
VMware AirWatch Android SDK Technical
Implementation Guide
Empowering your enterprise applications with MDM capabilities using
the AirWatch SDK for Android
AirWatch SDK v18.3

Have documentation feedback? Submit a Documentation Feedback support ticket using the Support Wizard on
support.air-watch.com.
Copyright©2018 VMware, Inc. All rights reserved. This product is protected by copyright and intellectual property laws in the United States and other countries as well as by
international treaties. VMware products are covered by one ormore patents listed at http://www.vmware.com/go/patents.

VMware is a registered trademark or trademark of VMware, Inc. in the United States and other jurisdictions. All othermarks and names mentioned hereinmay be trademarks of their
respective companies.

VMware AirWatch Android SDKTechnical ImplementationGuide | v.2018.05 | May 2018

Copyright©2018 VMware, Inc. All rights reserved.

1

http://support.air-watch.com/

Table of Contents
Chapter 1: Overview 4

Introduction to the AirWatch SDK for Android 5
Compare Components 5
Requirements 6
Migrate to the Latest AirWatch SDK for Android 6

Chapter 2: Whitelist the Signing Key inWorkspace ONE UEM 9

Overview 10
Internally Deployed Applications 10
Publicly Deployed Applications 10

Chapter 3: Integrate the Client SDK 11

Overview 12
Import the Libraries 12
Set Up Gradle 12
Implement the Client SDK Broadcast Receiver 13
Initialize the Client SDK 14

Chapter 4: Integrate the AWFramework 16

Overview 17
Import the Libraries and Set Up Gradle 17
Initialize the AWFramework 18
Run a Process Before Initialization, Optional 21
Use the AWFramework 22
APIs for Copy and Paste Restrictions 23

Chapter 5: Integrate the AWNetworkLibrary 25

Overview 26
Set Up Gradle and Initialize the AWNetworkLibrary 26
Use the AWNetworkLibrary 27

Chapter 6: MAM Features with SDK Functions 29

2

VMware AirWatch Android SDKTechnical ImplementationGuide | v.2018.05 | May 2018

Copyright©2018 VMware, Inc. All rights reserved.

MAM Functionality with Settings and Policies and the AirWatch SDK 30
Assign the Default or Custom Profile 30
Set the AirWatch Agent for Android 31
Supported Settings and Policies Options by Component andWorkspace ONEUEM App 31

3

VMware AirWatch Android SDKTechnical ImplementationGuide | v.2018.05 | May 2018

Copyright©2018 VMware, Inc. All rights reserved.

Chapter 1:
Overview
Introduction to the AirWatch SDK for Android 5

Compare Components 5

Requirements 6

Migrate to the Latest AirWatch SDK for Android 6

4

VMware AirWatch Android SDKTechnical ImplementationGuide | v.2018.05 | May 2018

Copyright©2018 VMware, Inc. All rights reserved.

Introduction to the AirWatch SDK for Android
TheWorkspace ONE Software Development Kit (SDK) for Android allows you to enhance your enterprise applications
with MDM capabilities. You can useWorkspace ONE UEM features that add a layer of security and business logic to your
application.

The Android SDK has several components or library sets.

SDK Library Description

Client SDK The client SDK is a lightweight library for retrieving basic management and device information such
as compromised status, environment info, and user information.

AWFramework The AWFramework includes an involved library for more advanced SDK functionality such as
logging, restrictions, and encryption functions. The framework depends on the client SDK.

AWNetworkLibrary The AWNetworkLibrary provides advanced SDK functionality such as application proxy and
tunneling and integrated authentication. It depends on the AWFramework.

Compare Components
The SDK component you use dictates what features you can add to your applications.

For example, apps with basic MDM functionality, can use the Client SDK and omit importing the AWFramework or the
AWNetworkLibrary. Whatever features used, your application must integrate the corresponding library.

SDK Component Available Features

Client SDK l Enrollment Status

l User Info

l Partial SDK Profile

l Compromised / Root
Detection

AWFramework l Authentication

l Client-Side Single Sign On

l Branding

l Full SDK Profile Retrieval

l Secure Storage

l Encryption

l Copy Restriction

Chapter 1: Overview

5

VMware AirWatch Android SDKTechnical ImplementationGuide | v.2018.05 | May 2018

Copyright©2018 VMware, Inc. All rights reserved.

SDK Component Available Features

AWNetworkLibrary l Application Tunneling

l NTLM and Basic
Authentication

l Certificate Authentication

Requirements
You must have the following systems and knowledge to use the components of the AirWatch SDK for Android.

l Android 4.0.1+ / Ice Cream Sandwich

l Android API level 14-27

l Android Studio with the Android Build System (Gradle) 3.3.0+

l Android Plugin for Gradle 3.0.0+

l Knowledge in Android development

l AirWatch Agent v5.3+ for Android or Workspace ONE 3.0+

l Workspace ONE UEM console v8.0+

Emulators and Testing SDK-Built Applications

The SDK does not support testing in an emulator.

Migrate to the Latest AirWatch SDK for Android
When you migrate to the latest AirWatch SDK for Android, you must add the necessary libraries and add dependencies
to Gradle. Also ensure that the base classes have the latest code.

Migrate to Version 18.x

The SDK for Android does not require entries to migrate from 17.x.

Migrate to Version 17.x

Add the following entry to the build.gradle file.

android {

defaultConfig {

…

ndk {

abiFilters "x86", "armeabi-v7a", "armeabi"

Chapter 1: Overview

6

VMware AirWatch Android SDKTechnical ImplementationGuide | v.2018.05 | May 2018

Copyright©2018 VMware, Inc. All rights reserved.

}

}

Updates for the AWNetworkLibrary

The AirWatch SDK for Android 17.x removes the requirement to send an authentication token in an HTTP header. See Use
the AWNetworkLibrary on page 27 for updated requirements.

Migrate Version 16 to Version 16.10

Select a migration process based on the use of a login module for initialization.

Login Module

To upgrade themaster key manager, override the getPassword method in the application class. This override extends
AWApplication to handle the upgrade.

@Override

public String getPassword() {

if (SDKKeyManager.getSdkMasterKeyVersion(context) != SDKKeyManager.SDK_MASTER_KEY_CURRENT_

VERSION){

SDKKeyManager.newInstance(context);

}

return super.getPassword();

}

No Login Module

Initialize your SDKContextManager and call the updateSDKForUpgrade() API.

try {

new SDKContextHelper().updateSDKForUpgrade(0,

SDKContextManager.getSDKContext().getSDKSecurePreferences().getInt

(SDKSecurePreferencesKeys.CURRENT_FRAMEWORK_VERSION, 0),

new SDKContextHelper.AWContextCallBack() {

@Override

public void onSuccess(int requestCode, Object result) {

//success continue

}

@Override

public void onFailed(AirWatchSDKException e) {

// failed

}

});

} catch (AirWatchSDKException e) {

Chapter 1: Overview

7

VMware AirWatch Android SDKTechnical ImplementationGuide | v.2018.05 | May 2018

Copyright©2018 VMware, Inc. All rights reserved.

//handle exception

}

Migrate Version 15.11 to Version 16.02 or 16.04

l Libraries

o A total of 23 libraries including JAR and AAR files

o SQLCipher library is an AAR file instead of JAR file

l GradleMethods

o For 16.02 – compile (name:'AWFramework 16.02',ext:'aar')

o For 16.04 – compile (name:'AWFramework 16.04',ext:'aar')

o For both – compile (name:'sqlcipher-3.5.2-2',ext:'aar')

l Code

If you are not using the login module for initialization, check the implementation of base classes.

For a list of the base classes that you migrate for the latest release of the AirWatch SDK for Android, see the
following Workspace ONE UEM Knowledge Base article: https://support.air-watch.com/articles/115001676868.

Chapter 1: Overview

8

VMware AirWatch Android SDKTechnical ImplementationGuide | v.2018.05 | May 2018

Copyright©2018 VMware, Inc. All rights reserved.

https://support.air-watch.com/articles/115001676868

Chapter 2:
Whitelist the Signing Key in Workspace
ONE UEM

Overview 10

Internally Deployed Applications 10

Publicly Deployed Applications 10

9

VMware AirWatch Android SDKTechnical ImplementationGuide | v.2018.05 | May 2018

Copyright©2018 VMware, Inc. All rights reserved.

Overview
Before you can begin using the SDK API, you must ensure that your application signing key is whitelisted with your
Workspace ONE UEM back end. There are a fewways to do this depending on your deployment scenario. The AirWatch
SDK for Android offers features for apps you deployed internally or apps deployed through a public app store.

Internally Deployed Applications
For applications that are deployed internally, either during production or testing, the system takes the following steps to
establish trust.

1. (Optional) Sign an APK file with the debug keystore of Android Studio.

This step allows the system to whitelist the app while debugging.

2. Upload the APK file to theWorkspace ONE UEM console and assign an SDK profile to the application.

You must assign an SDK profile to the application in theWorkspace ONE UEM console.

3. TheWorkspace ONE UEM console extracts the public signing key of the application.

4. TheWorkspace ONE UEM console whitelists the signing key with the AirWatch Agent or the AirWatch Container.

5. The application calls the AirWatch SDK.

6. The AirWatch Agent or the AirWatch Container validates the signing key by comparing it to the one uploaded in the
Workspace ONE UEM console.

Side-Load Newer Versions for Development

After an application downloads and installs through the AirWatch Agent, then you can side-load the newer development
versions signed with the same key.

Publicly Deployed Applications
For applications that are deployed publicly through the Play Store, send the public signing key of the application to
Workspace ONE UEM for whitelisting.

Note: Contact your professional services representative for the process of whitelisting the public signing key.

TheWorkspace ONE UEM system follows the same process as the internally deployed applications process to establish
trust.

Chapter 2: Whitelist the Signing Key in Workspace ONE UEM

10

VMware AirWatch Android SDKTechnical ImplementationGuide | v.2018.05 | May 2018

Copyright©2018 VMware, Inc. All rights reserved.

Chapter 3:
Integrate the Client SDK

Overview 12

Import the Libraries 12

Set Up Gradle 12

Implement the Client SDK Broadcast Receiver 13

Initialize the Client SDK 14

11

VMware AirWatch Android SDKTechnical ImplementationGuide | v.2018.05 | May 2018

Copyright©2018 VMware, Inc. All rights reserved.

Overview
Follow the listed processes to prepare and use the Client SDK.

Import the Libraries
In your project file directory, ensure that the listed files are in the libs folder.

l AirWatchSDK AAR

l GSON JAR

Multidex

When including the AirWatch SDK, it is possible your app method count may exceed 65k due to the library dependencies.
In this case, enablemultidex to manage the additional DEX files and the code they contain.

To enablemultidex, follow the Android Developer guidelines, which you can find at the following location (as of April
2018), http://developer.android.com/tools/building/multidex.html#mdex-gradle.

Set Up Gradle
1. Ensure that your top-level build file has a classpath pointing to Gradle 3.0.0+.

2. Add a repositories block.

repositories{

flatDir{

dirs 'libs'

}

}

3. To link the SDK AAR and the appropriate support library, create the dependencies block in your app-level Gradle file
like the following block.

dependencies {

compile fileTree(dir: 'libs', include: ['*.jar'])

compile (name: 'AirWatchSDK-18.3',ext : 'aar')

}

An example of the dependencies block looks like the following:

android {

compileSdkVersion 26

Chapter 3: Integrate the Client SDK

12

VMware AirWatch Android SDKTechnical ImplementationGuide | v.2018.05 | May 2018

Copyright©2018 VMware, Inc. All rights reserved.

buildToolsVersion "26.0.1"

defaultConfig {

// Replace your package name here

applicationId "<packagename>"

minSdkVersion 15

targetSdkVersion 25

versionCode 1

versionName "1.0"

multiDexEnabled true

}

}

// Add Google repository

repositories {

...

maven {

url “https://maven.google.com”

}

}

Implement the Client SDK Broadcast Receiver
The AirWatch SDK receives commands from theWorkspace ONE UEM console through the implementation of a class
which extends the AirWatchSDKBaseIntentService.

1. Register the receiver.

In order for your SDK app to listen for these commands, register the receiver in your Android Manifest file. You can
do that by adding the following excerpt to your manifest.

<uses-permission android:name="com.airwatch.sdk.BROADCAST" />

<receiver

android:name="com.airwatch.sdk.AirWatchSDKBroadcastReceiver"

android:permission="com.airwatch.sdk.BROADCAST" >

<intent-filter>

// Replace your app package name here

<action android:name="<packagename>.airwatchsdk.BROADCAST" />

</intent-filter>

<intent-filter>

<action android:name=“com.airwatch.intent.action.APPLICATION_CONFIGURATION_CHANGED” />

<data android:scheme=“app” android:host=<packagename> />

Chapter 3: Integrate the Client SDK

13

VMware AirWatch Android SDKTechnical ImplementationGuide | v.2018.05 | May 2018

Copyright©2018 VMware, Inc. All rights reserved.

</intent-filter>

<intent-filter>

<action android:name="android.intent.action.PACKAGE_ADDED" />

<action android:name="android.intent.action.PACKAGE_REMOVED" />

<action android:name="android.intent.action.PACKAGE_REPLACED" />

<action android:name="android.intent.action.PACKAGE_CHANGED" />

<action android:name="android.intent.action.PACKAGE_RESTARTED" />

<data android:scheme="package" />

</intent-filter>

</receiver>

2. Receive the callback methods.

Create a class named AirWatchSDKIntentServicewhich extends AirWatchSDKBaseIntentService in the app package
path to receive the callback methods.

3. Register the intent service in your manifest.

<service android:name="<packagepath>.AirWatchSDKIntentService" />

Initialize the Client SDK
The entry point into the client SDK is the SDKManager class.

Important: It must initialize with the application context on a background thread.

Note: Applications that also integrate the AW Framework do not need explicit SDKManager initialization. The AW
Framework does this internally.

The code is an example of initialization.

Chapter 3: Integrate the Client SDK

14

VMware AirWatch Android SDKTechnical ImplementationGuide | v.2018.05 | May 2018

Copyright©2018 VMware, Inc. All rights reserved.

new Thread(new Runnable() {

public void run() {

try {

awSDKManager = SDKManager.init(getApplicationContext());

} catch (AirWatchSDKException e) {

runOnUiThread(new Runnable() {

@Override

public void run() {

String reason = "AirWatch SDK Connection Problem.

Please make sure AirWatch MDM Agent is Installed";

Toast.makeText(getApplicationContext(), reason,

Toast.LENGTH_LONG).show();

}

});

}

}

}).start();

Once initialization completes, you can use the Client SDK.

Note: Reference the Javadoc for more in-depth information on what APIs are available.

Chapter 3: Integrate the Client SDK

15

VMware AirWatch Android SDKTechnical ImplementationGuide | v.2018.05 | May 2018

Copyright©2018 VMware, Inc. All rights reserved.

Chapter 4:
Integrate the AWFramework

Overview 17

Import the Libraries and Set Up Gradle 17

Initialize the AWFramework 18

Run a Process Before Initialization, Optional 21

Use the AWFramework 22

APIs for Copy and Paste Restrictions 23

16

VMware AirWatch Android SDKTechnical ImplementationGuide | v.2018.05 | May 2018

Copyright©2018 VMware, Inc. All rights reserved.

Overview
Integrate the Client SDK and then follow the listed processes to prepare for and use the AWFramework.

Import the Libraries and Set Up Gradle
Inside the SDK zip folder, move all the files located in the Libs > AWFramework > Dependencies folder into the libs folder
for your application project.

Set Up Gradle

Add the dependencies in your app-level Gradle build file. View the sample application for examples of an SDK file built
with Gradle.

1. Add the JAR and AAR files to the dependencies section, ensuring to change the names to match the names and
versions of the library files.

def supportLibraryVersion = “26.0.2”

dependencies {

compile fileTree(dir: ‘libs’, include: [‘*.jar’])

compile ‘com.android.support:multidex:1.0.1’

//Integrate with sdk client:

compile (name:‘AirWatchSDK-18.3’, ext:‘aar’)

//integrate with framework:

compile (name:‘CredentialsExt-18.3’, ext:‘aar’)

compile (name:‘AWFramework-18.3’, ext:‘aar’)

compile ‘com.google.android.gms:play-services-safetynet:11.4.2’

compile “com.android.support:support-v13:${supportLibraryVersion}”

compile “com.android.support:appcompat-v7:${supportLibraryVersion}”

compile “com.android.support:cardview-v7:${supportLibraryVersion}”

compile “com.android.support:recyclerview-v7:${supportLibraryVersion}”

compile “com.android.support:design:${supportLibraryVersion}”

compile “com.mixpanel.android:mixpanel-android:4.+”

compile”com.android.support:preference-v14:${supportLibraryVersion}”

compile ‘net.zetetic:android-database-sqlcipher:3.5.7@aar’

}

2. Add a packagingOptions block with these exclusions.

packagingOptions {

exclude 'META-INF/LICENSE.txt'

exclude 'META-INF/NOTICE.txt'

}

Chapter 4: Integrate the AWFramework

17

VMware AirWatch Android SDKTechnical ImplementationGuide | v.2018.05 | May 2018

Copyright©2018 VMware, Inc. All rights reserved.

3. Add a dexOptions block with these values.

dexOptions {

jumboMode = true

preDexLibraries false

javaMaxHeapSize "4g"

}

4. Set the compileSDK to 26, the build tools to 26.0.1, and the targetSDKVersion to 25, all of which reside in the
defaultConfig block.

def compileSdk = 26

def buildTools = "26.0.1"

defaultConfig {

minSdkVersion 15

targetSdkVersion 25

multiDexEnabled true

vectorDrawables.useSupportLibrary = true

//to force fw to be merged with app when the aar included

consumerProguardFiles file('proguard.cfg')

ndk {

abiFilters "x86", "armeabi-v7a", "armeabi"

}

}

5. Sync your project with the Gradle files.

Initialize the AWFramework
The application can use application level authentication or not for initialization with the AWFramework.

Latest versions of the SDK automatically intialize both the context and gateway so you do not have to manually intialize
the VMware Tunnel.

Application Level Authentication

Create a class which extends AWApplication and overrides applicable methods.

1. Create a class that extends the AWApplication class to pass configuration keys to the login module, and override the
getMainActivityIntent() and getMainLauncherIntent() methods in the extended class. Move your onCreate()
business logic to onPostCreate().

Chapter 4: Integrate the AWFramework

18

VMware AirWatch Android SDKTechnical ImplementationGuide | v.2018.05 | May 2018

Copyright©2018 VMware, Inc. All rights reserved.

public class AirWatchSDKSampleApp extends AWApplication {

/**

* This Method must be overridden by application.

* This method should return Intent of your application main Activity

*

* @return your application's main activity(Launcher Activity Intent)

*/

@Override

public Intent getMainLauncherIntent() {

return new Intent(getAppContext(), SDKSplashActivity.class);

}

@Override

protected Intent getMainActivityIntent() {

Intent intent = new Intent(getApplicationContext(), MainActivity.class);

return intent;

}

@Override

public void onPostCreate() {

super.onPostCreate();

// App code here

}

}

Optional Methods to Override

Override themethods to enableWorkspace ONE UEM functionality in the AWApplication class.

l getScheduleSdkFetchTime()- Override this method to change when the login module fetches updates to SDK
settings from theWorkspace ONE UEM console.

l getKeyManager() – Override this method to a value rather than null so that the login module initializes another
key manager and not its own.

2. In themanifest header file, declare tools.

<?xml version = "1.0" encoding = "utf-8"?>

<manifest xmls:android = http://schemas.android.com/apk/res/android

package = "<your app package name>"

xmlns:tools = "http://schemas.android.com/tools">

3. Declare the tools:replace flag in the application tag that is in themanifest.

Chapter 4: Integrate the AWFramework

19

VMware AirWatch Android SDKTechnical ImplementationGuide | v.2018.05 | May 2018

Copyright©2018 VMware, Inc. All rights reserved.

<application

android:name = ".AirWatchSDKSampleApp"

android:allowBackup = "true"

android:icon = "@mipmap/ic_launcher"

android:label "@string/app_name"

android:suportRtl = "true"

android:theme = "@style/AppTheme"

tools:replace = "android:label"

>

4. Set the SDKSplashActivity as your main launching activity in the application tag.

<activity

android:name="com.airwatch.login.ui.activity.SDKSplashActivity"

android:label="@string/app_name"

>

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

See the example.

<application

android:name=".AirWatchSDKExampleApp"

android:icon="@mipmap/ic_launcher"

android:label="@string/app_name"

android:supportsRtl="true"

android:theme="@style/AppTheme"

tools:replace = "android:label"

>

<receiver

android:name="com.airwatch.sdk.AirWatchSDKBroadcastReceiver"

android:permission="com.airwatch.sdk.BROADCAST">

<intent-filter>

<action android:name="<packagename>.airwatchsdk.BROADCAST" />

</intent-filter>

Chapter 4: Integrate the AWFramework

20

VMware AirWatch Android SDKTechnical ImplementationGuide | v.2018.05 | May 2018

Copyright©2018 VMware, Inc. All rights reserved.

<intent-filter>

<action android:name="android.intent.action.PACKAGE_ADDED" />

<action android:name="android.intent.action.PACKAGE_REMOVED" />

<action android:name="android.intent.action.PACKAGE_REPLACED" />

<action android:name="android.intent.action.PACKAGE_CHANGED" />

<action android:name="android.intent.action.PACKAGE_RESTARTED" />

<data android:scheme="package" />

</intent-filter>

</receiver>

<activity

android:name="com.airwatch.login.ui.activity.SDKSplashActivity "

android:label="@string/app_name">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

<activity android:name=".MainActivity" />

</application>

5. Add the sdkBranding to the application theme. The system displays this logo on the login screen. You can also use
your own icon located in themipmap directory.

<style name="SDKBaseTheme" parent="Theme.AppCompat.Light">

// Replace with your own app specific resources to have branding

<item name="awsdkSplashBrandingIcon">@drawable/awsdk_test_icon_unit_test</item>

<item name="awsdkLoginBrandingIcon">@drawable/awsdk_test_icon_unit_test</item>

<item name="awsdkApplicationColorPrimary">@color/color_awsdk_login_primary</item>

</style>

6. If you need the SDK authentication, DLP, and timeout behavior, app activities should extend from SDKBaseActivity.
These activities allow the application to handle the lifecycle correctly and to manage the state of the SDK.

Run a Process Before Initialization, Optional
To run a process before initialization in your SDK-built application, edit the AndroidManifest.xml file and customize an
activity.

Chapter 4: Integrate the AWFramework

21

VMware AirWatch Android SDKTechnical ImplementationGuide | v.2018.05 | May 2018

Copyright©2018 VMware, Inc. All rights reserved.

Use this optional procedure to run processes that analyze the environment into which the application is deployed. For
example, run a process to determine if your application needs to start the SDK in a specific environment.

1. In the AndroidManifest.xml file, remove the launcher tag <category
android:name="android.intent.category.LAUNCHER" />.

You add the tag in the placeholder activity you create to run your process.

2. Create an activity and register it in the AndroidManifest.xml file.

This activity runs the desired process.

3. Add the intent filter to the activity you just created in themanifest. The filter resembles the example.

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

4. CallstartActivity(new Intent(this, SDKSplashActivity.class)) after the process
completes.

Use the AWFramework
Add code and use APIs to configure AWFramework capabilities in your application.

Retrieve the SDK Profile

Once the SDKContext is in the configured state, you can call the SDKContext getSDKConfiguration() method to retrieve
the SDK profile. The SDK must be finished with its configuration otherwise calling getSDKConfiguration() returns with an
empty value.

if(sdkContext.getCurrentState() == SDKContext.State.CONFIGURED){

String sdkProfileString = SDKContextManager.getSDKContext().

getSDKConfiguration().toString();

}

Encrypt Custom Data

Once the SDKContext is in the initialized state, you can call the data encryption API set. This set of functions uses the
AirWatch SDK's intrinsic key management framework to encrypt and decrypt any data you feed in.

Use theMasterKeyManager API set when the SDK is in an initialized or configured state. See the example of how you can
encrypt and decrypt a string value.

if(SDKContextManager.getSDKContext().getCurrentState()!=SDKContext.State.IDLE) {

MasterKeyManager masterKeyManager = SDKContextManager.getSDKContext().getKeyManager();

Chapter 4: Integrate the AWFramework

22

VMware AirWatch Android SDKTechnical ImplementationGuide | v.2018.05 | May 2018

Copyright©2018 VMware, Inc. All rights reserved.

String encryptedString = masterKeyManager.encryptAndEncodeString("HelloWorld");

String decryptedString = masterKeyManager.decodeAndDecryptString(encryptedString);

}

Secure Storage Data

After the SDKContext is in the initialized state, you can call the secure storage API set. This set of functions stores key
value pairs in encrypted storage.

if(SDKContextManager.getSDKContext().getCurrentState()!=SDKContext.State.IDLE) {

SecurePreferences pref = SDKContextManager.getSDKContext().getSDKSecurePreferences();

pref.edit().putString(<KEY_NAME>, <VALUE>).commit(); // to store value

Object value = pref.getString(<KEY_NAME>, <Default_Value>);

}

APIs for Copy and Paste Restrictions
To use the AirWatch SDK copy restriction, replace the Android classes in your application to the listed Workspace ONE
APIs.

Examples

If Java class XYZ extends TextView{...}, change it to extend AWTextView{...}.

If you override themethod onTextContextMenuItem(int id), do not process the listed IDs. You must call
return super.onTextContextMenuItem(id); for the listed IDs.

l android.R.id.cut

l android.R.id.copy

l android.R.id.paste

l android.R.id.shareText

Change <TextView> in all Layout XML or View XML to <com.airwatch.ui.widget.AWTextView.../>.

APIs

Android Class AirWatch SDK API

android.support.v7.widget.

AppCompatEditText

com.airwatch.ui.widget.

AWEditText

android.support.v7.widget.

AppCompatTextView

com.airwatch.ui.widget.

AWTextView

Chapter 4: Integrate the AWFramework

23

VMware AirWatch Android SDKTechnical ImplementationGuide | v.2018.05 | May 2018

Copyright©2018 VMware, Inc. All rights reserved.

Android Class AirWatch SDK API

android.support.v7.widget.

AppCompatAutoCompleteTextView

com.airwatch.ui.widget.

AWAutoCompleteTextView

android.support.design.widget.

TextInputEditText

com.airwatch.ui.widget.

AWTextInputEditText

android.support.v7.widget.

SearchView.SearchAutoComplete

com.airwatch.ui.widget.

AWSearchAutoComplete

android.webkit.WebView com.airwatch.ui.widget.CopyEnabledWebView

Chapter 4: Integrate the AWFramework

24

VMware AirWatch Android SDKTechnical ImplementationGuide | v.2018.05 | May 2018

Copyright©2018 VMware, Inc. All rights reserved.

Chapter 5:
Integrate the AWNetworkLibrary

Overview 26

Set Up Gradle and Initialize the AWNetworkLibrary 26

Use the AWNetworkLibrary 27

25

VMware AirWatch Android SDKTechnical ImplementationGuide | v.2018.05 | May 2018

Copyright©2018 VMware, Inc. All rights reserved.

Overview
AWNetworkLibrary has a dependency on AWFramework. Integrate the AWFramework and then follow the listed
processes to add the network libraries.

Set Up Gradle and Initialize the AWNetworkLibrary
To add the AWNetworkLibrary to your project, follow the listed process.

1. Set up Gradle.

Add all the dependency JARS and AARS from libs > AWNetworkLibrary > Dependencies. For each AAR file, add an
entry stating the name and EXT type.

dependencies {

... // In addition to AWFramework entries add the listed library

compile (name:'AWNetworkLibrary-18.3’, ext:'aar')

}

2. Initialize the AWNetworkLibrary.

a. Follow the steps outlined in Initialize the AWFramework on page 18.

b. In the extended AWApplication class, override getMagCertificateEnable() and return true to fetch the certificate
for the VMware Tunnel.

/**

* This method is overriden if your application supports fetch mag certificate during login

process.

*

* @return true if app supports fetch mag certificate.

*/

@Override

public boolean getMagCertificateEnable() {

return true;

}

c. Set GatewaySplashActivity as your main launching activity instead of SDKSplashActivity.

<activity android:name="com.airwatch.gateway.ui.GatewaySplashActivity"

android:label="@string/app_name" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

Chapter 5: Integrate the AWNetworkLibrary

26

VMware AirWatch Android SDKTechnical ImplementationGuide | v.2018.05 | May 2018

Copyright©2018 VMware, Inc. All rights reserved.

</intent-filter>

</activity>

d. Extend GatewayBaseActivity at the activity level to support network features like tunneling and integrated
authentication in addition to AWFramework features.

Use the AWNetworkLibrary
The AWNetworkLibrary provides SDK capabilities like application tunneling and integrated authentication using NTLM
and SSL/TLS client certificates for various HTTP clients.

The AWNetworkLibrary does not require the use of AirWatch-provided HTTP clients or WebView to tunnel requests
through the VMware Tunnel Proxy. Use common HTTP clients or the default WebView. The AWNetworkLibrary also
provides newAPIs for NTLM or SSL/TLS integrated authentication that you can use with available HTTP client APIs.
Review the tables to see what methods have changed to configure these features.

Applications using the existing provided HTTP Client and WebView classes do not require any changes.

Application Tunneling

Use any HTTP clients or the default WebView for tunneling application traffic through the VMware Tunnel Proxy.

Capability Previous Requirements Updated Requirement

Application Tunneling

Tunnel HTTP request with the VMware
Tunnel Proxy.

Use AWHttpClient, AWUrlConnection, or
AWOkHttpClient.

Use any HTTP client.

TunnelWebView requests with the VMware
Tunnel Proxy.

Use AWWebView. Use the default
WebView.

Integrated Authentication

Use APIs with various HTTP clients for integrated authentication using the NTLM method or SSL/TLS client certificates.
These APIs eliminate the need to provide HTTP clients in some cases.

Note: Developers that use the existing APIs to achieve integrated authentication functionality do not require any
changes.

Note: Find code samples that use the integrated authentication APIs in the IntegratedAuthActivity.java file in the
sample application.

Chapter 5: Integrate the AWNetworkLibrary

27

VMware AirWatch Android SDKTechnical ImplementationGuide | v.2018.05 | May 2018

Copyright©2018 VMware, Inc. All rights reserved.

Capability Previous Requirements Updated Requirement

Integrated Authentication - NTLM

Add support for
NTLM integrated
authentication for
HTTP clients.

Use AWHttpClient or
NTLMHttpUrlConnection
as wrapper classes.

l For Apache HttpClient register an NTLM AuthScheme and add an
AWAuthInterceptor request interceptor.

l For UrlConnection, there is no change. Use
NTLMHttpUrlConnection.

l For OkHttpClient, set an instance of AWOkHttpAuthenticator as an
authenticator.

Add support for
NTLM integrated
authentication for
WebViews.

Use AWWebView or
AWWWebViewclient.

No change. Use one of the listed methods.

l Set an instance of AWWebViewClient as theWebViewClient for the
WebView.

l Extend the AWWebViewClient class and customize it for several
methods.

Integrated Authentication - SSL Client Certificate

Add support for
SSL client
certificate
authentication for
HTTP clients.

Use AWHttpClient and
AWUrlConnection.

Use the API called AWCertAuthUtil. It provides methods to construct an
SSLContext instance with the required certificates for authentication.
You can then plug it into various HTTP clients like Apache HTTP Client,
URLConnection, and OKHttpClient.

For example, for HttpClient, retrieve a list of KeyManagers from the API
AWCertAuthUtil.getCertAuthKeyManagers(). Use this list to construct
an instance of SSLContext. Obtain an instance of SSLSocketFactory
from the SSLContext instance and use it in the HttpClient.

Add support for
SSL client
certificate
authentication
with WebViews.

Use AWWebViewClient. No change. Use AWWWebViewClient. Extend the class and override
unneeded behaviors.

Chapter 5: Integrate the AWNetworkLibrary

28

VMware AirWatch Android SDKTechnical ImplementationGuide | v.2018.05 | May 2018

Copyright©2018 VMware, Inc. All rights reserved.

Chapter 6:
MAM Features with SDK Functions

MAM Functionality with Settings and Policies and the
AirWatch SDK 30

Assign the Default or Custom Profile 30

Set the AirWatch Agent for Android 31

Supported Settings and Policies Options by Component and
Workspace ONEUEM App 31

29

VMware AirWatch Android SDKTechnical ImplementationGuide | v.2018.05 | May 2018

Copyright©2018 VMware, Inc. All rights reserved.

MAM Functionality with Settings and Policies and the AirWatch SDK
The Settings and Policies section of theWorkspace ONE UEM console contains settings that can control security,
behaviors, and the data retrieval of specific applications. The settings are sometimes called SDK settings because they run
on the AirWatch SDK framework.

You can apply these SDK features to applications built with the AirWatch SDK, to supported Workspace ONE UEM
applications, and to applications wrapped by the AirWatch App Wrapping engine. Same features can be applied in both
the places as the AirWatch SDK framework processes the functionality.

Types of Options for SDK Settings

Workspace ONE UEM has two types of the SDK settings, default and custom. To choose the type of SDK setting,
determine the scope of deployment.

l Default settings work well across organization groups, applying to large numbers of devices.

l Custom settings work with individual devices or for small numbers of devices with applications that require special
mobile application management (MAM) features.

Default Settings

Find the default settings in Groups & Settings > All Settings > Apps > Settings and Policies and then select Security
Policies, Settings, or SDK App Compliance. You can apply these options across all theWorkspace ONE UEM applications
in an organization group. Shared options are easier to manage and configure because they are in a single location.

View thematrices for information on which default settings apply to specific Workspace ONE UEM applications or the
AirWatch SDK and app wrapping.

Custom Settings

Find the custom settings in Groups & Settings > All Settings > Apps > Settings and Policies > Profiles. Custom settings
for profiles offer granular control for specific applications and the ability to override default settings. However, they also
require separate input and maintenance.

Assign the Default or Custom Profile
To apply Workspace ONE UEM features built with the AirWatch SDK, you must apply the applicable default or custom
profile to an application. Apply the profile when you upload or edit the application to theWorkspace ONE UEM console.

1. Navigate to Apps & Books > Applications > Native > Internal or Public.

2. Add or edit an application.

3. Select a profile on the SDK tab:

l Default Settings Profile

o For Android applications, select the Android Default Settings @ <Organization Group>.

o For Apple iOS applications, select the iOS Default Settings @ <Organization Group>.

l Custom Settings Profile – For Android and Apple iOS applications, select the applicable legacy or custom profile.

4. Make other configurations and then save the application and create assignments for its deployment.

Chapter 6: MAM Features with SDK Functions

30

VMware AirWatch Android SDKTechnical ImplementationGuide | v.2018.05 | May 2018

Copyright©2018 VMware, Inc. All rights reserved.

Changes to Default and Custom Profiles

When you make changes to the default or custom profile, Workspace ONE UEM applies these edits when you select
Save.

Changes can take a fewminutes to push to end-user devices. Users can close and restart Workspace ONE UEM
applications to receive updated settings.

Set the AirWatch Agent for Android
Configure the AirWatch Agent for Android to use the correct default profile to apply SDK functionality.

If you do not set the AirWatch Agent to apply the configurations, your configurations in Settings and Policies do not work
on devices.

1. Navigate to Groups & Settings > All Settings > Devices & Users > Android > Agent Settings.

2. Set the SDK Profile V2 option in the SDK PROFILE section to the default profile by selecting Android Default Settings
@ <Organization Group>.

3. Save your settings.

Supported Settings and Policies Options by Component and Workspace ONE
UEM App
Use the default settings profile to apply an AirWatch SDK feature to an SDK application, a Workspace ONE UEM
application, or a wrapped application by setting the configurations in Policies and Settings. View compatibility
information to knowwhat features Workspace ONE UEM supports for your application.

Scope of Matrices

The data in these tables describes the behaviors and support of the specific component or application.

Settings and Policies Supported Options for SDK and AppWrapping

UI Label
Android

Force Token For App Authentication: Enable X

Passcode: Authentication Timeout ✓

Passcode:Maximum Number Of Failed Attempts ✓

Passcode: PasscodeMode Numeric ✓

Passcode: PasscodeMode Alphanumeric ✓

Passcode: Allow Simple Value ✓

Chapter 6: MAM Features with SDK Functions

31

VMware AirWatch Android SDKTechnical ImplementationGuide | v.2018.05 | May 2018

Copyright©2018 VMware, Inc. All rights reserved.

UI Label
Android

Passcode:Minimum Passcode Length ✓

Passcode:Minimum Number Complex Characters ✓

Passcode:Maximum Passcode Age ✓

Passcode: Passcode History ✓

Passcode: Biometric Mode ✓

Username and Password: Authentication Timeout ✓

Username and Password:Maximum Number of Failed Attempts ✓

Single Sign On: Enable ✓

Integrated Authentication: Enable Kerberos x
Integrated Authentication: Use Enrollment Credentials ✓

Integrated Authentication: Use Certificate ✓

AirWatch App Tunnel:Mode ✓

AirWatch App Tunnel: URLs (Domains) ✓

Geofencing: Area x
DLP: Bluetooth ✓

DLP: Camera ✓

DLP: Composing Email x
DLP: Copy and Paste Out ✓

DLP: Copy and Paste Into ✓

DLP: Data Backup x
DLP: Location Services x
DLP: Printing ✓

DLP: Screenshot ✓

DLP: Third Party Keyboards x
DLP: Watermark ✓

DLP: Limit Documents to Open Only in Approved Applications ✓

Chapter 6: MAM Features with SDK Functions

32

VMware AirWatch Android SDKTechnical ImplementationGuide | v.2018.05 | May 2018

Copyright©2018 VMware, Inc. All rights reserved.

UI Label
Android

NAC: Cellular Connection x
NAC: Wi-Fi Connection x
Branding: Enable ✓

Logging: Enable ✓

Analytics: Enable ✓

Compromised Detection: Enable ✓

Offline Access: Enable ✓

Chapter 6: MAM Features with SDK Functions

33

VMware AirWatch Android SDKTechnical ImplementationGuide | v.2018.05 | May 2018

Copyright©2018 VMware, Inc. All rights reserved.

	Chapter 1: Overview
	Introduction to the AirWatch SDK for Android
	Compare Components
	Requirements
	Migrate to the Latest AirWatch SDK for Android

	Chapter 2: Whitelist the Signing Key in Workspace ONE UEM
	Overview
	Internally Deployed Applications
	Publicly Deployed Applications

	Chapter 3: Integrate the Client SDK
	Overview
	Import the Libraries
	Set Up Gradle
	Implement the Client SDK Broadcast Receiver
	Initialize the Client SDK

	Chapter 4: Integrate the AWFramework
	Overview
	Import the Libraries and Set Up Gradle
	Initialize the AWFramework
	Run a Process Before Initialization, Optional
	Use the AWFramework
	APIs for Copy and Paste Restrictions

	Chapter 5: Integrate the AWNetworkLibrary
	Overview
	Set Up Gradle and Initialize the AWNetworkLibrary
	Use the AWNetworkLibrary

	Chapter 6: MAM Features with SDK Functions
	MAM Functionality with Settings and Policies and the AirWatch SDK
	Assign the Default or Custom Profile
	Set the AirWatch Agent for Android
	Supported Settings and Policies Options by Component and Workspace ONE UEM App

