
VMware Tanzu Greenplum
Platform Extension
Framework v6.2
Documentation

VMware Tanzu Greenplum Platform Extension Framework
6.2

You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright © 2022 VMware, Inc. All rights reserved. Copyright and trademark information.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 2

https://docs.vmware.com/copyright-trademark.html

Contents

VMware Tanzu™ Greenplum® Platform Extension Framework (PXF) 15

Tanzu Greenplum Platform Extension Framework 6.x Release Notes 17

Supported Platforms 17

Upgrading to PXF 6.2.x 17

Release 6.2.3 17

Changed Features 17

Resolved Issues 18

Release 6.2.2 18

Changed Features 18

Resolved Issues 18

Release 6.2.1 18

Changed Features 18

Resolved Issues 19

Release 6.2.0 19

New and Changed Features 19

Resolved Issues 20

Release 6.1.0 20

New and Changed Features 20

Resolved Issues 21

Release 6.0.1 21

Resolved Issues 21

Release 6.0.0 21

New and Changed Features 21

Removed Features 24

Resolved Issues 24

Deprecated Features 24

Known Issues and Limitations 25

Installing PXF 26

Prerequisites 26

Downloading the PXF Package 27

Installing the PXF Package 27

Next Steps 28

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 3

Installing Java for PXF 29

Prerequisites 29

Procedure 29

Uninstalling PXF 30

Prerequisites 30

Uninstalling PXF 30

Upgrading to PXF 6 32

Upgrading from PXF 5.x 32

Step 1: Performing the PXF Pre-Upgrade Actions 32

Step 2: Installing PXF 6.x 32

Step 3: Completing the Upgrade to PXF 6.x 33

Upgrading from an Earlier PXF 6 Release 36

Step 1: Perform the PXF Pre-Upgrade Actions 36

Step 2: Installing the New PXF 6.x 37

Step 3: Completing the Upgrade to a Newer PXF 6.x 37

Greenplum Platform Extension Framework (PXF) 39

Basic Usage 40

Get Started Configuring PXF 40

Get Started Using PXF 40

Introduction to PXF 42

Supported Platforms 42

Operating Systems 42

Java 42

Hadoop 42

Architectural Overview 42

About Connectors, Servers, and Profiles 42

Creating an External Table 43

Other PXF Features 44

About PXF Filter Pushdown 44

About Column Projection in PXF 46

About the PXF Installation and Configuration Directories 48

PXF Installation Directories 48

Relocating $PXF_BASE 49

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 4

About the PXF Configuration Files 49

pxf-application.properties 50

pxf-env.sh 50

pxf-log4j2.xml 51

pxf-profiles.xml 51

Modifying the PXF Configuration 51

Configuring PXF 51

Configuring PXF Servers 52

About Server Template Files 53

About the Default Server 54

Configuring a Server 54

About the pxf-site.xml Configuration File 54

About the pxf.fs.basePath Property 56

Configuring a PXF User 56

Procedure 57

About Configuration Property Precedence 57

Using a Server Configuration 58

Configuring PXF Hadoop Connectors (Optional) 58

Prerequisites 59

Procedure 59

About Updating the Hadoop Configuration 60

Configuring the Hadoop User, User Impersonation, and Proxying 61

Use Cases and Configuration Scenarios 61

Accessing Hadoop as the Greenplum User Proxied by gpadmin 61

Accessing Hadoop as the Greenplum User Proxied by a User 62

Accessing Hadoop as the gpadmin User 62

Accessing Hadoop as a User 63

Configure the Hadoop User 63

Configure PXF User Impersonation 64

Configure Hadoop Proxying 65

Hive User Impersonation 66

HBase User Impersonation 66

Configuring PXF for Secure HDFS 66

Prerequisites 67

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 5

Use Cases and Configuration Scenarios 67

Accessing Hadoop as the Greenplum User Proxied by the Kerberos Principal 67

Accessing Hadoop as the Kerberos Principal 68

Accessing Hadoop as a User 68

Procedure 69

Configuring PXF with a Microsoft Active Directory Kerberos KDC Server 69

Configuring PXF with an MIT Kerberos KDC Server 71

Configuring Connectors to Minio and S3 Object Stores (Optional) 73

About Object Store Configuration 73

Minio Server Configuration 74

S3 Server Configuration 74

Configuring S3 Server-Side Encryption 74

Configuring SSE via an S3 Bucket Policy (Recommended) 75

Specifying SSE Options in a PXF S3 Server Configuration 75

Example Server Configuration Procedure 76

Configuring Connectors to Azure and Google Cloud Storage Object
Stores (Optional)

77

About Object Store Configuration 77

Azure Blob Storage Server Configuration 77

Azure Data Lake Server Configuration 78

Google Cloud Storage Server Configuration 78

Example Server Configuration Procedure 78

Configuring the JDBC Connector (Optional) 79

About JDBC Configuration 80

JDBC Driver JAR Registration 80

JDBC Server Configuration 80

Connection-Level Properties 81

Connection Transaction Isolation Property 81

Statement-Level Properties 82

Session-Level Properties 82

About JDBC Connection Pooling 83

Tuning the Maximum Connection Pool Size 84

JDBC User Impersonation 84

Example Configuration Procedure 85

About Session Authorization 85

Session Authorization Considerations for Connection Pooling 86

JDBC Named Query Configuration 86

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 6

Defining a Named Query 87

Query Naming 87

Referencing a Named Query 87

Overriding the JDBC Server Configuration 87

Configuring Access to Hive 88

Example Configuration Procedure 88

Configuring the JDBC Connector for Hive Access (Optional) 89

JDBC Server Configuration 89

Example Configuration Procedure 90

Starting, Stopping, and Restarting PXF 93

Starting PXF 93

Prerequisites 93

Procedure 94

Stopping PXF 94

Prerequisites 94

Procedure 94

Restarting PXF 94

Prerequisites 94

Procedure 94

Granting Users Access to PXF 95

Enabling PXF in a Database 95

Disabling PXF in a Database 95

Granting a Role Access to PXF 96

Registering PXF Library Dependencies 96

Registering a JAR Dependency 96

Registering a Native Library Dependency 97

Procedure 97

Monitoring PXF 98

Viewing PXF Status on the Command Line 98

About PXF Service Runtime Monitoring 99

Examining PXF Metrics 99

Filtering Metric Data 100

PXF Service Host and Port 100

Procedure 101

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 7

Logging 101

Configuring the Log Directory 102

Configuring Service-Level Logging 102

Configuring for a Specific Host 103

Configuring for the Cluster 104

Configuring Client-Level Logging 104

Memory and Threading 105

Increasing the JVM Memory for PXF 105

Configuring Out of Memory Condition Actions 106

Auto-Killing the PXF Server 106

Dumping the Java Heap 106

Procedure 107

Another Option for Resource-Constrained PXF Segment Hosts 108

Accessing Hadoop with PXF 110

Architecture 110

Prerequisites 111

HDFS Shell Command Primer 112

Connectors, Data Formats, and Profiles 112

Choosing the Profile 113

Specifying the Profile 114

Reading and Writing HDFS Text Data 114

Prerequisites 114

Reading Text Data 114

Example: Reading Text Data on HDFS 115

Reading Text Data with Quoted Linefeeds 116

Example: Reading Multi-Line Text Data on HDFS 117

Writing Text Data to HDFS 118

Example: Writing Text Data to HDFS 119

Procedure 119

Reading and Writing HDFS Avro Data 121

Prerequisites 122

Working with Avro Data 122

Data Type Mapping 122

Read Mapping 122

Write Mapping 123

Avro Schemas and Data 124

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 8

Creating the External Table 124

Example: Reading Avro Data 126

Create Schema 126

Create Avro Data File (JSON) 127

Reading Avro Data 128

Writing Avro Data 128

Example: Writing Avro Data 129

Reading JSON Data from HDFS 130

Prerequisites 130

Working with JSON Data 130

JSON to Greenplum Database Data Type Mapping 131

JSON Data Read Modes 131

Loading the Sample JSON Data to HDFS 132

Creating the External Table 133

Example: Reading a JSON File with Single Line Records 134

Example: Reading a JSON file with Multi-Line Records 134

Other Methods to Read a JSON Array 135

Using Array Element Projection 135

Specifying a Single Text-type Column 136

Reading ORC Data 136

Prerequisites 137

About the ORC Data Format 137

Data Type Mapping 137

Creating the External Table 138

Example: Reading an ORC File on HDFS 139

Reading and Writing HDFS Parquet Data 141

Prerequisites 141

Data Type Mapping 141

Read Mapping 141

Write Mapping 142

Creating the External Table 143

Example 144

Reading and Writing HDFS SequenceFile Data 145

Prerequisites 145

Creating the External Table 145

Reading and Writing Binary Data 147

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 9

Example: Writing Binary Data to HDFS 147

Reading the Record Key 150

Example: Using Record Keys 151

Reading a Multi-Line Text File into a Single Table Row 151

Prerequisites 151

Reading Multi-Line Text and JSON Files 151

Example: Reading an HDFS Text File into a Single Table Row 153

Reading Hive Table Data 154

Prerequisites 155

Hive Data Formats 155

Data Type Mapping 155

Primitive Data Types 155

Complex Data Types 156

Sample Data Set 156

Hive Command Line 157

Example: Creating a Hive Table 157

Determining the HDFS Location of a Hive Table 157

Querying External Hive Data 158

Accessing TextFile-Format Hive Tables 159

Example: Using the hive Profile 159

Example: Using the hive:text Profile 159

Accessing RCFile-Format Hive Tables 160

Example: Using the hive:rc Profile 160

Accessing ORC-Format Hive Tables 161

Profiles Supporting the ORC File Format 161

Example: Using the hive:orc Profile 161

Example: Using the Vectorized hive:orc Profile 162

Accessing Parquet-Format Hive Tables 163

Accessing Avro-Format Hive Tables 163

Working with Complex Data Types 164

Example: Using the hive Profile with Complex Data Types 164

Example: Using the hive:orc Profile with Complex Data Types 166

Partition Pruning 167

Example: Using the hive Profile to Access Partitioned Homogenous Data 167

Example: Using the hive Profile to Access Partitioned Heterogeneous Data 169

Using PXF with Hive Default Partitions 171

Reading HBase Table Data 172

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 10

Prerequisites 172

HBase Primer 172

HBase Shell 172

Example: Creating an HBase Table 172

Querying External HBase Data 173

Data Type Mapping 174

Column Mapping 174

Direct Mapping 174

Indirect Mapping via Lookup Table 174

Row Key 175

Accessing Azure, Google Cloud Storage, Minio, and S3 Object Stores
with PXF

176

Prerequisites 176

Connectors, Data Formats, and Profiles 176

Sample CREATE EXTERNAL TABLE Commands 177

About Accessing the S3 Object Store 178

Overriding the S3 Server Configuration with DDL 178

Using the Amazon S3 Select Service 179

Reading and Writing Text Data in an Object Store 179

Prerequisites 179

Reading Text Data 179

Example: Reading Text Data from S3 180

Reading Text Data with Quoted Linefeeds 182

Example: Reading Multi-Line Text Data from S3 182

Writing Text Data 184

Example: Writing Text Data to S3 185

Procedure 185

Reading and Writing Avro Data in an Object Store 187

Prerequisites 187

Working with Avro Data 187

Creating the External Table 187

Example 188

Reading JSON Data from an Object Store 189

Prerequisites 189

Working with JSON Data 189

Creating the External Table 189

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 11

Example 190

Reading ORC Data from an Object Store 190

Prerequisites 191

Data Type Mapping 191

Creating the External Table 191

Example 192

Reading and Writing Parquet Data in an Object Store 192

Prerequisites 192

Data Type Mapping 192

Creating the External Table 193

Example 194

Reading and Writing SequenceFile Data in an Object Store 194

Prerequisites 194

Creating the External Table 194

Example 195

Reading a Multi-Line Text File into a Single Table Row 196

Prerequisites 196

Creating the External Table 196

Example 197

Reading CSV and Parquet Data from S3 Using S3 Select 197

Enabling PXF to Use S3 Select 198

Reading Parquet Data with S3 Select 198

Specifying the Parquet Column Compression Type 198

Creating the External Table 199

Reading CSV files with S3 Select 199

Handling the CSV File Header 199

Specifying the CSV File Compression Type 200

Creating the External Table 200

Accessing an SQL Database with PXF (JDBC) 202

Prerequisites 202

Data Types Supported 202

About Accessing Hive via JDBC 203

Accessing an External SQL Database 203

JDBC Custom Options 204

Batching Insert Operations (Write) 205

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 12

Batching on Read Operations 205

Thread Pooling (Write) 205

Partitioning (Read) 206

Examples 207

About Using Named Queries 207

Overriding the JDBC Server Configuration with DDL 208

Example: Reading From and Writing to a PostgreSQL Table 209

Create a PostgreSQL Table 209

Configure the JDBC Connector 210

Read from the PostgreSQL Table 210

Write to the PostgreSQL Table 211

Example: Reading From and Writing to a MySQL Table 211

Create a MySQL Table 212

Configure the MySQL Connector 212

Read from the MySQL Table 213

Write to the MySQL Table 214

Example: Reading From and Writing to an Oracle Table 214

Create an Oracle Table 215

Configure the Oracle Connector 215

Read from the Oracle Table 216

Write to the Oracle Table 217

Example: Reading From and Writing to a Trino (formerly Presto SQL)
Table

217

Create a Trino Table 218

Configure the Trino Connector 218

Read from a Trino Table 220

Write to the Trino Table 220

Example: Using a Named Query with PostgreSQL 221

Create the PostgreSQL Tables and Assign Permissions 221

Configure the Named Query 222

Read the Query Results 222

Accessing Files on a Network File System with PXF 225

Prerequisites 225

Configuring a PXF Network File System Server 225

Creating the External Table 227

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 13

Example: Reading From and Writing to a CSV File on a Network File System 227

Create a CSV File 228

Create the Network File System Server 228

Read Data 228

Write Data and Read Again 228

Troubleshooting PXF 230

PXF Errors 230

PXF Logging 230

Addressing PXF JDBC Connector Time Zone Errors 231

About PXF External Table Child Partitions 231

Addressing Hive MetaStore Connection Errors 232

PXF Utility Reference 233

pxf cluster 233

Synopsis 233

Description 233

Commands 234

Options 235

Examples 235

See Also 235

pxf 235

Synopsis 235

Description 236

Commands 236

Options 237

Examples 237

See Also 237

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 14

VMware Tanzu™ Greenplum® Platform
Extension Framework (PXF)

Revised: 2022-02-02

The VMware Tanzu Greenplum Platform Extension Framework (PXF) provides parallel, high

throughput data access and federated queries across heterogeneous data sources via built-in

connectors that map a Greenplum Database external table definition to an external data source. PXF

has its roots in the Apache HAWQ project.

Release Notes

Installing PXF

Uninstalling PXF

Upgrading to PXF 6

Overview of PXF

Introduction to PXF

This topic introduces PXF concepts and usage.

Administering PXF

This set of topics details the administration of PXF including configuration and management

procedures.

Accessing Hadoop with PXF

This set of topics describe the PXF Hadoop connectors, the data types they support, and the

profiles that you can use to read from and write to HDFS.

Accessing Azure, Google Cloud Storage, Minio, and S3 Object Stores with PXF

This set of topics describe the PXF object storage connectors, the data types they support,

and the profiles that you can use to read data from and write data to the object stores.

Accessing an SQL Database with PXF (JDBC)

This topic describes how to use the PXF JDBC connector to read from and write to an

external SQL database such as Postgres or MySQL.

Accessing Files on a Network File System with PXF

This topic describes how to use PXF to access files on a network file system that is mounted

on your Greenplum Database hosts.

Troubleshooting PXF

This topic details the service- and database- level logging configuration procedures for PXF.

It also identifies some common PXF errors and describes how to address PXF memory

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 15

issues.

PXF Utility Reference

The PXF utility reference.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 16

Tanzu Greenplum Platform Extension
Framework 6.x Release Notes

The Tanzu Greenplum Platform Extension Framework (PXF) is included in the Tanzu Greenplum

Database Server distribution in Greenplum version 6.18.x and older, and in version 5.28.0 and older.

PXF for Redhat/CentOS and Oracle Enterprise Linux is updated and distributed independently of

Greenplum Database starting with PXF version 5.13.0. PXF version 5.16.0 is the first independent

release that includes an Ubuntu distribution.

You may need to download and install the PXF package to obtain the most recent version of this

component.

Supported Platforms

The independent PXF 6.x distribution is compatible with these operating system platform and

Greenplum Database versions:

OS Version Greenplum Version

RHEL 7.x, CentOS 7.x 5.21.2+, 6.x

OEL 7.x, Ubuntu 18.04 LTS 6.x

PXF is compatible with these Java and Hadoop component versions:

PXF Version Java Versions Hadoop Versions Hive Server Versions HBase Server Version

6.2.x, 6.1.0, 6.0.x 8, 11 2.x, 3.1+ 1.x, 2.x, 3.1+ 1.3.2

5.16.x, 5.15.x, 5.14, 5.13 8, 11 2.x, 3.1+ 1.x, 2.x, 3.1+ 1.3.2

Upgrading to PXF 6.2.x

If you are currently using PXF with Greenplum Database, you may be required to perform upgrade

actions for this release. Review Upgrading from PXF 5 or Upgrading from an Earlier PXF 6 Release

to plan your upgrade to PXF version 6.2.x.

Release 6.2.3

Release Date: February 2, 2022

Changed Features

PXF 6.2.3 includes these changes:

PXF bundles version 2.17.1 of the log4j2 library to mitigate CVE-2021-44832.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 17

https://nvd.nist.gov/vuln/detail/CVE-2021-44832

PXF updates the version of go that it uses to build the pxf CLI tool to version 1.17.6 to

mitigate CVE-2021-44716.

PXF now writes early startup messages that were previously directed to stdout/stderr and

ignored to the file $PXF_LOG_DIR/pxf_app.out.

PXF introduces a performance improvement when it iterates over a list of fragments.

Resolved Issues

PXF 6.2.3 resolves these issues:

Issue # Summary

CVE‑2021‑44832 Updates the bundled log4j2 library to version 2.17.1. (Resolved by PR-735.)

CVE‑2021‑44716 Updates the go library to version 1.17.6. (Resolved by PR-740.)

Release 6.2.2

Release Date: December 22, 2021

Changed Features

PXF 6.2.2 includes these changes:

PXF bundles version 2.17.0 of the log4j2 library to mitigate CVE-2021-45105.

PXF downgrades the bundled version of Spring Boot to resolve issue 31927.

Resolved Issues

PXF 6.2.2 resolves these issues:

Issue # Summary

CVE‑2021‑45105 Updates the bundled log4j2 library to version 2.17.0. (Resolved by PR-733.)

31927 Resolves an issue where the PXF C extension reported a partial file transfer error when a

data-less response that the PXF server sent to Greenplum Database failed to include a zero-length

chunk. PXF 6.2.2 downgrades the bundled version of Spring Boot to 2.4.3 which does not exhibit

the error behavior. (Resolved by PR-732.)

Release 6.2.1

Release Date: December 17, 2021

Changed Features

PXF 6.2.1 includes these changes:

PXF bundles version 2.16.0 of the log4j2 library to mitigate CVE-2021-44228 and CVE-2021-

45046.

PXF now returns an UnsupportedOperationException when it accesses a Hive transactional

table.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 18

https://nvd.nist.gov/vuln/detail/CVE-2021-44716
https://nvd.nist.gov/vuln/detail/CVE-2021-44832
https://github.com/greenplum-db/pxf/pull/735
https://nvd.nist.gov/vuln/detail/CVE-2021-44716
https://github.com/greenplum-db/pxf/pull/740
https://nvd.nist.gov/vuln/detail/CVE-2021-45105
https://nvd.nist.gov/vuln/detail/CVE-2021-45105
https://github.com/greenplum-db/pxf/pull/733
https://github.com/greenplum-db/pxf/pull/732
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://nvd.nist.gov/vuln/detail/CVE-2021-45046

PXF now supports the SKIP_HEADER_COUNT option for external tables that specified a

*:text:multi profile.

When reading from a MySQL database, PXF now uses a jdbc.statement.fetchSize default

value of -2147483648 (Integer.MIN_VALUE). This setting enables the MySQL JDBC driver to

stream the results from a MySQL server, lessening the memory requirements when reading

large data sets.

The PXF Hive connector now uses the hive-site.xml hive.metastore.failure.retries

property setting to identify the maximum number of times to retry a failed connection to the

Hive MetaStore. The default value is one retry. Addressing Hive MetaStore Connection

Errors describes when and how to configure this property.

Resolved Issues

PXF 6.2.1 resolves these issues:

Issue # Summary

CVE‑2021‑45046 Updates the bundled log4j2 library to version 2.16.0. (Resolved by PR-727.)

CVE‑2021‑44228 Updates the bundled log4j2 library to version 2.15.0. (Resolved by PR-723.)

31955 Resolves an issue where PXF failed to access a Hive table due to a MetaStore connection issue.

PXF now includes retry logic for the MetaStore connection based on the

hive.metastore.failure.retries property setting in the hive-site.xml file. (Resolved by

PR‑726.)

31948 Resolves an issue where PXF ran out of memory when it read a large data set from a MySQL

database. PXF now uses a jdbc.statement.fetchSize default value of -2147483648

(Integer.MIN_VALUE) when it accesses MySQL, which streams the results from a MySQL server to

PXF. (Resolved by PR‑721.)

31906 Resolves an issue where PXF returned 0 rows when a query was performed on a Hive

transactional table instead of reporting that transactional tables are unsupported. PXF now more

clearly identifies the problem by returning an UnsupportedOperationException and the error: PXF

does not support Hive transactional tables. (Resolved by PR-719.)

31791 Resolves an issue where PXF ignored the SKIP_HEADER_COUNT custom option when it read from an

external data source via an external table that specified a *:text:multi profile. PXF now

recognizes and implements this option for *:text:multi profiles. (Resolved by PR-710.)

Release 6.2.0

Release Date: September 13, 2021

New and Changed Features

PXF 6.2.0 includes these new and changed features:

PXF adds support for reading a JSON array into a Greenplum Database text array (TEXT[]).

Refer to Working with JSON Data for additional information.

PXF adds support for reading lists of certain ORC scalar types into a Greenplum Database

array of native type. Refer to the PXF ORC data type mapping documentation for more

information about the data type mapping.

PXF bundles newer versions of ORC, Spring Boot, and other dependent libraries.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 19

https://nvd.nist.gov/vuln/detail/CVE-2021-45046
https://github.com/greenplum-db/pxf/pull/727
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://github.com/greenplum-db/pxf/pull/723
https://github.com/greenplum-db/pxf/pull/726
https://github.com/greenplum-db/pxf/pull/721
https://github.com/greenplum-db/pxf/pull/719
https://github.com/greenplum-db/pxf/pull/710

PXF improves its message logging by:

Better aligning the log message text.

Also logging the affected fragment when it encounters a read error.

PXF introduces a new property to the pxf-site.xml per-server configuration file. PXF uses this

property, pxf.sasl.connection.retries, to specify the maximum number of times that it

retries a SASL connection request to an external data source after a refused connection

returns a GSS initiate failed error.

PXF introduces a new PXF Service application property, pxf.fragmenter-cache.expiration,

to specify the amount of time after which an entry expires and is removed from the fragment

cache.

Resolved Issues

PXF 6.2.0 resolves these issues:

Issue # Summary

Resolves an issue when using the jdbc profile to write data to a Hive table. The Hive JDBC driver always

returned 0 when executing an update, and PXF would return an error even if the INSERT executed correctly.

(Resolved by PR-662.)

31675 Resolves a fragment cache issue that appeared when an external table was re-created within the same

transaction in a stored procedure, and the new external table referenced a different LOCATION. (Resolved by

PR-691.)

31657 Queries on an external table intermittently failed in some Kerberos-secured environments because the

Hadoop NameNode erroneously detected a replay attack during Kerberos authentication. This issue is

resolved by PR-688.

31571 PXF did not support ORC lists. PXF 6.2.0 includes support for reading lists of certain ORC scalar types into

a Greenplum Database array of native type. (Resolved by PR-675.)

31326 PXF did not support reading a JSON array into a Greenplum Database array-type column. PXF 6.2.0

includes support for reading a JSON array into a text array (TEXT[]). (Resolved by PR-646.)

683 Resolves an issue where PXF incorrectly casted an enum value from the external data source to a string.

(Resolved by PR-696.)

Release 6.1.0

Release Date: June 24, 2021

New and Changed Features

PXF 6.1.0 includes these new and changed features:

PXF now natively supports reading and writing Avro arrays.

PXF adds support for reading JSON objects, such as embedded arrays, as text. The data

returned by PXF is a valid JSON string that you can manipulate with the existing Greenplum

Database JSON functions and operators.

PXF improves its error reporting by displaying the exception class when there is no error

message available.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 20

https://github.com/greenplum-db/pxf/pull/662
https://github.com/greenplum-db/pxf/pull/691
https://github.com/greenplum-db/pxf/pull/688
https://github.com/greenplum-db/pxf/pull/675
https://github.com/greenplum-db/pxf/pull/646
https://github.com/greenplum-db/pxf/issues/683
https://github.com/greenplum-db/pxf/pull/696
https://greenplum.docs.pivotal.io/latest/admin_guide/query/topics/json-data.html#topic_gn4_x3w_mq

PXF introduces a new property that you can use to configure the connection timeout for data

upload/write operations to an external datastore. This property is named

pxf.connection.upload-timeout, and is located in the pxf-application.properties file.

PXF now uses the pxf.connection.timeout configuration property to set the connection

timeout only for read operations. If you previously set this property to specify the write

timeout, you should now use pxf.connection.upload-timeout instead.

PXF bundles a newer gp-common-go-libs supporting library along with its dependencies.

Resolved Issues

PXF 6.1.0 resolves these issues:

Issue # Summary

31389 Resolves an issue where certain pxf cluster commands returned the error connect: no such file or

directory when the current working directory contained a directory with the same name as the hostname.

This issue was resolved by upgrading a dependent library. (Resolved by PR-633.)

31317 PXF did not support writing Avro arrays. PXF 6.1.0 includes native support for reading and writing Avro

arrays. (Resolved by PR-636.)

Release 6.0.1

Release Date: May 11, 2021

Resolved Issues

PXF 6.0.1 resolves these issues:

Issue # Summary

Resolves an issue where PXF returned wrong results for batches of ORC data that were shorter than the

default batch size. (Resolved by PR-630.)

Resolves an issue where PXF threw a NullPointerException when it encountered a repeating ORC

column value of type string. (Resolved by PR-627.)

178013439 Resolves an issue where using the profile HiveVectorizedORC did not result in vectorized execution.

(Resolved by PR-624.)

31409 Resolves an issue where PXF intermittently failed with the error ERROR: PXF server error(500) :

Failed to initialize HiveResolver when it accessed Hive tables STORED AS ORC. (Resolved by PR-

626.)

Release 6.0.0

Release Date: March 29, 2021

New and Changed Features

PXF 6.0.0 includes these new and changed features:

Architecture and Bundled Libraries

PXF 6.0.0 is built on the Spring Boot framework:

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 21

https://github.com/greenplum-db/pxf/pull/633
https://github.com/greenplum-db/pxf/pull/636
https://github.com/greenplum-db/pxf/pull/630
https://github.com/greenplum-db/pxf/pull/627
https://github.com/greenplum-db/pxf/pull/624
https://github.com/greenplum-db/pxf/pull/626

PXF distributes a single JAR file that includes all of its dependencies.

PXF no longer installs and uses a standalone Tomcat server; it uses the Tomcat

version 9.0.43 embedded in the PXF Spring Boot application.

PXF bundles the postgresql-42.2.14.jar PostgreSQL driver JAR file.

PXF library dependencies have changed with new, updated, and removed libraries.

The PXF API has changed. If you are upgrading from PXF 5.x, you must update the PXF

extension in each database in which it is registered as described in Upgrading from PXF 5.

PXF 6 moves fragment allocation from its C extension to the PXF Service running on each

segment host.

The PXF Service now also runs on the Greenplum Database master and standby master

hosts. If you used PXF 5.x to access Kerberos-secured HDFS, you must now generate

principals and keytabs for the master and standby master as described in Upgrading from

PXF 5.

Files, Configuration, and Commands

PXF 6 uses the $PXF_BASE environment variable to identify its runtime configuration

directory; it no longer uses $PXF_CONF for this purpose.

By default, PXF installs its executables and runtime configuration into the same directory,

$PXF_HOME, and PXF_BASE=$PXF_HOME. See About the PXF Installation and Configuration

Directories for the new installation file layout.

You can relocate the $PXF_BASE runtime configuration directory to a different directory after

you install PXF by running the new pxf [cluster] prepare command as described in

Relocating $PXF_BASE.

PXF template server configuration files now reside in $PXF_HOME/templates; they were

previously located in the $PXF_CONF/templates directory.

The pxf [cluster] register command now copies only the PXF pxf.control extension file

to the Greenplum Database installation. Run this command after your first installation of PXF,

and/or after you upgrade your Greenplum Database installation.

PXF 6 no longer requires initialization, and deprecates the init and reset commands. pxf

[cluster] init is now equivalent to pxf [cluster] register, and pxf [cluster] reset is a

no-op.

PXF 6 includes new and changed configuration; see About the PXF Configuration Files for

more information:

PXF 6 integrates with Apache Log4j 2; the PXF logging configuration file is now

named pxf-log4j2.xml, and is in xml format.

PXF 6 adds a new configuration file for the PXF server application, pxf-

application.properties; this file includes:

New properties to configure the PXF streaming thread pool.

New pxf.log.level property to set the PXF logging level.

Configuration properties moved from the PXF 5 pxf-env.sh file and

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 22

https://greenplum.docs.pivotal.io/latest/pxf/upgrade_pxf_6x.html#pxfup

renamed:

pxf-env.sh Property Name pxf-application.properties Property Name

PXF_MAX_THREADS pxf.max.threads

PXF 6 adds new configuration environment variables to pxf-env.sh to simplify the

registration of external library dependencies:

New Property Name Description

PXF_LOADER_PATH Additional directories and JARs for PXF to class-load.

LD_LIBRARY_PATH Additional directories and native libraries for PXF to load.

See Registering PXF Library Dependencies for more information.

PXF 6 deprecates the PXF_FRAGMENTER_CACHE configuration property; fragment

metadata caching is no longer configurable and is now always enabled.

Profiles

PXF 6 introduces new profile names and deprecates some older profile names. The old

profile names still work, but it is highly recommended to switch to using the new profile

names:

New Profile Name Old/Deprecated Profile Name

hive Hive

hive:rc HiveRC

hive:orc HiveORC

hive:orc HiveVectorizedORC1

hive:text HiveText

jdbc Jdbc

hbase HBase

1 To use the HiveVectorizedORC profile in PXF 6, specify the hive:orc profile name with the

new VECTORIZE=true custom option.

PXF adds support for natively reading an ORC file located in Hadoop, an object store, or a

network file system. See the Hadoop ORC and Object Store ORC documentation for

prerequisites and usage information.

PXF adds support for reading and writing comma-separated value form text data located in

Hadoop, an object store, or a network file system though a separate CSV profile. See the

Hadoop Text and Object Store Text documentation for usage information.

PXF supports predicate pushdown on VARCHAR data types.

PXF supports predicate pushdown for the IN operator when you specify one of the

*:parquet profiles to read a parquet file.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 23

PXF supports specifying a codec short name (alias) rather than the Java class name when

you create a writable external table for a *:text, *:csv, or *:SequenceFile profile that

includes a COMPRESSION_CODEC.

Monitoring

PXF now supports monitoring of the PXF Service process at runtime. Refer to About PXF

Service Runtime Monitoring for more information.

Logging

PXF improves the display of error messages in the psql client, in some cases including a

HINT that provides possible error resolution actions.

When PXF is configured to auto-terminate on detection of an out of memory condition, it

now logs messages to $PXF_LOGDIR/pxf-oom.log rather than catalina.out.

Removed Features

PXF version 6.0.0 removes:

The THREAD-SAFE external table custom option (deprecated since 5.10.0).

The PXF_USER_IMPERSONATION, PXF_PRINCIPAL, and PXF_KEYTAB configuration properties in

pxf-env.sh (deprecated since 5.10.0).

The jdbc.user.impersonation configuration property in jdbc-site.xml (deprecated since

5.10.0).

The Hadoop profile names HdfsTextSimple, HdfsTextMulti, Avro, Json, Parquet, and

SequenceWritable (deprecated since 5.0.1).

Resolved Issues

PXF 6.0.0 resolves these issues:

Issue # Summary

30987 Resolves an issue where PXF returned an out of memory error while executing a query on a Hive table

backed by a large number of files when it could not enlarge a string buffer during the fragmentation

process. PXF 6.0.0 moves fragment distribution logic and fragment allocation to the PXF Service running

on each segment host.

Deprecated Features

Deprecated features may be removed in a future major release of PXF. PXF version 6.x deprecates:

The PXF_FRAGMENTER_CACHE configuration property (deprecated since PXF version 6.0.0).

The pxf [cluster] init commands (deprecated since PXF version 6.0.0).

The pxf [cluster] reset commands (deprecated since PXF version 6.0.0).

The Hive profile names Hive, HiveText, HiveRC, HiveORC, and HiveVectorizedORC

(deprecated since PXF version 6.0.0). Refer to Connectors, Data Formats, and Profiles in the

PXF Hadoop documentation for the new profile names.

The HBase profile name (now hbase) (deprecated since PXF version 6.0.0).

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 24

The Jdbc profile name (now jdbc) (deprecated since PXF version 6.0.0).

Specifying a COMPRESSION_CODEC using the Java class name; use the codec short name

instead.

Known Issues and Limitations

PXF 6.x has these known issues and limitations:

Issue # Description

178013439 (Resolved in 6.0.1) Using the deprecated HiveVectorizedORC profile does not result in vectorized

execution.

Workaround: Use the hive:orc profile with the option VECTORIZE=true.

31409 (Resolved in 6.0.1) PXF can intermittently fail with the following error when it accesses Hive tables

STORED AS ORC:

ERROR: PXF server error(500) : Failed to initialize HiveResolver

Workaround: Use vectorized query execution by adding the VECTORIZE=true custom option to the

LOCATION URL. (Note that PXF does not support predicate pushdown, complex types, and the

timestamp data type with ORC vectorized execution.)

168957894 The PXF Hive Connector does not support using the hive[:*] profiles to access Hive 3 managed

(CRUD and insert-only transactional, and temporary) tables.

Workaround: Use the PXF JDBC Connector to access Hive 3 managed tables.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 25

Installing PXF

The VMware Tanzu Greenplum Platform Extension Framework (PXF) is available as a separate

VMware Tanzu Network download for:

Tanzu Greenplum Database 5.x for CentOS 7.x and RHEL 7.x platforms

Tanzu Greenplum Database 6.x for CentOS 7.x, RHEL 7.x, and Ubuntu 18.04 LTS platforms

The PXF download package is an .rpm or .deb file that installs PXF libraries, executables, and script

files on a Greenplum Database host.

When you install PXF, you will:

1. Satisfy the prerequisites.

2. Download the PXF package.

3. Install the PXF package on every host in your Greenplum Database cluster.

4. Check out Next Steps for post-install topics.

Prerequisites

The recommended deployment model is to install PXF on all Greenplum Database hosts. Before you

install PXF 6, ensure that you meet the following prerequisites:

Tanzu Greenplum version 5.21.2 or later or 6.x is installed in the cluster.

You have access to all hosts (master, standby master, and segment hosts) in your Greenplum

Database cluster.

You must be an operating system superuser, or have sudo privileges, to install the PXF

package. If you are installing on CentOS/RHEL, you can choose to install the package into a

custom file system location.

You have installed Java 8 or 11 on all Greenplum Database hosts as described in Installing

Java for PXF.

You can identify the operating system user that will own the PXF installation. This user must

be the same user that owns the Greenplum Database installation, or a user that has write

privileges to the Greenplum Database installation directory.

If you have previously configured and are using PXF in your Greenplum installation:

1. Identify and note the current PXF version number.

2. Stop PXF as described in Stopping PXF.

If this is your first installation of a PXF package, and the $GPHOME/pxf directory exists in your

Greenplum installation, you may choose to remove the directory on all Greenplum hosts after you

confirm that you have installed and configured PXF correctly and that it is working as expected.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 26

https://network.tanzu.vmware.com/products/pivotal-gpdb/

If you choose to remove this directory, you may encounter warning: <pxf-filename>: remove

failed: No such file or directory messages when you upgrade Greenplum. You can ignore

these warnings for PXF files.

Downloading the PXF Package

Follow this procedure to download PXF:

1. Navigate to VMware Tanzu Network and locate and select the Release Download directory

named Greenplum Platform Extension Framework.

The format of the PXF download file name is pxf-gp<greenplum-major-version>-<pxf-

version>-<pkg-version>.<platform>.<file_type>. For example:

pxf-gp6-6.2.3-2.el7.x86_64.rpm

or

pxf-gp6-6.2.3-2-ubuntu18.04-amd64.deb

2. Select the appropriate PXF package for your Greenplum Database major version and

operating system platform.

3. Make note of the directory to which the file was downloaded.

Installing the PXF Package

You must install the PXF package on the Greenplum Database master and standby master hosts, and

on each segment host.

If you installed an older version of the PXF package on your hosts, installing a newer package

removes the existing PXF installation, and installs the new version.

The install procedure follows:

1. Locate the installer file that you downloaded from VMware Tanzu Network.

2. Create a text file that lists your Greenplum Database standby master host and segment hosts,

one host name per line. For example, a file named gphostfile may include:

gpmaster

mstandby

seghost1

seghost2

seghost3

3. Copy the downloaded PXF package file to all hosts in your Greenplum cluster. For example,

to copy the rpm to the /tmp directory on each host:

gphost$ gpscp -f gphostfile pxf-gp6-6.2.3-2.el7.x86_64.rpm =:/tmp/

4. Install the package on each Greenplum Database host using your package management

utility. If a previous installation of PXF exists for the same Greenplum version, the files and

runtime directories from the older version are removed before the current package is

installed.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 27

https://network.tanzu.vmware.com/products/pivotal-gpdb/

1. To install PXF into the default location on all Greenplum hosts:

On a CentOS/RHEL system:

gphost$ gpssh -e -v -f gphostfile "sudo rpm -Uvh /tmp/pxf-gp6-6.2.3-2.el7

.x86_64.rpm"

On an Ubuntu system:

gphost$ gpssh -e -v -f gphostfile "sudo dpkg --install /tmp/pxf-gp6-6.2.3

-2-ubuntu18.04-amd64.deb"

The default PXF package installation directory is /usr/local/pxf-gp<greenplum-

major-version>.

2. To install PXF into a custom location on all Greenplum hosts (CentOS/RHEL only):

gpadmin@gphost$ gpssh -e -v -f gphostfile "sudo rpm -Uvh --prefix <instal

l-location> pxf-gp6-6.2.3-2.el7.x86_64.rpm"

5. Set the ownership and permissions of the PXF installation files to enable access by the

gpadmin user. For example, if you installed PXF to the default location:

gphost$ gpssh -e -v -f gphostfile "sudo chown -R gpadmin:gpadmin /usr/local/pxf

-gp*"

If you installed PXF to a custom <install-location> on CentOS/RHEL, specify that location

in the command.

6. (Optional) Add the PXF bin directory to the PXF owner’s $PATH. For example, if you installed

PXF for Greenplum 6 in the default location, you could add the following text to the .bashrc

shell initialization script for the gpadmin user:

export PATH=$PATH:/usr/local/pxf-gp6/bin

Be sure to remove any previously-added $PATH entries for PXF in $GPHOME/pxf/bin.

7. Remove the PXF package download file that you copied to each system. For example, to

remove the rpm from /tmp:

gpadmin@gphost$ gpssh -e -v -f gphostfile "rm -f /tmp/pxf-gp6-6.2.3-2.el7.x86_6

4.rpm"

Next Steps

PXF is not active after installation. You must explicitly initialize and start the PXF server before you

can use PXF.

See About the PXF Installation and Configuration Directories for a list and description of

important PXF files and directories. This topic also provides instructions about relocating the

PXF runtime configuration directories.

If this is your first time using PXF, review Configuring PXF for a description of the initialization

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 28

and configuration procedures that you must perform before you can use PXF.

If you installed the PXF rpm or deb as part of a Greenplum Database upgrade procedure,

return to those upgrade instructions.

If you installed the PXF rpm or deb into a Greenplum cluster in which you had already

configured and were using PXF 5, you are required to perform some upgrade actions. Recall

the original version of PXF (before you installed the rpm or deb), and perform Step 3 of the

PXF upgrade procedure.

Installing Java for PXF

PXF is a Java service. It requires a Java 8 or Java 11 installation on each Greenplum Database host.

Prerequisites

Ensure that you have access to, or superuser permissions to install, Java 8 or Java 11 on each

Greenplum Database host.

Procedure

Perform the following procedure to install Java on the master, standby master, and on each segment

host in your Greenplum Database cluster. You will use the gpssh utility where possible to run a

command on multiple hosts.

1. Log in to your Greenplum Database master node:

$ ssh gpadmin@<gpmaster>

2. Determine the version(s) of Java installed on the system:

gpadmin@gpmaster$ rpm -qa | grep java

3. If the system does not include a Java version 8 or 11 installation, install one of these Java

versions on the master, standby master, and on each Greenplum Database segment host.

1. Create a text file that lists your Greenplum Database standby master host and

segment hosts, one host name per line. For example, a file named gphostfile may

include:

gpmaster

mstandby

seghost1

seghost2

seghost3

2. Install the Java package on each host. For example, to install Java version 8:

gpadmin@gpmaster$ gpssh -e -v -f gphostfile sudo yum -y install java-1.8.

0-openjdk-1.8.0*

4. Identify the Java 8 or 11 $JAVA_HOME setting for PXF. For example:

If you installed Java 8:

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 29

JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.x86_64/jre

If you installed Java 11:

JAVA_HOME=/usr/lib/jvm/java-11-openjdk-11.0.4.11-0.el7_6.x86_64

If the superuser configures the newly-installed Java alternative as the system default:

JAVA_HOME=/usr/lib/jvm/jre

5. Note the $JAVA_HOME setting; you will need this value when you configure PXF.

Uninstalling PXF

The PXF download package is an .rpm or .deb file that installs PXF libraries, executables, and script

files on a Greenplum Database host.

If you want to remove PXF from the Greenplum cluster and from your hosts, you will:

1. Satisfy the prerequisites.

2. Uninstall PXF from every host in your Greenplum Database cluster.

Prerequisites

Before you uninstall PXF, ensure that you meet the following prerequisites:

You have access to all hosts (master, standby master, and segment hosts) in your Greenplum

Database cluster.

You must be an operating system superuser, or have sudo privileges, to remove the PXF

package.

Uninstalling PXF

Follow these steps to remove PXF from your Greenplum Database cluster:

1. Log in to the Greenplum Database master node. For example:

$ ssh gpadmin@<gpmaster>

2. Stop PXF as described in Stopping PXF.

3. Remove the PXF library and extension files from your Greenplum installation:

gpadmin@gpmaster$ rm $GPHOME/lib/postgresql/pxf.so

gpadmin@gpmaster$ rm $GPHOME/share/postgresql/extension/pxf*

4. Remove PXF from each Greenplum Database master, standby, and segment host. You must

be an operating system superuser, or have sudo privileges, to remove the package. For

example, if you installed PXF for Greenplum 6 in the default location on a CentOS 7 system,

the following command removes the PXF package on all hosts listed in gphostfile:

On a CentOS/RHEL system:

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 30

gpadmin@gpmaster$ gpssh -e -v -f gphostfile "sudo rpm -e pxf-gp6"

On an Ubuntu system:

gpadmin@gpmaster$ gpssh -e -v -f gphostfile "sudo dpkg --remove pxf-gp6"

The command removes the PXF install files on all Greenplum hosts. The command also

removes the PXF runtime directories on all hosts.

The PXF configuration directory $PXF_CONF is not affected by this command and remains on the

Greenplum hosts.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 31

Upgrading to PXF 6

PXF 6.x supports these upgrade paths:

Upgrading from PXF 5

Upgrading from an earlier PXF 6 Release

Upgrading from PXF 5.x

If you have installed, configured, and are using PXF 5.x in your Greenplum Database 5 or 6 cluster,

you must perform some upgrade actions when you install PXF 6.x.

If you are using PXF with Greenplum Database 5, you must upgrade Greenplum to version 5.21.2 or

newer before you upgrade to PXF 6.x.

The PXF upgrade procedure has three steps. You perform one pre-install procedure, the install

itself, and then a post-install procedure to upgrade to PXF 6.x:

Step 1: Perform the PXF Pre-Upgrade Actions

Step 2: Install PXF 6.x

Step 3: Complete the Upgrade to PXF 6.x

Step 1: Performing the PXF Pre-Upgrade Actions

Perform this procedure before you upgrade to a new version of PXF:

1. Log in to the Greenplum Database master node. For example:

$ ssh gpadmin@<gpmaster>

2. Identify and note the version of PXF currently running in your Greenplum cluster:

gpadmin@gpmaster$ pxf version

3. Identify the file system location of the $PXF_CONF setting in your PXF 5.x PXF installation; you

will need this later. If you are unsure of the location, you can find the value in pxf-env-

default.sh.

4. Stop PXF on each Greenplum host as described in Stopping PXF.

Step 2: Installing PXF 6.x

1. Install PXF 6.x and identify and note the new PXF version number.

2. Check out the new installation layout in About the PXF Installation and Configuration

Directories.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 32

Step 3: Completing the Upgrade to PXF 6.x

After you install the new version of PXF, perform the following procedure:

1. Log in to the Greenplum Database master node. For example:

$ ssh gpadmin@<gpmaster>

2. You must run the pxf commands specified in subsequent steps using the binaries from your

PXF 6.x installation. Ensure that the PXF 6.x installation bin/ directory is in your $PATH, or

provide the full path to the pxf command. You can run the following command to check the

pxf version:

gpadmin@gpmaster$ pxf version

3. (Optional, Advanced) If you want to relocate $PXF_BASE outside of $PXF_HOME, perform the

procedure described in Relocating $PXF_BASE.

4. Auto-migrate your PXF 5.x configuration to PXF 6.x $PXF_BASE:

1. Recall your PXF 5.x $PXF_CONF setting.

2. Run the migrate command (see pxf cluster migrate). You must provide PXF_CONF. If

you relocated $PXF_BASE, provide that setting as well.

gpadmin@gpmaster$ PXF_CONF=/path/to/dir pxf cluster migrate

Or:

gpadmin@gpmaster$ PXF_CONF=/path/to/dir PXF_BASE=/new/dir pxf cluster mig

rate

The command copies PXF 5.x conf/pxf-profiles.xml, servers/*, lib/*, and

keytabs/* to the PXF 6.x $PXF_BASE directory. The command also merges

configuration changes in the PXF 5.x conf/pxf-env.sh into the PXF 6.x file of the

same name and into pxf-application.properties.

3. The migrate command does not migrate PXF 5.x $PXF_CONF/conf/pxf-

log4j.properties customizations; you must manually migrate any changes that you

made to this file to $PXF_BASE/conf/pxf-log4j2.xml. Note that PXF 5.x pxf-

log4j.properties is in properties format, and PXF 6 pxf-log4j2.xml is xml format.

See the Configuration with XML topic in the Apache Log4j 2 documentation for more

information.

5. If you migrated your PXF 6.x $PXF_BASE configuration (see previous step), be sure to apply

any changes identified in subsequent steps to the new, migrated directory.

6. If you are upgrading from PXF version 5.9.x or earlier and you have configured any JDBC

servers that access Kerberos-secured Hive, you must now set the

hadoop.security.authentication property to the jdbc-site.xml file to explicitly identify use

of the Kerberos authentication method. Perform the following for each of these server

configs:

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 33

https://logging.apache.org/log4j/2.x/manual/configuration.html#XML

1. Navigate to the server configuration directory.

2. Open the jdbc-site.xml file in the editor of your choice and uncomment or add the

following property block to the file:

<property>

 <name>hadoop.security.authentication</name>

 <value>kerberos</value>

</property>

3. Save the file and exit the editor.

7. If you are upgrading from PXF version 5.11.x or earlier: The PXF Hive and HiveRC profiles

(named hive and hive:rc in PXF version 6.x) now support column projection using column

name-based mapping. If you have any existing PXF external tables that specify one of these

profiles, and the external table relied on column index-based mapping, you may be required

to drop and recreate the tables:

1. Identify all PXF external tables that you created that specify a Hive or HiveRC profile.

2. For each external table that you identify in step 1, examine the definitions of both the

PXF external table and the referenced Hive table. If the column names of the PXF

external table do not match the column names of the Hive table:

1. Drop the existing PXF external table. For example:

DROP EXTERNAL TABLE pxf_hive_table1;

2. Recreate the PXF external table using the Hive column names. For example:

CREATE EXTERNAL TABLE pxf_hive_table1(hivecolname int, hivecolnam

e2 text)

 LOCATION('pxf://default.hive_table_name?PROFILE=hive')

FORMAT 'custom' (FORMATTER='pxfwritable_import');

3. Review any SQL scripts that you may have created that reference the PXF

external table, and update column names if required.

8. If you are upgrading from PXF version 5.15.x or earlier:

1. The pxf.service.user.name property in the pxf-site.xml template file is now

commented out by default. Keep this in mind when you configure new PXF servers.

2. The default value for the jdbc.pool.property.maximumPoolSize property is now 15. If

you have previously configured a JDBC server and want that server to use the new

default value, you must manually change the property value in the server’s jdbc-

site.xml file.

3. PXF 5.16 disallows specifying relative paths and environment variables in the CREATE

EXTERNAL TABLE LOCATION clause file path. If you previously created any external

tables that specified a relative path or environment variable, you must drop each

external table, and then re-create it without these constructs.

4. Filter pushdown is enabled by default for queries on external tables that specify the

Hive, HiveRC, or HiveORC profiles (named hive, hive:rc, and hive:orc in PXF version

6.x). If you have previously created an external table that specifies one of these

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 34

profiles and queries are failing with PXF v5.16+, you can disable filter pushdown at

the external table-level or at the server level:

1. (External table) Drop the external table and re-create it, specifying the

&PPD=false option in the LOCATION clause.

2. (Server) If you do not want to recreate the external table, you can disable

filter pushdown for all Hive* (named as described here in PXF version 6.x)

profile queries using the server by setting the pxf.ppd.hive property in the

pxf-site.xml file to false:

<property>

 <name>pxf.ppd.hive</name>

 <value>false</value>

</property>

You may need to add this property block to the pxf-site.xml file.

9. Register the PXF 6.x extension files with Greenplum Database (see pxf cluster register).

$GPHOME must be set when you run this command.

gpadmin@gpmaster$ pxf cluster register

The register command copies only the pxf.control extension file to the Greenplum

cluster. In PXF 6.x, the PXF extension .sql file and library pxf.so reside in

$PXF_HOME/gpextable. You may choose to remove these now-unused files from the

Greenplum Database installation on the Greenplum Database master, standby master, and all

segment hosts. For example, to remove the files on the master host:

gpadmin@gpmaster$ rm $GPHOME/share/postgresql/extension/pxf--1.0.sql

gpadmin@gpmaster$ rm $GPHOME/lib/postgresql/pxf.so

10. PXF 6.x includes a new version of the pxf extension. You must update the extension in

every Greenplum database in which you are using PXF. A database superuser or the

database owner must run this SQL command in the psql subsystem or in an SQL script:

ALTER EXTENSION pxf UPDATE;

11. Ensure that you no longer reference previously-deprecated features that were removed in

PXF 6.0:

Deprecated Feature Use Instead

Hadoop profile names hdfs:<profile> as noted here

jdbc.user.impersonation property pxf.service.user.impersonation property in the jdbc‑site.xml

server configuration file

PXF_KEYTAB configuration property pxf.service.kerberos.keytab property in the pxf‑site.xml server

configuration file

PXF_PRINCIPAL configuration

property

pxf.service.kerberos.principal property in the pxf‑site.xml

server configuration file

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 35

Deprecated Feature Use Instead

PXF_USER_IMPERSONATION

configuration property

pxf.service.user.impersonation property in the pxf‑site.xml

server configuration file

12. PXF 6.x distributes a single JAR file that includes all of its dependencies, and separately

makes its HBase JAR file available in $PXF_HOME/share. If you have configured a PXF Hadoop

server for HBase access, you must register the new pxf-hbase-<version>.jar with Hadoop

and HBase as follows:

1. Copy $PXF_HOME/share/pxf-hbase-<version>.jar to each node in your HBase

cluster.

2. Add the location of this JAR to $HBASE_CLASSPATH on each HBase node.

3. Restart HBase on each node.

13. In PXF 6.x, the PXF Service runs on all Greenplum Database hosts. If you used PXF 5.x to

access Kerberos-secured HDFS, you must now generate principals and keytabs for the

Greenplum master and standby master hosts, and distribute these to the hosts as described

in Configuring PXF for Secure HDFS.

14. Synchronize the PXF 6.x configuration from the master host to the standby master and each

Greenplum Database segment host. For example:

gpadmin@gpmaster$ pxf cluster sync

15. Start PXF on each Greenplum host. For example:

gpadmin@gpmaster$ pxf cluster start

16. Verify that PXF can access each external data source by querying external tables that specify

each PXF server.

Upgrading from an Earlier PXF 6 Release

If you have installed a PXF 6.x rpm or deb package and have configured and are using PXF in your

current Greenplum Database 5.21.2+ or 6.x installation, you must perform some upgrade actions

when you install a new version of PXF 6.x.

The PXF upgrade procedure has three steps. You perform one pre-install procedure, the install

itself, and then a post-install procedure to upgrade to PXF 6.x

Step 1: Perform the PXF Pre-Upgrade Actions

Step 2: Install the New PXF 6.x

Step 3: Complete the Upgrade to a Newer PXF 6.x

Step 1: Perform the PXF Pre-Upgrade Actions

Perform this procedure before you upgrade to a new version of PXF 6.x:

1. Log in to the Greenplum Database master node. For example:

$ ssh gpadmin@<gpmaster>

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 36

2. Identify and note the version of PXF currently running in your Greenplum cluster:

gpadmin@gpmaster$ pxf version

3. Stop PXF on each Greenplum host as described in Stopping PXF:

gpadmin@gpmaster$ pxf cluster stop

4. (Optional, Recommended) Back up the PXF user configuration files; for example, if

PXF_BASE=/usr/local/pxf-gp6:

gpadmin@gpmaster$ cp -avi /usr/local/pxf-gp6 pxf_base.bak

Step 2: Installing the New PXF 6.x

Install PXF 6.x and identify and note the new PXF version number.

Step 3: Completing the Upgrade to a Newer PXF 6.x

After you install the new version of PXF, perform the following procedure:

1. Log in to the Greenplum Database master node. For example:

$ ssh gpadmin@<gpmaster>

2. PXF 6.x includes a new version of the pxf extension. Register the extension files with

Greenplum Database (see pxf cluster register). $GPHOME must be set when you run this

command:

gpadmin@gpmaster$ pxf cluster register

3. You must update the pxf extension in every Greenplum database in which you are using

PXF. A database superuser or the database owner must run this SQL command in the psql

subsystem or in an SQL script:

ALTER EXTENSION pxf UPDATE;

4. If you are upgrading from PXF version 6.0.x:

If you previously set the pxf.connection.timeout property to change the

write/upload timeout, you must now set the pxf.connection.upload-timeout

property for this purpose.

Existing external tables that access Avro arrays and JSON objects will continue to

work as-is. If you want to take advantage of the new Avro array read/write

functionality or the new JSON object support, create a new external table with the

adjusted DDL. If you can access the data with the new external table as you expect,

you may choose to drop and recreate the existing external table.

5. If you are upgrading to PXF version 6.2.0 to resolve an erroneous replay attack issue in a

Kerberos-secured environment:

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 37

1. If you want to change the default value of the new pxf.sasl.connection.retries

property, add the following to the pxf-site.xml file for your PXF server:

<property>

 <name>pxf.sasl.connection.retries</name>

 <value><new-value></value>

 <description>

 Specifies the number of retries to perform when a SASL connection is

refused by a Namenode due to 'GSS initiate failed' error.

 </description>

</property>

2. (Recommended) Configure PXF to use a host-specific Kerberos principal for each

segment host. If you specify the following pxf.service.kerberos.principal property

setting in the PXF server’s pxf-site.xml file, PXF automatically replaces _HOST with

the FQDN of the segment host:

<property>

 <name>pxf.service.kerberos.principal</name>

 <value>gpadmin/_HOST@REALM.COM</value>

</property>

6. (Recommended) If you are upgrading from PXF version 6.2.2 or earlier to PXF version

6.2.3 or later, update your $PXF_BASE/conf/pxf-log4j2.xml file to fully configure the logging

changes introduced in version 6.2.3:

1. Remove the following line from the initial <Properties> block:

<Property name="PXF_LOG_LEVEL">${bundle:pxf-application:pxf.log.level}</P

roperty>

2. Change the following line:

<Logger name="org.greenplum.pxf" level="${env:PXF_LOG_LEVEL:-${sys:PXF_LO

G_LEVEL:-info}}"/>

to:

<Logger name="org.greenplum.pxf" level="${env:PXF_LOG_LEVEL:-${spring:pxf

.log.level}}"/>

7. Synchronize the PXF configuration from the master host to the standby master and each

Greenplum Database segment host. For example:

gpadmin@gpmaster$ pxf cluster sync

8. Start PXF on each Greenplum host as described in Starting PXF:

gpadmin@gpmaster$ pxf cluster start

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 38

Greenplum Platform Extension Framework
(PXF)

With the explosion of data stores and cloud services, data now resides across many disparate

systems and in a variety of formats. Often, data is classified both by its location and the operations

performed on the data, as well as how often the data is accessed: real-time or transactional (hot), less

frequent (warm), or archival (cold).

The diagram below describes a data source that tracks monthly sales across many years. Real-time

operational data is stored in MySQL. Data subject to analytic and business intelligence operations is

stored in Greenplum Database. The rarely accessed, archival data resides in AWS S3.

When multiple, related data sets exist in external systems, it is often more efficient to join data sets

remotely and return only the results, rather than negotiate the time and storage requirements of

performing a rather expensive full data load operation. The Greenplum Platform Extension

Framework (PXF), a Greenplum extension that provides parallel, high throughput data access and

federated query processing, provides this capability.

With PXF, you can use Greenplum and SQL to query these heterogeneous data sources:

Hadoop, Hive, and HBase

Azure Blob Storage and Azure Data Lake

AWS S3

Minio

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 39

Google Cloud Storage

SQL databases including Apache Ignite, Hive, MySQL, ORACLE, Microsoft SQL Server, DB2,

and PostgreSQL (via JDBC)

Network file systems

And these data formats:

Avro, AvroSequenceFile

JSON

ORC

Parquet

RCFile

SequenceFile

Text (plain, delimited, embedded line feeds)

Basic Usage

You use PXF to map data from an external source to a Greenplum Database external table definition.

You can then use the PXF external table and SQL to:

Perform queries on the external data, leaving the referenced data in place on the remote

system.

Load a subset of the external data into Greenplum Database.

Run complex queries on local data residing in Greenplum tables and remote data referenced

via PXF external tables.

Write data to the external data source.

Check out the PXF introduction for a high level overview important PXF concepts.

Get Started Configuring PXF

The Greenplum Database administrator manages PXF, Greenplum Database user privileges, and

external data source configuration. Tasks include:

Installing, configuring, starting, monitoring, and troubleshooting the PXF Service.

Managing PXF upgrade.

Configuring and publishing one or more server definitions for each external data source. This

definition specifies the location of, and access credentials to, the external data source.

Granting Greenplum user access to PXF and PXF external tables.

Get Started Using PXF

A Greenplum Database user creates a PXF external table that references a file or other data in the

external data source, and uses the external table to query or load the external data in Greenplum.

Tasks are external data store-dependent:

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 40

See Accessing Hadoop with PXF when the data resides in Hadoop.

See Accessing Azure, Google Cloud Storage, Minio, and S3 Object Stores with PXF when

the data resides in an object store.

See Accessing an SQL Database with PXF when the data resides in an external SQL

database.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 41

Introduction to PXF

The Greenplum Platform Extension Framework (PXF) provides connectors that enable you to access

data stored in sources external to your Greenplum Database deployment. These connectors map an

external data source to a Greenplum Database external table definition. When you create the

Greenplum Database external table, you identify the external data store and the format of the data

via a server name and a profile name that you provide in the command.

You can query the external table via Greenplum Database, leaving the referenced data in place. Or,

you can use the external table to load the data into Greenplum Database for higher performance.

Supported Platforms

Operating Systems

PXF supports the Red Hat Enterprise Linux 64-bit 7.x, CentOS 64-bit 7.x, and Ubuntu 18.04 LTS

operating system platforms.

Java

PXF supports Java 8 and Java 11.

Hadoop

PXF bundles all of the Hadoop JAR files on which it depends, and supports the following Hadoop

component versions:

PXF Version Hadoop Version Hive Server Version HBase Server Version

6.x 2.x, 3.1+ 1.x, 2.x, 3.1+ 1.3.2

5.9+ 2.x, 3.1+ 1.x, 2.x, 3.1+ 1.3.2

5.8 2.x 1.x 1.3.2

Architectural Overview

Your Greenplum Database deployment consists of a master host, a standby master host, and multiple

segment hosts. A single PXF Service process runs on each Greenplum Database host. The PXF

Service process running on a segment host allocates a worker thread for each segment instance on

the host that participates in a query against an external table. The PXF Services on multiple segment

hosts communicate with the external data store in parallel. The PXF Service process running on the

master and standby master hosts are not currently involved in data transfer; these processes may be

used for other purposes in the future.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 42

About Connectors, Servers, and Profiles

Connector is a generic term that encapsulates the implementation details required to read from or

write to an external data store. PXF provides built-in connectors to Hadoop (HDFS, Hive, HBase),

object stores (Azure, Google Cloud Storage, Minio, S3), and SQL databases (via JDBC).

A PXF Server is a named configuration for a connector. A server definition provides the information

required for PXF to access an external data source. This configuration information is data-store-

specific, and may include server location, access credentials, and other relevant properties.

The Greenplum Database administrator will configure at least one server definition for each external

data store that they will allow Greenplum Database users to access, and will publish the available

server names as appropriate.

You specify a SERVER=<server_name> setting when you create the external table to identify the server

configuration from which to obtain the configuration and credentials to access the external data

store.

The default PXF server is named default (reserved), and when configured provides the location and

access information for the external data source in the absence of a SERVER=<server_name> setting.

Finally, a PXF profile is a named mapping identifying a specific data format or protocol supported by

a specific external data store. PXF supports text, Avro, JSON, RCFile, Parquet, SequenceFile, and

ORC data formats, and the JDBC protocol, and provides several built-in profiles as discussed in the

following section.

Creating an External Table

PXF implements a Greenplum Database protocol named pxf that you can use to create an external

table that references data in an external data store. The syntax for a CREATE EXTERNAL TABLE

command that specifies the pxf protocol follows:

CREATE [WRITABLE] EXTERNAL TABLE <table_name>

 (<column_name> <data_type> [, ...] | LIKE <other_table>)

LOCATION('pxf://<path-to-data>?PROFILE=<profile_name>[&SERVER=<server_name>][&<custom-

option>=<value>[...]]')

FORMAT '[TEXT|CSV|CUSTOM]' (<formatting-properties>);

The LOCATION clause in a CREATE EXTERNAL TABLE statement specifying the pxf protocol is a URI. This

URI identifies the path to, or other information describing, the location of the external data. For

example, if the external data store is HDFS, the <path-to-data> identifies the absolute path to a

specific HDFS file. If the external data store is Hive, <path-to-data> identifies a schema-qualified Hive

table name.

You use the query portion of the URI, introduced by the question mark (?), to identify the PXF server

and profile names.

PXF may require additional information to read or write certain data formats. You provide profile-

specific information using the optional <custom-option>=<value> component of the LOCATION string

and formatting information via the <formatting-properties> component of the string. The custom

options and formatting properties supported by a specific profile vary; they are identified in usage

documentation for the profile.

Table 1. CREATE EXTERNAL TABLE Parameter Values and Descriptions

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 43

https://gpdb.docs.pivotal.io/latest/ref_guide/sql_commands/CREATE_EXTERNAL_TABLE.html

Keyword Value and Description

<path‑to‑data> A directory, file name, wildcard pattern, table name, etc. The syntax of <path-to-data> is

dependent upon the external data source.

PROFILE=

<profile_name>

The profile that PXF uses to access the data. PXF supports profiles that access text, Avro,

JSON, RCFile, Parquet, SequenceFile, and ORC data in Hadoop services, object stores,

network file systems, and other SQL databases.

SERVER=

<server_name>

The named server configuration that PXF uses to access the data. PXF uses the default

server if not specified.

<custom‑option>=

<value>

Additional options and their values supported by the profile or the server.

FORMAT <value> PXF profiles support the TEXT, CSV, and CUSTOM formats.

<formatting‑properties> Formatting properties supported by the profile; for example, the FORMATTER or delimiter.

Note: When you create a PXF external table, you cannot use the HEADER option in your formatter

specification.

Other PXF Features

Certain PXF connectors and profiles support filter pushdown and column projection. Refer to the

following topics for detailed information about this support:

About PXF Filter Pushdown

About Column Projection in PXF

About PXF Filter Pushdown

PXF supports filter pushdown. When filter pushdown is enabled, the constraints from the WHERE

clause of a SELECT query can be extracted and passed to the external data source for filtering. This

process can improve query performance, and can also reduce the amount of data that is transferred

to Greenplum Database.

You enable or disable filter pushdown for all external table protocols, including pxf, by setting the

gp_external_enable_filter_pushdown server configuration parameter. The default value of this

configuration parameter is on; set it to off to disable filter pushdown. For example:

SHOW gp_external_enable_filter_pushdown;

SET gp_external_enable_filter_pushdown TO 'on';

Note: Some external data sources do not support filter pushdown. Also, filter pushdown may not be

supported with certain data types or operators. If a query accesses a data source that does not

support filter push-down for the query constraints, the query is instead executed without filter

pushdown (the data is filtered after it is transferred to Greenplum Database).

PXF filter pushdown can be used with these data types (connector- and profile-specific):

INT2, INT4, INT8

CHAR, TEXT, VARCHAR

FLOAT

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 44

NUMERIC (not available with the S3 connector when using S3 Select, nor with the hive profile

when accessing STORED AS Parquet)

BOOL

DATE, TIMESTAMP (available only with the JDBC connector, the S3 connector when using S3

Select, the hive:rc and hive:orc profiles, and the hive profile when accessing STORED AS

RCFile or ORC)

PXF accesses data sources using profiles exposed by different connectors, and filter pushdown

support is determined by the specific connector implementation. The following PXF profiles support

some aspects of filter pushdown as well as different arithmetic and logical operations:

Profile

<, >,

<=, >=,

=, <>

LIKE IS [NOT] NULL IN AND OR NOT

jdbc Y Y4 Y N Y Y Y

*:parquet Y1 N Y1 Y1 Y1 Y1 Y1

*:orc (all except hive:orc) Y1,3 N Y1,3 Y1,3 Y1,3 Y1,3 Y1,3

s3:parquet and s3:text with S3-Select Y N Y Y Y Y Y

hbase Y N Y N Y Y N

hive:text Y2 N N N Y2 Y2 N

hive:rc, hive (accessing stored as RCFile) Y2 N Y Y Y, Y2 Y, Y2 Y

hive:orc, hive (accessing stored as ORC) Y, Y2 N Y Y Y, Y2 Y, Y2 Y

hive (accessing stored as Parquet) Y, Y2 N N Y Y, Y2 Y, Y2 Y

hive:orc and VECTORIZE=true Y2 N N N Y2 Y2 N

1 PXF applies the predicate, rather than the remote system, reducing CPU usage and the memory

footprint.

2 PXF supports partition pruning based on partition keys.

3 PXF filtering is based on file-level, stripe-level, and row-level ORC statistics.

4 The PXF jdbc profile supports the LIKE operator only for TEXT fields.

PXF does not support filter pushdown for any profile not mentioned in the table above, including:

*:avro, *:AvroSequenceFile, *:SequenceFile, *:json, *:text, *:csv, and *:text:multi.

To summarize, all of the following criteria must be met for filter pushdown to occur:

You enable external table filter pushdown by setting the

gp_external_enable_filter_pushdown server configuration parameter to 'on'.

The Greenplum Database protocol that you use to access external data source must support

filter pushdown. The pxf external table protocol supports pushdown.

The external data source that you are accessing must support pushdown. For example,

HBase and Hive support pushdown.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 45

For queries on external tables that you create with the pxf protocol, the underlying PXF

connector must also support filter pushdown. For example, the PXF Hive, HBase, and JDBC

connectors support pushdown, as do the PXF connectors that support reading ORC and

Parquet data.

Refer to Hive Partition Pruning for more information about Hive support for this

feature.

About Column Projection in PXF

PXF supports column projection, and it is always enabled. With column projection, only the columns

required by a SELECT query on an external table are returned from the external data source. This

process can improve query performance, and can also reduce the amount of data that is transferred

to Greenplum Database.

Note: Some external data sources do not support column projection. If a query accesses a data

source that does not support column projection, the query is instead executed without it, and the

data is filtered after it is transferred to Greenplum Database.

Column projection is automatically enabled for the pxf external table protocol. PXF accesses external

data sources using different connectors, and column projection support is also determined by the

specific connector implementation. The following PXF connector and profile combinations support

column projection on read operations:

Data Source Connector Profile(s)

External SQL

database

JDBC Connector jdbc

Hive Hive Connector hive (accessing tables stored as Text, Parquet, RCFile, and

ORC), hive:rc, hive:orc

Hadoop HDFS Connector hdfs:orc, hdfs:parquet

Network File

System

File Connector file:orc, file:parquet

Amazon S3 S3-Compatible Object Store

Connectors

s3:orc, s3:parquet

Amazon S3 using

S3 Select

S3-Compatible Object Store

Connectors

s3:parquet, s3:text

Google Cloud

Storage

GCS Object Store Connector gs:orc, gs:parquet

Azure Blob Storage Azure Object Store Connector wasbs:orc, wasbs:parquet

Azure Data Lake Azure Object Store Connector adl:orc, adl:parquet

Note: PXF may disable column projection in cases where it cannot successfully serialize a query

filter; for example, when the WHERE clause resolves to a boolean type.

To summarize, all of the following criteria must be met for column projection to occur:

The external data source that you are accessing must support column projection. For

example, Hive supports column projection for ORC-format data, and certain SQL databases

support column projection.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 46

The underlying PXF connector and profile implementation must also support column

projection. For example, the PXF Hive and JDBC connector profiles identified above support

column projection, as do the PXF connectors that support reading Parquet data.

PXF must be able to serialize the query filter.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 47

About the PXF Installation and
Configuration Directories

This documentation uses $PXF_HOME to refer to the PXF installation directory. Its value depends on

how you have installed PXF:

If you installed PXF as part of Greenplum Database, its value is $GPHOME/pxf.

If you installed the PXF rpm or deb package, its value is /usr/local/pxf-gp<greenplum-

major-version>, or the directory of your choosing (CentOS/RHEL only).

$PXF_HOME includes both the PXF executables and the PXF runtime configuration files and

directories. In PXF 5.x, you needed to specify a $PXF_CONF directory for the runtime configuration

when you initialized PXF. In PXF 6.x, however, no initialization is required: $PXF_BASE now identifies

the runtime configuration directory, and the default $PXF_BASE is $PXF_HOME.

If you want to store your configuration and runtime files in a different location, see Relocating

$PXF_BASE.

This documentation uses the $PXF_HOME environment variable to reference the PXF installation

directory. PXF uses this variable internally at runtime; it is not set in your shell environment, and will

display as empty if you attempt to echo its value. Similarly, this documentation uses the $PXF_BASE

environment variable to reference the PXF runtime configuration directory. PXF uses the variable

internally. It only needs to be set in your shell environment if you explicitly relocate the directory.

PXF Installation Directories

The following PXF files and directories are installed to $PXF_HOME when you install Greenplum

Database or the PXF 6.x rpm or deb package:

Directory Description

application/ The PXF Server application JAR file.

bin/ The PXF command line executable directory.

commit.sha The commit identifier for this PXF release.

gpextable/ The PXF extension files. PXF copies the pxf.control file from this directory to the Greenplum

installation ($GPHOME) on a single host when you run the pxf register command, or on all hosts in

the cluster when you run the pxf [cluster] register command from the Greenplum master host.

share/ The directory for shared PXF files that you may require depending on the external data stores that you

access. share/ initially includes only the PXF HBase JAR file.

templates/ The PXF directory for server configuration file templates.

version The PXF version.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 48

The following PXF directories are installed to $PXF_BASE when you install Greenplum Database or the

PXF 6.x rpm or deb package:

Directory Description

conf/ The location of user-customizable PXF configuration files for PXF runtime and logging configuration

settings. This directory contains the pxf-application.properties, pxf-env.sh, pxf-log4j2.xml, and

pxf-profiles.xml files.

keytabs/ The default location of the PXF Service Kerberos principal keytab file. The keytabs/ directory and

contained files are readable only by the Greenplum Database installation user, typically gpadmin.

lib/ The location of user-added runtime dependencies. The native/ subdirectory is the default PXF runtime

directory for native libraries.

logs/ The PXF runtime log file directory. The logs/ directory and log files are readable only by the Greenplum

Database installation user, typically gpadmin.

run/ The default PXF run directory. After starting PXF, this directory contains a PXF process id file, pxf-

app.pid. run/ and contained files and directories are readable only by the Greenplum Database

installation user, typically gpadmin.

servers/ The configuration directory for PXF servers; each subdirectory contains a server definition, and the name

of the subdirectory identifies the name of the server. The default server is named default. The Greenplum

Database administrator may configure other servers.

Refer to Configuring PXF and Starting PXF for detailed information about the PXF configuration and

startup commands and procedures.

Relocating $PXF_BASE

If you require that $PXF_BASE reside in a directory distinct from $PXF_HOME, you can change it from

the default location to a location of your choosing after you install PXF 6.x.

PXF provides the pxf [cluster] prepare command to prepare a new $PXF_BASE location. The

command copies the runtime and configuration directories identified above to the file system

location that you specify in a PXF_BASE environment variable.

For example, to relocate $PXF_BASE to the /path/to/dir directory on all Greenplum hosts, run the

command as follows:

gpadmin@gpmaster$ PXF_BASE=/path/to/dir pxf cluster prepare

When your $PXF_BASE is different than $PXF_HOME, inform PXF by setting the PXF_BASE environment

variable when you run a pxf command:

gpadmin@gpmaster$ PXF_BASE=/path/to/dir pxf cluster start

Set the environment variable in the .bashrc shell initialization script for the PXF installation owner

(typically the gpadmin user) as follows:

export PXF_BASE=/path/to/dir

About the PXF Configuration Files

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 49

$PXF_BASE/conf includes these user-customizable configuration files:

pxf-application.properties - PXF Service application configuration properties

pxf-env.sh - PXF command and JVM-specific runtime configuration properties

pxf-log4j2.xml - PXF logging configuration properties

pxf-profiles.xml - Custom PXF profile definitions

pxf-application.properties

The pxf-application.properties file exposes these PXF Service application configuration

properties:

Parameter Description Default Value

pxf.connection.timeout The Tomcat server connection timeout for read

operations (-1 for infinite timeout).

5m (5 minutes)

pxf.connection.upload-timeout The Tomcat server connection timeout for write

operations (-1 for infinite timeout).

5m (5 minutes)

pxf.max.threads The maximum number of PXF tomcat threads. 200

pxf.task.pool.allow‑core‑thread‑timeout Identifies whether or not core streaming threads are

allowed to time out.

false

pxf.task.pool.core-size The number of core streaming threads. 8

pxf.task.pool.queue-capacity The capacity of the core streaming thread pool queue. 0

pxf.task.pool.max-size The maximum allowed number of core streaming

threads.

pxf.max.threads

if set, or 200

pxf.log.level The log level for the PXF Service. info

pxf.fragmenter-cache.expiration The amount of time after which an entry expires and is

removed from the fragment cache.

10s (10 seconds)

To change the value of a PXF Service application property, you may first need to add the property

to, or uncomment the property in, the pxf-application.properties file before you can set the new

value.

pxf-env.sh

The pxf-env.sh file exposes these PXF JVM configuration properties:

Parameter Description Default Value

JAVA_HOME The path to the Java JRE home directory. /usr/java/default

PXF_LOGDIR The PXF log directory. $PXF_BASE/logs

PXF_RUNDIR The PXF run directory. $PXF_BASE/run

PXF_JVM_OPTS The default options for the PXF Java virtual machine. -Xmx2g -Xms1g

PXF_OOM_KILL Enable/disable PXF auto-kill on OutOfMemoryError (OOM). true (enabled)

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 50

Parameter Description Default Value

PXF_OOM_DUMP_PATH The absolute path to the dump file that PXF generates on OOM. No dump file (empty)

PXF_LOADER_PATH Additional directories and JARs for PXF to class-load. (empty)

LD_LIBRARY_PATH Additional directories and native libraries for PXF to load. (empty)

To set a new value for a PXF JVM configuration property, you may first need to uncomment the

property in the pxf-env.sh file before you set the new value.

pxf-log4j2.xml

The pxf-log4j2.xml file configures PXF and subcomponent logging. By default, PXF is configured to

log at the info level, and logs at the warn or error levels for some third-party libraries to reduce

verbosity.

The Logging advanced configuration topic describes how to enable more verbose client- and

server-level logging for PXF.

pxf-profiles.xml

PXF defines its default profiles in the pxf-profiles-default.xml file. If you choose to add a custom

profile, you configure the profile in pxf-profiles.xml.

Modifying the PXF Configuration

When you update a PXF configuration file, you must sychronize the changes to all hosts in the

Greenplum Database cluster and then restart PXF for the changes to take effect.

Procedure:

1. Update the configuration file(s) of interest.

2. Synchronize the PXF configuration to all hosts in the Greenplum Database cluster:

gpadmin@gpmaster$ pxf cluster sync

3. (Re)start PXF on all Greenplum hosts:

gpadmin@gpmaster$ pxf cluster restart

Configuring PXF

Your Greenplum Database deployment consists of a master node, standby master, and multiple

segment hosts. After you configure the Greenplum Platform Extension Framework (PXF), you start a

single PXF JVM process (PXF Service) on each Greenplum Database host.

PXF provides connectors to Hadoop, Hive, HBase, object stores, network file systems, and external

SQL data stores. You must configure PXF to support the connectors that you plan to use.

To configure PXF, you must:

1. Install Java 8 or 11 on each Greenplum Database host as described in Installing Java for PXF.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 51

https://github.com/greenplum-db/pxf/blob/master/server/pxf-service/src/main/resources/pxf-profiles-default.xml

If your JAVA_HOME is different to /usr/java/default, you must inform PXF of the

$JAVA_HOME setting by specifying its value in the pxf-env.sh configuration file.

Edit the $PXF_BASE/conf/pxf-env.sh file on the Greenplum master node.

gpadmin@gpmaster$ vi /usr/local/pxf-gp6/conf/pxf-env.sh

Locate the JAVA_HOME setting in the pxf-env.sh file, uncomment if necessary, and set

it to your $JAVA_HOME value. For example:

export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk/jre/

2. Register the PXF extension with Greenplum Database (see pxf cluster register). Run this

command after your first installation of a PXF version 6.x, and/or after you upgrade your

Greenplum Database installation:

gpadmin@gpmaster$ pxf cluster register

3. If you plan to use the Hadoop, Hive, or HBase PXF connectors, you must perform the

configuration procedure described in Configuring PXF Hadoop Connectors.

4. If you plan to use the PXF connectors to access the Azure, Google Cloud Storage, Minio, or

S3 object store(s), you must perform the configuration procedure described in Configuring

Connectors to Azure, Google Cloud Storage, Minio, and S3 Object Stores.

5. If you plan to use the PXF JDBC Connector to access an external SQL database, perform the

configuration procedure described in Configuring the JDBC Connector.

6. If you plan to use PXF to access a network file system, perform the configuration procedure

described in Configuring a PXF Network File System Server.

7. After making any configuration changes, synchronize the PXF configuration to all hosts in the

cluster.

gpadmin@gpmaster$ pxf cluster sync

8. After synchronizing PXF configuration changes, Start PXF.

9. Enable the PXF extension and grant access to users.

Configuring PXF Servers

This topic provides an overview of PXF server configuration. To configure a server, refer to the topic

specific to the connector that you want to configure.

You read from or write data to an external data store via a PXF connector. To access an external

data store, you must provide the server location. You may also be required to provide client access

credentials and other external data store-specific properties. PXF simplifies configuring access to

external data stores by:

Supporting file-based connector and user configuration

Providing connector-specific template configuration files

A PXF Server definition is simply a named configuration that provides access to a specific external

data store. A PXF server name is the name of a directory residing in $PXF_BASE/servers/. The

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 52

information that you provide in a server configuration is connector-specific. For example, a PXF

JDBC Connector server definition may include settings for the JDBC driver class name, URL,

username, and password. You can also configure connection-specific and session-specific properties

in a JDBC server definition.

PXF provides a server template file for each connector; this template identifies the typical set of

properties that you must configure to use the connector.

You will configure a server definition for each external data store that Greenplum Database users

need to access. For example, if you require access to two Hadoop clusters, you will create a PXF

Hadoop server configuration for each cluster. If you require access to an Oracle and a MySQL

database, you will create one or more PXF JDBC server configurations for each database.

A server configuration may include default settings for user access credentials and other properties

for the external data store. You can allow Greenplum Database users to access the external data

store using the default settings, or you can configure access and other properties on a per-user

basis. This allows you to configure different Greenplum Database users with different external data

store access credentials in a single PXF server definition.

About Server Template Files

The configuration information for a PXF server resides in one or more <connector>-site.xml files in

$PXF_BASE/servers/<server_name>/.

PXF provides a template configuration file for each connector. These server template configuration

files are located in the $PXF_HOME/templates/ directory after you install PXF:

gpadmin@gpmaster$ ls $PXF_HOME/templates

adl-site.xml hbase-site.xml jdbc-site.xml pxf-site.xml yarn-site.xml

core-site.xml hdfs-site.xml mapred-site.xml s3-site.xml

gs-site.xml hive-site.xml minio-site.xml wasbs-site.xml

For example, the contents of the s3-site.xml template file follow:

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <property>

 <name>fs.s3a.access.key</name>

 <value>YOUR_AWS_ACCESS_KEY_ID</value>

 </property>

 <property>

 <name>fs.s3a.secret.key</name>

 <value>YOUR_AWS_SECRET_ACCESS_KEY</value>

 </property>

 <property>

 <name>fs.s3a.fast.upload</name>

 <value>true</value>

 </property>

</configuration>

You specify credentials to PXF in clear text in configuration files.

Note: The template files for the Hadoop connectors are not intended to be modified and used for

configuration, as they only provide an example of the information needed. Instead of modifying the

Hadoop templates, you will copy several Hadoop *-site.xml files from the Hadoop cluster to your

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 53

PXF Hadoop server configuration.

About the Default Server

PXF defines a special server named default. The PXF installation creates a

$PXF_BASE/servers/default/ directory. This directory, initially empty, identifies the default PXF

server configuration. You can configure and assign the default PXF server to any external data

source. For example, you can assign the PXF default server to a Hadoop cluster, or to a MySQL

database that your users frequently access.

PXF automatically uses the default server configuration if you omit the SERVER=<server_name>

setting in the CREATE EXTERNAL TABLE command LOCATION clause.

Configuring a Server

When you configure a PXF connector to an external data store, you add a named PXF server

configuration for the connector. Among the tasks that you perform, you may:

1. Determine if you are configuring the default PXF server, or choose a new name for the

server configuration.

2. Create the directory $PXF_BASE/servers/<server_name>.

3. Copy template or other configuration files to the new server directory.

4. Fill in appropriate default values for the properties in the template file.

5. Add any additional configuration properties and values required for your environment.

6. Configure one or more users for the server configuration as described in About Configuring

a PXF User.

7. Synchronize the server and user configuration to the Greenplum Database cluster.

Note: You must re-sync the PXF configuration to the Greenplum Database cluster after you add or

update PXF server configuration.

After you configure a PXF server, you publish the server name to Greenplum Database users who

need access to the data store. A user only needs to provide the server name when they create an

external table that accesses the external data store. PXF obtains the external data source location

and access credentials from server and user configuration files residing in the server configuration

directory identified by the server name.

To configure a PXF server, refer to the connector configuration topic:

To configure a PXF server for Hadoop, refer to Configuring PXF Hadoop Connectors .

To configure a PXF server for an object store, refer to Configuring Connectors to Minio and

S3 Object Stores and Configuring Connectors to Azure and Google Cloud Storage Object

Stores.

To configure a PXF JDBC server, refer to Configuring the JDBC Connector .

Configuring a PXF Network File System Server describes the process of configuring a PXF

server for network file system access.

About the pxf-site.xml Configuration File

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 54

PXF includes a template file named pxf-site.xml for PXF-specific configuration parameters. You

can use the pxf-site.xml template file to specify Kerberos and/or user impersonation settings for

server configurations, or to specify a base directory for file access.

The Kerberos and user impersonation settings in this file apply only to Hadoop and JDBC server

configurations; they do not apply to file system or object store server configurations.

You configure properties in the pxf-site.xml file for a PXF server when one or more of the

following conditions hold:

The remote Hadoop system utilizes Kerberos authentication.

You want to enable/disable user impersonation on the remote Hadoop or external database

system.

You will access a network file system with the server configuration.

You will access a remote Hadoop or object store file system with the server configuration,

and you want to allow a user to access only a specific directory and subdirectories.

pxf-site.xml includes the following properties:

Property Description Default Value

pxf.service.kerberos.principal The Kerberos

principal name.

gpadmin/_HOST@EXAMPLE.COM

pxf.service.kerberos.keytab The file system

path to the

Kerberos keytab

file.

$PXF_BASE/keytabs/pxf.service.keytab

pxf.service.user.impersonation Enables/disables

user impersonation

on the remote

system.

If the pxf.service.user.impersonation property is missing

from pxf-site.xml, the default is true (enabled) for PXF

Hadoop servers and false (disabled) for JDBC servers.

pxf.service.user.name The log in user for

the remote system.

This property is commented out by default. When the

property is unset, the default value is the operating system

user that starts the pxf process, typically gpadmin. When the

property is set, the default value depends on the user

impersonation setting and, if you are accessing Hadoop,

whether or not you are accessing a Kerberos-secured cluster;

see the Use Cases and Configuration Scenarios section in the

Configuring the Hadoop User, User Impersonation, and

Proxying topic.

pxf.fs.basePath Identifies the base

path or share point

on the remote file

system. This

property is

applicable when

the server

configuration is

used with a profile

that accesses a file.

None; this property is commented out by default.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 55

mailto:HOST@EXAMPLE.COM

Property Description Default Value

pxf.ppd.hive1 Specifies whether

or not predicate

pushdown is

enabled for queries

on external tables

that specify the

hive, hive:rc, or

hive:orc profiles.

True; predicate pushdown is enabled.

pxf.sasl.connection.retries Specifies the

maximum number

of times that PXF

retries a SASL

connection request

after a refused

connection returns

a GSS initiate

failed error.

5

1 Should you need to, you can override this setting on a per-table basis by specifying the &PPD=

<boolean> option in the LOCATION clause when you create the external table.

Refer to Configuring PXF Hadoop Connectors and Configuring the JDBC Connector for information

about relevant pxf-site.xml property settings for Hadoop and JDBC server configurations,

respectively. See Configuring a PXF Network File System Server for information about relevant pxf-

site.xml property settings when you configure a PXF server to access a network file system.

About the pxf.fs.basePath Property

You can use the pxf.fs.basePath property to restrict a user’s access to files in a specific remote

directory. When set, this property applies to any profile that accesses a file, including *:text,

*:parquet, *:json, etc.

When you configure the pxf.fs.basePath property for a server, PXF considers the file path

specified in the CREATE EXTERNAL TABLE LOCATION clause to be relative to this base path setting, and

constructs the remote path accordingly.

You must set pxf.fs.basePath when you configure a PXF server for access to a network file system

with a file:* profile. This property is optional for a PXF server that accesses a file in Hadoop or in an

object store.

Configuring a PXF User

You can configure access to an external data store on a per-server, per-Greenplum-user basis.

PXF per-server, per-user configuration provides the most benefit for JDBC servers.

You configure external data store user access credentials and properties for a specific Greenplum

Database user by providing a <greenplum_user_name>-user.xml user configuration file in the PXF

server configuration directory, $PXF_BASE/servers/<server_name>/. For example, you specify the

properties for the Greenplum Database user named bill in the file

$PXF_BASE/servers/<server_name>/bill-user.xml. You can configure zero, one, or more users in a

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 56

PXF server configuration.

The properties that you specify in a user configuration file are connector-specific. You can specify

any configuration property supported by the PXF connector server in a <greenplum_user_name>-

user.xml configuration file.

For example, suppose you have configured access to a PostgreSQL database in the PXF JDBC

server configuration named pgsrv1. To allow the Greenplum Database user named bill to access

this database as the PostgreSQL user named pguser1, password changeme, you create the user

configuration file $PXF_BASE/servers/pgsrv1/bill-user.xml with the following properties:

<configuration>

 <property>

 <name>jdbc.user</name>

 <value>pguser1</value>

 </property>

 <property>

 <name>jdbc.password</name>

 <value>changeme</value>

 </property>

</configuration>

If you want to configure a specific search path and a larger read fetch size for bill, you would also

add the following properties to the bill-user.xml user configuration file:

 <property>

 <name>jdbc.session.property.search_path</name>

 <value>bill_schema</value>

 </property>

 <property>

 <name>jdbc.statement.fetchSize</name>

 <value>2000</value>

 </property>

Procedure

For each PXF user that you want to configure, you will:

1. Identify the name of the Greenplum Database user.

2. Identify the PXF server definition for which you want to configure user access.

3. Identify the name and value of each property that you want to configure for the user.

4. Create/edit the file $PXF_BASE/servers/<server_name>/<greenplum_user_name>-user.xml,

and add the outer configuration block:

<configuration>

</configuration>

5. Add each property/value pair that you identified in Step 3 within the configuration block in

the <greenplum_user_name>-user.xml file.

6. If you are adding the PXF user configuration to previously configured PXF server definition,

synchronize the user configuration to the Greenplum Database cluster.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 57

About Configuration Property Precedence

A PXF server configuration may include default settings for user access credentials and other

properties for accessing an external data store. Some PXF connectors, such as the S3 and JDBC

connectors, allow you to directly specify certain server properties via custom options in the CREATE

EXTERNAL TABLE command LOCATION clause. A <greenplum_user_name>-user.xml file specifies

property settings for an external data store that are specific to a Greenplum Database user.

For a given Greenplum Database user, PXF uses the following precedence rules (highest to lowest)

to obtain configuration property settings for the user:

1. A property that you configure in <server_name>/<greenplum_user_name>-user.xml overrides

any setting of the property elsewhere.

2. A property that is specified via custom options in the CREATE EXTERNAL TABLE command

LOCATION clause overrides any setting of the property in a PXF server configuration.

3. Properties that you configure in the <server_name> PXF server definition identify the default

property values.

These precedence rules allow you create a single external table that can be accessed by multiple

Greenplum Database users, each with their own unique external data store user credentials.

Using a Server Configuration

To access an external data store, the Greenplum Database user specifies the server name in the

CREATE EXTERNAL TABLE command LOCATION clause SERVER=<server_name> option. The

<server_name> that the user provides identifies the server configuration directory from which PXF

obtains the configuration and credentials to access the external data store.

For example, the following command accesses an S3 object store using the server configuration

defined in the $PXF_BASE/servers/s3srvcfg/s3-site.xml file:

CREATE EXTERNAL TABLE pxf_ext_tbl(name text, orders int)

 LOCATION ('pxf://BUCKET/dir/file.txt?PROFILE=s3:text&SERVER=s3srvcfg')

FORMAT 'TEXT' (delimiter=E',');

PXF automatically uses the default server configuration when no SERVER=<server_name> setting is

provided.

For example, if the default server configuration identifies a Hadoop cluster, the following example

command references the HDFS file located at /path/to/file.txt:

CREATE EXTERNAL TABLE pxf_ext_hdfs(location text, miles int)

 LOCATION ('pxf://path/to/file.txt?PROFILE=hdfs:text')

FORMAT 'TEXT' (delimiter=E',');

A Greenplum Database user who queries or writes to an external table accesses the external data

store with the credentials configured for the <server_name> user. If no user-specific credentials are

configured for <server_name>, the Greenplum user accesses the external data store with the default

credentials configured for <server_name>.

Configuring PXF Hadoop Connectors (Optional)

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 58

PXF is compatible with Cloudera, Hortonworks Data Platform, MapR, and generic Apache Hadoop

distributions. This topic describes how configure the PXF Hadoop, Hive, and HBase connectors.

If you do not want to use the Hadoop-related PXF connectors, then you do not need to perform this

procedure.

Prerequisites

Configuring PXF Hadoop connectors involves copying configuration files from your Hadoop cluster

to the Greenplum Database master host. If you are using the MapR Hadoop distribution, you must

also copy certain JAR files to the master host. Before you configure the PXF Hadoop connectors,

ensure that you can copy files from hosts in your Hadoop cluster to the Greenplum Database master.

Procedure

Perform the following procedure to configure the desired PXF Hadoop-related connectors on the

Greenplum Database master host. After you configure the connectors, you will use the pxf cluster

sync command to copy the PXF configuration to the Greenplum Database cluster.

In this procedure, you use the default, or create a new, PXF server configuration. You copy

Hadoop configuration files to the server configuration directory on the Greenplum Database master

host. You identify Kerberos and user impersonation settings required for access, if applicable. You

may also copy libraries to $PXF_BASE/lib for MapR support. You then synchronize the PXF

configuration on the master host to the standby master and segment hosts.

1. Log in to your Greenplum Database master node:

$ ssh gpadmin@<gpmaster>

2. Identify the name of your PXF Hadoop server configuration.

3. If you are not using the default PXF server, create the $PXF_BASE/servers/<server_name>

directory. For example, use the following command to create a Hadoop server configuration

named hdp3:

gpadmin@gpmaster$ mkdir $PXF_BASE/servers/hdp3

4. Change to the server directory. For example:

gpadmin@gpmaster$ cd $PXF_BASE/servers/default

Or,

gpadmin@gpmaster$ cd $PXF_BASE/servers/hdp3

5. PXF requires information from core-site.xml and other Hadoop configuration files. Copy the

core-site.xml, hdfs-site.xml, mapred-site.xml, and yarn-site.xml Hadoop configuration

files from your Hadoop cluster NameNode host to the current host using your tool of choice.

Your file paths may differ based on the Hadoop distribution in use. For example, these

commands use scp to copy the files:

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 59

gpadmin@gpmaster$ scp hdfsuser@namenode:/etc/hadoop/conf/core-site.xml .

gpadmin@gpmaster$ scp hdfsuser@namenode:/etc/hadoop/conf/hdfs-site.xml .

gpadmin@gpmaster$ scp hdfsuser@namenode:/etc/hadoop/conf/mapred-site.xml .

gpadmin@gpmaster$ scp hdfsuser@namenode:/etc/hadoop/conf/yarn-site.xml .

6. If you plan to use the PXF Hive connector to access Hive table data, similarly copy the Hive

configuration to the Greenplum Database master host. For example:

gpadmin@gpmaster$ scp hiveuser@hivehost:/etc/hive/conf/hive-site.xml .

7. If you plan to use the PXF HBase connector to access HBase table data, similarly copy the

HBase configuration to the Greenplum Database master host. For example:

gpadmin@gpmaster$ scp hbaseuser@hbasehost:/etc/hbase/conf/hbase-site.xml .

8. If you are using PXF with the MapR Hadoop distribution, you must copy certain JAR files

from your MapR cluster to the Greenplum Database master host. (Your file paths may differ

based on the version of MapR in use.) For example, these commands use scp to copy the

files:

gpadmin@gpmaster$ cd $PXF_BASE/lib

gpadmin@gpmaster$ scp mapruser@maprhost:/opt/mapr/hadoop/hadoop-2.7.0/share/had

oop/common/lib/maprfs-5.2.2-mapr.jar .

gpadmin@gpmaster$ scp mapruser@maprhost:/opt/mapr/hadoop/hadoop-2.7.0/share/had

oop/common/lib/hadoop-auth-2.7.0-mapr-1707.jar .

gpadmin@gpmaster$ scp mapruser@maprhost:/opt/mapr/hadoop/hadoop-2.7.0/share/had

oop/common/hadoop-common-2.7.0-mapr-1707.jar .

9. Synchronize the PXF configuration to the Greenplum Database cluster:

gpadmin@gpmaster$ pxf cluster sync

10. PXF accesses Hadoop services on behalf of Greenplum Database end users. By default, PXF

tries to access HDFS, Hive, and HBase using the identity of the Greenplum Database user

account that logs into Greenplum Database. In order to support this functionality, you must

configure proxy settings for Hadoop, as well as for Hive and HBase if you intend to use those

PXF connectors. Follow procedures in Configuring User Impersonation and Proxying to

configure user impersonation and proxying for Hadoop services, or to turn off PXF user

impersonation.

11. Grant read permission to the HDFS files and directories that will be accessed as external

tables in Greenplum Database. If user impersonation is enabled (the default), you must grant

this permission to each Greenplum Database user/role name that will use external tables that

reference the HDFS files. If user impersonation is not enabled, you must grant this

permission to the gpadmin user.

12. If your Hadoop cluster is secured with Kerberos, you must configure PXF and generate

Kerberos principals and keytabs for each Greenplum Database host as described in

Configuring PXF for Secure HDFS.

About Updating the Hadoop Configuration

If you update your Hadoop, Hive, or HBase configuration while the PXF Service is running, you must

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 60

copy the updated configuration to the $PXF_BASE/servers/<server_name> directory and re-sync the

PXF configuration to your Greenplum Database cluster. For example:

gpadmin@gpmaster$ cd $PXF_BASE/servers/<server_name>

gpadmin@gpmaster$ scp hiveuser@hivehost:/etc/hive/conf/hive-site.xml .

gpadmin@gpmaster$ pxf cluster sync

Configuring the Hadoop User, User Impersonation, and
Proxying

PXF accesses Hadoop services on behalf of Greenplum Database end users.

When user impersonation is enabled (the default), PXF accesses Hadoop services using the identity

of the Greenplum Database user account that logs in to Greenplum and performs an operation that

uses a PXF connector. Keep in mind that PXF uses only the login identity of the user when

accessing Hadoop services. For example, if a user logs in to Greenplum Database as the user jane

and then execute SET ROLE or SET SESSION AUTHORIZATION to assume a different user identity, all

PXF requests still use the identity jane to access Hadoop services. When user impersonation is

enabled, you must explicitly configure each Hadoop data source (HDFS, Hive, HBase) to allow PXF

to act as a proxy for impersonating specific Hadoop users or groups.

When user impersonation is disabled, PXF executes all Hadoop service requests as the PXF process

owner (usually gpadmin) or the Hadoop user identity that you specify. This behavior provides no

means to control access to Hadoop services for different Greenplum Database users. It requires that

this user have access to all files and directories in HDFS, and all tables in Hive and HBase that are

referenced in PXF external table definitions.

You configure the Hadoop user and PXF user impersonation setting for a server via the pxf-

site.xml server configuration file. Refer to About the pxf-site.xml Configuration File for more

information about the configuration properties in this file.

Use Cases and Configuration Scenarios

User, user impersonation, and proxy configuration for Hadoop depends on how you use PXF to

access Hadoop, and whether or not the Hadoop cluster is secured with Kerberos.

The following scenarios describe the use cases and configuration required when you use PXF to

access non-secured Hadoop. If you are using PXF to access a Kerberos-secured Hadoop cluster,

refer to the Use Cases and Configuration Scenarios section in the Configuring PXF for Secure HDFS

topic.

Note: These scenarios assume that gpadmin is the PXF process owner.

Accessing Hadoop as the Greenplum User Proxied by gpadmin

This is the default configuration for PXF. The gpadmin user proxies Greenplum queries on behalf of

Greenplum users. The effective user in Hadoop is the Greenplum user that runs the query.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 61

The following table identifies the pxf.service.user.impersonation and pxf.service.user.name

settings, and the PXF and Hadoop configuration required for this use case:

Impersonation Service User PXF Configuration Hadoop Configuration

true gpadmin None; this is the default

configuration.

Set the gpadmin user as the Hadoop proxy user as

described in Configure Hadoop Proxying.

Accessing Hadoop as the Greenplum User Proxied by a <custom>
User

In this configuration, PXF accesses Hadoop as the Greenplum user proxied by <custom> user. A

query initiated by a Greenplum user appears on the Hadoop side as originating from the (<custom>

user.

This configuration might be desirable when Hadoop is already configured with a proxy user, or when

you want a user different than gpadmin to proxy Greenplum queries.

The following table identifies the pxf.service.user.impersonation and pxf.service.user.name

settings, and the PXF and Hadoop configuration required for this use case:

Impersonation Service User PXF Configuration Hadoop Configuration

true <custom> Configure the Hadoop User to

the <custom> user name.

Set the <custom> user as the Hadoop proxy user as

described in Configure Hadoop Proxying.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 62

Accessing Hadoop as the gpadmin User

In this configuration, PXF accesses Hadoop as the gpadmin user. A query initiated by any Greenplum

user appears on the Hadoop side as originating from the gpadmin user.

The following table identifies the pxf.service.user.impersonation and pxf.service.user.name

settings, and the PXF and Hadoop configuration required for this use case:

Impersonation Service User PXF Configuration Hadoop Configuration

false gpadmin Turn off user impersonation as described in Configure

PXF User Impersonation.

None required.

Accessing Hadoop as a <custom> User

In this configuration, PXF accesses Hadoop as a <custom> user. A query initiated by any Greenplum

user appears on the Hadoop side as originating from the <custom> user.

The following table identifies the pxf.service.user.impersonation and pxf.service.user.name

settings, and the PXF and Hadoop configuration required for this use case:

Impersonation Service User PXF Configuration Hadoop Configuration

false <custom> Turn off user impersonation as described in Configure

PXF User Impersonation and Configure the Hadoop

User to the <custom> user name.

None required.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 63

Configure the Hadoop User

By default, PXF accesses Hadoop using the identity of the Greenplum Database user, and you are

required to set up a proxy Hadoop user. You can configure PXF to access Hadoop as a different

user on a per-server basis.

Perform the following procedure to configure the Hadoop user:

1. Log in to your Greenplum Database master node as the administrative user:

$ ssh gpadmin@<gpmaster>

2. Identify the name of the PXF Hadoop server configuration that you want to update.

3. Navigate to the server configuration directory. For example, if the server is named hdp3:

gpadmin@gpmaster$ cd $PXF_BASE/servers/hdp3

4. If the server configuration does not yet include a pxf-site.xml file, copy the template file to

the directory. For example:

gpadmin@gpmaster$ cp $PXF_HOME/templates/pxf-site.xml .

5. Open the pxf-site.xml file in the editor of your choice, and configure the Hadoop user

name. When impersonation is disabled, this name identifies the Hadoop user identity that

PXF will use to access the Hadoop system. When user impersonation is enabled, this name

identifies the PXF proxy Hadoop user. For example, if you want to access Hadoop as the

user hdfsuser1, uncomment the property and set it as follows:

<property>

 <name>pxf.service.user.name</name>

 <value>hdfsuser1</value>

</property>

6. Save the pxf-site.xml file and exit the editor.

7. Use the pxf cluster sync command to synchronize the PXF Hadoop server configuration to

your Greenplum Database cluster:

gpadmin@gpmaster$ pxf cluster sync

Configure PXF User Impersonation

PXF user impersonation is enabled by default for Hadoop servers. You can configure PXF user

impersonation on a per-server basis. Perform the following procedure to turn PXF user

impersonation on or off for the Hadoop server configuration:

1. Navigate to the server configuration directory. For example, if the server is named hdp3:

gpadmin@gpmaster$ cd $PXF_BASE/servers/hdp3

2. If the server configuration does not yet include a pxf-site.xml file, copy the template file to

the directory. For example:

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 64

gpadmin@gpmaster$ cp $PXF_HOME/templates/pxf-site.xml .

3. Open the pxf-site.xml file in the editor of your choice, and update the user impersonation

property setting. For example, if you do not require user impersonation for this server

configuration, set the pxf.service.user.impersonation property to false:

<property>

 <name>pxf.service.user.impersonation</name>

 <value>false</value>

</property>

If you require user impersonation, turn it on:

<property>

 <name>pxf.service.user.impersonation</name>

 <value>true</value>

</property>

4. If you enabled user impersonation, you must configure Hadoop proxying as described in

Configure Hadoop Proxying. You must also configure Hive User Impersonation and HBase

User Impersonation if you plan to use those services.

5. Save the pxf-site.xml file and exit the editor.

6. Use the pxf cluster sync command to synchronize the PXF Hadoop server configuration to

your Greenplum Database cluster:

gpadmin@gpmaster$ pxf cluster sync

Configure Hadoop Proxying

When PXF user impersonation is enabled for a Hadoop server configuration, you must configure

Hadoop to permit PXF to proxy Greenplum users. This configuration involves setting certain

hadoop.proxyuser.* properties. Follow these steps to set up PXF Hadoop proxy users:

1. Log in to your Hadoop cluster and open the core-site.xml configuration file using a text

editor, or use Ambari or another Hadoop cluster manager to add or edit the Hadoop

property values described in this procedure.

2. Set the property hadoop.proxyuser.<name>.hosts to specify the list of PXF host names from

which proxy requests are permitted. Substitute the PXF proxy Hadoop user for <name>. The

PXF proxy Hadoop user is the pxf.service.user.name that you configured in the procedure

above, or, if you are using Kerberos authentication to Hadoop, the proxy user identity is the

primary component of the Kerberos principal. If you have not explicitly configured

pxf.service.user.name, the proxy user is the operating system user that started PXF.

Provide multiple PXF host names in a comma-separated list. For example, if the PXF proxy

user is named hdfsuser2:

<property>

 <name>hadoop.proxyuser.hdfsuser2.hosts</name>

 <value>pxfhost1,pxfhost2,pxfhost3</value>

</property>

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 65

3. Set the property hadoop.proxyuser.<name>.groups to specify the list of HDFS groups that

PXF as Hadoop user <name> can impersonate. You should limit this list to only those groups

that require access to HDFS data from PXF. For example:

<property>

 <name>hadoop.proxyuser.hdfsuser2.groups</name>

 <value>group1,group2</value>

</property>

4. You must restart Hadoop for your core-site.xml changes to take effect.

5. Copy the updated core-site.xml file to the PXF Hadoop server configuration directory

$PXF_BASE/servers/<server_name> on the Greenplum Database master and synchronize the

configuration to the standby master and each Greenplum Database segment host.

Hive User Impersonation

The PXF Hive connector uses the Hive MetaStore to determine the HDFS locations of Hive tables,

and then accesses the underlying HDFS files directly. No specific impersonation configuration is

required for Hive, because the Hadoop proxy configuration in core-site.xml also applies to Hive

tables accessed in this manner.

HBase User Impersonation

In order for user impersonation to work with HBase, you must enable the AccessController

coprocessor in the HBase configuration and restart the cluster. See 61.3 Server-side Configuration

for Simple User Access Operation in the Apache HBase Reference Guide for the required hbase-

site.xml configuration settings.

Configuring PXF for Secure HDFS

When Kerberos is enabled for your HDFS filesystem, the PXF Service, as an HDFS client, requires a

principal and keytab file to authenticate access to HDFS. To read or write files on a secure HDFS,

you must create and deploy Kerberos principals and keytabs for PXF, and ensure that Kerberos

authentication is enabled and functioning.

PXF supports simultaneous access to multiple Kerberos-secured Hadoop clusters.

When Kerberos is enabled, you access Hadoop with the PXF principal and keytab. You can also

choose to access Hadoop using the identity of the Greenplum Database user.

You configure the impersonation setting and the Kerberos principal and keytab for a Hadoop server

via the pxf-site.xml server-specific configuration file. Refer to About the pxf-site.xml Configuration

File for more information about the configuration properties in this file.

Configure the Kerberos principal and keytab using the following pxf-site.xml properties:

Property Description Default Value

pxf.service.kerberos.principal The Kerberos principal name. gpadmin/_HOST@EXAMPLE.COM

pxf.service.kerberos.keytab The file system path to the Kerberos

keytab file.

$PXF_BASE/keytabs/pxf.service.keytab

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 66

http://hbase.apache.org/book.html#hbase.secure.configuration
mailto:HOST@EXAMPLE.COM

Prerequisites

Before you configure PXF for access to a secure HDFS filesystem, ensure that you have:

Configured a PXF server for the Hadoop cluster, and can identify the server configuration

name.

Configured and started PXF as described in Configuring PXF.

Verified that Kerberos is enabled for your Hadoop cluster.

Verified that the HDFS configuration parameter dfs.block.access.token.enable is set to

true. You can find this setting in the hdfs-site.xml configuration file on a host in your

Hadoop cluster.

Noted the host name or IP address of each Greenplum Database host (<gphost>) and the

Kerberos Key Distribution Center (KDC) <kdc-server> host.

Noted the name of the Kerberos <realm> in which your cluster resides.

Installed the Kerberos client packages on each Greenplum Database host if they are not

already installed. You must have superuser permissions to install operating system packages.

For example:

root@gphost$ rpm -qa | grep krb

root@gphost$ yum install krb5-libs krb5-workstation

Use Cases and Configuration Scenarios

The following scenarios describe the use cases and configuration required when you use PXF to

access a Kerberos-secured Hadoop cluster.

Note: These scenarios assume that gpadmin is the PXF process owner.

Accessing Hadoop as the Greenplum User Proxied by the Kerberos
Principal

In this configuration, PXF accesses Hadoop as the Greenplum user proxied by the Kerberos

principal. The Kerberos principal is the Hadoop proxy user and accesses Hadoop as the Greenplum

user.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 67

The following table identifies the pxf.service.user.impersonation and pxf.service.user.name

settings, and the PXF and Hadoop configuration required for this use case:

Impersonation Service User PXF Configuration Hadoop Configuration

true Kerberos

principal

Perform the Configuration

Procedure in this topic.

Set the Kerberos principal as the Hadoop proxy user

as described in Configure Hadoop Proxying.

Accessing Hadoop as the Kerberos Principal

In this configuration, PXF accesses Hadoop as the Kerberos principal. A query initiated by any

Greenplum user appears on the Hadoop side as originating from the Kerberos principal.

The following table identifies the pxf.service.user.impersonation and pxf.service.user.name

settings, and the PXF and Hadoop configuration required for this use case:

Impersonation Service User PXF Configuration Hadoop Configuration

false Kerberos

principal

Perform the Configuration Procedure in this topic, and

then turn off user impersonation as described in

Configure PXF User Impersonation.

None required.

Accessing Hadoop as a <custom> User

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 68

#procedure.html

In this configuration, PXF accesses Hadoop as a <custom> user (for example, hive). The Kerberos

principal is the Hadoop proxy user. A query initiated by any Greenplum user appears on the Hadoop

side as originating from the <custom> user.

The following table identifies the pxf.service.user.impersonation and pxf.service.user.name

settings, and the PXF and Hadoop configuration required for this use case:

Impersonation Service User PXF Configuration Hadoop Configuration

false <custom> Perform the Configuration Procedure in this topic,

turn off user impersonation as described in Configure

PXF User Impersonation, and Configure the Hadoop

User to the <custom> user name.

Set the Kerberos principal

as the Hadoop proxy user

as described in Configure

Hadoop Proxying.

Note: PXF does not support accessing a Kerberos-secured Hadoop cluster with a <custom> user

impersonating Greenplum users. PXF requires that you impersonate Greenplum users using the

Kerberos principal.

Procedure

There are different procedures for configuring PXF for secure HDFS with a Microsoft Active

Directory KDC Server vs. with an MIT Kerberos KDC Server.

Configuring PXF with a Microsoft Active Directory Kerberos KDC
Server

When you configure PXF for secure HDFS using an AD Kerberos KDC server, you will perform tasks

on both the KDC server host and the Greenplum Database master host.

Perform the following steps the Active Directory domain controller:

1. Start Active Directory Users and Computers.

2. Expand the forest domain and the top-level UNIX organizational unit that describes your

Greenplum user domain.

3. Select Service Accounts, right-click, then select New->User.

4. Type a name, eg. ServiceGreenplumPROD1, and change the login name to gpadmin. Note that

the login name should be in compliance with POSIX standard and match hadoop.proxyuser.

<name>.hosts/groups in the Hadoop core-site.xml and the Kerberos principal.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 69

5. Type and confirm the Active Directory service account password. Select the User cannot

change password and Password never expires check boxes, then click Next. For security

reasons, if you can’t have Password never expires checked, you will need to generate new

keytab file (step 7) every time you change the password of the service account.

6. Click Finish to complete the creation of the new user principal.

7. Open Powershell or a command prompt and run the ktpass command to generate the

keytab file. For example:

powershell#>ktpass -out pxf.service.keytab -princ gpadmin@EXAMPLE.COM -mapUser

ServiceGreenplumPROD1 -pass ******* -crypto all -ptype KRB5_NT_PRINCIPAL

With Active Directory, the principal and the keytab file are shared by all Greenplum Database

hosts.

8. Copy the pxf.service.keytab file to the Greenplum master host.

Perform the following procedure on the Greenplum Database master host:

1. Log in to the Greenplum Database master host. For example:

$ ssh gpadmin@<gpmaster>

2. Identify the name of the PXF Hadoop server configuration, and navigate to the server

configuration directory. For example, if the server is named hdp3:

gpadmin@gpmaster$ cd $PXF_BASE/servers/hdp3

3. If the server configuration does not yet include a pxf-site.xml file, copy the template file to

the directory. For example:

gpadmin@gpmaster$ cp $PXF_HOME/templates/pxf-site.xml .

4. Open the pxf-site.xml file in the editor of your choice, and update the keytab and principal

property settings, if required. Specify the location of the keytab file and the Kerberos

principal, substituting your realm. For example:

<property>

 <name>pxf.service.kerberos.principal</name>

 <value>gpadmin@EXAMPLE.COM</value>

</property>

<property>

 <name>pxf.service.kerberos.keytab</name>

 <value>${pxf.conf}/keytabs/pxf.service.keytab</value>

</property>

5. Enable user impersonation as described in Configure PXF User Impersonation, and

configure or verify Hadoop proxying for the primary component of the Kerberos principal as

described in Configure Hadoop Proxying. For example, if your principal is

gpadmin@EXAMPLE.COM, configure proxying for the Hadoop user gpadmin.

6. Save the file and exit the editor.

7. Synchronize the PXF configuration to your Greenplum Database cluster and restart PXF:

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 70

gpadmin@master$ pxf cluster sync

gpadmin@master$ pxf cluster restart

8. Step 7 does not synchronize the keytabs in $PXF_BASE. You must distribute the keytab file to

$PXF_BASE/keytabs/. Locate the keytab file, copy the file to the $PXF_BASE runtime

configuration directory, and set required permissions. For example:

gpadmin@gpmaster$ gpscp -f hostfile_all pxf.service.keytab =:$PXF_BASE/keytabs/

gpadmin@gpmaster$ gpssh -f hostfile_all chmod 400 $PXF_BASE/keytabs/pxf.service

.keytab

Configuring PXF with an MIT Kerberos KDC Server

When you configure PXF for secure HDFS using an MIT Kerberos KDC server, you will perform

tasks on both the KDC server host and the Greenplum Database master host.

Perform the following steps on the MIT Kerberos KDC server host:

1. Log in to the Kerberos KDC server as the root user.

$ ssh root@<kdc-server>

root@kdc-server$

2. Distribute the /etc/krb5.conf Kerberos configuration file on the KDC server host to each

host in your Greenplum Database cluster if not already present. For example:

root@kdc-server$ scp /etc/krb5.conf <gphost>:/etc/krb5.conf

3. Use the kadmin.local command to create a Kerberos PXF Service principal for each

Greenplum Database host. The service principal should be of the form

gpadmin/<gphost>@<realm> where <gphost> is the DNS resolvable, fully-qualified hostname

of the host system (output of the hostname -f command).

For example, these commands create Kerberos PXF Service principals for the hosts named

host1.example.com, host2.example.com, and host3.example.com in the Kerberos realm

named EXAMPLE.COM:

root@kdc-server$ kadmin.local -q "addprinc -randkey -pw changeme gpadmin/host1.

example.com@EXAMPLE.COM"

root@kdc-server$ kadmin.local -q "addprinc -randkey -pw changeme gpadmin/host2.

example.com@EXAMPLE.COM"

root@kdc-server$ kadmin.local -q "addprinc -randkey -pw changeme gpadmin/host3.

example.com@EXAMPLE.COM"

4. Generate a keytab file for each PXF Service principal that you created in the previous step.

Save the keytab files in any convenient location (this example uses the directory

/etc/security/keytabs). You will deploy the keytab files to their respective Greenplum

Database host machines in a later step. For example:

root@kdc-server$ kadmin.local -q "xst -norandkey -k /etc/security/keytabs/pxf-h

ost1.service.keytab gpadmin/host1.example.com@EXAMPLE.COM"

root@kdc-server$ kadmin.local -q "xst -norandkey -k /etc/security/keytabs/pxf-h

ost2.service.keytab gpadmin/host2.example.com@EXAMPLE.COM"

root@kdc-server$ kadmin.local -q "xst -norandkey -k /etc/security/keytabs/pxf-h

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 71

ost3.service.keytab gpadmin/host3.example.com@EXAMPLE.COM"

Repeat the xst command as necessary to generate a keytab for each PXF Service principal

that you created in the previous step.

5. List the principals. For example:

root@kdc-server$ kadmin.local -q "listprincs"

6. Copy the keytab file for each PXF Service principal to its respective host. For example, the

following commands copy each principal generated in step 4 to the PXF default keytab

directory on the host when PXF_BASE=/usr/local/pxf-gp6:

root@kdc-server$ scp /etc/security/keytabs/pxf-host1.service.keytab host1.examp

le.com:/usr/local/pxf-gp6/keytabs/pxf.service.keytab

root@kdc-server$ scp /etc/security/keytabs/pxf-host2.service.keytab host2.examp

le.com:/usr/local/pxf-gp6/keytabs/pxf.service.keytab

root@kdc-server$ scp /etc/security/keytabs/pxf-host3.service.keytab host3.examp

le.com:/usr/local/pxf-gp6/keytabs/pxf.service.keytab

Note the file system location of the keytab file on each PXF host; you will need this

information for a later configuration step.

7. Change the ownership and permissions on the pxf.service.keytab files. The files must be

owned and readable by only the gpadmin user. For example:

root@kdc-server$ ssh host1.example.com chown gpadmin:gpadmin /usr/local/pxf-gp6

/keytabs/pxf.service.keytab

root@kdc-server$ ssh host1.example.com chmod 400 /usr/local/pxf-gp6/keytabs/pxf

.service.keytab

root@kdc-server$ ssh host2.example.com chown gpadmin:gpadmin /usr/local/pxf-gp6

/keytabs/pxf.service.keytab

root@kdc-server$ ssh host2.example.com chmod 400 /usr/local/pxf-gp6/keytabs/pxf

.service.keytab

root@kdc-server$ ssh host3.example.com chown gpadmin:gpadmin /usr/local/pxf-gp6

/keytabs/pxf.service.keytab

root@kdc-server$ ssh host3.example.com chmod 400 /usr/local/pxf-gp6/keytabs/pxf

.service.keytab

Perform the following steps on the Greenplum Database master host:

1. Log in to the master host. For example:

$ ssh gpadmin@<gpmaster>

2. Identify the name of the PXF Hadoop server configuration that requires Kerberos access.

3. Navigate to the server configuration directory. For example, if the server is named hdp3:

gpadmin@gpmaster$ cd $PXF_BASE/servers/hdp3

4. If the server configuration does not yet include a pxf-site.xml file, copy the template file to

the directory. For example:

gpadmin@gpmaster$ cp $PXF_HOME/templates/pxf-site.xml .

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 72

5. Open the pxf-site.xml file in the editor of your choice, and update the keytab and principal

property settings, if required. Specify the location of the keytab file and the Kerberos

principal, substituting your realm. The default values for these settings are identified below:

<property>

 <name>pxf.service.kerberos.principal</name>

 <value>gpadmin/_HOST@EXAMPLE.COM</value>

</property>

<property>

 <name>pxf.service.kerberos.keytab</name>

 <value>${pxf.conf}/keytabs/pxf.service.keytab</value>

</property>

PXF automatically replaces _HOST with the FQDN of the host.

6. If you want to access Hadoop as the Greenplum Database user:

1. Enable user impersonation as described in Configure PXF User Impersonation.

2. Configure Hadoop proxying for the primary component of the Kerberos principal as

described in Configure Hadoop Proxying. For example, if your principal is

gpadmin/_HOST@EXAMPLE.COM, configure proxying for the Hadoop user gpadmin.

7. If you want to access Hadoop using the identity of the Kerberos principal, disable user

impersonation as described in Configure PXF User Impersonation.

8. If you want to access Hadoop as a custom user:

1. Disable user impersonation as described in Configure PXF User Impersonation.

2. Configure the custom user name as described in Configure the Hadoop User.

3. Configure Hadoop proxying for the primary component of the Kerberos principal as

described in Configure Hadoop Proxying. For example, if your principal is

gpadmin/_HOST@EXAMPLE.COM, configure proxying for the Hadoop user gpadmin.

9. Save the file and exit the editor.

10. Synchronize the PXF configuration to your Greenplum Database cluster:

gpadmin@gpmaster$ pxf cluster sync

Configuring Connectors to Minio and S3 Object Stores
(Optional)

You can use PXF to access S3-compatible object stores. This topic describes how to configure the

PXF connectors to these external data sources.

If you do not plan to use these PXF object store connectors, then you do not need to perform this

procedure.

About Object Store Configuration

To access data in an object store, you must provide a server location and client credentials. When

you configure a PXF object store connector, you add at least one named PXF server configuration

for the connector as described in Configuring PXF Servers.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 73

PXF provides a configuration file template for each object store connector. These template files are

located in the $PXF_HOME/templates/ directory.

Minio Server Configuration

The template configuration file for Minio is $PXF_HOME/templates/minio-site.xml. When you

configure a Minio server, you must provide the following server configuration properties and replace

the template values with your credentials:

Property Description Value

fs.s3a.endpoint The Minio S3 endpoint to which to connect. Your endpoint.

fs.s3a.access.key The Minio account access key ID. Your access key.

fs.s3a.secret.key The secret key associated with the Minio access key ID. Your secret key.

S3 Server Configuration

The template configuration file for S3 is $PXF_HOME/templates/s3-site.xml. When you configure an

S3 server, you must provide the following server configuration properties and replace the template

values with your credentials:

Property Description Value

fs.s3a.access.key The AWS account access key ID. Your access key.

fs.s3a.secret.key The secret key associated with the AWS access key ID. Your secret key.

If required, fine-tune PXF S3 connectivity by specifying properties identified in the S3A section of

the Hadoop-AWS module documentation in your s3-site.xml server configuration file.

You can override the credentials for an S3 server configuration by directly specifying the S3 access

ID and secret key via custom options in the CREATE EXTERNAL TABLE command LOCATION

clause. Refer to Overriding the S3 Server Configuration with DDL for additional information.

Configuring S3 Server-Side Encryption

PXF supports Amazon Web Service S3 Server-Side Encryption (SSE) for S3 files that you access with

readable and writable Greenplum Database external tables that specify the pxf protocol and an s3:*

profile. AWS S3 server-side encryption protects your data at rest; it encrypts your object data as it

writes to disk, and transparently decrypts the data for you when you access it.

PXF supports the following AWS SSE encryption key management schemes:

SSE with S3-Managed Keys (SSE-S3) - Amazon manages the data and master encryption

keys.

SSE with Key Management Service Managed Keys (SSE-KMS) - Amazon manages the data

key, and you manage the encryption key in AWS KMS.

SSE with Customer-Provided Keys (SSE-C) - You set and manage the encryption key.

Your S3 access key and secret key govern your access to all S3 bucket objects, whether the data is

encrypted or not.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 74

https://hadoop.apache.org/docs/current/hadoop-aws/tools/hadoop-aws/index.html#S3A

S3 transparently decrypts data during a read operation of an encrypted file that you access via a

readable external table that is created by specifying the pxf protocol and an s3:* profile. No

additional configuration is required.

To encrypt data that you write to S3 via this type of external table, you have two options:

Configure the default SSE encryption key management scheme on a per-S3-bucket basis via

the AWS console or command line tools (recommended).

Configure SSE encryption options in your PXF S3 server s3-site.xml configuration file.

Configuring SSE via an S3 Bucket Policy (Recommended)

You can create S3 Bucket Policy(s) that identify the objects that you want to encrypt, the encryption

key management scheme, and the write actions permitted on those objects. Refer to Protecting Data

Using Server-Side Encryption in the AWS S3 documentation for more information about the SSE

encryption key management schemes. How Do I Enable Default Encryption for an S3 Bucket?

describes how to set default encryption bucket policies.

Specifying SSE Options in a PXF S3 Server Configuration

You must include certain properties in s3-site.xml to configure server-side encryption in a PXF S3

server configuration. The properties and values that you add to the file are dependent upon the SSE

encryption key management scheme.

SSE-S3

To enable SSE-S3 on any file that you write to any S3 bucket, set the following encryption algorithm

property and value in the s3-site.xml file:

<property>

 <name>fs.s3a.server-side-encryption-algorithm</name>

 <value>AES256</value>

</property>

To enable SSE-S3 for a specific S3 bucket, use the property name variant that includes the bucket

name. For example:

<property>

 <name>fs.s3a.bucket.YOUR_BUCKET1_NAME.server-side-encryption-algorithm</name>

 <value>AES256</value>

</property>

Replace YOUR_BUCKET1_NAME with the name of the S3 bucket.

SSE-KMS

To enable SSE-KMS on any file that you write to any S3 bucket, set both the encryption algorithm

and encryption key ID. To set these properties in the s3-site.xml file:

<property>

 <name>fs.s3a.server-side-encryption-algorithm</name>

 <value>SSE-KMS</value>

</property>

<property>

 <name>fs.s3a.server-side-encryption.key</name>

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 75

http://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/default-bucket-encryption.html

 <value>YOUR_AWS_SSE_KMS_KEY_ARN</value>

</property>

Substitute YOUR_AWS_SSE_KMS_KEY_ARN with your key resource name. If you do not specify an

encryption key, the default key defined in the Amazon KMS is used. Example KMS key:

arn:aws:kms:us-west-2:123456789012:key/1a23b456-7890-12cc-d345-6ef7890g12f3.

Note: Be sure to create the bucket and the key in the same Amazon Availability Zone.

To enable SSE-KMS for a specific S3 bucket, use property name variants that include the bucket

name. For example:

<property>

 <name>fs.s3a.bucket.YOUR_BUCKET2_NAME.server-side-encryption-algorithm</name>

 <value>SSE-KMS</value>

</property>

<property>

 <name>fs.s3a.bucket.YOUR_BUCKET2_NAME.server-side-encryption.key</name>

 <value>YOUR_AWS_SSE_KMS_KEY_ARN</value>

</property>

Replace YOUR_BUCKET2_NAME with the name of the S3 bucket.

SSE-C

To enable SSE-C on any file that you write to any S3 bucket, set both the encryption algorithm and

the encryption key (base-64 encoded). All clients must share the same key.

To set these properties in the s3-site.xml file:

<property>

 <name>fs.s3a.server-side-encryption-algorithm</name>

 <value>SSE-C</value>

</property>

<property>

 <name>fs.s3a.server-side-encryption.key</name>

 <value>YOUR_BASE64-ENCODED_ENCRYPTION_KEY</value>

</property>

To enable SSE-C for a specific S3 bucket, use the property name variants that include the bucket

name as described in the SSE-KMS example.

Example Server Configuration Procedure

In this procedure, you name and add a PXF server configuration in the $PXF_BASE/servers directory

on the Greenplum Database master host for the S3 Cloud Storage connector. You then use the pxf

cluster sync command to sync the server configuration(s) to the Greenplum Database cluster.

1. Log in to your Greenplum Database master node:

$ ssh gpadmin@<gpmaster>

2. Choose a name for the server. You will provide the name to end users that need to

reference files in the object store.

3. Create the $PXF_BASE/servers/<server_name> directory. For example, use the following

command to create a server configuration for an S3 server named s3srvcfg:

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 76

gpadmin@gpmaster$ mkdir $PXF_BASE/servers/s3srvcfg

4. Copy the PXF template file for S3 to the server configuration directory. For example:

gpadmin@gpmaster$ cp $PXF_HOME/templates/s3-site.xml $PXF_BASE/servers/s3srvcfg

/

5. Open the template server configuration file in the editor of your choice, and provide

appropriate property values for your environment. For example:

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <property>

 <name>fs.s3a.access.key</name>

 <value>access_key_for_user1</value>

 </property>

 <property>

 <name>fs.s3a.secret.key</name>

 <value>secret_key_for_user1</value>

 </property>

 <property>

 <name>fs.s3a.fast.upload</name>

 <value>true</value>

 </property>

</configuration>

6. Save your changes and exit the editor.

7. Use the pxf cluster sync command to copy the new server configuration to the Greenplum

Database cluster:

gpadmin@gpmaster$ pxf cluster sync

Configuring Connectors to Azure and Google Cloud Storage
Object Stores (Optional)

You can use PXF to access Azure Data Lake, Azure Blob Storage, and Google Cloud Storage object

stores. This topic describes how to configure the PXF connectors to these external data sources.

If you do not plan to use these PXF object store connectors, then you do not need to perform this

procedure.

About Object Store Configuration

To access data in an object store, you must provide a server location and client credentials. When

you configure a PXF object store connector, you add at least one named PXF server configuration

for the connector as described in Configuring PXF Servers.

PXF provides a template configuration file for each object store connector. These template files are

located in the $PXF_HOME/templates/ directory.

Azure Blob Storage Server Configuration

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 77

The template configuration file for Azure Blob Storage is $PXF_HOME/templates/wasbs-site.xml.

When you configure an Azure Blob Storage server, you must provide the following server

configuration properties and replace the template value with your account name:

Property Description Value

fs.adl.oauth2.access.token.provider.type The token

type.

Must specify ClientCredential.

fs.azure.account.key.

<YOUR_AZURE_BLOB_STORAGE_ACCOUNT_NAME>.blob.core.windows.net

The Azure

account

key.

Replace with your account key.

fs.AbstractFileSystem.wasbs.impl The file

system

class name.

Must specify

org.apache.hadoop.fs.azure.Wasbs.

Azure Data Lake Server Configuration

The template configuration file for Azure Data Lake is $PXF_HOME/templates/adl-site.xml. When

you configure an Azure Data Lake server, you must provide the following server configuration

properties and replace the template values with your credentials:

Property Description Value

fs.adl.oauth2.access.token.provider.type The type of token. Must specify

ClientCredential.

fs.adl.oauth2.refresh.url The Azure endpoint to which to connect. Your refresh URL.

fs.adl.oauth2.client.id The Azure account client ID. Your client ID (UUID).

fs.adl.oauth2.credential The password for the Azure account

client ID.

Your password.

Google Cloud Storage Server Configuration

The template configuration file for Google Cloud Storage is $PXF_HOME/templates/gs-site.xml.

When you configure a Google Cloud Storage server, you must provide the following server

configuration properties and replace the template values with your credentials:

Property Description Value

google.cloud.auth.service.account.enable Enable service

account

authorization.

Must specify true.

google.cloud.auth.service.account.json.keyfile The Google

Storage key

file.

Path to your key file.

fs.AbstractFileSystem.gs.impl The file

system class

name.

Must specify

com.google.cloud.hadoop.fs.gcs.GoogleHadoopFS.

Example Server Configuration Procedure

In this procedure, you name and add a PXF server configuration in the $PXF_BASE/servers directory

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 78

on the Greenplum Database master host for the Google Cloud Storate (GCS) connector. You then

use the pxf cluster sync command to sync the server configuration(s) to the Greenplum Database

cluster.

1. Log in to your Greenplum Database master node:

$ ssh gpadmin@<gpmaster>

2. Choose a name for the server. You will provide the name to end users that need to

reference files in the object store.

3. Create the $PXF_BASE/servers/<server_name> directory. For example, use the following

command to create a server configuration for a Google Cloud Storage server named

gs_public:

gpadmin@gpmaster$ mkdir $PXF_BASE/servers/gs_public

4. Copy the PXF template file for GCS to the server configuration directory. For example:

gpadmin@gpmaster$ cp $PXF_HOME/templates/gs-site.xml $PXF_BASE/servers/gs_publi

c/

5. Open the template server configuration file in the editor of your choice, and provide

appropriate property values for your environment. For example, if your Google Cloud

Storage key file is located in /home/gpadmin/keys/gcs-account.key.json:

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <property>

 <name>google.cloud.auth.service.account.enable</name>

 <value>true</value>

 </property>

 <property>

 <name>google.cloud.auth.service.account.json.keyfile</name>

 <value>/home/gpadmin/keys/gcs-account.key.json</value>

 </property>

 <property>

 <name>fs.AbstractFileSystem.gs.impl</name>

 <value>com.google.cloud.hadoop.fs.gcs.GoogleHadoopFS</value>

 </property>

</configuration>

6. Save your changes and exit the editor.

7. Use the pxf cluster sync command to copy the new server configurations to the

Greenplum Database cluster:

gpadmin@gpmaster$ pxf cluster sync

Configuring the JDBC Connector (Optional)

You can use PXF to access an external SQL database including MySQL, ORACLE, Microsoft SQL

Server, DB2, PostgreSQL, Hive, and Apache Ignite. This topic describes how to configure the PXF

JDBC Connector to access these external data sources.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 79

If you do not plan to use the PXF JDBC Connector, then you do not need to perform this procedure.

About JDBC Configuration

To access data in an external SQL database with the PXF JDBC Connector, you must:

Register a compatible JDBC driver JAR file

Specify the JDBC driver class name, database URL, and client credentials

In previous releases of Greenplum Database, you may have specified the JDBC driver class name,

database URL, and client credentials via options in the CREATE EXTERNAL TABLE command. PXF now

supports file-based server configuration for the JDBC Connector. This configuration, described

below, allows you to specify these options and credentials in a file.

Note: PXF external tables that you previously created that directly specified the JDBC connection

options will continue to work. If you want to move these tables to use JDBC file-based server

configuration, you must create a server configuration, drop the external tables, and then recreate

the tables specifying an appropriate SERVER=<server_name> clause.

JDBC Driver JAR Registration

PXF is bundled with the postgresql-42.2.14.jar JAR file. If you require a different JDBC driver,

ensure that you install the JDBC driver JAR file for the external SQL database in the $PXF_BASE/lib

directory on each Greenplum host. Be sure to install JDBC driver JAR files that are compatible with

your JRE version. See Registering PXF Library Dependencies for additional information.

JDBC Server Configuration

When you configure the PXF JDBC Connector, you add at least one named PXF server

configuration for the connector as described in Configuring PXF Servers. You can also configure one

or more statically-defined queries to run against the remote SQL database.

PXF provides a template configuration file for the JDBC Connector. This server template

configuration file, located in $PXF_HOME/templates/jdbc-site.xml, identifies properties that you can

configure to establish a connection to the external SQL database. The template also includes

optional properties that you can set before executing query or insert commands in the external

database session.

The required properties in the jdbc-site.xml server template file follow:

Property Description Value

jdbc.driver Class name of the JDBC driver. The JDBC driver Java class name; for example

org.postgresql.Driver.

jdbc.url The URL that the JDBC driver uses

to connect to the database.

The database connection URL (database-specific); for

example jdbc:postgresql://phost:pport/pdatabase.

jdbc.user The database user name. The user name for connecting to the database.

jdbc.password The password for jdbc.user. The password for connecting to the database.

When you configure a PXF JDBC server, you specify the external database user credentials to PXF

in clear text in a configuration file.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 80

Connection-Level Properties

To set additional JDBC connection-level properties, add jdbc.connection.property.<CPROP_NAME>

properties to jdbc-site.xml. PXF passes these properties to the JDBC driver when it establishes the

connection to the external SQL database (DriverManager.getConnection()).

Replace <CPROP_NAME> with the connection property name and specify its value:

Property Description Value

jdbc.connection.property.

<CPROP_NAME>

The name of a property (<CPROP_NAME>) to pass to the JDBC

driver when PXF establishes the connection to the external SQL

database.

The value of the

<CPROP_NAME>

property.

Example: To set the createDatabaseIfNotExist connection property on a JDBC connection to a

PostgreSQL database, include the following property block in jdbc-site.xml:

<property>

 <name>jdbc.connection.property.createDatabaseIfNotExist</name>

 <value>true</value>

 </property>

Ensure that the JDBC driver for the external SQL database supports any connection-level property

that you specify.

Connection Transaction Isolation Property

The SQL standard defines four transaction isolation levels. The level that you specify for a given

connection to an external SQL database determines how and when the changes made by one

transaction executed on the connection are visible to another.

The PXF JDBC Connector exposes an optional server configuration property named

jdbc.connection.transactionIsolation that enables you to specify the transaction isolation level.

PXF sets the level (setTransactionIsolation()) just after establishing the connection to the external

SQL database.

The JDBC Connector supports the following jdbc.connection.transactionIsolation property

values:

SQL Level PXF Property Value

Read uncommitted READ_UNCOMMITTED

Read committed READ_COMMITTED

Repeatable Read REPEATABLE_READ

Serializable SERIALIZABLE

For example, to set the transaction isolation level to Read uncommitted, add the following property

block to the jdbc-site.xml file:

<property>

 <name>jdbc.connection.transactionIsolation</name>

 <value>READ_UNCOMMITTED</value>

</property>

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 81

Different SQL databases support different transaction isolation levels. Ensure that the external

database supports the level that you specify.

Statement-Level Properties

The PXF JDBC Connector executes a query or insert command on an external SQL database table

in a statement. The Connector exposes properties that enable you to configure certain aspects of the

statement before the command is executed in the external database. The Connector supports the

following statement-level properties:

Property Description Value

jdbc.statement.batchSize The number of rows to write to the

external database table in a batch.

The number of rows. The default write

batch size is 100.

jdbc.statement.fetchSize The number of rows to fetch/buffer when

reading from the external database table.

The number of rows. The default read

fetch size for MySQL is -2147483648

(Integer.MIN_VALUE). The default read

fetch size for all other databases is 1000.

jdbc.statement.queryTimeout The amount of time (in seconds) the

JDBC driver waits for a statement to

execute. This timeout applies to

statements created for both read and

write operations.

The timeout duration in seconds. The

default wait time is unlimited.

PXF uses the default value for any statement-level property that you do not explicitly configure.

Example: To set the read fetch size to 5000, add the following property block to jdbc-site.xml:

<property>

 <name>jdbc.statement.fetchSize</name>

 <value>5000</value>

</property>

Ensure that the JDBC driver for the external SQL database supports any statement-level property

that you specify.

Session-Level Properties

To set session-level properties, add the jdbc.session.property.<SPROP_NAME> property to jdbc-

site.xml. PXF will SET these properties in the external database before executing a query.

Replace <SPROP_NAME> with the session property name and specify its value:

Property Description Value

jdbc.session.property.

<SPROP_NAME>

The name of a session property (<SPROP_NAME>) to

set before query execution.

The value of the

<SPROP_NAME> property.

Note: The PXF JDBC Connector passes both the session property name and property value to the

external SQL database exactly as specified in the jdbc-site.xml server configuration file. To limit the

potential threat of SQL injection, the Connector rejects any property name or value that contains the

;, \n, \b, or \0 characters.

The PXF JDBC Connector handles the session property SET syntax for all supported external SQL

databases.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 82

Example: To set the search_path parameter before running a query in a PostgreSQL database, add

the following property block to jdbc-site.xml:

<property>

 <name>jdbc.session.property.search_path</name>

 <value>public</value>

</property>

Ensure that the JDBC driver for the external SQL database supports any property that you specify.

About JDBC Connection Pooling

The PXF JDBC Connector uses JDBC connection pooling implemented by HikariCP. When a user

queries or writes to an external table, the Connector establishes a connection pool for the associated

server configuration the first time that it encounters a unique combination of jdbc.url, jdbc.user,

jdbc.password, connection property, and pool property settings. The Connector reuses connections

in the pool subject to certain connection and timeout settings.

One or more connection pools may exist for a given server configuration, and user access to

different external tables specifying the same server may share a connection pool.

Note: If you have enabled JDBC user impersonation in a server configuration, the JDBC Connector

creates a separate connection pool for each Greenplum Database user that accesses any external

table specifying that server configuration.

The jdbc.pool.enabled property governs JDBC connection pooling for a server configuration.

Connection pooling is enabled by default. To disable JDBC connection pooling for a server

configuration, set the property to false:

<property>

 <name>jdbc.pool.enabled</name>

 <value>false</value>

</property>

If you disable JDBC connection pooling for a server configuration, PXF does not reuse JDBC

connections for that server. PXF creates a connection to the remote database for every partition of a

query, and closes the connection when the query for that partition completes.

PXF exposes connection pooling properties that you can configure in a JDBC server definition.

These properties are named with the jdbc.pool.property. prefix and apply to each PXF JVM. The

JDBC Connector automatically sets the following connection pool properties and default values:

Property Description
Default

Value

jdbc.pool.property.maximumPoolSize The maximum number of connections to the database backend. 15

jdbc.pool.property.connectionTimeout The maximum amount of time, in milliseconds, to wait for a

connection from the pool.

30000

jdbc.pool.property.idleTimeout The maximum amount of time, in milliseconds, after which an

inactive connection is considered idle.

30000

jdbc.pool.property.minimumIdle The minimum number of idle connections maintained in the

connection pool.

0

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 83

https://github.com/brettwooldridge/HikariCP

You can set other HikariCP-specific connection pooling properties for a server configuration by

specifying jdbc.pool.property.<HIKARICP_PROP_NAME> and the desired value in the jdbc-site.xml

configuration file for the server. Also note that the JDBC Connector passes along any property that

you specify with a jdbc.connection.property. prefix when it requests a connection from the JDBC

DriverManager. Refer to Connection-Level Properties above.

Tuning the Maximum Connection Pool Size

To not exceed the maximum number of connections allowed by the target database, and at the

same time ensure that each PXF JVM services a fair share of the JDBC connections, determine the

maximum value of maximumPoolSize based on the size of the Greenplum Database cluster as follows:

max_conns_allowed_by_remote_db / #_greenplum_segment_hosts

For example, if your Greenplum Database cluster has 16 segment hosts and the target database

allows 160 concurrent connections, calculate maximumPoolSize as follows:

160 / 16 = 10

In practice, you may choose to set maximumPoolSize to a lower value, since the number of

concurrent connections per JDBC query depends on the number of partitions used in the query.

When a query uses no partitions, a single PXF JVM services the query. If a query uses 12 partitions,

PXF establishes 12 concurrent JDBC connections to the remote database. Ideally, these connections

are distributed equally among the PXF JVMs, but that is not guaranteed.

JDBC User Impersonation

The PXF JDBC Connector uses the jdbc.user setting or information in the jdbc.url to determine

the identity of the user to connect to the external data store. When PXF JDBC user impersonation is

disabled (the default), the behavior of the JDBC Connector is further dependent upon the external

data store. For example, if you are using the JDBC Connector to access Hive, the Connector uses

the settings of certain Hive authentication and impersonation properties to determine the user. You

may be required to provide a jdbc.user setting, or add properties to the jdbc.url setting in the

server jdbc-site.xml file. Refer to Configuring Hive Access via the JDBC Connector for more

information on this procedure.

When you enable PXF JDBC user impersonation, the PXF JDBC Connector accesses the external

data store on behalf of a Greenplum Database end user. The Connector uses the name of the

Greenplum Database user that accesses the PXF external table to try to connect to the external data

store.

When you enable JDBC user impersonation for a PXF server, PXF overrides the value of a

jdbc.user property setting defined in either jdbc-site.xml or <greenplum_user_name>-user.xml, or

specified in the external table DDL, with the Greenplum Database user name. For user

impersonation to work effectively when the external data store requires passwords to authenticate

connecting users, you must specify the jdbc.password setting for each user that can be

impersonated in that user’s <greenplum_user_name>-user.xml property override file. Refer to

Configuring a PXF User for more information about per-server, per-Greenplum-user configuration.

The pxf.service.user.impersonation property in the jdbc-site.xml configuration file governs

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 84

JDBC user impersonation.

Example Configuration Procedure

By default, PXF JDBC user impersonation is disabled. Perform the following procedure to turn PXF

user impersonation on or off for a JDBC server configuration.

1. Log in to your Greenplum Database master node as the administrative user:

$ ssh gpadmin@<gpmaster>

2. Identify the name of the PXF JDBC server configuration that you want to update.

3. Navigate to the server configuration directory. For example, if the server is named mysqldb:

gpadmin@gpmaster$ cd $PXF_BASE/servers/mysqldb

4. Open the jdbc-site.xml file in the editor of your choice, and add or uncomment the user

impersonation property and setting. For example, if you require user impersonation for this

server configuration, set the pxf.service.user.impersonation property to true:

<property>

 <name>pxf.service.user.impersonation</name>

 <value>true</value>

</property>

5. Save the jdbc-site.xml file and exit the editor.

6. Use the pxf cluster sync command to synchronize the PXF JDBC server configuration to

your Greenplum Database cluster:

gpadmin@gpmaster$ pxf cluster sync

About Session Authorization

Certain SQL databases, including PostgreSQL and DB2, allow a privileged user to change the

effective database user that runs commands in a session. You might take advantage of this feature if,

for example, you connect to the remote database as a proxy user and want to switch session

authorization after establishing the database connection.

In databases that support it, you can configure a session property to switch the effective user. For

example, in DB2, you use the SET SESSION_USER <username> command to switch the effective DB2

user. If you configure the DB2 session_user variable via a PXF session-level property

(jdbc.session.property.<SPROP_NAME>) in your jdbc-site.xml file, PXF runs this command for you.

bill jdbc-For example, to switch the effective DB2 user to the user named bill, you configure your jdbc-

site.xml as follows:

<property>

 <name>jdbc.session.property.session_user</name>

 <value>bill</value>

</property>

After establishing the database connection, PXF implicitly runs the following command to set the

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 85

session_user DB2 session variable to the value that you configured:

SET SESSION_USER = bill

PXF recognizes a synthetic property value, ${pxf.session.user}, that identifies the Greenplum

Database user name. You may choose to use this value when you configure a property that requires

a value that changes based on the Greenplum user running the session.

A scenario where you might use ${pxf.session.user} is when you authenticate to the remote SQL

database with Kerberos, the primary component of the Kerberos principal identifies the Greenplum

Database user name, and you want to run queries in the remote database using this effective user

name. For example, if you are accessing DB2, you would configure your jdbc-site.xml to specify

the Kerberos securityMechanism and KerberosServerPrincipal, and then set the session_user

variable as follows:

<property>

 <name>jdbc.session.property.session_user</name>

 <value>${pxf.session.user}</value>

</property>

With this configuration, PXF SETs the DB2 session_user variable to the current Greenplum Database

user name, and runs subsequent operations on the DB2 table as that user.

Session Authorization Considerations for Connection Pooling

When PXF performs session authorization on your behalf and JDBC connection pooling is enabled

(the default), you may choose to set the jdbc.pool.qualifier property. Setting this property

instructs PXF to include the property value in the criteria that it uses to create and reuse connection

pools. In practice, you would not set this to a fixed value, but rather to a value that changes based on

the user/session/transaction, etc. When you set this property to ${pxf.session.user}, PXF includes

the Greenplum Database user name in the criteria that it uses to create and re-use connection pools.

The default setting is no qualifier.

To make use of this feature, add or uncomment the following property block in jdbc-site.xml to

prompt PXF to include the Greenplum user name in connection pool creation/reuse criteria:

<property>

 <name>jdbc.pool.qualifier</name>

 <value>${pxf.session.user}</value>

</property>

JDBC Named Query Configuration

A PXF named query is a static query that you configure, and that PXF runs in the remote SQL

database.

To configure and use a PXF JDBC named query:

1. You define the query in a text file.

2. You provide the query name to Greenplum Database users.

3. The Greenplum Database user references the query in a Greenplum Database external table

definition.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 86

PXF runs the query each time the user invokes a SELECT command on the Greenplum Database

external table.

Defining a Named Query

You create a named query by adding the query statement to a text file that has the following naming

format: <query_name>.sql. You can define one or more named queries for a JDBC server

configuration. Each query must reside in a separate text file.

You must place a query text file in the PXF JDBC server configuration directory from which it will be

accessed. If you want to make the query available to more than one JDBC server configuration, you

must copy the query text file to the configuration directory for each JDBC server.

The query text file must contain a single query that you want to run in the remote SQL database.

You must construct the query in accordance with the syntax supported by the database.

For example, if a MySQL database has a customers table and an orders table, you could include the

following SQL statement in a query text file:

SELECT c.name, c.city, sum(o.amount) AS total, o.month

 FROM customers c JOIN orders o ON c.id = o.customer_id

 WHERE c.state = 'CO'

GROUP BY c.name, c.city, o.month

You may optionally provide the ending semicolon (;) for the SQL statement.

Query Naming

The Greenplum Database user references a named query by specifying the query file name without

the extension. For example, if you define a query in a file named report.sql, the name of that query

is report.

Named queries are associated with a specific JDBC server configuration. You will provide the

available query names to the Greenplum Database users that you allow to create external tables

using the server configuration.

Referencing a Named Query

The Greenplum Database user specifies query:<query_name> rather than the name of a remote SQL

database table when they create the external table. For example, if the query is defined in the file

$PXF_BASE/servers/mydb/report.sql, the CREATE EXTERNAL TABLE LOCATION clause would include

the following components:

LOCATION ('pxf://query:report?PROFILE=jdbc&SERVER=mydb ...')

Refer to About Using Named Queries for information about using PXF JDBC named queries.

Overriding the JDBC Server Configuration

You can override the JDBC server configuration by directly specifying certain JDBC properties via

custom options in the CREATE EXTERNAL TABLE command LOCATION clause. Refer to Overriding the

JDBC Server Configuration via DDL for additional information.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 87

Configuring Access to Hive

You can use the JDBC Connector to access Hive. Refer to Configuring the JDBC Connector for Hive

Access for detailed information on this configuration procedure.

Example Configuration Procedure

In this procedure, you name and add a PXF JDBC server configuration for a PostgreSQL database

and synchronize the server configuration(s) to the Greenplum Database cluster.

1. Log in to your Greenplum Database master node:

$ ssh gpadmin@<gpmaster>

2. Choose a name for the JDBC server. You will provide the name to Greenplum users that you

choose to allow to reference tables in the external SQL database as the configured user.

Note: The server name default is reserved.

3. Create the $PXF_BASE/servers/<server_name> directory. For example, use the following

command to create a JDBC server configuration named pg_user1_testdb:

gpadmin@gpmaster$ mkdir $PXF_BASE/servers/pg_user1_testdb

4. Copy the PXF JDBC server template file to the server configuration directory. For example:

gpadmin@gpmaster$ cp $PXF_HOME/templates/jdbc-site.xml $PXF_BASE/servers/pg_use

r1_testdb/

5. Open the template server configuration file in the editor of your choice, and provide

appropriate property values for your environment. For example, if you are configuring

access to a PostgreSQL database named testdb on a PostgreSQL instance running on the

host named pgserverhost for the user named user1:

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <property>

 <name>jdbc.driver</name>

 <value>org.postgresql.Driver</value>

 </property>

 <property>

 <name>jdbc.url</name>

 <value>jdbc:postgresql://pgserverhost:5432/testdb</value>

 </property>

 <property>

 <name>jdbc.user</name>

 <value>user1</value>

 </property>

 <property>

 <name>jdbc.password</name>

 <value>changeme</value>

 </property>

</configuration>

6. Save your changes and exit the editor.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 88

7. Use the pxf cluster sync command to copy the new server configuration to the Greenplum

Database cluster:

gpadmin@gpmaster$ pxf cluster sync

Configuring the JDBC Connector for Hive Access (Optional)

You can use the PXF JDBC Connector to retrieve data from Hive. You can also use a JDBC named

query to submit a custom SQL query to Hive and retrieve the results using the JDBC Connector.

This topic describes how to configure the PXF JDBC Connector to access Hive. When you configure

Hive access with JDBC, you must take into account the Hive user impersonation setting, as well as

whether or not the Hadoop cluster is secured with Kerberos.

If you do not plan to use the PXF JDBC Connector to access Hive, then you do not need to perform

this procedure.

JDBC Server Configuration

The PXF JDBC Connector is installed with the JAR files required to access Hive via JDBC, hive-

jdbc-<version>.jar and hive-service-<version>.jar, and automatically registers these JARs.

When you configure a PXF JDBC server for Hive access, you must specify the JDBC driver class

name, database URL, and client credentials just as you would when configuring a client connection

to an SQL database.

To access Hive via JDBC, you must specify the following properties and values in the jdbc-site.xml

server configuration file:

Property Value

jdbc.driver org.apache.hive.jdbc.HiveDriver

jdbc.url jdbc:hive2://<hiveserver2_host>:<hiveserver2_port>/<database>

The value of the HiveServer2 authentication (hive.server2.authentication) and impersonation

(hive.server2.enable.doAs) properties, and whether or not the Hive service is utilizing Kerberos

authentication, will inform the setting of other JDBC server configuration properties. These

properties are defined in the hive-site.xml configuration file in the Hadoop cluster. You will need to

obtain the values of these properties.

The following table enumerates the Hive2 authentication and impersonation combinations supported

by the PXF JDBC Connector. It identifies the possible Hive user identities and the JDBC server

configuration required for each.

Table heading key:

authentication -> Hive hive.server2.authentication Setting

enable.doAs -> Hive hive.server2.enable.doAs Setting

User Identity -> Identity that HiveServer2 will use to access data

Configuration Required -> PXF JDBC Connector or Hive configuration required for User

Identity

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 89

authentication enable.doAs User Identity Configuration Required

NOSASL n/a No authentication Must set jdbc.connection.property.auth =

noSasl.

NONE, or not

specified

TRUE User name that you provide Set jdbc.user.

NONE, or not

specified

TRUE Greenplum user name Set pxf.service.user.impersonation to true in

jdbc-site.xml.

NONE, or not

specified

FALSE Name of the user who started

Hive, typically hive

None

KERBEROS TRUE Identity provided in the PXF

Kerberos principal, typically

gpadmin

Must set hadoop.security.authentication to

kerberos in jdbc-site.xml.

KERBEROS TRUE User name that you provide Set hive.server2.proxy.user in jdbc.url and set

hadoop.security.authentication to kerberos in

jdbc-site.xml.

KERBEROS TRUE Greenplum user name Set pxf.service.user.impersonation to true and

hadoop.security.authentication to kerberos in

jdbc-site.xml.

KERBEROS FALSE Identity provided in the

jdbc.url principal

parameter, typically hive

Must set hadoop.security.authentication to

kerberos in jdbc-site.xml.

Note: There are additional configuration steps required when Hive utilizes Kerberos authentication.

Example Configuration Procedure

Perform the following procedure to configure a PXF JDBC server for Hive:

1. Log in to your Greenplum Database master node:

$ ssh gpadmin@<gpmaster>

2. Choose a name for the JDBC server.

3. Create the $PXF_BASE/servers/<server_name> directory. For example, use the following

command to create a JDBC server configuration named hivejdbc1:

gpadmin@gpmaster$ mkdir $PXF_BASE/servers/hivejdbc1

4. Navigate to the server configuration directory. For example:

gpadmin@gpmaster$ cd $PXF_BASE/servers/hivejdbc1

5. Copy the PXF JDBC server template file to the server configuration directory. For example:

gpadmin@gpmaster$ cp $PXF_HOME/templates/jdbc-site.xml .

6. When you access Hive secured with Kerberos, you also need to specify configuration

properties in the pxf-site.xml file. If this file does not yet exist in your server configuration,

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 90

copy the pxf-site.xml template file to the server config directory. For example:

gpadmin@gpmaster$ cp $PXF_HOME/templates/pxf-site.xml .

7. Open the jdbc-site.xml file in the editor of your choice and set the jdbc.driver and

jdbc.url properties. Be sure to specify your Hive host, port, and database name:

<property>

 <name>jdbc.driver</name>

 <value>org.apache.hive.jdbc.HiveDriver</value>

</property>

<property>

 <name>jdbc.url</name>

 <value>jdbc:hive2://<hiveserver2_host>:<hiveserver2_port>/<database></value

>

</property>

8. Obtain the hive-site.xml file from your Hadoop cluster and examine the file.

9. If the hive.server2.authentication property in hive-site.xml is set to NOSASL, HiveServer2

performs no authentication. Add the following connection-level property to jdbc-site.xml:

<property>

 <name>jdbc.connection.property.auth</name>

 <value>noSasl</value>

</property>

Alternatively, you may choose to add ;auth=noSasl to the jdbc.url.

10. If the hive.server2.authentication property in hive-site.xml is set to NONE, or the property

is not specified, you must set the jdbc.user property. The value to which you set the

jdbc.user property is dependent upon the hive.server2.enable.doAs impersonation setting

in hive-site.xml:

1. If hive.server2.enable.doAs is set to TRUE (the default), Hive runs Hadoop

operations on behalf of the user connecting to Hive. Choose/perform one of the

following options:

Set jdbc.user to specify the user that has read permission on all Hive data accessed

by Greenplum Database. For example, to connect to Hive and run all requests as

user gpadmin:

<property>

 <name>jdbc.user</name>

 <value>gpadmin</value>

</property>

Or, turn on JDBC server-level user impersonation so that PXF automatically uses the

Greenplum Database user name to connect to Hive; uncomment the

pxf.service.user.impersonation property in jdbc-site.xml and set the value to

`true:

<property>

 <name>pxf.service.user.impersonation</name>

 <value>true</value>

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 91

</property>

If you enable JDBC impersonation in this manner, you must not specify a jdbc.user

nor include the setting in the jdbc.url.

2. If required, create a PXF user configuration file as described in Configuring a PXF

User to manage the password setting.

3. If hive.server2.enable.doAs is set to FALSE, Hive runs Hadoop operations as the

user who started the HiveServer2 process, usually the user hive. PXF ignores the

jdbc.user setting in this circumstance.

11. If the hive.server2.authentication property in hive-site.xml is set to KERBEROS:

1. Identify the name of the server configuration.

2. Ensure that you have configured Kerberos authentication for PXF as described in

Configuring PXF for Secure HDFS, and that you have specified the Kerberos

principal and keytab in the pxf-site.xml properties as described in the procedure.

3. Comment out the pxf.service.user.impersonation property in the pxf-site.xml

file. If you require user impersonation, you will uncomment and set the property in

an upcoming step.)

4. Uncomment the hadoop.security.authentication setting in

$PXF_BASE/servers/<name>/jdbc-site.xml:

<property>

 <name>hadoop.security.authentication</name>

 <value>kerberos</value>

</property>

5. Add the saslQop property to jdbc.url, and set it to match the

hive.server2.thrift.sasl.qop property setting in hive-site.xml. For example, if

the hive-site.xml file includes the following property setting:

<property>

 <name>hive.server2.thrift.sasl.qop</name>

 <value>auth-conf</value>

</property>

You would add ;saslQop=auth-conf to the jdbc.url.

6. Add the HiverServer2 principal name to the jdbc.url. For example:

jdbc:hive2://hs2server:10000/default;principal=hive/hs2server@REALM;saslQop=

auth-conf

7. If hive.server2.enable.doAs is set to TRUE (the default), Hive runs Hadoop

operations on behalf of the user connecting to Hive. Choose/perform one of the

following options:

Do not specify any additional properties. In this case, PXF initiates all Hadoop access

with the identity provided in the PXF Kerberos principal (usually gpadmin).

Or, set the hive.server2.proxy.user property in the jdbc.url to specify the user

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 92

that has read permission on all Hive data. For example, to connect to Hive and run all

requests as the user named integration use the following jdbc.url:

jdbc:hive2://hs2server:10000/default;principal=hive/hs2server@REALM;saslQ

op=auth-conf;hive.server2.proxy.user=integration

Or, enable PXF JDBC impersonation in the pxf-site.xml file so that PXF

automatically uses the Greenplum Database user name to connect to Hive. Add or

uncomment the pxf.service.user.impersonation property and set the value to

true. For example:

<property>

 <name>pxf.service.user.impersonation</name>

 <value>true</value>

</property>

If you enable JDBC impersonation, you must not explicitly specify a

hive.server2.proxy.user in the jdbc.url.

8. If required, create a PXF user configuration file to manage the password setting.

9. If hive.server2.enable.doAs is set to FALSE, Hive runs Hadoop operations with the

identity provided by the PXF Kerberos principal (usually gpadmin).

12. Save your changes and exit the editor.

13. Use the pxf cluster sync command to copy the new server configuration to the Greenplum

Database cluster:

gpadmin@gpmaster$ pxf cluster sync

Starting, Stopping, and Restarting PXF

PXF provides two management commands:

pxf cluster - manage all PXF Service instances in the Greenplum Database cluster

pxf - manage the PXF Service instance on a specific Greenplum Database host

The procedures in this topic assume that you have added the $PXF_HOME/bin directory to your $PATH.

Starting PXF

After configuring PXF, you must start PXF on each host in your Greenplum Database cluster. The

PXF Service, once started, runs as the gpadmin user on default port 5888. Only the gpadmin user can

start and stop the PXF Service.

If you want to change the default PXF configuration, you must update the configuration before you

start PXF, or restart PXF if it is already running. See About the PXF Configuration Files for

information about the user-customizable PXF configuration properties and the configuration update

procedure.

Prerequisites

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 93

Before you start PXF in your Greenplum Database cluster, ensure that:

Your Greenplum Database cluster is up and running.

You have previously configured PXF.

Procedure

Perform the following procedure to start PXF on each host in your Greenplum Database cluster.

1. Log in to the Greenplum Database master node:

$ ssh gpadmin@<gpmaster>

2. Run the pxf cluster start command to start PXF on each host:

gpadmin@gpmaster$ pxf cluster start

Stopping PXF

If you must stop PXF, for example if you are upgrading PXF, you must stop PXF on each host in

your Greenplum Database cluster. Only the gpadmin user can stop the PXF Service.

Prerequisites

Before you stop PXF in your Greenplum Database cluster, ensure that your Greenplum Database

cluster is up and running.

Procedure

Perform the following procedure to stop PXF on each host in your Greenplum Database cluster.

1. Log in to the Greenplum Database master node:

$ ssh gpadmin@<gpmaster>

2. Run the pxf cluster stop command to stop PXF on each host:

gpadmin@gpmaster$ pxf cluster stop

Restarting PXF

If you must restart PXF, for example if you updated PXF user configuration files in $PXF_BASE/conf,

you run pxf cluster restart to stop, and then start, PXF on all hosts in your Greenplum Database

cluster.

Only the gpadmin user can restart the PXF Service.

Prerequisites

Before you restart PXF in your Greenplum Database cluster, ensure that your Greenplum Database

cluster is up and running.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 94

Procedure

Perform the following procedure to restart PXF in your Greenplum Database cluster.

1. Log in to the Greenplum Database master node:

$ ssh gpadmin@<gpmaster>

2. Restart PXF:

gpadmin@gpmaster$ pxf cluster restart

Granting Users Access to PXF

The Greenplum Platform Extension Framework (PXF) implements a protocol named pxf that you can

use to create an external table that references data in an external data store. The PXF protocol and

Java service are packaged as a Greenplum Database extension.

You must enable the PXF extension in each database in which you plan to use the framework to

access external data. You must also explicitly GRANT permission to the pxf protocol to those

users/roles who require access.

Enabling PXF in a Database

You must explicitly register the PXF extension in each Greenplum Database in which you plan to use

the extension. You must have Greenplum Database administrator privileges to register an extension.

Perform the following procedure for each database in which you want to use PXF:

1. Connect to the database as the gpadmin user:

gpadmin@gpmaster$ psql -d <dbname> -U gpadmin

2. Create the PXF extension. You must have Greenplum Database administrator privileges to

create an extension. For example:

dbname=# CREATE EXTENSION pxf;

Creating the pxf extension registers the pxf protocol and the call handlers required for PXF

to access external data.

Disabling PXF in a Database

When you no longer want to use PXF on a specific database, you must explicitly drop the PXF

extension for that database. You must have Greenplum Database administrator privileges to drop an

extension.

1. Connect to the database as the gpadmin user:

gpadmin@gpmaster$ psql -d <dbname> -U gpadmin

2. Drop the PXF extension:

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 95

dbname=# DROP EXTENSION pxf;

The DROP command fails if there are any currently defined external tables using the pxf

protocol. Add the CASCADE option if you choose to forcibly remove these external tables.

Granting a Role Access to PXF

To read external data with PXF, you create an external table with the CREATE EXTERNAL TABLE

command that specifies the pxf protocol. You must specifically grant SELECT permission to the pxf

protocol to all non-SUPERUSER Greenplum Database roles that require such access.

To grant a specific role access to the pxf protocol, use the GRANT command. For example, to grant

the role named bill read access to data referenced by an external table created with the pxf

protocol:

GRANT SELECT ON PROTOCOL pxf TO bill;

To write data to an external data store with PXF, you create an external table with the CREATE

WRITABLE EXTERNAL TABLE command that specifies the pxf protocol. You must specifically grant

INSERT permission to the pxf protocol to all non-SUPERUSER Greenplum Database roles that require

such access. For example:

GRANT INSERT ON PROTOCOL pxf TO bill;

Registering PXF Library Dependencies

You use PXF to access data stored on external systems. Depending upon the external data store,

this access may require that you install and/or configure additional components or services for the

external data store.

PXF depends on JAR files and other configuration information provided by these additional

components. In most cases, PXF manages internal JAR dependencies as necessary based on the

connectors that you use.

Should you need to register a JAR or native library dependency with PXF, you copy the library to a

location known to PXF or you inform PXF of a custom location, and then you must synchronize and

restart PXF.

Registering a JAR Dependency

PXF loads JAR dependencies from the following directories, in this order:

1. The directories that you specify in the $PXF_BASE/conf/pxf-env.sh configuration file,

PXF_LOADER_PATH environment variable. The pxf-env.sh file includes this commented-out

block:

Additional locations to be class-loaded by PXF

export PXF_LOADER_PATH=

You would uncomment the PXF_LOADER_PATH setting and specify one or more colon-

separated directory names.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 96

2. The default PXF JAR directory $PXF_BASE/lib.

To add a JAR dependency for PXF, for example a MySQL driver JAR file, you must log in to the

Greenplum Database master host, copy the JAR file to the PXF user configuration runtime library

directory ($PXF_BASE/lib), sync the PXF configuration to the Greenplum Database cluster, and then

restart PXF on each host. For example:

$ ssh gpadmin@<gpmaster>

gpadmin@gpmaster$ cp new_dependent_jar.jar $PXF_BASE/lib/

gpadmin@gpmaster$ pxf cluster sync

gpadmin@gpmaster$ pxf cluster restart

Alternatively, you could have identified the file system location of the JAR in the pxf-env.sh

PXF_LOADER_PATH environment variable. If you choose this registration option, you must ensure that

you copy the JAR file to the same location on the Greenplum Database standby and segment hosts

before you synchronize and restart PXF.

Registering a Native Library Dependency

PXF loads native libraries from the following directories, in this order:

1. The directories that you specify in the $PXF_BASE/conf/pxf-env.sh configuration file,

LD_LIBRARY_PATH environment variable. The pxf-env.sh file includes this commented-out

block:

Additional native libraries to be loaded by PXF

export LD_LIBRARY_PATH=

You would uncomment the LD_LIBRARY_PATH setting and specify one or more colon-sperated

directory names.

2. The default PXF native library directory $PXF_BASE/lib/native.

3. The default Hadoop native library directory /usr/lib/hadoop/lib/native.

As such, you have three file location options when you register a native library with PXF:

Copy the library to the default PXF native library directory, $PXF_BASE/lib/native, on only

the Greenplum Database master host. When you next synchronize PXF, PXF copies the

native library to all hosts in the Greenplum cluster.

Copy the library to the default Hadoop native library directory, /usr/lib/hadoop/lib/native,

on the Greenplum master, standby, and each segment host.

Copy the library to the same, custom location on the Greenplum master, standby, and each

segment host, and uncomment and add the directory path to the pxf-env.sh

LD_LIBRARY_PATH environment variable.

Procedure

1. Copy the native library file to one of the following:

The $PXF_BASE/lib/native directory on the Greenplum Database master host. (You

may need to create this directory.)

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 97

The /usr/lib/hadoop/lib/native directory on all Greenplum Database hosts.

A user-defined location on all Greenplum Database hosts; note the file system

location of the native library.

2. If you copied the native library to a custom location:

1. Open the $PXF_BASE/conf/pxf-env.sh file in the editor of your choice, and

uncomment the LD_LIBRARY_PATH setting:

Additional native libraries to be loaded by PXF

export LD_LIBRARY_PATH=

2. Specify the custom location in the LD_LIBRARY_PATH environment variable. For

example, if you copied a library named dependent_native_lib.so to /usr/local/lib

on all Greenplum hosts, you would set LD_LIBRARY_PATH as follows:

export LD_LIBRARY_PATH=/usr/local/lib

3. Save the file and exit the editor.

3. Synchronize the PXF configuration from the Greenplum Database master host to the standby

and segment hosts.

gpadmin@gpmaster$ pxf cluster sync

If you copied the native library to the $PXF_BASE/lib/native directory, this command copies

the library to the same location on the Greenplum Database standby and segment hosts.

If you updated the pxf-env.sh LD_LIBRARY_PATH environment variable, this command copies

the configuration change to the Greenplum Database standby and segment hosts.

4. Restart PXF on all Greenplum hosts:

gpadmin@gpmaster$ pxf cluster restart

Monitoring PXF

You can monitor the status of PXF from the command line.

PXF also provides additional information about the runtime status of the PXF Service by exposing

HTTP endpoints that you can use to query the health, build information, and various metrics of the

running process.

Viewing PXF Status on the Command Line

The pxf cluster status command displays the status of the PXF Service instance on all hosts in

your Greenplum Database cluster. pxf status displays the status of the PXF Service instance on the

local Greenplum host.

Only the gpadmin user can request the status of the PXF Service.

Perform the following procedure to request the PXF status of your Greenplum Database cluster.

1. Log in to the Greenplum Database master node:

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 98

$ ssh gpadmin@<gpmaster>

2. Run the pxf cluster status command:

gpadmin@gpmaster$ pxf cluster status

About PXF Service Runtime Monitoring

PXF exposes the following HTTP endpoints that you can use to monitor a running PXF Service on

the local host:

actuator/health - Returns the status of the PXF Service.

actuator/info - Returns build information for the PXF Service.

actuator/metrics - Returns JVM, extended Tomcat, system, process, Log4j2, and PXF-

specific metrics for the PXF Service.

actuator/prometheus - Returns all metrics in a format that can be scraped by a Prometheus

server.

Any user can access the HTTP endpoints and view the monitoring information that PXF returns.

You can view the data associated with a specific endpoint by viewing in a browser, or curl-ing, a

URL of the following format:

http://localhost:5888/<endpoint>[/<name>]

For example, to view the build information for the PXF service running on localhost, query the

actuator/info endpoint:

http://localhost:5888/actuator/info

Sample output:

{"build":{"version":"6.0.0","artifact":"pxf-service","name":"pxf-service","pxfApiVersi

on":"16","group":"org.greenplum.pxf","time":"2021-03-29T22:26:22.780Z"}}

To view the status of the PXF Service running on the local Greenplum Database host, query the

actuator/health endpoint:

http://localhost:5888/actuator/health

Sample output:

{"status":"UP","groups":["liveness","readiness"]}

Examining PXF Metrics

PXF exposes JVM, extended Tomcat, and system metrics via its integration with Spring Boot. Refer

to Supported Metrics in the Spring Boot documentation for more information about these metrics.

PXF also exposes metrics that are specific to its processing, including:

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 99

https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-features.html#production-ready-metrics-meter

Metric Name Description

pxf.fragments.sent The number of fragments, and the total time that it took to send all fragments to Greenplum

Database.

pxf.records.sent The number of records that PXF sent to Greenplum Database.

pxf.records.received The number of records that PXF received from Greenplum Database.

pxf.bytes.sent The number of bytes that PXF sent to Greenplum Database.

pxf.bytes.received The number of bytes that PXF received from Greenplum Database.

http.server.requests Standard metric augmented with PXF tags.

The information that PXF returns when you query a metric is the aggregate data collected since the

last (re)start of the PXF Service.

To view a list of all of the metrics (names) available from the PXF Service, query just the metrics

endpoint:

http://localhost:5888/actuator/metrics

Filtering Metric Data

PXF tags all metrics that it returns with an application label; the value of this tag is always pxf-

service.

PXF tags its specific metrics with the additional labels: user, segment, profile, and server. All of

these tags are present for each PXF metric. PXF returns the tag value unknown when the value

cannot be determined.

You can use the tags to filter the information returned for PXF-specific metrics. For example, to

examine the pxf.records.received metric for the PXF server named hadoop1 located on segment 1

on the local host:

http://localhost:5888/actuator/metrics/pxf.records.received?tag=segment:1&tag=server:h

adoop1

Certain metrics, such as pxf.fragments.sent, include an aditional tag named outcome; you can

examine its value (success or error) to determine if all data for the fragment was sent. You can also

use this tag to filter the aggregated data.

PXF Service Host and Port

By default, a PXF Service started on a Greenplum host listens on port number 5888 on localhost.

You can configure PXF to start on a different port number, or use a different hostname or IP

address. To change the default configuration, you will set one or both of the environment variables

identified below:

Environment

Variable
Description

PXF_HOST The name of the host or IP address. The default host name is localhost.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 100

Environment

Variable
Description

PXF_PORT The port number on which the PXF Service listens for requests on the host. The default port

number is 5888.

Set the environment variables in the gpadmin user’s .bashrc shell login file on each Greenplum host.

You must restart both Greenplum Database and PXF when you configure the service host and/or

port in this manner. Consider performing this configuration during a scheduled down time.

Procedure

Perform the following procedure to configure the PXF Service host and/or port number on one or

more Greenplum Database hosts:

1. Log in to your Greenplum Database master node:

$ ssh gpadmin@<gpmaster>

2. For each Greenplum Database host:

1. Identify the host name or IP address of the PXF Service.

2. Identify the port number on which you want the PXF Service to run.

3. Log in to the Greenplum Database host:

$ ssh gpadmin@<seghost>

4. Open the ~/.bashrc file in the editor of your choice.

5. Set the PXF_HOST and/or PXF_PORT environment variables. For example, to set the

PXF Service port number to 5998, add the following to the .bashrc file:

export PXF_PORT=5998

6. Save the file and exit the editor.

3. Restart Greenplum Database as described in Restarting Greenplum Database in the

Greenplum Documentation.

4. Restart PXF on each Greenplum Database host as described in Restarting PXF.

Logging

PXF provides two categories of message logging: service-level and client-level.

PXF manages its service-level logging, and supports the following log levels (more to less severe):

fatal

error

warn

info

debug

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 101

https://gpdb.docs.pivotal.io/latest/admin_guide/managing/startstop.html#task_gpdb_restart

trace

The default configuration for the PXF Service logs at the info and more severe levels. For some

third-party libraries, the PXF Service logs at the warn or error and more severe levels to reduce

verbosity.

PXF captures messages written to stdout and stderr and writes them to the

$PXF_LOGDIR/pxf-app.out file. This file may contain service start-up messages that PXF logs

before logging is fully configured. The file may also contain debug output.

Messages that PXF logs after start-up are written to the $PXF_LOGDIR/pxf-service.log file.

You can change the PXF log directory if you choose.

Client-level logging is managed by the Greenplum Database client; this topic details configuring

logging for a psql client.

Enabling more verbose service- or client-level logging for PXF may aid troubleshooting efforts.

Configuring the Log Directory

The default PXF logging configuration writes log messages to $PXF_LOGDIR, where the default log

directory is PXF_LOGDIR=$PXF_BASE/logs.

To change the PXF log directory, you must update the $PXF_LOGDIR property in the pxf-env.sh

configuration file, synchronize the configuration change to the Greenplum Database cluster, and

then restart PXF:

1. Log in to your Greenplum Database master node:

$ ssh gpadmin@<gpmaster>

2. Use a text editor to uncomment the export PXF_LOGDIR line in $PXF_BASE/conf/pxf-env.sh,

and replace the value with the new PXF log directory. For example:

Path to Log directory

export PXF_LOGDIR="/new/log/dir"

3. Use the pxf cluster sync command to copy the updated pxf-env.sh file to all hosts in the

Greenplum Database cluster:

gpadmin@gpmaster$ pxf cluster sync

4. Restart PXF on each Greenplum Database host as described in Restarting PXF.

Configuring Service-Level Logging

PXF utilizes Apache Log4j 2 for service-level logging. PXF Service-related log messages are

captured in $PXF_LOGDIR/pxf-app.out and $PXF_LOGDIR/pxf-service.log. The default configuration

for the PXF Service logs at the info and more severe levels.

You can change the log level for the PXF Service on a single Greenplum Database host, or on all

hosts in the Greenplum cluster.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 102

PXF provides more detailed logging when the debug and trace log levels are enabled. Logging at

these levels is quite verbose, and has both a performance and a storage impact. Be sure to turn it off

after you have collected the desired information.

Configuring for a Specific Host

You can change the log level for the PXF Service running on a specific Greenplum Database host in

two ways:

Setting the PXF_LOG_LEVEL environment variable on the pxf restart command line.

Setting the log level via a property update.

Procedure:

1. Log in to the Greenplum Database host:

$ ssh gpadmin@<gphost>

2. Choose one of the following methods:

Set the log level on the pxf restart command line. For example, to change the log

level from info (the default) to debug:

gpadmin@gphost$ PXF_LOG_LEVEL=debug pxf restart

Set the log level in the pxf-application.properties file:

1. Use a text editor to uncomment the following line in the

$PXF_BASE/conf/pxf-application.properties file and set the desired log

level. For example, to change the log level from info (the default) to debug:

pxf.log.level=debug

2. Restart PXF on the host:

gpadmin@gphost$ pxf restart

3. debug logging is now enabled. Make note of the time; this will direct you to the relevant log

messages in $PXF_LOGDIR/pxf-service.log.

$ date

Wed Oct 4 09:30:06 MDT 2017

$ psql -d <dbname>

4. Perform operations that exercise the PXF Service.

5. Collect and examine the log messages in pxf-service.log.

6. Depending upon how you originally set the log level, reinstate info-level logging on the

host:

Command line method:

gpadmin@gphost$ pxf restart

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 103

Properties file method: Comment out the line or set the property value back to info,

and then restart PXF on the host.

Configuring for the Cluster

To change the log level for the PXF service running on every host in the Greenplum Database

cluster:

1. Log in to the Greenplum Database master node:

$ ssh gpadmin@<gpmaster>

2. Use a text editor to uncomment the following line in the $PXF_BASE/conf/pxf-

application.properties file and set the desired log level. For example, to change the log

level from info (the default) to debug:

pxf.log.level=debug

3. Use the pxf cluster sync command to copy the updated pxf-application.properties file

to all hosts in the Greenplum Database cluster. For example:

gpadmin@gpmaster$ pxf cluster sync

4. Restart PXF on each Greenplum Database host:

gpadmin@gpmaster$ pxf cluster restart

5. Perform operations that exercise the PXF Service, and then collect and examine the

information in $PXF_LOGDIR/pxf-service.log.

6. Reinstate info-level logging - comment out the line or set the property value back to info,

and then sync the update to and restart PXF on the cluster.

Configuring Client-Level Logging

Database-level client session logging may provide insight into internal PXF Service operations.

Enable Greenplum Database client debug message logging by setting the client_min_messages

server configuration parameter to DEBUG2 in your psql session. This logging configuration writes

messages to stdout, and will apply to all operations that you perform in the session, including

operations on PXF external tables. For example:

$ psql -d <dbname>

dbname=# SET client_min_messages=DEBUG2;

dbname=# SELECT * FROM hdfstest;

...

DEBUG2: churl http header: cell #26: X-GP-URL-HOST: localhost (seg0 slice1 127.0.0.1

:7002 pid=10659)

CONTEXT: External table pxf_hdfs_textsimple, line 1 of file pxf://data/pxf_examples/p

xf_hdfs_simple.txt?PROFILE=hdfs:text

DEBUG2: churl http header: cell #27: X-GP-URL-PORT: 5888 (seg0 slice1 127.0.0.1:7002

 pid=10659)

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 104

CONTEXT: External table pxf_hdfs_textsimple, line 1 of file pxf://data/pxf_examples/p

xf_hdfs_simple.txt?PROFILE=hdfs:text

DEBUG2: churl http header: cell #28: X-GP-DATA-DIR: data%2Fpxf_examples%2Fpxf_hdfs_si

mple.txt (seg0 slice1 127.0.0.1:7002 pid=10659)

CONTEXT: External table pxf_hdfs_textsimple, line 1 of file pxf://data/pxf_examples/p

xf_hdfs_simple.txt?PROFILE=hdfs:text

DEBUG2: churl http header: cell #29: X-GP-TABLE-NAME: pxf_hdfs_textsimple (seg0 slic

e1 127.0.0.1:7002 pid=10659)

CONTEXT: External table pxf_hdfs_textsimple, line 1 of file pxf://data/pxf_examples/p

xf_hdfs_simple.txt?PROFILE=hdfs:text

...

Collect and examine the log messages written to stdout.

Note: DEBUG2 database client session logging has a performance impact. Remember to turn off

DEBUG2 logging after you have collected the desired information.

dbname=# SET client_min_messages=NOTICE;

Memory and Threading

Because a single PXF Service (JVM) serves multiple segments on a segment host, the PXF heap size

can be a limiting runtime factor. This becomes more evident under concurrent workloads or with

queries against large files. You may run into situations where a query hangs or fails due to insufficient

memory or the Java garbage collector impacting response times. To avert or remedy these

situations, first try increasing the Java maximum heap size or decreasing the Tomcat maximum

number of threads, depending upon what works best for your system configuration. You may also

choose to configure PXF to perform specific actions when it detects an out of memory condition.

Increasing the JVM Memory for PXF

Each PXF Service running on a Greenplum Database host is configured with a default maximum

Java heap size of 2GB and an initial heap size of 1GB. If the hosts in your Greenplum Database

cluster have an ample amount of memory, try increasing the maximum heap size to a value between

3-4GB. Set the initial and maximum heap size to the same value if possible.

Perform the following procedure to increase the heap size for the PXF Service running on each host

in your Greenplum Database cluster.

1. Log in to your Greenplum Database master node:

$ ssh gpadmin@<gpmaster>

2. Edit the $PXF_BASE/conf/pxf-env.sh file. For example:

gpadmin@gpmaster$ vi $PXF_BASE/conf/pxf-env.sh

3. Locate the PXF_JVM_OPTS setting in the pxf-env.sh file, and update the -Xmx and/or -Xms

options to the desired value. For example:

PXF_JVM_OPTS="-Xmx3g -Xms3g"

4. Save the file and exit the editor.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 105

5. Use the pxf cluster sync command to copy the updated pxf-env.sh file to the Greenplum

Database cluster. For example:

gpadmin@gpmaster$ pxf cluster sync

6. Restart PXF on each Greenplum Database host as described in Restarting PXF.

Configuring Out of Memory Condition Actions

In an out of memory (OOM) situation, PXF returns the following error in response to a query:

java.lang.OutOfMemoryError: Java heap space

You can configure the PXF JVM to enable/disable the following actions when it detects an OOM

condition:

Auto-kill the PXF Service (enabled by default).

Dump the Java heap (disabled by default).

Auto-Killing the PXF Server

By default, PXF is configured such that when the PXF JVM detects an out of memory condition on a

Greenplum host, it automatically runs a script that kills the PXF Service running on the host. The

PXF_OOM_KILL environment variable in the $PXF_BASE/conf/pxf-env.sh configuration file governs this

auto-kill behavior.

When auto-kill is enabled and the PXF JVM detects an OOM condition and kills the PXF Service on

the host:

PXF logs the following messages to $PXF_LOGDIR/pxf-oom.log on the segment host:

=====> <date> PXF Out of memory detected <======

=====> <date> PXF shutdown scheduled <======

=====> <date> Stopping PXF <======

Any query that you run on a PXF external table will fail with the following error until you

restart the PXF Service on the host:

... Failed to connect to <host> port 5888: Connection refused

When the PXF Service on a host is shut down in this manner, you must explicitly restart the PXF

Service on the host. See the pxf reference page for more information on the pxf start command.

Refer to the configuration procedure below for the instructions to disable/enable this PXF

configuration property.

Dumping the Java Heap

In an out of memory situation, it may be useful to capture the Java heap dump to help determine

what factors contributed to the resource exhaustion. You can configure PXF to write the heap dump

to a file when it detects an OOM condition by setting the PXF_OOM_DUMP_PATH environment variable in

the $PXF_BASE/conf/pxf-env.sh configuration file. By default, PXF does not dump the Java heap on

OOM.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 106

If you choose to enable the heap dump on OOM, you must set PXF_OOM_DUMP_PATH to the absolute

path to a file or directory:

If you specify a directory, the PXF JVM writes the heap dump to the file

<directory>/java_pid<pid>.hprof, where <pid> identifies the process ID of the PXF Service

instance. The PXF JVM writes a new file to the directory every time the JVM goes OOM.

If you specify a file and the file does not exist, the PXF JVM writes the heap dump to the file

when it detects an OOM. If the file already exists, the JVM will not dump the heap.

Ensure that the gpadmin user has write access to the dump file or directory.

Note: Heap dump files are often rather large. If you enable heap dump on OOM for PXF and specify

a directory for PXF_OOM_DUMP_PATH, multiple OOMs will generate multiple files in the directory and

could potentially consume a large amount of disk space. If you specify a file for PXF_OOM_DUMP_PATH,

disk usage is constant when the file name does not change. You must rename the dump file or

configure a different PXF_OOM_DUMP_PATH to generate subsequent heap dumps.

Refer to the configuration procedure below for the instructions to enable/disable this PXF

configuration property.

Procedure

Auto-kill of the PXF Service on OOM is enabled by default. Heap dump generation on OOM is

disabled by default. To configure one or both of these properties, perform the following procedure:

1. Log in to your Greenplum Database master node:

$ ssh gpadmin@<gpmaster>

2. Edit the $PXF_BASE/conf/pxf-env.sh file. For example:

gpadmin@gpmaster$ vi $PXF_BASE/conf/pxf-env.sh

3. If you want to configure (i.e. turn off, or turn back on) auto-kill of the PXF Service on OOM,

locate the PXF_OOM_KILL property in the pxf-env.sh file. If the setting is commented out,

uncomment it, and then update the value. For example, to turn off this behavior, set the

value to false:

export PXF_OOM_KILL=false

4. If you want to configure (i.e. turn on, or turn back off) automatic heap dumping when the

PXF Service hits an OOM condition, locate the PXF_OOM_DUMP_PATH setting in the pxf-env.sh

file.

1. To turn this behavior on, set the PXF_OOM_DUMP_PATH property value to the file system

location to which you want the PXF JVM to dump the Java heap. For example, to

dump to a file named /home/gpadmin/pxfoom_segh1:

export PXF_OOM_DUMP_PATH=/home/pxfoom_segh1

2. To turn off heap dumping after you have turned it on, comment out the

PXF_OOM_DUMP_PATH property setting:

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 107

#export PXF_OOM_DUMP_PATH=/home/pxfoom_segh1

5. Save the pxf-env.sh file and exit the editor.

6. Use the pxf cluster sync command to copy the updated pxf-env.sh file to the Greenplum

Database cluster. For example:

gpadmin@gpmaster$ pxf cluster sync

7. Restart PXF on each Greenplum Database host as described in Restarting PXF.

Another Option for Resource-Constrained PXF Segment
Hosts

If increasing the maximum heap size is not suitable for your Greenplum Database deployment, try

decreasing the number of concurrent working threads configured for PXF’s embedded Tomcat web

server. A decrease in the number of running threads will prevent any PXF node from exhausting its

memory, while ensuring that current queries run to completion (albeit a bit slower). Tomcat’s default

behavior is to queue requests until a thread is free, or the queue is exhausted.

The default maximum number of Tomcat threads for PXF is 200. The pxf.max.threads property in

the pxf-application.properties configuration file controls this setting.

If you plan to run large workloads on a large number of files in an external Hive data store, or you

are reading compressed ORC or Parquet data, consider specifying a lower pxf.max.threads value.

Large workloads require more memory, and a lower thread count limits concurrency, and hence,

memory consumption.

Note: Keep in mind that an increase in the thread count correlates with an increase in memory

consumption.

Perform the following procedure to set the maximum number of Tomcat threads for the PXF Service

running on each host in your Greenplum Database deployment.

1. Log in to your Greenplum Database master node:

$ ssh gpadmin@<gpmaster>

2. Edit the $PXF_BASE/conf/pxf-application.properties file. For example:

gpadmin@gpmaster$ vi $PXF_BASE/conf/pxf-application.properties

3. Locate the pxf.max.threads setting in the pxf-application.properties file. If the setting is

commented out, uncomment it, and then update to the desired value. For example, to

reduce the maximum number of Tomcat threads to 100:

pxf.max.threads=100

4. Save the file and exit the editor.

5. Use the pxf cluster sync command to copy the updated pxf-application.properties file

to the Greenplum Database cluster. For example:

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 108

gpadmin@gpmaster$ pxf cluster sync

6. Restart PXF on each Greenplum Database host as described in Restarting PXF.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 109

Accessing Hadoop with PXF

PXF is compatible with Cloudera, Hortonworks Data Platform, MapR, and generic Apache Hadoop

distributions. PXF is installed with HDFS, Hive, and HBase connectors. You use these connectors to

access varied formats of data from these Hadoop distributions.

Architecture

HDFS is the primary distributed storage mechanism used by Apache Hadoop. When a user or

application performs a query on a PXF external table that references an HDFS file, the Greenplum

Database master node dispatches the query to all segment instances. Each segment instance

contacts the PXF Service running on its host. When it receives the request from a segment instance,

the PXF Service:

1. Allocates a worker thread to serve the request from the segment instance.

2. Invokes the HDFS Java API to request metadata information for the HDFS file from the HDFS

NameNode.

Figure: PXF-to-Hadoop Architecture

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 110

A PXF worker thread works on behalf of a segment instance. A worker thread uses its Greenplum

Database gp_segment_id and the file block information described in the metadata to assign itself a

specific portion of the query data. This data may reside on one or more HDFS DataNodes.

The PXF worker thread invokes the HDFS Java API to read the data and delivers it to the segment

instance. The segment instance delivers its portion of the data to the Greenplum Database master

node. This communication occurs across segment hosts and segment instances in parallel.

Prerequisites

Before working with Hadoop data using PXF, ensure that:

You have configured PXF, and PXF is running on each Greenplum Database host. See

Configuring PXF for additional information.

You have configured the PXF Hadoop Connectors that you plan to use. Refer to Configuring

PXF Hadoop Connectors for instructions. If you plan to access JSON-formatted data stored in

a Cloudera Hadoop cluster, PXF requires a Cloudera version 5.8 or later Hadoop distribution.

If user impersonation is enabled (the default), ensure that you have granted read (and write

as appropriate) permission to the HDFS files and directories that will be accessed as external

tables in Greenplum Database to each Greenplum Database user/role name that will access

the HDFS files and directories. If user impersonation is not enabled, you must grant this

permission to the gpadmin user.

Time is synchronized between the Greenplum Database hosts and the external Hadoop

systems.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 111

HDFS Shell Command Primer

Examples in the PXF Hadoop topics access files on HDFS. You can choose to access files that

already exist in your HDFS cluster. Or, you can follow the steps in the examples to create new files.

A Hadoop installation includes command-line tools that interact directly with your HDFS file system.

These tools support typical file system operations that include copying and listing files, changing file

permissions, and so forth. You run these tools on a system with a Hadoop client installation. By

default, Greenplum Database hosts do not include a Hadoop client installation.

The HDFS file system command syntax is hdfs dfs <options> [<file>]. Invoked with no options,

hdfs dfs lists the file system options supported by the tool.

The user invoking the hdfs dfs command must have read privileges on the HDFS data store to list

and view directory and file contents, and write permission to create directories and files.

The hdfs dfs options used in the PXF Hadoop topics are:

Option Description

-cat Display file contents.

-mkdir Create a directory in HDFS.

-put Copy a file from the local file system to HDFS.

Examples:

Create a directory in HDFS:

$ hdfs dfs -mkdir -p /data/exampledir

Copy a text file from your local file system to HDFS:

$ hdfs dfs -put /tmp/example.txt /data/exampledir/

Display the contents of a text file located in HDFS:

$ hdfs dfs -cat /data/exampledir/example.txt

Connectors, Data Formats, and Profiles

The PXF Hadoop connectors provide built-in profiles to support the following data formats:

Text

CSV

Avro

JSON

ORC

Parquet

RCFile

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 112

SequenceFile

AvroSequenceFile

The PXF Hadoop connectors expose the following profiles to read, and in many cases write, these

supported data formats:

Data

Source
Data Format Profile Name(s)

Deprecated Profile

Name

Supported

Operations

HDFS delimited single line text hdfs:text n/a Read, Write

HDFS delimited single line comma-separated

values of text

hdfs:csv n/a Read, Write

HDFS delimited text with quoted linefeeds hdfs:text:multi n/a Read

HDFS Avro hdfs:avro n/a Read, Write

HDFS JSON hdfs:json n/a Read

HDFS ORC hdfs:orc n/a Read

HDFS Parquet hdfs:parquet n/a Read, Write

HDFS AvroSequenceFile hdfs:AvroSequenceFile n/a Read, Write

HDFS SequenceFile hdfs:SequenceFile n/a Read, Write

Hive stored as TextFile hive, hive:text Hive, HiveText Read

Hive stored as SequenceFile hive Hive Read

Hive stored as RCFile hive, hive:rc Hive, HiveRC Read

Hive stored as ORC hive, hive:orc Hive, HiveORC,

HiveVectorizedORC

Read

Hive stored as Parquet hive Hive Read

Hive stored as Avro hive Hive Read

HBase Any hbase HBase Read

Choosing the Profile

PXF provides more than one profile to access text and Parquet data on Hadoop. Here are some

things to consider as you determine which profile to choose.

Choose the hive profile when:

The data resides in a Hive table, and you do not know the underlying file type of the table up

front.

The data resides in a Hive table, and the Hive table is partitioned.

Choose the hdfs:text, hdfs:csv profiles when the file is text and you know the location of the file in

the HDFS file system.

When accessing ORC-format data:

Choose the hdfs:orc profile when the file is ORC, you know the location of the file in the

HDFS file system, and the file is not managed by Hive or you do not want to use the Hive

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 113

Metastore.

Choose the hive:orc profile when the table is ORC and the table is managed by Hive, and

the data is partitioned or the data includes complex types.

Choose the hdfs:parquet profile when the file is Parquet, you know the location of the file in the

HDFS file system, and you want to take advantage of extended filter pushdown support for additional

data types and operators.

Specifying the Profile

You must provide the profile name when you specify the pxf protocol in a CREATE EXTERNAL TABLE

command to create a Greenplum Database external table that references a Hadoop file or directory,

HBase table, or Hive table. For example, the following command creates an external table that uses

the default server and specifies the profile named hdfs:text to access the HDFS file

/data/pxf_examples/pxf_hdfs_simple.txt:

CREATE EXTERNAL TABLE pxf_hdfs_text(location text, month text, num_orders int, total_s

ales float8)

 LOCATION ('pxf://data/pxf_examples/pxf_hdfs_simple.txt?PROFILE=hdfs:text')

FORMAT 'TEXT' (delimiter=E',');

Reading and Writing HDFS Text Data

The PXF HDFS Connector supports plain delimited and comma-separated value form text data. This

section describes how to use PXF to access HDFS text data, including how to create, query, and

insert data into an external table that references files in the HDFS data store.

PXF supports reading or writing text files compressed with the default, bzip2, and gzip codecs.

Prerequisites

Ensure that you have met the PXF Hadoop Prerequisites before you attempt to read data from or

write data to HDFS.

Reading Text Data

Use the hdfs:text profile when you read plain text delimited, and hdfs:csv when reading .csv data

where each row is a single record. The following syntax creates a Greenplum Database readable

external table that references such a text file on HDFS:

CREATE EXTERNAL TABLE <table_name>

 (<column_name> <data_type> [, ...] | LIKE <other_table>)

LOCATION ('pxf://<path-to-hdfs-file>?PROFILE=hdfs:text|csv[&SERVER=<server_name>][&IGN

ORE_MISSING_PATH=<boolean>][&SKIP_HEADER_COUNT=<numlines>]')

FORMAT '[TEXT|CSV]' (delimiter[=|<space>][E]'<delim_value>');

The specific keywords and values used in the Greenplum Database CREATE EXTERNAL TABLE

command are described in the table below.

Keyword Value

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 114

https://gpdb.docs.pivotal.io/latest/ref_guide/sql_commands/CREATE_EXTERNAL_TABLE.html

<path‑to‑hdfs‑file> The path to the directory or file in the HDFS data store. When the <server_name>

configuration includes a pxf.fs.basePath property setting, PXF considers

<path‑to‑hdfs‑file> to be relative to the base path specified. Otherwise, PXF considers it

to be an absolute path. <path‑to‑hdfs‑file> must not specify a relative path nor include

the dollar sign ($) character.

PROFILE Use PROFILE hdfs:text when <path-to-hdfs-file> references plain text delimited data.

Use PROFILE hdfs:csv when <path-to-hdfs-file> references comma-separated value

data.

SERVER=<server_name> The named server configuration that PXF uses to access the data. PXF uses the

default server if not specified.

IGNORE_MISSING_PATH=

<boolean>

Specify the action to take when <path-to-hdfs-file> is missing or invalid. The default

value is false, PXF returns an error in this situation. When the value is true, PXF

ignores missing path errors and returns an empty fragment.

SKIP_HEADER_COUNT=

<numlines>

Specify the number of header lines that PXF should skip in the first split of each <hdfs-

file> before reading the data. The default value is 0, do not skip any lines.

FORMAT Use FORMAT 'TEXT' when <path-to-hdfs-file> references plain text delimited data.

Use FORMAT 'CSV' when <path-to-hdfs-file> references comma-separated value data.

delimiter The delimiter character in the data. For FORMAT 'CSV', the default <delim_value> is a

comma ,. Preface the <delim_value> with an E when the value is an escape sequence.

Examples: (delimiter=E'\t'), (delimiter ':').

Note: PXF does not support the (HEADER) formatter option in the CREATE EXTERNAL TABLE command.

If your text file includes header line(s), use SKIP_HEADER_COUNT to specify the number of lines that

PXF should skip at the beginning of the first split of each file.

Example: Reading Text Data on HDFS

Perform the following procedure to create a sample text file, copy the file to HDFS, and use the

hdfs:text and hdfs:csv profiles and the default PXF server to create two PXF external tables to

query the data:

1. Create an HDFS directory for PXF example data files. For example:

$ hdfs dfs -mkdir -p /data/pxf_examples

2. Create a delimited plain text data file named pxf_hdfs_simple.txt:

$ echo 'Prague,Jan,101,4875.33

Rome,Mar,87,1557.39

Bangalore,May,317,8936.99

Beijing,Jul,411,11600.67' > /tmp/pxf_hdfs_simple.txt

Note the use of the comma , to separate the four data fields.

3. Add the data file to HDFS:

$ hdfs dfs -put /tmp/pxf_hdfs_simple.txt /data/pxf_examples/

4. Display the contents of the pxf_hdfs_simple.txt file stored in HDFS:

$ hdfs dfs -cat /data/pxf_examples/pxf_hdfs_simple.txt

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 115

5. Start the psql subsystem:

$ psql -d postgres

6. Use the PXF hdfs:text profile to create a Greenplum Database external table that

references the pxf_hdfs_simple.txt file that you just created and added to HDFS:

postgres=# CREATE EXTERNAL TABLE pxf_hdfs_textsimple(location text, month text,

 num_orders int, total_sales float8)

 LOCATION ('pxf://data/pxf_examples/pxf_hdfs_simple.txt?PROFILE=hdfs

:text')

 FORMAT 'TEXT' (delimiter=E',');

7. Query the external table:

postgres=# SELECT * FROM pxf_hdfs_textsimple;

 location | month | num_orders | total_sales

---------------+-------+------------+-------------

 Prague | Jan | 101 | 4875.33

 Rome | Mar | 87 | 1557.39

 Bangalore | May | 317 | 8936.99

 Beijing | Jul | 411 | 11600.67

(4 rows)

8. Create a second external table that references pxf_hdfs_simple.txt, this time specifying the

hdfs:csv PROFILE and the CSV FORMAT:

postgres=# CREATE EXTERNAL TABLE pxf_hdfs_textsimple_csv(location text, month t

ext, num_orders int, total_sales float8)

 LOCATION ('pxf://data/pxf_examples/pxf_hdfs_simple.txt?PROFILE=hdfs

:csv')

 FORMAT 'CSV';

postgres=# SELECT * FROM pxf_hdfs_textsimple_csv;

When you specify FORMAT 'CSV' for comma-separated value data, no delimiter formatter

option is required because comma is the default delimiter value.

Reading Text Data with Quoted Linefeeds

Use the hdfs:text:multi profile to read plain text data with delimited single- or multi- line records

that include embedded (quoted) linefeed characters. The following syntax creates a Greenplum

Database readable external table that references such a text file on HDFS:

CREATE EXTERNAL TABLE <table_name>

 (<column_name> <data_type> [, ...] | LIKE <other_table>)

LOCATION ('pxf://<path-to-hdfs-file>?PROFILE=hdfs:text:multi[&SERVER=<server_name>][&I

GNORE_MISSING_PATH=<boolean>][&SKIP_HEADER_COUNT=<numlines>]')

FORMAT '[TEXT|CSV]' (delimiter[=|<space>][E]'<delim_value>');

The specific keywords and values used in the CREATE EXTERNAL TABLE command are described

in the table below.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 116

https://gpdb.docs.pivotal.io/latest/ref_guide/sql_commands/CREATE_EXTERNAL_TABLE.html

Keyword Value

<path‑to‑hdfs‑file> The path to the directory or file in the HDFS data store. When the <server_name>

configuration includes a pxf.fs.basePath property setting, PXF considers

<path‑to‑hdfs‑file> to be relative to the base path specified. Otherwise, PXF considers it

to be an absolute path. <path‑to‑hdfs‑file> must not specify a relative path nor include

the dollar sign ($) character.

PROFILE The PROFILE keyword must specify hdfs:text:multi.

SERVER=<server_name> The named server configuration that PXF uses to access the data. PXF uses the

default server if not specified.

IGNORE_MISSING_PATH=

<boolean>

Specify the action to take when <path-to-hdfs-file> is missing or invalid. The default

value is false, PXF returns an error in this situation. When the value is true, PXF

ignores missing path errors and returns an empty fragment.

SKIP_HEADER_COUNT=

<numlines>

Specify the number of header lines that PXF should skip in the first split of each <hdfs-

file> before reading the data. The default value is 0, do not skip any lines.

FORMAT Use FORMAT 'TEXT' when <path-to-hdfs-file> references plain text delimited data.

Use FORMAT 'CSV' when <path-to-hdfs-file> references comma-separated value data.

delimiter The delimiter character in the data. For FORMAT 'CSV', the default <delim_value> is a

comma ,. Preface the <delim_value> with an E when the value is an escape sequence.

Examples: (delimiter=E'\t'), (delimiter ':').

Note: PXF does not support the (HEADER) formatter option in the CREATE EXTERNAL TABLE command.

If your text file includes header line(s), use SKIP_HEADER_COUNT to specify the number of lines that

PXF should skip at the beginning of the first split of each file.

Example: Reading Multi-Line Text Data on HDFS

Perform the following steps to create a sample text file, copy the file to HDFS, and use the PXF

hdfs:text:multi profile and the default PXF server to create a Greenplum Database readable

external table to query the data:

1. Create a second delimited plain text file:

$ vi /tmp/pxf_hdfs_multi.txt

2. Copy/paste the following data into pxf_hdfs_multi.txt:

"4627 Star Rd.

San Francisco, CA 94107":Sept:2017

"113 Moon St.

San Diego, CA 92093":Jan:2018

"51 Belt Ct.

Denver, CO 90123":Dec:2016

"93114 Radial Rd.

Chicago, IL 60605":Jul:2017

"7301 Brookview Ave.

Columbus, OH 43213":Dec:2018

Notice the use of the colon : to separate the three fields. Also notice the quotes around the

first (address) field. This field includes an embedded line feed separating the street address

from the city and state.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 117

3. Copy the text file to HDFS:

$ hdfs dfs -put /tmp/pxf_hdfs_multi.txt /data/pxf_examples/

4. Use the hdfs:text:multi profile to create an external table that references the

pxf_hdfs_multi.txt HDFS file, making sure to identify the : (colon) as the field separator:

postgres=# CREATE EXTERNAL TABLE pxf_hdfs_textmulti(address text, month text, y

ear int)

 LOCATION ('pxf://data/pxf_examples/pxf_hdfs_multi.txt?PROFILE=hdfs:

text:multi')

 FORMAT 'CSV' (delimiter ':');

Notice the alternate syntax for specifying the delimiter.

5. Query the pxf_hdfs_textmulti table:

postgres=# SELECT * FROM pxf_hdfs_textmulti;

 address | month | year

--------------------------+-------+------

 4627 Star Rd. | Sept | 2017

 San Francisco, CA 94107

 113 Moon St. | Jan | 2018

 San Diego, CA 92093

 51 Belt Ct. | Dec | 2016

 Denver, CO 90123

 93114 Radial Rd. | Jul | 2017

 Chicago, IL 60605

 7301 Brookview Ave. | Dec | 2018

 Columbus, OH 43213

(5 rows)

Writing Text Data to HDFS

The PXF HDFS connector profiles hdfs:text and hdfs:csv support writing single line plain text data

to HDFS. When you create a writable external table with the PXF HDFS connector, you specify the

name of a directory on HDFS. When you insert records into a writable external table, the block(s) of

data that you insert are written to one or more files in the directory that you specified.

Note: External tables that you create with a writable profile can only be used for INSERT operations. If

you want to query the data that you inserted, you must create a separate readable external table that

references the HDFS directory.

Use the following syntax to create a Greenplum Database writable external table that references an

HDFS directory:

CREATE WRITABLE EXTERNAL TABLE <table_name>

 (<column_name> <data_type> [, ...] | LIKE <other_table>)

LOCATION ('pxf://<path-to-hdfs-dir>

 ?PROFILE=hdfs:text|csv[&SERVER=<server_name>][&<custom-option>=<value>[...]]')

FORMAT '[TEXT|CSV]' (delimiter[=|<space>][E]'<delim_value>');

[DISTRIBUTED BY (<column_name> [, ...]) | DISTRIBUTED RANDOMLY];

The specific keywords and values used in the CREATE EXTERNAL TABLE command are described

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 118

https://gpdb.docs.pivotal.io/latest/ref_guide/sql_commands/CREATE_EXTERNAL_TABLE.html

in the table below.

Keyword Value

<path‑to‑hdfs‑dir> The path to the directory in the HDFS data store. When the <server_name> configuration

includes a pxf.fs.basePath property setting, PXF considers <path‑to‑hdfs‑dir> to be relative to

the base path specified. Otherwise, PXF considers it to be an absolute path. <path‑to‑hdfs‑dir>

must not specify a relative path nor include the dollar sign ($) character.

PROFILE Use PROFILE hdfs:text to write plain, delimited text to <path-to-hdfs-file>.

Use PROFILE hdfs:csv to write comma-separated value text to <path-to-hdfs-dir>.

SERVER=

<server_name>

The named server configuration that PXF uses to access the data. PXF uses the default server if

not specified.

<custom‑option> <custom-option>s are described below.

FORMAT Use FORMAT 'TEXT' to write plain, delimited text to <path-to-hdfs-dir>.

Use FORMAT 'CSV' to write comma-separated value text to <path-to-hdfs-dir>.

delimiter The delimiter character in the data. For FORMAT 'CSV', the default <delim_value> is a comma ,.

Preface the <delim_value> with an E when the value is an escape sequence. Examples:

(delimiter=E'\t'), (delimiter ':').

DISTRIBUTED BY If you want to load data from an existing Greenplum Database table into the writable external

table, consider specifying the same distribution policy or <column_name> on both tables.

Doing so will avoid extra motion of data between segments on the load operation.

Writable external tables that you create using the hdfs:text or the hdfs:csv profiles can optionally

use record or block compression. You specify the compression type and codec via custom options in

the CREATE EXTERNAL TABLE LOCATION clause. The hdfs:text and hdfs:csv profiles support the

following custom write options:

Option Value Description

COMPRESSION_CODEC The compression codec alias. Supported compression codecs for writing text data

include: default, bzip2, gzip, and uncompressed. If this option is not provided,

Greenplum Database performs no data compression.

COMPRESSION_TYPE The compression type to employ; supported values are RECORD (the default) or BLOCK.

Example: Writing Text Data to HDFS

This example utilizes the data schema introduced in Example: Reading Text Data on HDFS.

Column Name Data Type

location text

month text

number_of_orders int

total_sales float8

This example also optionally uses the Greenplum Database external table named

pxf_hdfs_textsimple that you created in that exercise.

Procedure

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 119

Perform the following procedure to create Greenplum Database writable external tables utilizing the

same data schema as described above, one of which will employ compression. You will use the PXF

hdfs:text profile and the default PXF server to write data to the underlying HDFS directory. You will

also create a separate, readable external table to read the data that you wrote to the HDFS directory.

1. Create a Greenplum Database writable external table utilizing the data schema described

above. Write to the HDFS directory /data/pxf_examples/pxfwritable_hdfs_textsimple1.

Create the table specifying a comma , as the delimiter:

postgres=# CREATE WRITABLE EXTERNAL TABLE pxf_hdfs_writabletbl_1(location text,

 month text, num_orders int, total_sales float8)

 LOCATION ('pxf://data/pxf_examples/pxfwritable_hdfs_textsimple1?PRO

FILE=hdfs:text')

 FORMAT 'TEXT' (delimiter=',');

You specify the FORMAT subclause delimiter value as the single ascii comma character ,.

2. Write a few individual records to the pxfwritable_hdfs_textsimple1 HDFS directory by

invoking the SQL INSERT command on pxf_hdfs_writabletbl_1:

postgres=# INSERT INTO pxf_hdfs_writabletbl_1 VALUES ('Frankfurt', 'Mar', 777,

 3956.98);

postgres=# INSERT INTO pxf_hdfs_writabletbl_1 VALUES ('Cleveland', 'Oct', 3812

, 96645.37);

3. (Optional) Insert the data from the pxf_hdfs_textsimple table that you created in Example:

pxf_hdfs_writabletbl_1Reading Text Data on HDFS into pxf_hdfs_writabletbl_1:

postgres=# INSERT INTO pxf_hdfs_writabletbl_1 SELECT * FROM pxf_hdfs_textsimple

;

4. In another terminal window, display the data that you just added to HDFS:

$ hdfs dfs -cat /data/pxf_examples/pxfwritable_hdfs_textsimple1/*

Frankfurt,Mar,777,3956.98

Cleveland,Oct,3812,96645.37

Prague,Jan,101,4875.33

Rome,Mar,87,1557.39

Bangalore,May,317,8936.99

Beijing,Jul,411,11600.67

Because you specified comma , as the delimiter when you created the writable external

table, this character is the field separator used in each record of the HDFS data.

5. Greenplum Database does not support directly querying a writable external table. To query

the data that you just added to HDFS, you must create a readable external Greenplum

Database table that references the HDFS directory:

postgres=# CREATE EXTERNAL TABLE pxf_hdfs_textsimple_r1(location text, month te

xt, num_orders int, total_sales float8)

 LOCATION ('pxf://data/pxf_examples/pxfwritable_hdfs_textsimple1?PRO

FILE=hdfs:text')

 FORMAT 'CSV';

You specify the 'CSV' FORMAT when you create the readable external table because you

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 120

created the writable table with a comma , as the delimiter character, the default delimiter for

'CSV' FORMAT.

6. Query the readable external table:

postgres=# SELECT * FROM pxf_hdfs_textsimple_r1 ORDER BY total_sales;

 location | month | num_orders | total_sales

-----------+-------+------------+-------------

 Rome | Mar | 87 | 1557.39

 Frankfurt | Mar | 777 | 3956.98

 Prague | Jan | 101 | 4875.33

 Bangalore | May | 317 | 8936.99

 Beijing | Jul | 411 | 11600.67

 Cleveland | Oct | 3812 | 96645.37

(6 rows)

The pxf_hdfs_textsimple_r1 table includes the records you individually inserted, as well as

the full contents of the pxf_hdfs_textsimple table if you performed the optional step.

7. Create a second Greenplum Database writable external table, this time using Gzip

compression and employing a colon : as the delimiter:

postgres=# CREATE WRITABLE EXTERNAL TABLE pxf_hdfs_writabletbl_2 (location text

, month text, num_orders int, total_sales float8)

 LOCATION ('pxf://data/pxf_examples/pxfwritable_hdfs_textsimple2?PRO

FILE=hdfs:text&COMPRESSION_CODEC=gzip')

 FORMAT 'TEXT' (delimiter=':');

8. Write a few records to the pxfwritable_hdfs_textsimple2 HDFS directory by inserting

directly into the pxf_hdfs_writabletbl_2 table:

gpadmin=# INSERT INTO pxf_hdfs_writabletbl_2 VALUES ('Frankfurt', 'Mar', 777,

3956.98);

gpadmin=# INSERT INTO pxf_hdfs_writabletbl_2 VALUES ('Cleveland', 'Oct', 3812,

 96645.37);

9. In another terminal window, display the contents of the data that you added to HDFS; use the

-text option to hdfs dfs to view the compressed data as text:

$ hdfs dfs -text /data/pxf_examples/pxfwritable_hdfs_textsimple2/*

Frankfurt:Mar:777:3956.98

Cleveland:Oct:3812:96645.3

Notice that the colon : is the field separator in this HDFS data.

To query data from the newly-created HDFS directory named

pxfwritable_hdfs_textsimple2, you can create a readable external Greenplum Database

table as described above that references this HDFS directory and specifies FORMAT 'CSV'

(delimiter=':').

Reading and Writing HDFS Avro Data

Use the PXF HDFS Connector to read and write Avro-format data. This section describes how to use

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 121

PXF to read and write Avro data in HDFS, including how to create, query, and insert into an external

table that references an Avro file in the HDFS data store.

PXF supports reading or writing Avro files compressed with these codecs: bzip2, xz, snappy, and

deflate.

Prerequisites

Ensure that you have met the PXF Hadoop Prerequisites before you attempt to read data from

HDFS.

Working with Avro Data

Apache Avro is a data serialization framework where the data is serialized in a compact binary format.

Avro specifies that data types be defined in JSON. Avro format data has an independent schema,

also defined in JSON. An Avro schema, together with its data, is fully self-describing.

Data Type Mapping

The Avro specification defines primitive, complex, and logical types.

To represent Avro primitive data types and Avro arrays of primitive types in Greenplum Database,

map data values to Greenplum Database columns of the same type.

Avro supports other complex data types including arrays of non-primitive types, maps, records,

enumerations, and fixed types. Map top-level fields of these complex data types to the Greenplum

Database text type. While PXF does not natively support reading these types, you can create

Greenplum Database functions or application code to extract or further process subcomponents of

these complex data types.

Avro supports logical data types including decimal, date, time, and duration types. You must similarly

map these data types to the Greenplum Database text type.

Read Mapping

PXF uses the following data type mapping when reading Avro data:

Avro Data Type PXF/Greenplum Data Type

boolean boolean

bytes bytea

double double

float real

int int

long bigint

string text

Complex type: Array (any dimension) of

type: boolean, bytes, double, float, int,

long, string

array (any dimension) of type: boolean, bytea, double, real, bigint, text

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 122

https://avro.apache.org/docs/current/spec.html#schema_primitive
https://avro.apache.org/docs/current/spec.html#schema_complex
https://avro.apache.org/docs/current/spec.html#Logical+Types

Avro Data Type PXF/Greenplum Data Type

Complex type: Array of other types

(Avro schema is provided)

text[]

Complex type: Map, Record, or Enum text, with delimiters inserted between collection items, mapped key-

value pairs, and record data.

Complex type: Fixed bytea (supported for read operations only).

Union Follows the above conventions for primitive or complex data types,

depending on the union; must contain 2 elements, one of which must

be null.

Logical type: date int

Logical type: time-millis, timestamp-millis,

or local-timestamp-millis

int

Logical type: time-micros, timestamp-

micros, or local-timestamp-micros

long

Logical type: duration bytea

Write Mapping

PXF supports writing Avro primitive types and arrays of Avro primitive types. PXF supports writing

other complex types to Avro as string.

PXF uses the following data type mapping when writing Avro data:

PXF/Greenplum Data Type Avro Data Type

bigint long

boolean boolean

bytea bytes

double double

char1 string

enum string

int int

real float

smallint2 int

text string

varchar string

numeric, date, time, timestamp, timestamptz

(no Avro schema is provided)

string

array (any dimension) of type: bigint, boolean, bytea,

double, int, real, text

(Avro schema is provided)

Array (any dimension) of type: long, boolean, bytes,

double, int, float, string

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 123

PXF/Greenplum Data Type Avro Data Type

bigint[], boolean[], bytea[], double[], int[], real[], text[]

(no Avro schema is provided)

long[], boolean[], bytes[], double[], int[], float[], string[]

(one-dimensional array)

numeric[], date[], time[], timestamp[], timestamptz[]

(Avro is schema is provided)

string[]

enum, record string

1 PXF right-pads char[n] types to length n, if required, with white space.

2 PXF converts Greenplum smallint types to int before it writes the Avro data. Be sure to read the

field into an int.

Avro Schemas and Data

Avro schemas are defined using JSON, and composed of the same primitive and complex types

identified in the data type mapping section above. Avro schema files typically have a .avsc suffix.

Fields in an Avro schema file are defined via an array of objects, each of which is specified by a

name and a type.

An Avro data file contains the schema and a compact binary representation of the data. Avro data

files typically have the .avro suffix.

You can specify an Avro schema on both read and write operations to HDFS. You can provide either

a binary *.avro file or a JSON-format *.avsc file for the schema file:

External Table

Type

Schema

Specified?
Description

readable yes PXF uses the specified schema; this overrides the schema embedded in the

Avro data file.

readable no PXF uses the schema embedded in the Avro data file.

writable yes PXF uses the specified schema.

writable no PXF creates the Avro schema based on the external table definition.

When you provide the Avro schema file to PXF, the file must reside in the same location on each

Greenplum Database host or the file may reside on the Hadoop file system. PXF first searches for an

absolute file path on the Greenplum hosts. If PXF does not find the schema file there, it searches for

the file relative to the PXF classpath. If PXF cannot find the schema file locally, it searches for the file

on HDFS.

The $PXF_BASE/conf directory is in the PXF classpath. PXF can locate an Avro schema file that you

add to this directory on every Greenplum Database host.

See Writing Avro Data for additional schema considerations when writing Avro data to HDFS.

Creating the External Table

Use the hdfs:avro profile to read or write Avro-format data in HDFS. The following syntax creates a

Greenplum Database readable external table that references such a file:

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 124

CREATE [WRITABLE] EXTERNAL TABLE <table_name>

 (<column_name> <data_type> [, ...] | LIKE <other_table>)

LOCATION ('pxf://<path-to-hdfs-file>?PROFILE=hdfs:avro[&SERVER=<server_name>][&<custom

-option>=<value>[...]]')

FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import'|'pxfwritable_export');

[DISTRIBUTED BY (<column_name> [, ...]) | DISTRIBUTED RANDOMLY];

The specific keywords and values used in the Greenplum Database CREATE EXTERNAL TABLE

command are described in the table below.

Keyword Value

<path‑to‑hdfs‑file> The path to the directory or file in the HDFS data store. When the <server_name> configuration

includes a pxf.fs.basePath property setting, PXF considers <path‑to‑hdfs‑file> to be relative to

the base path specified. Otherwise, PXF considers it to be an absolute path. <path‑to‑hdfs‑file>

must not specify a relative path nor include the dollar sign ($) character.

PROFILE The PROFILE keyword must specify hdfs:avro.

SERVER=

<server_name>

The named server configuration that PXF uses to access the data. PXF uses the default server if

not specified.

<custom‑option> <custom-option>s are discussed below.

FORMAT

‘CUSTOM’

Use FORMAT ’CUSTOM’ with (FORMATTER='pxfwritable_export') (write) or

(FORMATTER='pxfwritable_import') (read).

DISTRIBUTED BY If you want to load data from an existing Greenplum Database table into the writable external

table, consider specifying the same distribution policy or <column_name> on both tables.

Doing so will avoid extra motion of data between segments on the load operation.

For complex types, the PXF hdfs:avro profile inserts default delimiters between collection items and

values before display. You can use non-default delimiter characters by identifying values for specific

hdfs:avro custom options in the CREATE EXTERNAL TABLE command.

The hdfs:avro profile supports the following <custom-option>s:

Option Keyword Description

COLLECTION_DELIM The delimiter character(s) placed between entries in a top-level array, map, or record

field when PXF maps an Avro complex data type to a text column. The default is the

comma , character. (Read)

MAPKEY_DELIM The delimiter character(s) placed between the key and value of a map entry when PXF

maps an Avro complex data type to a text column. The default is the colon : character.

(Read)

RECORDKEY_DELIM The delimiter character(s) placed between the field name and value of a record entry

when PXF maps an Avro complex data type to a text column. The default is the colon :

character. (Read)

SCHEMA The absolute path to the Avro schema file on the Greenplum host or on HDFS, or the

relative path to the schema file on the host. (Read and Write)

IGNORE_MISSING_PATH A Boolean value that specifies the action to take when <path-to-hdfs-file> is missing or

invalid. The default value is false, PXF returns an error in this situation. When the value

is true, PXF ignores missing path errors and returns an empty fragment. (Read)

The PXF hdfs:avro profile supports encoding- and compression-related write options. You specify

these write options in the CREATE WRITABLE EXTERNAL TABLE LOCATION clause. The hdfs:avro profile

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 125

https://gpdb.docs.pivotal.io/latest/ref_guide/sql_commands/CREATE_EXTERNAL_TABLE.html

supports the following custom write options:

Write Option Value Description

COMPRESSION_CODEC The compression codec alias. Supported compression codecs for writing Avro data

include: bzip2, xz, snappy, deflate, and uncompressed . If this option is not provided,

PXF compresses the data using deflate compression.

CODEC_LEVEL The compression level (applicable to the deflate and xz codecs only). This level controls

the trade-off between speed and compression. Valid values are 1 (fastest) to 9 (most

compressed). The default compression level is 6.

Example: Reading Avro Data

The examples in this section will operate on Avro data with the following field name and data type

record schema:

id - long

username - string

followers - array of string (string[])

fmap - map of long

relationship - enumerated type

address - record comprised of street number (int), street name (string), and city (string)

You create an Avro schema and data file, and then create a readable external table to read the data.

Create Schema

Perform the following operations to create an Avro schema to represent the example schema

described above.

1. Create a file named avro_schema.avsc:

$ vi /tmp/avro_schema.avsc

2. Copy and paste the following text into avro_schema.avsc:

{

"type" : "record",

 "name" : "example_schema",

 "namespace" : "com.example",

 "fields" : [{

 "name" : "id",

 "type" : "long",

 "doc" : "Id of the user account"

 }, {

 "name" : "username",

 "type" : "string",

 "doc" : "Name of the user account"

 }, {

 "name" : "followers",

 "type" : {"type": "array", "items": "string"},

 "doc" : "Users followers"

 }, {

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 126

 "name": "fmap",

 "type": {"type": "map", "values": "long"}

 }, {

 "name": "relationship",

 "type": {

 "type": "enum",

 "name": "relationshipEnum",

 "symbols": ["MARRIED","LOVE","FRIEND","COLLEAGUE","STRANGER","ENEMY"]

 }

 }, {

 "name": "address",

 "type": {

 "type": "record",

 "name": "addressRecord",

 "fields": [

 {"name":"number", "type":"int"},

 {"name":"street", "type":"string"},

 {"name":"city", "type":"string"}]

 }

 }],

 "doc:" : "A basic schema for storing messages"

}

Create Avro Data File (JSON)

Perform the following steps to create a sample Avro data file conforming to the above schema.

1. Create a text file named pxf_avro.txt:

$ vi /tmp/pxf_avro.txt

2. Enter the following data into pxf_avro.txt:

{"id":1, "username":"john","followers":["kate", "santosh"], "relationship": "FR

IEND", "fmap": {"kate":10,"santosh":4}, "address":{"number":1, "street":"renais

sance drive", "city":"san jose"}}

{"id":2, "username":"jim","followers":["john", "pam"], "relationship": "COLLEAG

UE", "fmap": {"john":3,"pam":3}, "address":{"number":9, "street":"deer creek",

"city":"palo alto"}}

The sample data uses a comma , to separate top level records and a colon : to separate

map/key values and record field name/values.

3. Convert the text file to Avro format. There are various ways to perform the conversion, both

programmatically and via the command line. In this example, we use the Java Avro tools; the

jar avro-tools-1.9.1.jar file resides in the current directory:

$ java -jar ./avro-tools-1.9.1.jar fromjson --schema-file /tmp/avro_schema.avsc

 /tmp/pxf_avro.txt > /tmp/pxf_avro.avro

The generated Avro binary data file is written to /tmp/pxf_avro.avro.

4. Copy the generated Avro file to HDFS:

$ hdfs dfs -put /tmp/pxf_avro.avro /data/pxf_examples/

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 127

http://avro.apache.org/releases.html

Reading Avro Data

Perform the following operations to create and query an external table that references the

pxf_avro.avro file that you added to HDFS in the previous section. When creating the table:

Use the PXF default server.

Map the top-level primitive fields, id (type long) and username (type string), to their

equivalent Greenplum Database types (bigint and text).

Map the followers field to a text array (text[]).

Map the remaining complex fields to type text.

Explicitly set the record, map, and collection delimiters using the hdfs:avro profile custom

options.

1. Use the hdfs:avro profile to create a queryable external table from the pxf_avro.avro file:

postgres=# CREATE EXTERNAL TABLE pxf_hdfs_avro(id bigint, username text, follow

ers text[], fmap text, relationship text, address text)

 LOCATION ('pxf://data/pxf_examples/pxf_avro.avro?PROFILE=hdfs:avro&

COLLECTION_DELIM=,&MAPKEY_DELIM=:&RECORDKEY_DELIM=:')

 FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import');

2. Perform a simple query of the pxf_hdfs_avro table:

postgres=# SELECT * FROM pxf_hdfs_avro;

 id | username | followers | fmap | relationship |

 address

----+----------+----------------+--------------------+--------------+----------

 1 | john | {kate,santosh} | {kate:10,santosh:4} | FRIEND | {number:

1,street:renaissance drive,city:san jose}

 2 | jim | {john,pam} | {pam:3,john:3} | COLLEAGUE | {number:

9,street:deer creek,city:palo alto}

(2 rows)

The simple query of the external table shows the components of the complex type data

separated with the delimiters specified in the CREATE EXTERNAL TABLE call.

3. Query the table, displaying the id and the first element of the followers text array:

postgres=# SELECT id, followers[1] FROM pxf_hdfs_avro;

 id | followers

----+-----------

 1 | kate

 2 | john

Writing Avro Data

The PXF HDFS connector hdfs:avro profile supports writing Avro data to HDFS. When you create a

writable external table to write Avro data, you specify the name of a directory on HDFS. When you

insert records into the writable external table, the block(s) of data that you insert are written to one or

more files in the directory that you specify.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 128

When you create a writable external table to write data to an Avro file, each table row is an Avro

record and each table column is an Avro field.

If you do not specify a SCHEMA file, PXF generates a schema for the Avro file based on the

Greenplum Database external table definition. PXF assigns the name of the external table column to

the Avro field name. Because Avro has a null type and Greenplum external tables do not support

the NOT NULL column qualifier, PXF wraps each data type in an Avro union of the mapped type and

null. For example, for a writable external table column that you define with the Greenplum Database

text data type, PXF generates the following schema element:

["string", "null"]

PXF returns an error if you provide a schema that does not include a union of the field data type with

null, and PXF encounters a NULL data field.

PXF supports writing only Avro primitive data types and Avro Arrays of the types identified in Data

Type Write Mapping. PXF does not support writing complex types to Avro:

When you specify a SCHEMA file in the LOCATION, the schema must include only primitive data

types.

When PXF generates the schema, it writes any complex type that you specify in the writable

external table column definition to the Avro file as a single Avro string type. For example, if

you write an array of the Greenplum numeric type, PXF converts the array to a string, and

you must read this data with a Greenplum text-type column.

Example: Writing Avro Data

In this example, you create an external table that writes to an Avro file on HDFS, letting PXF

generate the Avro schema. After you insert some data into the file, you create a readable external

table to query the Avro data.

The Avro file that you create and read in this example includes the following fields:

id: int

username: text

followers: text[]

Example procedure:

1. Create the writable external table:

postgres=# CREATE WRITABLE EXTERNAL TABLE pxf_avrowrite(id int, username text,

followers text[])

 LOCATION ('pxf://data/pxf_examples/pxfwrite.avro?PROFILE=hdfs:avro'

)

 FORMAT 'CUSTOM' (FORMATTER='pxfwritable_export');

1. Insert some data into the pxf_avrowrite table:

postgres=# INSERT INTO pxf_avrowrite VALUES (33, 'oliver', ARRAY['alex','frank'

]);

postgres=# INSERT INTO pxf_avrowrite VALUES (77, 'lisa', ARRAY['tom','mary']);

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 129

PXF uses the external table definition to generate the Avro schema.

2. Create an external table to read the Avro data that you just inserted into the table:

postgres=# CREATE EXTERNAL TABLE read_pxfwrite(id int, username text, followers

 text[])

 LOCATION ('pxf://data/pxf_examples/pxfwrite.avro?PROFILE=hdfs:avro'

)

 FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import');

3. Read the Avro data by querying the read_pxfwrite table:

postgres=# SELECT id, followers, followers[1], followers[2] FROM read_pxfwrite

ORDER BY id;

 id | followers | followers | followers

----+--------------+-----------+-----------

 33 | {alex,frank} | alex | frank

 77 | {tom,mary} | tom | mary

(2 rows)

Reading JSON Data from HDFS

Use the PXF HDFS Connector to read JSON-format data. This section describes how to use PXF to

access JSON data in HDFS, including how to create and query an external table that references a

JSON file in the HDFS data store.

Prerequisites

Ensure that you have met the PXF Hadoop Prerequisites before you attempt to read data from

HDFS.

Working with JSON Data

JSON is a text-based data-interchange format. JSON data is typically stored in a file with a .json

suffix.

A .json file will contain a collection of objects. A JSON object is a collection of unordered

name/value pairs. A value can be a string, a number, true, false, null, or an object or an array. You

can define nested JSON objects and arrays.

Sample JSON data file content:

 {

 "created_at":"MonSep3004:04:53+00002013",

 "id_str":"384529256681725952",

 "user": {

 "id":31424214,

 "location":"COLUMBUS"

 },

 "coordinates":{

 "type":"Point",

 "values":[

 13,

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 130

 99

]

 }

 }

In the sample above, user is an object composed of fields named id and location. To specify the

nested fields in the user object as Greenplum Database external table columns, use . projection:

user.id

user.location

coordinates is an object composed of a text field named type and an array of integers named

values.

To retrieve all of the elements of the values array in a single column, define the corresponding

Greenplum Database external table column as type TEXT[].

"coordinates.values" TEXT[]

Refer to Introducing JSON for detailed information on JSON syntax.

JSON to Greenplum Database Data Type Mapping

To represent JSON data in Greenplum Database, map data values that use a primitive data type to

Greenplum Database columns of the same type. JSON supports complex data types including

projections and arrays. Use N-level projection to map members of nested objects and arrays to

primitive data types.

The following table summarizes external mapping rules for JSON data.

Table 1. JSON Mapping

JSON Data Type PXF/Greenplum Data Type

Primitive type (integer, float, string,

boolean, null)

Use the corresponding Greenplum Database built-in data type; see

Greenplum Database Data Types.

Array Use TEXT[] to retrieve the JSON array as a Greenplum text array.

Object Use dot . notation to specify each level of projection (nesting) to a member

of a primitive or Array type.

JSON Data Read Modes

PXF supports two data read modes. The default mode expects one full JSON record per line. PXF

also supports a read mode operating on JSON records that span multiple lines.

In upcoming examples, you will use both read modes to operate on a sample data set. The schema

of the sample data set defines objects with the following member names and value data types:

“created_at” - text

“id_str” - text

“user” - object

“id” - integer

“location” - text

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 131

http://www.json.org/
https://gpdb.docs.pivotal.io/latest/ref_guide/data_types.html

“coordinates” - object (optional)

“type” - text

“values” - array

[0] - integer

[1] - integer

The single-JSON-record-per-line data set follows:

{"created_at":"FriJun0722:45:03+00002013","id_str":"343136551322136576","user":{"id":3

95504494,"location":"NearCornwall"},"coordinates":{"type":"Point","values": [6, 50]}

},

{"created_at":"FriJun0722:45:02+00002013","id_str":"343136547115253761","user":{"id":2

6643566,"location":"Austin,Texas"}, "coordinates": null},

{"created_at":"FriJun0722:45:02+00002013","id_str":"343136547136233472","user":{"id":2

87819058,"location":""}, "coordinates": null}

This is the data set for the multi-line JSON record data set:

{

 "root":[

 {

 "record_obj":{

 "created_at":"MonSep3004:04:53+00002013",

 "id_str":"384529256681725952",

 "user":{

 "id":31424214,

 "location":"COLUMBUS"

 },

 "coordinates":null

 },

 "record_obj":{

 "created_at":"MonSep3004:04:54+00002013",

 "id_str":"384529260872228864",

 "user":{

 "id":67600981,

 "location":"KryberWorld"

 },

 "coordinates":{

 "type":"Point",

 "values":[

 8,

 52

]

 }

 }

 }

]

}

You will create JSON files for the sample data sets and add them to HDFS in the next section.

Loading the Sample JSON Data to HDFS

The PXF HDFS connector reads native JSON stored in HDFS. Before you can use Greenplum

Database to query JSON format data, the data must reside in your HDFS data store.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 132

Copy and paste the single line JSON record sample data set above to a file named singleline.json.

Similarly, copy and paste the multi-line JSON record data set to a file named multiline.json.

Note: Ensure that there are no blank lines in your JSON files.

Copy the JSON data files that you just created to your HDFS data store. Create the

/data/pxf_examples directory if you did not do so in a previous exercise. For example:

$ hdfs dfs -mkdir /data/pxf_examples

$ hdfs dfs -put singleline.json /data/pxf_examples

$ hdfs dfs -put multiline.json /data/pxf_examples

Once the data is loaded to HDFS, you can use Greenplum Database and PXF to query and analyze

the JSON data.

Creating the External Table

Use the hdfs:json profile to read JSON-format files from HDFS. The following syntax creates a

Greenplum Database readable external table that references such a file:

CREATE EXTERNAL TABLE <table_name>

 (<column_name> <data_type> [, ...] | LIKE <other_table>)

LOCATION ('pxf://<path-to-hdfs-file>?PROFILE=hdfs:json[&SERVER=<server_name>][&<custom

-option>=<value>[...]]')

FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import');

The specific keywords and values used in the Greenplum Database CREATE EXTERNAL TABLE

command are described in the table below.

Keyword Value

<path‑to‑hdfs‑file> The path to the directory or file in the HDFS data store. When the <server_name> configuration

includes a pxf.fs.basePath property setting, PXF considers <path‑to‑hdfs‑file> to be relative to

the base path specified. Otherwise, PXF considers it to be an absolute path. <path‑to‑hdfs‑file>

must not specify a relative path nor include the dollar sign ($) character.

PROFILE The PROFILE keyword must specify hdfs:json.

SERVER=

<server_name>

The named server configuration that PXF uses to access the data. PXF uses the default server if

not specified.

<custom‑option> <custom-option>s are discussed below.

FORMAT

‘CUSTOM’

Use FORMAT 'CUSTOM' with the hdfs:json profile. The CUSTOM FORMAT requires that you specify

(FORMATTER='pxfwritable_import').

PXF supports single- and multi- line JSON records. When you want to read multi-line JSON records,

you must provide an IDENTIFIER <custom-option> and value. Use this <custom-option> to identify

the name of a field whose parent JSON object you want to be returned as individual tuples.

The hdfs:json profile supports the following <custom-option>s:

Option Keyword Syntax, Example(s) Description

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 133

https://gpdb.docs.pivotal.io/latest/ref_guide/sql_commands/CREATE_EXTERNAL_TABLE.html

IDENTIFIER &IDENTIFIER=<value>

&IDENTIFIER=created_at

You must include the IDENTIFIER keyword and <value> in

the LOCATION string only when you are accessing JSON data

comprised of multi-line records. Use the <value> to identify

the name of the field whose parent JSON object you want to

be returned as individual tuples.

IGNORE_MISSING_PATH &IGNORE_MISSING_PATH=

<boolean>

Specify the action to take when <path-to-hdfs-file> is

missing or invalid. The default value is false, PXF returns an

error in this situation. When the value is true, PXF ignores

missing path errors and returns an empty fragment.

When a nested object in a multi-line record JSON file includes a field with the same name as that of

a parent object field and the field name is also specified as the IDENTIFIER, there is a possibility that

PXF could return incorrect results. Should you need to, you can work around this edge case by

compressing the JSON file, and having PXF read the compressed file.

Example: Reading a JSON File with Single Line Records

Use the following CREATE EXTERNAL TABLE SQL command to create a readable external table

that references the single-line-per-record JSON data file and uses the PXF default server.

CREATE EXTERNAL TABLE singleline_json_tbl(

 created_at TEXT,

 id_str TEXT,

 "user.id" INTEGER,

 "user.location" TEXT,

 "coordinates.values" TEXT[]

)

LOCATION('pxf://data/pxf_examples/singleline.json?PROFILE=hdfs:json')

FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import');

Notice the use of . projection to access the nested fields in the user and coordinates objects.

To query the JSON data in the external table:

SELECT * FROM singleline_json_tbl;

To access specific elements of the coordinates.values array, you can specify the array subscript

number in square brackets:

SELECT "coordinates.values"[1], "coordinates.values"[2] FROM singleline_json_tbl;

To access the array elements as some type other than TEXT, you can either cast the whole column:

SELECT "coordinates.values"::int[] FROM singleline_json_tbl;

or cast specific elements:

SELECT "coordinates.values"[1]::int, "coordinates.values"[2]::float FROM singleline_js

on_tbl;

Example: Reading a JSON file with Multi-Line Records

The SQL command to create a readable external table from the multi-line-per-record JSON file is

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 134

https://gpdb.docs.pivotal.io/latest/ref_guide/sql_commands/CREATE_EXTERNAL_TABLE.html

very similar to that of the single line data set above. You must additionally specify the LOCATION

clause IDENTIFIER keyword and an associated value when you want to read multi-line JSON records.

For example:

CREATE EXTERNAL TABLE multiline_json_tbl(

 created_at TEXT,

 id_str TEXT,

 "user.id" INTEGER,

 "user.location" TEXT,

 "coordinates.values" TEXT[]

)

LOCATION('pxf://data/pxf_examples/multiline.json?PROFILE=hdfs:json&IDENTIFIER=created_

at')

FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import');

created_at identifies the member name of the first field in the JSON record record_obj in the

sample data schema.

To query the JSON data in this external table:

SELECT * FROM multiline_json_tbl;

Other Methods to Read a JSON Array

Starting in version 6.2.0, PXF supports reading a JSON array into a TEXT[] column. PXF still supports

the old methods of using array element projection or a single text-type column to read a JSON

array. These access methods are described here.

Using Array Element Projection

PXF supports accessing specific elements of a JSON array using the syntax [n] in the table definition

to identify the specific element.

CREATE EXTERNAL TABLE singleline_json_tbl_aep(

 created_at TEXT,

 id_str TEXT,

 "user.id" INTEGER,

 "user.location" TEXT,

 "coordinates.values[0]" INTEGER,

 "coordinates.values[1]" INTEGER

)

LOCATION('pxf://data/pxf_examples/singleline.json?PROFILE=hdfs:json')

FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import');

Note: When you use this method to identify specific array elements, PXF provides only those values

to Greenplum Database, not the whole JSON array.

If your existing external table definition uses array element projection and you want to read the array

into a TEXT[] column, you can use the ALTER EXTERNAL TABLE command to update the table

definition. For example:

ALTER EXTERNAL TABLE singleline_json_tbl_aep DROP COLUMN "coordinates.values[0]", DROP

 COLUMN "coordinates.values[1]", ADD COLUMN "coordinates.values" TEXT[];

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 135

If you choose to alter the external table definition in this manner, be sure to update any existing

queries on the external table to account for the changes to column name and type.

Specifying a Single Text-type Column

PXF supports accessing all of the elements within an array as a single string containing the serialized

JSON array by defining the corresponding Greenplum table column with one of the following data

types: TEXT, VARCHAR, or BPCHAR.

CREATE EXTERNAL TABLE singleline_json_tbl_stc(

 created_at TEXT,

 id_str TEXT,

 "user.id" INTEGER,

 "user.location" TEXT,

 "coordinates.values" TEXT

)

LOCATION('pxf://data/pxf_examples/singleline.json?PROFILE=hdfs:json')

FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import');

If you retrieve the JSON array in a single text-type column and wish to convert the JSON array

serialized as TEXT back into a native Greenplum array type, you can use the example query below:

SELECT user.id,

 ARRAY(SELECT json_array_elements_text(coordinates.values::json))::int[] AS coor

ds

FROM singleline_json_tbl_stc;

Note: This conversion is possible only when you are using PXF with Greenplum Database 6.x; the

function json_array_elements_text() is not available in Greenplum 5.x.

If your external table definition uses a single text-type column for a JSON array and you want to read

the array into a TEXT[] column, you can use the ALTER EXTERNAL TABLE command to update the

table definition. For example:

ALTER EXTERNAL TABLE singleline_json_tbl_stc ALTER COLUMN "coordinates.values" TYPE TE

XT[];

If you choose to alter the external table definition in this manner, be sure to update any existing

queries on the external table to account for the change in column type.

Reading ORC Data

Use the PXF HDFS connector hdfs:orc profile to read ORC-format data when the data resides in a

Hadoop file system. This section describes how to read HDFS files that are stored in ORC format,

including how to create and query an external table that references these files in the HDFS data

store.

The hdfs:orc profile:

Reads 1024 rows of data at a time.

Supports column projection.

Supports filter pushdown based on file-level, stripe-level, and row-level ORC statistics.

Supports the compound list type for a subset of ORC scalar types.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 136

Does not support the map, union or struct compound types.

The hdfs:orc profile currently supports reading scalar data types and lists of certain scalar types from

ORC files. If the data resides in a Hive table, and you want to read complex types or the Hive table is

partitioned, use the hive:orc profile.

Prerequisites

Ensure that you have met the PXF Hadoop Prerequisites before you attempt to read data from

HDFS.

About the ORC Data Format

The Optimized Row Columnar (ORC) file format is a columnar file format that provides a highly

efficient way to both store and access HDFS data. ORC format offers improvements over text and

RCFile formats in terms of both compression and performance. PXF supports ORC file versions v0

and v1.

ORC is type-aware and specifically designed for Hadoop workloads. ORC files store both the type of,

and encoding information for, the data in the file. All columns within a single group of row data (also

known as stripe) are stored together on disk in ORC format files. The columnar nature of the ORC

format type enables read projection, helping avoid accessing unnecessary columns during a query.

ORC also supports predicate pushdown with built-in indexes at the file, stripe, and row levels,

moving the filter operation to the data loading phase.

Refer to the Apache orc documentation for detailed information about the ORC file format.

Data Type Mapping

To read ORC scalar data types in Greenplum Database, map ORC data values to Greenplum

Database columns of the same type. PXF uses the following data type mapping when it reads ORC

data:

ORC Physical Type ORC Logical Type PXF/Greenplum Data Type

binary decimal Numeric

binary timestamp Timestamp

byte[] string Text

byte[] char Bpchar

byte[] varchar Varchar

byte[] binary Bytea

Double float Real

Double double Float8

Integer boolean (1 bit) Boolean

Integer tinyint (8 bit) Smallint

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 137

https://orc.apache.org/docs/

ORC Physical Type ORC Logical Type PXF/Greenplum Data Type

Integer smallint (16 bit) Smallint

Integer int (32 bit) Integer

Integer bigint (64 bit) Bigint

Integer date Date

PXF supports only the list ORC compound type, and only for a subset of the ORC scalar types. The

supported mappings follow:

ORC Compound Type PXF/Greenplum Data Type

array<string> Text[]

array<char> Bpchar[]

array<varchar> Varchar[]

array<binary> Bytea[]

array<float> Real[]

array<double> Float8[]

array<boolean> Boolean[]

array<tinyint> Smallint[]

array<smallint> Smallint[]

array<int> Integer[]

array<bigint> Bigint[]

Creating the External Table

The PXF HDFS connector hdfs:orc profile supports reading ORC-format HDFS files. Use the

following syntax to create a Greenplum Database external table that references a file or directory:

CREATE EXTERNAL TABLE <table_name>

 (<column_name> <data_type> [, ...] | LIKE <other_table>)

LOCATION ('pxf://<path-to-hdfs-file>

 ?PROFILE=hdfs:orc[&SERVER=<server_name>][&<custom-option>=<value>[...]]')

FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import')

The specific keywords and values used in the Greenplum Database CREATE EXTERNAL TABLE

command are described below.

Keyword Value

<path‑to‑hdfs‑file> The path to the file or directory in the HDFS data store. When the <server_name> configuration

includes a pxf.fs.basePath property setting, PXF considers <path‑to‑hdfs‑file> to be relative to

the base path specified. Otherwise, PXF considers it to be an absolute path. <path‑to‑hdfs‑file>

must not specify a relative path nor include the dollar sign ($) character.

PROFILE The PROFILE keyword must specify hdfs:orc.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 138

https://gpdb.docs.pivotal.io/latest/ref_guide/sql_commands/CREATE_EXTERNAL_TABLE.html

Keyword Value

SERVER=

<server_name>

The named server configuration that PXF uses to access the data. PXF uses the default server if

not specified.

<custom-option> <custom-option>s are described below.

FORMAT Use FORMAT 'CUSTOM'; the CUSTOM format requires the built-in pxfwritable_import formatter.

The PXF hdfs:orc profile supports the following read options. You specify this option in the LOCATION

clause:

Read Option Value Description

IGNORE_MISSING_PATH A Boolean value that specifies the action to take when <path-to-hdfs-file> is missing or

invalid. The default value is false, PXF returns an error in this situation. When the value

is true, PXF ignores missing path errors and returns an empty fragment.

MAP_BY_POSITION A Boolean value that, when set to true, specifies that PXF should map an ORC column

to a Greenplum Database column by position. The default value is false, PXF maps an

ORC column to a Greenplum column by name.

Example: Reading an ORC File on HDFS

This example operates on a simple data set that models a retail sales operation. The data includes

fields with the following names and types:

Column Name Data Type

location text

month text

num_orders integer

total_sales numeric(10,2)

items_sold text[]

In this example, you:

Create a sample data set in JSON format, use the orc-tools JAR utilities to convert the

JSON file into an ORC-format file, and then copy the ORC file to HDFS.

Create a Greenplum Database readable external table that references the ORC file and that

specifies the hdfs:orc profile.

Query the external table.

You must have administrative privileges to both a Hadoop cluster and a Greenplum Database cluster

to run the example. You must also have configured a PXF server to access Hadoop.

Procedure:

1. Create a JSON file named sampledata.json in the /tmp directory:

hdfsclient$ echo '{"location": "Prague", "month": "Jan","num_orders": 101, "tot

al_sales": 4875.33, "items_sold": ["boots", "hats"]}

{"location": "Rome", "month": "Mar","num_orders": 87, "total_sales": 1557.39, "

items_sold": ["coats"]}

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 139

{"location": "Bangalore", "month": "May","num_orders": 317, "total_sales": 8936

.99, "items_sold": ["winter socks", "long-sleeved shirts", "boots"]}

{"location": "Beijing", "month": "Jul","num_orders": 411, "total_sales": 11600.

67, "items_sold": ["hoodies/sweaters", "pants"]}

{"location": "Los Angeles", "month": "Dec","num_orders": 0, "total_sales": 0.00

, "items_sold": null}

' > /tmp/sampledata.json

2. Download the orc-tools JAR.

3. Run the orc-tools convert command to convert sampledata.json to the ORC file

/tmp/sampledata.orc; provide the schema to the command:

hdfsclient$ java -jar orc-tools-1.6.2-uber.jar convert /tmp/sampledata.json \

 --schema 'struct<location:string,month:string,num_orders:int,total_sales:deci

mal(10,2),items_sold:array<string>>' \

 -o /tmp/sampledata.orc

4. Copy the ORC file to HDFS. The following command copies the file to the

/data/pxf_examples directory:

hdfsclient$ hdfs dfs -put /tmp/sampledata.orc /data/pxf_examples/

5. Log in to the Greenplum Database master host and connect to a database. This command

connects to the database named testdb as the gpadmin user:

gpadmin@gpmaster$ psql -d testdb

6. Create an external table named sample_orc that references the

/data/pxf_examples/sampledata.orc file on HDFS. This command creates the table with the

column names specified in the ORC schema, and uses the default PXF server:

testdb=# CREATE EXTERNAL TABLE sample_orc(location text, month text, num_orders

 int, total_sales numeric(10,2), items_sold text[])

 LOCATION ('pxf://data/pxf_examples/sampledata.orc?PROFILE=hdfs:orc')

 FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import');

7. Read the data in the file by querying the sample_orc table:

testdb=# SELECT * FROM sample_orc;

 location | month | num_orders | total_sales | items_sold

-------------+-------+------------+-------------+------------------------------

 Prague | Jan | 101 | 4875.33 | {boots,hats}

 Rome | Mar | 87 | 1557.39 | {coats}

 Bangalore | May | 317 | 8936.99 | {"winter socks","long-sleeved

 shirts",boots}

 Beijing | Jul | 411 | 11600.67 | {hoodies/sweaters,pants}

 Los Angeles | Dec | 0 | 0.00 |

(5 rows)

8. You can query the data on any column, including the items_sold array column. For

example, this query returns the rows where the items sold include boots and/or pants:

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 140

https://repo1.maven.org/maven2/org/apache/orc/orc-tools/1.6.2/orc-tools-1.6.2-uber.jar

testdb=# SELECT * FROM sample_orc WHERE items_sold && '{"boots", "pants"}';

 location | month | num_orders | total_sales | items_sold

-----------+-------+------------+-------------+--------------------------------

 Prague | Jan | 101 | 4875.33 | {boots,hats}

 Bangalore | May | 317 | 8936.99 | {"winter socks","long-sleeved s

hirts",boots}

 Beijing | Jul | 411 | 11600.67 | {hoodies/sweaters,pants}

(3 rows)

9. This query returns the rows where the first item sold is boots:

testdb=# SELECT * FROM sample_orc WHERE items_sold[0] = 'boots';

 location | month | num_orders | total_sales | items_sold

-----------+-------+------------+-------------+--------------------------------

 Prague | Jan | 101 | 4875.33 | {boots,hats}

(1 row)

Reading and Writing HDFS Parquet Data

Use the PXF HDFS connector to read and write Parquet-format data. This section describes how to

read and write HDFS files that are stored in Parquet format, including how to create, query, and

insert into external tables that reference files in the HDFS data store.

PXF supports reading or writing Parquet files compressed with these codecs: snappy, gzip, and lzo.

PXF currently supports reading and writing primitive Parquet data types only.

Prerequisites

Ensure that you have met the PXF Hadoop Prerequisites before you attempt to read data from or

write data to HDFS.

Data Type Mapping

To read and write Parquet primitive data types in Greenplum Database, map Parquet data values to

Greenplum Database columns of the same type.

Parquet supports a small set of primitive data types, and uses metadata annotations to extend the

data types that it supports. These annotations specify how to interpret the primitive type. For

example, Parquet stores both INTEGER and DATE types as the INT32 primitive type. An annotation

identifies the original type as a DATE.

Read Mapping

PXF uses the following data type mapping when reading Parquet data:

Parquet Data Type Original Type PXF/Greenplum Data Type

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 141

binary (byte_array) Date Date

binary (byte_array) Timestamp_millis Timestamp

binary (byte_array) all others Text

binary (byte_array) – Bytea

boolean – Boolean

double – Float8

fixed_len_byte_array – Numeric

float – Real

int32 Date Date

int32 Decimal Numeric

int32 int_8 Smallint

int32 int_16 Smallint

int32 – Integer

int64 Decimal Numeric

int64 – Bigint

int96 – Timestamp

Note: PXF supports filter predicate pushdown on all parquet data types listed above, except the

fixed_len_byte_array and int96 types.

Write Mapping

PXF uses the following data type mapping when writing Parquet data:

PXF/Greenplum Data Type Original Type Parquet Data Type

Boolean – boolean

Bytea – binary

Bigint – int64

SmallInt int_16 int32

Integer – int32

Real – float

Float8 – double

Numeric/Decimal Decimal fixed_len_byte_array

Timestamp1 – int96

Timestamptz2 – int96

Date date int32

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 142

PXF/Greenplum Data Type Original Type Parquet Data Type

Time utf8 binary

Varchar utf8 binary

Text utf8 binary

OTHERS – UNSUPPORTED

1 PXF localizes a Timestamp to the current system timezone and converts it to universal time (UTC)

before finally converting to int96.

2 PXF converts a Timestamptz to a UTC timestamp and then converts to int96. PXF loses the time

zone information during this conversion.

Creating the External Table

The PXF HDFS connector hdfs:parquet profile supports reading and writing HDFS data in Parquet-

format. When you insert records into a writable external table, the block(s) of data that you insert are

written to one or more files in the directory that you specified.

Use the following syntax to create a Greenplum Database external table that references an HDFS

directory:

CREATE [WRITABLE] EXTERNAL TABLE <table_name>

 (<column_name> <data_type> [, ...] | LIKE <other_table>)

LOCATION ('pxf://<path-to-hdfs-dir>

 ?PROFILE=hdfs:parquet[&SERVER=<server_name>][&<custom-option>=<value>[...]]')

FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import'|'pxfwritable_export');

[DISTRIBUTED BY (<column_name> [, ...]) | DISTRIBUTED RANDOMLY];

The specific keywords and values used in the Greenplum Database CREATE EXTERNAL TABLE

command are described in the table below.

Keyword Value

<path‑to‑hdfs‑file> The path to the directory in the HDFS data store. When the <server_name> configuration

includes a pxf.fs.basePath property setting, PXF considers <path‑to‑hdfs‑file> to be relative to

the base path specified. Otherwise, PXF considers it to be an absolute path. <path‑to‑hdfs‑file>

must not specify a relative path nor include the dollar sign ($) character.

PROFILE The PROFILE keyword must specify hdfs:parquet.

SERVER=

<server_name>

The named server configuration that PXF uses to access the data. PXF uses the default server if

not specified.

<custom‑option> <custom-option>s are described below.

FORMAT

‘CUSTOM’

Use FORMAT ’CUSTOM’ with (FORMATTER='pxfwritable_export') (write) or

(FORMATTER='pxfwritable_import') (read).

DISTRIBUTED BY If you want to load data from an existing Greenplum Database table into the writable external

table, consider specifying the same distribution policy or <column_name> on both tables.

Doing so will avoid extra motion of data between segments on the load operation.

The PXF hdfs:parquet profile supports the following read option. You specify this option in the

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 143

https://gpdb.docs.pivotal.io/latest/ref_guide/sql_commands/CREATE_EXTERNAL_TABLE.html

CREATE EXTERNAL TABLE LOCATION clause:

Read Option Value Description

IGNORE_MISSING_PATH A Boolean value that specifies the action to take when <path-to-hdfs-file> is missing or

invalid. The default value is false, PXF returns an error in this situation. When the value

is true, PXF ignores missing path errors and returns an empty fragment.

The PXF hdfs:parquet profile supports encoding- and compression-related write options. You

specify these write options in the CREATE WRITABLE EXTERNAL TABLE LOCATION clause. The

hdfs:parquet profile supports the following custom write options:

Write Option Value Description

COMPRESSION_CODEC The compression codec alias. Supported compression codecs for writing Parquet data

include: snappy, gzip, lzo, and uncompressed . If this option is not provided, PXF

compresses the data using snappy compression.

ROWGROUP_SIZE A Parquet file consists of one or more row groups, a logical partitioning of the data into

rows. ROWGROUP_SIZE identifies the size (in bytes) of the row group. The default row

group size is 8 * 1024 * 1024 bytes.

PAGE_SIZE A row group consists of column chunks that are divided up into pages. PAGE_SIZE is the

size (in bytes) of such a page. The default page size is 1 * 1024 * 1024 bytes.

ENABLE_DICTIONARY A boolean value that specifies whether or not to enable dictionary encoding. The

default value is true; dictionary encoding is enabled when PXF writes Parquet files.

DICTIONARY_PAGE_SIZE When dictionary encoding is enabled, there is a single dictionary page per column, per

row group. DICTIONARY_PAGE_SIZE is similar to PAGE_SIZE, but for the dictionary. The

default dictionary page size is 1 * 1024 * 1024 bytes.

PARQUET_VERSION The Parquet version; PXF supports the values v1 and v2 for this option. The default

Parquet version is v1.

SCHEMA The location of the Parquet schema file on the file system of the specified SERVER.

Note: You must explicitly specify uncompressed if you do not want PXF to compress the data.

Parquet files that you write to HDFS with PXF have the following naming format: <file>.

<compress_extension>.parquet, for example 1547061635-0000004417_0.gz.parquet.

Example

This example utilizes the data schema introduced in Example: Reading Text Data on HDFS.

Column Name Data Type

location text

month text

number_of_orders int

total_sales float8

In this example, you create a Parquet-format writable external table that uses the default PXF server

to reference Parquet-format data in HDFS, insert some data into the table, and then create a

readable external table to read the data.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 144

1. Use the hdfs:parquet profile to create a writable external table. For example:

postgres=# CREATE WRITABLE EXTERNAL TABLE pxf_tbl_parquet (location text, month

 text, number_of_orders int, total_sales double precision)

 LOCATION ('pxf://data/pxf_examples/pxf_parquet?PROFILE=hdfs:parquet')

 FORMAT 'CUSTOM' (FORMATTER='pxfwritable_export');

2. Write a few records to the pxf_parquet HDFS directory by inserting directly into the

pxf_tbl_parquet table. For example:

postgres=# INSERT INTO pxf_tbl_parquet VALUES ('Frankfurt', 'Mar', 777, 3956.9

8);

postgres=# INSERT INTO pxf_tbl_parquet VALUES ('Cleveland', 'Oct', 3812, 96645

.37);

3. Recall that Greenplum Database does not support directly querying a writable external table.

To read the data in pxf_parquet, create a readable external Greenplum Database

referencing this HDFS directory:

postgres=# CREATE EXTERNAL TABLE read_pxf_parquet(location text, month text, nu

mber_of_orders int, total_sales double precision)

 LOCATION ('pxf://data/pxf_examples/pxf_parquet?PROFILE=hdfs:parquet')

 FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import');

4. Query the readable external table read_pxf_parquet:

postgres=# SELECT * FROM read_pxf_parquet ORDER BY total_sales;

 location | month | number_of_orders | total_sales

-----------+-------+------------------+-------------

 Frankfurt | Mar | 777 | 3956.98

 Cleveland | Oct | 3812 | 96645.4

(2 rows)

Reading and Writing HDFS SequenceFile Data

The PXF HDFS connector supports SequenceFile format binary data. This section describes how to

use PXF to read and write HDFS SequenceFile data, including how to create, insert, and query data

in external tables that reference files in the HDFS data store.

PXF supports reading or writing SequenceFile files compressed with the default, bzip2, and gzip

codecs.

Prerequisites

Ensure that you have met the PXF Hadoop Prerequisites before you attempt to read data from or

write data to HDFS.

Creating the External Table

The PXF HDFS connector hdfs:SequenceFile profile supports reading and writing HDFS data in

SequenceFile binary format. When you insert records into a writable external table, the block(s) of

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 145

data that you insert are written to one or more files in the directory that you specified.

Note: External tables that you create with a writable profile can only be used for INSERT operations.

If you want to query the data that you inserted, you must create a separate readable external table

that references the HDFS directory.

Use the following syntax to create a Greenplum Database external table that references an HDFS

directory:

CREATE [WRITABLE] EXTERNAL TABLE <table_name>

 (<column_name> <data_type> [, ...] | LIKE <other_table>)

LOCATION ('pxf://<path-to-hdfs-dir>

 ?PROFILE=hdfs:SequenceFile[&SERVER=<server_name>][&<custom-option>=<value>[...]]')

FORMAT 'CUSTOM' (<formatting-properties>)

[DISTRIBUTED BY (<column_name> [, ...]) | DISTRIBUTED RANDOMLY];

The specific keywords and values used in the Greenplum Database CREATE EXTERNAL TABLE

command are described in the table below.

Keyword Value

<path‑to‑hdfs‑dir> The path to the directory in the HDFS data store. When the <server_name> configuration

includes a pxf.fs.basePath property setting, PXF considers <path‑to‑hdfs‑dir> to be relative to

the base path specified. Otherwise, PXF considers it to be an absolute path. <path‑to‑hdfs‑dir>

must not specify a relative path nor include the dollar sign ($) character.

PROFILE The PROFILE keyword must specify hdfs:SequenceFile.

SERVER=

<server_name>

The named server configuration that PXF uses to access the data. PXF uses the default server if

not specified.

<custom‑option> <custom-option>s are described below.

FORMAT Use FORMAT ’CUSTOM’ with (FORMATTER='pxfwritable_export') (write) or

(FORMATTER='pxfwritable_import') (read).

DISTRIBUTED BY If you want to load data from an existing Greenplum Database table into the writable external

table, consider specifying the same distribution policy or <column_name> on both tables.

Doing so will avoid extra motion of data between segments on the load operation.

SequenceFile format data can optionally employ record or block compression and a specific

compression codec.

When you use the hdfs:SequenceFile profile to write SequenceFile format data, you must provide

the name of the Java class to use for serializing/deserializing the binary data. This class must provide

read and write methods for each data type referenced in the data schema.

You specify the compression type and codec, and the Java serialization/deserialization class, via

custom options to the CREATE EXTERNAL TABLE LOCATION clause. The hdfs:SequenceFile profile

supports the following custom options:

Option Value Description

COMPRESSION_CODEC The compression codec alias. Supported compression codecs include: default, bzip2,

gzip, and uncompressed. If this option is not provided, Greenplum Database performs no

data compression.

COMPRESSION_TYPE The compression type to employ; supported values are RECORD (the default) or BLOCK.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 146

https://gpdb.docs.pivotal.io/latest/ref_guide/sql_commands/CREATE_EXTERNAL_TABLE.html

Option Value Description

DATA-SCHEMA The name of the writer serialization/deserialization class. The jar file in which this class

resides must be in the PXF classpath. This option is required for the hdfs:SequenceFile

profile and has no default value.

IGNORE_MISSING_PATH A Boolean value that specifies the action to take when <path-to-hdfs-dir> is missing or

invalid. The default value is false, PXF returns an error in this situation. When the value

is true, PXF ignores missing path errors and returns an empty fragment.

Reading and Writing Binary Data

Use the HDFS connector hdfs:SequenceFile profile when you want to read or write SequenceFile

format data to HDFS. Files of this type consist of binary key/value pairs. SequenceFile format is a

common data transfer format between MapReduce jobs.

Example: Writing Binary Data to HDFS

In this example, you create a Java class named PxfExample_CustomWritable that will

serialize/deserialize the fields in the sample schema used in previous examples. You will then use

this class to access a writable external table that you create with the hdfs:SequenceFile profile and

that uses the default PXF server.

Perform the following procedure to create the Java class and writable table.

1. Prepare to create the sample Java class:

$ mkdir -p pxfex/com/example/pxf/hdfs/writable/dataschema

$ cd pxfex/com/example/pxf/hdfs/writable/dataschema

$ vi PxfExample_CustomWritable.java

2. Copy and paste the following text into the PxfExample_CustomWritable.java file:

package com.example.pxf.hdfs.writable.dataschema;

import org.apache.hadoop.io.*;

import java.io.DataInput;

import java.io.DataOutput;

import java.io.IOException;

import java.lang.reflect.Field;

/**

* PxfExample_CustomWritable class - used to serialize and deserialize data with

* text, int, and float data types

*/

public class PxfExample_CustomWritable implements Writable {

public String st1, st2;

public int int1;

public float ft;

public PxfExample_CustomWritable() {

 st1 = new String("");

 st2 = new String("");

 int1 = 0;

 ft = 0.f;

}

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 147

public PxfExample_CustomWritable(int i1, int i2, int i3) {

 st1 = new String("short_string___" + i1);

 st2 = new String("short_string___" + i1);

 int1 = i2;

 ft = i1 * 10.f * 2.3f;

}

String GetSt1() {

 return st1;

}

String GetSt2() {

 return st2;

}

int GetInt1() {

 return int1;

}

float GetFt() {

 return ft;

}

@Override

public void write(DataOutput out) throws IOException {

 Text txt = new Text();

 txt.set(st1);

 txt.write(out);

 txt.set(st2);

 txt.write(out);

 IntWritable intw = new IntWritable();

 intw.set(int1);

 intw.write(out);

 FloatWritable fw = new FloatWritable();

 fw.set(ft);

 fw.write(out);

}

@Override

public void readFields(DataInput in) throws IOException {

 Text txt = new Text();

 txt.readFields(in);

 st1 = txt.toString();

 txt.readFields(in);

 st2 = txt.toString();

 IntWritable intw = new IntWritable();

 intw.readFields(in);

 int1 = intw.get();

 FloatWritable fw = new FloatWritable();

 fw.readFields(in);

 ft = fw.get();

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 148

}

public void printFieldTypes() {

 Class myClass = this.getClass();

 Field[] fields = myClass.getDeclaredFields();

 for (int i = 0; i < fields.length; i++) {

 System.out.println(fields[i].getType().getName());

 }

}

}

3. Compile and create a Java class JAR file for PxfExample_CustomWritable. Provide a classpath

that includes the hadoop-common.jar file for your Hadoop distribution. For example, if you

installed the Hortonworks Data Platform Hadoop client:

$ javac -classpath /usr/hdp/current/hadoop-client/hadoop-common.jar PxfExample

_CustomWritable.java

$ cd ../../../../../../

$ jar cf pxfex-customwritable.jar com

$ cp pxfex-customwritable.jar /tmp/

(Your Hadoop library classpath may differ.)

4. Copy the pxfex-customwritable.jar file to the Greenplum Database master node. For

example:

$ scp pxfex-customwritable.jar gpadmin@gpmaster:/home/gpadmin

5. Log in to your Greenplum Database master node:

$ ssh gpadmin@<gpmaster>

6. Copy the pxfex-customwritable.jar JAR file to the user runtime library directory, and note

the location. For example, if PXF_BASE=/usr/local/pxf-gp6:

gpadmin@gpmaster$ cp /home/gpadmin/pxfex-customwritable.jar /usr/local/pxf-gp6/

lib/pxfex-customwritable.jar

7. Synchronize the PXF configuration to the Greenplum Database cluster:

gpadmin@gpmaster$ pxf cluster sync

8. Restart PXF on each Greenplum Database host as described in Restarting PXF.

9. Use the PXF hdfs:SequenceFile profile to create a Greenplum Database writable external

table. Identify the serialization/deserialization Java class you created above in the DATA-

SCHEMA <custom-option>. Use BLOCK mode compression with bzip2 when you create the

writable table.

postgres=# CREATE WRITABLE EXTERNAL TABLE pxf_tbl_seqfile (location text, month

 text, number_of_orders integer, total_sales real)

 LOCATION ('pxf://data/pxf_examples/pxf_seqfile?PROFILE=hdfs:Sequenc

eFile&DATA-SCHEMA=com.example.pxf.hdfs.writable.dataschema.PxfExample_CustomWri

table&COMPRESSION_TYPE=BLOCK&COMPRESSION_CODEC=bzip2')

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 149

 FORMAT 'CUSTOM' (FORMATTER='pxfwritable_export');

Notice that the 'CUSTOM' FORMAT <formatting-properties> specifies the built-in

pxfwritable_export formatter.

10. Write a few records to the pxf_seqfile HDFS directory by inserting directly into the

pxf_tbl_seqfile table. For example:

postgres=# INSERT INTO pxf_tbl_seqfile VALUES ('Frankfurt', 'Mar', 777, 3956.9

8);

postgres=# INSERT INTO pxf_tbl_seqfile VALUES ('Cleveland', 'Oct', 3812, 96645

.37);

11. Recall that Greenplum Database does not support directly querying a writable external table.

To read the data in pxf_seqfile, create a readable external Greenplum Database

referencing this HDFS directory:

postgres=# CREATE EXTERNAL TABLE read_pxf_tbl_seqfile (location text, month tex

t, number_of_orders integer, total_sales real)

 LOCATION ('pxf://data/pxf_examples/pxf_seqfile?PROFILE=hdfs:Sequenc

eFile&DATA-SCHEMA=com.example.pxf.hdfs.writable.dataschema.PxfExample_CustomWri

table')

 FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import');

You must specify the DATA-SCHEMA <custom-option> when you read HDFS data via the

hdfs:SequenceFile profile. You need not provide compression-related options.

12. Query the readable external table read_pxf_tbl_seqfile:

gpadmin=# SELECT * FROM read_pxf_tbl_seqfile ORDER BY total_sales;

 location | month | number_of_orders | total_sales

-----------+-------+------------------+-------------

 Frankfurt | Mar | 777 | 3956.98

 Cleveland | Oct | 3812 | 96645.4

(2 rows)

Reading the Record Key

When a Greenplum Database external table references SequenceFile or another data format that

stores rows in a key-value format, you can access the key values in Greenplum queries by using the

recordkey keyword as a field name.

The field type of recordkey must correspond to the key type, much as the other fields must match

the HDFS data.

You can define recordkey to be any of the following Hadoop types:

BooleanWritable

ByteWritable

DoubleWritable

FloatWritable

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 150

IntWritable

LongWritable

Text

If no record key is defined for a row, Greenplum Database returns the id of the segment that

processed the row.

Example: Using Record Keys

Create an external readable table to access the record keys from the writable table pxf_tbl_seqfile

that you created in Example: Writing Binary Data to HDFS. Define the recordkey in this example to

be of type int8.

postgres=# CREATE EXTERNAL TABLE read_pxf_tbl_seqfile_recordkey(recordkey int8, locati

on text, month text, number_of_orders integer, total_sales real)

 LOCATION ('pxf://data/pxf_examples/pxf_seqfile?PROFILE=hdfs:SequenceFi

le&DATA-SCHEMA=com.example.pxf.hdfs.writable.dataschema.PxfExample_CustomWritable')

 FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import');

gpadmin=# SELECT * FROM read_pxf_tbl_seqfile_recordkey;

 recordkey | location | month | number_of_orders | total_sales

-----------+-------------+-------+------------------+-------------

 2 | Frankfurt | Mar | 777 | 3956.98

 1 | Cleveland | Oct | 3812 | 96645.4

(2 rows)

You did not define a record key when you inserted the rows into the writable table, so the recordkey

identifies the segment on which the row data was processed.

Reading a Multi-Line Text File into a Single Table Row

You can use the PXF HDFS connector to read one or more multi-line text files in HDFS each as a

single table row. This may be useful when you want to read multiple files into the same Greenplum

Database external table, for example when individual JSON files each contain a separate record.

PXF supports reading only text and JSON files in this manner.

Note: Refer to the Reading JSON Data from HDFS topic if you want to use PXF to read JSON files

that include more than one record.

Prerequisites

Ensure that you have met the PXF Hadoop Prerequisites before you attempt to read files from

HDFS.

Reading Multi-Line Text and JSON Files

You can read single- and multi-line files into a single table row, including files with embedded

linefeeds. If you are reading multiple JSON files, each file must be a complete record, and each file

must contain the same record type.

PXF reads the complete file data into a single row and column. When you create the external table

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 151

to read multiple files, you must ensure that all of the files that you want to read are of the same (text

or JSON) type. You must also specify a single text or json column, depending upon the file type.

The following syntax creates a Greenplum Database readable external table that references one or

more text or JSON files on HDFS:

CREATE EXTERNAL TABLE <table_name>

 (<column_name> text|json | LIKE <other_table>)

 LOCATION ('pxf://<path-to-files>?PROFILE=hdfs:text:multi[&SERVER=<server_name>][&IGN

ORE_MISSING_PATH=<boolean>]&FILE_AS_ROW=true')

FORMAT 'CSV');

The keywords and values used in the Greenplum Database CREATE EXTERNAL TABLE command

are described in the table below.

Keyword Value

<path‑to‑files> The path to the directory or files in the HDFS data store. When the <server_name>

configuration includes a pxf.fs.basePath property setting, PXF considers

<path‑to‑hdfs‑files> to be relative to the base path specified. Otherwise, PXF considers

it to be an absolute path. <path‑to‑files> must not specify a relative path nor include

the dollar sign ($) character.

PROFILE The PROFILE keyword must specify hdfs:text:multi.

SERVER=<server_name> The named server configuration that PXF uses to access the data. PXF uses the

default server if not specified.

FILE_AS_ROW=true The required option that instructs PXF to read each file into a single table row.

IGNORE_MISSING_PATH=

<boolean>

Specify the action to take when <path-to-files> is missing or invalid. The default value

is false, PXF returns an error in this situation. When the value is true, PXF ignores

missing path errors and returns an empty fragment.

FORMAT The FORMAT must specify 'CSV'.

Note: The hdfs:text:multi profile does not support additional custom or format options when you

specify the FILE_AS_ROW=true option.

For example, if /data/pxf_examples/jdir identifies an HDFS directory that contains a number of

JSON files, the following statement creates a Greenplum Database external table that references all

of the files in that directory:

CREATE EXTERNAL TABLE pxf_readjfiles(j1 json)

 LOCATION ('pxf://data/pxf_examples/jdir?PROFILE=hdfs:text:multi&FILE_AS_ROW=true')

FORMAT 'CSV';

When you query the pxf_readjfiles table with a SELECT statement, PXF returns the contents of

each JSON file in jdir/ as a separate row in the external table.

When you read JSON files, you can use the JSON functions provided in Greenplum Database to

access individual data fields in the JSON record. For example, if the pxf_readjfiles external table

above reads a JSON file that contains this JSON record:

{

 "root":[

 {

 "record_obj":{

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 152

https://gpdb.docs.pivotal.io/latest/ref_guide/sql_commands/CREATE_EXTERNAL_TABLE.html

 "created_at":"MonSep3004:04:53+00002013",

 "id_str":"384529256681725952",

 "user":{

 "id":31424214,

 "location":"COLUMBUS"

 },

 "coordinates":null

 }

 }

]

}

You can use the json_array_elements() function to extract specific JSON fields from the table row.

For example, the following command displays the user->id field:

SELECT json_array_elements(j1->'root')->'record_obj'->'user'->'id'

 AS userid FROM pxf_readjfiles;

 userid

 31424214

(1 rows)

Refer to Working with JSON Data in the Greenplum Documentation for specific information on

manipulating JSON data in Greenplum.

Example: Reading an HDFS Text File into a Single Table Row

Perform the following procedure to create 3 sample text files in an HDFS directory, and use the PXF

hdfs:text:multi profile and the default PXF server to read all of these text files in a single external

table query.

1. Create an HDFS directory for the text files. For example:

$ hdfs dfs -mkdir -p /data/pxf_examples/tdir

2. Create a text data file named file1.txt:

$ echo 'text file with only one line' > /tmp/file1.txt

3. Create a second text data file named file2.txt:

$ echo 'Prague,Jan,101,4875.33

Rome,Mar,87,1557.39

Bangalore,May,317,8936.99

Beijing,Jul,411,11600.67' > /tmp/file2.txt

This file has multiple lines.

4. Create a third text file named /tmp/file3.txt:

$ echo '"4627 Star Rd.

San Francisco, CA 94107":Sept:2017

"113 Moon St.

San Diego, CA 92093":Jan:2018

"51 Belt Ct.

Denver, CO 90123":Dec:2016

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 153

https://gpdb.docs.pivotal.io/latest/admin_guide/query/topics/json-data.html

Denver, CO 90123":Dec:2016

"93114 Radial Rd.

Chicago, IL 60605":Jul:2017

"7301 Brookview Ave.

Columbus, OH 43213":Dec:2018' > /tmp/file3.txt

This file includes embedded line feeds.

5. Save the file and exit the editor.

6. Copy the text files to HDFS:

$ hdfs dfs -put /tmp/file1.txt /data/pxf_examples/tdir

$ hdfs dfs -put /tmp/file2.txt /data/pxf_examples/tdir

$ hdfs dfs -put /tmp/file3.txt /data/pxf_examples/tdir

7. Log in to a Greenplum Database system and start the psql subsystem.

8. Use the hdfs:text:multi profile to create an external table that references the tdir HDFS

directory. For example:

CREATE EXTERNAL TABLE pxf_readfileasrow(c1 text)

 LOCATION ('pxf://data/pxf_examples/tdir?PROFILE=hdfs:text:multi&FILE_AS_ROW=t

rue')

FORMAT 'CSV';

9. Turn on expanded display and query the pxf_readfileasrow table:

postgres=# \x on

postgres=# SELECT * FROM pxf_readfileasrow;

-[RECORD 1]---------------------------

c1 | Prague,Jan,101,4875.33

 | Rome,Mar,87,1557.39

 | Bangalore,May,317,8936.99

 | Beijing,Jul,411,11600.67

-[RECORD 2]---------------------------

c1 | text file with only one line

-[RECORD 3]---------------------------

c1 | "4627 Star Rd.

 | San Francisco, CA 94107":Sept:2017

 | "113 Moon St.

 | San Diego, CA 92093":Jan:2018

 | "51 Belt Ct.

 | Denver, CO 90123":Dec:2016

 | "93114 Radial Rd.

 | Chicago, IL 60605":Jul:2017

 | "7301 Brookview Ave.

 | Columbus, OH 43213":Dec:2018

Reading Hive Table Data

Apache Hive is a distributed data warehousing infrastructure. Hive facilitates managing large data

sets supporting multiple data formats, including comma-separated value (.csv) TextFile, RCFile, ORC,

and Parquet.

The PXF Hive connector reads data stored in a Hive table. This section describes how to use the

PXF Hive connector.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 154

PXF Hive connector.

When accessing Hive 3, the PXF Hive connector supports using the hive[:*] profiles described

below to access Hive 3 external tables only. The Connector does not support using the hive[:*]

profiles to access Hive 3 managed (CRUD and insert-only transactional, and temporary) tables. Use

the PXF JDBC Connector to access Hive 3 managed tables instead.

Prerequisites

Before working with Hive table data using PXF, ensure that you have met the PXF Hadoop

Prerequisites.

If you plan to use PXF filter pushdown with Hive integral types, ensure that the configuration

parameter hive.metastore.integral.jdo.pushdown exists and is set to true in the hive-site.xml file

in both your Hadoop cluster and $PXF_BASE/servers/default/hive-site.xml. Refer to About

Updating Hadoop Configuration for more information.

Hive Data Formats

The PXF Hive connector supports several data formats, and has defined the following profiles for

accessing these formats:

File Format Description Profile

TextFile Flat file with data in comma-, tab-, or space-separated value format or JSON

notation.

hive,

hive:text

SequenceFile Flat file consisting of binary key/value pairs. hive

RCFile Record columnar data consisting of binary key/value pairs; high row compression

rate.

hive, hive:rc

ORC Optimized row columnar data with stripe, footer, and postscript sections; reduces

data size.

hive,

hive:orc

Parquet Compressed columnar data representation. hive

Note: The hive profile supports all file storage formats. It will use the optimal hive[:*] profile for the

underlying file format type.

Data Type Mapping

The PXF Hive connector supports primitive and complex data types.

Primitive Data Types

To represent Hive data in Greenplum Database, map data values that use a primitive data type to

Greenplum Database columns of the same type.

The following table summarizes external mapping rules for Hive primitive types.

Hive Data Type Greenplum Data Type

boolean bool

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 155

#jdbc_pxf

Hive Data Type Greenplum Data Type

int int4

smallint int2

tinyint int2

bigint int8

float float4

double float8

string text

binary bytea

timestamp timestamp

Note: The hive:orc profile does not support the timestamp data type when you specify vectorized

query execution (VECTORIZE=true).

Complex Data Types

Hive supports complex data types including array, struct, map, and union. PXF maps each of these

complex types to text. You can create Greenplum Database functions or application code to extract

subcomponents of these complex data types.

Examples using complex data types with the hive and hive:orc profiles are provided later in this

topic.

Note: The hive:orc profile does not support complex types when you specify vectorized query

execution (VECTORIZE=true).

Sample Data Set

Examples presented in this topic operate on a common data set. This simple data set models a retail

sales operation and includes fields with the following names and data types:

Column Name Data Type

location text

month text

number_of_orders integer

total_sales double

Prepare the sample data set for use:

1. First, create a text file:

$ vi /tmp/pxf_hive_datafile.txt

2. Add the following data to pxf_hive_datafile.txt; notice the use of the comma , to separate

the four field values:

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 156

Prague,Jan,101,4875.33

Rome,Mar,87,1557.39

Bangalore,May,317,8936.99

Beijing,Jul,411,11600.67

San Francisco,Sept,156,6846.34

Paris,Nov,159,7134.56

San Francisco,Jan,113,5397.89

Prague,Dec,333,9894.77

Bangalore,Jul,271,8320.55

Beijing,Dec,100,4248.41

Make note of the path to pxf_hive_datafile.txt; you will use it in later exercises.

Hive Command Line

The Hive command line is a subsystem similar to that of psql. To start the Hive command line:

$ HADOOP_USER_NAME=hdfs hive

The default Hive database is named default.

Example: Creating a Hive Table

Create a Hive table to expose the sample data set.

1. Create a Hive table named sales_info in the default database:

hive> CREATE TABLE sales_info (location string, month string,

 number_of_orders int, total_sales double)

 ROW FORMAT DELIMITED FIELDS TERMINATED BY ','

 STORED AS textfile;

Notice that:

The STORED AS textfile subclause instructs Hive to create the table in Textfile (the

default) format. Hive Textfile format supports comma-, tab-, and space-separated

values, as well as data specified in JSON notation.

The DELIMITED FIELDS TERMINATED BY subclause identifies the field delimiter within a

data record (line). The sales_info table field delimiter is a comma (,).

2. Load the pxf_hive_datafile.txt sample data file into the sales_info table that you just

created:

hive> LOAD DATA LOCAL INPATH '/tmp/pxf_hive_datafile.txt'

 INTO TABLE sales_info;

In examples later in this section, you will access the sales_info Hive table directly via PXF.

You will also insert sales_info data into tables of other Hive file format types, and use PXF to

access those directly as well.

3. Perform a query on sales_info to verify that you loaded the data successfully:

hive> SELECT * FROM sales_info;

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 157

Determining the HDFS Location of a Hive Table

Should you need to identify the HDFS file location of a Hive managed table, reference it using its

HDFS file path. You can determine a Hive table’s location in HDFS using the DESCRIBE command.

For example:

hive> DESCRIBE EXTENDED sales_info;

Detailed Table Information

...

location:hdfs://<namenode>:<port>/apps/hive/warehouse/sales_info

...

Querying External Hive Data

You can create a Greenplum Database external table to access Hive table data. As described

previously, the PXF Hive connector defines specific profiles to support different file formats. These

profiles are named hive, hive:text, hive:rc, and hive:orc.

The hive:text and hive:rc profiles are specifically optimized for text and RCFile formats,

respectively. The hive:orc profile is optimized for ORC file formats. The hive profile is optimized for

all file storage types; you can use the hive profile when the underlying Hive table is composed of

multiple partitions with differing file formats.

PXF uses column projection to increase query performance when you access a Hive table using the

hive, hive:rc, or hive:orc profiles.

Use the following syntax to create a Greenplum Database external table that references a Hive table:

CREATE EXTERNAL TABLE <table_name>

 (<column_name> <data_type> [, ...] | LIKE <other_table>)

LOCATION ('pxf://<hive-db-name>.<hive-table-name>

 ?PROFILE=<profile_name>[&SERVER=<server_name>][&PPD=<boolean>][&VECTORIZE=<boolean

>]')

FORMAT 'CUSTOM|TEXT' (FORMATTER='pxfwritable_import' | delimiter='<delim>')

Hive connector-specific keywords and values used in the Greenplum Database CREATE EXTERNAL

TABLE call are described below.

Keyword Value

<hive‑db‑name> The name of the Hive database. If omitted, defaults to the Hive database named default.

<hive‑table‑name> The name of the Hive table.

PROFILE=

<profile_name>

<profile_name> must specify one of the values hive, hive:text, hive:rc, or hive:orc.

SERVER=

<server_name>

The named server configuration that PXF uses to access the data. PXF uses the default server if

not specified.

PPD=<boolean> Enable or disable predicate pushdown for all queries on this table; this option applies only to

the hive, hive:orc, and hive:rc profiles, and overrides a pxf.ppd.hive property setting in the

<server_name> configuration.

VECTORIZE=

<boolean>

When PROFILE=hive:orc, a Boolean value that specifies whether or not PXF uses vectorized

query execution when accessing the underlying ORC files. The default value is false, does not

use vectorized query execution.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 158

https://gpdb.docs.pivotal.io/latest/ref_guide/sql_commands/CREATE_EXTERNAL_TABLE.html

Keyword Value

FORMAT (hive

and hive:orc

profiles)

The FORMAT clause must specify 'CUSTOM'. The CUSTOM format requires the built-in

pxfwritable_import formatter.

FORMAT

(hive:text and

hive:rc profiles)

The FORMAT clause must specify TEXT. Specify the single ascii character field delimiter in the

delimiter='<delim>' formatting option.

Because Hive tables can be backed by one or more files and each file can have a unique layout or

schema, PXF requires that the column names that you specify when you create the external table

match the column names defined for the Hive table. This allows you to:

Create the PXF external table with columns in a different order than the Hive table.

Create a PXF external table that reads a subset of the columns in the Hive table.

Read a Hive table where the files backing the table have a different number of columns.

Accessing TextFile-Format Hive Tables

You can use the hive and hive:text profiles to access Hive table data stored in TextFile format.

Example: Using the hive Profile

Use the hive profile to create a readable Greenplum Database external table that references the

Hive sales_info textfile format table that you created earlier.

1. Create the external table:

postgres=# CREATE EXTERNAL TABLE salesinfo_hiveprofile(location text, month tex

t, number_of_orders int, total_sales float8)

 LOCATION ('pxf://default.sales_info?PROFILE=hive')

 FORMAT 'custom' (FORMATTER='pxfwritable_import');

2. Query the table:

postgres=# SELECT * FROM salesinfo_hiveprofile;

 location | month | number_of_orders | total_sales

---------------+-------+------------------+-------------

 Prague | Jan | 101 | 4875.33

 Rome | Mar | 87 | 1557.39

 Bangalore | May | 317 | 8936.99

 ...

Example: Using the hive:text Profile

Use the PXF hive:text profile to create a readable Greenplum Database external table from the

Hive sales_info textfile format table that you created earlier.

1. Create the external table:

postgres=# CREATE EXTERNAL TABLE salesinfo_hivetextprofile(location text, month

 text, number_of_orders int, total_sales float8)

 LOCATION ('pxf://default.sales_info?PROFILE=hive:text')

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 159

 FORMAT 'TEXT' (delimiter=E',');

Notice that the FORMAT subclause delimiter value is specified as the single ascii comma

character ','. E escapes the character.

2. Query the external table:

postgres=# SELECT * FROM salesinfo_hivetextprofile WHERE location='Beijing';

 location | month | number_of_orders | total_sales

----------+-------+------------------+-------------

 Beijing | Jul | 411 | 11600.67

 Beijing | Dec | 100 | 4248.41

(2 rows)

Accessing RCFile-Format Hive Tables

The RCFile Hive table format is used for row columnar formatted data. The PXF hive:rc profile

provides access to RCFile data.

Example: Using the hive:rc Profile

Use the hive:rc profile to query RCFile-formatted data in a Hive table.

1. Start the hive command line and create a Hive table stored in RCFile format:

$ HADOOP_USER_NAME=hdfs hive

hive> CREATE TABLE sales_info_rcfile (location string, month string,

 number_of_orders int, total_sales double)

 ROW FORMAT DELIMITED FIELDS TERMINATED BY ','

 STORED AS rcfile;

2. Insert the data from the sales_info table into sales_info_rcfile:

hive> INSERT INTO TABLE sales_info_rcfile SELECT * FROM sales_info;

A copy of the sample data set is now stored in RCFile format in the Hive sales_info_rcfile

table.

3. Query the sales_info_rcfile Hive table to verify that the data was loaded correctly:

hive> SELECT * FROM sales_info_rcfile;

4. Use the PXF hive:rc profile to create a readable Greenplum Database external table that

references the Hive sales_info_rcfile table that you created in the previous steps. For

example:

postgres=# CREATE EXTERNAL TABLE salesinfo_hivercprofile(location text, month t

ext, number_of_orders int, total_sales float8)

 LOCATION ('pxf://default.sales_info_rcfile?PROFILE=hive:rc')

 FORMAT 'TEXT' (delimiter=E',');

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 160

5. Query the external table:

postgres=# SELECT location, total_sales FROM salesinfo_hivercprofile;

 location | total_sales

---------------+-------------

 Prague | 4875.33

 Rome | 1557.39

 Bangalore | 8936.99

 Beijing | 11600.67

 ...

Accessing ORC-Format Hive Tables

The Optimized Row Columnar (ORC) file format is a columnar file format that provides a highly

efficient way to both store and access HDFS data. ORC format offers improvements over text and

RCFile formats in terms of both compression and performance. PXF supports ORC version 1.2.1.

ORC is type-aware and specifically designed for Hadoop workloads. ORC files store both the type of

and encoding information for the data in the file. All columns within a single group of row data (also

known as stripe) are stored together on disk in ORC format files. The columnar nature of the ORC

format type enables read projection, helping avoid accessing unnecessary columns during a query.

ORC also supports predicate pushdown with built-in indexes at the file, stripe, and row levels,

moving the filter operation to the data loading phase.

Refer to the Apache orc and the Apache Hive LanguageManual ORC websites for detailed

information about the ORC file format.

Profiles Supporting the ORC File Format

When choosing an ORC-supporting profile, consider the following:

The hive:orc profile:

Reads a single row of data at a time.

Supports column projection.

Supports complex types. You can access Hive tables composed of array, map, struct,

and union data types. PXF serializes each of these complex types to text.

The hive:orc profile with VECTORIZE=true:

Reads up to 1024 rows of data at once.

Supports column projection.

Does not support complex types or the timestamp data type.

Example: Using the hive:orc Profile

In the following example, you will create a Hive table stored in ORC format and use the hive:orc

profile to query this Hive table.

1. Create a Hive table with ORC file format:

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 161

https://orc.apache.org/docs/
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC

$ HADOOP_USER_NAME=hdfs hive

hive> CREATE TABLE sales_info_ORC (location string, month string,

 number_of_orders int, total_sales double)

 STORED AS ORC;

2. Insert the data from the sales_info table into sales_info_ORC:

hive> INSERT INTO TABLE sales_info_ORC SELECT * FROM sales_info;

A copy of the sample data set is now stored in ORC format in sales_info_ORC.

3. Perform a Hive query on sales_info_ORC to verify that the data was loaded successfully:

hive> SELECT * FROM sales_info_ORC;

4. Start the psql subsystem and turn on timing:

$ psql -d postgres

postgres=> \timing

Timing is on.

5. Use the PXF hive:orc profile to create a Greenplum Database external table that references

the Hive table named sales_info_ORC you created in Step 1. The FORMAT clause must specify

'CUSTOM'. The hive:orc CUSTOM format supports only the built-in 'pxfwritable_import'

formatter.

postgres=> CREATE EXTERNAL TABLE salesinfo_hiveORCprofile(location text, month

text, number_of_orders int, total_sales float8)

 LOCATION ('pxf://default.sales_info_ORC?PROFILE=hive:orc')

 FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import');

6. Query the external table:

postgres=> SELECT * FROM salesinfo_hiveORCprofile;

 location | month | number_of_orders | total_sales

---------------+-------+------------------+-------------

 Prague | Jan | 101 | 4875.33

 Rome | Mar | 87 | 1557.39

 Bangalore | May | 317 | 8936.99

 ...

Time: 425.416 ms

Example: Using the Vectorized hive:orc Profile

In the following example, you will use the vectorized hive:orc profile to query the sales_info_ORC

Hive table that you created in the previous example.

1. Start the psql subsystem:

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 162

$ psql -d postgres

2. Use the PXF hive:orc profile to create a readable Greenplum Database external table that

references the Hive table named sales_info_ORC that you created in Step 1 of the previous

example. The FORMAT clause must specify 'CUSTOM'. The hive:orc CUSTOM format supports

only the built-in 'pxfwritable_import' formatter.

postgres=> CREATE EXTERNAL TABLE salesinfo_hiveVectORC(location text, month tex

t, number_of_orders int, total_sales float8)

 LOCATION ('pxf://default.sales_info_ORC?PROFILE=hive:orc&VECTORIZE

=true')

 FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import');

3. Query the external table:

postgres=> SELECT * FROM salesinfo_hiveVectORC;

 location | month | number_of_orders | total_sales

---------------+-------+------------------+-------------

 Prague | Jan | 101 | 4875.33

 Rome | Mar | 87 | 1557.39

 Bangalore | May | 317 | 8936.99

 ...

Time: 425.416 ms

Accessing Parquet-Format Hive Tables

The PXF hive profile supports both non-partitioned and partitioned Hive tables that use the Parquet

storage format. Map the table columns using equivalent Greenplum Database data types. For

example, if a Hive table is created in the default schema using:

hive> CREATE TABLE hive_parquet_table (location string, month string,

 number_of_orders int, total_sales double)

 STORED AS parquet;

Define the Greenplum Database external table:

postgres=# CREATE EXTERNAL TABLE pxf_parquet_table (location text, month text, number_

of_orders int, total_sales double precision)

 LOCATION ('pxf://default.hive_parquet_table?profile=hive')

 FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import');

And query the table:

postgres=# SELECT month, number_of_orders FROM pxf_parquet_table;

Accessing Avro-Format Hive Tables

The PXF hive profile supports accessing Hive tables that use the Avro storage format. Map the table

columns using equivalent Greenplum Database data types. For example, if a Hive table is created in

the default schema using:

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 163

hive> CREATE TABLE hive_avro_data_table (id int, name string, user_id string)

 ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.avro.AvroSerDe'

 STORED AS INPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'

 OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat';

Define the Greenplum Database external table:

postgres=# CREATE EXTERNAL TABLE userinfo_hiveavro(id int, name text, user_id text)

 LOCATION ('pxf://default.hive_avro_data_table?profile=hive')

 FORMAT 'custom' (FORMATTER='pxfwritable_import');

And query the table:

postgres=# SELECT * FROM userinfo_hiveavro;

Working with Complex Data Types

Example: Using the hive Profile with Complex Data Types

This example employs the hive profile and the array and map complex types, specifically an array of

integers and a string key/value pair map.

The data schema for this example includes fields with the following names and data types:

Column Name Data Type

index int

name string

intarray array of integers

propmap map of string key and value pairs

When you specify an array field in a Hive table, you must identify the terminator for each item in the

collection. Similarly, you must also specify the map key termination character.

1. Create a text file from which you will load the data set:

$ vi /tmp/pxf_hive_complex.txt

2. Add the following text to pxf_hive_complex.txt. This data uses a comma , to separate field

values, the percent symbol % to separate collection items, and a : to terminate map key

values:

3,Prague,1%2%3,zone:euro%status:up

89,Rome,4%5%6,zone:euro

400,Bangalore,7%8%9,zone:apac%status:pending

183,Beijing,0%1%2,zone:apac

94,Sacramento,3%4%5,zone:noam%status:down

101,Paris,6%7%8,zone:euro%status:up

56,Frankfurt,9%0%1,zone:euro

202,Jakarta,2%3%4,zone:apac%status:up

313,Sydney,5%6%7,zone:apac%status:pending

76,Atlanta,8%9%0,zone:noam%status:down

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 164

3. Create a Hive table to represent this data:

$ HADOOP_USER_NAME=hdfs hive

hive> CREATE TABLE table_complextypes(index int, name string, intarray ARRAY<i

nt>, propmap MAP<string, string>)

 ROW FORMAT DELIMITED FIELDS TERMINATED BY ','

 COLLECTION ITEMS TERMINATED BY '%'

 MAP KEYS TERMINATED BY ':'

 STORED AS TEXTFILE;

Notice that:

FIELDS TERMINATED BY identifies a comma as the field terminator.

The COLLECTION ITEMS TERMINATED BY subclause specifies the percent sign as the

collection items (array item, map key/value pair) terminator.

MAP KEYS TERMINATED BY identifies a colon as the terminator for map keys.

4. Load the pxf_hive_complex.txt sample data file into the table_complextypes table that you

just created:

hive> LOAD DATA LOCAL INPATH '/tmp/pxf_hive_complex.txt' INTO TABLE table_compl

extypes;

5. Perform a query on Hive table table_complextypes to verify that the data was loaded

successfully:

hive> SELECT * FROM table_complextypes;

3 Prague [1,2,3] {"zone":"euro","status":"up"}

89 Rome [4,5,6] {"zone":"euro"}

400 Bangalore [7,8,9] {"zone":"apac","status":"pending"}

...

6. Use the PXF hive profile to create a readable Greenplum Database external table that

references the Hive table named table_complextypes:

postgres=# CREATE EXTERNAL TABLE complextypes_hiveprofile(index int, name text,

 intarray text, propmap text)

 LOCATION ('pxf://table_complextypes?PROFILE=hive')

 FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import');

Notice that the integer array and map complex types are mapped to Greenplum Database

data type text.

7. Query the external table:

postgres=# SELECT * FROM complextypes_hiveprofile;

 index | name | intarray | propmap

-------+------------+----------+------------------------------------

 3 | Prague | [1,2,3] | {"zone":"euro","status":"up"}

 89 | Rome | [4,5,6] | {"zone":"euro"}

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 165

 400 | Bangalore | [7,8,9] | {"zone":"apac","status":"pending"}

 183 | Beijing | [0,1,2] | {"zone":"apac"}

 94 | Sacramento | [3,4,5] | {"zone":"noam","status":"down"}

 101 | Paris | [6,7,8] | {"zone":"euro","status":"up"}

 56 | Frankfurt | [9,0,1] | {"zone":"euro"}

 202 | Jakarta | [2,3,4] | {"zone":"apac","status":"up"}

 313 | Sydney | [5,6,7] | {"zone":"apac","status":"pending"}

 76 | Atlanta | [8,9,0] | {"zone":"noam","status":"down"}

(10 rows)

intarray and propmap are each serialized as text strings.

Example: Using the hive:orc Profile with Complex Data Types

In the following example, you will create and populate a Hive table stored in ORC format. You will

use the hive:orc profile to query the complex types in this Hive table.

1. Create a Hive table with ORC storage format:

$ HADOOP_USER_NAME=hdfs hive

hive> CREATE TABLE table_complextypes_ORC(index int, name string, intarray ARR

AY<int>, propmap MAP<string, string>)

 ROW FORMAT DELIMITED FIELDS TERMINATED BY ','

 COLLECTION ITEMS TERMINATED BY '%'

 MAP KEYS TERMINATED BY ':'

 STORED AS ORC;

2. Insert the data from the table_complextypes table that you created in the previous example

into table_complextypes_ORC:

hive> INSERT INTO TABLE table_complextypes_ORC SELECT * FROM table_complextypes

;

A copy of the sample data set is now stored in ORC format in table_complextypes_ORC.

3. Perform a Hive query on table_complextypes_ORC to verify that the data was loaded

successfully:

hive> SELECT * FROM table_complextypes_ORC;

OK

3 Prague [1,2,3] {"zone":"euro","status":"up"}

89 Rome [4,5,6] {"zone":"euro"}

400 Bangalore [7,8,9] {"zone":"apac","status":"pending"}

...

4. Start the psql subsystem:

$ psql -d postgres

5. Use the PXF hive:orc profile to create a readable Greenplum Database external table from

the Hive table named table_complextypes_ORC you created in Step 1. The FORMAT clause

must specify 'CUSTOM'. The hive:orc CUSTOM format supports only the built-in

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 166

'pxfwritable_import' formatter.

postgres=> CREATE EXTERNAL TABLE complextypes_hiveorc(index int, name text, int

array text, propmap text)

 LOCATION ('pxf://default.table_complextypes_ORC?PROFILE=hive:orc')

 FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import');

Notice that the integer array and map complex types are again mapped to Greenplum

Database data type text.

6. Query the external table:

postgres=> SELECT * FROM complextypes_hiveorc;

 index | name | intarray | propmap

-------+------------+----------+------------------------------------

 3 | Prague | [1,2,3] | {"zone":"euro","status":"up"}

 89 | Rome | [4,5,6] | {"zone":"euro"}

 400 | Bangalore | [7,8,9] | {"zone":"apac","status":"pending"}

 ...

intarray and propmap are again serialized as text strings.

Partition Pruning

The PXF Hive connector supports Hive partition pruning and the Hive partition directory structure.

This enables partition exclusion on selected HDFS files comprising a Hive table. To use the partition

filtering feature to reduce network traffic and I/O, run a query on a PXF external table using a WHERE

clause that refers to a specific partition column in a partitioned Hive table.

The PXF Hive Connector partition filtering support for Hive string and integral types is described

below:

The relational operators =, <, <=, >, >=, and <> are supported on string types.

The relational operators = and <> are supported on integral types (To use partition filtering

with Hive integral types, you must update the Hive configuration as described in the

Prerequisites).

The logical operators AND and OR are supported when used with the relational operators

mentioned above.

The LIKE string operator is not supported.

To take advantage of PXF partition filtering pushdown, the Hive and PXF partition field names must

be the same. Otherwise, PXF ignores partition filtering and the filtering is performed on the

Greenplum Database side, impacting performance.

The PXF Hive connector filters only on partition columns, not on other table attributes. Additionally,

filter pushdown is supported only for those data types and operators identified above.

PXF filter pushdown is enabled by default. You configure PXF filter pushdown as described in About

Filter Pushdown.

Example: Using the hive Profile to Access Partitioned Homogenous

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 167

Data

In this example, you use the hive profile to query a Hive table named sales_part that you partition

on the delivery_state and delivery_city fields. You then create a Greenplum Database external

table to query sales_part. The procedure includes specific examples that illustrate filter pushdown.

1. Create a Hive table named sales_part with two partition columns, delivery_state and

delivery_city:

hive> CREATE TABLE sales_part (cname string, itype string, supplier_key int, pr

ice double)

 PARTITIONED BY (delivery_state string, delivery_city string)

 ROW FORMAT DELIMITED FIELDS TERMINATED BY ',';

2. Load data into this Hive table and add some partitions:

hive> INSERT INTO TABLE sales_part

 PARTITION(delivery_state = 'CALIFORNIA', delivery_city = 'Fresno')

 VALUES ('block', 'widget', 33, 15.17);

hive> INSERT INTO TABLE sales_part

 PARTITION(delivery_state = 'CALIFORNIA', delivery_city = 'Sacramento')

 VALUES ('cube', 'widget', 11, 1.17);

hive> INSERT INTO TABLE sales_part

 PARTITION(delivery_state = 'NEVADA', delivery_city = 'Reno')

 VALUES ('dowel', 'widget', 51, 31.82);

hive> INSERT INTO TABLE sales_part

 PARTITION(delivery_state = 'NEVADA', delivery_city = 'Las Vegas')

 VALUES ('px49', 'pipe', 52, 99.82);

3. Query the sales_part table:

hive> SELECT * FROM sales_part;

A SELECT * statement on a Hive partitioned table shows the partition fields at the end of the

record.

4. Examine the Hive/HDFS directory structure for the sales_part table:

$ sudo -u hdfs hdfs dfs -ls -R /apps/hive/warehouse/sales_part

/apps/hive/warehouse/sales_part/delivery_state=CALIFORNIA/delivery_city=Fresno/

/apps/hive/warehouse/sales_part/delivery_state=CALIFORNIA/delivery_city=Sacrame

nto/

/apps/hive/warehouse/sales_part/delivery_state=NEVADA/delivery_city=Reno/

/apps/hive/warehouse/sales_part/delivery_state=NEVADA/delivery_city=Las Vegas/

5. Create a PXF external table to read the partitioned sales_part Hive table. To take advantage

of partition filter push-down, define fields corresponding to the Hive partition fields at the end

of the CREATE EXTERNAL TABLE attribute list.

$ psql -d postgres

postgres=# CREATE EXTERNAL TABLE pxf_sales_part(

 cname TEXT, itype TEXT,

 supplier_key INTEGER, price DOUBLE PRECISION,

 delivery_state TEXT, delivery_city TEXT)

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 168

 LOCATION ('pxf://sales_part?PROFILE=hive')

 FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import');

6. Query the table:

postgres=# SELECT * FROM pxf_sales_part;

7. Perform another query (no pushdown) on pxf_sales_part to return records where the

delivery_city is Sacramento and cname is cube:

postgres=# SELECT * FROM pxf_sales_part WHERE delivery_city = 'Sacramento' AND

cname = 'cube';

The query filters the delivery_city partition Sacramento. The filter on cname is not pushed

down, since it is not a partition column. It is performed on the Greenplum Database side after

all the data in the Sacramento partition is transferred for processing.

8. Query (with pushdown) for all records where delivery_state is CALIFORNIA:

postgres=# SET gp_external_enable_filter_pushdown=on;

postgres=# SELECT * FROM pxf_sales_part WHERE delivery_state = 'CALIFORNIA';

This query reads all of the data in the CALIFORNIA delivery_state partition, regardless of the

city.

Example: Using the hive Profile to Access Partitioned
Heterogeneous Data

You can use the PXF hive profile with any Hive file storage types. With the hive profile, you can

access heterogeneous format data in a single Hive table where the partitions may be stored in

different file formats.

In this example, you create a partitioned Hive external table. The table is composed of the HDFS

data files associated with the sales_info (text format) and sales_info_rcfile (RC format) Hive tables

that you created in previous exercises. You will partition the data by year, assigning the data from

sales_info to the year 2013, and the data from sales_info_rcfile to the year 2016. (Ignore at the

moment the fact that the tables contain the same data.) You will then use the PXF hive profile to

query this partitioned Hive external table.

1. Create a Hive external table named hive_multiformpart that is partitioned by a string field

named year:

$ HADOOP_USER_NAME=hdfs hive

hive> CREATE EXTERNAL TABLE hive_multiformpart(location string, month string,

number_of_orders int, total_sales double)

 PARTITIONED BY(year string)

 ROW FORMAT DELIMITED FIELDS TERMINATED BY ',';

2. Describe the sales_info and sales_info_rcfile tables, noting the HDFS file location for

each table:

hive> DESCRIBE EXTENDED sales_info;

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 169

hive> DESCRIBE EXTENDED sales_info_rcfile;

3. Create partitions in the hive_multiformpart table for the HDFS file locations associated with

each of the sales_info and sales_info_rcfile tables:

hive> ALTER TABLE hive_multiformpart ADD PARTITION (year = '2013') LOCATION 'hd

fs://namenode:8020/apps/hive/warehouse/sales_info';

hive> ALTER TABLE hive_multiformpart ADD PARTITION (year = '2016') LOCATION 'hd

fs://namenode:8020/apps/hive/warehouse/sales_info_rcfile';

4. Explicitly identify the file format of the partition associated with the sales_info_rcfile table:

hive> ALTER TABLE hive_multiformpart PARTITION (year='2016') SET FILEFORMAT RCF

ILE;

You need not specify the file format of the partition associated with the sales_info table, as

TEXTFILE format is the default.

5. Query the hive_multiformpart table:

hive> SELECT * from hive_multiformpart;

...

Bangalore Jul 271 8320.55 2016

Beijing Dec 100 4248.41 2016

Prague Jan 101 4875.33 2013

Rome Mar 87 1557.39 2013

...

hive> SELECT * from hive_multiformpart WHERE year='2013';

hive> SELECT * from hive_multiformpart WHERE year='2016';

6. Show the partitions defined for the hive_multiformpart table and exit hive:

hive> SHOW PARTITIONS hive_multiformpart;

year=2013

year=2016

hive> quit;

7. Start the psql subsystem:

$ psql -d postgres

8. Use the PXF hive profile to create a readable Greenplum Database external table that

references the Hive hive_multiformpart external table that you created in the previous

steps:

postgres=# CREATE EXTERNAL TABLE pxf_multiformpart(location text, month text, n

umber_of_orders int, total_sales float8, year text)

 LOCATION ('pxf://default.hive_multiformpart?PROFILE=hive')

 FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import');

9. Query the PXF external table:

postgres=# SELECT * FROM pxf_multiformpart;

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 170

 location | month | number_of_orders | total_sales | year

---------------+-------+------------------+-------------+--------

 Prague | Dec | 333 | 9894.77 | 2013

 Bangalore | Jul | 271 | 8320.55 | 2013

 Beijing | Dec | 100 | 4248.41 | 2013

 Prague | Jan | 101 | 4875.33 | 2016

 Rome | Mar | 87 | 1557.39 | 2016

 Bangalore | May | 317 | 8936.99 | 2016

10. Perform a second query to calculate the total number of orders for the year 2013:

postgres=# SELECT sum(number_of_orders) FROM pxf_multiformpart WHERE month='Dec

' AND year='2013';

 sum

 433

Using PXF with Hive Default Partitions

This topic describes a difference in query results between Hive and PXF queries when Hive tables

use a default partition. When dynamic partitioning is enabled in Hive, a partitioned table may store

data in a default partition. Hive creates a default partition when the value of a partitioning column

does not match the defined type of the column (for example, when a NULL value is used for any

partitioning column). In Hive, any query that includes a filter on a partition column excludes any data

that is stored in the table’s default partition.

Similar to Hive, PXF represents a table’s partitioning columns as columns that are appended to the

end of the table. However, PXF translates any column value in a default partition to a NULL value.

This means that a Greenplum Database query that includes an IS NULL filter on a partitioning column

can return different results than the same Hive query.

Consider a Hive partitioned table that is created with the statement:

hive> CREATE TABLE sales (order_id bigint, order_amount float) PARTITIONED BY (xdate d

ate);

The table is loaded with five rows that contain the following data:

1.0 1900-01-01

2.2 1994-04-14

3.3 2011-03-31

4.5 NULL

5.0 2013-12-06

Inserting row 4 creates a Hive default partition, because the partition column xdate contains a null

value.

In Hive, any query that filters on the partition column omits data in the default partition. For example,

the following query returns no rows:

hive> SELECT * FROM sales WHERE xdate IS null;

However, if you map this Hive table to a PXF external table in Greenplum Database, all default

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 171

partition values are translated into actual NULL values. In Greenplum Database, executing the same

query against the PXF external table returns row 4 as the result, because the filter matches the

NULL value.

Keep this behavior in mind when you execute IS NULL queries on Hive partitioned tables.

Reading HBase Table Data

Apache HBase is a distributed, versioned, non-relational database on Hadoop.

The PXF HBase connector reads data stored in an HBase table. The HBase connector supports filter

pushdown.

This section describes how to use the PXF HBase connector.

Prerequisites

Before working with HBase table data, ensure that you have:

Copied $PXF_HOME/share/pxf-hbase-*.jar to each node in your HBase cluster, and that the

location of this PXF JAR file is in the $HBASE_CLASSPATH. This configuration is required for the

PXF HBase connector to support filter pushdown.

Met the PXF Hadoop Prerequisites.

HBase Primer

This topic assumes that you have a basic understanding of the following HBase concepts:

An HBase column includes two components: a column family and a column qualifier. These

components are delimited by a colon : character, <column-family>:<column-qualifier>.

An HBase row consists of a row key and one or more column values. A row key is a unique

identifier for the table row.

An HBase table is a multi-dimensional map comprised of one or more columns and rows of

data. You specify the complete set of column families when you create an HBase table.

An HBase cell is comprised of a row (column family, column qualifier, column value) and a

timestamp. The column value and timestamp in a given cell represent a version of the value.

For detailed information about HBase, refer to the Apache HBase Reference Guide.

HBase Shell

The HBase shell is a subsystem similar to that of psql. To start the HBase shell:

$ hbase shell

<hbase output>

hbase(main):001:0>

The default HBase namespace is named default.

Example: Creating an HBase Table

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 172

http://hbase.apache.org/book.html

Create a sample HBase table.

1. Create an HBase table named order_info in the default namespace. order_info has two

column families: product and shipping_info:

hbase(main):> create 'order_info', 'product', 'shipping_info'

2. The order_info product column family has qualifiers named name and location. The

shipping_info column family has qualifiers named state and zipcode. Add some data to the

order_info table:

put 'order_info', '1', 'product:name', 'tennis racquet'

put 'order_info', '1', 'product:location', 'out of stock'

put 'order_info', '1', 'shipping_info:state', 'CA'

put 'order_info', '1', 'shipping_info:zipcode', '12345'

put 'order_info', '2', 'product:name', 'soccer ball'

put 'order_info', '2', 'product:location', 'on floor'

put 'order_info', '2', 'shipping_info:state', 'CO'

put 'order_info', '2', 'shipping_info:zipcode', '56789'

put 'order_info', '3', 'product:name', 'snorkel set'

put 'order_info', '3', 'product:location', 'warehouse'

put 'order_info', '3', 'shipping_info:state', 'OH'

put 'order_info', '3', 'shipping_info:zipcode', '34567'

You will access the orders_info HBase table directly via PXF in examples later in this topic.

3. Display the contents of the order_info table:

hbase(main):> scan 'order_info'

ROW COLUMN+CELL

 1 column=product:location, timestamp=1499074825516, value=out of stock

 1 column=product:name, timestamp=1499074825491, value=tennis racquet

 1 column=shipping_info:state, timestamp=1499074825531, value=CA

 1 column=shipping_info:zipcode, timestamp=1499074825548, value=12345

 2 column=product:location, timestamp=1499074825573, value=on floor

 ...

3 row(s) in 0.0400 seconds

Querying External HBase Data

The PXF HBase connector supports a single profile named hbase.

Use the following syntax to create a Greenplum Database external table that references an HBase

table:

CREATE EXTERNAL TABLE <table_name>

 (<column_name> <data_type> [, ...] | LIKE <other_table>)

LOCATION ('pxf://<hbase-table-name>?PROFILE=hbase[&SERVER=<server_name>]')

FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import');

HBase connector-specific keywords and values used in the Greenplum Database CREATE

EXTERNAL TABLE call are described below.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 173

https://gpdb.docs.pivotal.io/latest/ref_guide/sql_commands/CREATE_EXTERNAL_TABLE.html

Keyword Value

<hbase‑table‑name> The name of the HBase table.

PROFILE The PROFILE keyword must specify hbase.

SERVER=

<server_name>

The named server configuration that PXF uses to access the data. PXF uses the default

server if not specified.

FORMAT The FORMAT clause must specify 'CUSTOM' (FORMATTER='pxfwritable_import').

Data Type Mapping

HBase is byte-based; it stores all data types as an array of bytes. To represent HBase data in

Greenplum Database, select a data type for your Greenplum Database column that matches the

underlying content of the HBase column qualifier values.

Note: PXF does not support complex HBase objects.

Column Mapping

You can create a Greenplum Database external table that references all, or a subset of, the column

qualifiers defined in an HBase table. PXF supports direct or indirect mapping between a Greenplum

Database table column and an HBase table column qualifier.

Direct Mapping

When you use direct mapping to map Greenplum Database external table column names to HBase

qualifiers, you specify column-family-qualified HBase qualifier names as quoted values. The PXF

HBase connector passes these column names as-is to HBase as it reads the table data.

For example, to create a Greenplum Database external table accessing the following data:

qualifier name in the column family named product

qualifier zipcode in the column family named shipping_info

from the order_info HBase table that you created in Example: Creating an HBase Table, use this

CREATE EXTERNAL TABLE syntax:

CREATE EXTERNAL TABLE orderinfo_hbase ("product:name" varchar, "shipping_info:zipcode"

 int)

 LOCATION ('pxf://order_info?PROFILE=hbase')

 FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import');

Indirect Mapping via Lookup Table

When you use indirect mapping to map Greenplum Database external table column names to HBase

qualifiers, you specify the mapping in a lookup table that you create in HBase. The lookup table

maps a <column-family>:<column-qualifier> to a column name alias that you specify when you

create the Greenplum Database external table.

You must name the HBase PXF lookup table pxflookup. And you must define this table with a single

column family named mapping. For example:

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 174

hbase(main):> create 'pxflookup', 'mapping'

While the direct mapping method is fast and intuitive, using indirect mapping allows you to create a

shorter, character-based alias for the HBase <column-family>:<column-qualifier> name. This

better reconciles HBase column qualifier names with Greenplum Database due to the following:

HBase qualifier names can be very long. Greenplum Database has a 63 character limit on the

size of the column name.

HBase qualifier names can include binary or non-printable characters. Greenplum Database

column names are character-based.

When populating the pxflookup HBase table, add rows to the table such that the:

row key specifies the HBase table name

mapping column family qualifier identifies the Greenplum Database column name, and the

value identifies the HBase <column-family>:<column-qualifier> for which you are creating

the alias.

For example, to use indirect mapping with the order_info table, add these entries to the pxflookup

table:

hbase(main):> put 'pxflookup', 'order_info', 'mapping:pname', 'product:name'

hbase(main):> put 'pxflookup', 'order_info', 'mapping:zip', 'shipping_info:zipcode'

Then create a Greenplum Database external table using the following CREATE EXTERNAL TABLE

syntax:

CREATE EXTERNAL TABLE orderinfo_map (pname varchar, zip int)

 LOCATION ('pxf://order_info?PROFILE=hbase')

 FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import');

Row Key

The HBase table row key is a unique identifier for the table row. PXF handles the row key in a special

way.

To use the row key in the Greenplum Database external table query, define the external table using

the PXF reserved column named recordkey. The recordkey column name instructs PXF to return

the HBase table record key for each row.

Define the recordkey using the Greenplum Database data type bytea.

For example:

CREATE EXTERNAL TABLE <table_name> (recordkey bytea, ...)

 LOCATION ('pxf://<hbase_table_name>?PROFILE=hbase')

 FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import');

After you have created the external table, you can use the recordkey in a WHERE clause to filter the

HBase table on a range of row key values.

Note: To enable filter pushdown on the recordkey, define the field as text.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 175

Accessing Azure, Google Cloud Storage,
Minio, and S3 Object Stores with PXF

PXF is installed with connectors to Azure Blob Storage, Azure Data Lake, Google Cloud Storage,

Minio, and S3 object stores.

Prerequisites

Before working with object store data using PXF, ensure that:

You have configured PXF, and PXF is running on each Greenplum Database host. See

Configuring PXF for additional information.

You have configured the PXF Object Store Connectors that you plan to use. Refer to

Configuring Connectors to Azure and Google Cloud Storage Object Stores and Configuring

Connectors to Minio and S3 Object Stores for instructions.

Time is synchronized between the Greenplum Database hosts and the external object store

systems.

Connectors, Data Formats, and Profiles

The PXF object store connectors provide built-in profiles to support the following data formats:

Text

CSV

Avro

JSON

ORC

Parquet

AvroSequenceFile

SequenceFile

The PXF connectors to Azure expose the following profiles to read, and in many cases write, these

supported data formats:

Data Format Azure Blob Storage Azure Data Lake
Supported

Operations

delimited single line plain text wasbs:text adl:text Read, Write

delimited single line comma-separated values of

plain text

wasbs:csv adl:csv Read, Write

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 176

Data Format Azure Blob Storage Azure Data Lake
Supported

Operations

delimited text with quoted linefeeds wasbs:text:multi adl:text:multi Read

Avro wasbs:avro adl:avro Read, Write

JSON wasbs:json adl:json Read

ORC wasbs:orc adl:orc Read

Parquet wasbs:parquet adl:parquet Read, Write

AvroSequenceFile wasbs:AvroSequenceFile adl:AvroSequenceFile Read, Write

SequenceFile wasbs:SequenceFile adl:SequenceFile Read, Write

Similarly, the PXF connectors to Google Cloud Storage, Minio, and S3 expose these profiles:

Data Format
Google Cloud

Storage
S3 or Minio

Supported

Operations

delimited single line plain text gs:text s3:text Read, Write

delimited single line comma-separated values of

plain text

gs:csv s3:csv Read, Write

delimited text with quoted linefeeds gs:text:multi s3:text:multi Read

Avro gs:avro s3:avro Read, Write

JSON gs:json s3:json Read

ORC gs:orc s3:orc Read

Parquet gs:parquet s3:parquet Read, Write

AvroSequenceFile gs:AvroSequenceFile s3:AvroSequenceFile Read, Write

SequenceFile gs:SequenceFile s3:SequenceFile Read, Write

You provide the profile name when you specify the pxf protocol on a CREATE EXTERNAL TABLE

command to create a Greenplum Database external table that references a file or directory in the

specific object store.

Sample CREATE EXTERNAL TABLE Commands

When you create an external table that references a file or directory in an object store, you must

specify a SERVER in the LOCATION URI.

The following command creates an external table that references a text file on S3. It specifies the

profile named s3:text and the server configuration named s3srvcfg:

CREATE EXTERNAL TABLE pxf_s3_text(location text, month text, num_orders int, total_sal

es float8)

 LOCATION ('pxf://S3_BUCKET/pxf_examples/pxf_s3_simple.txt?PROFILE=s3:text&SERVER=s3srv

cfg')

FORMAT 'TEXT' (delimiter=E',');

The following command creates an external table that references a text file on Azure Blob Storage. It

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 177

specifies the profile named wasbs:text and the server configuration named wasbssrvcfg. You would

provide the Azure Blob Storage container identifier and your Azure Blob Storage account name.

CREATE EXTERNAL TABLE pxf_wasbs_text(location text, month text, num_orders int, total_

sales float8)

 LOCATION ('pxf://AZURE_CONTAINER@YOUR_AZURE_BLOB_STORAGE_ACCOUNT_NAME.blob.co

re.windows.net/path/to/blob/file?PROFILE=wasbs:text&SERVER=wasbssrvcfg')

FORMAT 'TEXT';

The following command creates an external table that references a text file on Azure Data Lake. It

specifies the profile named adl:text and the server configuration named adlsrvcfg. You would

provide your Azure Data Lake account name.

CREATE EXTERNAL TABLE pxf_adl_text(location text, month text, num_orders int, total_sa

les float8)

 LOCATION ('pxf://YOUR_ADL_ACCOUNT_NAME.azuredatalakestore.net/path/to/file?PROFIL

E=adl:text&SERVER=adlsrvcfg')

FORMAT 'TEXT';

The following command creates an external table that references a JSON file on Google Cloud

Storage. It specifies the profile named gs:json and the server configuration named gcssrvcfg:

CREATE EXTERNAL TABLE pxf_gsc_json(location text, month text, num_orders int, total_sa

les float8)

 LOCATION ('pxf://dir/subdir/file.json?PROFILE=gs:json&SERVER=gcssrvcfg')

FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import');

About Accessing the S3 Object Store

PXF is installed with a connector to the S3 object store. PXF supports the following additional

runtime features with this connector:

Overriding the S3 credentials specified in the server configuration by providing them in the

CREATE EXTERNAL TABLE command DDL.

Using the Amazon S3 Select service to read certain CSV and Parquet data from S3.

Overriding the S3 Server Configuration with DDL

If you are accessing an S3-compatible object store, you can override the credentials in an S3 server

configuration by directly specifying the S3 access ID and secret key via these custom options in the

CREATE EXTERNAL TABLE LOCATION clause:

Custom Option Value Description

accesskey The AWS account access key ID.

secretkey The secret key associated with the AWS access key ID.

For example:

CREATE EXTERNAL TABLE pxf_ext_tbl(name text, orders int)

 LOCATION ('pxf://S3_BUCKET/dir/file.txt?PROFILE=s3:text&SERVER=s3srvcfg&accesskey=YOU

RKEY&secretkey=YOURSECRET')

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 178

FORMAT 'TEXT' (delimiter=E',');

Credentials that you provide in this manner are visible as part of the external table definition. Do not

use this method of passing credentials in a production environment.

PXF does not support overriding Azure, Google Cloud Storage, and Minio server credentials in this

manner at this time.

Refer to Configuration Property Precedence for detailed information about the precedence rules

that PXF uses to obtain configuration property settings for a Greenplum Database user.

Using the Amazon S3 Select Service

Refer to Reading CSV and Parquet Data from S3 Using S3 Select for specific information on how

PXF can use the Amazon S3 Select service to read CSV and Parquet files stored on S3.

Reading and Writing Text Data in an Object Store

The PXF object store connectors support plain delimited and comma-separated value format text

data. This section describes how to use PXF to access text data in an object store, including how to

create, query, and insert data into an external table that references files in the object store.

Note: Accessing text data from an object store is very similar to accessing text data in HDFS.

Prerequisites

Ensure that you have met the PXF Object Store Prerequisites before you attempt to read data from

or write data to an object store.

Reading Text Data

Use the <objstore>:text profile when you read plain text delimited and <objstore>:csv when

reading .csv data from an object store where each row is a single record. PXF supports the following

<objstore> profile prefixes:

Object Store Profile Prefix

Azure Blob Storage wasbs

Azure Data Lake adl

Google Cloud Storage gs

Minio s3

S3 s3

The following syntax creates a Greenplum Database readable external table that references a simple

text file in an object store:

CREATE EXTERNAL TABLE <table_name>

 (<column_name> <data_type> [, ...] | LIKE <other_table>)

LOCATION ('pxf://<path-to-file>?PROFILE=<objstore>:text|csv&SERVER=<server_name>[&IGNO

RE_MISSING_PATH=<boolean>][&SKIP_HEADER_COUNT=<numlines>][&<custom-option>=<value>[...

]]')

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 179

FORMAT '[TEXT|CSV]' (delimiter[=|<space>][E]'<delim_value>');

The specific keywords and values used in the Greenplum Database CREATE EXTERNAL TABLE

command are described in the table below.

Keyword Value

<path‑to‑file> The path to the directory or file in the object store. When the <server_name>

configuration includes a pxf.fs.basePath property setting, PXF considers

<path‑to‑file> to be relative to the base path specified. Otherwise, PXF considers it to

be an absolute path. <path‑to‑file> must not specify a relative path nor include the

dollar sign ($) character.

PROFILE=<objstore>:text

PROFILE=<objstore>:csv

The PROFILE keyword must identify the specific object store. For example, s3:text.

SERVER=<server_name> The named server configuration that PXF uses to access the data.

IGNORE_MISSING_PATH=

<boolean>

Specify the action to take when <path-to-file> is missing or invalid. The default value

is false, PXF returns an error in this situation. When the value is true, PXF ignores

missing path errors and returns an empty fragment.

SKIP_HEADER_COUNT=

<numlines>

Specify the number of header lines that PXF should skip in the first split of each <file>

before reading the data. The default value is 0, do not skip any lines.

FORMAT Use FORMAT 'TEXT' when <path-to-file> references plain text delimited data.

Use FORMAT 'CSV' when <path-to-file> references comma-separated value data.

delimiter The delimiter character in the data. For FORMAT 'CSV', the default <delim_value> is a

comma ,. Preface the <delim_value> with an E when the value is an escape sequence.

Examples: (delimiter=E'\t'), (delimiter ':').

Note: PXF does not support the (HEADER) formatter option in the CREATE EXTERNAL TABLE command.

If your text file includes header line(s), use SKIP_HEADER_COUNT to specify the number of lines that

PXF should skip at the beginning of the first split of each file.

If you are accessing an S3 object store:

You can provide S3 credentials via custom options in the CREATE EXTERNAL TABLE command

as described in Overriding the S3 Server Configuration with DDL.

If you are reading CSV-format data from S3, you can direct PXF to use the S3 Select

Amazon service to retrieve the data. Refer to Using the Amazon S3 Select Service for more

information about the PXF custom option used for this purpose.

Example: Reading Text Data from S3

Perform the following procedure to create a sample text file, copy the file to S3, and use the s3:text

and s3:csv profiles to create two PXF external tables to query the data.

To run this example, you must:

Have the AWS CLI tools installed on your system

Know your AWS access ID and secret key

Have write permission to an S3 bucket

1. Create a directory in S3 for PXF example data files. For example, if you have write access to

an S3 bucket named BUCKET:

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 180

https://gpdb.docs.pivotal.io/latest/ref_guide/sql_commands/CREATE_EXTERNAL_TABLE.html

$ aws s3 mb s3://BUCKET/pxf_examples

2. Locally create a delimited plain text data file named pxf_s3_simple.txt:

$ echo 'Prague,Jan,101,4875.33

Rome,Mar,87,1557.39

Bangalore,May,317,8936.99

Beijing,Jul,411,11600.67' > /tmp/pxf_s3_simple.txt

Note the use of the comma , to separate the four data fields.

3. Copy the data file to the S3 directory you created in Step 1:

$ aws s3 cp /tmp/pxf_s3_simple.txt s3://BUCKET/pxf_examples/

4. Verify that the file now resides in S3:

$ aws s3 ls s3://BUCKET/pxf_examples/pxf_s3_simple.txt

5. Start the psql subsystem:

$ psql -d postgres

6. Use the PXF s3:text profile to create a Greenplum Database external table that references

the pxf_s3_simple.txt file that you just created and added to S3. For example, if your server

name is s3srvcfg:

postgres=# CREATE EXTERNAL TABLE pxf_s3_textsimple(location text, month text, n

um_orders int, total_sales float8)

 LOCATION ('pxf://BUCKET/pxf_examples/pxf_s3_simple.txt?PROFILE=s3:t

ext&SERVER=s3srvcfg')

 FORMAT 'TEXT' (delimiter=E',');

7. Query the external table:

postgres=# SELECT * FROM pxf_s3_textsimple;

 location | month | num_orders | total_sales

---------------+-------+------------+-------------

 Prague | Jan | 101 | 4875.33

 Rome | Mar | 87 | 1557.39

 Bangalore | May | 317 | 8936.99

 Beijing | Jul | 411 | 11600.67

(4 rows)

8. Create a second external table that references pxf_s3_simple.txt, this time specifying the

s3:csv PROFILE and the CSV FORMAT:

postgres=# CREATE EXTERNAL TABLE pxf_s3_textsimple_csv(location text, month tex

t, num_orders int, total_sales float8)

 LOCATION ('pxf://BUCKET/pxf_examples/pxf_s3_simple.txt?PROFILE=s3:c

sv&SERVER=s3srvcfg')

 FORMAT 'CSV';

postgres=# SELECT * FROM pxf_s3_textsimple_csv;

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 181

When you specify FORMAT 'CSV' for comma-separated value data, no delimiter formatter

option is required because comma is the default delimiter value.

Reading Text Data with Quoted Linefeeds

Use the <objstore>:text:multi profile to read plain text data with delimited single- or multi- line

records that include embedded (quoted) linefeed characters. The following syntax creates a

Greenplum Database readable external table that references such a text file in an object store:

CREATE EXTERNAL TABLE <table_name>

 (<column_name> <data_type> [, ...] | LIKE <other_table>)

LOCATION ('pxf://<path-to-file>?PROFILE=<objstore>:text:multi&SERVER=<server_name>[&IG

NORE_MISSING_PATH=<boolean>][&SKIP_HEADER_COUNT=<numlines>][&<custom-option>=<value>[.

..]]')

FORMAT '[TEXT|CSV]' (delimiter[=|<space>][E]'<delim_value>');

The specific keywords and values used in the CREATE EXTERNAL TABLE command are described

in the table below.

Keyword Value

<path‑to‑file> The path to the directory or file in the data store. When the <server_name>

configuration includes a pxf.fs.basePath property setting, PXF considers

<path‑to‑file> to be relative to the base path specified. Otherwise, PXF considers it to

be an absolute path. <path‑to‑file> must not specify a relative path nor include the

dollar sign ($) character.

PROFILE=

<objstore>:text:multi

The PROFILE keyword must identify the specific object store. For example,

s3:text:multi.

SERVER=<server_name> The named server configuration that PXF uses to access the data.

IGNORE_MISSING_PATH=

<boolean>

Specify the action to take when <path-to-file> is missing or invalid. The default value

is false, PXF returns an error in this situation. When the value is true, PXF ignores

missing path errors and returns an empty fragment.

SKIP_HEADER_COUNT=

<numlines>

Specify the number of header lines that PXF should skip in the first split of each <file>

before reading the data. The default value is 0, do not skip any lines.

FORMAT Use FORMAT 'TEXT' when <path-to-file> references plain text delimited data.

Use FORMAT 'CSV' when <path-to-file> references comma-separated value data.

delimiter The delimiter character in the data. For FORMAT 'CSV', the default <delim_value> is a

comma ,. Preface the <delim_value> with an E when the value is an escape sequence.

Examples: (delimiter=E'\t'), (delimiter ':').

Note: PXF does not support the (HEADER) formatter option in the CREATE EXTERNAL TABLE command.

If your text file includes header line(s), use SKIP_HEADER_COUNT to specify the number of lines that

PXF should skip at the beginning of the first split of each file.

If you are accessing an S3 object store, you can provide S3 credentials via custom options in the

CREATE EXTERNAL TABLE command as described in Overriding the S3 Server Configuration with DDL.

Example: Reading Multi-Line Text Data from S3

Perform the following steps to create a sample text file, copy the file to S3, and use the PXF

s3:text:multi profile to create a Greenplum Database readable external table to query the data.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 182

https://gpdb.docs.pivotal.io/latest/ref_guide/sql_commands/CREATE_EXTERNAL_TABLE.html

To run this example, you must:

Have the AWS CLI tools installed on your system

Know your AWS access ID and secret key

Have write permission to an S3 bucket

1. Create a second delimited plain text file:

$ vi /tmp/pxf_s3_multi.txt

2. Copy/paste the following data into pxf_s3_multi.txt:

"4627 Star Rd.

San Francisco, CA 94107":Sept:2017

"113 Moon St.

San Diego, CA 92093":Jan:2018

"51 Belt Ct.

Denver, CO 90123":Dec:2016

"93114 Radial Rd.

Chicago, IL 60605":Jul:2017

"7301 Brookview Ave.

Columbus, OH 43213":Dec:2018

Notice the use of the colon : to separate the three fields. Also notice the quotes around the

first (address) field. This field includes an embedded line feed separating the street address

from the city and state.

3. Copy the text file to S3:

$ aws s3 cp /tmp/pxf_s3_multi.txt s3://BUCKET/pxf_examples/

4. Use the s3:text:multi profile to create an external table that references the

pxf_s3_multi.txt S3 file, making sure to identify the : (colon) as the field separator. For

example, if your server name is s3srvcfg:

postgres=# CREATE EXTERNAL TABLE pxf_s3_textmulti(address text, month text, yea

r int)

 LOCATION ('pxf://BUCKET/pxf_examples/pxf_s3_multi.txt?PROFILE=s3:te

xt:multi&SERVER=s3srvcfg')

 FORMAT 'CSV' (delimiter ':');

Notice the alternate syntax for specifying the delimiter.

5. Query the pxf_s3_textmulti table:

postgres=# SELECT * FROM pxf_s3_textmulti;

 address | month | year

--------------------------+-------+------

 4627 Star Rd. | Sept | 2017

 San Francisco, CA 94107

 113 Moon St. | Jan | 2018

 San Diego, CA 92093

 51 Belt Ct. | Dec | 2016

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 183

 Denver, CO 90123

 93114 Radial Rd. | Jul | 2017

 Chicago, IL 60605

 7301 Brookview Ave. | Dec | 2018

 Columbus, OH 43213

(5 rows)

Writing Text Data

The <objstore>:text|csv profiles support writing single line plain text data to an object store. When

you create a writable external table with PXF, you specify the name of a directory. When you insert

records into a writable external table, the block(s) of data that you insert are written to one or more

files in the directory that you specified.

Note: External tables that you create with a writable profile can only be used for INSERT operations. If

you want to query the data that you inserted, you must create a separate readable external table that

references the directory.

Use the following syntax to create a Greenplum Database writable external table that references an

object store directory:

CREATE WRITABLE EXTERNAL TABLE <table_name>

 (<column_name> <data_type> [, ...] | LIKE <other_table>)

LOCATION ('pxf://<path-to-dir>

 ?PROFILE=<objstore>:text|csv&SERVER=<server_name>[&<custom-option>=<value>[...]]')

FORMAT '[TEXT|CSV]' (delimiter[=|<space>][E]'<delim_value>');

[DISTRIBUTED BY (<column_name> [, ...]) | DISTRIBUTED RANDOMLY];

The specific keywords and values used in the CREATE EXTERNAL TABLE command are described

in the table below.

Keyword Value

<path‑to‑dir> The path to the directory in the data store. When the <server_name> configuration includes a

pxf.fs.basePath property setting, PXF considers <path‑to‑dir> to be relative to the base path

specified. Otherwise, PXF considers it to be an absolute path. <path‑to‑dir> must not specify a

relative path nor include the dollar sign ($) character.

PROFILE=

<objstore>:text

PROFILE=

<objstore>:csv

The PROFILE keyword must identify the specific object store. For example, s3:text.

SERVER=

<server_name>

The named server configuration that PXF uses to access the data.

<custom‑option>=

<value>

<custom-option>s are described below.

FORMAT Use FORMAT 'TEXT' to write plain, delimited text to <path-to-dir>.

Use FORMAT 'CSV' to write comma-separated value text to <path-to-dir>.

delimiter The delimiter character in the data. For FORMAT 'CSV', the default <delim_value> is a comma ,.

Preface the <delim_value> with an E when the value is an escape sequence. Examples:

(delimiter=E'\t'), (delimiter ':').

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 184

https://gpdb.docs.pivotal.io/latest/ref_guide/sql_commands/CREATE_EXTERNAL_TABLE.html

Keyword Value

DISTRIBUTED BY If you want to load data from an existing Greenplum Database table into the writable external

table, consider specifying the same distribution policy or <column_name> on both tables.

Doing so will avoid extra motion of data between segments on the load operation.

Writable external tables that you create using an <objstore>:text|csv profile can optionally use

record or block compression. You specify the compression type and codec via custom options in the

CREATE EXTERNAL TABLE LOCATION clause. The <objstore>:text|csv profiles support the following

custom write options:

Option Value Description

COMPRESSION_CODEC The compression codec alias. Supported compression codecs for writing text data

include: default, bzip2, gzip, and uncompressed. If this option is not provided,

Greenplum Database performs no data compression.

COMPRESSION_TYPE The compression type to employ; supported values are RECORD (the default) or BLOCK.

If you are accessing an S3 object store, you can provide S3 credentials via custom options in the

CREATE EXTERNAL TABLE command as described in Overriding the S3 Server Configuration with DDL.

Example: Writing Text Data to S3

This example utilizes the data schema introduced in Example: Reading Text Data from S3.

Column Name Data Type

location text

month text

number_of_orders int

total_sales float8

This example also optionally uses the Greenplum Database external table named pxf_s3_textsimple

that you created in that exercise.

Procedure

Perform the following procedure to create Greenplum Database writable external tables utilizing the

same data schema as described above, one of which will employ compression. You will use the PXF

s3:text profile to write data to S3. You will also create a separate, readable external table to read the

data that you wrote to S3.

1. Create a Greenplum Database writable external table utilizing the data schema described

above. Write to the S3 directory BUCKET/pxf_examples/pxfwrite_s3_textsimple1. Create the

table specifying a comma , as the delimiter. For example, if your server name is s3srvcfg:

postgres=# CREATE WRITABLE EXTERNAL TABLE pxf_s3_writetbl_1(location text, mont

h text, num_orders int, total_sales float8)

 LOCATION ('pxf://BUCKET/pxf_examples/pxfwrite_s3_textsimple1?PROFIL

E=s3:text|csv&SERVER=s3srvcfg')

 FORMAT 'TEXT' (delimiter=',');

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 185

You specify the FORMAT subclause delimiter value as the single ascii comma character ,.

2. Write a few individual records to the pxfwrite_s3_textsimple1 S3 directory by invoking the

SQL INSERT command on pxf_s3_writetbl_1:

postgres=# INSERT INTO pxf_s3_writetbl_1 VALUES ('Frankfurt', 'Mar', 777, 3956

.98);

postgres=# INSERT INTO pxf_s3_writetbl_1 VALUES ('Cleveland', 'Oct', 3812, 966

45.37);

3. (Optional) Insert the data from the pxf_s3_textsimple table that you created in Example:

Reading Text Data from S3 into pxf_s3_writetbl_1:

postgres=# INSERT INTO pxf_s3_writetbl_1 SELECT * FROM pxf_s3_textsimple;

4. Greenplum Database does not support directly querying a writable external table. To query

the data that you just added to S3, you must create a readable external Greenplum Database

table that references the S3 directory:

postgres=# CREATE EXTERNAL TABLE pxf_s3_textsimple_r1(location text, month text

, num_orders int, total_sales float8)

 LOCATION ('pxf://BUCKET/pxf_examples/pxfwrite_s3_textsimple1?PROFIL

E=s3:text&SERVER=s3srvcfg')

 FORMAT 'CSV';

You specify the 'CSV' FORMAT when you create the readable external table because you

created the writable table with a comma , as the delimiter character, the default delimiter for

'CSV' FORMAT.

5. Query the readable external table:

postgres=# SELECT * FROM pxf_s3_textsimple_r1 ORDER BY total_sales;

 location | month | num_orders | total_sales

-----------+-------+------------+-------------

 Rome | Mar | 87 | 1557.39

 Frankfurt | Mar | 777 | 3956.98

 Prague | Jan | 101 | 4875.33

 Bangalore | May | 317 | 8936.99

 Beijing | Jul | 411 | 11600.67

 Cleveland | Oct | 3812 | 96645.37

(6 rows)

The pxf_s3_textsimple_r1 table includes the records you individually inserted, as well as the

full contents of the pxf_s3_textsimple table if you performed the optional step.

6. Create a second Greenplum Database writable external table, this time using Gzip

compression and employing a colon : as the delimiter:

postgres=# CREATE WRITABLE EXTERNAL TABLE pxf_s3_writetbl_2 (location text, mon

th text, num_orders int, total_sales float8)

 LOCATION ('pxf://BUCKET/pxf_examples/pxfwrite_s3_textsimple2?PROFIL

E=s3:text&SERVER=s3srvcfg&COMPRESSION_CODEC=gzip')

 FORMAT 'TEXT' (delimiter=':');

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 186

7. Write a few records to the pxfwrite_s3_textsimple2 S3 directory by inserting directly into

the pxf_s3_writetbl_2 table:

gpadmin=# INSERT INTO pxf_s3_writetbl_2 VALUES ('Frankfurt', 'Mar', 777, 3956.

98);

gpadmin=# INSERT INTO pxf_s3_writetbl_2 VALUES ('Cleveland', 'Oct', 3812, 9664

5.37);

8. To query data from the newly-created S3 directory named pxfwrite_s3_textsimple2, you

can create a readable external Greenplum Database table as described above that

references this S3 directory and specifies FORMAT 'CSV' (delimiter=':').

Reading and Writing Avro Data in an Object Store

The PXF object store connectors support reading Avro-format data. This section describes how to

use PXF to read and write Avro data in an object store, including how to create, query, and insert

into an external table that references an Avro file in the store.

Note: Accessing Avro-format data from an object store is very similar to accessing Avro-format dataNote: Accessing Avro-format data from an object store is very similar to accessing Avro-format data

in HDFS. This topic identifies object store-specific information required to read Avro data, and links

to the PXF HDFS Avro documentation where appropriate for common information.

Prerequisites

Ensure that you have met the PXF Object Store Prerequisites before you attempt to read data from

an object store.

Working with Avro Data

Refer to Working with Avro Data in the PXF HDFS Avro documentation for a description of the

Apache Avro data serialization framework.

When you read or write Avro data in an object store:

If the Avro schema file resides in the object store:

You must include the bucket in the schema file path. This bucket need not specify

the same bucket as the Avro data file.

The secrets that you specify in the SERVER configuration must provide access to both

the data file and schema file buckets.

The schema file path must not include spaces.

Creating the External Table

Use the <objstore>:avro profiles to read and write Avro-format files in an object store. PXF supports

the following <objstore> profile prefixes:

Object Store Profile Prefix

Azure Blob Storage wasbs

Azure Data Lake adl

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 187

Object Store Profile Prefix

Google Cloud Storage gs

Minio s3

S3 s3

The following syntax creates a Greenplum Database external table that references an Avro-format

file:

CREATE [WRITABLE] EXTERNAL TABLE <table_name>

 (<column_name> <data_type> [, ...] | LIKE <other_table>)

LOCATION ('pxf://<path-to-file>?PROFILE=<objstore>:avro&SERVER=<server_name>[&<custom-

option>=<value>[...]]')

FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import'|'pxfwritable_export');

The specific keywords and values used in the Greenplum Database CREATE EXTERNAL TABLE

command are described in the table below.

Keyword Value

<path‑to‑file> The path to the directory or file in the object store. When the <server_name> configuration

includes a pxf.fs.basePath property setting, PXF considers <path‑to‑file> to be relative to the

base path specified. Otherwise, PXF considers it to be an absolute path. <path‑to‑file> must not

specify a relative path nor include the dollar sign ($) character.

PROFILE=

<objstore>:avro

The PROFILE keyword must identify the specific object store. For example, s3:avro.

SERVER=

<server_name>

The named server configuration that PXF uses to access the data.

<custom‑option>=

<value>

Avro-specific custom options are described in the PXF HDFS Avro documentation.

FORMAT

‘CUSTOM’

Use FORMAT ’CUSTOM’ with (FORMATTER='pxfwritable_export') (write) or

(FORMATTER='pxfwritable_import') (read).

If you are accessing an S3 object store, you can provide S3 credentials via custom options in the

CREATE EXTERNAL TABLE command as described in Overriding the S3 Server Configuration with DDL.

Example

Refer to Example: Reading Avro Data in the PXF HDFS Avro documentation for an Avro example.

Modifications that you must make to run the example with an object store include:

Copying the file to the object store instead of HDFS. For example, to copy the file to S3:

$ aws s3 cp /tmp/pxf_avro.avro s3://BUCKET/pxf_examples/

Using the CREATE EXTERNAL TABLE syntax and LOCATION keywords and settings described

above. For example, if your server name is s3srvcfg:

CREATE EXTERNAL TABLE pxf_s3_avro(id bigint, username text, followers text[], f

map text, relationship text, address text)

 LOCATION ('pxf://BUCKET/pxf_examples/pxf_avro.avro?PROFILE=s3:avro&SERVER=s3s

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 188

https://gpdb.docs.pivotal.io/latest/ref_guide/sql_commands/CREATE_EXTERNAL_TABLE.html

rvcfg&COLLECTION_DELIM=,&MAPKEY_DELIM=:&RECORDKEY_DELIM=:')

FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import');

You make similar modifications to follow the steps in Example: Writing Avro Data.

Reading JSON Data from an Object Store

The PXF object store connectors support reading JSON-format data. This section describes how to

use PXF to access JSON data in an object store, including how to create and query an external table

that references a JSON file in the store.

Note: Accessing JSON-format data from an object store is very similar to accessing JSON-format

data in HDFS. This topic identifies object store-specific information required to read JSON data, and

links to the PXF HDFS JSON documentation where appropriate for common information.

Prerequisites

Ensure that you have met the PXF Object Store Prerequisites before you attempt to read data from

an object store.

Working with JSON Data

Refer to Working with JSON Data in the PXF HDFS JSON documentation for a description of the

JSON text-based data-interchange format.

Creating the External Table

Use the <objstore>:json profile to read JSON-format files from an object store. PXF supports the

following <objstore> profile prefixes:

Object Store Profile Prefix

Azure Blob Storage wasbs

Azure Data Lake adl

Google Cloud Storage gs

Minio s3

S3 s3

The following syntax creates a Greenplum Database readable external table that references a JSON-

format file:

CREATE EXTERNAL TABLE <table_name>

 (<column_name> <data_type> [, ...] | LIKE <other_table>)

LOCATION ('pxf://<path-to-file>?PROFILE=<objstore>:json&SERVER=<server_name>[&<custom-

option>=<value>[...]]')

FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import');

The specific keywords and values used in the Greenplum Database CREATE EXTERNAL TABLE

command are described in the table below.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 189

https://gpdb.docs.pivotal.io/latest/ref_guide/sql_commands/CREATE_EXTERNAL_TABLE.html

Keyword Value

<path‑to‑file> The path to the directory or file in the object store. When the <server_name> configuration

includes a pxf.fs.basePath property setting, PXF considers <path‑to‑file> to be relative to the

base path specified. Otherwise, PXF considers it to be an absolute path. <path‑to‑file> must not

specify a relative path nor include the dollar sign ($) character.

PROFILE=

<objstore>:json

The PROFILE keyword must identify the specific object store. For example, s3:json.

SERVER=

<server_name>

The named server configuration that PXF uses to access the data.

<custom‑option>=

<value>

JSON supports the custom option named IDENTIFIER as described in the PXF HDFS JSON

documentation.

FORMAT

‘CUSTOM’

Use FORMAT 'CUSTOM' with the <objstore>:json profile. The CUSTOM FORMAT requires that you

specify (FORMATTER='pxfwritable_import').

If you are accessing an S3 object store, you can provide S3 credentials via custom options in the

CREATE EXTERNAL TABLE command as described in Overriding the S3 Server Configuration with DDL.

Example

Refer to Loading the Sample JSON Data to HDFS and Example: Reading a JSON File with Single

Line Records in the PXF HDFS JSON documentation for a JSON example. Modifications that you

must make to run the example with an object store include:

Copying the file to the object store instead of HDFS. For example, to copy the file to S3:

$ aws s3 cp /tmp/singleline.json s3://BUCKET/pxf_examples/

$ aws s3 cp /tmp/multiline.json s3://BUCKET/pxf_examples/

Using the CREATE EXTERNAL TABLE syntax and LOCATION keywords and settings described

above. For example, if your server name is s3srvcfg:

CREATE EXTERNAL TABLE singleline_json_s3(

 created_at TEXT,

 id_str TEXT,

 "user.id" INTEGER,

 "user.location" TEXT,

 "coordinates.values" TEXT[]

)

 LOCATION('pxf://BUCKET/pxf_examples/singleline.json?PROFILE=s3:json&SERVER=s3

srvcfg')

FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import');

If you want to access specific elements of the coordinates.values array, you can specify the

array subscript number in square brackets:

SELECT "coordinates.values"[1], "coordinates.values"[2] FROM singleline_json_s3

;

Reading ORC Data from an Object Store

The PXF object store connectors support reading ORC-format data. This section describes how to

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 190

use PXF to access ORC data in an object store, including how to create and query an external table

that references a file in the store.

Note: Accessing ORC-format data from an object store is very similar to accessing ORC-format data

in HDFS. This topic identifies object store-specific information required to read ORC data, and links

to the PXF Hadoop ORC documentation where appropriate for common information.

Prerequisites

Ensure that you have met the PXF Object Store Prerequisites before you attempt to read data from

an object store.

Data Type Mapping

Refer to Data Type Mapping in the PXF Hadoop ORC documentation for a description of the

mapping between Greenplum Database and ORC data types.

Creating the External Table

Use the <objstore>:orc profile to read ORC-format files from an object store. PXF supports the

following <objstore> profile prefixes:

Object Store Profile Prefix

Azure Blob Storage wasbs

Azure Data Lake adl

Google Cloud Storage gs

Minio s3

S3 s3

The following syntax creates a Greenplum Database readable external table that references an ORC-

format file:

CREATE EXTERNAL TABLE <table_name>

 (<column_name> <data_type> [, ...] | LIKE <other_table>)

LOCATION ('pxf://<path-to-file>?PROFILE=<objstore>:orc&SERVER=<server_name>[&<custom-o

ption>=<value>[...]]')

FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import');

The specific keywords and values used in the Greenplum Database CREATE EXTERNAL TABLE

command are described in the table below.

Keyword Value

<path‑to‑file> The path to the directory or file in the object store. When the <server_name> configuration

includes a pxf.fs.basePath property setting, PXF considers <path‑to‑file> to be relative to the

base path specified. Otherwise, PXF considers it to be an absolute path. <path‑to‑file> must not

specify a relative path nor include the dollar sign ($) character.

PROFILE=

<objstore>:orc

The PROFILE keyword must identify the specific object store. For example, s3:orc.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 191

https://gpdb.docs.pivotal.io/latest/ref_guide/sql_commands/CREATE_EXTERNAL_TABLE.html

Keyword Value

SERVER=

<server_name>

The named server configuration that PXF uses to access the data.

<custom‑option>=

<value>

ORC supports customs options as described in the PXF Hadoop ORC documentation.

FORMAT

‘CUSTOM’

Use FORMAT 'CUSTOM' with the <objstore>:orc profile. The CUSTOM FORMAT requires that you

specify (FORMATTER='pxfwritable_import').

If you are accessing an S3 object store, you can provide S3 credentials via custom options in the

CREATE EXTERNAL TABLE command as described in Overriding the S3 Server Configuration with DDL.

Example

Refer to Example: Reading an ORC File on HDFS in the PXF Hadoop ORC documentation for an

example. Modifications that you must make to run the example with an object store include:

Copying the file to the object store instead of HDFS. For example, to copy the file to S3:

$ aws s3 cp /tmp/sampledata.orc s3://BUCKET/pxf_examples/

Using the CREATE EXTERNAL TABLE syntax and LOCATION keywords and settings described

above. For example, if your server name is s3srvcfg:

CREATE EXTERNAL TABLE sample_orc(location TEXT, month TEXT, num_orders INTEGER

, total_sales NUMERIC(10,2), items_sold TEXT[])

 LOCATION('pxf://BUCKET/pxf_examples/sampledata.orc?PROFILE=s3:orc&SERVER=s3sr

vcfg')

FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import');

Reading and Writing Parquet Data in an Object Store

The PXF object store connectors support reading and writing Parquet-format data. This section

describes how to use PXF to access Parquet-format data in an object store, including how to create

and query external tables that references a Parquet file in the store.

Note: Accessing Parquet-format data from an object store is very similar to accessing Parquet-

format data in HDFS. This topic identifies object store-specific information required to read and write

Parquet data, and links to the PXF HDFS Parquet documentation where appropriate for common

information.

Prerequisites

Ensure that you have met the PXF Object Store Prerequisites before you attempt to read data from

or write data to an object store.

Data Type Mapping

Refer to Data Type Mapping in the PXF HDFS Parquet documentation for a description of the

mapping between Greenplum Database and Parquet data types.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 192

Creating the External Table

The PXF <objstore>:parquet profiles support reading and writing data in Parquet-format. PXF

supports the following <objstore> profile prefixes:

Object Store Profile Prefix

Azure Blob Storage wasbs

Azure Data Lake adl

Google Cloud Storage gs

Minio s3

S3 s3

Use the following syntax to create a Greenplum Database external table that references an HDFS

directory. When you insert records into a writable external table, the block(s) of data that you insert

are written to one or more files in the directory that you specified.

CREATE [WRITABLE] EXTERNAL TABLE <table_name>

 (<column_name> <data_type> [, ...] | LIKE <other_table>)

LOCATION ('pxf://<path-to-dir>

 ?PROFILE=<objstore>:parquet&SERVER=<server_name>[&<custom-option>=<value>[...]]')

FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import'|'pxfwritable_export');

[DISTRIBUTED BY (<column_name> [, ...]) | DISTRIBUTED RANDOMLY];

The specific keywords and values used in the Greenplum Database CREATE EXTERNAL TABLE

command are described in the table below.

Keyword Value

<path‑to‑dir> The path to the directory in the object store. When the <server_name> configuration includes a

pxf.fs.basePath property setting, PXF considers <path‑to‑dir> to be relative to the base path

specified. Otherwise, PXF considers it to be an absolute path. <path‑to‑dir> must not specify a

relative path nor include the dollar sign ($) character.

PROFILE=

<objstore>:parquet

The PROFILE keyword must identify the specific object store. For example, s3:parquet.

SERVER=

<server_name>

The named server configuration that PXF uses to access the data.

<custom‑option>=

<value>

Parquet-specific custom options are described in the PXF HDFS Parquet documentation.

FORMAT

‘CUSTOM’

Use FORMAT ’CUSTOM’ with (FORMATTER='pxfwritable_export') (write) or

(FORMATTER='pxfwritable_import') (read).

DISTRIBUTED BY If you want to load data from an existing Greenplum Database table into the writable external

table, consider specifying the same distribution policy or <column_name> on both tables.

Doing so will avoid extra motion of data between segments on the load operation.

If you are accessing an S3 object store:

You can provide S3 credentials via custom options in the CREATE EXTERNAL TABLE command

as described in Overriding the S3 Server Configuration with DDL.

If you are reading Parquet data from S3, you can direct PXF to use the S3 Select Amazon

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 193

https://gpdb.docs.pivotal.io/latest/ref_guide/sql_commands/CREATE_EXTERNAL_TABLE.html

service to retrieve the data. Refer to Using the Amazon S3 Select Service for more

information about the PXF custom option used for this purpose.

Example

Refer to the Example in the PXF HDFS Parquet documentation for a Parquet write/read example.

Modifications that you must make to run the example with an object store include:

Using the CREATE WRITABLE EXTERNAL TABLE syntax and LOCATION keywords and settings

described above for the writable external table. For example, if your server name is

s3srvcfg:

CREATE WRITABLE EXTERNAL TABLE pxf_tbl_parquet_s3 (location text, month text, n

umber_of_orders int, total_sales double precision)

 LOCATION ('pxf://BUCKET/pxf_examples/pxf_parquet?PROFILE=s3:parquet&SERVER=s3

srvcfg')

FORMAT 'CUSTOM' (FORMATTER='pxfwritable_export');

Using the CREATE EXTERNAL TABLE syntax and LOCATION keywords and settings described

above for the readable external table. For example, if your server name is s3srvcfg:

CREATE EXTERNAL TABLE read_pxf_parquet_s3(location text, month text, number_of_

orders int, total_sales double precision)

 LOCATION ('pxf://BUCKET/pxf_examples/pxf_parquet?PROFILE=s3:parquet&SERVER=s3

srvcfg')

FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import');

Reading and Writing SequenceFile Data in an Object Store

The PXF object store connectors support SequenceFile format binary data. This section describes

how to use PXF to read and write SequenceFile data, including how to create, insert, and query data

in external tables that reference files in an object store.

Note: Accessing SequenceFile-format data from an object store is very similar to accessing

SequenceFile-format data in HDFS. This topic identifies object store-specific information required to

read and write SequenceFile data, and links to the PXF HDFS SequenceFile documentation where

appropriate for common information.

Prerequisites

Ensure that you have met the PXF Object Store Prerequisites before you attempt to read data from

or write data to an object store.

Creating the External Table

The PXF <objstore>:SequenceFile profiles support reading and writing binary data in SequenceFile-

format. PXF supports the following <objstore> profile prefixes:

Object Store Profile Prefix

Azure Blob Storage wasbs

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 194

Object Store Profile Prefix

Azure Data Lake adl

Google Cloud Storage gs

Minio s3

S3 s3

Use the following syntax to create a Greenplum Database external table that references an HDFS

directory. When you insert records into a writable external table, the block(s) of data that you insert

are written to one or more files in the directory that you specified.

CREATE [WRITABLE] EXTERNAL TABLE <table_name>

 (<column_name> <data_type> [, ...] | LIKE <other_table>)

LOCATION ('pxf://<path-to-dir>

 ?PROFILE=<objstore>:SequenceFile&SERVER=<server_name>[&<custom-option>=<value>[...

]]')

FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import'|'pxfwritable_export')

[DISTRIBUTED BY (<column_name> [, ...]) | DISTRIBUTED RANDOMLY];

The specific keywords and values used in the Greenplum Database CREATE EXTERNAL TABLE

command are described in the table below.

Keyword Value

<path‑to‑dir> The path to the directory in the object store. When the <server_name> configuration

includes a pxf.fs.basePath property setting, PXF considers <path‑to‑dir> to be relative

to the base path specified. Otherwise, PXF considers it to be an absolute path.

<path‑to‑dir> must not specify a relative path nor include the dollar sign ($) character.

PROFILE=

<objstore>:SequenceFile

The PROFILE keyword must identify the specific object store. For example,

s3:SequenceFile.

SERVER=

<server_name>

The named server configuration that PXF uses to access the data.

<custom‑option>=

<value>

SequenceFile-specific custom options are described in the PXF HDFS SequenceFile

documentation.

FORMAT ‘CUSTOM’ Use FORMAT ’CUSTOM’ with (FORMATTER='pxfwritable_export') (write) or

(FORMATTER='pxfwritable_import') (read).

DISTRIBUTED BY If you want to load data from an existing Greenplum Database table into the writable

external table, consider specifying the same distribution policy or <column_name> on

both tables. Doing so will avoid extra motion of data between segments on the load

operation.

If you are accessing an S3 object store, you can provide S3 credentials via custom options in the

CREATE EXTERNAL TABLE command as described in Overriding the S3 Server Configuration with DDL.

Example

Refer to Example: Writing Binary Data to HDFS in the PXF HDFS SequenceFile documentation for a

write/read example. Modifications that you must make to run the example with an object store

include:

Using the CREATE EXTERNAL TABLE syntax and LOCATION keywords and settings described

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 195

https://gpdb.docs.pivotal.io/latest/ref_guide/sql_commands/CREATE_EXTERNAL_TABLE.html

above for the writable external table. For example, if your server name is s3srvcfg:

CREATE WRITABLE EXTERNAL TABLE pxf_tbl_seqfile_s3(location text, month text, nu

mber_of_orders integer, total_sales real)

 LOCATION ('pxf://BUCKET/pxf_examples/pxf_seqfile?PROFILE=s3:SequenceFile&DATA

-SCHEMA=com.example.pxf.hdfs.writable.dataschema.PxfExample_CustomWritable&COMP

RESSION_TYPE=BLOCK&COMPRESSION_CODEC=bzip2&SERVER=s3srvcfg')

FORMAT 'CUSTOM' (FORMATTER='pxfwritable_export');

Using the CREATE EXTERNAL TABLE syntax and LOCATION keywords and settings described

above for the readable external table. For example, if your server name is s3srvcfg:

CREATE EXTERNAL TABLE read_pxf_tbl_seqfile_s3(location text, month text, number

_of_orders integer, total_sales real)

 LOCATION ('pxf://BUCKET/pxf_examples/pxf_seqfile?PROFILE=s3:SequenceFile&DATA

-SCHEMA=com.example.pxf.hdfs.writable.dataschema.PxfExample_CustomWritable&SERV

ER=s3srvcfg')

 FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import');

Reading a Multi-Line Text File into a Single Table Row

The PXF object store connectors support reading a multi-line text file as a single table row. This

section describes how to use PXF to read multi-line text and JSON data files in an object store,

including how to create an external table that references multiple files in the store.

PXF supports reading only text and JSON files in this manner.

Note: Accessing multi-line files from an object store is very similar to accessing multi-line files in

HDFS. This topic identifies the object store-specific information required to read these files. Refer to

the PXF HDFS documentation for more information.

Prerequisites

Ensure that you have met the PXF Object Store Prerequisites before you attempt to read data from

multiple files residing in an object store.

Creating the External Table

Use the <objstore>:text:multi profile to read multiple files in an object store each into a single

table row. PXF supports the following <objstore> profile prefixes:

Object Store Profile Prefix

Azure Blob Storage wasbs

Azure Data Lake adl

Google Cloud Storage gs

Minio s3

S3 s3

The following syntax creates a Greenplum Database readable external table that references one or

more text files in an object store:

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 196

CREATE EXTERNAL TABLE <table_name>

 (<column_name> text|json | LIKE <other_table>)

 LOCATION ('pxf://<path-to-files>?PROFILE=<objstore>:text:multi&SERVER=<server_name>[

&IGNORE_MISSING_PATH=<boolean>]&FILE_AS_ROW=true')

 FORMAT 'CSV');

The specific keywords and values used in the Greenplum Database CREATE EXTERNAL TABLE

command are described in the table below.

Keyword Value

<path‑to‑files> The path to the directory or files in the object store. When the <server_name>

configuration includes a pxf.fs.basePath property setting, PXF considers

<path‑to‑files> to be relative to the base path specified. Otherwise, PXF considers it to

be an absolute path. <path‑to‑files> must not specify a relative path nor include the

dollar sign ($) character.

PROFILE=

<objstore>:text:multi

The PROFILE keyword must identify the specific object store. For example,

s3:text:multi.

SERVER=<server_name> The named server configuration that PXF uses to access the data.

IGNORE_MISSING_PATH=

<boolean>

Specify the action to take when <path-to-files> is missing or invalid. The default value

is false, PXF returns an error in this situation. When the value is true, PXF ignores

missing path errors and returns an empty fragment.

FILE_AS_ROW=true The required option that instructs PXF to read each file into a single table row.

FORMAT The FORMAT must specify 'CSV'.

If you are accessing an S3 object store, you can provide S3 credentials via custom options in the

CREATE EXTERNAL TABLE command as described in Overriding the S3 Server Configuration with DDL.

Example

Refer to Example: Reading an HDFS Text File into a Single Table Row in the PXF HDFS

documentation for an example. Modifications that you must make to run the example with an object

store include:

Copying the file to the object store instead of HDFS. For example, to copy the file to S3:

$ aws s3 cp /tmp/file1.txt s3://BUCKET/pxf_examples/tdir

$ aws s3 cp /tmp/file2.txt s3://BUCKET/pxf_examples/tdir

$ aws s3 cp /tmp/file3.txt s3://BUCKET/pxf_examples/tdir

Using the CREATE EXTERNAL TABLE syntax and LOCATION keywords and settings described

above. For example, if your server name is s3srvcfg:

CREATE EXTERNAL TABLE pxf_readfileasrow_s3(c1 text)

 LOCATION('pxf://BUCKET/pxf_examples/tdir?PROFILE=s3:text:multi&SERVER=s3srvcf

g&FILE_AS_ROW=true')

FORMAT 'CSV'

Reading CSV and Parquet Data from S3 Using S3 Select

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 197

https://gpdb.docs.pivotal.io/latest/ref_guide/sql_commands/CREATE_EXTERNAL_TABLE.html

The PXF S3 connector supports reading certain CSV- and Parquet-format data from S3 using the

Amazon S3 Select service. S3 Select provides direct query-in-place features on data stored in

Amazon S3.

When you enable it, PXF uses S3 Select to filter the contents of S3 objects to retrieve the subset of

data that you request. This typically reduces both the amount of data transferred to Greenplum

Database and the query time.

You can use the PXF S3 Connector with S3 Select to read:

gzip- or bzip2-compressed CSV files

Parquet files with gzip- or snappy-compressed columns

The data must be UTF-8-encoded, and may be server-side encrypted.

PXF supports column projection as well as predicate pushdown for AND, OR, and NOT operators when

using S3 Select.

Using the Amazon S3 Select service may increase the cost of data access and retrieval. Be sure to

consider the associated costs before you enable PXF to use the S3 Select service.

Enabling PXF to Use S3 Select

The S3_SELECT external table custom option governs PXF’s use of S3 Select when accessing the S3

object store. You can provide the following values when you set the S3_SELECT option:

S3-SELECT Value Description

OFF PXF does not use S3 Select; the default.

ON PXF always uses S3 Select.

AUTO PXF uses S3 Select when it will benefit access or performance.

By default, PXF does not use S3 Select (S3_SELECT=OFF). You can enable PXF to always use S3

Select, or to use S3 Select only when PXF determines that it could be beneficial for performance.

For example, when S3_SELECT=AUTO, PXF automatically uses S3 Select when a query on the external

table utilizes column projection or predicate pushdown, or when the referenced CSV file has a

header row.

Note: The IGNORE_MISSING_PATH custom option is not available when you use a PXF external table to

read CSV text and Parquet data from S3 using S3 Select.

Reading Parquet Data with S3 Select

PXF supports reading Parquet data from S3 as described in Reading and Writing Parquet Data in an

Object Store. If you want PXF to use S3 Select when reading the Parquet data, you add the

S3_SELECT custom option and value to the CREATE EXTERNAL TABLE LOCATION URI.

Specifying the Parquet Column Compression Type

If columns in the Parquet file are gzip- or snappy-compressed, use the COMPRESSION_CODEC custom

option in the LOCATION URI to identify the compression codec alias. For example:

&COMPRESSION_CODEC=gzip

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 198

Or,

&COMPRESSION_CODEC=snappy

Creating the External Table

Use the following syntax to create a Greenplum Database external table that references a Parquet

file on S3 that you want PXF to access with the S3 Select service:

CREATE EXTERNAL TABLE <table_name>

 (<column_name> <data_type> [, ...] | LIKE <other_table>)

 LOCATION ('pxf://<path-to-file>?PROFILE=s3:parquet&SERVER=<server_name>&S3_SELECT=ON

|AUTO[&<other-custom-option>=<value>[...]]')

FORMAT 'CSV';

You must specify FORMAT 'CSV' when you enable PXF to use S3 Select on an external table that

accesses a Parquet file on S3.

For example, use the following command to have PXF use S3 Select to access a Parquet file on S3

when optimal:

CREATE EXTERNAL TABLE parquet_on_s3 (LIKE table1)

 LOCATION ('pxf://bucket/file.parquet?PROFILE=s3:parquet&SERVER=s3srvcfg&S3_SELECT=AU

TO')

FORMAT 'CSV';

Reading CSV files with S3 Select

PXF supports reading CSV data from S3 as described in Reading and Writing Text Data in an Object

Store. If you want PXF to use S3 Select when reading the CSV data, you add the S3_SELECT custom

option and value to the CREATE EXTERNAL TABLE LOCATION URI. You may also specify the delimiter

formatter option and the file header and compression custom options.

Handling the CSV File Header

PXF can read a CSV file with a header row only when the S3 Connector uses the Amazon S3 Select

service to access the file on S3. PXF does not support reading a CSV file that includes a header row

from any other external data store.

CSV files may include a header line. When you enable PXF to use S3 Select to access a CSV-format

file, you use the FILE_HEADER custom option in the LOCATION URI to identify whether or not the CSV

file has a header row and, if so, how you want PXF to handle the header. PXF never returns the

header row.

Note: You must specify S3_SELECT=ON or S3_SELECT=AUTO when the CSV file has a header row. Do

not specify S3_SELECT=OFF in this case.

The FILE_HEADER option takes the following values:

FILE_HEADER

Value
Description

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 199

NONE The file has no header row; the default.

IGNORE The file has a header row; ignore the header. Use when the order of the columns in the external

table and the CSV file are the same. (When the column order is the same, the column names and

the CSV header names may be different.)

USE The file has a header row; read the header. Use when the external table column names and the CSV

header names are the same, but are in a different order.

If both the order and the names of the external table columns and the CSV header are the same,

you can specify either FILE_HEADER=IGNORE or FILE_HEADER=USE.

PXF cannot match the CSV data with the external table definition when both the order and the

names of the external table columns are different from the CSV header columns. Any query on an

external table with these conditions fails with the error Some headers in the query are missing

from the file.

For example, if the order of the columns in the CSV file header and the external table are the same,

add the following to the CREATE EXTERNAL TABLE LOCATION URI to have PXF ignore the CSV header:

&FILE_HEADER=IGNORE

Specifying the CSV File Compression Type

If the CSV file is gzip- or bzip2-compressed, use the COMPRESSION_CODEC custom option in the

LOCATION URI to identify the compression codec alias. For example:

&COMPRESSION_CODEC=gzip

Or,

&COMPRESSION_CODEC=bzip2

Creating the External Table

Use the following syntax to create a Greenplum Database external table that references a CSV file on

S3 that you want PXF to access with the S3 Select service:

CREATE EXTERNAL TABLE <table_name>

 (<column_name> <data_type> [, ...] | LIKE <other_table>)

LOCATION ('pxf://<path-to-file>

 ?PROFILE=s3:text&SERVER=<server_name>&S3_SELECT=ON|AUTO[&FILE_HEADER=IGNORE|USE][&

COMPRESSION_CODEC=gzip|bzip2][&<other-custom-option>=<value>[...]]')

FORMAT 'CSV' [(delimiter '<delim_char>')];

Note: Do not use the (HEADER) formatter option in the CREATE EXTERNAL TABLE command.

Note: PXF does not support the SKIP_HEADER_COUNT custom option when you read a CSV file on S3

using the S3 Select service.

For example, use the following command to have PXF always use S3 Select to access a gzip-

compressed file on S3, where the field delimiter is a pipe (’|’) character and the external table and

CSV header columns are in the same order.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 200

CREATE EXTERNAL TABLE gzippedcsv_on_s3 (LIKE table2)

 LOCATION ('pxf://bucket/file.csv.gz?PROFILE=s3:text&SERVER=s3srvcfg&S3_SELECT=ON&FIL

E_HEADER=USE')

FORMAT 'CSV' (delimiter '|');

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 201

Accessing an SQL Database with PXF
(JDBC)

Some of your data may already reside in an external SQL database. PXF provides access to this data

via the PXF JDBC connector. The JDBC connector is a JDBC client. It can read data from and write

data to SQL databases including MySQL, ORACLE, Microsoft SQL Server, DB2, PostgreSQL, Hive,

and Apache Ignite.

This section describes how to use the PXF JDBC connector to access data in an external SQL

database, including how to create and query or insert data into a PXF external table that references a

table in an external database.

The JDBC connector does not guarantee consistency when writing to an external SQL database. Be

aware that if an INSERT operation fails, some data may be written to the external database table. If

you require consistency for writes, consider writing to a staging table in the external database, and

loading to the target table only after verifying the write operation.

Prerequisites

Before you access an external SQL database using the PXF JDBC connector, ensure that:

You can identify the PXF runtime configuration directory ($PXF_BASE).

You have configured PXF, and PXF is running on each Greenplum Database host. See

Configuring PXF for additional information.

Connectivity exists between all Greenplum Database hosts and the external SQL database.

You have configured your external SQL database for user access from all Greenplum

Database hosts.

You have registered any JDBC driver JAR dependencies.

(Recommended) You have created one or more named PXF JDBC connector server

configurations as described in Configuring the PXF JDBC Connector.

Data Types Supported

The PXF JDBC connector supports the following data types:

INTEGER, BIGINT, SMALLINT

REAL, FLOAT8

NUMERIC

BOOLEAN

VARCHAR, BPCHAR, TEXT

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 202

DATE

TIMESTAMP

BYTEA

Any data type not listed above is not supported by the PXF JDBC connector.

About Accessing Hive via JDBC

PXF includes version 1.1.0 of the Hive JDBC driver. This version does not support the following data

types when you use the PXF JDBC connector to operate on a Hive table:

Data Type Fixed in Hive JDBC Driver Upstream Issue Operations Not Supported

NUMERIC 2.3.0 HIVE-13614 Write

TIMESTAMP 2.0.0 HIVE-11748 Write

DATE 1.3.0, 2.0.0 HIVE-11024 Write

BYTEA N/A N/A Read, Write

Accessing an External SQL Database

The PXF JDBC connector supports a single profile named jdbc. You can both read data from and

write data to an external SQL database table with this profile. You can also use the connector to run

a static, named query in external SQL database and read the results.

To access data in a remote SQL database, you create a readable or writable Greenplum Database

external table that references the remote database table. The Greenplum Database external table

and the remote database table or query result tuple must have the same definition; the column

names and types must match.

Use the following syntax to create a Greenplum Database external table that references a remote

SQL database table or a query result from the remote database:

CREATE [READABLE | WRITABLE] EXTERNAL TABLE <table_name>

 (<column_name> <data_type> [, ...] | LIKE <other_table>)

LOCATION ('pxf://<external-table-name>|query:<query_name>?PROFILE=jdbc[&SERVER=<server_n

ame>][&<custom-option>=<value>[...]]')

FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import'|'pxfwritable_export');

The specific keywords and values used in the Greenplum Database CREATE EXTERNAL TABLE

command are described in the table below.

Keyword Value

<external‑table‑name> The full name of the external table. Depends on the external SQL database, may include a

schema name and a table name.

query:<query_name> The name of the query to execute in the remote SQL database.

PROFILE The PROFILE keyword value must specify jdbc.

SERVER=

<server_name>

The named server configuration that PXF uses to access the data. PXF uses the default

server if not specified.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 203

https://issues.apache.org/jira/browse/HIVE-13614
https://issues.apache.org/jira/browse/HIVE-11748
https://issues.apache.org/jira/browse/HIVE-11024
https://gpdb.docs.pivotal.io/latest/ref_guide/sql_commands/CREATE_EXTERNAL_TABLE.html

Keyword Value

<custom‑option>=

<value>

<custom-option> is profile-specific. jdbc profile-specific options are discussed in the next

section.

FORMAT ‘CUSTOM’ The JDBC CUSTOM FORMAT supports the built-in 'pxfwritable_import' FORMATTER function

for read operations and the built-in 'pxfwritable_export' function for write operations.

Note: You cannot use the HEADER option in your FORMAT specification when you create a PXF external

table.

JDBC Custom Options

You include JDBC connector custom options in the LOCATION URI, prefacing each option with an

ampersand &. CREATE EXTERNAL TABLE <custom-option>s supported by the jdbc profile include:

Option Name Operation Description

BATCH_SIZE Write Integer that identifies the number of INSERT operations to batch to the external

SQL database. Write batching is enabled by default; the default value is 100.

FETCH_SIZE Read Integer that identifies the number of rows to buffer when reading from an

external SQL database. Read row batching is enabled by default. The default

read fetch size for MySQL is -2147483648 (Integer.MIN_VALUE). The default read

fetch size for all other databases is 1000.

QUERY_TIMEOUT Read/Write Integer that identifies the amount of time (in seconds) that the JDBC driver waits

for a statement to execute. The default wait time is infinite.

POOL_SIZE Write Enable thread pooling on INSERT operations and identify the number of threads

in the pool. Thread pooling is disabled by default.

PARTITION_BY Read Enables read partitioning. The partition column, <column-name>:<column-

type>. You may specify only one partition column. The JDBC connector

supports date, int, and enum <column-type> values, where int represents any

JDBC integral type. If you do not identify a PARTITION_BY column, a single PXF

instance services the read request.

RANGE Read Required when PARTITION_BY is specified. The query range; used as a hint to aid

the creation of partitions. The RANGE format is dependent upon the data type of

the partition column. When the partition column is an enum type, RANGE must

specify a list of values, <value>:<value>[:<value>[…]], each of which forms its

own fragment. If the partition column is an int or date type, RANGE must specify

<start-value>:<end-value> and represents the interval from <start-value>

through <end-value>, inclusive. The RANGE for an int partition column may span

any 64-bit signed integer values. If the partition column is a date type, use the

yyyy-MM-dd date format.

INTERVAL Read Required when PARTITION_BY is specified and of the int, bigint, or date type.

The interval, <interval-value>[:<interval-unit>], of one fragment. Used with

RANGE as a hint to aid the creation of partitions. Specify the size of the fragment

in <interval-value>. If the partition column is a date type, use the <interval-unit>

to specify year, month, or day. PXF ignores INTERVAL when the PARTITION_BY

column is of the enum type.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 204

Option Name Operation Description

QUOTE_COLUMNS Read Controls whether PXF should quote column names when constructing an SQL

query to the external database. Specify true to force PXF to quote all column

names; PXF does not quote column names if any other value is provided. If

QUOTE_COLUMNS is not specified (the default), PXF automatically quotes all

column names in the query when any column name:

- includes special characters, or

- is mixed case and the external database does not support unquoted mixed

case identifiers.

Batching Insert Operations (Write)

When the JDBC driver of the external SQL database supports it, batching of INSERT operations may

significantly increase performance.

Write batching is enabled by default, and the default batch size is 100. To disable batching or to

modify the default batch size value, create the PXF external table with a BATCH_SIZE setting:

BATCH_SIZE=0 or BATCH_SIZE=1 - disables batching

BATCH_SIZE=(n>1) - sets the BATCH_SIZE to n

When the external database JDBC driver does not support batching, the behaviour of the PXF JDBC

connector depends on the BATCH_SIZE setting as follows:

BATCH_SIZE omitted - The JDBC connector inserts without batching.

BATCH_SIZE=(n>1) - The INSERT operation fails and the connector returns an error.

Batching on Read Operations

By default, the PXF JDBC connector automatically batches the rows it fetches from an external

database table. The default row fetch size is 1000. To modify the default fetch size value, specify a

FETCH_SIZE when you create the PXF external table. For example:

FETCH_SIZE=5000

If the external database JDBC driver does not support batching on read, you must explicitly disable

read row batching by setting FETCH_SIZE=0.

Thread Pooling (Write)

The PXF JDBC connector can further increase write performance by processing INSERT operations

in multiple threads when threading is supported by the JDBC driver of the external SQL database.

Consider using batching together with a thread pool. When used together, each thread receives and

processes one complete batch of data. If you use a thread pool without batching, each thread in the

pool receives exactly one tuple.

The JDBC connector returns an error when any thread in the thread pool fails. Be aware that if an

INSERT operation fails, some data may be written to the external database table.

To disable or enable a thread pool and set the pool size, create the PXF external table with a

POOL_SIZE setting as follows:

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 205

POOL_SIZE=(n<1) - thread pool size is the number of CPUs in the system

POOL_SIZE=1 - disable thread pooling

POOL_SIZE=(n>1)- set the POOL_SIZE to n

Partitioning (Read)

The PXF JDBC connector supports simultaneous read access from PXF instances running on

multiple Greenplum Database hosts to an external SQL table. This feature is referred to as

partitioning. Read partitioning is not enabled by default. To enable read partitioning, set the

PARTITION_BY, RANGE, and INTERVAL custom options when you create the PXF external table.

PXF uses the RANGE and INTERVAL values and the PARTITON_BY column that you specify to assign

specific data rows in the external table to PXF instances running on the Greenplum Database

segment hosts. This column selection is specific to PXF processing, and has no relationship to a

partition column that you may have specified for the table in the external SQL database.

Example JDBC <custom-option> substrings that identify partitioning parameters:

&PARTITION_BY=id:int&RANGE=1:100&INTERVAL=5

&PARTITION_BY=year:int&RANGE=2011:2013&INTERVAL=1

&PARTITION_BY=createdate:date&RANGE=2013-01-01:2016-01-01&INTERVAL=1:month

&PARTITION_BY=color:enum&RANGE=red:yellow:blue

When you enable partitioning, the PXF JDBC connector splits a SELECT query into multiple

subqueries that retrieve a subset of the data, each of which is called a fragment. The JDBC

connector automatically adds extra query constraints (WHERE expressions) to each fragment to

guarantee that every tuple of data is retrieved from the external database exactly once.

For example, when a user queries a PXF external table created with a LOCATION clause that specifies

&PARTITION_BY=id:int&RANGE=1:5&INTERVAL=2, PXF generates 5 fragments: two according to the

partition settings and up to three implicitly generated fragments. The constraints associated with each

fragment are as follows:

Fragment 1: WHERE (id < 1) - implicitly-generated fragment for RANGE start-bounded

interval

Fragment 2: WHERE (id >= 1) AND (id < 3) - fragment specified by partition settings

Fragment 3: WHERE (id >= 3) AND (id < 5) - fragment specified by partition settings

Fragment 4: WHERE (id >= 5) - implicitly-generated fragment for RANGE end-bounded

interval

Fragment 5: WHERE (id IS NULL) - implicitly-generated fragment

PXF distributes the fragments among Greenplum Database segments. A PXF instance running on a

segment host spawns a thread for each segment on that host that services a fragment. If the number

of fragments is less than or equal to the number of Greenplum segments configured on a segment

host, a single PXF instance may service all of the fragments. Each PXF instance sends its results back

to Greenplum Database, where they are collected and returned to the user.

When you specify the PARTITION_BY option, tune the INTERVAL value and unit based upon the

optimal number of JDBC connections to the target database and the optimal distribution of external

data across Greenplum Database segments. The INTERVAL low boundary is driven by the number of

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 206

Greenplum Database segments while the high boundary is driven by the acceptable number of

JDBC connections to the target database. The INTERVAL setting influences the number of fragments,

and should ideally not be set too high nor too low. Testing with multiple values may help you select

the optimal settings.

Examples

Refer to the following topics for examples on how to use PXF to read data from and write data to

specific SQL databases:

Reading From and Writing to a PostgreSQL Table

Reading From and Writing to a MySQL Table

Reading From and Writing to an Oracle Table

Reading From and Writing to a Trino Table

About Using Named Queries

The PXF JDBC Connector allows you to specify a statically-defined query to run against the remote

SQL database. Consider using a named query when:

You need to join several tables that all reside in the same external database.

You want to perform complex aggregation closer to the data source.

You would use, but are not allowed to create, a VIEW in the external database.

You would rather consume computational resources in the external system to minimize

utilization of Greenplum Database resources.

You want to run a HIVE query and control resource utilization via YARN.

The Greenplum Database administrator defines a query and provides you with the query name to

use when you create the external table. Instead of a table name, you specify query:<query_name> in

the CREATE EXTERNAL TABLE LOCATION clause to instruct the PXF JDBC connector to run the static

query named <query_name> in the remote SQL database.

PXF supports named queries only with readable external tables. You must create a unique

Greenplum Database readable external table for each query that you want to run.

The names and types of the external table columns must exactly match the names, types, and order

of the columns return by the query result. If the query returns the results of an aggregation or other

function, be sure to use the AS qualifier to specify a specific column name.

For example, suppose that you are working with PostgreSQL tables that have the following

definitions:

CREATE TABLE customers(id int, name text, city text, state text);

CREATE TABLE orders(customer_id int, amount int, month int, year int);

And this PostgreSQL query that the administrator named order_rpt:

SELECT c.name, sum(o.amount) AS total, o.month

 FROM customers c JOIN orders o ON c.id = o.customer_id

 WHERE c.state = 'CO'

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 207

GROUP BY c.name, o.month

This query returns tuples of type (name text, total int, month int). If the order_rpt query is

defined for the PXF JDBC server named pgserver, you could create a Greenplum Database external

table to read these query results as follows:

CREATE EXTERNAL TABLE orderrpt_frompg(name text, total int, month int)

 LOCATION ('pxf://query:order_rpt?PROFILE=jdbc&SERVER=pgserver&PARTITION_BY=month:int

&RANGE=1:13&INTERVAL=3')

FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import');

This command references a query named order_rpt defined in the pgserver server configuration. It

also specifies JDBC read partitioning options that provide PXF with the information that it uses to

split/partition the query result data across its servers/segments.

For a more detailed example see Example: Using a Named Query with PostgreSQL.

The PXF JDBC connector automatically applies column projection and filter pushdown to external

tables that reference named queries.

Overriding the JDBC Server Configuration with DDL

You can override certain properties in a JDBC server configuration for a specific external database

table by directly specifying the custom option in the CREATE EXTERNAL TABLE LOCATION clause:

Custom Option Name jdbc-site.xml Property Name

JDBC_DRIVER jdbc.driver

DB_URL jdbc.url

USER jdbc.user

PASS jdbc.password

BATCH_SIZE jdbc.statement.batchSize

FETCH_SIZE jdbc.statement.fetchSize

QUERY_TIMEOUT jdbc.statement.queryTimeout

Example JDBC connection strings specified via custom options:

&JDBC_DRIVER=org.postgresql.Driver&DB_URL=jdbc:postgresql://pgserverhost:5432/pgtestdb

&USER=pguser1&PASS=changeme

&JDBC_DRIVER=com.mysql.jdbc.Driver&DB_URL=jdbc:mysql://mysqlhost:3306/testdb&USER=user

1&PASS=changeme

For example:

CREATE EXTERNAL TABLE pxf_pgtbl(name text, orders int)

 LOCATION ('pxf://public.forpxf_table1?PROFILE=jdbc&JDBC_DRIVER=org.postgresql.Driver&DB

_URL=jdbc:postgresql://pgserverhost:5432/pgtestdb&USER=pxfuser1&PASS=changeme')

FORMAT 'CUSTOM' (FORMATTER='pxfwritable_export');

Credentials that you provide in this manner are visible as part of the external table definition. Do not

use this method of passing credentials in a production environment.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 208

Refer to Configuration Property Precedence for detailed information about the precedence rules

that PXF uses to obtain configuration property settings for a Greenplum Database user.

Example: Reading From and Writing to a PostgreSQL Table

In this example, you:

Create a PostgreSQL database and table, and insert data into the table

Create a PostgreSQL user and assign all privileges on the table to the user

Configure the PXF JDBC connector to access the PostgreSQL database

Create a PXF readable external table that references the PostgreSQL table

Read the data in the PostgreSQL table using PXF

Create a PXF writable external table that references the PostgreSQL table

Write data to the PostgreSQL table using PXF

Read the data in the PostgreSQL table again

Create a PostgreSQL Table

Perform the following steps to create a PostgreSQL table named forpxf_table1 in the public

schema of a database named pgtestdb, and grant a user named pxfuser1 all privileges on this table:

1. Identify the host name and port of your PostgreSQL server.

2. Connect to the default PostgreSQL database as the postgres user. For example, if your

PostgreSQL server is running on the default port on the host named pserver:

$ psql -U postgres -h pserver

3. Create a PostgreSQL database named pgtestdb and connect to this database:

=# CREATE DATABASE pgtestdb;

=# \connect pgtestdb;

4. Create a table named forpxf_table1 and insert some data into this table:

=# CREATE TABLE forpxf_table1(id int);

=# INSERT INTO forpxf_table1 VALUES (1);

=# INSERT INTO forpxf_table1 VALUES (2);

=# INSERT INTO forpxf_table1 VALUES (3);

5. Create a PostgreSQL user named pxfuser1:

=# CREATE USER pxfuser1 WITH PASSWORD 'changeme';

6. Assign user pxfuser1 all privileges on table forpxf_table1, and exit the psql subsystem:

=# GRANT ALL ON forpxf_table1 TO pxfuser1;

=# \q

With these privileges, pxfuser1 can read from and write to the forpxf_table1 table.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 209

7. Update the PostgreSQL configuration to allow user pxfuser1 to access pgtestdb from each

Greenplum Database host. This configuration is specific to your PostgreSQL environment.

You will update the /var/lib/pgsql/pg_hba.conf file and then restart the PostgreSQL

server.

Configure the JDBC Connector

You must create a JDBC server configuration for PostgreSQL and synchronize the PXF

configuration. The PostgreSQL JAR file is bundled with PXF, so there is no need to manually

download it.

This procedure will typically be performed by the Greenplum Database administrator.

1. Log in to the Greenplum Database master node:

$ ssh gpadmin@<gpmaster>

2. Create a JDBC server configuration for PostgreSQL as described in Example Configuration

Procedure, naming the server directory pgsrvcfg. The jdbc-site.xml file contents should

look similar to the following (substitute your PostgreSQL host system for pgserverhost):

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

<property>

 <name>jdbc.driver</name>

 <value>org.postgresql.Driver</value>

</property>

<property>

 <name>jdbc.url</name>

 <value>jdbc:postgresql://pgserverhost:5432/pgtestdb</value>

</property>

<property>

 <name>jdbc.user</name>

 <value>pxfuser1</value>

</property>

<property>

 <name>jdbc.password</name>

 <value>changeme</value>

</property>

</configuration>

3. Synchronize the PXF server configuration to the Greenplum Database cluster:

gpadmin@gpmaster$ pxf cluster sync

Read from the PostgreSQL Table

Perform the following procedure to create a PXF external table that references the forpxf_table1

PostgreSQL table that you created in the previous section, and reads the data in the table:

1. Create the PXF external table specifying the jdbc profile. For example:

gpadmin=# CREATE EXTERNAL TABLE pxf_tblfrompg(id int)

 LOCATION ('pxf://public.forpxf_table1?PROFILE=jdbc&SERVER=pgsrvcfg'

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 210

)

 FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import');

2. Display all rows of the pxf_tblfrompg table:

gpadmin=# SELECT * FROM pxf_tblfrompg;

 id

 1

 2

 3

(3 rows)

Write to the PostgreSQL Table

Perform the following procedure to insert some data into the forpxf_table1 Postgres table and then

read from the table. You must create a new external table for the write operation.

1. Create a writable PXF external table specifying the jdbc profile. For example:

gpadmin=# CREATE WRITABLE EXTERNAL TABLE pxf_writeto_postgres(id int)

 LOCATION ('pxf://public.forpxf_table1?PROFILE=jdbc&SERVER=pgsrvcfg'

)

 FORMAT 'CUSTOM' (FORMATTER='pxfwritable_export');

2. Insert some data into the pxf_writeto_postgres table. For example:

=# INSERT INTO pxf_writeto_postgres VALUES (111);

=# INSERT INTO pxf_writeto_postgres VALUES (222);

=# INSERT INTO pxf_writeto_postgres VALUES (333);

3. Use the pxf_tblfrompg readable external table that you created in the previous section to

view the new data in the forpxf_table1 PostgreSQL table:

gpadmin=# SELECT * FROM pxf_tblfrompg ORDER BY id DESC;

 id

 333

 222

 111

 3

 2

 1

(6 rows)

Example: Reading From and Writing to a MySQL Table

In this example, you:

Create a MySQL database and table, and insert data into the table

Create a MySQL user and assign all privileges on the table to the user

Configure the PXF JDBC connector to access the MySQL database

Create a PXF readable external table that references the MySQL table

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 211

Read the data in the MySQL table using PXF

Create a PXF writable external table that references the MySQL table

Write data to the MySQL table using PXF

Read the data in the MySQL table again

Create a MySQL Table

Perform the following steps to create a MySQL table named names in a database named

mysqltestdb, and grant a user named mysql-user all privileges on this table:

1. Identify the host name and port of your MySQL server.

2. Connect to the default MySQL database as the root user:

$ mysql -u root -p

3. Create a MySQL database named mysqltestdb and connect to this database:

> CREATE DATABASE mysqltestdb;

> USE mysqltestdb;

4. Create a table named names and insert some data into this table:

> CREATE TABLE names (id int, name varchar(64), last varchar(64));

> INSERT INTO names values (1, 'John', 'Smith'), (2, 'Mary', 'Blake');

5. Create a MySQL user named mysql-user and assign the password my-secret-pw to it:

> CREATE USER 'mysql-user' IDENTIFIED BY 'my-secret-pw';

6. Assign user mysql-user all privileges on table names, and exit the mysql subsystem:

> GRANT ALL PRIVILEGES ON mysqltestdb.names TO 'mysql-user';

> exit

With these privileges, mysql-user can read from and write to the names table.

Configure the MySQL Connector

You must create a JDBC server configuration for MySQL, download the MySQL driver JAR file to

your system, copy the JAR file to the PXF user configuration directory, synchronize the PXF

configuration, and then restart PXF.

This procedure will typically be performed by the Greenplum Database administrator.

1. Log in to the Greenplum Database master node:

$ ssh gpadmin@<gpmaster>

2. Download the MySQL JDBC driver and place it under $PXF_BASE/lib. If you relocated

$PXF_BASE, make sure you use the updated location. You can download a MySQL JDBC

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 212

driver from your preferred download location. The following example downloads the driver

from Maven Central and places it under $PXF_BASE/lib:

1. If you did not relocate $PXF_BASE, run the following from the Greenplum master:

gpadmin@gpmaster$ cd /usr/local/pxf-gp<version>/lib

gpadmin@gpmaster$ wget https://repo1.maven.org/maven2/mysql/mysql-connect

or-java/8.0.21/mysql-connector-java-8.0.21.jar

2. If you relocated $PXF_BASE, run the following from the Greenplum master:

gpadmin@gpmaster$ cd $PXF_BASE/lib

gpadmin@gpmaster$ wget https://repo1.maven.org/maven2/mysql/mysql-connect

or-java/8.0.21/mysql-connector-java-8.0.21.jar

3. Synchronize the PXF configuration, and then restart PXF:

gpadmin@gpmaster$ pxf cluster sync

gpadmin@gpmaster$ pxf cluster restart

4. Create a JDBC server configuration for MySQL as described in Example Configuration

Procedure, naming the server directory mysql. The jdbc-site.xml file contents should look

similar to the following (substitute your MySQL host system for mysqlserverhost):

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <property>

 <name>jdbc.driver</name>

 <value>com.mysql.jdbc.Driver</value>

 <description>Class name of the JDBC driver</description>

 </property>

 <property>

 <name>jdbc.url</name>

 <value>jdbc:mysql://mysqlserverhost:3306/mysqltestdb</value>

 <description>The URL that the JDBC driver can use to connect to the dat

abase</description>

 </property>

 <property>

 <name>jdbc.user</name>

 <value>mysql-user</value>

 <description>User name for connecting to the database</description>

 </property>

 <property>

 <name>jdbc.password</name>

 <value>my-secret-pw</value>

 <description>Password for connecting to the database</description>

 </property>

</configuration>

5. Synchronize the PXF server configuration to the Greenplum Database cluster:

gpadmin@gpmaster$ pxf cluster sync

Read from the MySQL Table

Perform the following procedure to create a PXF external table that references the names MySQL

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 213

table that you created in the previous section, and reads the data in the table:

1. Create the PXF external table specifying the jdbc profile. For example:

gpadmin=# CREATE EXTERNAL TABLE names_in_mysql (id int, name text, last text)

 LOCATION('pxf://names?PROFILE=jdbc&SERVER=mysql')

 FORMAT 'CUSTOM' (formatter='pxfwritable_import');

2. Display all rows of the names_in_mysql table:

gpadmin=# SELECT * FROM names_in_mysql;

 id | name | last

----+-----------+----------

 1 | John | Smith

 2 | Mary | Blake

(2 rows)

Write to the MySQL Table

Perform the following procedure to insert some data into the names MySQL table and then read from

the table. You must create a new external table for the write operation.

1. Create a writable PXF external table specifying the jdbc profile. For example:

gpadmin=# CREATE WRITABLE EXTERNAL TABLE names_in_mysql_w (id int, name text, l

ast text)

 LOCATION('pxf://names?PROFILE=jdbc&SERVER=mysql')

 FORMAT 'CUSTOM' (formatter='pxfwritable_export');

2. Insert some data into the names_in_mysql_w table. For example:

=# INSERT INTO names_in_mysql_w VALUES (3, 'Muhammad', 'Ali');

3. Use the names_in_mysql readable external table that you created in the previous section to

view the new data in the names MySQL table:

gpadmin=# SELECT * FROM names_in_mysql;

 id | name | last

----+------------+--------

 1 | John | Smith

 2 | Mary | Blake

 3 | Muhammad | Ali

(3 rows)

Example: Reading From and Writing to an Oracle Table

In this example, you:

Create an Oracle user and assign all privileges on the table to the user

Create an Oracle table, and insert data into the table

Configure the PXF JDBC connector to access the Oracle database

Create a PXF readable external table that references the Oracle table

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 214

Read the data in the Oracle table using PXF

Create a PXF writable external table that references the Oracle table

Write data to the Oracle table using PXF

Read the data in the Oracle table again

Create an Oracle Table

Perform the following steps to create an Oracle table named countries in the schema oracleuser,

and grant a user named oracleuser all the necessary privileges:

1. Identify the host name and port of your Oracle server.

2. Connect to the Oracle database as the system user:

$ sqlplus system

3. Create a user named oracleuser and assign the password mypassword to it:

> CREATE USER oracleuser IDENTIFIED BY mypassword;

4. Assign user oracleuser enough privileges to login, create and modify a table:

> GRANT CREATE SESSION TO oracleuser;

> GRANT CREATE TABLE TO oracleuser;

> GRANT UNLIMITED TABLESPACE TO oracleuser;

> exit

5. Log in as user oracleuser:

$ sqlplus oracleuser

6. Create a table named countries, insert some data into this table, and commit the transaction:

> CREATE TABLE countries (country_id int, country_name varchar(40), population

float);

> INSERT INTO countries (country_id, country_name, population) values (3, 'Port

ugal', 10.28);

> INSERT INTO countries (country_id, country_name, population) values (24, 'Zam

bia', 17.86);

> COMMIT;

Configure the Oracle Connector

You must create a JDBC server configuration for Oracle, download the Oracle driver JAR file to your

system, copy the JAR file to the PXF user configuration directory, synchronize the PXF

configuration, and then restart PXF.

This procedure will typically be performed by the Greenplum Database administrator.

1. Download the Oracle JDBC driver and place it under $PXF_BASE/lib of your Greenplum

Database master host. If you relocated $PXF_BASE, make sure you use the updated

location. You can download a Oracle JDBC driver from your preferred download location.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 215

The following example places a driver downloaded from Oracle webiste under

$PXF_BASE/lib of the Greenplum Database master:

1. If you did not relocate $PXF_BASE, run the following from the Greenplum master:

gpadmin@gpmaster$ scp ojdbc10.jar gpadmin@gpmaster:/usr/local/pxf-gp<vers

ion>/lib/

2. If you relocated $PXF_BASE, run the following from the Greenplum master:

gpadmin@gpmaster$ scp ojdbc10.jar gpadmin@gpmaster:$PXF_BASE/lib/

2. Synchronize the PXF configuration, and then restart PXF:

gpadmin@gpmaster$ pxf cluster sync

gpadmin@gpmaster$ pxf cluster restart

3. Create a JDBC server configuration for Oracle as described in Example Configuration

Procedure, naming the server directory oracle. The jdbc-site.xml file contents should look

similar to the following (substitute your Oracle host system for oracleserverhost, and the

value of your Oracle service name for orcl):

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <property>

 <name>jdbc.driver</name>

 <value>oracle.jdbc.driver.OracleDriver</value>

 <description>Class name of the JDBC driver</description>

 </property>

 <property>

 <name>jdbc.url</name>

 <value>jdbc:oracle:thin:@oracleserverhost:1521/orcl</value>

 <description>The URL that the JDBC driver can use to connect to the dat

abase</description>

 </property>

 <property>

 <name>jdbc.user</name>

 <value>oracleuser</value>

 <description>User name for connecting to the database</description>

 </property>

 <property>

 <name>jdbc.password</name>

 <value>mypassword</value>

 <description>Password for connecting to the database</description>

 </property>

</configuration>

4. Synchronize the PXF server configuration to the Greenplum Database cluster:

gpadmin@gpmaster$ pxf cluster sync

Read from the Oracle Table

Perform the following procedure to create a PXF external table that references the countries Oracle

table that you created in the previous section, and reads the data in the table:

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 216

1. Create the PXF external table specifying the jdbc profile. For example:

gpadmin=# CREATE EXTERNAL TABLE oracle_countries (country_id int, country_name

varchar, population float)

 LOCATION('pxf://oracleuser.countries?PROFILE=jdbc&SERVER=oracle')

 FORMAT 'CUSTOM' (formatter='pxfwritable_import');

2. Display all rows of the oracle_countries table:

gpadmin=# SELECT * FROM oracle_countries ;

country_id | country_name | population

-----------+--------------+------------

 3 | Portugal | 10.28

 24 | Zambia | 17.86

(2 rows)

Write to the Oracle Table

Perform the following procedure to insert some data into the countries Oracle table and then read

from the table. You must create a new external table for the write operation.

1. Create a writable PXF external table specifying the jdbc profile. For example:

gpadmin=# CREATE WRITABLE EXTERNAL TABLE oracle_countries_write (country_id int

, country_name varchar, population float)

 LOCATION('pxf://oracleuser.countries?PROFILE=jdbc&SERVER=oracle')

 FORMAT 'CUSTOM' (formatter='pxfwritable_export');

2. Insert some data into the oracle_countries_write table. For example:

gpadmin=# INSERT INTO oracle_countries_write VALUES (66, 'Colombia', 50.34);

3. Use the oracle_countries readable external table that you created in the previous section to

view the new data in the countries Oracle table:

gpadmin=# SELECT * FROM oracle_countries;

country_id | country_name | population

------------+--------------+------------

 3 | Portugal | 10.28

 24 | Zambia | 17.86

 66 | Colombia | 50.34

(3 rows)

Example: Reading From and Writing to a Trino (formerly
Presto SQL) Table

In this example, you:

Create an in-memory Trino table and insert data into the table

Configure the PXF JDBC connector to access the Trino database

Create a PXF readable external table that references the Trino table

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 217

Read the data in the Trino table using PXF

Create a PXF writable external table the references the Trino table

Write data to the Trino table using PXF

Read the data in the Trino table again

Create a Trino Table

This example assumes that your Trino server has been configured with the included memory

connector. See Trino Documentation - Memory Connector for instructions on configuring this

connector.

Create a Trino table named names and insert some data into this table:

> CREATE TABLE memory.default.names(id int, name varchar, last varchar);

> INSERT INTO memory.default.names(1, 'John', 'Smith'), (2, 'Mary', 'Blake');

Configure the Trino Connector

You must create a JDBC server configuration for Trino, download the Trino driver JAR file to your

system, copy the JAR file to the PXF user configuration directory, synchronize the PXF

configuration, and then restart PXF.

This procedure will typically be performed by the Greenplum Database administrator.

1. Log in to the Greenplum Database master node:

$ ssh gpadmin@<gpmaster>

2. Download the Trino JDBC driver and place it under $PXF_BASE/lib. If you relocated

$PXF_BASE, make sure you use the updated location. See Trino Documentation - JDBC

Driver for instructions on downloading the Trino JDBC driver. The following example

downloads the driver and places it under $PXF_BASE/lib:

1. If you did not relocate $PXF_BASE, run the following from the Greenplum master:

gpadmin@gpmaster$ cd /usr/local/pxf-gp<version>/lib

gpadmin@gpmaster$ wget <url-to-trino-jdbc-driver>

2. If you relocated $PXF_BASE, run the following from the Greenplum master:

gpadmin@gpmaster$ cd $PXF_BASE/lib

gpadmin@gpmaster$ wget <url-to-trino-jdbc-driver>

3. Synchronize the PXF configuration, and then restart PXF:

gpadmin@gpmaster$ pxf cluster sync

gpadmin@gpmaster$ pxf cluster restart

4. Create a JDBC server configuration for Trino as described in Example Configuration

Procedure, naming the server directory trino. The jdbc-site.xml file contents should look

similar to the following (substitute your Trino host system for trinoserverhost):

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 218

https://trino.io/docs/current/connector/memory.html
https://trino.io/docs/current/installation/jdbc.html

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <property>

 <name>jdbc.driver</name>

 <value>io.trino.jdbc.TrinoDriver</value>

 <description>Class name of the JDBC driver</description>

 </property>

 <property>

 <name>jdbc.url</name>

 <value>jdbc:trino://trinoserverhost:8443</value>

 <description>The URL that the JDBC driver can use to connect to the dat

abase</description>

 </property>

 <property>

 <name>jdbc.user</name>

 <value>trino-user</value>

 <description>User name for connecting to the database</description>

 </property>

 <property>

 <name>jdbc.password</name>

 <value>trino-pw</value>

 <description>Password for connecting to the database</description>

 </property>

 <!-- Connection properties -->

 <property>

 <name>jdbc.connection.property.SSL</name>

 <value>true</value>

 <description>Use HTTPS for connections; authentication using username/p

assword requires SSL to be enabled.</description>

 </property>

</configuration>

5. If your Trino server has been configured with a Globally Trusted Certificate, you can skip this

step. If your Trino server has been configured to use Corporate trusted certificates or

Generated self-signed certificates, PXF will need a copy of the server’s certificate in a PEM-

encoded file or a Java Keystore (JKS) file.

Note: You do not need the Trino server’s private key.

Copy the certificate to $PXF_BASE/servers/trino; storing the server’s certificate inside

$PXF_BASE/servers/trino ensures that pxf cluster sync copies the certificate to all

segment hosts.

$ cp <path-to-trino-server-certificate> /usr/local/pxf-gp<version>/servers/trin

o

Add the following connection properties to the jdbc-site.xml file that you created in the

previous step. Here, trino.cert is the name of the certificate file that you copied into

$PXF_BASE/servers/trino:

<configuration>

...

 <property>

 <name>jdbc.connection.property.SSLTrustStorePath</name>

 <value>/usr/local/pxf-gp<version>/servers/trino/trino.cert</value>

 <description>The location of the Java TrustStore file that will be used

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 219

https://trino.io/docs/current/security/tls.html#add-a-tls-certificate

 to validate HTTPS server certificates.</description>

 </property>

 <!-- the following property is only required if the server's certificate is

 stored in a JKS file; if using a PEM-encoded file, it should be omitted.-->

 <!--

 <property>

 <name>jdbc.connection.property.SSLTrustStorePassword</name>

 <value>java-keystore-password</value>

 <description>The password for the TrustStore.</description>

 </property>

 -->

</configuration>

6. Synchronize the PXF server configuration to the Greenplum Database cluster:

gpadmin@gpmaster$ pxf cluster sync

Read from a Trino Table

Perform the following procedure to create a PXF external table that references the names Trino table

and reads the data in the table:

1. Create the PXF external table specifying the jdbc profile. Specify the Trino catalog and

schema in the LOCATION URL. The following example reads the names table located in the

default schema of the memory catalog:

CREATE EXTERNAL TABLE pxf_trino_memory_names (id int, name text, last text)

LOCATION('pxf://memory.default.names?PROFILE=jdbc&SERVER=trino')

FORMAT 'CUSTOM' (formatter='pxfwritable_import');

2. Display all rows of the pxf_trino_memory_names table:

gpadmin=# SELECT * FROM pxf_trino_memory_names;

 id | name | last

----+------+-------

 1 | John | Smith

 2 | Mary | Blake

(2 rows)

Write to the Trino Table

Perform the following procedure to insert some data into the names Trino table and then read from

the table. You must create a new external table for the write operation.

1. Create a writable PXF external table specifying the jdbc profile. For example:

gpadmin=# CREATE WRITABLE EXTERNAL TABLE pxf_trino_memory_names_w (id int, name

 text, last text)

 LOCATION('pxf://memory.default.names?PROFILE=jdbc&SERVER=trino')

 FORMAT 'CUSTOM' (formatter='pxfwritable_export');

2. Insert some data into the pxf_trino_memory_names_w table. For example:

gpadmin=# INSERT INTO pxf_trino_memory_names_w VALUES (3, 'Muhammad', 'Ali');

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 220

3. Use the pxf_trino_memory_names readable external table that you created in the previous

section to view the new data in the names Trino table:

gpadmin=# SELECT * FROM pxf_trino_memory_names;

 id | name | last

----+----------+-------

 1 | John | Smith

 2 | Mary | Blake

 3 | Muhammad | Ali

(3 rows)

Example: Using a Named Query with PostgreSQL

In this example, you:

Use the PostgreSQL database pgtestdb, user pxfuser1, and PXF JDBC connector server

configuration pgsrvcfg that you created in Example: Reading From and Writing to a

PostgreSQL Database.

Create two PostgreSQL tables and insert data into the tables.

Assign all privileges on the tables to pxfuser1.

Define a named query that performs a complex SQL statement on the two PostgreSQL

tables, and add the query to the pgsrvcfg JDBC server configuration.

Create a PXF readable external table definition that matches the query result tuple and also

specifies read partitioning options.

Read the query results, making use of PXF column projection and filter pushdown.

Create the PostgreSQL Tables and Assign Permissions

Perform the following procedure to create PostgreSQL tables named customers and orders in the

public schema of the database named pgtestdb, and grant the user named pxfuser1 all privileges

on these tables:

1. Identify the host name and port of your PostgreSQL server.

2. Connect to the pgtestdb PostgreSQL database as the postgres user. For example, if your

PostgreSQL server is running on the default port on the host named pserver:

$ psql -U postgres -h pserver -d pgtestdb

3. Create a table named customers and insert some data into this table:

CREATE TABLE customers(id int, name text, city text, state text);

INSERT INTO customers VALUES (111, 'Bill', 'Helena', 'MT');

INSERT INTO customers VALUES (222, 'Mary', 'Athens', 'OH');

INSERT INTO customers VALUES (333, 'Tom', 'Denver', 'CO');

INSERT INTO customers VALUES (444, 'Kate', 'Helena', 'MT');

INSERT INTO customers VALUES (555, 'Harry', 'Columbus', 'OH');

INSERT INTO customers VALUES (666, 'Kim', 'Denver', 'CO');

INSERT INTO customers VALUES (777, 'Erik', 'Missoula', 'MT');

INSERT INTO customers VALUES (888, 'Laura', 'Athens', 'OH');

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 221

INSERT INTO customers VALUES (999, 'Matt', 'Aurora', 'CO');

4. Create a table named orders and insert some data into this table:

CREATE TABLE orders(customer_id int, amount int, month int, year int);

INSERT INTO orders VALUES (111, 12, 12, 2018);

INSERT INTO orders VALUES (222, 234, 11, 2018);

INSERT INTO orders VALUES (333, 34, 7, 2018);

INSERT INTO orders VALUES (444, 456, 111, 2018);

INSERT INTO orders VALUES (555, 56, 11, 2018);

INSERT INTO orders VALUES (666, 678, 12, 2018);

INSERT INTO orders VALUES (777, 12, 9, 2018);

INSERT INTO orders VALUES (888, 120, 10, 2018);

INSERT INTO orders VALUES (999, 120, 11, 2018);

5. Assign user pxfuser1 all privileges on tables customers and orders, and then exit the psql

subsystem:

GRANT ALL ON customers TO pxfuser1;

GRANT ALL ON orders TO pxfuser1;

\q

Configure the Named Query

In this procedure you create a named query text file, add it to the pgsrvcfg JDBC server

configuration, and synchronize the PXF configuration to the Greenplum Database cluster.

This procedure will typically be performed by the Greenplum Database administrator.

1. Log in to the Greenplum Database master node:

$ ssh gpadmin@<gpmaster>

2. Navigate to the JDBC server configuration directory pgsrvcfg. For example:

gpadmin@gpmaster$ cd $PXF_BASE/servers/pgsrvcfg

3. Open a query text file named pg_order_report.sql in a text editor and copy/paste the

following query into the file:

SELECT c.name, c.city, sum(o.amount) AS total, o.month

 FROM customers c JOIN orders o ON c.id = o.customer_id

 WHERE c.state = 'CO'

GROUP BY c.name, c.city, o.month

4. Save the file and exit the editor.

5. Synchronize these changes to the PXF configuration to the Greenplum Database cluster:

gpadmin@gpmaster$ pxf cluster sync

Read the Query Results

Perform the following procedure on your Greenplum Database cluster to create a PXF external table

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 222

that references the query file that you created in the previous section, and then reads the query

result data:

1. Create the PXF external table specifying the jdbc profile. For example:

CREATE EXTERNAL TABLE pxf_queryres_frompg(name text, city text, total int, mont

h int)

 LOCATION ('pxf://query:pg_order_report?PROFILE=jdbc&SERVER=pgsrvcfg&PARTITION

_BY=month:int&RANGE=1:13&INTERVAL=3')

FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import');

With this partitioning scheme, PXF will issue 4 queries to the remote SQL database, one

query per quarter. Each query will return customer names and the total amount of all of their

orders in a given month, aggregated per customer, per month, for each month of the target

quarter. Greenplum Database will then combine the data into a single result set for you when

you query the external table.

2. Display all rows of the query result:

SELECT * FROM pxf_queryres_frompg ORDER BY city, total;

 name | city | total | month

------+--------+-------+-------

 Matt | Aurora | 120 | 11

 Tom | Denver | 34 | 7

 Kim | Denver | 678 | 12

(3 rows)

3. Use column projection to display the order total per city:

SELECT city, sum(total) FROM pxf_queryres_frompg GROUP BY city;

 city | sum

--------+-----

 Aurora | 120

 Denver | 712

(2 rows)

When you execute this query, PXF requests and retrieves query results for only the city

and total columns, reducing the amount of data sent back to Greenplum Database.

4. Provide additional filters and aggregations to filter the total in PostgreSQL:

SELECT city, sum(total) FROM pxf_queryres_frompg

 WHERE total > 100

 GROUP BY city;

 city | sum

--------+-----

 Denver | 678

 Aurora | 120

(2 rows)

In this example, PXF will add the WHERE filter to the subquery. This filter is pushed to and

executed on the remote database system, reducing the amount of data that PXF sends back

to Greenplum Database. The GROUP BY aggregation, however, is not pushed to the remote

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 223

and is performed by Greenplum.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 224

Accessing Files on a Network File System
with PXF

You can use PXF to read data that resides on a network file system mounted on your Greenplum

Database hosts. PXF supports reading and writing the following file types from a network file system:

File Type Profile Name Operations Supported

delimited single line text file:text read, write

delimited single line comma-separated values of text file:csv read, write

delimited text with quoted linefeeds file:text:multi read

Avro file:avro read, write

JSON file:json read

ORC file:orc read, write

Parquet file:parquet read, write

PXF does not support user impersonation when you access a network file system. PXF accesses a

file as the operating system user that started the PXF process, usually gpadmin.

Reading from, and writing to (where supported), a file of these types on a network file system is

similar to reading/writing the file type on Hadoop.

Prerequisites

Before you use PXF to access files on a network file system, ensure that:

You can identify the PXF runtime configuration directory ($PXF_BASE).

You have configured PXF, and PXF is running on each Greenplum Database host. See

Configuring PXF for additional information.

All files are accessible by gpadmin or by the operating system user that started the PXF

process.

The network file system is correctly mounted at the same local mount point on every

Greenplum Database host.

You can identify the mount or share point of the network file system.

You have created one or more named PXF server configurations as described in Configuring

a PXF Network File System Server.

Configuring a PXF Network File System Server

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 225

Before you use PXF to access a file on a network file system, you must create a server configuration

and then synchronize the PXF configuration to all Greenplum hosts. This procedure will typically be

performed by the Greenplum Database administrator.

Use the server template configuration file $PXF_HOME/templates/pxf-site.xml when you configure a

network file system server for PXF. This template file includes the mandatory property

pxf.fs.basePath that you configure to identify the network file system share path. PXF considers the

file path that you specify in a CREATE EXTERNAL TABLE LOCATION clause that uses this server to be

relative to this share path.

PXF does not support user impersonation when you access a network file system; you must explicitly

turn off user impersonation in a network file system server configuration.

1. Log in to the Greenplum Database master node:

$ ssh gpadmin@<gpmaster>

2. Choose a name for the file system server. You will provide the name to Greenplum users

that you choose to allow to read from or write to files on the network file system.

Note: The server name default is reserved.

3. Create the $PXF_BASE/servers/<server_name> directory. For example, use the following

command to create a file system server configuration named nfssrvcfg:

gpadmin@gpmaster$ mkdir $PXF_BASE/servers/nfssrvcfg

4. Copy the PXF pxf-site.xml template file to the nfssrvcfg server configuration directory. For

example:

gpadmin@gpmaster$ cp $PXF_HOME/templates/pxf-site.xml $PXF_BASE/servers/nfssrvc

fg/

5. Open the template server configuration file in the editor of your choice, and uncomment and

provide property values appropriate for your environment. For example, if the file system

share point is the directory named /mnt/extdata/pxffs, uncomment and set these server

properties:

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

...

 <property>

 <name>pxf.service.user.impersonation</name>

 <value>false</value>

 </property>

 <property>

 <name>pxf.fs.basePath</name>

 <value>/mnt/extdata/pxffs</value>

 </property>

...

</configuration>

6. Save your changes and exit the editor.

7. Synchronize the PXF server configuration to the Greenplum Database cluster:

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 226

gpadmin@gpmaster$ pxf cluster sync

Creating the External Table

The following syntax creates a Greenplum Database external table that references a file on a network

file system. Use the appropriate file:* profile for the file type that you want to access.

CREATE [READABLE | WRITABLE] EXTERNAL TABLE <table_name>

 (<column_name> <data_type> [, ...] | LIKE <other_table>)

LOCATION ('pxf://<file-path>?PROFILE=file:<file-type>[&SERVER=<server_name>][&<custom-

option>=<value>[...]]')

FORMAT '[TEXT|CSV|CUSTOM]' (<formatting-properties>);

The specific keywords and values used in the Greenplum Database CREATE EXTERNAL TABLE

command are described in the table below.

Keyword Value

<file‑path> The path to a directory or file on the network file system. PXF considers this file or path as

being relative to the pxf.fs.basePath property value specified in <server_name>’s server

configuration. <file‑path> must not specify a relative path nor include the dollar sign ($)

character.

PROFILE The PROFILE keyword value must specify a file:<file-type> identified in the table above.

SERVER=

<server_name>

The named server configuration that PXF uses to access the network file system. PXF uses

the default server if not specified.

<custom‑option>=

<value>

<custom-option> is profile-specific.

FORMAT <value> PXF profiles support the TEXT, CSV, and CUSTOM formats.

<formatting‑properties> Formatting properties supported by the profile; for example, the FORMATTER or delimiter.

The <custom-option>s, FORMAT, and <formatting‑properties> that you specify when accessing a file

on a network file system are dependent on the <file-type>. Refer to the Hadoop documentation for

the <file-type> of interest for these settings.

Example: Reading From and Writing to a CSV File on a
Network File System

This example assumes that you have configured and mounted a network file system with the share

point /mnt/extdata/pxffs on the Greenplum Database master, standby master, and on each

segment host.

In this example, you:

Create a CSV file on the network file system and add data to the file.

Configure a network file system server for the share point.

Create a PXF readable external table that references the directory containing the CSV file,

and read the data.

Create a PXF writable external table that references the directory containing the CSV file,

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 227

https://gpdb.docs.pivotal.io/latest/ref_guide/sql_commands/CREATE_EXTERNAL_TABLE.html

and write some data.

Read from the original readable external table again.

Create a CSV File

1. Create a directory (relative to the network file system share point) named

/mnt/extdata/pxffs/ex1:

gpadmin@gpmaster$ mkdir -p /mnt/extdata/pxffs/ex1

2. Create a CSV file named somedata.csv in the directory:

$ echo 'Prague,Jan,101,4875.33

Rome,Mar,87,1557.39

Bangalore,May,317,8936.99

Beijing,Jul,411,11600.67' > /mnt/extdata/pxffs/ex1/somedata.csv

Create the Network File System Server

Create a server configuration named nfssrvcfg with share point /mnt/extdata/pxffs as described in

Configuring a PXF Network File System Server.

Read Data

Perform the following procedure to create a PXF external table that references the ex1 directory that

you created in a previous section, and then read the data in the somedata.csv file in that directory:

1. Create a PXF external table that references ex1 and that specifies the file:text profile. For

example:

gpadmin=# CREATE EXTERNAL TABLE pxf_read_nfs(location text, month text, num_ord

ers int, total_sales float8)

 LOCATION ('pxf://ex1/?PROFILE=file:text&SERVER=nfssrvcfg')

 FORMAT 'CSV';

Because the nfssrvcfg server configuration pxf.fs.basePath property value is

/mnt/exdata/pxffs, PXF constructs the path /mnt/extdata/pxffs/ex1 to read the file.

2. Display all rows of the pxf_read_nfs table:

gpadmin=# SELECT * FROM pxf_read_nfs ORDER_BY num_orders DESC;

 location | month | num_orders | total_sales

-----------+-------+------------+-------------

 Beijing | Jul | 411 | 11600.67

 Bangalore | May | 317 | 8936.99

 Prague | Jan | 101 | 4875.33

 Rome | Mar | 87 | 1557.39

(4 rows)

Write Data and Read Again

Perform the following procedure to insert some data into the ex1 directory and then read the data

again. You must create a new external table for the write operation.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 228

1. Create a writable PXF external table that references ex1 and that specifies the file:text

profile. For example:

gpadmin=# CREATE WRITABLE EXTERNAL TABLE pxf_write_nfs(location text, month tex

t, num_orders int, total_sales float8)

 LOCATION ('pxf://ex1/?PROFILE=file:text&SERVER=nfssrvcfg')

 FORMAT 'CSV' (delimiter=',');

2. Insert some data into the pxf_write_nfs table. For example:

gpadmin=# INSERT INTO pxf_write_nfs VALUES ('Frankfurt', 'Mar', 777, 3956.98)

;

INSERT 0 1

gpadmin=# INSERT INTO pxf_write_nfs VALUES ('Cleveland', 'Oct', 3812, 96645.37

);

INSERT 0 1

PXF writes one or more files to the ex1/ directory when you insert into the pxf_write_nfs

table.

3. Use the pxf_read_nfs readable external table that you created in the previous section to

view the new data you inserted into the pxf_write_nfs table:

gpadmin=# SELECT * FROM pxf_read_nfs ORDER BY num_orders DESC;

 location | month | num_orders | total_sales

-----------+-------+------------+-------------

 Cleveland | Oct | 3812 | 96645.37

 Frankfurt | Mar | 777 | 3956.98

 Beijing | Jul | 411 | 11600.67

 Bangalore | May | 317 | 8936.99

 Prague | Jan | 101 | 4875.33

 Rome | Mar | 87 | 1557.39

(6 rows)

When you select from the pxf_read_nfs table here, PXF reads the somedata.csv file and the

new files that it added to the ex1/ directory in the previous step.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 229

Troubleshooting PXF

PXF Errors

The following table describes some errors you may encounter while using PXF:

Error Message Discussion

Protocol “pxf” does not exist Cause: The pxf extension was not registered.

Solution: Create (enable) the PXF extension for the database as

described in the PXF Enable Procedure.

Invalid URI pxf://<path-to-data>: missing

options section

Cause: The LOCATION URI does not include the profile or other required

options.

Solution: Provide the profile and required options in the URI when you

submit the CREATE EXTERNAL TABLE command.

PXF server error : Input path does not exist:

hdfs://<namenode>:8020/<path-to-file>

Cause: The HDFS file that you specified in <path-to-file> does not

exist.

Solution: Provide the path to an existing HDFS file.

PXF server error :

NoSuchObjectException(message:

<schema>.<hivetable> table not found)

Cause: The Hive table that you specified with <schema>.<hivetable>

does not exist.

Solution: Provide the name of an existing Hive table.

PXF server error : Failed connect to

localhost:5888; Connection refused

(<segment-id> slice<N> <segment-host>:

<port> pid=<process-id>)

…

Cause: The PXF Service is not running on <segment-host>.

Solution: Restart PXF on <segment-host>.

PXF server error: Permission denied: user=

<user>, access=READ,

inode=“<filepath>”:-rw——-

Cause: The Greenplum Database user that executed the PXF operation

does not have permission to access the underlying Hadoop service

(HDFS or Hive). See Configuring the Hadoop User, User

Impersonation, and Proxying.

PXF server error: PXF service could not be

reached. PXF is not running in the tomcat

container

Cause: The pxf extension was updated to a new version but the PXF

server has not been updated to a compatible version.

Solution: Ensure that the PXF server has been updated and restarted

on all hosts.

ERROR: could not load library

“/usr/local/greenplum-db-

x.x.x/lib/postgresql/pxf.so”

Cause: Some steps have not been completed after a Greenplum

Database upgrade or migration, such as pxf cluster register.

Solution: Make sure you follow the steps outlined for PXF Upgrade and

Migration.

Most PXF error messages include a HINT that you can use to resolve the error, or to collect more

information to identify the error.

PXF Logging

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 230

https://gpdb.docs.pivotal.io/latest/pxf/pxf_upgrade_migration.html

Refer to the Logging topic for more information about logging levels, configuration, and the pxf-

app.out and pxf-service.log log files.

Addressing PXF JDBC Connector Time Zone Errors

You use the PXF JDBC connector to access data stored in an external SQL database. Depending

upon the JDBC driver, the driver may return an error if there is a mismatch between the default time

zone set for the PXF Service and the time zone set for the external SQL database.

For example, if you use the PXF JDBC connector to access an Oracle database with a conflicting

time zone, PXF logs an error similar to the following:

java.io.IOException: ORA-00604: error occurred at recursive SQL level 1

ORA-01882: timezone region not found

Should you encounter this error, you can set default time zone option(s) for the PXF Service in the

$PXF_BASE/conf/pxf-env.sh configuration file, PXF_JVM_OPTS property setting. For example, to set

the time zone:

export PXF_JVM_OPTS="<current_settings> -Duser.timezone=America/Chicago"

You can use the PXF_JVM_OPTS property to set other Java options as well.

As described in previous sections, you must synchronize the updated PXF configuration to the

Greenplum Database cluster and restart the PXF Service on each host.

About PXF External Table Child Partitions

Greenplum Database supports partitioned tables, and permits exchanging a leaf child partition with a

PXF external table.

When you read from a partitioned Greenplum table where one or more partitions is a PXF external

table and there is no data backing the external table path, PXF returns an error and the query fails.

This default PXF behavior is not optimal in the partitioned table case; an empty child partition is valid

and should not cause a query on the parent table to fail.

The IGNORE_MISSING_PATH PXF custom option is a boolean that specifies the action to take when the

external table path is missing or invalid. The default value is false, PXF returns an error when it

encounters a missing path. If the external table is a child partition of a Greenplum table, you want

PXF to ignore a missing path error, so set this option to true.

For example, PXF ignores missing path errors generated from the following external table:

CREATE EXTERNAL TABLE ext_part_87 (id int, some_date date)

 LOCATION ('pxf://bucket/path/?PROFILE=s3:parquet&SERVER=s3&IGNORE_MISSING_PATH=true'

)

FORMAT 'CUSTOM' (formatter = 'pxfwritable_import');

The IGNORE_MISSING_PATH custom option applies only to file-based profiles, including *:text,

*:parquet, *:avro, *:json, *:AvroSequenceFile, and *:SequenceFile. This option is not available

when the external table specifies the hbase, hive[:*], or jdbc profiles, or when reading from S3

using S3-Select.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 231

Addressing Hive MetaStore Connection Errors

The PXF Hive connector uses the Hive MetaStore to determine the HDFS locations of Hive tables.

Starting in PXF version 6.2.1, PXF retries a failed connection to the Hive MetaStore a single time. If

you encounter one of the following error messages or exceptions when accessing Hive via a PXF

external table, consider increasing the retry count:

Failed to connect to the MetaStore Server.

Could not connect to meta store ...

org.apache.thrift.transport.TTransportException: null

PXF uses the hive-site.xml hive.metastore.failure.retries property setting to identify the

maximum number of times it will retry a failed connection to the Hive MetaStore. The hive-site.xml

file resides in the configuration directory of the PXF server that you use to access Hive.

Perform the following procedure to configure the number of Hive MetaStore connection retries that

PXF will attempt; you may be required to add the hive.metastore.failure.retries property to the

hive-site.xml file:

1. Log in to the Greenplum Database master node.

2. Identify the name of your Hive PXF server.

3. Open the $PXF_BASE/servers/<hive-server-name>/hive-site.xml file in the editor of your

choice, add the hive.metastore.failure.retries property if it does not already exist in the

file, and set the value. For example, to configure 5 retries:

<property>

 <name>hive.metastore.failure.retries</name>

 <value>5</value>

</property>

4. Save the file and exit the editor.

5. Synchronize the PXF configuration to all hosts in your Greenplum Database cluster:

gpadmin@gpmaster$ pxf cluster sync

6. Re-run the failing SQL external table command.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 232

PXF Utility Reference

The Greenplum Platform Extension Framework (PXF) includes the following utility reference pages:

pxf cluster

pxf

pxf cluster

Manage the PXF configuration and the PXF Service instance on all Greenplum Database hosts.

Synopsis

pxf cluster <command> [<option>]

where <command> is:

help

init (deprecated)

migrate

prepare

register

reset (deprecated)

restart

start

status

stop

sync

Description

The pxf cluster utility command manages PXF on the master, standby master, and on all

Greenplum Database segment hosts. You can use the utility to:

Start, stop, and restart the PXF Service instance on the master, standby master, and all

segment hosts.

Display the status of the PXF Service instance on the master, standby master, and all

segment hosts.

Synchronize the PXF configuration from the Greenplum Database master host to the standby

master and to all segment hosts.

Copy the PXF extension control file from the PXF installation on each host to the Greenplum

installation on the host after a Greenplum upgrade.

Prepare a new $PXF_BASE runtime configuration directory.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 233

Migrate PXF 5 $PXF_CONF configuration to $PXF_BASE.

pxf cluster requires a running Greenplum Database cluster. You must run the utility on the

Greenplum Database master host.

(If you want to manage the PXF Service instance on a specific segment host, use the pxf utility. See

pxf.)

Commands

help

Display the pxf cluster help message and then exit.

init (deprecated)

The command is equivalent to the register command.

migrate

Migrate the configuration in a PXF 5 $PXF_CONF directory to $PXF_BASE on each Greenplum

Database host. When you run the command, you must identify the PXF 5 configuration

directory via an environment variable named PXF_CONF. PXF migrates the version 5

configuration to $PXF_BASE, copying and merging files and directories as necessary.

You must manually migrate any pxf-log4j.properties customizations to the pxf-log4j2.xml

file.

prepare

Prepare a new $PXF_BASE directory on each Greenplum Database host. When you run the

command, you must identify the new PXF runtime configuration directory via an environment

variable named PXF_BASE. PXF copies runtime configuration file templates and directories to

this $PXF_BASE.

register

Copy the PXF extension control file from the PXF installation on each host to the Greenplum

installation on the host. This command requires that $GPHOME be set, and is run once after you

install PXF 6.x the first time, or run after you upgrade your Greenplum Database installation.

reset (deprecated)

The command is a no-op.

restart

Stop, and then start, the PXF Service instance on the master, standby master, and all segment

hosts.

start

Start the PXF Service instance on the master, standby master, and all segment hosts.

status

Display the status of the PXF Service instance on the master, standby master, and all segment

hosts.

stop

Stop the PXF Service instance on the master, standby master, and all segment hosts.

sync

Synchronize the PXF configuration ($PXF_BASE) from the master to the standby master and to

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 234

#topic1

all Greenplum Database segment hosts. By default, this command updates files on and copies

files to the remote. You can instruct PXF to also delete files during the synchronization; see

Options.

If you have updated the PXF user configuration or add new JAR or native library

dependencies, you must also restart PXF after you synchronize the PXF configuration.

Options

The pxf cluster sync command takes the following option:

–d | ––delete

Delete any files in the PXF user configuration on the standby master and segment hosts that

are not also present on the master host.

Examples

Stop the PXF Service instance on the master, standby master, and all segment hosts:

$ pxf cluster stop

Synchronize the PXF configuration to the standby and all segment hosts, deleting files that do not

exist on the master host:

$ pxf cluster sync --delete

See Also

pxf

pxf

Manage the PXF configuration and the PXF Service instance on the local Greenplum Database host.

Synopsis

pxf <command> [<option>]

where <command> is:

cluster

help

init (deprecated)

migrate

prepare

register

reset (deprecated)

restart

start

status

stop

sync

version

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 235

#topic1

Description

The pxf utility manages the PXF configuration and the PXF Service instance on the local Greenplum

Database host. You can use the utility to:

Synchronize the PXF configuration from the master to the standby master or to a segment

host.

Start, stop, or restart the PXF Service instance on the master, standby master, or a specific

segment host, or display the status of the PXF Service instance running on the master,

standby master, or a segment host.

Copy the PXF extension control file from a PXF installation on the host to the Greenplum

installation on the host after a Greenplum upgrade.

Prepare a new $PXF_BASE runtime configuration directory on the host.

(Use the pxf cluster command to prepare a new $PXF_BASE on all hosts, copy the PXF extension

control file to $GPHOME on all hosts, synchronize the PXF configuration to the Greenplum Database

cluster, or to start, stop, or display the status of the PXF Service instance on all hosts in the cluster.)

Commands

cluster

Manage the PXF configuration and the PXF Service instance on all Greenplum Database

hosts. See pxf cluster.

help

Display the pxf management utility help message and then exit.

init (deprecated)

The command is equivalent to the register command.

migrate

Migrate the configuration in a PXF 5 $PXF_CONF directory to $PXF_BASE on the host. When you

run the command, you must identify the PXF 5 configuration directory via an environment

variable named PXF_CONF. PXF migrates the version 5 configuration to the current $PXF_BASE,

copying and merging files and directories as necessary.

You must manually migrate any pxf-log4j.properties customizations to the pxf-log4j2.xml

file.

prepare

Prepare a new $PXF_BASE directory on the host. When you run the command, you must

identify the new PXF runtime configuration directory via an environment variable named

PXF_BASE. PXF copies runtime configuration file templates and directories to this $PXF_BASE.

register

Copy the PXF extension files from the PXF installation on the host to the Greenplum

installation on the host. This command requires that $GPHOME be set, and is run once after you

install PXF 6.x the first time, or run when you upgrade your Greenplum Database installation.

reset (deprecated)

The command is a no-op.

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 236

#topic1
#topic1

restart

Restart the PXF Service instance running on the local master, standby master, or segment

host.

start

Start the PXF Service instance on the local master, standby master, or segment host.

status

Display the status of the PXF Service instance running on the local master, standby master, or

segment host.

stop

Stop the PXF Service instance running on the local master, standby master, or segment host.

sync

Synchronize the PXF configuration ($PXF_BASE) from the master to a specific Greenplum

Database standby master or segment host. You must run pxf sync on the master host. By

default, this command updates files on and copies files to the remote. You can instruct PXF to

also delete files during the synchronization; see Options.

version

Display the PXF version and then exit.

Options

The pxf sync command, which you must run on the Greenplum Database master host, takes the

following option and argument:

–d | ––delete

Delete any files in the PXF user configuration on <gphost> that are not also present on the

master host. If you specify this option, you must provide it on the command line before

<gphost>.

<gphost>

The Greenplum Database host to which to synchronize the PXF configuration. Required.

<gphost> must identify the standy master host or a segment host.

Examples

Start the PXF Service instance on the local Greenplum host:

$ pxf start

See Also

pxf cluster

VMware Tanzu Greenplum Platform Extension Framework v6.2 Documentation

VMware, Inc 237

#topic1

