
VMware AirWatch SDK for iOS (Swift)
Technical Implementation Guide
Empowering your enterprise applications with MDM capabilities
VMware AirWatch SDK for iOS (Swift) v18.5.2

Have documentation feedback? Submit a Documentation Feedback support ticket using the Support Wizard on
support.air-watch.com.
Copyright©2018 VMware, Inc. All rights reserved. This product is protected by copyright and intellectual property laws in the United States and other countries as well as by
international treaties. VMware products are covered by one ormore patents listed at http://www.vmware.com/go/patents.

VMware is a registered trademark or trademark of VMware, Inc. in the United States and other jurisdictions. All othermarks and names mentioned hereinmay be trademarks of their
respective companies.

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

1

http://support.air-watch.com/

Table of Contents
Chapter 1: AirWatch SDK for iOS (Swift) 4

Version of AirWatch SDK for iOS andWorkspace ONEUEM Console 4
Supported iOS Components 4
Corresponding Objective-C Interfaces 4
Objective-C Features Not Supported in the Swift Version 4

Chapter 2: SDK Installation 5

Migrate the SDK from an Earlier Version to the Latest Version 5
Install the SDK in a New Environment 5
Migrate the AirWatch SDK for iOS Objective-C Version to the Swift Version 5
Install the AirWatch SDK for iOS (Swift) in a New Environment 10

Chapter 3: SDK Setup 13

1. Initialize 13
2. Set AWController Delegate Callback Methods 13
3. Set Keychain Sharing 13
4. Cluster SessionManagement 13
5. Configure the AWSDKDefaultSettings.Plist 14
6. Test the SDK Setup 14
Initialize the AirWatch SDK for iOS (Swift) 14
Required and Optional AWController Delegate Callback Methods 15
Keychain Access Group Entitlements 16
Cluster SessionManagement and Reduced Flip Behavior for SSO in the AirWatch SDK
for iOS (Swift) 19
Entries to Set in the AWSDKDefaultSettings.plist 19
Test the Integration and Functions of Applications 20

Chapter 4: SDK Capabilities 22

Required Capabilities 22
Authentication Capabilities 22
Query and Update Capabilities 23
Data Loss Prevention Capabilities 23

2

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

Other SDK Profile Capabilities 23
SDK Capabilities Quick Reference, Code and Console 24
Enable SDK Feature Flags 26
Authentication Type Function Description 27
SSO Configurations and System Login Behavior for iOS Applications 28
Integrated Authentication and the Challenge Handler 30
VMware Tunnel for App Tunneling by Proxy Components 32
Use DLP to Control the Copy and Paste of Data Out and Into Your SDK-Built Application 33
Behavior of the Third-Party Keyboard Restriction 34
Use DLP to Control Links to Open in VMware Browser, VMware Boxer, or VMware
Inbox 35
Set Up the DataSampler Module for Analytics 37
Use Branding to Add Logos and Primary Highlight Colors 38
Beacon Data Sent Upon Application Unlock or Sent Manually 40
Certificate Pinning 42
Check the Compromised Status of Devices with Compromised Protection 42
Custom Settings for the SDK 43
Query Devices for MDM Information with DeviceInformationController 43
Geofence Capabilities 43
Logging Capabilities 44
Offline Access 44
Encrypt Data on Devices 45

Chapter 5: SDK and the Apple App Review 47

Explanation of the Process 47
Build a Test Environment inWorkspace ONEUEM 47
Identify the Server URL and Group ID 47
Steps to Configure App ReviewMode 47
Configure an App ReviewMode Testing Environment in the Workspace ONEUEM
Console 48
Declare the App Review Server and Group ID in the SDK PLIST 49
Test the App ReviewMode Testing Environment in the Workspace ONEUEM Console 50
Build Script Information for App Store Submission 50

3

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

Chapter 1:
AirWatch SDK for iOS (Swift)
TheWorkspace ONE Software Development Kit (SDK) is a set of tools allowing organizations to incorporate a host of
features and functionality into their custom-built iOS applications. The AirWatch SDK enhances the security and
functionality of those applications and in turn helps save application development time and money.

Version of AirWatch SDK for iOS and Workspace ONE UEM Console
l AirWatch SDK for iOS v18.5.2

l Workspace ONE UEM console v9.1.1+

Supported iOS Components
l Apple iOS - 9.0+

l Xcode - 9.3, 9.4, and 9.4.1

l Supported Swift Versions - All Swift versions shipped with the listed Xcode versions

Corresponding Objective-C Interfaces
The examples in this document are in Swift. See the AWController Interface file for corresponding Objective-C Interfaces if
you import the Swift SDK for iOS (Swift) into an Objective-C application.

Objective-C Features Not Supported in the Swift Version
The SDK for iOS (Objective-C) supports the detection of a user change on shared devices. The SDK for iOS (Swift) does not
support this feature.

4

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

Chapter 2:
SDK Installation
Install the AirWatch SDK for iOS by migrating an installation or by installing a new version.

Migrate the SDK from an Earlier Version to the Latest Version
To migrate to a Swift version of the AirWatch SDK for iOS, remove the Objective-C version. Then, add the Swift version to
your environment. SeeMigrate the AirWatch SDK for iOS Objective-C Version to the Swift Version on page 5.

To see what components changed from the earlier version of the SDK to this version that supports Swift, see Component
Changes in the AirWatch SDK for iOS on page 6.

Install the SDK in a New Environment
For information on installing the SDK in an environment without a previous version of the SDK, see Install the AirWatch
SDK for iOS (Swift) in a New Environment on page 10.

Part of the installation process in a new environment is to expose a custom scheme. See Expose a Custom Scheme To Use
in a Callback Scheme on page 12 for information.

Migrate the AirWatch SDK for iOS Objective-C Version to the Swift Version
To migrate to a version of the AirWatch SDK for iOS for Swift, remove the old SDK and add the current one to your
environment.

See Component Changes in the AirWatch SDK for iOS on page 6 for changes to make to your project to prevent build
errors.

Remove the Objective-C Version of the SDK

Delete the listed AirWatch SDK frameworks and libraries to remove the SDK.

1. On theGeneral tab in your project, delete the AWSDK.framework from both the Embedded Binaries and Link
Framework and Libraries areas.

2. Open the Build Phases tab in the project settings of your application.

5

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

3. Delete AWKit from your project.

4. Delete AWlocalization from your project.

Add the Swift Version of the SDK

Add AirWatch SDK frameworks and edit the locations of the listed calls to migrate SDK behaviors to the current version. If
you do not edit the listed call locations, the UI behavior is inconsistent with the previous SDK version.

1. Drag and drop the current AirWatchSDK framework and the AWCMWrapper file into your Link Binary with Libraries
step in the build phase section of your project settings.

2. Change the location of your StartSDK call. Call it in the didFinishLaunchingWithOptionsmethod that is inside your
application delegate class.

In versions before the SDK v17.x, you called awcontroller.start() within the applicationDidBecomeActivemethod.

3. Build your project.

4. Resolve naming differences and API differences that changed in the new SDK causing build errors.

Share Your Keychain

Share your keychain between the SDK applications so you can use all the SDK capabilities. See Keychain Access Group
Entitlements on page 16.

Component Changes in the AirWatch SDK for iOS

If you migrate an older version of the SDK to install it, review the list of changed components. Update names and
locations of components to prevent or resolve build errors caused by the differences between SDK versions.

Samples present the old version of the code followed by the current code.

Chapter 2: SDK Installation

6

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

Component Sample Code

AWController
start

In the previous
SDK you called
awcontroller.start
() within the
applicationDidBec
omeActive
method.

In the current SDK,
start the SDK
within the
didFinishLaunchin
gWithOptions
method inside
your application
delegate class.

You will get
inconsistent UI
behaviors from
the SDK if you do
not make this
change.

///5.9.X Implementation

func applicationDidBecomeActive(_ application: UIApplication)

let awc = AWController.clientInstance()

awc.delegate = self

awc.callbackScheme = "myAppName"

awc.start()

}

///Swift version Implementation

func application(_ application: UIApplication, didFinishLaunchingWithOptions

launchOptions: [UIApplicationLaunchOptionsKey: Any]?) -> Bool {

let awc = AWController.clientInstance()

awc.delegate = self

awc.callbackScheme = "myAppName"

awc.start()

return true

}

CanhandleProtecti
onSpace
(Integrated
Authentication)

Update the code
for authentication
challenges and
chain validation.

///5.9.X Implementation

try AWController.clientInstance().canHandle(challenge.protectionsSpace)

///Swift version Implementation

try AWController.clientInstance().canHandle(protectionsSpace:

challenge.protectionsSpace)

AWLog singleton
(Logging)

Use this instead of
the AWController
to send logs.

///5.9.X Implementation

AWLog.sharedInstance().sendApplicationLogs(success, errorName)

///Swift version Implementation

AWController.clientInstance().sendLogDataWithCompletion { (success, error)

}

Chapter 2: SDK Installation

7

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

Component Sample Code

Network status

Update the front
of the enum to
AWSDK.

///5.9.X Implementation

AWNetworkActivityStatus

///Swift version Implementation

AWSDK.NetworkActivityStatus

Profiles and
profile payloads

Drop the AW from
the front of
profiles.

///5.9.X Implementation

AWProfile

///Swift version Implementation

Profile

Custom settings

Access custom
settings through
AWController
instead of
AWCommanMana
ger.

///5.9.X Implementation

AWCommandManager().sdkProfile().customPayload

///Swift version Implementation

AWController.clientInstance().sdkProfile()?.customPayload

Account object

The account
object is now a
property on
AWController
instead of an
accessor method.

This property
returns default,
empty values for
SAML and token
enrollment.

///5.9.X Implementation

AWController.clientInstance().account()

///Swift version Implementation

AWController.clientInstance().account

Chapter 2: SDK Installation

8

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

Component Sample Code

User credentials
///5.9.X Implementation

AWController.clientInstance().updateUserCredentials(completions: { (success,

error) in {

...

})

///Swift version Implementation

AWController.clientInstance().updateUserCredentials(with: { (success, error) in

{

...

})

OpenInURL calls
///5.9.X Implementation

AWController.clientInstance().handleOpen(url,

fromApplication: sourceApplication)

///Swift version Implementation

AWController.clientInstance().handleOpenURL(url,

fromApplication: sourceApplication)

DeviceInformatio
nController

Replace
MDMInformation
Controllerwith
DeviceInformatio
nController.

NA

Manually load
commands

Use an API on
AWController to
force commands
to reload instead
of using the
command
manager.

///5.9.X Implementation

AWCommandHandler.sharedHandler().loadCommands()

///Swift version Implementation

AWController.clientInstance().loadCommands()

Chapter 2: SDK Installation

9

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

Install the AirWatch SDK for iOS (Swift) in a New Environment
Install the SDK in an environment without a previous version of the SDK.

For details on how to expose a custom scheme for the call back scheme using the AirWatch Agent for iOS, AirWatch
Container, or Workspace ONE, see Expose a Custom Scheme To Use in a Callback Scheme on page 12.

1. Unzip the AirWatchSDK DMG file.

2. Drag and drop the current AirWatchSDK framework file and the attached AWCMWrapper file into your Embedded
Binaries, which is on theGeneral tab of your project settings.

Do not add the framework files to only the Link Binary with Libraries because this actions causes the application to
crash. When you add it to the Embedded Binaries, this action automatically adds the file to the Link Binary with
Libraries, too.

3. Register your callback scheme.

4. Import the AWSDKmodule.

5. Make your AppDelegate conform to the AWControllerDelegate protocol.

import AWSDK

class AppDelegate: UIResponder, UIApplicationDelegate, AWControllerDelegate {

6. In the AppDelegate, add the following code to initialize and start the SDK.

Do not call the start method in applicationWillEnterForeground or applicationDidBecomeActive. These start
methods result in inconsistent UI behavior.

func application(_ application: UIApplication, didFinishLaunchingWithOptions launchOptions:

[UIApplicationLaunchOptionsKey: Any]?) -> Bool {

let awcontroller = AWController.clientInstance() awcontroller.callbackScheme =

"myCallbackScheme"

awcontroller.delegate = self

awcontroller.start()

return true

}

7. In the AppDelegate, implement the listed method and code to enable the SDK to receive and handle communication
from other Workspace ONE UEM applications.

Chapter 2: SDK Installation

10

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

func application(_ application: UIApplication, open url: URL, options:

[UIApplicationOpenURLOptionsKey : Any] = [:]) -> Bool {

// `AWController.handleOpenURL` method will reconnect the SDK back to its previous state to

continue.

// If you are handling application specific URL schemes. Please make sure that the URL is not

intended for SDK Controller.

// An example way to perform this.

let sourceApplication: String? = options[UIApplicationOpenURLOptionsKey.sourceApplication]

let handedBySDKController = AWController.clientInstance().handleOpenURL(url,

fromApplication: sourceApplication) if handedBySDKController {

AWLogInfo("Handed over open URL to AWController")

// SDK Controller will continue with the result from Open URL.

return true

}

// Handle if this URL is for the Application.

return false

}

8. Implement the required delegatemethod controllerDidFinishInitialCheck.

func controllerDidFinishInitialCheck(error: NSError?) {

if error != nil {

AWLogError("Initial Check Done Error: \(error)")

return

}

AWLogInfo("SDK Initial Check Done!")

}

You can add optional delegatemethods that are described in Required and Optional AWController Delegate Callback
Methods on page 15.

Chapter 2: SDK Installation

11

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

Expose a Custom Scheme To Use in a Callback Scheme

You must register a callback scheme to install the AirWatch SDK for iOS (Swift) in an environment with no previous SDK
version. Code your application to expose a custom scheme so that it can receive a callback from the AirWatch Agent for
iOS, AirWatch Container, or Workspace ONE.

Perform this task in Xcode.

See Install the AirWatch SDK for iOS (Swift) in a New Environment on page 10 for instructions to install the SDK in a clean
environment.

1. In Xcode, navigate to Supporting Files.

2. Select the file <YourAppName>-Info.plist.

3. Navigate to theURL Types section.

If it does not exist, add it at the Information Property List root node of the PLIST.

4. Expand the Item 0 entry and add an entry for URL Schemes.

5. Set the next Item 0 under URL Schemes to the desired callback scheme.

6. Whitelist all Workspace ONE UEM anchor application schemes under the LSApplicationQueriesSchemes entry in the
Information Property List.

Chapter 2: SDK Installation

12

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

Chapter 3:
SDK Setup
Set up your application and test the setup. Perform setup steps in the listed order to reduce issues with integration.

1. Initialize
Add code to import the SDK and to run the correct protocol. Then start the SDK and setup the callback scheme. See
Initialize the AirWatch SDK for iOS (Swift) on page 14 for the steps.

2. Set AWController Delegate Callback Methods
Read about the optional delegate callback methods that are part of the AWController in Required and Optional
AWController Delegate Callback Methods on page 15.

3. Set Keychain Sharing
Enabled keychain sharing allows applications to share a single sign on session and to share data.

l Use keychain access groups t to share data between applications in the group. See Keychain Access Group
Entitlements on page 16 for details.

l Enable keychain sharing for SDK-built applications that already share the same AppIdentifierPrefix and the same
keychain access group. See Enable Keychain Sharing for SDK Applications on page 17 for the process.

l Read about possible issues with setting keychaing sharing and see troubleshooting suggestions in the topic
Troubleshoot Keychain Enablement on page 18.

4. Cluster Session Management
Share passcode and single sign on sessions in clusters of applications with the SDK if you set up keychain sharing. See
Cluster Session Management and Reduced Flip Behavior for SSO in the AirWatch SDK for iOS (Swift) on page 19 for
details.

13

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

5. Configure the AWSDKDefaultSettings.Plist
Use entries in the AWSDKDefaultSettings.PLIST to customize the application with AirWatch SDK for iOS (Swift) features.
See the entries listed in Entries to Set in the AWSDKDefaultSettings.plist on page 19.

6. Test the SDK Setup
Test the integration of your application with the AirWatch SDK , including the delivery of profiles from theWorkspace
ONE UEM console to your application. See Test the Integration and Functions of Applications on page 20 for testing
steps.

Initialize the AirWatch SDK for iOS (Swift)
Add the listed code to import the SDK and to run the correct protocol. Then start the SDK and set up the callback
scheme.

Task Code

Add the
listed
code to
the
AppDele
gate.

import AWSDK

Code the
AppDele
gate to
use the
AWSDK
Delegate
protoco
l.

import AWSDK

class AppDelegate: UIResponder, UIApplicationDelegate, AWSDKDelegate {

...

}

Set the
AppDele
gate,
setup
the
callback
scheme,
and start
the SDK.

func application(application: UIApplication, didFinishLaunchingWithOptions launchOptions:

[NSObject: AnyObject]?) -> Bool

{

// Override point for customization after application launch.

let awc = AWController.clientInstance()

awc.delegate = self

// Your application's scheme name

awc.callbackScheme = "myCallBackSchemeName"

awc.start()

return true

}

Chapter 3: SDK Setup

14

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

Task Code

Set the
AppDele
gate's
class to
use the
listed
protocol
s.

// Called once the SDK has finished its setup

func controllerDidFinishInitialCheck(Error error: NSError?) {

AWLogDebug("SDK Initial Check Done!")

}

// Called when the configurations profiles have been recieved from console and can now be

accessed from AWController or from the parameter in this call back

func receivedProfiles(profiles: NSArray) {

AWLogDebug("SDK received Profiles!")

}

// Called when the SDK has locked

func lock() {

AWLogDebug("SDK locked!")

}

// Called when the SDK has unlocked

func unlock() {

AWLogDebug("SDK unlocked!")

}

// Called when the SDK has wiped all of its data; the application wipes any of its

application-specific data

func wipe() {

AWLogDebug("SDK started wiping application!")

}

// Called to alert the application to stop its network activity

func stopNetworkActivity(networkActivityStatus: AWNetworkActivityStatus) {

}

// Called to alert the application to resume its network activity

func resumeNetworkActivity() {

}

Required and Optional AWController Delegate Callback Methods
Add the required initial-check method and use optional delegate callback methods that are part of the AWController.

Chapter 3: SDK Setup

15

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

Add these optional methods after you install the SDK. See Install the AirWatch SDK for iOS (Swift) in a New Environment
on page 10 for details.

Delegate method Description

Required methods

controllerDidFinishInitialCheck
(Error error: NSError?)

Called once the SDK finishes its setup.

Optional methods

receivedProfiles(_ profiles:
NSArray)

Called when the configurations profiles are received from theWorkspace ONE UEM
console.

AWController or the parameter in this callback can now access the configurations
profiles.

wipe() Called when the SDK has wiped all of its data.

The application wipes any of its application specific data.

lock() Called when the SDK has locked, user will need to unlock with username/password,
passcode, touch-id in order to access application.

unlock() Called when the SDK has been unlocked by some form of acceptable authentication
(username/password, passcode, touch-id).

stopNetworkActivity(_
networkActivityStatus:
NetworkActivityStatus)

Called to alert the application to stop its network activity due to some restriction set
by the admin's policies such as cellular data connection disabled while roaming, if
airplanemode is switched on, SSID does not match what is on console, proxy failed,
etc.

resumeNetworkActivity() Called to alert the application to resume its network activity because it is now fine to
do so based on the device's current connectivity status and policies set by
administrator.

userChanged() Called when the currently logged in user has changed to alert the application of the
change.

didReceiveEnrollmentStatus(_
enrollmentStatus:
EnrollmentStatus)

Called when the SDK has received the enrollment status of this device from console.
The application can now query the SDK for the enrollment status using the
DeviceInformationController class after this point or use the EnrollmentStatus
parameter given in this delegate call.

Keychain Access Group Entitlements
Sign the application with the listed component to share data in a keychain access group and to use the AirWatch SDK
features.

Enable or Disable Keychain Sharing

Enable keychain sharing entitlements to sign applications with a keychain access group.

Disable keychain sharing to not share data and to sign the application with another string.

Chapter 3: SDK Setup

16

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

Format of Entitlements

The format for keychain access group entitlements are \accessGroupName. The group names are defined in a list and
multiple applications have the same AppIdentifierPrefix to share date.

The AppIdentifierPrefix string associates to the bundle ID of the application. For an application shares data, the
applications in the group must share the same keychain access group. You create the bundle ID in the Apple Developer
portal and you associate the bundle ID with a prefix or group.

Example

An application is signed with a specific string to share data when you enable or disable keychain sharing.

l App name - AirWatchSDKTestApp

l AppIdentifierPrefix - FZJQX8D5U8

l BundleID - com.MyCompany.AirWatchSDKTestApp

Keychain sharing enabled Application signed with the listed string

Yes With group names as AirWatchSDKTestAppAccessGroup1 and
AirWatchSDKTestAppAccessGroup2, the system signs the application with the prefix
string.

l FZJQX8D5U8.AirWatchSDKTestAppGroup1

l FZJQX8D5U8.AirWatchSDKTestAppGroup2

No The system signs the application with the bundle ID.

l FZJQX8D5U8.com.MyCompany.AirWatchSDKTestApp

For more information on the SDK and keychain enablement, see Troubleshoot Keychain Enablement on page 18. For the
procedure to enable keychain sharing for applications with the same prefix and keychain access groups, see Enable
Keychain Sharing for SDK Applications on page 17.

Enable Keychain Sharing for SDK Applications

Enable keychain sharing for SDK-built applications that already share the same AppIdentifierPrefix and the same keychain
access group. Perform this task in your Xcode project.

1. In Xcode, select your application’s target and go to Capabilities.

2. Go to Keychain Sharing and turn it on.

3. Select the plus icon (+) and name the group as awsdk.

Chapter 3: SDK Setup

17

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

4. Drag the new access group to the top of the list.

Troubleshoot Keychain Enablement

You must enable keychain sharing to use AirWatch SDK for iOS (Swift) features. View some common issues with setting
keychain sharing and their solutions.

Disabled Keychain Sharing

Symptom

The SDK cannot initialize because the keychain-saves cannot happen.

Fix

Enable keychain sharing by signing the application with the keychain access group.

Different AppIdentifierPrefix

Symptom

Applications in a keychain access group cannot share passcodes or data if they have different prefixes. The system treats
the different prefixes as separate clusters.

Fix

Edit the prefixes for applicable applications on the Apple Developer portal. However, before you change prefixes, ensure
you do not need the data stored with the older prefix. This older data is lost when the prefix changes.

Different Keychain Access Groups

Symptom

Applications with the same prefix cannot share passcodes or data if they are in different keychain access groups. The
system treats the different groups as separate clusters.

Fix

Ensure that the applicable keychain access groups have enabled keychain sharing.

Merging applications from different groups that use the same account and service names can result in data collisions.
Check for the listed situations to prevent collisions.

l The kSecAttrAccessGroup attribute is one of the required attribute that can uniquely identify the item stored or
retrieved from the keychain.

Chapter 3: SDK Setup

18

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

l All other attributes, for example kSecAttrAccount and kSecAttrService, that uniquely identify the item stored and
retrieved are the same.

l The kSecAttrAccessGroup attribute is not specified in the actual query to store and retrieve from the keychain.

More Information

For information on how to sign the application for keychain sharing, see Keychain Access Group Entitlements on page 16.
For the procedure to enable keychain sharing for applications with the same prefix and keychain access groups, see
Enable Keychain Sharing for SDK Applications on page 17.

See Apple documentation for more information on entitlements and keychains at the listed sites (as ofMarch 2018).

l https://developer.apple.com/library/content/technotes/tn2415/_index.html

l https://developer.apple.com/library/content/documentation/Security/Conceptual/keychainServConcepts/02conc
epts/concepts.html

Cluster Session Management and Reduced Flip Behavior for SSO in the
AirWatch SDK for iOS (Swift)
An application built with Swift that uses the SDK does only flips to retrieve account information. It does not flip to the
anchor application to retrieve data, like environment information, and to lock and unlock operations.

In the Objective-C SDK, applications needed to flip to the anchor application to retrieve environment information,
account details, and to perform all lock and unlock operations.

Cluster Session Management Explanation

The latest SDK for iOS (Swift) introduces a newmechanism using the shared keychain for SDK apps to communicate with
other SDK apps on the device. This approach provides benefits from both a security and a user experience perspective.

SDK applications built by the same developer account and that are also in the same keychain group or “cluster” can now
share an app passcode and an SSO session without requiring a flip to the Agent, Container, or Workspace ONE every time
authentication is required.

However, applications on the same device built by different keychain groups cannot take advantage of this passcode
sharing capability. There are some scenarios that still require a flip to the Agent or anchor app to obtain the server URL
and other setup information. This particular flip should only occur once per cluster of applications.

Entries to Set in the AWSDKDefaultSettings.plist
Use entries in the AWSDKDefaultSettings.plist to customize the application with AirWatch SDK for iOS (Swift) features.
Many of these entries require you to configure their counterparts in the SDK default settings and policies section of the
Workspace ONE UEM console.

Create the AWSDKDefaultSettings.plist

1. Create a bundle named AWSDKDefaults.

2. Create a PLIST named AWSDKDefaultSettings.plist and put it in the AWSDKDefaults bundle.

Chapter 3: SDK Setup

19

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

https://developer.apple.com/library/content/technotes/tn2415/_index.html
https://developer.apple.com/library/content/documentation/Security/Conceptual/keychainServConcepts/02concepts/concepts.html
https://developer.apple.com/library/content/documentation/Security/Conceptual/keychainServConcepts/02concepts/concepts.html

Branding, Available Entries

Use the available entries, with the following structure, to add functionality to the application.

l Root (Dictionary)

o Branding (Dictionary)

n Colors (Dictionary)

n EnableBranding (Boolean = YES)

n PrimaryHighlight (Dictionary)

n Red (Number = 238)

n Green (Number = 139)

n Blue (Number = 48)

n Alpha (Number = 255)

n AppLogo_1x (String = logoFileName)

n AppLogo_2x (String = logoFileName)

n SplashLogo_1x (String = splashLogoFileName)

n SplashLogo_2x (String = splashLogoFileName)

QR Scan

IncludeNSCameraUsageDescription in the application info.plist file to enable the SDK to scan QR codes with the device
camera.

Provide a description that devices prompt users to allow the application to enable this feature.

FaceID

IncludeNSFaceIDUsageDescription in the application info.plist file to enable the SDK to use FaceID.

Provide a description that devices prompt users to allow the application to enable this feature. Consider controlling the
message users read. If you do not include a description, the iOS system prompts users with nativemessages that might
not align with the capabilities of the application.

Test the Integration and Functions of Applications
It is important to test the integration of your application with the AirWatch SDK , including the delivery of profiles from
theWorkspace ONE UEM console to your application.

Initialize the SDK in your application to set communication with theWorkspace ONE UEM server and test the application.

1. Enroll your test device.

Enroll devices to theWorkspace ONE UEM console to enable communication between them.

The SDK does not currently support testing in a simulator.

Chapter 3: SDK Setup

20

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

2. Upload the SDK-built app or a placeholder application that has the same bundle ID as the testing application.

Create an empty application with the bundle ID of the testing-application to identify the application. Upload the
empty application to the console and assign a default or custom SDK profile to it.

3. Assign an SDK profile to the application.

If you do not assign a profile, the SDK does not initialize correctly.

This step enables the console to send commands to the application with the record.

4. Push the application to test devices.

You save the application and assign it using the flexible deployment feature. Flexible deployment rules push the
application to test devices with the app catalog. Use devices for testing that areWorkspace ONE UEM managed
devices.

You do not have to repush the application every time you make a change.

5. Run your application in Xcode.

Run your application in Xcode. The console pushes the initialization data to the application when the application
installs on test devices. After the application initializes, you can run the application as many times as you want to
debug it.

Chapter 3: SDK Setup

21

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

Chapter 4:
SDK Capabilities
Customize your application by adding SDK functions. These functions can require a combination of console settings and
code or just one of these components depending if theWorkspace ONE UEM system handles capabilities in the backend.

Required Capabilities
You must set application configuration to enable or disable features that pertain to iOS or the AirWatch SDK . See Enable
SDK Feature Flags on page 26 for more information.

For a table that briefly identifies what to set, console and application, for your application to use SDK capabilities, see SDK
Capabilities Quick Reference, Code and Console on page 24.

Authentication Capabilities
Use authentication types, single sign on, and integrated authentication to design how users access the SDK-built
application.

Authentication

Set access to your application with the authentication type function. Use a local passcode, Workspace ONE UEM
credentials, or require no authentication. For descriptions of these settings found in the console, see Authentication
Type Function Description on page 27.

Read how the system allows access to the application when you enable or disable single sign on in Authentication Type
and SSO Setting Behaviors on page 27.

For information on how to update Active Directory credentials for the AirWatch SDK in the application, see
Authentication and Changes to Active Directory Passwords on page 27.

Single Sign On

Workspace ONE UEM allows access to applications with single sign on enabled in two phases. Workspace ONE UEM
checks the identity of the application user and then it secures access to the application. See SSO Configurations and
System Login Behavior for iOS Applications on page 28 for an explanation.

22

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

Read how the system allows access to the application when you enable or disable single sign on in Authentication Type
and SSO Setting Behaviors on page 27.

Integrated Authentication

Ensure your application development includes the requirements in Requirements for Integrated Authentication on page
31 so that integrated authentication works.

Review a list of available methods to use for challenges in your integrated authentication module in Integrated
Authentication and the Challenge Handler on page 30.

Query and Update Capabilities
Use theDeviceInformationController singleton class to query devices for mobile devicemanagement (MDM)
information. See Query Devices for MDM Information with DeviceInformationController on page 43 for more
information.

The Beacon is a regular update sent from the AirWatch SDK for iOS to theWorkspace ONE UEM console. The SDK sends
this data every time it is unlocked. You can also force the beacon when you want data. For information on what data is
included in the beacon and how to manually send it, see Beacon Data Sent Upon Application Unlock or Sent Manually on
page 40.

Data Loss Prevention Capabilities
The data loss prevention (DLP) function to prevent copy and paste actions requires a setting in theWorkspace ONE UEM
console and added values to the AWSDKDefaultSettings.plist. See Use DLP to Control the Copy and Paste of Data Out
and Into Your SDK-Built Application on page 33 for information.

Configure applications built with the AirWatch SDK to open in the VMware Browser and to compose emails in VMware
Boxer or VMware Inbox. See Use DLP to Control Links to Open in VMware Browser, VMware Boxer, or VMware Inbox on
page 35.

Other SDK Profile Capabilities
The event analytics function requires enabling analytics in theWorkspace ONE UEM console and setting up the
DataSampler module to report the analytics. For information on where to turn the feature on and off, see Set Up the
DataSampler Module for Analytics on page 37.

Use the branding function to add logos and primary highlights to your application to customize the look of the
application. For more information on the AppLogo and the SplashLogo options, see Use Branding to Add Logos and
Primary Highlight Colors on page 38.

Workspace ONE UEM detects jailbroken devices and can wipe compromised devices if enabled in theWorkspace ONE
UEM console. Check the compromised status of devices with the information in Check the Compromised Status of
Devices with Compromised Protection on page 42.

The SDK allows you to define your own custom settings for your application using an SDK profile. See Custom Settings for
the SDK on page 43.

A geofence limits the use of devices to specific areas including corporate offices, school buildings, and retail department
stores. For information on the use of this feature in your application, see Geofence Capabilities on page 43.

Chapter 4: SDK Capabilities

23

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

The logging module enables the discovery of bugs or issues when the application is deployed to users. Read Logging
Capabilities on page 44 for information.

The offline access function allows access to the application when the device is not communicating with the network. It
also allows access to Workspace ONE UEM applications that use the SSO feature while the device is offline. See Offline
Access on page 44 for information.

Use basic encrypt and decrypt methods and the SDK's internal encryption keys on raw data. See Encrypt Data on Devices
on page 45 for information.

SDK Capabilities Quick Reference, Code and Console
View if an SDK capability needs both code and console settings, or just one of the two.

Code and Console Support

SDK Capability Add Code (Beyond AWController) Set in the Console

Force Token
For App
Authentication

No Yes

Enable

This setting controls how the system allows users to access
SDK-built applications, either initially or through a forgot-
passcode procedure. When enabled, the system forces the
user to generate an application token through the Self-
Service Portal (SSP) and does not allow username and
password.

Authentication Yes

Use SDK helper classes.

Yes

l Enable

l Set a type

SSO Yes

Enable keychain sharing.

Yes

Enable

Integrated
authentication

Yes

Use the challenge handler.

Yes

l Enable

l Enter allowed sites

l Set an authentication option

Chapter 4: SDK Capabilities

24

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

SDK Capability Add Code (Beyond AWController) Set in the Console

App tunnel No Yes

l Enable

l Select a mode

o Configure the proxy components of the VMware
Tunnel.

o If not using VMware Tunnel, ensure the
integration of the selected proxy with your
Workspace ONE UEM deployment.

Data loss
prevention
(DLP)

Yes

l Set the AWSDKDefault bundle and
the AWSDKDefaultSettings.plist.

l To use the third party keyboards
feature, implement the
shouldAllowExtensionPointIdentifier
API in the UIApplicationDelegate.

Yes

l Enable

l Set the supported restriction

Analytics Yes

l Set the AWDataSampler.

l Set the AnalyticsHelper.

l Decide to use the SDK or the
AirWatch Agent for telecom data.

Yes

l Enable

l Set privacy if setting do not disturb

Branding Yes

Add values to the
AWSDKDefaultSettings.plist.

Yes

l Enable

l Set colors

l Upload images

Sample data
and MDM
information

Yes

l Use the beacon.

The SDK automatically sends the
beacon but you can manually send
the beacon when desired.

l Query the
DeviceInformationController
singleton class.

No

Chapter 4: SDK Capabilities

25

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

SDK Capability Add Code (Beyond AWController) Set in the Console

Compromised
protection

No

Use code to check the status of devices
with the application.

Yes

Enable

Custom
settings

Yes

Use the AWCustomPayload object.

Yes

l Enable

l Enter code

Geofencing No

Devices must use location services and
have GPS.

Yes

l Enable

l Set the area

Logging Yes

Add APIs for logging. See the sample
applications for examples.

Yes

l Enable

l Set the level

l Set wi-fi

Offline access No Yes

l Enable

l Set time allowed to be offline

Encryption Yes

Usemethods in the AWController to
encrypt and decrypt data.

No

However, the strength of the encryption is dependent on
the authentication method set in theWorkspace ONE UEM
console.

Enable SDK Feature Flags
Enable or disable features that pertain to iOS or the AirWatch SDK. You must add a bundle and PLIST to allow
configuration.

To use this feature, modify a value in a PLIST file and configure the feature in the console. The SDK handles all the logic for
capabilities like data loss prevention (DLP), branding, and swizzling calls.

Set Up the Bundle and the PLIST

1. Create a bundle named AWSDKDefaults.

If iOS does not offer a non-unit testing bundle, add a macOS bundle and modify its build setting as an iOS
compatible. To do this, modify the BaseSDK to iOS.

2. Add bundle to the Bundle Resources of your application.

3. Create a PLIST named AWSDKDefaultSettings.plist and place it into the AWSDKDefaults bundle.

Chapter 4: SDK Capabilities

26

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

Authentication Type Function Description
Set access to your application with the authentication type function. Use a local passcode, Workspace ONE UEM
credentials, or require no authentication.

Select an authentication type in theWorkspace ONE UEM console and use the provided SDK helper classes in your
application.

Setting Description

Passcode Designates a local passcode requirement for the application.

Device users set their passcode on devices at the application level when
they first access the application.

Username and
Password

Requires users to authenticate to the application with their Workspace
ONE UEM credentials.

Disabled Requires no authentication to access the application.

Authentication Type and SSO Setting Behaviors

You can use keychain sharing, the authentication type, and the single sign-on (SSO) option to make access to your
application persistent.

Keychain Access Group Required

You must have a shared space, a keychain access group, so that applications signed in the correct format can share
keychain entries. See Keychain Access Group Entitlements on page 16 for information on the signing format. See
Troubleshoot Keychain Enablement on page 18 for common issues with keychain sharing.

Enable Authentication Type and SSO

If you enable both authentication type and SSO, then users enter either their passcode or credentials once. They do not
have to reenter them until the SSO session ends.

Enable Authentication Type Without SSO

If you enable an authentication type without SSO, then users must enter a separate passcode or credentials for each
individual application.

Authentication and Changes to Active Directory Passwords

Use an API to update the AirWatch SDKfor iOS (Swift) credentials when the credentials change.

If an Active Directory (AD) password changes and becomes out of sync with the object account of the SDK, use an API to
update the SDK credentials.

/// Swift

AWController.clientInstance().updateUserCredentials(with: { (success, error) in {

///insert completion handler code here

}

Find the new credentials in the SDK account object after the callback successfully returns.

Chapter 4: SDK Capabilities

27

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

SSO Configurations and System Login Behavior for iOS Applications
Workspace ONE UEM allows access to iOS applications with single sign on enabled in two phases. Workspace ONE UEM
checks the identity of the application user and then it secures access to the application.

Requirements for Use in Applications that Use SDK Functions

To use the SSO function, ensure these components are set.

l Enable the SSO setting in the SDK default settings and policies in theWorkspace ONE UEM console.

l Initialize the SDK in the AppDelegate.

l Ensure an anchor application is on devices like the AirWatch Agent or Workspace ONE. The anchor application
deployment is part of theWorkspace ONE UEM mobile devicemanagement system.

Query the Current SSO Status

To query the SSO status of the iOS application, wait for the controllerDidFinishInitialCheckmethod to finish. Look in the
DeviceInformationController class for the ssoStatus property. If the controllerDidFinishInitialCheckmethod is not
finished, the SSO status returns as SSO disabled.

Application Access With SSO Enabled

The authentication process to an application with Workspace ONE UEM SSO enabled follows the general process.

Access Phase User Actions Authentication Method

Identify for app access Install app

Log in to app l Silent login (managed MDM token)

l Authenticate (username and password, token, or SAML)

Secure persistent app access Successfully log in

Access app Recurring authentication

l Passcode

l Username and password

l Disabled

The first phase ensures that the user's credentials are valid. The system identifies the user first by silent login. If the silent
login process fails, then the system uses a configured, authentication system. Workspace ONE UEM supports username
and password, token, and SAML.

The second phase grants the user access to the application and keeps the session live with a recurring authentication
process. Workspace ONE UEM supports passcode, username and password, and no authentication (disabled).

Chapter 4: SDK Capabilities

28

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

Authentication Behavior By SSO Configuration

The SSO configuration controls the login behavior users experience when they access applications. The authentication
setting and the SSO setting affect the experience of accessing the application.

Authentication phase SSO enabled SSO disabled

Passcode

Identify Silent login: The system registers credentials
with themanaged token for MDM.

If silent login fails, the system moves to the
next identification process.

Authenticate: The system identifies
credentials against a common authentication
system (username and password, token, and
SAML).

Silent login: The system registers credentials
with themanaged token for MDM.

If silent login fails, the system moves to the
next identification process.

Authenticate: The system identifies
credentials against a common authentication
system (username and password, token, and
SAML).

Secure Prompt if passcode exists: The system does
not prompt for the passcode if the session
instance is live.

Prompt if passcode does not exist: The
system prompts users to create a passcode.

Session shared: The system shares the
session instance across applications
configured with Workspace ONE UEM SSO
enabled.

Prompt if passcode exists: The system
prompts users the application passcodes.

Prompt if passcode does not exist: The
system prompts users to create a passcode.

Session not shared: The system does not
share the session or the passcode with other
applications.

Username and password

Identify Silent login: The system registers credentials
with themanaged token for MDM.

If silent login fails, the system moves to the
next identification process.

Authenticate: The system identifies
credentials against a common authentication
system (username and password, token, and
SAML).

Silent login: The system registers credentials
with themanaged token for MDM.

If silent login fails, the system moves to the
next identification process.

Authenticate: The system prompts for
application login credentials.

Secure Prompt: The system does not prompt for the
login credentials if the session instance is live.

Session shared: The system shares the
session instance across applications
configured with Workspace ONE UEM SSO
enabled.

Prompt: The system prompts for the login
credentials for the application on every access
attempt.

Session not shared: The system does not
share the session with other applications.

Disabled

Chapter 4: SDK Capabilities

29

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

Authentication phase SSO enabled SSO disabled

Identify Silent login: The system registers credentials
with themanaged token for MDM.

If silent login fails, the system moves to the
next identification process.

Authenticate: The system identifies
credentials against a common authentication
system (username and password, token, and
SAML).

Silent login: The system registers credentials
with themanaged token for MDM.

If silent login fails, the system moves to the
next identification process.

Authenticate: The system prompts for
application login credentials.

Secure Prompt: The system does not prompt users
for authentication.

Prompt: The system does not prompt users
for authentication.

Integrated Authentication and the Challenge Handler
Use integrated authentication to pass single sign on (SSO) credentials or certificates to use to authenticate to web sites
like content repositories and wikis. Set the function in theWorkspace ONE UEM console and add a list of allowed sites.
Then use the challenge handler in your application to handle incoming authentication challenges.

See Configure Integrated Authentication for the Default SDK Profile for information on setting integrated authentication
in theWorkspace ONE UEM console.

Challenge Handler Methods for Challenges

Find the challenge handler in the AWController class of the SDK. Inside the AWController, use the listed methods to
handle an incoming authentication challenge for connections madewith NSURLConnection and NSURLSession.

Chapter 4: SDK Capabilities

30

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

Method Description

func canHandle(_ protectionSpace: URLProtectionSpace,
withError error: Error?) -> Bool

Checks that the AirWatch SDK can handle this type of
authentication challenge. The SDK makes several checks
to determine that it can handle challenges.

1. Is theWeb site challenging for authentication on the
list of allowed sites in the SDK profile?

2. Is the challenge one of the supported types?

l Basic

l NTLM

l Client certificate

3. Does the SDK have a set of credentials to respond?

l Certificate

l User name and password

If all three of the criteria aremet, then this method
returns YES.

The SDK does not handle server trust, so your application
must handleNSURLAuthenticationMethodServerTrust.

func handleChallenge(forURLSessionChallenge challenge:
URLAuthenticationChallenge, completionHandler:
@escaping (_ disposition:
URLSession.AuthChallengeDisposition, _ credential:
URLCredential) -> Void) -> Bool

Responds to the actual authentication challenge from a
network call made using NSURLSession.

This method is the same as the handleChallengemethod,
except the system uses this method with calls made with
NSURLSession. This call involves using a completion block
to handle authentication challenges.

Requirements for Integrated Authentication

Ensure to set the listed configurations so that integrated authentication works.

l The URL of the requested web site must match an entry in your list ofAllowed Sites.

l The system must make the network call so that the process provides an NSURLAuthenticationChallenge object.

l The web site must return a 401 status code that requests authentication with one of the listed authentication
methods.

o NSURLAuthenticationMethodBasic

o NSURLAuthenticationMethodNTLM

o NSURLAuthenticationMethodClientCertificate

Chapter 4: SDK Capabilities

31

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

l The challenge handler can only use the enrollment credentials of the user when attempting to authenticate with a
web site. If a web site requires a domain to log in, for example ACME\jdoe, and users enrolled with a basic user
name, like jdoe, then the authentication fails.

l For applications using WebView, use SDK's handleChallengemethod in the URLSession's challenge handler. Display
the response on a UIWebView or aWKWebView. Do not use the SDK's handleChallengemethod directly inside
WKWebView's challenge handler.

VMware Tunnel for App Tunneling by Proxy Components
The proxy components of the VMware Tunnel provides a securemethod for individual applications that use the AirWatch
SDK to access corporate resources.

The SDK for iOS (Swift) provides app tunneling without adding code to the application. However, you need to configure
app tunneling in theWorkspace ONE UEM console.

Configure App Tunneling and Split Tunneling

To configure app tunneling in the console, use the VMware Tunnel settings.

1. Navigate to Groups & Settings > All Settings > Settings & Policies > Security Policies > AirWatch App Tunnel.

2. Enable the setting.

3. Select an app tunnel mode.

Select VMware Tunnel - Proxy if your company has this configured.

4. In the App Tunnel URLs field, enter the URLs that you do not want to tunnel.

l Enter no URLs and every URL goes through the VMware Tunnel.

l Enter one or more URLs and the system splits the traffic. This configures split tunneling. The system does not
send the URLs entered in this field through the VMware Tunnel. The system does send all other URLs through t
he VMware Tunnel.

VMware Tunnel Proxy Documentation

The Tunnel proxy component uses HTTPS tunneling to use a single port to filter traffic through an encrypted HTTPS
tunnel for connecting to internal sites such as SharePoint or a wiki.

For more information about Tunnel proxy components, see theWorkspace ONE UEM console Online Help topic Proxy
(SDK/Browser) Architecture and Security.

App Tunneling Known Limitations and Other Considerations

Due to platform and other technical limitations, only network traffic made from certain network classes can tunnel.
Consider the purpose of the listed classes and review their known limitations.

l NSURLConnection – Calls made with NSURLConnection tunnel. There is one exception to this behavior. If calls are
made synchronously on themain thread, they do not tunnel.

Chapter 4: SDK Capabilities

32

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

l NSURLSession – Calls made using NSURLSession tunnel only on iOS 8+ devices and depending on the configuration
used. Default and ephemeral configuration types tunnel. However, background configuration types do not tunnel.

l CFNetwork –Most calls made using CFNetwork tunnel. However, CFSocketStream do not tunnel.

l URLs that contain .local – Requests with URLs containing .local do not tunnel. Various Apple services on the device
use this .local string pattern. The SDK does not tunnel these requests through the VMware Tunnel to avoid
interfering with these services.

l WKWebView - Requests made with WKWebView do not tunnel so useUIWebView.

Use DLP to Control the Copy and Paste of Data Out and Into Your SDK-Built
Application
Control the copy and paste interaction between your SDK-built applications and non-SDK-built applications. Use the two
settings Enable Copy and Paste Out and Enable Copy and Paste Into.

Behavior

l Enable Copy and Paste Out -When you set Enable Copy and Paste Out to No, you can only paste copied data from
your SDK-built application out to other SDK-built applications.

l Enable Copy and Paste Into -When you set Enable Copy and Paste Into to No, you can only paste copied data from
other SDK-built applications into your SDK-built application.

Initial Set Up of the Bundle and PLIST

To add this functionality, create a bundle and PLIST file, locally, and set the keys and values.

1. Create a bundle named AWSDKDefaults.

2. Create a PLIST named AWSDKDefaultSettings.plist and put it in the AWSDKDefaults bundle.

3. In the PLIST, create a Boolean named AWClipboardEnabled and set it to YES.

After you add the local flag, and your admin sets the default or custom SDK policies for these features in the console, the
SDK enforces the restriction. It enforces it across your application’s user interfaces that use cut, copy, and paste in the
listed classes and subclasses.

l UITextField

l UITextView

l UIWebView

l WKWebView

Considerations and Limitations

There are specific limitations with certain UI classes.

UIWebView and WKWebView

You cannot copy Images in DOC and PDF files loaded in UIWebView orWKWebView due to a technical limitation.

Chapter 4: SDK Capabilities

33

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

Out of Process Classes

The SDK does not support copy-out and copy-in restrictions in views that are out of process. For example, the feature
does not work in the listed views, and this list is not exhaustive.

l SFSafariViewController

l UIDocumentInteractionViewController

l QLPreviewController

Other Limitations

l Two sets of SDK-built applications that have different SSO settings (for example, one is set with SSO on and another
with SSO off) cannot share the pasteboard.

l You cannot copy from an application which has no restriction (Enable Copy and Paste Out set to Yes) and paste that
content into a restricted application (Enable Copy and Paste Into set to No).

l You cannot share a pasteboard between two or more sets of applications that are in different keychain groups.

For example, AirWatch productivity applications and custom SDK-built applications cannot share the clipboard.
However, multiple custom SDK-built applications from the same developer that are in the same keychain group can
share the clipboard.

Behavior of the Third-Party Keyboard Restriction
Run the third-party keyboard restriction by starting the AWController and configuring the data loss prevention setting in
theWorkspace ONE UEM console. This feature does not require additional code after initializing the AWController.

Request your Workspace ONE UEM admin to configure the data loss prevention (DLP)menu item. Find the console
settings in Groups & Settings > All Settings > Apps > Settings and Policies > Security Policies > Data Loss Prevention >
Enable Third Party Keyboards.

When this feature is set to No, any third party keyboards used in the application are automatically replaced with the
native system keyboard.

Developer Considerations

SDK Behaves According to the Most Restrictive Implementation

If your application's code overrides the shouldAllowExtensionPointIdentifier delegatemethod, the SDK honors the
more restrictive implementation.

For example, if the SDK setting allows third party keyboards but your application forcibly returns no to disallow custom
keyboards, then custom keyboards are disallowed in the application. If the SDK setting does not allow third party
keyboards then the third party keyboard is not allowed regardless of your applications implementation of themethod.

Data Loss

Prevention

Setting

Enable Third Party

Keyboard Setting

Is shouldAllowExxtensionPointIdentifier

Implemented in the Application

Keyboard

Behavior

Disabled NA Implemented Third party keyboards behave
depending on the implementation of
the delegatemethod.

Chapter 4: SDK Capabilities

34

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

Data Loss

Prevention

Setting

Enable Third Party

Keyboard Setting

Is shouldAllowExxtensionPointIdentifier

Implemented in the Application

Keyboard

Behavior

Enabled Set to No. Implementation does not matter. Third party keyboards are not available.

Enabled Set to Yes. Implemented Third party keyboards are available.

Enabled Set to Yes. Implemented and returns yes. Third party keyboards are available.

Enabled Set to Yes. Implemented and returns no. Third party keyboards are not available.

Run the Application to See Expected Behaviors

When the Enable Third Party Keyboard setting is configured in the console, the SDK does not enforce the restriction
until the next time the user runs the application after the application retrieves the new SDK profile.

Use DLP to Control Links to Open in VMware Browser, VMware Boxer, or
VMware Inbox
Configure applications built with the AirWatch SDK to open in the VMware Browser and to compose emails in VMware
Boxer or VMware Inbox. This feature enables end users to use alternative systems other than Safari and theMail app. To
develop this feature, create a bundle in your iOS application and configureWorkspace ONE UEM to enforce the behaviors
in the bundle.

Configure both systems, the browser and email systems, for this feature to work. Perform the procedures in the listed
order.

1. Initial Set Up of the Bundle and PLIST

2. Enable Links for Browser

3. Enable Links for Inbox

4. Contain Data to Browser and Inbox

Initial Set Up of the Bundle and PLIST

Perform these steps before you enable any links. Use this bundle and PLIST for both HTTP/HTTPS links and MAILTO links.

1. Create a bundle named AWSDKDefaults.

2. Create a PLIST named AWSDKDefaultSettings.plist and put it in the AWSDKDefaults bundle.

Enable Links for Browser

To enable the application to open HTTP / HTTPS links in the VMware Browser, enable a few dictionary and PLIST flags.

1. Work in the AWSDKDefaults bundle.

2. Create a dictionary named AWURLSchemeConfiguration and put it in the
AWSDKDefaultSettings.plist.

Chapter 4: SDK Capabilities

35

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

3. Inside the AWURLSchemeConfiguration dictionary, create a newBoolean entry with the key name enabled
and set the Boolean value to Yes.

If you set the Boolean value to No, then the HTTP and HTTPS links open in Safari. If set to Yes, then your SDK app
opens in VMware Browser.

Enable Links for Boxer or Inbox

To enable the application to open MAILTO links in Boxer or Inbox, enable a few dictionary and PLIST flags.

1. Work in the AWSDKDefaults bundle.

2. Create a dictionary named AWMaitoSchemeConfiguration and put it in the
AWSDKDefaultSettings.plist.

3. Configure the AWMailtoSchemeConfiguration dictionary, create a newBoolean entry with the key name as
enabled and set the Boolean value to Yes.

If you set the Boolean value as No, then MAILTO links open in the nativemail. If set to Yes, then your SDK app looks
to see if you enabled data loss prevention in the SDK profile.

l DLP Enabled – The app opens in Boxer or Inbox.

l DLP Disabled – The app opens in the iOS Mail app.

Contain Data to Browser and Inbox

Use the data loss prevention, DLP, settings in theWorkspace ONE UEM default SDK profile to enforce the application to
use VMware Browser and VMware Boxer or VMware Inbox.

If you do not enable data loss prevention in the SDK policy, the application opens links in Safari and composes email in
the iOS Mail app.

1. Navigate to Groups & Settings > All Settings > Apps > Settings and Policies > Security Policies.

2. Select Enabled for Data Loss Prevention.

3. Disable the Enable Composing Email check box for theMAILTO links. If you do not disable this option, the
application opens from theMail app and not from Inbox.

Limitation With MFMailComposeViewController

If you use the MFMailComposeViewController scheme in your MessageUI framework, this functionality is not
supported. The system cannot specify how end users access your application when it is an attachment in an email. End-
users access the application with theMail app and not Inbox.

SupportInformationController

The SupportInformationController class allows you to query for the email address and telephone numbers for
contacting enrollment support which you can display on the application UI.

Chapter 4: SDK Capabilities

36

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

Set Up the DataSampler Module for Analytics
The DataSampler module samples detailed device data and reports it back to theWorkspace ONE UEM console. Device
details such as analytics, call logs, GPS location, and network adapters are all sampled with the DataSampler.

Important: For GPS sampling to function, ensure your application supports location tracking. For more information,
see Apple's documentation at https://developer.apple.com/documentation/corelocation.

The DataSampler samples and transmits on two different time intervals. Device samples remain on to the disk and the
system removes them after transmitted. This process allows the developer to sample statistics multiple times before
sending them to Workspace ONE UEM. Samples stored on the disk are useful when a device does not have network
connectivity.

AWDataSampler is a singleton object. There can only be one DataSampler for each process.

Configuration

These parameters are required to set up a DataSampler.

l sampleModules – Names the bitmask whose flags specify which modules to use.

l defaultSampleInterval – Specifies the time in seconds between DataSampler samples for all modules by default.

l defaultTransmitInterval – Specifies the time in seconds between DataSampler transmissions for all modules by
default.

l traceLevel – Determines the error and information logging level of the DataSampler module when it is running.

Modules Available for Sampling

Thesemodules are available for sampling in the DataSampler.

l AWDataSamplerModuleSystem

l AWDataSamplerModuleAnalytics

l AWDataSamplerModuleGPS

l AWDataSamplerModuleNetworkData

l AWDataSamplerModuleNetworkAdapter

l AWDataSamplerModuleWLAN2Sample

Gather Telecom Data

Disable the AWDataSamplerModuleNetworkDatamask if you gather telecom data using the AirWatch Agent. If you
enable this mask for the SDK, then you receive duplicate data from the Agent and from the SDK.

Set Do Not Disturb

You can use the SDK to set the do-not-disturb (DND) status on theWorkspace ONE UEM server. You must enable the
DND policy in theWorkspace ONE UEM console. You can find the policy at Groups & Settings > All Settings > Devices &
Users > General > Privacy > DO NOT DISTURB section.

Chapter 4: SDK Capabilities

37

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

https://developer.apple.com/documentation/corelocation

The two relevant methods are fetchDeviceDNDStatus and setDeviceDNDStatus found in the AWDeviceDNDStatus
object.

AnalyticsHelper

The AnalyticsHelper is a singleton with a property and a function. Send your custom analytics event from your
application to the console with this process.

1. Ask your admin to enable the Analytics setting in the SDK profile for the SDK-built application. This setting is in the
console at Groups & Settings > All Settings > Apps > Settings and Policies > Settings > Analytics.

2. In the application, call the recordEventmethod on the singleton after the controllerDidFinishInitialCheck delegate
callback returns.

func sendAnalytics() {

let analytics = AnalyticsHandler.sharedInstance

analytics.recordEvent(AWSDK.AnalyticsEvent.customEvent, eventName: "EVENT_NAME",

eventValue: "EVENT_VALUE", valueType: AWSDK.AnalyticsEventValueType.string)

}

After the system records the event, it saves the event in the SDK container for two hours. After the two hours passes, the
SDK sends analytics recorded to disk to the console the application re-starts.

Locate the data in the console in Apps & Books > Applications > Logging > SDK Analytics.

Use Branding to Add Logos and Primary Highlight Colors
Use the branding function to add logos and primary highlights to your application to customize the look of the
application.

Branding by Organization Group

Many organizations brand applications according to the applications assigned organization group in theWorkspace ONE
UEM console. This technique is useful for updating the branding elements inline for time-sensitive events or marketing
initiatives.

Access Branding Settings in the SDK

To download and access the branding profile, have yourWorkspace ONE UEM admin set the branding items in the
default SDK profile in the console. Next, the admin uploads the SDK-built application to the console and applies the
default SDK profile to the application.

After the admin publishes the SDK-built application, you can access the branding scheme by calling the
controllerDidReceive(profiles: [Profile]) function in the application with the listed API.

let brandingPayload = AWController.clientInstance().sdkProfile()?.BrandingPayload

Chapter 4: SDK Capabilities

38

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

The branding profile is downloaded and available once the controllerDidReceive(profiles: [Profile]) function is called.
Within the branding profile it is possible to view the raw values set in the console.

The values in AWBranding become set once the controllerDidFinishInitialCheck runs. If a value is not set in the console,
then the system returns nil.

Note: To apply your branding code changes (or any code changes), the admin must re-upload the application to the
console and assign the default SDK profile to it. After they publish the SDK-built application again, you can see your
branding scheme.

Add Values to AWSDKDefaultSettings.plist

You can add a primary highlight color to brand the buttons on the authenication screen. You can also add two company
logos (AppLogo and SplashLogo) within the Branding dictionary inside your AWSDKDefaultSettings.plist.

AppLogo

The SDK puts the AppLogo on all of the authentication screens.

SplashLogo

The SDK puts the SplashLogo on the loading screen and on the second application login screen.

Chapter 4: SDK Capabilities

39

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

Available Branding Entries in the AWSDKDefaultSettings.plist

Entry Type

Branding Dictionary

Colors Dictionary

PrimaryHighlight String

AppLogo_1x String

AppLogo_2x String

SplashLogo_1x String

SplashLogo_2x String

Beacon Data Sent Upon Application Unlock or Sent Manually
The beacon is a regular update sent from the AirWatch SDK for iOS to theWorkspace ONE UEM console. The SDK sends
this data every time it is unlocked. You can also force the beacon when you want data.

Chapter 4: SDK Capabilities

40

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

Beacon Location Configuration

To take advantage of the location functionality of the beacon, the host application registers itself as needing location
updates in the background.

In the info.plist file, set theUIBackgroundModes array with a value configured as location.

Beacon Update Contents

The beacon update contains the listed information.

Type of Information Data

General l Device name

l Organizational group

l Application bundle identifier

Platform l Device operating system (Apple, iOS)

l Device operating system version

User l User email

l User full name

l User display name

Enrollment l Device enrolled

l Device unenrolled

l Device wipe pending

Compliance l Device compliance

l Application compliance

Send the Beacon Manually

Use an API to send the beacon manually.

let beaconTransmitter = SDKBeaconTransmitter.sharedTransmitter()

//To send immediately

beaconTransmitter.sendDeviceStatusBeacon(completion: SendBeaconCompletion?)

beaconTransmitter.sendBeacon(updatedAPNSToken: String, completion: SendBeaconCompletion?)

//To start a schedule of how frequenlty to send (If given time interval is less than 60, frequency

will default to 60)

public func startSendingDeviceStatusBeacon(transmitFrequency: TimeInterval = 60)

Chapter 4: SDK Capabilities

41

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

//To stop the sending the scheduled beacon

public func stopSendingDeviceStatusBeacon()

Certificate Pinning
Use certificate pinning to help prevent man-in-the-middle (MITM) attacks by enabling an additional layer of trust
between listed hosts and devices.

Certificate pinning requires no code. In theWorkspace ONE UEM console, enable SSL pinning and upload your certificate.

For information on SSL Pinning, see theWorkspace ONE UEM Online Help topic System / Security / SSL Pinning.

For information on certificates, see theWorkspace ONE UEM Online Help topic Supported Certificate Authorities.

Check the Compromised Status of Devices with Compromised Protection
Workspace ONE UEM detects jailbroken devices and can wipe compromised devices if enabled in theWorkspace ONE
UEM console.

Compromised protection requires no code unless you want to manually check the status of the device.

Check Compromised Protection Status

To check the status of a device directly in your application, whether the device is online or offline, call the
isCurrentDeviceCompromised() API from theDeviceInformationController singleton class.

//Swift

let deviceInfoController = DeviceInformationController.sharedController()

let compromisedStatus = deviceInfoController.isCurrentDeviceCompromised()

if compromisedStatus == true {

AWLogDebug("My device is jailbroken!")

}

Compliance and Compromised Protection

Compromised protection is a feature that allows the developer to check the SSO status and the jailbreak status.

Manually Checking for the Compromised Status of the Device

You can check the compromised status of the device directly in your application by calling the
isCurrentDeviceCompromised() API from theDeviceInformationController singleton.

let deviceInfoController = DeviceInformationController.sharedController()

let compromisedStatus = deviceInfoController.isCurrentDeviceCompromised()

if compromisedStatus == true {

Chapter 4: SDK Capabilities

42

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

AWLogInfo("My device is jailbroken! Oh no!")

}

Custom Settings for the SDK
The SDK allows you to define your own custom settings for your application using an SDK profile.

You can paste raw text in the custom settings section, and the SDK makes this content available inside the application
using the AWCustomPayload object.

You can define an XML, JSON, key-value pairs, CSV, or plain text for your settings. Parse the raw text in the application
once it is received.

Query Devices for MDM Information with DeviceInformationController
Use theDeviceInformationController singleton class to query devices for mobile devicemanagement (MDM)
information.

The class returns the listed MDM information.

l Enrollment status

l Compliance status

l Managed status

l Management type

l Organizational group name

l Organizational group ID

l Device services URL

l Single sign on status

l Compromised status

Requery Method

Themethod queries the console, and the console sends a query command to the device to collect certain types of device
information.

Geofence Capabilities
A geofence limits the use of devices to specific areas including corporate offices, school buildings, and retail department
stores. Geofence settings are configured within the SDK profile and do not require code.

See Geofences for details on how to set Geofences, and see Configure Geofencing for the Default SDK Profile for details on
enabling it for the default SDK profile.

Chapter 4: SDK Capabilities

43

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

The feature works on devices that run location services. To turn on the location services, the devicemust be connected
to either a cellular network, Wi-Fi, or the devicemust have integrated GPS capabilities. If a device is in "AirplaneMode,"
the location services are deactivated, and geofencing stops working.

Logging Capabilities
The logging module enables the discovery of bugs or issues when the application is deployed to users.

Set Logging in the Application

Add APIs to call functions and methods for log statements. See the sample application for examples.

Set the Logging Level in the SDK Profile

You must set the logging level in the default profile for the SDK in theWorkspace ONE UEM console. This configuration
ensures that your network is not burdened with unwanted logging activity.

1. Navigate to Groups & Settings > All Settings > Settings & Policies > Settings > Logging.

2. Enable the feature.

3. Select the logging level.

Level Logging Syntax Description

Error AWLogError("
{log message}")

Records only errors. An error displays failures in processes such as a failure to
look up UIDs or an unsupported URL.

Warning AWLogWarning("
{log message}")

Records errors and warnings. Awarning displays a possible issue with processes
such as bad response codes and invalid token authentications.

Information AWLogInfo("{log
message}")

Records a significant amount of data for informational purposes. An information
logging level displays general processes, warning, and error messages.

Debug or
Verbose

AWLogVerbose("
{log message}")

Records all data to help with troubleshooting. This option is not available for all
functions.

4. Set to send logs over wifi or not.

Access SDK andWrapped App Logs by Log File

Access SDK application logs from the App Logs page.

1. Navigate to Apps & Books > Applications > Analytics > App Logs.

2. Download or delete logs using the actions menu.

Offline Access
The offline access function allows access to the application when the device is not communicating with the network. It
also allows access to Workspace ONE UEM applications that use the SSO feature while the device is offline.

Chapter 4: SDK Capabilities

44

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

Offline Behavior

The SDK automatically parses the SDK profile and honors the offline access policy once AWController is started. If you
enable offline access and an end-user exceeds the time allowed offline, then the SDK automatically presents a blocker
view to prevent access into the application. The system calls the lock method of the AWSDKDelegate so your application
can act locally.

Encrypt Data on Devices
The SDK for iOS (Swift) offers the use of basic encrypt and decrypt methods to operate on raw data that the system
encrypts using the SDK’s internal encryption keys.

Thesemethods are defined in the AWController.

Important: Do not use these encryption methods on any mission critical data or data that you cannot recover.
Examples of unrecoverable data include no backup on a server or if the data cannot be re-derived through other
means. The encrypted key (and associated encrypted data) is lost in the event that an end user deletes the
application or if an enterprise wipe.

Prequisites

Before you call the encryption methods, ensure the AWControllerDelegate receives no errors.

Swift

Applications must ensure that AWControllerDelegate receives the controllerDidFinishInitialCheck(error: NSError?)
callback with no errors before they call the encryption methods.

Objective-C

The AWControllerDelegate callback method is - (void)initialCheckDoneWithError:(NSError * _Nullable)error;

Encryption Strength and Authentication Mode

The strength of the encryption depends on the enabling of the authentication mode.

If you set authentication passcode or username and password, then the system derives the key used for encryption from
the passcode or username and passcode the user enters. The system keeps the key in device volatile memory for
additional security.

If you disable authentication, the system randomly generates the encryption key and persists it in device storage.

Encrypt Data not Stored with Core Data

The AirWatch SDK for iOS (Swift) provides the ability to encrypt data that Core Data does not store. Thesemethods take
in the data input and return back either the encrypted or decrypted data. Thesemethods are only used for the
transformation of the data. The application developer is responsible for the storage of the encrypted data.

Encryption Method: Swift
public func encrypt(_ data: Data) throws -> Data

public func decrypt(_ data: Data) throws -> Data

Chapter 4: SDK Capabilities

45

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

Encryption Method: Objective-C

-(NSData * _Nullable)encrypt:(NSData * _Nonnull)data error:(NSError * _Nullable
* _Nullable)error SWIFT_WARN_UNUSED_RESULT;

-(NSData * _Nullable)decrypt:(NSData * _Nonnull)data error:(NSError * _Nullable
* _Nullable)error SWIFT_WARN_UNUSED_RESULT;

Error Codes Defined

The enum AWSDKCryptError defines the error codes for the error thrown by themethods.

Examples

l Encrypt

let controller = AWController.clientInstance()

let plainData: Data = .. //assign data to be encrypted

do {

let encryptedData = try controller.encrypt(plainData)

//save encryptedData for future use

//...

} catch let error {

print(" failed to encrypt data with error: \(String(describing: error))")

}

l Decrypt

let controller = AWController.clientInstance()

let encryptedData = ..//fetch data previously encrypted using Encrypt method above

do {

let decryptedData = try controller.decrypt(encryptedData)

//do something with decryptedData

//...

} catch let error {

print(" failed to encrypt data with error: \(String(describing: error))")

}

Chapter 4: SDK Capabilities

46

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

Chapter 5:
SDK and the Apple App Review
Deploy apps that use the AirWatch SDK for iOS to the App Store without dependency on other Workspace ONE UEM
components. The SDK includes a mode for your application for use during the Apple App Review process.

This app reviewmode removes dependencies on the broker applications such as the AirWatch Agent for iOS, Container,
and theWorkspace ONE application. It also enables the app reviewer to access the application without enrolling with
Workspace ONE UEM.

Explanation of the Process
Build your application and incorporate the AirWatch SDK for iOS (Swift). Then, build a test environment in Workspace
ONE UEM and prepare the application for submission to the app review process. For general steps in the process, see
Steps to Configure App ReviewMode on page 47.

Build a Test Environment in Workspace ONE UEM
Create a test environment in Workspace ONE UEM that you use only for this app review process. For details on how to
create this environment and how to upload your application to it, see Configure an App ReviewMode Testing
Environment in theWorkspace ONE UEM Console on page 48.

Identify the Server URL and Group ID
To help your application work for the review process without dependencies on other Workspace ONE UEM components,
follow the procedure in Declare the App Review Server and Group ID in the SDK PLIST on page 49.

Steps to Configure App ReviewMode
Deploy apps that use the AirWatch SDK for iOS to the App Store without dependency on other Workspace ONE UEM
components. The SDK includes a mode for your application for use during the Apple App Review process.

47

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

This app reviewmode removes dependencies on the broker applications such as the AirWatch Agent for iOS, VMware
Container, and theWorkspace ONE application. It also enables the app reviewer to access the application without
enrolling with Workspace ONE UEM.

Important: Use this work flow only on applications built with the AirWatch SDK that you submit to the App Store for
review. Do not use this work flow for any other application development processes. Also, do not use the process in a
production environment. This process is only supported for use in a test environment for applications you submit to
Apple's App Review.

App reviewmode includes several steps.

1. Integrate the SDK with your application.

2. Configure the app reviewmode testing environment in theWorkspace ONE UEM console, upload the application IPA
file, assign it an SDK profile, and deploy it to the test environment. See Configure an App ReviewMode Testing
Environment in theWorkspace ONE UEM Console on page 48.

3. Assign an app reviewmode server and a group ID to the SDK PLIST. See Declare the App Review Server and Group ID
in the SDK PLIST on page 49.

4. Test the IPA in the test environment. See Test the App ReviewMode Testing Environment in theWorkspace ONE
UEM Console on page 50.

5. Run the app store build script. See Build Script Information for App Store Submission on page 50.

6. Submit your application for review to the Apple App Store ensuring to add the app reviewmode server, group ID,
and user credentials from the test environment to the submission.

Configure an App ReviewMode Testing Environment in the Workspace ONE
UEM Console
With help from your admin, configure a testing environment in theWorkspace ONE UEM console. Upload your
application to this environment so that the app reviewer can review your application without dependencies on other
Workspace ONE UEM components.

Prerequisites

l Integrate the AirWatch SDK with your application.

l You need Workspace ONE UEM system admin permissions to configure these components. If you do not have these
permissions, ask yourWorkspace ONE UEM Admin for help.

l Ensure that you create a testing environment that hosts no production applications and components. Use this app
reviewmode environment only for the app review process.

l Configure all options in the app review organization group.

Chapter 5: SDK and the Apple App Review

48

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

1. Create an App Review Organization Group

Configure a special organization group for app reviewmode in theWorkspace ONE UEM console. Record the group ID for
later entry to the SDK PLIST.

2. Create a User with Credentials for the Apple App Reviewer

Configure an app reviewmode user with credentials in theWorkspace ONE UEM console. You give these credentials to
the app reviewer so record the credentials.

3. Create a Smart Group and Add the User

Workspace ONE UEM deploys applications based on assignment groups, specifically the smart group type. Create a
smart group and add the user to the group.

4. Configure the SDK Profile

Use the default SDK profile or a custom SDK profile. Whatever SDK profile you use, ensure that the desired SDK features
are enabled. Features to review are the Authentication Type, Single Sign On, and the App TunnelMode.

5. Upload the Application to the Workspace ONE UEM Console

Upload the application binary (IPA) to the internal application area or the public application area of theWorkspace ONE
UEM console. It does not matter which type you use. However, ensure that you assign the SDK profile to the application
and assign the test smart group to the application.

The bundle identifier must match the application submitted to the App Review process.

6. Disable Required MDM Enrollment

Disable the requirement for MDM enrollment so that the app reviewer can access the application without enrolling with
MDM. Follow these steps to disableMDM enrollment in theWorkspace ONE UEM console.

Although the setting are nested under the Content Locker, it applies to all applications. Improvements to the user
interface are planned for the future.

1. Ensure you are in the app reviewmode organization group.

2. Navigate to Groups & Settings > All Settings > Content > Applications > Content Locker.

3. In theGeneral area, disable Require MDM Enrollment.

4. Select Save to complete the procedure.

Declare the App Review Server and Group ID in the SDK PLIST
To prepare to submit your application to the Apple App Review process, add the app reviewmode server URL and the
group ID. These strings allow the reviewer to review your application without the need for other Workspace ONE UEM
components.

1. If you have not done so, in your Xcode project, create a bundle named AWSDKDefaults. if you haven't already done
so.

Chapter 5: SDK and the Apple App Review

49

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

2. If the AWSDKDefaults bundle does not have a PLIST named AWSDKDefaultSettings.plist, create this PLIST in the
bundle.

3. Create a key in the PLIST with the data type string. Name this key com.vmware.air-watch.enrollment.test-server-url.
This name is case sensitive.

4. Set the value of this key to the server URL of theWorkspace ONE UEM environment you setup in Configure an App
ReviewMode Testing Environment in theWorkspace ONE UEM Console on page 48.

Ensure to meet these requirements for the URL.

l Include https:// before the URL.

l Ensure the URL is the exact device services server URL. Do not use the console or API server URL.

l Do not include /deviceservices at the end of the URL. The SDK appends this automatically.

5. Create another key in the PLIST with the data type string. Name this key com.vmware.air-watch.enrollment.test-
org-group-id. This name is also case sensitive.

6. Set the value of this key to the group ID of the app review group you setup in Configure an App ReviewMode Testing
Environment in theWorkspace ONE UEM Console on page 48.

Test the App ReviewMode Testing Environment in the Workspace ONE UEM
Console
Test that the IPA file, server URL, group ID, and user credentials work before you submit the application for review.

1. Attempt to run the app on a device without any previous app data. This action ensures that stale URL and device
information is not present on the device. It also ensures there are no other Workspace ONE UEM apps on the device.

2. Enter the server URL and group ID when the app prompt for these options.

3. Enter the user credentials when prompted.

4. If the SDK permits you to continue without error and controllerDidFinishInitialCheck is called, the test environment
and components are successful.

Build Script Information for App Store Submission
This process requires a separate build script that you run before you submit the application for review.

Reason for the Special Script

Run the build script to strip the simulator architectures. The application fails the Apple App Review static analysis if you
do not run the script.

Access the Script

Use the script located on Stack Overflow, at https://stackoverflow.com/questions/30547283/submit-to-app-store-issues-
unsupported-architecture-x86/30866648#30866648 as ofMarch, 2018, to strip the non-app store related architectures

Chapter 5: SDK and the Apple App Review

50

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

https://stackoverflow.com/questions/30547283/submit-to-app-store-issues-unsupported-architecture-x86/30866648#30866648
https://stackoverflow.com/questions/30547283/submit-to-app-store-issues-unsupported-architecture-x86/30866648#30866648

from your application.

Chapter 5: SDK and the Apple App Review

51

VMware AirWatch SDK for iOS (Swift) Technical ImplementationGuide | v.2018.09 | September 2018

Copyright©2018 VMware, Inc. All rights reserved.

	Chapter 1: AirWatch SDK for iOS (Swift)
	Version of AirWatch SDK for iOS and Workspace ONE UEM Console
	Supported iOS Components
	Corresponding Objective-C Interfaces
	Objective-C Features Not Supported in the Swift Version

	Chapter 2: SDK Installation
	Migrate the SDK from an Earlier Version to the Latest Version
	Install the SDK in a New Environment
	Migrate the AirWatch SDK for iOS Objective-C Version to the Swift Version
	Install the AirWatch SDK for iOS (Swift) in a New Environment

	Chapter 3: SDK Setup
	1. Initialize
	2. Set AWController Delegate Callback Methods
	3. Set Keychain Sharing
	4. Cluster Session Management
	5. Configure the AWSDKDefaultSettings.Plist
	6. Test the SDK Setup
	Initialize the AirWatch SDK for iOS (Swift)
	Required and Optional AWController Delegate Callback Methods
	Keychain Access Group Entitlements
	Cluster Session Management and Reduced Flip Behavior for SSO in the AirWatch ...
	Entries to Set in the AWSDKDefaultSettings.plist
	Test the Integration and Functions of Applications

	Chapter 4: SDK Capabilities
	Required Capabilities
	Authentication Capabilities
	Query and Update Capabilities
	Data Loss Prevention Capabilities
	Other SDK Profile Capabilities
	SDK Capabilities Quick Reference, Code and Console
	Enable SDK Feature Flags
	Authentication Type Function Description
	SSO Configurations and System Login Behavior for iOS Applications
	Integrated Authentication and the Challenge Handler
	VMware Tunnel for App Tunneling by Proxy Components
	Use DLP to Control the Copy and Paste of Data Out and Into Your SDK-Built App...
	Behavior of the Third-Party Keyboard Restriction
	Use DLP to Control Links to Open in VMware Browser, VMware Boxer, or VMware I...
	Set Up the DataSampler Module for Analytics
	Use Branding to Add Logos and Primary Highlight Colors
	Beacon Data Sent Upon Application Unlock or Sent Manually
	Certificate Pinning
	Check the Compromised Status of Devices with Compromised Protection
	Custom Settings for the SDK
	Query Devices for MDM Information with DeviceInformationController
	Geofence Capabilities
	Logging Capabilities
	Offline Access
	Encrypt Data on Devices

	Chapter 5: SDK and the Apple App Review
	Explanation of the Process
	Build a Test Environment in Workspace ONE UEM
	Identify the Server URL and Group ID
	Steps to Configure App Review Mode
	Configure an App Review Mode Testing Environment in the Workspace ONE UEM Con...
	Declare the App Review Server and Group ID in the SDK PLIST
	Test the App Review Mode Testing Environment in the Workspace ONE UEM Console
	Build Script Information for App Store Submission

