: v1

kind: ServiceAccount

metadata:

 namespace: DEVELOPER_NAMESPACE

 name: github-actions

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: github-actions

subjects:

 - kind: ServiceAccount

 namespace: DEVELOPER_NAMESPACE

 name: github-actions

roleRef:

 kind: ClusterRole

 name: github-actions

Tanzu Application Platform v1.5

VMware by Broadcom 1927

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/about-githubs-ip-addresses

 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: github-actions

 namespace: DEVELOPER_NAMESPACE

subjects:

 - kind: ServiceAccount

 namespace: DEVELOPER_NAMESPACE

 name: github-actions

roleRef:

 kind: Role

 name: github-actions

 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: github-actions

rules:

 - apiGroups: ['kpack.io']

 resources:

 - clusterbuilders

 verbs: ['get']

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 name: github-actions

 namespace: DEVELOPER_NAMESPACE

rules:

 - apiGroups: ['']

 resources: ['pods']

 verbs: ['get', 'watch', 'list']

 - apiGroups: ['']

 resources: ['pods/log']

 verbs: ['get']

 - apiGroups: ['kpack.io']

 resources:

 - builds

 verbs: ['get', 'watch', 'list', 'create', 'delete']

```

To access the values on Google Kubernetes Engine (steps might vary on other IaaS providers):

  ```console

 DEV_NAMESPACE=DEVELOPER_NAMESPACE

 SECRET=$(kubectl get sa github-actions -oyaml -n $DEV_NAMESPACE | yq '.secrets[0].na

me')

 CA_CERT=$(kubectl get secret $SECRET -oyaml -n $DEV_NAMESPACE | yq '.data."ca.crt"')

 NAMESPACE=$(kubectl get secret $SECRET -oyaml -n $DEV_NAMESPACE | yq .data.namespace

| base64 -d)

 TOKEN=$(kubectl get secret $SECRET -oyaml -n $DEV_NAMESPACE | yq .data.token | base6

4 -d)

 SERVER=$(kubectl config view --minify | yq '.clusters[0].cluster.server')

  ```

Create the required secrets on the repository through GitHub.com or through the gh CLI:

```bash

gh secret set CA_CERT --app actions --body "$CA_CERT"

gh secret set NAMESPACE --app actions --body "$NAMESPACE"

gh secret set TOKEN --app actions --body "$TOKEN"

Tanzu Application Platform v1.5

VMware by Broadcom 1928

https://docs.github.com/en/actions/security-guides/encrypted-secrets#creating-encrypted-secrets-for-a-repository

gh secret set SERVER --app actions --body "$SERVER"

```

Use the action

1. To use the action in a workflow, run the following YAML:

- uses: vmware-tanzu/build-image-action@v1-alpha

  with:

    ## Authorization

    # Host of the API server

    server: `${{ secrets.SERVER }}`

    # CA Certificate of the API Server

    ca_cert: `${{ secrets.CA_CERT }}`

    # Service Account token to access Kubernetes

    token: `${{ secrets.TOKEN }}`

    # _(required)_ The namespace to create the build resource in

    namespace: `${{ secrets.NAMESPACE }}`

    ## Image configuration

    # _(required)_ Destination for the built image

    # Example: gcr.io/<my-project>/<my-image>

    destination: ''

    # Optional list of build time environment variables

    env: ''

    # Name of the service account in the namespace, defaults to `default`

    serviceAccountName: ''

    # Name of the cluster builder to use, defaults to `default`

    clusterBuilder: ''

    # Max active time that the pod can run for in seconds, defaults to 3600

    timeout:

For example:

- name: Build Image

  id: build

  uses: vmware-tanzu/build-image-action@v1-alpha

  with:

    # Authorization

    server: ${{ secrets.SERVER }}

    token: ${{ secrets.TOKEN }}

    ca_cert: ${{ secrets.CA_CERT }}

    namespace: ${{ secrets.NAMESPACE }}

    # Image configuration

    destination: gcr.io/project-id/name-for-image

    serviceAccountName: my-sa-that-has-access-to-reg-credentials

    env: |

      BP_JAVA_VERSION=17

2. The previous step should output the full name, including the SHA of the built image. To use
the output in a subsequent step:

- name: Do something with image

  run:

    echo "${{ steps.build.outputs.name }}"

Debugging

To run this action in “debug” mode, add a secret called ACTIONS_STEP_DEBUG with the value set to
true as documented in the GitHub Action Docs.

Tanzu Application Platform v1.5

VMware by Broadcom 1929

https://docs.github.com/en/actions/monitoring-and-troubleshooting-workflows/enabling-debug-logging


Overview of Tanzu Developer Tools for IntelliJ

Tanzu Developer Tools for IntelliJ is the official VMware Tanzu IDE extension for IntelliJ IDEA. The
extension helps you develop with Tanzu Application Platform and enables you to rapidly iterate on
your workloads on supported Kubernetes clusters that have Tanzu Application Platform installed.

Tanzu Developer Tools for IntelliJ currently supports Java applications on macOS and Windows.

Extension features

This extension gives the following features:

Deploy applications directly from IntelliJ:

Rapidly iterate on your applications on Tanzu Application Platform and deploy them as
workloads directly from within IntelliJ.

See code updates running on-cluster in seconds:

With the use of Live Update facilitated by Tilt, deploy your workload once, save changes to
the code and then, seconds later, see those changes reflected in the workload running on
the cluster.

Debug workloads directly on the cluster:

Debug your application in a production-like environment by debugging on your Kubernetes
cluster that has Tanzu Application Platform. An environment’s similarity to production relies
on keeping dependencies updated, among other variables.

See workloads running on the cluster:

From the Workloads panel you can see any workload found within the cluster and
namespace specified in the current kubectl context.

Work with microservices in a Java monorepo:

Tanzu Developer Tools for IntelliJ v1.3 and later supports working with a monorepo
containing multiple modules that represent different microservices. This makes it possible to
deploy, debug, and Live Update multiple workloads simultaneously from the same IntelliJ
multimodule project. For more information about projects with multiple modules, see the
IntelliJ documentation. For more information about a typical monorepo setup, see Working
with microservices in a monorepo.

Next steps
Follow the steps to install the extension.

Overview of Tanzu Developer Tools for IntelliJ
Tanzu Developer Tools for IntelliJ is the official VMware Tanzu IDE extension for IntelliJ IDEA. The
extension helps you develop with Tanzu Application Platform and enables you to rapidly iterate on
your workloads on supported Kubernetes clusters that have Tanzu Application Platform installed.

Note

The new variation of Out of the Box (OOTB) Basic supply chains, which outputs
Carvel packages to enable configuring multiple runtime environments, is not
currently supported. For more information about the variation, see Carvel Package
Supply Chains.

Tanzu Application Platform v1.5

VMware by Broadcom 1930

https://www.jetbrains.com/help/idea/creating-and-managing-modules.html#modules-idea-java


Tanzu Developer Tools for IntelliJ currently supports Java applications on macOS and Windows.

Extension features

This extension gives the following features:

Deploy applications directly from IntelliJ:

Rapidly iterate on your applications on Tanzu Application Platform and deploy them as
workloads directly from within IntelliJ.

See code updates running on-cluster in seconds:

With the use of Live Update facilitated by Tilt, deploy your workload once, save changes to
the code and then, seconds later, see those changes reflected in the workload running on
the cluster.

Debug workloads directly on the cluster:

Debug your application in a production-like environment by debugging on your Kubernetes
cluster that has Tanzu Application Platform. An environment’s similarity to production relies
on keeping dependencies updated, among other variables.

See workloads running on the cluster:

From the Workloads panel you can see any workload found within the cluster and
namespace specified in the current kubectl context.

Work with microservices in a Java monorepo:

Tanzu Developer Tools for IntelliJ v1.3 and later supports working with a monorepo
containing multiple modules that represent different microservices. This makes it possible to
deploy, debug, and Live Update multiple workloads simultaneously from the same IntelliJ
multimodule project. For more information about projects with multiple modules, see the
IntelliJ documentation. For more information about a typical monorepo setup, see Working
with microservices in a monorepo.

Next steps

Follow the steps to install the extension.

Install Tanzu Developer Tools for IntelliJ

This topic explains how to install the VMware Tanzu Developer Tools for IntelliJ IDE extension. The
extension currently only supports Java applications on macOS and Windows.

Prerequisites

Before installing the extension, you must have:

IntelliJ

Note

The new variation of Out of the Box (OOTB) Basic supply chains, which outputs
Carvel packages to enable configuring multiple runtime environments, is not
currently supported. For more information about the variation, see Carvel Package
Supply Chains.

Tanzu Application Platform v1.5

VMware by Broadcom 1931

https://www.jetbrains.com/help/idea/creating-and-managing-modules.html#modules-idea-java
https://www.jetbrains.com/idea/download/#section=mac


kubectl

Tilt v0.30.12 or later

Tanzu CLI and plug-ins

A cluster with the Tanzu Application Platform Full profile or Iterate profile

Install

To install VMware Tanzu Developer Tools for IntelliJ:

1. Download VMware Tanzu Developer Tools for IntelliJ from the VMware Tanzu Network.

2. Open IntelliJ.

3. Open the Preferences pane and then go to Plugins.

4. Click the gear icon and then click Install Plugin from disk….

5. Use the file picker to select the ZIP file downloaded from the VMware Tanzu Network.

Update

To update to a later version, repeat the steps in the Install section. You do not need to uninstall the
current version.

Uninstall

To uninstall the VMware Tanzu Developer Tools for IntelliJ:

Note

If you are an app developer, someone else in your organization might have already
set up the Tanzu Application Platform environment.

Tanzu Application Platform v1.5

VMware by Broadcom 1932

https://kubernetes.io/docs/tasks/tools/#kubectl
https://docs.tilt.dev/install.html
https://network.tanzu.vmware.com/products/tanzu-application-platform/


1. Open the Preferences pane and then go to Plugins.

2. Select the extension, click the gear icon, and then click Uninstall.

3. Restart IntelliJ.

Next steps

Proceed to Getting started.

Get Started with Tanzu Developer Tools for IntelliJ

This topic guides you through getting started with Tanzu Developer Tools for IntelliJ.

Prerequisite

Install Tanzu Developer Tools for IntelliJ.

Configure source image registry

Before deploying a workload, you must authenticate with an image registry to store your source
code. You can use the Docker CLI to authenticate or you can set environment variables that the
Tanzu CLI can use to authenticate.

Docker CLI
To authenticate by using the Docker CLI, run:

docker login $REGISTRY_HOSTNAME -u $REGISTRY_USERNAME -p $REGISTRY_PASSWORD

Tanzu CLI
To authenticate using the Tanzu CLI, export these environment variables by running:

export TANZU_APPS_REGISTRY_CA_CERT=PATH-TO-CA-CERT.nip.io.crt

export TANZU_APPS_REGISTRY_PASSWORD=USERNAME

export TANZU_APPS_REGISTRY_USERNAME=PASSWORD

CA_CERT is only needed for a custom or private registry.

For more information, see Workload creation fails due to authentication failure in Docker Registry

Run Tanzu Developer Tools for IntelliJ

Run IntelliJ from a CLI, instead of through your operating system GUI, to avoid restricting the set of
environment variables the app receives. This is especially relevant for macOS.

Limited environment variables can cause problems with cluster authentication for Tanzu Developer
Tools for IntelliJ. For example, a common situation is that a sanitized PATH does not provide access
to the gke-cloud-auth-plugin installed on your system. This makes Tanzu Developer Tools for
IntelliJ unable to authenticate and access your GKE cluster.

This situation is complex and different things can go wrong depending on:

Precisely how you installed various cloud-related CLI tools

How you set environment variables

Your OS version

Tanzu Application Platform v1.5

VMware by Broadcom 1933



Which cloud provider and authentication method you are using

All of these problems are most easily avoided by running IntelliJ from a CLI. Run IntelliJ from a CLI
in macOS by running:

open /Applications/IntelliJ\ IDEA.app

Set up Tanzu Developer Tools

The extension makes use of the following files within your project:

workload.yaml

catalog-info.yaml

Tiltfile

.tanzuignore

You can create these files by using the instructions in this topic, or use the files in the View an
example project section.

There are two ways to create these files:

Using the code snippets that Tanzu Developer Tools provide, which create templates in
empty files that you then fill in with the required information.

Writing the files manually.

Create the workload.yaml file

You must include a file named workload.yaml in your project. For example, my-
project/config/workload.yaml.

workload.yaml provides instructions to Supply Chain Choreographer about how to build and
manage a workload. For more information, see Supply Chain Choreographer for Tanzu.

The Tanzu Developer Tools for IntelliJ extension requires only one workload.yaml file per project.
workload.yaml must be a single-document YAML file, not a multi-document YAML file.

To create a workload.yaml file by using code snippets:

1. Right-click on the IntelliJ project explorer and then click New.

2. Select the Tanzu workload.

3. Add the filename workload.

4. Fill in the template.

See the following workload.yaml example:

apiVersion: carto.run/v1alpa1

kind: Workload

metadata:

 name: APP-NAME

 labels:

   apps.tanzu.vmware.com/workload-type: WORKLOAD-TYPE

   app.kubernetes.io/part-of: APP-NAME

spec:

 source:

   git:

     url: GIT-SOURCE-URL

     ref:

       branch: GIT-BRANCH-NAME

Tanzu Application Platform v1.5

VMware by Broadcom 1934



Where:

APP-NAME is the name of your application. For example, my app.

WORKLOAD-TYPE is the type of workload for your app. For example, web. For more
information, see Workload types.

GIT-SOURCE-URL is the Git source code URL for your app. For example,
github.com/mycompany/myapp.

GIT-BRANCH-NAME is the branch of the Git source code you want to use. For example, main.

Alternatively you can use the Tanzu CLI to create a workload.yaml file. For more information about
the relevant Tanzu CLI command, see Tanzu apps workload apply.

Create the catalog-info.yaml file

You must include a file named catalog-info.yaml in your project. For example, my-
project/catalog/catalog-info.yaml.

catalog-info.yaml enables the workloads created with Tanzu Developer Tools for IntelliJ to be
visible in Tanzu Application Platform GUI. For more information, see Overview of Tanzu Application
Platform GUI.

To create a catalog-info.yaml file by using the code snippets:

1. Right-click on the IntelliJ project explorer and then click New.

2. Select the Tanzu Catalog.

3. Add the filename catalog-info.

4. Fill in the template.

See the following workload.yaml example:

apiVersion: backstage.io/v1alpha1

kind: Component

metadata:

 name: APP-NAME

 description: APP-DESCRIPTION

 tags:

   - tanzu

 annotations:

   'backstage.io/kubernetes-label-selector': 'app.kubernetes.io/part-of=APP-NAME'

spec:

 type: service

 lifecycle: experimental

 owner: default-team

Where:

APP-NAME is the name of your application.

APP-DESCRIPTION is a description of your application.

Create the Tiltfile file

In your project you must include a file named Tiltfile with no extension (no filetype), such as my-
project/Tiltfile.

The Tiltfile provides the configuration for Tilt to enable your project to Live Update on the Tanzu
Application Platform-enabled Kubernetes cluster. For more information, see the Tilt
documentation.

Tanzu Application Platform v1.5

VMware by Broadcom 1935

https://docs.tilt.dev/


The Tanzu Developer Tools for IntelliJ extension requires only one Tiltfile per project.

The following is an example Tiltfile:

SOURCE_IMAGE = os.getenv("SOURCE_IMAGE", default='SOURCE-IMAGE-VALUE')

LOCAL_PATH = os.getenv("LOCAL_PATH", default='.')

NAMESPACE = os.getenv("NAMESPACE", default='default')

k8s_custom_deploy(

   'APP-NAME',

   apply_cmd="tanzu apps workload apply -f PATH-TO-WORKLOAD-YAMl --live-update" +

       " --local-path " + LOCAL_PATH +

       " --source-image " + SOURCE_IMAGE +

       " --namespace " + NAMESPACE +

       " --yes >/dev/null" +

       " && kubectl get workload APP-NAME --namespace " + NAMESPACE + " -o yaml",

   delete_cmd="tanzu apps workload delete -f PATH-TO-WORKLOAD-YAML --namespace " + NAM

ESPACE + " --yes" ,

   deps=['pom.xml', './target/classes'],

   container_selector='workload',

   live_update=[

       sync('./target/classes', '/workspace/BOOT-INF/classes')

   ]

)

k8s_resource('APP-NAME', port_forwards=["8080:8080"],

   extra_pod_selectors=[{'carto.run/workload-name': 'APP-NAME', 'app.kubernetes.io/com

ponent': 'run'}])

allow_k8s_contexts('CONTEXT-NAME')

Where:

SOURCE-IMAGE-VALUE is your source image.

APP-NAME is the name of your application.

PATH-TO-WORKLOAD-YAML is the local file system path to your workload.yaml file. For example,
config/workload.yaml.

CONTEXT-NAME is the name of your current Kubernetes context. If your Tanzu Application
Platform-enabled Kubernetes cluster is running on your local machine, you can remove the
entire allow_k8s_contexts line. For more information about this line, see the Tilt
documentation.

If you want to compile the source image from a local directory other than the project directory,
change the value of local path. For more information, see local path in the glossary.

Create the .tanzuignore file

In your project, you can include a file named .tanzuignore with no file extension. For example, my-
project/.tanzuignore.

When working with local source code, .tanzuignore excludes files from the source code that are
uploaded within the image. It has syntax similar to the .gitignore file.

For an example, see the .tanzuignore file in GitHub that is used for the sample Tanzu Java web
app. You can use the file as it is or edit it for your needs.

View an example project

Before you begin, you need a container image registry to use the sample application. There are
two ways to view a sample application that demonstrates the necessary configuration files.

Tanzu Application Platform v1.5

VMware by Broadcom 1936

https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/
https://docs.tilt.dev/api.html#api.allow_k8s_contexts
https://github.com/vmware-tanzu/application-accelerator-samples/blob/main/tanzu-java-web-app/.tanzuignore


Use Application Accelerator
If your company has configured Application Accelerator, you can obtain the sample application
there if it was not removed. To view the example using Application Accelerator:

1. Open Application Accelerator. The Application Accelerator location varies based on
where your company placed it. Contact the appropriate team to learn its location.

2. Search for Tanzu Java Web App in the Application Accelerator.

3. Add the required configuration information and generate the application.

4. Unzip the application and open the directory in IntelliJ.

Clone from GitHub
To clone the example from GitHub:

1. Use git clone to clone the application-accelerator-samples repository from GitHub.

2. Go to the tanzu-java-web-app directory.

3. Open the Tiltfile and replace your-registry.io/project with your registry.

Next steps
Use Tanzu Developer Tools for IntelliJ.

Use Tanzu Developer Tools for IntelliJ
Ensure that the project you want to use the Tanzu Developer Tools for IntelliJ extension with has
the required files specified in Getting started.

The extension requires only one Tiltfile and one workload.yaml file per project. workload.yaml must
be a single-document YAML file, not a multi-document YAML file.

Workload Actions
The extension enables you to apply, debug, and Live Update your application on a Kubernetes
cluster that has Tanzu Application Platform. The developer sandbox experience enables developers
to Live Update their code and simultaneously debug the updated code, without having to
deactivate Live Update when debugging.

Apply a workload

The extension enables you to apply workloads on your Kubernetes cluster that has Tanzu
Application Platform.

To apply a workload:

1. Right-click anywhere in the IntelliJ project explorer and click Tanzu > Apply Workload or
right-click on an associated workload in the Workloads panel and click Apply Workload.

2. Click Tanzu > Modify Apply Configuration.

The Tanzu workload apply command is triggered in the terminal and the workload is applied. A
new workload appears on the Tanzu panel.

Delete a workload

The extension enables you to delete workloads on your Kubernetes cluster that has Tanzu
Application Platform.

Tanzu Application Platform v1.5

VMware by Broadcom 1937

https://github.com/vmware-tanzu/application-accelerator-samples


To delete a workload right-click anywhere in the IntelliJ project explorer and click Tanzu > Delete
Workload or right-click on an associated workload in the Workloads panel and click Delete
Workload.

A message appears that prompts you to delete the workload and not warn again, delete the
workload, or cancel. A notification appears showing that the workload was deleted.

Debugging on the cluster

The extension enables you to debug your application on a Kubernetes cluster that has Tanzu
Application Platform.

Debugging requires a single-document workload.yaml file in your project. For how to create
workload.yaml, see Set up Tanzu Developer Tools.

The developer sandbox experience enables developers to Live Update their code, and
simultaneously debug the updated code, without having to deactivate Live Update when
debugging.

Start debugging on the cluster

To start debugging on the cluster:

Tanzu Application Platform v1.5

VMware by Broadcom 1938



1. Add a breakpoint in your code.

2. Right-click the workload.yaml file in your project and click Debug ‘Tanzu Debug
Workload…’ in the pop-up menu or right-click on an associated workload in the Workloads
panel and click Debug Workload.

3. Ensure that the configuration parameters are set:

Source Image: This is the registry location for publishing local source code. For
example, registry.io/yourapp-source. It must include both a registry and a project
name.

Local Path: This is the path on the local file system to a directory of source code to
build.

Namespace: This is the namespace that workloads are deployed into.

Tanzu Application Platform v1.5

VMware by Broadcom 1939

https://www.jetbrains.com/help/idea/using-breakpoints.html


You can also manually create Tanzu Debug configurations by using the Edit Configurations
IntelliJ UI.

Stop Debugging on the Cluster

Click the stop button in the Debug overlay to stop debugging on the cluster.

Live Update
See the following sections for how to use Live Update.

Start Live Update

Before using Live Update, verify that your auto-save setting is either off or on with a delay. The
delay must be long enough for the application to restart between auto saves to allow enough time
for your app to Live Update when files change. This auto-save setting is in Preferences >
Appearance & Behavior > System Settings > Autosave.

To start Live Update:

1. Right-click your project’s Tiltfile and then click Run ‘Tanzu Live Update - …’ or right-click
on an associated workload in the Workloads panel and then click Live Update Workload.

2. Ensure that the configuration parameters are set:

Source Image: This is the registry location for publishing local source code. For
example, registry.io/yourapp-source. It must include both a registry and a project
name.

Local Path: This is the path on the local file system to a directory of source code to
build.

Namespace: This is the namespace that workloads are deployed into.

Stop Live Update

To stop Live Update, use the native controls to stop the Tanzu Live Update Run Configuration that
is running.

Note

You must compile your code before the changes are synchronized to the container.
For example, Build Project: ⌘+F9.

Tanzu Application Platform v1.5

VMware by Broadcom 1940



Tanzu Workloads panel

The current state of the workloads is visible in the Tanzu Workloads view. This view is a separate
section in the bottom of the Explorer view in the Side Bar. The view shows the current status of
each workload, namespace, and cluster. It also shows whether Live Update and Debug is running,
stopped, or deactivated.

The Tanzu Activity tab in the Panels view enables developers to visualize the supply chain, delivery,
and running application pods. The tab enables a developer to view and describe logs on each
resource associated with a workload from within their IDE. The tab displays detailed error messages
for each resource in an error state.

Workload commands are available from the Tanzu Workloads panel on workloads that have an
associated module in the current project.

This association is based on a module name and a workload name matching. For example, a project
with a module named my-app is associated with a deployed workload named my-app.

When taking an action from the Tanzu Workloads panel, the action uses the namespace of the
deployed workload regardless of the configuration in the module.

For example, you might have a Live Update configuration with a namespace argument of my-apps-
1, but running the action from a deployed workload in namespace my-apps-2 starts a Live Update
session with a namespace argument of my-apps-2.

The Tanzu Workloads panel uses the cluster and defaults to the namespace specified in the current
kubectl context.

To add a namespace:

1. View the current context and namespace by running:

kubectl config get-contexts

2. Set a namespace for the current context by running:

kubectl config set-context --current --namespace=YOUR-NAMESPACE

To add additional namespaces to your Workloads panel:

1. Click on the gear icon in the upper right corner of the Workloads panel.

2. Click on Select Namespaces…

3. Select the checkboxes of the namespaces that you want to add to your panel.

Tanzu Application Platform v1.5

VMware by Broadcom 1941



Working with microservices in a monorepo

A monorepo is single Git repository that contains multiple workloads. Each individual workload is
placed in a subfolder of the main repository.

You can find an example of this in Application Accelerator.

The relevant accelerator is called Spring SMTP Gateway, and you can obtain its source code as an
accelerator or directly from the application-accelerator-samples GitHub repository.

This project is an example of a typical layout:

MONO-REPO-ROOT/

pom.xml (parent pom)

microservice-app-1/

pom.xml

mvnw (and other mvn-related files for building the workload)

Tiltfile (supports Live Update)

config

workload.yaml (supports deploying and debugging from IntelliJ)

src/ (contains source code for this microservice)

microservice-app-2/

…similar layout

Recommended structure: Microservices that can be built
independently

In this example, each of the microservices can be built independently of one another. Each
subfolder contains everything needed to build that workload.

This is reflected in the source section of workload.yaml by using the subPath attribute:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  name: microservice-app-1

  ...

spec:

  source:

    git:

      ref:

        branch: main

      url: https://github.com/kdvolder/sample-mono-repo.git

    subPath: microservice-app-1 # build only this

  ...

For setting up your own repositories, it’s best practice to set up a monorepo so that each
microservice can be built completely independently.

To work with these monorepos:

1. Import the monorepo as a project into IntelliJ.

2. Interact with each of the subfolders as you would interact with a project containing a single
workload.

Alternative structure: Services with build-time interdependencies

Tanzu Application Platform v1.5

VMware by Broadcom 1942

https://github.com/vmware-tanzu/application-accelerator-samples/tree/tap-1.3.x/spring-smtp-gateway


Some monorepos do not have submodules that can be independently built. Instead the pom.xml
files of the submodules are set up to have some build-time interdependencies. For example:

A submodule pom.xml can reference the parent pom.xml as a common place for centralized
dependency management.

A microservice submodule can reference another, as a maven dependency.

Several microservice submodules can reference one or more shared library modules.

For these projects, make these adjustments:

1. Make workload.yaml point to the repository root, not a subfolder. Because submodules
have dependencies on code outside of their own subfolder, all source code from the
repository must be supplied to the workload builder.

2. Make workload.yaml specify additional buildpack arguments through environment variables.
They differentiate the submodule that the build is targeting.

Both of these workload.yaml changes are in the following example:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

name: fortune-ui

labels:

  apps.tanzu.vmware.com/workload-type: web

  app.kubernetes.io/part-of: fortune-ui

spec:

build:

  env:

     - name: BP_MAVEN_BUILD_ARGUMENTS

     value: package -pl fortune-teller-ui -am # indicate which module to build.

     - name: BP_MAVEN_BUILT_MODULE

     value: fortune-teller-ui # indicate where to find the built artefact to de

ploy.

source:

  git:

     url: https://github.com/my-user/fortune-teller # repository root

     ref:

     branch: main

For more information about these and other BP_xxx buildpack parameters, see the
Buildpack documentation.

3. Make the local path attribute in the launch configuration for each workload point to the
path of the repository root. Because submodules have dependencies on code outside of
their own subfolder, all source code from the repository must be supplied to the workload
builder.

Tanzu Application Platform v1.5

VMware by Broadcom 1943

https://github.com/paketo-buildpacks/maven/blob/main/README.md


Changing logging verbosity
The Tanzu Language Server saves logs to ~/tanzu-langserver.log. You can change the log
verbosity in Preferences > Tools > Tanzu Developer Tools.

Glossary of terms
This topic gives you explanations of common terms used throughout the Tanzu Developer Tools for
IntelliJ documentation, and within the extension itself. Some of these terms are unique to Tanzu
Application Platform, while others might have a different meaning outside of Tanzu Application
Platform and are included here for clarification.

Live Update
Live Update, facilitated by Tilt, enables you to deploy your workload once, save changes to the
code, and see those changes reflected in the workload running on the cluster within seconds.

Tiltfile
The Tiltfile is a file with no extension that is required for Tilt to enable the Live Update feature. For
more information about the Tiltfile, see the Tilt documentation.

Debugging on the cluster
The Tanzu Developer Tools on IntelliJ extension enables you to debug your application in an
environment similar to production by debugging on your Tanzu Application Platform enabled
Kubernetes cluster.

Note

Tanzu Application Platform v1.5

VMware by Broadcom 1944

https://docs.tilt.dev/
https://docs.tilt.dev/tiltfile_concepts.html


YAML file format

YAML is a human-readable data-serialization language. It is commonly used for configuration files.
For more information, see the YAML Wikipedia entry.

workload.yaml file

The workload YAML file is a required configuration file used by the Tanzu Application Platform to
specify the details of an application including its name, type, and source code URL.

catalog-info.yaml file

The catalog-info YAML file enables the workloads created with the Tanzu Developer Tools for
IntelliJ extension to be visible in the Tanzu Application Platform GUI.

Code snippet

Code snippets enable you to quickly add project files that are necessary to develop using Tanzu
Application Platform by creating a template in an empty file that you fill out with the required
information.

Source image

The source image is the registry location to publish local source code, for example,
registry.io/yourapp-source. This must include both a registry and a project name.

Local path

The local path value tells the Tanzu Developer Tools for IntelliJ extension which directory on your
local file system to bring into the source image container image. The default local path value is the
current directory where you saved the files for your open IntelliJ project.

Kubernetes context

A Kubernetes context is a set of access parameters that contains a Kubernetes cluster, a user, and
a namespace. A Kubernetes context acts like a set of coordinates that describe the target of the
Kubernetes commands that you run. For more information, see the Kubernetes documentation.

Kubernetes namespace

As defined by the Kubernetes documentation, in Kubernetes, namespaces provide a mechanism
for isolating groups of resources within a single cluster. Names of resources need to be unique
within a namespace, but not across namespaces.

Troubleshoot Tanzu Developer Tools for IntelliJ

This topic helps you troubleshoot issues with Tanzu Developer Tools for IntelliJ.

An environment’s similarity to production relies on keeping dependencies updated,
among other variables.

Tanzu Application Platform v1.5

VMware by Broadcom 1945

https://en.wikipedia.org/wiki/YAML
https://code.visualstudio.com/docs/editor/userdefinedsnippets
https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/


Tanzu Debug re-applies the workload when namespace
field is empty

Symptoms

If the namespace field of the debug launch configuration is empty, the workload is re-applied even if
it exists on the cluster.

Cause

Internally, workloads are gathered in the cluster in the current namespace and compared with the
information that you specify. If the namespace field is empty, it is considered null and the internal
checks fail.

Solution

Do not leave the namespace field blank.

Workload is wrongly re-applied because of debug
configuration selected from the launch configuration drop-
down menu

Symptoms

If your debug configuration is created from the launch configuration drop-down menu, it re-applies
the workload even if the workload already exists on the cluster.

Cause

There is internal logic that is not run when debug configuration is created from the drop-down
menu. However, the logic is run when debug configuration is selected from the right-click pop-up
menu.

Solution

Select debug configuration from the right-click pop-up menu.

Unable to view workloads on the panel when connected to
GKE cluster

Symptom

When connecting to Google’s GKE clusters, an error appears with the text WARNING: the gcp auth
plugin is deprecated in v1.22+, unavailable in v1.25+; use gcloud instead.

Cause

GKE authentication was extracted into a separate plug-in and is no longer inside the Kubernetes
client or libraries.

Solution

Download and configure the GKE authentication plug-in. For instructions, see the Google
documentation.

Tanzu Application Platform v1.5

VMware by Broadcom 1946

https://cloud.google.com/blog/products/containers-kubernetes/kubectl-auth-changes-in-gke


Deactivated launch controls after running a launch
configuration

Symptom

When you run or debug a launch configuration, IntelliJ deactivates the launch controls.

Cause

IntelliJ deactivates the launch controls to prevent other launch configurations from being launched
at the same time. These controls are reactivated when the launch configuration is started. As such,
starting multiple Tanzu debug and live update sessions is a synchronous activity.

Starting a Tanzu Debug session fails with Unable to open
debugger port

Symptom

You try to start a Tanzu Debug session and it immediately fails with an error message similar to:

Error running 'Tanzu Debug - fortune-teller-fortune-service': Unable to open debugger 

port (localhost:5005): java.net.ConnectException "Connection refused"

Cause

Old Tanzu Debug launch configurations sometimes appear to be corrupted after installing a later
version of the plug-in. You can see whether this is the problem you are experiencing by opening
the launch configuration:

1. Right-click workload.yaml.

2. Click Modify Run Configuration… in the menu.

3. Scroll down and expand the Before Launch section of the dialog.

4. Verify that it contains the two Unknown Task entries
com.vmware.tanzu.tanzuBeforeRunPortForward and
com.vmware.tanzu.tanzuBeforeRunWorkloadApply.

Because these two tasks are unknown causes, these steps of the debug launch are not run. This in
turn means that the target application is not deployed and accessible on the expected port, which
causes an error when the debugger tries to connect to it.

It might be that although the launch configuration appears corrupt when seen in the launch config
editor, in fact there is no corruption. It’s suspected that this problem only occurs when you install a
new version of the plug-in and start using it before first restarting IntelliJ.

There is possibly an issue in the IntelliJ platform that prevents completely or correctly initializing the
plug-in when the plug-in is hot-swapped into an active session instead of loaded on startup.

Solution

Closing and restarting IntelliJ typically fixes this problem. If that doesn’t work for you, delete the old
corrupted launch configuration and recreate it.

Timeout error when Live Updating

Symptom

Tanzu Application Platform v1.5

VMware by Broadcom 1947



When you attempt to Live Update your workload, the following error message appears in the log:

ERROR: Build Failed: apply command timed out after 30s - see }}{{https://docs.tilt.de

v/api.html#api.update_settings{{ for how to increase}}

Cause

Kubernetes times out on upserts over 30 seconds.

Solution

Add update_settings (k8s_upsert_timeout_secs = 300) to the Tiltfile. For more information, see
the Tiltfile documentation.

Tanzu Panel empty when using a GKE cluster on macOS

Symptom

On macOS, the Tanzu Panel doesn’t display workloads or any other resources when using a GKE
cluster. Other tools, such as the Tanzu CLI Apps plug-in, display resources correctly.

Cause

gke-cloud-auth-plugin is required to properly authenticate to a GKE cluster. However, when
starting IntelliJ from Dock or Spotlight, environment variables set by using .profile,
.bash_profile, or .zshrc are not available. For more information, see this YouTrack issue.

This might cause gke-cloud-auth-plugin to be missing from PATH when launching IntelliJ and
prevent the Tanzu Panel from reaching the cluster.

Solution

Open IntelliJ from the CLI. Example command:

open /Applications/IntelliJ\ IDEA.app

Tanzu panel shows workloads but doesn’t show Kubernetes
resources

Symptom

The Tanzu panel shows workloads but doesn’t show Kubernetes resources in the center panel of
the activity pane.

Cause

When switching the Kubernetes context, the activity pane doesn’t automatically update the
namespace, but the workload pane detects the new namespace. Therefore, the Tanzu panel shows
workloads but doesn’t show Kubernetes resources in the center panel of the activity pane.

Solution

Restart IntelliJ to properly detect the context change.

Tanzu Application Platform v1.5

VMware by Broadcom 1948

https://docs.tilt.dev/api.html#api.update_settings
https://youtrack.jetbrains.com/issue/IDEA-99154


Tanzu Workloads panel workloads only have describe and
delete action

Symptom

Some or all workloads in the Tanzu Workloads panel only have describe and delete actions.

Cause

By design, only associated workloads have apply, debug, and Live Update workload actions
available.

Solution

Open a project that contains a module that can be associated with your deployed workloads.

Workload actions do not work when in a project with spaces
in the name

Symptom

Workload actions do not work. The console displays an error message similar to the following:

Error: unknown command "projects/my-app" for "apps workload apply"Process finished wit

h exit code 1

Cause

On Windows, workload actions do not work when in a project with spaces in the name, such as my-
app project.

Solution

1. Close the code editor.

2. Move or rename your project folder on the disk, ensuring that no part of its path contains
any spaces.

3. Delete the project settings folder from the project to start with a clean slate. The folder is
.idea if using IntelliJ and .vscode if using VS Code.

4. Open the code editor and then open the project in its new location.

config-writer-pull-requester is categorized as Unknown

Symptom

In the Tanzu Activity Panel, the config-writer-pull-requester of type Runnable is incorrectly
categorized as Unknown. It should be in the Supply Chain category.

Solution

A fix is planned for a future release.

Frequent application restarts

Tanzu Application Platform v1.5

VMware by Broadcom 1949



Symptom

When an application is applied from IntelliJ it restarts frequently.

Cause

An application or environment behavior is triggering the application to restart.

Observed trigger behaviors include:

The application itself writing logs to the file system in the application directory that Live
Update is watching

Autosave being set to a very high frequency in the IDE configuration

Solution

Prevent the trigger behavior. Example solutions include:

Prevent 12-factor applications from writing to the file system.

Reduce the autosave frequency to once every few minutes.

Overview of Tanzu Developer Tools for Visual Studio
VMware Tanzu Developer Tools for Visual Studio is the official VMware Tanzu IDE extension for
Visual Studio 2022. The extension helps you develop with Tanzu Application Platform and enables
you to rapidly iterate on your workloads on supported Kubernetes clusters that have Tanzu
Application Platform installed.

Tanzu Developer Tools for Visual Studio currently supports .NET C# applications.

This extension is for Microsoft Visual Studio 2022 only. It is incompatible with Visual Studio Code
and Visual Studio for Mac.

Extension features

The extension has the following features:

Deploy applications directly from Visual Studio:

Rapidly iterate on your applications on Tanzu Application Platform and deploy them as
workloads directly from within Visual Studio.

See code updates running on-cluster in seconds:

With the use of Live Update facilitated by Tilt, deploy your workload once, save changes to
the code and then, seconds later, see those changes reflected in the workload running on
the cluster.

Debug workloads directly on the cluster:

Debug your application in a production-like environment by debugging on your Kubernetes
cluster that has Tanzu Application Platform. An environment’s similarity to production relies
on keeping dependencies updated, among other variables.

See workloads running on the cluster:

Note

This extension is in the beta stage of development.

Tanzu Application Platform v1.5

VMware by Broadcom 1950



From the Tanzu Panel, you can see any workload found within the cluster and namespace
specified in the current kubectl context.

Work with microservices in a Visual Studio solution:

Work with multiple solution projects that represent discrete microservices. This makes it
possible to deploy, debug, and Live Update multiple workloads simultaneously from the
same solution.

Next steps

Install Tanzu Developer Tools for Visual Studio.

Overview of Tanzu Developer Tools for Visual Studio

VMware Tanzu Developer Tools for Visual Studio is the official VMware Tanzu IDE extension for
Visual Studio 2022. The extension helps you develop with Tanzu Application Platform and enables
you to rapidly iterate on your workloads on supported Kubernetes clusters that have Tanzu
Application Platform installed.

Tanzu Developer Tools for Visual Studio currently supports .NET C# applications.

This extension is for Microsoft Visual Studio 2022 only. It is incompatible with Visual Studio Code
and Visual Studio for Mac.

Extension features
The extension has the following features:

Deploy applications directly from Visual Studio:

Rapidly iterate on your applications on Tanzu Application Platform and deploy them as
workloads directly from within Visual Studio.

See code updates running on-cluster in seconds:

With the use of Live Update facilitated by Tilt, deploy your workload once, save changes to
the code and then, seconds later, see those changes reflected in the workload running on
the cluster.

Debug workloads directly on the cluster:

Debug your application in a production-like environment by debugging on your Kubernetes
cluster that has Tanzu Application Platform. An environment’s similarity to production relies
on keeping dependencies updated, among other variables.

See workloads running on the cluster:

Note

The new variation of Out of the Box (OOTB) Basic supply chains, which outputs
Carvel packages to enable configuring multiple runtime environments, is not
currently supported. For more information about the variation, see Carvel Package
Supply Chains.

Note

This extension is in the beta stage of development.

Tanzu Application Platform v1.5

VMware by Broadcom 1951



From the Tanzu Panel, you can see any workload found within the cluster and namespace
specified in the current kubectl context.

Work with microservices in a Visual Studio solution:

Work with multiple solution projects that represent discrete microservices. This makes it
possible to deploy, debug, and Live Update multiple workloads simultaneously from the
same solution.

Next steps

Install Tanzu Developer Tools for Visual Studio.

Install Tanzu Developer Tools for Visual Studio

This topic tells you how to install VMware Tanzu Developer Tools for Visual Studio.

Prerequisites

Before installing the extension, you must have:

Visual Studio 2022 v17.7 or later

kubectl

Tilt v0.30.12 or later

Tanzu CLI and plug-ins

A cluster with the Tanzu Application Platform Full profile or Iterate profile

Install
To install Tanzu Developer Tools for Visual Studio:

1. Download VMware Tanzu Developer Tools for Visual Studio from VMware Tanzu Network.

2. Double-click the .vsix install file and click through the prompts.

3. Open Visual Studio and, from top menu, click Extensions > Manage Extensions.

4. Verify that the extension is installed and that it is the version you want.

Note

The new variation of Out of the Box (OOTB) Basic supply chains, which outputs
Carvel packages to enable configuring multiple runtime environments, is not
currently supported. For more information about the variation, see Carvel Package
Supply Chains.

Note

If you are an app developer, someone else in your organization might have already
set up the Tanzu Application Platform environment.

Tanzu Application Platform v1.5

VMware by Broadcom 1952

https://visualstudio.microsoft.com/vs/
https://kubernetes.io/docs/tasks/tools/
https://docs.tilt.dev/install.html
https://network.tanzu.vmware.com/products/tanzu-application-platform/


Update
To update to a later version, repeat the steps in the Install section. You do not need to uninstall the
current version.

Uninstall
To uninstall:

1. From the top menu, click the Extensions tab and then click Manage Extensions.

2. Select the Installed section and then click the Uninstall button for this extension.

Next steps
Getting Started with Tanzu Developer Tools for Visual Studio.

Get Started with Tanzu Developer Tools for Visual Studio
This topic guides you through getting started with VMware Tanzu Developer Tools for Visual
Studio.

Prerequisite
Install Tanzu Developer Tools for Visual Studio.

Configure source image registry
Before deploying a workload, you must authenticate with an image registry to store your source
code. You can use the Docker CLI to authenticate or you can set environment variables that the
Tanzu CLI can use to authenticate.

Docker CLI
To authenticate by using the Docker CLI, run:

docker login $REGISTRY_HOSTNAME -u $REGISTRY_USERNAME -p $REGISTRY_PASSWORD

Tanzu CLI
To authenticate using the Tanzu CLI, export these environment variables by running:

export TANZU_APPS_REGISTRY_CA_CERT=PATH-TO-CA-CERT.nip.io.crt

export TANZU_APPS_REGISTRY_PASSWORD=USERNAME

export TANZU_APPS_REGISTRY_USERNAME=PASSWORD

CA_CERT is only needed for a custom or private registry.

For more information, see Workload creation fails due to authentication failure in Docker Registry

Tanzu Application Platform v1.5

VMware by Broadcom 1953



Set up Tanzu Developer Tools

The extension makes use of the following files within your project:

workload.yaml

catalog-info.yaml

Tiltfile

.tanzuignore

You can create these files by using the instructions in this topic, or use the files in the View an
example project section.

There are two ways to create these files:

Using the code snippets that Tanzu Developer Tools provide, which create templates in
empty files that you then fill in with the required information.

Writing the files manually.

Create the workload.yaml file

Your project must contain a file named workload.yaml. For example, MyApp\Config\workload.yaml.

workload.yaml provides instructions to Supply Chain Choreographer for how to build and manage a
workload. For more information, see Supply Chain Choreographer for Tanzu.

The Tanzu Developer Tools for Visual Studio extension requires at least one workload.yaml file per
project. workload.yaml must be a single-document YAML file, not a multi-document YAML file.

To create a workload.yaml file by using Visual Studio:

1. Right-click the Solution Explorer project.

2. Click Add > New Folder.

3. Name the folder Config.

4. Right-click the new Config folder and then click Add > New Item….

5. From the available list of items, click Tanzu Workload > Add.

6. Follow the instructions at the top of the created file.

See the following workload.yaml example:

apiVersion: carto.run/v1alpa1

kind: Workload

metadata:

 name: APP-NAME

 labels:

   apps.tanzu.vmware.com/workload-type: WORKLOAD-TYPE

   app.kubernetes.io/part-of: APP-NAME

spec:

 source:

   git:

     url: GIT-SOURCE-URL

     ref:

       branch: GIT-BRANCH-NAME

Where:

APP-NAME is the name of your application. For example, my-app.

WORKLOAD-TYPE is the type of workload for your app. For example, web. For more
information, see Workload types.

Tanzu Application Platform v1.5

VMware by Broadcom 1954



GIT-SOURCE-URL is the Git source code URL for your app. For example,
github.com/mycompany/myapp.

GIT-BRANCH-NAME is the branch of the Git source code you want to use. For example, main.

Alternatively, you can use the Tanzu CLI to create a workload.yaml file. For more information about
the relevant Tanzu CLI command, see Tanzu apps workload apply.

Create the catalog-info.yaml file

Your project must contain a file named catalog-info.yaml. For example, MyApp\Catalog\catalog-
info.yaml.

catalog-info.yaml enables the workloads created with Tanzu Developer Tools for Visual Studio to
appear in Tanzu Application Platform GUI. For more information, see Overview of Tanzu Application
Platform GUI.

To create a catalog-info.yaml file by using Visual Studio:

1. Right-click the Solution Explorer project.

2. Click Add > New Folder.

3. Name the folder Catalog.

4. Right-click the new Catalog folder and then click Add > New Item….

5. From the available list of items, click Tanzu Catalog Info > Add.

6. Follow the instructions at the top of the created file.

See the following catalog-info.yaml example:

apiVersion: backstage.io/v1alpha1

kind: Component

metadata:

 name: APP-NAME

 description: APP-DESCRIPTION

 tags:

   - tanzu

 annotations:

   'backstage.io/kubernetes-label-selector': 'app.kubernetes.io/part-of=APP-NAME'

spec:

 type: service

 lifecycle: experimental

 owner: default-team

Where:

APP-NAME is the name of your application.

APP-DESCRIPTION is a description of your application.

Create the Tiltfile file

Your project must contain a file named Tiltfile. For example, MyApp\Tiltfile.

The Tiltfile provides the configuration for Tilt to enable your project to Live Update on the Tanzu
Application Platform-enabled Kubernetes cluster. For more information, see the Tilt
documentation.

To create a Tiltfile file by using Visual Studio:

1. Right-click the Solution Explorer project.

2. Click Add > New Item…

Tanzu Application Platform v1.5

VMware by Broadcom 1955

https://docs.tilt.dev/


3. From the available list of items, click Tanzu Tiltfile > Add.

4. Follow the instructions at the top of the created file.

See the following Tiltfile example:

SOURCE_IMAGE = os.getenv("SOURCE_IMAGE", default='SOURCE-IMAGE-VALUE')

LOCAL_PATH = os.getenv("LOCAL_PATH", default='.')

NAMESPACE = os.getenv("NAMESPACE", default='default')

LIVE_UPDATE_PATH = os.getenv("LIVE_UPDATE_PATH", default='bin/Debug/net6.0')

k8s_custom_deploy(

   'APP-NAME',

   apply_cmd="tanzu apps workload apply -f Config/workload.yaml --live-update" +

       " --local-path " + LOCAL_PATH +

       " --source-image " + SOURCE_IMAGE +

       " --build-env BP_DEBUG_ENABLED=true" +

       " --namespace " + NAMESPACE +

       " --output yaml" +

       " --yes",

   delete_cmd="tanzu apps workload delete " +  APP-NAME + " --namespace " + NAMESPACE 

+ " --yes" ,

   deps=['bin'],

   container_selector='workload',

   live_update=[

       sync(LIVE_UPDATE_PATH, '/workspace')

   ]

)

k8s_resource('APP-NAME', port_forwards=["8080:8080"],

   extra_pod_selectors=[{'carto.run/workload-name': 'APP-NAME', 'app.kubernetes.io/com

ponent': 'run'}])

allow_k8s_contexts('CONTEXT-NAME')

Where:

SOURCE-IMAGE-VALUE is your source image

APP-NAME is the name of your application

If your Tanzu Application Platform-enabled Kubernetes cluster is running on your local machine,
you can remove the entire allow_k8s_contexts line. For more information about this line, see the
Tilt documentation.

Create the .tanzuignore file

Your project can contain a file named .tanzuignore. When working with local source code,
.tanzuignore excludes files from the source code that is uploaded within the image. It has syntax
similar to the .gitignore file.

This file must be placed in the project root to work. For example, MyApp\.tanzuignore.

To create a Tiltfile file by using Visual Studio:

1. Right-click the Solution Explorer project.

2. Click Add > New Item….

3. From the available list of items, click Tanzu Ignore file > Add.

For an example, see the .tanzuignore file in GitHub that is used for the sample Tanzu Java web
app. You can use the file as it is or edit it for your needs.

View an example project

Tanzu Application Platform v1.5

VMware by Broadcom 1956

https://docs.tilt.dev/api.html#api.allow_k8s_contexts
https://github.com/vmware-tanzu/application-accelerator-samples/blob/main/tanzu-java-web-app/.tanzuignore


Before you begin, you need a container image registry to use the sample application. There are
two ways to view a sample application that demonstrates the necessary configuration files:

Use Application Accelerator
If your company has configured Application Accelerator, you can obtain the sample application
there if it was not removed.

To view the example by using Application Accelerator:

1. Open Application Accelerator. You might need to contact a separate team in your
organization to learn they placed it.

2. Search for Steeltoe Weather Forecast in Application Accelerator.

3. Add the required configuration information and generate the application.

4. Unzip the application and open the directory in Visual Studio.

Clone from GitHub
To clone the example from GitHub:

1. Use git clone to clone the application-accelerator-samples repository from GitHub.

2. Go to the weatherforecast-steeltoe directory.

3. Open the Tiltfile and replace your-registry.io/project with your registry.

Next steps

Use Tanzu Developer Tools for Visual Studio.

Use Tanzu Developer Tools for Visual Studio

This topic tells you how to use VMware Tanzu Developer Tools for Visual Studio.

Configure settings

To configure settings, right-click anywhere in the Solution Explorer and click Tanzu > Settings….

Tanzu CLI is installed in a location in your PATH environment variable.

A valid workload.yaml file is in the project. For more information, see the specification for
Tanzu apps workload apply.

You have a functional Tanzu Application Platform environment.

Your kubeconfig file is modified for Tanzu Application Platform workload deployments.

You have an image repository to which source code in the local file system can be uploaded
before Build Service builds it.

Workload Actions

The extension enables you to apply, debug, and Live Update your application on a Kubernetes
cluster that has Tanzu Application Platform. The developer sandbox experience enables you to Live
Update your code, and simultaneously debug the updated code, without deactivating Live Update.

Note

This extension is in the beta stage of development.

Tanzu Application Platform v1.5

VMware by Broadcom 1957

https://github.com/vmware-tanzu/application-accelerator-samples


Apply a workload

To apply a workload, right-click anywhere in the Solution Explorer and click Tanzu > Apply
Workload. Alternatively, right-click an associated workload in the Tanzu Panel and click Apply
Workload.

Delete a workload

To delete a workload, right-click anywhere in the Solution Explorer and click Tanzu > Delete
Workload. Alternatively, right-click an associated workload in the Tanzu Panel and click Delete
Workload.

Start debugging on the cluster

To remote debug a workload, right-click anywhere in the Solution Explorer and click Tanzu >
Debug Workload. Alternatively, right-click an associated workload in the Tanzu Panel and click
Debug Workload.

Live Update

See the following sections for how to use Live Update.

Start Live Update

Ensure that the following Tanzu Settings parameters are set:

Local Path, which is the path on the local file system to a directory of source code to build.

Namespace, which is the namespace that workloads are deployed into. Optional.

Source Image, which is the registry location for publishing local source code. For example,
registry.io/yourapp-source. It must include both a registry and a project name. The
source image parameter is not needed if you configured Local Source Proxy.

To start Live Update, right-click anywhere in the Solution Explorer and click Tanzu > Start Live
Update. Alternatively, right-click an associated workload in the Tanzu Panel and click Start Live
Update.

After starting Live Update, local builds changes are synchronized with the container.

Stop Live Update

To stop Live Update, right-click anywhere in the Solution Explorer and click Tanzu > Stop Live
Update. Alternatively, right-click an associated workload in the Tanzu Panel and click Stop Live
Update.

Tanzu Workloads panel

Caution

Do not use the red square Stop button to end your debugging session. Using the
red square Stop button might cause the Tanzu Application Platform workload to fail.
Instead, in the top menu click Debug > Detach All.

If the name of your running app process (the app DLL process), does not match the
name of your .NET project as shown in the Visual Studio Solution Explorer, the
remote debugging agent might fail to attach.

Tanzu Application Platform v1.5

VMware by Broadcom 1958



The extension creates log entries in a file named tanzu-dev-tools.log. This file is in the directory
where Visual Studio Installer installed the extension.

To view the Tanzu Workloads panel, right-click anywhere in the Solution Explorer and click Tanzu >
View Workloads.

Extension logs
The extension creates log entries in two files named tanzu-dev-tools-{GUID}.log and tanzu-
language-server-{GUID}.log. These files are in the directory where Visual Studio Installer installed
the extension.

To find the log files from PowerShell, run:

dir $Env:LOCALAPPDATA\Microsoft\VisualStudio\*\Extensions\*\Logs\tanzu-*.log

To find the log files from CMD, run:

dir %LOCALAPPDATA%\Microsoft\VisualStudio\*\Extensions\*\Logs\tanzu-*.log

Troubleshoot Tanzu Developer Tools for Visual Studio

This topic tells you how to troubleshoot issues you encounter with VMware Tanzu Developer Tools
for Visual Studio.

Stop button causes workload to fail

Symptom

Clicking the red square Stop button in the Visual Studio top toolbar causes the Tanzu Application
Platform workload to fail or become unresponsive indefinitely.

Solution

To end a debugging session, in the top menu click Debug > Detach All.

Frequent application restarts

Symptom

When an application is applied from Visual Studio it restarts frequently.

Cause

An application or environment behavior is triggering the application to restart.

Tanzu Application Platform v1.5

VMware by Broadcom 1959



Observed trigger behaviors include:

The application itself writing logs to the file system in the application directory that Live
Update is watching

Autosave being set to a very high frequency in the IDE configuration

Solution

Prevent the trigger behavior. Example solutions include:

Prevent 12-factor applications from writing to the file system.

Reduce the autosave frequency to once every few minutes.

Overview of Tanzu Developer Tools for VS Code

VMware Tanzu Developer Tools for Visual Studio Code (VS Code) is the official VMware Tanzu IDE
extension for VS Code. The extension helps you develop with Tanzu Application Platform and
enables you to rapidly iterate on your workloads on supported Kubernetes clusters that have Tanzu
Application Platform installed.

Tanzu Developer Tools for VS Code currently supports VS Code on macOS and Windows OS for
Java applications.

Extension features

The extension has the following features:

Deploy applications directly from VS Code:

Rapidly iterate on your applications on Tanzu Application Platform by deploying them as
workloads directly from within VS Code.

See code updates running on-cluster in seconds:

With Live Update (facilitated by Tilt), you can deploy your workload once, save changes to
the code and then see those changes reflected within seconds in the workload running on
the cluster.

Debug workloads directly on the cluster:

Debug your application in a production-like environment by debugging on your Kubernetes
cluster that has Tanzu Application Platform. An environment’s similarity to production relies
on keeping dependencies and other variables updated.

See workloads running on the cluster:

From the Tanzu Workloads panel you can see any workload found within the cluster and
namespace specified in the current kubectl context.

Overview of Tanzu Developer Tools for VS Code

Note

The new variation of Out of the Box (OOTB) Basic supply chains, which outputs
Carvel packages to enable configuring multiple runtime environments, is not
currently supported. For more information about the variation, see Carvel Package
Supply Chains.

Tanzu Application Platform v1.5

VMware by Broadcom 1960



VMware Tanzu Developer Tools for Visual Studio Code (VS Code) is the official VMware Tanzu IDE
extension for VS Code. The extension helps you develop with Tanzu Application Platform and
enables you to rapidly iterate on your workloads on supported Kubernetes clusters that have Tanzu
Application Platform installed.

Tanzu Developer Tools for VS Code currently supports VS Code on macOS and Windows OS for
Java applications.

Extension features

The extension has the following features:

Deploy applications directly from VS Code:

Rapidly iterate on your applications on Tanzu Application Platform by deploying them as
workloads directly from within VS Code.

See code updates running on-cluster in seconds:

With Live Update (facilitated by Tilt), you can deploy your workload once, save changes to
the code and then see those changes reflected within seconds in the workload running on
the cluster.

Debug workloads directly on the cluster:

Debug your application in a production-like environment by debugging on your Kubernetes
cluster that has Tanzu Application Platform. An environment’s similarity to production relies
on keeping dependencies and other variables updated.

See workloads running on the cluster:

From the Tanzu Workloads panel you can see any workload found within the cluster and
namespace specified in the current kubectl context.

Install Tanzu Developer Tools for VS Code

This topic tells you how to install VMware Tanzu Developer Tools for Visual Studio Code (VS Code).

Prerequisites

Before installing the extension, you must have:

VS Code

kubectl

Tilt v0.30.12 or later

Tanzu CLI and plug-ins

A cluster with the Tanzu Application Platform Full profile or Iterate profile

If you are an app developer, someone else in your organization might have already set up the
Tanzu Application Platform environment.

Note

The new variation of Out of the Box (OOTB) Basic supply chains, which outputs
Carvel packages to enable configuring multiple runtime environments, is not
currently supported. For more information about the variation, see Carvel Package
Supply Chains.

Tanzu Application Platform v1.5

VMware by Broadcom 1961

https://code.visualstudio.com/download
https://kubernetes.io/docs/tasks/tools/#kubectl
https://docs.tilt.dev/install.html


Docker Desktop and local Kubernetes are not prerequisites for using Tanzu Developer Tools for VS
Code.

Install

To install the extension:

1. Sign in to VMware Tanzu Network and download Tanzu Developer Tools for Visual Studio
Code.

2. Open VS Code.

3. Press cmd+shift+P to open the Command Palette and run Extensions: Install from
VSIX....

4. Select the extension file tanzu-vscode-extension.vsix.

5. If you do not have the following extensions, and they do not automatically install, install
them from VS Code Marketplace:

Debugger for Java

Language Support for Java(™) by Red Hat

YAML

6. Ensure Language Support for Java is running in Standard Mode. You can configure it in the
Settings menu by going to Code > Preferences > Settings under Java > Server: Launch
Mode.

When the JDK and Language Support for Java are configured correctly, you see that the
integrated development environment creates a directory target where the code is
compiled.

Configure
To configure VMware Tanzu Developer Tools for VS Code:

1. Ensure that you are targeting the correct cluster. For more information, see the
Kubernetes documentation.

2. Go to Code > Preferences > Settings > Extensions > Tanzu Developer Tools and set the
following:

Confirm Delete: This controls whether the extension asks for confirmation when
deleting a workload.

Enable Live Hover: For more information, see Integrating Live Hover by using
Spring Boot Tools. Reload VS Code for this change to take effect.

Tanzu Application Platform v1.5

VMware by Broadcom 1962

https://network.tanzu.vmware.com/products/tanzu-application-platform
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-debug
https://marketplace.visualstudio.com/items?itemName=redhat.java
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-yaml
https://code.visualstudio.com/docs/java/java-project#_lightweight-mode
https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/


Source Image: (Required) The registry location for publishing local source code. For
example, registry.io/yourapp-source. This must include both a registry and a
project name.

Local Path: (Optional) The path on the local file system to a directory of source
code to build. This is the current directory by default.

Namespace: (Optional) This is the namespace that workloads are deployed into.
The namespace set in kubeconfig is the default.

Uninstall

To uninstall VMware Tanzu Developer Tools for VS Code:

1. Go to Code > Preferences > Settings > Extensions.

2. Right-click the extension and select Uninstall.

Next steps

Proceed to Getting started with Tanzu Developer Tools for Visual Studio Code.

Get started with Tanzu Developer Tools for VS Code

This topic guides you through getting started with VMware Tanzu Developer Tools for Visual Studio
Code (VS Code).

Prerequisite

Install VMware Tanzu Developer Tools for Visual Studio Code.

Configure source image registry

Before deploying a workload, you must authenticate with an image registry to store your source
code. You can use the Docker CLI to authenticate or you can set environment variables that the
Tanzu CLI can use to authenticate.

Docker CLI
To authenticate by using the Docker CLI, run:

docker login $REGISTRY_HOSTNAME -u $REGISTRY_USERNAME -p $REGISTRY_PASSWORD

Tanzu CLI
To authenticate using the Tanzu CLI, export these environment variables by running:

export TANZU_APPS_REGISTRY_CA_CERT=PATH-TO-CA-CERT.nip.io.crt

export TANZU_APPS_REGISTRY_PASSWORD=USERNAME

export TANZU_APPS_REGISTRY_USERNAME=PASSWORD

CA_CERT is only needed for a custom or private registry.

For more information, see Workload creation fails due to authentication failure in Docker Registry

Set up Tanzu Developer Tools

The extension makes use of the following files within your project:

Tanzu Application Platform v1.5

VMware by Broadcom 1963



workload.yaml

catalog-info.yaml

Tiltfile

.tanzuignore

You can create these files by using the instructions in this topic, or use the files in the View an
example project section.

There are two ways to create these files:

Using the code snippets that Tanzu Developer Tools provide, which create templates in
empty files that you then fill in with the required information.

Writing the files manually.

Create the workload.yaml file

workload.yaml provides instructions to the Supply Chain Choreographer about how to build and
manage a workload.

The extension requires only one workload.yaml file per project. workload.yaml must be a single-
document YAML file, not a multidocument YAML file.

Before beginning to write your workload.yaml file, ensure that you know:

The name of your application. For example, my app.

The workload type of your application. For example, web.

The GitHub source code URL. For example, github.com/mycompany/myapp.

The Git branch of the source code that you intend to use. For example, main.

Code snippets
To create a workload.yaml file by using code snippets:

1. (Optional) Create a directory named config in the root directory of your project. For
example, my project/config.

2. Create a file named workload.yaml in the new config directory. For example, my
project/config/workload.yaml.

3. Open the new workload.yaml file in VS Code, enter tanzu workload in the file to trigger
the code snippets, and either press Enter or left-click the tanzu workload text in the
drop-down menu.

4. Fill in the template by pressing the Tab key.

Manual
To create your workload.yaml file manually, follow this example:

apiVersion: carto.run/v1alpa1

kind: Workload

metadata:

 name: APP-NAME

 labels:

   apps.tanzu.vmware.com/workload-type: WORKLOAD-TYPE

Tanzu Application Platform v1.5

VMware by Broadcom 1964



   app.kubernetes.io/part-of: APP-NAME

spec:

 source:

   git:

     url: GIT-SOURCE-URL

     ref:

       branch: GIT-BRANCH-NAME

Where:

APP-NAME is the name of your application.

WORKLOAD-TYPE is the type of this workload. For example, web.

GIT-SOURCE-URL is your GitHub source code URL.

GIT-BRANCH-NAME is the Git branch of your source code.

Alternatively, you can use the Tanzu CLI to create a workload.yaml file. For more information
about the Tanzu CLI command, see Tanzu apps workload apply in the Tanzu CLI documentation.

Create the catalog-info.yaml file

catalog-info.yaml enables the workloads of this project to appear in Tanzu Application Platform
GUI.

Before beginning to write your catalog-info.yaml file, ensure that you:

Know the name of your application. For example, my app.

Have a description of your application ready.

Code snippets
To create a catalog-info.yaml file by using the code snippets:

1. (Optional) Create a directory named catalog in the root directory of your project. For
example, my project/catalog.

2. Create a file named catalog-info.yaml in the new config directory. For example, my
project/catalog/catalog-info.yaml.

3. Open the new catalog-info.yaml file in VS Code, enter tanzu catalog-info in the file
to trigger the code snippets, and then either press Enter or left-click the tanzu catalog-
info text in the drop-down menu.

4. Fill in the template by pressing the Tab key.

Manual
To create your catalog-info.yaml file manually, follow this example:

apiVersion: backstage.io/v1alpha1

kind: Component

metadata:

 name: APP-NAME

 description: APP-DESCRIPTION

 tags:

   - tanzu

 annotations:

Tanzu Application Platform v1.5

VMware by Broadcom 1965



   'backstage.io/kubernetes-label-selector': 'app.kubernetes.io/part-of=APP-NAME'

spec:

 type: service

 lifecycle: experimental

 owner: default-team

Where:

APP-NAME is the name of your application

APP-DESCRIPTION is the description of your application

Create the Tiltfile file

The Tiltfile file provides the Tilt configuration to enable your project to Live Update on your
Kubernetes cluster that has Tanzu Application Platform. The Tanzu Developer Tools extension
requires only one Tiltfile per project.

Before beginning to write your Tiltfile file, ensure that you know:

The name of your application. For example, my app.

The value of the source image. For example, docker.io/mycompany/myapp.

Whether you want to compile the source image from a local directory other than the
project directory or otherwise leave the local path value unchanged. For more
information, see local path in the glossary.

The path to your workload.yaml file. For example, config/workload.yaml.

The name of your current Kubernetes context, if the targeting Kubernetes cluster enabled
by Tanzu Application Platform is not running on your local machine.

Code Snippets
To create a Tiltfile file by using the code snippets:

1. Create a file named Tiltfile with no file extension in the root directory of your project.
For example, my project/Tiltfile.

2. Open the new Tiltfile file in VS Code and enter tanzu tiltfile in the file to trigger the
code snippets, and then either press Enter or left-click the tanzu tiltfile text in the
drop-down menu.

3. Fill in the template by pressing the Tab key.

4. If the targeting Kubernetes cluster enabled by Tanzu Application Platform is not running
on your local machine, add a new line to the end of the Tiltfile template and enter:

allow_k8s_contexts('CONTEXT-NAME')

Where CONTEXT-NAME is the name of your current Kubernetes context.

Manual
To create a Tiltfile file manually, follow this example:

SOURCE_IMAGE = os.getenv("SOURCE_IMAGE", default='SOURCE-IMAGE')

LOCAL_PATH = os.getenv("LOCAL_PATH", default='.')

Tanzu Application Platform v1.5

VMware by Broadcom 1966

https://docs.tilt.dev/
https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/


NAMESPACE = os.getenv("NAMESPACE", default='default')

k8s_custom_deploy(

   'APP-NAME',

   apply_cmd="tanzu apps workload apply -f PATH-TO-WORKLOAD-YAML --live-update" +

       " --local-path " + LOCAL_PATH +

       " --SOURCE-IMAGE " + SOURCE_IMAGE +

       " --namespace " + NAMESPACE +

       " --yes >/dev/null" +

       " && kubectl get workload APP-NAME --namespace " + NAMESPACE + " -o yaml",

   delete_cmd="tanzu apps workload delete -f PATH-TO-WORKLOAD-YAML --namespace " + N

AMESPACE + " --yes" ,

   deps=['pom.xml', './target/classes'],

   container_selector='workload',

   live_update=[

       sync('./target/classes', '/workspace/BOOT-INF/classes')

   ]

)

k8s_resource('APP-NAME', port_forwards=["8080:8080"],

   extra_pod_selectors=[{'carto.run/workload-name': 'APP-NAME', 'app.kubernetes.io/c

omponent': 'run'}])

allow_k8s_contexts('CONTEXT-NAME')

Where:

SOURCE-IMAGE is the value of source image.

APP-NAME is the name of your application.

PATH-TO-WORKLOAD-YAML is the local file system path to workload.yaml. For example,
config/workload.yaml.

CONTEXT-NAME is the name of your current Kubernetes context. If your Kubernetes cluster
enabled by Tanzu Application Platform is running locally on your local machine, you can
remove the entire allow_k8s_contexts line. For more information, see the Tilt
documentation.

Create a .tanzuignore file

The .tanzuignore file specifies the file paths to exclude from the source code image. When
working with local source code, you can exclude files from the source code to be uploaded within
the image. Directories must not end with the system path separator (/ or \). See this example. in
GitHub.

View an example project

Before you begin, you need a container registry for the sample application.

You can view a sample application that demonstrates the necessary configuration files. There are
two ways to obtain the sample application:

Application Accelerator
If your company has configured Application Accelerator, you can obtain the sample application
there if it was not removed. To do so:

1. Open Application Accelerator.

2. Search for Tanzu Java Web App in Application Accelerator.

3. Add the required configuration information and generate the application.

4. Unzip the file and open the project in a VS Code workspace.

Tanzu Application Platform v1.5

VMware by Broadcom 1967

https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/
https://docs.tilt.dev/api.html#api.allow_k8s_contexts
https://github.com/vmware-tanzu/application-accelerator-samples/blob/main/tanzu-java-web-app/.tanzuignore


Clone from GitHub
To clone the sample application from GitHub:

1. Run git clone to clone the tanzu-java-web-app repository from GitHub.

2. Change into the tanzu-java-web-app directory.

3. Open the Tiltfile and replace your-registry.io/project with your container registry.

Next steps

Use Tanzu Developer Tools for VS Code.

Use Tanzu Developer Tools for VS Code

This topic tells you how to use VMware Tanzu Developer Tools for Visual Studio Code (VS Code).

Ensure that the project you want to use the extension with has the required files specified in Get
started with Tanzu Developer Tools for VS Code.

The extension requires only one Tiltfile and one workload.yaml per project. The workload.yaml
must be a single-document YAML file, not a multidocument YAML file.

Configure for multiple projects in the workspace

When working with multiple projects in a single workspace, you can configure the extension
settings on a per-project basis by using the drop-down menu in Settings.

Workload Commands

All commands are available by right-clicking anywhere in the VS Code project explorer, on an
associated workload in the Tanzu Workloads panel, or in the Command Palette (⇧⌘P on Mac and
Ctrl+Shift+P on Windows).

Screenshot of pop-up menu opened from the workload panel:

Tanzu Application Platform v1.5

VMware by Broadcom 1968

https://github.com/vmware-tanzu/application-accelerator-samples


Screenshot of the command palette:

Apply a workload

The extension enables you to apply workloads on your Kubernetes cluster that has Tanzu
Application Platform.

To apply a workload:

1. Right-click anywhere in the VS Code project explorer, on an associated workload in the
Tanzu Workloads panel, or open the Command Palette (⇧⌘P on Mac and Ctrl+Shift+P on
Windows).

2. Select the Tanzu: Apply Workload command.

3. If applicable, select the workload to apply.

A notification appears showing that the workload was applied.

Tanzu Application Platform v1.5

VMware by Broadcom 1969



A new workload appears on the Tanzu Workloads panel.

After the workload is deployed, the status on the Tanzu Workloads panel changes to Ready.

Debugging on the cluster

The extension enables you to debug your application on your Kubernetes cluster that has Tanzu
Application Platform.

Debugging requires a workload.yaml file in your project. For information about creating a
workload.yaml file, see Get Started with Tanzu Developer Tools for VS Code.

The developer sandbox experience enables developers to Live Update their code, and
simultaneously debug the updated code, without having to deactivate Live Update when
debugging.

Start debugging on the cluster

To start debugging on the cluster:

1. Add a breakpoint in your code.

2. Right-click anywhere in the VS Code project explorer, on an associated workload in the
Tanzu Workloads panel, or open the Command Palette (⇧⌘P on Mac and Ctrl+Shift+P on
Windows).

3. Select the Tanzu: Java Debug Start command..

Stop Debugging on the cluster

To stop debugging on the cluster, you can click the stop button in the Debug overlay.

Tanzu Application Platform v1.5

VMware by Broadcom 1970

https://code.visualstudio.com/docs/editor/debugging#_breakpoints


Alternatively, you can press ⌘+J (Ctrl+J on Windows) to open the panel and then click the trash
can button for the debug task running in the panel.

Debug apps in a microservice repository

To debug multiple apps in a microservice repository:

1. Add each app folder as a workspace folder. For instructions, see the Visual Studio Code
documentation.

2. Update the tanzu.debugPort setting so that it does not conflict with other debugging
sessions. For how to update individual workspace folder settings, see the Visual Studio
Code documentation.

Live Update

With the use of Live Update facilitated by Tilt, the extension enables you to deploy your workload
once, save changes to the code, and see those changes reflected in the workload running on the
cluster within seconds.

Live Update requires a workload.yaml file and a Tiltfile in your project. For information about how
to create a workload.yaml and a Tiltfile, see Get Started with Tanzu Developer Tools for VS Code.

The developer sandbox experience enables developers to Live Update their code, and
simultaneously debug the updated code, without having to deactivate Live Update when
debugging.

Start Live Update

Before using Live Update, verify that your auto-save setting is either off or on with a delay. The
delay must be long enough for the application to restart between auto saves to allow enough time
for your app to Live Update when files change. The auto-save setting is in Preferences > Text
Editor > Files > Auto Save > Auto Save Delay.

To start Live Update:

1. Right-click anywhere in the VS Code project explorer, on an associated workload in the
Tanzu Workloads panel, or open the Command Palette (⇧⌘P on Mac and Ctrl+Shift+P on
Windows).

2. Select the Tanzu: Live Update Start command.

Stop Live Update

When Live Update stops, your application continues to run on the cluster, but the changes you
made and saved in your editor are not present in your running application unless you redeploy your
application to the cluster.

Tanzu Application Platform v1.5

VMware by Broadcom 1971

https://code.visualstudio.com/docs/editor/multi-root-workspaces#_adding-folders
https://code.visualstudio.com/docs/editor/multi-root-workspaces#_settings
https://docs.tilt.dev/


To stop Live Update, click the trash can button in the terminal pane to stop the Live Update
process.

Deactivate Live Update

You can remove the Live Update capability from your application entirely. You might find this
option useful in a troubleshooting scenario. Deactivating Live Update redeploys your workload to
the cluster and removes the Live Update capability.

To deactivate Live Update:

1. Press ⇧⌘P (Ctrl+Shift+P on Windows) to open the Command Palette.

2. Run Tanzu: Live Update Disable.

3. Type the name of the workload for which you want to deactivate Live Update.

Live Update status

The current status of Live Update is visible on the right side of the status bar at the bottom of the
VS Code window.

The Live Update status bar entry shows the following states:

Live Update Stopped

Live Update Starting…

Live Update Running

To hide the Live Update status bar entry, right-click it and then click Hide ‘Tanzu Developer Tools
(Extension)’.

Live Update apps in a microservices repository

To Live Update multiple apps in a microservice repository:

1. Add each app folder as a workspace folder. For instructions, see the Visual Studio Code
documentation.

Tanzu Application Platform v1.5

VMware by Broadcom 1972

https://code.visualstudio.com/docs/editor/multi-root-workspaces#_adding-folders


2. Ensure that a port is available to port-forward the Knative service. For example, you might
have this in your Tiltfile:

k8s_resource('tanzu-java-web-app', port_forwards=["NUMBER:8080"],

           extra_pod_selectors=[{'carto.run/workload-name': 'tanzu-java-web-ap

p', 'app.kubernetes.io/component': 'run'}])

Where NUMBER is the port you choose. For example, port_forwards=["9999:8080"].

Delete a workload

The extension enables you to delete workloads on your Kubernetes cluster that has Tanzu
Application Platform.

To delete a workload:

1. Right-click anywhere in the VS Code project explorer, on an associated workload in the
Tanzu Workloads panel, or open the Command Palette (⇧⌘P on Mac and Ctrl+Shift+P on
Windows).

2. Select the Tanzu: Delete Workload command.

3. If applicable, select the workload to delete.

If the Tanzu: Confirm Delete setting is enabled, a message appears that prompts you to
delete the workload and not warn again, delete the workload, or cancel.

A notification appears showing that the workload was deleted.

Switch namespaces

To switch the namespace where you created the workload:

1. Go to Code > Preferences > Settings.

2. Expand the Extensions section of the settings and click Tanzu.

3. In the Namespace option, add the namespace you want to deploy to. This is the default
namespace by default.

Tanzu Application Platform v1.5

VMware by Broadcom 1973



Tanzu Workloads panel

The current state of the workloads is visible in the Tanzu Workloads view. This view is a separate
section in the bottom of the Explorer view in the Side Bar. The view shows the current status of
each workload, namespace, and cluster. It also shows whether Live Update and Debug is running,
stopped, or deactivated.

The Tanzu Activity tab in the Panels view enables developers to visualize the supply chain, delivery,
and running application pods. The tab enables a developer to view and describe logs on each
resource associated with a workload from within their IDE. The tab displays detailed error messages
for each resource in an error state.

Workload commands are available from the Tanzu Workloads panel on workloads that have an
associated module in the current project.

This association is based on a module name and a workload name matching. For example, a project
with a module named my-app is associated with a deployed workload named my-app.

When taking an action from the Tanzu Workloads panel, the action uses the namespace of the
deployed workload regardless of the configuration in the module.

For example, you might have a Live Update configuration with a namespace argument of my-apps-
1, but running the action from a deployed workload in namespace my-apps-2 starts a Live Update
session with a namespace argument of my-apps-2.

The Tanzu Workloads panel uses the cluster and defaults to the namespace specified in the current
kubectl context.

Tanzu Application Platform v1.5

VMware by Broadcom 1974



To add a namespace:

1. View the current context and namespace by running:

kubectl config get-contexts

2. Set a namespace for the current context by running:

kubectl config set-context --current --namespace=YOUR-NAMESPACE

3. Use one of these methods to add additional namespaces to your Tanzu Workloads panel:

Go to Preferences > Extensions > Tanzu Developer Tools > Tracked
Namespaces and then select the namespaces that you want.

Go to Workload Panel > Additional Options > Select Namespaces and then
select the namespaces that you want.

Working with Microservices in a Monorepo
A monorepo is single Git repository that contains multiple workloads. Each individual workload is
placed in a subfolder of the main repository.

You can find an example of this in Application Accelerator. The relevant accelerator is called Spring
SMTP Gateway, and you can obtain its source code as an accelerator or directly from the
application-accelerator-samples GitHub repository.

This project exemplifies a typical layout:

MONO-REPO-ROOT/

pom.xml (parent pom)

microservice-app-1/

Tanzu Application Platform v1.5

VMware by Broadcom 1975

https://github.com/vmware-tanzu/application-accelerator-samples/tree/tap-1.3.x/spring-smtp-gateway


pom.xml

mvnw (and other mvn-related files for building the workload)

Tiltfile (supports Live Update)

config

workload.yaml (supports deploying and debugging from IntelliJ)

src/ (contains source code for this microservice)

microservice-app-2/

…similar layout

Recommended structure: Microservices that can be built
independently

In this example, each of the microservices can be built independently of one another. Each
subfolder contains everything needed to build that workload.

This is reflected in the source section of workload.yaml by using the subPath attribute:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

  name: microservice-app-1

  ...

spec:

  source:

    git:

      ref:

        branch: main

      url: https://github.com/kdvolder/sample-mono-repo.git

    subPath: microservice-app-1 # build only this

  ...

For setting up your own repositories, it’s best practice to set up a monorepo so that each
microservice can be built completely independently.

To work with these monorepos:

Import the monorepo as a project into VS Code.

Interact with each of the subfolders in the same way you would interact with a project
containing a single workload.

Alternative structure: Services with build-time
interdependencies

Some monorepos do not have submodules that can be independently built. Instead the pom.xml
files of the submodules are set up to have some build-time interdependencies. For example:

A submodule pom.xml can reference the parent pom.xml as a common place for centralized
dependency management.

A microservice submodule can reference another, as a maven dependency.

Several microservice submodules can reference one or more shared library modules.

For these projects, make these adjustments:

1. Make workload.yaml point to the repository root, not a subfolder. Because submodules
have dependencies on code outside of their own subfolder, all source code from the

Tanzu Application Platform v1.5

VMware by Broadcom 1976



repository must be supplied to the workload builder.

2. Make workload.yaml specify additional buildpack arguments through environment variables.
They differentiate the submodule that the build is targeting.

Both of these workload.yaml changes are in the following example:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

name: fortune-ui

labels:

  apps.tanzu.vmware.com/workload-type: web

  app.kubernetes.io/part-of: fortune-ui

spec:

build:

  env:

     - name: BP_MAVEN_BUILD_ARGUMENTS

     value: package -pl fortune-teller-ui -am # indicate which module to build.

     - name: BP_MAVEN_BUILT_MODULE

     value: fortune-teller-ui # indicate where to find the built artefact to de

ploy.

source:

  git:

     url: https://github.com/my-user/fortune-teller # repo root

     ref:

     branch: main

For more information about these and other BP_xxx buildpack parameters, see the
Buildpack Documentation.

3. Make the local path preference for each subfolder point to the path of the repository root
Because submodules have dependencies on code outside of their own subfolder, all source
code from the repository must be supplied to the workload builder.

Changing logging verbosity

The Tanzu Language Server saves logs to ~/tanzu-langserver.log. You can change the log
verbosity in Preferences > Settings > Extensions > Tanzu Developer Tools > Language Server:
Log Verbosity.

Pinniped compatibility

Tanzu Application Platform v1.5

VMware by Broadcom 1977

https://github.com/paketo-buildpacks/maven/blob/main/README.md


This topic tells you the compatibility details of Pinniped in GitHub.

OAuth

OAuth login is compatible only when both --skip-browser and --skip-listen flags are not set.

LDAP

LDAP authentication is not compatible with VMware Tanzu Developer Tools for Visual Studio Code.

Integrate Live Hover by using Spring Boot Tools

For more information about this feature, see the Live application information hovers section of
the Spring Boot Tools Marketplace page.

Prerequisites

To integrate Live Hover by using Spring Boot Tools you need:

A Tanzu Spring Boot application, such as tanzu-java-web-app

Spring Boot Extension Pack (includes Spring Boot Dashboard) extension

Activate the Live Hover feature

Activate the Live Hover feature by enabling it in Code > Preferences > Settings > Extensions >
Tanzu Developer Tools.

Deploy a Workload to the Cluster

Follow these steps to deploy the workload for an app to a cluster, making live hovers appear. The
examples in some steps reference the sample tanzu-java-web-app.

1. Clone the repository by running:

git clone REPOSITORY-ADDRESS

Where REPOSITORY-ADDRESS is your repository address. For example,
https://github.com/vmware-tanzu/application-accelerator-samples.

2. Open the project in VS Code, with the Live Hover feature enabled, by running:

TAP_LIVE_HOVER=true code ./PROJECT-DIRECTORY

Where PROJECT-DIRECTORY is your project directory. For example, ./application-
accelerator-samples/tanzu-java-web-app.

3. Verify that you are targeting the cluster on which you want to run the workload by running:

kubectl cluster-info

For example:

$ kubectl cluster-info

Kubernetes control plane is running at https://...

CoreDNS is running at https://...

Tanzu Application Platform v1.5

VMware by Broadcom 1978

https://github.com/vmware-tanzu/pinniped
https://marketplace.visualstudio.com/items?itemName=vmware.vscode-spring-boot
https://github.com/vmware-tanzu/application-accelerator-samples/tree/main/tanzu-java-web-app
https://marketplace.visualstudio.com/items?itemName=vmware.vscode-boot-dev-pack
https://github.com/vmware-tanzu/application-accelerator-samples/tree/main/tanzu-java-web-app


To further debug and diagnose cluster problems, use 'kubectl cluster-info dum

p'.

Tanzu Developer Tools for VS Code periodically connects to your cluster to search for pods
from which live data can be extracted and shown. Tanzu Developer Tools for VS Code uses
your current context from ~/.kube/config to choose which cluster to connect with.

4. If you don’t have the workload running yet, run Tanzu: Apply Workload from the Command
Palette. Tanzu Developer Tools for VS Code periodically searches for pods in your cluster
that correspond to the workload configurations it finds in your workspace.

5. The workload takes time to build and then start a running pod. To see if a pod has started
running, run:

kubectl get pods

For example:

$ kubectl get pods

NAME                                                   READY   STATUS      REST

ARTS   AGE

tanzu-java-web-app-00001-deployment-8596bfd9b4-5vgx2   2/2     Running     0          

20s

tanzu-java-web-app-build-1-build-pod                   0/1     Completed   0          

2m26s

tanzu-java-web-app-config-writer-fpnzb-pod             0/1     Completed   0          

67s

In this example, live data can be extracted from the ...-0001-deployment-... pod.

6. Open a Java file, such as HelloController.java. After a delay of up to 30 seconds, because
of a 30-second polling loop, green highlights appear in your code.

7. Hover over any of the bubbles to see live information about the corresponding element.

8. The Live Beans and Live Endpoint Mapping information are displayed in Spring Boot
Dashboard. To view the Spring Boot Dashboard, run View: Show Spring Boot Dashboard
from the Command Palette.

Tanzu Application Platform v1.5

VMware by Broadcom 1979



Use Memory View in Spring Boot Dashboard

This topic tells you how to use Spring Boot Dashboard to view memory use.

For more information about Spring Boot Dashboard, see Spring Boot Dashboard.

Prerequisites

To see the Memory View in Spring Boot Dashboard you need:

A Tanzu Spring Boot application, such as tanzu-java-web-app

The Spring Boot Extension Pack, which includes Spring Boot Dashboard

Deploy a workload

Deploy the workload for an app to a cluster by following the steps in Deploy a Workload to the
Cluster.

Tanzu Application Platform v1.5

VMware by Broadcom 1980

https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-spring-boot-dashboard
https://github.com/vmware-tanzu/application-accelerator-samples/tree/main/tanzu-java-web-app
https://marketplace.visualstudio.com/items?itemName=vmware.vscode-boot-dev-pack


View memory use in Spring Boot Dashboard

To view the Spring Boot Dashboard, run View: Show Spring Boot Dashboard from the Command
Palette.

When the app is running, the Memory View section is displayed in Spring Boot Dashboard. The
graphical representation in the memory view highlights the memory use inside the Java virtual
machine (JVM). The drop-down menus beneath the graph enable you to switch between different
running processes and graphical views.

The heap and non-heap memory regions provide memory insights into the application. The real-
time graphs display a stacked overview of the different spaces in memory relative to the total
memory used and total memory size.

Tanzu Application Platform v1.5

VMware by Broadcom 1981



The memory view also contains graphs to display the garbage-collection pauses and garbage-
collection events. Long and frequent garbage-collection pauses indicate that the app is having a
memory problem that requires further investigation.

Tanzu Application Platform v1.5

VMware by Broadcom 1982



Tanzu Application Platform v1.5

VMware by Broadcom 1983



The graphs show only real-time data. You can configure the number of data points to view and the
interval by changing the settings. To access the settings on macOS, go to Code > Preferences >
Settings > Extensions > Spring Boot Dashboard > Memory View Settings. The navigation path
might differ on other operating systems, such as Windows and Linux.

Tanzu Application Platform v1.5

VMware by Broadcom 1984



Troubleshoot Tanzu Developer Tools for VS Code

This topic tells you what to do when you encounter issues with VMware Tanzu Developer Tools for
Visual Studio Code (VS Code).

Unable to view workloads on the panel when connected to
GKE cluster

Symptom

When connecting to Google’s GKE clusters, an error appears with the text WARNING: the gcp auth
plugin is deprecated in v1.22+, unavailable in v1.25+; use gcloud instead.

Cause

GKE authentication was extracted into a separate plug-in and is no longer inside the Kubernetes
client or libraries.

Solution

Download and configure the GKE authentication plug-in. For instructions, see the Google
documentation.

Live Update fails with UnsupportedClassVersionError

Symptom

After live-update has synchronized changes you made locally to the running workload, the
workload pods start failing with an error message similar to the following:

Caused by: org.springframework.beans.factory.CannotLoadBeanClassException: Error loadi

ng class

[com.example.springboot.HelloController] for bean with name 'helloController' defined 

in file

[/workspace/BOOT-INF/classes/com/example/springboot/HelloController.class]: problem wi

th class file

or dependent class; nested exception is

java.lang.UnsupportedClassVersionError: com/example/springboot/HelloController has bee

n compiled by

a more recent version of the Java Runtime (class file version 61.0), this version of t

he

Java Runtime only recognizes class file versions up to 55.0

Cause

The classes produced locally on your machine are compiled to target a later Java virtual machine
(JVM). The error message mentions class file version 61.0, which corresponds to Java 17. The
buildpack, however, is set up to run the application with an earlier JVM. The error message
mentions class file versions up to 55.0, which corresponds to Java 11.

The root cause of this is a misconfiguration of the Java compiler that VS Code uses. The cause
might be a suspected issue with the VS Code Java tooling, which sometimes fails to properly
configure the compiler source and target compatibility-level from information in the Maven POM.

For example, in the tanzu-java-web-app sample application the POM contains the following:

<properties>

        <java.version>11</java.version>

Tanzu Application Platform v1.5

VMware by Broadcom 1985

https://cloud.google.com/blog/products/containers-kubernetes/kubectl-auth-changes-in-gke


        ...

</properties>

This correctly specifies that the app must be compiled for Java 11 compatibility. However, the VS
Code Java tooling sometimes fails to take this information into account.

Solution

Force the VS Code Java tooling to re-read and synchronize information from the POM:

1. Right-click the pom.xml file.

2. Click Reload Projects.

This causes the internal compiler level to be set correctly based on the information from pom.xml.
For example, Java 11 in tanzu-java-web-app.

Timeout error when Live Updating

Symptom

When you attempt to Live Update your workload, the following error message appears in the log:

ERROR: Build Failed: apply command timed out after 30s - see }}{{https://docs.tilt.de

v/api.html#api.update_settings{{ for how to increase}}

Cause

Kubernetes times out on upserts over 30 seconds.

Solution

Add update_settings (k8s_upsert_timeout_secs = 300) to the Tiltfile. For more information, see
the Tiltfile documentation.

Task-related error when running a Tanzu Debug launch
configuration

Symptom

When you attempt to run a Tanzu Debug launch configuration, you see a task-related error
message similar to the following:

Could not find the task 'tanzuManagement: Kill Port Forward my-app

Cause

The task you’re trying to run is no longer supported.

Solution

Delete the launch configuration from your launch.json file in your .vscode directory.

Tanzu Workloads panel workloads only show delete
command

Symptom

Tanzu Application Platform v1.5

VMware by Broadcom 1986

https://docs.tilt.dev/api.html#api.update_settings


Some or all workloads in the Tanzu Workloads panel only have describe and delete actions.

Cause

By design, only associated workloads have apply, debug, and Live Update workload actions
available.

Solution

Open a project that contains a module that can be associated with your deployed workloads.

Workload actions do not work when in a project with spaces
in the name

Symptom

Workload actions do not work. The console displays an error message similar to the following:

Error: unknown command "projects/my-app" for "apps workload apply"Process finished wit

h exit code 1

Cause

On Windows, workload actions do not work when in a project with spaces in the name, such as my-
app project.

Solution

1. Close the code editor.

2. Move or rename your project folder on the disk, ensuring that no part of its path contains
any spaces.

3. Delete the project settings folder from the project to start with a clean slate. The folder is
.idea if using IntelliJ and .vscode if using VS Code.

4. Open the code editor and then open the project in its new location.

Cannot apply workload because of a malformed kubeconfig
file

Symptom

You cannot apply a workload. You see an error message when you attempt to do so.

Cause

Your kubeconfig file (~/.kube/config) is malformed.

Solution

Fix your kubeconfig file.

config-writer-pull-requester is categorized as Unknown

Symptom

Tanzu Application Platform v1.5

VMware by Broadcom 1987



In the Tanzu Activity Panel, the config-writer-pull-requester of type Runnable is incorrectly
categorized as Unknown. It should be in the Supply Chain category.

Solution

A fix is planned for a future release.

Frequent application restarts

Symptom

When an application is applied from VS Code it restarts frequently.

Cause

An application or environment behavior is triggering the application to restart.

Observed trigger behaviors include:

The application itself writing logs to the file system in the application directory that Live
Update is watching

Autosave being set to a very high frequency in the IDE configuration

Solution

Prevent the trigger behavior. Example solutions include:

Prevent 12-factor applications from writing to the file system.

Reduce the autosave frequency to once every few minutes.

Overview of Tekton
Tekton is a cloud-native, open-source framework for creating CI/CD systems. It allows developers
to build, test, and deploy across cloud providers and on-premises systems. For more information
about Tekton, see the Tekton documentation.

Overview of Tekton
Tekton is a cloud-native, open-source framework for creating CI/CD systems. It allows developers
to build, test, and deploy across cloud providers and on-premises systems. For more information
about Tekton, see the Tekton documentation.

Install Tekton
This topic tells you how to install Tekton Pipelines from the Tanzu Application Platform package
repository.

Prerequisites

Note

Follow the steps in this topic if you do not want to use a profile to install Tekton
Pipelines. For more information about profiles, see Components and installation
profiles.

Tanzu Application Platform v1.5

VMware by Broadcom 1988

https://tekton.dev/docs/
https://tekton.dev/docs/


Before installing Tekton Pipelines, complete all prerequisites to install Tanzu Application Platform.

Install Tekton Pipelines

To install Tekton Pipelines:

1. See the Tekton Pipelines package versions available to install by running:

tanzu package available list -n tap-install tekton.tanzu.vmware.com

For example:

$ tanzu package available list -n tap-install tekton.tanzu.vmware.com

\ Retrieving package versions for tekton.tanzu.vmware.com...

  NAME                     VERSION  RELEASED-AT

  tekton.tanzu.vmware.com  0.30.0   2021-11-18 17:05:37Z

2. Install Tekton Pipelines by running:

tanzu package install tekton-pipelines -n tap-install -p tekton.tanzu.vmware.co

m -v VERSION

Where VERSION is the desired version number. For example, 0.30.0.

For example:

$ tanzu package install tekton-pipelines -n tap-install -p tekton.tanzu.vmware.

com -v 0.30.0

- Installing package 'tekton.tanzu.vmware.com'

\ Getting package metadata for 'tekton.tanzu.vmware.com'

/ Creating service account 'tekton-pipelines-tap-install-sa'

/ Creating cluster admin role 'tekton-pipelines-tap-install-cluster-role'

/ Creating cluster role binding 'tekton-pipelines-tap-install-cluster-rolebindi

ng'

/ Creating package resource

- Waiting for 'PackageInstall' reconciliation for 'tekton-pipelines'

- 'PackageInstall' resource install status: Reconciling

 Added installed package 'tekton-pipelines'

3. Verify that you installed the package by running:

tanzu package installed get tekton-pipelines -n tap-install

For example:

$ tanzu package installed get tekton-pipelines -n tap-install

\ Retrieving installation details for tekton...

NAME:                    tekton-pipelines

PACKAGE-NAME:            tekton.tanzu.vmware.com

PACKAGE-VERSION:         0.30.0

STATUS:                  Reconcile succeeded

CONDITIONS:              [{ReconcileSucceeded True  }]

USEFUL-ERROR-MESSAGE:

Verify that STATUS is Reconcile succeeded.

Configure a namespace to use Tekton Pipelines

Tanzu Application Platform v1.5

VMware by Broadcom 1989



This section covers configuring a namespace to run Tekton Pipelines. If you rely on a SupplyChain
to create Tekton PipelinesRuns in your cluster, skip this step because namespace configuration is
covered in Set up developer namespaces to use your installed packages. Otherwise, perform the
steps in this section for each namespace where you create Tekton Pipelines.

Service accounts that run Tekton workloads need access to the image pull secrets for the Tanzu
package. This includes the default service account in a namespace, which is created automatically
but is not associated with any image pull secrets. Without these credentials, PipelineRuns fail with a
timeout and the pods report that they cannot pull images.

To configure a namespace to use Tekton Pipelines:

1. Create an image pull secret in the current namespace and fill it from the tap-registry
secret. For more information, see Relocate images to a registry.

2. Create an empty secret, and annotate it as a target of the secretgen controller, by running:

kubectl create secret generic pull-secret --from-literal=.dockerconfigjson={} -

-type=kubernetes.io/dockerconfigjson

kubectl annotate secret pull-secret secretgen.carvel.dev/image-pull-secret=""

3. After you create a pull-secret secret in the same namespace as the service account, add
the secret to the service account by running:

kubectl patch serviceaccount default -p '{"imagePullSecrets": [{"name": "pull-s

ecret"}]}'

4. Verify that a service account is correctly configured by running:

kubectl describe serviceaccount default

For example:

kubectl describe sa default

Name:                default

Namespace:           default

Labels:              <none>

Annotations:         <none>

Image pull secrets:  pull-secret

Mountable secrets:   default-token-xh6p4

Tokens:              default-token-xh6p4

Events:              <none>

For more details about Tekton Pipelines, see the Tekton documentation and the GitHub repository.

For information about getting started with Tekton, see the Tekton tutorial in GitHub and the
getting started guide in the Tekton documentation.

Note

The service account has access to the pull-secret image pull secret.

Note

Windows workloads are deactivated and cause an error if any Tasks try to use
Windows scripts.

Tanzu Application Platform v1.5

VMware by Broadcom 1990

https://tekton.dev/docs/
https://github.com/tektoncd/pipeline
https://github.com/tektoncd/pipeline/blob/main/docs/tutorial.md
https://tekton.dev/docs/getting-started/

	Contents
	Tanzu Application Platform v1.5
	Tanzu Application Platform overview
	Simplified workflows
	Notice of telemetry collection for Tanzu Application Platform

	Tanzu Application Platform release notes
	v1.5.12
	v1.5.12 Security fixes
	v1.5.12 Known issues

	v1.5.11
	v1.5.11 Security fixes
	v1.5.11 Known issues

	v1.5.10
	v1.5.10 Security fixes
	v1.5.10 Resolved issues
	v1.5.10 Resolved issues: Application Single Sign-On
	v1.5.10 Resolved issues: Contour

	v1.5.10 Known issues

	v1.5.9
	v1.5.9 Security fixes
	v1.5.9 Known issues
	v1.5.9 Known issues: Supply Chain Security Tools - Scan


	v1.5.8
	v1.5.8 Security fixes
	v1.5.8 Known issues

	v1.5.7
	v1.5.7 Security fixes
	v1.5.7 Known issues
	v1.5.7 Known issues: Tanzu Application Platform


	v1.5.6
	v1.5.6 Breaking changes
	v1.5.6 Breaking changes: Services Toolkit

	v1.5.6 Security fixes
	v1.5.6 Resolved issues
	v1.5.6 Resolved issues: Application Configuration Service

	v1.5.6 Known issues
	v1.5.6 Known issues: Tanzu Application Platform


	v1.5.5
	v1.5.5 Security fixes
	v1.5.5 Resolved issues
	v1.5.5 Resolved issues: Application Configuration Service
	v1.5.5 Resolved issues: Tanzu CLI and plugins

	v1.5.5 Known issues
	v1.5.5 Known issues: Tanzu Application Platform


	v1.5.4
	v1.5.4 Security fixes
	v1.5.4 Known issues
	v1.5.4 Known issues: Tanzu Application Platform


	v1.5.3
	v1.5.3 Security fixes
	v1.5.3 Known issues

	v1.5.2
	v1.5.2 Security fixes
	v1.5.2 Resolved issues
	v1.5.2 Resolved issues: Supply Chain Security Tools (SCST) - Scan
	v1.5.2 Resolved issues: Tanzu Application Platform GUI
	v1.5.2 Resolved issues: Tanzu Application Platform GUI plug-ins
	v1.5.2 Resolved issues: Tanzu Developer Tools for IntelliJ
	v1.5.2 Resolved issues: Tanzu Developer Tools for Visual Studio
	v1.5.2 Resolved issues: Tanzu Developer Tools for VS Code

	v1.5.2 Known issues

	v1.5.1
	v1.5.1 Security fixes
	v1.5.1 Resolved issues
	v1.5.1 Resolved issues: Application Accelerator
	v1.5.1 Resolved issues: External Secrets CLI (beta)
	v1.5.1 Resolved issues: Tanzu Developer Tools for IntelliJ
	v1.5.1 Resolved issues: Tanzu Developer Tools for Visual Studio

	v1.5.1 Known issues
	v1.5.1 Known issues: Supply Chain Security Tools (SCST) - Scan
	v1.5.1 Known issues: Tanzu Application Platform GUI


	v1.5.0
	What’s new in Tanzu Application Platform
	v1.5.0 New components

	v1.5.0 New features by component and area
	v1.5.0 Features: Application Accelerator
	v1.5.0 Features: Application Live View
	v1.5.0 Features: Application Single Sign-On (AppSSO)
	v1.5.0 Features: Bitnami Services
	v1.5.0 Features: cert-manager
	v1.5.0 Features: Crossplane
	v1.5.0 Features: External Secrets CLI (Beta)
	v1.5.0 Features: Namespace Provisioner
	v1.5.0 Features: Services Toolkit
	v1.5.0 Features: Supply Chain Choreographer
	v1.5.0 Features: Supply Chain Security Tools (SCST) - Policy Controller
	v1.5.0 Features: Supply Chain Security Tools (SCST) - Scan
	v1.5.0 Features: Tanzu Application Platform GUI
	v1.5.0 Features: Tanzu Application Platform GUI plug-ins
	v1.5.0 Features: Tanzu CLI Apps plug-in
	v1.5.0 Features: Tanzu Developer Tools for IntelliJ
	v1.5.0 Features: Tanzu Developer Tools for Visual Studio
	v1.5.0 Features: Tanzu Developer Tools for VS Code

	v1.5.0 Breaking changes
	v1.5.0 Breaking changes: Convention Controller
	v1.5.0 Breaking changes: Supply Chain Security Tools (SCST) - Scan
	v1.5.0 Breaking changes: Tanzu Build Service

	v1.5.0 Security fixes
	v1.5.0 Resolved issues
	v1.5.0 Resolved issues: Application Accelerator
	v1.5.0 Resolved issues: Application Single Sign-On (AppSSO)
	v1.5.0 Resolved issues: Cloud Native Runtimes
	v1.5.0 Resolved issues: Namespace Provisioner
	v1.5.0 Resolved issues: Tanzu Application Platform GUI plug-ins
	v1.5.0 Resolved issues: Tanzu Build Service
	v1.5.0 Resolved issues: Tanzu CLI Apps plug-in
	v1.5.0 Resolved issues: Tanzu Developer Tools for IntelliJ

	v1.5.0 Known issues
	v1.5.0 Known issues: API Auto Registration
	v1.5.0 Known issues: Application Configuration Service
	v1.5.0 Known issues: Bitnami Services
	v1.5.0 Known issues: Crossplane
	v1.5.0 Known issues: Eventing
	v1.5.0 Known issues: External Secrets CLI (beta)
	v1.5.0 Known issues: Grype scanner
	v1.5.0 Known issues: Services Toolkit
	v1.5.0 Known issues: Supply Chain Choreographer
	v1.5.0 Known issues: Tanzu Application Platform GUI
	v1.5.0 Known issues: Tanzu CLI Apps plug-in
	v1.5.0 Known issues: Tanzu Developer Tools for IntelliJ
	v1.5.0 Known issues: Tanzu Developer Tools for Visual Studio
	v1.5.0 Known issues: Tanzu Developer Tools for VS Code
	v1.5.0 Known issues: Tanzu Source Controller


	Deprecations
	Application Live View deprecations
	Application Single Sign-On (AppSSO) deprecations
	Services Toolkit deprecations
	Supply Chain Security Tools (SCST) - Scan deprecations
	Tanzu Build Service deprecations
	Tanzu CLI Apps plug-in deprecations

	Linux Kernel CVEs

	Components and installation profiles for Tanzu Application Platform
	Tanzu Application Platform components
	Installation profiles in Tanzu Application Platform v1.5
	Packages: A to C
	Packages: D to R
	Packages: S to Z

	Language and framework support in Tanzu Application Platform
	Installing Tanzu Application Platform

	Install Tanzu Application Platform
	Install Tanzu Application Platform
	Prerequisites for installing Tanzu Application Platform
	VMware Tanzu Network and container image registry requirements
	DNS Records
	Tanzu Application Platform GUI

	Kubernetes cluster requirements
	Resource requirements
	Tools and CLI requirements
	Next steps

	Kubernetes version support for Tanzu Application Platform
	Install Tanzu CLI
	Accept the End User License Agreements
	Example of accepting the Tanzu Application Platform EULA

	Set the Kubernetes cluster context
	Install or update the Tanzu CLI and plug-ins
	Install the Tanzu CLI
	Install Tanzu CLI Plug-ins
	List the versions of each plug-in group available across Tanzu
	List the versions of the Tanzu Application Platform specific plug-in group
	Install the version of the Tanzu Application Platform specific plug-in group matching your target environment
	Verify the plugin group list against the plug-ins that were installed


	Next steps

	Install Tanzu Application Platform (online)
	Install Tanzu Application Platform (online)
	Install Tanzu Application Platform package and profiles
	Relocate images to a registry
	Add the Tanzu Application Platform package repository
	Install your Tanzu Application Platform profile
	Full profile
	CEIP policy disclosure

	(Optional) Additional Build Service configurations
	(Optional) Configure your profile with full dependencies
	(Optional) Configure your profile with the Jammy stack only


	Install your Tanzu Application Platform package
	Install the full dependencies package
	Access Tanzu Application Platform GUI
	Exclude packages from a Tanzu Application Platform profile
	Next steps

	View possible configuration settings for your package
	Install individual packages
	Install pages for individual Tanzu Application Platform packages
	Verify the installed packages
	Next steps

	Set up developer namespaces to use your installed packages
	Additional configuration for testing and scanning
	Legacy namespace setup
	Next steps

	Provision namespaces manually
	Enable single user access
	Enable additional users with Kubernetes RBAC
	Additional configuration for testing and scanning

	Install Tanzu Developer Tools for your VS Code
	Prerequisites
	Install
	Configure
	Uninstall
	Next steps

	Install Tanzu Application Platform (offline)
	Install Tanzu Application Platform (offline)
	Install Tanzu Application Platform in your air-gapped environment
	Relocate images to a registry
	Prepare Sigstore Stack for air-gapped policy controller
	Install your Tanzu Application Platform profile
	Full Profile

	Install your Tanzu Application Platform package
	Next steps

	Install the Tanzu Build Service dependencies
	Next steps

	Configure custom certificate authorities for Tanzu Application Platform GUI
	Next steps

	Configure Application Accelerator
	Using a Git-Ops style configuration for deploying a set of managed accelerators
	Functional and Organizational Considerations

	Examples for creating accelerators
	A minimal example for creating an accelerator
	An example for creating an accelerator with customized properties
	Creating a manifest with multiple accelerators and fragments

	Configure tap-values.yaml with Git credentials secret
	Using non-public repositories
	Examples for a private Git repository
	Example using http credentials
	Example using http credentials with self-signed certificate
	Example using SSH credentials

	Examples for a private source-image repository
	Example using image-pull credentials


	Configure ingress timeouts when some accelerators take longer to generate
	Configure an ingress timeout overlay secret for each HTTPProxy
	Apply the timeout overlay secrets in tap-values.yaml

	Configuring skipping TLS verification for access to Source Controller
	Enabling TLS for Accelerator Server
	Configuring skipping TLS verification of Engine calls for Accelerator Server
	Enabling TLS for Accelerator Engine
	Next steps

	Use Grype in offline and air-gapped environments
	Host the Grype vulnerability database
	To enable Grype in offline air-gapped environments
	Configure Grype environmental variables
	Troubleshooting
	ERROR failed to fetch latest cli version
	Solution

	Database is too old
	Solution

	Vulnerability database is invalid
	Solution
	Debug Grype database in a cluster

	Grype package overlays are not applied to scantemplates created by Namespace Provisioner


	Set up developer namespaces to use your installed packages
	Additional configuration for testing and scanning
	Legacy namespace setup
	Next steps

	Install Tanzu Application Platform (AWS)
	Install Tanzu Application Platform (AWS)
	Create AWS Resources for Tanzu Application Platform
	Prerequisites
	Export environment variables
	Create an EKS cluster
	Install EBS CSI driver
	Create the container repositories
	Create the workload container repositories
	Create IAM roles

	Install Tanzu Application Platform package and profiles on AWS
	Relocate images to a registry
	Install your Tanzu Application Platform profile
	Full profile (AWS)
	(Optional) Configure your profile with full dependencies

	Install your Tanzu Application Platform package
	Install the full dependencies package
	Access Tanzu Application Platform GUI
	Exclude packages from a Tanzu Application Platform profile
	Next steps

	View possible configuration settings for your package
	Install individual packages
	Install pages for individual Tanzu Application Platform packages
	Verify the installed packages
	Next steps

	Set up developer namespaces to use your installed packages
	Enable single user access
	Enable additional users access with Kubernetes RBAC
	Next steps

	Install Tanzu Developer Tools for your VS Code
	Prerequisites
	Install
	Configure
	Uninstall
	Next steps

	Install Tanzu Application Platform (Azure)
	Install Tanzu Application Platform (Azure)
	Create Azure Resources for Tanzu Application Platform
	Prerequisites
	Create Azure Resource Group
	Create an AKS cluster
	Connect to the AKS cluster
	Create the container repositories
	Enable registry admin account
	Next steps

	Install Tanzu Application Platform package and profiles on Azure
	Relocate images to a registry
	Install your Tanzu Application Platform profile
	Full profile (Azure)
	(Optional) Additional Build Service configurations
	(Optional) Configure your profile with full dependencies
	(Optional) Configure your profile with the Jammy stack only


	Install your Tanzu Application Platform package
	Install the full dependencies package
	Access Tanzu Application Platform GUI
	Next steps

	View possible configuration settings for your package
	Install individual packages
	Install pages for individual Tanzu Application Platform packages
	Verify the installed packages
	Next steps

	Set up developer namespaces to use your installed packages
	Additional configuration for testing and scanning
	Legacy namespace setup
	Enable single user access
	Enable additional users access with Kubernetes RBAC

	Next steps

	Install Tanzu Developer Tools for your VS Code
	Prerequisites
	Install
	Configure
	Uninstall
	Next steps

	Install Tanzu Application Platform (OpenShift)
	Install Tanzu Application Platform (OpenShift)
	Install Tanzu Application Platform on your OpenShift clusters
	Relocate images to a registry
	Install your Tanzu Application Platform profile
	Full profile
	(Optional) Additional Build Service configurations
	(Optional) Configure your profile with full dependencies
	(Optional) Configure your profile with the Jammy stack only

	Security Context Constraints
	(Optional) Exclude components that require RedHat OpenShift privileged SCC


	Install your Tanzu Application Platform package
	Install the full dependencies package
	Access Tanzu Application Platform GUI
	Exclude packages from a Tanzu Application Platform profile

	View possible configuration settings for your package
	Install individual packages
	Install pages for individual Tanzu Application Platform packages
	Verify the installed packages
	Next steps

	Set up developer namespaces to use your installed packages
	Additional configuration for testing and scanning
	Legacy namespace setup
	Next steps

	Install Tanzu Developer Tools for your VS Code
	Prerequisites
	Install
	Configure
	Uninstall
	Next steps

	Custom Security Context Constraint details for Tanzu Application Platform
	Application Accelerator on OpenShift
	Application Live View on OpenShift
	Application Single Sign-On for OpenShift cluster
	Contour for OpenShift cluster
	Developer Conventions for OpenShift cluster
	Tanzu Build Service for OpenShift cluster

	Install Tanzu Application Platform (GitOps)
	How Tanzu RI supports GitOps
	GitOps benefits
	GitOps install paths

	Install Tanzu Application Platform (GitOps)
	How Tanzu RI supports GitOps
	GitOps benefits
	GitOps install paths

	Install Tanzu Application Platform through GitOps with External Secrets Operator (ESO)
	Prerequisites
	Relocate images to a registry
	(Optional) Install Tanzu Application Platform in an air-gapped environment
	Create a new Git repository
	Download and unpack Tanzu GitOps Reference Implementation (RI)
	Create cluster configuration
	Customize cluster configuration
	Grant read access to secret data
	Generate default configuration
	Review and store Tanzu Sync config
	Review and store Tanzu Application Platform installation config

	Configure and push the Tanzu Application Platform values
	Deploy Tanzu Sync

	Install Tanzu Application Platform through Gitops with Secrets OPerationS (SOPS)
	Prerequisites
	Relocate images to a registry
	(Optional) Install Tanzu Application Platform in an air-gapped environment
	Create a new Git repository
	Download and unpack Tanzu GitOps Reference Implementation (RI)
	Create cluster configuration
	Configure Tanzu Application Platform
	Preparing sensitive Tanzu Application Platform values
	Preparing non-sensitive Tanzu Application Platform values
	Updating sensitive Tanzu Application Platform values
	Generate Tanzu Application Platform installation and Tanzu Sync configuration
	Deploy Tanzu Sync

	Install individual packages
	Install pages for individual Tanzu Application Platform packages
	Verify the installed packages
	Next steps

	Set up developer namespaces to use your installed packages
	Additional configuration for testing and scanning
	Legacy namespace setup
	Next steps

	Install Tanzu Developer Tools for your VS Code
	Prerequisites
	Install
	Configure
	Uninstall
	Next steps

	Tanzu GitOps RI Reference Documentation
	Tanzu Sync Carvel Application
	Choosing SOPS or ESO
	Git Repository structure
	Configuration of Tanzu Sync without helper scripts
	Tanzu Sync Scripts

	Customize your package installation
	Customize a package that was manually installed
	Customize a package that was installed by using a profile

	Upgrade your Tanzu Application Platform
	Prerequisites
	Update the new package repository
	Perform the upgrade of Tanzu Application Platform
	Upgrade instructions for Profile-based installation
	Upgrade the full dependencies package
	Multicluster upgrade order
	Upgrade instructions for component-specific installation

	Verify the upgrade

	Opt out of telemetry collection
	Turn off standard CEIP telemetry collection
	Turn off Pendo telemetry collection


	Opt in or opt out of Pendo telemetry for Tanzu Application Platform GUI
	Opt in or opt out of Pendo telemetry from Tanzu Application Platform GUI
	Request to delete your anonymized data

	Overview of security and compliance in Tanzu Application Platform
	Overview of TLS and certificates in Tanzu Application Platform
	Secure Ingress certificates in Tanzu Application Platform
	A shared ingress issuer
	Component-level configuration

	Shared Ingress issuer in Tanzu Application Platform
	Prerequisites
	Default
	Limitations of the default, self-signed issuer
	Trusting the default, self-signed issuer

	Replacing the default ingress issuer
	Deactivating TLS for ingress
	Overriding TLS for components

	Use wildcard certificates in Tanzu Application Platform
	Plan Ingress certificates inventory in Tanzu Application Platform
	Use custom CA certificates in Tanzu Application Platform
	Use External Secrets Operator in Tanzu Application Platform (beta)
	Where to start

	Install External Secrets Operator in Tanzu Application Platform
	Prerequisites
	Install

	Integrate External Secrets Operator with HashiCorp Vault in Tanzu Application Platform
	Prerequisites
	Set up the integration

	Assess Tanzu Application Platform against the NIST 800-53 Moderate Assessment
	Harden Tanzu Application Platform
	Objective
	Scope
	Identity and Access Management
	Tanzu Application Platform GUI
	Tanzu Application Platform GUI to Remote Kubernetes Cluster Authentication
	Kubernetes Cluster Authentication and Authorization

	Cryptographic Protections
	Encryption of Data in Transit
	Internal TLS Configuration
	External TLS Configuration
	Configuring TLS for Contour

	Ingress Certificates

	Encryption of Data At Rest
	Ports and Protocols

	Networking
	Key Management
	Logging
	Deployment Architecture

	Overview of multicluster Tanzu Application Platform
	Next steps

	Overview of multicluster Tanzu Application Platform
	Next steps

	Install multicluster Tanzu Application Platform profiles
	Prerequisites
	Multicluster Installation Order of Operations
	Install View cluster
	Install Build clusters
	Install Run clusters
	Install Iterate clusters
	Add Build, Run and Iterate clusters to Tanzu Application Platform GUI
	Next steps

	Get started with multicluster Tanzu Application Platform
	Prerequisites
	Start the workload on the Build profile cluster

	Install Tanzu Application Platform Build profile
	Prerequisites
	Example values.yaml

	Install Tanzu Application Platform Run profile
	Install Tanzu Application Platform View profile
	Install Tanzu Application Platform Iterate profile
	Get started with Tanzu Application Platform
	Prerequisites
	Next steps

	Get started with Tanzu Application Platform
	Prerequisites
	Next steps

	Add testing and scanning to your application
	What you will do
	Overview
	Install OOTB Supply Chain with Testing
	Tekton pipeline config example
	Workload update

	Install OOTB Supply Chain with Testing and Scanning
	Prerequisites
	Workload update
	Query for vulnerabilities

	Next steps

	Add testing and scanning to your application
	What you will do
	Overview
	Install OOTB Supply Chain with Testing
	Tekton pipeline config example
	Workload update

	Install OOTB Supply Chain with Testing and Scanning
	Prerequisites
	Workload update
	Query for vulnerabilities

	Next steps

	Configure image signing and verification in your supply chain
	What you will do
	Configure your supply chain to sign and verify your image builds
	Next steps

	Generate an application with Application Accelerator
	Prerequisites
	Generate a project using an Application Accelerator
	Learn more about Application Accelerator
	Next Steps

	Generate an application with Application Accelerator
	Prerequisites
	Generate a project using an Application Accelerator
	Learn more about Application Accelerator
	Next Steps

	Deploy an app on Tanzu Application Platform
	What you will do
	Prerequisites
	Deploy your application using the Tanzu CLI
	Prerequisites
	Procedure

	Add your application to Tanzu Application Platform GUI software catalog
	Next steps

	Iterate on your new app using Tanzu Developer Tools for IntelliJ
	What you will do
	Prepare your IDE to iterate on your application
	Apply your application to the cluster
	Enable Live Update for your application
	Debug your application
	Delete your application from the cluster
	Next steps

	Iterate on your new app using Tanzu Developer Tools for Visual Studio
	What you will do
	Prepare to iterate on your application
	Prepare your project to support Live Update
	Set up the IDE

	Apply your application to the cluster
	Enable Live Update for your application
	Debug your application
	Delete your application from the cluster
	Next steps

	Iterate on your new app using Tanzu Developer Tools for VS Code
	What you will do
	Prepare your IDE to iterate on your application
	Apply your application to the cluster
	Enable Live Update for your application
	Debug your application
	Monitor your running application
	Delete your application from the cluster
	Next steps

	Claim services on Tanzu Application Platform
	What you will do
	Overview
	Prerequisites
	Discover available services
	Create a claim for a service instance
	Learn more
	Next steps

	Consume services on Tanzu Application Platform
	What you will do
	Overview
	Prerequisites
	Discovering existing claims
	Binding application workloads to the service instance
	Learn more
	Next steps

	Deploy an air-gapped workload on Tanzu Application Platform
	What you will do
	Prerequisites
	Create a workload from Git
	Create a basic supply chain workload
	Create a testing supply chain workload
	Create a testing scanning supply chain workload

	Deploy Spring Cloud applications to Tanzu Application Platform
	Deploy Spring Cloud applications to Tanzu Application Platform
	Deploy Spring Cloud Config applications to Tanzu Application Platform
	Identify Spring Cloud Config applications
	Prerequisites
	Configure workloads

	Deploy Spring Cloud DiscoveryClient applications to Tanzu Application Platform
	Identify Spring Cloud DiscoveryClient applications
	Prerequisites
	Example: The Greeting application
	Create a properties file in your configuration repository
	Create Application Configuration Service resources
	Create application workload resources


	Using Spring Cloud Gateway for Kubernetes with Tanzu Application Platform
	Create a new application accelerator
	What you will do
	Set up Visual Studio Code
	Create a simple project
	Set up the project directory
	Prepare the README.md and accelerator.yaml
	Test the accelerator

	Upload the project to a Git repository
	Register the accelerator to the Tanzu Application Platform and verify project generation output
	Verify project generation output by using Tanzu Application Platform GUI
	Learn more about Application Accelerator

	Learn about Tanzu Application Platform
	Application accelerators on Tanzu Application Platform
	What are application accelerators
	Working with accelerators
	Next steps

	Supply chains on Tanzu Application Platform
	What are supply chains
	A path to production
	Available supply chains
	1: OOTB Basic (default)
	2: OOTB Testing
	3: OOTB Testing+Scanning

	Next steps

	Vulnerability scanning, storing, and viewing for your supply chain
	Features
	Components
	Next steps
	Troubleshooting


	About consuming services on Tanzu Application Platform
	Key concepts
	Service instances
	Service bindings
	Resource claims

	Services you can use with Tanzu Application Platform
	User roles and responsibilities
	Next steps

	Set up Tanzu Service Mesh
	Prerequisites
	Activate your Tanzu Service Mesh subscription
	Set up Tanzu Application Platform
	End-to-end workload build and deployment scenario
	Apply a workload resource to a build cluster
	Configure egress for Tanzu Build Service
	Create a global namespace
	Run cluster deployment

	Deployment use case: Hungryman
	Create an initial set of configuration files from the accelerator
	Apply the workload resources to your build cluster
	Install service claim resources on the cluster
	Run cluster deployment
	Create a global namespace

	Deployment use case: ACME Fitness Store
	Deploy AppSSO
	Apply the workload resources to your build cluster
	Create the Istio ingress resources
	Deploy Redis
	Run cluster deployment
	Deploy Spring Cloud Gateway
	Install the Spring Cloud Gateway package
	Configure the Spring Cloud Gateway instance and route

	Create a global namespace


	Set up Tanzu Service Mesh
	Prerequisites
	Activate your Tanzu Service Mesh subscription
	Set up Tanzu Application Platform
	End-to-end workload build and deployment scenario
	Apply a workload resource to a build cluster
	Configure egress for Tanzu Build Service
	Create a global namespace
	Run cluster deployment

	Deployment use case: Hungryman
	Create an initial set of configuration files from the accelerator
	Apply the workload resources to your build cluster
	Install service claim resources on the cluster
	Run cluster deployment
	Create a global namespace

	Deployment use case: ACME Fitness Store
	Deploy AppSSO
	Apply the workload resources to your build cluster
	Create the Istio ingress resources
	Deploy Redis
	Run cluster deployment
	Deploy Spring Cloud Gateway
	Install the Spring Cloud Gateway package
	Configure the Spring Cloud Gateway instance and route

	Create a global namespace


	Overview of workloads
	Workload features
	Available workload types

	Overview of workloads
	Workload features
	Available workload types

	Use web workloads
	Overview
	Use the web workload type
	Calling web workloads within a cluster
	Example of service to service communication for web and server workloads


	Use server workloads
	Overview
	Use the server workload type
	server-specific workload parameters
	Expose server workloads outside the cluster

	Use server workloads
	Overview
	Use the server workload type
	server-specific workload parameters
	Expose server workloads outside the cluster

	Expose HTTP server workloads outside the cluster manually
	Define a workload type that exposes server workloads outside the cluster
	Expose workloads outside the cluster using AVI L4/L7
	Use worker workloads
	Overview
	Use the worker workload type

	Parameter reference
	Workload Parameter Reference
	List of Supply Chain Resources for Workload Object
	source-provider
	GitRepository
	ImageRepository
	MavenArtifact

	source-tester
	source-scanner
	image-provider
	Kpack Image
	Runnable (TaskRuns for Dockerfile-based builds)
	Pre-built image (ImageRepository)

	image-scanner
	config-provider
	app-config
	service-bindings
	api-descriptors
	config-writer (git or registry)
	deliverable

	Deliverable Parameters Reference
	List of Cluster Delivery Resources for Deliverable Object
	source-provider
	GitRepository
	ImageRepository

	app deployer
	App



	Use functions (Beta)
	Overview
	Supported languages and frameworks

	Prerequisites
	Create a function project from an accelerator
	Create a function project using the Tanzu CLI
	Deploy your function

	Use functions (Beta)
	Overview
	Supported languages and frameworks

	Prerequisites
	Create a function project from an accelerator
	Create a function project using the Tanzu CLI
	Deploy your function

	Troubleshoot Tanzu Application Platform
	Troubleshoot Tanzu Application Platform
	Troubleshoot installing Tanzu Application Platform
	Developer cannot be verified when installing Tanzu CLI on macOS
	Access .status.usefulErrorMessage details
	“Unauthorized to access” error
	“Serviceaccounts already exists” error
	After package installation, one or more packages fails to reconcile
	Failure to accept an End User License Agreement error
	Ingress is broken on Kind cluster

	Troubleshoot using Tanzu Application Platform
	Use events to find possible causes
	Missing build logs after creating a workload
	Explanation
	Solution

	Workload creation stops responding with “Builder default is not ready” message
	Explanation
	Solution

	“Workload already exists” error after updating the workload
	Explanation
	Solution

	Workload creation fails due to authentication failure in Docker Registry
	Explanation
	Solution

	Telemetry component logs show errors fetching the “reg-creds” secret
	Explanation
	Solution

	Debug convention might not apply
	Explanation
	Solution

	Execute bit not set for App Accelerator build scripts
	Explanation
	Solution

	“No live information for pod with ID” error
	Explanation
	Solution

	“image-policy-webhook-service not found” error
	Explanation
	Solution

	“Increase your cluster resources” error
	Explanation
	Solution

	MutatingWebhookConfiguration prevents pod admission
	Explanation

	Solution
	Priority class of webhook’s pods preempts less privileged pods
	Explanation
	Solution

	CrashLoopBackOff from password authentication fails
	Explanation
	Solution

	Password authentication fails
	Explanation
	Solution

	metadata-store-db pod fails to start
	Explanation
	Solution

	Missing persistent volume
	Explanation
	Solution

	Failure to connect Tanzu CLI to AWS EKS clusters
	Explanation
	Solution

	Invalid repository paths are propagated
	Explanation
	Solution

	x509: certificate signed by unknown authority
	Explanation
	Solution
	Option 1: Configure the Shared Ingress Issuer’s Certificate Authority as a trusted Certificate Authority
	Option 2: Deactivate the shared ingress issuer



	Troubleshoot Tanzu Application Platform components
	Troubleshoot Tanzu GitOps Reference Implementation (RI)
	Tanzu Sync application error
	Tanzu Application Platform install error
	Common errors
	Given data value is not declared in schema


	Uninstall your Tanzu Application Platform by using Tanzu CLI
	Delete the packages
	Delete the Tanzu Application Platform package repository
	Remove Tanzu CLI, plug-ins, and associated files
	Remove Cluster Essentials

	Uninstall Tanzu Application Platform by using GitOps
	Delete Tanzu Sync Application
	Delete external resources (ESO installation only)
	Remove the Tanzu CLI, plug-ins, and associated files
	Remove Cluster Essentials

	Component documentation for Tanzu Application Platform
	Component documentation for Tanzu Application Platform
	Overview of Tanzu CLI
	Tanzu CLI
	Tanzu CLI Architecture
	Tanzu CLI Installation
	Tanzu CLI Command Groups
	Install New Plug-ins
	Install Local Plug-ins

	Overview of Tanzu CLI
	Tanzu CLI
	Tanzu CLI Architecture
	Tanzu CLI Installation
	Tanzu CLI Command Groups
	Install New Plug-ins
	Install Local Plug-ins

	Overview of Tanzu CLI plug-ins
	Overview of Tanzu CLI plug-ins
	Tanzu Apps CLI overview
	About workloads

	Tanzu Apps CLI overview
	About workloads

	Install Tanzu Apps CLI plug-in
	Prerequisites
	Install Tanzu Apps CLI plug-in
	Uninstall Apps CLI plug-in
	Change clusters
	Override the default kubeconfig
	Autocompletion
	Bash
	Zsh

	Create workloads
	Debug and troubleshoot workloads

	Create a workload
	Prerequisites
	Get started with an example workload
	Create a workload from GitHub repository
	Create a workload from local source code
	Exclude Files

	Create workload from an existing image
	Create a workload from Maven repository artifact

	Working with YAML files
	Bind a service to a workload
	Next steps

	Workload Examples
	Custom registry credentials
	–live-update and –debug
	Spring Boot application example

	–export
	–output
	–sub-path
	.tanzuignore file
	Example of a .tanzuignore file

	–dry-run
	–update-strategy
	Output workload after create/apply
	Un-setting Git fields
	Remove color from output

	Debug workloads
	Verify build logs
	Check build logs
	Get the workload status and details
	Common workload errors
	Local Path Development Error Cases
	WorkloadLabelsMissing/SupplyChainNotFound
	MissingValueAtPath
	TemplateRejectedByAPIServer

	Review supply chain steps
	Additional Troubleshooting References

	Tanzu Apps CLI commands
	Tanzu Apps CLI commands
	tanzu apps cluster-supply-chain
	Tanzu apps cluster supply chain list
	Default view
	Tanzu apps cluster supply chain get
	Default view


	tanzu apps workload apply
	Default view
	Workload Apply flags
	--annotation
	--app / -a
	--build-env
	--debug
	--dry-run
	--env / -e
	--file, -f
	--git-repo
	--git-branch
	--git-tag
	--git-commit
	--image / -i
	--label / -l
	--limit-cpu
	--limit-memory
	--live-update
	--local-path
	--maven-artifact
	--maven-group
	--maven-type
	--maven-version
	--source-image, -s
	--namespace, -n
	--output, -o
	--param / -p
	--param-yaml
	--registry-ca-cert
	--registry-password
	--registry-token
	--registry-username
	--request-cpu
	--request-memory
	--service-account
	--service-ref
	--sub-path
	--tail
	--tail-timestamp
	--type / -t
	--update-strategy
	--wait
	--wait-timeout
	--yes, -y


	tanzu apps workload delete
	Default view
	Workload Delete flags
	--all
	--file, -f
	--namespace, -n
	wait
	--wait-timeout
	--yes, -f


	tanzu apps workload get
	Default view
	--export
	--output/-o
	--namespace/-n


	tanzu apps workload list
	Default view
	>Workload List flags
	--all-namespaces, -A
	--app
	--namespace, -n
	--output, -o


	tanzu apps workload tail
	Default view
	>Workload Tail flags
	--component
	--namespace, -n
	--since
	--timestamp, -t


	Tanzu Accelerator CLI overview
	Server API connections for operators and developers
	Using TAP-GUI URL
	Using Application Accelerator Server URL
	Using “ACC_SERVER_URL” environment variable

	Installation
	Command reference

	Tanzu Accelerator CLI overview
	Server API connections for operators and developers
	Using TAP-GUI URL
	Using Application Accelerator Server URL
	Using “ACC_SERVER_URL” environment variable

	Installation
	Command reference

	Install Tanzu Accelerator CLI
	Prerequisites
	Install

	Command reference
	Command reference
	tanzu accelerator
	Options
	SEE ALSO


	tanzu accelerator
	Options
	SEE ALSO


	tanzu accelerator apply
	tanzu accelerator apply
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO


	tanzu accelerator create
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO

	tanzu accelerator delete
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO

	tanzu accelerator fragment
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO

	tanzu accelerator fragment create
	Synopsis
	Example
	Options
	Options inherited from parent commands
	SEE ALSO

	tanzu accelerator fragment delete
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO

	tanzu accelerator fragment get
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO


	tanzu accelerator fragment list
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO

	tanzu accelerator fragment update
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO

	tanzu accelerator generate
	tanzu accelerator generate
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO


	tanzu accelerator generate-from-local
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO

	tanzu accelerator get
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO

	tanzu accelerator list
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO

	tanzu accelerator push
	tanzu accelerator push
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO


	tanzu accelerator update
	Synopsis
	Examples
	Options
	Options inherited from parent commands
	SEE ALSO

	Overview of the Tanzu Insight plug-in
	Overview of the Tanzu Insight plug-in
	Install your Tanzu Insight CLI plug-in
	Configure your Tanzu Insight CLI plug-in
	Set the target and certificate authority (CA) certificate

	Single Cluster setup
	Set Target
	Set the access token
	Verify the connection

	Query vulnerabilities, images, and packages
	Supported use cases
	Query using the Tanzu Insight CLI plug-in
	Example 1: What packages and CVEs does a specific image contain?
	Find the image digest using Supply Chain Tools - Scan 2.0
	Find the image digest using Supply Chain Tools - Scan Pre-2.0
	Query an image using the image digest value

	Example 2: What packages and CVEs does my source code contain?
	Find the source code organization, repository, and commit SHA
	Query the source code using the repository and organization values
	Query the source code using the commit SHA value

	Example 3: What dependencies are affected by a specific CVE?
	Add data

	Add data to your Supply Chain Security Tools - Store
	Supported formats and file types
	Generate a CycloneDX file
	Add data with the Tanzu Insight plug-in
	Example #1: Add an image report
	Example #2: Add a source report

	Tanzu insight CLI plug-in command reference
	Synopsis
	Options
	See also

	tanzu insight config set-target
	tanzu insight config set-target
	Synopsis
	Examples
	Options
	See also


	tanzu insight config
	Options
	See also

	tanzu insight health
	tanzu insight health
	Synopsis
	Examples
	Options
	See also


	tanzu insight image
	Options
	See also

	tanzu insight image add
	Examples
	Options
	See also

	tanzu insight image get
	Synopsis
	Examples
	Options
	See Also

	tanzu insight image packages
	Synopsis
	Examples
	Options
	See also

	tanzu insight image vulnerabilities
	Examples
	Options
	See also

	tanzu insight package
	Options
	See also

	tanzu insight package get
	Synopsis
	Examples
	Options
	See also

	tanzu insight package images
	Synopsis
	Examples
	Options
	See also

	tanzu insight package sources
	Synopsis
	Examples
	Options
	See also

	tanzu insight package vulnerabilities
	Synopsis
	Examples
	Options
	See also

	tanzu insight source
	Options
	See also

	tanzu insight source add
	Examples
	Options
	See also

	tanzu insight source get
	Synopsis
	Examples
	Options
	See also

	tanzu insight source packages
	Synopsis
	Examples
	Options
	See also

	tanzu insight source vulnerabilities
	Synopsis
	Examples
	Options
	See also

	tanzu insight version
	Options
	See also

	tanzu insight vulnerabilities
	Options
	See also

	tanzu insight vulnerabilities get
	Synopsis
	Examples
	Options
	See also

	tanzu insight vulnerabilities images
	Synopsis
	Examples
	Options
	See also

	tanzu insight vulnerabilities packages
	Synopsis
	Examples
	Options
	See also

	tanzu insight vulnerabilities sources
	Synopsis
	Examples
	Options
	See also

	Overview of API Auto Registration
	Overview
	Getting started

	Overview of API Auto Registration
	Overview
	Getting started

	Key Concepts for API Auto Registration
	API Auto Registration Architecture
	APIDescriptor Custom Resource Explained
	With an Absolute URL
	With an Object Ref
	With an HTTPPRoxy Object Ref
	With a Knative Service Object Ref
	With an Ingress Object Ref
	APIDescriptor Status Fields


	Install API Auto Registration
	Tanzu Application Platform prerequisites
	Using with TLS
	Install

	Use API Auto Registration
	Generate OpenAPI Spec
	Using a Spring Boot app with a REST service
	Using App Accelerator Template
	Using an existing Spring Boot project using springdoc

	Create APIDescriptor Custom Resource
	Use Out-Of-The-Box (OOTB) supply chains
	Using Custom Supply Chains
	Using other GitOps processes or Manually

	Additional configuration
	Setting up CORS for OpenAPI specifications


	Troubleshoot API Auto Registration
	Debug API Auto Registration
	APIDescriptor CRD shows message of connection refused but service is up and running
	Configure CA Cert Data

	APIDescriptor CRD shows message of x509: certificate signed by unknown authority but service is running


	Overview of API portal for VMware Tanzu
	Getting started

	Overview of API portal for VMware Tanzu
	Getting started

	Install API portal for VMware Tanzu
	Prerequisites
	Install
	Update the installation values for the api-portal package

	Overview of API Validation and Scoring
	Overview of API Validation and Scoring
	Install API Validation and Scoring
	Prerequisites
	Resource requirements
	Relocate images to a registry
	Add the API Validation and Scoring package repository
	Install
	Uninstall

	Use API Validation and Scoring to score your auto-registered API
	Use API Validation and Scoring to score your auto-registered API

	Application Accelerator Overview
	Overview
	Architecture
	How does Application Accelerator work?

	Next steps

	Application Accelerator Overview
	Overview
	Architecture
	How does Application Accelerator work?

	Next steps

	Install Application Accelerator
	Prerequisites
	Install
	Configure properties and resource use

	Configure Application Accelerator
	Overview
	Using a Git-Ops style configuration for deploying a set of managed accelerators
	Functional and Organizational Considerations

	Examples for creating accelerators
	A minimal example for creating an accelerator
	An example for creating an accelerator with customized properties
	Creating a manifest with multiple accelerators and fragments

	Configure tap-values.yaml with Git credentials secret
	Using non-public repositories
	Examples for a private Git repository
	Example using http credentials
	Example using http credentials with self-signed certificate
	Example using SSH credentials

	Examples for a private source-image repository
	Example using image-pull credentials


	Configure ingress timeouts when some accelerators take longer to generate
	Configure an ingress timeout overlay secret for each HTTPProxy
	Apply the timeout overlay secrets in tap-values.yaml

	Configuring skipping TLS verification for access to Source Controller
	Enabling TLS for Accelerator Server
	Configuring skipping TLS verification of Engine calls for Accelerator Server
	Enabling TLS for Accelerator Engine
	Next steps

	Create accelerators
	Prerequisites
	Getting started
	Publishing the new accelerator
	Using local-path for publishing accelerators
	Using accelerator fragments
	Deploying accelerator fragments
	Next steps

	Create accelerators
	Prerequisites
	Getting started
	Publishing the new accelerator
	Using local-path for publishing accelerators
	Using accelerator fragments
	Deploying accelerator fragments
	Next steps

	Create an accelerator.yaml file in Application Accelerator
	Accelerator
	Accelerator metadata
	Accelerator options
	DependsOn and multi-value dataType

	Examples

	Engine
	Engine example
	Engine notation descriptions
	Advanced accelerator use


	Application Accelerator sample accelerator.yaml file
	Use transforms in Application Accelerator
	Why transforms?
	Combining transforms
	Chain
	Merge

	Shortened notation
	A Combo of one?

	A common pattern with merge transforms
	Conditional transforms
	Conditional ‘Merge’ transform
	Conditional ‘Chain’ transform
	A small gotcha with using conditionals in merge transforms

	Merge conflict
	Resolving merge conflicts
	File ordering

	Next steps

	Use custom types in Application Accelerator
	Limitations
	Interaction with SpEL
	Interaction with Composition

	Use fragments in Application Accelerator
	Introduction
	Introducing fragments
	| The imports section explained
	Using the InvokeFragment Transform
	Back to the imports section
	Using dependsOn in the imports section

	Discovering fragments using Tanzu CLI accelerator plug-in

	Transforms reference
	Available transforms
	See also

	Transforms reference
	Available transforms
	See also

	Combo transform
	Syntax reference
	Behavior
	Examples
	Example 1
	Example 2


	Include transform
	Syntax reference
	Examples
	See also

	Exclude transform
	Syntax reference
	Examples
	See also

	Merge transform
	Syntax reference
	See also

	Chain transform
	Syntax reference
	Behavior

	Let transform
	Syntax reference
	Execution
	See also

	Loop transform
	Syntax reference
	Behavior
	Examples
	Example 1
	Example 2
	Example 3


	InvokeFragment transform
	Syntax reference
	Behavior
	Variables
	Files

	Examples
	See also

	ReplaceText transform
	Syntax reference
	Examples
	Example 1
	Example 2
	Example 3
	Example 4

	See also

	RewritePath transform
	Syntax reference
	Examples
	Example 1
	Example 2
	Example 3

	Interaction with Chain and Include
	See also

	OpenRewriteRecipe transform
	Syntax reference
	Example

	YTT transform
	Syntax reference
	Execution
	Examples
	Basic invocation
	Using extraArgs


	UseEncoding transform
	Syntax reference
	Example use
	See also

	UniquePath transform
	Syntax reference
	Examples
	See also

	Conflict resolution
	Syntax reference
	Combo
	Chain

	Available strategies
	See also

	Provenance transform
	Syntax reference
	Behavior

	Use SpEL with Application Accelerator
	Variables
	Implicit variables
	Conditionals
	Rewrite path concatenation
	Regular expressions
	Dealing with string arrays

	Accelerator custom resource definition
	Overview
	API definitions
	Accelerator CRD Spec
	Fragment CRD Spec
	Excluding files

	Test accelerators in Application Accelerator
	Generating a project from local sources
	CI/CD Pipeline
	(Optional) Getting the Tanzu CLI in a CI/CD pipeline


	Use the Provenance transform in Application Accelerator
	Use the Application Accelerator Visual Studio Code extension
	Dependencies
	Installation
	Configure the extension
	Using the extension
	Retrieving the URL for the Tanzu Application Platform GUI
	Download and Install Self-Signed Certificates from the Tanzu Application Platform GUI
	Prerequisites
	Procedure


	Use the Application Accelerator IntelliJ plug-in
	Dependencies
	Installation
	Configure the plug-in
	Using the plug-in
	Retrieving the URL for the Tanzu Application Platform GUI
	Download and Install Self-Signed Certificates
	Prerequisites


	Application Accelerator best practices
	Best practices for using accelerators
	Benefits of using an accelerator
	Design considerations
	Housekeeping rules
	Tests
	Application skeleton


	Best practices for using fragments
	Benefits of using Fragment
	Design considerations
	Housekeeping rules

	Troubleshoot Application Accelerator
	Installation issues
	Verify installed packages
	Look at resource events

	Development issues
	Failure to generate a new project
	URI is not absolute error


	Accelerator authorship issues
	General tips
	Speed up the reconciliation of the accelerator
	Use a source image with local accelerator source directory

	Expression evaluation errors

	Operations issues
	Accelerator persists in Tanzu Application Platform GUI after deletion
	Check status of accelerator resources
	When Accelerator ready column is blank
	When Accelerator ready column is false
	REASON: GitRepositoryResolutionFailed
	REASON: GitRepositoryResolutionPending
	REASON: ImageRepositoryResolutionPending



	Overview of Application Configuration Service for VMware Tanzu
	Overview of Application Configuration Service for VMware Tanzu
	Install Application Configuration Service for VMware Tanzu
	Prerequisites
	Install

	Overview of Application Live View
	Value proposition
	Intended audience
	Supported application platforms
	Multicloud compatibility
	Deployment

	Overview of Application Live View
	Value proposition
	Intended audience
	Supported application platforms
	Multicloud compatibility
	Deployment

	Install Application Live View
	Overview
	Prerequisites
	Install Application Live View
	Install Application Live View back end
	Install Application Live View connector
	Install Application Live View conventions
	Install Application Live View APIServer
	Deprecation notice for the sslDisabled key

	Configure security and access control in Application Live View
	Security and access control overview
	Prerequisites
	Configure improved security
	Application Live View connector
	Application Live View UI plug-in


	Enabling Spring Boot apps for Application Live View
	Enable Spring Boot apps
	Enable Spring Boot 3 apps
	Enable Spring Cloud Gateway apps
	Workload image NOT built with Tanzu Build Service

	Enabling Spring Boot apps for Application Live View
	Enable Spring Boot apps
	Enable Spring Boot 3 apps
	Enable Spring Cloud Gateway apps
	Workload image NOT built with Tanzu Build Service

	Enable Steeltoe apps for Application Live View
	Extend .NET Core Apps to Steeltoe Apps
	Enable Application Live View on Steeltoe Tanzu Application Platform workload

	Application Live View convention server
	Role of Application Live View convention
	Description of metadata labels
	Verify the applied labels and annotations

	Custom configuration for the connector
	Configure the developer workload in Tanzu Application Platform
	Deploy the workload
	Verify the label has propagated through the Supply Chain

	Custom configuration for application actuator endpoints
	Scaling Knative apps in Tanzu Application Platform
	Configure the developer workload in Tanzu Application Platform
	Deploy the workload
	Verify the annotation has propagated through the Supply Chain

	Application Live View on OpenShift
	Support for polyglot apps with Application Live View
	Application Live View internal architecture
	Component overview
	Design flow

	Troubleshoot Application Live View
	App is not visible in Application Live View UI
	App is not visible in Application Live View UI with actuator endpoints enabled
	The UI does not show any information for an app with actuator endpoints exposed at root
	No information shown on the Health page
	Stale information in Application Live View
	Unable to find CertificateRequests in Application Live View convention
	No live information for pod with ID
	Cannot override the actuator path in the labels
	Cannot configure SSL in appliveview-connector
	Verify the labels in your workload YAML file
	Override labels set by the Application Live View convention service
	Configure labels when management.endpoints.web.base-path and management.server.port are set

	Uninstall Application Live View
	Overview of Application Single Sign-On for VMware Tanzu® 3.1
	Overview of Application Single Sign-On for VMware Tanzu® 3.1
	Get started with Application Single Sign-On
	Prerequisites
	Key concepts
	Next steps

	Get started with Application Single Sign-On
	Prerequisites
	Key concepts
	Next steps

	Provision an AuthServer
	Prerequisites
	Provision an AuthServer
	The AuthServer spec in detail
	Metadata
	TLS & issuer URI
	Token Signature
	Identity providers
	Configuring storage


	Provision a client registration
	Prerequisites
	Creating the ClientRegistration
	Validating that the credentials are working

	Deploy an application with Application Single Sign-On
	Prerequisites
	Deploy a minimal application
	Deployment manifest
	OAuth2-Proxy

	Application Single Sign-On for Platform Operators
	Application Single Sign-On for Platform Operators
	Install Application Single Sign-On
	What’s inside
	Prerequisites
	Installation

	Configure Application Single Sign-On
	TAP values
	domain_name
	domain_template
	default_authserver_clusterissuer
	ca_cert_data
	kubernetes_distribution
	Configuration schema

	RBAC for Application Single Sign-On
	Application Single Sign-On for OpenShift clusters
	Upgrade Application Single Sign-On
	Migration guides
	v3.0.0 to v3.1.0
	v2.0.0 to v3.0.0
	v1.0.0 to v2.0.0


	Uninstall Application Single Sign-On
	Application Single Sign-On for Service Operators
	Application Single Sign-On for Service Operators
	Annotations and labels for AppSSO
	Labels
	Allowing client namespaces
	Unsafe configuration
	Unsafe identity provider
	Unsafe issuer URI


	Issuer URI and TLS for AppSSO
	Overview
	Configure TLS by using a (Cluster)Issuer
	Configure TLS by using a Certificate
	Configure TLS by using a Secret
	Deactivate TLS (unsafe)
	Allow Workloads to trust a custom CA AuthServer

	TLS scenario guides for AppSSO
	Overview
	Prerequisites
	Using a default issuer
	Using a ClusterIssuer
	Using an Issuer
	Using an existing Certificate
	Using an existing TLS certificate
	Using an existing wildcard TLS certificate

	CA certificates for AppSSO
	Configure workloads to trust a custom CA
	Overview
	Exporting custom CA certificate Secret
	Importing custom CA certificate Secret
	Appending custom CA certificate Secret reference to Workload

	Identity providers for AppSSO
	OpenID Connect providers
	OpenID external groups mapping
	Note for registering a client with the identity provider
	Supported token signing algorithms

	LDAP
	LDAP external groups mapping
	ActiveDirectory group search
	“Classic” group search
	Direct group search only
	Groups in sub-trees
	Nested group search


	SAML (experimental)
	SAML external groups mapping
	Note for registering a client with the identity provider

	Internal users
	Generating a bcrypt hash from a plain-text password

	Roles claim filtering
	Roles claim filters
	Roles claim filter examples

	Roles claim mapping and filtering explained
	Restrictions

	Configure authorization for AppSSO
	Overview
	Retrieving external groups or roles
	Mapping individual roles into authorization scopes
	Default authorization scopes

	Public clients and CORS for AppSSO
	Overview
	CORS configuration
	Client authentication
	References

	Token settings for Application Single Sign-On
	Token expiry
	Constraints

	Verify token settings

	Token signatures for AppSSO
	Overview
	Token signature 101
	Token signature of an AuthServer
	Creating keys
	Using secretgen-controller
	Using OpenSSL

	Rotating keys
	Revoking keys
	References and further reading

	Storage for AppSSO
	Overview
	Securing Data at rest
	Configuring Redis
	Configuring Redis Server CA certificate
	Configuring a Redis Secret
	Attaching storage to an AuthServer
	Inspecting storage of an AuthServer

	Storage provided by default
	Data types
	Known limitations of storage providers
	Redis Cluster


	AuthServer readiness for AppSSO
	Client registration check
	Prerequisites
	Define and apply a test client
	Get an access token


	Scale AuthServer for AppSSO
	AuthServer audit logs for AppSSO
	Overview
	Authentication
	Token flows

	Application Single Sign-On for App Operators
	Application Single Sign-On for App Operators
	Configure AppSSO for workloads
	The ClientRegistration resource
	Redirect URIs
	Authorization grant types
	Client authentication method
	Scopes
	Requiring user consent

	Claim a ClientRegistration
	Connecting a Workload to an AuthServer

	Secure a Spring Boot workload
	Get the sample application
	Create a namespace for workloads
	Create a ClientRegistration
	Claim the ClientRegistration
	Ensure Workload trusts AuthServer
	Deploy the Workload
	Cleaning up

	Secure a single-page app workload
	Get the sample application
	Create a namespace for workloads
	Create a ClientRegistration
	Verify application authentication settings
	Start a sample back end
	Deploy the Workload
	Clean up

	Custom resource definitions (CRDs)
	AuthServer API for AppSSO
	Spec
	Status & conditions
	RBAC
	Example

	ClientRegistration API for AppSSO
	Spec
	Client authentication methods
	Status & conditions
	Example

	Troubleshoot Application Single Sign-on
	Why is my AuthServer not working?
	Find all AuthServer related Kubernetes resources
	Logs of all AuthServers
	Change propagation
	Misconfigured clientSecret
	Problem:
	Solution:

	Misconfigured redirect URI
	Problem:
	Solution:

	Unsupported id_token_signed_response_alg with openid identityProviders
	Problem:
	Solution:

	Misconfigured identity provider clientSecret
	Problem:
	Solution:

	Missing scopes
	Problem:
	Solution:

	Misconfigured sub claim
	Problem:
	Solution:


	Known Issues
	Unregistration by deletion
	Limited number of ClientRegistrations per AuthServer
	LetsEncrypt: domain name for Issuer URI limited to 64 characters maximum
	Spring Boot 3 based Workloads and ClientRegistration resources

	Overview of Default roles for Tanzu Application Platform
	Default roles
	Working with roles using the RBAC CLI plug-in
	Disclaimer

	Overview of Default roles for Tanzu Application Platform
	Default roles
	Working with roles using the RBAC CLI plug-in
	Disclaimer

	Set up authentication for your Tanzu Application Platform deployment
	Tanzu Kubernetes Grid

	Set up authentication for your Tanzu Application Platform deployment
	Tanzu Kubernetes Grid

	Install Pinniped on Tanzu Application Platform
	Prerequisites
	Environment planning
	Install Pinniped Supervisor by using Let’s Encrypt
	Create Certificates (letsencrypt or cert-manager)
	Create Ingress resources
	Create the pinniped-supervisor configuration
	Apply the resources
	Switch to production issuer (letsencrypt or cert-manager)

	Install Pinniped Supervisor Private CA
	Create Certificate Secret
	Create Ingress resources
	Create the pinniped-supervisor configuration
	Apply the resources

	Install Pinniped Concierge
	Log in to the cluster

	Integrate your Azure Active Directory
	Integrate Azure AD with a new or existing AKS without Pinniped
	Prerequisites
	Set up a platform operator
	Set up a Tanzu Application Platform default role group
	Set up kubeconfig

	Integrate Azure AD with Pinniped
	Prerequisites
	Set up the Azure AD app
	Set up the Tanzu Application Platform default role group
	Set up kubeconfig


	Role descriptions for Tanzu Application Platform
	app-editor
	app-viewer
	app-operator
	service-operator
	workload
	deliverable

	Role descriptions for Tanzu Application Platform
	app-editor
	app-viewer
	app-operator
	service-operator
	workload
	deliverable

	Detailed role permissions for Tanzu Application Platform
	Native Kubernetes Resources
	apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"
	apps.tanzu.vmware.com/aggregate-to-app-operator: "true"

	App Accelerator
	apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"
	apps.tanzu.vmware.com/aggregate-to-app-operator: "true"

	Cartographer
	apps.tanzu.vmware.com/aggregate-to-app-editor: "true"
	apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"
	apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access: "true"
	apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access

	Cloud Native Runtimes
	apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"
	apps.tanzu.vmware.com/aggregate-to-app-operator: "true"

	Convention Service
	apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"
	apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access: "true"
	apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access

	Developer Conventions
	apps.tanzu.vmware.com/aggregate-to-app-editor: "true"

	OOTB Templates
	apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"
	apps.tanzu.vmware.com/aggregate-to-workload: "true"
	apps.tanzu.vmware.com/aggregate-to-deliverable: "true"

	Service Bindings
	apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

	Services Toolkit
	apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"
	apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access: "true"
	apps.tanzu.vmware.com/aggregate-to-app-operator: "true"
	apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access

	Source Controller
	apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"

	Supply Chain Security Tools — Scan
	apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"
	apps.tanzu.vmware.com/aggregate-to-app-operator: "true"

	Tanzu Build Service
	apps.tanzu.vmware.com/aggregate-to-app-editor: "true"
	apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"
	apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access: "true"
	apps.tanzu.vmware.com/aggregate-to-app-operator: "true"
	apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access

	Tekton
	apps.tanzu.vmware.com/aggregate-to-app-viewer: "true"
	apps.tanzu.vmware.com/aggregate-to-app-viewer-cluster-access: "true"
	apps.tanzu.vmware.com/aggregate-to-app-operator: "true"
	apps.tanzu.vmware.com/aggregate-to-app-operator-cluster-access


	Bind a user or group to a default role
	Prerequisites
	Install the Tanzu Application Platform RBAC CLI plug-in
	(Optional) Use a different kubeconfig location
	Add the specified user or group to a role
	Get a list of users and groups from a role
	Remove the specified user or group from a role
	Error logs
	Troubleshooting

	Log in to Tanzu Application Platform by using Pinniped
	Download the Pinniped CLI
	Generate and distribute kubeconfig to users
	Login with the provided kubeconfig

	Additional resources about Tanzu Application Platform authentication and authorization
	Install

	Additional resources about Tanzu Application Platform authentication and authorization
	Install

	Install default roles independently for your Tanzu Application Platform
	Prerequisites
	Install

	Overview of Bitnami Services
	Getting started

	Overview of Bitnami Services
	Getting started

	Install Bitnami Services
	Prerequisites
	Install Bitnami Services

	Bitnami Services tutorials
	Working with Bitnami Services
	About this tutorial
	Prerequisites
	Concepts
	Procedure
	Step 1: Discover services
	Step 2: Claim services
	Step 3: Bind the claim to a workload

	Bitnami Services how-to guides
	Configure private registry and VMware Tanzu Application Catalog integration for Bitnami Services
	Prerequisites
	Procedure
	Known issue
	Workaround


	Obtain credentials for VMware Tanzu Application Catalog integration with Bitnami Services
	Prerequisites
	Obtain the Helm chart repository for VMware Tanzu Application Catalog
	Obtain pull credentials for VMware Tanzu Application Catalog

	Troubleshoot Bitnami Services
	Private registry or VMware Tanzu Application Catalog configuration does not take effect

	Bitnami Services reference
	Dependencies for Bitnami Services
	Package values for Bitnami Services
	Globals
	MySQL
	PostgreSQL
	RabbitMQ
	Redis

	Version matrix for Bitnami Services
	Overview of Cartographer Conventions
	Overview
	About applying conventions
	Applying conventions by using image metadata
	Applying conventions without using image metadata


	Overview of Cartographer Conventions
	Overview
	About applying conventions
	Applying conventions by using image metadata
	Applying conventions without using image metadata


	Install Cartographer Conventions
	Create conventions with Cartographer Conventions
	Introduction
	Convention server
	How the convention server works

	Convention controller
	How the convention services’s controller works


	Getting started
	Prerequisites

	Define convention criteria
	Define the convention behavior
	Matching criteria by labels or annotations
	Matching criteria by environment variables
	Matching criteria by image metadata

	Configure and install the convention server
	Deploy a convention server
	Next Steps

	Troubleshoot Cartographer Conventions
	No server in the cluster
	Symptoms
	Cause
	Solution

	Server with wrong certificates configured
	Symptoms
	Cause
	Solution

	Server fails when processing a request
	Symptoms
	Cause
	Solution

	Connection refused due to unsecured connection
	Symptoms
	Cause
	Solution

	Self-signed certificate authority (CA) not propagated to the Convention Service
	Symptoms
	Cause
	Solution

	No imagePullSecrets configured
	Symptoms
	Cause
	Solution


	Convention Service Resources for Cartographer Conventions
	Overview
	Collecting Logs from the Controller

	Convention Service Resources for Cartographer Conventions
	Overview
	Collecting Logs from the Controller

	ImageConfig for Cartographer Conventions
	Overview

	PodConventionContextSpec for Cartographer Conventions
	Overview

	PodConventionContextStatus for Cartographer Conventions
	Overview

	PodConventionContext for Cartographer Conventions
	Overview
	PodConventionContext Objects
	PodConventionContext Structure

	ClusterPodConvention for Cartographer Conventions
	Overview
	Define conventions

	PodIntent for Cartographer Conventions
	Overview

	BOM for Cartographer Conventions
	Overview
	Structure

	Overview of cert-manager
	Overview of cert-manager
	Install cert-manager
	ACME challenges
	HTTP01 challenges can fail

	Overview of Cloud Native Runtimes
	Overview of Cloud Native Runtimes
	Install Cloud Native Runtimes
	Prerequisites
	Install

	Overview of Contour
	Overview of Contour
	Install Contour
	Configure Cipher Suites and TLS version in Contour
	Configure Contour
	Smaller Clusters
	Larger Clusters
	Configuring Envoy as a Deployment

	Overview of Crossplane
	Crossplane with Tanzu Application Platform
	Getting started

	Overview of Crossplane
	Crossplane with Tanzu Application Platform
	Getting started

	Install Crossplane
	Prerequisites
	Install Crossplane

	Crossplane reference
	Package values for Crossplane
	Tanzu Application Platform configuration
	Standard Crossplane configuration

	Version matrix for Crossplane
	 Crossplane limitations
	Cluster performance degradation due to large number of CRDs

	Troubleshoot Crossplane
	Crossplane Providers do not transition to HEALTHY=True if using a custom certificate for your registry
	Crossplane Providers cannot communicate with systems using a custom CA

	Developer Conventions overview
	Prerequisites
	Features
	Enabling Live Updates
	Enabling debugging

	Next steps

	Developer Conventions overview
	Prerequisites
	Features
	Enabling Live Updates
	Enabling debugging

	Next steps

	Install Developer Conventions
	Prerequisites
	Install
	Resource limits
	Uninstall

	Run Developer Conventions on an OpenShift cluster
	Eventing Overview
	Eventing Overview
	Install Eventing
	Prerequisites
	Install

	Overview of Flux CD Source Controller
	Overview of Flux CD Source Controller
	Install Flux CD Source Controller
	Prerequisites
	Configuration
	Installation
	Try fluxcd-source-controller
	Documentation

	Overview of Learning Center for Tanzu Application Platform
	Use cases
	Use case requirements
	Platform architectural overview
	Next steps

	Overview of Learning Center for Tanzu Application Platform
	Use cases
	Use case requirements
	Platform architectural overview
	Next steps

	Install Learning Center
	Prerequisites
	Install Learning Center
	Install the Self-Guided Tour Training Portal and Workshop
	Supported Learning Center Values Configuration

	About Learning Center workshops
	Get started with Learning Center
	Installing Learning Center
	Get started

	Get started with Learning Center
	Installing Learning Center
	Get started

	Install and configure the Learning Center operator
	Installing and setting up Learning Center operator
	Cluster pod security policies
	Specifying the ingress domain
	Set the environment variable manually

	Enforcing secure connections
	Configuration YAML
	Create the TLS secret manually

	Specifying the ingress class
	Configuration YAML
	Set the environment variable manually

	Trusting unsecured registries

	Get started with Learning Center workshops
	Creating the workshop environment
	Requesting a workshop instance
	Deleting the workshop instance
	Deleting the workshop environment

	Get started with Learning Center training portals
	Working with multiple workshops
	Loading the workshop definition
	Creating the workshop training portal
	Accessing workshops via the web portal
	Deleting the workshop training portal

	Delete Learning Center
	Local install guides
	Local install guides
	Install Learning Center on Kind
	Prerequisites
	Kind cluster creation
	Ingress controller with DNS
	Install carvel tools
	Install Tanzu package repository
	Create a configuration YAML file for Learning Center package
	Using a nip.io DNS address
	Install Learning Center package onto a Kubernetes cluster
	Install workshop tutorial package onto a Kubernetes cluster
	Run the workshop
	Trusting insecure registries

	Install Learning Center on Minikube
	Trusting insecure registries
	Prerequisites
	Ingress controller with DNS
	Install carvel tools
	Install Tanzu package repository
	Create a configuration YAML file for the Learning Center package
	Using a nip.io DNS address
	Install Learning Center package onto a minikube cluster
	Install workshop tutorial package onto a minikube cluster
	Run the workshop
	Working with large images
	Limited resource availability
	Storage provisioner issue

	Create workshops for Learning Center
	Create workshops for Learning Center
	Configure your Learning Center workshop
	Specifying structure of the content
	Specifying the runtime configuration
	Next steps

	Create the image for your Learning Center workshop
	Templates for creating a workshop
	Workshop content directory layout
	Directory for workshop exercises

	Working on your Learning Center workshop content
	Deactivating reserved sessions
	Live updates to the content
	Custom workshop image changes
	Custom workshop image overlay
	Changes to workshop definition
	Local build of workshop image

	Build an image for your Learning Center workshop
	Structure of the Dockerfile
	Custom workshop base images
	Installing extra system packages
	Installing third-party packages

	Writing instructions for your Learning Center workshop
	Annotation of executable commands
	Annotation of text to be copied
	Extensible clickable actions
	Supported workshop editor
	Clickable actions for the dashboard
	Clickable actions for the editor
	Clickable actions for file download
	Clickable actions for the examiner
	Clickable actions for sections
	Overriding title and description
	Escaping of code block content
	Interpolation of data variables
	Adding custom data variables
	Passing environment variables
	Handling embedded URL links
	Conditional rendering of content
	Embedding custom HTML content

	Automate your Learning Center workshop runtime
	Predefined environment variables
	Running steps on container start
	Running background applications
	Terminal user shell environment
	Overriding terminal shell command

	Add presenter slides to your Learning Center workshop
	Use reveal.js presentation tool
	Use a PDF file for presenter slides

	Requirements for Learning Center in an air-gapped environment
	Workshop yaml changes
	Self-signed certificates
	Internet dependencies

	Define custom resources for Learning Center
	Workshop definition resource
	Workshop environment resource
	Workshop request resource
	Workshop session resource
	Training portal resource
	System profile resource
	Loading the workshop CRDs

	Define custom resources for Learning Center
	Workshop definition resource
	Workshop environment resource
	Workshop request resource
	Workshop session resource
	Training portal resource
	System profile resource
	Loading the workshop CRDs

	Configure the Workshop resource
	Workshop title and description
	Downloading workshop content
	Container image for the workshop
	Setting environment variables
	Overriding the memory available
	Mounting a persistent volume
	Resource budget for namespaces
	Patching workshop deployment
	Creation of session resources
	Overriding default role-based access control (RBAC) rules
	Running user containers as root
	Creating additional namespaces
	Shared workshop resources
	Workshop pod security policy
	Custom security policies for user containers
	Defining additional ingress points
	External workshop instructions
	Deactivating workshop instructions
	Enabling the Kubernetes console
	Enabling the integrated editor
	Enabling workshop downloads
	Enabling the test examiner
	Enabling session image registry
	Enabling ability to use Docker
	Enabling WebDAV access to files
	Customizing the terminal layout
	Adding custom dashboard tabs

	Configure the WorkshopEnvironment resource
	Specifying the workshop definition
	Overriding environment variables
	Overriding the ingress domain
	Controlling access to the workshop
	Overriding the login credentials
	Additional workshop resources
	Creation of workshop instances

	Configure the WorkshopRequest resource
	Specifying workshop environment
	Specifying required access token

	Configure the TrainingPortal resource
	Specifying the workshop definitions
	Limit the number of sessions
	Capacity of individual workshops
	Set reserved workshop instances
	Override initial number of sessions
	Setting defaults for all workshops
	Set caps on individual users
	Expiration of workshop sessions
	Updates to workshop environments
	Override the ingress domain
	Override the portal host name
	Set extra environment variables
	Override portal credentials
	Control registration type
	Specify an event access code
	Make a list of workshops public
	Use an external list of workshops
	Override portal title and logo
	Allow the portal in an iframe
	Collect analytics on workshops
	Track using Google Analytics

	Configure the SystemProfile resource
	Operator default system profile
	Defining configuration for ingress
	Defining container image registry pull secrets
	Defining storage class for volumes
	Defining storage group for volumes
	Restricting network access
	Running Docker daemon rootless
	Overriding network packet size
	Image registry pull through cache
	Setting default access credentials
	Overriding the workshop images
	Tracking using Google Analytics
	Overriding styling of the workshop
	Additional custom system profiles

	Configure the WorkshopSession resource
	Specifying the session identity
	Specifying the login credentials
	Specifying the ingress domain
	Setting the environment variables

	Enable anonymous access to a Learning Center training portal
	Enabling anonymous access
	Triggering workshop creation

	Enable anonymous access to a Learning Center training portal
	Enabling anonymous access
	Triggering workshop creation

	Use the Learning Center workshop catalog
	Listing available workshops

	Use session management for your Learning Center workshops
	Deactivating portal user registration
	Requesting a workshop session
	Associating sessions with a user
	Listing all workshop sessions

	Use client authentication for Learning Center
	Querying the credentials
	Requesting an access token
	Refreshing the access token

	Troubleshoot Learning Center
	Training portal stays in pending state
	image-policy-webhook-service not found
	Updates to Tanzu Application Platform values file not reflected in Learning Center Training Portal
	Increase your cluster’s resources
	Kubernetes Api Timeout error
	No URL returned to your trainingportal

	Overview of Namespace Provisioner
	Description
	Modes
	Provisioner Carvel application
	Desired namespaces
	Namespace Provisioner controller

	Overview of Namespace Provisioner
	Description
	Modes
	Provisioner Carvel application
	Desired namespaces
	Namespace Provisioner controller

	Get started with Namespace Provisioner
	Provision developer namespaces in Namespace Provisioner
	Prerequisite
	Manage a list of developer namespaces
	Enable additional users with Kubernetes RBAC

	Customize Namespace Provisioner installation
	Set up Out of the Box Supply Chains in Namespace Provisioner
	Out of the Box Supply Chain Basic
	Out of the Box Supply Chain with Testing
	Add a Java Tekton Pipeline to your developer namespace

	Out of the Box Supply Chain with Testing and Scanning
	Add a Java Tekton Pipeline & Grype Scan Policy to your developer namespace


	Namespace Provisioner use cases and examples
	Use multiple Tekton pipelines and scan policies in the same namespace in Namespace Provisioner
	Add Tekton pipelines and scan policies using namespace parameters in Namespace Provisioner
	Work with private Git repositories in Namespace Provisioner
	Git Authentication for using a private Git repository
	Create the Git Authentication secret in tap-namespace-provisioning namespace
	Import from another namespace

	Git Authentication for Private Repository for Workloads and Supply chain

	Customize default resources in Namespace Provisioner
	Disable Grype install
	Customize service accounts
	Customize Limit Range defaults
	Update LimitRange defaults for all namespaces
	Update LimitRange defaults for a specific namespace


	Install multiple scanners in the developer namespace in Namespace Provisioner
	Work with Git repositories in air-gapped environments with Namespace Provisioner
	Git authentication
	Create the Git authentication secret in tap-namespace-provisioning namespace
	Import from another namespace

	Git authentication for workloads and supply chain

	Troubleshoot Namespace Provisioner
	Air-gapped installation
	View controller logs
	Provisioner application error
	Common errors
	Namespace selector malformed
	Debugging ytt templating errors in additional sources
	Unable to delete namespace


	Namespace Provisioner reference
	Default resources

	Overview of Service Bindings
	Supported service binding specifications

	Overview of Service Bindings
	Supported service binding specifications

	Install Service Bindings
	Prerequisites
	Install Service Bindings

	Troubleshoot Service Bindings
	Collect logs

	Service Bindings resource specification
	Overview of Services Toolkit
	Capabilities
	Getting started
	How this documentation is organized

	Overview of Services Toolkit
	Capabilities
	Getting started
	How this documentation is organized

	Install Services Toolkit
	Prerequisites
	Install Services Toolkit

	Services Toolkit concepts
	The four levels of service consumption in Tanzu Application Platform
	Level 1 - direct bindings
	Level 2 - resource claims
	Level 3 - class claims and pool-based classes
	Level 4 - class claims and provisioner-based classes (aka “Dynamic Provisioning”)
	Summary

	Class claims compared to resource claims
	Similarities
	Using a ResourceClaim
	Using a ClassClaim

	Tutorials
	Set up dynamic provisioning of service instances
	About this tutorial
	Prerequisites
	Scenario
	Concepts
	Procedure
	Step 1: Install the operator
	Step 2: Creating a CompositeResourceDefinition
	Step 3: Creating a Crossplane Composition
	About .spec.compositeTypeRef
	About .spec.resources
	The Object managed resource
	The patches section
	The readinessChecks section

	Check the namespace

	Step 4: Creating a provisioner-based class
	Step 5: Configure supporting RBAC
	Step 6: Verify your configuration


	Working with Bitnami Services
	Integrating cloud services into Tanzu Application Platform
	About this tutorial
	Concepts
	Procedure
	Step 1: Install a Provider
	Step 2: Create a CompositeResourceDefinition
	Step 3: Create a Composition
	Step 4: Create a provisioner-based ClusterInstanceClass
	Step 5: Configure RBAC
	Step 6: Verify your integration


	Abstracting service implementations behind a class across clusters
	About this tutorial
	Prerequisites
	Scenario
	Concepts
	Procedure
	Step 1: Set up the run-test cluster
	Step 2: Set up the run-production cluster
	Step 3: Create the class
	Step 4: Create and promote the workload and class claim


	Using direct secret references
	About this tutorial
	Prerequisites
	Create a binding-compatible secret

	Services Toolkit how-to guides
	Authorize users and groups to claim from provisioner-based classes
	Authorize all users with the app-operator user role to claim from any namespace
	Authorize a user to claim from a specific namespace
	Revoke default authorization for claiming from the Bitnami Services classes

	Configure dynamic provisioning of AWS RDS service instances
	Prerequisites
	Configure dynamic provisioning
	Install the AWS Provider for Crossplane
	Create a CompositeResourceDefinition
	Create a Composition
	Make the service discoverable
	Configure RBAC
	Verify your configuration


	Configure dynamic provisioning of VMware SQL with Postgres for Kubernetes service instances
	Prerequisites
	Configure dynamic provisioning
	Install the VMware Postgres Operator
	Set up the namespace
	Create a CompositeResourceDefinition
	Create a Composition
	Make the service discoverable
	Configure RBAC
	Verify your configuration


	Troubleshoot Services Toolkit
	Debug ClassClaim and provisioner-based ClusterInstanceClass
	Prerequisites
	Step 1: Inspect the ClassClaim, ClusterInstanceClass, and CompositeResourceDefinition
	Step 2: Inspect the Composite Resource, the Managed Resources and the underlying resources
	Step 3: Inspect the events log
	Step 4: Inspect the secret
	Step 5: Contact support

	Unexpected error if additionalProperties is true in a CompositeResourceDefinition
	Default cluster-admin IAM roles on GKE do not allow you to claim Bitnami Services
	Cannot claim from clusterinstanceclass when creating a ClassClaim

	Services Toolkit reference
	Services Toolkit API documentation
	ClusterInstanceClass and ClassClaim
	ClusterInstanceClass
	ClassClaim

	ResourceClaim and ResourceClaimPolicy
	ResourceClaim
	ResourceClaimPolicy

	InstanceQuery
	InstanceQuery

	RBAC
	Aggregation labels
	servicebinding.io/controller: “true”
	services.tanzu.vmware.com/aggregate-to-provider-kubernetes: “true”
	services.tanzu.vmware.com/aggregate-to-provider-helm: “true”

	The claim verb for ClusterInstanceClass

	Services Toolkit limitations
	Cannot claim and bind to the same service instance from across multiple namespaces

	Tanzu Service CLI plug-in
	tanzu service class
	tanzu service class list
	tanzu service class get

	tanzu service class-claim
	tanzu service class-claim create
	tanzu service class-claim get
	tanzu service class-claim delete
	tanzu service class-claim list

	tanzu service resource-claim
	tanzu service resource-claim create
	tanzu service resource-claim get
	tanzu service resource-claim delete
	tanzu service resource-claim list

	tanzu service claimable
	tanzu service claimable list


	Services Toolkit terminology and user roles
	Terminology
	Service
	Service resource
	Provisioned service
	Service binding
	Service instance
	Service instance class
	Claim
	Claimable service instance
	Dynamic provisioning
	Service resource life cycle API
	Service cluster
	Workload cluster

	User roles
	Application developer (AD)
	Application operator (AO)
	Service operator (SO)


	Overview of Source Controller
	Overview of Source Controller
	Install Source Controller
	Prerequisites
	Install

	Troubleshoot Source Controller
	Collecting Logs from Source Controller Manager

	Source Controller reference
	ImageRepository
	MavenArtifact

	Overview of Spring Boot conventions
	Overview of Spring Boot conventions
	Install Spring Boot conventions
	Prerequisites
	Install Spring Boot conventions

	Configure and access Spring Boot actuators in Tanzu Application Platform
	Workload-level configuration
	Platform-level configuration

	Enable Application Live View for Spring Boot applications
	Verify the applied labels and annotations

	List of Spring Boot conventions
	Set a JAVA_TOOL_OPTIONS property for a workload
	Spring Boot convention
	Spring boot graceful shut down convention
	Spring Boot web convention
	Spring Boot Actuator convention
	Spring Boot Actuator Probes convention
	Service intent conventions
	Example


	Troubleshoot Spring Boot conventions
	Collect logs

	Overview of Spring Cloud Gateway for Kubernetes
	Overview of Spring Cloud Gateway for Kubernetes
	Install Spring Cloud Gateway for Kubernetes
	Prerequisites
	Install

	Overview of Supply Chain Choreographer for Tanzu
	Overview
	Out of the Box Supply Chains

	Overview of Supply Chain Choreographer for Tanzu
	Overview
	Out of the Box Supply Chains

	Install Supply Chain Choreographer
	Prerequisites
	Install

	Out of the Box Supply Chain Basic for Supply Chain Choreographer
	Prerequisites
	Developer Namespace
	Registries Secrets
	ServiceAccount
	RoleBinding

	Developer workload


	Out of the Box Supply Chain Basic for Supply Chain Choreographer
	Prerequisites
	Developer Namespace
	Registries Secrets
	ServiceAccount
	RoleBinding

	Developer workload


	Install Out of the Box Supply Chain Basic for Supply Chain Choreographer
	Prerequisites
	Install

	Out of the Box Supply Chain with Testing for Supply Chain Choreographer
	Prerequisites
	Developer Namespace
	Updates to the developer Namespace
	Tekton/Pipeline
	Allow multiple Tekton pipelines in a namespace


	Developer Workload

	Out of the Box Supply Chain with Testing for Supply Chain Choreographer
	Prerequisites
	Developer Namespace
	Updates to the developer Namespace
	Tekton/Pipeline
	Allow multiple Tekton pipelines in a namespace


	Developer Workload

	Install Out of the Box Supply Chain with Testing for Supply Chain Choreographer
	Prerequisites
	Install

	Out of the Box Supply Chain with Testing and Scanning for Supply Chain Choreographer
	Prerequisites
	Developer namespace
	Updates to the developer namespace
	ScanPolicy
	ScanTemplate
	Enable storing scan results
	Allow multiple Tekton pipelines in a namespace


	Developer workload
	CVE triage workflow
	Scan Images using a different scanner

	Out of the Box Supply Chain with Testing and Scanning for Supply Chain Choreographer
	Prerequisites
	Developer namespace
	Updates to the developer namespace
	ScanPolicy
	ScanTemplate
	Enable storing scan results
	Allow multiple Tekton pipelines in a namespace


	Developer workload
	CVE triage workflow
	Scan Images using a different scanner

	Install Out of the Box Supply Chain with Testing and Scanning for Supply Chain Choreographer
	Prerequisites
	Install

	Out of the Box Templates for Supply Chain Choreographer
	Out of the Box Templates for Supply Chain Choreographer
	Install Out of the Box Templates
	Prerequisites
	Install

	Out of the Box Delivery Basic for Supply Chain Choreographer
	Prerequisites
	Using Out of the Box Delivery Basic
	More information


	Out of the Box Delivery Basic for Supply Chain Choreographer
	Prerequisites
	Using Out of the Box Delivery Basic
	More information


	Install Out of the Box Delivery Basic for Supply Chain Choreographer
	Prerequisites
	Install

	How-to guides for Supply Chain Choreographer for Tanzu
	How-to guides

	Out of the Box Supply Chain with testing on Jenkins for Supply Chain Choreographer
	Prerequisites
	Using the Out of the Box Jenkins Task
	1. Configuring a Jenkins job in an existing Jenkins Pipeline
	Example Jenkins Job
	2. Create a secret with auth credentials
	3. Create a Tekton pipeline
	4. Patching the default Service Account
	5. Create a Developer Workload



	Building container images with Supply Chain Choreographer
	Methods for building container images

	Building from source with Supply Chain Choreographer
	Git source
	Private GitRepository
	HTTP(S) Basic-authentication and Token-based authentication
	SSH authentication

	How it works
	Workload parameters

	Local source
	Authentication
	Developer
	Supply chain components

	How it works

	Maven Artifact
	Maven Repository Secret


	Use Dockerfile-based builds with Supply Chain Choreographer
	Use Dockerfile-based builds with Supply Chain Choreographer
	OpenShift

	Tanzu Build Service integration for Supply Chain Choreographer
	Configure and deploy to multiple environments with custom parameters
	Feature limits
	Using Carvel packages
	Using GitOps delivery with Flux CD
	Using GitOps delivery with Carvel App
	Configuring blue-green deployment

	Carvel Package Supply Chains (alpha)
	Overview of the Carvel Package Supply Chains
	What do the Carvel Package Supply Chains Do?

	Installing the Carvel Package Supply Chains as an Operator
	Prerequisites
	Installation
	Verifying the Carvel Package Supply Chains are Installed

	Using the Carvel Package Supply Chains as a Developer
	Prerequisites
	Creating a Workload
	Verify the Carvel Package was Created
	Next Steps


	Use Gitops Delivery with a Carvel App (alpha)
	Prerequisites
	Set up Run cluster namespaces
	Create Carvel PackageInstalls and secrets
	Create an App
	Verifying applications

	Use Gitops Delivery with Flux CD (alpha)
	Prerequisites
	Set up run cluster namespaces
	Create Carvel PackageInstalls and secrets
	Create Flux CD GitRepository and Flux CD Kustomizations on the Build Cluster
	Verifying Installation

	Use blue-green deployment with Contour and PackageInstall for Supply Chain Choreographer (alpha)
	Prerequisites
	Add HTTPProxy to the blue deployment
	Create the green deployment
	Divide traffic between the blue and green deployments
	Verify application

	Use an existing image with Supply Chain Choreographer
	Requirements for prebuilt images
	Configure your workload to use a prebuilt image
	Examples
	Using a Dockerfile
	Using Spring Boot’s build-image Maven target

	About Out of the Box Supply Chains
	Understanding the supply chain for a prebuilt image

	Use Git authentication with Supply Chain Choreographer
	HTTP
	SSH
	Read more on Git

	Using Azure DevOps as a Git provider with your supply chains
	Overview
	Azure authentication
	Using Azure DevOps as a repository for committed code
	Azure DevOps example
	Configuring your Git implementation for Azure DevOps

	Using Azure DevOps as a GitOps repository
	GitOps write path example
	Gitops write path templates
	Gitops read example
	Gitops read implementation templates


	Author your supply chains
	Providing your own supply chain
	Providing your own templates
	Modifying an Out of the Box Supply Chain
	Example

	Modifying an Out of the Box Supply template
	Example

	Live modification of supply chains and templates
	Adding custom behavior to Supply Chains

	Reference guides for Supply Chain Choreographer for Tanzu
	Reference guides

	Events reference for Supply Chain Choreographer
	Events
	StampedObjectApplied
	StampedObjectRemoved
	ResourceOutputChanged
	ResourceHealthyStatusChanged


	Workload Reference for Supply Chain Choreographer
	Standard Fields
	Labels
	Parameters
	Service Account

	Supply chains for Supply Chain Choreographer
	Source-to-URL
	Purpose
	Resources
	source-provider
	image-provider
	Common resources

	Parameters provided to all resources
	Package
	More information

	Source-Test-to-URL
	Resources
	source-provider
	source-tester
	image-provider
	Common resources

	Parameters provided to all resources
	Package
	More information

	Source-Test-Scan-to-URL
	Resources
	source-provider
	source-tester
	source-scanner
	image-provider
	image-scanner
	Common resources

	Parameters provided to all resources
	Package
	More information

	Basic-Image-to-URL
	Resources
	image-provider
	Common resources

	Parameters provided to all resources
	Package
	More information

	Testing-Image-to-URL
	Resources
	image-provider
	Common resources

	Parameters provided to all resources
	Package
	More information

	Scanning-image-scan-to-URL
	Resources
	image-provider
	image-scanner
	Common resources

	Parameters provided to all resources
	Package
	More information

	Source-to-URL-Package (experimental)
	Purpose
	Resources
	source-provider
	image-provider
	carvel-package
	package-config-writer
	Common resources

	Parameters provided to all resources
	Package
	More information

	Basic-Image-to-URL-Package (experimental)
	Resources
	image-provider
	carvel-package
	package-config-writer
	Common resources

	Parameters provided to all resources
	Package
	More information

	Resources common to all OOTB supply chains
	config-provider
	app-config
	service-bindings
	api-descriptors
	config-writer
	deliverable

	Parameters provided by all supply chains to all resources

	Template reference for Supply Chain Choreographer
	source-template
	Purpose
	Used by
	Creates
	GitRepository
	Parameters




	Template reference for Supply Chain Choreographer
	More information
	ImageRepository
	Parameters
	More information

	MavenArtifact
	Parameters
	More information

	testing-pipeline
	Purpose
	Used by
	Creates
	Parameters
	More information

	source-scanner-template
	Purpose
	Used by
	Creates
	Parameters
	More information

	image-provider-template
	Purpose
	Used by
	Creates
	Parameters
	More information

	kpack-template
	Purpose
	Used by
	Creates
	Parameters
	More information

	kaniko-template
	Purpose
	Used by
	Creates
	Parameters
	More information

	image-scanner-template
	Purpose
	Used by
	Creates
	Parameters
	More information

	convention-template
	Purpose
	Used by
	Creates
	Parameters
	More information

	config-template
	Purpose
	Used by
	Creates
	Parameters
	More information

	worker-template
	Purpose
	Used by
	Creates
	Parameters
	More information

	server-template
	Purpose
	Used by
	Creates
	Parameters
	More information

	service-bindings
	Purpose
	Used by
	Creates
	Parameters
	More information

	api-descriptors
	Purpose
	Used by
	Creates
	Parameters
	More information

	config-writer-template
	Purpose
	Used by
	Creates
	Parameters
	More information

	config-writer-and-pull-requester-template
	Purpose
	Used by
	Creates
	Parameters
	More information

	deliverable-template
	Purpose
	Used by
	Creates
	Parameters
	More information

	external-deliverable-template
	Purpose
	Used by
	Creates
	Parameters
	More information

	delivery-source-template
	Purpose
	Used by
	Creates
	GitRepository
	Parameters
	More information

	ImageRepository
	Parameters
	More information



	app-deploy
	Purpose
	Used by
	Creates
	Parameters
	More information

	carvel-package (experimental)
	Purpose
	Used by
	Creates
	Parameters
	More information

	package-config-writer-template (experimental)
	Purpose
	Used by
	Creates
	Parameters
	More information

	package-config-writer-and-pull-requester-template (experimental)
	Purpose
	Used by
	Creates
	Parameters
	More information


	ClusterRunTemplate reference for Supply Chain Choreographer
	tekton-source-pipelinerun
	Purpose
	Used by
	Creates
	Inputs


	ClusterRunTemplate reference for Supply Chain Choreographer
	More information
	tekton-taskrun
	Purpose
	Used by
	Creates
	Inputs

	commit-and-pr-pipelinerun
	Purpose
	Used by
	Creates
	Inputs
	More information


	Delivery reference for Supply Chain Choreographer
	delivery-basic
	Purpose
	Resources
	source-provider
	Deployer

	Package
	More information


	Use Git with Supply Chain Choreographer
	Supported Git Repositories
	Related Articles

	Use GitOps or RegistryOps with Supply Chain Choreographer
	GitOps
	Examples
	Deprecated parameters
	Examples

	Pull requests
	Authentication

	Authentication
	HTTP(S) Basic-auth or Token-based authentication

	SSH
	GitOps workload parameters
	Read more on Git

	RegistryOps

	Overview of Supply Chain Security Tools for VMware Tanzu - Policy Controller
	Overview of Supply Chain Security Tools for VMware Tanzu - Policy Controller
	Install Supply Chain Security Tools - Policy Controller
	Prerequisites
	Install

	Migration From Supply Chain Security Tools - Sign
	Enable Policy Controller on Namespaces
	Policy Controller ClusterImagePolicy
	Excluding Namespaces
	Specifying Public Keys
	Specifying Image Matching
	Specifying policy mode

	Configuring Supply Chain Security Tools - Policy
	Admission of Images
	Including Namespaces
	Create a ClusterImagePolicy resource
	images
	mode
	match
	authorities
	key
	keyless
	static.action


	Provide credentials for the package
	Provide secrets for authentication in your policy

	Verify your configuration

	Overview of Supply Chain Security Tools - Scan
	Overview
	Language support
	Use cases
	Supply Chain Security Tools - Scan features
	A Note on Vulnerability Scanners
	Missed CVEs
	False positives


	Overview of Supply Chain Security Tools - Scan
	Overview
	Language support
	Use cases
	Supply Chain Security Tools - Scan features
	A Note on Vulnerability Scanners
	Missed CVEs
	False positives


	Install Supply Chain Security Tools - Scan
	Prerequisites
	Configure properties
	Install
	Option 1: Install to multiple namespaces with the Namespace Provisioner
	Option 2: Install manually to each individual namespace


	Upgrade Supply Chain Security Tools - Scan
	Prerequisites
	General Upgrades for SCST - Scan
	Upgrading a scanner in all namespaces
	Installation by using Namespace Provisioner
	Manual installation

	Upgrade to Version v1.2.0

	Install another scanner for Supply Chain Security Tools - Scan
	Prerequisites
	Install
	Verify Installation
	Install scanner to multiple namespaces
	Configure Tanzu Application Platform Supply Chain to use new scanner
	Uninstall Scanner
	Other Available Scanner Integrations

	Supported Scanner Matrix for Supply Chain Security Tools - Scan
	Grype

	Prerequisites for Snyk Scanner for Supply Chain Security Tools - Scan (Beta)
	Prepare the Snyk Scanner configuration
	SCST - Store integration
	Sample ScanPolicy for Snyk in SPDX JSON format

	Prerequisites for Carbon Black Scanner for Supply Chain Security Tools - Scan (Beta)
	Prepare the Carbon Black Scanner configuration
	SCST - Store integration
	Using SCST - Store Integration
	Without SCST - Store Integration

	Sample ScanPolicy in CycloneDX format

	Prerequisites for Prisma Scanner for Supply Chain Security Tools - Scan (Alpha)
	Verify the latest alpha package version
	Relocate images to a registry
	Add the Prisma Scanner package repository
	Prepare the Prisma Scanner configuration
	Obtain Console URL and Access Keys and Token
	Access key and secret authentication
	Access Token Authentication


	SCST - Store integration
	Multiple Scanners installed
	Prisma Only Scanner Installed
	No Store Integration

	Prepare the ScanPolicy
	Sample ScanPolicy using Prisma Policies
	Sample ScanPolicy using Local Policies

	Install Prisma Scanner
	Self-Signed Registry Certificate
	Tanzu Application Platform Values Shared CA
	Secret within Developer Namespace

	Connect to Prisma through a Proxy
	Known Limits

	Install Trivy for Supply Chain Security Tools - Scan (alpha)
	Verify the latest alpha package version
	Relocate images to a registry
	Add Trivy package repository
	Prepare Trivy configuration
	SCST - Store integration
	Multiple scanners installed
	Trivy is the only scanner installed
	No store integration

	Prepare the ScanPolicy
	Install Trivy
	Air-gap configuration
	Relocate a Trivy database to your registry

	Use another Trivy version
	Use another Trivy Aqua plug-in version
	Integrate with the Aqua SaaS platform
	Self-signed registry certificate

	Spec reference
	About source and image scans
	About policy enforcement around vulnerabilities found

	Scan samples for Supply Chain Security Tools - Scan
	Scan samples for Supply Chain Security Tools - Scan
	Sample public image scan with compliance check for Supply Chain Security Tools - Scan
	Public image scan
	Define the ScanPolicy and ImageScan
	(Optional) Set up a watch
	Deploy the resources
	View the scan results
	Edit the ScanPolicy
	Clean up


	Sample public source code scan with compliance check for Supply Chain Security Tools - Scan
	Public source scan
	Run an example public source scan


	Sample private image scan for Supply Chain Security Tools - Scan
	Define the resources
	Set up target image pull secret
	Create the private image scan

	(Optional) Set up a watch
	Deploy the resources
	View the scan results
	Clean up
	View vulnerability reports

	Sample private source scan for Supply Chain Security Tools - Scan
	Define the resources
	(Optional) Set up a watch
	Deploy the resources
	View the scan status
	Clean up
	View vulnerability reports

	Sample public source scan of a blob for Supply Chain Security Tools - Scan
	Define the resources
	(Optional) Set up a watch
	Deploy the resources
	View the scan results
	Clean up
	View vulnerability reports

	Using Grype in air-gapped (offline) environments for Supply Chain Security Tools - Scan
	Host the Grype vulnerability database
	To enable Grype in offline air-gapped environments
	Configure Grype environmental variables
	Troubleshooting
	ERROR failed to fetch latest cli version
	Solution

	Database is too old
	Solution

	Vulnerability database is invalid
	Solution
	Debug Grype database in a cluster

	Grype package overlays are not applied to scantemplates created by Namespace Provisioner


	Triage and Remediate CVEs for Supply Chain Security Tools - Scan
	Confirm that Supply Chain stopped due to failed policy enforcement
	Triage
	Remediation
	Updating the affected component
	Amending the scan policy


	Observe Supply Chain Security Tools - Scan
	Observability

	Troubleshoot Supply Chain Security Tools - Scan
	Debugging commands
	Debugging Tekton TaskRun
	Debugging Scan pods
	Debugging SourceScan and ImageScan
	Debugging Scanning within a SupplyChain
	Viewing the Scan-Controller manager logs

	Restarting Deployment
	Troubleshooting scanner to MetadataStore configuration
	Insight CLI failed to post scan results to metadata store due to failed certificate verification

	Troubleshooting issues
	Troubleshooting Grype in air gap Environments
	Missing target SSH secret
	Missing target image pull secret
	Deactivate Supply Chain Security Tools (SCST) - Store
	Resolving Incompatible Syft Schema Version
	Resolving incompatible scan policy
	Could not find CA in secret
	Blob Source Scan is reporting wrong source URL
	Resolving failing scans that block a Supply Chain
	Policy not defined in the Tanzu Application Platform GUI
	Lookup error when connecting to SCST - Store
	Sourcescan error with SCST - Store endpoint without a prefix
	Deprecated pre-v1.2 templates
	Incorrectly configured self-signed certificate
	Unable to pull scan controller and scanner images from a specified registry
	Grype database not available
	Scanner Pod restarts once in SCST - Scan v1.5.0 or later


	Troubleshoot Rego files with a scan policy for Supply Chain Security Tools - Scan
	Using the Rego playground
	Sample input in CycloneDX’s XML re-encoded as JSON format
	Example input in SPDX JSON format


	Configure code repositories and image artifacts for Supply Chain Security Tools - Scan
	Prerequisite
	Deploy scan custom resources
	SourceScan
	ImageScan


	Configure code repositories and image artifacts for Supply Chain Security Tools - Scan
	Prerequisite
	Deploy scan custom resources
	SourceScan
	ImageScan


	Enforce compliance policy using Open Policy Agent
	Writing a policy template
	Rego file contract
	Define a Rego file for policy enforcement
	Further refine the Scan Policy for use
	Troubleshooting Rego files (Scan Policy)
	Enable Tanzu Application Platform GUI to view ScanPolicy Resource
	Deprecated Rego file Definition

	Create a ScanTemplate with Supply Chain Security Tools - Scan
	Overview
	Output Model
	ScanTemplate Structure
	Sample Outputs

	View scan status conditions for Supply Chain Security Tools - Scan
	Viewing scan status
	Overview of conditions
	Condition types for the scans
	Scanning
	Succeeded
	SendingResults
	PolicySucceeded


	Overview of CVECount
	Overview of MetadataURL
	Overview of Phase
	Overview of ScannedBy
	Overview of ScannedAt

	Troubleshoot Rego files with a scan policy for Supply Chain Security Tools - Scan
	Using the Rego playground
	Sample input in CycloneDX’s XML re-encoded as JSON format
	Example input in SPDX JSON format


	Supply Chain Security Tools - Scan 2.0 (alpha)
	Overview
	Features
	Installing SCST - Scan 2.0 in a cluster
	Prerequisites
	Configure properties
	Install

	Configure namespace
	Scan an image
	Retrieving an image digest
	Integrating with the Out of the Box Supply Chain
	Authoring a ClusterImageTemplate
	Configuring the supply chain

	Using the provided Grype scanner
	Sample Grype scan
	Configuration Options
	Trigger a Grype scan

	Integrate your own scanner
	Sample ImageVulnerabilityScan
	Configuration options
	Default environment
	Trigger your scan


	Retrieving results
	Observability
	Troubleshooting
	Debugging commands
	Debugging resources
	Debugging scan pods
	Viewing the Scan-Controller manager logs


	Author a ClusterImageTemplate for Supply Chain integration
	Create a ClusterImageTemplate

	Overview of Supply Chain Security Tools for VMware Tanzu - Sign
	Overview of Supply Chain Security Tools for Tanzu – Store
	Overview
	Using the Tanzu Insight CLI plug-in
	Multicluster configuration
	Integrating with Tanzu Application Platform GUI
	Additional documentation

	Overview of Supply Chain Security Tools for Tanzu – Store
	Overview
	Using the Tanzu Insight CLI plug-in
	Multicluster configuration
	Integrating with Tanzu Application Platform GUI
	Additional documentation

	Configure your target endpoint and certificate for Supply Chain Security Tools - Store
	Overview
	Using Ingress

	Single Cluster setup
	Set Target
	Next Step
	Additional Resources

	Configure your access tokens for Supply Chain Security Tools - Store
	Setting the Access Token
	Additional Resources

	Security details for Supply Chain Security Tools - Store
	Application security
	TLS encryption
	Cryptographic algorithms

	Access controls
	Authentication
	Authorization


	Container security
	Non-root user

	Security scanning
	Static Application Security Testing (SAST)
	Software Composition Analysis (SCA)


	Additional documentation for Supply Chain Security Tools - Store
	Use and operate
	Troubleshooting and logging
	Configuration
	Access control
	Certificates
	Database

	Other

	Additional documentation for Supply Chain Security Tools - Store
	Use and operate
	Troubleshooting and logging
	Configuration
	Access control
	Certificates
	Database

	Other

	API reference for Supply Chain Security Tools - Store
	Information
	Version

	Content negotiation
	URI Schemes
	Consumes
	Produces

	All endpoints
	images
	Operations
	Packages
	Sources
	v1artifact_groups
	v1images
	v1packages
	v1sources
	v1vulnerabilities
	vulnerabilities

	Paths
	Create an artifact group with specified labels and entity (CreateArtifactGroup)
	Parameters
	All responses
	Responses
	201 - ArtifactGroupPostResponse
	Schema

	400 - ErrorMessage
	Schema

	Default Response
	Schema



	Create a new image report. Related packages and vulnerabilities are also created. (CreateImageReport)
	Parameters
	All responses
	Responses
	200 - Image
	Schema

	Default Response
	Schema



	Create a new source report. Related packages and vulnerabilities are also created. (CreateSourceReport)
	Parameters
	All responses
	Responses
	200 - Source
	Schema

	Default Response
	Schema



	Search image by ID (GetImageByID)
	Parameters
	All responses
	Responses
	200 - Image
	Schema

	404 - ErrorMessage
	Schema

	Default Response
	Schema



	List the packages in an image. (GetImagePackages)
	Parameters
	All responses
	Responses
	200 - Package
	Schema

	Default Response
	Schema



	List packages of the given image. (GetImagePackagesQuery)
	Parameters
	All responses
	Responses
	200 - Package
	Schema

	Default Response
	Schema



	List vulnerabilities from the given image. (GetImageVulnerabilities)
	Parameters
	All responses
	Responses
	200 - Vulnerability
	Schema

	Default Response
	Schema



	Search image by id, name or digest . (GetImages)
	All responses
	Responses
	200 - Image
	Schema

	Default Response
	Schema



	Search package by ID (GetPackageByID)
	Parameters
	All responses
	Responses
	200 - Package
	Schema

	404 - ErrorMessage
	Schema

	Default Response
	Schema



	List the images that contain the given package. (GetPackageImages)
	Parameters
	All responses
	Responses
	200 - Image
	Schema

	Default Response
	Schema



	List the sources containing the given package. (GetPackageSources)
	Parameters
	All responses
	Responses
	200 - Source
	Schema

	Default Response
	Schema



	List vulnerabilities from the given package. (GetPackageVulnerabilities)
	Parameters
	All responses
	Responses
	200 - Vulnerability
	Schema

	Default Response
	Schema



	Search packages by id, name and/or version. (GetPackages)
	Parameters
	All responses
	Responses
	200 - Package
	Schema

	Default Response
	Schema



	Search source by ID (GetSourceByID)
	Parameters
	All responses
	Responses
	200 - Source
	Schema

	404 - ErrorMessage
	Schema

	Default Response
	Schema



	get source packages (GetSourcePackages)
	Parameters
	All responses
	Responses
	200 - Package
	Schema

	Default Response
	Schema



	List packages of the given source. (GetSourcePackagesQuery)
	Parameters
	All responses
	Responses
	200 - Package
	Schema

	Default Response
	Schema



	get source vulnerabilities (GetSourceVulnerabilities)
	Parameters
	All responses
	Responses
	200 - Vulnerability
	Schema

	Default Response
	Schema



	List vulnerabilities of the given source. (GetSourceVulnerabilitiesQuery)
	Parameters
	All responses
	Responses
	200 - Vulnerability
	Schema

	Default Response
	Schema



	Search for sources by ID, repository, commit sha and/or organization. (GetSources)
	Parameters
	All responses
	Responses
	200 - Source
	Schema

	Default Response
	Schema



	Search for vulnerabilities by CVE id. (GetVulnerabilities)
	Parameters
	All responses
	Responses
	200 - Vulnerability
	Schema

	Default Response
	Schema



	Search vulnerability by ID (GetVulnerabilityByID)
	Parameters
	All responses
	Responses
	200 - Vulnerability
	Schema

	404 - ErrorMessage
	Schema

	Default Response
	Schema



	List the images that contain the given vulnerability. (GetVulnerabilityImages)
	Parameters
	All responses
	Responses
	200 - Image
	Schema

	Default Response
	Schema



	List packages that contain the given CVE id. (GetVulnerabilityPackages)
	Parameters
	All responses
	Responses
	200 - Package
	Schema

	Default Response
	Schema



	List sources that contain the given vulnerability. (GetVulnerabilitySources)
	Parameters
	All responses
	Responses
	200 - Source
	Schema

	Default Response
	Schema



	health check (HealthCheck)
	All responses
	Responses
	200
	Schema

	Default Response
	Schema



	Query for a list of artifact group that contains image(s) with specified digests, and or source(s) with specified shas. At least one image digest or source sha must be provided. This query can be further refined by matching images and sources with a specific combination of package name and/or cve id. (SearchArtifactGroups)
	Parameters
	All responses
	Responses
	200 - PaginatedArtifactGroupResponse
	Schema

	400 - ErrorMessage
	Schema

	Default Response
	Schema



	Search for how many artifact groups are affected by vulnerabilities associated with the specified image(s) digests, and/or source(s) shas. At least one image digest or source sha must be provided. (SearchArtifactGroupsVulnReach)
	Parameters
	All responses
	Responses
	200 - PaginatedArtifactGroupVulnReachResponse
	Schema

	400 - ErrorMessage
	Schema

	Default Response
	Schema



	Search for all vulnerabilities associated with an artifact group that contains image(s) with specified digests, and/or source(s) with specified shas. At least one image digest or source sha must be provided. (SearchArtifactGroupsVulnerabilities)
	Parameters
	All responses
	Responses
	200 - PaginatedArtifactGroupVulnerabilityResponse
	Schema

	400 - ErrorMessage
	Schema

	Default Response
	Schema



	Query for images. If no parameters are given, this endpoint will return all images. (V1GetImages)
	Parameters
	All responses
	Responses
	200 - PaginatedImageResponse
	Schema

	404 - ErrorMessage
	Schema

	Default Response
	Schema



	Query for packages with images parameters. If no parameters are given, this endpoint will return all packages related to images. (V1GetImagesPackages)
	Parameters
	All responses
	Responses
	200 - PaginatedPackageResponse
	Schema

	404 - ErrorMessage
	Schema

	Default Response
	Schema



	Query for vulnerabilities with image parameters. If no parameters are give, this endpoint will return all vulnerabilities. (V1GetImagesVulnerabilities)
	Parameters
	All responses
	Responses
	200 - PaginatedVulnerabilityResponse
	Schema

	404 - ErrorMessage
	Schema

	Default Response
	Schema



	Query for packages. If no parameters are given, this endpoint will return all packages. (V1GetPackages)
	Parameters
	All responses
	Responses
	200 - PaginatedPackageResponse
	Schema

	404 - ErrorMessage
	Schema

	Default Response
	Schema



	Query for sources. If no parameters are given, this endpoint will return all sources. (V1GetSources)
	Parameters
	All responses
	Responses
	200 - PaginatedSourceResponse
	Schema

	404 - ErrorMessage
	Schema

	Default Response
	Schema



	Query for packages with source parameters. If no parameters are given, this endpoint will return all packages related to sources. (V1GetSourcesPackages)
	All responses
	Responses
	200 - PaginatedPackageResponse
	Schema

	404 - ErrorMessage
	Schema

	Default Response
	Schema



	Query for vulnerabilities with source parameters. If no parameters are given, this endpoint will return all vulnerabilities. (V1GetSourcesVulnerabilities)
	Parameters
	All responses
	Responses
	200 - PaginatedVulnerabilityResponse
	Schema

	404 - ErrorMessage
	Schema

	Default Response
	Schema




	Models
	ArtifactGroupPostRequest
	ArtifactGroupResponse
	ArtifactGroupSearchFilters
	ArtifactGroupVulnReachFiltersPostRequest
	ArtifactGroupVulnReachPostResponse
	ArtifactGroupVulnSearchFilters
	DeletedAt
	Entity
	ErrorMessage
	Image
	MethodType
	Model
	NullTime
	Package
	PaginatedArtifactGroupVulnReachResponse
	PaginatedResponse
	Rating
	RatingResponse
	Source
	StringArray
	VulnResponse
	Vulnerability
	artifactGroupPostEntity
	artifactGroupPostResponse
	artifactGroupVulnArtifactGroup
	artifactGroupVulnEntity
	artifactGroupVulnPackage
	artifactGroupVulnResult
	paginatedArtifactGroupResponse
	paginatedArtifactGroupVulnerabilityResponse
	paginatedImageResponse
	paginatedPackageResponse
	paginatedSourceResponse
	paginatedVulnerabilityResponse
	responseImage
	responsePackage
	responseSource
	responseVulnerability


	API walkthrough for Supply Chain Security Tools - Store
	Use curl to post an image report

	Connect to the PostgreSQL database
	Deployment details and configuration for Supply Chain Security Tools - Store
	What is deployed
	Deployment configuration
	Supported Network Configurations
	App service type
	Ingress support

	Database configuration
	Using AWS RDS PostgreSQL database
	Using external PostgreSQL database
	Custom database password

	Service accounts

	Exporting certificates

	Configure your AWS RDS PostgreSQL configuration
	Prerequisites
	Setup certificate and configuration

	Use external PostgreSQL database for Supply Chain Security Tools - Store
	Prerequisites
	Set up certificate and configuration
	Validation

	Database backup recommendations for Supply Chain Security Tools - Store
	Backup
	Restore

	Log configuration and usage for Supply Chain Security Tools - Store
	Verbosity levels
	Slow SQL
	Error logs

	Obtaining logs
	API endpoint log output
	Format
	Key-value pairs
	Common to all logs
	Logging query and path parameter values
	API payload log output



	GraphQL endpoint log output
	Format
	Key-value pairs
	Common to all logs
	API payload log output



	Slow SQL query log output
	SQL Query log output

	SQL Query log output
	Format


	Connect to the PostgreSQL database
	Troubleshooting Supply Chain Security Tools - Store
	Querying by insight source returns zero CVEs even though there are CVEs in the source scan
	Symptom
	Solution

	Persistent volume retains data
	Symptom
	Solution

	Missing persistent volume
	Symptom
	Solution

	Builds fail due to volume errors on EKS running Kubernetes v1.23
	Symptom
	Explanation
	Solution

	Certificate Expiries
	Symptom
	Explanation
	Solution

	Troubleshooting errors from Tanzu Application Platform GUI related to SCST - Store
	An error occurred while loading data from the Metadata Store
	Symptom
	Cause
	Solution



	Troubleshoot upgrading Supply Chain Security Tools - Store
	Database deployment does not exist
	Invalid checkpoint record
	Upgraded pod hanging

	Failover, redundancy, and backups for Supply Chain Security Tools - Store
	API Server
	Database

	Custom certificate configuration for Supply Chain Security Tools - Store
	Default configuration
	(Optional) Setting up custom ingress TLS certificate
	Place the certificates in secret
	Update tap-values.yaml

	Additional resources

	TLS configuration for Supply Chain Security Tools - Store
	Setting up custom ingress TLS ciphers
	Example custom TLS settings
	Additional resources

	Certificate rotation for Supply Chain Security Tools - Store
	Certificates
	Certificate duration setting

	Ingress support for Supply Chain Security Tools - Store
	Ingress configuration
	Get the TLS CA certificate
	Additional Resources

	Use your LoadBalancer with Supply Chain Security Tools - Store
	Configure LoadBalancer
	Port forwarding
	Edit your /etc/hosts file for Port Forwarding

	Configure the Insight plug-in

	Use your NodePort with Supply Chain Security Tools - Store
	Overview
	Edit your /etc/hosts file for Port Forwarding

	Configure the Insight plug-in

	Multicluster setup for Supply Chain Security Tools - Store
	Overview
	Prerequisites
	Procedure summary
	Copy SCST - Store CA certificate from View cluster
	Copy SCST - Store authentication token from the View cluster
	Apply the CA certificate and authentication token to a new Kubernetes cluster
	Install Build profile
	More information about how Build profile uses the configuration

	Configure developer namespaces
	Exporting SCST - Store secrets to a developer namespace in a Tanzu Application Platform multicluster deployment

	Additional resources

	Developer namespace setup for Supply Chain Security Tools - Store
	Overview
	Single cluster - Using the Tanzu Application Platform values file
	Multicluster - Using SecretExport
	Next steps

	Retrieve access tokens for Supply Chain Security Tools - Store
	Overview
	Retrieving the read-write access token
	Retrieving the read-only access token
	Using an access token
	Additional Resources

	Retrieve and create service accounts for Supply Chain Security Tools - Store
	Overview
	Create read-write service account
	Create a read-only service account
	With a default cluster role
	With a custom cluster role

	Additional Resources

	Create a service account with a custom cluster role for Supply Chain Security Tools - Store
	Example service account
	Additional Resources

	Install Supply Chain Security Tools - Store independent from Tanzu Application Platform profiles
	Prerequisites
	Install

	Overview of Tanzu Application Platform GUI
	Overview of Tanzu Application Platform GUI
	Install Tanzu Application Platform GUI
	Prerequisites
	Procedure


	Runtime configuration options for Tanzu Application Platform GUI
	Identify the Tanzu Application Platform GUI version you have available
	Display the possible values options for Tanzu Application Platform GUI

	Customize the Tanzu Application Platform GUI portal
	Customize branding
	Customize the Software Catalog page
	Customize the name of the organization
	Prevent changes to the software catalog

	Customize the Authentication page
	Customize the default view
	Customize security banners

	Customize the Tanzu Application Platform GUI portal
	Customize branding
	Customize the Software Catalog page
	Customize the name of the organization
	Prevent changes to the software catalog

	Customize the Authentication page
	Customize the default view
	Customize security banners

	Customize the Support menu
	Overview
	Customizing
	Structure of the support configuration
	URL
	Items
	Title
	Icon
	Links



	Access Tanzu Application Platform GUI
	Access with the LoadBalancer method (default)
	Access with the shared Ingress method

	Catalog operations
	Adding catalog entities
	Users and groups
	Systems
	Components

	Update software catalogs
	Register components
	Deregister components
	Add or change organization catalog locations

	Install demo apps and their catalogs
	Yelb system
	Install Yelb
	Install the Yelb catalog



	View resources on multiple clusters in Tanzu Application Platform GUI
	Set up a Service Account to view resources on a cluster
	Update Tanzu Application Platform GUI to view resources on multiple clusters
	View resources on multiple clusters in the Runtime Resources Visibility plug-in

	Set up authentication for Tanzu Application Platform GUI
	View your Backstage Identity
	Configure an authentication provider
	(Optional) Allow guest access
	(Optional) Customize the login page

	View resources on remote clusters
	View resources on remote clusters
	View resources on remote EKS clusters
	Set up the OIDC provider
	Configure the Kubernetes cluster with the OIDC provider
	Configure the Tanzu Application Platform GUI
	Upgrade the Tanzu Application Platform GUI package

	View resources on remote GKE clusters
	Leverage an external OIDC provider
	Set up the OIDC provider
	Configure the GKE cluster with the OIDC provider
	Configure visibility of the remote cluster
	Update the tap-gui package to finish leveraging the external OIDC provider

	Leverage Google’s OIDC provider
	Add redirect configuration on the OIDC side
	Configure visibility of the remote GKE cluster
	Update the tap-gui package to finish leveraging the Google OIDC provider


	View runtime resources on authorization-enabled clusters
	Globally-scoped components
	Namespace-scoped components

	Assign roles and permissions on Kubernetes clusters
	Create roles
	Cluster-scoped roles
	Namespace-scoped roles

	Create users
	Assign users to their roles

	Add Tanzu Application Platform GUI integrations
	Add a GitHub provider integration
	Add a Git-based provider integration that isn’t GitHub
	Add a non-Git provider integration
	Update the package profile

	Configure the Tanzu Application Platform GUI database
	Configure a PostgreSQL database
	Edit tap-values.yaml
	(Optional) Configure extra parameters

	Update the package profile


	Generate and publish TechDocs
	Create an Amazon S3 bucket
	Configure Amazon S3 access
	Create an AWS IAM user group
	Create an AWS IAM user

	Find the catalog locations and their entities’ namespace, kind, and name
	Use the TechDocs CLI to generate and publish TechDocs
	Update the techdocs section in app-config.yaml to point to the Amazon S3 bucket

	Overview of Tanzu Application Platform GUI plug-ins
	Overview of Tanzu Application Platform GUI plug-ins
	Runtime resources visibility in Tanzu Application Platform GUI
	Prerequisite
	If you have a metrics server
	Visualize Workloads on Tanzu Application Platform GUI
	Navigate to the Runtime Resources Visibility screen
	Resources

	Resources details page
	Overview card
	Status card
	Ownership card
	Annotations and Labels

	Selecting completed supply chain pods
	Navigating to the pod Details page
	Overview of pod metrics

	Navigating to Application Live View
	Viewing pod logs
	Pausing and resuming logs
	Filtering by container
	Filtering by date and time
	Changing log levels
	Line wrapping
	Downloading logs
	Connection interruptions


	Application Live View in Tanzu Application Platform GUI
	Overview
	Entry point to Application Live View plug-in

	Application Live View in Tanzu Application Platform GUI
	Overview
	Entry point to Application Live View plug-in

	Application Live View for Spring Boot applications in Tanzu Application Platform GUI
	Details page
	Health page
	Environment page
	Log Levels page
	Threads page
	Memory page
	Request Mappings page
	HTTP Requests page
	Caches page
	Configuration Properties page
	Conditions page
	Scheduled Tasks page
	Beans page
	Metrics page
	Actuator page
	Troubleshooting

	Application Live View for Spring Cloud Gateway applications in Tanzu Application Platform GUI
	API Success Rate page
	API Overview page
	API Authentications By Path page
	Troubleshooting

	Application Live View for Steeltoe applications in Tanzu Application Platform GUI
	Details page
	Health page
	Environment page
	Log Levels page
	Threads page
	Memory page
	Request Mappings page
	HTTP Requests page
	Metrics page
	Actuator page
	Troubleshooting

	Application Accelerator in Tanzu Application Platform GUI
	Overview
	Access Application Accelerator
	Configure project generation
	Create the project
	Develop your code
	Next steps

	Application Accelerator in Tanzu Application Platform GUI
	Overview
	Access Application Accelerator
	Configure project generation
	Create the project
	Develop your code
	Next steps

	Install Application Accelerator
	Prerequisites
	Install
	Configure properties and resource use

	Create an Application Accelerator Git repository during project creation
	Overview
	Supported Providers
	Configure
	(Optional) Deactivate Git repository creation

	Create a Project

	API documentation plug-in in Tanzu Application Platform GUI
	Overview
	Use the API documentation plug-in
	Create a new API entry
	Manually create a new API entry
	Automatically create a new API entry


	API documentation plug-in in Tanzu Application Platform GUI
	Overview
	Use the API documentation plug-in
	Create a new API entry
	Manually create a new API entry
	Automatically create a new API entry


	Get started with the API documentation plug-in
	API entries
	About API entities
	Add a demo API entity to the Tanzu Application Platform GUI software catalog
	Update your demo API entry

	Validation Analysis of API specifications
	About the Validation Analysis card
	Automatic OpenAPI specification validation


	Security Analysis in Tanzu Application Platform GUI
	Overview
	Installing and configuring
	Accessing the plug-in
	Viewing vulnerability data
	Viewing CVE and package details

	Supply Chain Choreographer in Tanzu Application Platform GUI
	Overview
	Prerequisites
	Enable CVE scan results
	Automatically connect Tanzu Application Platform GUI to the Metadata Store
	Manually connect Tanzu Application Platform GUI to the Metadata Store

	Enable GitOps Pull Request Flow
	Supply Chain Visibility
	View Vulnerability Scan Results

	Overview of enabling TLS for Tanzu Application Platform GUI
	Concepts
	Certificate delegation
	cert-manager, certificates, and ClusterIssuers

	Guides

	Overview of enabling TLS for Tanzu Application Platform GUI
	Concepts
	Certificate delegation
	cert-manager, certificates, and ClusterIssuers

	Guides

	Configure a TLS certificate by using an existing certificate
	Prerequisites
	Procedure

	Configure a TLS certificate by using a self-signed certificate
	Prerequisite
	Procedure

	Configure a TLS certificate by using cert-manager and a ClusterIssuer
	Prerequisites
	Procedure

	Upgrade Tanzu Application Platform GUI
	Considerations
	Upgrade within a Tanzu Application Platform profile
	Upgrade Tanzu Application Platform GUI individually

	Troubleshoot Tanzu Application Platform GUI
	General issues
	Tanzu Developer Portal reports that the port range is not valid
	Symptom
	Cause
	Solution

	Tanzu Application Platform GUI does not load the catalog
	Symptom
	Cause
	Solution

	Updating a supply chain causes an error (Can not create edge...)
	Symptom
	Solution

	Catalog not found
	Symptom
	Cause
	Solution

	Issues updating the values file
	Symptom
	Solution

	Pull logs from Tanzu Application Platform GUI
	Symptom
	Solution

	Ad-blocking software interference
	Symptom
	Cause
	Solution


	TechDocs content does not load
	Symptom
	Cause
	Solution

	Runtime Resources tab issues
	Error communicating with Tanzu Application Platform web server
	Symptom
	Causes
	Solution

	No data available
	Symptom
	Cause
	Solution

	Errors retrieving resources
	Symptom


	Accelerators page issues
	No accelerators
	Symptom
	Cause
	Solution


	Security Analysis plug-in issues
	Empty Impacted Workloads table
	Symptom
	Cause
	Solution


	Supply Chain Choreographer plug-in issues
	An error occurred while loading data from the Metadata Store
	Symptom
	Cause
	Solution



	Overview of Tanzu Application Platform Telemetry
	Tanzu Application Platform usage reports

	Overview of Tanzu Application Platform Telemetry
	Tanzu Application Platform usage reports

	Install Tanzu Application Platform Telemetry
	Prerequisites
	Install

	Deployment details and configurations of Tanzu Application Platform Telemetry
	What is deployed
	Deployment configuration

	Overview of Tanzu Build Service
	Overview

	Overview of Tanzu Build Service
	Overview

	Install Tanzu Build Service
	Before you begin
	Prerequisites
	Deprecated Features
	Install the Tanzu Build Service package
	Use AWS IAM authentication for registry credentials

	Install full dependencies
	(Optional) Deactivate the CNB BOM format

	Install Tanzu Build Service on an air-gapped environment
	Before you begin
	Prerequisites
	Deprecated Features
	Install the Tanzu Build Service package
	Install the Tanzu Build Service dependencies

	Configure Tanzu Build Service properties on a workload
	Overview
	Configure build-time service bindings
	Configure environment variables
	Configure the service account
	Configure the cluster builder
	Configure the workload container image registry
	Configure custom CA certificates for a single workload using service bindings
	Using custom CA certificates for all workloads

	Create a signed container image with Tanzu Build Service
	Prerequisites
	Configure Tanzu Build Service to sign your image builds

	Tanzu Build Service Dependencies
	How dependencies are installed
	View installed dependencies

	Bionic and Jammy stacks
	About lite and full dependencies
	Lite dependencies
	Lite dependencies: stacks
	Lite dependencies: buildpacks

	Full dependencies
	Full dependencies: stacks
	Full dependencies: buildpacks

	Dependency comparison

	Updating dependencies

	Security context constraint for OpenShift
	Troubleshoot Tanzu Build Service
	Builds fail due to volume errors on EKS running Kubernetes v1.23
	Symptom
	Cause
	Solution

	Smart-warmer-image-fetcher reports ErrImagePull due to dockerd’s layer depth limitation
	Symptom
	Cause
	Solution

	Nodes fail due to “trying to send message larger than max” error
	Symptom
	Cause
	Solution

	Build platform uses the old build cache after upgrade to new stack
	Symptom
	Solution

	Switching from buildservice.kp_default_repository to shared.image_registry
	Symptom
	Cause
	Solution


	Create a GitHub build action (Alpha)
	Prerequisites
	Procedure
	Developer namespace
	Access to Kubernetes API server
	Permissions Required

	Use the action

	Debugging

	Overview of Tanzu Developer Tools for IntelliJ
	Extension features
	Next steps

	Overview of Tanzu Developer Tools for IntelliJ
	Extension features
	Next steps

	Install Tanzu Developer Tools for IntelliJ
	Prerequisites
	Install
	Update
	Uninstall
	Next steps

	Get Started with Tanzu Developer Tools for IntelliJ
	Prerequisite
	Configure source image registry
	Run Tanzu Developer Tools for IntelliJ
	Set up Tanzu Developer Tools
	Create the workload.yaml file
	Create the catalog-info.yaml file
	Create the Tiltfile file
	Create the .tanzuignore file
	View an example project
	Next steps

	Use Tanzu Developer Tools for IntelliJ
	Workload Actions
	Apply a workload
	Delete a workload

	Debugging on the cluster
	Start debugging on the cluster
	Stop Debugging on the Cluster

	Live Update
	Start Live Update
	Stop Live Update

	Tanzu Workloads panel
	Working with microservices in a monorepo
	Recommended structure: Microservices that can be built independently
	Alternative structure: Services with build-time interdependencies

	Changing logging verbosity

	Glossary of terms
	Live Update
	Tiltfile
	Debugging on the cluster
	YAML file format
	workload.yaml file
	catalog-info.yaml file
	Code snippet
	Source image
	Local path
	Kubernetes context
	Kubernetes namespace

	Troubleshoot Tanzu Developer Tools for IntelliJ
	Tanzu Debug re-applies the workload when namespace field is empty
	Symptoms
	Cause
	Solution

	Workload is wrongly re-applied because of debug configuration selected from the launch configuration drop-down menu
	Symptoms
	Cause
	Solution

	Unable to view workloads on the panel when connected to GKE cluster
	Symptom
	Cause
	Solution

	Deactivated launch controls after running a launch configuration
	Symptom
	Cause

	Starting a Tanzu Debug session fails with Unable to open debugger port
	Symptom
	Cause
	Solution

	Timeout error when Live Updating
	Symptom
	Cause
	Solution

	Tanzu Panel empty when using a GKE cluster on macOS
	Symptom
	Cause
	Solution

	Tanzu panel shows workloads but doesn’t show Kubernetes resources
	Symptom
	Cause
	Solution

	Tanzu Workloads panel workloads only have describe and delete action
	Symptom
	Cause
	Solution

	Workload actions do not work when in a project with spaces in the name
	Symptom
	Cause
	Solution

	config-writer-pull-requester is categorized as Unknown
	Symptom
	Solution

	Frequent application restarts
	Symptom
	Cause
	Solution


	Overview of Tanzu Developer Tools for Visual Studio
	Extension features
	Next steps

	Overview of Tanzu Developer Tools for Visual Studio
	Extension features
	Next steps

	Install Tanzu Developer Tools for Visual Studio
	Prerequisites
	Install
	Update
	Uninstall
	Next steps

	Get Started with Tanzu Developer Tools for Visual Studio
	Prerequisite
	Configure source image registry
	Set up Tanzu Developer Tools
	Create the workload.yaml file
	Create the catalog-info.yaml file
	Create the Tiltfile file
	Create the .tanzuignore file
	View an example project
	Next steps

	Use Tanzu Developer Tools for Visual Studio
	Configure settings
	Workload Actions
	Apply a workload
	Delete a workload
	Start debugging on the cluster

	Live Update
	Start Live Update
	Stop Live Update

	Tanzu Workloads panel
	Extension logs

	Troubleshoot Tanzu Developer Tools for Visual Studio
	Stop button causes workload to fail
	Symptom
	Solution

	Frequent application restarts
	Symptom
	Cause
	Solution


	Overview of Tanzu Developer Tools for VS Code
	Extension features

	Overview of Tanzu Developer Tools for VS Code
	Extension features

	Install Tanzu Developer Tools for VS Code
	Prerequisites
	Install
	Configure
	Uninstall
	Next steps

	Get started with Tanzu Developer Tools for VS Code
	Prerequisite
	Configure source image registry
	Set up Tanzu Developer Tools
	Create the workload.yaml file
	Create the catalog-info.yaml file
	Create the Tiltfile file
	Create a .tanzuignore file

	View an example project
	Next steps

	Use Tanzu Developer Tools for VS Code
	Configure for multiple projects in the workspace
	Workload Commands
	Apply a workload
	Debugging on the cluster
	Start debugging on the cluster
	Stop Debugging on the cluster
	Debug apps in a microservice repository

	Live Update
	Start Live Update
	Stop Live Update
	Deactivate Live Update
	Live Update status
	Live Update apps in a microservices repository

	Delete a workload

	Switch namespaces
	Tanzu Workloads panel
	Working with Microservices in a Monorepo
	Recommended structure: Microservices that can be built independently
	Alternative structure: Services with build-time interdependencies
	Changing logging verbosity

	Pinniped compatibility
	OAuth
	LDAP

	Integrate Live Hover by using Spring Boot Tools
	Prerequisites
	Activate the Live Hover feature
	Deploy a Workload to the Cluster

	Use Memory View in Spring Boot Dashboard
	Prerequisites
	Deploy a workload
	View memory use in Spring Boot Dashboard

	Troubleshoot Tanzu Developer Tools for VS Code
	Unable to view workloads on the panel when connected to GKE cluster
	Symptom
	Cause
	Solution

	Live Update fails with UnsupportedClassVersionError
	Symptom
	Cause
	Solution

	Timeout error when Live Updating
	Symptom
	Cause
	Solution

	Task-related error when running a Tanzu Debug launch configuration
	Symptom
	Cause
	Solution

	Tanzu Workloads panel workloads only show delete command
	Symptom
	Cause
	Solution

	Workload actions do not work when in a project with spaces in the name
	Symptom
	Cause
	Solution

	Cannot apply workload because of a malformed kubeconfig file
	Symptom
	Cause
	Solution

	config-writer-pull-requester is categorized as Unknown
	Symptom
	Solution

	Frequent application restarts
	Symptom
	Cause
	Solution


	Overview of Tekton
	Overview of Tekton
	Install Tekton
	Prerequisites
	Install Tekton Pipelines
	Configure a namespace to use Tekton Pipelines




