
VMware SQL with
Postgres for Kubernetes
Documentation

VMware SQL with Postgres for Kubernetes 1.7

You can find the most up-to-date technical documentation on the VMware by Broadcom website at:

https://docs.vmware.com/

VMware by Broadcom
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright © 2024 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its

subsidiaries. For more information, go to https://www.broadcom.com. All trademarks, trade names, service

marks, and logos referenced herein belong to their respective companies.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 2

Contents

VMware Tanzu™ SQL with Postgres for Kubernetes Documentation 12

VMware Tanzu™ SQL with Postgres for Kubernetes Release Notes 13
Release 1.7.3 13

Software Component Versions 13

Supported Platforms 13

Changes 14

Fixed Issues 14

Known Issues and Limitations 14

Release 1.7.2 14

Software Component Versions 14

Supported Platforms 15

Changes 15

Known Issues and Limitations 15

Release 1.7.1 16

Software Component Versions 16

Supported Platforms 16

Changes 17

Fixed Issues 17

Known Issues and Limitations 17

Release 1.7.0 17

Software Component Versions 17

Supported Platforms 18

Features 18

Changes 19

Fixed Issues 19

Known Issues and Limitations 19

Upgrading to 1.7.0 19

Release 1.6.2 20

Software Component Versions 20

Supported Platforms 20

Fixed Issues 20

Known Issues and Limitations 20

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 3

Release 1.6.1 21

Software Component Versions 21

Supported Platforms 21

Changes 21

Fixed Issues 22

Known Issues and Limitations 22

Release 1.6.0 22

Software Component Versions 22

Supported Platforms 23

Supported Platforms 23

Features 24

Changes 24

Fixed Issues 24

Known Issues and Limitations 24

Upgrading to 1.6.0 25

Release 1.5.0 25

Software Component Versions 25

Supported Platforms 25

Features 26

Changes 26

Fixed Issues 26

Known Issues and Limitations 26

Upgrading to 1.5.0 26

Release 1.4.1 27

Software Component Versions 27

Supported Platforms 27

Changes 27

Known Issues and Limitations 27

Upgrading to 1.4.1 28

Release 1.4.0 28

Software Component Versions 28

Supported Platforms 28

Features 29

Changes 29

Fixed Issues 29

Known Issues and Limitations 30

Upgrading to 1.4.0 30

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 4

Release 1.3.0 30

Software Component Versions 30

Supported Platforms 30

Features 31

Backup and Restore 31

Monitoring 32

Changes 32

Limitations and Known Issues 32

Fixed Issues 32

Release 1.2.0 32

Software Component Versions 32

Supported Platforms 33

Features 33

Fixed Issues 34

Limitations 35

Release 1.1.0 35

Software Components 35

Features 35

Changed Features 35

Fixed Issues 35

Release 1.0.0 36

Software Components 36

Features 36

Known Issues and Limitations 36

About VMWare Tanzu SQL with Postgres for Kubernetes 38
VMware Tanzu™ SQL with Postgres for Kubernetes 38

PostgreSQL 39

Platform Requirements 40

Installing a Tanzu Postgres Operator 41

Installing using Helm 41

Prerequisites 41

Accessing the Resources 43

Setup the Tanzu Operator via the Tanzu Network Registry 43

Setup the Tanzu Operator via a Downloaded Archive File 43

Installing the Operator 45

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 5

Create a Kubernetes Access Secret 45

Review the Operator Values 46

Deploy the Operator 47

Installing using the Tanzu CLI 49

Prerequisites 49

Relocate Images to a Private Registry 50

Create a Kubernetes Secret 50

Add the Package Repository 51

Installing the Operator 52

Next steps 54

Deploying a Postgres Instance 55
Prerequisites 55

Configuring a Postgres Instance 56

Specifying the Tanzu Postgres Version 58

Specifying Namespaces 59

Custom Database Name and User Account 60

Updating the Monitor Resources 60

Configuring Node Affinity and Tolerations 63

Quality of Service 64

Security Profile 64

Internal Load Balancer 64

Deploying a Postgres Instance 65

Using the Postgres Instance 65

Installing Tanzu Postgres Extensions 67
pgAudit 67

Orafce 67

PostGIS 68

Address Standardizer 68

Upgrading the Tanzu Postgres Operator and Instances 69

Upgrading the Operator using the Tanzu Registry 69

Upgrading the Operator using the Tanzu Network download 71

Updating a Postgres Instance Configuration 74

Prerequisites 74

Modifying Memory and CPU 74

Modifying Storage Volume Size 75

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 6

Verifying Volume Expansion 76

Increasing Volume Size 77

Accessing a Postgres Instance in Kubernetes 80

Accessing a Pod with Kubectl 80

Accessing Postgres with External Clients 80

Deleting a Postgres Instance from Kubernetes 82

Deleting Postgres Pods and Resources 82

Deleting the Postgres Operator 83

Creating Service Bindings 84
Binding an Application to a Postgres Instance using TAP workflow 84

Prerequisites 84

Bind a new TAP workload 85

Example Workload 85

Bind an existing TAP workload 86

Bind a TAP workload in a different namespace 87

Verify a TAP Workload Service Binding 88

Binding Tanzu Postgres to a TAS Application 89

Prerequisites 89

Binding an Application 89

Configuring TLS for Tanzu Postgres Instances 91
Overview 91

Prerequisites 91

Creating the TLS Secret Using cert-manager 92

Creating a TLS Secret Manually 93

Verifying TLS Security Using psql 95

Backing Up and Restoring Tanzu Postgres 97

Overview 97

Prerequisites 97

Backing Up Tanzu Postgres 98

Configure the Backup Location 98

[Optional] Configure Client-side Encryption for Backups 100

Perform an On-Demand Backup 102

Create Scheduled Backups 103

Backup Schedule Status 105

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 7

Listing Backup Resources 105

Deleting Old Backups 107

Removing Backup Artifacts from an S3 location 107

Deleting a Backup 109

Restoring Tanzu Postgres 109

Restore In-place 109

Prerequisites 109

Procedure 110

Restore to a Different Instance 112

Prerequisites 112

Procedure 112

Restore to a different namespace or cluster 114

Prerequisites 114

Procedure 114

Restore Backups taken prior to Postgres Operator 1.7.0 116

Validating a Successful Restore 117

Migrating to Tanzu Postgres 1.3.0 Backup and Restore 118

Troubleshooting Backup and Restore 118

FAILED status for PostgresBackup Resource 119

Failed due to missing pgbackrest.conf file 119

FAILED due to S3 server certificate validation error 120

FAILED status for PostgresRestore 120

Configuring High Availability in Tanzu Postgres 122
Configuring High Availability 122

Verifying the HA Configuration 123

Scaling down the HA Configuration 125

Monitoring Postgres Instances 126
Overview 126

Prerequisites 127

Verifying Postgres Metrics 127

Using Prometheus Operator to Scrape the Tanzu Postgres Metrics 127

Using TLS for the Metrics Endpoint 129

Collecting Metrics in a Secure Namespace 130

Postgres Exporter Default Metrics 131

Troubleshooting Common Problems 132

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 8

Monitor Deployment Progress 132

Viewing Postgres Operator Logs 132

List All Postgres Instances in the Cluster 132

Find the Versions of the Deployed Postgres Operator and Instances 133

Cannot Reduce Instance Data Size After Deployment 134

Errors during Backup of two Different Instances on the Same Bucket 134

Postgres CRD API Reference 136
Synopsis 136

Description 138

Metadata 138

name 138

Spec 138

imagePullSecret 138

pgConfig 138

postgresVersion 139

serviceType 139

serviceAnnotations 139

seccompProfile 140

highAvailability 140

loglevel 140

backupLocation 140

certificateSecretName 141

storageClassName 141

storageSize 141

cpu 141

memory 141

dataPodConfig 142

monitorStorageClassName 143

monitorStorageSize 143

monitorPodConfig 143

resources 144

Status 145

currentPgbackrestConfigResourceVersion 145

currentState 145

binding 145

dbVersion 145

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 9

Backup and Restore CRD API Reference 146

Backup and Restore CRD API Reference - PostgresBackupLocation
Resource

146

PostgresBackupLocation Synopsis 146

Metadata 146

name 147

Spec 147

retentionPolicy 147

storage 148

additionalParameters 149

Status 150

currentSecretResourceVersion 150

Backup Secret Synopsis 150

metadata 150

name 150

stringData 150

accessKeyID 150

secretAccessKey 151

Backup and Restore CRD API Reference - PostgresBackupSchedule
Resource

151

PostgresBackupSchedule Synopsis 151

Metadata 151

name 151

Spec 151

backupTemplate 152

schedule 152

Status 152

message 152

Backup and Restore CRD API Reference - PostgresBackup Resource 152
PostgresBackup Synopsis 153

Metadata 153

name 153

Spec 153

sourceInstance 153

Status 154

phase 154

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 10

restoreLabel 154

timeStarted 154

timeCompleted 154

backupLocation 154

dbName 154

stanzaName 154

conditions 154

Backup and Restore CRD API Reference - PostgresRestore Resource 155
PostgresRestore Synopsis 155

Metadata 155

name 155

Spec 155

sourceBackup 155

targetInstance 156

Status 156

phase 156

timeStarted 156

timeCompleted 156

Message 157

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 11

VMware Tanzu™ SQL with Postgres for
Kubernetes Documentation

This documentation describes how to deploy and use the Tanzu Postgres distribution.

Key topics in the Tanzu Postgres documentation include:

Release Notes

About Tanzu Postgres describes the VMware distribution of PostgreSQL and related
components.

Installing a Postgres Operator explains how to download and install the VMware Tanzu
Postgres Operator.

Creating a Postgres Instance describes how to use the Postgres Operator to deploy a Tanzu
Postgres instance on a Kubernetes system.

Backing up and Restoring discusses the usage of pgBackRest to backup and restore
Postgres instances.

Configuring High Availability shows you how to create a high available architecture using
pg_auto_failover.

Configuring TLS for Tanzu Postgres Instances describes how to enable TLS security for
client connections to the Postgres server.

Monitoring Postgres Instances explains how to set up a Postgres Metrics exporter, to allow
you to collect and view Prometheus compatible Tanzu Postgres metrics.

Note: The name of the "Pivotal Postgres for Kubernetes" product has been
changed to VMware Tanzu™ SQL with Postgres for Kubernetes.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 12

VMware Tanzu™ SQL with Postgres for
Kubernetes Release Notes

This document contains pertinent release information about VMware Tanzu SQL with Postgres for
Kubernetes. Obtain the most recent version of the distribution from Broadcom Support Portal.

Release 1.7.3

Release Date: June 9th, 2022

Software Component Versions

VMware Postgres Version Component Component Version

1.7.3 PostgreSQL 14.3, 13.7, 12.11, and 11.16

pgBackRest 2.38

pg_auto_failover 1.6.4

postGIS 3.2.1 (for 11, 12,13 and 14)

Orafce 3.21

pgAudit 1.6.1 (for 14),
1.5.1 (for 13),
1.4.1 (for 12),
1.3.1 (for 11),
1.2.1 (for 10)

Supported Platforms

This version of Tanzu Postgres is supported on the following platforms:

VMware Tanzu Kubernetes Grid Integrated Edition (TKGI), version 1.11.x - 1.13.x

VMware Tanzu Kubernetes Grid (TKG) on AWS, version 1.2.x - 1.4.x

Google Kubernetes Engine (GKE)

Azure Kubernetes Service (AKS)

Amazon Elastic Kubernetes Service (Amazon EKS)

Kubernetes version 1.19+

Additional Kubernetes environments, such as Minikube, can be used for testing or demonstration
purposes.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 13

https://support.broadcom.com/group/ecx/productdownloads?subfamily=VMware%20Tanzu%20Postgres%20for%20Kubernetes
https://github.com/postgres/postgres
https://github.com/pgbackrest/pgbackrest
https://github.com/citusdata/pg_auto_failover
https://postgis.net/
https://github.com/orafce/orafce
https://github.com/pgaudit/pgaudit
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid-Integrated-Edition/index.html
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/index.html

Changes

Release 1.7.3 updates the OCI artifact to version 1.0.2:
registry.tanzu.vmware.com/packages-for-vmware-tanzu-data-services/tds-

packages:1.0.2. For more information see Installing the Tanzu Operator using the Tanzu
CLI.

Fixed Issues

This release fixes an issue where user provided process-max and log-level-console values
under the additionalParameters field in the PostgresBackupLocation resource was
ignored.

To prevent restore objects name collision in synchronized backups, the Postgres instance's
backup object name now includes the instance's UUID.

Known Issues and Limitations

When restoring a database to a different postgres instance on an IPv6-enabled Kubernetes
cluster, client connections may fail. This issue does not occur when the source and target
databases have the same name.

The Postgres Operator does not support running backups concurrently on the same
instance. If a backup is already running, starting another one will fail.

The application user appUser field in the Postgres instance manifest cannot be updated after
the Postgres instance deployment.

Existing Tanzu Postgres instances cannot be upgraded to a new major version. The
instances need to be deleted and recreated.

The client application parameter target_session_attrs needs to be set to
target_session_attrs=read-write, to ensure correct connection type handling for client
applications.

The High Availability configuration contains only one mirror.

Release 1.7.2

Release Date: May 19th, 2022

Software Component Versions

VMware Postgres Version Component Component Version

1.7.2 PostgreSQL 14.3, 13.7, 12.11, and 11.16

IMPORTANT: VMware does not support customer deployments that have modified
the packaged Docker images, or deployments that reference images other than the
VMware Postgres Operator. VMware does not support changing the contents of
the deployed containers and pods in any way.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 14

https://github.com/postgres/postgres

VMware Postgres Version Component Component Version

pgBackRest 2.38

pg_auto_failover 1.6.4

postGIS 3.2.1 (for 11, 12,13 and 14)

Orafce 3.21

pgAudit 1.6.1 (for 14),
1.5.1 (for 13),
1.4.1 (for 12),
1.3.1 (for 11),
1.2.1 (for 10)

Supported Platforms

This version of Tanzu Postgres is supported on the following platforms:

VMware Tanzu Kubernetes Grid Integrated Edition (TKGI), version 1.11.x - 1.13.x

VMware Tanzu Kubernetes Grid (TKG) on AWS, version 1.2.x - 1.4.x

Google Kubernetes Engine (GKE)

Azure Kubernetes Service (AKS)

Amazon Elastic Kubernetes Service (Amazon EKS)

Kubernetes version 1.19+

Additional Kubernetes environments, such as Minikube, can be used for testing or demonstration
purposes.

Changes

This release supports VMware Postgres 14.3, 13.7, 12.11, and 11.16. For more information on
VMware Postgres see VMware Postgres.

Release 1.7.2 updates the OCI artifact to version 1.0.1:
registry.tanzu.vmware.com/packages-for-vmware-tanzu-data-services/tds-

packages:1.0.1. For more information see Installing the Tanzu Operator using the Tanzu
CLI.

Known Issues and Limitations

When restoring a database to a different postgres instance on an IPv6-enabled Kubernetes
cluster, client connections may fail. This issue does not occur when the source and target
databases have the same name.

IMPORTANT: VMware does not support customer deployments that have modified
the packaged Docker images, or deployments that reference images other than the
VMware Postgres Operator. VMware does not support changing the contents of
the deployed containers and pods in any way.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 15

https://github.com/pgbackrest/pgbackrest
https://github.com/citusdata/pg_auto_failover
https://postgis.net/
https://github.com/orafce/orafce
https://github.com/pgaudit/pgaudit
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid-Integrated-Edition/index.html
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/index.html
https://docs.vmware.com/en/VMware-Postgres/index.html

Running backups concurrently is not supported. If a backup is already running, starting
another one will fail.

The application user appUser field in the Postgres instance manifest cannot be updated after
the Postgres instance deployment.

Existing Tanzu Postgres instances cannot be upgraded to a new major version. The
instances need to be deleted and recreated.

The client application parameter target_session_attrs needs to be set to
target_session_attrs=read-write, to ensure correct connection type handling for client
applications.

The High Availability configuration contains only one mirror.

Release 1.7.1

Release Date: April 25th, 2022

Software Component Versions

VMware Postgres Version Component Component Version

1.7.1 PostgreSQL 11.15, 12.10, 13.6, 14.2

pgBackRest 2.37

pg_auto_failover 1.6.3

postGIS 2.5.5 (for 11.14), 3.2.0 (for 12,13 and 14)

Orafce 3.17

pgAudit 1.6.1

Supported Platforms

This version of Tanzu Postgres is supported on the following platforms:

VMware Tanzu Kubernetes Grid Integrated Edition (TKGI), version 1.11.x - 1.13.x

VMware Tanzu Kubernetes Grid (TKG) on AWS, version 1.2.x - 1.4.x

Google Kubernetes Engine (GKE)

Azure Kubernetes Service (AKS)

Amazon Elastic Kubernetes Service (Amazon EKS)

Kubernetes version 1.19+

Additional Kubernetes environments, such as Minikube, can be used for testing or demonstration
purposes.

IMPORTANT: VMware does not support customer deployments that have modified
the packaged Docker images, or deployments that reference images other than the

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 16

https://github.com/postgres/postgres
https://github.com/pgbackrest/pgbackrest
https://github.com/citusdata/pg_auto_failover
https://postgis.net/
https://github.com/orafce/orafce
https://github.com/pgaudit/pgaudit
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid-Integrated-Edition/index.html
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/index.html

Changes

The Tanzu Postgres 1.7.1 release supports Carvel tools, and the 1.7.1. container images are
packaged as an image bundle that is distributed as a new OCI artifact:
registry.tanzu.vmware.com/packages-for-vmware-tanzu-data-services/tds-

packages:1.0.0. For more information on image bundles see Resources in the Carvel
documentation.

The Tanzu Postgres Operator can now be installed using the Tanzu CLI and the new Carvel
image bundle. Tanzu Application Platform (TAP) users can now use the same toolchain to
manage both products. For details on the Tanzu CLI installation process see Installing a
Tanzu Postgres Operator.

Fixed Issues

Fixes an issue where backup synchronization to a different namespace or cluster was only
supported for full backups. Release 1.7.1 now supports restoring incremental and differential
backups to a different namespace or cluster.

Release 1.7.1 updates the package golang.org/x/crypto to a later version which addresses
the following CVE:

CVE-2022-27191

Known Issues and Limitations

When restoring a database to a different postgres instance on an IPv6-enabled Kubernetes
cluster, client connections may fail. This issue does not occur when the source and target
databases have the same name.

Running backups concurrently is not supported. If a backup is already running, starting
another one will fail.

The application user appUser field in the Postgres instance manifest cannot be updated after
the Postgres instance deployment.

Existing Tanzu Postgres instances cannot be upgraded to a new major version. The
instances need to be deleted and recreated.

The client application parameter target_session_attrs needs to be set to
target_session_attrs=read-write, to ensure correct connection type handling for client
applications.

The High Availability configuration contains only one mirror.

Release 1.7.0

Release Date: April 15th, 2022

Software Component Versions

VMware Postgres Operator. VMware does not support changing the contents of
the deployed containers and pods in any way.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 17

https://carvel.dev/imgpkg/docs/v0.28.0/resources/#bundle
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/index.html
https://nvd.nist.gov/vuln/detail/CVE-2022-27191

VMware Postgres Version Component Component Version

1.7.0 PostgreSQL 11.15, 12.10, 13.6, 14.2

pgBackRest 2.37

pg_auto_failover 1.6.3

postGIS 2.5.5 (for 11.14), 3.2.0 (for 12,13 and 14)

Orafce 3.17

pgAudit 1.6.1

Supported Platforms

This version of Tanzu Postgres is supported on the following platforms:

VMware Tanzu Kubernetes Grid Integrated Edition (TKGI), version 1.11.x - 1.13.x

VMware Tanzu Kubernetes Grid (TKG) on AWS, version 1.2.x - 1.4.x

Google Kubernetes Engine (GKE)

Azure Kubernetes Service (AKS)

Amazon Elastic Kubernetes Service (Amazon EKS)

Kubernetes version 1.19+

Additional Kubernetes environments, such as Minikube, can be used for testing or demonstration
purposes.

Features

This release allows instance backups to be synchronized in two different namespaces or
Kubernetes clusters. This feature allows users to restore to a new Tanzu Postgres instance
from a previously created backup, even if the instance that originated the backup is not
available, and even if the originating backup namespace is different from the restore
namespace. For more information see Restoring Tanzu Postgres.

The PostgresBackupLocation CRD now supports an additional field named
additionalParameters. For more information see Backup and Restore Deployment
Properties.

Users can now provide service annotations for the Load Balancer service, to cater for
internal and external load balancer configurations. The annotations provide more flexibility
with Cloud provider environments. For more information see Internal Load Balancer.

This release supports deploying Tanzu Postgres instances in Kubernetes clusters with IPv6
enabled.

IMPORTANT: VMware does not support customer deployments that have modified
the packaged Docker images, or deployments that reference images other than the
VMware Postgres Operator. VMware does not support changing the contents of
the deployed containers and pods in any way.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 18

https://github.com/postgres/postgres
https://github.com/pgbackrest/pgbackrest
https://github.com/citusdata/pg_auto_failover
https://postgis.net/
https://github.com/orafce/orafce
https://github.com/pgaudit/pgaudit
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid-Integrated-Edition/index.html
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/index.html

Changes

This release removes the deprecated property repo-s3-verify-tls from pgBackRest, and
replaces it with repo-storage-verify-tls.

Users are now prevented from using reserved system names like "postgres" as values in
pgConfig.adminUser, pgConfig.appUser, and pgConfig.dbName. Creating an instance using
reserved words now returns an error similar to: pgconfig.dbname cannot be postgres.

Users cannot anymore alter the Custom Resource manifest of a backup or restore object
that has been initiated, regardless if the backup or restore has succeeded or failed. If a user
attempts to modify the Restore CR after applying it, the change will not be stored, and they
will see a message similar to: "Forbidden: spec cannot be updated after Restore has been
created."

Tanzu Postgres pgBackRest configuration will not longer send log information to disk, at
location /pgsql/logs/<namespace>-<instance-name>-backup.log. Instead it will send logs to
stdout and stderr. Use a log collector of your choice to store the logs in a custom location.

From this release, backups are not encrypted automatically. Customers are advised to use
their S3 provider server-side encryption method and/or client-side encryption. For
information on implementing client-side encryption, see Configure Client-side Encryption
for Backups.

Fixed Issues

Fixes an issue where successful or unsuccessful backups would show incorrect completion
time.

Known Issues and Limitations

Backup synchronization to a different namespace or cluster is only supported for full
backups.

When restoring a database to a different postgres instance on an IPv6-enabled Kubernetes
cluster, client connections may fail. This issue does not occur when the source and target
databases have the same name.

Running backups concurrently is not supported. If a backup is already running, starting
another one will fail.

The application user appUser field in the Postgres instance manifest cannot be updated after
the Postgres instance deployment.

Existing Tanzu Postgres instances cannot be upgraded to a new major version. The
instances need to be deleted and recreated.

The client application parameter target_session_attrs needs to be set to
target_session_attrs=read-write, to ensure correct connection type handling for client
applications.

The High Availability configuration contains only one mirror.

Upgrading to 1.7.0

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 19

To upgrade to Tanzu Postgres 1.7.0 review the Upgrading the Tanzu Postgres Operator and
Instances page.

Release 1.6.2

Release Date: April 1st, 2022

Software Component Versions

VMware Postgres Version Component Component Version

1.6.2 PostgreSQL 11.15.1, 12.10.1, 13.6.1, 14.2.1

psqlODBC 13.02.0000

pgjdbc 42.3.2

pgBackRest 2.38

pg_auto_failover 1.6.3

postGIS 2.5.5 (for 11.14), 3.2.0 (for 12,13 and 14)

Orafce 3.17

pgAudit 1.6.1

Supported Platforms

This version of Tanzu Postgres is supported on the following platforms:

VMware Tanzu Kubernetes Grid Integrated Edition (TKGI), version 1.11.x - 1.13.x

VMware Tanzu Kubernetes Grid (TKG) on AWS, version 1.2.x - 1.4.x

Google Kubernetes Engine (GKE)

Azure Kubernetes Service (AKS)

Amazon Elastic Kubernetes Service (Amazon EKS)

Kubernetes version 1.19+

Fixed Issues

In release 1.6.2 the Prometheus metrics exporter is compiled with a newer version of
golang that addresses the following CVEs:

CVE-2022-23772

CVE-2022-23806

CVE-2022-24921

CVE-2022-23773

Known Issues and Limitations

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 20

https://github.com/postgres/postgres
https://git.postgresql.org/gitweb/?p=psqlodbc.git
https://github.com/pgjdbc/pgjdbc
https://github.com/pgbackrest/pgbackrest
https://github.com/citusdata/pg_auto_failover
https://postgis.net/
https://github.com/orafce/orafce
https://github.com/pgaudit/pgaudit
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid-Integrated-Edition/index.html
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/index.html
https://nvd.nist.gov/vuln/detail/CVE-2022-23772
https://nvd.nist.gov/vuln/detail/CVE-2022-23806
https://nvd.nist.gov/vuln/detail/CVE-2022-24921
https://nvd.nist.gov/vuln/detail/CVE-2022-23773

Running backups concurrently is not supported. If a backup is already running, starting
another one will fail.

Recovering a backup to a new Postgres instance is restricted to the same namespace.

The application user appUser field in the Postgres instance manifest cannot be updated after
the Postgres instance deployment.

Existing Tanzu Postgres instances cannot be upgraded to a new major version. The
instances need to be deleted and recreated.

The client application parameter target_session_attrs needs to be set to
target_session_attrs=read-write, to ensure correct connection type handling for client
applications.

The High Availability configuration contains only one mirror.

Release 1.6.1

Release Date: March 16th, 2022

Software Component Versions

VMware Postgres Version Component Component Version

1.6.1 PostgreSQL 11.15.1, 12.10.1, 13.6.1, 14.2.1

psqlODBC 13.02.0000

pgjdbc 42.3.2

pgBackRest 2.38

pg_auto_failover 1.6.3

postGIS 2.5.5 (for 11.14), 3.2.0 (for 12,13 and 14)

Orafce 3.17

pgAudit 1.6.1

Supported Platforms

This version of Tanzu Postgres is supported on the following platforms:

VMware Tanzu Kubernetes Grid Integrated Edition (TKGI), version 1.11.x - 1.13.x

VMware Tanzu Kubernetes Grid (TKG) on AWS, version 1.2.x - 1.4.x

Google Kubernetes Engine (GKE)

Azure Kubernetes Service (AKS)

Amazon Elastic Kubernetes Service (Amazon EKS)

Kubernetes version 1.19+

Changes

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 21

https://github.com/postgres/postgres
https://git.postgresql.org/gitweb/?p=psqlodbc.git
https://github.com/pgjdbc/pgjdbc
https://github.com/pgbackrest/pgbackrest
https://github.com/citusdata/pg_auto_failover
https://postgis.net/
https://github.com/orafce/orafce
https://github.com/pgaudit/pgaudit
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid-Integrated-Edition/index.html
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/index.html

Tanzu Postgres 1.6.1 updates pgBackRest to version 2.38. For information on the 2.38
release see v2.38: Minor Bug Fixes and Improvements.

This release includes VMware Postgres 11.15.1, 12.10.1, 13.6.1, and 14.2.1.

pgBackRest no longer writes logs to a default /pgsql/logs/<namespace>-<instance-name>-
backup.log prescribed file location. Instead it outputs log information to stdout and stderr.
Users who wish to store the logs, are advised to configure a custom log collector.

Users are no longer able to modify an existing Backup object after the backup has been
initiated. An attempt for such a change will result in an error similar to: "Forbidden: spec
cannot be updated after Backup has been created.".

Fixed Issues

From this release it is not possible for a user to scale the Monitor pod down to a value other
than 1. The Tanzu Postgres Operator will now reconcile the Monitor component if a user
scales it down.

The output of kubectl get postgresbackup did not correctly display the time a backup had
completed. The output of the command now displays the correct finish time of a backup.

Known Issues and Limitations

Running backups concurrently is not supported. If a backup is already running, starting
another one will fail.

Recovering a backup to a new Postgres instance is restricted to the same namespace.

The application user appUser field in the Postgres instance manifest cannot be updated after
the Postgres instance deployment.

Existing Tanzu Postgres instances cannot be upgraded to a new major version. The
instances need to be deleted and recreated.

The client application parameter target_session_attrs needs to be set to
target_session_attrs=read-write, to ensure correct connection type handling for client
applications.

The High Availability configuration contains only one mirror.

Release 1.6.0
Release Date: February 28th, 2022

Software Component Versions

VMware Postgres Version Component Component Version

1.6.0 PostgreSQL 11.15, 12.10, 13.6, 14.2

psqlODBC 13.02.0000

pgjdbc 42.3.2

pgBackRest 2.37

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 22

https://github.com/pgbackrest/pgbackrest/releases/tag/release/2.38
https://github.com/postgres/postgres
https://git.postgresql.org/gitweb/?p=psqlodbc.git
https://github.com/pgjdbc/pgjdbc
https://github.com/pgbackrest/pgbackrest

VMware Postgres Version Component Component Version

pg_auto_failover 1.6.3

postGIS 2.5.5 (for 11.14), 3.2.0 (for 12,13 and 14)

Orafce 3.17

pgAudit 1.6.1

Supported Platforms

This version of Tanzu Postgres is supported on the following platforms:

VMware Tanzu Kubernetes Grid Integrated Edition (TKGI), version 1.11.x - 1.13.x

VMware Tanzu Kubernetes Grid (TKG) on AWS, version 1.2.x - 1.4.x

Google Kubernetes Engine (GKE)

Azure Kubernetes Service (AKS)

Amazon Elastic Kubernetes Service (Amazon EKS)

Kubernetes version 1.19+

Additional Kubernetes environments, such as Minikube, can be used for testing or demonstration
purposes.

Supported Platforms

This version of Tanzu Postgres is supported on the following platforms:

VMware Tanzu Kubernetes Grid Integrated Edition (TKGI), version 1.11.x - 1.13.x

VMware Tanzu Kubernetes Grid (TKG) on AWS, version 1.2.x - 1.4.x

Google Kubernetes Engine (GKE)

Azure Kubernetes Service (AKS)

Amazon Elastic Kubernetes Service (Amazon EKS)

Kubernetes version 1.19+

Additional Kubernetes environments, such as Minikube, can be used for testing or demonstration
purposes.

IMPORTANT: VMware does not support customer deployments that have modified
the packaged Docker images, or deployments that reference images other than the
VMware Postgres Operator. VMware does not support changing the contents of
the deployed containers and pods in any way.

IMPORTANT: VMware does not support customer deployments that have modified
the packaged Docker images, or deployments that reference images other than the
VMware Postgres Operator. VMware does not support changing the contents of
the deployed containers and pods in any way.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 23

https://github.com/citusdata/pg_auto_failover
https://postgis.net/
https://github.com/orafce/orafce
https://github.com/pgaudit/pgaudit
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid-Integrated-Edition/index.html
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/index.html
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid-Integrated-Edition/index.html
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/index.html

Features

Tanzu Postgres 1.6.0 supports PostgreSQL 14.2, 13.6, 12.10, and 11.15. When upgrading to
Tanzu Operator 1.6.0, existing instances will be upgraded to the latest minor version.

This release adds pgAudit 1.6.1 to the Tanzu Postgres component list. For more details, see
pgAudit.

Version 1.6.0 upgrades pgBackRest to 2.37.

This release upgrades pgjdbc to 42.3.2, and postGIS to 3.2.0 (for PostgreSQL 12, 13, or 14).

Release 1.6.0 supports Secure Compute Mode (seccomp) profiles. This release introduces a
new Postgres CRD field seccompProfile. For more information, see seccompProfile in the
Postgres API reference page.

This release adds Azure Kubernetes Service (AKS), and Amazon Elastic Kubernetes Service
(Amazon EKS) to the Supported Platforms list.

Users can now specify a retention policy for full and differential backups. The
PostgresBackupLocation CRD includes two new properties,
spec.retentionPolicy.fullRetention and spec.retentionPolicy.diffRetention. For more
details see Backup and Restore CRD API Reference.

Tanzu Postgres 1.6.0 supports secret rotation for the Postgres Application user appUser.
The Postgres database will automatically pickup up a refreshed secret.

This release supports a new field spec.imagePullSecret in the Postgres instance CRD.
Users can now replace the default regsecret to their own registry secret.

Changes

This release removes the column AGE from the output of the command kubectl get
postgresversion.

Fixed Issues

TSQL-2 - Fixes an issue where the restore process is unable to complete on Postgres
instances that have gone through a timeline change.

TSQL-3 - This release fixes an issue where containers would use more CPU than expected,
and runc process would restart repeatedly. Users can now set the seccompProfile to
Localhost or Unconfined. For more details on seccompProfile see seccompProfile in the
Postgres API reference page.

This release fixes an issue where in a newly restored instance, the appUser secret for any
application service-bindings would require manual secret reconfiguration.

Known Issues and Limitations

A backup may still be running but show as finished in the output of kubectl get
postgresbackup.

Running backups concurrently is not supported. If a backup is already running, starting
another one will fail.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 24

https://github.com/pgaudit/pgaudit
https://github.com/pgbackrest/pgbackrest
https://github.com/pgjdbc/pgjdbc
https://postgis.net/

Recovering a backup to a new Postgres instance is restricted to the same namespace.

The application user appUser field in the Postgres instance manifest cannot be updated after
the Postgres instance deployment.

Existing Tanzu Postgres instances cannot be upgraded to a new major version. The
instances need to be deleted and recreated.

The client application parameter target_session_attrs needs to be set to
target_session_attrs=read-write, to ensure correct connection type handling for client
applications.

The High Availability configuration contains only one mirror.

Upgrading to 1.6.0

To upgrade to Tanzu Postgres 1.6.0 review the Upgrading the Tanzu Postgres Operator and
Instances page.

Release 1.5.0

Release Date: January 7th, 2022

Software Component Versions

VMware Postgres Version Component Component Version

1.5.0 PostgreSQL 11.14, 12.9, 13.5, 14.1

psqlODBC 13.2-0000

pgjdbc 42.3.1

pgBackRest 2.36

pg_auto_failover 1.6.3

postGIS 2.5.5 (for 11.14), 3.1.4 (for 12,13 and 14)

Orafce 3.17

Supported Platforms

This version of Tanzu Postgres is supported on the following platforms:

VMware Tanzu Kubernetes Grid Integrated Edition (TKGI), version 1.11.x - 1.13.x.

VMware Tanzu Kubernetes Grid (TKGm) on AWS, version 1.2.x - 1.4.x.

Google Kubernetes Engine (GKE)

Kubernetes version 1.19+

Additional Kubernetes environments, such as Minikube, can be used for testing or demonstration
purposes.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 25

https://github.com/postgres/postgres
https://git.postgresql.org/gitweb/?p=psqlodbc.git
https://github.com/pgjdbc/pgjdbc
https://github.com/pgbackrest/pgbackrest
https://github.com/citusdata/pg_auto_failover
https://postgis.net/
https://github.com/orafce/orafce
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid-Integrated-Edition/index.html
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/index.html

Features

Tanzu Postgres 1.5.0 has the following new features:

Release 1.5.0 supports pod Affinity and Tolerations for advanced scheduling and HA
configurations. For more information, see Configuring Affinity and Tolerations at the
Deploying a Postgres Instance page.

Tanzu Postgres Operator 1.5.0 supports Tanzu Application Platform (TAP) with Service
Binding. This release introduces a new Postgres CRD field appUser and an application secret
<pg-instance-name>-app-user-db-secret. For more information, see Creating Service
Bindings.

Changes

This release removes the column AGE from the output of the command kubectl get
postgresversion.

Fixed Issues

An updated Postgres instance would still show state Running even if the monitor stateful set
was restarting. Now the Tanzu Postgres Operator will correctly mark the Postgres instance
as Pending while the monitor statefulset is not running.

This release fixes an issue where a restore would not complete if the Postgres instance had
gone through a timeline change.

Known Issues and Limitations

The application user appUser field in the Postgres instance manifest cannot be updated after
the Postgres instance deployment.

Existing Tanzu Postgres instances cannot be upgraded to a new major version. The
instances need to be deleted and recreated.

The client application parameter target_session_attrs needs to be set to
target_session_attrs=read-write, to ensure correct connection type handling for client
applications.

The High Availability configuration contains only one mirror.

Recovering a backup to a new Postgres instance is restricted to the same namespace.

Upgrading to 1.5.0

To upgrade to Tanzu Postgres 1.5.0 review the Upgrading the Tanzu Postgres Operator and
Instances page.

IMPORTANT: VMware does not support deployments that have been modified by
adding layers to the packaged Docker images, or deployments that reference
images other than the VMware Postgres Operator. VMware does not support
changing the contents of the deployed containers and pods in any way.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 26

Release 1.4.1

Release Date: December 10th, 2021

Software Component Versions

VMware Postgres Version Component Component Version

1.4.1 PostgreSQL 11.14, 12.9, 13.5, 14.1

psqlODBC 13.2-0000

pgjdbc 42.3.1

pgBackRest 2.36

pg_auto_failover 1.6.3

postGIS 2.5.5 (for 11.14), 3.1.4 (for 12,13 and 14)

Orafce 3.17

Supported Platforms

This version of Tanzu Postgres is supported on the following platforms:

VMware Tanzu Kubernetes Grid Integrated Edition (TKGI), version 1.9.x - 1.12.x.

VMware Tanzu Kubernetes Grid (TKG) on AWS, version 1.2.x - 1.4.x.

Google Kubernetes Engine (GKE)

Kubernetes version 1.19+

Additional Kubernetes environments, such as Minikube, can be used for testing or demonstration
purposes.

Changes

Release 1.4.1 has been updated to address a security CVE relating to Network Security
Services (NSS). For details, see CVE-2021-43527

Known Issues and Limitations

Existing Tanzu Postgres instances cannot be upgraded to a new major version. The
instances need to be deleted and recreated.

The client application parameter target_session_attrs needs to be set to
target_session_attrs=read-write, to ensure correct connection type handling for client
applications.

IMPORTANT: VMware does not support deployments that have been modified by
adding layers to the packaged Docker images, or deployments that reference
images other than the VMware Postgres Operator. VMware does not support
changing the contents of the deployed containers and pods in any way.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 27

https://github.com/postgres/postgres
https://git.postgresql.org/gitweb/?p=psqlodbc.git
https://github.com/pgjdbc/pgjdbc
https://github.com/pgbackrest/pgbackrest
https://github.com/citusdata/pg_auto_failover
https://postgis.net/
https://github.com/orafce/orafce
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid-Integrated-Edition/index.html
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/index.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-43527

Tanzu Postgres does not support Helm version 3.7.

The High Availability configuration contains only one mirror.

Recovering a backup to a new Postgres instance is restricted to the same namespace.

Concurrent backup is not supported. An already running backup must finish before a
second backup can successfully complete.

Upgrading to 1.4.1

To upgrade to Tanzu Postgres 1.4.1 review the Upgrading the Tanzu Postgres Operator and
Instances page.

Existing Postgres instances will be associated with the PostgresVersion resource named postgres-
11. If there are manifest files saved for those existing instances, please update the manifests to
include spec.postgresVersion.name as postgres-11.

Release 1.4.0

Release Date: November 22nd, 2021

Software Component Versions

VMware Postgres Version Component Component Version

1.4.0 PostgreSQL 11.14, 12.9, 13.5, 14.1

psqlODBC 13.2-0000

pgjdbc 42.3.1

pgBackRest 2.36

pg_auto_failover 1.6.3

postGIS 2.5.5 (for 11.14), 3.1.4 (for 12,13 and 14)

Orafce 3.17

Supported Platforms

This version of Tanzu Postgres is supported on the following platforms:

VMware Tanzu Kubernetes Grid Integrated Edition (TKGI), version 1.9.x - 1.12.x.

VMware Tanzu Kubernetes Grid (TKG) on AWS, version 1.2.x - 1.4.x.

Google Kubernetes Engine (GKE)

Kubernetes version 1.19+

Additional Kubernetes environments, such as Minikube, can be used for testing or demonstration
purposes.

IMPORTANT: VMware does not support deployments that have been modified by
adding layers to the packaged Docker images, or deployments that reference

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 28

https://github.com/postgres/postgres
https://git.postgresql.org/gitweb/?p=psqlodbc.git
https://github.com/pgjdbc/pgjdbc
https://github.com/pgbackrest/pgbackrest
https://github.com/citusdata/pg_auto_failover
https://postgis.net/
https://github.com/orafce/orafce
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid-Integrated-Edition/index.html
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/index.html

Features

Tanzu Postgres 1.4.0 has the following new features:

Release 1.4.0 supports Postgres 11.14, 12.9, 13.5, and 14.1. The default version for new Tanzu
Postgres instances is 14.1.

This release updates the pgBackRest component to 2.36 and pg_auto_failover to 1.6.3.

This release supports Orafce 3.17.0, and PostGIS 2.5.5 (for Postgres 11), or PostGIS 3.1.14
(for Postgres 12, 13, and 14).

JDBC has been upgraded to 42.3.1, and ODBC to 13.02.00.

The Postgres Operator 1.4.0 now supports multiple Postgres versions. To deploy a different
version than the default Postgres 14.1, see Specifying the Tanzu Postgres Version.

This release now supports scaling down from an HA configuration to a single Postgres
instance. For more details, see Configuring High Availability in Tanzu Postgres.

This release supports ssl_min_protocol_version and TLSv1.2 when users deploy 12, 13, or
14 Postgres instances. Users may use the psql client and the command select setting
from pg_settings where name='ssl_min_protocol_version' to confirm their instances TLS
version.

Changes

This release removes PL/R and PL/Java from the 1.4.0 release components.

The legacy Postgres CRD field spec.backupLocationSecret is now removed from the Tanzu
Postgres manifest.

The shutdown period for the Tanzu Postgres pods has been increased to allow for a more
graceful shutdown period.

Fixed Issues

This release fixes an issue with HA failover that occured when the demoted primary had a
different secret than the promoted secondary.

After an instance crash, certain files (for example unix socket files, lock files, and PID files)
would prevent database restart. These files are now cleaned up.

This release fixes an issue where wildcard matching by hostname in pg_hba.conf caused
unsuccessful authentication between primary and mirrors. This issue has now been resolved
by deploying wildcard authentication by subdomain.

When customers were creating a PostgresBackupSchedule with incremental or differential
backups, the backups were performed as full. This issue has now been fixed.

Stale information stored in the Kubernetes client cache was causing the restore process to
be unstable. The restore reliability has now been improved.

images other than the VMware Postgres Operator. VMware does not support
changing the contents of the deployed containers and pods in any way.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 29

Known Issues and Limitations

Existing Tanzu Postgres instances cannot be upgraded to a new major version. The
instances need to be deleted and recreated.

The client application parameter target_session_attrs needs to be set to
target_session_attrs=read-write, to ensure correct connection type handling for client
applications.

Tanzu Postgres does not support Helm version 3.7.

The High Availability configuration contains only one mirror.

Recovering a backup to a new Postgres instance is restricted to the same namespace.

Concurrent backup is not supported. An already running backup must finish before a
second backup can successfully complete.

Upgrading to 1.4.0

To upgrade to Tanzu Postgres 1.4.0 review the Upgrading the Tanzu Postgres Operator and
Instances page.

Existing Postgres instances will be associated with the PostgresVersion resource named postgres-
11. If there are manifest files saved for those existing instances, please update the manifests to
include spec.postgresVersion.name as postgres-11.

Release 1.3.0

Release Date: October 14th, 2021

Software Component Versions

VMware Postgres Version Component Component Version

1.3.0 PostgreSQL 11.13

psqlODBC 11.0-0000

pgjdbc 42.2.5

pgBackRest 2.34

pg_auto_failover 1.6.2

postGIS 2.5.5

Orafce 3.15

PL/Java Beta 1.5.7

Supported Platforms

This version of Tanzu Postgres is supported on the following platforms:

VMware Tanzu Kubernetes Grid Integrated Edition (TKGI), version 1.9.x - 1.12.x.

VMware Tanzu Kubernetes Grid (TKG) on AWS, version 1.2.x - 1.4.x.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 30

https://github.com/postgres/postgres
https://git.postgresql.org/gitweb/?p=psqlodbc.git
https://github.com/pgjdbc/pgjdbc
https://github.com/pgbackrest/pgbackrest
https://github.com/citusdata/pg_auto_failover
https://postgis.net/
https://github.com/orafce/orafce
https://tada.github.io/pljava/
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid-Integrated-Edition/index.html
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/index.html

Google Kubernetes Engine (GKE)

Kubernetes version 1.19+

Additional Kubernetes environments, such as Minikube, can be used for testing or demonstration
purposes.

Features

Tanzu Postgres 1.3.0 has the following new features:

Release 1.3.0 supports Postgres 11.13.

This release updates the pgBackRest component to 2.34 and pg_auto_failover to 1.6.2.

This release supports Guaranteed Quality of Service (Qos) for critical pods. When the
resource limits are higher than the requests, the QoS class is Burstable.

This release improves secrets handling, for Postgres instances and monitor.

Customers can now create Postgres instances in an environment with restricted security
policies. For details, see Prerequisites in the Install Tanzu Operator page.

This release allows customers to configure the Postgres Operator pod resources. See
Access the Resources in the Install the Tanzu Operator page.

The Postgres Operator 1.3.0 now recreates any Postgres database or Postgres monitor
secrets that are deleted by accident.

The Tanzu Postgres administrator can now set the certificate issuer for the Postgres
operator's certificate.

Backup and Restore

This release deprecates the BackupLocationSecret object. Customers using a previous
release of Tanzu Postgres, should migrate to the new backup and restore strategy. For
details see Migrating to Tanzu Postgres 1.3.0 Backup and Restore.

This release introduces four new Custom Resource Definitions for backup and restore:
PostgresBackupLocation, PostgresBackup, PostgresBackupSchedule, and PostgresRestore.
See Backing Up and Restoring Tanzu Postgres

Users can filter existing backups based on Postgres instance name. For details, see Listing
Backup Resources.

Any changes to the backup location or backup secret are automatically applied to the
related Postgres instances.

Customers can now monitor real time the backup logs during a backup operation.

IMPORTANT: VMware does not support deployments that have been modified by
adding layers to the packaged Docker images, or deployments that reference
images other than the VMware Postgres Operator. VMware does not support
changing the contents of the deployed containers and pods in any way.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 31

Postgres restore now supports recovering to a brand new instance, to help users with
disaster recovery or debug scenarios. For details see Restore to a different instance.

Monitoring

Tanzu Postgres 1.3.0 provides a Prometheus compatible endpoint for metrics collection. For
details see Monitoring Postgres Instances.

Customers can configure the resource limits and requests of the Postgres exporter. The
metrics resources can be edited in the Postgres manifest file. For further details, see
Configuring a Postgres Instance.

This release supports TLS security for metrics collection.

Changes

This release improves error messages.

The Postgres Operator and Postgres Image tags for version and repository are combined
into a single variable instead of two. The Operator values.yaml now contains just one
variable for each, operatorImage and postgresImage.

The Postgres instance wal_keep_segments value is now set to 0 by default. This provides
greater flexibility and reduces space requirements for wal logs.

Limitations and Known Issues

Tanzu Postgres does not support Helm version 3.7.

The High Availability configuration contains only one mirror.

Recovering a backup to a new Postgres instance is restricted to the same namespace.

Fixed Issues

The dockerRegistrySecretName in the Operator values.yaml file was set to regsecret and
could not be changed to an alternative name. This issue has been resolved and users can
specify an alternative secret name in the overrides file.

Release 1.2.0
Release Date: July 14, 2021

Software Component Versions

VMware Postgres Version Component Component Version

1.2.0 PostgreSQL 11.12

psqlODBC 11.0-0000

pgjdbc 42.2.5

pgBackRest 2.28

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 32

https://github.com/postgres/postgres
https://git.postgresql.org/gitweb/?p=psqlodbc.git
https://github.com/pgjdbc/pgjdbc
https://github.com/pgbackrest/pgbackrest

VMware Postgres Version Component Component Version

pg_auto_failover 1.4.2

postGIS 2.5.5

Orafce 3.14

PL/Java Beta 1.5.7

Supported Platforms

This version of Tanzu Postgres is supported on the following platforms:

VMware Tanzu Kubernetes Grid Integrated Edition (TKGI), version 1.9.x.

VMware Tanzu Kubernetes Grid (TKG) on AWS, version 1.2.x.

Google Kubernetes Engine (GKE)

Kubernetes version 1.16+

Additional Kubernetes environments, such as Minikube, can be used for testing or demonstration
purposes.

Features

Tanzu Postgres 1.2.0 has the following new features:

Security Enhancements

Tanzu Postgres 1.2.0 supports TLS security and user provided TLS certificates. See Creating
a TLS Secret Manually.

Support for custom TLS issuer. See Configuring TLS for Tanzu Postgres Instances.

TLS certificates associated with cert-manager can be accidentally deleted and regenerated
automatically.

Kubernetes secrets associated with a cert-manager certificate can be deleted and
recovered automatically. A new certificate will be generated, and the Postgres server will
restart. Applications will need to reconnect.

Tanzu Postgres instances are now created by default with service type ClusterIP, to
enhance security.

New Postgres instances now use a crypto library/algorithm for enhanced password
generation.

Usability Enhancements

The Tanzu Postgres Operator and instances are now available via the TanzuNet registry.
See Installing a Postgres Operator for more information.

IMPORTANT: VMware does not support deployments that have been modified by
adding layers to the packaged Docker images, or deployments that reference
images other than the VMware Postgres Operator. VMware does not support
changing the contents of the deployed containers and pods in any way.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 33

https://github.com/citusdata/pg_auto_failover
https://postgis.net/
https://github.com/orafce/orafce
https://tada.github.io/pljava/
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid-Integrated-Edition/index.html
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/index.html

This release supports VMware Tanzu Kubernetes Grid on AWS.

PL/Java is bundled with the 1.2 release but currently provided as Beta.

Tanzu Postgres now supports the Orafce extension. Users can now run Oracle queries like
SELECT months_between(date '1995-02-02', date '1995-01-01');. See Installing Postgres
Extensions.

Release 1.2 now supports all Postgres contrib extensions, apart from plpython3u.

Connections to Postgres instances are now writable by default. This allows applications that
cannot use connection parameters such as target_session_attrs(for libpq) or
targetServertype(for JDBC) to connect to a writable instance.

Users can install the Tanzu Postgres Operator in a namespace of their choice.

The new release supports enhanced labels. Users can search the Kubernetes resources
created by the Tanzu Postgres Helm chart by using a label such as app=postgres-operator.
See Installing a Tanzu Postgres Operator.

Users can now set logLevel: Debug when creating an instance. Debug logs can be shared
with VMware support for troubleshooting. See Configuring a Postgres Instance.

The Postgres instance Monitor pod resources can now be manually altered, to support
resource constrained environments such as Minikube on a client laptop. For more details
see Updating the Monitor Resources.

Release 1.2 now supports all Postgres contrib extensions, apart from plpython3u. For more
information see Additional Supplied Modules in the Postgres documentation.

Fixed Issues

(175768688) - Users can now create backups of similarly named instances in the same S3
bucket.

(176064027) - When creating a backup operation, users do not need to specify the path --
pg1-path on the command line.

(175771699) - This release improves the error message when specifying below the minimum
accepted disk space for the StorageSize field:
"pg-small-instance.yaml": admission webhook "vpostgres.kb.io" denied the request:

The field(s) StorageSize field needs to be at least 250MB are incorrectly

formatted and could not be parsed.

(177225289) - Users can now specify the StorageSize field using M, Mi, or MB.

(176615909) - Non-admin users can now view Postgres objects in a specified namespace.

(178402085) - Fixes a log display issue where, if the instance was older than one day, the
logs stopped displaying to stdout.

(177407650) - Fixes an issue where the database would be inaccessible for a period of time
when scaling up from a single node to an HA configuration. The database is now accessible
during the secondary node data copy period.

(178528901) - In a HA configuration, when the user configured a S3 backup secret, he also
had to manually create the backup stanza. This issue has been resolved, and the backup

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 34

https://www.postgresql.org/docs/10/contrib.html

stanza is created automatically when users apply the S3 secret.

Limitations

The High Availability configuration contains only one mirror.

The dockerRegistrySecretName in the Operator values.yaml file is set to regsecret and
cannot be changed to an alternative name in the overrides file .

Release 1.1.0

Release Date: February 26, 2021

Software Components

VMware Postgres Version Component Component Version

1.1.0 PostgreSQL 11.10

pgBackRest 2.31

pg_auto_failover 1.4.0

Features

Tanzu Postgres 1.1.0 has the following features:

Support for upgrading from Tanzu Postgres 1.0.0 to 1.1.0. See Upgrading the Tanzu
Postgres Operator and Instances.

Support for Postgres 11.10.

Enhanced security by implementing Postgres cluster communications via SSL.

Improved auto-healing, when instances or services are terminated abnormally or
accidentally. The Postgres operator monitors and automatically restarts any deleted or
stopped instances or agents.

Postgres instances with the same name, in different namespaces, can now be backed up to
the same S3 location.

Changed Features

Updated the pgbackrest sample configuration file, from pgbackrest.conf to
pgbackrest.conf.template.

The storageSize parameter cannot be altered after Postgres instance creation. Any
attempt to do so generates an error similar to: storageSize cannot be reduced after the
instance is created. No changes have been made to the running instance.

Fixed Issues

[166560384] - Tanzu Postgres backups to an S3 location, using the parameter verifyTLS:
true and a well-known Certificate Authority, would fail with an error similar to: 2020-12-18
01:01:43.460 P00 DEBUG: common/io/http/request::httpRequestProcess: retry

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 35

https://github.com/postgres/postgres
https://github.com/pgbackrest/pgbackrest
https://github.com/citusdata/pg_auto_failover

CryptoError: unable to verify certificate presented by 's3.us-west-

1.amazonaws.com:443': [20] unable to get local issuer certificate This issue has
been resolved.

[175791284] - Fixed an issue where storageSize updates affected more than one instance,
if the instances had matching names in separate namespaces.

[175885808] - Updated the s3-secret-example.yaml file for S3 backups, and all parameters
are now specified in double quotes.

[175618701] - Resolved an issue with the s3 secret yaml file, where parameters marked as
"optional" but not configured would cause the backup operation to fail.

[175602831] - When the archive_mode flag was on (in the postgresql.conf file), but the
backupLocationSecret was left unconfigured in the instance configuration yaml file, backups
were still attempted. This issue has been resolved.

[176061339] - Changed the detail level of the pgbackrest console output to info.

Release 1.0.0

Release Date: October 30, 2020

Tanzu Postgres 1.0.0 is the first release of VMware Tanzu Postgres on Kubernetes.

Software Components

VMware Postgres Version Component Component Version

1.0.0 PostgreSQL 11.9

psqlODBC 11.0-0000

pgjdbc 42.2.5

pgBackRest 2.28

pg_auto_failover 1.4.0

postGIS 2.5.4

Features

Tanzu Postgres 1.0.0 has the following features:

Support for backing up the Postgres instances to an S3 compatible storage location. See
Backing Up and Restoring Tanzu Postgres.

Support for creating a High Availability cluster configuration, with one primary and a mirror.
See Configuring High Availability in Tanzu Postgres .

Flexibility to update the Postgres images after deployment, and reconfigure CPU, memory,
and persistent volume storage sizes. See Updating a Postgres Instance Configuration for
more information.

Known Issues and Limitations

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 36

https://github.com/postgres/postgres
https://git.postgresql.org/gitweb/?p=psqlodbc.git
https://github.com/pgjdbc/pgjdbc
https://github.com/pgbackrest/pgbackrest
https://github.com/citusdata/pg_auto_failover
https://postgis.net/

Upgrades from the Beta program releases to the Tanzu Postgres 1.0.0 release are not
supported. Download and install the latest version.

The High Availability configuration contains only one mirror.

The default storage size for the Postgres instance is too limited for long term running
Postgres environments. Change the storageSize to 10G, and use an expandable storage
class. See Deploying a Postgres Instance.

During an upgrade from 1.0.0 to 1.1.0, in an HA scenario, the Postgres instances state does
not show "Ready" until both the primary and the mirror nodes have restarted. This
limitation stops the clients from connecting to a read-write instance during the upgrade.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 37

About VMWare Tanzu SQL with Postgres
for Kubernetes

VMware Tanzu™ SQL with Postgres for Kubernetes

Tanzu Postgres helps you quickly and reliably deploy Postgres instances on Kubernetes.

Tanzu Postgres packages a collection of 100% open source software, based on the PostgreSQL
source code published at http://www.postgresql.org and other open source software from the
PostgreSQL community. It also includes a Kubernetes Operator to help you deploy and manage
one or more instances of the PostgreSQL database. It includes the following components:

PostgreSQL – the core ORDBMS database engine.

pgBackRest – reliable backup and restore for PostgreSQL.

pg_auto_failover – simple and robust High Availability solution for PostgreSQL.

PostgreSQL ODBC Driver (psqlODBC) ‐ connectivity for Linux client applications.

PostgreSQL JDBC Driver (pgjdbc) – connectivity for Java clients.

All components included in the Tanzu Postgres software distribution are intended for Enterprise
deployments, and are supported by VMware. See the Support Lifecycle Policy and the Product
Support Lifecycle Matrix for details about the duration of support for Tanzu Postgres.

VMware Postgres Version Component Component Version

1.7.3 PostgreSQL 14.3, 13.7, 12.11, and 11.16

pgBackRest 2.38

pg_auto_failover 1.6.4

postGIS 3.2.1 (for 11, 12,13 and 14)

Orafce 3.21

pgAudit 1.6.1 (for 14),
1.5.1 (for 13),
1.4.1 (for 12),
1.3.1 (for 11),
1.2.1 (for 10)

IMPORTANT: VMware Postgres does not support any additional extension
components or versions outside the following list. For component inquiries, please
contact VMware Support.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 38

http://www.postgresql.org/
https://github.com/postgres/postgres
https://github.com/pgbackrest/pgbackrest
https://github.com/citusdata/pg_auto_failover/blob/v1.5.2/docs/architecture.rst
https://git.postgresql.org/gitweb/?p=psqlodbc.git
https://github.com/pgjdbc/pgjdbc
https://tanzu.vmware.com/support/lifecycle_policy
https://d1fto35gcfffzn.cloudfront.net/support/PivotalLifecycleMatrix.pdf
https://github.com/postgres/postgres
https://github.com/pgbackrest/pgbackrest
https://github.com/citusdata/pg_auto_failover
https://postgis.net/
https://github.com/orafce/orafce
https://github.com/pgaudit/pgaudit
https://tanzu.vmware.com/support

PostgreSQL

PostgreSQL is a powerful, open source object-relational database system that has more than 15
years of active development. It offers a proven architecture that has earned it a strong reputation
for reliability, data integrity, and correctness. PostgreSQL is fully ACID compliant, has full support
for foreign keys, joins, views, triggers, and stored procedures (in multiple languages). It includes
most SQL:2008 data types, including INTEGER, NUMERIC, BOOLEAN, CHAR, VARCHAR, DATE, INTERVAL, and
TIMESTAMP. It also supports storage of binary large objects, including pictures, sounds, or video.
PostgreSQL has native programming interfaces for C/C++, Java, .Net, Perl, Python, Ruby, Tcl,
ODBC, among others, and exceptional documentation.

Major features of PostgreSQL include:

Multi-Version Concurrency Control (MVCC)

Point in time recovery

Tablespaces

Asynchronous replication

Nested transactions (savepoints)

Online/hot backups

A sophisticated query planner/optimizer

Write ahead logging for fault tolerance

International character sets

Multibyte character encodings

Unicode

Locale-aware support for sorting case-sensitivity, and formatting

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 39

Platform Requirements

This version of Tanzu Postgres is supported on the following platforms:

VMware Tanzu Kubernetes Grid Integrated Edition (TKGI), version 1.11.x - 1.13.x.

Note: TKGI 1.13.0 and 1.13.1 clusters must be configured with the docker container
runtime instead of the default containerd runtime due to an incompatibilty with the
containerd provided. Existing clusters upgraded to TKGI 1.13 will continue to use the
docker runtime. TKGI 1.13.2 is patched with version 1.5.9 of the containerd runtime
to avoid the incompatibility issue.

VMware Tanzu Kubernetes Grid (TKG) on AWS, version 1.2.x - 1.4.x.

Google Kubernetes Engine (GKE)

Azure Kubernetes Service (AKS)

Amazon Elastic Kubernetes Service (Amazon EKS)

Kubernetes version 1.19+

You can check the container runtime for a Kubernetes cluster with:

kubectl get nodes -o wide

IMPORTANT:: Kubernetes is deprecating Docker as an underlying container
runtime. If your environment uses containerd, avoid versions 1.5.6 and 1.5.7. There
is a regression that blocks containers from being created if the image label
key/value length is larger than 4096 characters.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 40

https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid-Integrated-Edition/index.html
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/index.html

Installing a Tanzu Postgres Operator

This topic describes how to install Tanzu Postgres.

The primary method for installing Tanzu Postgres Operator is via Helm. For install instructions using
the Tanzu Network Registry or a downloadable file, see Installing using Helm.

For Tanzu Application Platform (TAP) customers, the Tanzu Postgres Operator can be installed
using the Tanzu CLI. For more details, see Installing using the Tanzu CLI.

Installing using Helm

Prerequisites

To run Tanzu Postgres you need:

Access to Tanzu Network and Tanzu Network Registry. You can use the same credentials
for both sites.

Docker running and configured on your local computer, to access the Kubernetes cluster
and Docker registry.

A running Kubernetes cluster (check supported providers in Platform Requirements) - and
the kubectl command-line tool, configured and authenticated to communicate with your
Kubernetes cluster.

If you are using GKE, install the gcloud command-line tool.

If you are using TKG, install the tanzu command-line tool.

If you are using TKGI, install the tkgi command-line tool.

The Helm v3 command-line tool installed. For more information, see Installing Helm from
the Helm documentation.

cluster-admin ClusterRole access to the Kubernetes cluster. For more information, see the
Kubernetes documentation.

review the Network Policies Configuration topic if you have any network plugins (for
example Network Plugin) in your Kubernetes cluster.

Cert Manager installed on the Kubernetes cluster.

IMPORTANT: TKG users need to upgrade the TKG packaged cert-manager to a version
above 1.0.

Note: Helm CLI 3.7.0 is not supported. Please use 3.7.1 and later.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 41

https://network.tanzu.vmware.com/
https://registry.tanzu.vmware.com/
https://github.com/docker
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://cloud.google.com/sdk/gcloud/
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/1.4/vmware-tanzu-kubernetes-grid-14/GUID-install-cli.html
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid-Integrated-Edition/1.19/tkgi/GUID-installing-cli.html
https://helm.sh/docs/intro/install/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#user-facing-roles
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/
https://github.com/jetstack/cert-manager

Install cert-manager by running these commands from your local client:

kubectl create namespace cert-manager

helm repo add jetstack https://charts.jetstack.io

helm repo update

helm install cert-manager jetstack/cert-manager --namespace cert-manager --ver

sion <1.latest> --set installCRDs=true

where:

--namespace cert-manager is the namespace used for cert manager in the
Kubernetes cluster

--version <1.latest> is the latest cert-manager version available (minimum above
1.0.2)

--set installCRDs=true ensures cert manager installs all types necessary to create
certificates

To verify the installation run:

kubectl get all --namespace=cert-manager

The output should be similar to:

NAME READY STATUS RESTARTS AGE

pod/cert-manager-57b65b7fc-x8vjt 1/1 Running 5 4d1

9h

pod/cert-manager-cainjector-5f988f74c6-tgk25 1/1 Running 15 4d1

9h

pod/cert-manager-webhook-7cf554f879-b5ss9 1/1 Running 4 4d1

9h

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT

(S) AGE

service/cert-manager ClusterIP 10.106.253.7 <none> 9402/T

CP 4d19h

service/cert-manager-webhook ClusterIP 10.108.17.113 <none> 443/TC

P 4d19h

NAME READY UP-TO-DATE AVAILABLE AGE

deployment.apps/cert-manager 1/1 1 1 4d19

h

deployment.apps/cert-manager-cainjector 1/1 1 1 4d19

h

deployment.apps/cert-manager-webhook 1/1 1 1 4d19

h

NAME DESIRED CURRENT READY

AGE

replicaset.apps/cert-manager-57b65b7fc 1 1 1

4d19h

replicaset.apps/cert-manager-cainjector-5f988f74c6 1 1 1

4d19h

replicaset.apps/cert-manager-webhook-7cf554f879 1 1 1

4d19h

For more advanced security scenarios, see Configuring TLS for Tanzu Postgres Instances.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 42

Accessing the Resources

You can setup Tanzu Postgres using two different methods:

Use Setup Tanzu Postgres Operator via Tanzu Network Registry for a faster installation
process, and if your server hosts have access to the internet.

Use Setup Tanzu Operator via Downloadable Archive File if your server hosts do not have
access to the internet, or if you want to install from a private registry.

Setup the Tanzu Operator via the Tanzu Network Registry

1. Set the environment variable to enable Open Container Initiative (OCI) support in the Helm
v3 client by running:

export HELM_EXPERIMENTAL_OCI=1

If you skip this step, the following error message might appear:

Error: this feature has been marked as experimental and is not enabled by defau

lt.

2. Use Helm to log in to the Tanzu Network Registry by running:

helm registry login registry.tanzu.vmware.com \

 --username=<USERNAME> \

 --password=<PASSWORD>

Follow the prompts to enter the email address and password for your Tanzu Network
account.

3. Download the Helm chart from the Tanzu Distribution Registry, and export into a local /tmp/
directory:

If you're using Helm CLI 3.6 and earlier:

helm chart pull registry.tanzu.vmware.com/tanzu-sql-postgres/postgres-operator-

chart:v1.7.2

helm chart export registry.tanzu.vmware.com/tanzu-sql-postgres/postgres-operato

r-chart:v1.7.2 --destination=/tmp/

If you're using Helm CLI 3.7.1 and later:

helm pull oci://registry.tanzu.vmware.com/tanzu-sql-postgres/postgres-operator-

chart --version v1.7.2 --untar --untardir /tmp

4. Follow the steps in Installing the Operator.

Setup the Tanzu Operator via a Downloaded Archive File

Choose this method if the installation destination (for example an air-gapped network) cannot
access the VMware Tanzu Network, or you wish to load the Operator and instance images to
private Docker registry.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 43

https://network.tanzu.vmware.com/

1. Download the Tanzu Postgres distribution from Broadcom Support. The Tanzu Postgres
download filename has the format: postgres-for-kubernetes-v<version>.tar.gz

2. Unpack the downloaded software:

cd ~/Downloads

tar xzf postgres-for-kubernetes-v<version>.tar.gz

This command unpacks the distribution into a new directory named postgres-for-
kubernetes-v<version>, for example postgres-for-kubernetes-v1.7.2.

3. Change to the new postgres-for-kubernetes-v<version> directory.

cd ./postgres-for-kubernetes-v*

4. Load the Postgres instance image.

docker load -i ./images/postgres-instance

cc967c529ced: Loading layer [==

>] 65.57MB/65.57MB

2c6ac8e5063e: Loading layer [==

>] 991.2kB/991.2kB

6c01b5a53aac: Loading layer [==

>] 15.87kB/15.87kB

e0b3afb09dc3: Loading layer [==

>] 3.072kB/3.072kB

faee4b69eae8: Loading layer [==

>] 29.74MB/29.74MB

6bc08b5f8a06: Loading layer [==

>] 4.096kB/4.096kB

3bfb028071fa: Loading layer [==

>] 331.4MB/331.4MB

6ef1a056590e: Loading layer [==

>] 57.86kB/57.86kB

Loaded image: postgres-instance:v1.7.2

5. Load the Postgres operator image.

docker load -i ./images/postgres-operator

0d1435bd79e4: Loading layer [==

>] 3.062MB/3.062MB

b50265a0f809: Loading layer [==

>] 40.87MB/40.87MB

Loaded image: postgres-operator:v1.7.2

6. Verify that the two Docker images are now available.

docker images "postgres-*"

REPOSITORY TAG IMAGE ID CREATED SIZE

postgres-operator v1.7.2 063a6186109b 10 days ago 111MB

postgres-instance v1.7.2 cc6ca2396fda 10 days ago 1.72GB

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 44

https://support.broadcom.com/group/ecx/productdownloads?subfamily=VMware%20Tanzu%20Postgres%20for%20Kubernetes

7. Push the Tanzu Postgres Docker images to the container registry of your choice. Set each
image's project and image repo name, tag the images, and then push them using the
Docker command docker push.

This example tags and pushes the images to the Google Cloud Registry, using the default
(core) project name for the example Google Cloud account.

gcloud auth configure-docker

PROJECT=$(gcloud config list core/project --format='value(core.project)')

REGISTRY="gcr.io/${PROJECT}"

INSTANCE_IMAGE_NAME="${REGISTRY}/postgres-instance:$(cat ./images/postgres-inst

ance-tag)"

docker tag $(cat ./images/postgres-instance-id) ${INSTANCE_IMAGE_NAME}

docker push ${INSTANCE_IMAGE_NAME}

OPERATOR_IMAGE_NAME="${REGISTRY}/postgres-operator:$(cat ./images/postgres-oper

ator-tag)"

docker tag $(cat ./images/postgres-operator-id) ${OPERATOR_IMAGE_NAME}

docker push ${OPERATOR_IMAGE_NAME}

8. Follow the steps in Installing the Operator.

Installing the Operator

Create a Kubernetes Access Secret

Create a docker-registry type secret to allow the Kubernetes cluster to authenticate with the
private container registry, or the Tanzu Registry, so it can pull images. These examples create a
secret named regsecret, in the current namespace (in this example it's the default), using
VMware Tanzu Network, or Harbor.

IMPORTANT: Only pods created in the current default namespace can reference this secret. To
create the instance in a different namespace, use the --namespace flag.

VMware Tanzu Network

kubectl create secret docker-registry regsecret \

 --docker-server=https://registry.tanzu.vmware.com/ \

 --docker-username='USERNAME' \

 --docker-password='PASSWD'

where USERNAME and password PASSWD are your access credentials to the VMware Tanzu Network.
Surround both the USERNAME and the PASSWD by single quote marks to handle any special characters
within those values.

Harbor

kubectl create secret docker-registry regsecret \

 --docker-server=${HARBOR_URL} \

 --docker-username=${HARBOR_USER} \

 --docker-password="${HARBOR_PASSWORD}"

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 45

The Postgres Operator will use this secret to allow the Kubernetes cluster to authenticate with the
container registry to pull images.

Review the Operator Values

This step is optional. Go to the directory where you unpacked the Tanzu Postgres distribution.
View the file operator/values.yaml in the Tanzu Postgres directory:

cat ./operator/values.yaml

The file specifies the location of the Postgres Operator and instance images. By default it contains
the following values:

specify the url for the docker image for the operator, e.g. gcr.io/<my_project>/post

gres-operator

operatorImage: registry.tanzu.vmware.com/tanzu-sql-postgres/postgres-operator:v1.7.2

specify the docker image for postgres instance, e.g. gcr.io/<my_project>/postgres-in

stance

postgresImage: registry.tanzu.vmware.com/tanzu-sql-postgres/postgres-instance:v1.7.2

specify the name of the docker-registry secret to allow the cluster to authenticate

with the container registry for pulling images

dockerRegistrySecretName: regsecret

override the default self-signed cert-manager cluster issuer

certManagerClusterIssuerName: postgres-operator-ca-certificate-cluster-issuer

set the resources for the postgres operator deployment

resources: {}

limits:

cpu: 100m

memory: 128Mi

requests:

cpu: 100m

memory: 128Mi

Determine which values in the values.yaml file need to be changed for your environment. Use the
table below as a guide.

Key
Value
Type

Description

operatorImage URI Reference to the Tanzu Postgres Operator image. Change
this reference to show the URI of your private registry
where you uploaded the Operator image.

instanceImage URI Reference to the Tanzu Postgres image. Change this
reference to show the URI of your private registry where
you uploaded the instance image.

dockerRegistrySecretName String Name of image secret. This value must match the name
of the Kubernetes secret you created in Create a
Kubernetes Access Secret above.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 46

Key
Value
Type

Description

certManagerClusterIssuerName String Name of TLS issuer. Change this field to match your
custom CA issuer if you're using TLS. See Configuring TLS
for Tanzu Postgres Instances.

resources Object Limits and requests for CPU and memory for the
Operator. You can change these values to scale your
resources.

To alter any of the default values create a operator-values-overrides.yaml (choose your own
name) configuration file under the same location, and specify any custom values, for example a
custom container registry, and a secret. For manual changes, you may also set individual
parameters using the --set flag on the command line. See Helm Values Files in the Helm
documentation for more information.

An example values-overrides.yaml file could contain the following lines, replacing ${REGISTRY}
with your private container registry name:

operatorImage: ${REGISTRY}/postgres-operator:v1.7.2

postgresImage: ${REGISTRY}/postgres-instance:v1.7.2

Deploy the Operator

1. Verify you don't have previously installed instance CRDs in your cluster:

kubectl get crd postgres.sql.tanzu.vmware.com

If this is a brand new Operator installation, the result should be similar to:

Error from server (NotFound): customresourcedefinitions.apiextensions.k8s.io "p

ostgres.sql.tanzu.vmware.com" not found

If the result is similar to:

NAME CREATED AT

postgres.sql.tanzu.vmware.com 2021-06-09T06:04:45Z

there are older instances running in the cluster, from a previous Operator deployment.
When deploying the Operator, you need to refresh this CRD in order to apply the new
updated Operator version (see step 5).

2. Install the Tanzu Postgres Operator by running one of the following:

If you created a custom operator-values-overrides.yaml run the following helm command:

helm install <OPERATOR_NAME> <PATH_TO_CHART> \

 --values=<PATH_TO_HELM_OVERRIDES_FILE> \

 --namespace=<OPERATOR_NAMESPACE> \

 --wait

where

OPERATOR_NAME is a custom name for the helm release

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 47

https://helm.sh/docs/chart_template_guide/values_files/

PATH_TO_CHART is where you downloaded the helm chart based on the setup
procedure

--values (optional) specifies the path where the helm override file resides

--namespace (optional) specifies the namespace you wish to deploy the Operator in,
which must match the namespace for the secret created in Create a Kubernetes
Access Secret

--wait flag waits for the Operator deployment to complete before any image
installation starts

If you did not create an operator-values-overrides.yaml configuration file run:

helm install my-postgres-operator /tmp/postgres-operator/ --wait

NAME: my-postgres-operator

LAST DEPLOYED: Wed Jun 16 13:28:05 2021

NAMESPACE: default

STATUS: deployed

REVISION: 1

TEST SUITE: None

helm install my-postgres-operator /tmp/postgres-operator/ \

 --namespace=${OPERATOR_NAMESPACE} \

 --create-namespace \

 --wait

Note: The secret namespace in step Create a Kubernetes Access Secret must match the
Operator namespace.

Installing the Operator creates a new service account named postgres-operator-service-
account. It is for internal use, but it is visible if you use the kubectl get serviceaccount
command:

kubectl get serviceaccount

NAME SECRETS AGE

default 1 12m

postgres-operator-service-account 1 8m56s

3. Use watch kubectl get all to monitor the progress of the deployment. The deployment is
complete when the Postgres Operator pod status changes to Running. Use the label
app=postgres-operator to search across resources created by the Postgres Operator Helm
chart.

watch kubectl get all --selector app=postgres-operator

If your namespace is different than the default, use the -n <your-namaspace> to specify
your namespace.

Every 2.0s: kubectl get all

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 48

NAME READY STATUS RESTARTS AGE

pod/postgres-operator-6754b58976-24zwx 1/1 Running 0 5m15s

NAME TYPE CLUSTER-IP EXTERN

AL-IP PORT(S) AGE

service/postgres-operator-webhook-service ClusterIP 10.101.230.150 <none>

443/TCP 5m15s

NAME READY UP-TO-DATE AVAILABLE AGE

deployment.apps/postgres-operator 1/1 1 1 5m15s

NAME DESIRED CURRENT READY AGE

replicaset.apps/postgres-operator-6754b58976 1 1 1 5m15

s

You may also check the logs to confirm the Operator is running properly:

kubectl logs -l app=postgres-operator

To view all the Operator resources run:

kubectl api-resources --api-group=sql.tanzu.vmware.com

NAME SHORTNAMES APIVERSION NAMESPACED K

IND

postgres pg sql.tanzu.vmware.com/v1 true P

ostgres

postgresbackuplocations sql.tanzu.vmware.com/v1 true P

ostgresBackupLocation

postgresbackups sql.tanzu.vmware.com/v1 true P

ostgresBackup

postgresbackupschedules sql.tanzu.vmware.com/v1 true P

ostgresBackupSchedule

postgresrestores sql.tanzu.vmware.com/v1 true P

ostgresRestore

postgresversions sql.tanzu.vmware.com/v1 false P

ostgresVersion

4. If you have existing Postgres instances running from a previous Operator deployment, go to
the location you setup your Operator:

cd /<your-path>/postgres-for-kubernetes-v<your-version>/

and re-apply the instance CRD, using a command similar to:

kubectl apply -f operator/crds/

Installing using the Tanzu CLI

Prerequisites

A Tanzu Network account to access images from the VMware Tanzu Network registry.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 49

https://network.tanzu.vmware.com/

Before using the Tanzu CLI, certain prerequisites (kapp-controller and secretgen-controller)
must be installed on the Kubernetes cluster. For details on these requirements review
Accepting Tanzu Application Platform EULAs, installing Cluster Essentials and the Tanzu CLI
in the TAP documentation.

Cert Manager installed on the Kubernetes cluster.

Relocate Images to a Private Registry

Relocate the images from VMware Tanzu Network registry to a private registry before attempting
installation. The VMware Tanzu Network registry does not offer uptime guarantees for installations.
Skipping image relocation should only occur when configuring an evaluation, testing, or proof-of-
concept environment.

To relocate images from the VMware Tanzu Network registry to a private registry:

1. Log in to your image registry by running:

docker login <MY-REGISTRY>

where:

MY-REGISTRY is your own image registry

2. Log in to the VMware Tanzu Network registry with your VMware Tanzu Network
credentials by running:

docker login registry.tanzu.vmware.com

3. Relocate the images with the Carvel tool imgpkg by running:

imgpkg copy -b registry.tanzu.vmware.com/packages-for-vmware-tanzu-data-services/tds-p

ackages:<TDS-VERSION> --to-repo <MY-REGISTRY>/<TARGET-REPOSITORY>/tds-packages

where:

MY-REGISTRY is your own image registry

TARGET-REPOSITORY is your target repository

TDS-VERSION is the tag for the image bundle (e.g 1.0.0)

Create a Kubernetes Secret

Verify the existing secrets in your environment:

tanzu secret registry list

The output would be similar to:

NAME REGISTRY EXPORTED AGE

test-registry my-registry to all namespaces 47h

tanzu-registry registry.tanzu.vmware.com to all namespaces 47h

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 50

https://docs.vmware.com/en/Tanzu-Application-Platform/1.1/tap/GUID-install-tanzu-cli.html
https://github.com/jetstack/cert-manager

Verify there is an exported secret for your custom image registry. If there is no associated secret,
create a secret and export the secret to all namespaces:

tanzu secret registry add <SECRET-NAME> \

 --username <MY-REGISTRY-USERNAME> \

 --password <MY-REGISTRY-PASSWORD> \

 --server <MY-REGISTRY> \

 --export-to-all-namespaces --yes

where:

SECRET-NAME: is the name of the Kubernetes secret that will be created

MY-REGISTRY is your own image registry

MY-REGISTRY-USERNAME is the username for your own container registry

MY-REGISTRY-PASSWORD is the password for your own container registry

Add the Package Repository

Add the package repository for VMware Tanzu Data Services:

tanzu package repository add tanzu-data-services-repository --url <MY-REGISTRY>/<TARGE

T-REPOSITORY>/tds-packages

where:

MY-REGISTRY is your own image registry

TARGET-REPOSITORY is your target repository

List the available packages to confirm the addition:

tanzu package available list

- Retrieving available packages...

 NAME DISPLAY-NAME

SHORT-DESCRIPTION LATEST-VERSION

 postgres-operator.sql.tanzu.vmware.com VMware Tanzu SQL with Postgres for Kuberne

tes Kubernetes Operator for PostgreSQL 1.7.2

Check the values for the Postgres Operator package:

tanzu package available get postgres-operator.sql.tanzu.vmware.com/1.7.2 --values-sche

ma

- Retrieving package details for postgres-operator.sql.tanzu.vmware.com/1.7.2...

 KEY DEFAULT TYPE

DESCRIPTION

 certManagerClusterIssuerName postgres-operator-ca-certificate-cluster-issuer strin

g A cert-manager based clusterissuer used to sign postgres certificates using a custo

m certificate authority

 dockerRegistrySecretName regsecret strin

g The name of the docker-registry secret to allow the cluster to authenticate with th

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 51

e container registry for pulling images

 resources map[] objec

t Resources describes the CPU and Memory compute resource requirements for Postgres o

perator pod

Consider overriding the Operator values in a separate YAML file, if the defaults do not suit your
deployment environment. A sample overrides YAML could be:

certManagerClusterIssuerName: custom-issuer

dockerRegistrySecretName: custom-secret

resources:

 limits:

 cpu: 500m

 memory: 300Mi

 requests:

 cpu: 500m

 memory: 300Mi

Installing the Operator

1. Install the operator package

Install the Postgres operator package, using the overrides file you created:

tanzu package install <PACKAGE-NAME> --package-name postgres-operator.sql.tanz

u.vmware.com --version 1.7.2 -f <YOUR-OVERRIDES-FILE-PATH>

where:

PACKAGE-NAME is the name you choose for the package installation.

YOUR-OVERRIDES-FILE-PATH is your custom overrides path and file, for example
overrides.yaml.

The output is similar to:

/ Installing package 'postgres-operator.sql.tanzu.vmware.com'

| Getting package metadata for 'my-postgres-operator.sql.tanzu.vmware.com'

| Creating service account 'my-postgres-operator-default-sa'

| Creating cluster admin role 'my-postgres-operator-default-cluster-role'

| Creating cluster role binding 'my-postgres-operator-default-cluster-rolebindi

ng'

| Creating secret 'my-postgres-operator-default-values'

| Creating package resource

- Waiting for 'PackageInstall' reconciliation for 'my-postgres-operator'

\ 'PackageInstall' resource install status: Reconciling

Added installed package 'my-postgres-operator'

2. Verify PackageInstall has been created

tanzu package installed list

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 52

- Retrieving installed packages...

 NAME PACKAGE-NAME PACKAGE-VERSION

STATUS

 my-postgres-operator postgres-operator.sql.tanzu.vmware.com 1.7.2

Reconcile succeeded

A service account is created so that the kapp-controller can create cluster-scope objects
such as CustomResourceDefinitions, and so it will have permissions to create objects on any
namespace. This service account is different than the service account for the Postgres
operator to manage other Kubernetes resources (statefulsets, secrets, etc...)

To check the service accounts run:

kubectl get serviceaccount

NAME SECRETS AGE

default 1 4d4h

my-postgress-operator-default-sa 1 12m

my-postgres-operator-service-account 1 12m

3. Verify the Operator Deployment

Use watch kubectl get all to monitor the progress of the deployment. The deployment is
complete when the Postgres Operator pod status changes to Running. Use the label
app=postgres-operator to search across resources created by the Postgres Operator.

watch kubectl get all --selector app=postgres-operator

If your namespace is different than the default, use -n <your-namaspace> to specify your
namespace.

Every 2.0s: kubectl get all

NAME READY STATUS RESTARTS AGE

pod/postgres-operator-6754b58976-24zwx 1/1 Running 0 5m15s

NAME TYPE CLUSTER-IP EXTERN

AL-IP PORT(S) AGE

service/postgres-operator-webhook-service ClusterIP 10.101.230.150 <none>

443/TCP 5m15s

NAME READY UP-TO-DATE AVAILABLE AGE

deployment.apps/postgres-operator 1/1 1 1 5m15s

NAME DESIRED CURRENT READY AGE

replicaset.apps/postgres-operator-6754b58976 1 1 1 5m15

s

You may also check the logs to confirm the Operator is running properly:

kubectl logs -l app=postgres-operator

To view all the Operator resources run:

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 53

kubectl api-resources --api-group=sql.tanzu.vmware.com

NAME SHORTNAMES APIVERSION NAMESPACED K

IND

postgres pg sql.tanzu.vmware.com/v1 true P

ostgres

postgresbackuplocations sql.tanzu.vmware.com/v1 true P

ostgresBackupLocation

postgresbackups sql.tanzu.vmware.com/v1 true P

ostgresBackup

postgresbackupschedules sql.tanzu.vmware.com/v1 true P

ostgresBackupSchedule

postgresrestores sql.tanzu.vmware.com/v1 true P

ostgresRestore

postgresversions sql.tanzu.vmware.com/v1 false P

ostgresVersion

``

Next steps

After you install the Postgres Operator, you can use it to deploy and manage Postgres instances.
To interact with the Postgres Operator, you place a set of instructions into a YAML-formatted
configuration file (a Kubernetes manifest) and then use the kubectl utility to send the file
instructions to the Operator. The Postgres Operator is then responsible for following the
instructions that you provide, and also for maintaining the state of the Postgres instance according
to the properties that you defined.

For more details, see:

Deploying a New Postgres Instance

Updating a Postgres Instance Configuration

Deleting a Postgres Instance

Upgrading the Operator or the Postgres Instances

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 54

Deploying a Postgres Instance

This section describes how to deploy a Postgres instance to your Kubernetes cluster, using the
Postgres operator. Use these instructions either to deploy a brand new instance (by provisioning a
new empty Persistent Volume Claims in Kubernetes), or to update an instance by re-using existing
Persistent Volumes (PVC) if available.

Prerequisites

1. Ensure you have installed the Tanzu Postgres docker images and created the Postgres
operator in your Kubernetes cluster. See Installing a Postgres Operator for instructions.

Verify that the Postgres operator is installed and running in your system:

helm list

NAME REVISION UPDATED STATUS

CHART APP VERSION NAMESPACE

postgres-operator 1 Fri Feb 25 16:03:19 2022 DEPLOYE

D postgres-operator-1.7.2 v1.7.2 default

2. Request an expandable storage volume for your Postgres instance, to be able to resize the
volume online. For more information, see Allow Volume Expansion.

Ensure that the storage class VOLUMEBINDINGMODE field is set to
volumeBindingMode=WaitForFirstConsumer, to avoid Postgres pods and Persistent Volumes
(PV) scheduling issues. For more details on the Kubernetes storage class binding modes
see Volume Binding Mode.

To verify the ALLOWVOLUMEEXPANSION and VOLUMEBINDINGMODE fields use:

kubectl get storageclasses

The output would be similar to:

NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMO

DE ALLOWVOLUMEEXPANSION AGE

standard (default) k8s.io/minikube-hostpath Delete WaitForFirstCon

sumer true 4h25m

3. If you're planning to bind a TAP application workload to the Postgres database, and wish to
change the default pgappuser application user name, edit your instance yaml before
deployment. For details see Custom Database Name and User Account.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 55

https://kubernetes.io/docs/concepts/storage/storage-classes/#allow-volume-expansion
https://kubernetes.io/docs/concepts/storage/storage-classes/#volume-binding-mode

Configuring a Postgres Instance

1. Target the namespace where you want to create the Postgres instance:

kubectl config set-context --current --namespace=<POSTGRES-NAMESPACE>

where POSTGRES-NAMESPACE is the namespace you want to deploy the Postgres instance.

2. From this namespace, create a secret that Kubernetes will use to access the registry that
stores the Tanzu Postgres images:

kubectl create secret --namespace=POSTGRES-NAMESPACE docker-registry regsecret

\

 --docker-server=https://registry.tanzu.vmware.com

 --docker-username=`USERNAME`

 --docker-password=`PASSWD`

Use my-postgres-secret for the field imagePullSecret in your custom Postgres yaml file,
that you create in the next steps.

3. Locate the sample Postgres manifest postgres.yaml in the ./samples directory of the
location where you unpacked the Tanzu Postgres distribution.

cd ./postgres-for-kubernetes-v*

4. Copy the example postgres.yaml to a new file, and customize the values according to your
needs. The values in the sample file are only examples, and they include:

apiVersion: sql.tanzu.vmware.com/v1

kind: Postgres

metadata:

 name: postgres-sample

spec:

 #

 # Global features

 #

 pgConfig:

 dbname: postgres-sample

 username: pgadmin

 appUser: pgappuser

 postgresVersion:

 name: postgres-14 # View available versions with `kubectl get postgresversion`

 serviceType: ClusterIP

serviceAnnotations:

 seccompProfile:

 type: RuntimeDefault

 imagePullSecret:

 name: regsecret

 # highAvailability:

 # enabled: true

 # logLevel: Debug

 # backupLocation:

 # name: backuplocation-sample

 # certificateSecretName:

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 56

 #

 # Data Pod features

 #

 storageClassName: standard

 storageSize: 800M

 cpu: "0.8"

 memory: 800Mi

 dataPodConfig:

tolerations:

- key:

operator:

value:

effect:

 affinity:

 podAntiAffinity:

 preferredDuringSchedulingIgnoredDuringExecution:

 - podAffinityTerm:

 labelSelector:

 matchExpressions:

 - key: type

 operator: In

 values:

 - data

 - monitor

 - key: postgres-instance

 operator: In

 values:

 - postgres-sample

 topologyKey: kubernetes.io/hostname

 weight: 100

 #

 # Monitor Pod features

 #

 monitorStorageClassName: standard

 monitorStorageSize: 1G

 monitorPodConfig:

tolerations:

- key:

operator:

value:

effect:

 affinity:

 podAntiAffinity:

 preferredDuringSchedulingIgnoredDuringExecution:

 - podAffinityTerm:

 labelSelector:

 matchExpressions:

 - key: type

 operator: In

 values:

 - data

 - monitor

 - key: postgres-instance

 operator: In

 values:

 - postgres-sample

 topologyKey: kubernetes.io/hostname

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 57

 weight: 100

 #

 # Resources

 #

 resources:

 monitor:

 limits:

 cpu: 800m

 memory: 800Mi

 requests:

 cpu: 800m

 memory: 800Mi

 metrics:

 limits:

 cpu: 100m

 memory: 100Mi

 requests:

 cpu: 100m

 memory: 100Mi

For details on the Postgres CR values see the [Postgres Deployment Properties](postgre

s-crd-reference.html) page.

IMPORTANT: The default values for `spec.memory`, `spec.CPU`, `spec.storageClassNam

e`, and `spec.storageSize` specify a very small Postgres instance that may be too limi

ted for your use case.

To review the defaults for your instance use a commands similar to:

``` 

kubectl get postgres <your-instance-name> -o yaml

``` 

Specifying the Tanzu Postgres Version

The Tanzu Postgres Operator by default deploys the latest Postgres version (for Tanzu Operator
1.7.2, the Postgres version is 14.3). To view the available Tanzu Postgres versions for your Operator,
run the command:

kubectl get postgresversion

The command displays:

NAME DB VERSION

postgres-11 11.16

postgres-12 12.11

postgres-13 13.7

postgres-14 14.3

where:

NAME denotes the postgresVersion CR name. Each postgres major version has one CR. This
value can be used in the Postgres manifest file to choose the postgres version.

DB VERSION displayes the minor version supported for that particular Postgres major version.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 58

Use the values under the column NAME to specify the spec.postgresVersion.name field in the
Postgres instance manifest if you require a specific version of Postgres, for example:

...

postgresVersion:

 name: postgres-13

...

See Deploying a Postgres Instance on how to deploy your Postgres instance.

When upgrading the Tanzu Postgres Operator, the Operator will ensure that existing Postgres
instances have the appropriate version reference added to the object. Specifically, the Operator will
set spec.postgresVersion.name to postgres-11. If you are tracking manifest files in source control,
update those manifests files to reflect the change.

IMPORTANT: Existing Postgres instances cannot be upgraded to a different major version.

Specifying Namespaces

The sample configuration manifest omits a namespace, so the Postgres object will be created in
whatever namespace is set in the kubectl context. If you wish to create objects in a different
namespace, ensure that you have created your registry secrets in the new namespace and defined
the namespace field nested under the metadata field. For example, to create a postgres instance
postgres-sample in the postgres-databases namespace, edit the file accordingly:

apiVersion: sql.tanzu.vmware.com/v1

kind: Postgres

metadata:

 name: postgres-sample

 namespace: postgres-databases

spec:

 imagePullSecret:

 name: postgres-databases-registry-secret

......

where spec.imagePullSecret.name is the registry secret you defined during the Postgres Operator
deployment, see Create a Kubernetes Access Secret.

You may create multiple Postgres instances with the same YAML file, separating the configurations
with three ---:

apiVersion: sql.tanzu.vmware.com/v1

kind: Postgres

metadata:

 name: postgres-ha-sample

 namespace: postgres-databases

spec:

 memory: 800Mi

 cpu: "0.8"

 storageClassName: standard

 storageSize: 800M

 serviceType: LoadBalancer

 highAvailability:

 enabled: true

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 59

apiVersion: sql.tanzu.vmware.com/v1

kind: Postgres

metadata:

 name: pg-mypostgres

 namespace: postgres-databases

spec:

 memory: 800Mi

 cpu: "0.8"

 storageClassName: standard

 storageSize: 10G

 highAvailability:

 enabled: false

Custom Database Name and User Account

When creating a Postgres instance, the default database name matches the instance name, as
described in step 2 in Configuring the Postgres Instance Manifest file.

To create a custom database name and account username, configure the pgConfig field values in
the manifest file. The following example creates a Postgres instance called postgres-sample, with a
database named postgres-sample and a user called pgadmin.

apiVersion: sql.tanzu.vmware.com/v1

kind: Postgres

metadata:

 name: postgres-sample

spec:

 memory: 800Mi

 cpu: "0.8"

 storageClassName: standard

 storageSize: 10G

 pgConfig:

 dbname: postgres-sample

 username: pgadmin

 appUser: pgappuser

Where:

dbname (optional) is the name of the default database created when the Postgres instance is
initiated. The dbname string must be less than 63 characters, and can contain any characters
and capitalization. If the dbanme field is left empty, the database name defaults to the
instance name.

username (optional) is the database username account for the specified database. By default
this user inherits all Read/Write permissions to all databases in the instance. If left empty,
the default username is pgadmin.

appUser (optional) specifies the name of the Postgres user with read-write privileges. It will
be used to bind an application with the Postgres instance. The default Service Binding
application user is pgappuser. You may change during instance deployment to a value of
your choice.

Updating the Monitor Resources

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 60

When the Operator creates a Postgres instance, it also creates a monitor pod that holds the state
information for the instance environment.

To view the default values use:

kubectl get postgres/postgres-sample -o yaml

apiVersion: sql.tanzu.vmware.com/v1

kind: Postgres

metadata:

 annotations:

 kubectl.kubernetes.io/last-applied-configuration: |

 {"apiVersion":"sql.tanzu.vmware.com/v1","kind":"Postgres","metadata":{"annotatio

ns":{},"name":"postgres-sample","namespace":"default"},"spec":{"cpu":"0.8","memory":"8

00Mi","monitorStorageClassName":"standard","monitorStorageSize":"1G","pgConfig":{"dbna

me":"postgres-sample","username":"pgadmin"},"postgresVersion":{"name":"postgres-1

4"},"resources":{"metrics":{"limits":{"cpu":"100m","memory":"100Mi"},"requests":{"cp

u":"100m","memory":"100Mi"}},"monitor":{"limits":{"cpu":"800m","memory":"800Mi"},"requ

ests":{"cpu":"800m","memory":"800Mi"}}},"serviceType":"ClusterIP","storageClassNam

e":"standard","storageSize":"800M"}}

 creationTimestamp: "2021-11-19T18:51:40Z"

 generation: 3

 labels:

 app: postgres

 postgres-instance: postgres-sample

 name: postgres-sample

 namespace: default

 resourceVersion: "12427"

 uid: 1ccb90a2-9990-4a2c-8cf9-a3b9d5e1e53e

spec:

 backupLocation: {}

 cpu: 800m

 highAvailability: {}

 memory: 800Mi

 monitorStorageClassName: standard

 monitorStorageSize: 1G

 pgConfig:

 dbname: postgres-sample

 username: pgadmin

 postgresVersion:

 name: postgres-14

 resources:

 metrics:

 limits:

 cpu: 100m

 memory: 100Mi

 requests:

 cpu: 100m

 memory: 100Mi

 monitor:

 limits:

 cpu: 800m

 memory: 800Mi

 requests:

 cpu: 800m

 memory: 800Mi

 serviceType: ClusterIP

 storageClassName: standard

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 61

 storageSize: 800M

status:

 currentState: Running

 dbVersion: "14.1"

Alter the monitor resources in the instance yaml to reflect your requirements. For example, change
the CPU limit from 800m to 900m:

.....

 resources:

 monitor:

 limits:

 cpu: 900m

 memory: 800Mi

 requests:

 cpu: 800m

 memory: 800Mi

....

Apply the changes:

kubectl apply -f postgres.yaml

The monitor will restart and the new values will take effect. Verify the changes using the describe
command:

kubectl describe pod/postgres-sample-monitor-0

The output includes the new updates:

...

Containers:

 monitor:

 Container ID: docker://9dc1f58fbe8042497d05004e1d084f8976996d2d92c1dad474cb6996ee

d2319b

 Image: postgres-instance:latest

 Image ID: docker://sha256:f493b6e8139a9728663034914b4a8e5c3416fca0f548d49f61a

52e4ed2ec3be3

 Port: <none>

 Host Port: <none>

 Args:

 /usr/local/apps/start_monitor

 State: Running

 Started: Thu, 24 Jun 2021 12:36:15 -0700

 Ready: False

 Restart Count: 0

 Limits:

 cpu: 900m

 memory: 800Mi

 Requests:

 cpu: 800m

 memory: 800Mi

...

For details on resource requests and limits see Managing Resources for Containers in the
Kubernetes documentation.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 62

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Configuring Node Affinity and Tolerations

Tanzu Postgres Operator supports the affinity/anti-affinity and tolerations feature, that introduces
advanced scheduling for pods. Affinity rules help schedule pods with mission critical workloads on
specific high performant and resilient nodes. This feature also allows pod scheduling based on the
failover strategy, or low latency goals.

The Tanzu Postgres Operator adds a monitor and data pod affinity and tolerations section to the
Postgres manifest. The monitorPodConfig includes the following fields:

 monitorPodConfig:

tolerations:

- key:

operator:

value:

effect:

 affinity:

 podAntiAffinity:

 preferredDuringSchedulingIgnoredDuringExecution:

 - podAffinityTerm:

 labelSelector:

 matchExpressions:

 - key: type

 operator: In

 values:

 - data

 - monitor

 - key: postgres-instance

 operator: In

 values:

 - postgres-sample

 topologyKey: kubernetes.io/hostname

 weight: 100

Edit the tolerations section to customize the values based on your environment. By default, the
Tanzu Postgres Operator does not apply any tolerations.

The default affinity rule is a pod preferred anti-affinity rule that tries to avoid scheduling the
monitor and data pods of the same instance (key: postgres-instance) on the same node, based on
the standard topologyKey:kubernetes.io/hostname node label. The matchExpressions use the
operator In. You may create your own custom rules using operators like NotIn, Exists,
DoesNotExist, Gt, Lt, NotIn, or DoesNotExist. See Inter-pod affinity and anti-affinity for more
information on the pod affinity or anti-affinity rules.

The dataPodConfig includes the following:

dataPodConfig:

tolerations:

- key:

operator:

value:

effect:

 affinity:

 podAntiAffinity:

 preferredDuringSchedulingIgnoredDuringExecution:

 - podAffinityTerm:

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 63

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#inter-pod-affinity-and-anti-affinity

 labelSelector:

 matchExpressions:

 - key: type

 operator: In

 values:

 - data

 - monitor

 - key: postgres-instance

 operator: In

 values:

 - postgres-sample

 topologyKey: kubernetes.io/hostname

 weight: 100

For details on the tolerations sub-key, refer to the Taints and Tolerations topic in the Kubernetes
documentation.

For further examples on Tanzu Postgres affinity and tolerations, see Postgres Deployment
Properties.

Quality of Service

To implement a Guaranteed Quality of Service (QoS) for any of the resources (for example,
primary, mirror, metrics or monitor), set the limits equal to the requests. When the limits are higher
than the request, the QoS is Burstable. By default, the monitor, primary, and the mirror have a
Guaranteed QoS. To check the status.qosClass of your instance, use:

kubectl describe pod/postgres-sample-0 | grep "QoS Class:"

Security Profile

To enable a security profile (seccomp) for the instance, edit the field seccompProfile:type:
RuntimeDefault. The default RuntimeDefault is the most restrictive. For further details on the field,
see the Postgres Deployment Properties page, and also Restrict a Container's Syscalls with
seccomp in the Kubernetes documentation.

Internal Load Balancer

When deploying instances in a public cloud, you can enable cloud-specific behaviour on the load
balancer service. Edit the Postgres manifest file and change the default serviceType to
LoadBalancer, and edit the field serviceAnnotations with the values required for your cloud
environment. For example, for Azure, AWS, or Google, you could use similar to:

apiVersion: sql.tanzu.vmware.com/v1

kind: Postgres

metadata:

 name: postgres-sample

spec:

 serviceType: LoadBalancer

 serviceAnnotations:

 service.beta.kubernetes.io/azure-load-balancer-internal: "true",

 service.beta.kubernetes.io/azure-load-balancer-internal-subnet: "apps-subnet"

 cloud.google.com/load-balancer-type: "Internal"

 service.beta.kubernetes.io/aws-load-balancer-internal: "true"

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 64

https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/tutorials/security/seccomp/

For more information, see Internal Load Balancer in the Kubernetes documentation.

Deploying a Postgres Instance

1. Request a Postgres instance using your manifest file.

kubectl apply -f postgres.yaml

postgres.sql.tanzu.vmware.com/postgres-sample created

The Postgres operator deploys the resources according to your specification, and also
initializes the Postgres instance. If there are no existing Persistent Volume Claims (PVC) for
the instance, new PVCs are created and used for the deployment. If a PVC for the instance
already exists, it is used as-is with the available data.

2. Check the status of the instance to verify that it was created successfully:

kubectl get postgres/postgres-sample

You should see output similar to:

NAME STATUS DB VERSION BACKUP LOCATION AGE

postgres-sample Running 14.1 4m29s

where DB VERSION displays the corresponding major/minor version associated with the
spec.postgresVersion.name field in the instance manifest file. If left at the default value, it
defaults to postgres-11 and the DB VERSION column displays 14.1.

Using the Postgres Instance

If you are in an HA configuration (for details see Configuring High Availability in Tanzu Postgres),
ensure you are connecting to the primary pod. To confirm which pod is primary or secondary, use a
command similar to:

kubectl exec -ti pod/postgres-sample-1 -- pg_autoctl show state

Name | Node | Host:Port

| TLI: LSN | Connection | Current State | Assigned State

-------+-------+--

--+----------------+--------------+---------------------+--------------------

node_1 | 1 | postgres-sample-0.postgres-sample-agent.default.svc.cluster.local:543

2 | 2: 0/3002690 | read-only | secondary | secondary

node_2 | 2 | postgres-sample-1.postgres-sample-agent.default.svc.cluster.local:543

2 | 2: 0/3002690 | read-write | primary | primary

Use the locally installed kubectl tool (pre-authenticated to securely access the Kubernetes cluster)
to run the psql utility on the postgres-sample-0 pod:

kubectl exec -it postgres-sample-0 -- bash -c "psql"

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 65

https://kubernetes.io/docs/concepts/services-networking/service/#internal-load-balancer

psql (11.13 (VMware Postgres 11.13.1))

Type "help" for help.

postgres=# \l

 List of databases

Name | Owner | Encoding | Collate | Ctype | Access privileges

----------------------+----------+-----------+---------+-------+----------------------

-

postgres | postgres | SQL_ASCII | C | C |

template0 | postgres | SQL_ASCII | C | C | =c/postgres +

 | | | | | postgres=CTc/postgres

template1 | postgres | SQL_ASCII | C | C | =c/postgres +

 | | | | | postgres=CTc/postgres

pg-instance-example | postgres | SQL_ASCII | C | C |

(4 rows)

(Enter \q to exit the `psql` utility.)

The newly created database uses UTF-8 encoding. To verify the encoding run:

postgres=# show server_encoding;

server_encoding

 UTF8

(1 row)

See also Accessing a Postgres Instance in Kubernetes.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 66

Installing Tanzu Postgres Extensions

This topic covers installation steps for the extensions packaged with Tanzu Postgres 1.2 and later.
The extensions include:

Orafce

PostGIS

pgAudit

Refer to the linked extension documentation for instructions on using the extensions.

pgAudit

pgAudit is packaged with the Postgres instance images. It needs to be manually installed on the
primary data pod:

1. Connect to the primary pod via psql and use:

CREATE EXTENSION pgaudit;

CREATE EXTENSION

2. Verify the installation using a command similar to:

select count(*) from pg_extension where extname = 'pgaudit';

count

1

(1 row)

For further details on Session and Object logging, see Session Audit logging and Object Session
logging in the VMware Postgres documentation.

Orafce
Orafce is packaged with the Postgres instance images. It needs to be manually installed on the
primary data pod:

1. Connect to the primary pod via psql and use:

CREATE EXTENSION orafce;

2. To verify the installation:

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 67

https://github.com/pgaudit/pgaudit
https://docs.vmware.com/en/VMware-Postgres/14.2/vmware-postgres/GUID-more-information.html#session-audit-logging-4
https://docs.vmware.com/en/VMware-Postgres/14.2/vmware-postgres/GUID-more-information.html#object-audit-logging-5
https://github.com/orafce/orafce

SELECT months_between(date '1995-02-02', date '1995-01-01');

The output should be similar to:

months_between

1.03225806451613

(1 row)

For more information, refer to the Orafce documention.

PostGIS

PostGIS is packaged with the Postgres instance images. It needs to be manually installed on the
primary data pod:

1. Connect to the primary pod via psql and use:

CREATE EXTENSION postgis;

2. To verify the installation:

SELECT st_pointfromtext('POINT(1 1)');

The output should be similar to:

st_pointfromtext

--

0101000000000000000000F03F000000000000F03F

(1 row)

For more information refer to the PostGIS documentation.

Address Standardizer

1. Connect to the primary pod via psql and use:

CREATE EXTENSION address_standardizer;

2. To verify the installation:

SELECT num, street, city, state, zip FROM parse_address('1 Devonshire Place PH3

01, Boston, MA 02109');

You should see output similar to:

num | street | city | state | zip

-----+------------------------+--------+-------+-------

1 | Devonshire Place PH301 | Boston | MA | 02109

(1 row)

For more information refer to the Address Standardizer documentation.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 68

https://github.com/orafce/orafce
https://postgis.net/
https://postgis.net/documentation/
https://postgis.net/docs/Extras.html#Address_Standardizer

Upgrading the Tanzu Postgres Operator
and Instances

This topic provides steps to upgrade the Tanzu Postgres Operator and Tanzu Postgres instances to
a newer version. Upgrading the Postgres Operator also upgrades the existing Postgres instances.

Important Upgrade Notes:

customers upgrading from Tanzu Operator 1.5.0 and earlier, need to update their regsecret
dockerRegistrySecretName from registry.pivotal.io to the updated
registry.tanzu.vmware.com.

customers upgrading to 1.7.0 from 1.6.0 and earlier, who are using "postgres" as a value for
pgConfig.dbName, pgConfig.appUser, or pgConfig.username, need to restore to another
instance before upgrading. For information on the restore process, see Restore to Another
Instance.

The topic covers two upgrade scenarios:

Existing customers who want to upgrade to release 1.7.2 using the VMware Tanzu Registry.
See Upgrading the Operator using the Tanzu Registry.

Existing customers who want to upgrade to release 1.7.2 using the downloadable files from
Vmware Tanzu Network. See Upgrading the Operator using the Tanzu Network download.

Upgrading the Operator using the Tanzu Registry

Ensure you have access to Broadcom Support and Tanzu Network Registry. You can use the same
credentials for both sites.

1. Set the environment variable to enable Open Container Initiative (OCI) support in the Helm
v3 client by running:

export HELM_EXPERIMENTAL_OCI=1

If you skip this step, the following error message might appear:

Error: this feature has been marked as experimental and is not enabled by defau

lt.

2. Use Helm to log in to the Tanzu Network Registry by running:

Note: Helm CLI 3.7.0 is not supported. Please use 3.7.1 and later.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 69

https://support.broadcom.com/group/ecx/productdownloads?subfamily=VMware%20Tanzu%20Postgres%20for%20Kubernetes
https://tanzu-sql-postgres.packages.broadcom.com/

helm registry login registry.tanzu.vmware.com \

 --username=<USERNAME> \

 --password=<PASSWORD>

Follow the prompts to enter the email address and password for your Tanzu Network
account.

3. Download the Helm chart from the Tanzu Distribution Registry into a local /tmp/ directory:

With helm CLI 3.6 and earlier,

helm chart pull registry.tanzu.vmware.com/tanzu-sql-postgres/postgres-operator-

chart:v1.7.2

helm chart export registry.tanzu.vmware.com/tanzu-sql-postgres/postgres-operato

r-chart:v1.7.2 --destination=/tmp/

With helm CLI 3.7.1 and later,

helm pull oci://registry.tanzu.vmware.com/tanzu-sql-postgres/postgres-operator-

chart --version v1.7.2 --untar --untardir /tmp

4. Update the existing Postgres instance Custom Resource Definition (CRD) with the new
values:

cd /tmp/postgres-operator/

kubectl apply -f crds/

5. If you do not have an existing overrides yaml file, perform the Helm upgrade using:

helm upgrade postgres-operator /tmp/postgres-operator/ --wait

The output is similar to:

Release "postgres-operator" has been upgraded. Happy Helming!

NAME: postgres-operator

LAST DEPLOYED: Fri Jan 7 15:31:43 2022

NAMESPACE: default

STATUS: deployed

REVISION: 4

TEST SUITE: None

where REVISION is a counter for the number of Operator you have performed. If you have
upgraded from 1.0 to 1.1, and from 1.1 to 1.2, the REVISION number would be 3.

If you have an existing overrides file, and you are upgrading from a Tanzu Operator before
1.4.0, you must make updates to the structure of the overrides file.

Before Tanzu Operator 1.4.0, operatorImageRepository and operatorImageTag were
separate keys used to describe the operator image. Similarly, postgresImageRepository and
postgresImageTag were separate keys used to describe the postgres image. Now the values
are combined into new keys named operatorImage and postgresImage respectively.

For example, if the overrides file contained:

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 70

operatorImageRepository: my-custom-registry/postgres-operator

operatorImageTag: v1.3.0

postgresImageRepository: my-custom-registry/postgres-instance

postgresImageTag: v1.3.0

then the new overrides file would look like:

operatorImage: my-custom-registry/postgres-operator:v1.7.2

postgresImage: my-custom-registry/postgres-instance:v1.7.2

Then, upgrade using:

helm upgrade postgres-operator /tmp/postgres-operator/ -f /<path-to-your-file>/

operator_overrides_values.yaml --wait

where you substitute operator_overrides_values.yaml with your custom name and file
location.

6. Wait for the Operator, Monitor, and Postgres instances to restart. Verify the new Postgres
Operator version. The Postgres Operator is updated across all namespaces, including the
default.

helm ls

NAME NAMESPACE REVISION UPDATED

STATUS CHART APP VERSION

postgres-operator default 4 2022-01-06 13:28:05.704

226 -0500 CDT deployed postgres-operator-v1.7.2 v1.7.2

To verify the new Postgres instance version, use a command similar to:

kubectl exec -i pod/postgres-sample-0 -- bash -c "psql -c 'select version()'"

Upgrading the Operator using the Tanzu Network
download

1. Download the latest VMware Tanzu Postgres version from VMware Tanzu Network. Load
the new Postgres Operator and Postgres instances images into your container registry
following the steps in Setup the Tanzu Operator via a Downloaded Archive File.

2. Create an operator-overrides.yaml file at a location of your choice or update an existing
overrides file. Enter the parameters below replacing operatorImage, postgresImage, and
dockerRegistrySecretName with your values:

Note: Prior to Tanzu Operator 1.5.0, operatorImageRepository and operatorImageTag were
separate keys used to describe the operator image. Similarly, postgresImageRepository and
postgresImageTag were separate keys used to describe the postgres image. Now the values
are combined into new keys named operatorImage and postgresImage respectively.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 71

https://network.tanzu.vmware.com/products/tanzu-sql-postgres/

specify the url for the docker image for the Operator, e.g. gcr.io/<my_projec

t>/postgres-operator

operatorImage: gcr.io/data-pcf-db/postgres-operator:v1.7.2

specify the docker image for postgres instance, e.g. gcr.io/<my_project>/post

gres-instance

postgresImage: gcr.io/data-pcf-db/postgres-instance:v1.7.2

specify the name of the docker-registry secret to allow the cluster to authen

ticate with the container registry for pulling images

dockerRegistrySecretName: regsecret

3. Update the Postgres instance Custom Resource Definition (CRD) with the new values:

cd <your-download-location>/postgres-for-kubernetes-<postgres-version>/

kubectl apply -f operator/crds/

4. Upgrade the Postgres Operator and instances with the helm upgrade command, specifying
your location of the operator-overrides.yaml file:

helm upgrade -f ./operator-overrides.yaml postgres-operator operator/

The output is similar to:

Release "postgres-operator" has been upgraded. Happy Helming!

NAME: postgres-operator

LAST DEPLOYED: Mon Nov 22 15:31:43 2021

NAMESPACE: default

STATUS: deployed

REVISION: 4

TEST SUITE: None

5. Verify the new Postgres Operator version. The Postgres Operator is updated across all
namespaces, including the default.

helm ls

NAME NAMESPACE REVISION UPDATED

STATUS CHART APP VERSION

postgres-operator default 4 2021-02-16 13:28:05.704

226 -0500 CDT deployed postgres-operator-v1.7.2 v1.7.2

Verify the image version matches the new Operator version:

cat images/postgres-*-tag

v1.7.2

v1.7.2

Confirm that the images version has also been upgraded:

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 72

kubectl describe statefulset.apps/<your-database-name> | grep Image | uniq

Image: gcr.io/data-pcf-db/postgres-instance:v1.7.2

If you have a High Availability configuration, verify the upgrade using:

kubectl describe statefulset.apps/<your-ha-database> | grep Image | uniq

Image: gcr.io/data-pcf-db/postgres-instance:v1.7.2

To verify the new Postgres instance version, use a command similar to:

kubectl exec -i pod/postgres-sample-0 -- bash -c "psql -c 'select version()'"

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 73

Updating a Postgres Instance
Configuration

This topic describes how to update CPU, memory, and storage configuration of an existing Postgres
instance.

To update an existing Postgres instance for high availability or backup, see Configuring High
Availability in Tanzu Postgres, and Backing Up and Restoring Tanzu Postgres.

Prerequisites

The steps in this topic require:

the kubectl command line tool installed on a client that accesses the Kubernetes cluster.

appropriate access permissions to the Kubernetes cluster project and namespace where
the Postgres instances reside.

access permissions to the running Postgres instances to be updated.

access permissions to the Kubernetes storageclass.

Modifying Memory and CPU

The memory and CPU allocation are specified in the instance yaml manifest file created during
instance deployment. Edit the file to make the required changes. Before increasing any values,
ensure that the Kubernetes cluster does not have any limiting resource quotas. See the
Kubernetes Resource Quotas documentation for more information.

1. Move to the Tanzu Postgres workspace directory with the Postgres instance Kubernetes
manifest file.

cd ./postgres-for-kubernetes-v<version>

2. Edit the manifest yaml file you used to deploy the instance; in this example the file is called
postgres.yaml. Set new values for the memory and cpu attributes.

For example:

apiVersion: sql.tanzu.vmware.com/v1

kind: Postgres

metadata:

 name: postgres-sample

spec:

 storageClassName: standard

 storageSize: 800M

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 74

https://kubernetes.io/docs/concepts/policy/resource-quotas/

 cpu: "1.5"

 memory: 2G

 monitorStorageClassName: standard

 monitorStorageSize: 1G

 resources:

 monitor:

 limits:

 cpu: 800m

 memory: 800Mi

 requests:

 cpu: 800m

 memory: 800Mi

 metrics:

 limits:

 cpu: 100m

 memory: 100Mi

 requests:

 cpu: 100m

 memory: 100Mi

 pgConfig:

 dbname: postgres-sample

 username: pgadmin

 serviceType: ClusterIP

Note: You cannot alter the name, storageClassName, monitorStorageClassName, dbname, or
username of an existing instance.

3. Execute the kubectl apply command, specifying the manifest file you edited. For example:

kubectl apply -f ./postgres.yaml --wait=false

postgres.sql.tanzu.vmware.com "postgres-sample" configured

If the manifest file contains any incorrectly formatted values or unrecognized field names, an
error message is displayed identifying the issue. Edit the manifest to correct the error and
run the command again.

4. Verify the updated configuration by specifying the memory and cpu fields of the instance
object.

kubectl get postgres/postgres-sample -o jsonpath='{.spec.memory}'

2G

kubectl get postgresinstance/postgres-sample -o jsonpath='{.spec.cpu}'

1.5

5. Similarly, you can update monitor CPU and memory limits and requests too by updating
cpu/memory fields in resources.monitor.limits and resources.monitor.requests

Modifying Storage Volume Size

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 75

To expand a Postgres instance storage volume, verify that the storage volume is expandable and
then update the instance yaml file.

The Postgres operator sets the sizes of the Postgres data volume at instance initialization. The
actual size of the expanded volumes may be greater than your specified value if the storage
manager allocates space in fixed increments.

Note: Kubernetes does not support shrinking a volume size.

Verifying Volume Expansion

To expand the PV volumes, review the storage class object and check if the allowVolumeExpansion
field is set to true. If the attribute does not exist, you may add it to the storage class, and then
expand the storage volumes. The following steps describe this process.

Note: Minikube does not support volume expansion. If you set allowVolumeExpansion to true in
Minikube and request a larger volume size, it fails with an error message.

1. Show the current Persistent Volume(s) (PVs).

kubectl get pv

NAME CAPACITY ACCESS MODES RECLAIM PO

LICY STATUS CLAIM STO

RAGECLASS REASON AGE

pvc-00d130f6-1fb6-49e0-b145-c58e152f76ab 5Gi RWO Delete

Bound default/postgres-sample-pgdata-postgres-sample-0 standard

14s

pvc-33371405-6853-49f7-b704-f49ae8771b5b 1Gi RWO Delete

Bound default/postgres-sample-monitor-postgres-sample-monitor-0 standard

34s

2. Check the standard storage class's allowVolumeExpansion attribute value:

kubectl get storageclass standard

NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMO

DE ALLOWVOLUMEEXPANSION AGE

standard (default) k8s.io/minikube-hostpath Delete Immediate

false 20h

3. Modify the storage class after checking the permissions:

kubectl auth can-i update storageclass

yes

4. Amend the storage class configuration after saving it to a local yaml file:

kubectl get storageclass standard -o yaml > storagesize.yaml

5. Edit the saved file and change the allowVolumeExpansion attribute to true, or add the
attribute if it is not already present.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 76

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: standard

provisioner: kubernetes.io/aws-ebs # AWS specific

reclaimPolicy: Retain

allowVolumeExpansion: true

mountOptions:

 - debug

volumeBindingMode: Immediate

For more information about expanding volumes, see the Kubernetes Allow Volume
Expansion documentation.

6. Apply the change.

kubectl apply -f storagesize.yaml

7. Verify the change.

kubectl get storageclass standard --output=jsonpath='{.allowVolumeExpansion}'

true

See the Kubernetes Documentation for more information about storage classes and persistent
volumes.

Increasing Volume Size

1. Edit the manifest file that was used to deploy the instance. Set the value for the
storageSize attribute to the desired size:

apiVersion: sql.tanzu.vmware.com/v1

kind: Postgres

metadata:

 name: postgres-sample

spec:

 storageClassName: standard

 storageSize: 2G

 cpu: "1.5"

 memory: 2G

 monitorStorageClassName: standard

 monitorStorageSize: 1G

 resources:

 monitor:

 limits:

 cpu: 800m

 memory: 800Mi

 requests:

 cpu: 800m

 memory: 800Mi

 metrics:

 limits:

 cpu: 100m

 memory: 100Mi

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 77

https://kubernetes.io/docs/concepts/storage/storage-classes/#allow-volume-expansion
https://kubernetes.io/docs/concepts/storage/

 requests:

 cpu: 100m

 memory: 100Mi

 pgConfig:

 dbname: postgres-sample

 username: pgadmin

 serviceType: ClusterIP

2. Apply the edited manifest to the Postgres instance.

kubectl apply -f postgres.yaml

postgres.sql.tanzu.vmware.com/postgres-sample configured

If the manifest file contains any incorrectly formatted values or unrecognized field names, an
error message is displayed identifying the issue. Edit the manifest to correct the error and
run the command again.

3. Verify that the persistent volume size has increased.

watch kubectl get pv

NAME CAPACITY ACCESS MODES RECLAIM PO

LICY STATUS CLAIM STO

RAGECLASS REASON AGE

pvc-00d130f6-1fb6-49e0-b145-c58e152f76ab 2Gi RWO Delete

Bound default/postgres-sample-pgdata-postgres-sample-0 standard

14s

If the storage class does not have the allowVolumeExpansion attribute set to true, the
persistent volumes will not be expanded. No message is immediately displayed, but errors
are written to the Postgres operator logs. View the logs with commands like the following.

kubectl get pods

NAME READY STATUS RESTARTS AGE

postgres-sample-0 1/1 Running 0 15m

postgres-operator-54fb679bc5-p8lps 1/1 Running 0 30m

kubectl logs postgres-operator-54fb679bc5-p8lps

INFO controllers.PersistentVolumeClaims Reconciler Error updating PVC res

ources: persistentvolumeclaims "postgres-sample-pgbackrest-postgres-sample-0" i

s forbidden: only dynamically provisioned pvc can be resized and the storagecla

ss that provisions the pvc must support resize

ERROR controllers.PostgresInstance found error reconciling backup persist

ent volume claim {"error": "persistentvolumeclaims \"postgres-sample-pgbackr

est-postgres-sample-0\" is forbidden: only dynamically provisioned pvc can be r

esized and the storageclass that provisions the pvc must support resize"}

If the persistent volumes could not be resized, edit the StorageSize attribute in the
manifest to match the actual size.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 78

4. Similarly, you can expand monitor volume size by updating spec.monitorStorageSize if the
monitor storage class has allowVolumeExpansion attribute set to true.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 79

Accessing a Postgres Instance in
Kubernetes

After you deploy a Postgres instance, you can access the databases either by executing Postgres
utilities from within Kubernetes, or by using a locally-installed tool, such as psql.

Accessing a Pod with Kubectl

Use the kubectl tool to run utilities directly in a Postgres pod. This psql command connects to the
default Postgres database, postgres.

kubectl exec -it postgres-sample-0 -- psql

psql (11.13 (VMware Postgres 11.13.1))

Type "help" for help.

postgres=#

You can also simply execute a bash shell in the pod and then execute Postgres utilities as needed.
For example:

kubectl exec -it postgres-sample-0 -- /bin/bash

postgres@postgres-sample-0:/$ createdb mydb

postgres@postgres-sample-0:/$ psql mydb

psql (11.13 (VMware Postgres 11.13.1))

Type "help" for help.

mydb=# create role user1 login;

Accessing Postgres with External Clients

If you have installed psql, or another Postgres client application outside of Kubernetes (for
example, on your local client machine), you can connect to a Tanzu Postgres database using
Postgres connection parameters passed as command-line options, or in a connection string. For
example:

PGPASSWORD=$password psql -h $host -p $port -d $dbname -U $username

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 80

psql (11.13 (VMware Postgres 11.13.1))

Type "help" for help.

postgres-sample=#

where $password, $host, $port, $dbname, $username are the connection parameters required to
access the database. To acquire those, depending on your environment, you may use the following
methods.

For the sample database name, database role, and password from a Kubernetes secret use:

dbname=$(kubectl get secret postgres-sample-db-secret -o go-template='{{.data.dbname |

base64decode}}')

username=$(kubectl get secret postgres-sample-db-secret -o go-template='{{.data.userna

me | base64decode}}')

password=$(kubectl get secret postgres-sample-db-secret -o go-template='{{.data.passwo

rd | base64decode}}')

To get the application user for a Service Binding use a command similar to:

dbname=$(kubectl get secrets postgres-sample-app-user-db-secret -o jsonpath='{.data.da

tabase}' | base64 -D)

username=$(kubectl get secrets postgres-sample-app-user-db-secret -o jsonpath='{.data.

username}' | base64 -D)

password=$(kubectl get secrets postgres-sample-app-user-db-secret -o jsonpath='{.data.

password}' | base64 -D)

For a remote Kubernetes environment, get the external host address and port from the Postgres
load balancer:

host=$(kubectl get service postgres-sample -o jsonpath='{.status.loadBalancer.ingress

[0].ip}')

port=$(kubectl get service postgres-sample -o jsonpath='{.spec.ports[0].port}')

For a local Minikube Kubernetes environment, the Postgres load balancer is not used. Get the
external host address and port using:

host=$(minikube ip)

port=$(kubectl get service postgres-sample -o jsonpath='{.spec.ports[0].nodePort}')

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 81

Deleting a Postgres Instance from
Kubernetes

This section describes how to delete Postgres pods and other resources that are created when you
deploy a Postgres instance to Kubernetes. When deleting the resources, everything related to that
instance is deleted, including the persistent volume claims (PVCs) and the access secrets. Any
application bound to the deleted instance will have to rebind with new credentials.

Deleting Postgres Pods and Resources
Follow these steps to delete a Postgres instance from Kubernetes.

1. Change to the Tanzu Postgres workspace directory with the Kubernetes manifest you used
to deploy the Postgres instance.

cd ./postgres-v<postgres-version>+<vmware-version>

2. Execute the kubectl delete command, specifying the manifest you used to deploy the
instance. For example:

kubectl delete -f ./postgres.yaml --wait=false

postgres.sql.tanzu.vmware.com "postgres-sample" deleted

Note: The optional wait=false flag returns immediately without waiting for the deletion to
complete.

kubectl stops the Postgres instance and deletes the Kubernetes resources for the
deployment.

3. If for any reason stopping the Postgres instance fails, use kubectl to display the postgres-
operator log.

kubectl logs -l app=postgres-operator

The Postgres operator should remain for future deployments:

Warning: Do not delete the Postgres operator when there are existing Postgres
instances. If the Postgres operator is deleted, you will get an error if you try to
reinstall it. See Cannot Reinstall Operator after Deleting for a workaround to this
problem.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 82

kubectl get all

NAME READY STATUS RESTARTS AGE

pod/postgres-operator-546ffd888b-dc6zk 1/1 Running 0 26h

NAME TYPE CLUSTER-IP EXT

ERNAL-IP PORT(S) AGE

service/kubernetes ClusterIP 10.96.0.1 <no

ne> 443/TCP 40h

service/postgres-operator-webhook-service ClusterIP 10.98.126.247 <no

ne> 443/TCP 26h

NAME READY UP-TO-DATE AVAILABLE AGE

deployment.apps/postgres-operator 1/1 1 1 26h

NAME DESIRED CURRENT READY AGE

replicaset.apps/postgres-operator-546ffd888b 1 1 1 26h

Deleting the Postgres Operator

If you want to remove the Postgres operator, follow the instructions in Uninstalling VMware Tanzu
SQL with Postgres for Kubernetes.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 83

Creating Service Bindings

This topic describes how to enable Tanzu Application Platform (TAP) or Tanzu Application Services
(TAS) applications to connect and utilize Tanzu Postgres database services.

Binding an Application to a Postgres Instance using TAP
workflow

The Tanzu Postgres Operator 1.5.0 supports Service Binding with Tanzu Application Platform (TAP).
This feature eliminates the manual management of the configuration steps needed to securely and
successfuly bind a TAP application to a Tanzu Postgres deployment. For more information on
Service Binding, see Service Binding Specification for Kubernetes in the Kubernetes
documentation.

This feature introduces the field appUser in the Postgres instance CRD, and an application user
secret postgres-sample-app-user-db-secret.

For more information on how to create or update TAP workloads, see Create a workload in the
TAP documentation.

Prerequisites

TAP v1.0.0 must be installed. For TAP installation instructions, see Installing Tanzu
Application Platform.

Tanzu Postgres Operator must be installed on a Kubernetes cluster. See Installing a
Postgres Operator for instructions.

Postgres instance needs to be deployed. See Deploying a Postgres Instance for
instructions.

TAP services-toolkit controller manager needs the required permissions to access Postgres
instances. Create a ClusterRole with the Role-based access control (RBAC) required by the
services-toolkit controller-manager for the Postgres resource, and save it in a file like
resource-claims-postgres.yaml:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: resource-claims-postgres

 labels:

 resourceclaims.services.apps.tanzu.vmware.com/controller: "true"

rules:

- apiGroups: ["sql.tanzu.vmware.com"]

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 84

https://github.com/servicebinding/spec
https://docs.vmware.com/en/VMware-Tanzu-Application-Platform/1.0/tap/GUID-cli-plugins-apps-create-workload.html
https://docs.vmware.com/en/Tanzu-Application-Platform/1.0/tap/GUID-install-intro.html
https://docs.vmware.com/en/VMware-Tanzu-SQL-with-Postgres-for-Kubernetes/1.5/tanzu-postgres-k8s/GUID-install-operator.html
https://docs.vmware.com/en/VMware-Tanzu-SQL-with-Postgres-for-Kubernetes/1.5/tanzu-postgres-k8s/GUID-create-delete-postgres.html

 resources: ["postgres"]

 verbs: ["get", "list", "watch", "update"]

and then run:

kubectl apply -f resource-claims-postgres.yaml

For more information on RBAC and ClusterRole, view Role and ClusterRole in the
Kubernetes documentation.

Bind a new TAP workload

To bind a new TAP workload, use the TAP command tanzu apps workload create. Name the
workload, specify a source code location to create the workload from, and reference the postgres
instance name that you have deployed:

tanzu apps workload create WORKLOAD-NAME [create flags] --service-ref "db=sql.tanzu.vm

ware.com/v1:Postgres:POSTGRES-INSTANCE-NAME"

where,

WORKLOAD-NAME is the name that will be given to the workload.

[create flags] are the appropriate flags to build the workload from source control, registry
image, or local file.

--service-ref is the reference to the service using the format {name}={apiVersion}:
{kind}:{name}.
POSTGRES-INSTANCE-NAME is the the postgres instance CR name that you have deployed.

See Tanzu apps workload create for more information on the different flags and options available.

Example Workload

You can also create a Workload yaml file where you can specify environment variables, build
parameters, etc. that are required by your application to be built and run successfully. The example
workload yaml below shows a spring-petclinic application that binds to a postgres instance
postgres-sample in the same namespace:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

 name: pet-clinic

 labels:

 apps.tanzu.vmware.com/workload-type: web

 app.kubernetes.io/part-of: pet-clinic

spec:

 build:

 env:

 - name: BP_MAVEN_POM_FILE

 value: skip-pom.xml

 env:

 - name: SPRING_PROFILES_ACTIVE

 value: postgres

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 85

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#role-and-clusterrole
https://docs.vmware.com/en/Tanzu-Application-Platform/1.0/tap/GUID-cli-plugins-apps-command-reference-tanzu_apps_workload_create.html

 params:

 - name: live-update

 value: "true"

 serviceClaims:

 - name: db

 ref:

 apiVersion: sql.tanzu.vmware.com/v1

 kind: Postgres

 name: postgres-sample

 source:

 git:

 ref:

 branch: main

 url: https://github.com/spring-projects/spring-petclinic

where,

postgres-sample is the example instance name.

BP_MAVEN_POM_FILE needs to be set to some non-existent value (in this example, skip-
pom.xml) in order to build the upstream spring-petclinic app correctly. Refer to this open
issue for more details.

SPRING_PROFILES_ACTIVE is set to postgres to override the default application configuration

live-update is set to true to keep the workload pods up and avoid the auto-scale down
done by the TAP components. This can help with debugging the workload.

Save the above content in workload.yaml file and then run kubectl apply -f workload.yaml

IMPORTANT: This example creates a workload with the sample Spring application spring-petclinic
that is available on GitHub. The sample application is subject to change and may face issues during
build and run steps in the TAP workflow. Consider specifying a commit sha to use an older state of
the sample application as needed for demo and test purposes.

Bind an existing TAP workload

To update an existing TAP workload to connect and utilize a Postgres database instance, run a
command similar to:

tanzu apps workload update WORKLOAD-NAME [update flags] --service-ref "db=sql.tanzu.vm

ware.com/v1:Postgres:POSTGRES-INSTANCE-NAME"

where,

WORKLOAD-NAME is the name of the workload.

[update flags] are the appropriate flags to build the workload from source control, registry
image, or local file.

--service-ref is the reference to the service using the format {name}={apiVersion}:
{kind}:{name}.
POSTGRES-INSTANCE-NAME is the the postgres instance CR name that you have deployed.

For example:

tanzu apps workload update pet-clinic --service-ref "db=sql.tanzu.vmware.com/v1:Postgr

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 86

https://github.com/paketo-buildpacks/java/issues/423
https://github.com/spring-projects/spring-petclinic

es:postgres-sample"

See Tanzu apps workload update for more information on the different flags available.

Bind a TAP workload in a different namespace

To enable cross-namespace binding, create a ResourceClaimPolicy resource in the
namespace where the Postgres instance is deployed. In this example, the postgres-sample
is deployed in the default namespace.

 apiVersion: services.apps.tanzu.vmware.com/v1alpha1

 kind: ResourceClaimPolicy

 metadata:

 name: postgres-cross-namespace

 spec:

 consumingNamespaces:

 - '*'

 subject:

 group: sql.tanzu.vmware.com

 kind: Postgres

Where * indicates this policy permits any namespace to claim a Postgres resource from the
default namespace.

Save the above yaml content in the resource-claim-policy.yaml file and apply it:

kubectl -n default apply -f resource-claim-policy.yaml

If you have a TAP workload deployed in a separate namespace, bind the workload to the
Postgres service instance by specifying the namespace using the n flag. The command
would be similar to:

tanzu apps workload update WORKLOAD-NAME [update flags] -n WORKLOAD-OTHER-NAMES

PACE-NAME --service-ref "db=sql.tanzu.vmware.com/v1:Postgres:default:POSTGRES-I

NSTANCE-NAME"

Where service-ref specifies the service instance's namespace. In this example, it is
default and WORKLOAD-OTHER-NAMESPACE-NAME is the different namespace where
the workload is deployed.

If you are creating a new workload using the workload yaml in app namespace, then you will
need to add an annotation in the metadata section that would specify the postgres
instance's namespace:

apiVersion: carto.run/v1alpha1

kind: Workload

metadata:

 name: pet-clinic

 namespace: app

 annotations:

 serviceclaims.supplychain.apps.x-tanzu.vmware.com/extensions: '{"kind":"Ser

viceClaimsExtension","apiVersion":"supplychain.apps.x-tanzu.vmware.com/v1alpha

1", "spec": {"serviceClaims":{"db":{"namespace":"default"}}}}'

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 87

https://docs.vmware.com/en/Tanzu-Application-Platform/1.0/tap/GUID-cli-plugins-apps-command-reference-tanzu_apps_workload_update.html

 labels:

 apps.tanzu.vmware.com/workload-type: web

 app.kubernetes.io/part-of: pet-clinic

spec:

 build:

 env:

 - name: BP_MAVEN_POM_FILE

 value: skip-pom.xml

 env:

 - name: SPRING_PROFILES_ACTIVE

 value: postgres

 params:

 - name: live-update

 value: "true"

 serviceClaims:

 - name: db

 ref:

 apiVersion: sql.tanzu.vmware.com/v1

 kind: Postgres

 name: postgres-sample

 source:

 git:

 ref:

 branch: main

 url: https://github.com/spring-projects/spring-petclinic

Save the above content in workload.yaml file and then run kubectl apply -f workload.yaml

Verify a TAP Workload Service Binding

To check if the application has been successfully bound to the Tanzu Postgres instance:

Check that the corresponding ResourceClaim object is ready. The ResourceClaim name
follows the format <metadata.name>-<spec.serviceClaim.name> as given in the workload
yaml as shown above. In this example, it would be pet-clinic-db

kubectl get resourceclaims pet-clinic-db

NAME READY REASON

resourceclaim.services.apps.tanzu.vmware.com/pet-clinic-db True

Query the database using the Postgres application user spec.pgConfig.appUser. The
corresponding credentials and connection details can be fetched from the secret
referenced in status.binding.name field in the instance CR. In this example, the secret
would be postgres-sample-app-user-db-secret and the data can be verified in the
postgres-sample database.

dbname=$(kubectl get secrets postgres-sample-app-user-db-secret -o jsonpath='{.

data.database}' | base64 -D)

username=$(kubectl get secrets postgres-sample-app-user-db-secret -o jsonpath

='{.data.username}' | base64 -D)

password=$(kubectl get secrets postgres-sample-app-user-db-secret -o jsonpath

='{.data.password}' | base64 -D)

host=$(kubectl get secrets postgres-sample-app-user-db-secret -o jsonpath='{.da

ta.host}' | base64 -D)

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 88

port=$(kubectl get secrets postgres-sample-app-user-db-secret -o jsonpath='{.da

ta.port}' | base64 -D)

For example, for the spring-petclinic app, use a psql query similar to:

PGPASSWORD=$password psql -h $host -p $port -d $dbname -U $username

psql (14.2 (VMware Postgres 14.2.0))

Type "help" for help.

my-postgres=# SELECT COUNT(1) from vets;

 count

 6

(1 row)

Binding Tanzu Postgres to a TAS Application

Prerequisites

Tanzu Postgres has been successfully installed on a Kubernetes cluster.

The external public ingress service type of the instance is set to LoadBalancer. See
Deploying a Postgres Instance.

You have deployed an application to TAS, and the application is able to reach the
Kubernetes cluster ingress points.

Binding an Application

1. Export the environment variables $dbname, $username, $password, $host, and $port,
described in Accessing Postgres with External Clients.

2. (Optional) From your computer validate that the Postgres instance is reachable from the
location where TAS is deployed, by using a command similar to:

create a CF SSH tunnel, this will hang and you need to leave it open until yo

u're done with this step

cf ssh <appname> -L 54320:$host:$port

which returns similar to:

vcap@f00949bd-6601-4731-6f7e-e859:~$

where f00949bd-6601-4731-6f7e-e859 is an example GUID. In a new window or tab, use
psql to test the connection:

PGPASSWORD=$password psql -h 127.0.0.1 -p 54320 -U $username -d $dbname

psql (11.13 (VMware Postgres 11.13.1))

Type "help" for help.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 89

postgres-sample=#

3. Choose a name and create the user provided service:

cf create-user-provided-service my-postgres-instance -p "{\"uri\":\"postgres://

$username:$password@$host:$port/$dbname?sslmode=require\"}"

For more details, see User-Provided Service Instances.

4. Bind, restage, and use the service as you would normally with a "cf marketplace"
provisioned SQL instance. See Bind a Service Instance to an App for an example of this
process, and Restage Your App.

Like any data service, the application will automatically connect to the database instance
depending on the buildpack. If autoconnect is not supported, the application will have to
manually make use of the uri service credential to make a connection.

Bound service credentials are available at runtime to TAS applications via the DATABASE_URL
and VCAP_SERVICES environment variables. For further details see DATABASE_URL in TAS
for VMs Environment Variables documentation.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 90

https://docs.vmware.com/en/VMware-Tanzu-Application-Service/6.0/tas-for-vms/services-user-provided.html
https://docs.vmware.com/en/VMware-Postgres-for-VMware-Tanzu-Application-Service/1.1/postgres/bind-service-guide.html
https://docs.vmware.com/en/VMware-Tanzu-Application-Service/6.0/tas-for-vms/deploy-apps-start-restart-restage.html#restage-your-app-5
https://docs.vmware.com/en/VMware-Tanzu-Application-Service/6.0/tas-for-vms/deploy-apps-environment-variable.html#databaseurl-9

Configuring TLS for Tanzu Postgres
Instances

This topic describes how to configure TLS for a Postgres instance.

Overview

Tanzu Postgres (from version 1.2) supports Transport Layer Security (TLS) encrypted connections to
the Postgres server from clients and applications. The Postgres server by default requires cert-
manager self-signed certificates (see Prerequisites in the Installing Tanzu Postgres page) for internal
Kubernetes communications. From release 1.2 clients can connect to the Postgres server and verify
the connection using user provided certificates or certificates provided by a corporate Certificate
Authority (CA).

The Tanzu Postgres Operator uses a Kubernetes Secret to manage TLS. There are several ways to
create the Secret and this topic describes two supported methods:

create the secret using a cert-manager. See Creating the TLS Secret using cert-manager.

create the secret manually, using the Kubernetes Command Line Interface (kubectl). See
Create the TLS Secret Manually.

For general information about Kubernetes and TLS secrets, see TLS Secrets in the Kubernetes
documentation.

Prerequisites

Before you configure TLS for a Postgres instance, you must have:

The Kubernetes Command Line Interface (kubectl) installed. For more information see
Install Tools in the Kubernetes documentation.

The name of your Postgres instance. Refer to the Configuring a Postgres Instance for an
overview of this information. You do not need to create a Postgres instance before
configuring TLS.

The namespace of your Postgres instance.

The Postgres instance Service type, internal (ClusterIP) or external (LoadBalancer). The
instance Service type determines the server hostname that is used during certificate
generation.

Access and admin permissions to the Postgres instance.

If you're using cert-manager to configure TLS, obtain your custom or corporate CA public
key, and the private/public key certificate pair.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 91

https://kubernetes.io/docs/concepts/configuration/secret/#tls-secrets
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer

Creating the TLS Secret Using cert-manager

This procedure describes how to configure a custom Certificate Authority and custom certificates
using cert-manager. To create the TLS Secret through the kubectl interface instead, see Create
the TLS Secret Manually above.

1. Verify that cert-manager was configured during Installing a Postgres Operator
prerequisites:

kubectl get all --namespace=cert-manager

2. For the CA certificate, create a Kubernetes Secret. For example my-CA-secret.yaml, with
values similar to:

kind: Secret

metadata:

 name: my-ca-certificate

 namespace: cert-manager-namespace

data:

 tls.crt: this is CA public key

 tls.key: this is the CA private key

and apply with:

kubectl apply -f my-CA-secret.yaml

3. Create a CA issuer in cert-manager using a ClusterIssuer resource and associate it with
the CA Secret created in step 2. For information about the cert-manager Issuer types, see
the cert-manager documentation.

Create a ClusterIssuer resource using a yaml file, for example my-cluster-issuer.yaml,
similar to:

apiVersion: cert-manager.io/v1

kind: ClusterIssuer

metadata:

 name: sample-postgres-ca-certificate-clusterissuer

spec:

 ca:

 secretName: my-ca-certificate

4. Apply the Secret using:

kubectl apply -f my-cluster-issuer.yaml

For certificate creation troubleshooting see the cert-manager documentation.

5. For new Tanzu Postgres customers, create the Postgres Operator and set it to use the
custom TLS issuer by using a command similar to:

Note: The Postgres instance TLS secret requires the ca.crt key, therefore
VMware does not recommend using the ACME Issuer.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 92

https://cert-manager.io/docs/configuration/
https://cert-manager.io/docs/faq/troubleshooting/

helm install postgres-operator --set=certManagerClusterIssuerName=sample-postgr

es-ca-certificate-clusterissuer operator/

For existing Tanzu Postgres customers, update the Operator using a command similar to:

helm upgrade postgres-operator --set=certManagerClusterIssuerName=sample-postgr

es-ca-certificate-clusterissuer operator/

Note: If you need to use more than one CA issuer, create another Postgres Operator in a
different Kubernetes cluster.

To verify the TLS security setup see Verifying TLS Security for an example using psql.

Creating a TLS Secret Manually

This procedure describes how to create the TLS Secret manually, using kubectl. To create the TLS
Secret using cert-manager instead, see Creating the TLS Secret with cert-manager below.

Note: Installing cert-manager when you install the Tanzu Postgres prerequisites does not prevent
the manual TLS configuration. Cert-manager is required for internal Postgres Operator
communications.

1. Generate a public/private key pair certificate using a certificate generation tool such as
OpenSSL, certstrap, or Let's Encrypt. For an example using OpenSSL, see Creating
Certificates in the PostgreSQL documentation.
During the certificate request, ensure that you supply the correct server domain name as
the common name or the subject alternative name (SAN) for which the certificate is valid
for. The server domain name is the DNS name used to connect to the database, and it
depends on the Service type deployment scenario:

If you configure ClusterIP as Service type (spec.serviceType) in the Postgres
instance yaml (ClusterIP is the default Service type in Tanzu Postgres release 1.2),
your database is deployed in the same Kubernetes cluster as your instance, is not
exposed externally, and the hostname has the format *.[instance-name]-agent.
[namespace].svc.cluster.local. For example *.postgres-sample-
agent.default.svc.cluster.local.

If you configure LoadBalancer in the Postgres instance yaml (LoadBalancer is the
default Service type in Tanzu Postgres releases 1.0 and 1.1), your database is
accessible outside the Kubernetes cluster, and the hostname is the external DNS
name or the IP address of the load balancer. To find the load balancer IP, use a
command similar to:

kubectl get service postgres-sample

which returns:

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

AGE

postgres-sample LoadBalancer 10.107.136.143 192.168.64.101 5432:31

958/TCP 66s

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 93

https://www.postgresql.org/docs/11/ssl-tcp.html#SSL-CERTIFICATE-CREATION

The load balancer IP is located under the header EXTERNAL-IP.

Save the required certificates files locally.

2. Create the TLS Secret by running:

kubectl create secret generic <some-tls-secret> \

 --type kubernetes.io/tls \

 --from-file=ca.crt=/path/to/ca.crt \

 --from-file=tls.crt=/path/to/tls.crt \

 --from-file=tls.key=/path/to/tls.key \

 --namespace <postgres-instance-namespace>

Where:

<some-tls-secret> is the TLS Secret.

/path/to/ca.crt is the file path to the CA's public key that is used by clients or
applications to verify that the certificate used to communicate with the Postgres
Server was issued using the specified Certificate Authority.

/path/to/tls.crt is the file path to the public key of the certificate created in step 1
above.

/path/to/tls.key is the file path to the private key of the certificate created in step
1 above.

<instance-namespace> is the namespace for the Postgres instance.

For example:

kubectl create secret generic postgres-tls-secret \

 --type kubernetes.io/tls \

 --from-file=tls.crt=/path/server.crt \

 --from-file=tls.key=/path/server.key \

 --from-file=ca.crt=/path/server_ca.crt \

 --namespace sample-postgres-namespace

Use the TLS Secret in the instance yaml file during instance creation, or apply the TLS secret after
the instance creation by updating the instance yaml:

1. Edit the postgres.yaml file for the Postgres instance, and add postgres-tls-secret as the
name of the TLS Secret created in the sample-postgres-namespace namespace. For
example:

spec:

 certificateSecretName: postgres-tls-secret

2. Update the Postgres instance:

kubectl apply -f postgres.yaml -n sample-postgres-namespace

3. Restart the instance and the monitor:

 kubectl rollout restart statefulset/postgres-sample

 kubectl rollout restart statefulset/postgres-sample-monitor

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 94

After the Postgres instance restarts, client connections use TLS security. See Verifying TLS
Security for an example scenario on how to verify the TLS setup.

Verifying TLS Security Using psql

To verify a successful TLS implementation, use psql as an example client to confirm the certificate
usage. The example scenario uses the jq command line tool, which you need to install on your local
computer.

The credential values required for the psql command are base64 encoded. For example, for the
instance postgres-sample the values would look similar to:

kubectl get secret postgres-sample-db-secret -o json | jq '.data | map_values(@base64

d)'

 {

 "dbname": "postgres-sample",

 "instancename": "postgres-sample",

 "namespace": "default",

 "password": "e0AJi1xiRr51m6gZKqb5Cwj0a6i53L",

 "username": "pgadmin"

 }

or for the application user:

kubectl get secret/postgres-sample-app-user-db-secret -o json | jq '.data | map_values

(@base64d)'

{

 "database": "postgres-sample",

 "host": "postgres-sample.default",

 "password": "w6J0U600C7jbpfSQl677Cjnid8Dcjz",

 "port": "5432",

 "provider": "vmware",

 "type": "postgresql",

 "uri": "postgresql://pgappuser:w6J0U600C7jbpfSQl677Cjnid8Dcjz@postgres-sample.defaul

t:5432/postgres-sample",

 "username": "pgappuser"

}

Acquire the Service IP address using a command similar to:

kubectl get service postgres-sample -o jsonpath='{.status.loadBalancer.ingress[0].ip}'

192.168.64.100

First test the psql connection with the acquired credentials but without using TLS validation:

psql "host=192.168.64.100 \

 port=5432 \

 dbname=postgres-sample \

 user=pgadmin \

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 95

 password=e0AJi1xiRr51m6gZKqb5Cwj0a6i53L \

 target_session_attrs=read-write"

Get your Certificate Authority public key and place it in a file like /tmp/ca.crt:

kubectl exec -q -ti postgres-sample-0 -- bash -c 'cat /etc/postgres_ssl/ca.crt' > /tm

p/ca.crt

Connect using TLS with the acquired credentials, and validate the signing CA (sslmode=verify-ca):

psql "host=192.168.64.100 \

 port=5432 \

 dbname=postgres-sample \

 user=pgadmin \

 password=e0AJi1xiRr51m6gZKqb5Cwj0a6i53L \

 target_session_attrs=read-write \

 sslmode=verify-ca \

 sslrootcert=/tmp/ca.crt"

Connect using TLS with the acquired credentials, validate the signing CA, and validate that the
certificate matches the correct hostname (verify-full):

psql "host=192.168.64.100 port=5432 dbname=postgres-sample password=e0AJi1xiRr51m6gZKq

b5Cwj0a6i53L user=pgadmin target_session_attrs=read-write sslmode=verify-full sslrootc

ert=/tmp/ca.crt"

which returns similar to:

psql (11.13 (VMware Postgres 11.13.1))

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compress

ion: off)

Type "help" for help.

postgres-sample=#

To test the connection within the cluster, use the DNS of the Service which resolves to the
ClusterIP, similar to:

kubectl exec -ti pod/postgres-sample-monitor-0 -- bash

postgres@postgres-sample-monitor-0:/psql "host=postgres-sample.default.svc.cluster.loc

al dbname=postgres-sample user=pgadmin password=e0AJi1xiRr51m6gZKqb5Cwj0a6i53L port=54

32"

which returns similar to:

psql (11.13 (VMware Postgres 11.13.1))

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compress

ion: off)

Type "help" for help.

postgres-sample=#

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 96

Backing Up and Restoring Tanzu Postgres

This topic describes how to back up and restore Tanzu Postgres.

Overview

Tanzu Postgres allows you to backup instances on-demand, schedule automated backups, restore
in-place, and restore from a backup to new Postgres instances.

The supported locations for uploading and retrieving backup artifacts are Amazon S3, or other S3-
compatible data stores like Minio.

Tanzu Postgres backup and restore uses four Custom Resource Definitions (CRDs):

PostgresBackup: References a Postgres backup artifact that exists in an external blobstore
such as S3 or Minio. Every time you generate an on-demand or scheduled backup, Tanzu
Postgres creates a new PostgresBackup resource.

PostgresBackupLocation: References an external blobstore and the necessary credentials
for blobstore access.

PostgresBackupSchedule: Represents a CronJob schedule specifying when to perform
backups.

PostgresRestore: References a Postgres restore artifact that receives a PostgresBackup
resource and restores the data from the backup to a new Postgres instance or to the same
postgres instance (an in-place restore).

For detailed information about the CRDs, see Backup and Restore CRD API Reference.

Prerequisites

Before creating a Tanzu Postgres backup you need:

the kubectl command line tool installed on your local client, with access permissions to the
Kubernetes cluster.

access permissions to a preconfigured S3 bucket where the pgdata persistent volume (PV)
backups will be stored.

the access credentials that will populate the accessKeyId and secretAccessKeyof the S3
backup secret.

the instance namespace, if the Postgres instance is already created. Use kubectl get
namespaces for a list of available namespaces.

(optional) a pre-agreed backup schedule to be used to configure scheduled backups.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 97

Backing Up Tanzu Postgres

Create on-demand or scheduled backups by configuring the PostgresBackupLocation CRD, which
specifies the details of the location and access credentials to the external S3 blobstore.

Configure the Backup Location

To take a backup to an external S3 location, create a PostgresBackupLocation resource:

1. Locate the backuplocation.yaml deployment yaml in the ./samples directory of your
downloaded release, and create a copy with a unique name. For example:

cp ~/Downloads/postgres-for-kubernetes-v1.3.0/samples/backuplocation.yaml testb

ackuplocation.yaml

2. Edit the file using the configuration details of your external S3 bucket. The same file
contains the properties of your backup credentials secret. For example:

apiVersion: sql.tanzu.vmware.com/v1

kind: PostgresBackupLocation

metadata:

 name: backuplocation-sample

spec:

 retentionPolicy:

 fullRetention:

 type: count

 number: 9999999

 diffRetention:

 number: 9999999

 storage:

 s3:

 bucket: "name-of-bucket"

 bucketPath: "/my-bucket-path"

 region: "us-east-1"

 endpoint: "custom-endpoint"

 forcePathStyle: false

 enableSSL: true

 secret:

 name: backuplocation-creds-sample

 additionalParameters: {}

apiVersion: v1

kind: Secret

metadata:

 name: backuplocation-creds-sample

type: generic

stringData:

 # Credentials

 accessKeyId: "my-access-key-id"

 secretAccessKey: "my-secret-access-key"

For details on the various properties see Backup and Restore CRD API Reference and
Secret Properties.

3. Create the PostgresBackupLocation resource in the Postgres instance namespace:

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 98

kubectl apply -f FILENAME -n DEVELOPMENT-NAMESPACE

where:

FILENAME is the name of the configuration file you created in Step 2 above.

DEVELOPMENT-NAMESPACE is the namespace for the Postgres instance you intend to
backup.

For example:

kubectl apply -f testbackuplocation.yaml -n my-namespace

postgresbackuplocation.sql.tanzu.vmware.com/backuplocation-sample created

secret/backuplocation-creds-sample configured

4. View the created PostgresBackupLocation by running:

kubectl get postgresbackuplocation <BACKUP-LOCATION-NAME> \

-o jsonpath={.spec} -n DEVELOPMENT-NAMESPACE

For example:

kubectl get postgresbackuplocation backuplocation-sample -o jsonpath={.spec} -n

my-namespace

which returns similar to:

{

 "storage":{

 "s3":{

 "bucket":"name-of-bucket",

 "bucketPath":"/my-bucket-path",

 "enableSSL":true,

 "endpoint":"custom-endpoint",

 "forcePathStyle":false,

 "region":"us-east-1",

 "secret":{

 "name":"backuplocation-creds-sample"

 }

 }

 }

}

5. Update the Postgres instance manifest with the PostgresBackupLocation field. Go to the
location where you have stored the Tanzu Postgres instance manifest file. For example:

cd ./postgres-for-kubernetes-v<version>

6. Edit the manifest yaml file you used to deploy the instance; in this example the file is called
postgres.yaml. Provide a value for the backupLocation attribute.

For example:

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 99

apiVersion: sql.tanzu.vmware.com/v1

kind: Postgres

metadata:

 name: postgres-sample

spec:

 storageClassName: standard

 storageSize: 800M

 cpu: "0.8"

 memory: 800Mi

 monitorStorageClassName: standard

 monitorStorageSize: 1G

 pgConfig:

 dbname: postgres-sample

 username: pgadmin

 serviceType: ClusterIP

 highAvailability:

 enabled: false

 backupLocation:

 name: backuplocation-sample

7. Execute the kubectl apply command, specifying the manifest file you edited. For example:

kubectl apply -f ./postgres.yaml --wait=false

postgres.sql.tanzu.vmware.com "postgres-sample" configured

If the manifest file contains any incorrectly formatted values or unrecognized field names, an
error message is displayed identifying the issue. Edit the manifest to correct the error and
run the command again.

8. Verify the updated configuration by viewing the backupLocation fields of the instance
object:

kubectl get postgres/postgres-sample -o jsonpath='{.spec.backupLocation}'

{"name":"backuplocation-sample"}

[Optional] Configure Client-side Encryption for Backups

From Tanzu Postgres 1.7.0 backups are not automatically encrypted. VMware recommends
configuring server-side encryption, using the tools offered by your S3 provider. Users can optionally
configure client-side encryption using the steps in this topic.

1. Identify the backuplocation attached to the instance you'll like to set up encryption for:

kubectl get postgres postgres-sample -n <namespace>

Note: The backups performed using the current backup location can still be
restored as long as the backuplocation resource is not deleted from Kubernetes.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 100

NAME STATUS DB VERSION BACKUP LOCATION AGE

postgres-sample Running 14.2 backuplocation-sample 17h

where BACKUP LOCATION lists the name of the desired backup location.

2. Output the contents of the backuplocation to a temporary file:

kubectl get postgresbackuplocation backuplocation-sample -n default -o yaml > /

tmp/backuplocation-to-encrypt.yaml

3. Edit the /tmp/backuplocation-to-encrypt.yaml file to reflect a new unique metadata name,
a new bucket or bucket path, and a cipher. In the example below, we're using /sample-
backup-path as the new bucket path, my-simple-cipher as the encryption key, and
encrypted-backup-location as the unique backuplocation name:

apiVersion: sql.tanzu.vmware.com/v1

kind: PostgresBackupLocation

metadata:

 name: encrypted-backup-location

spec:

 storage:

 s3:

 bucket: "name-of-bucket"

 bucketPath: "/sample-backup-path"

 region: "us-east-1"

 endpoint: "custom-endpoint"

 forcePathStyle: false

 enableSSL: true

 secret:

 name: backuplocation-creds-sample

 additionalParameters:

 repo1-cipher-pass: "my-simple-cipher"

 repo1-cipher-type: "aes-256-cbc"

4. Execute the kubectl apply command, specifying the manifest file you edited. For example:

kubectl apply -f /tmp/backuplocation-to-encrypt.yaml

postgresbackuplocation.sql.tanzu.vmware.com/encrypted-backup-location created

5. Edit the backupLocation attribute in the manifest yaml file you used to deploy the instance
to reflect the recently created backuplocation.

For example:

apiVersion: sql.tanzu.vmware.com/v1

kind: Postgres

metadata:

 name: postgres-sample

spec:

 storageClassName: standard

 storageSize: 800M

 cpu: "0.8"

 memory: 800Mi

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 101

 monitorStorageClassName: standard

 monitorStorageSize: 1G

 pgConfig:

 dbname: postgres-sample

 username: pgadmin

 serviceType: ClusterIP

 highAvailability:

 enabled: false

 backupLocation:

 name: encrypted-backup-location

6. Execute the kubectl apply command, specifying the manifest file you edited. For example:

kubectl apply -f ./postgres.yaml --wait=false

postgres.sql.tanzu.vmware.com "postgres-sample" configured

If the manifest file contains any incorrectly formatted values or unrecognized field names, an
error message is displayed identifying the issue. Edit the manifest to correct the error and
run the command again.

7. Verify the updated configuration by viewing the backupLocation fields of the instance
object:

kubectl get postgres/postgres-sample -o jsonpath='{.spec.backupLocation}'

{"name":"encrypted-backup-location"}

8. The data pod will then be restarted to pick up the new changes to the backuplocation.
Once the pods are up and running, use the following command to confirm that cipher is
now in use

kubectl exec -t postgres-sample-0 -- bash -c 'pgbackrest info --stanza=$BACKUP_

STANZA_NAME | grep cipher'

The output looks similar to:

Defaulted container "pg-container" out of: pg-container, instance-logging, reco

nfigure-instance, postgres-metrics-exporter, postgres-sidecar

 cipher: aes-256-cbc

Perform an On-Demand Backup

To take a backup:

1. Locate the backup.yaml deployment template located in the ./samples directory of the
downloaded release file.

2. Create a copy of the backup.yaml file and give it a unique name. For example:

cp ~/Downloads/postgres-for-kubernetes-v1.3.0/backup.yaml testbackup.yaml

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 102

3. Edit the file according to your environment. For details on the properties of the
PostgresBackup resource, see Properties for the PostgresBackup Resource.

4. Trigger the backup by creating the PostgresBackup resource in the instance namespace, by
running:

kubectl apply -f FILENAME -n DEVELOPMENT-NAMESPACE

where FILENAME is the name of the configuration file you created in Step 3 above.

For example:

kubectl apply -f testbackup.yaml -n my-namespace

postgresbackup.sql.tanzu.vmware.com/backup-sample created

5. Verify that the backup has been generated, and track its progress by using:

kubectl get postgresbackup backup-sample -n DEVELOPMENT-NAMESPACE

For example:

kubectl get postgresbackup backup-sample -n my-namespace

NAME STATUS SOURCE INSTANCE TYPE TIME STARTED T

IME COMPLETED

backup-sample Succeeded postgres-sample full 2021-08-31T14:29:14Z 2

021-08-31T14:29:14Z

For further details on the above output, see List Existing PostgresBackup Resources below.

Create Scheduled Backups

To create scheduled backups, create a PostgresBackupSchedule resource:

1. Locate the backupschedule.yaml template in the ./samples directory of the release
download, and copy to a new file. For example:

cp ~/Downloads/postgres-for-kubernetes-v1.3.0/samples/backupschedule.yaml testb

ackupschedule.yaml

2. Edit the file with the name of the Postgres instance you want to backup. For example:

apiVersion: sql.tanzu.vmware.com/v1

kind: PostgresBackupSchedule

metadata:

 name: backupschedule-sample

spec:

 backupTemplate:

 spec:

 sourceInstance:

 name: postgres-sample

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 103

 type: full

 schedule: "0 0 * * SAT"

where:

postgres-sample is the instance you're planning to backup.

type is full.

schedule is a cron job schedule; in this example it is planned for every Saturday at
00:00:00.

For an explanation of the PostgresBackupSchedule properties, see Properties for the
PostgresBackupSchedule Resource.

3. Create the PostgresBackupSchedule resource in the same namespace of the Postgres
instance that you referenced in the PostgresBackupSchedule manifest file.

kubectl apply -f FILENAME -n DEVELOPMENT-NAMESPACE`

where:

FILENAME is the name of the configuration file you created in Step 1.

DEVELOPMENT-NAMESPACE is the namespace for the Postgres instance you intend to
backup.

For example:

kubectl apply -f testbackupschedule.yaml -n my-namespace

postgresbackupschedule.sql.tanzu.vmware.com/backupschedule-sample created

4. Verify that the PostgresBackupSchedule has been created by running:

kubectl get postgresbackupschedule backupschedule-sample -o jsonpath={.spec} -n

DEVELOPMENT-NAMESPACE

For example:

kubectl get postgresbackupschedule backupschedule-sample -o jsonpath={.spec} -n

my-namespace

{

 "backupTemplate": {

 "spec": {

 "sourceInstance": {

 "name": "postgres-sample"

 },

 "type": "full"

 }

 },

 "schedule": "@daily"

}

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 104

After configuring the PostgresBackupLocation resource and the PostgresBackupSchedule
resource for an existing Postgres instance, backups will be generated and uploaded to the
external blobstore at the scheduled time.

The PostgresBackupSchedule generates PostgresBackup resources that have a name
format like: SCHEDULE-NAME-TIMESTAMP. For example, if the PostgresBackup resource on the
Kubernetes cluster is named pgbackupschedule-sample, and a backup was taken on
Thursday, December 10, 2020 at 8:51:03 PM GMT, the PostgresBackup resource name is
pgbackupschedule-sample-20201210-205103.

Backup Schedule Status

Check the status.message field in PostgresBackupSchedule CR to understand any issues with
PostgresBackupSchedule spec, backups scheduling, invalid cron schedule syntax, or errors like the
backuplocation.name not configured in the sourceInstance.

For example:

kubectl get postgresbackupschedule backupschedule-sample -o jsonpath={.status.message}

could return an output similar to:

Instance my-postgres-1 does not exist in the default namespace

if the user inserted the wrong Postgres instance name, my-postgres-1 instead of postgres-sample,
in PostgresBackupSchedule's spec.backupTemplate.spec.sourceInstance.name.

If the backup was successfully scheduled but the backup itself failed, then to troubleshoot, see
Troubleshoot Backup and Restore.

Listing Backup Resources

You might want to list existing PostgresBackup resources for various reasons, for example:

To select a backup to restore. For steps to restore a backup, see Restoring Tanzu Postgres.

To see the last successful backup.

To verify that scheduled backups are running as expected.

To find old backups that need to be cleaned up. For steps to delete backups, see Deleting
Old Backups.

List existing PostgresBackup resources by running:

kubectl get postgresbackup

NAME STATUS SOURCE INSTANCE TYPE TIME STARTED TIME COMPL

ETED

backup-sample Succeeded postgres-sample full 2021-08-31T14:29:14Z 2021-08-31

T14:29:14Z

Where:

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 105

STATUS Represents the current status of the backup. Allowed values are:

Pending: The backup has been received but not scheduled on a Postgres Pod.

Running: The backup is being generated and streamed to the external blobstore.

Succeeded: The backup has completed successfully.

Failed: The backup has failed to complete. To troubleshoot a failed backup, see
Troubleshoot Backup and Restore.

SOURCE INSTANCE is the Postgres instance the backup was taken from.

TYPE is the type of Postgres backup that was executed.

TIME STARTED is the time that the backup process started.

TIME COMPLETED is the time that the backup process finished. If the backup fails, this value is
empty.

Note: Users with version 1.2.0 backups can still list the previous backup information, along with the
new 1.3.0 backups. Use the pgbackrest command directly on the primary pod to review all existing
backups, independent of version. For example, login into the pod and run:

postgres@postgres-sample-0:/$ pgbackrest info --stanza=${BACKUP_STANZA_NAME}

If the BACKUP_STANZA_NAME is default-postgres-sample, the output would be similar to:

stanza: default-postgres-sample

 status: ok

 cipher: aes-256-cbc

 db (current)

 wal archive min/max (11): 000000010000000000000004/000000010000000000000009

 full backup: 20210915-140558F

 timestamp start/stop: 2021-09-15 14:05:58 / 2021-09-15 14:06:04

 wal start/stop: 000000010000000000000004 / 000000010000000000000004

 database size: 31.0MB, database backup size: 31.0MB

 repo1: backup set size: 3.7MB, backup size: 3.7MB

 full backup: 20210916-143321F

 timestamp start/stop: 2021-09-16 14:33:21 / 2021-09-16 14:33:41

 wal start/stop: 000000010000000000000009 / 000000010000000000000009

 database size: 31MB, database backup size: 31MB

 repo1: backup set size: 3.7MB, backup size: 3.7MB

To list backups related to a specific Postgres instance in the cluster, use:

kubectl get postgresbackups -l postgres-instance=postgres-sample

with output similar to:

NAME STATUS SOURCE INSTANCE TYPE TIME STARTED

TIME COMPLETED

backup-sample Succeeded postgres-sample full 2021-10-05T21:17:34Z

2021-10-05T21:17:41Z

backup-sample-1 Succeeded postgres-sample full 2021-10-05T21:28:46Z

2021-10-05T21:28:54Z

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 106

backup-sample-2 Succeeded postgres-sample full 2021-10-05T21:29:44Z

2021-10-05T21:29:51Z

backup-sample-3 Succeeded postgres-sample differential 2021-10-05T21:36:43Z

2021-10-05T21:36:49Z

backup-sample-4 Succeeded postgres-sample differential 2021-10-05T21:37:20Z

2021-10-05T21:37:26Z

backup-sample-5 Succeeded postgres-sample differential 2021-10-05T21:37:39Z

2021-10-05T21:37:45Z

backup-sample-6 Succeeded postgres-sample full 2021-10-05T21:43:35Z

2021-10-05T21:43:42Z

backup-sample-7 Succeeded postgres-sample full 2021-10-05T21:49:33Z

2021-10-05T21:49:41Z

backup-sample-8 Succeeded postgres-sample full 2021-10-05T22:07:43Z

2021-10-05T22:07:50Z

Deleting Old Backups

Removing Backup Artifacts from an S3 location

Tanzu Postgres for Kubernetes does not natively support retention policies for backup artifacts. To
delete backups from an S3 location use the pgbackrest expire command that deletes the backup
information from pgbackrest info, and also removes it from the blob store.

NOTE: You can only expire a full backup if another full backup exists. If you only have a single full
backup, take another full backup before you expire the first one.

Use kubectl exec to get access into a pod:

kubectl exec -ti pod/my-postgres-ha-0 -- bash

Use pg_autoctl show state to ensure you're on the primary pod:

pg_autoctl show state

Name | Node | Host:

Port | TLI: LSN | Connection | Reported State | Assigned State

-------+-------+---

-------+-----------------+--------------+-----------------+------------------

node_1 | 1 | my-postgres-ha-0.my-postgres-ha-agent.default.svc.cluster.loca

l:5432 | 1: 0/15000148 | read-write | primary | primary

node_2 | 2 | my-postgres-ha-1.my-postgres-ha-agent.default.svc.cluster.loca

l:5432 | 1: 0/15000148 | read-only | secondary | secondary

Use the pgbackrest info to view all of the existing backups.

pgbackrest info --stanza=$BACKUP_STANZA_NAME

 stanza: default-my-postgres-ha

 status: ok

 cipher: aes-256-cbc

 db (current)

 wal archive min/max (14): 000000010000000000000001/000000010000000000000014

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 107

 full backup: 20220119-190307F

 timestamp start/stop: 2022-01-19 19:03:07 / 2022-01-19 19:03:22

 wal start/stop: 000000010000000000000011 / 000000010000000000000011

 database size: 34.3MB, database backup size: 34.3MB

 repo1: backup set size: 4.3MB, backup size: 4.3MB

 incr backup: 20220119-190307F_20220119-190339I

 timestamp start/stop: 2022-01-19 19:03:39 / 2022-01-19 19:03:41

 wal start/stop: 000000010000000000000013 / 000000010000000000000013

 database size: 34.3MB, database backup size: 50.0KB

 repo1: backup set size: 4.3MB, backup size: 3.5KB

 backup reference list: 20220119-190307F

 incr backup: 20220119-190307F_20220119-190345I

 timestamp start/stop: 2022-01-19 19:03:45 / 2022-01-19 19:03:47

 wal start/stop: 000000010000000000000014 / 000000010000000000000014

 database size: 34.3MB, database backup size: 52.0KB

 repo1: backup set size: 4.3MB, backup size: 3.6KB

 backup reference list: 20220119-190307F

 full backup: 20220119-191742F

 timestamp start/stop: 2022-01-19 19:17:42 / 2022-01-19 19:17:53

 wal start/stop: 000000010000000000000016 / 000000010000000000000016

 database size: 34.3MB, database backup size: 34.3MB

 repo1: backup set size: 4.3MB, backup size: 4.3MB

Use pgbackrest expire --stanza=$BACKUP_STANZA_NAME to expire a full backup and remove
it from the s3 blobstore. The command removes the backup and the related incremental
backups from the stanza and from s3. If it fails, ensure you have at least two full backups, so
you can delete one.

pgbackrest expire --stanza=default-postgres-sample --set=20220302-075533F

2022-03-16 19:03:12.408 P00 INFO: expire command begin 2.38: --config=/etc/pg

backrest/pgbackrest.conf --exec-id=11799-7d0900ea --log-level-console=info --lo

g-level-file=off --repo1-cipher-pass=<redacted> --repo1-cipher-type=aes-256-cbc

--repo1-path=/my-bucket-path2 --repo1-retention-diff=5 --repo1-retention-full=3

--repo1-retention-full-type=count --repo1-s3-bucket=postgresql-backups --repo1-

s3-endpoint=minio.minio.svc.cluster.local:9000 --repo1-s3-key=<redacted> --repo

1-s3-key-secret=<redacted> --repo1-s3-region=us-east-1 --repo1-s3-uri-style=pat

h --no-repo1-storage-verify-tls --repo1-type=s3 --set=20220302-075533F --stanza

=default-postgres-sample

2022-01-19 19:17:57.355 P00 INFO: repo1: expire adhoc backup set 20220119-190

307F, 20220119-190307F_20220119-190339I, 20220119-190307F_20220119-190345I

2022-01-19 19:17:57.392 P00 INFO: repo1: remove expired backup 20220119-19030

7F_20220119-190345I

2022-01-19 19:17:57.395 P00 INFO: repo1: remove expired backup 20220119-19030

7F_20220119-190339I

2022-01-19 19:17:57.398 P00 INFO: repo1: remove expired backup 20220119-19030

7F

2022-01-19 19:17:57.689 P00 INFO: expire command end: completed successfully

(377ms)

Use pgbackrest info to see the new state of the stanza:

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 108

pgbackrest info --stanza=$BACKUP_STANZA_NAME

 stanza: default-my-postgres-ha

 status: ok

 cipher: aes-256-cbc

 db (current)

 wal archive min/max (14): 000000010000000000000001/000000010000000000000016

 full backup: 20220119-191742F

 timestamp start/stop: 2022-01-19 19:17:42 / 2022-01-19 19:17:53

 wal start/stop: 000000010000000000000016 / 000000010000000000000016

 database size: 34.3MB, database backup size: 34.3MB

 repo1: backup set size: 4.3MB, backup size: 4.3MB

Deleting a Backup

Tanzu Postgres does not automatically manage backup removal. To delete a backup and the S3
backup artifacts associated with it, follow two steps:

Use the steps in Removing Backup Artifacts from an S3 location to remove all the specific
$BACKUP_STANZA_NAME backups from the S3 location.

Delete the associated PostgresBackup resources in the Kubernetes cluster by running:

kubectl delete postgresbackup BACKUP-NAME -n DEVELOPMENT-NAMESPACE

For example:

kubectl delete postgresbackup backup-sample -n my-namespace

Restoring Tanzu Postgres

Tanzu Postgres allows you to perform three types of data restores:

Restoring from a full backup to an existing instance, overriding existing data. See Restore
In-place to the same instance.

Restoring a full backup to a different instance in the same namespace. See Restore to a
different instance.

Restoring a backup to a different namespace or cluster. See Restore to a different
namespace or cluster.

Customers on Tanzu Operator 1.7.x that wish to restore backups from prior versions, see Restoring
Backups taken prior to Postgres Operator 1.7.0.

Restore In-place

In this scenario, you can use a previous backup to override data in an existing instance.

Prerequisites

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 109

Before you restore from a backup, you must have:

An existing PostgresBackup in your current namespace. To list the existing PostgresBackup
resources, see Listing Backup Resources. You can restore from any kind of backup (full,
differential, incremental) provided it follows the pgbackrest guidelines.

A PostgresBackupLocation that represents the bucket where the existing backup artifact is
stored. See Configure the Backup Location above.

Procedure

To restore from a full backup:

1. Locate the restore.yaml deployment yaml in the ./samples directory of your downloaded
release, and create a copy with a unique name. For example:

cp ~/Downloads/postgres-for-kubernetes-v1.3.0/samples/restore.yaml testrestore.

yaml

2. Locate all backups of your existing instance. For example, for all the backups executed
against a Postgres instance called 'postgres-sample' use:

kubectl get postgresbackups -n NAMESPACE -l postgres-instance=postgres-sample

NAME STATUS SOURCE INSTANCE TYPE TIME STARTED T

IME COMPLETED

backup-sample-4 Succeeded postgres-sample full 2021-09-24T19:40:17Z 2

021-09-24T19:40:24Z

backup-sample-5 Succeeded postgres-sample full 2021-09-25T16:54:55Z 2

021-09-25T16:55:02Z

backup-sample-6 Succeeded postgres-sample full 2021-09-24T19:48:41Z 2

021-09-24T19:48:48Z

backup-sample-7 Succeeded postgres-sample full 2021-09-27T23:04:06Z 2

021-09-27T23:04:13Z

backup-sample-8 Succeeded postgres-sample full 2021-09-27T23:19:51Z 2

021-09-27T23:19:58Z

3. Locate the backup you'll like to restore, and edit the 'restore.yaml' with your information.
For information about the PostgresRestore resource properties, see Backup and Restore
CRD API Reference.

 apiVersion: sql.tanzu.vmware.com/v1

 kind: PostgresRestore

 metadata:

 name: restore-sample

 spec:

 sourceBackup:

 name: backup-sample

 targetInstance:

 name: postgres-sample

4. For in-place restore, ensure that the sourceBackup was performed on the targetInstance.
Refer to step 2 for validation.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 110

https://pgbackrest.org/user-guide.html#concept/backup

5. Trigger the restore by creating the PostgresRestore resource in the same namespace as
the PostgresBackup and PostgresBackupLocation. Run:

kubectl apply -f FILENAME -n DEVELOPMENT-NAMESPACE

where FILENAME is the name of the configuration file you created in Step 2 above.

For example:

kubectl apply -f testrestore.yaml -n my-namespace

postgresrestores.sql.tanzu.vmware.com/restore-sample created

6. Verify that a restore has been triggered and track the progress of your restore by running:

kubectl get postgresrestore restore-sample -n DEVELOPMENT-NAMESPACE

For example:

kubectl get postgresrestore restore-sample -n my-namespace

NAME STATUS SOURCE BACKUP TARGET INSTANCE TIME STARTED

TIME COMPLETED

restore-sample Succeeded backup-sample postgres-sample 2021-09-27T23:

34:13Z 2021-09-27T23:34:26Z

To understand the output, see the table below:

Column Name Meaning

STATUS Represents the current status of the restore process.
Allowed values are:

Running: The restore is in progress.

RecreatingNodes: The postgres nodes are being restarted as part of the
restore workflow.

RecreatingPrimary: In case of HA target instance, the primary pod is being
restarted

WaitForPrimary: Wait for the primary pod to be up and running

RecreatingSecondary: In case of HA target instance, the secondary pod is
being restarted

Finalizing: The restore is nearly complete, waiting for the restart to be done
and target instance to be up.

Succeeded: The restore has completed successfully.

Failed: The restore failed. To troubleshoot, see Troubleshooting Backup and
Restore.

SOURCE BACKUP The name of the backup being restored.

TARGET INSTANCE The name of the source postgres instance to be restored with the backup contents.

TIME STARTED The time that the restore process started.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 111

TIME COMPLETED The time that the restore process finished.

Restore to a Different Instance

Prerequisites

Ensure the new targeted instance exists in the same namespace as the Postgres instance
you're restoring from.

Procedure

1. Create a new Postgres instance, if your target instance doesn't already exist.

2. Locate the restore.yaml deployment yaml in the ./samples directory of your downloaded
release, and create a copy with a unique name. For example:

cp ~/Downloads/postgres-for-kubernetes-v1.3.0/samples/restore.yaml testrestore.

yaml

3. Locate all the backups for the existing instance. For example, to list all backups executed
against a Postgres instance called 'postgres-sample' use a command similar to:

kubectl get postgresbackups -n NAMESPACE -l postgres-instance=postgres-sample

NAME STATUS SOURCE INSTANCE TYPE TIME STARTED T

IME COMPLETED

backup-sample-4 Succeeded postgres-sample full 2021-09-24T19:40:17Z 2

021-09-24T19:40:24Z

backup-sample-5 Succeeded postgres-sample full 2021-09-25T16:54:55Z 2

021-09-25T16:55:02Z

backup-sample-6 Succeeded postgres-sample full 2021-09-24T19:48:41Z 2

021-09-24T19:48:48Z

backup-sample-7 Succeeded postgres-sample full 2021-09-27T23:04:06Z 2

021-09-27T23:04:13Z

backup-sample-8 Succeeded postgres-sample full 2021-09-27T23:19:51Z 2

021-09-27T23:19:58Z

4. Once you've located the backup you'll like to restore to, edit the 'restore.yaml' For
information about the properties that you can set for the PostgresRestore resource, see
Backup and Restore CRD API Reference.

 apiVersion: sql.tanzu.vmware.com/v1

 kind: PostgresRestore

 metadata:

 name: restore-sample

 spec:

 sourceBackup:

 name: backup-sample

 targetInstance:

 name: postgres-sample

5. For restore to a new instance, make sure that the sourceBackup was NOT performed on
the target instance, refer to step 3 for validation.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 112

6. Trigger the restore by creating the PostgresRestore resource in the same namespace as
the PostgresBackup and PostgresBackupLocation by running:

kubectl apply -f FILENAME -n DEVELOPMENT-NAMESPACE

Where FILENAME is the name of the configuration file you created in Step 2 above.

For example:

kubectl apply -f testrestore.yaml -n my-namespace

postgresrestores.sql.tanzu.vmware.com/restore-sample created

7. Verify that a restore has been triggered and track the progress of your restore by running:

kubectl get postgresrestore restore-sample -n DEVELOPMENT-NAMESPACE

For example:

kubectl get postgresrestore restore-sample -n my-namespace

NAME STATUS SOURCE BACKUP TARGET INSTANCE TIME STARTED

TIME COMPLETED

restore-sample Succeeded backup-sample postgres-sample 2021-09-27T23:3

4:13Z 2021-09-27T23:34:26Z

8. To understand the output, see the table below:

Column Name Meaning

STATUS Represents the current status of the restore process.
Allowed values are:

Running: The restore is in progress.

RecreatingNodes: The postgres nodes are being restarted as part of the
restore workflow.

RecreatingPrimary: In case of HA target instance, the primary pod is being
restarted

WaitForPrimary: Wait for the primary pod to be up and running

RecreatingSecondary: In case of HA target instance, the secondary pod is
being restarted

Finalizing: The restore is nearly complete, waiting for the restart to be done
and target instance to be up.

Succeeded: The restore has completed successfully.

Failed: The restore failed. To troubleshoot, see Troubleshoot Backup and
Restore below.

SOURCE BACKUP The name of the backup being restored.

TARGET INSTANCE The name of the new Postgres instance to be restored with the backup contents.

TIME STARTED The time that the restore process started.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 113

TIME COMPLETED The time that the restore process finished.

Restore to a different namespace or cluster

This scenario allows users to restore a Tanzu Postgres instance to a different namespace than the
namespace it was backed up in. Using this feature, users can perform the restore even if the
original instance has been accidentally deleted.

This feature synchronizes the backupLocation and backups of a single instance across different
namespaces.

Prerequisites

In this section, the namespace where the backup was created is referred to as "origin" namespace.
The namespace for the restore is referred to as "target" namespace.

Ensure that:

You know the S3 backup location details of the given instance in the origin namespace.

You have the name of a Tanzu Postgres instance on version 1.7.0 and above, that exists or
existed in the origin namespace.

You have an existing PostgresBackup object in the origin namespace. To list any existing
PostgresBackup resources, see Listing Backup Resources.

You have a PostgresBackupLocation that represents the bucket where the existing backup
artifact is stored.

Procedure

1. On the origin namespace, identify the backupLocation name of the backup you wish to
restore to the target namespace:

kubectl get postgresbackup backup-sample -n <namespace-origin> -o jsonpath='{.s

tatus.backupLocation}'

where backup-sample is the name of the backup resource created for the instance backup
in origin namespace. The output is similar to:

my-backup-location

2. On the targe namespace, create a backuplocation.yaml, using as content the output you
receive from:

Important: This feature was introduced in Tanzu Postgres 1.7.0. Customers on
previous releases, with existing backups, cannot utilize this feature without
upgrading. Customers on Tanzu Postgres 1.6.0 and earlier, are advised to upgrade
their instances to 1.7.0, and perform a full backup after the upgrade. This full backup
and any future backups will be able to be used for restores to a different
namespace.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 114

kubectl get postgresbackuplocation <name of backup location> -n <namespace-orig

in> -o yaml

Edit the namespace field to match the target namespace before applying the CRD.

At this point any backups taken by Tanzu Operator 1.7.0 (or later), for this specific
postgresbackuplocation resource, will start to synchronize.

3. Create the secret that is attached to that postgresbackupLocation CRD. To retrieve the
secret name, issue a command similar to:

kubectl get postgresbackuplocation <name-of-backup-location> -n <namespace-orig

in> -o jsonpath='{.spec.storage.s3.secret.name}'

which returns an output similar to:

my-backuplocation-secret

Create the secret on the target namespace, using the content you receive from the output
of a command similar to:

kubectl get secret <name-of-secret-retrieved-above> -n <namepsace-origin> -o ya

ml

Edit the namespace field to match the target namespace before applying the CRD.

4. List the synchronized backups by using a command similar to:

kubectl get postgresbackup -n <namespace-target> -l sql.tanzu.vmware.com/recove

red-from-backuplocation=true

The output would be similar to:

NAMESPACE NAME STATUS SOURCE INS

TANCE TYPE TIME STARTED TIME COMPLETED

target-namespace sync-20220414-143642f-2aff7501 Succeeded my-postgre

s full 2022-04-14T14:36:42Z 2022-04-14T14:37:01Z

5. Select which backup you wish to restore.

6. On the target namespace, create a postgres instance that you’ll like to restore the backup
to. If an instance already exists, skip this step.

kubectl apply -f postgres.yaml

7. Wait until the instance is up and running:

kubectl wait postgres postgres-sample -n <namespace-target> --for=jsonpath={.st

atus.currentState}=Running

8. Edit the target namespace instance restore yaml, and edit it to reflect the backup you’ll like
to restore, and the instance you’ll like to restore that backup, Create the PostgresRestore
yaml. A sample restore yaml is shown below:

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 115

apiVersion: sql.tanzu.vmware.com/v1

kind: PostgresRestore

metadata:

 name: <provide-name-for-restore>

spec:

 sourceBackup:

 name: <provide-the-backup-name>

 targetInstance:

 name: <provide-the-instance-name>

9. Perform the restore by using:

kubectl apply -f restore.yaml

10. Validate that the restore succeeded by using a command similar to:

kubectl get postgresrestore.sql.tanzu.vmware.com/restore-sample -n <namespace-t

arget>

which will show an output similar to:

NAME STATUS SOURCE BACKUP TARGET INSTA

NCE TIME STARTED TIME COMPLETED

restore-sample Succeeded sync-20220415-201444f-2aff7501 my-postgres

2022-04-15T20:44:50Z 2022-04-15T20:45:31Z

Where the SOURCE BACKUP uniquely identifies the synchronized backup object by using the
date (for example 20220415), time (for example 201444 represents 20:14:44), type of
backup (f - full, d - differential, i - incremental), and part of the instance UUID number.

11. Validate that the Tanzu Postgres instance in your target namespace is running, using:

kubectl get postgres.sql.tanzu.vmware.com/postgres-sample -n <namespace-target>

Restore Backups taken prior to Postgres Operator 1.7.0

1. Select which backups you'll like to restore:

kubectl get postgresbackup -n <namespace>

NAME STATUS SOURCE INSTANCE TYPE TIME STARTED

TIME COMPLETED

backup-sample Succeeded postgres-sample full 2022-04-15T15:06:35Z

2022-04-15T15:07:10Z

2. Use kubectl edit-status to edit the status attribute of the selected PostgresBackup object to
contain the following information:

kubectl edit-status postgresbackup backup-sample -n <namespace>

Attribute Command to get the value

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 116

https://github.com/ulucinar/kubectl-edit-status

backupLocation Find backupLocation attached to the instance
kubectl get postgres postgres-sample -o jsonpath=
{.spec.backupLocation.name}

Get the cipher that'll be used for restore
kubectl get secrets postgres-sample-pgbackrest-secret -o jsonpath=
{.data.cipher} | base64 -d

Follow the steps here to create a client-side encrypted backupLocation and
provide the value retrieved above as the cipher value

dbName kubectl get postgres postgres-sample -o jsonpath={.spec.pgConfig.dbname}

stanzaName kubectl exec -t pod/my-postgres-0 -c pg-container -- bash -c 'echo
$OLD_BACKUP_STANZA_NAME'

3. Confirm that the status fields are correctly populated:

kubectl describe postgresbackup postgres-sample -n <namespace>

Status:

 Status:

 Backup Location: encrypted-backup-location

 Db Name: postgres-sample

 Phase: Succeeded

 Restore Label: 20220415-150641F

 Stanza Name: default-my-postgres

 Time Completed: 2022-04-15T15:07:10Z

 Time Started: 2022-04-15T15:06:35Z

4. Once you've updated the backup you'll like to restore, edit the restore.yaml to reflect the
said backup and the instance you'll like to restore to:

 apiVersion: sql.tanzu.vmware.com/v1

 kind: PostgresRestore

 metadata:

 name: restore-sample

 spec:

 sourceBackup:

 name: backup-sample

 targetInstance:

 name: postgres-sample

5. Execute the kubectl apply command, specifying the manifest file you edited. For example:

kubectl apply -f ./restore.yaml --wait=false

Validating a Successful Restore

Validate that the Postgres instance has a status of Running using a command like:

kubectl get postgres.sql.tanzu.vmware.com/postgres-sample

which should show an output similar to:

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 117

NAME STATUS BACKUP LOCATION AGE

postgres-sample Running backuplocation-sample 43h

Migrating to Tanzu Postgres 1.3.0 Backup and Restore

This topic applies to customers that already use Tanzu Postgres 1.2.0 and earlier.

Tanzu Postgres 1.3.0 deprecates the backupLocationSecret field on the Postgres instance spec
which was used in versions 1.2.0 and earlier. Version 1.3.0 introduces three new backup and
restore CRDs. Users can still view and restore from earlier backups, but Tanzu Postgres 1.3.0
requires migration to the new backup strategy. Perform the following steps to migrate:

1. Confirm that the existing Postgres instance references a backupLocationSecret:

kubectl get postgres.sql.tanzu.vmware.com/postgres-sample -o jsonpath='{.spec.b

ackupLocationSecret.name}'

my-postgres-s3-secret

where my-postgres-s3-secret is an example of a secret referenced in the postgres-sample
manifest file.

2. Remove the backupLocationSecret from the instance spec:

kubectl patch postgres.sql.tanzu.vmware.com/postgres-sample --type='json' -p

='[{"op": "remove", "path":"/spec/backupLocationSecret"}]'

postgres.sql.tanzu.vmware.com/postgres-sample patched

3. Wait until all the changes have been successfully applied

kubectl rollout status statefulset.apps/postgres-sample

partitioned roll out complete: 1 new pods have been updated...

4. Upgrade the Tanzu Postgres Operator. For details see Upgrading the Tanzu Postgres
Operator and Instances.

5. Create a new backup resource and reference it in the instance spec. See Configure the
Backup Location.

6. Confirm that all the instances previously using backupLocationSecret have been updated to
use the PostgresBackupLocation CR.

7. Delete the secret that is no longer necessary.

8. Perform an on demand backup or create a schedule for scheduled backups. See Perform an
On-Demand Backup, and Create Scheduled Backups.

Troubleshooting Backup and Restore

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 118

To troubleshoot any issues, review the resource status, and read any messages associated with the
resource events. Monitor the STATUS column of any Postgres custom resource using kubectl get
postgresbackup, to confirm if status is Failed, or is stuck in Pending, Scheduled, or Running. Then
try to investigate:

Misconfiguration issues

Problems with the external blobstore

Issues with the Postgres Operator

FAILED status for PostgresBackup Resource

Check the STATUS column in the output of kubectl get postgresbackup command to view if a
backup has failed:

kubectl get postgresbackup

NAME STATUS SOURCE INSTANCE TYPE TIME STARTED TIME COMPLETE

D

backup-sample Failed postgres-sample full 2021-08-31T14:29:14Z 2021-08-31T1

4:29:14Z

Diagnose the issue by inspecting the Kubernetes events for the postgresbackup resource, using
kubectl describe, and check the Events section.

Note: By default, Kubernetes events are stored in etcd for a limited amount of time, so there may
not be any events if the failure occurred several hours ago.

Below are a couple of failure events and their corresponding resolution:

Failed due to missing pgbackrest.conf file

Error:

kubectl describe postgresbackup backup-sample

Spec:

 Source Instance:

 Name: postgres-sample

 Type: full

Status:

 Phase: Failed

 Time Completed: 2022-02-25T19:37:07Z

 Time Started: 2022-02-25T19:37:07Z

Events:

 Type Reason Age From Message

 ---- ------ ---- ---- -------

 Warning Failed 22s (x2 over 27s) postgres-backup-controller WARN: environment co

ntains invalid option 'config-version'ERROR: [055]: unable to open missing file '/etc/

pgbackrest/pgbackrest.conf' for read

Resolution:

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 119

In the example above, the backup-sample expected a file called /etc/pgbackrest/pgbackrest.conf
to exist. Fix this problem by creating and attaching a PostgresBackupLocation CR to the Postgres
instance.

FAILED due to S3 server certificate validation error

Error:

kubectl describe postgresbackup backup-sample

Spec:

 Source Instance:

 Name: postgres-sample

 Type: full

Status:

 Phase: Failed

 Time Completed: 2022-02-25T19:37:07Z

 Time Started: 2022-02-25T19:37:07Z

Events:

 Type Reason Age From Message

 ---- ------ ---- ---- -------

 Warning Failed 20s postgres-backup-controller WARN: environment contains invali

d option 'config-version'ERROR: [095]: unable to load info file '/my-bucket-path/archi

ve/default-postgres-sample/archive.info' or '/my-bucket-path/archive/default-postgres-

sample/archive.info.copy': CryptoError: unable to verify certificate presented b

y 'minio.minio.svc.cluster.local:9000': [20] unable to get local issuer certificate

HINT: is or was the repo encrypted? CryptoError: unable to verify certificate pr

esented by 'minio.minio.svc.cluster.local:9000': [20] unable to get local issuer certi

ficate HINT: is or was the repo encrypted? HINT: archive.info cannot be op

ened but is required to push/get WAL segments. HINT: is archive_command configur

ed correctly in postgresql.conf? HINT: has a stanza-create been performed?

HINT: use --no-archive-check to disable archive checks during backup if you have an al

ternate archiving scheme.

Resolution:

In this example, the PostgresBackupLocation associated with the source instance was configured
with enableSSL: true but the S3 server TLS is not properly configured (for e.g. it might be using a
self-signed certificate). To resolve this issue, set the S3 server TLS appropriately. If this is a
testing/demo scenario, you can set enableSSL to false in the PostgresBackupLocation, wait for the
instance to restart, and then create a PostgresBackup again.

FAILED status for PostgresRestore

In this example, the kubectl get command outputs a Failed status:

kubectl get postgresrestore

NAME STATUS SOURCE BACKUP TARGET INSTANCE TIME STARTED

TIME COMPLETED

restore-test Failed sample-source-backup postgres-sample 2021-09-29T19:0

0:26Z 2021-09-29T19:00:26Z

Diagnose the issue by inspecting the status message on the resource. For example:

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 120

kubectl describe postgresrestore restore-test

Spec:

 Source Backup:

 Name: sample-source-backup

 Target Instance:

 Name: my-postgres

Status:

 Message: Backup sample-source-backup does not exist in namespace default

 Phase: Failed

 Time Completed: 2022-02-25T19:27:27Z

 Time Started: 2022-02-25T19:27:27Z

Events:

 Type Reason Age From Message

 ---- ------ ---- ---- -------

 Warning ReferencedBackupDoesNotExist 2m56s postgres-restore-controller PostgresB

ackup.sql.tanzu.vmware.com "sample-source-backup" not found

In the example above, the restore failed because the backup specified in the sourceInstance field
does not exist.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 121

Configuring High Availability in Tanzu
Postgres

This topic describes how to enable High Availability (HA) for Tanzu Postgres. HA offers automatic
failover ensuring that any application requests operate continuously and without downtime.

Tanzu Postgres uses the pg_auto_failover extension to provide a highly available Tanzu Postgres
cluster on Kubernetes. For detailed information about pg_auto_failover features, see the
pg_auto_failover documentation.

In the Tanzu Postgres HA cluster configuration, the topology consists of three pods: one monitor,
one primary and one hot standby mirror. pg_auto_failover ensures that the data is synchronously
replicated from the primary to the mirror node. If the primary node is unresponsive, the application
requests are re-directed to the mirror node, which gets promoted to the primary. All application
requests continue to the promoted primary, while a new postgres instance is started which
becomes the new mirror. If the monitor pod fails, operations continue as normal. The Postgres
operator redeploys a monitor pod, and when ready it resumes monitoring of the primary and
secondary.

Configuring High Availability

Ensure that you have completed the Installing a Postgres Operator procedures before proceeding.
Also review Deploying a New Postgres Instance.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 122

https://pg-auto-failover.readthedocs.io/en/latest/index.html

1. To enable Tanzu Postgres high availability (cluster mode), edit your copy of the instance
yaml file you created during Deploying a New Postgres Instance. In the yaml, alter the
highAvailability field:

apiVersion: sql.tanzu.vmware.com/v1

kind: Postgres

metadata:

 name: postgres-sample

spec:

 memory: 800Mi

 cpu: "0.8"

 storageClassName: standard

 storageSize: 10G

 serviceType: CluterIP

 pgConfig:

 dbname:

 username:

 highAvailability:

 enabled: true

highAvailability values can be enabled: <true|false>. If this field is left empty, the
postgres instance is by default a single node configuration.

2. Execute this command to deploy or redeploy the cluster with the new highAvailability
setting:

kubectl apply -f postgres.yaml

where postgres.yamlis the Kubernetes manifest created for this instance.

The command output is similar to:

postgres.sql.tanzu.vmware.com/postgres-sample created

where postgres-sample is the Postgres instance name defined in the yaml file.

At this point, the Postgres operator deploys the three Postgres instance pods: the monitor,
the primary, and the mirror.

Verifying the HA Configuration

To confirm your HA configuration is ready for access, use kubectl get to review the STATUS field
and confirm that it shows "Running". Initially STATUS will show Created, until all artifacts are
deployed. Use Ctr-C to escape the watch command.

watch kubectl get postgres/postgres-sample

NAME STATUS BACKUP LOCATION AGE

postgres-sample Pending backuplocation-sample 17m

To view the created pods, use:

kubectl get pods

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 123

NAME READY STATUS RESTARTS AGE

pod/postgres-sample-0 1/1 Running 0 11m

pod/postgres-sample-monitor 1/1 Running 0 12m

pod/postgres-sample-1 1/1 Running 0 4m28s

You can now log into the primary pod using kubectl exec -it <pod-name> -- bash:

kubectl exec -it postgres-sample-0 -- bash

You can log into any pod with kubectl exec and use the pg_autoctl tool to inspect the state of the
cluster. Run pg_autoctl show state to see which pod is currently the primary:

kubectl exec -ti pod/postgres-sample-1 -- pg_autoctl show state

 Name | Node | Host:Port

| TLI: LSN | Connection | Current State | Assigned State

-------+-------+--

--+----------------+--------------+---------------------+--------------------

node_1 | 1 | postgres-sample-0.postgres-sample-agent.default.svc.cluster.local:543

2 | 2: 0/3002690 | read-only | secondary | secondary

node_2 | 2 | postgres-sample-1.postgres-sample-agent.default.svc.cluster.local:543

2 | 2: 0/3002690 | read-write | primary | primary

The pg_autoctl set of commands manage the pg_autofailover services. For further information,
refer to the pg_autoctl reference documentation.

Note: VMware supports a limited range of pg_autoctl commands, involving inspecting the nodes
and performing a manual failover.

If the primary is unreachable, during the primary to mirror failover, the Current State and Assigned
State status columns toggle between demoted, catching_up, wait_primary, secondary, and
primary. You can monitor the states using pg_autoctl:

watch pg_autoctl show state

Name | Node | Host:Port

| TLI: LSN | Connection | Current State | Assigned State

-------+-------+--

--+----------------+--------------+---------------------+--------------------

node_1 | 1 | postgres-sample-0.postgres-sample-agent.default.svc.cluster.local:543

2 | 2: 0/3002690 | read-only | demoted | catching_up

node_2 | 2 | postgres-sample-1.postgres-sample-agent.default.svc.cluster.local:543

2 | 2: 0/3002690 | read-write | primary | primary

Name | Node | Host:Port

| TLI: LSN | Connection | Current State | Assigned State

-------+-------+--

--+----------------+--------------+---------------------+--------------------

node_1 | 1 | postgres-sample-0.postgres-sample-agent.default.svc.cluster.local:543

2 | 2: 0/3002690 | read-only | secondary | secondary

node_2 | 2 | postgres-sample-1.postgres-sample-agent.default.svc.cluster.local:543

2 | 2: 0/3002690 | read-write | primary | primary

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 124

https://pg-auto-failover.readthedocs.io/en/latest/ref/manual.html

Scaling down the HA Configuration

To alter an HA cluster to a single node configuration, alter the Postgres instance YAML and change
the HA the field from:

apiVersion: sql.tanzu.vmware.com/v1

kind: Postgres

metadata:

 name: ha-postgres-sample

spec:

 highAvailability:

 enabled: true

to:

apiVersion: sql.tanzu.vmware.com/v1

kind: Postgres

metadata:

 name: ha-postgres-sample

spec:

 highAvailability:

 enabled: false

After this step has been completed the mirror no longer exists. You may verify that there is no
replication happening by using accessing the pod:

kubectl exec -it pod/ha-postgres-sample -- bash

and running:

pg_autoctl show state

where the output should show single under the column Current State.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 125

Monitoring Postgres Instances

This topic describes how to collect metrics and monitor Tanzu Postgres instances in a Kubernetes
cluster.

Overview

Tanzu Postgres uses the Postgres Exporter, a Prometheus exporter for Postgres server metrics.
The Prometheus exporter provides an endpoint for Prometheus to scrape metrics from different
application services. The Postgres Server Exporter shares metrics about the Postgres instances.

Upon initialization, each Postgres pod adds a Postgres server exporter container. Prometheus
sends HTTPS requests to the exporter. The exporter queries the Postgres database and provides
metrics in the Prometheus format on a /metrics https endpoint (port 9187) on the pod, conforming
to the Prometheus HTTP API.

The diagram below shows the architecture of a single-node Postgres instance with Postgres server
exporter, where the metrics are exported on port 9187:

Click here to view a larger version of this diagram

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 126

https://github.com/prometheus-community/postgres_exporter

Prometheus could be your primary consumer of the metrics, but any monitoring tool can take
advantage of the /metrics endpoint.

Prerequisites

To take advantage of the metrics endpoint, ensure your environments has a metrics collector like
Prometheus, or Wavefront. For an example installation of Prometheus, see Using Prometheus
Operator to Scrape the Tanzu Postgres Metrics.

Verifying Postgres Metrics

The Tanzu Postgres pods include the exporter that emits the built-in Postgres metrics. To test that
the metrics are being emitted, you may use port forwarding (for more details see Use Port
Forwarding to Access Applications in a Cluster in the Kubernetes documentation):

kubectl port-forward pod/<postgres-instance-pod-name> 9187:9187

And then in another shell window, use a tool like curl to run:

curl -k https://localhost:9187/metrics

A successful output would show metrics emitted by the exporter, similar to (this example is a small
extract):

HELP pg_stat_database_xact_rollback Number of transactions in this database that hav

e been rolled back

TYPE pg_stat_database_xact_rollback counter

pg_stat_database_xact_rollback{datid="13737",datname="postgres",server="localhost:543

2"} 3553

where xact_rollback is part of the pg_stat_database metrics map, as described in Postgres
Exporter. For a list of the Postgres relations that are used to retrieve the default Tanzu Postgres
metrics see Postgres Exporter Default Metrics.

Using Prometheus Operator to Scrape the Tanzu Postgres
Metrics
This section demonstrates how to scrape the Postgres metrics using the Prometheus Operator.

The Prometheus Operator defines and manages monitoring instances as Kubernetes resources.
This section provides an example installation of the Prometheus Operator, and an example
Prometheus PodMonitor CRD (Custom Resource Definition) that will be used demonstrate how to
scrape the metrics. The PodMonitor defines the configuration details for the Tanzu Postgres pod
monitoring.

1. Install the Prometheus Operator using Helm:

For e.g.:

helm install prometheus prometheus-community/kube-prometheus-stack \

 --create-namespace \

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 127

https://prometheus.io/
https://kubernetes.io/docs/tasks/access-application-cluster/port-forward-access-application-cluster/
https://github.com/prometheus-community/postgres_exporter/blob/df461c2f9aa8bfc5eb86302841fc0786029484de/cmd/postgres_exporter/postgres_exporter.go#L165
https://github.com/prometheus-operator/prometheus-operator
https://github.com/prometheus-community/helm-charts/tree/main/charts/kube-prometheus-stack#install-chart

 --namespace=prometheus \

 --set prometheus.service.port=80 \

 --set prometheus.service.type=LoadBalancer \

 --set grafana.enabled=false,alertmanager.enabled=false,nodeExporter.enabled=

false \

 --set prometheus.prometheusSpec.podMonitorSelectorNilUsesHelmValues=false \

 --wait

Note: In the above prometheus installation example,
prometheus.prometheusSpec.podMonitorSelectorNilUsesHelmValues is set to false. It is
configured to avoid the need to add a release label on each PodMonitor CR that you
create.

If you already have a prometheus installation with
prometheus.prometheusSpec.podMonitorSelectorNilUsesHelmValues set to true (default
value), then, in order for your PodMonitor CRs to be discoverable by the Prometheus
Operator, you will need to add a label release: <prometheus-release-name> to the
metadata section of each PodMonitor CR that you create in the cluster. For e.g. if the helm
release name is prometheus, you will add a label release: prometheus in the PodMonitor's
metadata section.

2. Confirm the PodMonitor CRD exists using:

kubectl get customresourcedefinitions.apiextensions.k8s.io podmonitors.monitori

ng.coreos.com

3. Create a PodMonitor that scrapes all Tanzu Postgres instances every 10 seconds:

cat <<EOF | kubectl apply -f -

apiVersion: monitoring.coreos.com/v1

kind: PodMonitor

metadata:

 name: tanzu-postgres-instances

 namespace: prometheus

spec:

 namespaceSelector:

 any: true

 selector:

 matchLabels:

 type: data

 app: postgres

 podTargetLabels:

 - postgres-instance

 podMetricsEndpoints:

 - port: "metrics"

 interval: "10s"

 scheme: https

 tlsConfig:

 insecureSkipVerify: true

EOF

where tlsConfig:insecureSkipVerify:true skips TLS verification.

4. Check if Prometheus is successfully monitoring the instances by opening the Prometheus
UI in the browser and visit the /targets URI to check the status of the PodMonitor under

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 128

podMonitor/prometheus/tanzu-postgres-instances/0 (1/1 up).

You should see something similar to:

Click here to view a larger version of this diagram

For details on the PodMonitor API see PodMonitor in the Prometheus Operator
documentation.

Using TLS for the Metrics Endpoint

The Tanzu Postgres Operator creates a metrics related TLS certificate during the Tanzu Postgres
initialization. The TLS credentials are stored in a Secret named after the Postgres instance name: if
the instance name is postgres-sample, the metrics Secret name is postgres-sample-metrics-tls-
secret.

In order to use TLS for a metrics endpoint, configure Prometheus to use the CA certificate from
the Secret. Use the following command to fetch the CA certificate:

kubectl get secret <POSTGRES-INSTANCE-NAME>-metrics-tls-secret -o 'go-template={{index

.data "tls.crt" | base64decode}}'

where <POSTGRES-INSTANCE-NAME> is the name of the Postgres instance.

For details on how to configure Prometheus with TLS, see tls_config in the Prometheus
Configuration documentation.

To enable the Prometheus Operator to scrape metrics from the Postgres instance with TLS
verification enabled, create a PodMonitor in the Postgres instance namespace and provide the
metrics TLS configuration. An example PodMonitor for a Postgres instance named as postgres-
sample is shown below:

cat <<EOF | kubectl apply -f -

apiVersion: monitoring.coreos.com/v1

kind: PodMonitor

metadata:

 name: postgres-sample

 namespace: postgres-sample-namespace

spec:

 namespaceSelector:

 matchNames:

 - postgres-sample-namespace

 selector:

 matchLabels:

 type: data

 app: postgres

 postgres-instance: postgres-sample

 podTargetLabels:

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 129

https://github.com/prometheus-operator/prometheus-operator/blob/master/Documentation/api.md#podmonitor
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#tls_config

 - postgres-instance

 podMetricsEndpoints:

 - port: "metrics"

 interval: "10s"

 scheme: https

 tlsConfig:

 serverName: "postgres-sample.metrics.default"

 ca:

 secret:

 key: tls.crt

 name: postgres-sample-metrics-tls-secret

EOF

where you should replace postgres-sample and postgres-sample-namespace with your Postgres
instance name and namespace.

Collecting Metrics in a Secure Namespace

Prometheus will not be able to scrape metrics from Postgres instances that have a strict
NetworkPolicy configuration on their namespace. See Network Policy Configuration for a detailed
explanation about NetworkPolicy configuration.

Create a NetworkPolicy manifest in the instance namespace to allow traffic flow from the metrics
port 9187:

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: allow-metrics-access

 namespace: <INSTANCE_NAMESPACE>

spec:

 podSelector:

 matchLabels:

 app: postgres

 type: data

 policyTypes:

 - Ingress

 ingress:

 - from:

 - namespaceSelector:

 matchLabels:

 networking/namespace: <PROMETHEUS_NAMESPACE>

 - ports:

 - port: 9187

 protocol: TCP

Label the Prometheus namespace to easily use the namespaceSelector section of the
NetworkPolicy spec, for example:

kubectl label namespace prometheus networking/namespace=prometheus

namespace/prometheus labeled

Save the sample yaml to a file, and apply to the cluster:

kubectl apply -n INSTANCE-NAMESPACE -f metrics-network-policy-sample.yaml

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 130

networkpolicy.networking.k8s.io/allow-metrics-access created

Postgres Exporter Default Metrics

The built-in metrics that are supported by the Postgres Exporter are listed below:

pg_stat_bgwriter

pg_stat_database

pg_stat_database_conflicts

pg_locks

pg_stat_replication

pg_replication_slots

pg_stat_archiver

pg_stat_activity

pg_settings

For more details, see Postgres Exporter Metrics Map.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 131

https://github.com/prometheus-community/postgres_exporter/blob/df461c2f9aa8bfc5eb86302841fc0786029484de/cmd/postgres_exporter/postgres_exporter.go#L165

Troubleshooting Common Problems

This topic provides information that can help troubleshoot problems you may encounter using
Postgres for Kubernetes.

Monitor Deployment Progress

Use watch kubectl get all to monitor the progress of the Postgres operator deployment. The
deployment is complete when the postgres operator pod is in the Running state. For example:

watch kubectl get all

NAME READY STATUS RESTARTS

AGE

pod/postgres-operator-567dbc67b9-nrq5t 1/1 Running 0

57s

NAME TYPE CLUSTER-IP EXTERNAL-IP

PORT(S) AGE

service/kubernetes ClusterIP 10.96.0.1 <none>

443/TCP 2d4h

NAME READY UP-TO-DATE AVAILABLE

AGE

deployment.apps/postgres-operator 1/1 1 1

57s

NAME DESIRED CURRENT READY

AGE

replicaset.apps/postgres-operator-567dbc67b9 1 1 1

57s

Viewing Postgres Operator Logs

Check the logs of the operator to ensure that it is running properly.

kubectl logs -l app=postgres-operator

2019-08-05T17:24:16.182Z INFO controller-runtime.controller Starting Event

Source{"controller": "postgres", "source": "kind source: /, Kind="}

2019-08-05T17:24:16.182Z INFO setup starting manager

2019-08-05T17:24:16.285Z INFO controller-runtime.controller Starting Contr

oller {"controller": "postgres"}

2019-08-05T17:24:16.386Z INFO controller-runtime.controller

Starting workers {"controller": "postgres", "worker count": 1}

List All Postgres Instances in the Cluster

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 132

When you create Postgres instances, each instance is created in its own namespace. To see all
Postgres instances in the cluster, add the -all-namespaces option to the kubectl get command.

kubectl get postgres --all-namespaces

NAMESPACE NAME STATUS AGE

default postgres-sample Running 19d

default postgres-sample2 Running 15d

test my-postgres Failed 15d

test my-postgres3 Failed 15d

Find the Versions of the Deployed Postgres Operator and
Instances

To find the currently deployed version of the Postgres operator, use the helm command:

helm ls

NAME NAMESPACE REVISION UPDATED

STATUS CHART APP VERSION

postgres-operator default 1 2021-10-11 13:26:00.769535 -05

00 CDT deployed postgres-operator-v1.3.0 v1.3.0

The version is in the chart name and the APP VERSION column.

To find the version of a Postgres instance, use the kubectl command to describe the instance's
pod.

kubectl get pods

kubectl get pods

NAME READY STATUS RESTARTS AGE

postgres-sample-0 1/1 Running 0 9s

postgres-operator-85f777b9db-wbj9b 1/1 Running 0 4m15s

Name: postgres-sample-0

Namespace: default

Priority: 0

Node: minikube/192.168.64.32

Start Time: Mon, 11 Oct 2021 14:10:38 -0500

Labels: app=postgres

 controller-revision-hash=postgres-sample-5fc8fb8b4b

 headless-service=postgres-sample

 postgres-instance=postgres-sample

 role=read

 statefulset.kubernetes.io/pod-name=postgres-sample-0

 type=data

Annotations: <none>

Status: Running

IP: 172.17.0.8

Controlled By: StatefulSet/my-postgres

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 133

Containers:

 pg-container:

 Container ID: docker://6c651d690a6fdb6d1c0d3644ad8225037d31da1c33fd3f88f1625bdfd4

5cea3a

 Image: postgres-instance:v1.3.0

 Image ID: docker://sha256:00359ca344dd96eb05f2bd430430c97a6d46a40996c395fca44

c209cb954a6e7

 Port: 5432/TCP

 Host Port: 0/TCP

The Tanzu Postgres version can be found in the image name of the pg-container entry.

Cannot Reduce Instance Data Size After Deployment

When deploying an instance using a specific storage size in the instance yaml deployment file, you
cannot reduce the instance data storage size at a later stage. For example, after creating an
instance and setting the storage size to 100M:

kubectl create -f postgres.yaml

Verify the storage size using a command similar to:

kubectl get postgres.sql.tanzu.vmware.com/postgres-sample -o jsonpath='{.spec.storageS

ize}'

100M

If you later patch the instance to decrease the storage size from 100M to 2M:

kubectl patch postgres.sql.tanzu.vmware.com/postgres-sample --type merge -p '{"spec":

{"storageSize": "2M"}}'

the operation returns an error similar to:

Error from server (spec.storageSize: Invalid Value: "2M" spec.storageSize cannot be re

duced for an existing instance

spec.storageSize: Invalid Value: "2M" spec.storageSize needs to be at least 250M): adm

ission webhook "vpostgres.kb.io" denied the request: spec.storageSize: Invalid Value:

"2M" spec.storageSize cannot be reduced for an existing instance

spec.storageSize: Invalid Value: "2M" spec.storageSize needs to be at least 250M

To reduce the instance data size, create a new instance and migrate the source data over. Ensure
that the source data fits in the reduced data size allocation of the newly created instance.

Errors during Backup of two Different Instances on the
Same Bucket

This scenario occurs when you have two separate Kubernetes clusters with matching instance and
namespace names. This scenario requires the following conditions:

Each cluster has a matching namespace name; for example cluster 1 has a namespace called
my-namespace, and cluster 2 has a namespace called my-namespace.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 134

Each cluster has a Postgres instance with the same name, for example my-instance.

Both clusters share the same S3 bucket for backups.

During backup, the first Postgres instance creates a backup stanza using the format my-instance-
my-namespace. That stanza is encrypted with a randomly-generated backup cipher. During backup
configuration for the second instance, the instance detects that a backup stanza with the same
name already exists in the bucket. However, the second instance cannot decrypt the backup
information because it uses a different cipher. The error is similar to: :

ERROR: [043]: WAL segment to get required 2021-09-02 15:55:35.615 P00 INFO: archive-ge

t command end: aborted with exception [043] command terminated with exit code 43 or Fo

rmatError: key/value found outside of section at line 1: ▒▒▒H▒t=O֠@▒Y▒.

Workaround: Use different instance names, or different namespace names, or different buckets for
backups.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 135

Postgres CRD API Reference

This topic describes the available fields of the Postgres Custom Resource Definition.

Synopsis

apiVersion: sql.tanzu.vmware.com/v1

kind: Postgres

metadata:

 name: postgres-sample

spec:

 #

 # Global features

 #

 imagePullSecret:

 name: regsecret

 pgConfig:

 dbname: postgres-sample

 username: pgadmin

 appUser: pgappuser

 postgresVersion:

 name: postgres-14 # View available versions with `kubectl get postgresversion`

 serviceType: ClusterIP

serviceAnnotations:

 seccompProfile:

 type: RuntimeDefault

 # highAvailability:

 # enabled: true

 # logLevel: Debug

 # backupLocation:

 # name: backuplocation-sample

 # certificateSecretName:

#

Data Pod features

#

storageClassName: standard

storageSize: 800M

cpu: "0.8"

memory: 800Mi

dataPodConfig:

tolerations:

- key:

operator:

value:

effect:

affinity:

 podAntiAffinity:

 preferredDuringSchedulingIgnoredDuringExecution:

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 136

 - podAffinityTerm:

 labelSelector:

 matchExpressions:

 - key: type

 operator: In

 values:

 - data

 - monitor

 - key: postgres-instance

 operator: In

 values:

 - postgres-sample

 topologyKey: kubernetes.io/hostname

 weight: 100

 #

 # Monitor Pod features

 #

 monitorStorageClassName: standard

 monitorStorageSize: 1G

 monitorPodConfig:

 # tolerations:

 # - key:

 # operator:

 # value:

 # effect:

 affinity:

 podAntiAffinity:

 preferredDuringSchedulingIgnoredDuringExecution:

 - podAffinityTerm:

 labelSelector:

 matchExpressions:

 - key: type

 operator: In

 values:

 - data

 - monitor

 - key: postgres-instance

 operator: In

 values:

 - postgres-sample

 topologyKey: kubernetes.io/hostname

 weight: 100

#

Resources

#

resources:

 monitor:

 limits:

 cpu: 800m

 memory: 800Mi

 requests:

 cpu: 800m

 memory: 800Mi

 metrics:

 limits:

 cpu: 100m

 memory: 100Mi

 requests:

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 137

 cpu: 100m

 memory: 100Mi

Description

Applying this resource causes the Kubernetes Operator to create a StatefulSet with a single Pod
and three containers. One container runs the Postgres database software, one runs the
components to support backups, and the third runs the postgresd_exporter (for monitoring). The
Postgres Pod mounts a persistent volume claim (PVC) which holds the Postgres data.

You specify Postgres instance configuration properties to the Postgres operator with a YAML-
formatted manifest file. A sample manifest file is provided with the release, in postgres.yaml. See
also Deploying a New Postgres Instance for information about deploying a new Postgres instance
using a manifest file.

Metadata

The metadata follows standard Kubernetes conventions. For more details, refer to Metadata in the
Kubernetes documentation.

The metadata sets the name, namespace, labels, annotations, and more for the Postgres object.

name

Type: string
Required
Default: n/a
Sets the name of the Postgres instance. The Kubernetes operator will append an index like -0 or -1
to the end of the name when it creates the pods, for example postgres-sample-0. By default, a
newly created Postgres object will include a default database with the same name as the object
unless you change the default database name with pgConfig.dbname.

Spec

The spec describes the desired state for the Postgres object.

imagePullSecret

Type: Object
Optional
Default: name: regsecret
The secret value defaults to the dockerRegistrySecretName in the Operator's values.yaml. If your
namespace's docker-registry secret uses a different secret than the Operator's helm chart secret,
alter the secret name accordingly.
Note: Recreate the secret within your pod's namespace in order to be accessed by the pod.
An existing Kubernetes docker-registry secret that can access the registry containing the Postgres
image.

pgConfig

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 138

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-architecture/api-conventions.md#metadata

Type: Object
Optional
This collection of fields describes the Postgres database table and user that is created at database
initialization. See Custom Database Name and User Account for more information.

dbname
Type: string
Optional
Default: Postgres metadata name
The name of the default Postgres database. By default, the Postgres instance name is used
as the default database name. See Custom Database Name and User Account.

username
Type: string
Optional
Default: pgadmin
The name of the default Postgres user. See Custom Database Name and User Account.

appUser
Type: string
Optional
Default: pgappuser
Specifies the name of the Postgres user with read-write privileges. It will be used to bind
your application with the Postgres instance. See Creating Service Bindings

postgresVersion

Type: string
Optional
Default: <latest_version>
This string must be a reference to an existing PostgresVersion object. If omitted, the most up-to-
date PostgresVersion is chosen (e.g. postgres-14). For more information see Specifying the Tanzu
Postgres Version.

serviceType

Type: string
Optional
Default: ClusterIP
The Kubernetes publishing service used for the Postgres instance. Options are LoadBalancer or
ClusterIP. The default ClusterIP exposes the Postgres service internally and uses cluster-internal
IP address instead of a load balancer. See Publishing Services (ServiceTypes) in the Kubernetes
documentation for more information.

serviceAnnotations

Type: (map[string]string)
Optional
Default: n/a
Used mostly for instances with serviceType set to LoadBalancer, where the instances are deployed

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 139

https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types

in public clouds, and require cloud-specific behavior. Can also be used to set custom annotations.
Example:

spec:

 serviceType: LoadBalancer

 serviceAnnotations:

 service.beta.kubernetes.io/azure-load-balancer-internal: "true",

 service.beta.kubernetes.io/azure-load-balancer-internal-subnet: "apps-subnet"

 cloud.google.com/load-balancer-type: "Internal"

 service.beta.kubernetes.io/aws-load-balancer-internal: "true"

For more information, see Internal Load Balancer, and Annotations in the Kubernetes
documentation.

seccompProfile

Type: corev1.SeccompProfile
Optional
Default: RuntimeDefault
Enables the use of Secure Compute Mode (seccomp) profiles for the instances. The default profile
RuntimeDefault is the most restrictive, with a strong set of security defaults for container syscalls.
Set to Unconfined to disable seccomp profiles. Set to Localhost to indicates the path of a pre-
configured profile on the node. For more details, see Restrict a Container's Syscalls with seccomp
in the Kubernetes documentation.
For further information on the corev1.SeccompProfile type, see SeccompProfile v1 core.

highAvailability

Type: Object
Optional
Default: enabled: false
Specifies whether the Postgres instance is created in a single or cluster mode configuration. The
default, false, creates a single node cluster. See Configuring High Availability for more information
about clustered Postgres deployments.

highAvailability:

 enabled: true

loglevel

Type: string
Optional
Default: n/a
Sets the level of information detail displayed in the logs. By default this field is not in the instance
yaml, and the log level is non-verbose. Set to Debug for verbose logs.

backupLocation

Type: LocalObjectReference
Optional
Default: n/a

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 140

https://kubernetes.io/docs/concepts/services-networking/service/#internal-load-balancer
https://kubernetes.io/docs/reference/kubernetes-api/common-definitions/object-meta/#ObjectMeta
https://kubernetes.io/docs/tutorials/security/seccomp/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#seccompprofile-v1-core

When using a S3-compatible storage location for backups, this value specifies the
PostgresBackupLocation CRD holding the configuration for the S3 backup location. For more
details on configurating backup and restore, see Backing Up and Restoring.

backupLocation:

 name: "custom-s3-location"

certificateSecretName

Type: string
Optional
Default: n/a
When using TLS security, this value specifies the name of a secret created to enable TLS
connections in the Postgres cluster. See Configuring TLS for Tanzu Postgres Instances.

storageClassName

Type: string
Optional
Default: standard
The Storage Class name to use for dynamically provisioning Persistent Volumes (PVs) for a Postgres
instance pod. If the PVs already exist, either from a previous deployment or because you manually
provisioned the PVs, then the Operator uses the existing PVs. You can configure the Storage Class
according to your performance needs. To understand the different configuration options see
Storage Classes in the Kubernetes documentation.
IMPORTANT: Edit the default standard storage class with your storage class name.

storageSize

Type: Quantity
Optional
Default: 800M
The storage size of the Persistent Volume Claim (PVC) for a Postgres instance pod. Specify a suffix
for the units (for example: 100G, 1T).

cpu

Type: Quantity
Optional
Default: 0.8
The amount of CPU resources allocated to a Postgres instance pod, specified as a Kubernetes CPU
unit (for example, cpu: "1.2"). If left empty, the pod has no upper bound on the CPU resource it
can use or inherits the default limit if one is specified in its deployed namespace. See Assign CPU
Resources to Containers and Pods in the Kubernetes documentation for more information.

memory

Type: Quantity
Optional
Default: 800Mi

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 141

https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-cpu-resource/

The amount of memory allocated to a Postgres instance pod. This value defines a memory limit; if a
pod tries to exceed the limit it is removed and replaced by a new pod. You can specify a suffix to
define the memory units (for example, 4.5Gi.). If left empty, the default for the Postgres instance is
800 mebibytes, or about 800 megabytes. See Assign Memory Resources to Containers and Pods
in the Kubernetes documentation for more information.

dataPodConfig

Type: Object
Optional

tolerations
Type: array of corev1.Toleration
Optional
Default: []
Defines the data pod tolerations that match specific node taints, using corev1.Toleration
notation. The default is no tolerations. For details on the Toleration values, see Toleration v1
core in the Kubernetes API documentation.

Example:
To ensure data pods are scheduled on less optimized "admin" nodes, first create the taint
on a node. This command adds the label nodetype=admin and the effect NoSchedule to the
my-admin-node:

kubectl taint nodes my-admin-node nodetype=admin:NoSchedule

node/my-admin-node tainted

Node my-admin-node now repels all pods that do not have the toleration nodetype=admin.
Now add the toleration of the taint to the data pod by editing the instance CRD:

......

dataPodConfig:

 tolerations:

 - key: nodetype

 operator: Equal

 value: admin

 effect: NoSchedule

.....

Note that a matching toleration gives permission for the scheduling of pod to tainted nodes,
but does not guarantee it. Kubernetes uses node affinity to actually determine where to
schedule the Pods.

For further details, see Taints and Tolerations in the Kubernetes documenation.

affinity
Type: corev1.Affinity
Optional
Default: podAntiAffinity object with preferred scheduling. See above sample YAML
Defines the data pod anti-affinity rules, using corev1.Affinity notation. By default the pods

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 142

https://kubernetes.io/docs/tasks/configure-pod-container/assign-memory-resource
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#toleration-v1-core
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

of a single Postgres instance prefer to be scheduled on separate Kubernetes nodes. For
details on the affinity values, see Affinity v1 core in the Kubernetes API documentation.

Example:
To ensure data pods are schedule on separate zones, we can set podAntiAffinity and
require that the Kubernetes scheduler follow the configuration as specified below.

......

dataPodConfig:

 podAntiAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 - labelSelector:

 matchExpressions:

 - key: type

 operator: In

 values:

 - data

 topologyKey: "failure-domain.beta.kubernetes.io/zone"

.....

monitorStorageClassName

Type: string
Optional
Default: standard
The Storage Class name to use for dynamically provisioning Persistent Volumes (PVs) for the
Postgres monitor pod. By default it is set to standard. The default value can be changed at the time
of the Postgres instance initialization but the monitorStorageClassName must match the Postgres
instance storageClassName.

monitorStorageSize

Type: Quantity
Optional
Default: 1G
The storage size of the Persistent Volume Claim (PVC) for a Postgres instance monitor pod. Specify
a suffix for the units (for example: 100G, 1T). The default value is 1G.

monitorPodConfig

Type: Object
Optional

tolerations
Type: array of corev1.Toleration
Optional
Default: []
Defines the monitor pod tolerations that match specific node taints, using
corev1.Toleration notation. The default is no tolerations. For details on the Toleration
values, see Toleration v1 core in the Kubernetes API documentation.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 143

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#affinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#toleration-v1-core

Example:
To ensure monitor pods are scheduled on less optimized "admin" nodes, first create the
taint on a node. This command adds the label nodetype=admin and the effect NoSchedule to
the my-admin-node:

kubectl taint nodes my-admin-node nodetype=admin:NoSchedule

node/my-admin-node tainted

Node my-admin-node now repels all pods that do not have the toleration nodetype=admin.
Now add the toleration of the taint to the monitor pod by editing the instance CRD:

......

monitorPodConfig:

 tolerations:

 - key: nodetype

 operator: Equal

 value: admin

 effect: NoSchedule

.....

Note that a matching toleration gives permission for the scheduling of pod to tainted nodes,
but does not guarantee it. Kubernetes uses node affinity to actually determine where to
schedule the Pods.

For further details, see Taints and Tolerations in the Kubernetes documenation.

affinity
Type: corev1.Affinity
Optional
Default: podAntiAffinity object with preferred scheduling. See above sample YAML
Defines the monitor pod anti-affinity rules, using corev1.Affinity notation. By default the
pods of a single Postgres instance will prefer to be scheduled on separate Kubernetes
nodes. For details on the affinity values, see Affinity v1 core in the Kubernetes API
documentation.

resources

Type: Object
Optional
Defaults: monitor.limits.cpu: 0.8, monitor.limits.memory: 800Mi
Defaults: metrics.limits.cpu: 0.1, metrics.limits.memory: 100Mi
This object is a mapping of strings to ResourceRequirements. The supported keys are monitor and
metrics, which are containers in the data and monitor pod respectively.
A ResourceRequirements object describes the compute resource requirements (requests and limits
of cpu and memory).

monitor:

 limits:

 cpu: 1

 memory: 800Mi

 requests:

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 144

https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#affinity-v1-core

 cpu: 0.8

 memory: 400Mi

metrics:

 limits:

 cpu: 0.8

 memory: 500Mi

 requests:

 cpu: 0.2

 memory: 100Mi

Status

The status fields show the most recently observed status of the Postgres object. This information is
generated by the Kubernetes operator as it reconciles the object in the cluster.

currentPgbackrestConfigResourceVersion

Type: string
This field reflects the revision number of the associated Kubernetes secret holding pgbackrest
configuration.

currentState

Type: string
This field shows the status of the Postgres object. Possible values are Created, Pending, and
Running.

binding

Type: LocalObjectReference
This field shows the name of the Secret for service bindings. For more information, see service
binding spec.

dbVersion

Type: string
This field shows the major and minor version of the Postgres database used for this instance.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 145

https://github.com/servicebinding/spec

Backup and Restore CRD API Reference

The Tanzu Postgres Backup and Restore uses four CRDs. Refer to each property reference page for
details on the resource fields for each CRD.

PostgresBackupLocation Resource
PostgresBackupSchedule Resource
PostgresBackup Resource
PostgresRestore Resource

For more information relating to Tanzu Postgres backup and restore, see Backing Up and
Restoring.

Backup and Restore CRD API Reference -
PostgresBackupLocation Resource

PostgresBackupLocation Synopsis

apiVersion: sql.tanzu.vmware.com/v1

kind: PostgresBackupLocation

metadata:

 name: backuplocation-sample

spec:

 retentionPolicy:

 fullRetention:

 type: count

 number: 9999999

 diffRetention:

 number: 9999999

 storage:

 s3:

 bucket: "name-of-bucket"

 bucketPath: "/my-bucket-path"

 region: "us-east-1"

 endpoint: "custom-endpoint"

 forcePathStyle: false

 enableSSL: true

 secret:

 name: backuplocation-creds-sample

 additionalParameters: {}

The list below explains the properties that can be set for the PostgresBackupLocation resource.

Metadata

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 146

The metadata sets the name, namespace, labels, annotations, and more for the
PostgresBackupLocation object.
The metadata follows standard Kubernetes conventions. See more at the Kubernetes API structure
- Metadata documentation.

name

Type: String
Required
Default: n/a
The name of the PostgresBackupLocation. Must be unique within a namespace.
Example:
backuplocation-sample

Spec

The spec describes the desired state for the Postgres object.

retentionPolicy

Type: Object
Optional
Default: n/a
This collection of fields describes the Postgres database backup retention plans. For more details,
see the topic Retention in the pgBackRest User Guide.

fullRetention
Type: Object
Optional
Default: 9999999
This field describes the retention period of the full backups for this instance.
The object fullRetention has two fields, type and number:
type is a string of either count or time; default is count with value 9999999 (the maximum
value allowed by pgbackrest).
number is an integer.
If type: time then number indicates the number of days backups are retained before
expiring.
If type: count then it indicates the number of backups that are retained.
A fullRetention value of 1 retains one full backup; older backups will be deleted when a
new backup is taken.
NOTE: Scheduled and adhoc backups affect the retention count. Users should be aware of
retention count when executing adhoc backup operations.
Example:

retentionPolicy:

 fullRetention:

 type: count

 number: 2

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 147

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-architecture/api-conventions.md#metadata
https://pgbackrest.org/user-guide-centos7.html#retention

creates a retention policy of 2 full backups before an older third backup can be expired.
Example:

retentionPolicy:

 fullRetention:

 type: time

 number: 20

creates a retention policy of 20 days before a backup can be expired.

diffRetention
Type: Object
Optional
Default: 9999999
This field describes the retention period of the differential backups for this instance.
The object diffRetention has one field, number, an integer.
A diffRetention value of 1 retains one differential backup; older backups will be deleted
when a new backup is taken.
The differential backup retention does not support the type field. Differential retention does
not support deleting backups based on time, only count.
Example:

retentionPolicy:

 diffRetention:

 number: 2

creates a retention policy of 2 differential backups before an older third differential backup
can be expired.

storage

Type: Object
Optional
Default: n/a
This collection of fields describes the S3 bucket characteristics.

s3.bucket
Type: String
Required
Default: n/a
The name of an existing S3-compatible bucket for this backup location. A bucket of this
name should already exist in s3.
Example
s3-bucket-sample

s3.bucketPath
Type: String
Optional
Default: /
The name of the path where backup artifacts will be uploaded. If a folder in the path does
not already exist, it is created automatically. The trailing slash in the path is required.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 148

Example
s3-sample-path/sample-subpath/

s3.region
Type: String
Optional
Default: us-east-1
The geographic region of the bucket. Some non-AWS S3 implementations do not require
this value.
Example
us-west-1

s3.endpoint
Type: String
Required
**Default: **
The endpoint URL for the configured S3-compatible provider.
Example
http://minio.default:9000

s3.forcePathStyle
Type: Boolean
Optional
Default: false
A value of true forces the use of path-style S3 URLs for compatibility. May be required for
some non-AWS S3 providers.
A value of false uses virtual hosted-style S3 URLs.
Path-style URLs look like the following: https://bucket-endpoint.example.com/bucket
Virtual hosted-style URLs look like the following: https://bucket.bucket-
endpoint.example.com For information about AWS S3 Path Deprecation, see the Amazon
S3 Path Deprecation Plan blog post.

s3.enableSSL
Type: Boolean
Required
Default: true
true enables SSL for S3 server validation.
false disables SSL.

s3.secret.name
Type: String
Required
Default: n/a
The name of the Kubernetes secret that contains the credentials for connecting to S3.
Example
backuplocation-sample-creds

additionalParameters

Type: Object
Optional

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 149

https://bucket-endpoint.example.com/bucket
https://bucket.bucket-endpoint.example.com/
https://aws.amazon.com/blogs/aws/amazon-s3-path-deprecation-plan-the-rest-of-the-story/

Default: n/a
Advanced users may pass additional parameters to PgBackrest. Review the various parameters in
pgBackRest Configuration Reference and use them without the leading -- dashes.
Example:

buffer-size: "4MB"

archive-timeout: "100"

process-max: "4"

Status

The status fields show the observed status of the PostgresBackupLocation object and its values are
populated by the Kubernetes Operator

currentSecretResourceVersion

Type: string
This field shows the resource version of the backup secret described below.

Backup Secret Synopsis

apiVersion: v1

kind: Secret

metadata:

 name: backuplocation-credentials

type: generic

stringData:

 accessKeyId: "my-access-key-id"

 secretAccessKey: "my-secret-access-key"

The list below explains the properties that can be set in the secret for the PostgresBackupLocation
resource.

metadata

name

Type: String
Required
Default: n/a
The name of the Secret. Must match spec.storage.s3.secret.name in a BackupLocation.
Must be unique within a namespace.
Example:
backuplocation-sample-creds

stringData

accessKeyID

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 150

https://pgbackrest.org/
https://pgbackrest.org/configuration.html

Type: String
Required
Default: n/a
The Access Key ID for an AWS IAM user that has permissions to read/write from the S3 bucket.
Example:
AKIAIOSFODNN7EXAMPLE

secretAccessKey

Type: String
Required
Default: n/a
The Secret Access Key ID for an AWS IAM user that has permissions to read/write from the S3
bucket.
Example:
wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

Backup and Restore CRD API Reference -
PostgresBackupSchedule Resource

PostgresBackupSchedule Synopsis

apiVersion: sql.tanzu.vmware.com/v1

kind: PostgresBackupSchedule

metadata:

 name: backupschedule-sample

spec:

 backupTemplate:

 spec:

 sourceInstance:

 name: postgres-sample

 type: full

 schedule: "0 0 * * *"

The list below explains the properties that can be set for the PostgresBackupSchedule resource.

Metadata

name

Type: String
Required
Default: n/a
The name of the PostgresBackupSchedule. Must be unique within a namespace.
Example:
backupschedule-sample

Spec

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 151

The spec describes the desired state for the Postgres object.

backupTemplate

Type: Object
Optional
Default: n/a
This collection of fields describes the Postgres database backup template.

spec.sourceInstance.name
Type: String
Required
Default: n/a
The name of the Postgres instance on which you want scheduled backups for.
Example

postgres-sample

spec.sourceInstance.type
Type: String
Optional
Default: n/a
The type of the Postgres Backup you want to take at a scheduled interval.
It can be one of three values, full,incremental, or differential.

schedule

Type: String (cron schedule)
Required
Default: n/a
The cron schedule for backups. Must be a valid cron schedule.
Example (every Saturday at 11PM)
"0 23 * * 6"

Status

The status fields show the observed status of the PostgresBackupSchedule object

message

Type: String
Optional
Default: n/a
Success/failure status message for PostgresBackupSchedule
Example
Instance my-2-postgres does not exist in the namespace default

Backup and Restore CRD API Reference - PostgresBackup
Resource

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 152

PostgresBackup Synopsis

apiVersion: sql.tanzu.vmware.com/v1

kind: PostgresBackup

metadata:

 name: backup-sample

spec:

 sourceInstance:

 name: postgres-sample

 type: full

The sections below explain the properties that can be set for the PostgresBackup resource.

Metadata

name

Type: String
Required
Default: n/a
The name of the PostgresBackup. Must be unique within a namespace.
Example:
backup-sample

Spec

The spec describes the desired state for the Postgres backup object.

sourceInstance

Type: Object
Required
Default: n/a
The fields that describe the Postgres instance backup are name and type:

name
Type: String
Required
Default: n/a
The name of the Postgres instance on which you want to perform the on-demand backup.
Example
my-postgres-sample

type
Type: String
Optional
Default: full
The type of the Postgres Backup you want to take. The possible values full, incremental, or
differential.

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 153

Example
incremental

Status

The status fields show the observed status of the PostgresBackup object and these fields are
populated by the controller that processes backups.

phase

Type: string
This field reflects the current state of the PostgresBackup resource. It can be empty or have the
following values: Running, Failed, or Succeeded.

restoreLabel

Type: string
This field denotes the backup label. For e.g. 20220306-155026F_20220306-155048F. Backup
labels for full backups ends with F, differential ends with D, and incremental ends with I.

timeStarted

Type: time
This field denotes the time when the backup started

timeCompleted

Type: time
This field indicates the time when the backup got completed. This field is populated once the
PostgresBackup CR reaches Failed or Succeeded state. It is empty when the backup is running.

backupLocation

Type: string
This field contains the name of the backupLocation that's configured on the instance for which this
backup is being taken.

dbName

Type: string
This field denotes the database name associated with the instance. It is same as the instance's
spec.PgConfig.Dbname

stanzaName

Type: string
This field shows the backup stanza name of the instance for which the backup was taken. It has the
format of --

conditions

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 154

Type: Object
This field shows the current state of the PostgresBackup resource. It is useful for debugging. If the
backup fails, this field would show the failure and the corresponding error message. For e.g.:

Conditions:

 Last Transition Time: 2022-03-21T21:33:14Z

 Message: pgbackrest failed with error: WARN: environment contains in

valid option 'config-version'ERROR: [050]: unable to acquire lock on file '/tmp/pgback

rest/default-postgres-sample2-backup.lock': Resource temporarily unavailable HIN

T: is another pgBackRest process running?

 Reason: PgbackrestFailure

 Status: True

 Type: BackupFailed

Backup and Restore CRD API Reference - PostgresRestore
Resource

PostgresRestore Synopsis

apiVersion: sql.tanzu.vmware.com/v1

kind: PostgresRestore

metadata:

 name: restore-sample

spec:

 sourceBackup:

 name: backup-sample

 targetInstance:

 name: postgres-sample

The list below explains the properties that can be set for the PostgresRestore resource.

Metadata

name

Type: String
Required
Default: n/a
The name of the PostgresRestore. Must be unique within a namespace.
Example:
restore-sample

Spec

The spec describes the desired state for the Postgres backup object.

sourceBackup

Type: Object
Required

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 155

Default: n/a

name
Type: String
Required
Default: n/a
The name of the PostgresBackup that represents the backup artifact to restore.
Must be in the same namespace as the PostgresRestore.
Example
backup-sample

targetInstance

Type: Object
Required
Default: n/a

name
Type: String
Required
Default: n/a
The name of the target instance where the sourceBackup should be restored.
In case of in-place restore, this should be the source instance where the sourceBackup was
taken
Example
my-target-instance

Status

The status fields show the observed status of the PostgresRestore object and the values are
updated by the controller that handles Backup/Restore in the instance.

phase

Type: string
This field shows the current state of a PostgresRestore CR. It can be either empty or have any of
the following values: Running, RecreatingNodes, RecreatingPrimary, RecreatingSecondary,
WaitForPrimary, Finalizing, Succeeded, or Failed. All these phases are related to some internal
processing that the operator does to achieve a restore. The terminal phasees are Failed or
Succeeded.

timeStarted

Type: time
This field denotes the time when the restore started

timeCompleted

Type: time
This field indicates the time when the restore got completed. This field is populated once the

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 156

PostgresRestore CR reaches Failed or Succeeded state.

Message

Type: time
This field shows some error/useful messages for why a restore is stuck or pending. Example:
Instance postgres-sample does not specify spec.backupLocation.name

VMware SQL with Postgres for Kubernetes Documentation

VMware by Broadcom 157

	Contents
	VMware Tanzu™ SQL with Postgres for Kubernetes Documentation
	VMware Tanzu™ SQL with Postgres for Kubernetes Release Notes
	Release 1.7.3
	Software Component Versions
	Supported Platforms
	Changes
	Fixed Issues
	Known Issues and Limitations

	Release 1.7.2
	Software Component Versions
	Supported Platforms
	Changes
	Known Issues and Limitations

	Release 1.7.1
	Software Component Versions
	Supported Platforms
	Changes
	Fixed Issues
	Known Issues and Limitations

	Release 1.7.0
	Software Component Versions
	Supported Platforms
	Features
	Changes
	Fixed Issues
	Known Issues and Limitations
	Upgrading to 1.7.0

	Release 1.6.2
	Software Component Versions
	Supported Platforms
	Fixed Issues
	Known Issues and Limitations

	Release 1.6.1
	Software Component Versions
	Supported Platforms
	Changes
	Fixed Issues
	Known Issues and Limitations

	Release 1.6.0
	Software Component Versions
	Supported Platforms
	Supported Platforms
	Features
	Changes
	Fixed Issues
	Known Issues and Limitations
	Upgrading to 1.6.0

	Release 1.5.0
	Software Component Versions
	Supported Platforms
	Features
	Changes
	Fixed Issues
	Known Issues and Limitations
	Upgrading to 1.5.0

	Release 1.4.1
	Software Component Versions
	Supported Platforms
	Changes
	Known Issues and Limitations
	Upgrading to 1.4.1

	Release 1.4.0
	Software Component Versions
	Supported Platforms
	Features
	Changes
	Fixed Issues
	Known Issues and Limitations
	Upgrading to 1.4.0

	Release 1.3.0
	Software Component Versions
	Supported Platforms
	Features
	Backup and Restore
	Monitoring

	Changes
	Limitations and Known Issues
	Fixed Issues

	Release 1.2.0
	Software Component Versions
	Supported Platforms
	Features
	Fixed Issues
	Limitations

	Release 1.1.0
	Software Components
	Features
	Changed Features
	Fixed Issues

	Release 1.0.0
	Software Components
	Features
	Known Issues and Limitations

	About VMWare Tanzu SQL with Postgres for Kubernetes
	VMware Tanzu™ SQL with Postgres for Kubernetes
	PostgreSQL

	Platform Requirements
	Installing a Tanzu Postgres Operator
	Installing using Helm
	Prerequisites
	Accessing the Resources
	Setup the Tanzu Operator via the Tanzu Network Registry
	Setup the Tanzu Operator via a Downloaded Archive File

	Installing the Operator
	Create a Kubernetes Access Secret
	Review the Operator Values
	Deploy the Operator

	Installing using the Tanzu CLI
	Prerequisites
	Relocate Images to a Private Registry
	Create a Kubernetes Secret
	Add the Package Repository
	Installing the Operator

	Next steps

	Deploying a Postgres Instance
	Prerequisites
	Configuring a Postgres Instance
	Specifying the Tanzu Postgres Version
	Specifying Namespaces
	Custom Database Name and User Account
	Updating the Monitor Resources
	Configuring Node Affinity and Tolerations
	Quality of Service
	Security Profile
	Internal Load Balancer

	Deploying a Postgres Instance
	Using the Postgres Instance

	Installing Tanzu Postgres Extensions
	pgAudit
	Orafce
	PostGIS
	Address Standardizer

	Upgrading the Tanzu Postgres Operator and Instances
	Upgrading the Operator using the Tanzu Registry
	Upgrading the Operator using the Tanzu Network download

	Updating a Postgres Instance Configuration
	Prerequisites
	Modifying Memory and CPU
	Modifying Storage Volume Size
	Verifying Volume Expansion
	Increasing Volume Size

	Accessing a Postgres Instance in Kubernetes
	Accessing a Pod with Kubectl
	Accessing Postgres with External Clients

	Deleting a Postgres Instance from Kubernetes
	Deleting Postgres Pods and Resources
	Deleting the Postgres Operator

	Creating Service Bindings
	Binding an Application to a Postgres Instance using TAP workflow
	Prerequisites
	Bind a new TAP workload
	Example Workload

	Bind an existing TAP workload
	Bind a TAP workload in a different namespace
	Verify a TAP Workload Service Binding

	Binding Tanzu Postgres to a TAS Application
	Prerequisites
	Binding an Application

	Configuring TLS for Tanzu Postgres Instances
	Overview
	Prerequisites
	Creating the TLS Secret Using cert-manager
	Creating a TLS Secret Manually
	Verifying TLS Security Using psql

	Backing Up and Restoring Tanzu Postgres
	Overview
	Prerequisites
	Backing Up Tanzu Postgres
	Configure the Backup Location
	[Optional] Configure Client-side Encryption for Backups
	Perform an On-Demand Backup
	Create Scheduled Backups
	Backup Schedule Status

	Listing Backup Resources

	Deleting Old Backups
	Removing Backup Artifacts from an S3 location
	Deleting a Backup

	Restoring Tanzu Postgres
	Restore In-place
	Prerequisites
	Procedure

	Restore to a Different Instance
	Prerequisites
	Procedure

	Restore to a different namespace or cluster
	Prerequisites
	Procedure

	Restore Backups taken prior to Postgres Operator 1.7.0
	Validating a Successful Restore

	Migrating to Tanzu Postgres 1.3.0 Backup and Restore
	Troubleshooting Backup and Restore
	FAILED status for PostgresBackup Resource
	Failed due to missing pgbackrest.conf file
	FAILED due to S3 server certificate validation error

	FAILED status for PostgresRestore

	Configuring High Availability in Tanzu Postgres
	Configuring High Availability
	Verifying the HA Configuration
	Scaling down the HA Configuration

	Monitoring Postgres Instances
	Overview
	Prerequisites
	Verifying Postgres Metrics
	Using Prometheus Operator to Scrape the Tanzu Postgres Metrics
	Using TLS for the Metrics Endpoint
	Collecting Metrics in a Secure Namespace
	Postgres Exporter Default Metrics

	Troubleshooting Common Problems
	Monitor Deployment Progress
	Viewing Postgres Operator Logs
	List All Postgres Instances in the Cluster
	Find the Versions of the Deployed Postgres Operator and Instances
	Cannot Reduce Instance Data Size After Deployment
	Errors during Backup of two Different Instances on the Same Bucket

	Postgres CRD API Reference
	Synopsis
	Description
	Metadata
	name

	Spec
	imagePullSecret
	pgConfig
	postgresVersion
	serviceType
	serviceAnnotations
	seccompProfile
	highAvailability
	loglevel
	backupLocation
	certificateSecretName
	storageClassName
	storageSize
	cpu
	memory
	dataPodConfig
	monitorStorageClassName
	monitorStorageSize
	monitorPodConfig
	resources

	Status
	currentPgbackrestConfigResourceVersion
	currentState
	binding
	dbVersion

	Backup and Restore CRD API Reference
	Backup and Restore CRD API Reference - PostgresBackupLocation Resource
	PostgresBackupLocation Synopsis
	Metadata
	name

	Spec
	retentionPolicy
	storage
	additionalParameters

	Status
	currentSecretResourceVersion

	Backup Secret Synopsis
	metadata
	name

	stringData
	accessKeyID
	secretAccessKey

	Backup and Restore CRD API Reference - PostgresBackupSchedule Resource
	PostgresBackupSchedule Synopsis
	Metadata
	name

	Spec
	backupTemplate
	schedule

	Status
	message

	Backup and Restore CRD API Reference - PostgresBackup Resource
	PostgresBackup Synopsis
	Metadata
	name

	Spec
	sourceInstance

	Status
	phase
	restoreLabel
	timeStarted
	timeCompleted
	backupLocation
	dbName
	stanzaName
	conditions

	Backup and Restore CRD API Reference - PostgresRestore Resource
	PostgresRestore Synopsis
	Metadata
	name

	Spec
	sourceBackup
	targetInstance

	Status
	phase
	timeStarted
	timeCompleted
	Message

