You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/
Contents

About VMware Tanzu Mission Control Concepts 4

1 What is Tanzu Mission Control 5

2 Access Control 8

3 Users and Groups 11

4 Cluster Lifecycle Management 13

5 Observation and Analysis of Cluster Health and Resources 16

 What Is a Healthy Cluster 16

6 Event Logs 20

7 Policy-Driven Cluster Management 23

8 Cluster Inspections 25

9 Data Protection 28

10 What Happens When You Attach a Cluster 29

 Memory and CPU Usage by Cluster Agent Extensions 30

11 Pod Security Management 32
About VMware Tanzu Mission Control Concepts

The VMware Tanzu Mission Control Concepts documentation provides conceptual information describing VMware Tanzu Mission Control™.

To help you get started with Tanzu Mission Control, this information provides a conceptual walk-through of what it is, has, and does. This publication introduces the Tanzu Mission Control service and console, and the concepts surrounding how you can use it to manage your Kubernetes clusters.

Intended Audience

This information is intended for administrators who want to use Tanzu Mission Control to create and manage Kubernetes clusters and their associated resources. This information is also intended for application administrators and developers who want to use Tanzu Mission Control to deploy and manage modern apps in a Kubernetes architecture. The information is written for developers who have a basic understanding of Kubernetes and are familiar with container deployment concepts. In-depth knowledge of Kubernetes is not required.
VMware Tanzu Mission Control is a platform for modern application management that provides a single control point for teams to more easily manage Kubernetes and operate modern containerized applications across multiple clouds and clusters.

As an API-driven service, Tanzu Mission Control enables you to declaratively manage all your clusters through its API, the CLI, or the web-based console.

From the Tanzu Mission Control console, you can see your clusters and namespaces, and organize them into logical groups for easier management of resources, apps, users, and security. Some of the cluster management capabilities of Tanzu Mission Control include:

- **Cluster Lifecycle Management**
 Using Tanzu Mission Control, you can connect to your own cloud provider account to create new clusters, resize and upgrade them, and delete clusters that are no longer needed. For more information, see [Chapter 4 Cluster Lifecycle Management](#).

- **Cluster Observability and Diagnostics**
 See the health and resource usage for each of your clusters from a single console. View cluster details, namespaces, nodes, and workloads directly from the Tanzu Mission Control console. For more information, see [Chapter 5 Observation and Analysis of Cluster Health and Resources](#).

- **Cluster Inspections**
 Run preconfigured inspections against your clusters using Sonobuoy to ensure consistency over your fleet of clusters. For more information, see [Chapter 8 Cluster Inspections](#).

- **Data Protection**
 Back up and restore the data resources in your clusters using Velero to ensure the protection of the valuable data resources in your clusters. For more information, see [Chapter 9 Data Protection](#).

- **Access Control**
 Tanzu Mission Control starts with a secure by default service, and allows you to use federated identity management and apply granular role-based access control to fine tune your security requirements. For more information, see [Chapter 2 Access Control](#).

- **Policy Management**
Rather than manually dealing with the many aspects of managing your Kubernetes resources and the apps that use them, you can create policies to consistently manage your clusters, namespaces, and workloads. For more information, see Chapter 7 Policy-Driven Cluster Management.

Organizing Clusters and Namespaces

Tanzu Mission Control provides a hierarchy of objects to help you manage your resources. At the top of the structure is the organization, which typically correlates to a business or possibly a line of business within a large enterprise.

Under the organization are grouping objects that allow you separate the concerns of the people that use your resources.

Through the Tanzu Mission Control console you can organize and view your Kubernetes resources in two different ways, enabling operations administrators to maintain control over clusters and infrastructure while allowing application teams self-serve access to namespaces.

- Cluster groups provide an infrastructure view.

 Cluster groups allow you to organize your Kubernetes clusters into logical groupings, for example to align with business units. To get you started, Tanzu Mission Control provides a default cluster group, but you should create cluster groups to fit your business needs.

- Workspaces provide an application view

 Workspaces allow you to organize your managed namespaces into logical groups across clusters, perhaps to align with development projects. To get you started, Tanzu Mission Control provides a default workspace, but you should create workspaces to fit your business needs.

By combining your resources into groups, you can simplify management by applying policies at the group level. For example, you can apply an access policy to an entire cluster group rather than creating separate policies for each individual cluster.

Also in the Tanzu Mission Control hierarchy, within the organization, is the credential object. A credential correlates to the role you use to connect to a particular cloud provider account for cluster lifecycle management. The credential object is not directly associated with any cluster group or workspace, so you can create clusters for multiple cluster groups through a single credential.

Attached and Provisioned Clusters

Using Tanzu Mission Control, you can attach existing Kubernetes clusters from various cloud providers, organize them into logical groups, observe their health, and manage their security posture and configuration. For more information, see Chapter 10 What Happens When You Attach a Cluster.
You can also provision clusters directly through Tanzu Mission Control, provisioned in your own cloud provider account using Cluster API, to leverage the built-in cluster lifecycle management best practices. For more information, see Chapter 4 Cluster Lifecycle Management.

Clusters must belong to a cluster group. When you attach or provision a cluster in Tanzu Mission Control, you specify the cluster group to which the cluster belongs.

Managed and Unmanaged Namespaces

In both attached and provisioned clusters, you can create namespaces that you can manage through Tanzu Mission Control using policies. When you create a namespace through Tanzu Mission Control, you specify the workspace to which the namespace belongs.

Your clusters can also have unmanaged namespaces that were created externally and don't need to be managed through Tanzu Mission Control. However, if you have unmanaged namespaces that you want to manage, you can attach them to your organization using Tanzu Mission Control to better monitor and secure them.
Access Control

Use access policies to implement role-based access control (RBAC) for the users and resources in your organization.

For a manageable security posture, VMware Tanzu Mission Control allows you to secure the resources in your organization with access policies that govern the users and groups that can see and edit them. This section discusses access policies; see Chapter 3 Users and Groups for more information about combining users into manageable groups.

Managing Service Security Posture with Access Policies

Access policies allow you to control the permissions granted to the users of Tanzu Mission Control in your organization. Each object in your organizational hierarchy has an access policy where you can specify permissions using role bindings that associate a role with an identity. For more information about the organizational hierarchy, see Chapter 1 What is Tanzu Mission Control.

In addition to the direct policy defined for a given object, each object also has inherited policies that are defined in the parent objects. For more information about policy inheritance, see Chapter 7 Policy-Driven Cluster Management.

There are predefined roles for each type of object in your organization. Each role defines a set of permissions that apply to a given type of object. By contrast, the access policy where you define the role binding defines the scope to which the role applies.

For example, the cluster.edit role grants permission to make edits to a cluster. If that role is bound to a given identity (group or individual) in the access policy for a cluster, this set of permissions applies only to the cluster. But if you bind the cluster.edit role to an identity in a cluster group access policy, members included in that identity are granted permissions to edit all clusters included in that cluster group.

The following table shows the roles you can use in access policies for each type of object in the hierarchy.
Table 2-1.

<table>
<thead>
<tr>
<th>Role</th>
<th>organization</th>
<th>cluster group / cluster / workspace</th>
<th>namespace</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>.admin</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Grants full root-level access to the object, including permission to see and edit access policies.</td>
</tr>
<tr>
<td>.edit</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Grants permission to view the object, and create and delete child objects.</td>
</tr>
<tr>
<td>.view</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Grants permission to see the object and its resources and child objects.</td>
</tr>
<tr>
<td>.create</td>
<td></td>
<td>x</td>
<td></td>
<td>Applicable only on the workspace, grants permission to create a namespace. Identities with this role are assigned the .admin role on the namespace that they create.</td>
</tr>
<tr>
<td>.credential.admin</td>
<td>x</td>
<td></td>
<td></td>
<td>Grants permission to create and edit connections to cloud provider accounts.</td>
</tr>
<tr>
<td>.credential.view</td>
<td>x</td>
<td></td>
<td></td>
<td>Grants permission to see and use connections to cloud provider accounts.</td>
</tr>
</tbody>
</table>

Best Practices for Assigning Roles

When assigning roles, consider the following best practice guidelines.

- Use groups in role bindings rather than individual identities.
- Assign only the roles that grant the permissions necessary for members to perform their function within the organization.
- Use the .admin role judiciously and sparingly. The .admin role allows full root access to all of the resources and policies of an object, and recursively for its child objects, from within Tanzu Mission Control and also directly in the cluster.

About Roles in VMware Cloud Services

For services in the VMware Cloud Services platform, the organization provides two roles, owner and member. As an organization owner, you can specify the roles of members in your organization, both at the organizational level and at the service level. For the Tanzu Mission Control service, there are two service roles:

- **Service Member**

 This role provides typical service usage permissions for most members in your organization.

- **Service Admin**

 This role provides additional permissions for administrators of the service in your organization.
As an organization owner, you can also invite additional members to your organization, and specify the organization and service roles in the invitations that you send out. For information about assigning roles in VMware Cloud Services and inviting users to join your organization, see Identity & Access Management in the Using VMware Cloud documentation.

Initial Security Posture for Default Resource Groups

The initial setup for your organization in Tanzu Mission Control contains a cluster group named default and a workspace named default. To help you get started, these default resource groups have relaxed permissions that allow all authenticated users associated with the service member role to create and manipulate clusters and other resources.

As a best practice, create new cluster groups and workspaces for both development and production activities, and apply appropriate access control to them. Use the default cluster group and workspace only to initially familiarize your users with the service.
Users and Groups

Manage the users in your organization with user groups.

For a manageable security posture, VMware Tanzu Mission Control allows you to combine the members of your organization into logical user groups and secure those groups with access policies. This section addresses user groups; see Chapter 2 Access Control for more information about implementing access policies that include those user groups.

As a service provided through VMware Cloud Services, the top-level group of users in Tanzu Mission Control is the organization, which is a construct of the VMware Cloud Services platform. Access to services is provided through the organization and individuals are included as members of the organization.

Managing Users and Groups

You use VMware Cloud Services tools to invite users to your organization and organize them into user groups. By combining your users into groups, you can simplify access control by creating access policies that bind roles to groups rather than individuals. For more information about creating user groups in VMware Cloud Services, see Working with Groups in the Using VMware Cloud documentation.

You can also set up federation with your corporate domain that allows you to use your organization’s single sign-on and identity source. For more information about federating identity management, see Setting Up Federated Identity Management in the Using VMware Cloud documentation.

Best Practice for Creating Groups

The VMware Cloud Services tools for user and group management allow you to create user groups in two ways:

- Add users and then combine them into groups.
- Create groups and then add users to them.
As a best practice, add users through the group to which they initially belong. Use the **Groups** tab under Identity and Access Management in the VMware Cloud Services console, rather than the **Active Users** tab. In this way, the new user is added to a group to which you have already assigned roles through an access policy. If you use the Active Users tab, the new user is added to the organization and service, but because they are not yet added to a group, they will likely have only minimal access to the service until you take the additional step of adding them to a group.

About Roles in VMware Cloud Services

For services in the VMware Cloud Services platform, the organization provides two roles, owner and member. While these roles provide a base set of permissions for each individual, they do not have an impact on the groups to which an individual can belong, or the service-level roles to which an individual or group can be bound.

For more context around these roles, see [Chapter 2 Access Control](#).
VMware Tanzu Mission Control allows you to have complete control over the entire lifecycle of provisioned Tanzu Kubernetes clusters, from create to delete and everything in-between.

When you create a cluster in Tanzu Mission Control, you have control over its entire lifecycle. In addition to scaling node pools up and down, creating and deleting namespaces, and other capabilities that are available in attached clusters, you can also create and delete clusters as necessary. To have complete cluster lifecycle capabilities, you need to create a cloud provider account connection.

When you register your cloud provider account in Tanzu Mission Control, you can provision clusters and leverage the built-in cluster lifecycle management best practices of Cluster API and Tanzu Kubernetes Grid. Tanzu Mission Control uses the Cluster API declarative pattern of lifecycle management for continuous monitoring and reconciliation of your clusters. By contrast, in clusters that have been created elsewhere and subsequently attached, you can have read/write privileges that allow you to control many aspects of the cluster with some limitations.

Note You use Tanzu Mission Control to monitor and manage your Kubernetes clusters, both attached and provisioned. However, while VMware monitors clusters for aggregate health trends to proactively investigate widespread issues, Tanzu Mission Control does not actively diagnose and cannot repair many kinds of issues with individual clusters, such as failures in Kubernetes or the underlying cloud provider. For example, if the API server in your cluster is not responsive to API calls, Tanzu Mission Control might report that it is unhealthy or disconnected, but does not attempt to proactively fix the issue. If you have an issue with a provisioned cluster that you think might be caused by the Tanzu Mission Control service or the Tanzu Kubernetes Grid implementation, refer to your support contract for how to address this kind of issue.

What Happens When You Create a Cluster using Tanzu Mission Control

When you create a cluster, Tanzu Mission Control performs the following actions:

- provisions the necessary resources in your specified cloud account
- creates a Tanzu Kubernetes cluster according to your specifications
- attaches the cluster to your organization
Resource Usage in Your Cloud Provider Account

For each cluster you create, Tanzu Mission Control provisions a set of resources in your connected cloud provider account.

For development clusters that are not configured for high availability, Tanzu Mission Control provisions the following resources:

- 3 VMs
 The VMs include a control plane node, a worker node (to run the cluster agent extensions), and a bastion host. If you specify additional VMs in your node pool, those are provisioned as well.
- 4 security groups (one for the load balancer and one for each of the initial VMs)
- 1 private subnet and 1 public subnet in the specified availability zone
- 1 public and 1 private route table in the specified availability zone
- 1 classic load balancer
- 1 internet gateway
- 1 NAT gateway in the specified availability zone
- 1 VPC elastic IP

For production clusters that are configured for high availability, Tanzu Mission Control provisions the resource listed above and the following additional resources to support replication in two additional availability zones:

- 2 additional control plane VMs
- 2 additional private and public subnets
- 2 additional private and public route tables
- 2 additional NAT gateways
- 2 additional VPC elastic IPs

Your cloud provider implements a set of default limits or quotas on these types of resources, and allows you to modify the limits. Typically the default limits are sufficient to get started creating clusters from Tanzu Mission Control. However, as you increase the number of clusters you are running or the workloads on your clusters, you will encroach on these limits. When you reach the limits imposed by your cloud provider, any attempts to provision that type of resource fail. As a result, Tanzu Mission Control will be unable to create a new cluster, or you might be unable to create additional deployments on your existing clusters.

For example, if your quota on internet gateways is set to 5 and you already have five in use, then Tanzu Mission Control is unable to provision the necessary resources when you attempt to create a new cluster.
Therefore regularly assess the limits you have specified in your cloud provider account, and adjust them as necessary to fit your business needs.

Audit Logging in Your Provisioned Cluster

When you provision a new Tanzu Kubernetes cluster through Tanzu Mission Control, preconfigured audit logging is enabled for the cluster. For more information, see Chapter 6 Event Logs.
Observation and Analysis of Cluster Health and Resources

Use VMware Tanzu Mission Control to see what's happening in your clusters.

The Clusters page in the Tanzu Mission Control console displays a list of all the clusters attached to your organization that you have permissions to see. Similarly, the Namespaces page shows your namespaces (both managed and unmanaged), and the Workloads page shows the workloads running on your clusters. You can filter and sort the lists of objects to see only those you want to see.

From these top-level pages, you can drill down into the detail views of the objects and their parent and child objects to see a fine-grained description of what's happening in your clusters, nodes, namespaces, and workloads.

For example, the cluster detail page shows the health of the cluster's nodes and the components and cluster agent extensions running on the cluster. For a description of how Tanzu Mission Control determines the health a cluster, see What Is a Healthy Cluster.

Tanzu Observability by Wavefront

In addition to the basic observability provided directly through Tanzu Mission Control, you can connect to your Wavefront account to capture metrics from your clusters. When you connect your cluster to an existing Wavefront account, Tanzu Mission Control installs an extension on your cluster to collect data and send it to your Wavefront account in one minute intervals. You can then log in to your Wavefront account to configure data collection and analyze the captured metrics. For more information about Tanzu Observability by Wavefront, see What is Wavefront in the Tanzu Observability by Wavefront documentation.

This chapter includes the following topics:

- What Is a Healthy Cluster

What Is a Healthy Cluster

Learn how Tanzu Mission Control determines the health of attached and provisioned clusters.
The cluster detail page for each cluster in the Tanzu Mission Control console shows current overall health of the cluster at the top of the page. This health status is also displayed in the list of all clusters on the Clusters page. Additionally, further down the cluster detail page, more health information is broken out into detailed aspects of the overall health. Tanzu Mission Control continuously monitors each cluster and updates the console with changes.

The cluster agent extensions that are deployed on your cluster (both provisioned and attached) send change events from nodes and ports as they occur, and a regularly occurring component status event for each component to Tanzu Mission Control. These events are regarded collectively as the heartbeat, which Tanzu Mission Control uses to determine the health of the cluster.

Cluster Health

The overall health of the cluster is an aggregation of health of the components and nodes in the cluster. The health status of the cluster can be one of the following values.

- **HEALTHY**

 A cluster is healthy when all nodes and components are healthy, and a heartbeat for the cluster is received every minute.

- **UNHEALTHY**

 A cluster is unhealthy if either of the following are reported as unhealthy:

 - one or more of the cluster's control plane nodes
 - one or more of the cluster's components

- **WARNING**

 A cluster can have a warning status if any of its worker nodes are in an unhealthy or unknown state.

 A cluster can also have a warning status if any nodes (worker or control plane) are in a warning state.

- **UNKNOWN**

 The health status of a cluster is unknown if either of the following are reported as unknown:

 - one or more of the cluster's control plane nodes
 - one or more of the cluster's components

- **DISCONNECTED**

 A cluster is considered disconnected if no heartbeat is received from the cluster for more than 3 minutes.
Node Health

The title of the Worker nodes section shows you how many worker nodes you have in the cluster, and below that the number of worker nodes that are healthy. To see all the nodes (including the control plane), click the Nodes tab, which shows the health of each individual node in the Status column.

The information received in the change event for a node consists of the NodeReady condition, and a number of other conditions like MemoryPressure, DiskPressure, and OutOfDisk. Tanzu Mission Control uses the value of these conditions to determine the health of the node. The status of each condition is assumed to be unchanged until the node reports a change. Based on the reported conditions, the health status of a node can be one of the following:

- **HEALTHY**

 If NodeReady is True, and all other conditions are healthy, then the node is healthy.

- **UNHEALTHY**

 The node is unhealthy if NodeReady is False. The node is also unhealthy if NodeReady is True and more than half of the other conditions are in an unhealthy state.

- **WARNING**

 The warning status indicates that NodeReady is True, but some (less than half) of the other conditions are in an unhealthy state.

- **UNKNOWN**

 If NodeReady has any value other than True or False, the health status of the node is unknown. The node can also have an unknown status if no heartbeat has been received from the cluster for more than three minutes.

Component Health

Tanzu Mission Control monitors the health of the following components running in the cluster:

- kube-apiserver
- scheduler
- controller-manager
- one or more etcd components (etcd-0, etcd-1, etcd-2, and so on)

The component status event reports the Healthy condition for each of these components every 45 seconds. The health status of each component can be one of the following:

- **HEALTHY**

 If the last reported value of the Healthy condition of the component is True, then the component is healthy.

- **UNHEALTHY**
If the last reported value of the Healthy condition of the component is False, then the component is unhealthy.

- UNKNOWN

If the last reported value of the Healthy condition of the component is Unknown, or it is something other than True or False, then the health status of the component is unknown. The component can also be in this state if no heartbeat has been received from the cluster for more than three minutes.
Event Logs

Learn how VMware Tanzu Mission Control logs events that occur in your organization.

To help you monitor the activities that occur in your organization, Tanzu Mission Control provides logging of audit events. This includes audit logging of service-level actions that are performed through Tanzu Mission Control, as well as cluster-level actions that take place on Tanzu Kubernetes clusters that you provisioned through Tanzu Mission Control.

Tanzu Mission Control Service Audit Logging

As an organization administrator, you can monitor the activities that are initiated through Tanzu Mission Control, using the service audit logging capability.

To enable you to track and understand the activities that impact the clusters in your organization, Tanzu Mission Control collects and stores logs of audit events that describe activities that occur through Tanzu Mission Control. Each log entry describes the following:

- what was done
- who performed the action
- when and where the action occurred

Because some actions result in subsequent actions, Tanzu Mission Control logs all pertinent events from the original action performed through Tanzu Mission Control to the resulting actions that are initiated on your clusters.

Be aware of the following constraints on audit reports:

- Tanzu Mission Control event log entries are retained in the service for 60 days, so you can generate an audit report going back up to 60 days.
- The maximum date range for an audit report is seven days.
- Generated audit reports are retained for 60 days after generation, after which they are deleted.
Audit Logging in Your Provisioned Cluster

When you provision a new Tanzu Kubernetes cluster through Tanzu Mission Control, preconfigured audit logging is enabled for the cluster. Although the audit logging policy is not configurable, logging is set to commonly useful levels for certain operations to capture important information without inflating the size of the logs. The logging levels are listed below with the types of operations that use each one.

None - No logs are collected for the following types of operations:
- kube-proxy watching endpoint resource
- kubelet getting nodes and node status
- Controller manager, scheduler and endpoint controller reading the endpoints
- API server getting namespaces and namespace finalizers
- Controller manager getting metrics
- Read-only APIs like /swagger, /version, and /healthz
- All getting events
- Garbage collector getting resources
- Tanzu Mission Control getting resources

Metadata - Only metadata about the operation (and not any data that was passed in or out) is collected for the following types of operations:
- Config maps, secrets, and token reviews - because they can contain sensitive data

Request - The information that came in the request is collected for the following types of operations:
- kubelet updating nodes and node status
- All read-only operations - log the request, but not the data returned back

RequestResponse - Both the request and the returned data are collected for the following types of operations:
- All other operations, including write operations like create, update, and delete

In addition, the location, size, and duration of audit log files are configured as described below.

- Audit log entries are written to audit.log files in the /var/log/kubernetes/ directory on the control plane nodes for your cluster. You can aggregate the logs, if desired, using a log collector and a log aggregation service.
- The maximum size for a log file is 100 MB. When this limit is reached, a new log file is started. The rotated files are also stored in the /var/log/kubernetes/ directory.
- The maximum number of log files stored on a node is 20 (for a total max size of 2 GB for all stored logs). When this limit is reached, a new log file replaces the oldest log file.
A log file is stored for a maximum of 7 days, after which it is deleted. This limit is not often hit on a typical cluster, as clusters running workloads tend to churn through the maximum number of log files more quickly.
Policy-Driven Cluster Management

In VMware Tanzu Mission Control you can create policies of various types to manage the operation and security posture of your Kubernetes clusters and other organizational objects. Policies allow you to provide a set of rules that govern your organization and all the objects it contains. The policy types available in Tanzu Mission Control include the following:

- **access policy**
 Access policies allow you to use predefined roles to specify which identities (individuals and groups) have what level of access to a given resource. For more information, see Chapter 2 Access Control.

- **image registry policy**
 Image registry policies allow you to specify the source registries from which an image can be pulled.

- **network policy**
 Network policies allow you to use preconfigured templates to define how pods communicate with each other and other network endpoints.

- **quota policy**
 Quota policies allow you to constrain the resources used in your clusters, as aggregate quantities across specified namespaces, using preconfigured and custom templates.

- **security policy**
 Security policies allow you to manage the security context in which deployed pods operate in your clusters by imposing constraints on your clusters that define what pods can do and which resources they have access to. For more information, see Chapter 11 Pod Security Management.

Policy Inheritance

In the Tanzu Mission Control resource hierarchy, there are three levels at which you can specify policies.

- **organization**
- **object groups (cluster groups and workspaces)**
Kubernetes objects (clusters and namespaces)

In addition to the direct policy defined for a given object, each object also has inherited policies that are defined in the parent objects. For example, a cluster has a direct policy and also has inherited policies from the cluster group and organization to which it is attached.

Labels and Selectors

A label is a key/value pair attached to a Kubernetes object (such as a namespace, node, or pod) that allows you to specify identifying attributes for that object. A selector provides the means to identify the objects that have a given label.

Some types of policies allow you to specify a label selector, which identifies the objects that you want to include or exclude from the policy.

When you specify a label selector to include (or exclude) in a policy, the objects of the given type within the scope of the policy that have the specified label are included (or excluded) in the set that are impacted by the policy. If no label selectors are specified, the policy applies to all such objects within the scope of the policy.

For example, say you create a quota policy with the following details:

- created at the cluster group level on the mycompany-project1 cluster group
- namespace label selector to include: project1-phase:phase02
- namespace label selector to exclude: basic:compliance

When this quota policy is saved, it impacts all clusters in the mycompany-project1 cluster group, constrains the namespaces with the project1-phase:phase02 label, and does not impact the namespaces with the basic:compliance label.

When adding label selectors, make sure you click the Add label selector button after entering the key and values. This action applies the label selector to the policy and opens a new entry row on the form. Each row (in both include and exclude) represents a rule that must match to identify the objects for which the policy is effective. These selector rules are applied as follows:

- A rule with a key and one value is a match if a label with the specified key exists on the object and it equals the specified value.

- A rule with a key and no value is a match if a label with the specified key exists on the object, regardless of the value.

- A rule with a key and multiple, comma-separated values is a match if a label with the specified key exists on the object and it equals at least one of the specified values.

- When multiple label selector rules are specified, all of the rules must be satisfied to identify the object.

For more information about label selectors, see Labels and Selectors in the Kubernetes documentation.
Cluster Inspections

Using VMware Tanzu Mission Control, you can run preconfigured cluster inspections using Sonobuoy, an open source community standard.

The following cluster inspections are available from the Overview and Inspection tabs of the cluster detail page in the Tanzu Mission Control console.

- The **Conformance** inspection validates the binaries running on your cluster and ensures that your cluster is properly installed, configured, and working. You can view the generated report from within Tanzu Mission Control to assess and address any issues that arise. For more information, see the Kubernetes Conformance documentation at https://github.com/cncf/k8s-conformance/tree/master/docs.

- The **CIS benchmark** inspection evaluates your cluster against the CIS Benchmark for Kubernetes published by the [Center for Internet Security](https://csrc.nist.gov/Projects/CIS).

- The **Lite** inspection is a node conformance test that validates whether nodes meet requirements for Kubernetes. For more information, see [Validate node setup](https://github.com/cncf/k8s-conformance/tree/master/docs) in the Kubernetes documentation.

Because the cluster inspections provide a point-in-time report of the condition of the cluster, you might want to run them periodically (to avoid drifting out of conformance) and any time you make significant alterations, such as after you patch or upgrade a cluster.

From the Inspections page in the Tanzu Mission Control console, you can view a list of the most recent inspections that have been run against all the clusters in your organization, along with the results of those inspections. This page also allows you to start a new inspection.

About the CIS Benchmark Inspection and Tanzu Kubernetes Clusters

The CIS Benchmark for Kubernetes is a set of opinionated and generalized tests that assess vulnerabilities in a Kubernetes implementation. In many implementations, including Tanzu Kubernetes clusters provisioned through Tanzu Mission Control, the vulnerabilities tested for in the benchmark can be mitigated in ways that are not detected by the inspection and result in a
failure of some tests. For this reason, you can expect to see a failed status for a particular set of tests when you run the CIS benchmark inspection on a provisioned cluster. The following table shows the CIS benchmark test failures that occur in clusters provisioned through Tanzu Mission Control.

Table 8-1: Expected Test Failures for CIS Benchmark Inspection on Tanzu Kubernetes Clusters

<table>
<thead>
<tr>
<th>Section</th>
<th>Test Description</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.12</td>
<td>Ensure that the etcd data directory ownership is set to etcd:etcd (Scored)</td>
<td>The data directory (/var/lib/etcd) is owned by root:root. This is not an issue on clusters provisioned through Tanzu Mission Control. To provision clusters, Tanzu Mission Control uses Cluster API which, in turn, uses the kubeadm tool to provision Kubernetes. kubeadm makes etcd run containerized as a static pod, therefore the directory does not need to be set to a particular user. kubeadm configures the directory to not be readable by non-root users.</td>
</tr>
<tr>
<td>1.2.6</td>
<td>Ensure that the --kubelet-certificate-authority argument is set as appropriate (Scored)</td>
<td>This flag is not set. The kubelet server certificate is used only when running kubectl exec or kubectl logs or gathering metrics. Tanzu Mission Control configures worker nodes to exist in private subnets in AWS, and therefore “man in the middle” attacks require host networking to be compromised. Though unlikely, VMware views this as a potential security vulnerability and is tracking the issue in the Cluster API community.</td>
</tr>
<tr>
<td>1.2.33</td>
<td>Ensure that the --encryption-provider-config argument is set as appropriate (Scored)</td>
<td>This flag is not set. Tanzu Mission Control provides isolation for each cluster using AWS VPCs and security groups. This level of isolation significantly reduces the likelihood of a security breach involving access to an unencrypted volume.</td>
</tr>
<tr>
<td>1.3.6</td>
<td>Ensure that the RotateKubeletServerCertificate argument is set to true (Scored)</td>
<td>This argument is set to true in clusters running Kubernetes version 1.12 and later. To avoid this error, upgrade your cluster to a newer version of Kubernetes.</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Ensure that the proxy kubeconfig file permissions are set to 644 or more restrictive (Scored)</td>
<td>In clusters provisioned through Tanzu Mission Control, this issue is mitigated by running the kube-proxy as a daemonset, which does not use an on-disk kubeconfig. Therefore, the audit cannot be performed, as the file is mounted as a config map in the kube-proxy pod and is not accessible to the CIS Inspection pod.</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Ensure that the proxy kubeconfig file ownership is set to root:root (Scored)</td>
<td>In clusters provisioned through Tanzu Mission Control, this issue is mitigated by running the kube-proxy as a daemonset, which does not use an on-disk kubeconfig. Therefore, the audit cannot be performed, as the file is mounted as a config map in the kube-proxy pod and is not accessible to the CIS Inspection pod.</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Ensure that the --read-only-port argument is set to 0 (Scored)</td>
<td>In clusters provisioned through Tanzu Mission Control, this issue is mitigated by disabling the read-only port.</td>
</tr>
</tbody>
</table>
Table 8-1. Expected Test Failures for CIS Benchmark Inspection on Tanzu Kubernetes Clusters (continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Test Description</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.6</td>
<td>Ensure that the --protect-kernel-defaults argument is set to true (Scored)</td>
<td>This flag is not set. The CIS is concerned that without kernel default protection set, a pod might be run in the cluster that is a mismatch for the security posture of the cluster as a whole. This is a low-likelihood occurrence.</td>
</tr>
<tr>
<td>4.2.10</td>
<td>Ensure that the --tls-cert-file and --tls-private-key-file arguments are set as appropriate (Scored)</td>
<td>In clusters provisioned through Tanzu Mission Control, this issue is mitigated by disabling the read-only port. By default, the TLS certificate and private key files are readable only by root.</td>
</tr>
<tr>
<td>4.2.12</td>
<td>Ensure that the RotateKubeletServerCertificate argument is set to true (Scored)</td>
<td>This argument is set to true in clusters running Kubernetes 1.12 and later. To avoid this error, upgrade your cluster to a newer version of Kubernetes.</td>
</tr>
</tbody>
</table>

About the CIS Benchmark Inspection and Attached Clusters

Some cloud providers do not allow access to the control plane node of clusters running in their platform (for example, GKE and AKS). Because of this limitation, the CIS benchmark inspection cannot run all tests on clusters running in these environments. Therefore there are fewer results from running a CIS benchmark inspection on an attached cluster running in such an environment.
Using VMware Tanzu Mission Control, you can protect the valuable data resources in your Kubernetes clusters using the backup and restore functionality provided by Velero, an open source community standard.

The data protection features of Tanzu Mission Control allow you to create backups of the following types:

- all resources in a cluster
- selected namespaces in a cluster
- specific resources in a cluster identified by a given label

You can selectively restore the backups you have created, by specifying the following:

- the entire backup
- selected namespaces from the backup
- specific resources from the backup identified by a given label

Additionally, you can manage the storage of backups and volume snapshots you create by specifying a retention period for each backup and deleting restorable backups that are no longer needed. For more information about Velero, visit https://velero.io/docs.

About Volume Snapshots in Tanzu Mission Control

When backing up a cluster, Tanzu Mission Control creates snapshots of persistent volumes. This functionality is available only if the cluster, either attached or provisioned, exists in the same AWS account to which the data protection credential is attached.
What Happens When You Attach a Cluster

When you attach a cluster to your organization in VMware Tanzu Mission Control, the cluster agent service creates a namespace and installs a set of cluster agent extensions and custom resource definitions into your cluster. The cluster agent service and its extensions enable Tanzu Mission Control to communicate with your cluster (for example, to capture health information) and manage your cluster (for example, to enforce policies).

The extension manager is one of the extensions installed into your cluster when you attach it. The extension manager oversees any other extensions that the cluster agent installs into your cluster as a result of using the capabilities of Tanzu Mission Control. For example, when you run a conformance inspection on your cluster, the cluster agent installs an extension that runs Sonobuoy. For information about the resource consumption of the cluster agent extensions, see Memory and CPU Usage by Cluster Agent Extensions.

The process of attaching a cluster involves three steps:

1. Register the cluster with the Tanzu Mission Control service.
2. Install the cluster agent extensions on the cluster.
3. Verify the connection to confirm bilateral communication.

You must have admin permissions on the cluster to install the cluster agent extensions, and the extension manager retains admin permissions to make modifications to the cluster as necessary. The extensions that are subsequently installed by the extension manager have their own individual security profiles granting them only the permissions necessary to perform their function.

When you attach a cluster, be aware of the following:

- On the cluster, you must have cluster.admin permissions to install the cluster agent extensions.
- In Tanzu Mission Control, you must be associated with the clustergroup.edit role in a cluster group to attach a cluster.
- Cluster names must be unique within an organization.
- An attached cluster must belong to exactly one cluster group. For more information about cluster groups, see Chapter 1 What is Tanzu Mission Control.
Outbound Connections Made by the Cluster Agent Extensions

When you attach a cluster, the cluster agent extensions running on the cluster make connections to Tanzu Mission Control URLs for outbound communications. Outbound connections made by the cluster agent extensions communicate with Tanzu Mission Control through port 443. If you have a proxy server that manages outbound traffic for your clusters, you need to add these URLs to your proxy allowlist to enable the cluster to communicate with Tanzu Mission Control.

- *.tmc.cloud.vmware.com
 URLs in this domain include the Tanzu Mission Control service for your organization, as well as authentication, authorization, and other services.

- vmware-docker-olympus-extensions.bintray.io
 This URL is a Bintray location from which Tanzu Mission Control retrieves the cluster agent extensions to deploy on your cluster.

You must also make sure that the proxy-related environment variables (HTTP_PROXY, HTTPS_PROXY, and NO_PROXY) are defined for the cluster's environment.

This chapter includes the following topics:

- Memory and CPU Usage by Cluster Agent Extensions

Memory and CPU Usage by Cluster Agent Extensions

Learn how much memory and CPU usage is consumed by the cluster agent extensions that are installed by VMware Tanzu Mission Control on managed Kubernetes clusters, both attached and provisioned.

When you attach or provision a cluster in Tanzu Mission Control, the cluster agent service installs a set of cluster agent extensions and custom resource definitions into your cluster to enable Tanzu Mission Control to communicate with your cluster.

Table 10-1. Memory and CPU Reservations and Limits for Cluster Agent Extensions

<table>
<thead>
<tr>
<th>Extension</th>
<th>Memory Reservation</th>
<th>Memory Limit</th>
<th>CPU Reservation</th>
<th>CPU Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>agent-updater</td>
<td>100Mi</td>
<td>150Mi</td>
<td>100m</td>
<td>100m</td>
</tr>
<tr>
<td>agentupdater-workload</td>
<td>100Mi</td>
<td>150Mi</td>
<td>100m</td>
<td>100m</td>
</tr>
<tr>
<td>cluster-health-extension</td>
<td>128Mi</td>
<td>2Gi</td>
<td>100m</td>
<td>1</td>
</tr>
<tr>
<td>manager (data-protection)</td>
<td>128Mi</td>
<td>512Mi</td>
<td>50m</td>
<td>100m</td>
</tr>
<tr>
<td>extension-manager</td>
<td>100Mi</td>
<td>150Mi</td>
<td>100m</td>
<td>100m</td>
</tr>
<tr>
<td>extension-updater</td>
<td>128Mi</td>
<td>512Mi</td>
<td>50m</td>
<td>100m</td>
</tr>
<tr>
<td>manager (inspection-extension)</td>
<td>128Mi</td>
<td>256Mi</td>
<td>10m</td>
<td>500m</td>
</tr>
</tbody>
</table>
Table 10-1. Memory and CPU Reservations and Limits for Cluster Agent Extensions (continued)

<table>
<thead>
<tr>
<th>Extension</th>
<th>Memory Reservation</th>
<th>Memory Limit</th>
<th>CPU Reservation</th>
<th>CPU Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>intent-agent</td>
<td>150Mi</td>
<td>150Mi</td>
<td>100m</td>
<td>100m</td>
</tr>
<tr>
<td>manager (policy-sync-extension)</td>
<td>128Mi</td>
<td>256Mi</td>
<td>10m</td>
<td>500m</td>
</tr>
<tr>
<td>manager (policy-webhook)</td>
<td>128Mi</td>
<td>256Mi</td>
<td>100m</td>
<td>100m</td>
</tr>
<tr>
<td>sync-agent</td>
<td>128Mi</td>
<td>2Gi</td>
<td>100m</td>
<td>2</td>
</tr>
<tr>
<td>tmc-observer</td>
<td>100Mi</td>
<td>150Mi</td>
<td>50m</td>
<td>100m</td>
</tr>
</tbody>
</table>
Pod Security Management

Use security policies to impose constraints on your clusters that define what pods can do and which resources they have access to.

For a manageable security posture, VMware Tanzu Mission Control allows you to exercise control over activity in the clusters in your organization with security policies that govern certain aspects of pod execution in the cluster. These aspects, which are described in Pod Security Policies in the Kubernetes documentation, include privileged containers, volume types, privilege escalation, and Linux capabilities. Although security policies in Tanzu Mission Control are not implemented using the Kubernetes native PodSecurityPolicy object, the security-sensitive aspects of the pod specification that they control is the same.

Security policies in Tanzu Mission Control are implemented using the Gatekeeper project from Open Policy Agent (OPA Gatekeeper). For more information, see the OPA Gatekeeper documentation.

Inheritance and Precedence

Because security policies control how pods are deployed on a cluster, they apply to the clusters hierarchy (infrastructure view) rather than the namespace hierarchy (application view). You can implement security policies on a single cluster, on a cluster group, or at the organizational level, and they are inherited down through the hierarchy.

In contrast to native Kubernetes pod security policies, where the least restrictive policy takes precedence, security policies in Tanzu Mission Control enforce all aspects of all applied policies, each to the most restrictive extent defined. You cannot relax the constraints of an inherited security policy by implementing a less restrictive policy on a child object.

Coexistence with Existing PSPs on the Cluster

When implementing a security policy through Tanzu Mission Control, you have the option of disabling native Kubernetes pod security policies implemented on the cluster.
When you disable native pod security policies in a security policy, any Kubernetes native pod security policies that are implemented on the cluster are temporarily disabled. This applies to all clusters that are impacted by the security policy. For example, if you implement a security policy on a cluster group, all clusters in that cluster group are impacted. If you subsequently decide to allow the native policies, you can modify the security policy and deselect this option.

Additionally, due to policy inheritance, you can have multiple security policies that govern a single cluster. So, if any security policies that impact a cluster disable native pod security policies, then the native policies are disabled. To enable enforcement of native Kubernetes pod security policies for a cluster, all Tanzu Mission Control security policies that impact the cluster must have this option deselected.

What Happens When You Add a Security Policy

When you add a security policy, Tanzu Mission Control applies the policy to each cluster impacted by the policy. If this is the first security policy for a cluster, Tanzu Mission Control installs an extension in the cluster, and then applies the policy.