Creating a VMware vCloud NFV Platform

REFERENCE ARCHITECTURE
VERSION 1.5
Table of Contents

1. Introduction ... 4

2. Network Function Virtualization Overview .. 5
 2.1 NFV Infrastructure Working Domain (NFVI) ... 5
 2.2 Management and Orchestration Working Domain (MANO) 6
 2.2.1 Virtualized Infrastructure Manager (VIM) Functional Block 6
 2.2.2 Virtual Network Function Manager Functional Block 6
 2.2.3 Network Functions Virtualization Orchestrator Functional Block 6
 2.3 Operations Management Working Domain ... 6
 2.4 Virtualized Network Function Working Domain (VNF) 6
 2.5 Operations Support Systems and Business Support Systems Working Domain 6

3. Architectural Overview .. 7
 3.1 Technology Mapping ... 7
 3.2 NFVI Components Overview .. 9
 3.2.1 NFVI Components ... 9
 3.2.2 MANO Components Overview .. 10
 3.2.3 MANO Components .. 11
 3.2.4 Operations Management Components Overview 12
 3.2.5 Operations Management Components ... 13
 3.2.6 VNF Components Overview .. 13
 3.3 Conceptual Architecture .. 14
 3.3.1 Management, Edge, and Resource Clusters 14
 3.3.2 Cluster Networking .. 16
 3.3.3 External Services ... 16

4. Design Overview ... 17
 4.1 NFV Infrastructure Design ... 17
 4.1.1 VMware ESXi ... 17
 4.1.2 Virtual SAN .. 17
 4.1.3 NSX for vSphere ... 19
 4.2 Virtualized Infrastructure Manager Design .. 21
 4.2.1 VMware vCenter Server ... 22
 4.2.2 NSX for vSphere Manager ... 23
 4.2.3 VMware vCloud Director ... 23
 4.3 NFVI Operations Management Design .. 31
 4.3.1 VMware vRealize Operations Manager ... 31
 4.3.2 VMware vRealize Log Insight ... 33
 4.4 Business Continuity and Disaster Recovery .. 34
 4.4.1 VMware Site Recovery Manager ... 34
 4.4.2 VMware vSphere Replication .. 35
 4.4.3 VMware vSphere Data Protection .. 36
Figures

Figure 1: ETSI NFV Architecture Framework .. 5
Figure 2: Technology Mapping Between VMware vCloud NFV and ETSI NFV 7
Figure 3: VMware vCloud Director Abstraction Layers ... 11
Figure 4: Conceptual Design .. 14
Figure 5: Virtual SAN Storage Overview .. 18
Figure 6: NSX for VMware vSphere Overview .. 20
Figure 7: VMware vCenter Server Cluster Management Components 22
Figure 8: VMware vCloud Director Logical Design .. 24
Figure 9: VMware vCloud Director Constructs Logical Design 26
Figure 10: VMware vCloud Director Allocation Pool ... 26
Figure 11: VMware vCloud Director Reservation Pool ... 27
Figure 12: VMware vCloud Director Pay-As-You-Go Pool 27
Figure 13: VMware vCloud Director External Networks .. 28
Figure 14: Internal Org vDC Network ... 28
Figure 15: Routed Org vDC Network ... 28
Figure 16: Direct Org vDC Network ... 29
Figure 17: VMware vRealize Orchestrator Cluster Logical Design 30
Figure 18: VMware vRealize Operations Logical Design .. 32
Figure 19: Disaster Recovery ... 34
Figure 20: VMware vSphere Data Protection .. 37
Tables

Table 1: Document Structure ... 4
Table 2: VMware vCloud NFV Components Alignment to ETSI NFV Framework 8
Table 3: External Supporting Infrastructure Services ... 16
Table 4: NFV Infrastructure Components .. 17
Table 5: VIM Component Description ... 21
Table 6: NFVI Operations Management Components ... 31
Table 7: Management Cluster Recovery Priorities ... 36
1. Introduction

This document provides guidance in architecting a greenfield cloud solution to support Network Functions Virtualization (NFV) based on VMware® best practice and real-world scenarios. The NFV platform dramatically simplifies data center operations, delivering enhanced agility, rapid innovation, better economics, and scale.

The **VMware vCloud® NFV™** platform supports Virtual Network Functions (VNF) workloads that run on a VMware solution. The solution contains components that are aligned to the European Telecommunications Standards Institute (ETSI) **Network Functions Virtualisation Architectural Framework**. These components must be integrated to work well together. The components range from compute, storage, and network devices to management and monitoring services. Each of the components has numerous potentially valid configurations, but only a few of these configurations result in an integrated, functional system that meets business and technical requirements, and aligns with the ETSI NFVI Architectural Framework.

The following components of the ETSI NFVI Architectural Framework are addressed in this document:

- NFV Infrastructure (NFVI)
- Virtualized Infrastructure Manager (VIM)
- NFVI Operations Management

Audience

This document assists telecommunication and solution architects, as well as sales engineers, field consultants, advanced services specialists, and customers who are responsible for telco cloud / NFV services, in building an infrastructure to maximize the benefits of using the VMware NFV bundle of solutions.

VMware vCloud NFV Reference Architecture Versioning

While this Reference Architecture covers the second release of vCloud NFV, the numbering scheme of the Reference Architecture has been changed to remain consistent with the new software release. For this reason, this Reference Architecture is now referred to as version 1.5.

Document Structure

This document is divided into the sections listed in Table 1.

<table>
<thead>
<tr>
<th>SECTION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Function Virtualization</td>
<td>This section of the document introduces the core concepts of the ETSI NFV Architectural Framework.</td>
</tr>
<tr>
<td>Architectural Overview</td>
<td>This section of the document introduces the core concepts of the vCloud NFV platform in relation to the ETSI NFV Architectural Framework.</td>
</tr>
<tr>
<td>Design Overview</td>
<td>This section of the document describes the components required to build the NFVI element and design guidelines.</td>
</tr>
</tbody>
</table>

Table 1: Document Structure
2. Network Function Virtualization Overview

NFV is an architectural framework developed by the ETSI NFV Industry Specification Groups. This framework aims to transform the telecommunication business through lower costs, rapid innovation, and scale. The ETSI NFV Architectural Framework provides a standardized model that moves away from the proprietary, purpose-built hardware dedicated to a single service, and toward network functions that are delivered through software virtualization, as VNFs on commercial off-the-shelf (COTS) hardware. The result is a network that is more agile and able to respond to the on-demand, dynamic needs of telecommunications traffic and services. The NFV framework identifies functional blocks, and the main reference points between such blocks. Some of these are already present in current deployments, while others need to be added to support the virtualization process and consequent operation.

Figure 1 shows an overview of the ETSI NFV Architectural Framework, depicting the functional blocks and reference points within the overarching NFV framework. Each functional block is shown with solid borders and is within the scope of NFV. The architectural framework is supplemented by the NFVI Operations Management functional block, which is not part of the standard NFV framework and is separated from the Virtualized Infrastructure Manager (VIM) based on best practices. The NFVI Operations Management functional block is essential in order to run a production platform. The ETSI NFV Architectural Framework focuses on the functions and capabilities necessary in order to implement the virtualization and operation of the network. Functional blocks above the dotted red line are not within the scope of this paper.

![Figure 1: ETSI NFV Architecture Framework](image)

2.1 NFV Infrastructure Working Domain (NFVI)

The Network Functions Virtualization Infrastructure (NFVI) working domain is the foundational layer of NFV. It provides the virtual compute, storage, and network infrastructure, as well as the physical compute, storage, and network infrastructure on which the VNFs are deployed and executed. NFVI nodes are deployed in multiple sites and regions to provide high-availability service, and to support locality as well as workload latency requirements. The virtualization layer provided by the hypervisor empowers workloads to be agnostic to the underlying hardware. This approach allows operators to choose hardware from their preferred vendors at competitive prices and to upgrade hardware independently from workloads.
2.2 Management and Orchestration Working Domain (MANO)
The Management and Orchestration (MANO) working domain covers the orchestration and lifecycle management of physical and software resources. MANO includes three elements to support the infrastructure virtualization and lifecycle management of VNFs, and to focus on all virtualization-specific management tasks necessary within the NFV framework.

2.2.1 Virtualized Infrastructure Manager (VIM) Functional Block
The Virtualized Infrastructure Manager (VIM) is a functional block within the MANO working domain that is responsible for controlling, managing and monitoring the NFVI compute, storage, and network resources. It exposes this functionality northbound to allow VNF managers and NFV orchestrators the ability to deploy and manage VNFs. It exercises the same functionality southbound to the hypervisors and controllers in the NFVI. The VIM manages the allocation and release of virtual resources, and the association of these to physical resources, including optimization. The complete inventory of the NFVI is maintained in the VIM, including the linkage between components and how they relate to an instance of a VNF workload, to allow for monitoring in the context of a single VNF. The VIM provides the API that allows the VNF Manager to manage the complete lifecycle of all of the VNFs.

2.2.2 Virtual Network Function Manager Functional Block
This document does not cover the Virtual Network Function Manager (VNFM) functional block. For additional information about the VNFM functional block, read the ETSI Network Functions Virtualisation (NFV) Architectural Framework document.

2.2.3 Network Functions Virtualization Orchestrator Functional Block
This document does not cover the NFV Orchestrator (NFVO) functional block. For additional information about the NFV Orchestrator functional block, read the ETSI Network Functions Virtualisation (NFV) Architectural Framework document.

2.3 Operations Management Working Domain
The NFVI Operations Management components are considered part of the MANO working domain functional block and are responsible for providing and extending the visibility of faults, configuration, accounting, performance, and security (FCAPS) of the NFVI. These northbound reporting components provide infrastructure alarms, events, and measurable metrics relating to both the NFVI working domain and the VNF workloads. Implementation of the VMware vCloud NFV platform expands the capabilities of this functional block through a unique portfolio of solutions that includes business continuity and disaster recovery (BCDR) capabilities across the MANO working domain.

2.4 Virtualized Network Function Working Domain (VNF)
This document does not cover the VNF working domain. For additional information about the VNF working domain, read the ETSI Network Functions Virtualisation (NFV) Architectural Framework document.

2.5 Operations Support Systems and Business Support Systems Working Domain
The vCloud NFV platform exposes application programmable interfaces (APIs) that can be consumed from one or multiple Operations Support Systems and Business Support Systems (OSS / BSS). These are not described in this document. For information about the Operations Support Systems and Business Support Systems (OSS / BSS) working domain, read the ETSI Network Functions Virtualisation (NFV) Architectural Framework document.
3. Architectural Overview

Cloud computing is a model that allows ubiquitous, convenient, on-demand access to a shared pool of configurable compute, storage, and network resources. Resources can be provisioned rapidly and released with minimal management effort.

The vCloud NFV platform delivers a complete, integrated cloud infrastructure that simplifies data center operations while delivering high quality service level agreements (SLAs) for all VNF instances. The vCloud NFV platform includes the entire set of infrastructure capabilities: virtualization, software-defined data center services, policy-based provisioning, disaster recovery for management components, and operations management.

This document focuses on the NFVI layer and each of its supporting functions. Figure 2 highlights the mapping between the VMware vCloud NFV functional elements and the ETSI NFV reference model.

![Figure 2: Technology Mapping Between VMware vCloud NFV and ETSI NFV](image)

3.1 Technology Mapping

The vCloud NFV platform is a complete solution for Communication Service Providers (CSPs) to build and manage a VMware based telco cloud for the deployment of VNFs. The modular architecture of the platform offers choice and flexibility for running network functions across a cloud platform. This provides a conceptual framework to support network function requirements, organize elements into distinct components, and define boundaries and connections. The focus of vCloud NFV is on clearly defined goals, analysis, and design decisions that cut through the complexity of today’s technology.

The vCloud NFV bundle packages together, in a single SKU, the essential building block solutions needed to deploy a Network Functions Virtualization Infrastructure (NFVI) and Virtual Infrastructure Management (VIM) platform, featuring the newest releases of production-proven VMware solutions, along with advanced capabilities for service assurance.

Table 2 lists the components of the vCloud NFV platform as well as their alignment to the ETSI NFV framework.
<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>INCLUDED IN VCLOUD NFV BUNDLE</th>
<th>REQUIRED IN VCLOUD NFV SOLUTION</th>
<th>ETSI FUNCTIONAL BLOCK</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMware ESXi™</td>
<td>Yes</td>
<td>Required</td>
<td>NFVI</td>
</tr>
<tr>
<td>VMware vCenter™ Server Appliance™</td>
<td>No</td>
<td>Required</td>
<td>VIM</td>
</tr>
<tr>
<td>VMware vSphere™ Replication™</td>
<td>Yes</td>
<td>Recommended</td>
<td>NFVI</td>
</tr>
<tr>
<td>VMware vSphere™ Data Protection™</td>
<td>Yes</td>
<td>Recommended</td>
<td>NFVI Operations Management</td>
</tr>
<tr>
<td>VMware Virtual SAN™ Standard</td>
<td>Yes</td>
<td>Recommended</td>
<td>NFVI</td>
</tr>
<tr>
<td>VMware vRealize™ Operations™ Advanced</td>
<td>Yes</td>
<td>Required</td>
<td>NFVI Operations Management</td>
</tr>
<tr>
<td>VMware vRealize™ Log Insight™ for vCenter™</td>
<td>Yes</td>
<td>Required</td>
<td>NFVI Operations Management</td>
</tr>
<tr>
<td>VMware vCloud Director™ for Service Providers</td>
<td>Yes</td>
<td>Required</td>
<td>VIM</td>
</tr>
<tr>
<td>VMware NSX®</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VMware NSX® for vSphere®</td>
<td>No</td>
<td>Required</td>
<td>NFVI</td>
</tr>
<tr>
<td>VMware NSX® Manager™</td>
<td>No</td>
<td>Required</td>
<td>VIM</td>
</tr>
<tr>
<td>VMware Site Recovery Manager™</td>
<td>No</td>
<td>Recommended</td>
<td>NFVI Operations Management</td>
</tr>
</tbody>
</table>

Table 2: VMware vCloud NFV Components Alignment to ETSI NFV Framework
3.2 NFVI Components Overview

The NFVI is delivered through the use of VMware vSphere, Virtual SAN, and NSX for vSphere, and provides these functions:

- **Physical Resource Abstraction.** Physical resource abstraction occurs when the physical storage, network and compute resources are abstracted by the NFV components to provide a standardized interface and set of features to all northbound infrastructure components, such as VNFs and Element Management Systems (EMS). The NFV components abstract the vendor specific implementation differences of the various hardware components and ensure that certified hardware components are used as the foundation of the platform.

- **Physical Resource Pooling.** Physical resource pooling occurs when the NFV components pool the underlying hardware resources for optimum utilization, load distribution, high availability and scalability features. This allows for fine-grained resource allocation and control of the pooled resources based on the specific workload requirements.

3.2.1 NFVI Components

The following section is a description of the vCloud NFV components that relate to the ETSI NFVI working domain.

Compute

ESXi hosts are the fundamental compute building blocks of the vCloud NFV platform. ESXi host resources are distributed to run management and VNF workloads and are aggregated to build clusters of highly available pools of compute resources. Their main purpose is to host VNFs on-boarded on to the vCloud NFV platform as Virtual Machines (VMs).

Storage

Each cluster within the vCloud NFV platform is configured to use a shared storage solution. Shared storage between hosts within a cluster is a requirement for enabling key functionality such as:

- **VMware vSphere® High Availability (HA).** VMware vSphere High Availability can rapidly restore VNF services in case of host failure.

- **VMware vSphere vMotion®.** VMware vSphere vMotion is used to move live, running workloads to facilitate maintenance tasks and load balancing among hosts in a cluster, with minimal service disruption.

The shared storage can be provided through Virtual SAN or a certified third party shared storage solution. Virtual SAN provides shared storage by aggregating the local disks and flash drives with which each host is equipped. Third party storage solutions with storage replication adapters that meet VMware storage compatibility guidelines are also supported. For the purpose of this vCloud NFV 1.5 Reference Architecture, only the Virtual SAN based storage solution will be discussed.

As new network functions are on-boarded, virtual machine requirements such as capacity or performance to support the VNF may dictate the need for additional storage options.

Network

NSX for vSphere creates virtual networks that include all of the necessary network functionality a VNF might require from the NFVI.

The NSX network infrastructure is responsible for providing the network virtualization component of the
NFVI, and is built using these components:

- **VMware NSX® Controller™**. The NSX Control Plane is responsible for the creation of the logical topology state necessary for connectivity between the VMs that form a VNF. Consisting of three active virtual controller nodes, the VMware NSX® Controller™ cluster maintains availability in the event of a communication disruption between nodes, or the failure of a single node. Shared fatal failure of the controller cluster is avoided by using anti-affinity rules to ensure that no two members of the cluster share the same physical host.

 Note: The NSX controllers are implemented out-of-band and do not participate in the forwarding of any data traffic.

- **VMware NSX® Virtual Switch™**. The VMware NSX® Virtual Switch™ is a distributed data plane component within the ESXi hypervisor kernel that is used for the creation of logical overlay networks, facilitating flexible workload placement of the VNF components. Extending the L2 functionality found natively in the VMware vSphere® Distributed Switch™, the NSX Virtual Switch allows for arbitrary topologies to be created using VXLAN-backed logical switches, thereby reproducing both the external connectivity and internal backplane communications a VNF can require, for example for inter-process and VM communication. Features such as port mirroring and Quality of Service (QoS) marking are also supported by NSX. **Note**: These may require configuring the extensions within the VIM.

The NSX Virtual Switch is a multi-layer switch by default and therefore supports L3 functionality to provide optimal routing between subnets directly within the host, for communication within the datacenter.

Stateful firewall services are supported by the NSX Virtual Switch through the Distributed Firewall service, also known as micro-segmentation. This functionality provides firewall policy enforcement within the hypervisor kernel at the granularity of a per vNIC level on guest VMs, thereby supporting fine-grained isolation and the segmentation of workloads. For example, micro-segmentation can be used to secure the communication between management components such as vCloud Director and vCenter, or VNF Manager and vCloud Director. Micro-segmentation can also be used to completely isolate and block all traffic between the VNF components.

- **VMware NSX® Edge™**. The VMware NSX® Edge™ acts as the centralized virtual appliance for routing traffic in and out of the virtual domain, toward other virtual or physical infrastructure. This is also referred to as North-South communication. In addition to the routing of VNF traffic, the NSX Edge may also provide additional L4-7 services such as stateful firewall functionality, load-balancing, or DHCP.

 When stateful services such as firewall, load-balancing, VPN and NAT are required, an active / standby NSX Edge pair should be deployed. When NSX Edge is used solely to provide the routing function, an ECMP configuration can be deployed to provide additional resilience and fault tolerance.

3.2.2 MANO Components Overview

The Virtualized Infrastructure Manager (VIM) functional block is responsible for resource management across the NFVI and is delivered through the use of vCenter Server, vCloud Director, and NSX Manager.

The VIM performs these tasks:

- **NFVI Inventory Management**. The management components of VIM ensure that information about the underlying NFVI storage, network and compute resources are up-to-date and accurate. This includes information about their configuration parameters, runtime states, and hierarchy in the inventory. Additionally, the management components may provide different consolidated views of the inventory, for example, information pertaining to a VNF instance across compute, storage, and networking components.
- **Resource Management.** All of the resources contributed by the NFVI components are first pooled using an abstraction layer. The pooled compute, network, and storage resources are then allocated to the various workloads using multi-tenant allocation models. The resource management function is performed using vCloud Director. Figure 3 illustrates these resource abstraction layers.

![Figure 3: VMware vCloud Director Abstraction Layers](image)

- **Life Cycle Management.** VNF life cycle management operations such as on-boarding, customization, deployment, and de-provisioning are important activities performed by the VIM. This includes life cycle management of all underlying resources and inventory objects. Life cycle management operations can be performed through the UI by administrators, or through APIs by VNF Managers.

3.2.3 MANO Components

The following section is a description of the vCloud NFV components that relate to the ETSI MANO working domain.

VMware vCenter Server

The vCenter Server is the centralized management interface for the NFVI components. It, in turn, exposes programmatic interfaces to other management components for fine-grained control, operation, and monitoring of the underlying virtual infrastructure.

The vCenter Server provides functionality of the management of underlying NFVI compute, storage, and network resources. In addition to inventory management, the vCenter Server monitors the state, events, and performance of these inventory objects.

NSX Manager

The NSX Manager provides the primary interface, a REST API, for configuration of network services within the NFVI to support VNF workloads. The NSX Manager is responsible for the deployment and management of the network components and capabilities, such as distributed routing, distributed firewall, NFVI VXLAN support, control plane communication, and network components inventory information.

The NSX Manager is also responsible for the deployment and configuration of the NSX Edge Services Gateway virtual appliance Gateways and associated network services including load balancing, firewalling, and NAT.
VMware vCloud Director

The vCloud Director is an abstraction layer that sits on top of the virtualized infrastructure of vCenter Server and the NSX Manager. This enables multiple NFVI tenants to consume shared compute, storage, and network resources in a secure multi-tenant environment. Secure multi-tenancy implies the ability to isolate administration boundaries of NFVI tenants. VNF workload resource consumption is also isolated, even though VNF workloads might reside on the same physical hardware.

The vCloud Director implements the open and publicly available vCloud API, which provides compatibility, interoperability, and programmatic extensibility to Network Equipment Providers (NEP) and their VNF Manager. The vCloud Director capabilities can be extended to create adaptors to external systems including OSS / BSS integration.

3.2.4 Operations Management Components Overview

The underlying virtual infrastructure, including compute, storage, and network resources, relies on a holistic management solution to collect data regarding health, capacity, and performance. This management system is implemented using VMware vRealize® Operations™ Advanced®, VMware vRealize® Log Insight™ for vCenter™, VMware Site Recovery Manager™, vSphere Replication and VMware vSphere® Data Protection™.

Operations Management tasks include:

- **NFVI Visibility.** An integral part of the vCloud NFV platform includes customized dashboards created using widgets, views, badges, and filters to focus on the information of interest. With vCloud NFV, NFVI visibility is achieved by collecting key performance and capacity metrics from the NFVI components. An extensible and flexible data collection mechanism means that virtually any metric can be collected from any data source or inventory object for cause analysis. When problems occur within the NFVI, uncovering the root cause and determining the location of the underlying platform component where the problem lies is crucial.

- **Fault Reporting.** The NFVI storage, network, and compute components generate various log messages and alarms. Each of these is correlated between the various components to troubleshoot an issue. Operations Management components are then required to perform the necessary analysis, such as identifying related events across component logs pertaining to a particular failure incident, in order to aid in the troubleshooting process.

- **Performance Management and Capacity Planning.** On-going management of performance and capacity across the NFVI is required for optimal performance of the VNF instances on a shared platform. This helps to prepare for new VNFs to be on-boarded to the platform. Scheduled reports, dashboards, and customized views are part of the implementation of Operations Management.

- **Platform Resiliency.** The vCloud NFV platform supports business continuity and disaster recovery of the key management workloads residing in the management cluster. This includes high availability and data protection of the management workloads.
3.2.5 Operations Management Components

This section describes the vCloud NFV components that make up the operations management functional block.

VMware vRealize Operations Manager

The vRealize Operations Manager provides the capabilities necessary to achieve an integrated approach to performance, health, and capacity analytics across the NFVI. These can either be consumed by OSS / BSS or integrated with MANO.

The vRealize Operations Manager can be extended to gather information through management packs. The information collected can then be filtered for relevant information, analyzed, and presented in the form of customizable dashboards. This monitoring solution can expose an API to be used through an external system for retrieving performance and health data pertaining to the NFVI, as well as the virtual resources that make up the VNF instance.

The vRealize Operations Manager does not cover VNF service availability or VNF internal KPIs, performance, and events. This information must be derived with the VNF Manager and is not included as part of this document.

VMware vRealize Log Insight

VMware vRealize Log Insight provides central, real-time analytics of syslog messages for hypervisors, hardware, and other components of NFVI. These can be consumed by OSS / BSS, or can be integrated with MANO.

VMware vRealize Log Insight can serve as a source of data for vRealize Operations Manager. This allows you to perform analytics on the data from the log files of the various components.

Site Recovery Manager

The Site Recovery Manager works in conjunction with various storage replication solutions, including vSphere Replication to automate the process of migrating, recovering, testing, re-protecting, and failing back virtual machine workloads for disaster recovery.

VMware vSphere Replication

VMware vSphere Replication is a virtual machine data protection and disaster recovery solution. It is fully integrated with vCenter Server and VMware vSphere® Web Client, providing host-based, asynchronous replication of virtual machines, including VM storage.

VMware vSphere Data Protection

VMware vSphere Data Protection is a backup and recovery solution. It is fully integrated with vCenter Server and vSphere Web Client, providing disk-based backup of virtual machines and applications. Third party backup solutions that are certified for vSphere may also be used.

3.2.6 VNF Components Overview

While VNF components are not covered in this document, the vCloud NFV platform provides supporting virtual infrastructure resources such as network, compute, and storage components for the successful deployment and operation of VNFs. VMware vCloud NFV also maintains an extensive list of VNFs that have been verified to interoperate well with the platform. This list is located on the VMware Solution Exchange.
3.3 Conceptual Architecture

The vCloud NFV platform offers scalable architecture for multi-site deployments across different regions, wherever VNF instances can be hosted.

The architecture is designed based on the following principles:

- VNF instances are located in specific sites within a region to cover a geographical area.
- VNF instance deployments conform to diversity rules and high availability demands.
- Multiple markets are supported to comply with legal and regulatory requirements.

Figure 4 illustrates the conceptual design of the vCloud NFV platform.

3.3.1 Management, Edge, and Resource Clusters

Clusters are the top level vCloud NFV logical building blocks used to segregate resources allocated to management functions from resources dedicated to virtualized network functions. The vCloud NFV platform consists of three cluster types used to perform specific functions. This design ensures that management boundaries are clearly defined, capacity is plannable, and resources are allocated based on specific workload needs.
The cluster-specific functions are:

- **Management Cluster.** The management cluster contains components of the MANO working domain. It includes the servers that make up the VIM components, as well as the NFVI Operations Management components. This cluster contains an additional subset of the VIM components used to manage the resources of the management cluster and to provide networking services to the management components within the cluster.

- **Edge Cluster and Resource Cluster.** Edge clusters and resource clusters form the NFVI working domain. They aggregate the underlying storage, network, and physical resources for the NFVI to consume. The resource clusters host the VNF workloads. These can be deployed at a multitude of sites, based on region. The resource clusters are responsible for providing the compute resources for VNFs. Resources made available to the VNFs can be scaled by either adding additional ESXi hosts to the resource cluster, or by creating additional resource clusters.

The edge clusters host the network components of the NFVI, such as the network control plane, the distributed router, and the Edge Gateway. The edge cluster along with the resource clusters are used to facilitate software defined networking functionality, with services such as physical network bridging, routing, firewalling, load balancing, and virtual private networking (VPN). A single edge cluster is required at each site where a resource cluster exists, but multiple resource clusters, each pertaining to the same or multiple VNF instances, can leverage the same edge cluster within the site.

The vCloud NFV architecture uses VMware vSphere® Distributed Resource Scheduler™ (DRS) to continuously monitor the resource utilization of the hosts and workloads within a cluster, and to dynamically and automatically redistribute resources to ensure that the cluster is well balanced. DRS works in conjunction with vSphere vMotion to move live, running workloads across hosts in a cluster, with minimal service disruption.

The automation level of a DRS enabled cluster can be set to fully automated or partially automated. When fully automated, the DRS continuously monitors the cluster, and migrates running workloads amongst hosts in a cluster as necessary to balance the load. When partially automated, the DRS generates migration recommendations, but does not automatically migrate workloads in the cluster. An administrator or orchestrator can manually approve the migration of running workloads after evaluating the DRS recommendations.

Use DRS in the fully automated mode for the management cluster. The edge and resource clusters should use partial DRS automation to avoid automatic run time migrations, since certain classes of VNFs can have strict performance and network characteristics requirements. This setting can be changed after assessing any potential impact to the VNF workloads.

VMware vSphere vMotion offers a significant advantage for maintenance and disaster recovery scenarios for all workloads. When a host needs to be brought offline for maintenance, the vMotion feature allows administrators to move running workloads to other hosts in the cluster, ensuring service continuity. Once the host is back online, workloads can be migrated back to the host. An administrator can trigger the movement of live, running workloads, irrespective of the cluster automation level, for DRS and maintenance activities.

Shared storage requirements are fulfilled at the cluster level via Virtual SAN, which pools the local storage contributed by member hosts in the cluster. Since data is distributed across multiple hosts in the cluster, it is protected against host failure. The vCloud NFV platform also supports certified third party shared storage solutions.
3.3.2 Cluster Networking

Networking functionality within the NFVI may be categorized into the following groups:

- **Infrastructure Networks.** Infrastructure networks are used by the hypervisor host itself for connecting the native TCP/IP stack to the physical network. Examples of infrastructure networks include hypervisor management traffic, vMotion traffic, and storage traffic. **Note:** Encapsulated VXLAN traffic is also defined as infrastructure traffic.

- **Tenant Networks.** Tenant networks are the logical overlay networks, or VLANs, that are connected to the vNIC of the guest VMs running in the hypervisor. Examples of tenant networks include the VM management network for traffic between all MANO components in the management cluster and the VNF Networks for East-West VNF traffic.

3.3.3 External Services

Supporting infrastructure services are required by the vCloud NFV platform. These services are typically pre-existing in the environment and are listed in Table 3.

<table>
<thead>
<tr>
<th>COMPONENT NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS</td>
<td>DNS is required by the platform for name resolution.</td>
</tr>
<tr>
<td>LDAP</td>
<td>LDAP is required by the platform for authentication.</td>
</tr>
<tr>
<td>SMTP</td>
<td>SMTP is required by the platform for email notifications.</td>
</tr>
<tr>
<td>Load Balancer</td>
<td>A load balancer is required by the platform for distribution of incoming requests from external consumers to a single external virtual interface. Requests are forwarded on from the external interface to multiple internal interfaces, the vCloud Director cells. This Reference Architecture uses the NSX Edge load balancer for this role.</td>
</tr>
<tr>
<td>NTP</td>
<td>NTP is required by the platform for time synchronization.</td>
</tr>
<tr>
<td>NFS</td>
<td>NFS is a shared temporary transfer space required by vCloud Director cells during the upload of Open Virtualization Formats (OVFs) for the vCloud Director catalog.</td>
</tr>
<tr>
<td>SFTP / FTP</td>
<td>SFTP / FTP is required by the platform for NSX Manager scheduled backups.</td>
</tr>
</tbody>
</table>

Table 3: External Supporting Infrastructure Services
4. Design Overview

4.1 NFV Infrastructure Design

The NFVI working domain is the foundational layer of NFV. It provides the virtual and physical compute, storage, and network resources on which the VNFs are deployed and executed. The NFVI is implemented using the components listed in Table 4.

<table>
<thead>
<tr>
<th>COMPONENT NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESXi</td>
<td>ESXi is the hypervisor platform for running management virtual machines on the vCloud NFV platform and Virtual Network Function instances.</td>
</tr>
<tr>
<td>Virtual SAN</td>
<td>Virtual SAN is the shared storage functionality built into VMware vSphere. It is used for storing management virtual machines and Virtualized Network Function instances.</td>
</tr>
<tr>
<td>NSX for vSphere</td>
<td>NSX for vSphere is the network virtualization component of the NFVI. NSX implements the overlay networking to support a horizontal scaling out of VNF components through the creation of logical switches and routers.</td>
</tr>
</tbody>
</table>

Table 4: NFV Infrastructure Components

4.1.1 VMware ESXi

Standardize your host installation and configuration to eliminate variability. Consistent PCI card slot location, especially for storage and network I/O controllers, is essential for the accurate alignment of physical to virtual I/O resources.

All ESXi hosts use stateful installations, where the ESXi hypervisor is installed locally using a local SD flash card to enable local booting, regardless of the assigned cluster. Booting on an internal SD flash card saves hardware costs by requiring fewer local disks in each ESXi host.

All physical servers use the same configuration for ease of management and to ensure resource availability as the deployment grows. The exceptions are locally installed solid state disks (SSD) and magnetic hard disk drives (HDD), which use different configurations due to the unique cluster storage needs.

4.1.2 Virtual SAN

Virtual SAN is a software feature built into the ESXi hypervisor, which allows you to present locally attached storage to all of the hosts in a vSphere cluster. Virtual SAN simplifies the storage configuration because there is only one datastore per cluster for management and VNF workloads. Virtual SAN stores virtual machine data as objects and components. One object consists of multiple components, which are distributed across the Virtual SAN cluster based on the assigned policy for that object. The policy for this object ensures a highly available storage backend for the cluster workload, with no single point of failure.

Each VM consists of the following types of objects:

- **VM Home.** The VM home object is the location for the VM configuration and log files.
- **Swap.** The swap object is created for the VM swap file. It is only created when the VM is powered on.
- **VMDK.** The VMDK object stores the data that is located on a disk.
- **Delta / Snapshot.** The delta / snapshot object is created when a VM has a snapshot created on it.
The size of the VirtualSAN datastore depends on the number of hosts, and the number of disk drives per host. The storage policies also affect the usable capacity of the datastore. Use sparse swap files for your virtual machines for optimal usage of the available capacity.

I/O controllers are as important to a Virtual SAN configuration as is the selection of disk drives. Virtual SAN supports Serial Attached SCSI (SAS), Serial ATA (SATA), and Small Computer Systems Interface (SCSI) adapters in pass-through or RAID 0 modes. The I/O controllers used for Virtual SAN storage in the vCloud NFV platform must have a minimum queue depth of 1024 I/O requests. I/O controllers with a higher queue depth and a large number of drives provide a good balance between performance and availability for the Virtual SAN configuration. Write-through in-memory cache enabled for the management components provides better I/O performance for the virtual machine at the host level.

Figure 5: Virtual SAN Storage Overview

Virtual SAN uses the network to transport all information, including communication between the cluster nodes, and to support virtual machine I/O operations. Transport is accomplished by a specially created VMkernel port group, which must be configured on all hosts in the cluster, even if the host does not have any disk. As with other communications such as vSphere vMotion, Virtual SAN traffic should be isolated on its own Layer 2 network segment.

To optimize communication between Virtual SAN cluster nodes in a leaf-spine network fabric architecture, the Virtual SAN traffic must be contained to the top of rack (ToR) switch. This provides non-blocking capacity for Virtual SAN and removes the risk of Virtual SAN traffic saturating the network fabric, and leaving the ToR switches. Figure 5 illustrates the Virtual SAN storage overview.

For more detail regarding Virtual SAN design and sizing, read the VMware Virtual SAN 6.0 Design and Sizing Guide.
4.1.3 NSX for vSphere

NSX for vSphere provides logical networking services including switching, routing, and a distributed firewall when necessary to support the desired topology of a VNF. For a given VNF, workload traffic is forwarded over interfaces mapped to VXLAN. Use of VXLAN backed networking allows for flexible workload placement in any resource cluster, and still provides direct L2 connectivity between VNFs without dependency on Layer 2 connectivity within the physical network.

Base your physical network on a Layer 3 leaf-spine topology. Port load balancing can be used to increase high-availability, or to increase port-speed capacity using a technique such as Multi-Chassis Link Aggregation Group (MC-LAG) configured on top-of-rack or end-of-row switches. This approach allows for load balancing and fault tolerance of physical interfaces in both the edge and resource clusters. You can also use other means to bundle physical interfaces, including using local hashing algorithms.

As part of the process to define a logical switch, a replication mode for broadcast, unknown unicast, and multicast (BUM) traffic needs to be selected.

NSX supports three logical switch control plane modes:

- **Multicast.** With multicast switch control plane mode, BUM traffic is sent to a pre-defined multicast group. Each VTEP participating in the logical switch must subscribe to the group in order to receive multi-destination traffic for this L2 broadcast domain. This mode is typically used for integration with legacy environments.

- **Unicast.** With unicast switch control plane mode, all BUM traffic is replicated on the source hypervisor to each VTEP participating in the logical switch. This provides the simplest setup because no multicast functionality is required in the physical network. This mode is recommended for small scale deployments.

- **Hybrid.** Hybrid switch control plane mode is the recommend control mode for NFV deployments. For VTEPs participating in the logical switch within the same L2 broadcast domain of the physical network, multicast replication is used. Because this is within the L2 broadcast domain, the only functionality required is IGMP snooping and IGMP querier functionality on the switches directly connected to the hypervisor hosts.

Replication to VTEPs on other remote L3 subnets is accomplished by sending a single unicast copy to one VTEP per remote L3 subnet. This VTEP will then subsequently provide multicast replication to other VTEPS within the same broadcast domain. This mode is recommended as it uses the native fan-out functionality within the physical network, while removing the complexity of having to implement Protocol Independent Multicast (PIM) for L3 multicast routing.
Network Control Plane
NSX for vSphere utilizes automatically deployed controller virtual machines to implement the network control plane. VMware NSX Controller instances must be deployed in odd numbers to avoid a split-brain scenario. For this Reference Architecture, use three controllers per NSX for each vSphere instance deployed, with vSphere DRS anti-affinity rules set up so the controllers do not run on the same ESXi host. This is true for both the management cluster and edge cluster deployments.

Transport Zones
A transport zone is used to define the scope of a VXLAN overlay network and can span one or more vSphere clusters. VXLAN overlay networks are used to provision VNF networks for East-West VNF traffic and for North-South traffic through NSX logical routers and Edge Services Gateways (ESGs). This Reference Architecture uses a single VXLAN transport zone to handle all VNF traffic.

Routing
Different levels of routing must be considered within the environment. Edge Services Gateways (ESGs) handle North-South routing into and out of the NFVI. East-West routing is handled either by NSX distributed logical routers (DLR) or through the deployment of additional ESGs, allowing communication between VNF workloads in different subnets where required. The logical routing design is based on per VNF requirements, and must be decided during the onboarding process.

Transit Network and Internal Tenant Dynamic Routing
It is not possible to directly connect the Edge Services Gateway (ESG) and DLR devices. A logical switch is used to connect the DLRs with the ESGs. Both the primary Edge Services Gateway and the primary DLR must be configured as peers using OSPF dynamic or static routes, thus providing end-to-end connectivity to the VNF instances.

The North-South connectivity requirements of the VNF deployed in the vCloud NFV platform should be decided as part of the VNF onboarding process.

WAN Connectivity
Since resource cluster connectivity relies on NSX for vSphere, VNFs can be spread across multiple sites with routing used across WAN links to exchange data. Special care must be taken to maintain inter-VNF latency requirements.
For a full description of the design considerations relevant to a NSX deployment, read the Reference Design: VMware NSX for vSphere (NSX) Network Virtualization Design Guide in conjunction with this document.

4.2 Virtualized Infrastructure Manager Design

The VIM functional block in the MANO working domain is responsible for controlling and managing the NFVI compute, storage, and network resources in the vCloud NFV deployment. It is also responsible for exposing a northbound interface to support management of virtualized resources by the VNF Managers and the NFV Orchestrator.

Resource management is handled by the components listed in Table 5. All components in this table are deployed in the management cluster.

<table>
<thead>
<tr>
<th>COMPONENT NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMware vCenter Server</td>
<td>VMware vCenter Server is the central platform for managing and configuring the ESXi hypervisors. The vSphere Web Client is the central point of administration for resource clusters and for all networking services provided by NSX for vSphere.</td>
</tr>
<tr>
<td>NSX for vSphere Manager</td>
<td>NSX for vSphere Manager provides virtualized networking capabilities to the NFVI. The NSX deployment includes:</td>
</tr>
<tr>
<td></td>
<td>• NSX Manager</td>
</tr>
<tr>
<td></td>
<td>• NSX Controllers</td>
</tr>
<tr>
<td></td>
<td>• NSX Edge Services Gateway virtual appliance gateway virtual appliance</td>
</tr>
<tr>
<td>VMware vCloud Director</td>
<td>VMware vCloud Director is the software layer that provides the resource abstraction, secure multi-tenancy, and consumer access via the user interface and API. The vCloud Director deployment includes:</td>
</tr>
<tr>
<td></td>
<td>• The vCloud Director servers (cells)</td>
</tr>
<tr>
<td></td>
<td>• The vCloud Director database</td>
</tr>
<tr>
<td></td>
<td>• Transfer storage, shared between the vCloud Director cells (NFS)</td>
</tr>
</tbody>
</table>

Table 5: VIM Component Description
4.2.1 VMware vCenter Server

The vCloud NFV platform utilizes two vCenter Server instances per site, one to manage the management cluster itself in which all of the MANO components are deployed, and the other to manage the NFVI where VNF workloads and their networking components are deployed. This is shown in Figure 7.

Both of the vCenter Server instances in Figure 7 are virtual appliances with an embedded database and external Platform Services Controller (PSC). The vCenter appliance is preconfigured, hardened, and fast to deploy. The use of the vCenter appliance allows for a simplified design, ease of management, and reduced administrative efforts, however the Windows-based system may also be used.

The Platform Service Controller (PSC) contains common infrastructure services such as VMware vCenter™ Single Sign-On, VMware Certificate Authority (VMCA), licensing, and server reservation and registration services. Each vCenter Server utilizes a pair of load balanced PSCs that are linked together. Both PSCs of the same vCenter Server are joined together into one Single Sign-On domain. An NSX ESG is used as the load balancer between the PSCs and their respective vCenter Server. This vCenter Server architecture allows for scalability. As the infrastructure grows, additional vCenter Servers and PSCs may be added.

vCenter Server system availability is provided through the use of vSphere HA as the appliance, and vSphere Data Protection as a point-in-time backup of the vCenter data.
4.2.2 NSX for vSphere Manager

NSX for vSphere Manager provides the centralized management plane for the NSX for vSphere architecture. It has a one-to-one relationship with a single vCenter Server.

NSX for vSphere Manager performs the following functions:

- It provides the central configuration UI and the REST API entry points for NSX for vSphere
- It is responsible for deploying NSX Controller Clusters, Distributed Logical Routers (DLRs), and Edge Services Gateways in the form of OVF format virtual appliances
- It is responsible for preparing ESXi hosts for NSX for vSphere by installing VXLAN, distributed routing, and firewall kernel modules as well as the User World Agent (UWA)
- It generates self-signed certificates for the NSX Controllers and ESXi hosts to secure control plane communications with mutual authentication

As with vCenter Server, two instances of the NSX Manager are deployed. One is used to provide network services to the MANO components, such as the load balancer for high availability configurations. The other instance is used to provide network services to the VNFs, such as routing and Edge services, as shown in Figure 7.

NSX for vSphere control plane communication occurs over a dedicated management network. Network information learned from the ESXi hosts and Distributed Logical Router control VMs is reported to the controllers through the UWA. For troubleshooting purposes, the VXLAN and logical routing network state information can be viewed using the NSX Controller command line interface.

4.2.3 VMware vCloud Director

VMware vCloud Director is the resource abstraction. It controls empowering the service provider by creating dynamic pools of resources that can be consumed by the NFVI tenants, the VNFs. Each NFVI tenant sees only the resources that have been explicitly defined, either during the VNF onboarding process, or through a subsequent request to the tenant operations team.

A highly available vCloud Director implementation using multiple vCloud Director cells is deployed in a vCloud Director Server Group. All cells in the server group are stateless and use a shared, highly available, clustered database.

To manage virtual resources, vCloud Director connects to the resource vCenter Servers and NSX for vSphere Managers for each region. Connectivity can be handled by any cell in the server group, however the vCloud Director cluster is scaled with an additional cell each time a new vCenter Server is added. Figure 8 shows the vCloud Director cell design.
The allocation of compute, storage, and networking connectivity within the NFVI is provided by vCloud Director through constructs called Provider Virtual Data Center (PvDC) and Organization Virtual Data Center (Org vDC). The interaction between these and vCenter Server determines the available resource capacity. Resource clusters are grouped into PvDCs within vCloud Director, which represent the main pools of compute capacity from the underlying ESXi hosts. During the on-boarding process, a vCloud Director Organization (Org) is created with one or more Org vDCs allocated to assign VNF capacity. Multiple Org vDCs can be assigned from a single PvDC. For additional information about these constructs, see the VMware vCloud Director Constructs section of this document.

VMware vCloud Director Cells

Each vCloud Director cell contains all of the software components required for vCloud Director. A cell can run on its own, but multiple cells running in an active-active cluster are used for scalability and redundancy.

Each cell of the vCloud NFV platform stores all data in an Microsoft SQL Server configured in AlwaysOn Availability Groups (AAG). The AlwaysOn Availability Groups feature of Microsoft SQL Server is a high-availability and disaster-recovery solution. Configure Microsoft SQL Server with AAG, according to the Microsoft SQL database documentation.

To accommodate temporary transfer storage when content such as VNF workload templates or ISO images are uploaded or downloaded, a shared NFS volume must be accessible by all vCloud Director cells.

Use this formula to determine the number of cell instances required:

\[
\text{Number of cell instances} = n + 1 \text{ where } n \text{ is the number of vCenter Server instances}
\]

Because there is only one database instance for all cells, the number of database connections can become a performance bottleneck. By default, each cell is configured to have 75 database connections.

Each vCloud Director cell has three network connections, two external facing, and one internal facing. One of the external facing interfaces is used for vCloud Director Web services, such as the user interface and API. Another external facing interface is used for the remote console proxy functionality that facilitates lights-out management of VNF workloads. The internal facing interface is used for connectivity to the management network for vCenter Server and for NSX Manager connectivity. Both of the external facing interfaces are load balanced, the interface for the UI and API and the interface for the remote console, and all vCloud
Director cells are connected to a shared clustered database.

When configuring vCloud Director behind a load balancer, configure the following settings to respond to the client’s request with the correct fully qualified domain name (FQDN) or IP address. These settings are required for the UI and API and console proxy service requests to function:

- VMware vCloud Director must have a public URL
- VMware vCloud Director must have a public console proxy address
- VMware vCloud Director must have a public REST API with a base URL

VMware vCloud Director Constructs

VMware vCloud Director abstracts compute, storage, and network resources from an underlying virtualized infrastructure and provides a new set of constructs that are used to define NFVI tenants and assign resources to them. This section gives an overview of the vCloud Director terminology and how it maps to the vCloud NFV platform.

Key VMware vCloud Director terminology:

Provider Virtual Data Centers. The Provider Virtual Data Center (PvDC) is a standard container for a pool of compute, storage, and network resources from a single vCenter server. The requirements of a vCloud NFV platform solution dictate that the platform must be generic enough to support future VNF requirements. During deployment, a VNF can leverage one or multiple PvDCs per site, or multiple VNFs can share a single PvDC with different Org vDCs. As part of the onboarding process, the requirements of each VNF are assessed.

Organizations. Organizations are the unit of multi-tenancy within vCloud Director. Within the vCloud NFV platform, a NFVI tenant can be defined in multiple ways. A NFVI tenant can be a VNF provider. Alternatively, a VNF can be defined per application and can consist of multiple VNF providers who together offer a joint service. You must identify the necessary level of separation between different VNFs and the creation of NFVI tenants during the onboarding process. Tenant operations teams handle the creation and management of organizations.

Organization Virtual Data Center. An Organization Virtual Data Center (Org vDC) is a subgrouping of compute, storage, and network resources allocated from a PvDC and mapped to an organization. Multiple Org vDCs can share the resources of the same PvDC, as they do in Figure 9: VMware vCloud Director Constructs Logical Design. An Org vDC is the deployment environment in which VNF workloads are deployed and executed.
NFVI tenants can draw resources from multiple Org vDCs using one of the following resource allocation models:

Allocation Pool. An allocation pool is a pool of allocated resources with a certain percentage of CPU and memory resources guaranteed to a specific tenant. The percentage of CPU and memory guaranteed directly translates into reservations configured on the sub-resource pool. The difference between the reservation and the limit are the resources that can potentially be oversubscribed. While VNFs are guaranteed to use a certain percentage of resources, they may need to compete with other VNFs within the NFVI tenancy if they need more resources than what was allocated. This is illustrated in Figure 10.

Reservation Pool. The reservation pool resources allocated to the organization virtual datacenter are completely dedicated, as illustrated in Figure 11. This is identical to an allocation pool, with all guarantees set to 100%. Reservation pool Org vDCs map to resource pools in vCenter with the reservations set to be equivalent to the limits available.
Pay-As-You-Go. The pay-as-you-go model provides the illusion of an unlimited resource pool. This model maps to a sub-resource pool with no configured reservations or limits, as illustrated in Figure 12. Resources are committed only when the vApps are deployed in the virtual data center of the organization.

For the purpose of the vCloud NFV platform, NFVI tenants must be configured using the Pay-As-You-Go allocation model.

VMware vSphere vApp(s). A VMware vSphere® App™ is a container for multiple virtual machines, and is the standard unit for workloads in vCloud Director. VMware vApps contain one or more virtual machines and networks, and can be imported or exported as an OVF file. In the vCloud NFV platform, a VNF instance can be a vApp.

VMware vCloud Director Networking

Separation of network access between NFVI tenants is important for supporting secure multi-tenancy on a horizontal platform. VMware vCloud Director integrates with vCenter Server and NSX for vSphere to manage the creation and consumption of isolated L2 networks.

Networks that are bound to external (MPLS) networks must be manually set along with the NSX Edge Services Gateway virtual appliance during the VNF onboarding process. Networks that are internal to an NFVI tenant or to a VNF instance can be created using the vCloud Director UI or the vCloud Director API. NSX for vSphere creates a network virtualization layer on which all virtual networks are created. This layer is an abstraction between the physical and virtual networks. VMware vSphere for NSX can create L2 logical switches that are associated with logical routers, firewalls, load balancers, and VPNs.

External Networks. An external network in vCloud Director originally describes a network with connectivity to the physical network, such as a VLAN. In the vCloud NFV platform this differs slightly, because the resource clusters where VNF workloads are running do not have direct connectivity to the physical network. VNF workloads in resource sites can communicate only outside of the resource site through the edge cluster.

NSX Logical Switches, Distributed Logical Routers (DLR) and NSX Edge Services Gateway virtual appliance gateway virtual appliance services are deployed to manage North-South traffic to the platform. These are created during the onboarding process to provide networking and Edge Gateway services as well as connectivity to networks external to the vCloud NFV platform.
Organizations virtual data center networks (Org vDC) networks provide Org vDCs with networks to connect to VNF workloads. These Org vDC networks can be shared across Org vDCs within the same NFVI tenant. This allows VNF workloads in multiple Org vDCs to communicate with each other by connecting to the same Org vDC network.

Org vDC networks can be created in any of the following ways:

- **Internal.** Org vDC networks can be internal to the NFVI tenant with no external connectivity.

- **Routed.** Org vDC networks can be routed for connection to an existing VXLAN or VLAN.
- **Direct Connection to an External Network.** Org vDC networks can have a direct connection to a VXLAN or VLAN.

![Diagram](https://via.placeholder.com/150)

Figure 16: Direct Org vDC Network

The configuration of your Org vDC networks should be carried out as part of the onboarding process.

Extensibility

The vCloud NFV platform can be extended using several inherit mechanisms in vCloud Director, as well as by using additional VMware technologies. These are described below.

VMware vCloud Director API Extensions. The vCloud Director REST API can be modified to expose additional resources. When such a resource is called, a message is posted in an AMQP message bus, with the AMQP provided by VMware vFabric® RabbitMQ. It can be consumed by third party applications.

Blocking Tasks. Blocking tasks also leverage AMQP for integration. If blocking tasks are enabled, a message is posted to an AMQP message bus when an event is triggered for a vApp (VNF instance) or workload (VNF workload). For example, these events can be cloning operations, power operations, or reconfiguration. A third party or vRealize Orchestrator can receive the message, perform an action, and then release the blocking task. The action that was initiated on the workload or vApp will be halted until the task is released.

VMware vCloud Director interaction with the RabbitMQ message broker server and the VMware vRealize® Orchestrator™ workflow engine can be used to expose public APIs to northbound management and orchestration components, such as VNF Managers.

VMware vFabric RabbitMQ Server. The vFabric RabbitMQ server provides an AMQP message bus that VMware vCloud Director integrates with by posting messages to a queue. These messages are received by vRealize Orchestrator which can execute workflows based on the message content.

VMware vFabric RabbitMQ is also used by vCloud Director API extensions where the vCloud Director REST API can be extended by adding new resources. When such a call is made, a message is posted in an AMQP queue that can be consumed by third party applications. A vFabric RabbitMQ cluster is deployed to support the vCloud Director extensions and blocking tasks.

VMware vRealize Orchestrator. VMware vRealize Orchestrator is a workflow engine that is primarily used in this Reference Architecture for automation of NFVI related tasks and procedures. It can also be used as a highly flexible solution to integrate with OSS and BSS, for example when using REST or SOAP APIs. VMware vRealize Orchestrator provides several plugins, hundreds of prebuilt workflows, and actions that can retrieve information from the vCloud NFV platform, as well as perform actions in a controlled manner.

VMware vRealize Orchestrator consists of a server component and a client component where the server component is deployed as a virtual appliance. By default, the vRealize Orchestrator runs as a single instance in standalone mode. To increase availability of vRealize Orchestrator, it can be set up to work in cluster mode with multiple vRealize Orchestrator instances behind a load balancer, and with a shared database.
All vRealize Orchestrator instances communicate with each other by exchanging heartbeats at a certain time interval. If an active vRealize Orchestrator instance fails to send heartbeats, it is considered to be non-responsive, and one of the inactive instances takes control to resume all of the workflows from the point at which they were interrupted. The heartbeat is implemented through the shared database, so there are no network design implications for a vRealize Orchestrator cluster.

To work with vCloud Director blocking tasks, configure vRealize Orchestrator to subscribe to AMQP messages posted by vCloud Director.
4.3 NFVI Operations Management Design

The NFVI Operations Management components are a functional block in the Management and Orchestration working domain. These components are responsible to provide and extend visibility for fault, configuration, accounting, performance, and security (FCAPS) of the NFVI. The VMware implementation of the vCloud NFV platform expands the capabilities of this functional block through its unique portfolio of solutions by offering business continuity and disaster recovery capabilities across the MANO working domain. Over the past decade, VMware has built integrated solutions that enable customers in all industries to operate large-scale cloud implementations.

For the purpose of the vCloud NFV platform, the NFVI Operations Management tasks are delivered through the use of the components listed in Table 6. All components are deployed into the management cluster.

<table>
<thead>
<tr>
<th>COMPONENT NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMware vRealize Operations Manager</td>
<td>VMware vRealize Operations Manager handles performance and capacity management of the NFVI and VIM components.</td>
</tr>
<tr>
<td>VMware vRealize Log Insight</td>
<td>VMware vRealize Log Insight provides real-time log management and log analysis with machine learning-based intelligent grouping, high-performance search, and better troubleshooting across physical, virtual, and cloud environments.</td>
</tr>
<tr>
<td>VMware Site Recovery Manager</td>
<td>VMware Site Recovery Manager is a disaster recovery orchestration engine for providing predictable failover of management components.</td>
</tr>
<tr>
<td>VMware vSphere Replication</td>
<td>VMware vSphere Replication provides granular replication of management virtual machines.</td>
</tr>
<tr>
<td>VMware vSphere Data Protection</td>
<td>VMware vSphere Data Protection provides data protection of the management components involving the backup and restore of underlying virtual machines.</td>
</tr>
</tbody>
</table>

Table 6: NFVI Operations Management Components

4.3.1 VMware vRealize Operations Manager

The underlying virtual infrastructure relies on a monitoring solution able to collect data regarding its health, capacity, availability, and performance. VMware vRealize Operations Manager provides a solution for a highly scalable, available, and extensible monitoring infrastructure.

VMware vRealize Operations is tightly integrated with DRS. Analytics determine the cross-cluster placement opportunities for vRealize Operations, while DRS determines the best destination within clusters. The enhanced integration uses all DRS rules, constraints, and enterprise-class capabilities.

High availability is achieved by deploying a master node and a master replica node to which data is synchronized automatically. Each node is self-contained and has all the services required for it to operate. This allows you to deploy additional nodes to scale out the vRealize Operations Manager cluster.
VMware vRealize Operations Management Pack

VMware vRealize Operations Manager gathers its data from the adapters connected to source servers. For this mechanism to work, vRealize Operations Manager is configured to communicate to source servers using an authorized user account. If the user account has limited access to objects in the source server, it sees only the data for which the account has permissions. At a minimum, the user account must have read privileges across the objects to collect. For additional information about VMware vCloud Operations Solutions, see the VMware vCloud Management Marketplace.

The following vRealize Operations Management Packs are installed to gather metrics across the management components:

- VMware vRealize® Operations Management Pack™ for vCloud Director
- VMware vRealize® Operations Management Pack™ for vCenter Server
- VMware vRealize® Operations Management Pack™ for NSX
- VMware vRealize® Operations Management Pack™ for Storage
- VMware vRealize® Operations Management Pack™ for Log Insight
- VMware vRealize® Operations Management Pack™ for OpenStack
- VMware vRealize® Operations Management Pack™ for Network Devices

To minimize traffic between the vCenter Server and the vRealize Operations Manager, the vCenter Server Adapter is installed with a five-minute collection interval.

VMware vRealize Operations Manager Logging

Audit logs are used to track configuration changes performed by authenticated users to see who initiated the change or scheduled a job that performed the change. All audit logs are forwarded to vRealize Log Insight.

VMware vRealize Operations Manager Alerts

When alerts are generated in vRealize Operations Manager, they appear in the alert details and object details, but can also be configured to be sent outside the applications using outbound alert options.

VMware vRealize Operations Manager has the following plug-ins for sending notifications and alerts:

- SMTP to activate email service reports and notifications messages when alerts are raised
- SNMP traps send alerts to an SNMP target
- REST API
The decision to use a specific alerting method is implementation-specific and is typically driven by the external monitoring and management tools available.

4.3.2 VMware vRealize Log Insight

VMware vRealize Log Insight is used to connect to vCenter Servers to collect server events, tasks, and alarms data. It integrates with vRealize Operations Manager to send notification events.

VMware vRealize Log Insight is deployed using a multi-node HA cluster with a minimum of three virtual appliances, using the integrated load balancer capabilities. Data is collected using the syslog protocol or an API. All NSX Manager syslog information, distributed firewall logs, and NSX Edge Services Gateway virtual appliance gateway virtual appliance Services syslog information is sent to vRealize Log Insight. Each vCloud Director cell produces logs that persist in the internal database for 90 days. These are sent to vRealize Log Insight for centralized log access and archiving.

Additional vCloud Director troubleshooting and API access logs are stored locally on the cells. These logs are produced by the Apache log4j logging utility and can be forwarded by creating an additional appender on the cell. For additional information, read the Knowledge Base article Enabling Centralized Logging in VMware vCloud Director (2004564). It is configured for the vCloud Director cells.

VMware vRealize Log Insight Content Pack

VMware vRealize Log Insight gathers log events from multiple sources, and through special content packs delivers solution specific dashboards to perform log analytics using redefined alerts. For additional information about VMware vRealize Log Insight Solutions, see the VMware vCloud Management Marketplace.

The following vRealize Log Insight content packs are implemented as part of the vCloud NFV platform:

- VMware vRealize® Log Insight™ Content Pack for vCloud Director
- VMware vRealize® Log Insight™ Content Pack for NSX for vSphere
- VMware vRealize® Log Insight™ Content Pack for vCenter Server
- VMware vRealize® Log Insight™ Content Pack for vRealize Operations Manager
- VMware vRealize® Log Insight™ Content Pack for Microsoft SQL
- VMware vRealize® Log Insight™ Content Pack for Microsoft Windows

VMware vRealize Log Insight Archiving

Archiving is primarily a long-term retention tool. The process copies raw data to an external NFS storage. Archives are much smaller than indexes but require indexing if they are loaded back into the vRealize Log Insight system. For additional information about vRealize Log Insight archiving, see the VMware vRealize Log Insight Information page.
4.4 Business Continuity and Disaster Recovery

4.4.1 VMware Site Recovery Manager

VMware Site Recovery Manager provides a solution for automating the setup and execution of disaster recovery plans in the event of a disaster. Numerous management functions running within the management clusters must be available in the event of a disaster at either of the two data centers. Network connectivity between both data centers is required to replicate the management workloads using vSphere Replication.

Each site has an instance of vCenter Server that manages the management cluster and its ESXi hosts, a Site Recovery Manager server, and a vSphere Replication appliance that is used to manage the replication and automation of disaster recovery workflows across the sites.

![Diagram of disaster recovery workflow](image)

Figure 19: Disaster Recovery

Networking Considerations

Physically moving a service from one site to another represents a networking challenge that adds dependency on the underlying networking infrastructure. The route to an entire subnet can be changed in the backbone to establish connectivity again, avoiding the need to change the IP addresses of management components when failing over between sites.

DRS Considerations

Some management components for the vCloud NFV platform such as NSX load balancers, PSCs, vCloud Director Cells, vRealize Operations Manager, and vRealize Log Insight have specific affinity or anti-affinity rules configured for availability. When protected management components are recovered at a secondary site, DRS rules, reservations, and limits are not carried over as part of the recovery plan. However, it is possible to manually configure rules, reservations, and limits on placeholder virtual machines at the recovery site, during the platform build. These rules can be abstracted into vRealize Orchestrator workflows that are used to set the appropriate reservations and rules and continuously check the compliance with the predefined settings.
Inventory Mappings
Inventory mapping provides mapping between virtual machine folders, clusters or resource pools, and networks on the protected site and their counterparts on the recovery site. All items within a single data center on the protected site must map to a single data center on the recovery site.

These inventory mapping details are used across both the protected and recovery sites:

- Resource mapping to map the cluster objects at the recovery site.
- Folder mapping to correctly map the folder structure at the recovery site.
- Network mapping to correctly map the management networks at the recovery site.

VNF Recovery Considerations
Every vendor must provide a specific strategy for disaster recovery for a VNF that will be managed directly by the VNF Managers.

4.4.2 VMware vSphere Replication
VMware vSphere Replication is the technology used to replicate virtual machine data between data centers. It fully supports Virtual SAN. VMware vSphere Replication is deployed as an appliance within the management cluster and provides a recovery point objective (RPO) of 15 minutes to 24 hours.

The two most important performance metrics that need to be considered when designing or executing a disaster recovery plan are RPO and recovery time objective (RTO). RPO is the maximum period during which data can be lost due to a disaster, and it is fulfilled by the replication technology. RTO is a period of time, usually with an attached service level, during which the business process must be restored. It can include the time for the recovery itself, testing, and communication to consumers of the service.

Site Recovery Manager and vSphere Replication provide the ability to set the RPO for each individual virtual machine within a protection group.

Protection Groups
A protection group is a group of management components that fail over together at the recovery site during testing and recovery. All protected management components are placed within a single protection group.

Recovery Plans
Recovery Plans are the run books associated with the disaster recovery scenario. A recovery plan determines which management components are started, what needs to be powered down, which scripts to run, the start-up order, and the overall automated execution of the failover.

A full site failure is the only scenario that will invoke a disaster recovery. There is no requirement to handle planned migrations or to move a single failed application within the management cluster. A single recovery plan is created for the automated failover of the primary site, and the placement of Management components into priority groups ensures the correct startup order.
For the Management components to function correctly after a recovery event, services must be restored in a particular order. Table 7 documents the correct recovery order.

The recovery of the Resource, edge cluster, vCenter Server, and NSX Manager is also required to maintain management capabilities where additional physical data centers are managed within region.

<table>
<thead>
<tr>
<th>PRIORITY GROUP</th>
<th>DATA CENTER 1</th>
<th>DATA CENTER 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priority 1</td>
<td>VCD Database (DC1 Node)</td>
<td>VCD Database (DC2 Node)</td>
</tr>
<tr>
<td>Priority 2</td>
<td>NFS Server</td>
<td></td>
</tr>
<tr>
<td>Priority 3</td>
<td>vCloud Director Cell (Node 1)</td>
<td>vCloud Director Cell (Node 3)</td>
</tr>
<tr>
<td></td>
<td>vCloud Director Cell (Node 2)</td>
<td></td>
</tr>
<tr>
<td>Priority 4</td>
<td>vFabric RabbitMQ (Node 1)</td>
<td>vFabric RabbitMQ (Node 2)</td>
</tr>
<tr>
<td></td>
<td>vRealize Log Insight (Node 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vRealize Log Insight (Node 2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vRealize Log Insight (Node 3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vRealize Operations Manager (Node 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vRealize Operations Manager (Node 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vRealize Operations Manager (Node 1)</td>
<td></td>
</tr>
<tr>
<td>Priority 5</td>
<td>vRealize Orchestrator (Node 1)</td>
<td>vRealize Orchestrator (Node 2)</td>
</tr>
</tbody>
</table>

Table 7: Management Cluster Recovery Priorities

4.4.3 VMware vSphere Data Protection

VMware vSphere Data Protection is a disk-based backup and recovery solution that is fully integrated with VMware vCenter Server and enables centralized management of backup jobs, while storing backups in deduplicated destination storage locations. The vSphere Web Client interface is used to select, schedule, configure, and manage backups and the recovery of management workloads.

VMware vSphere Data Protection is distributed in the OVA format. The appliance resides on a separate datastore to protect it from storage failures. It is responsible for the backup and restore of the management components residing within the management cluster.

Data protection is configured so that the appliance backs up the data to a backup datastore that is separate from the management workload datastore. Figure 20 illustrates the logical design of vSphere Data Protection for the vCloud NFV platform.
VMware vSphere Data Protection protects the management cluster through the vCenter Server Management layer. Connectivity through vCenter Server provides vSphere Data Protection with visibility to all ESXi servers in the management clusters, and therefore to all of the management components that must be backed up.

The initial configuration for the vSphere Data Protection appliance should be set to 6 TB. The additional disk space required above the usable capacity of the appliance is for creating and managing checkpoints.

The backup appliance stores all management cluster data that is required, in a disaster recovery event or data loss, to resume normal service based on the RPO. The target location must meet the minimum performance requirements for mitigation.

RPO and RTO

VMware vSphere Data Protection should perform multiple backups each day of each of the workloads within the management clusters. The RPO and RTO values should be set as necessary, based on the business needs.

Retention Policies

The retention policies are the properties of a backup job. It is important to group management workloads by business priorities and by the retention requirements set based on the business level.

Monitoring

CPU, memory, network, and disk performance and capacity are monitored by vRealize Operations Manager, and syslog events are sent to vRealize Log Insight. Capacity can also be viewed through VMware vSphere Data Protection reports.
Authors and Contributors

- Pradip Kadam, Solution Consultant, NFV Solution Team, VMware
- Indranil Bal, Solution Consultant, NFV Solution Team, VMware