You can find the most up-to-date technical documentation on the VMware Web site at:
http://www.vmware.com/support/
The VMware Web site also provides the latest product updates.
If you have comments about this documentation, submit your feedback to:
docfeedback@vmware.com
Contents

About Setup for Failover Clustering and Microsoft Cluster Service  5

1 Getting Started with MSCS  7
   Clustering Configuration Overview  7
   Hardware and Software Requirements for Clustering  10
   Supported Shared Storage Configurations  11
   PSP_RR Support for MSCS  11
   iSCSI Support for MSCS  11
   FCoE Support for MSCS  12
   vMotion support for MSCS  12
   vSphere MSCS Setup Limitations  13
   MSCS and Booting from a SAN  13
   Setting up Clustered Continuous Replication or Database Availability Groups with Exchange  14
   Setting up AlwaysOn Availability Groups with SQL Server 2012  14

2 Cluster Virtual Machines on One Physical Host  15
   Create the First Node for Clusters on One Physical Host  15
   Create Additional Nodes for Clusters on One Physical Host  16
   Add Hard Disks to the First Node for Clusters on One Physical Host  17
   Add Hard Disks to Additional Nodes for Clusters on One Physical Host  18

3 Cluster Virtual Machines Across Physical Hosts  19
   Create the First Node for MSCS Clusters Across Physical Hosts  19
   Create Additional Nodes for Clusters Across Physical Hosts  20
   Add Hard Disks to the First Node for Clusters Across Physical Hosts  21
   Add Hard Disks to Additional Nodes for Clusters Across Physical Hosts  22

4 Cluster Physical and Virtual Machines  25
   Create the First Node for a Cluster of Physical and Virtual Machines  25
   Create the Second Node for a Cluster of Physical and Virtual Machines  26
   Add Hard Disks to the Second Node for a Cluster of Physical and Virtual Machines  27
   Install Microsoft Cluster Service  27
   Create Additional Physical-Virtual Pairs  28

5 Use MSCS in an vSphere HA and vSphere DRS Environment  29
   Enable vSphere HA and vSphere DRS in a Cluster (MSCS)  29
   Create VM-VM Affinity Rules for MSCS Virtual Machines  30
   Enable Strict Enforcement of Affinity Rules (MSCS)  30
   Set DRS Automation Level for MSCS Virtual Machines  31
   Using vSphere DRS Groups and VM-Host Affinity Rules with MSCS Virtual Machines  31
6 vSphere MSCS Setup Checklist 35

Index 39
About Setup for Failover Clustering and Microsoft Cluster Service


Unless stated otherwise, the term Microsoft Cluster Service (MSCS) applies to Microsoft Cluster Service with Windows Server 2003 and Failover Clustering with Windows Server 2008 and above releases.

Setup for Failover Clustering and Microsoft Cluster Service covers ESXi and VMware\textsuperscript{®} vCenter\textsuperscript{®} Server.

Intended Audience

This information is for system administrators who are familiar with VMware technology and Microsoft Cluster Service.

**Note** This is not a guide to using Microsoft Cluster Service or Failover Clustering. Use your Microsoft documentation for information about installation and configuration of Microsoft Cluster Service or Failover Clustering.

**Note** In this document, references to Microsoft Cluster Service (MSCS) also apply to Windows Server Failover Clustering (WSFC) on corresponding Windows Server versions.

Task instructions in this guide are based on the vSphere Web Client. You can also perform most of the tasks in this guide by using the new vSphere Client. The new vSphere Client user interface terminology, topology, and workflow are closely aligned with the same aspects and elements of the vSphere Web Client user interface. You can apply the vSphere Web Client instructions to the new vSphere Client unless otherwise instructed.

**Note** Not all functionality in the vSphere Web Client has been implemented for the vSphere Client in the vSphere 6.5 release. For an up-to-date list of unsupported functionality, see *Functionality Updates for the vSphere Client Guide* at [http://www.vmware.com/info?id=1413](http://www.vmware.com/info?id=1413).
VMware® vSphere® supports clustering using MSCS across virtual machines. Clustering virtual machines can reduce the hardware costs of traditional high-availability clusters.

**Note** vSphere High Availability (vSphere HA) supports a clustering solution in conjunction with vCenter Server clusters. *vSphere Availability* describes vSphere HA functionality.

This chapter includes the following topics:

- “Clustering Configuration Overview,” on page 7
- “Hardware and Software Requirements for Clustering,” on page 10
- “Supported Shared Storage Configurations,” on page 11
- “PSP_RR Support for MSCS,” on page 11
- “iSCSI Support for MSCS,” on page 11
- “FCoE Support for MSCS,” on page 12
- “vMotion support for MSCS,” on page 12
- “vSphere MSCS Setup Limitations,” on page 13
- “MSCS and Booting from a SAN,” on page 13
- “Setting up Clustered Continuous Replication or Database Availability Groups with Exchange,” on page 14
- “Setting up AlwaysOn Availability Groups with SQL Server 2012,” on page 14

**Clustering Configuration Overview**

Several applications use clustering, including stateless applications such as Web servers, and applications with built-in recovery features such as database servers. You can set up MSCS clusters in several configurations, depending on your environment.

A typical clustering setup includes:

- Disks that are shared between nodes. A shared disk is required as a quorum disk. In a cluster of virtual machines across physical hosts, the shared disk must be on a Fibre Channel (FC) SAN, FCoE or iSCSI. A quorum disk must have a homogenous set of disks. This means that if the configuration is done with FC SAN, then all of the cluster disks should be FC SAN only. Mixed mode is not supported.
- A private heartbeat network between nodes.

You can set up the shared disks and private heartbeat using one of several clustering configurations.
### Clustering MSCS Virtual Machines on a Single Host

A cluster of MSCS virtual machines on a single host (also known as a cluster in a box) consists of clustered virtual machines on the same ESXi host. The virtual machines are connected to the same storage, either local or remote. This configuration protects against failures at the operating system and application level, but it does not protect against hardware failures.

**Note** Windows Server 2008 R2 and above releases support up to five nodes (virtual machines). Windows Server 2003 SP2 systems support two nodes.

The following figure shows a cluster in a box setup.

- Two virtual machines on the same physical machine (ESXi host) run clustering software.
- The virtual machines share a private network connection for the private heartbeat and a public network connection.
- Each virtual machine is connected to shared storage, which can be local or on a SAN.

**Figure 1-1. Virtual Machines Clustered on a Single Host**

### Clustering Virtual Machines Across Physical Hosts

A cluster of virtual machines across physical hosts (also known as a cluster across boxes) protects against software failures and hardware failures on the physical machine by placing the cluster nodes on separate ESXi hosts. This configuration requires shared storage on an Fibre Channel SAN for the quorum disk.

The following figure shows a cluster-across-boxes setup.

- Two virtual machines on two different physical machines (ESXi hosts) run clustering software.
- The virtual machines share a private network connection for the private heartbeat and a public network connection.
- Each virtual machine is connected to shared storage, which must be on a SAN.

**Note** A quorum disk can be configured with iSCSI, FC SAN or FCoE. A quorum disk must have a homogenous set of disks. This means that if the configuration is done with FC SAN, then all of the cluster disks should be FC SAN only. Mixed mode is not supported.
Figure 1-2. Virtual Machines Clustered Across Hosts

![Diagram of virtual machines clustered across hosts]

**Note** Windows Server 2008 SP2 and above systems support up to five nodes (virtual machines). Windows Server 2003 SP1 and SP2 systems support two nodes (virtual machines). For supported guest operating systems see Table 6-2.

This setup provides significant hardware cost savings.

You can expand the cluster-across-boxes model and place multiple virtual machines on multiple physical machines. For example, you can consolidate four clusters of two physical machines each to two physical machines with four virtual machines each.

The following figure shows how you can move four two-node clusters from eight physical machines to two.

Figure 1-3. Clustering Multiple Virtual Machines Across Hosts

![Diagram of clustering multiple virtual machines]

**Clustering Physical Machines with Virtual Machines**

For a simple MSCS clustering solution with low hardware requirements, you might choose to have one standby host.

Set up your system to have a virtual machine corresponding to each physical machine on the standby host, and create clusters, one each for each physical machine and its corresponding virtual machine. In case of hardware failure in one of the physical machines, the virtual machine on the standby host can take over for that physical host.
The following figure shows a standby host using three virtual machines on a single physical machine. Each virtual machine is running clustering software.

**Figure 1-4. Clustering Physical and Virtual Machines**

![Clustering Physical and Virtual Machines Diagram]

**Hardware and Software Requirements for Clustering**

All vSphere MSCS configurations require certain hardware and software components.

The following table lists hardware and software requirements that apply to all vSphere MSCS configurations.

**Table 1-1. Clustering Requirements**

<table>
<thead>
<tr>
<th>Component</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LSI Logic SAS for Windows Server 2008 SP2 and above.</td>
</tr>
<tr>
<td></td>
<td>VMware Paravirtual for Windows Server 2008 SP2 and above.</td>
</tr>
<tr>
<td>Operating system</td>
<td>Windows Server 2003 SP1 and SP2, Windows Server 2008 SP2 above releases.</td>
</tr>
<tr>
<td></td>
<td>For supported guest operating systems see Table 6-2.</td>
</tr>
<tr>
<td>Virtual NIC</td>
<td>Use the default type for all guest operating systems.</td>
</tr>
</tbody>
</table>
| I/O timeout        | Set to 60 seconds or more. Modify HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Disk\TimeOutValue.  
                    | The system might reset this I/O timeout value if you re-create a cluster.    |
|                    | You must reset the value in that case.                                      |
| Disk format        | Select **Thick Provision** to create disks in **eagerzeroedthick** format.   |
| Disk and networking setup | Add networking before disks.                                                |
| Number of nodes    | Windows Server 2003 SP1 and SP2: two-node clustering                          |
|                    | Windows Server 2008 SP2 and above: up to five-node clustering                 |
|                    | For supported guest operating systems see Table 6-2.                         |
| NTP server         | Synchronize domain controllers and cluster nodes with a common NTP server,   |
|                    | and disable host-based time synchronization when using clustering in the guest. |

Setup for Failover Clustering and Microsoft Cluster Service
Supported Shared Storage Configurations

Different MSCS cluster setups support different types of shared storage configurations. Some setups support more than one type. Select the recommended type of shared storage for best results.

Table 1-2. Shared Storage Requirements

<table>
<thead>
<tr>
<th>Storage Type</th>
<th>Clusters on One Physical Machine (Cluster in a Box)</th>
<th>Clusters Across Physical Machines (Cluster Across Boxes)</th>
<th>Clusters of Physical and Virtual Machines (Standby Host Clustering)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual disks</td>
<td>Yes (recommended)</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Pass-through RDM (physical compatibility mode)</td>
<td>No</td>
<td>Yes (recommended)</td>
<td>Yes</td>
</tr>
<tr>
<td>Non-pass-through RDM (virtual compatibility mode)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Use of software iSCSI initiators within guest operating systems configured with MSCS, in any configuration supported by Microsoft, is transparent to ESXi hosts and there is no need for explicit support statements from VMware.

PSP_RR Support for MSCS

ESXi 6.0 supports PSP_RR for MSCS.
- ESXi 6.0 supports PSP_RR for Windows Server 2008 SP2 and above releases. Windows Server 2003 is not supported.
- PSPs configured in mixed mode is supported. In a 2 node cluster one ESXi host can be configured to use PSP_FIXED and the other ESXi host can use PSP_RR.
- Shared disk quorum or data must be provisioned to guest in PassThrough RDM mode only.
- All hosts must be running ESXi 6.0.
- Mixed mode configurations of ESXi 6.0 with previous ESXi releases are not supported.
- Rolling upgrades of cluster Hosts from previous versions of ESXi to ESXi 6.0 builds are not supported.

iSCSI Support for MSCS

ESXi 6.0 supports iSCSI storage and up to 5 node MSCS cluster using Qlogic, Emulex and Broadcom adapters.
- ESXi 6.0 supports iSCSI for Windows Server 2008 SP2 and above releases. Windows Server 2003 is not supported.
- Cluster-across-box (CAB) and cluster-in-a-box (CIB) are supported. A mixture of CAB and CIB is not supported.
- No qualification is needed for SWiSCSI initiator in a guest operating system.
- N+1 cluster configuration comprising of a cluster between ”N” virtual machines on separate ESXi hosts and one physical machine running Windows natively is supported.
- All hosts must be running ESXi 6.0.
- Mixed cluster nodes running FC or FCOE and iSCSI are not supported.
Mixed mode of iSCSI config is supported. For example, Node A on ESXi with iSCSI software initiator and Node B on ESXi with Qlogic, Emulex or Broadcom hardware adapter.

Mixed mode configurations of ESXi 6.0 with previous ESXi releases are not supported.

Rolling upgrades of cluster Hosts from previous versions of ESXi to ESXi 6.0 builds are not supported.

**FCoE Support for MSCS**

ESXi 6.0 supports FCoE storage and up to 5 node MSCS clusters using Cisco FNIC and Emulex FCoE adapters.

- ESXi 6.0 supports FCoE for Windows Server 2008 SP2 and above releases. Windows Server 2003 is not supported.
- Cluster-across-box (CAB) and cluster-in-a-box (CIB) are supported. A mixture of CAB and CIB is not supported.
- CAB configurations are supported with some cluster nodes on physical hosts. In a CAB configuration, a max of one virtual machine in a host can see a LUN.
- In a CIB configuration all virtual machines must be on the same host.
- No qualification is needed for SWiSCSI and FCoE initiators in a guest operating system.
- N+1 cluster configuration, in which one ESXi host has virtual machines which are secondary nodes and one primary node is a physical box are supported.
- Standard affinity and anti-affinity rules apply for MSCS virtual machines.
- All hosts must be running ESXi 6.0.
- All hosts must be running FCoE initiators. Mixed cluster nodes running FC and FCoE are not supported.
- Mixed mode FCoE configuration is supported. For example, Node A on ESXi with an FCoE software adapter intel based card and Node B on ESXi with an Emulex or Cisco FCoE hardware adapter.
- Mixed mode configurations of ESXi 6.0 with previous ESXi releases are not supported.
- Rolling upgrades of cluster hosts from previous versions of ESXi to ESXi 6.0 builds are not supported.

**vMotion support for MSCS**

vSphere 6.0 adds support for vMotion of MSCS clustered virtual machines.

Pre-requisites for vMotion support:

- vMotion is supported only for a cluster of virtual machines across physical hosts (CAB) with pass-through RDMs.
- The vMotion network must be a 10Gbps Ethernet link. 1Gbps Ethernet link for vMotion of MSCS virtual machines is not supported.
- vMotion is supported for Windows Server 2008 SP2 and above releases. Windows Server 2003 is not supported.
- The MSCS cluster heartbeat time-out must be modified to allow 10 missed heartbeats.
- The virtual hardware version for the MSCS virtual machine must be version 11.

Modifying the MSCS heartbeat time-out:
Failover cluster nodes use the network to send heartbeat packets to other nodes of the cluster. If a node does not receive a response from another node for a specified period of time, the cluster removes the node from cluster membership. By default, a guest cluster node is considered down if it does not respond within 5 seconds. Other nodes that are members of the cluster will take over any clustered roles that were running on the removed node.

An MSCS virtual machine can stall for a few seconds during vMotion. If the stall time exceeds the heartbeat time-out interval, then the guest cluster considers the node down and this can lead to unnecessary failover. To allow leeway and make the guest cluster more tolerant, the heartbeat time-out interval needs to be modified to allow 10 missed heartbeats. The property that controls the number of allowed heart misses is `SameSubnetThreshold`. You will need to modify this from its default value to 10. From any one of the participating MSCS cluster nodes run the following command:

```
cluster <cluster-name> /prop SameSubnetThreshold=10:DWORD.
```

You can also adjust other properties to control the workload tolerance for failover. Adjusting delay controls how often heartbeats are sent between the clustered node. The default setting is 1 second and the maximum setting is 2 seconds. Set the `SameSubnetDelay` value to 1. Threshold controls how many consecutive heartbeats can be missed before the node considers its partner to be unavailable and triggers the failover process. The default threshold is 5 heartbeats and the maximum is 120 heartbeats. It is the combination of delay and threshold that determines the total elapsed time during which clustered Windows nodes can lose communication before triggering a failover. When the clustered nodes are in different subnets, they are called `CrossSubnetDelay` and `CrossSubnetThreshold`. Set the `CrossSubnetDelay` value to 2 and the `CrossSubnetThreshold` value to 10.

**vSphere MSCS Setup Limitations**

Before you set up MSCS, review the list of functions that are not supported for this release, and requirements and recommendations that apply to your configuration.

The following environments and functions are not supported for MSCS setups with this release of vSphere:

- Clustering on NFS disks.
- Mixed environments, such as configurations where one cluster node is running a different version of ESXi than another cluster node.
- Use of MSCS in conjunction with vSphere Fault Tolerance (FT).
- Migration with vSphere vMotion of clustered virtual machines on a single host (CIB).
- N-Port ID Virtualization (NPIV)
- ESXi hosts that use memory overcommitment are not suitable for deploying MSCS virtual machines. Memory overcommitment can cause virtual machines to stall for short durations. This can be significantly disruptive as the MSCS clustering mechanism is time-sensitive and timing delays can cause the virtual machines to behave incorrectly.
- Suspend or resume of more than one MSCS node in an ESXi host with a five-node cluster in a box configuration is not supported. This I/O intensive operation is disruptive of the timing sensitive MSCS clustering software.
- Storage spaces are not supported with Failover clustering on Windows 2012 and above.

**MSCS and Booting from a SAN**

You can put the boot disk of a virtual machine on a SAN-based VMFS volume.

Booting from a SAN is complex. Problems that you encounter in physical environments extend to virtual environments. For general information about booting from a SAN, see the *vSphere Storage* documentation.
Follow these guidelines when you place the boot disk of a virtual machine on a SAN-based VMFS volume:

- Consider the best practices for boot-from-SAN that Microsoft publishes in the following knowledge base article: http://support.microsoft.com/kb/305547/en-us.
- Use StorPort LSI Logic drivers instead of SCSIport drivers when running Microsoft Cluster Service for Windows Server 2003 or 2008 guest operating systems.
- Test clustered configurations in different failover scenarios before you put them into production environments.

**Setting up Clustered Continuous Replication or Database Availability Groups with Exchange**

You can set up Clustered Continuous Replication (CCR) with Exchange 2007 or Database Availability Groups (DAG) with Exchange 2010 and higher in your vSphere environment. For supported versions of Exchange, see VMware knowledge base article 1037959.

When working in a vSphere environment:

- Use virtual machines instead of physical machines as the cluster components.
- If the boot disks of the CCR or DAG virtual machines are on a SAN, see “MSCS and Booting from a SAN,” on page 13.

For more information, see Microsoft’s documentation for CCR or DAG on the Microsoft Web site.

**Setting up AlwaysOn Availability Groups with SQL Server 2012**

You can set up AlwaysOn Availability Groups (AAG) with SQL Server 2012 in your vSphere environment. vSphere 6.0 supports the following deployments of AAG:

- Using Availability Groups (AG) for high availability and disaster recovery solution (Non-shared disk configuration).
- Using Failover Cluster Instance (FCI) for high availability, and Availability Groups (AG) for disaster recovery solution (Shared Disk Configuration).

When working in a vSphere environment:

- Use virtual machines instead of physical machines as the cluster components.
- If the boot disks of the AAG virtual machines are on a SAN, see “MSCS and Booting from a SAN,” on page 13.

For more information, see Microsoft’s documentation for AAG on the Microsoft Web site.
Cluster Virtual Machines on One Physical Host

You can create an MSCS cluster with up to five nodes on a single ESXi host.

**Note** Windows Server 2008 SP2 and above systems support up to five nodes (virtual machines). For supported guest operating systems see Table 6-2. Windows Server 2003 SP1 and SP2 systems support two nodes.

A cluster of virtual machines on one physical machine requires a host with one physical network adapter for the VMKernel. Use a separate physical network adapter for clustered virtual machines to connect with external hosts.

This chapter includes the following topics:

- “Create the First Node for Clusters on One Physical Host,” on page 15
- “Create Additional Nodes for Clusters on One Physical Host,” on page 16
- “Add Hard Disks to the First Node for Clusters on One Physical Host,” on page 17
- “Add Hard Disks to Additional Nodes for Clusters on One Physical Host,” on page 18

**Create the First Node for Clusters on One Physical Host**

To create the first node, you create and configure a virtual machine with two virtual network adapters and install a guest operating system on the virtual machine.

You configure the virtual network adapters to handle virtual machine traffic for the cluster: a private network connection for the private heartbeat and a public network connection.

**Procedure**

1. Open the vSphere Web Client and connect to the vCenter Server system.
   
   Use the user name and password of the user who will have administrator permissions on the virtual machine.

2. In the vSphere Web Client navigator, right-click the host and select **New Virtual Machine**.

3. Proceed through the wizard to create the virtual machine.

<table>
<thead>
<tr>
<th>Page</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creation type</td>
<td>Select Create a new virtual machine.</td>
</tr>
<tr>
<td>Name and folder</td>
<td>Enter a name and select a location.</td>
</tr>
<tr>
<td>Compute resource</td>
<td>Select a cluster, host, vApp or resource pool to run this virtual machine.</td>
</tr>
<tr>
<td>Storage</td>
<td>Select a datastore as the location for the virtual machine configuration file and the virtual machine disk (.vmdk) file.</td>
</tr>
</tbody>
</table>
Compatibility

The host or cluster supports more than one VMware virtual machine version. Select a compatibility for the virtual machine.

Guest operating system

Select the guest operating system that you intend to install.

Customize hardware

Select virtual hardware, advanced virtual machine options, and SDRS rules.

Ready to Complete

Review your selections.

4 Click Finish to complete creating the virtual machine.

**Note** Do not add shared cluster disks at this time.

5 In the vSphere Web Client navigator, select the newly created virtual machine, right-click and select Edit Settings.

6 Click the New device drop-down menu, select Network, and click Add.

7 In the New Virtual Machine - Edit Settings dialog box, expand Network adapter. Select the adapter type and network label.
   - If you selected a private network for the first network adapter, you must select a public network for this network adapter.
   - If you selected a public network for the first network adapter, you must select a private network adapter.

8 Click OK.

9 Install a Windows Server operating system on the virtual machine.

Create Additional Nodes for Clusters on One Physical Host

Create a template from the first virtual machine and deploy the second node from that template. You can have up to five nodes on Windows Server 2008.

**Caution** If you clone a virtual machine with an RDM setup, the cloning process converts the RDMs to virtual disks. Unmap all RDMs before cloning, and remap them after cloning is complete.

**Procedure**

1 In the vSphere Web Client navigator, right-click the first virtual machine you created and select Clone > Clone to Template.

2 Proceed through the wizard to create the virtual machine template.

<table>
<thead>
<tr>
<th>Page</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name and folder</td>
<td>Enter a name (for example, Node2_Template) and select a location.</td>
</tr>
<tr>
<td>Compute Resource</td>
<td>Select the host or cluster where you will run the virtual machine.</td>
</tr>
<tr>
<td>Disk Format</td>
<td>Select Same format as source.</td>
</tr>
<tr>
<td>Storage</td>
<td>Select a datastore as the location for the virtual machine configuration file and the .vmdk file.</td>
</tr>
<tr>
<td>Ready to Complete</td>
<td>Click Finish to create the virtual machine template.</td>
</tr>
</tbody>
</table>

3 Right-click the virtual machine template and select Deploy VM from this Template.
4 Proceed through the deployment wizard to deploy the virtual machine.

<table>
<thead>
<tr>
<th>Page</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name and folder</td>
<td>Enter a name (for example, Node2) and select a location.</td>
</tr>
<tr>
<td>Compute resource</td>
<td>Select the host or cluster where you will run the virtual machine.</td>
</tr>
<tr>
<td>Disk Format</td>
<td>Select Same format as source.</td>
</tr>
<tr>
<td>Datastore</td>
<td>Select a datastore as the location for the virtual machine configuration file and the .vmdk file.</td>
</tr>
<tr>
<td>Clone options</td>
<td>Select Customize the operating system.</td>
</tr>
</tbody>
</table>

5 Select a new guest operating system from the list.
   a Click the Create a new specification button to add a new guest operating system. Proceed through the New VM Guest Customization Spec wizard.
   b Click Finish to exit the wizard.

6 Click Finish to deploy the virtual machine.

**Add Hard Disks to the First Node for Clusters on One Physical Host**

In an MSCS cluster, storage disks are shared between nodes. You set up a quorum disk and an optional shared storage disk.

**Procedure**

1 In the vSphere Web Client navigator, select the newly created virtual machine, right-click and select Edit Settings.
2 Click the New device drop-down menu, select New Hard Disk, and click Add.
3 Select the disk size.
4 Under Disk Provisioning, select Thick Provision.
   You can also use a mapped SAN LUN set to virtual compatibility mode.
5 Expand the New Hard Disk. From the Virtual Device Node drop-down menu, select a new SCSI controller (for example, SCSI (1:0)).

   **NOTE** You must select a new virtual device node. You cannot use SCSI 0.
6 Click OK.
   The wizard creates a new hard disk and a new SCSI controller.
7 In the New Virtual Machine - Edit Settings dialog box, expand SCSI controller and select the Change Type drop-down menu.
8 Select the appropriate type of controller, depending on your operating system.

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Type of Controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows Server 2003 SP1 and SP2</td>
<td>LSI Logic Parallel</td>
</tr>
<tr>
<td>Windows Server 2008 SP2 and above</td>
<td>LSI Logic SAS</td>
</tr>
<tr>
<td>Windows Server 2008 SP2 and above</td>
<td>VMware Paravirtual</td>
</tr>
</tbody>
</table>

   For supported guest operating systems see Table 6-2.
9 Click OK.
In the New Virtual Machine - Edit Settings dialog box, expand **SCSI controller** and select the **SCSI Bus Sharing** drop-down menu. Set SCSI Bus Sharing to **Virtual** and click **OK**.

**Add Hard Disks to Additional Nodes for Clusters on One Physical Host**

To allow shared access to clustered services and data, point the quorum disk of the second node to the same location as the first node’s quorum disk. Point shared storage disks to the same location as the first node’s shared storage disks.

**Prerequisites**

Before you begin, obtain the following information:

- Which virtual device node is for the first virtual machine’s shared storage disks (for example, SCSI (1:0)).
- The location of the quorum disk specified for the first node.

**Procedure**

1. In the vSphere Web Client navigator, select the newly created virtual machine, right-click and select **Edit Settings**.
2. Click the **New device** drop-down menu, select **Existing Hard Disk**, and click **Add**.
3. Select the same virtual device node you chose for the first virtual machine’s shared storage disks (for example, **SCSI (1:0)**), and click **OK**.

**Note** The location of the virtual device node for this virtual machine’s shared storage must match the corresponding virtual device node for the first virtual machine.

4. In Disk File Path, browse to the location of the quorum disk specified for the first node.
Cluster Virtual Machines Across Physical Hosts

You can create a MSCS cluster that consists of two or more virtual machines on two ESXi or more hosts.

A cluster across physical hosts requires specific hardware and software.

- ESXi hosts that have the following:
  - Two physical network adapters dedicated to the MSCS cluster and to the public and private networks.
  - One physical network adapter dedicated to the VMkernel.
- Supported shared storage configuration. For more information, see “Supported Shared Storage Configurations,” on page 11.
- RDM in physical compatibility (pass-through) or virtual compatibility (non-pass-through) mode. VMware recommends physical compatibility mode. The cluster cannot use virtual disks for shared storage.
  - Failover clustering with Windows Server 2008 is not supported with virtual compatibility mode (non-pass-through) RDMs.

This chapter includes the following topics:

- “Create the First Node for MSCS Clusters Across Physical Hosts,” on page 19
- “Create Additional Nodes for Clusters Across Physical Hosts,” on page 20
- “Add Hard Disks to the First Node for Clusters Across Physical Hosts,” on page 21
- “Add Hard Disks to Additional Nodes for Clusters Across Physical Hosts,” on page 22

Create the First Node for MSCS Clusters Across Physical Hosts

To create the first node, you create and configure a virtual machine with two virtual network adapters and install a guest operating system on the virtual machine.

You configure the virtual network adapters to handle virtual machine traffic for the cluster: a private network connection for the private heartbeat and a public network connection.

Procedure

1. Open the vSphere Web Client and connect to the vCenter Server system.
   - Use the user name and password of the user who will have administrator permissions on the virtual machine.
2. In the vSphere Web Client navigator, right-click the host and select New Virtual Machine.
3 Proceed through the wizard to create the virtual machine.

<table>
<thead>
<tr>
<th>Page</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creation type</td>
<td>Select Create a new virtual machine.</td>
</tr>
<tr>
<td>Name and folder</td>
<td>Enter a name and select a location.</td>
</tr>
<tr>
<td>Compute resource</td>
<td>Select a cluster, host, vApp or resource pool to run this virtual machine.</td>
</tr>
<tr>
<td>Storage</td>
<td>Select a datastore as the location for the virtual machine configuration file and the virtual machine disk (.vmdk) file.</td>
</tr>
<tr>
<td>Compatibility</td>
<td>The host or cluster supports more than one VMware virtual machine version. Select a compatibility for the virtual machine.</td>
</tr>
<tr>
<td>Guest operating system</td>
<td>Select the guest operating system that you intend to install.</td>
</tr>
<tr>
<td>Customize hardware</td>
<td>Select virtual hardware, advanced virtual machine options, and SDRS rules.</td>
</tr>
<tr>
<td>Ready to Complete</td>
<td>Review your selections.</td>
</tr>
</tbody>
</table>

4 Click Finish to complete creating the virtual machine.

**Note** Do not add shared cluster disks at this time.

5 In the vSphere Web Client navigator, select the newly created virtual machine, right-click and select Edit Settings.

6 Click the **New device** drop-down menu, select **Network**, and click Add.

7 In the New Virtual Machine - Edit Settings dialog box, expand **Network adapter**. Select the adapter type and network label.
   - If you selected a private network for the first network adapter, you must select a public network for this network adapter.
   - If you selected a public network for the first network adapter, you must select a private network adapter.

8 Click OK.

9 Install a Windows Server operating system on the virtual machine.

**Create Additional Nodes for Clusters Across Physical Hosts**

To create additional nodes in a cluster of virtual machines across physical hosts, you create a template of the first virtual machine and use it to deploy additional virtual machines onto another ESXi host.

**Caution** If you clone a virtual machine with an RDM setup, the cloning process converts the RDMs to virtual disks. Unmap all RDMs before cloning, and remap them after cloning is complete.

**Procedure**

1 In the vSphere Web Client navigator, right-click the first virtual machine you created and select **Clone > Clone to Template**.

2 Proceed through the wizard to create the virtual machine template.

<table>
<thead>
<tr>
<th>Page</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name and folder</td>
<td>Enter a name (for example, Node2_Template) and select a location.</td>
</tr>
<tr>
<td>Compute Resource</td>
<td>Select the host or cluster where you will run the virtual machine.</td>
</tr>
<tr>
<td>Disk Format</td>
<td>Select Same format as source.</td>
</tr>
</tbody>
</table>
Add Hard Disks to the First Node for Clusters Across Physical Hosts

In an MSCS cluster, storage disks are shared between nodes. You set up a quorum disk and an optional shared storage disk.

Prerequisites

Before you add hard disks to the first node, complete the following tasks:

- For each virtual machine, configure the guest operating system's private and public IP addresses.
- Ask your SAN administrator for the location of unformatted SAN LUNs. The hard disks you create in this task must point to SAN LUNs.

**NOTE** Use RDMs in physical compatibility mode. The procedure below uses physical compatibility mode.

Procedure

1. In the vSphere Web Client navigator, select the newly created virtual machine, right-click and select Edit Settings.
2. Click the New device drop-down menu, select RDM Disk, and click Add.
3. Select an unformatted LUN.
4. Select a datastore.
   - This datastore must be on a SAN because you need a single shared RDM file for each shared LUN on the SAN.
5. Select Physical as the compatibility mode.
6. Select a new virtual device node (for example, select SCSI (1:0)), and click Next.

**NOTE** This must be a new SCSI controller. You cannot use SCSI 0.
7 Click OK to complete creating the disk. The wizard creates a new hard disk.

8 In the New Virtual Machine - Edit Settings dialog box, expand SCSI controller and select the Change Type drop-down menu.

9 Select the appropriate type of controller, depending on your operating system.

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Type of Controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows Server 2003 SP1 and SP2</td>
<td>LSI Logic Parallel</td>
</tr>
<tr>
<td>Windows Server 2008 SP2 and above</td>
<td>LSI Logic SAS</td>
</tr>
<tr>
<td>Windows Server 2008 SP2 and above</td>
<td>VMware Paravirtual</td>
</tr>
</tbody>
</table>

   For supported guest operating systems see Table 6-2.

10 Click OK.

11 In the New Virtual Machine - Edit Settings dialog box, expand SCSI controller and select the SCSI Bus Sharing drop-down menu. Set SCSI Bus Sharing to Physical and click OK.

   The virtual machine is connected to a public network and a private network with two virtual switches, and is connected to the quorum disk on FC SAN and the virtual machine virtual disk on local or remote storage.

Add Hard Disks to Additional Nodes for Clusters Across Physical Hosts

   To allow shared access to clustered services and data, point the quorum disk of the second node to the same location as the first node’s quorum disk. Point shared storage disks to the same location as the first node’s shared storage disks.

Prerequisites

   Before you begin, obtain the following information:

   - Which virtual device node is for the first virtual machine’s shared storage disks (for example, SCSI (1:0)).
   - The location of the quorum disk specified for the first node.

Procedure

   1 In the vSphere Web Client navigator, select the newly created virtual machine, right-click and select Edit Settings.
   2 Click the New device drop-down menu, select Existing Hard Disk, and click Add.
   3 In Disk File Path, browse to the location of the quorum disk specified for the first node.
   4 Select Physical as the compatibility mode and click Next.
   5 Select the same virtual device node you chose for the first virtual machine’s shared storage disks (for example, SCSI (1:0)), and click OK.

   Note  The location of the virtual device node for this virtual machine’s shared storage must match the corresponding virtual device node for the first virtual machine.

   6 Click OK.

   The wizard creates a new hard disk.
7 In the New Virtual Machine - Edit Settings dialog box, expand **SCSI controller** and select the **Change Type** drop-down menu.

8 Select the appropriate type of controller, depending on your operating system.

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Type of Controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows Server 2003 SP1 and SP2</td>
<td>LSI Logic Parallel</td>
</tr>
<tr>
<td>Windows Server 2008 SP2 and above</td>
<td>LSI Logic SAS</td>
</tr>
</tbody>
</table>

For supported guest operating systems see Table 6-2.

9 Click **OK**.

10 Set SCSI Bus Sharing to **Physical** and click **OK**.
Cluster Physical and Virtual Machines

You can create an MSCS cluster in which each physical machine has a corresponding virtual machine. This type of configuration is known as a standby host cluster.

A standby host cluster has specific hardware and software requirements.
- Use ESXi hosts that have the following:
  - Two physical network adapters dedicated to the MSCS cluster and to the public and private networks.
  - One physical network adapter dedicated to the VMkernel.
- Use RDMs in physical compatibility mode (pass-through RDM). You cannot use virtual disks or RDMs in virtual compatibility mode (non-pass-through RDM) for shared storage.
- Use the STORport Miniport driver for the Fibre Channel (FC) HBA (QLogic or Emulex) in the physical Windows machine.
- Do not run multipathing software in the physical or virtual machines.
- Use only a single physical path from the host to the storage arrays in standby host configurations.

This chapter includes the following topics:
- “Create the First Node for a Cluster of Physical and Virtual Machines,” on page 25
- “Create the Second Node for a Cluster of Physical and Virtual Machines,” on page 26
- “Add Hard Disks to the Second Node for a Cluster of Physical and Virtual Machines,” on page 27
- “Install Microsoft Cluster Service,” on page 27
- “Create Additional Physical-Virtual Pairs,” on page 28

Create the First Node for a Cluster of Physical and Virtual Machines

The first node in a standby host setup is a physical machine.

For information about setting up a physical machine that participates in an MSCS cluster, see the Microsoft Cluster Service documentation.
Procedure

- Set up the physical machine using the settings listed in the table.

<table>
<thead>
<tr>
<th>Component</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows Cluster Administrator</td>
<td>Application: Advanced minimum configuration if Windows 2003 is used.</td>
</tr>
<tr>
<td>Network adapters</td>
<td>At least two.</td>
</tr>
<tr>
<td>Storage</td>
<td>Access to the same storage on a SAN as the ESXi host on which the corresponding virtual machine will run.</td>
</tr>
<tr>
<td>Operating system</td>
<td>Installed on each physical machine.</td>
</tr>
</tbody>
</table>

Create the Second Node for a Cluster of Physical and Virtual Machines

To create the second node, you set up a virtual machine for clustering across physical machines.

You configure the virtual network adapters to handle virtual machine traffic for the cluster: a private network connection for the private heartbeat and a public network connection.

Prerequisites

Before you begin, make sure that the shared storage that is visible from the physical machine that you configured in “Create the First Node for a Cluster of Physical and Virtual Machines,” on page 25 is also visible from the virtual machine.

Procedure

1. Open the vSphere Web Client and connect to the vCenter Server system.
   Use the user name and password of the user who will have administrator permissions on the virtual machine.
2. In the vSphere Web Client navigator, right-click the host and select New Virtual Machine.
3. Proceed through the wizard to create the virtual machine.

<table>
<thead>
<tr>
<th>Page</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creation type</td>
<td>Select Create a new virtual machine.</td>
</tr>
<tr>
<td>Name and folder</td>
<td>Enter a name and select a location.</td>
</tr>
<tr>
<td>Compute resource</td>
<td>Select a cluster, host, vApp or resource pool to run this virtual machine.</td>
</tr>
<tr>
<td>Storage</td>
<td>Select a datastore as the location for the virtual machine configuration file and the virtual machine disk (.vmdk) file.</td>
</tr>
<tr>
<td>Compatibility</td>
<td>The host or cluster suports more than one VMware virtual machine version. Select a compatibility for the virtual machine.</td>
</tr>
<tr>
<td>Guest operating system</td>
<td>Select the guest operating system that you intend to install.</td>
</tr>
<tr>
<td>Customize hardware</td>
<td>Select virtual hardware, advanced virtual machine options, and SDRS rules.</td>
</tr>
<tr>
<td>Ready to Complete</td>
<td>Review your selections.</td>
</tr>
</tbody>
</table>

4. Click Finish to complete creating the virtual machine.
5. In the vSphere Web Client navigator, select the newly created virtual machine, right-click and select Edit Settings.
6. Click the New device drop-down menu, select Network, and click Add.
7 In the New Virtual Machine - Edit Settings dialog box, expand **Network adapter**. Select the adapter type and network label.
   - If you selected a private network for the first network adapter, you must select a public network for this network adapter.
   - If you selected a public network for the first network adapter, you must select a private network adapter.

8 Click **Finish** to complete creating the device.

9 Install a Windows Server operating system on the virtual machine.

### Add Hard Disks to the Second Node for a Cluster of Physical and Virtual Machines

When you add hard disks to the second node, you set up the disks to point to the quorum disk and shared storage disks, if any, for the first node. The setup allows shared access to clustered services and data.

**Procedure**

1. In the vSphere Web Client navigator, select the newly created virtual machine, right-click and select **Edit Settings**.
2. Click the **New device** drop-down menu, select **RDM Disk**, and click **Add**.
3. Select the LUN that is used by the physical machine.
4. Select the datastore, which is also the location of the boot disk.
5. Select **Physical** as the compatibility mode.
6. Expand the **New Hard Disk**. From the **Virtual Device Node** drop-down menu, select a new SCSI controller (for example, **SCSI (1:0)**).

   **Note** You must select a new virtual device node. You cannot use SCSI 0.

7. Click **OK**.

   The wizard creates a new hard disk.

8. In the New Virtual Machine - Edit Settings dialog box, expand **SCSI controller** and select the **Change Type** drop-down menu.
9. Select the appropriate type of controller, depending on your operating system.

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Type of Controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows Server 2003</td>
<td>LSI Logic Parallel</td>
</tr>
<tr>
<td>Windows Server 2008</td>
<td>LSI Logic SAS</td>
</tr>
<tr>
<td>Windows Server 2008</td>
<td>VMware Paravirtual</td>
</tr>
</tbody>
</table>

10. Click **OK**.

11. In the New Virtual Machine - Edit Settings dialog box, expand **SCSI controller** and select the **SCSI Bus Sharing** drop-down menu. Set SCSI Bus Sharing to **Virtual** and click **OK**.

### Install Microsoft Cluster Service

For Windows Server 2003 operating systems only, after you set up the first and second nodes, you must configure Microsoft Cluster Service.

See Microsoft's documentation for creating and configuring server clusters on the Microsoft Web site.
In complex storage solutions, such as an FC switched fabric, a storage unit might have a different identity (target ID or raw disk ID) on each computer in the cluster. Although this is a valid storage configuration, it causes a problem when you add a node to the cluster.

The following procedure allows you to avoid target identity problems when using clustering with Windows 2003.

Procedure

1. Within the Microsoft Cluster Administrator utility, on the Select Computer page, click Advanced to disable the storage validation heuristics.
2. Select the Advanced (minimum) configuration option, and click OK.

Microsoft Cluster Service should operate normally in the virtual machine after it is installed.

Create Additional Physical-Virtual Pairs

If you have additional physical machines, you can create additional clusters for each.

Procedure

1. On the ESXi host, set up an additional virtual machine for the physical machine.
2. Cluster the physical machine with the new virtual machine.
Use MSCS in an vSphere HA and vSphere DRS Environment

When you use MSCS in a vSphere High Availability (vSphere HA) or vSphere Distributed Resource Scheduler (DRS) environment, you must configure your hosts and virtual machines to use certain settings. All hosts that run MSCS virtual machines must be managed by a vCenter Server system.

vSphere includes vMotion support for MSCS cluster virtual machines.

This chapter includes the following topics:

- “Enable vSphere HA and vSphere DRS in a Cluster (MSCS),” on page 29
- “Create VM-VM Affinity Rules for MSCS Virtual Machines,” on page 30
- “Enable Strict Enforcement of Affinity Rules (MSCS),” on page 30
- “Set DRS Automation Level for MSCS Virtual Machines,” on page 31
- “Using vSphere DRS Groups and VM-Host Affinity Rules with MSCS Virtual Machines,” on page 31

Enable vSphere HA and vSphere DRS in a Cluster (MSCS)

All hosts that are running MSCS virtual machines can be part of a vCenter Server cluster with both vSphere HA and vSphere DRS enabled. You can enable vSphere HA and vSphere DRS in the Cluster Settings dialog box.

Procedure

1. Browse to the cluster in the vSphere Web Client object navigator.
2. Click Configure.
3. Under Services, select vSphere DRS and click Edit.
4. Select the Turn ON vSphere DRS and Turn on vSphere HA check boxes.
5. Click OK.
Create VM-VM Affinity Rules for MSCS Virtual Machines

For MSCS virtual machines in a cluster, you must create VM-VM affinity or anti-affinity rules. VM-VM affinity rules specify which virtual machines should be kept together on the same host (for example, a cluster of MSCS virtual machines on one physical host). VM-VM anti-affinity rules specify which virtual machines should be kept apart on different physical hosts (for example, a cluster of MSCS virtual machines across physical hosts).

For a cluster of virtual machines on one physical host, use affinity rules. For a cluster of virtual machines across physical hosts, use anti-affinity rules.

**NOTE** vMotion is supported only for a cluster of virtual machines across physical hosts with pass-through RDMs. For a cluster of virtual machines on one physical host and a cluster of virtual machines across physical hosts with non-pass-through RDMs, vMotion is not supported.

**Procedure**

1. Browse to the cluster in the vSphere Web Client navigator.
2. Click **Configure**.
3. Under **Configuration**, click **VM/Host Rules**.
4. Click **Add**.
5. In the **Create VM/Host Rule** dialog box, type a name for the rule.
6. From the **Type** drop-down menu, select a rule.
   - For a cluster of virtual machines on one physical host, select **Keep Virtual Machines Together**.
   - For a cluster of virtual machines across physical hosts, select **Separate Virtual Machines**.
7. Click **Add**.
8. Select the two virtual machines to which the rule applies and click **OK**.
9. Click **OK**.

Enable Strict Enforcement of Affinity Rules (MSCS)

To ensure that affinity and anti-affinity rules are strictly applied, set an advanced option for vSphere DRS. Setting the advanced option ForceAffinePoweron to 1 will enable strict enforcement of the affinity and anti-affinity rules that you created.

**Procedure**

1. Browse to the cluster in the vSphere Web Client navigator.
2. Click **Configure**.
3. Under **Services**, select **vSphere DRS** and click **Edit**.
4. Expand **Advanced Options** and click **Add**.
5. In the Option column, type **ForceAffinePoweron**.
6. In the Value column, type 1.
7. Click **OK**.
Set DRS Automation Level for MSCS Virtual Machines

You must set the automation level of all virtual machines in an MSCS cluster to Partially Automated. When you set the vSphere DRS automation level for the virtual machine to Partially Automated, vCenter Server will perform initial placement of virtual machines when they are powered on and will provide migration recommendations for them.

Procedure

1. Browse to the cluster in the vSphere Web Client object navigator.
2. Click Configure.
3. Under Services, select vSphere DRS and click Edit.
4. Expand DRS Automation, under Virtual Machine Automation select the Enable individual virtual machine automation levels check box and click OK.
5. Under Configuration, select VM Overrides and click Add.
6. Click the + button, select the MSCS virtual machines in the cluster and click OK.
7. Click the Automation level drop-down menu, and select Partially Automated.
8. Click OK.

**Note** VMware recommends partially automated mode for MSCS virtual machines, but there is no technical restriction which prevents the setting for MSCS virtual machines to be fully automated. If the fully automated setting is used please tune the migration threshold to suit the workload running on the MSCS virtual machines.

Using vSphere DRS Groups and VM-Host Affinity Rules with MSCS Virtual Machines

You can use the vSphere Web Client to set up two types of DRS groups: virtual machine DRS groups, which contain at least one virtual machine, and host DRS groups, which contain at least one host. A VM-Host rule establishes a relationship between a virtual machine DRS group and a host DRS group.

You must use VM-Host affinity rules because vSphere HA does not obey VM-VM affinity rules. This means that if a host fails, vSphere HA might separate clustered virtual machines that are meant to stay together, or vSphere HA might put clustered virtual machines that are meant to stay apart on the same host. You can avoid this problem by setting up DRS groups and using VM-Host affinity rules, which are obeyed by vSphere HA.

For a cluster of virtual machines on one physical host, all MSCS virtual machines must be in the same virtual machine DRS group, linked to the same host DRS group with the affinity rule "Must run on hosts in group."

For a cluster of virtual machines across physical hosts, all MSCS virtual machines must be in the same virtual machine DRS group and all hosts must be in the same host DRS group. The virtual machine and host DRS groups must be linked the affinity rule "Must run on hosts in group."

**Caution** Limit the number of hosts to two when you define host DRS group rules for a cluster of virtual machines on one physical host. (This does not apply to clusters of virtual machines across physical hosts.) Since vSphere HA does not obey VM-VM affinity rules, virtual machines in the configuration could be spread across hosts during a vSphere HA recovery from host failure if more than two hosts are included in a host DRS group rule.
Create a Virtual Machine DRS Group (MSCS)

Before you can create a VM-Host affinity rule, you must create the host DRS group and the virtual machine DRS group that the rule applies to.

For both, a cluster of virtual machines on one physical host (CIB) and a cluster of virtual machines across physical hosts (CAB), create one virtual machine DRS group that contains all MSCS virtual machines. For example, VMGroup_1 contains MSCS_VM_1, MSCS_VM_2 … MSCS_VM_5.

**Procedure**

1. Browse to the cluster in the vSphere Web Client navigator.
2. Click **Configure**.
3. Under **Configuration**, select **VM/Host Groups** and click **Add**.
4. In the **Create VM/Host Group** dialog box, type a name for the group.
5. Select **VM Group** from the **Type** drop down box and click **Add**.
6. Click the check box next to a virtual machine to add it. Continue this process until all desired virtual machines have been added.
   - For a cluster of virtual machines on one physical host, add all MSCS virtual machines to one group.
   - For a cluster of virtual machines across physical hosts, add all MSCS virtual machines to one group.
7. Click **OK**.

Create a Host DRS Group (MSCS)

Before you can create a VM-Host affinity rule, you must create the host DRS group and the virtual machine DRS group that the rule applies to.

For a cluster of virtual machines on one physical host, create one host DRS group that contains both the ESXi hosts. For example, HostGroup_1 contains ESXi_HOST_1, ESXi_HOST_2.

For a cluster of virtual machines across physical hosts, create one host DRS group that contains all the ESXi hosts. For example, HostGroup_1 contains ESXi_HOST_1 running MSCS_VM_1, ESXi_HOST_2 running MSCS_VM_2 …… ESXi_HOST_5 running MSCS_VM_5 and ESXi_HOST_6 as a standby host.

**Procedure**

1. Browse to the cluster in the vSphere Web Client navigator.
2. Click **Configure**.
3. Under **Configuration**, select **VM/Host Groups** and click **Add**.
4. In the **Create VM/Host Group** dialog box, type a name for the group (for example, HostGroup_1).
5. Select **Host Group** from the **Type** drop down box and click **Add**.
6. Click the check box next to a host to add it. Continue this process until all desired hosts have been added.
7. Click **OK**.
Set up VM-Host Affinity Rules for DRS Groups (MSCS)

Create VM-Host affinity rules to specify whether the members of a selected virtual machine DRS group can run on the members of a specific host DRS group.

Prerequisites

Create virtual machine DRS groups that contain one or more MSCS virtual machines as described in “Create a Virtual Machine DRS Group (MSCS),” on page 32.

Create host DRS groups that contain one or more ESXi hosts, as described in “Create a Host DRS Group (MSCS),” on page 32.

Procedure

1. Browse to the cluster in the vSphere Web Client navigator.
2. Click Configure.
4. In the Create VM/Host Rule dialog box, type a name for the rule.
5. From the Type menu, select Virtual Machines to Hosts.
6. Select the virtual machine DRS group and the host DRS group to which the rule applies.
   For example, select VMGroup_1 and HostGroup_1.
7. Select Must run on hosts in group.
8. Click OK.
When you set up MSCS on ESXi, see the checklists to configure your environment according to the requirements. You can also use the checklists to verify that your setup meets the requirements if you need technical support.

Requirements for Clustered Disks

Each type of clustered disk has its own requirements, depending on whether it is in a single-host cluster or multihost cluster.

Table 6-1. Requirements for Clustered Disks

<table>
<thead>
<tr>
<th>Component</th>
<th>Single-Host Clustering</th>
<th>Multihost Clustering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clustered virtual disk (.vmdk)</td>
<td>SCSI bus sharing mode must be set to virtual.</td>
<td>Not supported.</td>
</tr>
<tr>
<td>Clustered disks, virtual compatibility mode (non-pass-through RDM)</td>
<td>Device type must be set to virtual compatibility mode. SCSI bus sharing mode must be set to virtual mode. A single, shared RDM mapping file for each clustered disk is required.</td>
<td>Device type must be set to virtual compatibility mode for cluster across boxes, but not for standby host clustering or cluster across boxes on Windows Server 2008. SCSI bus sharing mode must be set to physical. Requires a single, shared RDM mapping file for each clustered disk. See VMware knowledge base article <a href="http://kb.vmware.com/kb/1016106">http://kb.vmware.com/kb/1016106</a> to mark the device as perennially reserved on RDM LUNs used for MSCS virtual machines. This configuration is not supported on Windows Server 2008 and higher. This is a valid configuration only on Windows Server 2003.</td>
</tr>
<tr>
<td>Clustered disks, physical compatibility mode (pass-through RDM)</td>
<td>Not supported.</td>
<td>Device type must be set to Physical compatibility mode during hard disk creation. SCSI bus sharing mode must be set to physical (the default). A single, shared RDM mapping file for each clustered disk is required.</td>
</tr>
<tr>
<td>All types</td>
<td>All clustered nodes must use the same target ID (on the virtual SCSI adapter) for the same clustered disk. A separate virtual adapter must be used for clustered disks.</td>
<td></td>
</tr>
</tbody>
</table>
Other Requirements and Recommendations

The following table lists the components in your environment that have requirements for options or settings.

Table 6-2. Other Clustering Requirements and Recommendations

<table>
<thead>
<tr>
<th>Component</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk</td>
<td>If you place the boot disk on a virtual disk, select <strong>Thick Provision</strong> during disk provisioning.</td>
</tr>
<tr>
<td></td>
<td>The only disks that you should not create with the Thick Provision option are RDM files (both</td>
</tr>
<tr>
<td></td>
<td>physical and virtual compatibility mode).</td>
</tr>
</tbody>
</table>

| Windows         | Use:                                                                                                    |
|                 | ▪ Windows Server 2003 SP1 (32 bit/64 bit)                                                                |
|                 | ▪ Windows Server 2003 SP2 (32 bit/64 bit)                                                                |
|                 | ▪ Windows Server 2003 R2 (32 bit/64 bit)                                                                 |
|                 | ▪ Windows Server 2003 R2 SP1 (32 bit/64 bit)                                                             |
|                 | ▪ Windows Server 2003 R2 SP2 (32 bit/64 bit)                                                              |
|                 | ▪ Windows Server 2008 SP1 (32 bit/64 bit)                                                                |
|                 | ▪ Windows Server 2008 SP2 (32 bit/64 bit)                                                                |
|                 | ▪ Windows Server 2008 R2 (64 bit)                                                                          |
|                 | ▪ Windows Server 2008 R2 SP1 (32 bit/64 bit)                                                               |
|                 | ▪ Windows Server 2012                                                                                    |
|                 | ▪ Windows Server 2012 R2                                                                                 |
|                 | For Windows Server 2003 SP1 and SP2, use only two cluster nodes.                                          |
|                 | For Windows Server 2008 SP2 and above, you can use up to five cluster nodes.                             |
|                 | Disk I/O timeout is 60 seconds or more                                                                     |
|                 | (%KEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Disk\TimeOutValue).                               |

**Note** If you recreate the cluster, this value might be reset to its default, so you must change it again.

<table>
<thead>
<tr>
<th>ESXi configuration</th>
<th>Do not overcommit memory. Set the <strong>Memory Reservation</strong> (minimum memory) option to the same as the amount of memory assigned to the virtual machine.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>If you must overcommit memory, the swap file must be local, not on the SAN.</td>
</tr>
<tr>
<td></td>
<td>ESXi 5.0 uses a different technique to determine if Raw Device Mapped (RDM) LUNs are used for MSCS cluster devices, by introducing a configuration flag to mark each device as “perennially reserved” that is participating in an MSCS cluster. For ESXi hosts hosting passive MSCS nodes with RDM LUNs, use the esxcli command to mark the device as perennially reserved: esxcli storage core device setconfig --d &lt;naa.id&gt; --perennially-reserved=true. See KB 1016106 for more information.</td>
</tr>
</tbody>
</table>

| Multipathing      | Contact your multipathing software vendor for information and support of non-VMware multipathing software in vSphere.            |
Table 6-3. Information Required by Technical Support

<table>
<thead>
<tr>
<th>File or Information</th>
<th>Description or Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>vm-support tarball</td>
<td>Contains the vmkernem log, virtual machine configuration files and logs, and so on.</td>
</tr>
<tr>
<td>Application and system event logs of all virtual machines with the problem</td>
<td></td>
</tr>
<tr>
<td>Cluster log of all virtual machines with the problem</td>
<td>%ClusterLog%, which is usually set to %SystemRoot %\cluster\cluster.log.</td>
</tr>
<tr>
<td>Disk I/O timeout</td>
<td>HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Disk\TimeOutValue</td>
</tr>
<tr>
<td>vSphere Client display names and Windows NETBIOS names of the virtual machines experiencing the problem</td>
<td></td>
</tr>
<tr>
<td>Date and time that the problem occurred</td>
<td></td>
</tr>
<tr>
<td>SAN configuration of the ESXi system</td>
<td>Details about LUNs, paths, and adapters.</td>
</tr>
<tr>
<td>(Optional) Memory dump of the virtual machine</td>
<td>Required if a guest virtual machine fails (a blue screen appears with an error message).</td>
</tr>
</tbody>
</table>
A
affinity rules
  DRS groups and MSCS 33
  enforcing and MSCS 30
  MSCS 30, 31
AlwaysOn 14
anti-affinity rules, MSCS 30
automation level, MSCS 31

B
boot from SAN, MSCS 13

C
cluster across boxes, MSCS 8, 30
cluster in a box, MSCS 15, 30
clustering
  MSCS physical hosts and virtual machines 9
  MSCS virtual machines on one host 15
  physical and virtual machines 25
  virtual machines across hosts 19
compatibility mode
  physical 19, 21, 22, 25
  virtual 19, 25

D
Database Availability Group (DAG), MSCS 14
disks
  adding to nodes 17, 18, 21
  formatting 15
  formatting MSCS 19
quorum 17, 21, 27
shared 17, 21, 27
DRS groups
  host 32
  MSCS 31, 32
  virtual machine 32

E
eagerzeroedthick 15, 19
ESXi 25
Ethernet adapter 15
Ethernet adapters and MSCS 19

F
Fault Tolerance (FT), MSCS 10, 13
Fault Tolerance (FT) and MSCS 35
FCoE 12
Fibre Channel (FC) SAN 7, 13
Fibre Channel (FC) SAN and MSCS 19
format
disks 15
disks MSCS 19
eagerzeroedthick 15, 19

H
hardware requirements, MSCS 10
high availability and MSCS, See vSphere HA
hosts, standby 25

I
iSCSI 11
iSCSI and MSCS 13
iSCSI SAN 13

L
LSI Logic Parallel 17, 21, 22, 27
LSI Logic SAS 17, 21, 22, 27

M
Microsoft Cluster Service (MSCS), installing 27
MS CS
  boot from SAN 13
  cluster across boxes 8
  cluster in a box 8
  cluster virtual machines on one host 8
  Clustered Continuous Replication (CCR) 14
  clustering configurations 7
  clustering limitations 13
  clustering requirements 10
  clustering physical and virtual machines 9
  Database Availability Group (DAG) 9
  Database Availability Groups and Exchange 2010 14
  disk format 10
  DRS automation level 31
  DRS groups 32
  Fault Tolerance (FT) 10, 13
  Fibre Channel (FC) SAN 7, 13
  getting started 7
  guest operating system requirements 10
  hardware requirements 10
  hardware version 7 13
iSCSI 13
LSI Logic Parallel 10
LSI Logic SAS 10
Microsoft Exchange and Database Availability
Groups 14
Microsoft Exchange and CCR, See Clustered
Continuous Replication (CCR)
multipathing 13
multiple host clustering 8
N-Port ID Virtualization (NPIV) 13
native multipathing (NMP) 13
NFS 13
non-pass-through RDM 11
NTP server 10
pass-through RDM 11
physical compatibility mode 11
requirements 10
SAN 8, 14
shared storage configurations 11
single host clustering 8
standby host 9
types of applications 7
virtual NICs 10
virtual compatibility mode 11
virtual machines across hosts 8
virtual SCSI adapter 10
VMkernel 15, 19
vMotion 13
MSCS nodes, creating second 20, 26
multipathing, MSCS 13
multipathing and MSCS 35

N
native multipathing (NMP), MSCS 13
NFS, MSCS 13
nodes
  creating first 15, 25
  creating first MSCS 19
  creating second 16
NTP server, MSCS 10

P
physical compatibility mode, MSCS 19
physical-virtual pairs, creating 28
PSP_RR 11

Q
quorum disk 17, 21, 27

R
RDM
  non-pass-through 25
  pass-through 25
RDM and MSCS 19, 20, 35
rules, vSphere DRS 30

S
SAN, MSCS 8, 14
SAN and MSCS 35
SAN LUN 17, 21
SAN, boot from 13
SCSI bus sharing
  physical 21, 22, 27
  virtual 17
shared storage, disks 17, 21, 27
standby host, MSCS 9
storage
  quorum disk 17, 21, 27
  shared 17, 21, 27

t
technical support checklist, MSCS 35

V
virtual compatibility mode, MSCS 19
VMkernel 25
VMkernel and MSCS 15, 19
vmkfstools 16
vmkfstools and MSCS 20
vMotion, MSCS 13
vSphere DRS, enabling and MSCS 29
vSphere DRS and MSCS 29
vSphere HA, enabling and MSCS 29
vSphere HA and MSCS 29
vSphere High Availability (HA), See vSphere HA