vSphere Security

Update 2
Modified on 27 AUG 2019
VMware vSphere 6.7
VMware ESXi 6.7
vCenter Server 6.7
You can find the most up-to-date technical documentation on the VMware website at:
https://docs.vmware.com/

If you have comments about this documentation, submit your feedback to
docfeedback@vmware.com
Contents

About vSphere Security 10

Updated Information 12

1 Security in the vSphere Environment 13
 Securing the ESXi Hypervisor 13
 Securing vCenter Server Systems and Associated Services 15
 Securing Virtual Machines 16
 Securing the Virtual Networking Layer 17
 Passwords in Your vSphere Environment 19
 Security Best Practices and Resources 20

2 vSphere Permissions and User Management Tasks 22
 Understanding Authorization in vSphere 23
 Hierarchical Inheritance of Permissions 25
 Multiple Permission Settings 27
 Managing Permissions for vCenter Components 29
 Add a Permission to an Inventory Object 30
 Change or Remove Permissions 31
 Change User Validation Settings 31
 Global Permissions 32
 Add a Global Permission 33
 Permissions on Tag Objects 34
 Using Roles to Assign Privileges 35
 Create a Custom Role 36
 vCenter Server System Roles 37
 Best Practices for Roles and Permissions 38
 Required Privileges for Common Tasks 39

3 Securing ESXi Hosts 43
 General ESXi Security Recommendations 43
 Configure ESXi Hosts with Host Profiles 45
 Use Scripts to Manage Host Configuration Settings 45
 ESXi Passwords and Account Lockout 47
 SSH Security 49
 PCI and PCIe Devices and ESXi 51
 Disable the Managed Object Browser 52
 ESXi Networking Security Recommendations 52
4 Securing vCenter Server Systems 116
 vCenter Server Security Best Practices 116
 Best Practices for vCenter Server Access Control 116
 Protecting the vCenter Server Windows Host 119
 Limiting vCenter Server Network Connectivity 119
 vCenter Server Appliance Security Best Practices 121
 vCenter Password Requirements and Lockout Behavior 121
 Verify Thumbprints for Legacy ESXi Hosts 122
 Required Ports for vCenter Server and Platform Services Controller 123
 Additional vCenter Server TCP and UDP Ports 128

5 Securing Virtual Machines 131
 Enable or Disable UEFI Secure Boot for a Virtual Machine 131
 Limit Informational Messages from Virtual Machines to VMX Files 133
 Prevent Virtual Disk Shrinking 133
 Virtual Machine Security Best Practices 134
 General Virtual Machine Protection 135
 Use Templates to Deploy Virtual Machines 135
 Minimize Use of the Virtual Machine Console 136
 Prevent Virtual Machines from Taking Over Resources 136
 Disable Unnecessary Functions Inside Virtual Machines 137

6 Virtual Machine Encryption 144
 How vSphere Virtual Machine Encryption Protects Your Environment 144
 vSphere Virtual Machine Encryption Components 147
 Encryption Process Flow 148
 Virtual Disk Encryption 150
 Prerequisites and Required Privileges for Encryption Tasks 151
 Encrypted vSphere vMotion 152
Encryption Best Practices, Caveats, and Interoperability 153
Virtual Machine Encryption Best Practices 153
Virtual Machine Encryption Caveats 156
Virtual Machine Encryption Interoperability 157

7 Use Encryption in Your vSphere Environment 159
Set up the Key Management Server Cluster 159
Add a KMS to vCenter Server in the vSphere Client 159
Add a KMS to vCenter Server in the vSphere Web Client 161
Establish a Trusted Connection by Exchanging Certificates 162
Set the Default KMS Cluster 165
Complete the Trust Setup 165
Set up Separate KMS Clusters for Different Users 166
Create an Encryption Storage Policy 167
Enable Host Encryption Mode Explicitly 168
Disable Host Encryption Mode 168
Create an Encrypted Virtual Machine 169
Clone an Encrypted Virtual Machine 170
Encrypt an Existing Virtual Machine or Virtual Disk 171
Decrypt an Encrypted Virtual Machine or Virtual Disk 172
Change the Encryption Policy for Virtual Disks 174
Resolve Missing Key Issues 175
Unlock Locked Virtual Machines 177
Resolve ESXi Host Encryption Mode Issues 177
Re-Enable ESXi Host Encryption Mode 178
Set Key Management Server Certificate Expiration Threshold 179
vSphere Virtual Machine Encryption and Core Dumps 179
Collect a vm-support Package for an ESXi Host That Uses Encryption 180
Decrypt or Re-Encrypt an Encrypted Core Dump 182

8 Securing Virtual Machines with Virtual Trusted Platform Module 184
Add a Virtual Trusted Platform Module to a Virtual Machine 186
Enable Virtual Trusted Platform Module for an Existing Virtual Machine 187
Remove Virtual Trusted Platform Module from a Virtual Machine 187
Identify Virtual Trusted Platform Enabled Virtual Machines 188
View vTPM Module Device Certificates 188
Export and Replace vTPM Module Device Certificates 189

9 Securing Windows Guest Operating Systems with Virtualization-based Security 191
Virtualization-based Security Best Practices 192
Enable Virtualization-based Security on a Virtual Machine 193
10 Securing vSphere Networking 197
 Introduction to vSphere Network Security 197
 Securing the Network With Firewalls 199
 Firewalls for Configurations With vCenter Server 199
 Connecting to vCenter Server Through a Firewall 200
 Connecting ESXi Hosts Through Firewalls 200
 Firewalls for Configurations Without vCenter Server 200
 Connecting to the Virtual Machine Console Through a Firewall 201
 Secure the Physical Switch 202
 Securing Standard Switch Ports with Security Policies 202
 Securing vSphere Standard Switches 203
 MAC Address Changes 204
 Forged Transmits 204
 Promiscuous Mode Operation 205
 Standard Switch Protection and VLANs 205
 Secure vSphere Distributed Switches and Distributed Port Groups 206
 Securing Virtual Machines with VLANs 208
 Security Considerations for VLANs 209
 Secure VLANs 209
 Creating Multiple Networks Within a Single ESXi Host 209
 Internet Protocol Security 212
 List Available Security Associations 212
 Add an IPsec Security Association 213
 Remove an IPsec Security Association 214
 List Available IPsec Security Policies 214
 Create an IPsec Security Policy 214
 Remove an IPsec Security Policy 215
 Ensure Proper SNMP Configuration 216
 vSphere Networking Security Best Practices 216
 General Networking Security Recommendations 216
 Labeling Networking Components 218
 Document and Check the vSphere VLAN Environment 218
 Adopting Network Isolation Practices 219
 Use Virtual Switches with the vSphere Network Appliance API Only If Required 220

11 Best Practices Involving Multiple vSphere Components 221
Synchronizing Clocks on the vSphere Network 221
Synchronize ESXi Clocks with a Network Time Server 222
Configuring Time Synchronization Settings in the vCenter Server Appliance 223

Storage Security Best Practices 225
Securing iSCSI Storage 225
Masking and Zoning SAN Resources 227
Using Kerberos for NFS 4.1 227

Verify That Sending Host Performance Data to Guests Is Disabled 228
Setting Timeouts for the ESXi Shell and vSphere Web Client 229

12 Managing TLS Protocol Configuration with the TLS Configurator Utility 230
Ports That Support Disabling TLS Versions 230
Enabling or Disabling TLS Versions in vSphere 232
Perform an Optional Manual Backup 232
Enable or Disable TLS Versions on vCenter Server Systems 234
Enable or Disable TLS Versions on ESXi Hosts 235
Enable or Disable TLS Versions on External Platform Services Controller Systems 237
Scan vCenter Server for Enabled TLS Protocols 238
Revert TLS Configuration Changes 239
Enable or Disable TLS Versions on vSphere Update Manager on Windows 240
 Disable Earlier TLS Versions for Update Manager Port 9087 241
 Disable Earlier TLS Versions for Update Manager Port 8084 242
 Reenable Disabled TLS Versions for Update Manager Port 9087 243
 Reenable Disabled TLS Versions for Update Manager Port 8084 243

13 Defined Privileges 245
Alarms Privileges 246
Auto Deploy and Image Profile Privileges 247
Certificates Privileges 248
Content Library Privileges 248
Cryptographic Operations Privileges 250
Datacenter Privileges 251
Datastore Privileges 252
Datastore Cluster Privileges 253
Distributed Switch Privileges 253
ESX Agent Manager Privileges 254
Extension Privileges 254
External Stats Provider Privileges 255
Folder Privileges 255
Global Privileges 255
Health Update Provider Privileges 256
14 Understanding vSphere Hardening and Compliance 277

- Security Versus Compliance in the vSphere Environment 277
- Understanding the vSphere Security Configuration Guide 279
- About the National Institute of Standards and Technology 282
- About DISA STIGs 282
- About VMware Security Development Lifecycle 283
- Audit Logging 283
 - Single Sign-On Audit Events 283
- Understanding Security and Compliance Next Steps 285
About vSphere Security

vSphere Security provides information about securing your vSphere® environment for VMware® vCenter® Server and VMware ESXi.

To help you protect your vSphere environment, this documentation describes available security features and the measures that you can take to safeguard your environment from attack.

Table 1-1. vSphere Security Highlights

<table>
<thead>
<tr>
<th>Topics</th>
<th>Content Highlights</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permissions and User Management</td>
<td>• Permissions model (roles, groups, objects).</td>
</tr>
<tr>
<td></td>
<td>• Creating custom roles.</td>
</tr>
<tr>
<td></td>
<td>• Setting permissions.</td>
</tr>
<tr>
<td></td>
<td>• Managing global permissions.</td>
</tr>
<tr>
<td>Host Security Features</td>
<td>• Lockdown mode and other security profile features.</td>
</tr>
<tr>
<td></td>
<td>• Host smart card authentication.</td>
</tr>
<tr>
<td></td>
<td>• vSphere Authentication Proxy.</td>
</tr>
<tr>
<td></td>
<td>• UEFI Secure Boot.</td>
</tr>
<tr>
<td></td>
<td>• Trusted Platform Module (TPM).</td>
</tr>
<tr>
<td>Virtual Machine Encryption</td>
<td>• How does VM encryption work?</td>
</tr>
<tr>
<td></td>
<td>• KMS setup.</td>
</tr>
<tr>
<td></td>
<td>• Encrypting and decrypting VMs.</td>
</tr>
<tr>
<td></td>
<td>• Troubleshooting and best practices.</td>
</tr>
<tr>
<td>Guest OS Security</td>
<td>• Virtual Trusted Platform Module (vTPM).</td>
</tr>
<tr>
<td></td>
<td>• Virtualization Based Security (VBS).</td>
</tr>
<tr>
<td>Managing TLS Protocol Configuration</td>
<td>Changing TLS protocol configuration using a command-line utility.</td>
</tr>
<tr>
<td>Security Best Practices and Hardening</td>
<td>Best practices and advice from VMware security experts.</td>
</tr>
<tr>
<td></td>
<td>• vCenter Server security</td>
</tr>
<tr>
<td></td>
<td>• Host security</td>
</tr>
<tr>
<td></td>
<td>• Virtual machine security</td>
</tr>
<tr>
<td></td>
<td>• Networking security</td>
</tr>
<tr>
<td>vSphere Privileges</td>
<td>Complete listing of all vSphere privileges supported in this release.</td>
</tr>
</tbody>
</table>
Related Documentation

A companion document, Platform Services Controller Administration, explains how you can use the Platform Services Controller services, for example, to manage authentication with vCenter Single Sign-On and to manage certificates in your vSphere environment.

In addition to these documents, VMware publishes the vSphere Security Configuration Guide (formerly known as the Hardening Guide) for each release of vSphere, accessible at http://www.vmware.com/security/hardening-guides.html. The vSphere Security Configuration Guide contains guidelines on security settings that can or should be set by the customer, and security settings delivered by VMware that should be audited by the customer to ensure that they are still set to default.

Intended Audience

This information is for experienced Windows or Linux system administrators who are familiar with virtual machine technology and data center operations.

vSphere Client and vSphere Web Client

Instructions in this guide reflect the vSphere Client (an HTML5-based GUI). You can also use the instructions to perform the tasks by using the vSphere Web Client (a Flex-based GUI).

Tasks for which the workflow differs significantly between the vSphere Client and the vSphere Web Client have duplicate procedures that provide steps according to the respective client interface. The procedures that relate to the vSphere Web Client, contain vSphere Web Client in the title.

Note In vSphere 6.7 Update 1, almost all of the vSphere Web Client functionality is implemented in the vSphere Client. For an up-to-date list of any remaining unsupported functionality, see Functionality Updates for the vSphere Client.

Certifications

VMware publishes a public list of VMware products that have completed Common Criteria certifications. To check if a particular VMware product version has been certified, see the Common Criteria Evaluation and Validation webpage at https://www.vmware.com/security/certifications/common-criteria.html.
Updated Information

This vSphere Security document is updated with each release of the product or when necessary.

This table provides the update history of the vSphere Security documentation.

<table>
<thead>
<tr>
<th>Revision</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>27 AUG 2019</td>
<td>■ Corrected steps in Synchronize ESXi Clocks with a Network Time Server.</td>
</tr>
<tr>
<td></td>
<td>■ Made minor update to Virtual Machine Service Configuration Privileges.</td>
</tr>
<tr>
<td></td>
<td>■ Made minor updates to Virtual Machine Encryption Interoperability and Encrypted vSphere vMotion.</td>
</tr>
<tr>
<td>11 APR 2019</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>
Security in the vSphere Environment

The components of a vSphere environment are secured out of the box by several features such as authentication, authorization, a firewall on each ESXi host, and so on. You can modify the default setup in many ways. For example, you can set permissions on vCenter objects, open firewall ports, or change the default certificates. You can take security measures for different objects in the vCenter object hierarchy, for example, vCenter Server systems, ESXi hosts, virtual machines, and network and storage objects.

A high-level overview of different areas of vSphere that require attention helps you plan your security strategy. You also benefit from other vSphere Security resources on the VMware Web site.

This chapter includes the following topics:

- Securing the ESXi Hypervisor
- Securing vCenter Server Systems and Associated Services
- Securing Virtual Machines
- Securing the Virtual Networking Layer
- Passwords in Your vSphere Environment
- Security Best Practices and Resources

Securing the ESXi Hypervisor

The ESXi hypervisor is secured out of the box. You can further protect ESXi hosts by using lockdown mode and other built-in features. For consistency, you can set up a reference host and keep all hosts in sync with the host profile of the reference host. You can also protect your environment by performing scripted management, which ensures that changes apply to all hosts.

You can enhance protection of ESXi hosts that are managed by vCenter Server with the following actions. See the Security of the VMware vSphere Hypervisor white paper for background and details.

Limit ESXi access

By default, the ESXi Shell and SSH services are not running and only the root user can log in to the Direct Console User Interface (DCUI). If you decide to enable ESXi or SSH access, you can set timeouts to limit the risk of unauthorized access.
Users who can access the ESXi host must have permissions to manage the host. You set permissions on the host object from the vCenter Server system that manages the host.

Use named users and least privilege

By default, the root user can perform many tasks. Do not allow administrators to log in to the ESXi host using the root user account. Instead, create named administrator users from vCenter Server and assign those users the Administrator role. You can also assign those users a custom role. See Create a Custom Role.

If you manage users directly on the host, role management options are limited. See the *vSphere Single Host Management - VMware Host Client* documentation.

Minimize the number of open ESXi firewall ports

By default, firewall ports on your ESXi host are opened only when you start a corresponding service. You can use the vSphere Client or ESXCLI or PowerCLI commands to check and manage firewall port status. See *ESXi Firewall Configuration*.

Automate ESXi host management

Because it is often important that different hosts in the same data center are in sync, use scripted installation or vSphere Auto Deploy to provision hosts. You can manage the hosts using scripts. Host profiles are an alternative to scripted management. You set up a reference host, export the host profile, and apply the host profile to all hosts. You can apply the host profile directly or as part of provisioning with Auto Deploy.

See *Use Scripts to Manage Host Configuration Settings* and see the *vCenter Server Installation and Setup* documentation for information about vSphere Auto Deploy.

Take advantage of lockdown mode

In lockdown mode, ESXi hosts can be accessed only through vCenter Server by default. Starting with vSphere 6.0, you can select strict lockdown mode or normal lockdown mode. You can define Exception Users to allow direct access to service accounts such as backup agents.

See *Lockdown Mode*.

Check VIB package integrity

Each VIB package has an associated acceptance level. You can add a VIB to an ESXi host only if the VIB acceptance level is the same or better than the acceptance level of the host. You cannot add a CommunitySupported or PartnerSupported VIB to a host unless you explicitly change the host's acceptance level.

See *Manage the Acceptance Levels of Hosts and VIBs*.

Manage ESXi certificates

In vSphere 6.0 and later, the VMware Certificate Authority (VMCA) provisions each ESXi host with a signed certificate that has VMCA as the root certificate authority by default. If your company policy requires it, you
can replace the existing certificates with certificates that are signed by a third-party or an enterprise CA.

See Certificate Management for ESXi Hosts.

<table>
<thead>
<tr>
<th>Consider Smart card authentication</th>
<th>Starting with vSphere 6.0, ESXi supports the use of smart card authentication instead of user name and password authentication. For additional security, you can configure smart card authentication. Two-factor authentication is also supported for vCenter Server. You can configure user name and password authentication and smart card authentication at the same time.</th>
</tr>
</thead>
<tbody>
<tr>
<td>See Configuring Smart Card Authentication for ESXi.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consider ESXi account lockout</th>
<th>Starting with vSphere 6.0, account locking is supported for access through SSH and through the vSphere Web Services SDK. By default, a maximum of 10 failed attempts is allowed before the account is locked. The account is unlocked after two minutes by default.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note</td>
<td>The Direct Console Interface (DCUI) and the ESXi Shell do not support account lockout.</td>
</tr>
<tr>
<td>See ESXi Passwords and Account Lockout.</td>
<td></td>
</tr>
</tbody>
</table>

Security considerations for standalone hosts are similar, though the management tasks might differ. See the vSphere Single Host Management - VMware Host Client documentation.

Securing vCenter Server Systems and Associated Services

Your vCenter Server system and associated services are protected by authentication through vCenter Single Sign-On and by authorization through the vCenter Server permissions model. You can modify the default behavior, and you can take additional steps to limit access to your environment.

As you protect your vSphere environment, consider that all services that are associated with the vCenter Server instances must be protected. In some environments, you might protect several vCenter Server instances and one or more Platform Services Controller instances.

<table>
<thead>
<tr>
<th>Harden all vCenter host machines</th>
<th>The first step in protecting your vCenter environment is hardening each machine on which vCenter Server or an associated service runs. Similar considerations apply to a physical machine or a virtual machine. Always install the latest security patches for your operating system and follow industry standard best practices to protect the host machine.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Learn about the vCenter certificate model</th>
<th>By default, the VMware Certificate Authority provisions each ESXi host, each machine in the environment, and each solution user with a certificate signed by VMCA. The environment works out of the box, but if company policy requires it, you can change the default behavior. See the Platform Services Controller Administration documentation for details.</th>
</tr>
</thead>
</table>
For additional protection, explicitly remove expired or revoked certificates and failed installations.

Configure vCenter Single Sign-On

vCenter Server and associated services are protected by the vCenter Single Sign-On authentication framework. When you first install the software, you specify a password for the administrator of the vCenter Single Sign-On domain, administrator@vsphere.local by default. Only that domain is initially available as an identity source. You can add other identity sources, either Active Directory or LDAP, and set a default identity source. Going forward, users who can authenticate to one of those identity sources can view objects and perform tasks if they are authorized to do so. See the *Platform Services Controller Administration* documentation for details.

Assign roles to named users or groups

For better logging, associate each permission that you give on an object with a named user or group and a predefined role or custom role. The vSphere 6.0 permissions model allows great flexibility through multiple ways of authorizing users or groups. See *Understanding Authorization in vSphere* and *Required Privileges for Common Tasks*.

Restrict administrator privileges and the use of the administrator role. If possible, do not use the anonymous Administrator user.

Set up NTP

Set up NTP for each node in your environment. The certificate infrastructure requires an accurate time stamp and does not work correctly if the nodes are out of sync.

See *Synchronizing Clocks on the vSphere Network*.

Securing Virtual Machines

To secure your virtual machines, keep the guest operating systems patched and protect your environment just as you protect your physical machine. Consider disabling unnecessary functionality, minimize the use of the virtual machine console, and follow other best practices.

Protect the guest operating system

To protect your guest operating system, make sure that it uses the most recent patches and, if appropriate, anti-spyware and anti-malware applications. See the documentation from your guest operating system vendor and, potentially, other information available in books or on the Internet for that operating system.

Disable unnecessary functionality

Check that unnecessary functionality is disabled to minimize potential points of attack. Many of the features that are used infrequently are disabled by default. Remove unnecessary hardware and disable certain features such as host-guest filesystem (HGFS) or copy and paste between the virtual machine and a remote console.

See *Disable Unnecessary Functions Inside Virtual Machines*.
Use templates and scripted management	Virtual machine templates enable you to set up the operating system so that it meets your requirements, and to create other VMs with the same settings. If you want to change virtual machine settings after initial deployment, consider using scripts, for example, PowerCLI. This documentation explains how to perform tasks using the GUI. Consider using scripts instead of the GUI to keep your environment consistent. In large environments, you can group virtual machines into folders to optimize scripting. For information on templates, see Use Templates to Deploy Virtual Machines and the vSphere Virtual Machine Administration. For information on PowerCLI, see the VMware PowerCLI documentation.
Minimize use of the virtual machine console	The virtual machine console provides the same function for a virtual machine that a monitor on a physical server provides. Users with access to a virtual machine console have access to virtual machine power management and to removable device connectivity controls. As a result, virtual machine console access might allow a malicious attack on a virtual machine.
Consider UEFI secure boot	Starting with vSphere 6.5, you can configure your virtual machine to use UEFI boot. If the operating system supports secure UEFI boot, you can select that option for your VMs for additional security. See Enable or Disable UEFI Secure Boot for a Virtual Machine.
Consider VMware AppDefense	Starting with vSphere 6.7 Update 1, you can install and use the VMware AppDefense plug-in to protect your applications and ensure endpoint security. The AppDefense plug-in becomes available with the vSphere Platinum license. If you have the Platinum license, the AppDefense panel appears on the Summary tab for any virtual machine in your inventory. From that panel, you can install, upgrade, or view details about the AppDefense plug-in. For more information about VMware AppDefense, see the AppDefense documentation.

Securing the Virtual Networking Layer

The virtual networking layer includes virtual network adapters, virtual switches, distributed virtual switches, and ports and port groups. ESXi relies on the virtual networking layer to support communications between VMs and their users. In addition, ESXi uses the virtual networking layer to communicate with iSCSI SANs, NAS storage, and so on.
vSphere includes the full array of features necessary for a secure networking infrastructure. You can secure each element of the infrastructure, such as virtual switches, distributed virtual switches, and virtual network adapters, separately. In addition, consider the following guidelines, discussed in more detail in Chapter 10 Securing vSphere Networking.

Isolate network traffic
Isolation of network traffic is essential to a secure ESXi environment. Different networks require different access and level of isolation. A management network isolates client traffic, command-line interface (CLI) or API traffic, and third-party software traffic from normal traffic. Ensure that the management network is accessible only by system, network, and security administrators.

See ESXi Networking Security Recommendations.

Use firewalls to secure virtual network elements
You can open and close firewall ports and secure each element in the virtual network separately. For ESXi hosts, firewall rules associate services with corresponding firewalls and can open and close the firewall according to the status of the service. See ESXi Firewall Configuration.

You can also open ports on Platform Services Controller and vCenter Server instances explicitly. See Required Ports for vCenter Server and Platform Services Controller and Additional vCenter Server TCP and UDP Ports.

Consider network security policies
Network security policies provide protection of traffic against MAC address impersonation and unwanted port scanning. The security policy of a standard or distributed switch is implemented in Layer 2 (Data Link Layer) of the network protocol stack. The three elements of the security policy are promiscuous mode, MAC address changes, and forged transmits.

See the vSphere Networking documentation for instructions.

Secure VM networking
The methods that you use to secure VM networking depend on several factors, including:

- The guest operating system that is installed.
- Whether the VMs operate in a trusted environment

Virtual switches and distributed virtual switches provide significant protection when used with other common security practices, such as installing firewalls.

See Chapter 10 Securing vSphere Networking.

Consider VLANs to protect your environment
ESXi supports IEEE 802.1q VLANs. VLANs let you segment a physical network. You can use VLANs to further protect the VM network or storage configuration. When you use VLANs, two VMs on the same physical network cannot send packets to or receive packets from each other unless they are on the same VLAN.

See Securing Virtual Machines with VLANs.
Secure connections to virtualized storage

A VM stores operating system files, program files, and other data on a virtual disk. Each virtual disk appears to the VM as a SCSI drive that is connected to a SCSI controller. A VM is isolated from storage details and cannot access the information about the LUN where its virtual disk resides.

The Virtual Machine File System (VMFS) is a distributed file system and volume manager that presents virtual volumes to the ESXi host. You are responsible for securing the connection to storage. For example, if you are using iSCSI storage, you can set up your environment to use CHAP. If required by company policy, you can set up mutual CHAP. Use the vSphere Client or CLIs to set up CHAP.

Evaluate the use of IPSec

ESXi supports IPSec over IPv6. You cannot use IPSec over IPv4.

In addition, evaluate whether VMware NSX for vSphere is a good solution for securing the networking layer in your environment.

Passwords in Your vSphere Environment

Password restrictions, password expiration, and account lockout in your vSphere environment depend on the system that the user targets, who the user is, and how policies are set.

ESXi Passwords

ESXi password restrictions are determined by the Linux PAM module pam_passwdqc. See the Linux manpage for pam_passwdqc and see ESXi Passwords and Account Lockout.

Passwords for vCenter Server and Other vCenter Services

vCenter Single Sign-On manages authentication for all users who log in to vCenter Server and other vCenter services. The password restrictions, password expiration, and account lockout depend on the user’s domain and on who the user is.

vCenter Single Sign-On Administrator

The password for administrator@vsphere.local user, or the administrator@mydomain user if you selected a different domain during installation, does not expire and is not subject to the lockout policy. In all other regards, the password must follow the restrictions that are set in the vCenter Single Sign-On password policy. See Platform Services Controller Administration for details.
If you forget the password for this user, search the VMware Knowledge Base system for information on resetting this password. The reset requires additional privileges such as root access to the vCenter Server system.

Other Users of the vCenter Single Sign-On Domain

Passwords for other vsphere.local users, or users of the domain that you specified during installation, must follow the restrictions that are set by the vCenter Single Sign-On password policy and lockout policy. See *Platform Services Controller Administration* for details. These passwords expire after 90 days by default. Administrators can change the expiration as part of the password policy.

If you forget your vsphere.local password, an administrator user can reset the password using the `dir-cli` command.

Other Users

Password restrictions, password expiration, and account lockout for all other users are determined by the domain (identity source) to which the user can authenticate.

vCenter Single Sign-On supports one default identity source. Users can log in to the corresponding domain with the vSphere Client with just their user names. If users want to log in to a non-default domain, they can include the domain name, that is, specify `user@domain or domain\user`. The domain password parameters apply to each domain.

Passwords for vCenter Server Appliance Direct Console User Interface Users

The vCenter Server Appliance is a preconfigured Linux-based virtual machine that is optimized for running vCenter Server and the associated services on Linux.

When you deploy the vCenter Server Appliance, you specify these passwords.

- Password for the root user of the appliance Linux operating system.
- Password for the administrator of the vCenter Single Sign-On domain, administrator@vsphere.local by default.

You can change the root user password and perform other vCenter Server Appliance local user management tasks from the appliance console. See *vCenter Server Appliance Configuration*.

Security Best Practices and Resources

If you follow best practices, your ESXi and vCenter Server can be as secure as or even more secure than an environment that does not include virtualization.

This manual includes best practices for the different components of your vSphere infrastructure.
Table 1-1. Security Best Practices

<table>
<thead>
<tr>
<th>vSphere component</th>
<th>Resource</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESXi host</td>
<td>Chapter 3 Securing ESXi Hosts</td>
</tr>
<tr>
<td>vCenter Server system</td>
<td>vCenter Server Security Best Practices</td>
</tr>
<tr>
<td>Virtual machine</td>
<td>Virtual Machine Security Best Practices</td>
</tr>
<tr>
<td>vSphere Networking</td>
<td>vSphere Networking Security Best Practices</td>
</tr>
</tbody>
</table>

This manual is only one of the sources you must use to ensure a secure environment.

VMware security resources, including security alerts and downloads, are available on the Web.

Table 1-2. VMware Security Resources on the Web

<table>
<thead>
<tr>
<th>Topic</th>
<th>Resource</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information on ESXi and vCenter Server security and operations, including secure configuration and hypervisor security.</td>
<td>https://vspherecentral.vmware.com/t/security/</td>
</tr>
<tr>
<td>VMware security policy, up-to-date security alerts, security downloads, and focus discussions of security topics.</td>
<td>http://www.vmware.com/go/security</td>
</tr>
<tr>
<td>VMware is committed to helping you maintain a secure environment. Security issues are corrected in a timely manner. The VMware Security Response Policy states our commitment to resolve possible vulnerabilities in our products.</td>
<td></td>
</tr>
<tr>
<td>Third-party software support policy</td>
<td>http://www.vmware.com/support/policies/</td>
</tr>
<tr>
<td>VMware supports a variety of storage systems, software agents such as backup agents, system management agents, and so forth. You can find lists of agents, tools, and other software that supports ESXi by searching http://www.vmware.com/vmtn/resources/ for ESXi compatibility guides. The industry offers more products and configurations than VMware can test. If VMware does not list a product or configuration in a compatibility guide, Technical Support attempts to help you with any problems, but cannot guarantee that the product or configuration can be used. Always evaluate security risks for unsupported products or configurations carefully.</td>
<td></td>
</tr>
<tr>
<td>Compliance and security standards, and partner solutions and in-depth content about virtualization and compliance</td>
<td>http://www.vmware.com/go/compliance</td>
</tr>
<tr>
<td>Information on security certifications and validations such as CCEVS and FIPS for different versions of the components of vSphere.</td>
<td>https://www.vmware.com/support/support-resources/certifications.html</td>
</tr>
<tr>
<td>Security configuration guides (formerly known as hardening guides) for different versions of vSphere and other VMware products.</td>
<td>https://www.vmware.com/support/support-resources/hardening-guides.html</td>
</tr>
</tbody>
</table>
vSphere Permissions and User Management Tasks

Authentication and authorization govern access. vCenter Single Sign-On supports authentication, which means it determines whether a user can access vSphere components at all. Each user must also be authorized to view or manipulate vSphere objects.

vSphere supports several different authorization mechanisms, discussed in Understanding Authorization in vSphere. The focus of the information in this section is how the vCenter Server permission model works and how to perform user management tasks.

vCenter Server allows fine-grained control over authorization with permissions and roles. When you assign a permission to an object in the vCenter Server object hierarchy, you specify which user or group has which privileges on that object. To specify the privileges, you use roles, which are sets of privileges.

Initially, only the administrator user for the vCenter Single Sign-On domain, administrator@vsphere.local by default, is authorized to log in to the vCenter Server system. That user can then proceed as follows:

1. Add an identity source in which users and groups are defined to vCenter Single Sign-On. See the Platform Services Controller Administration documentation.

2. Give privileges to a user or group by selecting an object such as a virtual machine or a vCenter Server system and assigning a role on that object for the user or group.

Assigning Roles and Permissions Using the vSphere Client

This chapter includes the following topics:

- Understanding Authorization in vSphere
- Managing Permissions for vCenter Components
- Global Permissions
- Using Roles to Assign Privileges
- Best Practices for Roles and Permissions
- Required Privileges for Common Tasks
Understanding Authorization in vSphere

vSphere supports several models with fine-grained control for determining whether a user is allowed to perform a task. vCenter Single Sign-On uses group membership in a vCenter Single Sign-On group to decide what you are allowed to do. Your role on an object or your global permission determines whether you're allowed to perform other tasks in vSphere.

Authorization Overview

vSphere 6.0 and later allows privileged users to give other users permissions to perform tasks. You can use global permissions, or you can use local vCenter Server permissions to authorize other users for individual vCenter Server instances.

vCenter Server Permissions

The permission model for vCenter Server systems relies on assigning permissions to objects in the object hierarchy. Each permission gives one user or group a set of privileges, that is, a role for a selected object. For example, you can select a virtual machine and select Add Permission assign a role to a group of users in a domain that you select. That role gives those users the corresponding privileges on the VM.

Global Permissions

Global permissions are applied to a global root object that spans solutions. For example, if both vCenter Server and vRealize Orchestrator are installed, you can use global permissions. For example, you can give a group of users Read permissions to all objects in both object hierarchies.

Global permissions are replicated across the vsphere.local domain. Global permissions do not provide authorization for services managed through vsphere.local groups. See Global Permissions.

Group Membership in vCenter Single Sign-On Groups

Members of a vsphere.local group can perform certain tasks. For example, you can perform license management if you are a member of the LicenseService.Administrators group. See the Platform Services Controller Administration documentation.

ESXi Local Host Permissions

If you are managing a standalone ESXi host that is not managed by a vCenter Server system, you can assign one of the predefined roles to users. See the vSphere Single Host Management - VMware Host Client documentation.

For managed hosts, assign roles to the ESXi host object in the vCenter Server inventory.
Understanding the Object-Level Permission Model

You authorize a user or group to perform tasks on vCenter objects by using permissions on the object. The vSphere permission model relies on assigning permissions to objects in the vSphere object hierarchy. Each permission gives one user or group a set of privileges, that is, a role for the selected object. For example, a group of users might have the ReadOnly role on one VM and the Administrator role on another VM.

The following concepts are important.

Permissions
Each object in the vCenter Server object hierarchy has associated permissions. Each permission specifies for one group or user which privileges that group or user has on the object.

Users and Groups
On vCenter Server systems, you can assign privileges only to authenticated users or groups of authenticated users. Users are authenticated through vCenter Single Sign-On. Users and groups must be defined in the identity source that vCenter Single Sign-On uses to authenticate. Define users and groups using the tools in your identity source, for example, Active Directory.

Privileges
Privileges are fine-grained access controls. You can group those privileges into roles, which you can then map to users or groups.

Roles
Roles are sets of privileges. Roles allow you to assign permissions on an object based on a typical set of tasks that users perform. Default roles, such as Administrator, are predefined on vCenter Server and cannot be changed. Other roles, such as Resource Pool Administrator, are predefined sample roles. You can create custom roles either from scratch or by cloning and modifying sample roles. See Create a Custom Role.

Figure 2-1. vSphere Permissions

To assign permissions to an object, you follow these steps:

1. Select the object to which you want to apply the permission in the vCenter object hierarchy.
2 Select the group or user that should have privileges on the object.

3 Select individual privileges or a role, that is a set of privileges, that the group or user should have on the object.

 By default, permissions propagate, that is the group or user has the selected role on the selected object and its child objects.

vCenter Server offers predefined roles, which combine frequently used privilege sets. You can also create custom roles by combining a set of roles.

Permissions must often be defined on both a source object and a destination object. For example, if you move a virtual machine, you need privileges on that virtual machine, but also privileges on the destination data center.

See the following information.

<table>
<thead>
<tr>
<th>To find out about...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creating custom roles.</td>
<td>Create a Custom Role</td>
</tr>
<tr>
<td>All privileges and the objects to which you can apply the privileges</td>
<td>Chapter 13 Defined Privileges</td>
</tr>
<tr>
<td>Sets of privileges that are required on different objects for different tasks.</td>
<td>Required Privileges for Common Tasks</td>
</tr>
</tbody>
</table>

The permissions model for standalone ESXi hosts is simpler. See Assigning Privileges for ESXi Hosts.

vCenter Server User Validation

vCenter Server systems that use a directory service regularly validate users and groups against the user directory domain. Validation occurs at regular intervals specified in the vCenter Server settings. For example, assume that user Smith is assigned a role on several objects. The domain administrator changes the name to Smith2. The host concludes that Smith no longer exists and removes permissions associated with that user from the vSphere objects when the next validation occurs.

Similarly, if user Smith is removed from the domain, all permissions associated with that user are removed when the next validation occurs. If a new user Smith is added to the domain before the next validation occurs, the new user Smith replaces the old user Smith in permissions on any object.

Hierarchical Inheritance of Permissions

When you assign a permission to an object, you can choose whether the permission propagates down the object hierarchy. You set propagation for each permission. Propagation is not universally applied. Permissions defined for a child object always override the permissions that are propagated from parent objects.

The figure illustrates the inventory hierarchy and the paths by which permissions can propagate.

Note Global permissions support assigning privileges across solutions from a global root object. See Global Permissions.
Most inventory objects inherit permissions from a single parent object in the hierarchy. For example, a datastore inherits permissions from either its parent datastore folder or parent data center. Virtual machines inherit permissions from both the parent virtual machine folder and the parent host, cluster, or resource pool simultaneously.

For example, you can set permissions for a distributed switch and its associated distributed port groups, by setting permissions on a parent object, such as a folder or data center. You must also select the option to propagate these permissions to child objects.
Permissions take several forms in the hierarchy:

Managed entities
Privileged users can define permissions on managed entities.

- Clusters
- Data centers
- Datastores
- Datastore clusters
- Folders
- Hosts
- Networks (except vSphere Distributed Switches)
- Distributed port groups
- Resource pools
- Templates
- Virtual machines
- vSphere vApps

Global entities
You cannot modify permissions on entities that derive permissions from the root vCenter Server system.

- Custom fields
- Licenses
- Roles
- Statistics intervals
- Sessions

Multiple Permission Settings

Objects might have multiple permissions, but only one permission for each user or group. For example, one permission might specify that Group A has Administrator privileges on an object. Another permission might specify that Group B might have Virtual Machine Administrator privileges on the same object.

If an object inherits permissions from two parent objects, the permissions on one object are added to the permissions on the other object. For example, assume that a virtual machine is in a virtual machine folder and also belongs to a resource pool. That virtual machine inherits all permission settings from both the virtual machine folder and the resource pool.

Permissions applied on a child object always override permissions that are applied on a parent object. See Example 2: Child Permissions Overriding Parent Permissions.
If multiple group permissions are defined on the same object and a user belongs to two or more of those groups, two situations are possible:

- No permission for the user is defined directly on the object. In that case, the user has the privileges that the groups have on that object.
- A permission for the user is defined directly on the object. In that case, the user’s permission takes precedence over all group permissions.

Example 1: Inheritance of Multiple Permissions

This example illustrates how an object can inherit multiple permissions from groups that are granted permission on a parent object.

In this example, two permissions are assigned on the same object for two different groups.

- Role 1 can power on virtual machines.
- Role 2 can take snapshots of virtual machines.
- Group A is granted Role 1 on VM Folder, with the permission set to propagate to child objects.
- Group B is granted Role 2 on VM Folder, with the permission set to propagate to child objects.
- User 1 is not assigned specific privileges.

User 1, who belongs to groups A and B, logs on. User 1 can both power on and take snapshots of VM A and VM B.

Figure 2-3. Example 1: Inheritance of Multiple Permissions

Example 2: Child Permissions Overriding Parent Permissions

This example illustrates how permissions that are assigned on a child object can override permissions that are assigned on a parent object. You can use this overriding behavior to restrict user access to particular areas of the inventory.

In this example, permissions are defined on two different objects for two different groups.

- Role 1 can power on virtual machines.
- Role 2 can take snapshots of virtual machines.
- Group A is granted Role 1 on VM Folder, with the permission set to propagate to child objects.
- Group B is granted Role 2 on VM B.
User 1, who belongs to groups A and B, logs on. Because Role 2 is assigned at a lower point in the hierarchy than Role 1, it overrides Role 1 on VM B. User 1 can power on VM A, but not take snapshots. User 1 can take snapshots of VM B, but not power it on.

Figure 2-4. Example 2: Child Permissions Overriding Parent Permissions

<table>
<thead>
<tr>
<th>Group</th>
<th>Role</th>
<th>Permissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Role 1</td>
<td>VM Folder: user 1 has privileges of role 1 only</td>
</tr>
<tr>
<td>B</td>
<td>Role 2</td>
<td>VM B: user 1 has privileges of role 2 only</td>
</tr>
</tbody>
</table>

Example 3: User Role Overriding Group Role

This example illustrates how the role assigned directly to an individual user overrides the privileges associated with a role assigned to a group.

In this example, permissions are defined on the same object. One permission associates a group with a role, the other permission associates an individual user with a role. The user is a member of the group.

- Role 1 can power on virtual machines.
- Group A is granted Role 1 on VM Folder.
- User 1 is granted No Access role on VM Folder.

User 1, who belongs to group A, logs on. The No Access role granted to User 1 on VM Folder overrides the role assigned to the group. User 1 has no access to VM Folder or VMs A and B.

Figure 2-5. Example 3: User Permissions Overriding Group Permissions

<table>
<thead>
<tr>
<th>Group</th>
<th>Role</th>
<th>Permissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Role 1</td>
<td>VM Folder: user 1 has no access to the folder or the virtual machines</td>
</tr>
<tr>
<td></td>
<td>User 1</td>
<td>VM A, VM B</td>
</tr>
</tbody>
</table>

Managing Permissions for vCenter Components

A permission is set on an object in the vCenter object hierarchy. Each permission associates the object with a group or user and the group’s or user’s access roles. For example, you can select a virtual machine object, add one permission that gives the ReadOnly role to Group 1, and add a second permission that gives the Administrator role to User 2.
By assigning a different role to a group of users on different objects, you control the tasks that those users can perform in your vSphere environment. For example, to allow a group to configure memory for the host, select that host and add a permission that grants a role to that group that includes the **Host.Configuration.Memory Configuration** privilege.

To manage permissions from the vSphere Client, you need to understand the following concepts:

Permissions
Each object in the vCenter Server object hierarchy has associated permissions. Each permission specifies for one group or user which privileges that group or user has on the object.

Users and Groups
On vCenter Server systems, you can assign privileges only to authenticated users or groups of authenticated users. Users are authenticated through vCenter Single Sign-On. Users and groups must be defined in the identity source that vCenter Single Sign-On uses to authenticate. Define users and groups using the tools in your identity source, for example, Active Directory.

Privileges
Privileges are fine-grained access controls. You can group those privileges into roles, which you can then map to users or groups.

Roles
Roles are sets of privileges. Roles allow you to assign permissions on an object based on a typical set of tasks that users perform. Default roles, such as Administrator, are predefined on vCenter Server and cannot be changed. Other roles, such as Resource Pool Administrator, are predefined sample roles. You can create custom roles either from scratch or by cloning and modifying sample roles. See Create a Custom Role.

You can assign permissions to objects at different levels of the hierarchy, for example, you can assign permissions to a host object or to a folder object that includes all host objects. See Hierarchical Inheritance of Permissions. You can also assign permissions to a global root object to apply the permissions to all object in all solutions. See Global Permissions.

Add a Permission to an Inventory Object

After you create users and groups and define roles, you must assign the users and groups and their roles to the relevant inventory objects. You can assign the same permissions to multiple objects simultaneously by moving the objects into a folder and setting the permissions on the folder.

When you assign permissions, user and group names must match Active Directory precisely, including case. If you upgraded from earlier versions of vSphere, check for case inconsistencies if you experience problems with groups.

Prerequisites
On the object whose permissions you want to modify, you must have a role that includes the **Permissions.Modify permission** privilege.
Procedure

1. Browse to the object for which you want to assign permissions in the vSphere Client object navigator.
2. Click the Permissions tab.
3. Click the Add Permission icon.
4. Select the user or group that will have the privileges defined by the selected role.
 a. From the User drop-down menu, select the domain for the user or group.
 b. Type a name in the Search box.
 The system searches user names and group names.
 c. Select the user or group.
5. Select a role from the Role drop-down menu.
6. (Optional) To propagate the permissions, select the Propagate to children check box.
 The role is applied to the selected object and propagates to the child objects.
7. Click OK to add the permission.

Change or Remove Permissions

After a user or group and role pair is set for an inventory object, you can change the role paired with the user or group or change the setting of the Propagate to children check box. You can also remove the permission setting.

Procedure

1. Browse to the object in the vSphere Client object navigator.
2. Click the Permissions tab.
3. Click a row to select a permission.

<table>
<thead>
<tr>
<th>Task</th>
<th>Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change permissions</td>
<td>a. Click the Change Role icon.</td>
</tr>
<tr>
<td></td>
<td>b. Select a role for the user or group from the Role drop-down menu.</td>
</tr>
<tr>
<td></td>
<td>c. Toggle the Propagate to children check box to change permission</td>
</tr>
<tr>
<td></td>
<td>inheritance.</td>
</tr>
<tr>
<td></td>
<td>d. Click OK.</td>
</tr>
<tr>
<td>Remove permissions</td>
<td>Click the Remove Permission icon.</td>
</tr>
</tbody>
</table>

Change User Validation Settings

vCenter Server periodically validates its user and group lists against the users and groups in the user directory. It then removes users or groups that no longer exist in the domain. You can disable validation or change the interval between validations. If you have domains with thousands of users or groups, or if searches take a long time to complete, consider adjusting the search settings.
For vCenter Server versions before vCenter Server 5.0, these settings apply to an Active Directory associated with vCenter Server. For vCenter Server 5.0 and later, these settings apply to vCenter Single Sign-On identity sources.

Note This procedure applies only to vCenter Server user lists. You cannot search ESXi user lists in the same way.

Procedure

1. Browse to the vCenter Server system in the vSphere Client object navigator.
2. Select **Configure** and click **Settings > General**.
3. Click **Edit** and select **User directory**.
4. Change the values as needed and click **Save**.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User directory timeout</td>
<td>Timeout interval, in seconds, for connecting to the Active Directory server. This value specifies the maximum amount of time vCenter Server allows a search to run on the selected domain. Searching large domains can take a long time.</td>
</tr>
<tr>
<td>Query limit</td>
<td>Toggle on to set a maximum number of users and groups that vCenter Server displays.</td>
</tr>
<tr>
<td>Query limit size</td>
<td>Maximum number of users and groups from the selected domain that vCenter Server displays in the Select Users or Groups dialog box. If you enter 0 (zero), all users and groups appear.</td>
</tr>
<tr>
<td>Validation</td>
<td>Toggle off to disable validation.</td>
</tr>
<tr>
<td>Validation Period</td>
<td>Specifies how often vCenter Server validates permissions, in minutes.</td>
</tr>
</tbody>
</table>

Global Permissions

Global permissions are applied to a global root object that spans solutions. In an on-premises SDDC, global permissions might span both vCenter Server and vRealize Orchestrator. But for any vSphere SDDC, global permissions apply to global objects such as tags and content libraries.

You can assign global permissions to users or groups, and decide on the role for each user or group. The role determines the set of privileges that the user or group has for all objects in the hierarchy. You can assign a predefined role or create custom roles. See **Using Roles to Assign Privileges**.
It is important to distinguish between vCenter Server permissions and global permissions.

vCenter Server permissions
You usually apply a permission to a vCenter Server inventory object such as a virtual machine. When you do, you specify that a user or group has a role (set of privileges) on the object.

Global permissions
Global permissions give a user or group privileges to view or manage all objects in each of the inventory hierarchies in your deployment. Global permissions also apply to global objects such as tags and content libraries. See Permissions on Tag Objects.

If you assign a global permission and do not select Propagate, the users or groups associated with this permission do not have access to the objects in the hierarchy. They only have access to some global functionality such as creating roles.

Important Use global permissions with care. Verify that you really want to assign permissions to all objects in all inventory hierarchies.

Add a Global Permission
You can use global permissions to give a user or group privileges for all objects in all inventory hierarchies in your deployment.

Important Use global permissions with care. Verify that you really want to assign permissions to all objects in all inventory hierarchies.

Prerequisites
To perform this task, you must have **Permissions.Modify** privileges on the root object for all inventory hierarchies.

Procedure
1. Log in to the vCenter Server by using the vSphere Client.
2. Select **Administration** and click **Global Permissions** in the Access Control area.
3. Click the **Add Permission** icon.
4. Select the user or group that will have the privileges defined by the selected role.
 a. From the **User** drop-down menu, select the domain for the user or group.
 b. Type a name in the Search box.
 The system searches user names and group names.
 c. Select the user or group.
5. Select a role from the **Role** drop-down menu.
6 Decide whether to propagate the permissions by selecting the Propagate to children check box.

If you assign a global permission and do not select Propagate to children, the users or groups associated with this permission do not have access to the objects in the hierarchy. They only have access to some global functionality such as creating roles.

7 Click OK.

Permissions on Tag Objects

In the vCenter Server object hierarchy, tag objects are not children of vCenter Server but are created at the vCenter Server root level. In environments with multiple vCenter Server instances, tag objects are shared across vCenter Server instances. Permissions for tag objects work differently than permissions for other objects in the vCenter Server object hierarchy.

Only Global Permissions or Permissions Assigned to the Tag Object Apply

If you grant permissions to a user on a vCenter Server inventory object, such as a virtual machine, that user can perform the tasks associated with the permission. However, the user cannot perform tag operations on the object.

For example, if you grant the Assign vSphere Tag privilege to user Dana on host TPA, that permission does not affect whether Dana can assign tags on host TPA. Dana must have the Assign vSphere Tag privilege at the root level, that is, a global permission, or must have the privilege for the tag object.

Table 2-1. How Global Permissions and Tag Object Permissions Affect What Users Can Do

<table>
<thead>
<tr>
<th>Global Permission</th>
<th>Tag-Level Permission</th>
<th>vCenter Server Object-Level Permission</th>
<th>Effective Permission</th>
</tr>
</thead>
<tbody>
<tr>
<td>No tagging privileges assigned.</td>
<td>Dana has Assign or Unassign vSphere Tag privileges for the tag.</td>
<td>Dana has Delete vSphere Tag privileges on ESXi host TPA.</td>
<td>Dana has Assign or Unassign vSphere Tag privileges for the tag.</td>
</tr>
<tr>
<td>Dana has Assign or Unassign vSphere Tag privileges.</td>
<td>No privileges assigned for the tag.</td>
<td>Dana has Delete vSphere Tag privileges on ESXi host TPA.</td>
<td>Dana has Assign or Unassign vSphere Tag global privileges. That includes privileges at the tag level.</td>
</tr>
<tr>
<td>No tagging privileges assigned.</td>
<td>No privileges assigned for the tag.</td>
<td>Dana has Assign or Unassign vSphere Tag privileges on ESXi host TPA.</td>
<td>Dana does not have tagging privileges on any object, including host TPA.</td>
</tr>
</tbody>
</table>

Global Permissions Complement Tag Object Permissions

Global permissions, that is, permissions that are assigned on the root object, complement permissions on tag objects when the permissions on the tag objects are more restrictive. The vCenter Server permissions do not affect the tag objects.

For example, assume that you assign the Delete vSphere Tag privilege to user Robin at the root level by using global permissions. For the tag Production, you do not assign the Delete vSphere Tag privilege to Robin. In that case, Robin has the privilege for the tag Production because Robin has the global permission. You cannot restrict privileges unless you modify the global permission.
Table 2-2. Global Permissions Complement Tag-Level Permissions

<table>
<thead>
<tr>
<th>Global Permission</th>
<th>Tag-Level Permission</th>
<th>Effective Permission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robin has Delete vSphere Tag privileges</td>
<td>Robin does not have Delete vSphere Tag privileges for the tag.</td>
<td>Robin has Delete vSphere Tag privileges.</td>
</tr>
<tr>
<td>No tagging privileges assigned</td>
<td>Robin does not have Delete vSphere Tag privileges assigned for the tag.</td>
<td>Robin does not have Delete vSphere Tag privileges</td>
</tr>
</tbody>
</table>

Tag-Level Permissions Can Extend Global Permissions

You can use tag-level permissions to extend global permissions. That means users can have both a global permission and a tag-level permission on a tag.

Table 2-3. Global Permissions Extend Tag-Level Permissions

<table>
<thead>
<tr>
<th>Global Permission</th>
<th>Tag-Level Permission</th>
<th>Effective Permission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lee has Assign or Unassign vSphere Tag privilege.</td>
<td>Lee has Delete vSphere Tag privilege.</td>
<td>Lee has the Assign vSphere Tag privilege and the Delete vSphere Tag privilege for the tag.</td>
</tr>
<tr>
<td>No tagging privileges assigned.</td>
<td>Lee has Delete vSphere Tag privilege assigned for the tag.</td>
<td>Lee has the Delete vSphere Tag privilege for the tag.</td>
</tr>
</tbody>
</table>

Using Roles to Assign Privileges

A role is a predefined set of privileges. Privileges define rights to perform actions and read properties. For example, the Virtual Machine Administrator role allows a user to read and change virtual machine attributes.

When you assign permissions, you pair a user or group with a role and associate that pairing with an inventory object. A single user or group can have different roles for different objects in the inventory.

For example, assume that you have two resource pools in your inventory, Pool A and Pool B. You can assign group Sales the Virtual Machine User role on Pool A, and the Read Only role on Pool B. With these assignments, the users in group Sales can turn on virtual machines in Pool A, but can only view virtual machines in Pool B.

vCenter Server provides system roles and sample roles by default.

System roles

System roles are permanent. You cannot edit the privileges associated with these roles.

Sample roles

VMware provides sample roles for certain frequently performed combination of tasks. You can clone, modify, or remove these roles.

Note To avoid losing the predefined settings in a sample role, clone the role first and make modifications to the clone. You cannot reset the sample to its default settings.
Users can schedule tasks only if they have a role that includes privileges to perform that task at the time the task is created.

Note Changes to roles and privileges take effect immediately, even if the users involved are logged in. The exception is searches, where changes take effect after the user has logged out and logged back in.

Custom Roles in vCenter Server and ESXi

You can create custom roles for vCenter Server and all objects that it manages, or for individual hosts.

vCenter Server Custom Roles (Recommended)

Create custom roles by using the role-editing facilities in the vSphere Client to create privilege sets that match your needs.

ESXi Custom Roles

You can create custom roles for individual hosts by using a CLI or the VMware Host Client. See the *vSphere Single Host Management - VMware Host Client* documentation. Custom host roles are not accessible from vCenter Server.

If you manage ESXi hosts through vCenter Server, do not maintain custom roles in both the host and vCenter Server. Define roles at the vCenter Server level.

When you manage a host using vCenter Server, the permissions associated with that host are created through vCenter Server and stored on vCenter Server. If you connect directly to a host, only the roles that are created directly on the host are available.

Note When you add a custom role and do not assign any privileges to it, the role is created as a Read Only role with three system-defined privileges: `System.Anonymous`, `System.View`, and `System.Read`.

Creating Roles in the vSphere Web Client

(http://link.brightcove.com/services/player/bcpid2296383276001?bctid=ref:video_creating_role_in_vsphere_webclient)

Create a Custom Role

You can create vCenter Server custom roles to suit the access control needs of your environment. You can create a role or clone an existing role.

You can create or edit a role on a vCenter Server system that is part of the same vCenter Single Sign-On domain as other vCenter Server systems. The VMware Directory Service (vmdir) propagates the role changes that you make to all other vCenter Server systems in the group. Assignments of roles to specific users and objects are not shared across vCenter Server systems.

Prerequisites

Verify that you are logged in as a user with Administrator privileges.

Procedure

1. Log in to the vCenter Server by using the vSphere Client.
2 Select **Administration** and click **Roles** in the **Access Control** area.

3 Create the role:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>To create a role</td>
<td>Click the Create role action icon.</td>
</tr>
<tr>
<td>To create the role by cloning</td>
<td>Select a role, and click the Clone role action icon.</td>
</tr>
</tbody>
</table>

See [vCenter Server System Roles](#) for more information.

4 Select and deselect privileges for the role.

See [Chapter 13 Defined Privileges](#) for more information.

Note When creating a cloned role, you cannot change privileges. To change privileges, select the cloned role after it is created and click the **Edit role action** icon.

5 Enter a name for the new role.

6 Click **Finish**.

What to do next

You can now create permissions by selecting an object and assigning the role to a user or group for that object.

vCenter Server System Roles

A role is a predefined set of privileges. When you add permissions to an object, you pair a user or group with a role. vCenter Server includes several system roles, which you cannot change.

vCenter Server provides a few default roles. You cannot change the privileges associated with the default roles. The default roles are organized as a hierarchy. Each role inherits the privileges of the previous role. For example, the Administrator role inherits the privileges of the Read Only role.

The vCenter Server role hierarchy also includes several sample roles. You can clone a sample role to create a similar role.

If you create a role, it does not inherit privileges from any of the system roles.

Administrator Role

Users with the Administrator role for an object are allowed to view and perform all actions on the object. This role also includes all privileges of the Read Only role. If you have the Administrator role on an object, you can assign privileges to individual users and groups.

If you are acting in the Administrator role in vCenter Server, you can assign privileges to users and groups in the default vCenter Single Sign-On identity source. Supported identity services include Windows Active Directory and OpenLDAP 2.4.

By default, the administrator@vsphere.local user has the Administrator role on both vCenter Single Sign-On and vCenter Server after installation. That
user can then associate other users with the Administrator role on vCenter Server.

Read Only Role

Users with the Read Only role for an object are allowed to view the state of the object and details about the object. For example, users with this role can view virtual machine, host, and resource pool attributes, but cannot view the remote console for a host. All actions through the menus and toolbars are disallowed.

No Access Role

Users with the No Access role for an object cannot view or change the object in any way. New users and groups are assigned this role by default. You can change the role on an object-by-object basis.

The administrator of the vCenter Single Sign-On domain, administrator@vsphere.local by default, the root user, and vpxuser are assigned the Administrator role by default. Other users are assigned the No Access role by default.

No Cryptography Administrator Role

Users with the No cryptography administrator role for an object have the same privileges as users with the Administrator role, except for **Cryptography operations** privileges. This role allows administrators to designate other administrators that cannot encrypt or decrypt virtual machines or access encrypted data, but that can perform all other administrative tasks.

Best practice is to create a user at the root level and assign the Administrator role to that user. After creating a named user with Administrator privileges, you can remove the root user from any permissions or change its role to No Access.

Best Practices for Roles and Permissions

Follow best practices for roles and permissions to maximize the security and manageability of your vCenter Server environment.

VMware recommends the following best practices when configuring roles and permissions in your vCenter Server environment:

- Where possible, assign a role to a group rather than individual users.
- Grant permissions only on the objects where they are needed, and assign privileges only to users or groups that must have them. Use the minimum number of permissions to make it easier to understand and manage your permissions structure.
- If you assign a restrictive role to a group, check that the group does not contain the Administrator user or other users with administrative privileges. Otherwise, you might unintentionally restrict administrators’ privileges in the parts of the inventory hierarchy where you have assigned that group the restrictive role.
Use folders to group objects. For example, to grant modify permission on one set of hosts and view permission on another set of hosts, place each set of hosts in a folder.

Use caution when adding a permission to the root vCenter Server objects. Users with privileges at the root level have access to global data on vCenter Server, such as roles, custom attributes, vCenter Server settings.

Consider enabling propagation when you assign permissions to an object. Propagation ensures that new objects in the object hierarchy inherit permissions. For example, you can assign a permission to a virtual machine folder and enable propagation to ensure the permission applies to all VMs in the folder.

Use the No Access role to mask specific areas of the hierarchy. The No Access role restricts access for the users or groups with that role.

Changes to licenses propagate as follows:
- To all vCenter Server systems that are linked to the same Platform Services Controller.
- To Platform Services Controller instances in the same vCenter Single Sign-On domain.
- License propagation happens even if the user does not have privileges on all vCenter Server systems.

Required Privileges for Common Tasks

Many tasks require permissions on multiple objects in the inventory. If the user who attempts to perform the task only has privileges on one object, the task cannot complete successfully.

The following table lists common tasks that require more than one privilege. You can add permissions to inventory objects by pairing a user with one of the predefined roles or with multiple privileges. If you expect that you assign a set of privileges multiple times, create custom roles.

If the task that you want to perform is not in this table, the following rules explain where you must assign permissions to allow particular operations:

- Any operation that consumes storage space requires the `Datastore.Allocate Space` privilege on the target datastore, and the privilege to perform the operation itself. You must have these privileges, for example, when creating a virtual disk or taking a snapshot.
- Moving an object in the inventory hierarchy requires appropriate privileges on the object itself, the source parent object (such as a folder or cluster), and the destination parent object.
- Each host and cluster has its own implicit resource pool that contains all the resources of that host or cluster. Deploying a virtual machine directly to a host or cluster requires the `Resource.Assign Virtual Machine to Resource Pool` privilege.
<table>
<thead>
<tr>
<th>Task</th>
<th>Required Privileges</th>
<th>Applicable Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a virtual machine</td>
<td>On the destination folder or data center:
 - Virtual machine .Inventory.Create new
 - Virtual machine.Configuration.Add new disk (if creating a new virtual disk)
 - Virtual machine.Configuration.Add existing disk (if using an existing virtual disk)
 - Virtual machine.Configuration.Configure Raw device (if using an RDM or SCSI pass-through device)
 On the destination host, cluster, or resource pool:
 Resource.Assign virtual machine to resource pool
 On the destination datastore or the folder that contains the datastore:
 Datastore.Allocate space
 On the network that the virtual machine will be assigned to:
 Network.Assign network</td>
<td>Administrator</td>
</tr>
<tr>
<td>Deploy a virtual machine from a template</td>
<td>On the destination folder or data center:
 - Virtual machine .Inventory.Create from existing
 - Virtual machine.Configuration.Add new disk
 On a template or folder of templates:
 Virtual machine .Provisioning.Deploy template
 On the destination host, cluster or resource pool:
 Resource.Assign virtual machine to resource pool
 On the destination datastore or folder of datastores:
 Datastore.Allocate space
 On the network that the virtual machine will be assigned to:
 Network.Assign network</td>
<td>Administrator</td>
</tr>
<tr>
<td>Take a virtual machine snapshot</td>
<td>On the virtual machine or a folder of virtual machines:
 Virtual machine .Snapshot management. Create snapshot</td>
<td>Virtual Machine Power User or Administrator</td>
</tr>
<tr>
<td>Move a virtual machine into a resource pool</td>
<td>On the virtual machine or folder of virtual machines:
 - Resource.Assign virtual machine to resource pool
 - Virtual machine .Inventory.Move
 On the destination resource pool:
 Resource.Assign virtual machine to resource pool</td>
<td>Administrator</td>
</tr>
</tbody>
</table>
Table 2-4. Required Privileges for Common Tasks (continued)

<table>
<thead>
<tr>
<th>Task</th>
<th>Required Privileges</th>
<th>Applicable Role</th>
</tr>
</thead>
</table>
| Install a guest operating system on a virtual machine | On the virtual machine or folder of virtual machines:
 - Virtual machine.Interaction .Answer question
 - Virtual machine . Interaction . Console interaction
 - Virtual machine . Interaction . Device connection
 - Virtual machine . Interaction . Power Off
 - Virtual machine . Interaction . Power On
 - Virtual machine . Interaction . Reset
 - Virtual machine . Interaction . Configure CD media (if installing from a CD)
 - Virtual machine . Interaction . Configure floppy media (if installing from a floppy disk)
 - Virtual machine . Interaction . VMware Tools install | Virtual Machine Power User or Administrator |
| | On a datastore that contains the installation media ISO image:
 - Datastore . Browse datastore (if installing from an ISO image on a datastore) | Virtual Machine Power User or Administrator |
| | On the datastore to which you upload the installation media ISO image:
 - Datastore . Browse datastore
 - Datastore . Low level file operations | |
| Migrate a virtual machine with vMotion | On the virtual machine or folder of virtual machines:
 - Resource . Migrate powered on virtual machine
 - Resource . Assign Virtual Machine to Resource Pool (if destination is a different resource pool from the source) | Resource Pool Administrator or Administrator |
| | On the destination host, cluster, or resource pool (if different from the source):
 - Resource . Assign virtual machine to resource pool | Resource Pool Administrator or Administrator |
| Cold migrate (relocate) a virtual machine | On the virtual machine or folder of virtual machines:
 - Resource . Migrate powered off virtual machine
 - Resource . Assign virtual machine to resource pool (if destination is a different resource pool from the source) | Resource Pool Administrator or Administrator |
| | On the destination host, cluster, or resource pool (if different from the source):
 - Resource . Assign virtual machine to resource pool | Resource Pool Administrator or Administrator |
| | On the destination datastore (if different from the source):
 - Datastore . Allocate space | Datastore Consumer or Administrator |
| Migrate a virtual machine with Storage vMotion | On the virtual machine or folder of virtual machines:
 - Resource . Migrate powered on virtual machine | Resource Pool Administrator or Administrator |
| | On the destination datastore:
 - Datastore . Allocate space | Datastore Consumer or Administrator |
| Move a host into a cluster | On the host:
 - Host . Inventory . Add host to cluster | Administrator |
Table 2-4. Required Privileges for Common Tasks (continued)

<table>
<thead>
<tr>
<th>Task</th>
<th>Required Privileges</th>
<th>Applicable Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>On the destination cluster:</td>
<td>Host.Inventory.Add host to cluster</td>
<td>Administrator</td>
</tr>
<tr>
<td>Encrypt a virtual machine</td>
<td>Encryption tasks are possible only in environments that include vCenter Server. In addition, the ESXi host must have encryption mode enabled for most encryption tasks. The user who performs the task must have the appropriate privileges. A set of Cryptographic Operations privileges allows fine-grained control. See Prerequisites and Required Privileges for Encryption Tasks.</td>
<td>Administrator</td>
</tr>
</tbody>
</table>
Securing ESXi Hosts

The ESXi hypervisor architecture has many built-in security features such as CPU isolation, memory isolation, and device isolation. You can configure additional features such as lockdown mode, certificate replacement, and smart card authentication for enhanced security.

An ESXi host is also protected with a firewall. You can open ports for incoming and outgoing traffic as needed, but should restrict access to services and ports. Using the ESXi lockdown mode and limiting access to the ESXi Shell can further contribute to a more secure environment. Starting with vSphere 6.0, ESXi hosts participate in the certificate infrastructure. Hosts are provisioned with certificates that are signed by the VMware Certificate Authority (VMCA) by default.

See the VMware white paper Security of the VMware vSphere Hypervisor for additional information on ESXi security.

This chapter includes the following topics:
- General ESXi Security Recommendations
- Certificate Management for ESXi Hosts
- Customizing Hosts with the Security Profile
- Assigning Privileges for ESXi Hosts
- Using Active Directory to Manage ESXi Users
- Using vSphere Authentication Proxy
- Configuring Smart Card Authentication for ESXi
- Using the ESXi Shell
- UEFI Secure Boot for ESXi Hosts
- Securing ESXi Hosts with Trusted Platform Module
- ESXi Log Files

General ESXi Security Recommendations

To protect an ESXi host against unauthorized intrusion and misuse, VMware imposes constraints on several parameters, settings, and activities. You can loosen the constraints to meet your configuration needs. If you do, make sure that you are working in a trusted environment and take other security measures.
Built-In Security Features

Risks to the hosts are mitigated out of the box as follows:

- ESXi Shell and SSH are disabled by default.
- Only a limited number of firewall ports are open by default. You can explicitly open additional firewall ports that are associated with specific services.
- ESXi runs only services that are essential to managing its functions. The distribution is limited to the features required to run ESXi.
- By default, all ports that are not required for management access to the host are closed. Open ports if you need additional services.
- By default, weak ciphers are disabled and communications from clients are secured by SSL. The exact algorithms used for securing the channel depend on the SSL handshake. Default certificates created on ESXi use PKCS#1 SHA-256 with RSA encryption as the signature algorithm.
- A Tomcat Web service is used internally by ESXi to support access by Web clients. The service has been modified to run only functions that a Web client requires for administration and monitoring. As a result, ESXi is not vulnerable to the Tomcat security issues reported in broader use.
- VMware monitors all security alerts that can affect ESXi security and issues a security patch if needed.
- Insecure services such as FTP and Telnet are not installed, and the ports for these services are closed by default. Because more secure services such as SSH and SFTP are easily available, avoid using these insecure services and use their safer alternatives. For example, use Telnet with SSL to access virtual serial ports if SSH is unavailable and you must use Telnet.

 If you must use insecure services and have implemented sufficient protection for the host, you can explicitly open ports to support them.
- Consider using UEFI Secure Boot for your ESXi system. See UEFI Secure Boot for ESXi Hosts.

Additional Security Measures

Consider the following recommendations when evaluating host security and administration.

Limit access

If you enable access to the Direct Console User Interface (DCUI) the ESXi Shell, or SSH, enforce strict access security policies.

The ESXi Shell has privileged access to certain parts of the host. Provide only trusted users with ESXi Shell login access.

Do not access managed hosts directly

Use the vSphere Client to administer ESXi hosts that are managed by a vCenter Server. Do not access managed hosts directly with the VMware Host Client, and do not change managed hosts from the DCUI.

If you manage hosts with a scripting interface or API, do not target the host directly. Instead, target the vCenter Server system that manages the host and specify the host name.
Use DCUI only for troubleshooting

Access the host from the DCUI or the ESXi Shell as the root user only for troubleshooting. Use one of the GUI clients, or one of the VMware CLIs or APIs to administer your ESXi hosts. If you use the ESXi Shell or SSH, limit the accounts that have access and set timeouts.

Use only VMware sources to upgrade ESXi components

The host runs several third-party packages to support management interfaces or tasks that you must perform. VMware only supports upgrades to these packages that come from a VMware source. If you use a download or patch from another source, you might compromise management interface security or functions. Check third-party vendor sites and the VMware knowledge base for security alerts.

Note Follow the VMware security advisories at http://www.vmware.com/security/.

Configure ESXi Hosts with Host Profiles

Host profiles allow you to set up standard configurations for your ESXi hosts and automate compliance to these configuration settings. Host profiles allow you to control many aspects of host configuration including memory, storage, networking, and so on.

You can configure host profiles for a reference host from the vSphere Client and apply the host profile to all hosts that share the characteristics of the reference host. You can also use host profiles to monitor hosts for host configuration changes. See vSphere Host Profiles documentation.

You can attach the host profile to a cluster to apply it to all hosts in the cluster.

Procedure

1. Set up the reference host to specification and create a host profile.
2. Attach the profile to a host or cluster.
3. Apply the host profile of the reference host to other hosts or clusters.

Use Scripts to Manage Host Configuration Settings

In environments with many hosts, managing hosts with scripts is faster and less error prone than managing the hosts from the vSphere Client.

vSphere includes several scripting languages for host management. See vSphere Command-Line Documentation and vSphere API/SDK Documentation for reference information and programming tips, and VMware Communities for additional tips about scripted management. The vSphere Administrator documentation focuses on using the vSphere Client for management.

vSphere PowerCLI

VMware vSphere PowerCLI is a Windows PowerShell interface to the vSphere API. vSphere PowerCLI includes PowerShell cmdlets for administering vSphere components.
vSphere PowerCLI includes more than 200 cmdlets, a set of sample scripts, and a function library for management and automation. See vSphere PowerCLI Documentation.

vSphere Command-Line Interface (vCLI) vCLI includes a set of commands for managing ESXi hosts and virtual machines. The installer, which also installs the vSphere SDK for Perl, runs Windows or Linux systems and installs ESXCLI commands, vicfg- commands, and a set of other vCLI commands. See vSphere Command-Line Interface Documentation.

Starting with vSphere 6.0, you can also use one of the scripting interfaces to the vCloud Suite SDK such as the vCloud Suite SDK for Python.

Procedure

1. Create a custom role that has limited privileges.
 For example, consider creating a role that has a set of privileges for managing hosts but no privileges for managing virtual machines, storage, or networking. If the script you want to use only extracts information, you can create a role with read-only privileges for the host.

2. From the vSphere Client, create a service account and assign it the custom role.
 You can create multiple custom roles with different levels of access if you want access to certain hosts to be fairly limited.

3. Write scripts to perform parameter checking or modification, and run them.
 For example, you can check or set the shell interactive timeout of a host as follows:

<table>
<thead>
<tr>
<th>Language</th>
<th>Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>vCLI (ESXCLI)</td>
<td>esxcli <conn_options> system settings advanced get /UserVars/ESXiShellTimeOut</td>
</tr>
<tr>
<td></td>
<td>esxcli --formatter=csv --format-param=fields="Path,Int Value" system settings advanced list</td>
</tr>
</tbody>
</table>
| PowerCLI | # List UserVars.ESXiShellInteractiveTimeOut for each host Get-VMHost | Select Name, @
| | {"UserVars.ESXiShellInteractiveTimeOut"};E={$_ Get-AdvancedSetting -Name UserVars.ESXiShellInteractiveTimeOut | Select -ExpandProperty Value} |
| | # Set UserVars.ESXiShellInteractiveTimeOut to 900 on all hosts Get-VMHost | Foreach { Get-AdvancedSetting -Entity $_ -Name UserVars.ESXiShellInteractiveTimeOut | Set-AdvancedSetting -Value 900 } |
In large environments, create roles with different access privileges and group hosts into folders according to the tasks that you want to perform. You can then run scripts over different folders from different service accounts.

Verify that the changes happened after you run the command.

ESXi Passwords and Account Lockout

For ESXi hosts, you have to use a password with predefined requirements. You can change the required length and character class requirement or allow pass phrases using the `Security.PasswordQualityControl` advanced option. You can also set the number of passwords to remember for each user using the `Security.PasswordHistory` advanced option.

ESXi uses the Linux PAM module `pam_passwdqc` for password management and control. See the man page for `pam_passwdqc` for detailed information.

Note The default requirements for ESXi passwords can change from one release to the next. You can check and change the default password restrictions using the `Security.PasswordQualityControl` advanced option.

ESXi Passwords

ESXi enforces password requirements for access from the Direct Console User Interface, the ESXi Shell, SSH, or the VMware Host Client.

- By default, you have to include a mix of characters from four character classes: lowercase letters, uppercase letters, numbers, and special characters such as underscore or dash when you create a password.
- By default, password length is more than 7 and less than 40.
- Passwords cannot contain a dictionary word or part of a dictionary word.

Note An uppercase character that begins a password does not count toward the number of character classes used. A number that ends a password does not count toward the number of character classes used.

Example ESXi Passwords

The following password candidates illustrate potential passwords if the option is set as follows.

```
retry=3 min=disabled,disabled,disabled,7,7
```

With this setting, passwords with one or two character classes and pass phrases are not allowed, because the first three items are disabled. Passwords from three- and four-character classes require seven characters. See the `pam_passwdqc` man page for details.

With these settings, the following passwords are allowed.

- `xQaTEhb!`: Contains eight characters from three character classes.
- `xQaT3#A`: Contains seven characters from four character classes.
The following password candidates do not meet requirements.

- **Xqat3hi**: Begins with an uppercase character, reducing the effective number of character classes to two. The minimum number of required character classes is three.
- **xQaTEh2**: Ends with a number, reducing the effective number of character classes to two. The minimum number of required character classes is three.

ESXi Pass Phrase

Instead of a password, you can also use a pass phrase. However, pass phrases are disabled by default. You can change this default or other settings, by using the `Security.PasswordQualityControl` advanced option from the vSphere Client.

For example, you can change the option to the following.

```plaintext
retry=3 min=disabled,disabled,16,7,7
```

This example allows pass phrases of at least 16 characters and at least three words, separated by spaces.

For legacy hosts, changing the `/etc/pamd/passwd` file is still supported, but changing the file is deprecated for future releases. Use the `Security.PasswordQualityControl` advanced option instead.

Changing Default Password Restrictions

You can change the default restriction on passwords or pass phrases by using the `Security.PasswordQualityControl` advanced option for your ESXi host. See `vCenter Server and Host Management` documentation for information on setting ESXi advanced options.

You can change the default, for example, to require a minimum of 15 characters and a minimum number of four words, as follows:

```plaintext
retry=3 min=disabled,disabled,15,7,7 passphrase=4
```

See the man page for `pam_passwdqc` for details.

Note Not all possible combinations of the options for `pam_passwdqc` have been tested. Perform additional testing after you change the default password settings.

ESXi Account Lockout Behavior

Starting with vSphere 6.0, account locking is supported for access through SSH and through the vSphere Web Services SDK. The Direct Console Interface (DCUI) and the ESXi Shell do not support account lockout. By default, a maximum of five failed attempts is allowed before the account is locked. The account is unlocked after 15 minutes by default.
Configuring Login Behavior

You can configure the login behavior for your ESXi host with the following advanced options:

- **Security.AccountLockFailures**: Maximum number of failed login attempts before a user's account is locked. Zero disables account locking.
- **Security.AccountUnlockTime**: Number of seconds that a user is locked out.
- **Security.PasswordHistory**: Number of passwords to remember for each user. Zero disables password history.

See the vCenter Server and Host Management documentation for information on setting ESXi advanced options.

SSH Security

You can use SSH to remotely log in to the ESXi Shell and perform troubleshooting tasks for the host.

SSH configuration in ESXi is enhanced to provide a high security level.

Version 1 SSH protocol disabled

VMware does not support Version 1 SSH protocol and uses Version 2 protocol exclusively. Version 2 eliminates certain security problems present in Version 1 and provides you with a safe way to communicate with the management interface.

Improved cipher strength

SSH supports only 256-bit and 128-bit AES ciphers for your connections.

These settings are designed to provide solid protection for the data you transmit to the management interface through SSH. You cannot change these settings.

ESXi SSH Keys

SSH keys can restrict, control, and secure access to an ESXi host. An SSH key can allow a trusted user or script to log in to a host without specifying a password.

You can copy the SSH key to the host by using the vifs vSphere CLI command. See Getting Started with vSphere Command-Line Interfaces for information on installing and using the vSphere CLI command set. You can also use HTTPS PUT to copy the SSK key to the host.

Instead of generating the keys externally and uploading them, you can create the keys on the ESXi host and download them. See the VMware knowledge base article at http://kb.vmware.com/kb/1002866.

Enabling SSH and adding SSH keys to the host has inherent risks. Weigh the potential risk of exposing a user name and password against the risk of intrusion by a user who has a trusted key.

Note For ESXi 5.0 and earlier, a user with an SSH key can access the host even when the host is in lockdown mode. Starting with ESXi 5.1, a user with an SSH key can no longer access a host that is in lockdown mode.
Upload an SSH Key Using a vifs Command

If you decide that you want to use authorized keys to log in to a host with SSH, you can upload authorized keys with a vifs command.

Note Because authorized keys allow SSH access without requiring user authentication, consider carefully whether you want to use SSH keys in your environment.

Authorized keys allow you to authenticate remote access to a host. When users or scripts try to access a host with SSH, the key provides authentication without a password. With authorized keys, you can automate authentication, which is useful when you write scripts to perform routine tasks.

You can upload the following types of SSH keys to a host.

- Authorized keys file for the root user
- RSA key
- RSA public key

Starting with the vSphere 6.0 Update 2 release, DSS/DSA keys are no longer supported.

Important Do not modify the /etc/ssh/sshd_config file. If you do, you make a change that the host daemon (hostd) knows nothing about.

Procedure

- At the command line or an administration server, use the vifs command to upload the SSH key to an appropriate location on the ESXi host.

  ```
  vifs --server hostname --username username --put filename /host/ssh_host_dsa_key_pub
  ```

<table>
<thead>
<tr>
<th>Type of key</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authorized key files for the root user</td>
<td>/host/ssh_root_authorized_keys</td>
</tr>
<tr>
<td></td>
<td>You must have full administrator privileges to upload this file.</td>
</tr>
<tr>
<td>RSA keys</td>
<td>/host/ssh_host_rsa_key</td>
</tr>
<tr>
<td>RSA public keys</td>
<td>/host/ssh_host_rsa_key_pub</td>
</tr>
</tbody>
</table>

Upload an SSH Key Using HTTPS PUT

You can use authorized keys to log in to a host with SSH. You can upload authorized keys with HTTPS PUT.

Authorized keys allow you to authenticate remote access to a host. When users or scripts try to access a host with SSH, the key provides authentication without a password. With authorized keys you can automate authentication, which is useful when you write scripts to perform routine tasks.

You can upload the following types of SSH keys to a host using HTTPS PUT:

- Authorized keys file for root user
- DSA key
- DSA public key
- RSA key
- RSA public key

Important Do not modify the /etc/ssh/sshd_config file.

Procedure

1. In your upload application, open the key file.
2. Publish the file to the following locations.

<table>
<thead>
<tr>
<th>Type of key</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authorized key files for the root user</td>
<td>https://hostname_or_IP_address/host/ssh_root_authorized_keys</td>
</tr>
<tr>
<td></td>
<td>You must have full administrator privileges on the host to upload this file.</td>
</tr>
<tr>
<td>DSA keys</td>
<td>https://hostname_or_IP_address/host/ssh_host_dsa_key</td>
</tr>
<tr>
<td>DSA public keys</td>
<td>https://hostname_or_IP_address/host/ssh_host_dsa_key_pub</td>
</tr>
<tr>
<td>RSA keys</td>
<td>https://hostname_or_IP_address/host/ssh_host_rsa_key</td>
</tr>
<tr>
<td>RSA public keys</td>
<td>https://hostname_or_IP_address/host/ssh_host_rsa_key_pub</td>
</tr>
</tbody>
</table>

PCI and PCIe Devices and ESXi

Using the VMware DirectPath I/O feature to pass through a PCI or PCIe device to a virtual machine results in a potential security vulnerability. The vulnerability can be triggered when buggy or malicious code, such as a device driver, is running in privileged mode in the guest OS. Industry-standard hardware and firmware do not currently have sufficient error containment support to protect ESXi hosts from the vulnerability.

Use PCI or PCIe passthrough to a virtual machine only if a trusted entity owns and administers the virtual machine. You must be sure that this entity does not attempt to crash or exploit the host from the virtual machine.

Your host might be compromised in one of the following ways.

- The guest OS might generate an unrecoverable PCI or PCIe error. Such an error does not corrupt data, but can crash the ESXi host. Such errors might occur because of bugs or incompatibilities in the hardware devices that are being passed through. Other reasons for errors include problems with drivers in the guest OS.
- The guest OS might generate a Direct Memory Access (DMA) operation that causes an IOMMU page fault on the ESXi host. This operation might be the result of a DMA operation that targets an address outside the virtual machine memory. On some machines, host firmware configures IOMMU faults to report a fatal error through a non-maskable interrupt (NMI). This fatal error causes the ESXi host to crash. This problem might occur because of problems with the drivers in the guest OS.
If the operating system on the ESXi host is not using interrupt remapping, the guest OS might inject a spurious interrupt into the ESXi host on any vector. ESXi currently uses interrupt remapping on Intel platforms where it is available. Interrupt mapping is part of the Intel VT-d feature set. ESXi does not use interrupt mapping on AMD platforms. A false interrupt can result in a crash of the ESXi host. Other ways to exploit these false interrupts might exist in theory.

Disable the Managed Object Browser

The managed object browser (MOB) provides a way to explore the VMkernel object model. However, attackers can use this interface to perform malicious configuration changes or actions because it is possible to change the host configuration by using the MOB. Use the MOB only for debugging, and ensure that it is disabled in production systems.

Starting with vSphere 6.0, the MOB is disabled by default. However, for certain tasks, for example when extracting the old certificate from a system, you have to use the MOB. You can enable and disable the MOB as follows.

Procedure

1. Browse to the host in the vSphere Client inventory.
2. Click Configure.
4. Check the value of Config.HostAgent.plugins.solo.enableMob, and click Edit to change it as appropriate.
 - Do not use vim-cmd from the ESXi Shell.

ESXi Networking Security Recommendations

Isolation of network traffic is essential to a secure ESXi environment. Different networks require different access and level of isolation.

Your ESXi host uses several networks. Use appropriate security measures for each network, and isolate traffic for specific applications and functions. For example, ensure that VMware vSphere vMotion® traffic does not travel over networks where virtual machines are located. Isolation prevents snooping. Having separate networks is also recommended for performance reasons.

- vSphere infrastructure networks are used for features such as vSphere vMotion, VMware vSphere Fault Tolerance, and storage. Isolate these networks for their specific functions. It is often not necessary to route these networks outside a single physical server rack.

- A management network isolates client traffic, command-line interface (CLI) or API traffic, and third-party software traffic from other traffic. This network should be accessible only by system, network, and security administrators. Use jump box or virtual private network (VPN) to secure access to the management network. Strictly control access within this network.
Virtual machine traffic can flow over one or many networks. You can enhance the isolation of virtual machines by using virtual firewall solutions that set firewall rules at the virtual network controller. These settings travel with a virtual machine as it migrates from host to host within your vSphere environment.

Modifying ESXi Web Proxy Settings

When you modify Web proxy settings, you have several encryption and user security guidelines to consider.

Note Restart the host process after making any changes to host directories or authentication mechanisms.

- Do not set up certificates that use a password or pass phrases. ESXi does not support Web proxies that use passwords or pass phrases, also known as encrypted keys. If you set up a Web proxy that requires a password or pass phrase, ESXi processes cannot start correctly.

- To support encryption for user names, passwords, and packets, SSL is enabled by default for vSphere Web Services SDK connections. If you want to configure these connections so that they do not encrypt transmissions, disable SSL for your vSphere Web Services SDK connection by switching the connection from HTTPS to HTTP.

 Consider disabling SSL only if you created a fully trusted environment for these clients, where firewalls are in place and transmissions to and from the host are fully isolated. Disabling SSL can improve performance, because you avoid the overhead required to perform encryption.

- To protect against misuse of ESXi services, most internal ESXi services are accessible only through port 443, the port used for HTTPS transmission. Port 443 acts as a reverse proxy for ESXi. You can see a list of services on ESXi through an HTTP welcome page, but you cannot directly access the Storage Adapters services without proper authorization.

 You can change this configuration so that individual services are directly accessible through HTTP connections. Do not make this change unless you are using ESXi in a fully trusted environment.

- When you upgrade your environment, the certificate remains in place.

vSphere Auto Deploy Security Considerations

When you use vSphere Auto Deploy, pay careful attention to networking security, boot image security, and potential password exposure through host profiles to protect your environment.

Networking Security

Secure your network just as you secure the network for any other PXE-based deployment method. vSphere Auto Deploy transfers data over SSL to prevent casual interference and snooping. However, the authenticity of the client or of the Auto Deploy server is not checked during a PXE boot.

You can greatly reduce the security risk of Auto Deploy by completely isolating the network where Auto Deploy is used.
Boot Image and Host Profile Security

The boot image that the vSphere Auto Deploy server downloads to a machine can have the following components.

- The VIB packages that the image profile consists of are always included in the boot image.
- The host profile and host customization are included in the boot image if Auto Deploy rules are set up to provision the host with a host profile or host customization.
 - The administrator (root) password and user passwords that are included with host profile and host customization are hashed with SHA-512.
 - Any other passwords associated with profiles are in the clear. If you set up Active Directory by using host profiles, the passwords are not protected.
 Use the vSphere Authentication Proxy to avoid exposing the Active Directory passwords. If you set up Active Directory using host profiles, the passwords are not protected.
- The host’s public and private SSL key and certificate are included in the boot image.

Control Access for CIM-Based Hardware Monitoring Tools

The Common Information Model (CIM) system provides an interface that enables hardware-level management from remote applications using a set of standard APIs. To ensure that the CIM interface is secure, provide only the minimum access necessary to these remote applications. If you provision a remote application with a root or Administrator account, and if the application is compromised, the virtual environment can be compromised.

CIM is an open standard that defines a framework for agent-less, standards-based monitoring of hardware resources for ESXi hosts. This framework consists of a CIM object manager, often called a CIM broker, and a set of CIM providers.

CIM providers support management access to device drivers and underlying hardware. Hardware vendors, including server manufacturers and hardware device vendors, can write providers that monitor and manage their devices. VMware writes providers that monitor server hardware, ESXi storage infrastructure, and virtualization-specific resources. These providers run inside the ESXi host and are lightweight and focused on specific management tasks. The CIM broker takes information from all CIM providers and presents it to the outside world using standard APIs. The most common API is WS-MAN.

Do not provide root credentials to remote applications that access the CIM interface. Instead, create a less-privileged vSphere user account for these applications and use the VIM API ticket function to issue a sessionId (called a “ticket”) to this less-privileged user account to authenticate to CIM. If the account has been granted permission to obtain CIM tickets, the VIM API can then supply the ticket to CIM. These tickets are then supplied as both the user ID and password to any CIM-XML API call. See the AcquireCimServicesTicket() method for more information.

The CIM service starts when you install a third-party CIM VIB, for example, when you run the esxcli software vib install -n VIBname command.
If you must enable the CIM service manually, run the following command:

```
esxcli system wbem set -e true
```

If necessary, you can disable wsman (WSManagement Service) so that only the CIM service is running:

```
esxcli system wbem set -W false
```

To confirm that wsman is disabled, run the following command:

```
esxcli system wbem get
```

```
WSManagement PID: 0
WSManagement Service: false
```

For more information about ESXCLI commands, see *vSphere Command-Line Interface Documentation*. For more information about enabling the CIM service, see the VMware knowledge base article at https://kb.vmware.com/kb/1025757.

Procedure

1. Create a non-root vSphere user account for CIM applications.

 See the topic on adding vCenter Single Sign-On users in *Platform Services Controller Administration Guide*. The required vSphere privilege for the user account is **Host.CIM.Interaction**.

2. Use the vSphere API SDK of your choice to authenticate the user account to vCenter Server. Then call `AcquireCimServicesTicket()` to return a ticket to authenticate with ESXi as an administrator-level account using CIM-XML port 5989 or WS-Man port 433 APIs.

 See *VMware vSphere API Reference* documentation for more information.

3. Renew the ticket every two minutes as needed.

Certificate Management for ESXi Hosts

In vSphere 6.0 and later, the VMware Certificate Authority (VMCA) provisions each new ESXi host with a signed certificate that has VMCA as the root certificate authority by default. Provisioning happens when the host is added to vCenter Server explicitly or as part of installation or upgrade to ESXi 6.0 or later.

You can view and manage ESXi certificates from the vSphere Client and by using the `vim.CertificateManager` API in the vSphere Web Services SDK. You cannot view or manage ESXi certificates by using certificate management CLIs that are available for managing vCenter Server certificates.

Certificates in vSphere 5.5 and in vSphere 6.x

When ESXi and vCenter Server communicate, they use TLS/SSL for almost all management traffic.
In vSphere 5.5 and earlier, the TLS/SSL endpoints are secured only by a combination of user name, password, and thumbprint. Users can replace the corresponding self-signed certificates with their own certificates. See the vSphere 5.5 Documentation Center.

In vSphere 6.0 and later, vCenter Server supports the following certificate modes for ESXi hosts.

Table 3-1. Certificate Modes for ESXi Hosts

<table>
<thead>
<tr>
<th>Certificate Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMware Certificate Authority (default)</td>
<td>Use this mode if VMCA provisions all ESXi hosts, either as the top-level CA or as an intermediate CA. By default, VMCA provisions ESXi hosts with certificates. In this mode, you can refresh and renew certificates from the vSphere Client.</td>
</tr>
<tr>
<td>Custom Certificate Authority</td>
<td>Use this mode if you want to use only custom certificates that are signed by a third-party or enterprise CA. In this mode, you are responsible for managing the certificates. You cannot refresh and renew certificates from the vSphere Client. Note Unless you change the certificate mode to Custom Certificate Authority, VMCA might replace custom certificates, for example, when you select Renew in the vSphere Client.</td>
</tr>
<tr>
<td>Thumbprint Mode</td>
<td>vSphere 5.5 used thumbprint mode, and this mode is still available as a fallback option for vSphere 6.x. In this mode, vCenter Server checks that the certificate is formatted correctly, but does not check the validity of the certificate. Even expired certificates are accepted. Do not use this mode unless you encounter problems that you cannot resolve with one of the other two modes. Some vCenter 6.x and later services might not work correctly in thumbprint mode.</td>
</tr>
</tbody>
</table>

Certificate Expiration

Starting with vSphere 6.0, you can view information about certificate expiration for certificates that are signed by VMCA or a third-party CA in the vSphere Client. You can view the information for all hosts that are managed by a vCenter Server or for individual hosts. A yellow alarm is raised if the certificate is in the Expiring Shortly state (less than eight months). A red alarm is raised if the certificate is in the Expiration Imminent state (less than two months).

ESXi Provisioning and VMCA

When you boot an ESXi host from installation media, the host initially has an autogenerated certificate. When the host is added to the vCenter Server system, it is provisioned with a certificate that is signed by VMCA as the root CA.
The process is similar for hosts that are provisioned with Auto Deploy. However, because those hosts do not store any state, the signed certificate is stored by the Auto Deploy server in its local certificate store. The certificate is reused during subsequent boots of the ESXi hosts. An Auto Deploy server is part of any embedded deployment or vCenter Server system.

If VMCA is not available when an Auto Deploy host boots the first time, the host first attempts to connect. If the host cannot connect, it cycles through shutdown and reboot until VMCA becomes available and the host can be provisioned with a signed certificate.

Required Privileges for ESXi Certificate Management

For certificate management for ESXi hosts, you must have the `Certificates.Manage Certificates` privilege. You can set that privilege from the vSphere Client.

Host Name and IP Address Changes

In vSphere 6.0 and later, a host name or IP address change might affect whether vCenter Server considers a host certificate valid. How you added the host to vCenter Server affects whether manual intervention is necessary. Manual intervention means that you either reconnect the host, or you remove the host from vCenter Server and add it back.

Table 3-2. When Host Name or IP Address Changes Require Manual Intervention

<table>
<thead>
<tr>
<th>Host added to vCenter Server using...</th>
<th>Host name changes</th>
<th>IP address changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host name</td>
<td>vCenter Server connectivity problem.</td>
<td>No intervention required.</td>
</tr>
<tr>
<td></td>
<td>Manual intervention required.</td>
<td></td>
</tr>
<tr>
<td>IP address</td>
<td>No intervention required.</td>
<td>vCenter Server connectivity problem.</td>
</tr>
<tr>
<td></td>
<td>Manual intervention required.</td>
<td></td>
</tr>
</tbody>
</table>

ESXi Certificate Management

Host Upgrades and Certificates

If you upgrade an ESXi host to ESXi 6.0 or later, the upgrade process replaces the self-signed (thumbprint) certificates with VMCA-signed certificates. If the ESXi host uses custom certificates, the upgrade process retains those certificates even if those certificates are expired or invalid.

If you decide not to upgrade your hosts to ESXi 6.0 or later, the hosts retain the certificates that they are currently using even if the host is managed by a vCenter Server system that uses VMCA certificates.
The recommended upgrade workflow depends on the current certificates.

Host Provisioned with Thumbprint Certificates
If your host is currently using thumbprint certificates, it is automatically assigned VMCA certificates as part of the upgrade process.

Note You cannot provision legacy hosts with VMCA certificates. You must upgrade those hosts to ESXi 6.0 later.

Host Provisioned with Custom Certificates
If your host is provisioned with custom certificates, usually third-party CA-signed certificates, those certificates remain in place during upgrade. Change the certificate mode to **Custom** to ensure that the certificates are not replaced accidentally during a certificate refresh later.

Note If your environment is in VMCA mode, and you refresh the certificates from the vSphere Client, any existing certificates are replaced with certificates that are signed by VMCA.

Going forward, vCenter Server monitors the certificates and displays information, for example, about certificate expiration, in the vSphere Client.

Hosts Provisioned with Auto Deploy
Hosts that are being provisioned by Auto Deploy are always assigned new certificates when they are first booted with ESXi 6.0 or later software. When you upgrade a host that is provisioned by Auto Deploy, the Auto Deploy server generates a certificate signing request (CSR) for the host and submits it to VMCA. VMCA stores the signed certificate for the host. When the Auto Deploy server provisions the host, it retrieves the certificate from VMCA and includes it as part of the provisioning process.

You can use Auto Deploy with custom certificates.

See Use Custom Certificates with Auto Deploy.

Certificate Mode Switch Workflows
Starting with vSphere 6.0, ESXi hosts are provisioned with certificates by VMCA by default. You can instead use custom certificate mode or, for debugging purposes, the legacy thumbprint mode. In most cases, mode switches are disruptive and not necessary. If you do require a mode switch, review the potential impact before you start.

In vSphere 6.0 and later, vCenter Server supports the following certificate modes for ESXi hosts.
<table>
<thead>
<tr>
<th>Certificate Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMware Certificate Authority (default)</td>
<td>By default, the VMware Certificate Authority is used as the CA for ESXi host certificates. VMCA is the root CA by default, but it can be set up as the intermediary CA to another CA. In this mode, users can manage certificates from the vSphere Client. Also used if VMCA is a subordinate certificate.</td>
</tr>
<tr>
<td>Custom Certificate Authority</td>
<td>Some customers might prefer to manage their own external certificate authority. In this mode, customers are responsible for managing the certificates and cannot manage them from the vSphere Client.</td>
</tr>
<tr>
<td>Thumbprint Mode</td>
<td>vSphere 5.5 used thumbprint mode, and this mode is still available as a fallback option for vSphere 6.0. Do not use this mode unless you encounter problems with one of the other two modes that you cannot resolve. Some vCenter 6.0 and later services might not work correctly in thumbprint mode.</td>
</tr>
</tbody>
</table>

Using Custom ESXi Certificates

If your company policy requires that you use a different root CA than VMCA, you can switch the certificate mode in your environment after careful planning. The workflow is as follows.

1. Obtain the certificates that you want to use.
2. Place the host or hosts into maintenance mode and disconnect them from vCenter Server.
3. Add the custom CA’s root certificate to VECS.
4. Deploy the custom CA certificates to each host and restart services on that host.
5. Switch to Custom CA mode. See Change the Certificate Mode.
6. Connect the host or hosts to the vCenter Server system.

Switching from Custom CA Mode to VMCA Mode

If you are using custom CA mode and decide that using VMCA works better in your environment, you can perform the mode switch after careful planning. The workflow is as follows.

1. Remove all hosts from the vCenter Server system.
2. On the vCenter Server system, remove the third-party CA’s root certificate from VECS.
3. Switch to VMCA mode. See Change the Certificate Mode.
4. Add the hosts to the vCenter Server system.

Note Any other workflow for this mode switch might result in unpredictable behavior.

Retaining Thumbprint Mode Certificates During Upgrade

The switch from VMCA mode to thumbprint mode might be necessary if you encounter problems with the VMCA certificates. In thumbprint mode, the vCenter Server system checks only whether a certificate exists and is formatted correctly, and does not check whether the certificate is valid. See Change the Certificate Mode for instructions.
Switching from Thumbprint Mode to VMCA Mode

If you use thumbprint mode and you want to start using VMCA-signed certificates, the switch requires some planning. The workflow is as follows.

1. Remove all hosts from the vCenter Server system.
2. Switch to VMCA certificate mode. See Change the Certificate Mode.
3. Add the hosts to the vCenter Server system.

Note Any other workflow for this mode switch might result in unpredictable behavior.

Switching from Custom CA Mode to Thumbprint Mode

If you are encountering problems with your custom CA, consider switching to thumbprint mode temporarily. The switch works seamlessly if you follow the instructions in Change the Certificate Mode. After the mode switch, the vCenter Server system checks only the format of the certificate and no longer checks the validity of the certificate itself.

Switching from Thumbprint Mode to Custom CA Mode

If you set your environment to thumbprint mode during troubleshooting, and you want to start using custom CA mode, you must first generate the required certificates. The workflow is as follows.

1. Remove all hosts from the vCenter Server system.
2. Add the custom CA root certificate to TRUSTED_ROOTS store on VECS on the vCenter Server system. See Update the vCenter Server TRUSTED_ROOTS Store (Custom Certificates).
3. For each ESXi host:
 a. Deploy the custom CA certificate and key.
 b. Restart services on the host.
4. Switch to custom mode. See Change the Certificate Mode.
5. Add the hosts to the vCenter Server system.

ESXi Certificate Default Settings

When a host is added to a vCenter Server system, vCenter Server sends a Certificate Signing Request (CSR) for the host to VMCA. Most of the default values are well suited for many situations, but company-specific information can be changed.

You can change many of the default settings using the vSphere Client. Consider changing the organization, and location information. See Change Certificate Default Settings.

Table 3-3. ESXi CSR Settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default Value</th>
<th>Advanced Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Size</td>
<td>2048</td>
<td>N.A.</td>
</tr>
<tr>
<td>Key Algorithm</td>
<td>RSA</td>
<td>N.A.</td>
</tr>
</tbody>
</table>
Table 3-3. ESXi CSR Settings (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default Value</th>
<th>Advanced Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificate Signature Algorithm</td>
<td>sha256WithRSAEncryption</td>
<td>N.A.</td>
</tr>
<tr>
<td>Common Name</td>
<td>Name of the host if the host was added to vCenter Server by host name. IP address of the host if the host was added to vCenter Server by IP address.</td>
<td>N.A.</td>
</tr>
<tr>
<td>Country</td>
<td>USA</td>
<td>vpxd.certmgmt.certs.cn.country</td>
</tr>
<tr>
<td>Email address</td>
<td>vmca@vmware.com</td>
<td>vpxd.certmgmt.certs.cn.email</td>
</tr>
<tr>
<td>Locality (City)</td>
<td>Palo Alto</td>
<td>vpxd.certmgmt.certs.cn.localityName</td>
</tr>
<tr>
<td>Organization Unit Name</td>
<td>VMware Engineering</td>
<td>vpxd.certmgmt.certs.cn.organizationalUnitName</td>
</tr>
<tr>
<td>Organization Name</td>
<td>VMware</td>
<td>vpxd.certmgmt.certs.cn.organizationName</td>
</tr>
<tr>
<td>State or province</td>
<td>California</td>
<td>vpxd.certmgmt.certs.cn.state</td>
</tr>
<tr>
<td>Number of days the certificate is valid.</td>
<td>1825</td>
<td>vpxd.certmgmt.certs.cn.daysValid</td>
</tr>
<tr>
<td>Hard threshold for the certificate expiration. vCenter Server raises a red alarm when this threshold is reached.</td>
<td>30 days</td>
<td>vpxd.certmgmt.certs.cn.hardThreshold</td>
</tr>
<tr>
<td>Poll interval for vCenter Server certificate validity checks.</td>
<td>5 days</td>
<td>vpxd.certmgmt.certs.cn.pollIntervalDays</td>
</tr>
<tr>
<td>Soft threshold for the certificate expiration. vCenter Server raises an event when this threshold is reached.</td>
<td>240 days</td>
<td>vpxd.certmgmt.certs.cn.softThreshold</td>
</tr>
<tr>
<td>Mode that vCenter Server users to determine whether existing certificates are replaced. Change this mode to retain custom certificates during upgrade. See Host Upgrades and Certificates.</td>
<td>vmca You can also specify thumbprint or custom. See Change the Certificate Mode.</td>
<td>vpxd.certmgmt.mode</td>
</tr>
</tbody>
</table>

Change Certificate Default Settings

When a host is added to a vCenter Server system, vCenter Server sends a Certificate Signing Request (CSR) for the host to VMCA. You can change some of the default settings in the CSR using the vCenter Server Advanced Settings in the vSphere Client.

See ESXi Certificate Default Settings for a list of default settings. Some of the defaults cannot be changed.

Procedure

1. In the vSphere Client, select the vCenter Server system that manages the hosts.
2 Click **Configure**, and click **Advanced Settings**.

3 Click **Edit Settings**.

4 Click the **Filter** icon in the Name column, and in the Filter box, enter `vpxd.certmgmt` to display only certificate management parameters.

5 Change the value of the existing parameters to follow your company policy and click **Save**.

The next time you add a host to vCenter Server, the new settings are used in the CSR that vCenter Server sends to VMCA and in the certificate that is assigned to the host.

What to do next

Changes to certificate metadata only affect new certificates. If you want to change the certificates of hosts that are already managed by the vCenter Server system, you can disconnect and reconnect the hosts or renew the certificates.

View Certificate Expiration Information for Multiple ESXi Hosts

If you are using ESXi 6.0 and later, you can view the certificate status of all hosts that are managed by your vCenter Server system. The display allows you to determine whether any of the certificates expire soon.

You can view certificate status information for hosts that are using VMCA mode and for hosts that are using custom mode in the vSphere Client. You cannot view certificate status information for hosts in thumbprint mode.

Procedure

1 Select **Hosts & Clusters > Hosts**.

 By default, the Hosts display does not include the certificate status.

2 Click the down arrow in a column header to show/hide columns.

3 Select the **Certificate Valid To** check box, and scroll to the right if necessary.

 The certificate information displays when the certificate expires.

 If a host is added to vCenter Server or reconnected after a disconnect, vCenter Server renews the certificate if the status is Expired, Expiring, Expiring shortly, or Expiration imminent. The status is Expiring if the certificate is valid for less than eight months, Expiring shortly if the certificate is valid for less than two months, and Expiration imminent if the certificate is valid for less than one month.

4 (Optional) Deselect other columns to make it easier to see what you are interested in.

What to do next

Renew the certificates that are about to expire. See **Renew or Refresh ESXi Certificates**.

View Certificate Details for a Single ESXi Host

For ESXi 6.0 and later hosts that are in VMCA mode or custom mode, you can view certificate details from the vSphere Client. The information about the certificate can be helpful for debugging.
Procedure

1. Browse to the host in the vSphere Client inventory.
2. Click **Configure**.
3. Under **System**, click **Certificate**.

You can examine the following information. This information is available only in the single-host view.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject</td>
<td>The subject used during certificate generation.</td>
</tr>
<tr>
<td>Issuer</td>
<td>The issuer of the certificate.</td>
</tr>
<tr>
<td>Valid From</td>
<td>Date on which the certificate was generated.</td>
</tr>
<tr>
<td>Valid To</td>
<td>Date on which the certificate expires.</td>
</tr>
<tr>
<td>Status</td>
<td>Status of the certificate, one of the following.</td>
</tr>
<tr>
<td>Good</td>
<td>Normal operation.</td>
</tr>
<tr>
<td>Expiring</td>
<td>Certificate expires soon.</td>
</tr>
<tr>
<td>Expiring shortly</td>
<td>Certificate is eight months or less away from expiration (Default).</td>
</tr>
<tr>
<td>Expiration imminent</td>
<td>Certificate is two months or less away from expiration (Default).</td>
</tr>
<tr>
<td>Expired</td>
<td>Certificate is not valid because it expired.</td>
</tr>
</tbody>
</table>

Renew or Refresh ESXi Certificates

If VMCA assigns certificates to your ESXi hosts (6.0 and later), you can renew those certificates from the vSphere Client. You can also refresh all certificates from the TRUSTED_ROOTS store associated with vCenter Server.

You can renew your certificates when they are about to expire, or if you want to provision the host with a new certificate for other reasons. If the certificate is already expired, you must disconnect the host and reconnect it.

By default, vCenter Server renews the certificates of a host with status Expired, Expiring immediately, or Expiring each time the host is added to the inventory, or reconnected.

Procedure

1. Browse to the host in the vSphere Client inventory.
2. Click **Configure**.
3. Under **System**, click **Certificate**.

You can view detailed information about the selected host's certificate.
4 Click **Renew** or **Refresh CA Certificates**.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renew</td>
<td>Retrieves a fresh signed certificate for the host from VMCA.</td>
</tr>
<tr>
<td>Refresh CA Certificates</td>
<td>Pushes all certificates in the TRUSTED_ROOTS store in the vCenter Server VECS store to the host.</td>
</tr>
</tbody>
</table>

5 Click **Yes** to confirm.

Change the Certificate Mode

Use VMCA to provision the ESXi hosts in your environment unless corporate policy requires that you use custom certificates. To use custom certificates with a different root CA, you can edit the vCenter Server `vpxd.certmgmt.mode` advanced option. After the change, the hosts are no longer automatically provisioned with VMCA certificates when you refresh certificates. You are responsible for the certificate management in your environment.

You can use the vCenter Server advanced settings to change to thumbprint mode or to custom CA mode. Use thumbprint mode only as a fallback option.

Procedure

1 In the vSphere Client, select the vCenter Server system that manages the hosts.
2 Click **Configure**, and under Settings, click **Advanced Settings**.
3 Click **Edit Settings**.
4 Click the **Filter** icon in the Name column, and in the Filter box, enter `vpxd.certmgmt` to display only certificate management parameters.
5 Change the value of `vpxd.certmgmt.mode` to **custom** if you intend to manage your own certificates, and to **thumbprint** if you temporarily want to use thumbprint mode, and click **Save**.
6 Restart the vCenter Server service.

Replacing ESXi SSL Certificates and Keys

Your company’s security policy might require that you replace the default ESXi SSL certificate with a third-party CA-signed certificate on each host.

By default, vSphere components use the VMCA-signed certificate and key that are created during installation. If you accidentally delete the VMCA-signed certificate, remove the host from its vCenter Server system, and add it back. When you add the host, vCenter Server requests a new certificate from VMCA and provisions the host with it.

Replace VMCA-signed certificates with certificates from a trusted CA, either a commercial CA or an organizational CA, if your company policy requires it.
The default certificates are in the same location as the vSphere 5.5 certificates. You can replace the default certificates with trusted certificates in various ways.

Note You can also use the `vim.CertificateManager` and `vim.host.CertificateManager` managed objects in the vSphere Web Services SDK. See the vSphere Web Services SDK documentation.

After you replace the certificate, you have to update the TRUSTED_ROOTS store in VECS on the vCenter Server system that manages the host to ensure that the vCenter Server and the ESXi host have a trust relationship.

For detailed instructions about using CA-signed certificates for ESXi hosts, see the VMware KB article https://kb.vmware.com/s/article/2113926.

- **Requirements for ESXi Certificate Signing Requests**
 If you want to use an enterprise or third-party CA-signed certificate, you have to send a Certificate Signing Request (CSR) to the CA.

- **Replace the Default Certificate and Key from the ESXi Shell**
 You can replace the default VMCA-signed ESXi certificates from the ESXi Shell.

- **Replace a Default Certificate and Key with the vifs Command**
 You can replace the default VMCA-signed ESXi certificates by using the `vifs` command.

- **Replace a Default Certificate Using HTTPS PUT**
 You can use third-party applications to upload certificates and key. Applications that support HTTPS PUT operations work with the HTTPS interface that is included with ESXi.

- **Update the vCenter Server TRUSTED_ROOTS Store (Custom Certificates)**
 If you set up your ESXi hosts to use custom certificates, you must update the TRUSTED_ROOTS store on the vCenter Server system that manages the hosts.

Requirements for ESXi Certificate Signing Requests

If you want to use an enterprise or third-party CA-signed certificate, you have to send a Certificate Signing Request (CSR) to the CA.

Use a CSR with these characteristics:

- **Key size:** 2048 bits or more (PEM encoded)
- **PEM format.** VMware supports PKCS8 and PKCS1 (RSA keys). When keys are added to VECS, they are converted to PKCS8.
- **x509 version 3**
- **For root certificates,** the CA extension must be set to true, and the cert sign must be in the list of requirements.
- **SubjectAltName must contain DNS Name=<machine_FQDN>**.
- **CRT format**
Contains the following Key Usages: Digital Signature, Non Repudiation, Key Encipherment

Start time of one day before the current time.

CN (and SubjectAltName) set to the host name (or IP address) that the ESXi host has in the vCenter Server inventory.

Replace the Default Certificate and Key from the ESXi Shell

You can replace the default VMCA-signed ESXi certificates from the ESXi Shell.

Prerequisites

- If you want to use third-party CA-signed certificates, generate the certificate request, send it to the certificate authority, and store the certificates on each ESXi host.
- If necessary, enable the ESXi Shell or enable SSH traffic from the vSphere Client.
- All file transfers and other communications occur over a secure HTTPS session. The user who is used to authenticate the session must have the privilege `Host.Config.AdvancedConfig` on the host.

Procedure

1. Log in to the ESXi Shell, either directly from the DCUI or from an SSH client, as a user with administrator privileges.

2. In the directory `/etc/vmware/ssl`, rename the existing certificates using the following commands.
   ```
   mv rui.crt orig.rui.crt
   mv rui.key orig.rui.key
   ```

3. Copy the certificates that you want to use to `/etc/vmware/ssl`.

4. Rename the new certificate and key to `rui.crt` and `rui.key`.

5. Restart the host after you install the new certificate.
 Alternatively, you can put the host into maintenance mode, install the new certificate, use the Direct Console User Interface (DCUI) to restart the management agents, and set the host to exit maintenance mode.

What to do next

Update the vCenter Server TRUSTED_ROOTS store. See [Update the vCenter Server TRUSTED_ROOTS Store (Custom Certificates)](#).

Replace a Default Certificate and Key with the vifs Command

You can replace the default VMCA-signed ESXi certificates by using the `vifs` command.

You run `vifs` as a vCLI command. See [Getting Started with vSphere Command-Line Interfaces](#).
Prerequisites

- If you want to use third-party CA-signed certificates, generate the certificate request, send it to the certificate authority, and store the certificates on each ESXi host.
- If necessary, enable the ESXi Shell or enable SSH traffic from the vSphere Client.
- All file transfers and other communications occur over a secure HTTPS session. The user who is used to authenticate the session must have the privilege `Host.Config.AdvancedConfig` on the host.

Procedure

1. Back up the existing certificates.
2. Generate a certificate request following the instructions from the certificate authority.

 See Requirements for ESXi Certificate Signing Requests.
3. When you have the certificate, use the `vifs` command to upload the certificate to the appropriate location on the host from an SSH connection to the host.

   ```bash
   vifs --server hostname --username username --put rui.crt /host/ssl_cert
   vifs --server hostname --username username --put rui.key /host/ssl_key
   ```
4. Restart the host.

What to do next

Update the vCenter Server TRUSTED_ROOTS store. See Update the vCenter Server TRUSTED_ROOTS Store (Custom Certificates).

Replace a Default Certificate Using HTTPS PUT

You can use third-party applications to upload certificates and key. Applications that support HTTPS PUT operations work with the HTTPS interface that is included with ESXi.

Prerequisites

- If you want to use third-party CA-signed certificates, generate the certificate request, send it to the certificate authority, and store the certificates on each ESXi host.
- If necessary, enable the ESXi Shell or enable SSH traffic from the vSphere Client.
- All file transfers and other communications occur over a secure HTTPS session. The user who is used to authenticate the session must have the privilege `Host.Config.AdvancedConfig` on the host.

Procedure

1. Back up the existing certificates.
2 In your upload application, process each file as follows:
 a Open the file.
 b Publish the file to one of these locations.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificates</td>
<td>https://hostname/host/ssl_cert</td>
</tr>
<tr>
<td>Keys</td>
<td>https://hostname/host/ssl_key</td>
</tr>
</tbody>
</table>

The location /host/ssl_cert and host/ssl_key link to the certificate files in /etc/vmware/ssl.

3 Restart the host.

What to do next

Update the vCenter Server TRUSTED_ROOTS store. See Update the vCenter Server TRUSTED_ROOTS Store (Custom Certificates).

Update the vCenter Server TRUSTED_ROOTS Store (Custom Certificates)

If you set up your ESXi hosts to use custom certificates, you must update the TRUSTED_ROOTS store on the vCenter Server system that manages the hosts.

Prerequisites

Replace the certificates on each host with custom certificates.

Note This step is not required if the vCenter Server system is also running with custom certificates issued by the same CA as those installed on the ESXi hosts.

Procedure

1 Log in to the vCenter Server system that manages the ESXi hosts.

 Log in to the Windows system on which you installed the software, or log in to the vCenter Server Appliance shell.

2 To add the new certificates to the TRUSTED_ROOTS store, run dir-cli, for example:

   ```
/usr/lib/vmware-vmafd/bin/dir-cli trustedcert publish <path_to_RootCA>
   ```

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linux</td>
<td><code>/usr/lib/vmware-vmafd/bin/dir-cli trustedcert publish <path_to_RootCA></code></td>
</tr>
<tr>
<td>Windows</td>
<td><code>C:\Program Files\VMware\vCenter Server\vmafd\dir-cli trustedcert publish <path_to_RootCA></code></td>
</tr>
</tbody>
</table>

3 When prompted, provide the Single Sign-On Administrator credentials.
If your custom certificates are issued by an intermediate CA, you must also add the intermediate CA to the TRUSTED_ROOTS store on the vCenter Server, for example:

```
/usr/lib/vmware-vmafd/bin/dir-cli trustedcert publish <path_to_intermediateCA>
```

What to do next

Set certificate mode to Custom. If certificate mode is VMCA, the default, and you perform a certificate refresh, your custom certificates are replaced with VMCA-signed certificates. See [Change the Certificate Mode](#).

Use Custom Certificates with Auto Deploy

By default, the Auto Deploy server provisions each host with certificates that are signed by VMCA. You can set up the Auto Deploy server to provision all hosts with custom certificates that are not signed by VMCA. In that scenario, the Auto Deploy server becomes a subordinate certificate authority of your third-party CA.

Prerequisites

- Request a certificate from your CA. The certificate must meet these requirements.
 - Key size: 2048 bits or more (PEM encoded)
 - PEM format. VMware supports PKCS8 and PKCS1 (RSA keys). When keys are added to VECS, they are converted to PKCS8.
 - x509 version 3
 - For root certificates, the CA extension must be set to true, and the cert sign must be in the list of requirements.
 - SubjectAltName must contain DNS Name=<machine_FQDN>.
 - CRT format
 - Contains the following Key Usages: Digital Signature, Non Repudiation, Key Encipherment
 - Start time of one day before the current time.
 - CN (and SubjectAltName) set to the host name (or IP address) that the ESXi host has in the vCenter Server inventory.
- Name the certificate and key files `rbd-ca.crt` and `rbd-ca.key`.

Procedure

1. Back up the default ESXi certificates.

 The certificates are in the `/etc/vmware-rbd/ssl/` directory.
2 Stop the vSphere Authentication Proxy service.

<table>
<thead>
<tr>
<th>Tool</th>
<th>Steps</th>
</tr>
</thead>
</table>
| vCenter Server Appliance Management Interface (VAMI) | a In a Web browser, go to the vCenter Server Appliance Management Interface, https://appliance-IP-address-or-FQDN:5480.
 b Log in as root.
 The default root password is the password that you set while deploying the vCenter Server Appliance.
 c Click Services, and click the VMware vSphere Authentication Proxy service.
 d Click Stop. |
| vSphere Web Client | a Select Administration, and click System Configuration under Deployment.
 b Click Services and click the VMware vSphere Authentication Proxy service.
 c Click the red Stop the service icon. |
| CLI | service-control --stop vmcam |

3 On the system where the Auto Deploy service runs, replace rbd-ca.crt and rbd-ca.key in /etc/vmware-rbd/ssl/ with your custom certificate and key files.

4 On the system where the Auto Deploy service runs, run the following command to update the TRUSTED_ROOTS store inside the VECS to use your new certificates.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| Windows | cd C:\Program Files\VMware\vCenter Server\vmfdd\vecs-cli.exe
 vecs-cli entry delete --store TRUSTED_ROOTS --alias rbd_cert
 vecs-cli entry create --store TRUSTED_ROOTS --alias rbd_cert
 --cert /etc/vmware-rbd/ssl/rbd-ca.crt |
| Linux | cd /usr/lib/vmware-vmafd/bin/vecs-cli
 vecs-cli entry delete --store TRUSTED_ROOTS --alias rbd_cert
 vecs-cli entry create --store TRUSTED_ROOTS --alias rbd_cert
 --cert /etc/vmware-rbd/ssl/rbd-ca.crt |

5 Create a castore.pem file that contains what is in the TRUSTED_ROOTS store and place the file in the /etc/vmware-rbd/ssl/ directory.

 In custom mode, you are responsible for maintaining this file.

6 Change the ESXi certificate mode for the vCenter Server system to custom.

 See Change the Certificate Mode.

7 Restart the vCenter Server service and start the Auto Deploy service.
The next time you provision a host that is set up to use Auto Deploy, the Auto Deploy server generates a certificate. The Auto Deploy server uses the root certificate that you just added to the TRUSTED_ROOTS store.

Note If you encounter problems with Auto Deploy after certificate replacement, see the VMware knowledge base article at http://kb.vmware.com/kb/2000988.

Restore ESXi Certificate and Key Files

When you replace a certificate on an ESXi host by using the vSphere Web Services SDK, the previous certificate and key are appended to a .bak file. You can restore previous certificates by moving the information in the .bak file to the current certificate and key files.

The host certificate and key are located in `/etc/vmware/ssl/rui.crt` and `/etc/vmware/ssl/rui.key`. When you replace a host certificate and key by using the vSphere Web Services SDK `vim.CertificateManager` managed object, the previous key and certificate are appended to the file `/etc/vmware/ssl/rui.bak`.

Note If you replace the certificate by using HTTP PUT, vifs, or from the ESXi Shell, the existing certificates are not appended to the .bak file.

Procedure

1. On the ESXi host, locate the file `/etc/vmware/ssl/rui.bak`. The file has the following format.

   ```
   #
   # Host private key and certificate backup from 2014-06-20 08:02:49.961
   #

   -----BEGIN PRIVATE KEY-----
   previous key
   -----END PRIVATE KEY-----

   -----BEGIN CERTIFICATE-----
   previous cert
   -----END CERTIFICATE-----
   ```

2. Copy the text starting with -----BEGIN PRIVATE KEY----- and ending with -----END PRIVATE KEY----- into the `/etc/vmware/ssl/rui.key` file.

 Include -----BEGIN PRIVATE KEY----- and -----END PRIVATE KEY-----.

3. Copy the text between -----BEGIN CERTIFICATE----- and -----END CERTIFICATE----- into the `/etc/vmware/ssl/rui.crt` file.

 Include -----BEGIN CERTIFICATE----- and -----END CERTIFICATE-----.
4 Restart the host or send ssl_reset events to all services that use the keys.

```bash
for s in /etc/init.d/*; do $s | grep ssl_reset > /dev/null; if [ $? == 0 ]; then $s ssl_reset; fi; done
```

Customizing Hosts with the Security Profile

You can customize many of the essential security settings for your host through the Security Profile, Services, and Firewall panels available in the vSphere Client. The Security Profile is especially useful for single host management. If you are managing multiple hosts, consider using one of the CLIs or SDKs and automating the customization.

ESXi Firewall Configuration

ESXi includes a firewall that is enabled by default.

At installation time, the ESXi firewall is configured to block incoming and outgoing traffic, except traffic for services that are enabled in the host's security profile.

As you open ports on the firewall, consider that unrestricted access to services running on an ESXi host can expose a host to outside attacks and unauthorized access. Reduce the risk by configuring the ESXi firewall to enable access only from authorized networks.

Note The firewall also allows Internet Control Message Protocol (ICMP) pings and communication with DHCP and DNS (UDP only) clients.

You can manage ESXi firewall ports as follows:

- Use **Configure > Firewall** for each host in the vSphere Client. See Manage ESXi Firewall Settings.
- Use ESXCLI commands from the command line or in scripts. See ESXi ESXCLI Firewall Commands.
- Use a custom VIB if the port you want to open is not included in the security profile.

You create custom VIBs with the VIB Author tool available from VMware Labs. To install the custom VIB, you have to change the acceptance level of the ESXi host to CommunitySupported. See VMware Knowledge Base Article 2007381.

Note If you engage VMware Technical Support to investigate a problem on an ESXi host with a CommunitySupported VIB installed, VMware Support might request you to uninstall this VIB. Such a request is a troubleshooting step to determine if that VIB is related to the problem being investigated.

ESXi Firewall Concepts

The behavior of the NFS Client rule set (nfsClient) is different from other rule sets. When the NFS Client rule set is enabled, all outbound TCP ports are open for the destination hosts in the list of allowed IP addresses. See NFS Client Firewall Behavior for more information.
Manage ESXi Firewall Settings

You can configure incoming and outgoing firewall connections for a service or a management agent from the vSphere Client, the vSphere Web Client, or at the command line.

Note If different services have overlapping port rules, enabling one service might implicitly enable other services. You can specify which IP addresses are allowed to access each service on the host to avoid this problem.

Procedure

1. Browse to the host in the inventory.
2. Navigate to the Firewall section.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vSphere Client</td>
<td>a Click Configure.</td>
</tr>
<tr>
<td></td>
<td>b Under System, click Firewall.</td>
</tr>
<tr>
<td>vSphere Web Client</td>
<td>a Click Configure.</td>
</tr>
<tr>
<td></td>
<td>b Under System, click Security Profile.</td>
</tr>
<tr>
<td></td>
<td>c If necessary, scroll to the Firewall section.</td>
</tr>
</tbody>
</table>

The display shows a list of active incoming and outgoing connections with the corresponding firewall ports.

3. In the Firewall section, click **Edit**.

The display shows firewall rule sets, which include the name of the rule and the associated information.

4. Select the rule sets to enable, or deselect the rule sets to disable.

5. For some services, you can also manage service details.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vSphere Client</td>
<td>Manage service details by navigating to Configure > Services under System.</td>
</tr>
<tr>
<td>vSphere Web Client</td>
<td>In the Service Details section, you can:</td>
</tr>
<tr>
<td></td>
<td>■ Use the Start, Stop, or Restart buttons to change the status of a service temporarily.</td>
</tr>
<tr>
<td></td>
<td>■ Change the Startup Policy to have the service start with the host or with port usage.</td>
</tr>
</tbody>
</table>

For more information about starting, stopping, and restarting services, see **Enable or Disable a Service**.

6. For some services, you can explicitly specify IP addresses from which connections are allowed.

 See **Add Allowed IP Addresses for an ESXi Host**.

7. Click **OK**.
Add Allowed IP Addresses for an ESXi Host

By default, the firewall for each service allows access to all IP addresses. To restrict traffic, change each service to allow traffic only from your management subnet. You might also deselect some services if your environment does not use them.

You can use the vSphere Client, vSphere Web Client, vCLI, or PowerCLI to update the Allowed IP list for a service. By default, all IP addresses are allowed for a service. This task describes how to use either the vSphere Client or the vSphere Web Client. See the topic on managing the firewall in vSphere Command-Line Interface Concepts and Examples at https://code.vmware.com/ for instructions on using the vCLI.

![Adding Allowed IP Addresses to the ESXi Firewall](http://link.brightcove.com/services/player/bcpid2296383276001?bctid=ref:video_adding_allowed_IP_to_esxi_firewall)

Procedure

1. Browse to the host in the inventory.
2. Navigate to the Firewall section.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vSphere Client</td>
<td>a Click Configure.</td>
</tr>
<tr>
<td></td>
<td>b Under System, click Firewall.</td>
</tr>
<tr>
<td>vSphere Web Client</td>
<td>a Click Configure.</td>
</tr>
<tr>
<td></td>
<td>b Under System, click Security Profile.</td>
</tr>
<tr>
<td></td>
<td>c If necessary, scroll to the Firewall section.</td>
</tr>
</tbody>
</table>

3. In the Firewall section, click **Edit** and select a service from the list.
4. In the Allowed IP Addresses section, deselect **Allow connections from any IP address** and enter the IP addresses of networks that are allowed to connect to the host.

 Separate IP addresses with commas. You can use the following address formats:
 - 192.168.0.0/24
 - 192.168.1.2, 2001::1/64
 - fd3e:29a6:0a81:e478::/64

5. Click **OK**.

Incoming and Outgoing Firewall Ports for ESXi Hosts

The vSphere Client, the vSphere Web Client, and the VMware Host Client allow you to open and close firewall ports for each service or to allow traffic from selected IP addresses.

The following table lists the firewalls for services that are installed by default. If you install other VIBs on your host, additional services and firewall ports might become available. The information is primarily for services that are visible in the vSphere Client and the vSphere Web Client but the table includes some other ports as well.
Table 3-4. Incoming Firewall Connections

<table>
<thead>
<tr>
<th>Port</th>
<th>Protocol</th>
<th>Service</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5988</td>
<td>TCP</td>
<td>CIM Server</td>
<td>Server for CIM (Common Information Model).</td>
</tr>
<tr>
<td>5989</td>
<td>TCP</td>
<td>CIM Secure Server</td>
<td>Secure server for CIM.</td>
</tr>
<tr>
<td>427</td>
<td>TCP, UDP</td>
<td>CIM SLP</td>
<td>The CIM client uses the Service Location Protocol, version 2 (SLPv2) to find CIM servers.</td>
</tr>
<tr>
<td>546</td>
<td></td>
<td>DHCPv6</td>
<td>DHCP client for IPv6.</td>
</tr>
<tr>
<td>8301, 8302</td>
<td>UDP</td>
<td>DVSSync</td>
<td>DVSSync ports are used for synchronizing states of distributed virtual ports between hosts that have VMware FT record/replay enabled. Only hosts that run primary or backup virtual machines must have these ports open. On hosts that are not using VMware FT these ports do not have to be open.</td>
</tr>
<tr>
<td>902</td>
<td>TCP</td>
<td>NFC</td>
<td>Network File Copy (NFC) provides a file-type-aware FTP service for vSphere components. ESXi uses NFC for operations such as copying and moving data between datastores by default.</td>
</tr>
<tr>
<td>12345, 23451</td>
<td>UDP</td>
<td>vSANClustering Service</td>
<td>VMware vSAN Cluster Monitoring and Membership Directory Service. Uses UDP-based IP multicast to establish cluster members and distribute vSAN metadata to all cluster members. If disabled, vSAN does not work.</td>
</tr>
<tr>
<td>68</td>
<td>UDP</td>
<td>DHCP Client</td>
<td>DHCP client for IPv4.</td>
</tr>
<tr>
<td>53</td>
<td>UDP</td>
<td>DNS Client</td>
<td>DNS client.</td>
</tr>
<tr>
<td>8200, 8100, 8300</td>
<td>TCP, UDP</td>
<td>Fault Tolerance Service</td>
<td>Traffic between hosts for vSphere Fault Tolerance (FT).</td>
</tr>
<tr>
<td>6999</td>
<td>UDP</td>
<td>NSX Distributed Logical Router Service</td>
<td>NSX Virtual Distributed Router service. The firewall port associated with this service is opened when NSX VIBs are installed and the VDR module is created. If no VDR instances are associated with the host, the port does not have to be open. This service was called NSX Distributed Logical Router in earlier versions of the product.</td>
</tr>
<tr>
<td>2233</td>
<td>TCP</td>
<td>vSAN Transport</td>
<td>vSAN reliable datagram transport. Uses TCP and is used for vSAN storage IO. If disabled, vSAN does not work.</td>
</tr>
<tr>
<td>161</td>
<td>UDP</td>
<td>SNMP Server</td>
<td>Allows the host to connect to an SNMP server.</td>
</tr>
<tr>
<td>22</td>
<td>TCP</td>
<td>SSH Server</td>
<td>Required for SSH access.</td>
</tr>
<tr>
<td>8000</td>
<td>TCP</td>
<td>vMotion</td>
<td>Required for virtual machine migration with vMotion. ESXi hosts listen on port 8000 for TCP connections from remote ESXi hosts for vMotion traffic.</td>
</tr>
<tr>
<td>902, 443</td>
<td>TCP</td>
<td>vSphere Web Client</td>
<td>Client connections</td>
</tr>
<tr>
<td>8080</td>
<td>TCP</td>
<td>vsanvp</td>
<td>vSAN VASA Vendor Provider. Used by the Storage Management Service (SMS) that is part of vCenter to access information about vSAN storage profiles, capabilities, and compliance. If disabled, vSAN Storage Profile Based Management (SPBM) does not work.</td>
</tr>
<tr>
<td>80</td>
<td>TCP</td>
<td>vSphere Web Access</td>
<td>Welcome page, with download links for different interfaces.</td>
</tr>
<tr>
<td>5900 -5964</td>
<td>TCP</td>
<td>RFB protocol</td>
<td></td>
</tr>
<tr>
<td>80, 9000</td>
<td>TCP</td>
<td>vSphere Update Manager</td>
<td></td>
</tr>
<tr>
<td>Port</td>
<td>Protocol</td>
<td>Service</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>427</td>
<td>TCP, UDP</td>
<td>CIM SLP</td>
<td>The CIM client uses the Service Location Protocol, version 2 (SLPv2) to find CIM servers.</td>
</tr>
<tr>
<td>547</td>
<td>TCP, UDP</td>
<td>DHCPv6</td>
<td>DHCP client for IPv6.</td>
</tr>
<tr>
<td>8301, 8302</td>
<td>UDP</td>
<td>DVSSync</td>
<td>DVSSync ports are used for synchronizing states of distributed virtual ports between hosts that have VMware FT record/replay enabled. Only hosts that run primary or backup virtual machines must have these ports open. On hosts that are not using VMware FT these ports do not have to be open.</td>
</tr>
<tr>
<td>44046, 31031</td>
<td>TCP</td>
<td>HBR</td>
<td>Used for ongoing replication traffic by vSphere Replication and VMware Site Recovery Manager.</td>
</tr>
<tr>
<td>902</td>
<td>TCP</td>
<td>NFC</td>
<td>Network File Copy (NFC) provides a file-type-aware FTP service for vSphere components. ESXi uses NFC for operations such as copying and moving data between datastores by default.</td>
</tr>
<tr>
<td>9</td>
<td>UDP</td>
<td>WOL</td>
<td>Used by Wake on LAN.</td>
</tr>
<tr>
<td>12345 23451</td>
<td>UDP</td>
<td>vSAN Clustering Service</td>
<td>Cluster Monitoring, Membership, and Directory Service used by vSAN.</td>
</tr>
<tr>
<td>68</td>
<td>UDP</td>
<td>DHCP Client</td>
<td>DHCP client.</td>
</tr>
<tr>
<td>53</td>
<td>TCP, UDP</td>
<td>DNS Client</td>
<td>DNS client.</td>
</tr>
<tr>
<td>80, 8200, 8100, 8300</td>
<td>TCP, UDP</td>
<td>Fault Tolerance</td>
<td>Supports VMware Fault Tolerance.</td>
</tr>
<tr>
<td>3260</td>
<td>TCP</td>
<td>Software iSCSI Client</td>
<td>Supports software iSCSI.</td>
</tr>
<tr>
<td>6999</td>
<td>UDP</td>
<td>NSX Distributed Logical Router Service</td>
<td>The firewall port associated with this service is opened when NSX VIBs are installed and the VDR module is created. If no VDR instances are associated with the host, the port does not have to be open.</td>
</tr>
<tr>
<td>5671</td>
<td>TCP</td>
<td>rabbitmqproxy</td>
<td>A proxy running on the ESXi host. This proxy allows applications that are running inside virtual machines to communicate with the AMQP brokers that are running in the vCenter network domain. The virtual machine does not have to be on the network, that is, no NIC is required. Ensure that outgoing connection IP addresses include at least the brokers in use or future. You can add brokers later to scale up.</td>
</tr>
<tr>
<td>2233</td>
<td>TCP</td>
<td>vSAN Transport</td>
<td>Used for RDT traffic (Unicast peer to peer communication) between vSAN nodes.</td>
</tr>
<tr>
<td>8000</td>
<td>TCP</td>
<td>vMotion</td>
<td>Required for virtual machine migration with vMotion.</td>
</tr>
<tr>
<td>902</td>
<td>UDP</td>
<td>VMware vCenter Agent</td>
<td>vCenter Server agent.</td>
</tr>
<tr>
<td>8080</td>
<td>TCP</td>
<td>vsanvp</td>
<td>Used for vSAN Vendor Provider traffic.</td>
</tr>
<tr>
<td>9080</td>
<td>TCP</td>
<td>I/O Filter Service</td>
<td>Used by the I/O Filters storage feature</td>
</tr>
</tbody>
</table>
Table 3-6. Firewall Ports for Services That Are Not Visible in the UI by Default

<table>
<thead>
<tr>
<th>Port</th>
<th>Protocol</th>
<th>Service</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>5900 - 5964</td>
<td>TCP</td>
<td>RFB protocol</td>
<td>The RFB protocol is a simple protocol for remote access to graphical user interfaces.</td>
</tr>
<tr>
<td>8889</td>
<td>TCP</td>
<td>OpenWSMAN Daemon</td>
<td>Web Services Management (WS-Management is a DMTF open standard for the management of servers, devices, applications, and Web services.</td>
</tr>
</tbody>
</table>

NFS Client Firewall Behavior

The NFS Client firewall rule set behaves differently than other ESXi firewall rule sets. ESXi configures NFS Client settings when you mount or unmount an NFS datastore. The behavior differs for different versions of NFS.

When you add, mount, or unmount an NFS datastore, the resulting behavior depends on the version of NFS.

NFS v3 Firewall Behavior

When you add or mount an NFS v3 datastore, ESXi checks the state of the NFS Client (`nfsClient`) firewall rule set.

- If the `nfsClient` rule set is disabled, ESXi enables the rule set and disables the Allow All IP Addresses policy by setting the `allowedAll` flag to `FALSE`. The IP address of the NFS server is added to the allowed list of outgoing IP addresses.
- If the `nfsClient` rule set is enabled, the state of the rule set and the allowed IP address policy are not changed. The IP address of the NFS server is added to the allowed list of outgoing IP addresses.

Note If you manually enable the `nfsClient` rule set or manually set the Allow All IP Addresses policy, either before or after you add an NFS v3 datastore to the system, your settings are overridden when the last NFS v3 datastore is unmounted. The `nfsClient` rule set is disabled when all NFS v3 datastores are unmounted.

When you remove or unmount an NFS v3 datastore, ESXi performs one of the following actions.

- If none of the remaining NFS v3 datastores are mounted from the server of the datastore being unmounted, ESXi removes the server's IP address from the list of outgoing IP addresses.
- If no mounted NFS v3 datastores remain after the unmount operation, ESXi disables the `nfsClient` firewall rule set.

NFS v4.1 Firewall Behavior

When you mount the first NFS v4.1 datastore, ESXi enables the `nfs41client` rule set and sets its `allowedAll` flag to `TRUE`. This action opens port 2049 for all IP addresses. Unmounting an NFS v4.1 datastore does not affect the firewall state. That is, the first NFS v4.1 mount opens port 2049 and that port remains enabled unless you close it explicitly.
ESXi ESXCLI Firewall Commands

If your environment includes multiple ESXi hosts, automating firewall configuration by using ESXCLI commands or the vSphere Web Services SDK is recommended.

Firewall Command Reference

You can use the ESXi Shell or vSphere CLI commands to configure ESXi at the command line to automate firewall configuration. See Getting Started with vSphere Command-Line Interfaces for an introduction, and vSphere Command-Line Interface Concepts and Examples for examples of using ESXCLI to manipulate firewalls and firewall rules. See VMware Knowledge Base article 2008226 for information about creating custom firewall rules.

Table 3-7. Firewall Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>esxcli network firewall get</code></td>
<td>Return the enabled or disabled status of the firewall and lists default actions.</td>
</tr>
<tr>
<td><code>esxcli network firewall set --default-action</code></td>
<td>Set to true to set the default action to pass. Set to false to set the default action to drop.</td>
</tr>
<tr>
<td><code>esxcli network firewall set --enabled</code></td>
<td>Enable or disable the ESXi firewall.</td>
</tr>
<tr>
<td><code>esxcli network firewall load</code></td>
<td>Load the firewall module and rule set configuration files.</td>
</tr>
<tr>
<td><code>esxcli network firewall refresh</code></td>
<td>Refresh the firewall configuration by reading the rule set files if the firewall module is loaded.</td>
</tr>
<tr>
<td><code>esxcli network firewall unload</code></td>
<td>Destroy filters and unload the firewall module.</td>
</tr>
<tr>
<td><code>esxcli network firewall ruleset list</code></td>
<td>List rule sets information.</td>
</tr>
<tr>
<td><code>esxcli network firewall ruleset set --allowed-all</code></td>
<td>Set to true to allow all access to all IPs. Set to false to use a list of allowed IP addresses.</td>
</tr>
<tr>
<td><code>esxcli network firewall ruleset set --enabled --ruleset-id=<string></code></td>
<td>Set enabled to true to enable the specified ruleset. Set enabled to false to disable the specified ruleset.</td>
</tr>
<tr>
<td><code>esxcli network firewall ruleset allowedip list</code></td>
<td>List the allowed IP addresses of the specified rule set.</td>
</tr>
<tr>
<td><code>esxcli network firewall ruleset allowedip add</code></td>
<td>Allow access to the rule set from the specified IP address or range of IP addresses.</td>
</tr>
<tr>
<td><code>esxcli network firewall ruleset allowedip remove</code></td>
<td>Remove access to the rule set from the specified IP address or range of IP addresses.</td>
</tr>
<tr>
<td><code>esxcli network firewall ruleset rule list</code></td>
<td>List the rules of each ruleset in the firewall.</td>
</tr>
</tbody>
</table>

Firewall Command Examples

The following examples are from a blog post on virtuallyGhetto.

1. Verify a new ruleset called virtuallyGhetto.

```bash
esxcli network firewall ruleset rule list | grep virtuallyGhetto
```
2 Specify specific IP Address or IP ranges to access a particular service. The following example disable the allow all option and specifies a particular range for the virtuallyGhetto service.

```
esxcli network firewall ruleset set --allowed-all false --ruleset-id=virtuallyGhetto
esxcli network firewall ruleset allowedip add --ip-address=172.30.0.0/24 --ruleset-id=virtuallyGhetto
```

Customizing ESXi Services from the Security Profile

An ESXi host includes several services that are running by default. You can disable services from the security profile, or enable services if your company policy allows it.

Enable or Disable a Service is an example of how to enable a service.

Note Enabling services affects the security of your host. Do not enable a service unless strictly necessary.

Available services depend on the VIBs that are installed on the ESXi host. You cannot add services without installing a VIB. Some VMware products, for example, vSphere HA, install VIBs on hosts and make services and the corresponding firewall ports available.

In a default installation, you can modify the status of the following services from the vSphere Client.

Table 3-8. ESXi Services in the Security Profile

<table>
<thead>
<tr>
<th>Service</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Console UI</td>
<td>Running</td>
<td>The Direct Console User Interface (DCUI) service allows you to interact with an ESXi host from the local console host using text-based menus.</td>
</tr>
<tr>
<td>ESXi Shell</td>
<td>Stopped</td>
<td>The ESXi Shell is available from the Direct Console User Interface and includes a set of fully supported commands and a set of commands for troubleshooting and remediation. You must enable access to the ESXi Shell from the direct console of each system. You can enable access to the local ESXi Shell or access to the ESXi Shell with SSH.</td>
</tr>
<tr>
<td>SSH</td>
<td>Stopped</td>
<td>The host’s SSH client service that allows remote connections through Secure Shell.</td>
</tr>
<tr>
<td>Load-Based Teaming Daemon</td>
<td>Running</td>
<td>Load-Based Teaming.</td>
</tr>
<tr>
<td>Active Directory Service</td>
<td>Stopped</td>
<td>When you configure ESXi for Active Directory, this service is started.</td>
</tr>
<tr>
<td>NTP Daemon</td>
<td>Stopped</td>
<td>Network Time Protocol daemon.</td>
</tr>
<tr>
<td>PC/SC Smart Card Daemon</td>
<td>Stopped</td>
<td>When you enable the host for smart card authentication, this service starts. See Configuring Smart Card Authentication for ESXi.</td>
</tr>
<tr>
<td>CIM Server</td>
<td>Running</td>
<td>Service that can be used by Common Information Model (CIM) applications.</td>
</tr>
<tr>
<td>SNMP Server</td>
<td>Stopped</td>
<td>SNMP daemon. See vSphere Monitoring and Performance for information on configuring SNMP v1, v2, and v3.</td>
</tr>
</tbody>
</table>
Table 3-8. ESXi Services in the Security Profile (continued)

<table>
<thead>
<tr>
<th>Service</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syslog Server</td>
<td>Stopped</td>
<td>Syslog daemon. You can enable syslog from the Advanced System Settings in the vSphere Client. See vCenter Server Installation and Setup.</td>
</tr>
<tr>
<td>VMware vCenter Agent</td>
<td>Running</td>
<td>vCenter Server agent. Allows a vCenter Server to connect to an ESXi host. Specifically, vpxa is the communication conduit to the host daemon, which in turn communicates with the ESXi kernel.</td>
</tr>
<tr>
<td>X.Org Server</td>
<td>Stopped</td>
<td>X.Org Server. This optional feature is used internally for 3D graphics for virtual machines.</td>
</tr>
</tbody>
</table>

Enable or Disable a Service

You can enable or disable services from either the vSphere Client or the vSphere Web Client.

After installation, certain services are running by default, while others are stopped. Sometimes, additional setup is necessary before a service becomes available in the UI. For example, the NTP service is a way of getting accurate time information, but this service only works when required ports are opened in the firewall.

Prerequisites

Connect to vCenter Server with either the vSphere Client or the vSphere Web Client.

Procedure

1. Browse to a host in the inventory.
2. Navigate to the services section.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vSphere Client</td>
<td>a Click Configure.</td>
</tr>
<tr>
<td></td>
<td>b Under System, click Services.</td>
</tr>
<tr>
<td>vSphere Web Client</td>
<td>a Click Configure.</td>
</tr>
<tr>
<td></td>
<td>b Under System, click Security Profile.</td>
</tr>
</tbody>
</table>
3 Manage services.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vSphere Client</td>
<td>a Select the service you want to change.</td>
</tr>
<tr>
<td></td>
<td>b Select Restart, Start, or Stop for a one-time change to the host's status.</td>
</tr>
<tr>
<td></td>
<td>c To change the status of the host across reboots, click Edit Startup Policy and select a policy.</td>
</tr>
<tr>
<td>vSphere Web Client</td>
<td>a Click Edit.</td>
</tr>
<tr>
<td></td>
<td>b Scroll to the service that you want to change.</td>
</tr>
<tr>
<td></td>
<td>c In the Service Details pane, select Start, Stop, or Restart for a one-time change to the host's status.</td>
</tr>
<tr>
<td></td>
<td>d To change the status of the host across reboots, select a policy from the Startup Policy menu.</td>
</tr>
</tbody>
</table>

- **Start and stop with host**: The service starts shortly after the host starts, and closes shortly before the host shuts down. Much like Start and stop with port usage, this option means that the service regularly attempts to complete its tasks, such as contacting the specified NTP server. If the port was closed but is later opened, the client begins completing its tasks shortly thereafter.

- **Start and stop manually**: The host preserves the user-determined service settings, regardless of whether ports are open or not. When a user starts the NTP service, that service is kept running if the host is powered on. If the service is started and the host is powered off, the service is stopped as part of the shutdown process, but as soon as the host is powered on, the service is started again, preserving the user-determined state.

- **Start and stop with port usage**: The default setting for these services. If any port is open, the client attempts to contact the network resources for the service. If some ports are open, but the port for a particular service is closed, the attempt fails. If and when the applicable outgoing port is opened, the service begins completing its startup.

Note These settings apply only to service settings that are configured through the UI or to applications that are created with the vSphere Web Services SDK. Configurations made through other means, such as from the ESXi Shell or with configuration files, are not affected by these settings.

4 Click **OK**.

Lockdown Mode

To increase the security of your ESXi hosts, you can put them in lockdown mode. In lockdown mode, operations must be performed through vCenter Server by default.

Starting with vSphere 6.0, you can select normal lockdown mode or strict lockdown mode, which offer different degrees of lockdown. vSphere 6.0 also introduces the Exception User list. Exception users do not lose their privileges when the host enters lockdown mode. Use the Exception User list to add the accounts of third-party solutions and external applications that need to access the host directly when the host is in lockdown mode. See Specify Lockdown Mode Exception Users.
Lockdown Mode Behavior

In lockdown mode, some services are disabled, and some services are accessible only to certain users.

Lockdown Mode Services for Different Users

When the host is running, available services depend on whether lockdown mode is enabled, and on the type of lockdown mode.

- In strict and normal lockdown mode, privileged users can access the host through vCenter Server, from the vSphere Client or the vSphere Web Client, or by using the vSphere Web Services SDK.
- Direct Console Interface behavior differs for strict lockdown mode and normal lockdown mode.
 - In strict lockdown mode, the Direct Console User Interface (DCUI) service is disabled.
 - In normal lockdown mode, accounts on the Exception User list can access the DCUI if they have administrator privileges. In addition, all users who are specified in the DCUI.Access advanced system setting can access the DCUI.
- If the ESXi Shell or SSH is enabled and the host is placed in lockdown mode, accounts on the Exception Users list who have administrator privileges can use these services. For all other users, ESXi Shell or SSH access is disabled. Starting with vSphere 6.0, ESXi or SSH sessions for users who do not have administrator privileges are closed.

All access is logged for both strict and normal lockdown mode.

Table 3-9. Lockdown Mode Behavior

<table>
<thead>
<tr>
<th>Service</th>
<th>Normal Mode</th>
<th>Normal Lockdown Mode</th>
<th>Strict Lockdown Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>vSphere Web Services API</td>
<td>All users, based on permissions</td>
<td>vCenter (vpxuser)</td>
<td>vCenter (vpxuser)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exception users, based on permissions</td>
<td>Exception users, based on permissions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vCloud Director (vslauser, if available)</td>
<td>vCloud Director (vslauser, if available)</td>
</tr>
<tr>
<td>CIM Providers</td>
<td>Users with administrator privileges on the host</td>
<td>vCenter (vpxuser)</td>
<td>vCenter (vpxuser)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exception users, based on permissions</td>
<td>Exception users, based on permissions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vCloud Director (vslauser, if available)</td>
<td>vCloud Director (vslauser, if available)</td>
</tr>
<tr>
<td>Direct Console UI (DCUI)</td>
<td>Users with administrator privileges on the host and users in the DCUI.Access advanced option</td>
<td>Users defined in the DCUI.Access advanced option</td>
<td>DCUI service is stopped.</td>
</tr>
</tbody>
</table>

VMware, Inc. 82
Table 3-9. Lockdown Mode Behavior (continued)

<table>
<thead>
<tr>
<th>Service</th>
<th>Normal Mode</th>
<th>Normal Lockdown Mode</th>
<th>Strict Lockdown Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESXi Shell (if enabled)</td>
<td>Users with administrator privileges on the host</td>
<td>Users defined in the DCUI.Access advanced option</td>
<td>Users defined in the DCUI.Access advanced option</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exception users with administrator privileges on the host</td>
<td>Exception users with administrator privileges on the host</td>
</tr>
<tr>
<td>SSH (if enabled)</td>
<td>Users with administrator privileges on the host</td>
<td>Users defined in the DCUI.Access advanced option</td>
<td>Users defined in the DCUI.Access advanced option</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exception users with administrator privileges on the host</td>
<td>Exception users with administrator privileges on the host</td>
</tr>
</tbody>
</table>

Users Logged in to the ESXi Shell When Lockdown Mode Is Enabled

Users might log in to the ESXi Shell or access the host through SSH before lockdown mode is enabled. In that case, users who are on the list of Exception Users and who have administrator privileges on the host remain logged in. Starting with vSphere 6.0, the session is closed for all other users. Termination applies to both normal and strict lockdown mode.

Enable Lockdown Mode

Enable lockdown mode to require that all configuration changes go through vCenter Server. vSphere 6.0 and later supports normal lockdown mode and strict lockdown mode.

If you want to disallow all direct access to a host completely, you can select strict lockdown mode. Strict lockdown mode makes it impossible to access a host if the vCenter Server is unavailable and SSH and the ESXi Shell are disabled. See Lockdown Mode Behavior.

Procedure

1. Browse to the host in the vSphere Client inventory.
2. Click Configure.
4. In the Lockdown Mode panel, click Edit.
5 Click **Lockdown Mode** and select one of the lockdown mode options.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>The host can be accessed through vCenter Server. Only users who are on the Exception Users list and have administrator privileges can log in to the Direct Console User Interface. If SSH or the ESXi Shell is enabled, access might be possible.</td>
</tr>
<tr>
<td>Strict</td>
<td>The host can only be accessed through vCenter Server. If SSH or the ESXi Shell is enabled, running sessions for accounts in the DCUI.Access advanced option and for Exception User accounts that have administrator privileges remain enabled. All other sessions are closed.</td>
</tr>
</tbody>
</table>

6 Click **OK**.

Disable Lockdown Mode

Disable lockdown mode to allow configuration changes from direct connections to the ESXi host. Leaving lockdown mode enabled results in a more secure environment.

In vSphere 6.0 you can disable lockdown mode as follows:

- **From the Graphical User Interface** Users can disable both normal lockdown mode and strict lockdown mode from either the vSphere Client or the vSphere Web Client.
- **From the Direct Console User Interface** Users who can access the Direct Console User Interface on the ESXi host can disable normal lockdown mode. In strict lockdown mode, the Direct Console Interface service is stopped.

Procedure

1 Browse to a host in the vSphere Client inventory.
2 Click **Configure**.
3 Under System, select **Security Profile**.
4 In the Lockdown Mode panel, click **Edit**.
5 Click **Lockdown Mode** and select **Disabled** to disable lockdown mode.
6 Click **OK**.

The system exits lockdown mode, vCenter Server displays an alarm, and an entry is added to the audit log.

Enable or Disable Normal Lockdown Mode from the Direct Console User Interface

You can enable and disable normal lockdown mode from the Direct Console User Interface (DCUI). You can enable and disable strict lockdown mode only from the vSphere Client or the vSphere Web Client.
When the host is in normal lockdown mode, the following accounts can access the Direct Console User Interface:

- Accounts in the Exception Users list who have administrator privileges on the host. The Exception Users list is meant for service accounts such as a backup agent.
- Users defined in the DCUI.Access advanced option for the host. This option can be used to enable access in case of catastrophic failure.

For ESXi 6.0 and later, user permissions are preserved when you enable lockdown mode. User permissions are restored when you disable lockdown mode from the Direct Console Interface.

Note If you upgrade a host that is in lockdown mode to ESXi version 6.0 without exiting lockdown mode, and if you exit lockdown mode after the upgrade, all permissions defined before the host entered lockdown mode are lost. The system assigns the administrator role to all users who are found in the DCUI.Access advanced option to guarantee that the host remains accessible.

To retain permissions, disable lockdown mode for the host from either the vSphere Client or the vSphere Web Client before the upgrade.

Procedure

1. At the Direct Console User Interface of the host, press F2 and log in.
2. Scroll to the **Configure Lockdown Mode** setting and press Enter to toggle the current setting.
3. Press Esc until you return to the main menu of the Direct Console User Interface.

Specifying Accounts with Access Privileges in Lockdown Mode

You can specify service accounts that can access the ESXi host directly by adding them to the Exception Users list. You can specify a single user who can access the ESXi host in a catastrophic vCenter Server failure.

The vSphere version determines what different accounts can do by default when lockdown mode is enabled, and how you can change the default behavior.

- In vSphere 5.0 and earlier, only the root user can log in to the Direct Console User Interface on an ESXi host that is in lockdown mode.
- In vSphere 5.1 and later, you can add a user to the DCUI.Access advanced system setting for each host. The option is meant for a catastrophic failure of vCenter Server. Companies usually lock the password for the user with this access into a safe. A user in the DCUI.Access list does not need to have full administrative privileges on the host.
- In vSphere 6.0 and later, the DCUI.Access advanced system setting is still supported. In addition, vSphere 6.0 and later supports an Exception User list, which is for service accounts that have to log in to the host directly. Accounts with administrator privileges that are on the Exception Users list can log in to the ESXi Shell. In addition, those users can log in to a host's DCUI in normal lockdown mode and can exit lockdown mode.
You specify Exception Users from either the vSphere Client or the vSphere Web Client.

Note Exception users are host local users or Active Directory users with privileges defined locally for the ESXi host. Users that are members of an Active Directory group lose their permissions when the host is in lockdown mode.

Add Users to the DCUI.Access Advanced Option

If there is a catastrophic failure, the DCUI.Access advanced option allows you to exit lockdown mode when you cannot access the host from vCenter Server. You add users to the list by editing the Advanced Settings for the host from the vSphere Client.

Note Users in the DCUI.Access list can change lockdown mode settings regardless of their privileges. The ability to change lockdown modes can impact the security of your host. For service accounts that need direct access to the host, consider adding users to the Exception Users list instead. Exception users can only perform tasks for which they have privileges. See Specify Lockdown Mode Exception Users.

Procedure

1. Browse to the host in the vSphere Client inventory.
2. Click **Configure**.
3. Under System, click **Advanced System Settings**, and click **Edit**.
4. Filter for DCUI.
5. In the **DCUI.Access** text box, enter the local ESXi user names, separated by commas. By default, the root user is included. Consider removing the root user from the DCUI.Access list, and specifying a named account for better auditability.
6. Click **OK**.

Specify Lockdown Mode Exception Users

You can add users to the Exception Users list from the vSphere Client. These users do not lose their permissions when the host enters lockdown mode. It makes sense to add service accounts such as a backup agent to the Exception Users list.

Exception users do not lose their privileges when the host enters lockdown mode. Usually these accounts represent third-party solutions and external applications that need to continue to function in lockdown mode.

Note The Exception Users list is meant for service accounts that perform very specific tasks, and not for administrators. Adding administrator users to the Exception Users list defeats the purpose of lockdown mode.

Exception users are host local users or Active Directory users with privileges defined locally for the ESXi host. They are not members of an Active Directory group and are not vCenter Server users. These users are allowed to perform operations on the host based on their privileges. That means, for example, that a read-only user cannot disable lockdown mode on a host.
Procedure

1. Browse to the host in the vSphere Client inventory.
2. Click **Configure**.
3. Under System, select **Security Profile**.
4. In the Lockdown Mode panel, click **Edit**.
5. Click **Exception Users** and click the **Add User** icon to add exception users.

Manage the Acceptance Levels of Hosts and VIBs

The acceptance level of a VIB depends on the amount of certification of that VIB. The acceptance level of the host depends on the level of the lowest VIB. You can change the acceptance level of the host if you want to allow lower-level VIBs. You can remove CommunitySupported VIBs to be able to change the host acceptance level.

VIBs are software packages that include a signature from VMware or a VMware partner. To protect the integrity of the ESXi host, do not allow users to install unsigned (community-supported) VIBs. An unsigned VIB contains code that is not certified by, accepted by, or supported by VMware or its partners. Community-supported VIBs do not have a digital signature.

The host's acceptance level must be the same or less restrictive than the acceptance level of any VIB you want to add to the host. For example, if the host acceptance level is VMwareAccepted, you cannot install VIBs at the PartnerSupported level. You can use ESXCLI commands to set an acceptance level for a host. To protect the security and integrity of your ESXi hosts, do not allow unsigned (CommunitySupported) VIBs to be installed on hosts in production systems.

The acceptance level for an ESXi host is displayed in the **Security Profile** in the vSphere Client.

The following acceptance levels are supported.

VMwareCertified

The VMwareCertified acceptance level has the most stringent requirements. VIBs with this level go through thorough testing fully equivalent to VMware in-house Quality Assurance testing for the same technology. Today, only I/O Vendor Program (IOVP) program drivers are published at this level. VMware takes support calls for VIBs with this acceptance level.

VMwareAccepted

VIBs with this acceptance level go through verification testing, but the tests do not fully test every function of the software. The partner runs the tests and VMware verifies the result. Today, CIM providers and PSA plug-ins are among the VIBs published at this level. VMware directs support calls for VIBs with this acceptance level to the partner's support organization.
PartnerSupported

VIBs with the PartnerSupported acceptance level are published by a partner that VMware trusts. The partner performs all testing. VMware does not verify the results. This level is used for a new or nonmainstream technology that partners want to enable for VMware systems. Today, driver VIB technologies such as Infiniband, ATAoE, and SSD are at this level with nonstandard hardware drivers. VMware directs support calls for VIBs with this acceptance level to the partner’s support organization.

CommunitySupported

The CommunitySupported acceptance level is for VIBs created by individuals or companies outside of VMware partner programs. VIBs at this level have not gone through any VMware-approved testing program and are not supported by VMware Technical Support or by a VMware partner.

Procedure

1. Connect to each ESXi host and verify that the acceptance level is set to VMwareCertified, VMwareAccepted, or PartnerSupported by running the following command.

   ```bash
   esxcli software acceptance get
   ```

2. If the host acceptance level is CommunitySupported, determine whether any of the VIBs are at the CommunitySupported level by running the following commands.

   ```bash
   esxcli software vib list
   esxcli software vib get -n vibname
   ```

3. Remove any CommunitySupported VIBs by running the following command.

   ```bash
   esxcli software vib remove --vibname vib
   ```

4. Change the acceptance level of the host by using one of the following methods.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLI command</td>
<td><code>esxcli software acceptance set --level acceptance_level</code></td>
</tr>
<tr>
<td>vSphere Client</td>
<td>a) Select a host in the inventory.</td>
</tr>
<tr>
<td></td>
<td>b) Click Configure.</td>
</tr>
<tr>
<td></td>
<td>c) Under System, select Security Profile.</td>
</tr>
<tr>
<td></td>
<td>d) Click Edit for Host Image Profile Acceptance Level and choose the acceptance level.</td>
</tr>
</tbody>
</table>

Assigning Privileges for ESXi Hosts

Usually, you give privileges to users by assigning permissions to ESXi host objects that are managed by a vCenter Server system. If you are using a standalone ESXi host, you can assign privileges directly.
Assigning Permissions to ESXi Hosts That Are Managed by vCenter Server

If your ESXi host is managed by a vCenter Server, perform management tasks through the vSphere Client.

You can select the ESXi host object in the vCenter Server object hierarchy and assign the administrator role to a limited number of users. Those users can then perform direct management on the ESXi host. See Using Roles to Assign Privileges.

Best practice is to create at least one named user account, assign it full administrative privileges on the host, and use this account instead of the root account. Set a highly complex password for the root account and limit the use of the root account. Do not remove the root account.

Assigning Permissions to Standalone ESXi Hosts

You can add local users and define custom roles from the Management tab of the VMware Host Client. See the vSphere Single Host Management - VMware Host Client documentation.

For all versions of ESXi, you can see the list of predefined users in the /etc/passwd file.

The following roles are predefined.

<table>
<thead>
<tr>
<th>Role</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read Only</td>
<td>Allows a user to view objects associated with the ESXi host but not to make any changes to objects.</td>
</tr>
<tr>
<td>Administrator</td>
<td>Administrator role.</td>
</tr>
<tr>
<td>No Access</td>
<td>No access. This role is the default role. You can override the default role.</td>
</tr>
</tbody>
</table>

You can manage local users and groups and add local custom roles to an ESXi host using a VMware Host Client connected directly to the ESXi host. See the vSphere Single Host Management - VMware Host Client documentation.

Starting with vSphere 6.0, you can use ESXCLI account management commands for managing ESXi local user accounts. You can use ESXCLI permission management commands for setting or removing permissions on both Active Directory accounts (users and groups) and on ESXi local accounts (users only).

Note If you define a user for the ESXi host by connecting to the host directly, and a user with the same name also exists in vCenter Server, those users are different. If you assign a role to the ESXi user, the vCenter Server user is not assigned the same role.

Predefined Privileges

If your environment does not include a vCenter Server system, the following users are predefined.

root User

By default each ESXi host has a single root user account with the Administrator role. That root user account can be used for local administration and to connect the host to vCenter Server.
Assigning root user privileges can make it easier to break into an ESXi host because the name is already known. Having a common root account also makes it harder to match actions to users.

For better auditing, create individual accounts with Administrator privileges. Set a highly complex password for the root account and limit the use of the root account, for example, for use when adding a host to vCenter Server. Do not remove the root account. For more information about assigning permissions to a user for an ESXi host, see vSphere Single Host Management - VMware Host Client documentation.

Best practice is to ensure that any account with the Administrator role on an ESXi host is assigned to a specific user with a named account. Use ESXi Active Directory capabilities, which allow you to manage Active Directory credentials.

Important You can remove the access privileges for the root user. However, you must first create another permission at the root level that has a different user assigned to the Administrator role.

vpxuser User

vCenter Server uses vpxuser privileges when managing activities for the host.

The vCenter Server administrator can perform most of the same tasks on the host as the root user and also schedule tasks, work with templates, and so forth. However, the vCenter Server administrator cannot directly create, delete, or edit local users and groups for hosts. Only a user with Administrator privileges can perform these tasks directly on a host.

Note You cannot manage vpxuser using Active Directory.

Caution Do not change vpxuser in any way. Do not change its password. Do not change its permissions. If you do so, you might experience problems when working with hosts through vCenter Server.

dcui User

The dcui user runs on hosts and acts with Administrator rights. This user’s primary purpose is to configure hosts for lockdown mode from the Direct Console User Interface (DCUI).

This user acts as an agent for the direct console and cannot be modified or used by interactive users.

Using Active Directory to Manage ESXi Users

You can configure ESXi to use a directory service such as Active Directory to manage users.
Creating local user accounts on each host presents challenges with having to synchronize account names and passwords across multiple hosts. Join ESXi hosts to an Active Directory domain to eliminate the need to create and maintain local user accounts. Using Active Directory for user authentication simplifies the ESXi host configuration and reduces the risk for configuration issues that could lead to unauthorized access.

When you use Active Directory, users supply their Active Directory credentials and the domain name of the Active Directory server when adding a host to a domain.

Configure a Host to Use Active Directory

You can configure a host to use a directory service such as Active Directory to manage users and groups.

When you add an ESXi host to Active Directory, the DOMAIN group **ESX Admins** is assigned full administrative access to the host if it exists. If you do not want to make full administrative access available, see VMware Knowledge Base article 1025569 for a workaround.

If a host is provisioned with Auto Deploy, Active Directory credentials cannot be stored on the hosts. You can use the vSphere Authentication Proxy to join the host to an Active Directory domain. Because a trust chain exists between the vSphere Authentication Proxy and the host, the Authentication Proxy can join the host to the Active Directory domain. See Using vSphere Authentication Proxy.

Note When you define user account settings in Active Directory, you can limit the computers that a user can log in to by the computer name. By default, no equivalent restrictions are set on a user account. If you set this limitation, LDAP Bind requests for the user account fail with the message **LDAP binding not successful**, even if the request is from a listed computer. You can avoid this issue by adding the netBIOS name for the Active Directory server to the list of computers that the user account can log in to.

Prerequisites

- Verify that you have an Active Directory domain. See your directory server documentation.
- Verify that the host name of ESXi is fully qualified with the domain name of the Active Directory forest.

 \[
 \text{fully qualified domain name} = \text{host}_\text{name}.\text{domain}_\text{name}
 \]

Procedure

1. Synchronize the time between ESXi and the directory service system using NTP.

 See Synchronize ESXi Clocks with a Network Time Server or the VMware Knowledge Base for information about how to synchronize ESXi time with a Microsoft Domain Controller.

2. Ensure that the DNS servers that you configured for the host can resolve the host names for the Active Directory controllers.

 a. Browse to the host in the vSphere Client inventory.

 b. Click **Configure**.
Under Networking, click **TCP/IP configuration**.

Under TCP/IP Stack: Default, click **DNS** and verify that the host name and DNS server information for the host are correct.

What to do next

Join the host to a directory service domain. See Add a Host to a Directory Service Domain. For hosts that are provisioned with Auto Deploy, set up the vSphere Authentication Proxy. See Using vSphere Authentication Proxy. You can configure permissions so that users and groups from the joined Active Directory domain can access the vCenter Server components. For information about managing permissions, see Add a Permission to an Inventory Object.

Add a Host to a Directory Service Domain

To have your host use a directory service, you must join the host to the directory service domain. You can enter the domain name in one of two ways:

- **name.tld** (for example, domain.com): The account is created under the default container.
- **name.tld/container/path** (for example, domain.com/OU1/OU2): The account is created under a particular organizational unit (OU).

To use the vSphere Authentication Proxy service, see Using vSphere Authentication Proxy.

Procedure

1. Browse to a host in the vSphere Client inventory.
2. Click **Configure**.
3. Under System, select **Authentication Services**.
4. Click **Join Domain**.
5. Enter a domain.
 - Use the form **name.tld** or **name.tld/container/path**.
6. Enter the user name and password of a directory service user who has permissions to join the host to the domain, and click **OK**.
7. (Optional) If you intend to use an authentication proxy, enter the proxy server IP address.
8. Click **OK** to close the Directory Services Configuration dialog box.

What to do next

You can configure permissions so that users and groups from the joined Active Directory domain can access the vCenter Server components. For information about managing permissions, see Add a Permission to an Inventory Object.
View Directory Service Settings

You can view the type of directory server, if any, that the host uses to authenticate users and the directory server settings.

Procedure

1. Browse to the host in the vSphere Client inventory.
2. Click Configure.

The Authentication Services page displays the directory service and domain settings.

What to do next

You can configure permissions so that users and groups from the joined Active Directory domain can access the vCenter Server components. For information about managing permissions, see Add a Permission to an Inventory Object.

Using vSphere Authentication Proxy

You can add ESXi hosts to an Active Directory domain by using vSphere Authentication Proxy instead of adding the hosts explicitly to the Active Directory domain.

You only have to set up the host so it knows about the domain name of the Active Directory server and about the IP address of vSphere Authentication Proxy. When vSphere Authentication Proxy is enabled, it automatically adds hosts that are being provisioned with Auto Deploy to the Active Directory domain. You can also use vSphere Authentication Proxy with hosts that are not provisioned by using Auto Deploy.

See Required Ports for vCenter Server and Platform Services Controller for information about TCP ports used by vSphere Authentication Proxy.

Auto Deploy

If you are provisioning hosts with Auto Deploy, you can set up a reference host that points to Authentication Proxy. You then set up a rule that applies the reference host's profile to any ESXi host that is provisioned with Auto Deploy. vSphere Authentication Proxy stores the IP addresses of all hosts that Auto Deploy provisions using PXE in its access control list. When the host boots, it contacts vSphere Authentication Proxy, and vSphere Authentication Proxy joins those hosts, which are already in its access control list, to the Active Directory domain.

Even if you use vSphere Authentication Proxy in an environment that uses certificates that are provisioned by VMCA or third-party certificates, the process works seamlessly if you follow the instructions for using custom certificates with Auto Deploy.
See Use Custom Certificates with Auto Deploy.

Other ESXi Hosts

You can set up other hosts to use vSphere Authentication Proxy if you want to make it possible for the host to join the domain without using Active Directory credentials. That means you do not need to transmit Active Directory credentials to the host, and you do not save Active Directory credentials in the host profile.

In that case, you add the host's IP address to the vSphere Authentication Proxy access control list, and vSphere Authentication Proxy authorizes the host based on its IP address by default. You can enable client authentication to have vSphere Authentication Proxy check the host's certificate.

Note You cannot use vSphere Authentication Proxy in an environment that supports only IPv6.

Enable vSphere Authentication Proxy

The vSphere Authentication Proxy service is available on each vCenter Server system. By default, the service is not running. If you want to use vSphere Authentication Proxy in your environment, you can start the service from the vCenter Server Appliance Management Interface, from the vSphere Web Client, or from the command line.

The vSphere Authentication Proxy service binds to an IPv4 address for communication with vCenter Server, and does not support IPv6. The vCenter Server instance can be on a host machine in an IPv4-only or IPv4/IPv6 mixed-mode network environment. However, when you specify the address of vSphere Authentication Proxy, you must specify an IPv4 address.

Prerequisites

Verify that you are using vCenter Server 6.5 or later. In earlier versions of vSphere, vSphere Authentication Proxy is installed separately. See the documentation for the earlier version of the product for instructions.
Procedure

1. Start the VMware vSphere Authentication Proxy service.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| vCenter Server Appliance Management Interface (VAMI) | a. In a Web browser, go to the vCenter Server Appliance Management Interface, `https://appliance-IP-address-or-FQDN:5480`.
 | b. Log in as root.
 | c. Click Services, and click the VMware vSphere Authentication Proxy service.
 | d. Click Start. |
| vSphere Web Client | a. Click Administration, and click System Configuration under Deployment.
 | b. Click Services, and click the VMware vSphere Authentication Proxy service.
 | c. Click the green Start the service icon in the menu bar at the top of the window. |

2. (Optional) After the service has started, make the startup automatic.

 To edit the service’s startup policy, see Enable or Disable a Service.

You can now set the vSphere Authentication Proxy domain. After that, vSphere Authentication Proxy handles all hosts that are provisioned with Auto Deploy, and you can explicitly add hosts to vSphere Authentication Proxy.

Add a Domain to vSphere Authentication Proxy with the vSphere Web Client

You can add a domain to vSphere Authentication Proxy from the vSphere Web Client or by using the `camconfig` command.

You can add a domain to vSphere Authentication Proxy only after you enable the proxy. After you add the domain, vSphere Authentication Proxy adds all hosts that you provision with Auto Deploy to that domain. For other hosts, you can also use vSphere Authentication Proxy if you do not want to give those hosts domain privileges.

Procedure

1. Connect to a vCenter Server system with the vSphere Web Client.

2. Click Administration, and click System Configuration under Deployment.

3. Click Services, click the VMware vSphere Authentication Proxy service, and click Edit.

4. Enter the name of the domain that vSphere Authentication Proxy will add hosts to, and the name of a user who has Active Directory privileges to add hosts to the domain.

 The other fields in this dialog are for information only.

5. Click the ellipsis icon to add and confirm the password for the user, and click OK.
Add a Domain to vSphere Authentication Proxy with the camconfig Command

You can add a domain to vSphere Authentication from the vSphere Web Client or by using the camconfig command.

You can add a domain to vSphere Authentication Proxy only after you enable the proxy. After you add the domain, vSphere Authentication Proxy adds all hosts that you provision with Auto Deploy to that domain. For other hosts, you can also use vSphere Authentication Proxy if you do not want to give those hosts domain privileges.

Procedure

1. Log in to the vCenter Server appliance or the vCenter Server Windows machine as a user with administrator privileges.

2. Run the command to enable access to the Bash shell.

   ```
   shell
   ```

3. Go to the directory where the `camconfig` script is located.

<table>
<thead>
<tr>
<th>OS</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>vCenter Server Appliance</td>
<td><code>/usr/lib/vmware-vmcam/bin/</code></td>
</tr>
<tr>
<td>vCenter Server Windows</td>
<td><code>C:\Program Files\VMware\vCenter Server\vmcamd\</code></td>
</tr>
</tbody>
</table>

4. To add the domain and user Active Directory credentials to the Authentication Proxy configuration, run the following command.

   ```
   camconfig add-domain -d domain -u user
   ```

 You are prompted for a password.

 vSphere Authentication Proxy caches that user name and password. You can remove and recreate the user as needed. The domain must be reachable through DNS, but does not have to be a vCenter Single Sign-On identity source.

 vSphere Authentication Proxy uses the user name specified by `user` to create the accounts for ESXi hosts in Active Directory. The user must have privileges to create accounts in the Active Directory domain to which you are adding the hosts. At the time of writing of this information, the Microsoft Knowledge Base article 932455 had background information for account creation privileges.

5. If you later want to remove the domain and user information from vSphere Authentication Proxy, run the following command.

   ```
   camconfig remove-domain -d domain
   ```
Use vSphere Authentication Proxy to Add a Host to a Domain

The Auto Deploy server adds all hosts that it provisions to vSphere Authentication Proxy, and vSphere Authentication Proxy adds those hosts to the domain. If you want to add other hosts to a domain using vSphere Authentication Proxy, you can add those hosts to vSphere Authentication Proxy explicitly. Afterwards, the vSphere Authentication Proxy server adds those hosts to the domain. As a result, user-supplied credentials no longer have to be transmitted to the vCenter Server system.

You can enter the domain name in one of two ways:

- **name.tld** (for example, **domain.com**): The account is created under the default container.
- **name.tld/container/path** (for example, **domain.com/OU1/OU2**): The account is created under a particular organizational unit (OU).

Prerequisites

- If the ESXi host is using a VMCA-signed certificate, verify that the host has been added to vCenter Server. Otherwise, the Authentication Proxy service cannot trust the ESXi host.
- If ESXi is using a CA-signed certificate, verify that the CA-signed certificate has been added to the vCenter Server system. See Certificate Management for ESXi Hosts.

Procedure

1. Browse to the host in the vSphere Client inventory.
2. Click **Configure**.
3. Under **System**, select **Authentication Services**.
4. Click **Join Domain**.
5. Enter a domain.
 Use the form **name.tld**, for example **mydomain.com**, or **name.tld/container/path**, for example, **mydomain.com/organizational_unit1/organizational_unit2**.
6. Select **Using Proxy Server**.
7. Enter the IP address of the Authentication Proxy server, which is always the same as the IP address of the vCenter Server system.
8. Click **OK**.

Enable Client Authentication for vSphere Authentication Proxy

By default, vSphere Authentication Proxy adds any host if it has the IP address of that host in its access control list. For additional security, you can enable client authentication. If client authentication is enabled, vSphere Authentication Proxy also checks the certificate of the host.
Prerequisites

- Verify that the vCenter Server system trusts the host. By default, when you add a host to vCenter Server, the host is assigned a certificate that is signed by a vCenter Server trusted root CA. vSphere Authentication Proxy trusts vCenter Server trusted root CA.

- If you plan on replacing ESXi certificates in your environment, perform the replacement before you enable vSphere Authentication Proxy. The certificates on the ESXi host must match that of the host’s registration.

Procedure

1. Log in to the vCenter Server appliance or the vCenter Server Windows machine as a user with administrator privileges.

2. Run the command to enable access to the Bash shell.

   ```shell
   
   ```

3. Go to the directory where the `camconfig` script is located.

<table>
<thead>
<tr>
<th>OS</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>vCenter Server Appliance</td>
<td><code>/usr/lib/vmware-vmcam/bin/</code></td>
</tr>
<tr>
<td>vCenter Server Windows</td>
<td><code>C:\Program Files\VMware\vCenter Server\vmcamd\</code></td>
</tr>
</tbody>
</table>

4. Run the following command to enable client authentication.

   ```shell
   camconfig ssl-cliAuth -e
   
   Going forward, vSphere Authentication Proxy checks the certificate of each host that is added.
   
   5. If you later want to disable client authentication again, run the following command.

   ```shell
 camconfig ssl-cliAuth -n

 Import the vSphere Authentication Proxy Certificate to ESXi Host

 By default, ESXi hosts require explicit verification of the vSphere Authentication Proxy certificate. If you are using vSphere Auto Deploy, the Auto Deploy service takes care of adding the certificate to hosts that it provisions. For other hosts, you have to add the certificate explicitly.
Prerequisites

- Upload the vSphere Authentication Proxy certificate to a datastore accessible to the ESXi host. Using an SFTP application such as WinSCP, you can download the certificate from the vCenter Server host at the following location.

 vCenter Server Appliance
 /var/lib/vmware/vmcam/ssl/rui.crt

 vCenter Server Windows
 C:\ProgramData\VMware\vCenterServer\data\vmcamd\ssl\rui.crt

- Verify that the UserVars.ActiveDirectoryVerifyCAMCertificate ESXi advanced setting is set to 1 (the default).

Procedure

1. Select the ESXi host and click Configure.
3. Click Import Certificate.
4. Enter the certificate file path following the format [datastore]/path/certname.crt, and click OK.

Generate a New Certificate for vSphere Authentication Proxy

If you want to generate a new certificate that is provisioned by VMCA, or a new certificate that includes VMCA as a subordinate certificate, follow the steps in this topic.

See Set Up vSphere Authentication Proxy to Use Custom Certificates if you want to use a custom certificate that is signed by a third-party or enterprise CA.

Prerequisites

You must have root or Administrator privileges on the system on which vSphere Authentication Proxy is running.

Procedure

1. Make a copy of certool.cfg.

   ```bash
   cp /usr/lib/vmware-vmca/share/config/certool.cfg /var/lib/vmware/vmcam/ssl/vmcam.cfg
   ```

2. Edit the copy with some information about your organization, as in the following example.

   ```plaintext
   Country = IE
   Name = vmcam
   Organization = VMware
   OrgUnit = vTSU
   State = Cork
   Locality = Cork
   Hostname = test-cam-1.test1.vmware.com
   ```
3 Generate the new private key in /var/lib/vmware/vmcam/ssl/.

```
/usr/lib/vmware-vmca/bin/certool --genkey --privkey=/var/lib/vmware/vmcam/ssl/rui.key --
pubkey=/tmp/vmcam.pub --server=localhost
```

For **localhost**, supply the FQDN of the Platform Services Controller.

4 Generate the new certificate in /var/lib/vmware/vmcam/ssl/ using the key and vmcam.cfg file that you created in Step 1 and Step 2.

```
/usr/lib/vmware-vmca/bin/certool --server=localhost --gencert --privkey=/var/lib/vmware/vmcam/ssl/
  rui.key --cert=/var/lib/vmware/vmcam/ssl/rui.crt --config=/var/lib/vmware/vmcam/ssl/vmcam.cfg
```

For **localhost**, supply the FQDN of the Platform Services Controller.

Set Up vSphere Authentication Proxy to Use Custom Certificates

Using custom certificates with vSphere Authentication Proxy consists of several steps. First you generate a CSR and send it to your CA for signing. Then you place the signed certificate and key file in a location that vSphere Authentication Proxy can access.

By default, vSphere Authentication Proxy generates a CSR during first boot and asks VMCA to sign that CSR. vSphere Authentication Proxy registers with vCenter Server using that certificate. You can use custom certificates in your environment, if you add those certificates to vCenter Server.
Procedure

1 Generate a CSR for vSphere Authentication Proxy.
 a Create a configuration file, `/var/lib/vmware/vmcam/ssl/vmcam.cfg`, as in the following example.

   ```
   [ req ]
   distinguished_name = req_distinguished_name
   encrypt_key = no
   prompt = no
   string_mask = nombstr
   req_extensions = v3_req
   [ v3_req ]
   basicConstraints = CA:false
   keyUsage = nonRepudiation, digitalSignature, keyEncipherment
   subjectAltName = DNS:dns.static-1.csl.vmware.com
   [ req_distinguished_name ]
   countryName = IE
   stateOrProvinceName = Cork
   localityName = Cork
   0.organizationName = VMware
   organizationalUnitName = vTSU
   commonName = test-cam-1.test1.vmware.com
   ```

 b Run `openssl` to generate a CSR file and a key file, passing in the configuration file.

   ```
   openssl req -new -nodes -out vmcam.csr -newkey rsa:2048 -keyout /var/lib/vmware/vmcam/ssl/rui.key -config /var/lib/vmware/vmcam/ssl/vmcam.cfg
   ```

2 Back up the `rui.crt` certificate and `rui.key` files, which are stored in the following location.

<table>
<thead>
<tr>
<th>OS</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>vCenter Server Appliance</td>
<td><code>/var/lib/vmware/vmcam/ssl/rui.crt</code></td>
</tr>
<tr>
<td>vCenter Server Windows</td>
<td><code>C:\ProgramData\VMware\vCenterServer\data\vmcamd\ssl\rui.crt</code></td>
</tr>
</tbody>
</table>

3 Unregister vSphere Authentication Proxy.
 a Go to the directory where the `camregister` script is located.

<table>
<thead>
<tr>
<th>OS</th>
<th>Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>vCenter Server Appliance</td>
<td><code>/usr/lib/vmware-vmcam/bin</code></td>
</tr>
<tr>
<td>vCenter Server Windows</td>
<td><code>C:\Program Files\VMware\vCenter Server\vmcamd</code></td>
</tr>
</tbody>
</table>

 b Run the following command.

   ```
   camregister --unregister -a VC_address -u user
   ```

 `user` must be a vCenter Single Sign-On user that has administrator permissions on vCenter Server.
4. Stop the vSphere Authentication Proxy service.

<table>
<thead>
<tr>
<th>Tool</th>
<th>Steps</th>
<th></th>
</tr>
</thead>
</table>
| vCenter Server Appliance Management Interface (VAMI) | a. In a Web browser, go to the vCenter Server Appliance Management Interface, https://appliance-IP-address-or-FQDN:5480.
 b. Log in as root.
 The default root password is the password that you set while deploying the vCenter Server Appliance.
 c. Click Services, and click the VMware vSphere Authentication Proxy service.
 d. Click Stop. | |
| vSphere Web Client | a. Select Administration, and click System Configuration under Deployment.
 b. Click Services, click the VMware vSphere Authentication Proxy service, and click the red Stop the service icon. | |
| CLI | service-control --stop vmcam | |

5. Replace the existing rui.crt certificate and rui.key files with the files that you received from your CA.

6. Restart the vSphere Authentication Proxy service.

7. Reregister vSphere Authentication Proxy explicitly with vCenter Server by using the new certificate and key.

```
camregister --register -a VC_address -u user -c full_path_to_rui.crt -k full_path_to_rui.key
```

Configuring Smart Card Authentication for ESXi

You can use smart card authentication to log in to the ESXi Direct Console User Interface (DCUI) by using a Personal Identity Verification (PIV), Common Access Card (CAC) or SC650 smart card instead specifying a user name and password.

A smart card is a small plastic card with an embedded integrated circuit chip. Many government agencies and large enterprises use smart card based two-factor authentication to increase the security of their systems and comply with security regulations.

When smart card authentication is enabled on an ESXi host, the DCUI prompts for a smart card and PIN combination instead of the default prompt for a user name and password.

1. When you insert the smart card into the smart card reader, the ESXi host reads the credentials on it.
2. The ESXi DCUI displays your login ID, and prompts for your PIN.
3. After you enter your PIN, the ESXi host matches it with the PIN stored on the smart card and verifies the certificate on the smart card with Active Directory.
4. After successful verification of the smart card certificate, ESXi logs you in to the DCUI.

You can switch to user name and password authentication from the DCUI by pressing F3.
The chip on the smart card locks after a few consecutive incorrect PIN entries, usually three. If a smart card is locked, only selected personnel can unlock it.

Enable Smart Card Authentication

Enable smart card authentication to prompt for smart card and PIN combination to log in to the ESXi DCUI.

Prerequisites

- Set up the infrastructure to handle smart card authentication, such as accounts in the Active Directory domain, smart card readers, and smart cards.
- Configure ESXi to join an Active Directory domain that supports smart card authentication. For more information, see Using Active Directory to Manage ESXi Users.
- Use the vSphere Client to add root certificates. See Certificate Management for ESXi Hosts.

Procedure

1. Browse to the host in the vSphere Client inventory.
2. Click **Configure**.
3. Under System, select **Authentication Services**.

 You see the current smart card authentication status and a list with imported certificates.
4. In the Smart Card Authentication panel, click **Edit**.
5. In the Edit Smart Card Authentication dialog box, select the Certificates page.
6. Add trusted Certificate Authority (CA) certificates, for example, root and intermediary CA certificates.

 Certificates must be in PEM format.
7. Open the Smart Card Authentication page, select the **Enable Smart Card Authentication** check box, and click **OK**.

Disable Smart Card Authentication

Disable smart card authentication to return to the default user name and password authentication for ESXi DCUI login.

Procedure

1. Browse to the host in the vSphere Client inventory.
2. Click **Configure**.
3. Under System, select **Authentication Services**.

 You see the current smart card authentication status and a list with imported certificates.
4. In the Smart Card Authentication panel, click **Edit**.
On the Smart Card Authentication page, deselect the **Enable Smart Card Authentication** check box, and click **OK**.

Authenticating With User Name and Password in Case of Connectivity Problems

If the Active Directory (AD) domain server is not reachable, you can log in to the ESXi DCUI by using user name and password authentication to perform emergency actions on the host.

In exceptional circumstances, the AD domain server is not reachable to authenticate the user credentials on the smart card because of connectivity problems, network outage, or disasters. In that case, you can log in to the ESXi DCUI by using the credentials of a local ESXi Administrator user. After logging in, you can perform diagnostics or other emergency actions. The fallback to user name and password login is logged. When the connectivity to AD is restored, smart card authentication is enabled again.

Note Loss of network connectivity to vCenter Server does not affect smart card authentication if the Active Directory (AD) domain server is available.

Using Smart Card Authentication in Lockdown Mode

When enabled, lockdown mode on the ESXi host increases the security of the host and limits access to the DCUI. Lockdown mode might disable the smart card authentication feature.

In normal lockdown mode, only users on the Exception Users list with administrator privileges can access the DCUI. Exception users are host local users or Active Directory users with permissions defined locally for the ESXi host. If you want to use smart card authentication in normal lockdown mode, you must add users to the Exception Users list from the vSphere Client. These users do not lose their permissions when the host enters normal lockdown mode and can log in to the DCUI. For more information, see [Specify Lockdown Mode Exception Users](#).

In strict lockdown mode, the DCUI service is stopped. As a result, you cannot access the host by using smart card authentication.

Using the ESXi Shell

The ESXi Shell is disabled by default on ESXi hosts. You can enable local and remote access to the shell if necessary.

To reduce the risk of unauthorized access, enable the ESXi Shell for troubleshooting only.

The ESXi Shell is independent of in lockdown mode. Even if the host is running in lockdown mode, you can still log in to the ESXi Shell if it is enabled.

ESXi Shell

Enable this service to access the ESXi Shell locally.

SSH

Enable this service to access the ESXi Shell remotely by using SSH.
The root user and users with the Administrator role can access the ESXi Shell. Users who are in the Active Directory group ESX Admins are automatically assigned the Administrator role. By default, only the root user can run system commands (such as `vmware -v`) by using the ESXi Shell.

Note
Do not enable the ESXi Shell unless you actually need access.

- **Enable Access to the ESXi Shell**
 You can use the vSphere Client or the vSphere Web Client to enable local and remote (SSH) access to the ESXi Shell and to set the idle timeout and availability timeout.

- **Use the Direct Console User Interface (DCUI) to Enable Access to the ESXi Shell**
 The Direct Console User Interface (DCUI) allows you to interact with the host locally using text-based menus. Evaluate carefully whether the security requirements of your environment support enabling the Direct Console User Interface.

- **Log in to the ESXi Shell for Troubleshooting**
 Perform ESXi configuration tasks with the vSphere Client, the vSphere CLI, or vSphere PowerCLI. Log in to the ESXi Shell (formerly Tech Support Mode or TSM) for troubleshooting purposes only.

Enable Access to the ESXi Shell

You can use the vSphere Client or the vSphere Web Client to enable local and remote (SSH) access to the ESXi Shell and to set the idle timeout and availability timeout.

Note
Access the host by using the vSphere Web Client, remote command-line tools (vCLI and PowerCLI), and published APIs. Do not enable remote access to the host using SSH unless special circumstances require that you enable SSH access.

Prerequisites

If you want to use an authorized SSH key, you can upload it. See [ESXi SSH Keys](#).

Procedure

1. Browse to the host in the inventory.
2. Navigate to the Services panel.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vSphere Client</td>
<td>a Click Configure.</td>
</tr>
<tr>
<td></td>
<td>b Under System, click Services.</td>
</tr>
<tr>
<td>vSphere Web Client</td>
<td>a Click Configure.</td>
</tr>
<tr>
<td></td>
<td>b Under System, click Security Profile.</td>
</tr>
</tbody>
</table>
3 Manage ESXi, SSH, or Direct Console UI services.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vSphere Client</td>
<td>a In the Services pane, select the service.</td>
</tr>
<tr>
<td></td>
<td>b Click Edit Startup Policy and select the startup policy Start and stop manually.</td>
</tr>
<tr>
<td></td>
<td>c To enable the service, click Start.</td>
</tr>
<tr>
<td>vSphere Web Client</td>
<td>a In the Services pane, click Edit.</td>
</tr>
<tr>
<td></td>
<td>b Click Service Details and select the startup policy Start and stop manually.</td>
</tr>
<tr>
<td></td>
<td>c To enable the service, click Start.</td>
</tr>
<tr>
<td></td>
<td>d Click OK.</td>
</tr>
</tbody>
</table>

When you select **Start and stop manually**, the service does not start when you reboot the host. If you want the service to start when you reboot the host, select **Start and stop with host**.

What to do next

Set the availability and idle timeouts for the ESXi Shell. See **Create a Timeout for ESXi Shell Availability** and **Create a Timeout for Idle ESXi Shell Sessions**

Create a Timeout for ESXi Shell Availability

The ESXi Shell is disabled by default. You can set an availability timeout for the ESXi Shell to increase security when you enable the shell.

The availability timeout setting is the amount of time that can elapse before you must log in after the ESXi Shell is enabled. After the timeout period, the service is disabled and users are not allowed to log in.

Procedure

1. Browse to the host in the vSphere Client inventory.
2. Click **Configure**.
3. Under System, select **Advanced System Settings**.
4. Click **Edit**, and select **UserVars.ESXiShellTimeOut**.
5. Enter the idle timeout setting.
 - You must restart the SSH service and the ESXi Shell service for the timeout to take effect.
6. Click **OK**.

If you are logged in when the timeout period elapses, your session will persist. However, after you log out or your session is terminated, users are not allowed to log in.

Create a Timeout for Idle ESXi Shell Sessions

If a user enables the ESXi Shell on a host, but forgets to log out of the session, the idle session remains connected indefinitely. The open connection can increase the potential for someone to gain privileged access to the host. You can prevent this by setting a timeout for idle sessions.
The idle timeout is the amount of time that can elapse before a user is logged out of an idle interactive session. You can control the amount of time for both local and remote (SSH) session from the Direct Console Interface (DCUI) or from the vSphere Client.

Procedure

1. Browse to the host in the vSphere Client inventory.
2. Click **Configure**.
3. Under System, select **Advanced System Settings**.
4. Click **Edit**, select **UserVars.ESXiShellInteractiveTimeOut**, and enter the timeout setting.
5. Restart the ESXi Shell service and the SSH service for the timeout to take effect.

If the session is idle, users are logged out after the timeout period elapses.

Use the Direct Console User Interface (DCUI) to Enable Access to the ESXi Shell

The Direct Console User Interface (DCUI) allows you to interact with the host locally using text-based menus. Evaluate carefully whether the security requirements of your environment support enabling the Direct Console User Interface.

You can use the Direct Console User Interface to enable local and remote access to the ESXi Shell.

Note Changes made to the host using the Direct Console User Interface, the vSphere Client, the vSphere Web Client, ESXCLI, or other administrative tools are committed to permanent storage every hour or upon graceful shutdown. Changes might be lost if the host fails before they are committed.

Procedure

1. From the Direct Console User Interface, press F2 to access the System Customization menu.
2. Select **Troubleshooting Options** and press Enter.
3. From the Troubleshooting Mode Options menu, select a service to enable.
 - Enable ESXi Shell
 - Enable SSH
4. Press Enter to enable the service.
5. Press Esc until you return to the main menu of the Direct Console User Interface.

What to do next

Set the availability and idle timeouts for the ESXi Shell. See **Set Availability Timeout or Idle Timeout for the ESXi Shell**.
Set Availability Timeout or Idle Timeout for the ESXi Shell

The ESXi Shell is disabled by default. To increase security when you enable the shell, you can set an availability timeout, an idle timeout, or both.

The two types of timeout apply in different situations.

Idle Timeout
A user enables the ESXi Shell on a host, but forgets to log out of the session, the idle session remains connected indefinitely. The open connection can increase the potential for someone to gain privileged access to the host. You can prevent this by setting a timeout for idle sessions.

Availability Timeout
The availability timeout determines how much time can elapse before you log in after you initially enable the shell. If you wait longer, the service is disabled and you cannot log in to the ESXi Shell.

Prerequisites
Enable the ESXi Shell. See Use the Direct Console User Interface (DCUI) to Enable Access to the ESXi Shell.

Procedure
1. Log in to the ESXi Shell.
2. From the Troubleshooting Mode Options menu, select Modify ESXi Shell and SSH timeouts and press Enter.
3. Enter the idle timeout (in seconds) or the availability timeout.
 You must restart the SSH service and the ESXi Shell service for the timeout to take effect.
4. Press Enter and press Esc until you return to the main menu of the Direct Console User Interface.
5. Click OK.
 - If you set the idle timeout, users are logged out after the session is idle for the specified time.
 - If you set the availability timeout, and you do not log in before that timeout elapses, logins become disabled again.

Log in to the ESXi Shell for Troubleshooting

Perform ESXi configuration tasks with the vSphere Client, the vSphere CLI, or vSphere PowerCLI. Log in to the ESXi Shell (formerly Tech Support Mode or TSM) for troubleshooting purposes only.

Procedure
1. Log in to the ESXi Shell using one of the following methods.
 - If you have direct access to the host, press Alt+F1 to open the login page on the machine’s physical console.
If you are connecting to the host remotely, use SSH or another remote console connection to start a session on the host.

2 Enter a user name and password recognized by the host.

UEFI Secure Boot for ESXi Hosts

Secure boot is part of the UEFI firmware standard. With secure boot enabled, a machine refuses to load any UEFI driver or app unless the operating system bootloader is cryptographically signed. Starting with vSphere 6.5, ESXi supports secure boot if it is enabled in the hardware.

UEFI Secure Boot Overview

ESXi version 6.5 and later supports UEFI secure boot at each level of the boot stack.

Note Before you use UEFI Secure Boot on a host that was upgraded to ESXi 6.5, check for compatibility by following the instructions in Run the Secure Boot Validation Script on an Upgraded ESXi Host. If you upgrade an ESXi host by using `esxcli` commands, the upgrade does not update the bootloader. In that case, you cannot perform a secure boot on that system.

Figure 3-1. UEFI Secure Boot

![Diagram of UEFI Secure Boot]

With secure boot enabled, the boot sequence proceeds as follows.

1 Starting with vSphere 6.5, the ESXi bootloader contains a VMware public key. The bootloader uses this key to verify the signature of the kernel and a small subset of the system that includes a secure boot VIB verifier.

2 The VIB verifier verifies every VIB package that is installed on the system.

At this point, the entire system boots with the root of trust in certificates that are part of the UEFI firmware.
UEFI Secure Boot Troubleshooting

If secure boot does not succeed at any level of the boot sequence, an error results.

The error message depends on the hardware vendor and on the level at which verification did not succeed.

- If you attempt to boot with a bootloader that is unsigned or has been tampered with, an error during the boot sequence results. The exact message depends on the hardware vendor. It might look like the following error, but might look different.

 UEFI0073: Unable to boot PXE Device...because of the Secure Boot policy

- If the kernel has been tampered with, an error like the following results.

 Fatal error: 39 (Secure Boot Failed)

- If a package (VIB or driver) has been tampered with, a purple screen with the following message appears.

 UEFI Secure Boot failed:
 Failed to verify signatures of the following vibs (XX)

To resolve issues with secure boot, follow these steps.

1. Reboot the host with secure boot disabled.
2. Run the secure boot verification script (see Run the Secure Boot Validation Script on an Upgraded ESXi Host).
3. Examine the information in the /var/log/esxupdate.log file.

Run the Secure Boot Validation Script on an Upgraded ESXi Host

After you upgrade an ESXi host from an older version of ESXi that did not support UEFI secure boot, you might be able to enable secure boot. Whether you can enable secure boot depends on how you performed the upgrade and whether the upgrade replaced all the existing VIBs or left some VIBs unchanged. You can run a validation script after you perform the upgrade to determine whether the upgraded installation supports secure boot.

For secure boot to succeed, the signature of every installed VIB must be available on the system. Older versions of ESXi do not save the signatures when installing VIBs.

- If you upgrade using ESXCLI commands, the old version of ESXi performs the installation of the new VIBs, so their signatures are not saved and secure boot is not possible.

- If you upgrade using the ISO, new VIBs do have their signatures saved. This is true also for vSphere Upgrade Manager upgrades that use the ISO.
If old VIBs remain on the system, the signatures of those VIBs are not available and secure boot is not possible.

- If the system uses a third-party driver, and the VMware upgrade does not include a new version of the driver VIB, then the old VIB remains on the system after upgrade.
- In rare cases, VMware might drop ongoing development of a specific VIB without providing a new VIB that replaces or obsoletes it, so the old VIB remains on the system after upgrade.

Note UEFI secure boot also requires an up-to-date bootloader. This script does not check for an up-to-date bootloader.

Prerequisites

- Verify that the hardware supports UEFI secure boot.
- Verify that all VIBs are signed with an acceptance level of at least PartnerSupported. If you include VIBs at the CommunitySupported level, you cannot use secure boot.

Procedure

1. Upgrade the ESXi and run the following command.

   ```bash
   /usr/lib/vmware/secureboot/bin/secureBoot.py -c
   ```

2. Check the output.

 The output either includes **Secure boot can be enabled** or **Secure boot CANNOT be enabled**.

Securing ESXi Hosts with Trusted Platform Module

ESXi can use Trusted Platform Modules (TPM) chips, which are secure cryptoprocessors that enhance host security by providing a trust assurance rooted in hardware as opposed to software.

TPM is an industry-wide standard for secure cryptoprocessors. TPM chips are found in most of today's computers, from laptops, to desktops, to servers. vSphere 6.7 supports TPM version 2.0.

A TPM 2.0 chip attests to an ESXi host's identity. Host attestation is the process of authenticating and attesting to the state of the host's software at a given point in time. UEFI secure boot, which ensures that only signed software is loaded at boot time, is a requirement for successful attestation. The TPM 2.0 chip records and securely stores measurements of the software modules booted in the system, which vCenter Server remotely verifies.

The high-level steps of the remote attestation process are:

1. Establish the trustworthiness of the remote TPM and create an Attestation Key (AK) on it.

 When an ESXi host is added to, rebooted from, or reconnected to vCenter Server, vCenter Server requests an AK from the host. Part of the AK creation process also involves the verification of the TPM hardware itself, to ensure that a known (and trusted) vendor has produced it.

2. Retrieve the Attestation Report from the host.
vCenter Server requests that the host sends an Attestation Report, which contains a quote of Platform Configuration Registers (PCRs), signed by the TPM, and other signed host binary metadata. By checking that the information corresponds to a configuration it deems trusted, a vCenter Server identifies the platform on a previously untrusted host.

3 Verify the host's authenticity.

vCenter Server verifies the authenticity of the signed quote, infers the software versions, and determines the trustworthiness of said software versions. If vCenter Server determines the signed quote is invalid, remote attestation fails and the host is not trusted.

To use a TPM 2.0 chip, your vCenter Server environment must meet these requirements:

- vCenter Server 6.7
- ESXi 6.7 host with TPM 2.0 chip installed and enabled in UEFI
- UEFI Secure Boot enabled

Ensure that the TPM is configured in the ESXi host's BIOS to use the SHA-256 hashing algorithm and the TIS/FIFO (First-In, First-Out) interface and not CRB (Command Response Buffer). For information about setting these required BIOS options, refer to the vendor documentation.

Review the TPM 2.0 chips certified by VMware at the following location:

https://www.vmware.com/resources/compatibility/search.php

When you boot an ESXi host with an installed TPM 2.0 chip, vCenter Server monitors the host's attestation status. The vSphere Client displays the hardware trust status in the vCenter Server's Summary tab under Security with the following alarms:

- Green: Normal status, indicating full trust.
- Red: Attestation failed.

Note If you add a TPM 2.0 chip to an ESXi host that vCenter Server already manages, you must first disconnect the host, then reconnect it. See vCenter Server and Host Management documentation for information about disconnecting and reconnecting hosts.

ESXi and Trusted Platform Module 2.0 Feature Demonstration

View ESXi Host Attestation Status

When added to an ESXi host, a Trusted Platform Module 2.0 compatible chip attests the integrity of the platform. You can view the attestation status of the host in the vSphere Client. You can also view the Intel Trusted Execution Technology (TXT) status.

Procedure

1 Connect to vCenter Server by using the vSphere Client.
2 Navigate to a data center and click the Monitor tab.
3 Click Security.

4 Review the host's status in the Attestation column and read the accompanying message in the Message column.

What to do next

For a Failed or Warning attestation status, see Troubleshoot ESXi Host Attestation Problems.

Troubleshoot ESXi Host Attestation Problems

When you install a Trusted Platform Module (TPM) device on an ESXi host, the host might fail to pass attestation. You can troubleshoot the potential causes of this problem.

Procedure

1 View the ESXi host alarm status and accompanying error message. See View ESXi Host Attestation Status.

2 If the error message is Host secure boot was disabled, you must re-enable secure boot to resolve the problem.

3 If the attestation status of the host is failed, check the vCenter Server log for the following message:

 No cached identity key, loading from DB

 This message indicates that you are adding a TPM 2.0 chip to an ESXi host that vCenter Server already manages. You must first disconnect the host, then reconnect it. See vCenter Server and Host Management documentation for information about disconnecting and reconnecting hosts.

4 For all other error messages, contact Customer Support.

ESXi Log Files

Log files are an important component of troubleshooting attacks and obtaining information about breaches. Logging to a secure, centralized log server can help prevent log tampering. Remote logging also provides a long-term audit record.

To increase the security of the host, take the following measures

- Configure persistent logging to a datastore. By default, the logs on ESXi hosts are stored in the in-memory file system. Therefore, they are lost when you reboot the host, and only 24 hours of log data is stored. When you enable persistent logging, you have a dedicated activity record for the host.

- Remote logging to a central host allows you to gather log files on a central host. From that host, you can monitor all hosts with a single tool, do aggregate analysis, and search log data. This approach facilitates monitoring and reveals information about coordinated attacks on multiple hosts.

- Configure the remote secure syslog on ESXi hosts by using a CLI such as vCLI or PowerCLI, or by using an API client.

- Query the syslog configuration to make sure that the syslog server and port are valid.
See the vSphere Monitoring and Performance documentation for information about syslog setup, and for additional information on ESXi log files.

Configure Syslog on ESXi Hosts

You can use the vSphere Client or the `esxcli system syslog` vCLI command to configure the syslog service.

For information about using the `esxcli system syslog` command and other vCLI commands, see Getting Started with vSphere Command-Line Interfaces.

Procedure

1. Browse to the host in the vSphere Client inventory.
2. Click Configure.
4. Click Edit.
5. Filter for syslog.
6. To set up logging globally, select the setting to change and enter the value.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syslog.global.defaultRotate</td>
<td>Maximum number of archives to keep. You can set this number globally and for individual subloggers.</td>
</tr>
<tr>
<td>Syslog.global.defaultSize</td>
<td>Default size of the log, in KB, before the system rotates logs. You can set this number globally and for individual subloggers.</td>
</tr>
<tr>
<td>Syslog.global.LogDir</td>
<td>Directory where logs are stored. The directory can be on mounted NFS or VMFS volumes. Only the <code>/scratch</code> directory on the local file system is persistent across reboots. Specify the directory as `</td>
</tr>
<tr>
<td>Syslog.global.logDirUnique</td>
<td>Selecting this option creates a subdirectory with the name of the ESXi host under the directory specified by <code>Syslog.global.LogDir</code>. A unique directory is useful if the same NFS directory is used by multiple ESXi hosts.</td>
</tr>
<tr>
<td>Syslog.global.LogHost</td>
<td>Remote host to which syslog messages are forwarded and port on which the remote host receives syslog messages. You can include the protocol and the port, for example, <code>ssl://hostName1:1514</code>. UDP (only on port 514), TCP, and SSL are supported. The remote host must have syslog installed and correctly configured to receive the forwarded syslog messages. See the documentation for the syslog service installed on the remote host for information on configuration.</td>
</tr>
</tbody>
</table>

7. (Optional) To overwrite the default log size and log rotation for any of the logs:
 a. Click the name of the log that you want to customize.
 b. Enter the number of rotations and the log size you want.
8. Click OK.
Changes to the syslog options take effect immediately.

ESXi Log File Locations

ESXi records host activity in log files, using a syslog facility.

<table>
<thead>
<tr>
<th>Component</th>
<th>Location</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMkernel</td>
<td>/var/log/vmkernel.log</td>
<td>Records activities related to virtual machines and ESXi.</td>
</tr>
<tr>
<td>VMkernel warnings</td>
<td>/var/log/vmkwarning.log</td>
<td>Records activities related to virtual machines.</td>
</tr>
<tr>
<td>VMkernel summary</td>
<td>/var/log/vmksummary.log</td>
<td>Used to determine uptime and availability statistics for ESXi (comma separated).</td>
</tr>
<tr>
<td>ESXi host agent log</td>
<td>/var/log/hostd.log</td>
<td>Contains information about the agent that manages and configures the ESXi host and its virtual machines.</td>
</tr>
<tr>
<td>vCenter agent log</td>
<td>/var/log/vpxa.log</td>
<td>Contains information about the agent that communicates with vCenter Server (if the host is managed by vCenter Server).</td>
</tr>
<tr>
<td>Shell log</td>
<td>/var/log/shell.log</td>
<td>Contains a record of all commands typed into the ESXi Shell as well as shell events (for example, when the shell was enabled).</td>
</tr>
<tr>
<td>Authentication</td>
<td>/var/log/auth.log</td>
<td>Contains all events related to authentication for the local system.</td>
</tr>
<tr>
<td>System messages</td>
<td>/var/log/syslog.log</td>
<td>Contains all general log messages and can be used for troubleshooting. This information was formerly located in the messages log file.</td>
</tr>
<tr>
<td>Virtual machines</td>
<td>The same directory as the affected virtual machine's configuration files, named vmware.log and vmware*.log. For example, /vmfs/volumes/datastore/virtual machine/vmware.log</td>
<td>Contains virtual machine power events, system failure information, tools status and activity, time sync, virtual hardware changes, vMotion migrations, machine clones, and so on.</td>
</tr>
</tbody>
</table>

Securing Fault Tolerance Logging Traffic

VMware Fault Tolerance (FT) captures inputs and events that occur on a primary VM and sends them to the secondary VM, which is running on another host.

This logging traffic between the primary and secondary VMs is unencrypted and contains guest network and storage I/O data, as well as the memory contents of the guest operating system. This traffic might include sensitive data such as passwords in plaintext. To avoid such data being divulged, ensure that this network is secured, especially to avoid man-in-the-middle attacks. For example, use a private network for FT logging traffic.
Securing vCenter Server Systems

Securing vCenter Server includes ensuring security of the host where vCenter Server is running, following best practices for assigning privileges and roles, and verifying the integrity of the clients that connect to vCenter Server.

This chapter includes the following topics:

- vCenter Server Security Best Practices
- Verify Thumbprints for Legacy ESXi Hosts
- Required Ports for vCenter Server and Platform Services Controller
- Additional vCenter Server TCP and UDP Ports

vCenter Server Security Best Practices

Following vCenter Server security best practices helps you ensure the integrity of your vSphere environment.

Best Practices for vCenter Server Access Control

Strictly control access to different vCenter Server components to increase security for the system.

The following guidelines help ensure security of your environment.

Use Named Accounts

- If the local Windows administrator account currently has the Administrator role vCenter Server, remove that role and assign the role to one or more named vCenter Server administrator accounts. Grant the Administrator role only to those administrators who are required to have it. You can create custom roles or use the No cryptography administrator role for administrators with more limited privileges. Do not apply this role any group whose membership is not strictly controlled.

 Note Starting with vSphere 6.0, the local administrator no longer has full administrative rights to vCenter Server by default.

- Install vCenter Server using a service account instead of a Windows account. The service account must be an administrator on the local machine.

- Make sure that applications use unique service accounts when connecting to a vCenter Server system.
Monitor Privileges of vCenter Server Administrator Users

Not all administrator users must have the Administrator role. Instead, create a custom role with the appropriate set of privileges and assign it to other administrators.

Users with the vCenter Server Administrator role have privileges on all objects in the hierarchy. For example, by default the Administrator role allows users to interact with files and programs inside a virtual machine's guest operating system. Assigning that role to too many users can lessen virtual machine data confidentiality, availability, or integrity. Create a role that gives the administrators the privileges they need, but remove some of the virtual machine management privileges.

Minimize Access

Do not allow users to log directly in to the vCenter Server host machine. Users who are logged in to the vCenter Server host machine can cause harm, either intentionally or unintentionally, by altering settings and modifying processes. Those users also have potential access to vCenter credentials, such as the SSL certificate. Allow only users who have legitimate tasks to perform to log in to the system and ensure that login events are audited.

Grant Minimal Privileges to vCenter Server Database Users

The database user requires only certain privileges specific to database access.

Some privileges are required only for installation and upgrade. You can remove these privileges from the database administrator after vCenter Server is installed or upgraded.

Restrict Datastore Browser Access

Assign the Datastore.Browse datastore privilege only to users or groups who really need those privileges. Users with the privilege can view, upload, or download files on datastores associated with the vSphere deployment through the Web browser or the vSphere Client.

Restrict Users From Running Commands in a Virtual Machine

By default, a user with the vCenter Server Administrator role can interact with files and programs within a virtual machine's guest operating system. To reduce the risk of breaching guest confidentiality, availability, or integrity, create a custom nonguest access role without the Guest Operations privilege. See Restrict Users from Running Commands Within a Virtual Machine.

Consider Modifying the Password Policy for vpxuser

By default, vCenter Server changes the vpxuser password automatically every 30 days. Ensure that this setting meets company policy, or configure the vCenter Server password policy. See Set the vCenter Server Password Policy.

Note Make sure that password aging policy is not too short.
Check Privileges After vCenter Server Restart

Check for privilege reassignment when you restart vCenter Server. If the user or group that has the Administrator role on the root folder cannot be validated during a restart, the role is removed from that user or group. In its place, vCenter Server grants the Administrator role to the vCenter Single Sign-On administrator, administrator@vsphere.local by default. This account can then act as the vCenter Server administrator.

Reestablish a named administrator account and assign the Administrator role to that account to avoid using the anonymous vCenter Single Sign-On administrator account (administrator@vsphere.local by default).

Use High RDP Encryption Levels

On each Windows computer in the infrastructure, ensure that Remote Desktop Host Configuration settings are set to ensure the highest level of encryption appropriate for your environment.

Verify vSphere Client Certificates

Instruct users of the vSphere Client or other client applications to heed certificate verification warnings. Without certificate verification, the user might be subject of a MiTM attack.

Set the vCenter Server Password Policy

By default, vCenter Server changes the vpxuser password automatically every 30 days. You can change that value from the vSphere Client.

Procedure

1. Log in to the vCenter Server system by using the vSphere Client.
2. Select the vCenter Server system in the object hierarchy.
3. Click Configure.
4. Click Advanced Settings and click Edit Settings.
5. Click the Filter icon and enter VimPasswordExpirationInDays.
6. Set VirtualCenter.VimPasswordExpirationInDays to comply with your requirements.

Removing Expired or Revoked Certificates and Logs from Failed Installations

Leaving expired or revoked certificates or leaving vCenter Server installation logs for failed installation on your vCenter Server system can compromise your environment.

Removing expired or revoked certificates is required for the following reasons.

- If expired or revoked certificates are not removed from the vCenter Server system, the environment can be subject to a MiTM attack
- In certain cases, a log file that contains the database password in plain text is created on the system if vCenter Server installation fails. An attacker who breaks into the vCenter Server system, might gain access to this password and, at the same time, access to the vCenter Server database.
Protecting the vCenter Server Windows Host

Protect the Windows host where vCenter Server is running against vulnerabilities and attacks by ensuring that the host environment is as secure as possible.

- Maintain a supported operating system, database, and hardware for the vCenter Server system. If vCenter Server is not running on a supported operating system, it might not run properly, making vCenter Server vulnerable to attacks.
- Keep the vCenter Server system properly patched. By staying up-to-date with operating system patches, the server is less vulnerable to attack.
- Provide operating system protection on the vCenter Server host. Protection includes antivirus and anti-malware software.
- On each Windows computer in the infrastructure, ensure that Remote Desktop (RDP) Host Configuration settings are set to ensure the highest level of encryption according to industry-standard guidelines or internal guidelines.

For operating system and database compatibility information, see the vSphere Compatibility Matrixes.

Limiting vCenter Server Network Connectivity

For improved security, avoid putting the vCenter Server system on any network other than a management network, and ensure that vSphere management traffic is on a restricted network. By limiting network connectivity, you limit certain types of attack.

vCenter Server requires access to a management network only. Avoid putting the vCenter Server system on other networks such as your production network or storage network, or on any network with access to the Internet. vCenter Server does not need access to the network where vMotion operates.

vCenter Server requires network connectivity to the following systems.

- All ESXi hosts.
- The vCenter Server database.
- Other vCenter Server systems (if the vCenter Server systems are part of a common vCenter Single Sign-On domain for purposes of replicating tags, permissions, and so on).
- Systems that are authorized to run management clients. For example, the vSphere Client, a Windows system where you use the PowerCLI, or any other SDK-based client.
- Systems that run add-on components such as VMware vSphere Update Manager.
- Infrastructure services such as DNS, Active Directory, and NTP.
- Other systems that run components that are essential to functionality of the vCenter Server system.

Use a local firewall on the Windows system where the vCenter Server system is running or use a network firewall. Include IP-based access restrictions so that only necessary components can communicate with the vCenter Server system.
Evaluate the Use of Linux Clients with CLIs and SDKs

Communications between client components and a vCenter Server system or ESXi hosts are protected by SSL-based encryption by default. Linux versions of these components do not perform certificate validation. Consider restricting the use of these clients.

To improve security, you can replace the VMCA-signed certificates on the vCenter Server system and on the ESXi hosts with certificates that are signed by an enterprise or third-party CA. However, certain communications with Linux clients might still be vulnerable to man-in-the-middle attacks. The following components are vulnerable when they run on the Linux operating system.

- vCLI commands
- vSphere SDK for Perl scripts
- Programs that are written using the vSphere Web Services SDK

You can relax the restriction against using Linux clients if you enforce proper controls.

- Restrict management network access to authorized systems only.
- Use firewalls to ensure that only authorized hosts are allowed to access vCenter Server.
- Use jump-box systems to ensure that Linux clients are behind the jump.

Examine Client Plug-Ins

vSphere Client and vSphere Web Client extensions run at the same privilege level as the user who is logged in. A malicious extension can masquerade as a useful plug-in and perform harmful operations such as stealing credentials or changing the system configuration. To increase security, use an installation that includes only authorized extensions from trusted sources.

A vCenter installation includes an extensibility framework for the vSphere Client and the vSphere Web Client. You can use this framework to extend the clients with menu selections or toolbar icons. The extensions can provide access to vCenter add-on components or external, Web-based functionality.

Using the extensibility framework results in a risk of introducing unintended capabilities. For example, if an administrator installs a plug-in in an instance of the vSphere Client, the plug-in can run arbitrary commands with the privilege level of that administrator.

To protect against potential compromise of your vSphere Client or vSphere Web Client, examine all installed plug-ins periodically and make sure that each plug-in comes from a trusted source.

Prerequisites

You must have privileges to access the vCenter Single Sign-On service. These privileges differ from vCenter Server privileges.

Procedure

1. Log in to the client as administrator@vsphere.local or a user with vCenter Single Sign-On privileges.
2. From the Home page, select Administration, then select Client Plug-Ins under Solutions.
3. Examine the list of client plug-ins.
vCenter Server Appliance Security Best Practices

Follow all best practices for securing a vCenter Server system to secure your vCenter Server Appliance. Additional steps help you make your appliance more secure.

Configure NTP

Ensure that all systems use the same relative time source. This time source must be in sync with an agreed-upon time standard such as Coordinated Universal Time (UTC). Synchronized systems are essential for certificate validation. NTP also makes it easier to track an intruder in log files. Incorrect time settings make it difficult to inspect and correlate log files to detect attacks, and make auditing inaccurate. See Synchronize the Time in the vCenter Server Appliance with an NTP Server.

Restrict vCenter Server Appliance network access

Restrict access to components that are required to communicate with the vCenter Server Appliance. Blocking access from unnecessary systems reduces the potential for attacks on the operating system. See Required Ports for vCenter Server and Platform Services Controller and Additional vCenter Server TCP and UDP Ports. To set up your environment with firewall settings that are compliant with the DISA STIG, follow the guidelines in the VMware knowledge base article at http://kb.vmware.com/kb/2047585.

vCenter Password Requirements and Lockout Behavior

To manage your vSphere environment, you must be aware of the vCenter Single Sign-On password policy, of vCenter Server passwords, and of lockout behavior.

This section discusses vCenter Single Sign-On passwords. See ESXi Passwords and Account Lockout for a discussion of passwords of ESXi local users.

vCenter Single Sign-On Administrator Password

The password for the administrator of vCenter Single Sign-On, administrator@vsphere.local by default, is specified by the vCenter Single Sign-On password policy. By default, this password must meet the following requirements:

- At least 8 characters
- At least one lowercase character
- At least one numeric character
- At least one special character

The password for this user cannot be more than 20 characters long. Starting with vSphere 6.0, non-ASCII characters are allowed. Administrators can change the default password policy. See the Platform Services Controller Administration documentation.
vCenter Server Passwords

In vCenter Server, password requirements are dictated by vCenter Single Sign-On or by the configured identity source, which can be Active Directory, OpenLDAP.

vCenter Single Sign-On Lockout Behavior

Users are locked out after a preset number of consecutive failed attempts. By default, users are locked out after five consecutive failed attempts in three minutes and a locked account is unlocked automatically after five minutes. You can change these defaults using the vCenter Single Sign-On lockout policy. See the Platform Services Controller Administration documentation.

Starting with vSphere 6.0, the vCenter Single Sign-On domain administrator, administrator@vsphere.local by default, is not affected by the lockout policy. The user is affected by the password policy.

Password Changes

If you know your password, you can change the password by using the `dir-cli password change` command. If you forget your password, a vCenter Single Sign-On administrator can reset your password by using the `dir-cli password reset` command.

Search the VMware Knowledge Base for information on password expiration and related topics in different versions of vSphere.

Verify Thumbprints for Legacy ESXi Hosts

In vSphere 6 and later, hosts are assigned VMCA certificates by default. If you change the certificate mode to thumbprint, you can continue to use thumbprint mode for legacy hosts. You can verify the thumbprints in the vSphere Client.

Note Certificates are preserved across upgrades by default.

Procedure

1. Browse to the vCenter Server in the vSphere Client inventory.
2. Click Configure.
4. Click Edit.
5. Click SSL settings.
6. If any of your ESXi 5.5 or earlier hosts require manual validation, compare the thumbprints listed for the hosts to the thumbprints in the host console.

 To obtain the host thumbprint, use the Direct Console User Interface (DCUI).
 a. Log in to the direct console and press F2 to access the System Customization menu.
 b. Select View Support Information.

 The host thumbprint appears in the column on the right.
7 If the thumbprint matches, select the **Verify** check box next to the host.

 Hosts that are not selected will be disconnected after you click **OK**.

8 Click **Save**.

Required Ports for vCenter Server and Platform Services Controller

The vCenter Server system, both on Windows and in the appliance, must be able to send data to every managed host and receive data from the vSphere Web Client and the Platform Services Controller services. To enable migration and provisioning activities between managed hosts, the source and destination hosts must be able to receive data from each other.

If a port is in use or is blacklisted, the vCenter Server installer displays an error message. You must use another port number to proceed with the installation. There are internal ports that are used only for inter-process communication.

VMware uses designated ports for communication. Additionally, the managed hosts monitor designated ports for data from vCenter Server. If a built-in firewall exists between any of these elements, the installer opens the ports during the installation or upgrade process. For custom firewalls, you must manually open the required ports. If you have a firewall between two managed hosts and you want to perform source or target activities, such as migration or cloning, you must configure a means for the managed hosts to receive data.

Note In Microsoft Windows Server 2008 and later, firewall is enabled by default.

<table>
<thead>
<tr>
<th>Port</th>
<th>Protocol</th>
<th>Description</th>
<th>Required for</th>
<th>Used for Node-to-Node Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>TCP</td>
<td>System port for SSHD.</td>
<td>Appliance deployments of
■ vCenter Server
■ Platform Services Controller</td>
<td>No</td>
</tr>
<tr>
<td>53</td>
<td>DNS service</td>
<td></td>
<td>Windows installations and appliance deployments of Platform Services Controller</td>
<td>No</td>
</tr>
</tbody>
</table>
Table 4-1. Ports Required for Communication Between Components (continued)

<table>
<thead>
<tr>
<th>Port</th>
<th>Protocol</th>
<th>Description</th>
<th>Required for</th>
<th>Used for Node-to-Node Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>TCP</td>
<td>vCenter Server requires port 80 for direct HTTP connections. Port 80 redirects requests to HTTPS port 443. This redirection is useful if you accidentally use http://server instead of https://server. WS-Management (also requires port 443 to be open). If you use a Microsoft SQL database that is stored on the same virtual machine or physical server as the vCenter Server, port 80 is used by the SQL Reporting Service. When you install or upgrade vCenter Server, the installer prompts you to change the HTTP port for vCenter Server. Change the vCenter Server HTTP port to a custom value to ensure a successful installation or upgrade. Important You can only change this port number during the vCenter Server and Platform Services Controller installation.</td>
<td>Windows installations and appliance deployments of vCenter Server and Platform Services Controller</td>
<td>No</td>
</tr>
<tr>
<td>88</td>
<td>TCP</td>
<td>Active Directory server. This port must be open for host to join Active Directory. If you use native Active Directory, the port must be open on both vCenter Server and Platform Services Controller.</td>
<td>Windows installations and appliance deployments of vCenter Server and Platform Services Controller</td>
<td>No</td>
</tr>
<tr>
<td>389</td>
<td>TCP/UDP</td>
<td>This port must be open on the local and all remote instances of vCenter Server. This is the LDAP port number for the Directory Services for the vCenter Server group. If another service is running on this port, it might be preferable to remove it or change its port to a different port. You can run the LDAP service on any port from 1025 through 65535. If this instance is serving as the Microsoft Windows Active Directory, change the port number from 389 to an available port from 1025 through 65535.</td>
<td>Windows installations and appliance deployments of vCenter Server and Platform Services Controller</td>
<td>vCenter Server to Platform Services Controller, Platform Services Controller to Platform Services Controller</td>
</tr>
</tbody>
</table>
Table 4-1. Ports Required for Communication Between Components (continued)

<table>
<thead>
<tr>
<th>Port</th>
<th>Protocol</th>
<th>Description</th>
<th>Required for</th>
<th>Used for Node-to-Node Communication</th>
</tr>
</thead>
</table>
| 443 | TCP | The default port that the vCenter Server system uses to listen for connections from the vSphere Web Client. To enable the vCenter Server system to receive data from the vSphere Web Client, open port 443 in the firewall. The vCenter Server system also uses port 443 to monitor data transfer from SDK clients. This port is also used for the following services:
- WS-Management (also requires port 80 to be open)
- Third-party network management client connections to vCenter Server
- Third-party network management clients access to hosts
Important You only can change this port number during the vCenter Server and Platform Services Controller installation. | Windows installations and appliance deployments of
- vCenter Server
- Platform Services Controller |
- vCenter Server to vCenter Server
- vCenter Server to Platform Services Controller
- Platform Services Controller to vCenter Server |
| 514 | TCP/UDP | vSphere Syslog Collector port for vCenter Server on Windows and vSphere Syslog Service port for vCenter Server Appliance
Important You can change this port number during the vCenter Server and Platform Services Controller installations on Windows. | Windows installations and appliance deployments of
- vCenter Server
- Platform Services Controller | No |
| 636 | TCP | vCenter Single Sign-On LDAPS
For backward compatibility with vSphere 6.0 only. | Windows installations and appliance deployments of
Platform Services Controller | During upgrade from vSphere 6.0 only.
vCenter Server 6.0 to Platform Services Controller 6.5 |
<table>
<thead>
<tr>
<th>Port</th>
<th>Protocol</th>
<th>Description</th>
<th>Required for</th>
<th>Used for Node-to-Node Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>902</td>
<td>TCP/UDP</td>
<td>The default port that the vCenter Server system uses to send data to managed hosts. Managed hosts also send a regular heartbeat over UDP port 902 to the vCenter Server system. This port must not be blocked by firewalls between the server and the hosts or between hosts. Port 902 must not be blocked between the VMware Host Client and the hosts. The VMware Host Client uses this port to display virtual machine consoles. Important You can change this port number during the vCenter Server installations on Windows.</td>
<td>Windows installations and appliance deployments of vCenter Server</td>
<td>No</td>
</tr>
<tr>
<td>1514</td>
<td>TCP</td>
<td>vSphere Syslog Collector TLS port for vCenter Server on Windows and vSphere Syslog Service TLS port for vCenter Server Appliance</td>
<td>Windows installations and appliance deployments of vCenter Server</td>
<td>No</td>
</tr>
<tr>
<td>2012</td>
<td>TCP</td>
<td>Control interface RPC for vCenter Single Sign-On</td>
<td>Windows installations and appliance deployments of Platform Services Controller</td>
<td>vCenter Server to Platform Services Controller, Platform Services Controller to vCenter Server</td>
</tr>
<tr>
<td>2014</td>
<td>TCP</td>
<td>RPC port for all VMCA (VMware Certificate Authority) APIs</td>
<td>Windows installations and appliance deployments of Platform Services Controller</td>
<td>vCenter Server to Platform Services Controller, Platform Services Controller to vCenter Server</td>
</tr>
<tr>
<td>2015</td>
<td>TCP</td>
<td>DNS management</td>
<td>Windows installations and appliance deployments of Platform Services Controller</td>
<td>Platform Services Controller to Platform Services Controller</td>
</tr>
</tbody>
</table>
Table 4-1. Ports Required for Communication Between Components (continued)

<table>
<thead>
<tr>
<th>Port</th>
<th>Protocol</th>
<th>Description</th>
<th>Required for</th>
<th>Used for Node-to-Node Communication</th>
</tr>
</thead>
</table>
| 2020 | TCP/UDP | Authentication framework management | Windows installations and appliance deployments of | vCenter Server to Platform Services Controller
| | | Important You can change this port number during the vCenter Server and Platform Services Controller installations on Windows. | vCenter Server
| | | | Platform Services Controller to vCenter Server | |
| 5480 | TCP | Appliance Management Interface | Appliance deployments of | No |
| | | Important Open endpoint serving all HTTPS, XMLRPS and JSON-RPC requests over HTTPS. | vCenter Server
| | | | Platform Services Controller | |
| 6500 | TCP/UDP | ESXi Dump Collector port | Windows installations and appliance deployments of | No |
| | | Important You can change this port number during the vCenter Server installations on Windows. | vCenter Server | |
| 6501 | TCP | Auto Deploy service | Windows installations and appliance deployments of | No |
| | | Important You can change this port number during the vCenter Server installations on Windows. | vCenter Server | |
| 6502 | TCP | Auto Deploy management | Windows installations and appliance deployments of | No |
| | | Important You can change this port number during the vCenter Server installations on Windows. | vCenter Server | |
| 7080 | TCP | Secure Token Service | Windows installations and appliance deployments of | No |
| | 12721 | | Platform Services Controller | |
| 7081 | TCP | VMware Platform Services Controller Web Client | Windows installations and appliance deployments of | No |
| | | Note Internal port | Platform Services Controller | |
| 7475 | TCP | VMware vSphere Authentication Proxy | Appliance deployments of vCenter Server | Platform Services Controller to vCenter Server |
| | 7476 | | | |
| 8200 | TCP | Appliance management | Appliance deployments of | No |
| 8201 | TCP | | vCenter Server | |
| 8300 | TCP | | Platform Services Controller | |
| 8301 | TCP | | | |
Table 4-1. Ports Required for Communication Between Components (continued)

<table>
<thead>
<tr>
<th>Port</th>
<th>Protocol</th>
<th>Description</th>
<th>Required for</th>
<th>Used for Node-to-Node Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>8084</td>
<td>TCP</td>
<td>vSphere Update Manager SOAP port The port used by vSphere Update Manager client plug-in to connect to the vSphere Update Manager SOAP server.</td>
<td>Appliance deployments of vCenter Server</td>
<td>No</td>
</tr>
<tr>
<td>9084</td>
<td>TCP</td>
<td>vSphere Update Manager Web Server Port The HTTP port used by ESXi hosts to access host patch files from vSphere Update Manager server.</td>
<td>Appliance deployments of vCenter Server</td>
<td>No</td>
</tr>
<tr>
<td>9087</td>
<td>TCP</td>
<td>vSphere Update Manager Web SSL Port The HTTPS port used by vSphere Update Manager client plug-in to upload host upgrade files to vSphere Update Manager server.</td>
<td>Appliance deployments of vCenter Server</td>
<td>No</td>
</tr>
<tr>
<td>9443</td>
<td>TCP</td>
<td>vSphere Web Client HTTPS</td>
<td>Windows installations and appliance deployments of vCenter Server</td>
<td>No</td>
</tr>
</tbody>
</table>

To configure the vCenter Server system to use a different port to receive vSphere Web Client data, see the *vCenter Server and Host Management* documentation.

Additional vCenter Server TCP and UDP Ports

vCenter Server is accessed through predetermined TCP and UDP ports. If you manage network components from outside a firewall, you might be required to reconfigure the firewall to allow access on the appropriate ports.

Required Ports for vCenter Server and Platform Services Controller lists ports that are opened by the installer as part of a default installation. Some additional ports are required for certain services, such as NTP, or applications that are commonly installed with vCenter Server.

In addition to these ports, you can configure other ports depending on your needs.

Table 4-2. vCenter Server TCP and UDP Ports

<table>
<thead>
<tr>
<th>Port</th>
<th>Protocol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>123 (UDP)</td>
<td>UDP</td>
<td>NTP Client. If you are deploying the vCenter Server Appliance on an ESXi host, the two must be time synchronized, usually through an NTP server, and the corresponding port must be open.</td>
</tr>
<tr>
<td>135</td>
<td>UDP</td>
<td>For the vCenter Server Appliance, this port is designated for Active Directory authentication. For a vCenter Server Windows installation, this port is used for Linked Mode and port 88 is used for Active Directory authentication.</td>
</tr>
<tr>
<td>161</td>
<td>UDP</td>
<td>SNMP Server.</td>
</tr>
<tr>
<td>636</td>
<td>TCP</td>
<td>vCenter Single Sign-On LDAPS (6.0 and later)</td>
</tr>
</tbody>
</table>
Table 4-2. vCenter Server TCP and UDP Ports (continued)

<table>
<thead>
<tr>
<th>Port</th>
<th>Protocol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8084, 9084, 9087</td>
<td>TCP</td>
<td>Used by vSphere Update Manager.</td>
</tr>
<tr>
<td>8109</td>
<td>TCP</td>
<td>VMware Syslog Collector. This service is needed if you want to centralize log collection.</td>
</tr>
<tr>
<td>15007, 15008</td>
<td>TCP</td>
<td>vService Manager (VSM). This service registers vCenter Server extensions. Open this port only if required by extensions that you intend to use.</td>
</tr>
<tr>
<td>31031, 44046 (Default)</td>
<td>TCP</td>
<td>vSphere Replication.</td>
</tr>
<tr>
<td>5355</td>
<td>UDP</td>
<td>The systemd-resolve process uses this port to resolve domain names, IPv4 and IPv6 addresses, DNS resource records and services.</td>
</tr>
</tbody>
</table>

The following ports are used only internally.

Table 4-3. vCenter Server TCP and UDP Ports

<table>
<thead>
<tr>
<th>Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5443</td>
<td>vCenter Server graphical user interface internal port.</td>
</tr>
<tr>
<td>5444, 5432</td>
<td>Internal port for monitoring of vPostgreSQL.</td>
</tr>
<tr>
<td>5090</td>
<td>vCenter Server graphical user interface internal port.</td>
</tr>
<tr>
<td>7080</td>
<td>Secure Token Service internal port.</td>
</tr>
<tr>
<td>7081</td>
<td>Platform Services Controller internal port.</td>
</tr>
<tr>
<td>8000</td>
<td>ESXi Dump Collector internal port.</td>
</tr>
<tr>
<td>8006</td>
<td>Used for Virtual SAN health monitoring.</td>
</tr>
<tr>
<td>8085</td>
<td>Internal ports used by the vCenter service (vpxd) SDK.</td>
</tr>
<tr>
<td>8095</td>
<td>VMware vCenter services feed port.</td>
</tr>
<tr>
<td>8098, 8099</td>
<td>Used by VMware Image Builder Manager.</td>
</tr>
<tr>
<td>8190, 8191, 22000, 22100, 21100</td>
<td>VMware vSphere Profile-Driven Storage Service.</td>
</tr>
<tr>
<td>8200, 8201, 5480</td>
<td>Appliance management internal ports.</td>
</tr>
<tr>
<td>8300, 8301</td>
<td>Appliance management reserved ports.</td>
</tr>
<tr>
<td>8900</td>
<td>Monitoring API internal port.</td>
</tr>
<tr>
<td>9090</td>
<td>Internal port for vSphere Web Client.</td>
</tr>
<tr>
<td>10080</td>
<td>Inventory service internal port</td>
</tr>
</tbody>
</table>
Table 4-3. vCenter Server TCP and UDP Ports (continued)

<table>
<thead>
<tr>
<th>Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10201</td>
<td>Message Bus Configuration Service internal port.</td>
</tr>
<tr>
<td>11080</td>
<td>vCenter Server Appliance internal ports for HTTP and for splash screen.</td>
</tr>
<tr>
<td>12721</td>
<td>Secure Token Service internal port.</td>
</tr>
<tr>
<td>12080</td>
<td>License service internal port.</td>
</tr>
<tr>
<td>12346, 12347, 4298</td>
<td>Internal port for VMware Cloud Management SDKs (vAPI).</td>
</tr>
<tr>
<td>13080, 6070</td>
<td>Used internally by the Performance Charts service.</td>
</tr>
<tr>
<td>14080</td>
<td>Used internally by the syslog service.</td>
</tr>
<tr>
<td>15005, 15006</td>
<td>ESX Agent Manager internal port.</td>
</tr>
<tr>
<td>16666, 16667</td>
<td>Content Library ports.</td>
</tr>
</tbody>
</table>

In addition, the vCenter Server Appliance uses ephemeral ports from 32768 through 60999 for vPostgres services.

The following ports are required between vCenter High Availability (VCHA) nodes.

Table 4-4. Firewall Port Requirement for VCHA Private IP

<table>
<thead>
<tr>
<th>Port</th>
<th>Protocol</th>
<th>Nodes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>TCP</td>
<td>Between all three nodes Bidirectional.</td>
<td>System port for SSHD</td>
</tr>
<tr>
<td>5432</td>
<td>TCP</td>
<td>Between Primary and Secondary Bidirectional.</td>
<td>Postgres</td>
</tr>
<tr>
<td>8182</td>
<td>TCP</td>
<td>Between all three nodes Bidirectional.</td>
<td>Fault Domain Manager</td>
</tr>
<tr>
<td>8182</td>
<td>UDP</td>
<td>Between all three nodes Bidirectional.</td>
<td>Fault Domain Manager</td>
</tr>
</tbody>
</table>
Securing Virtual Machines

The guest operating system that runs in the virtual machine is subject to the same security risks as a physical system. Secure virtual machines just like physical machines, and follow best practices discussed in this document and in the Security Configuration Guide (formerly known as the Hardening Guide).

This chapter includes the following topics:

- Enable or Disable UEFI Secure Boot for a Virtual Machine
- Limit Informational Messages from Virtual Machines to VMX Files
- Prevent Virtual Disk Shrinking
- Virtual Machine Security Best Practices

Enable or Disable UEFI Secure Boot for a Virtual Machine

UEFI Secure Boot is a security standard that helps ensure that your PC boots using only software that is trusted by the PC manufacturer. For certain virtual machine hardware versions and operating systems, you can enable secure boot just as you can for a physical machine.

In an operating system that supports UEFI secure boot, each piece of boot software is signed, including the bootloader, the operating system kernel, and operating system drivers. The virtual machine's default configuration includes several code signing certificates.

- A Microsoft certificate that is used only for booting Windows.
- A Microsoft certificate that is used for third-party code that is signed by Microsoft, such as Linux bootloaders.
- A VMware certificate that is used only for booting ESXi inside a virtual machine.

The virtual machine's default configuration includes one certificate for authenticating requests to modify the secure boot configuration, including the secure boot revocation list, from inside the virtual machine, which is a Microsoft KEK (Key Exchange Key) certificate.

In almost all cases, it is not necessary to replace the existing certificates. If you do want to replace the certificates, see the VMware Knowledge Base system.

VMware Tools version 10.1 or later is required for virtual machines that use UEFI secure boot. You can upgrade those virtual machines to a later version of VMware Tools when it becomes available.
For Linux virtual machines, VMware Host-Guest Filesystem is not supported in secure boot mode. Remove VMware Host-Guest Filesystem from VMware Tools before you enable secure boot.

Note If you turn on secure boot for a virtual machine, you can load only signed drivers into that virtual machine.

This task describes how to use the vSphere Client to enable and disable secure boot for a virtual machine. You can also write scripts to manage virtual machine settings. For example, you can automate changing the firmware from BIOS to EFI for virtual machines with the following PowerCLI code:

```powershell
$vm = Get-VM TestVM

$spec = New-Object VMware.Vim.VirtualMachineConfigSpec
$spec.Firmware = [VMware.Vim.GuestOsDescriptorFirmwareType]:efi
$vm.ExtensionData.ReconfigVM($spec)
```

See *VMware PowerCLI User's Guide* for more information.

Prerequisites

You can enable secure boot only if all prerequisites are met. If prerequisites are not met, the check box is not visible in the vSphere Client.

- Verify that the virtual machine operating system and firmware support UEFI boot.
 - EFI firmware
 - Virtual hardware version 13 or later.
 - Operating system that supports UEFI secure boot.

Note Some guest operating systems do not support changing from BIOS boot to UEFI boot without guest OS modifications. Consult your guest OS documentation before changing to UEFI boot. If you upgrade a virtual machine that already uses UEFI boot to an operating system that supports UEFI secure boot, you can enable Secure Boot for that virtual machine.

- Turn off the virtual machine. If the virtual machine is running, the check box is dimmed.

Procedure

1. Browse to the virtual machine in the vSphere Client inventory.
2. Right-click the virtual machine and select **Edit Settings**.
3. Click the **VM Options** tab, and expand **Boot Options**.
4. Under **Boot Options**, ensure that firmware is set to **EFI**.
5. Select your task.
 - Select the **Secure Boot** check box to enable secure boot.
 - Deselect the **Secure Boot** check box to disable secure boot.
6. Click **OK**.
When the virtual machine boots, only components with valid signatures are allowed. The boot process stops with an error if it encounters a component with a missing or invalid signature.

Limit Informational Messages from Virtual Machines to VMX Files

Limit informational messages from the virtual machine to the VMX file to avoid filling the datastore and causing a Denial of Service (DoS). A DoS can occur when you do not control the size of a virtual machine's VMX file and the amount of information exceeds datastore capacity.

The virtual machine configuration file (VMX file) limit is 1 MB by default. In general, this capacity is sufficient, but you can change this value if necessary. For example, you might increase the limit if you store large amounts of custom information in the file.

Note Consider carefully how much information you require. If the amount of information exceeds datastore capacity, a DoS can result.

The default limit of 1 MB is applied even when the `tools.setInfo.sizeLimit` parameter is not listed in the advanced options.

Procedure

1. Browse to the virtual machine in the vSphere Client inventory.
2. Right-click the virtual machine and click **Edit Settings**.
3. Select **VM Options**.
4. Click **Advanced** and click **Edit Configuration**.
5. Add or edit the `tools.setInfo.sizeLimit` parameter.

Prevent Virtual Disk Shrinking

Nonadministrative users in the guest operating system can shrink virtual disks. Shrinking a virtual disk reclaims the disk's unused space. However, if you shrink a virtual disk repeatedly, the disk can become unavailable and cause a denial of service. To prevent this, disable the ability to shrink virtual disks.

Prerequisites

- Turn off the virtual machine.
- Verify that you have root or administrator privileges on the virtual machine.

Procedure

1. Browse to the virtual machine in the vSphere Client inventory.
2. Right-click the virtual machine and click **Edit Settings**.
3. Select **VM Options**.
Click **Advanced** and click **Edit Configuration**.

Add or edit the following parameters.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>isolation.tools.diskWiper.disable</td>
<td>TRUE</td>
</tr>
<tr>
<td>isolation.tools.diskShrink.disable</td>
<td>TRUE</td>
</tr>
</tbody>
</table>

Click **OK**.

When you disable this feature, you cannot shrink virtual machine disks when a datastore runs out of space.

Virtual Machine Security Best Practices

Following virtual machine security best practices helps ensure the integrity of your vSphere deployment.

- **General Virtual Machine Protection**

 A virtual machine is, in most respects, the equivalent of a physical server. Employ the same security measures in virtual machines that you do for physical systems.

- **Use Templates to Deploy Virtual Machines**

 When you manually install guest operating systems and applications on a virtual machine, you introduce a risk of misconfiguration. By using a template to capture a hardened base operating system image with no applications installed, you can ensure that all virtual machines are created with a known baseline level of security.

- **Minimize Use of the Virtual Machine Console**

 The virtual machine console provides the same function for a virtual machine that a monitor provides on a physical server. Users with access to the virtual machine console have access to virtual machine power management and removable device connectivity controls. Console access might therefore allow a malicious attack on a virtual machine.

- **Prevent Virtual Machines from Taking Over Resources**

 When one virtual machine consumes so much of the host resources that other virtual machines on the host cannot perform their intended functions, a Denial of Service (DoS) might occur. To prevent a virtual machine from causing a DoS, use host resource management features such as setting Shares and using resource pools.

- **Disable Unnecessary Functions Inside Virtual Machines**

 Any service that is running in a virtual machine provides the potential for attack. By disabling system components that are not necessary to support the application or service that is running on the system, you reduce the potential.
General Virtual Machine Protection

A virtual machine is, in most respects, the equivalent of a physical server. Employ the same security measures in virtual machines that you do for physical systems.

Follow these best practices to protect your virtual machine:

Patches and other protection
Keep all security measures up-to-date, including applying appropriate patches. It is especially important to keep track of updates for dormant virtual machines that are powered off, because it can be easy to overlook them. For example, ensure that anti-virus software, anti-spy ware, intrusion detection, and other protection are enabled for every virtual machine in your virtual infrastructure. You should also ensure that you have enough space for the virtual machine logs.

Anti-virus scans
Because each virtual machine hosts a standard operating system, you must protect it from viruses by installing anti-virus software. Depending on how you are using the virtual machine, you might also want to install a software firewall.

Stagger the schedule for virus scans, particularly in deployments with a large number of virtual machines. Performance of systems in your environment degrades significantly if you scan all virtual machines simultaneously. Because software firewalls and antivirus software can be virtualization-intensive, you can balance the need for these two security measures against virtual machine performance, especially if you are confident that your virtual machines are in a fully trusted environment.

Serial ports
Serial ports are interfaces for connecting peripherals to the virtual machine. They are often used on physical systems to provide a direct, low-level connection to the console of a server, and a virtual serial port allows for the same access to a virtual machine. Serial ports allow for low-level access, which often does not have strong controls like logging or privileges.

Use Templates to Deploy Virtual Machines

When you manually install guest operating systems and applications on a virtual machine, you introduce a risk of misconfiguration. By using a template to capture a hardened base operating system image with no applications installed, you can ensure that all virtual machines are created with a known baseline level of security.

You can use templates that can contain a hardened, patched, and properly configured operating system to create other, application-specific templates, or you can use the application template to deploy virtual machines.
Procedure

- Provide templates for virtual machine creation that contain hardened, patched, and properly configured operating system deployments.

 If possible, deploy applications in templates as well. Ensure that the applications do not depend on information specific to the virtual machine to be deployed.

What to do next

For more information about templates, see the vSphere Virtual Machine Administration documentation.

Minimize Use of the Virtual Machine Console

The virtual machine console provides the same function for a virtual machine that a monitor provides on a physical server. Users with access to the virtual machine console have access to virtual machine power management and removable device connectivity controls. Console access might therefore allow a malicious attack on a virtual machine.

Procedure

1. Use native remote management services, such as terminal services and SSH, to interact with virtual machines.

 Grant access to the virtual machine console only when necessary.

2. Limit the connections to the virtual machine console.

 For example, in a highly secure environment, limit the connection to one. In some environments, you can increase the limit if several concurrent connections are necessary to accomplish normal tasks.
 a. In the vSphere Client, power off the virtual machine.
 b. Right-click the virtual machine and select Edit Settings.
 c. Click the VM Options tab, and expand VMware Remote Console Options.
 d. Enter the maximum number of sessions, for example, 1.
 e. Click OK.

Prevent Virtual Machines from Taking Over Resources

When one virtual machine consumes so much of the host resources that other virtual machines on the host cannot perform their intended functions, a Denial of Service (DoS) might occur. To prevent a virtual machine from causing a DoS, use host resource management features such as setting Shares and using resource pools.

By default, all virtual machines on an ESXi host share resources equally. You can use Shares and resource pools to prevent a denial of service attack that causes one virtual machine to consume so much of the host’s resources that other virtual machines on the same host cannot perform their intended functions.

Do not use Limits unless you fully understand the impact.
Procedure

1. Provision each virtual machine with just enough resources (CPU and memory) to function properly.
2. Use Shares to guarantee resources to critical virtual machines.
3. Group virtual machines with similar requirements into resource pools.
4. In each resource pool, leave Shares set to the default to ensure that each virtual machine in the pool receives approximately the same resource priority.

 With this setting, a single virtual machine cannot use more than other virtual machines in the resource pool.

What to do next

See the vSphere Resource Management documentation for information about shares and limits.

Disable Unnecessary Functions Inside Virtual Machines

Any service that is running in a virtual machine provides the potential for attack. By disabling system components that are not necessary to support the application or service that is running on the system, you reduce the potential.

Virtual machines do not usually require as many services or functions as physical servers. When you virtualize a system, evaluate whether a particular service or function is necessary.

Procedure

- Disable unused services in the operating system.

 For example, if the system runs a file server, turn off any Web services.
- Disconnect unused physical devices, such as CD/DVD drives, floppy drives, and USB adapters.
- Disable unused functionality, such as unused display features, or VMware Shared Folders, which enables sharing of host files to the virtual machine (Host Guest File System).
- Turn off screen savers.
- Do not run the X Window system on top of Linux, BSD, or Solaris guest operating systems unless it is necessary.

Remove Unnecessary Hardware Devices

Any enabled or connected device represents a potential attack channel. Users and processes with privileges on a virtual machine can connect or disconnect hardware devices, such as network adapters and CD-ROM drives. Attackers can use this capability to breach virtual machine security. Removing unnecessary hardware devices can help prevent attacks.

An attacker with access to a virtual machine can connect a disconnected hardware device and access sensitive information on media that is left in a hardware device. The attacker can potentially disconnect a network adapter to isolate the virtual machine from its network, resulting in a denial of service.

- Do not connect unauthorized devices to the virtual machine.
- Remove unneeded or unused hardware devices.
- Disable unnecessary virtual devices from within a virtual machine.
- Ensure that only required devices are connected to a virtual machine. Virtual machines rarely use serial or parallel ports. As a rule, CD/DVD drives are connected only temporarily during software installation.

Procedure

1. Browse to the virtual machine in the vSphere Client inventory.
2. Right-click the virtual machine and click **Edit Settings**.
3. Disable hardware devices that are not required.

 Include checks for the following devices:
 - Floppy drives
 - Serial ports
 - Parallel ports
 - USB controllers
 - CD-ROM drives

Disable Unused Display Features

Attacker can use an unused display feature as a vector for inserting malicious code into your environment. Disable features that are not in use in your environment.

Procedure

1. Browse to the virtual machine in the vSphere Client inventory.
2. Right-click the virtual machine and click **Edit Settings**.
3. Select **VM Options**.
4. Click **Advanced** and click **Edit Configuration**.
5. If appropriate, add or edit the following parameters.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>svga.vgaonly</td>
<td>If you set this parameter to TRUE, advanced graphics functions no longer work. Only character-cell console mode is available. If you use this setting, mks.enable3d has no effect.</td>
</tr>
<tr>
<td></td>
<td>Note Apply this setting only to virtual machines that do not need a virtualized video card.</td>
</tr>
<tr>
<td>mks.enable3d</td>
<td>Set this parameter to FALSE on virtual machines that do not require 3D functionality.</td>
</tr>
</tbody>
</table>
Disable Unexposed Features

VMware virtual machines can work both in a vSphere environment and on hosted virtualization platforms such as VMware Workstation and VMware Fusion. Certain virtual machine parameters do not need to be enabled when you run a virtual machine in a vSphere environment. Disable these parameters to reduce the potential for vulnerabilities.

Prerequisites

Turn off the virtual machine.

Procedure

1. Browse to the virtual machine in the vSphere Client inventory.
2. Right-click the virtual machine and click **Edit Settings**.
3. Select **VM Options**.
4. Click **Advanced** and click **Edit Configuration**.
5. Set the following parameters to TRUE by adding or editing them.
 - isolation.tools.unity.push.update.disable
 - isolation.tools.ghi.launchmenu.change
 - isolation.tools.memSchedFakeSampleStats.disable
 - isolation.tools.getCreds.disable
 - isolation.tools.ghi.autologon.disable
 - isolation.bios.bbs.disable
 - isolation.tools.hgfsServerSet.disable
6. Click **OK**.

Disable VMware Shared Folders Sharing Host Files to the Virtual Machine

In high-security environments, you can disable certain components to minimize the risk that an attacker can use the host guest file system (HGFS) to transfer files inside the guest operating system.

Modifying the parameters described in this section affects only the Shared Folders feature and does not affect the HGFS server running as part of tools in the guest virtual machines. Also, these parameters do not affect the auto-upgrade and VIX commands that use the tools’ file transfers.

Procedure

1. Browse to the virtual machine in the vSphere Client inventory.
2. Right-click the virtual machine and click **Edit Settings**.
3. Select **VM Options**.
4. Click **Advanced** and click **Edit Configuration**.
5 Verify that the `isolation.tools.hgfsServerSet.disable` parameter is set to TRUE.

A setting of TRUE prevents the VMX process from receiving a notification from each tool's service, daemon, or upgrader processes of its HGFS server capability.

6 (Optional) Verify that the `isolation.tools.hgfs.disable` parameter is set to TRUE.

A setting of TRUE disables the unused VMware Shared Folders feature for sharing host files to the virtual machine.

Disable Copy and Paste Operations Between Guest Operating System and Remote Console

Copy and paste operations between the guest operating system and remote console are disabled by default. For a secure environment, retain the default setting. If you require copy and paste operations, you must enable them using the vSphere Client.

The default values for these options are set to ensure a secure environment. However, you must set them to true explicitly if you want to enable audit tools to check that the setting is correct.

Prerequisites

Turn off the virtual machine.

Procedure

1 Browse to the virtual machine in the vSphere Client inventory.
2 Right-click the virtual machine and click **Edit Settings**.
3 Select **VM Options**.
4 Click **Advanced** and click **Edit Configuration**.
5 Ensure that the following values are in the Name and Value columns, or add them.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>isolation.tools.copy.disable</td>
<td>true</td>
</tr>
<tr>
<td>isolation.tools.paste.disable</td>
<td>true</td>
</tr>
<tr>
<td>isolation.tools.setGUIOptions.enable</td>
<td>false</td>
</tr>
</tbody>
</table>

These options override any settings made in the guest operating system's VMware Tools control panel.

6 Click **OK**.

7 (Optional) If you made changes to the configuration parameters, restart the virtual machine.

Limiting Exposure of Sensitive Data Copied to the Clipboard

Copy and paste operations are disabled by default for hosts to prevent exposing sensitive data that has been copied to the clipboard.
When copy and paste is enabled on a virtual machine running VMware Tools, you can copy and paste between the guest operating system and remote console. When the console window gains focus, processes running in the virtual machine and non-privileged users can access the virtual machine console clipboard. If a user copies sensitive information to the clipboard before using the console, the use might expose sensitive data to the virtual machine. To prevent this problem, copy and paste operations for the guest operating system are disabled by default.

It is possible to enable copy and paste operations for virtual machines if necessary.

Restrict Users from Running Commands Within a Virtual Machine

By default, a user who has the vCenter Server Administrator role can interact with files and applications within a virtual machine's guest operating system. To reduce the risk of breaching guest confidentiality, availability, or integrity, create a nonguest access role without the **Guest Operations** privilege. Assign that role to administrators who do not need virtual machine file access.

For security, be as restrictive about allowing access to the virtual data center as you are to the physical data center. Apply a custom role that disables guest access to users who require administrator privileges, but who are not authorized to interact with guest operating system files and applications.

For example, a configuration might include a virtual machine on the infrastructure that has sensitive information on it.

If tasks such as migration with vMotion require that data center administrators can access the virtual machine, disable some remote guest OS operations to ensure that those administrators cannot access sensitive information.

Prerequisites

Verify that you have **Administrator** privileges on the vCenter Server system where you create the role.

Procedure

1. Log in to the vSphere Client as a user who has **Administrator** privileges on the vCenter Server system where you want to create the role.
2. Select **Administration** and click **Roles**.
3. Click the Administrator role and click the **Clone role action** icon.
4. Enter a role name and description and click **OK**.

 For example, type **Administrator No Guest Access**.
5. Select the cloned role and click the **Edit role action** icon.
6. Under the **Virtual machine** privilege, deselect **Guests operations** and click **Next**.
7. Click **Finish**.
What to do next

Select the vCenter Server system or the host and assign a permission that pairs the user or group that should have the new privileges to the newly created role. Remove those users from the Administrator role.

Prevent a Virtual Machine User or Process from Disconnecting Devices

Users and processes without root or Administrator privileges within virtual machines can connect or disconnect devices, such as network adapters and CD-ROM drives, and can modify device settings. To increase virtual machine security, remove these devices. If you do not want to remove a device, you can change guest operating system settings to prevent virtual machine users or processes from changing the device status.

Prerequisites

Turn off the virtual machine.

Procedure

1. Browse to the virtual machine in the vSphere Client inventory.
2. Right-click the virtual machine and click **Edit Settings**.
3. Select **VM Options**.
4. Click **Advanced** and click **Edit Configuration**.
5. Verify that the following values are in the Name and Value columns, or add them.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>isolation.device.connectable.disable</td>
<td>true</td>
</tr>
<tr>
<td>isolation.device.edit.disable</td>
<td>true</td>
</tr>
</tbody>
</table>

These options override any settings made in the guest operating system's VMware Tools control panel.

6. Click **OK** to close the Configuration Parameters dialog box, and click **OK** again.

Prevent Guest Operating System Processes from Sending Configuration Messages to the Host

To ensure that the guest operating system does not modify configuration settings, you can prevent these processes from writing any name-value pairs to the configuration file.

Prerequisites

Turn off the virtual machine.

Procedure

1. Browse to the virtual machine in the vSphere Client inventory.
2. Right-click the virtual machine and click **Edit Settings**.
3 Select VM Options.

4 Click Advanced and click Edit Configuration.

5 Click Add Configuration Params and enter the following values in the Name and Value columns.

<table>
<thead>
<tr>
<th>Column</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>isolation.tools.setinfo.disable</td>
</tr>
<tr>
<td>Value</td>
<td>true</td>
</tr>
</tbody>
</table>

6 Click OK to close the Configuration Parameters dialog box, and click OK again.

Avoid Using Independent Nonpersistent Disks

When you use independent nonpersistent disks, successful attackers can remove any evidence that the machine was compromised by shutting down or rebooting the system. Without a persistent record of activity on a virtual machine, administrators might be unaware of an attack. Therefore, you should avoid using independent nonpersistent disks.

Procedure

- Ensure that virtual machine activity is logged remotely on a separate server, such as a syslog server or equivalent Windows-based event collector.

 If remote logging of events and activity is not configured for the guest, scsiX:Y.mode should be one of the following settings:
 - Not present
 - Not set to independent nonpersistent

When nonpersistent mode is not enabled, you cannot roll a virtual machine back to a known state when you reboot the system.
Virtual Machine Encryption

Starting with vSphere 6.5, you can take advantage of virtual machine encryption. Encryption protects not only your virtual machine but also virtual machine disks and other files. You set up a trusted connection between vCenter Server and a key management server (KMS). vCenter Server can then retrieve keys from the KMS as needed.

You manage different aspects of virtual machine encryption in different ways.

- Manage setup of the trusted connection with the KMS and perform most encryption workflows from the vSphere Client.
- Manage automation of some advanced features from the vSphere Web Services SDK. See vSphere Web Services SDK Programming Guide and VMware vSphere API Reference.
- Use the crypto-util command-line tool directly on the ESXi host for some special cases, for example, to decrypt the core dumps in a vm-support bundle.

vSphere Virtual Machine Encryption Overview
(http://link.brightcove.com/services/player/bcpid2296383276001?bctid=ref:video_vsphere_virtual_machine_encryption_overview)

This chapter includes the following topics:

- How vSphere Virtual Machine Encryption Protects Your Environment
- vSphere Virtual Machine Encryption Components
- Encryption Process Flow
- Virtual Disk Encryption
- Prerequisites and Required Privileges for Encryption Tasks
- Encrypted vSphere vMotion
- Encryption Best Practices, Caveats, and Interoperability

How vSphere Virtual Machine Encryption Protects Your Environment

With vSphere Virtual Machine Encryption, you can create encrypted virtual machines and encrypt existing virtual machines. Because all virtual machine files with sensitive information are encrypted, the virtual machine is protected. Only administrators with encryption privileges can perform encryption and decryption tasks.
What Keys Are Used

Two types of keys are used for encryption.

- The ESXi host generates and uses internal keys to encrypt virtual machines and disks. These keys are used as data encryption keys (DEKs) and are XTS-AES-256 keys.

- vCenter Server requests keys from the KMS. These keys are used as the key encryption key (KEK) and are AES-256 keys. vCenter Server stores only the ID of each KEK, but not the key itself.

- ESXi uses the KEK to encrypt the internal keys, and stores the encrypted internal key on disk. ESXi does not store the KEK on disk. If a host reboots, vCenter Server requests the KEK with the corresponding ID from the KMS and makes it available to ESXi. ESXi can then decrypt the internal keys as needed.

What Is Encrypted

vSphere Virtual Machine Encryption supports encryption of virtual machine files, virtual disk files, and core dump files.

Virtual machine files

Most virtual machine files, in particular, guest data that are not stored in the VMDK file, are encrypted. This set of files includes but is not limited to the NVRAM, VSWP, and VMSN files. The key that vCenter Server retrieves from the KMS unlocks an encrypted bundle in the VMX file that contains internal keys and other secrets.

If you are using the vSphere Client to create an encrypted virtual machine, you can encrypt and decrypt virtual disks separate from virtual machine files. If you are using the vSphere Web Client to create an encrypted virtual machine, all virtual disks are encrypted by default. For other encryption tasks, for both clients, such as encrypting an existing virtual machine, you can encrypt and decrypt virtual disks separate from virtual machine files.

Virtual disk files

Data in an encrypted virtual disk (VMDK) file is never written in cleartext to storage or physical disk, and is never transmitted over the network in cleartext. The VMDK descriptor file is mostly cleartext, but contains a key ID for the KEK and the internal key (DEK) in the encrypted bundle.

Note You cannot associate an encrypted virtual disk with a virtual machine that is not encrypted.
You can use the vSphere API to perform either a shallow recrypt operation with a new KEK or deep recrypt operation with a new internal key.

Core dumps

Core dumps on an ESXi host that has encryption mode enabled are always encrypted. See [vSphere Virtual Machine Encryption and Core Dumps](#).

Note Core dumps on the vCenter Server system are not encrypted. Protect access to the vCenter Server system.

Note For information on some limitations concerning devices and features that vSphere Virtual Machine Encryption can interoperate with, see [Virtual Machine Encryption Interoperability](#).

What Is Not Encrypted

Some of the files that are associated with a virtual machine are not encrypted or partially encrypted.

Log files

Log files are not encrypted because they do not contain sensitive data.

Virtual machine configuration files

Most of the virtual machine configuration information, stored in the VMX and VMSD files, is not encrypted.

Virtual disk descriptor file

To support disk management without a key, most of the virtual disk descriptor file is not encrypted.

Who Can Perform Cryptographic Operations

Only users that are assigned the **Cryptographic Operations** privileges can perform cryptographic operations. The privilege set is fine grained. See [Cryptographic Operations Privileges](#). The default Administrator system role includes all **Cryptographic Operations** privileges. A new role, **No Cryptography Administrator**, supports all Administrator privileges except for the **Cryptographic Operations** privileges.

You can create additional custom roles, for example, to allow a group of users to encrypt virtual machines but to prevent them from decrypting virtual machines.

How Can I Perform Cryptographic Operations

The vSphere Client and vSphere Web Client support many of the cryptographic operations. For other tasks, you can use the vSphere API.
Table 6-1. Interfaces for Performing Cryptographic Operations

<table>
<thead>
<tr>
<th>Interface</th>
<th>Operations</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>vSphere Client or vSphere Web Client</td>
<td>Create encrypted virtual machine</td>
<td>This book.</td>
</tr>
<tr>
<td></td>
<td>Encrypt and decrypt virtual machines</td>
<td></td>
</tr>
<tr>
<td>vSphere Web Services SDK</td>
<td>Create encrypted virtual machine</td>
<td>vSphere Web Services SDK Programming Guide</td>
</tr>
<tr>
<td></td>
<td>Encrypt and decrypt virtual machines</td>
<td>VMware vSphere API Reference</td>
</tr>
<tr>
<td></td>
<td>Perform a deep recrypt of a virtual machine (use a different DEK).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Perform a shallow recrypt of a virtual machine (use a different KEK).</td>
<td></td>
</tr>
<tr>
<td>crypto-util</td>
<td>Decrypt encrypted core dumps, check whether files are encrypted, and perform other management tasks directly on the ESXi host.</td>
<td>Command-line help. vSphere Virtual Machine Encryption and Core Dumps</td>
</tr>
</tbody>
</table>

vSphere Virtual Machine Encryption Components

An external KMS, the vCenter Server system, and your ESXi hosts are contributing to the vSphere Virtual Machine Encryption solution.

Figure 6-1. vSphere Virtual Encryption Architecture

![vSphere Virtual Encryption Architecture](image)

Key Management Server

vCenter Server requests keys from an external KMS. The KMS generates and stores the keys, and passes them to vCenter Server for distribution.

You can use the vSphere Web Client or the vSphere API to add a cluster of KMS instances to the vCenter Server system. If you use multiple KMS instances in a cluster, all instances must be from the same vendor and must replicate keys.
If your environment uses different KMS vendors in different environments, you can add a KMS cluster for each KMS and specify a default KMS cluster. The first cluster that you add becomes the default cluster. You can explicitly specify the default later.

As a KMIP client, vCenter Server uses the Key Management Interoperability Protocol (KMIP) to make it easy to use the KMS of your choice.

vCenter Server

Only vCenter Server has the credentials for logging in to the KMS. Your ESXi hosts do not have those credentials. vCenter Server obtains keys from the KMS and pushes them to the ESXi hosts. vCenter Server does not store the KMS keys, but keeps a list of key IDs.

vCenter Server checks the privileges of users who perform cryptographic operations. You can use the vSphere Web Client to assign cryptographic operation privileges or to assign the **No cryptography administrator** custom role to groups of users. See [Prerequisites and Required Privileges for Encryption Tasks](#).

vCenter Server adds cryptography events to the list of events that you can view and export from the vSphere Web Client Event Console. Each event includes the user, time, key ID, and cryptographic operation.

The keys that come from the KMS are used as key encryption keys (KEKs).

ESXi Hosts

ESXi hosts are responsible for several aspects of the encryption workflow.

- vCenter Server pushes keys to an ESXi host when the host needs a key. The host must have encryption mode enabled. The current user's role must include cryptographic operation privileges. See [Prerequisites and Required Privileges for Encryption Tasks](#) and [Cryptographic Operations Privileges](#).

- Ensuring that guest data for encrypted virtual machines is encrypted when stored on disk.

- Ensuring that guest data for encrypted virtual machines is not sent over the network without encryption.

The keys that the ESXi host generates are called internal keys in this document. These keys typically act as data encryption keys (DEKs).

Encryption Process Flow

After vCenter Server is connected to the KMS, users with the required privileges can create encrypted virtual machines and disks. Those users can also perform other encryption tasks such as encrypting existing virtual machines and decrypting encrypted virtual machines.

The process flow includes the KMS, the vCenter Server, and the ESXi host.
During the encryption process, different vSphere components interact as follows.

1. When the user performs an encryption task, for example, creating an encrypted virtual machine, vCenter Server requests a new key from the default KMS. This key will be used as the KEK.

2. vCenter Server stores the key ID and passes the key to the ESXi host. If the ESXi host is part of a cluster, vCenter Server sends the KEK to each host in the cluster.

 The key itself is not stored on the vCenter Server system. Only the key ID is known.

3. The ESXi host generates internal keys (DEKs) for the virtual machine and its disks. It keeps the internal keys in memory only, and uses the KEKs to encrypt internal keys.

 Unencrypted internal keys are never stored on disk. Only encrypted data is stored. Because the KEKs come from the KMS, the host continues to use the same KEKs.

4. The ESXi host encrypts the virtual machine with the encrypted internal key.

 Any hosts that have the KEK and that can access the encrypted key file can perform operations on the encrypted virtual machine or disk.

If you later want to decrypt a virtual machine, you change its storage policy. You can change the storage policy for the virtual machine and all disks. If you want to decrypt individual components, decrypt selected disks first, then decrypt the virtual machine by changing the storage policy for VM Home. Both keys are required for decryption of each component.

[Link to video: Encrypting Virtual Machines and Disks](http://link.brightcove.com/services/player/bcpid2296383276001?bctid=ref:video_encrypting_vms_and_disks)
Virtual Disk Encryption

When you create an encrypted virtual machine from the vSphere Client, you can decide which disks to exclude from encryption. When you create an encrypted virtual machine from the vSphere Web Client, all virtual disks are encrypted. You can later add disks and set their encryption policies. You cannot add an encrypted disk to a virtual machine that is not encrypted, and you cannot encrypt a disk if the virtual machine is not encrypted.

Encryption for a virtual machine and its disks is controlled through storage policies. The storage policy for VM Home governs the virtual machine itself, and each virtual disk has an associated storage policy.

- Setting the storage policy of VM Home to an encryption policy encrypts only the virtual machine itself.
- Setting the storage policy of VM Home and all the disks to an encryption policy encrypts all components.

Consider the following use cases.

Table 6-2. Virtual Disk Encryption Use Cases

<table>
<thead>
<tr>
<th>Use case</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create an encrypted virtual machine.</td>
<td>If you add disks while creating an encrypted virtual machine, the disks are encrypted by default. You can change the policy to not encrypt one or more of the disks. After virtual machine creation, you can explicitly change the storage policy for each disk. See Change the Encryption Policy for Virtual Disks.</td>
</tr>
<tr>
<td>Encrypt a virtual machine.</td>
<td>To encrypt an existing virtual machine, you change its storage policy. You can change the storage policy for the virtual machine and all virtual disks. To encrypt just the virtual machine, you can specify an encryption policy for VM Home and select a different storage policy, such as Datastore Default, for each virtual disk. See Create an Encrypted Virtual Machine.</td>
</tr>
<tr>
<td>Add an existing unencrypted disk to an encrypted virtual machine (encryption storage policy).</td>
<td>Fails with an error. You have to add the disk with the default storage policy, but can later change the storage policy. See Change the Encryption Policy for Virtual Disks.</td>
</tr>
<tr>
<td>Add an existing unencrypted disk to an encrypted virtual machine with a storage policy that does not include encryption, for example Datastore Default.</td>
<td>The disk uses the default storage policy. You can explicitly change the storage policy after adding the disk if you want an encrypted disk. See Change the Encryption Policy for Virtual Disks.</td>
</tr>
<tr>
<td>Add an encrypted disk to an encrypted virtual machine. VM Home storage policy is Encryption.</td>
<td>When you add the disk, it remains encrypted. The vSphere Web Client displays the size and other attributes, including encryption status but might not display the correct storage policy. For consistency, change the storage policy.</td>
</tr>
<tr>
<td>Add an existing encrypted disk to an unencrypted virtual machine</td>
<td>This use case is not supported.</td>
</tr>
</tbody>
</table>
Prerequisites and Required Privileges for Encryption Tasks

Encryption tasks are possibly only in environments that include vCenter Server. In addition, the ESXi host must have encryption mode enabled for most encryption tasks. The user who performs the task must have the appropriate privileges. A set of Cryptographic Operations privileges allows fine-grained control. If virtual machine encryption tasks require a change to the host encryption mode, additional privileges are required.

Cryptography Privileges and Roles

By default, the user with the vCenter Server Administrator role has all privileges. The No cryptography administrator role does not have the following privileges that are required for cryptographic operations.

- Add Cryptographic Operations privileges.
- Global.Diagnostics
- Host.Inventory.Add host to cluster
- Host.Inventory.Add standalone host
- Host.Local operations.Manage user groups

You can assign the No cryptography administrator role to vCenter Server administrators that do not need Cryptographic Operations privileges.

To further limit what users can do, you can clone the No cryptography administrator role and create a custom role with only some of the Cryptographic Operations privileges. For example, you can create a role that allows users to encrypt but not to decrypt virtual machines. See Using Roles to Assign Privileges.

Host Encryption Mode

Host encryption mode determines if an ESXi host is ready to accept cryptographic material for the purpose of encrypting virtual machines and virtual disks. Before any cryptographic operations can occur on a host, host encryption mode must be enabled. Host encryption mode is often enabled automatically, but it can be enabled explicitly. You can check and explicitly set the current host encryption mode from the vSphere Client or by using the vSphere API.

When host encryption mode is enabled, vCenter Server installs a host key on the host, which ensures that the host is cryptographically "safe." With the host key in place, other cryptographic operations can proceed, including vCenter Server obtaining keys from the Key Management Server cluster and pushing them to the ESXi hosts.

In "safe" mode, user worlds (that is, hostd) and encrypted virtual machines have their core dumps encrypted. Unencrypted virtual machines do not have their core dumps encrypted.

For more information about encrypted core dumps and how they are used by VMware Technical Support, see the VMware knowledge base article at http://kb.vmware.com/kb/2147388.

For instructions, see Enable Host Encryption Mode Explicitly.
After Host encryption mode is enabled, it cannot be disabled easily. See Disable Host Encryption Mode.

Automatic changes occur when encryption operations attempt to enable host encryption mode. For example, assume that you add an encrypted virtual machine to a standalone host. Host encryption mode is not enabled. If you have the required privileges on the host, encryption mode changes to enabled automatically.

Assume that a cluster has three ESXi hosts, host A, B, and C. You create an encrypted virtual machine on host A. What happens depends on several factors.

- If hosts A, B, and C already have encryption enabled, you need only Cryptographic operations.Encrypt new privileges to create the virtual machine.

- If hosts A and B are enabled for encryption and C is not enabled, the system proceeds as follows.
 - Assume that you have both the Cryptographic operations.Encrypt new and the Cryptographic operations.Register host privileges on each host. In that case, the virtual machine creation process enables encryption on host C. The encryption process enables host encryption mode on host C, and pushes the key to each host in the cluster. For this case, you can also explicitly enable host encryption on host C.
 - Assume that you have only Cryptographic operations.Encrypt new privileges on the virtual machine or virtual machine folder. In that case, virtual machine creation succeeds and the key becomes available on host A and host B. Host C remains disabled for encryption and does not have the virtual machine key.

- If none of the hosts has encryption enabled, and you have Cryptographic operations.Register host privileges on host A, then the virtual machine creation process enables host encryption on that host. Otherwise, an error results.

Disk Space Requirements

When you encrypt an existing virtual machine, you need at least twice the space that the virtual machine is currently using.

Encrypted vSphere vMotion

Starting with vSphere 6.5, vSphere vMotion always uses encryption when migrating encrypted virtual machines. For virtual machines that are not encrypted, you can select one of the encrypted vSphere vMotion options.

Encrypted vSphere vMotion secures confidentiality, integrity, and authenticity of data that is transferred with vSphere vMotion.

- vSphere supports encrypted vMotion of unencrypted virtual machines across vCenter Server instances.
vSphere does not support vMotion of encrypted virtual machines across vCenter Server instances. Because one vCenter instance cannot verify that another vCenter instance is connected to the same Key Management System cluster, the proper encryption keys are not available for successful VM encryption operation. As a result, vMotion in this situation is not currently supported.

What Is Encrypted

For encrypted disks, the data is transmitted encrypted. For disks that are not encrypted, Storage vMotion encryption is not supported.

For virtual machines that are encrypted, migration with vSphere vMotion always uses encrypted vSphere vMotion. You cannot turn off encrypted vSphere vMotion for encrypted virtual machines.

Encrypted vSphere vMotion States

For virtual machines that are not encrypted, you can set encrypted vSphere vMotion to one of the following states. The default is Opportunistic.

- **Disabled**: Do not use encrypted vSphere vMotion.
- **Opportunistic**: Use encrypted vSphere vMotion if source and destination hosts support it. Only ESXi versions 6.5 and later use encrypted vSphere vMotion.
- **Required**: Allow only encrypted vSphere vMotion. If the source or destination host does not support encrypted vSphere vMotion, migration with vSphere vMotion is not allowed.

When you encrypt a virtual machine, the virtual machine keeps a record of the current encrypted vSphere vMotion setting. If you later disable encryption for the virtual machine, the encrypted vMotion setting remains at Required until you change the setting explicitly. You can change the settings using Edit Settings.

See the vCenter Server and Host Management documentation for information on enabling and disabling encrypted vSphere vMotion for virtual machines that are not encrypted.

Encryption Best Practices, Caveats, and Interoperability

Any best practices and caveats that apply to the encryption of physical machines apply to virtual machine encryption as well. The virtual machine encryption architecture results in some additional recommendations. As you are planning your virtual machine encryption strategy, consider interoperability limitations.

Virtual Machine Encryption Best Practices

Follow virtual machine encryption best practices to avoid problems later, for example, when you generate a vm-support bundle.
General Best Practices

Follow these general best practices to avoid problems.

- Do not encrypt any vCenter Server Appliance virtual machines.
- If your ESXi host fails, retrieve the support bundle as soon as possible. The host key must be available for generating a support bundle that uses a password, or for decrypting a core dump. If the host is rebooted, it is possible that the host key changes. If that happens, you can no longer generate a support bundle with a password or decrypt core dumps in the support bundle with the host key.
- Manage KMS cluster names carefully. If the KMS cluster name changes for a KMS that is already in use, a VM that is encrypted with keys from that KMS enters a locked state during power-on or register. In that case, remove the KMS from the vCenter Server and add it with the cluster name that you used initially.
- Do not edit VMX files and VMDK descriptor files. These files contain the encryption bundle. It is possible that your changes make the virtual machine unrecoverable, and that the recovery problem cannot be fixed.
- The encryption process encrypts data on the host before it is written to storage. Backend storage features such as deduplication and compression might not be effective for encrypted virtual machines. Consider storage tradeoffs when using vSphere Virtual Machine Encryption.
- Encryption is CPU intensive. AES-NI significantly improves encryption performance. Enable AES-NI in your BIOS.

Best Practices for Encrypted Core Dumps

Follow these best practices to avoid having problems when you want to examine a core dump to diagnose a problem.

- Establish a policy regarding core dumps. Core dumps are encrypted because they can contain sensitive information such as keys. If you decrypt a core dump, consider it sensitive information. ESXi core dumps might contain keys for the ESXi host and for the virtual machines on it. Consider changing the host key and recrypting encrypted virtual machines after you decrypt a core dump. You can perform both tasks by using the vSphere API. See vSphere Virtual Machine Encryption and Core Dumps for details.
- Always use a password when you collect a vm-support bundle. You can specify the password when you generate the support bundle from the vSphere Client or using the vm-support command. The password recrypts core dumps that use internal keys to use keys that are based on the password. You can later use the password to decrypt any encrypted core dumps that might be included in the support bundle. Unencrypted core dumps and logs are not affected by using the password option.
- The password that you specify during vm-support bundle creation is not persisted in vSphere bundle components. You are responsible for keeping track of passwords for support bundles.
- Before you change the host key, generate a vm-support bundle with a password. You can later use the password to access any core dumps that might have been encrypted with the old host key.
Key Lifecycle Management Best Practices

Implement best practices that guarantee KMS availability and monitor keys on the KMS.

- You are responsible for having policies in place that guarantee KMS availability.

 If the KMS is not available, virtual machine operations that require that vCenter Server request the key from the KMS are not possible. That means running virtual machines continue to run, and you can power on, power off, and reconfigure those virtual machines. However, you cannot relocate the virtual machine to a host that does not have the key information.

 Most KMS solutions include high availability features. You can use the vSphere Client or the API to specify a KMS cluster and the associated KMS servers.

- You are responsible for keeping track of keys and for performing remediation if keys for existing virtual machines are not in the Active state.

 The KMIP standard defines the following states for keys.

 - Pre-Active
 - Active
 - Deactivated
 - Compromised
 - Destroyed
 - Destroyed Compromised

 vSphere Virtual Machine Encryption uses only Active keys for encryption. If a key is Pre-Active, vSphere Virtual Machine Encryption activates it. If the key state is Deactivated, Compromised, Destroyed, Destroyed Compromised, you cannot encrypt a virtual machine or disk with that key.

 For keys that are in other states, virtual machines using those keys continue to work. Whether a clone or migration operation succeeds depends on whether they key is already on the host.

 - If the key is on the destination host, the operation succeeds even if the key is not Active on the KMS.
 - If the required virtual machine and virtual disk keys are not on the destination host, vCenter Server has to fetch the keys from the KMS. If the key state is Deactivated, Compromised, Destroyed, or Destroyed Compromised, vCenter Server displays an error and the operation does not succeed.

 A clone or migration operation succeeds if the key is already on the host. The operation fails if vCenter Server has to pull the keys from the KMS.

 If a key is not Active, perform a rekey operation using the API. See the vSphere Web Services SDK Programming Guide.
Backup and Restore Best Practices

Set up policies on backup and restore operations.

- Not all backup architectures are supported. See Virtual Machine Encryption Interoperability.
- Set up policies for restore operations. Because backup is always in cleartext, plan to encrypt virtual machines right after restore is complete. You can specify that the virtual machine is encrypted as part of the restore operation. If possible, encrypt virtual machine as part of the restore process to avoid exposing sensitive information. To change the encryption policy for any disks that are associated with the virtual machine, change the storage policy for the disk.
- Because the VM home files are encrypted, ensure that the encryption keys are available at the time of a restore.

Performance Best Practices

- Encryption performance depends on the CPU and storage speed.
- Encrypting existing virtual machines is more time consuming than encrypting a virtual machine during creation. Encrypt a virtual machine when you create it if possible.

Storage Policy Best Practices

Do not modify the bundled VM Encryption sample storage policy. Instead, clone the policy and edit the clone.

Note No automated way of returning VM Encryption Policy to its original settings exists.

See the vSphere Storage documentation for details customizing storage policies.

Virtual Machine Encryption Caveats

Review Virtual Machine Encryption caveats to avoid problems later.

To understand which devices and features cannot be used with Virtual Machine Encryption, see Virtual Machine Encryption Interoperability.

Limitations

Consider the following caveats when you plan your virtual machine encryption strategy.

- When you clone an encrypted virtual machine or perform a Storage vMotion operation, you can attempt to change the disk format. Such conversions do not always succeed. For example, if you clone a virtual machine and attempt to change the disk format from lazy-zeroed thick format to thin format, the virtual machine disk keeps the lazy-zeroed thick format.
- When you detach a disk from a virtual machine, the storage policy information for the virtual disk is not retained.
 - If the virtual disk is encrypted, you must explicitly set the storage policy to VM Encryption Policy or to a storage policy that includes encryption.
If the virtual disk is not encrypted, you can change the storage policy when you add the disk to a virtual machine.

See Virtual Disk Encryption for details.

Decrypt core dumps before moving a virtual machine to a different cluster.

The vCenter Server does not store KMS keys but only tracks the key IDs. As a result, vCenter Server does not store the ESXi host key persistently.

Under certain circumstances, for example, when you move the ESXi host to a different cluster and reboot the host, vCenter Server assigns a new host key to the host. You cannot decrypt any existing core dumps with the new host key.

OVF Export is not supported for an encrypted virtual machine.

Using the VMware Host Client to register an encrypted virtual machine is not supported.

Virtual Machine Locked State

If the virtual machine key or one or more of the virtual disk keys are missing, the virtual machine enters a locked state. In a locked state, you cannot perform virtual machine operations.

When you encrypt both a virtual machine and its disks from the vSphere Client, the same key is used for both.

When you perform the encryption using the API, you can use different encryption keys for the virtual machine and for disks. In that case, if you attempt to power on a virtual machine, and one of the disk keys is missing, the power on operation fails. If you remove the virtual disk, you can power on the virtual machine.

See Resolve Missing Key Issues for troubleshooting suggestions.

Virtual Machine Encryption Interoperability

vSphere Virtual Machine Encryption has some limitations regarding devices and features that it can interoperate with in vSphere 6.5 and later releases.

You cannot perform certain tasks on an encrypted virtual machine.

For most virtual machine encryption operations, the virtual machine must be powered off. You can clone an encrypted virtual machine and you can perform a shallow recrypt while the virtual machine is powered on.

You cannot encrypt a virtual machine that has existing snapshots. Consolidate all existing snapshots before you perform the encryption.

Starting with vSphere 6.7, you can resume from a suspended state of an encrypted virtual machine, or revert to a memory snapshot of an encrypted machine. You can migrate an encrypted virtual machine with memory snapshot and suspended state between ESXi hosts.

You can use vSphere Virtual Machine Encryption with pure IPv6 mode or in mixed mode. You can configure the KMS with IPv6 addresses. Both vCenter Server and the KMS can be configured with only IPv6 addresses.
Certain features do not work with vSphere Virtual Machine Encryption.

- **vSphere Fault Tolerance**
 - Cloning is supported conditionally.
 - Full clones are supported. The clone inherits the parent encryption state including keys. You can re-encrypt full clone to use new keys or decrypt the full clone.
 - Linked clones are supported and clone inherits the parent encryption state including keys. You cannot decrypt the linked clone or re-encrypt a linked clone with different keys.

- **vSphere ESXi Dump Collector**
 - Migration with vMotion of an encrypted virtual machine to a different vCenter Server instance. Encrypted migration with vMotion of an unencrypted virtual machine is supported.

- **Content Library**
 - Not all backup solutions that use VMware vSphere Storage API - Data Protection (VADP) for virtual disk backup are supported.
 - VADP SAN backup solutions are not supported.
 - VADP hot add backup solutions are supported if the vendor supports encryption of the proxy VM that is created as part of the backup workflow. The vendor must have the privilege `Cryptographic Operations.Encrypt Virtual Machine`.
 - VADP NBD-SSL backup solutions are supported. The vendor application must have the privilege `Cryptographic Operations.Direct Access`.
 - You cannot use vSphere Virtual Machine Encryption for encryption on other VMware products such as VMware Workstation.
 - You cannot send output from an encrypted virtual machine to a serial port or parallel port. Even if the configuration appears to succeed, output is sent to a file.

Certain types of virtual machine disk configurations are not supported with vSphere Virtual Machine Encryption.

- VMware vSphere Flash Read Cache.
- A named virtual disk unassociated with a virtual machine, also called First Class Disk.
- RDM (Raw Device Mapping).
- Multi-writer or shared disks (MSCS, WSFC, or Oracle RAC). If a virtual disk is encrypted, and if you attempt to select Multi-writer in the **Edit Settings** page of the virtual machine, the **OK** button is disabled.
Use Encryption in Your vSphere Environment

Using encryption in your vSphere environment requires some preparation. After your environment is set up, you can create encrypted virtual machines and virtual disks and encrypt existing virtual machines and disks.

You can perform additional tasks by using the API and by using the crypto-util CLI. See the vSphere Web Services SDK Programming Guide for API documentation and the crypto-util command-line help for details about that tool.

Set up the Key Management Server Cluster

Before you can start with virtual machine encryption tasks, you must set up the key management server (KMS) cluster. That task includes adding the KMS and establishing trust with the KMS. When you add a cluster, you are prompted to make it the default. You can explicitly change the default cluster. vCenter Server provisions keys from the default cluster.

The KMS must support the Key Management Interoperability Protocol (KMIP) 1.1 standard. See the vSphere Compatibility Matrixes for details.

You can find information about VMware certified KMS vendors in the VMware Compatibility Guide under Platform and Compute. If you select Compatibility Guides, you can open the Key Management Server (KMS) compatibility documentation. This documentation is updated frequently.

Add a KMS to vCenter Server in the vSphere Client

You can add a Key Management Server (KMS) to your vCenter Server system from the vSphere Client (HTML5-based client) or by using the public API.

The vSphere Client (HTML5-based client) provides a wizard to add a KMS to your vCenter Server system, and establish trust between the KMS and vCenter Server.

vCenter Server creates a KMS cluster when you add the first KMS instance.

- After vCenter Server creates the first cluster, you can add KMS instances from the same vendor to the cluster.
- You can set up the cluster with only one KMS instance.
If your environment supports KMS solutions from different vendors, you can add multiple KMS clusters.

If your environment includes multiple KMS clusters, and you delete the default cluster, you must set another default explicitly.

Note The following steps apply to vCenter Server Appliance. For vCenter Server on Windows, you are prompted to first make the KMS trust vCenter Server, then make vCenter Server trust the KMS.

Prerequisites

- Verify that the key server is in the *VMware Compatibility Guide for Key Management Servers (KMS)* and is KMIP 1.1 compliant, and that it can be a symmetric key foundry and server.
- Verify that you have the required privileges: Cryptographic operations. Manage key servers.
- You can configure the KMS with IPv6 addresses.
 - Both vCenter Server and the KMS can be configured with only IPv6 addresses.

Procedure

1. Log in to the vCenter Server system with the vSphere Client (HTML5-based client).
2. Browse the inventory list and select the vCenter Server instance.
3. Click **Configure** and click **Key Management Servers**.
4. Click **Add**, specify the KMS information in the wizard, and click **OK**.
5. Click **Trust**.

 The wizard displays that vCenter Server trusts the KMS with a green check mark.
6. Click **Make KMS Trust vCenter**.
7. Select the option appropriate for your server and complete the steps.

<table>
<thead>
<tr>
<th>Option</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root CA certificate</td>
<td>Use the Root CA Certificate Option to Establish a Trusted Connection.</td>
</tr>
<tr>
<td>Certificate</td>
<td>Use the Certificate Option to Establish a Trusted Connection.</td>
</tr>
<tr>
<td>New Certificate Signing Request</td>
<td>Use the New Certificate Signing Request Option to Establish a Trusted Connection.</td>
</tr>
<tr>
<td>Upload certificate and private key</td>
<td>Use the Upload Certificate and Private Key Option to Establish a Trusted Connection.</td>
</tr>
</tbody>
</table>

8. Click **Establish Trust**.

 The wizard displays that the KMS trusts vCenter Server with a green check mark.
9 Set the default KMS.
 a From the **Actions** menu, select **Change Default Cluster**.
 b Select the KMS cluster and click **Save**.

The wizard displays the KMS cluster as the current default.

Add a KMS to vCenter Server in the vSphere Web Client

You add a KMS to your vCenter Server system from the vSphere Web Client or by using the public API. vCenter Server creates a KMS cluster when you add the first KMS instance.

- When you add the KMS, you are prompted to set this cluster as a default. You can later change the default cluster explicitly.
- After vCenter Server creates the first cluster, you can add KMS instances from the same vendor to the cluster.
- You can set up the cluster with only one KMS instance.
- If your environment supports KMS solutions from different vendors, you can add multiple KMS clusters.
- If your environment includes multiple KMS clusters, and you delete the default cluster, you must set the default explicitly. See **Set the Default KMS Cluster**.

Prerequisites

- Verify that the key server is in the *vSphere Compatibility Matrixes* and is KMIP 1.1 compliant, and that it can be a symmetric key foundry and server.
- Verify that you have the required privileges: **Cryptographic operations.**Manage key servers.
- You can configure the KMS with IPv6 addresses.
- Both vCenter Server and the KMS can be configured with only IPv6 addresses.

Procedure

1 Log in to the vCenter Server system with the vSphere Web Client.
2 Browse the inventory list and select the vCenter Server instance.
3 Click **Configure** and click **Key Management Servers**.
4 Click **Add KMS**, specify the KMS information in the wizard, and click **OK**.

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>KMS cluster</td>
<td>Select Create new cluster for a new cluster. If a cluster exists, you can select that cluster.</td>
</tr>
<tr>
<td>Cluster name</td>
<td>Name for the KMS cluster. You might need this name to connect to the KMS if your vCenter Server instance becomes unavailable.</td>
</tr>
<tr>
<td>Option</td>
<td>Value</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>Server alias</td>
<td>Alias for the KMS. You might need this alias to connect to the KMS if your vCenter Server instance becomes unavailable.</td>
</tr>
<tr>
<td>Server address</td>
<td>IP address or FQDN of the KMS.</td>
</tr>
<tr>
<td>Server port</td>
<td>Port on which vCenter Server connects to the KMS.</td>
</tr>
<tr>
<td>Proxy address</td>
<td>Optional proxy address for connecting to the KMS.</td>
</tr>
<tr>
<td>Proxy port</td>
<td>Optional proxy port for connecting to the KMS.</td>
</tr>
<tr>
<td>User name</td>
<td>Some KMS vendors allow users to isolate encryption keys that are used by different users or groups by specifying a user name and password. Specify a user name only if your KMS supports this functionality, and if you intend to use it.</td>
</tr>
<tr>
<td>Password</td>
<td>Some KMS vendors allow users to isolate encryption keys that are used by different users or groups by specifying a user name and password. Specify a password only if your KMS supports this functionality, and if you intend to use it.</td>
</tr>
</tbody>
</table>

Establish a Trusted Connection by Exchanging Certificates

After you add the KMS to the vCenter Server system, you can establish a trusted connection. The exact process depends on the certificates that the KMS accepts, and on company policy.

Prerequisites

Add the KMS cluster.

Procedure

1. Log in to the vSphere Web Client, and select a vCenter Server system.
2. Click **Configure** and select **Key Management Servers**.
3. Select the KMS instance with which you want to establish a trusted connection.
4. Click **Establish trust with KMS**.
5. Select the option appropriate for your server and complete the steps.

<table>
<thead>
<tr>
<th>Option</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root CA certificate</td>
<td>Use the Root CA Certificate Option to Establish a Trusted Connection.</td>
</tr>
<tr>
<td>Certificate</td>
<td>Use the Certificate Option to Establish a Trusted Connection.</td>
</tr>
<tr>
<td>New Certificate Signing Request</td>
<td>Use the New Certificate Signing Request Option to Establish a Trusted Connection.</td>
</tr>
<tr>
<td>Upload certificate and private key</td>
<td>Use the Upload Certificate and Private Key Option to Establish a Trusted Connection.</td>
</tr>
</tbody>
</table>

Use the Root CA Certificate Option to Establish a Trusted Connection

Some KMS vendors require that you upload your root CA certificate to the KMS. All certificates that are signed by your root CA are then trusted by this KMS.
The root CA certificate that vSphere Virtual Machine Encryption uses is a self-signed certificate that is stored in a separate store in the VMware Endpoint Certificate Store (VECS) on the vCenter Server system.

Note Generate a root CA certificate only if you want to replace existing certificates. If you do, other certificates that are signed by that root CA become invalid. You can generate a new root CA certificate as part of this workflow.

Procedure

1. Log in to the vSphere Web Client, and select a vCenter Server system.
2. Click **Configure** and select **Key Management Servers**.
3. Select the KMS instance with which you want to establish a trusted connection.
4. Select **Root CA Certificate** and click **OK**.

 The Download Root CA Certificate dialog box is populated with the root certificate that vCenter Server uses for encryption. This certificate is stored in VECS.
5. Copy the certificate to the clipboard or download the certificate as a file.
6. Follow the instructions from your KMS vendor to upload the certificate to their system.

 Note Some KMS vendors require that the KMS vendor restarts the KMS to pick up the root certificate that you upload.

What to do next

Finalize the certificate exchange. See Complete the Trust Setup.

Use the Certificate Option to Establish a Trusted Connection

Some KMS vendors require that you upload the vCenter Server certificate to the KMS. After the upload, the KMS accepts traffic that comes from a system with that certificate.

vCenter Server generates a certificate to protect connections with the KMS. The certificate is stored in a separate key store in the VMware Endpoint Certificate Store (VECS) on the vCenter Server system.

Procedure

1. Log in to the vSphere Web Client, and select a vCenter Server system.
2. Click **Configure** and select **Key Management Servers**.
3. Select the KMS instance with which you want to establish a trusted connection.
4. Select **Certificate** and click **OK**.

 The Download Certificate dialog box is populated with the root certificate that vCenter Server uses for encryption. This certificate is stored in VECS.

 Note Do not generate a new certificate unless you want to replace existing certificates.
Copy the certificate to the clipboard or download it as a file.

Follow the instructions from your KMS vendor to upload the certificate to the KMS.

What to do next
Finalize the trust relationship. See Complete the Trust Setup.

Use the New Certificate Signing Request Option to Establish a Trusted Connection

Some KMS vendors require that vCenter Server generate a Certificate Signing Request (CSR) and send that CSR to the KMS. The KMS signs the CSR and returns the signed certificate. You can upload the signed certificate to vCenter Server.

Using the New Certificate Signing Request option is a two-step process. First you generate the CSR and send it to the KMS vendor. Then you upload the signed certificate that you receive from the KMS vendor to vCenter Server.

Procedure
1. Log in to the vSphere Web Client, and select a vCenter Server system.
2. Click Configure and select Key Management Servers.
3. Select the KMS instance with which you want to establish a trusted connection.
4. Select New Certificate Signing Request and click OK.
5. In the dialog box, copy the full certificate in the text box to the clipboard or download it as a file, and click OK.
 Use the Generate new CSR button in the dialog box only if you explicitly want to generate a CSR. Using that option makes any signed certificates that are based on the old CSR invalid.
6. Follow the instructions from your KMS vendor to submit the CSR.
7. When you receive the signed certificate from the KMS vendor, click Key Management Servers again, and select New Certificate Signing Request again.
8. Paste the signed certificate into the bottom text box or click Upload File and upload the file, and click OK.

What to do next
Finalize the trust relationship. See Complete the Trust Setup.

Use the Upload Certificate and Private Key Option to Establish a Trusted Connection

Some KMS vendors require that you upload the KMS server certificate and private key to the vCenter Server system.

Some KMS vendors generate a certificate and private key for the connection and make them available to you. After you upload the files, the KMS trusts your vCenter Server instance.
Prerequisites

- Request a certificate and private key from the KMS vendor. The files are X509 files in PEM format.

Procedure

1. Log in to the vSphere Web Client, and select a vCenter Server system.
2. Click Configure and select Key Management Servers.
3. Select the KMS instance with which you want to establish a trusted connection.
4. Select Upload certificate and private key and click OK.
5. Paste the certificate that you received from the KMS vendor into the top text box or click Upload File to upload the certificate file.
6. Paste the key file into the bottom text box or click Upload File to upload the key file.
7. Click OK.

What to do next

Finalize the trust relationship. See Complete the Trust Setup.

Set the Default KMS Cluster

You must set the default KMS cluster if you do not make the first cluster the default cluster, or if your environment uses multiple clusters and you remove the default cluster.

Prerequisites

As a best practice, verify that the Connection Status in the Key Management Servers tab shows Normal and a green check mark.

Procedure

1. Log in to the vSphere Web Client and select a vCenter Server system.
2. Click the Configure tab and click Key Management Servers under More.
3. Select the cluster and click Set KMS cluster as default.
 Do not select the server. The menu to set the default is available only for the cluster.
4. Click Yes.
 The word default appears next to the cluster name.

Complete the Trust Setup

Unless the Add Server dialog box prompted you to trust the KMS, you must explicitly establish trust after certificate exchange is complete.
You can complete the trust setup, that is, make vCenter Server trust the KMS, either by trusting the KMS or by uploading a KMS certificate. You have two options:

- Trust the certificate explicitly by using the **Refresh KMS certificate** option.
- Upload a KMS leaf certificate or the KMS CA certificate to vCenter Server by using the **Upload KMS certificate** option.

Note If you upload the root CA certificate or the intermediate CA certificate, vCenter Server trusts all certificates that are signed by that CA. For strong security, upload a leaf certificate or an intermediate CA certificate that the KMS vendor controls.

Procedure

1. Log in to the vSphere Web Client, and select a vCenter Server system.
2. Click **Configure** and select **Key Management Servers**.
3. Select the KMS instance with which you want to establish a trusted connection.
4. To establish the trust relationship, refresh or upload the KMS certificate.

<table>
<thead>
<tr>
<th>Option</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refresh KMS certificate</td>
<td>a Click All Actions, and select Refresh KMS certificate.</td>
</tr>
<tr>
<td></td>
<td>b In the dialog box that appears, click Trust.</td>
</tr>
<tr>
<td>Upload KMS certificate</td>
<td>a Click All Actions, and select Upload KMS Certificate.</td>
</tr>
<tr>
<td></td>
<td>b In the dialog box that appears, click Upload file, upload a certificate file, and click OK.</td>
</tr>
</tbody>
</table>

Set up Separate KMS Clusters for Different Users

You can set up your environment with different KMS connections for different users of the same KMS instance. Having multiple KMS connections is helpful, for example, if you want to grant different departments in your company access to different sets of KMS keys.

Using multiple KMS clusters allows you to use the same KMS to segregate keys. Having separate sets of keys is essential for use cases like different BUs or different customers.

Note Not all KMS vendors support multiple users.
Figure 7-1. Connecting from vCenter Server to the KMS for Two Different Users

Prerequisites

Set up the connection with the KMS. See Set up the Key Management Server Cluster.

Procedure

1. Create the two users with corresponding user names and passwords, for example C1 and C2, on the KMS.
2. Log in to vCenter Server and create the first KMS cluster.
3. When prompted for a user name and password, give information that is unique to the first user.
4. Create a second KMS cluster and add the same KMS, but use the second user name and password (C2).

The two clusters have independent connections to the KMS and use a different set of keys.

Create an Encryption Storage Policy

Before you can create encrypted virtual machines, you must create an encryption storage policy. You create the storage policy once, and assign it each time you encrypt a virtual machine or virtual disk.

If you want to use virtual machine encryption with other I/O filters, or to use the Create VM Storage Policy wizard in the vSphere Client, see the vSphere Storage documentation for details.

Prerequisites

- Set up the connection to the KMS.
 Although you can create a VM Encryption storage policy without the KMS connection in place, you cannot perform encryption tasks until trusted connection with the KMS server is established.
- Required privileges: Cryptographic operations.Manage encryption policies.

Procedure

1. Log in to the vCenter Server by using the vSphere Web Client.
2. Select Home, click Policies and Profiles, and click VM Storage Policies.
3. Click Create VM Storage Policy.
Specify the storage policy values.

a Enter a storage policy name and optional description and click Next.

b If you are new to this wizard, review the Policy structure information, and click Next.

c Select the Use common rules in the VM storage policy check box.

d Click Add component and select Encryption > Default Encryption Properties and click Next.

The default properties are appropriate in most cases. You need a custom policy only if you want to combine encryption with other features such as caching or replication.

e Deselect the Use rule-sets in the storage policy check box and click Next.

f On the Storage compatibility page, leave Compatible selected, choose a datastore, and click Next.

g Review the information and click Finish.

Enable Host Encryption Mode Explicitly

Host encryption mode must be enabled if you want to perform encryption tasks, such as creating an encrypted virtual machine, on an ESXi host. In most cases, host encryption mode is enabled automatically when you perform an encryption task.

Sometimes, turning on encryption mode explicitly is necessary. See Prerequisites and Required Privileges for Encryption Tasks.

Prerequisites

Required privilege: Cryptographic operations/Register host

Procedure

1 Log in to the vCenter Server by using the vSphere Client.

2 Browse to the ESXi host and click Configure.

3 Under System, click Security Profile.

4 Click Edit in the Host Encryption Mode panel.

5 Select Enabled and click OK.

Disable Host Encryption Mode

Host encryption mode is enabled automatically when you perform an encryption task, if the user has sufficient privilege to enable the encryption mode. After host encryption mode is enabled, all core dumps are encrypted to avoid the release of sensitive information to support personnel. If you no longer use virtual machine encryption with an ESXi host, you can disable encryption mode.

Procedure

1 Unregister all encrypted virtual machines from the host whose encryption mode you want to disable.
2 Unregister the host from vCenter Server.
3 (Optional) If the host is in a cluster, unregister the other encryption-enabled hosts in that cluster.
4 Reboot all hosts that were unregistered.
5 Register the hosts with vCenter Server again.

If you do not add encrypted virtual machines to the host, host encryption mode is disabled.

Create an Encrypted Virtual Machine

After you set up the KMS, you can create encrypted virtual machines.

This task describes how to create an encrypted virtual machine using either the vSphere Web Client or the vSphere Client (HTML5-based client). The vSphere Client filters storage policies to those that include virtual machine encryption, easing creation of encrypted virtual machines.

Note Creating an encrypted virtual machine is faster and uses fewer storage resources than encrypting an existing virtual machine. If possible, encrypt virtual machine during the creation process.

Prerequisites

- Establish a trusted connection with the KMS and select a default KMS.
- Create an encryption storage policy, or use the bundled sample, VM Encryption Policy.
- Ensure that the virtual machine is powered off.
- Verify that you have the required privileges:
 - **Cryptographic operations.Encrypt new**
 - If the host encryption mode is not Enabled, you also need **Cryptographic operations.Register host**.

Procedure

1 Connect to vCenter Server by using either the vSphere Client (HTML5-based client) or the vSphere Web Client.
2 Select an object in the inventory that is a valid parent object of a virtual machine, for example, an ESXi host or a cluster.
3 Create the virtual machine.
 - vSphere Client: Right-click the object and select **New Virtual Machine**.
 - vSphere Web Client: Right-click the object, select **New Virtual Machine > New Virtual Machine**.
4 Follow the prompts to create an encrypted virtual machine.

<table>
<thead>
<tr>
<th>Option</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select a creation type</td>
<td>Create a new virtual machine.</td>
</tr>
<tr>
<td>Select a name and folder</td>
<td>Specify a unique name and target location for the virtual machine.</td>
</tr>
<tr>
<td>Option</td>
<td>Action</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Select a compute resource</td>
<td>Specify an object for which you have privileges to create encrypted virtual machines. See Prerequisites and Required Privileges for Encryption Tasks.</td>
</tr>
<tr>
<td>Select storage</td>
<td>vSphere Client: Select the Encrypt this virtual machine check box. Virtual machine storage policies are filtered to those that include encryption. Select a VM storage policy (the bundled sample is VM Encryption Policy), and select a compatible datastore. vSphere Web Client: Select a VM storage policy with encryption (the bundled sample is VM Encryption Policy). Select a compatible datastore.</td>
</tr>
<tr>
<td>Select compatibility</td>
<td>Select the compatibility. You can migrate an encrypted virtual machine only to hosts with compatibility ESXi 6.5 and later.</td>
</tr>
<tr>
<td>Select a guest OS</td>
<td>Select a guest OS that you plan to install on the virtual machine later.</td>
</tr>
<tr>
<td>Customize hardware</td>
<td>Customize the hardware, for example, by changing disk size or CPU. vSphere Client: (Optional) Select the VM Options tab, and open Encryption. Choose which disks to exclude from encryption. When you deselect a disk, only the VM Home and any other selected disks are encrypted. Any New Hard disk that you add is encrypted. You can change the storage policy for individual hard disks later.</td>
</tr>
<tr>
<td>Ready to complete</td>
<td>Review the information and click Finish.</td>
</tr>
</tbody>
</table>

Clone an Encrypted Virtual Machine

When you clone an encrypted virtual machine, the clone is encrypted with the same keys. To change keys for the clone, power off the virtual machine and perform a recrypt of the clone using the API. See vSphere Web Services SDK Programming Guide.

Prerequisites

- Establish a trusted connection with the KMS and select a default KMS.
- Create an encryption storage policy, or use the bundled sample, VM Encryption Policy.
- Required privileges:
 - **Cryptographic operations.Clone**
 - If the host encryption mode is not Enabled, you also must have **Cryptographic operations.Register host** privileges.

Procedure

1. Browse to the virtual machine in the vSphere Client inventory.
2 To create a clone of an encrypted machine, right-click the virtual machine, select **Clone > Clone to Virtual Machine**, and follow the prompts.

<table>
<thead>
<tr>
<th>Option</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select a name and folder</td>
<td>Specify a name and target location for the clone.</td>
</tr>
<tr>
<td>Select a compute resource</td>
<td>Specify an object for which you have privileges to create encrypted virtual machines. See Prerequisites and Required Privileges for Encryption Tasks.</td>
</tr>
<tr>
<td>Select storage</td>
<td>Make a selection in the Select virtual disk format menu and select a datastore. You cannot change the storage policy as part of the clone operation.</td>
</tr>
<tr>
<td>Select clone options</td>
<td>Select clone options, as discussed in the vSphere Virtual Machine Administration documentation.</td>
</tr>
<tr>
<td>Ready to complete</td>
<td>Review the information and click Finish.</td>
</tr>
</tbody>
</table>

3 (Optional) Change the keys for the cloned virtual machine.

By default, the cloned virtual machine is created with the same keys as its parent. Best practice is to change the cloned virtual machine's keys to ensure that multiple virtual machines do not have the same keys.

a Power off the virtual machine.

b Perform a recrypt of the clone using the API. See vSphere Web Services SDK Programming Guide.

To use a different DEK and KEK, perform a deep recrypt of the cloned virtual machine. To use a different KEK, perform a shallow recrypt of the cloned virtual machine. You can perform a shallow recrypt operation while the virtual machine is powered on, unless the virtual machine has snapshots present.

Encrypt an Existing Virtual Machine or Virtual Disk

You can encrypt an existing virtual machine or virtual disk by changing its storage policy. You can encrypt virtual disks only for encrypted virtual machines.

This task describes how to encrypt an existing virtual machine or virtual disk using either the vSphere Client (HTML5-based client) or the vSphere Web Client.

Encrypting Virtual Machines with the vSphere Client

(http://link.brightcove.com/services/player/bcpid2296383276001?bctid=ref:video_vsphere67_encrypt)

Prerequisites

- Establish a trusted connection with the KMS and select a default KMS.
- Create an encryption storage policy, or use the bundled sample, VM Encryption Policy.
- Ensure that the virtual machine is powered off.
Verify that you have the required privileges:

- **Cryptographic operations. Encrypt new**
- If the host encryption mode is not Enabled, you also need **Cryptographic operations. Register host**.

Procedure

1. Connect to vCenter Server by using either the vSphere Client (HTML5-based client) or the vSphere Web Client.
2. Right-click the virtual machine that you want to change and select **VM Policies > Edit VM Storage Policies**.

 You can set the storage policy for the virtual machine files, represented by VM home, and the storage policy for virtual disks.
3. Select the storage policy.
 - **vSphere Client (HTML5-based client):**
 - To encrypt the VM and its hard disks, select an encryption storage policy and click **OK**.
 - To encrypt the VM but not the virtual disks, toggle on **Configure per disk**, select the encryption storage policy for VM Home and other storage policies for the virtual disks, and click **OK**.
 - **vSphere Web Client:**
 - To encrypt the VM and its hard disks, select an encryption storage policy and click **Apply to all**.
 - To encrypt the VM but not the virtual disks, select the encryption storage policy for VM Home and other storage policies for the virtual disks, and click **Apply**.

 You cannot encrypt the virtual disk of an unencrypted VM.
4. If you prefer, you can encrypt the virtual machine, or both virtual machine and disks, from the **Edit Settings** menu in the vSphere Client.

 a. Right-click the virtual machine and select **Edit Settings**.

 b. Select the **VM Options** tab, and open **Encryption**. Choose an encryption policy. If you deselect all disks, only the VM home is encrypted.

 c. Click **OK**.

Decrypt an Encrypted Virtual Machine or Virtual Disk

You can decrypt a virtual machine, its disks, or both, by changing the storage policy.

This task describes how to decrypt an encrypted virtual machine using either the vSphere Client (HTML5-based client) or the vSphere Web Client.
All encrypted virtual machines require encrypted vMotion. During virtual machine decryption, the Encrypted vMotion setting remains. To change this setting so that Encrypted vMotion is no longer used, change the setting explicitly.

This task explains how to perform decryption using storage policies. For virtual disks, you can also perform decryption using the Edit Settings menu.

Prerequisites
- The virtual machine must be encrypted.
- The virtual machine must be powered off or in maintenance mode.
- Required privileges: Cryptographic operations.Decrypt

Procedure
1. Connect to vCenter Server by using either the vSphere Client (HTML5-based client) or the vSphere Web Client.
2. Right-click the virtual machine that you want to change and select VM Policies > Edit VM Storage Policies.

 You can set the storage policy for the virtual machine files, represented by VM home, and the storage policy for virtual disks.
3. Select a storage policy.
 - **vSphere Client (HTML5-based client):**
 - To decrypt the VM and its hard disks, toggle off Configure per disk, select a storage policy from the drop-down menu, and click OK.
 - To decrypt a virtual disk but not the virtual machine, toggle on Configure per disk, select the encryption storage policy for VM Home and other storage policies for the virtual disks, and click OK.
 - **vSphere Web Client:**
 - To decrypt the virtual machine and its hard disks, select a storage policy from the drop-down menu, click Apply to all, and click OK.
 - To decrypt a virtual disk but not the virtual machine, select a storage policy for the virtual disk from the drop-down menu in the table. Do not change the policy for VM Home. Click OK.

 You cannot decrypt the virtual machine and leave the disk encrypted.
4. If you prefer, you can use the vSphere Client (HTML5-based client) to decrypt the virtual machine and disks from the Edit Settings menu.
 - a. Right-click the virtual machine and select Edit Settings.
 - b. Select the VM Options tab and expand Encryption.
 - c. To decrypt the VM and its hard disks, choose None from the Encrypt VM drop-down menu.
To decrypt a virtual disk but not the virtual machine, deselect the disk.

Click OK.

(Optional) You can change the Encrypted vMotion setting.

a Right-click the virtual machine and click Edit Settings.
b Click VM Options, and open Encryption.
c Set the Encrypted vMotion value.

Change the Encryption Policy for Virtual Disks

When you create an encrypted virtual machine from the vSphere Web Client, any virtual disks that you add during virtual machine creation are encrypted. You can decrypt virtual disks that are encrypted by using the Edit VM Storage Policies option.

Note An encrypted virtual machine can have virtual disks that are not encrypted. However, an unencrypted virtual machine cannot have encrypted virtual disks.

See Virtual Disk Encryption.

This task describes how to change the encryption policy using storage policies. You can use either the vSphere Client (HTML5-based client) or the vSphere Web Client. You can also use the Edit Settings menu to make this change.

Prerequisites

- You must have the Cryptographic operations.Manage encryption policies privilege.
- Ensure that the virtual machine is powered off.

Procedure

1 Connect to vCenter Server by using either the vSphere Client (HTML5-based client) or the vSphere Web Client.
2 Right-click the virtual machine and select VM Policies > Edit VM Storage Policies.
3 Change the storage policy.
 - vSphere Client (HTML5-based client):
 - To change the storage police for the VM and its hard disks, select an encryption storage policy and click OK.
 - To encrypt the VM but not the virtual disks, toggle on Configure per disk, select the encryption storage policy for VM Home and other storage policies for the virtual disks, and click OK.
 - vSphere Web Client:
 - To change the storage policy for the VM and its hard disks, select an encryption storage policy and click Apply to all.
To encrypt the VM but not the virtual disks, select the encryption storage policy for VM Home and other storage policies for the virtual disks, and click Apply.

You cannot encrypt the virtual disk of an unencrypted VM.

4 If you prefer, you can change the storage policy from the Edit Settings menu.
 a Right-click the virtual machine and select Edit Settings.
 b Select the Virtual Hardware tab, expand a hard disk, and choose an encryption policy from the drop-down menu.
 c Click OK.

Resolve Missing Key Issues

Under certain circumstances, the ESXi host cannot get the key (KEK) for an encrypted virtual machine or an encrypted virtual disk from vCenter Server. In that case, you can still unregister or reload the virtual machine. However, you cannot perform other virtual machine operations such as powering on the virtual machine or deleting the virtual machine. A vCenter Server alarm notifies you when an encrypted virtual machine is in a locked state. You can unlock a locked encrypted virtual machine by using the vSphere Client after taking the necessary steps to make the required keys available on the KMS.

If the virtual machine key is not available, the state of the virtual machine displays as invalid. The virtual machine cannot power on. If the virtual machine key is available, but a key for an encrypted disk is not available, the virtual machine state does not display as invalid. However, the virtual machine cannot power on and the following error results:

```
The disk [/path/to/the/disk.vmdk] is encrypted and a required key was not found.
```

Note The following procedure illustrates the situations that can cause a virtual machine to become locked, the corresponding alarms and event logs that appear, and what to do in each case.

Procedure

1 If the problem is the connection between the vCenter Server system and the KMS, a virtual machine alarm is generated and the following message appears in the event log:

```
Virtual machine is locked because of a KMS cluster error.
```

You must manually check the keys in the KMS cluster, and restore the connection to the KMS cluster. When the KMS and keys become available, unlock the locked virtual machines. See Unlock Locked Virtual Machines. You can also reboot the host and re-register the virtual machine to unlock it after restoring the connection.

Losing the connection to the KMS does not automatically lock the virtual machine. The virtual machine only enters a locked state if the following conditions are met:

- The key is not available on the ESXi host.
- vCenter Server cannot retrieve keys from the KMS.
After each reboot, an ESXi host must be able to reach vCenter Server. vCenter Server requests the key with the corresponding ID from the KMS and makes it available to ESXi.

If, after restoring connection to the KMS cluster, the virtual machine remains locked, see Unlock Locked Virtual Machines.

2 If the connection is restored, register the virtual machine. If an error results when you attempt to register the virtual machine, verify that you have the Cryptographic operations.RegisterVM privilege for the vCenter Server system.

This privilege is not required for powering on an encrypted virtual machine if the key is available. This privilege is required for registering the virtual machine if the key has to be retrieved.

3 If the key is no longer available on the KMS, a virtual machine alarm is generated and the following message appears in the event log:

Virtual machine is locked because keys are missing on KMS cluster.

Ask the KMS administrator to restore the key. You might encounter an inactive key if you are powering on a virtual machine that had been removed from the inventory and that had not been registered for a long time. It also happens if you reboot the ESXi host, and the KMS is not available.

a Retrieve the key ID by using the Managed Object Browser (MOB) or the vSphere API.
 Retrieve the keyId from VirtualMachine.config.keyId.keyId.

b Ask the KMS administrator to reactivate the key that is associated with that key ID.

c After restoring the key, see Unlock Locked Virtual Machines.

If the key can be restored on the KMS, vCenter Server retrieves it and pushes it to the ESXi host the next time it is needed.

4 If the KMS is accessible and the ESXi host is powered on, but the vCenter Server system is unavailable, follow these steps to unlock virtual machines.

a Restore the vCenter Server system, or set up a different vCenter Server system, then establish trust with the KMS.
 You must use the same KMS cluster name, but the KMS IP address can be different.

b Reregister all virtual machines that are locked.
 The new vCenter Server instance retrieves the keys from the KMS and the virtual machines are unlocked.

5 If the keys are missing only on the ESXi host, a virtual machine alarm is generated and the following message appears in the event log:

Virtual machine is locked because keys are missing on host.

The vCenter Server system can retrieve the missing keys from the KMS cluster. No manual recovery of keys is required. See Unlock Locked Virtual Machines.
Unlock Locked Virtual Machines

A vCenter Server alarm notifies you when an encrypted virtual machine is in a locked state. You can unlock a locked encrypted virtual machine by using the vSphere Client (HTML5-based client) after taking the necessary steps to make the required keys available on the KMS.

Prerequisites

- Verify that you have the required privileges: **Cryptographic operations.RegisterVM**
- Other privileges might be required for optional tasks such as enabling host encryption.
- Before unlocking a locked virtual machine, troubleshoot the cause of the lock and attempt to fix the problem manually. See **Resolve Missing Key Issues**.

Procedure

1. Connect to vCenter Server by using the vSphere Client.
2. Navigate to the virtual machine's **Summary** tab.
 - When a virtual machine is locked, the Virtual Machine Locked alarm appears.
3. Decide if you want to either acknowledge the alarm, or reset the alarm to green but not unlock the virtual machine now.
 - When you click either **Acknowledge** or **Reset to green**, the alarm goes away, but the virtual machine remains locked until you unlock it.
4. Navigate to the virtual machine's **Monitor** tab and click **Events** to get more information about why the virtual machine is locked.
5. Perform suggested troubleshooting before you unlock the virtual machine.
6. Navigate to the virtual machine's **Summary** tab and click **Unlock VM**, located underneath the virtual machine console.
 - A message appears, warning that encryption key data is transmitted to the host.
7. Click **Yes**.

Resolve ESXi Host Encryption Mode Issues

Under certain circumstances, the ESXi host's encryption mode can become disabled.

An ESXi host requires that host encryption mode is enabled if it contains any encrypted virtual machines. If the host detects it is missing its host key, or if the KMS cluster is unavailable, the host might fail to enable the encryption mode. vCenter Server generates an alarm when the host encryption mode cannot be enabled.
Procedure

1. If the problem is the connection between the vCenter Server system and the KMS cluster, an alarm is generated and the following message appears in the event log:

 Host requires encryption mode enabled and the KMS cluster is not available. You must manually check for the keys in the KMS cluster, and restore the connection to the KMS cluster.

2. If keys are missing, an alarm is generated and the following message appears in the event log:

 Host requires encryption mode enabled and the key is not available on the KMS cluster.

 You must manually recover the missing keys to the KMS cluster.

What to do next

If, after restoring connection to the KMS cluster, or manually recovering keys to the KMS cluster, the host's encryption mode remains disabled, re-enable the host encryption mode. See Re-Enable ESXi Host Encryption Mode.

Re-Enable ESXi Host Encryption Mode

Starting with vSphere 6.7, a vCenter Server alarm notifies you when an ESXi host's encryption mode has become disabled. In vSphere 6.7, you can re-enable the host encryption mode.

Prerequisites

- Verify that you have the required privileges: Cryptographic operations. Register host
- Before re-enabling encryption mode, troubleshoot the cause and attempt to fix the problem manually.

Procedure

1. Connect to vCenter Server by using the vSphere Client.

2. Navigate to the ESXi host's Summary tab.

 When the encryption mode is disabled, the Host Requires Encryption Mode Enabled alarm appears.

3. Decide if you want to either acknowledge the alarm, or reset the alarm to green but not re-enable the host encryption mode now.

 When you click either Acknowledge or Reset to green, the alarm goes way, but the host's encryption mode remains disabled until you re-enable it.

4. Navigate to the ESXi host's Monitor tab and click Events to get more information on why encryption mode is disabled.

 Perform suggested troubleshooting before you re-enable the encryption mode.

5. On the Summary tab, click Enable Host Encryption Mode to re-enable host encryption.

 A message appears, warning that encryption key data is transmitted to the host.
6 Click Yes.

Set Key Management Server Certificate Expiration Threshold

By default, vCenter Server notifies you 30 days before your Key Management Server (KMS) certificates expire. You can change this default value.

KMS certificates have an expiration date. When the threshold for the expiration date is reached, an alarm notifies you.

vCenter Server and KMS clusters exchange two types of certificates: server and client. The VMware Endpoint Certificate Store (VECS) on the vCenter Server system stores the server certificates and one client certificate per KMS cluster. Because there are two certificate types, there are two alarms for each certificate type (one for client, one for server).

Procedure

1. Log in to a vCenter Server system by using the vSphere Client.
2. Select the vCenter Server system in the object hierarchy.
3. Click **Configure**.
4. Under **Settings**, click **Advanced Settings**, and click **Edit Settings**.
5. Click the **Filter** icon and enter `vpzd.kmscert.threshold`, or scroll to the configuration parameter itself.
6. Enter your value in days and click **Save**.

vSphere Virtual Machine Encryption and Core Dumps

If your environment uses vSphere Virtual Machine Encryption, and if an error occurs on the ESXi host, the resulting core dump is encrypted to protect customer data. Core dumps that are included in the vm-support package are also encrypted.

Note Core dumps can contain sensitive information. Follow your organization’s data security and privacy policy when handling core dumps.

Core Dumps on ESXi Hosts

When an ESXi host, a user world, or a virtual machine crashes, a core dump is generated, and the host reboots. If the ESXi host has encryption mode enabled, the core dump is encrypted using a key that is in the ESXi key cache. This key comes from the KMS. See How vSphere Virtual Machine Encryption Protects Your Environment for background information.

The following table shows encryption keys used for each core dump type, by vSphere release.
<table>
<thead>
<tr>
<th>Core Dump Type</th>
<th>Encryption Key (ESXi 6.5)</th>
<th>Encryption Key (ESXi 6.7 and Later)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESXi Kernel</td>
<td>Host Key</td>
<td>Host Key</td>
</tr>
<tr>
<td>User World (hostd)</td>
<td>Host Key</td>
<td>Host Key</td>
</tr>
<tr>
<td>Encrypted Virtual Machine (VM)</td>
<td>Host Key</td>
<td>Virtual Machine Key</td>
</tr>
</tbody>
</table>

What you can do after an ESXi host reboot depends on several factors.

- In most cases, vCenter Server retrieves the key for the host from the KMS and attempts to push the key to the ESXi host after reboot. If the operation is successful, you can generate the vm-support package and you can decrypt or re-encrypt the core dump. See Decrypt or Re-Encrypt an Encrypted Core Dump.
- If vCenter Server cannot connect to the ESXi host, you might be able to retrieve the key from the KMS. See Resolve Missing Key Issues.
- If the host used a custom key, and that key differs from the key that vCenter Server pushes to the host, you cannot manipulate the core dump. Avoid using custom keys.

Core Dumps and vm-support Packages

When you contact VMware Technical Support because of a serious error, your support representative usually asks you to generate a vm-support package. The package includes log files and other information, including core dumps. If your support representatives cannot resolve the issues by looking at log files and other information, they might ask you to decrypt the core dumps and make relevant information available. To protect sensitive information such as keys, follow your organization's security and privacy policy. See Collect a vm-support Package for an ESXi Host That Uses Encryption.

Core Dumps on vCenter Server Systems

A core dump on a vCenter Server system is not encrypted. vCenter Server already contains potentially sensitive information. At the minimum, ensure that the Windows system on which vCenter Server runs or the vCenter Server Appliance is protected. See Chapter 4 Securing vCenter Server Systems. You might also consider turning off core dumps for the vCenter Server system. Other information in log files can help determine the problem.

Collect a vm-support Package for an ESXi Host That Uses Encryption

If host encryption mode is enabled for the ESXi host, any core dumps in the vm-support package are encrypted. You can collect the package from the vSphere Client, and you can specify a password if you expect to decrypt the core dump later.

The vm-support package includes log files, core dump files, and more.
Prerequisites

Inform your support representative that host encryption mode is enabled for the ESXi host. Your support representative might ask you to decrypt core dumps and extract relevant information.

Note Core dumps can contain sensitive information. Follow your organization’s security and privacy policy to protect sensitive information such as host keys.

Procedure

1. Log in to the vCenter Server system with the vSphere Client.
2. Click Hosts & Clusters, and right-click the ESXi host.
4. In the dialog box, select Password for encrypted core dumps, and specify and confirm a password.
5. Leave the defaults for other options or make changes if requested by VMware Technical Support, and click Export Logs.
6. Specify a location for the file.
7. If your support representative asked you to decrypt the core dump in the vm-support package, log in to any ESXi host and follow these steps.
 a. Log in to the ESXi and connect to the directory where the vm-support package is located. The filename follows the pattern esx.date_and_time.tgz.
 b. Make sure that the directory has enough space for the package, the uncompressed package, and the recompressed package, or move the package.
 c. Extract the package to the local directory.

   ```
   vm-support -x *.tgz .
   ```

 The resulting file hierarchy might contain core dump files for the ESXi host, usually in /var/core, and might contain multiple core dump files for virtual machines.

 d. Decrypt each encrypted core dump file separately.

   ```
   crypto-util envelope extract --offset 4096 --keyfile vm-support-incident-key-file --password encryptedZdump decryptedZdump
   ```

 vm-support-incident-key-file is the incident key file that you find at the top level in the directory. *encryptedZdump* is the name of the encrypted core dump file. *decryptedZdump* is the name for the file that the command generates. Make the name similar to the *encryptedZdump* name.
e Provide the password that you specified when you created the vm-support package.

f Remove the encrypted core dumps, and compress the package again.

```
vm-support --reconstruct
```

8 Remove any files that contain confidential information.

Decrypt or Re-Encrypt an Encrypted Core Dump

You can decrypt or re-encrypt an encrypted core dump on your ESXi host by using the crypto-util CLI. You can decrypt and examine the core dumps in the vm-support package yourself. Core dumps might contain sensitive information. Follow your organization’s security and privacy policy to protect sensitive information such as keys.

For details about re-encrypting a core dump and other features of crypto-util, see the command-line help.

Note crypto-util is for advanced users.

Prerequisites

The key that was used to encrypt the core dump must be available on the ESXi host that generated the core dump.

Procedure

1 Log directly in to the ESXi host on which the core dump happened.

 If the ESXi host is in lockdown mode, or if SSH access is disabled, you might have to enable access first.

2 Determine whether the core dump is encrypted.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor core dump</td>
<td>crypto-util envelope describe vmmcores.ve</td>
</tr>
<tr>
<td>zdump file</td>
<td>crypto-util envelope describe --offset 4096 zdumpFile</td>
</tr>
</tbody>
</table>
3 Decrypt the core dump, depending on its type.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor core dump</td>
<td><code>crypto-util envelope extract vmmcores.ve vmmcores</code></td>
</tr>
<tr>
<td>zdump file</td>
<td><code>crypto-util envelope extract --offset 4096 zdumpEncrypted zdumpUnencrypted</code></td>
</tr>
</tbody>
</table>
Securing Virtual Machines with Virtual Trusted Platform Module

The Virtual Trusted Platform Module (vTPM) feature lets you add a TPM 2.0 virtual cryptoprocessor to a virtual machine.

Virtual Trusted Platform Module Overview

vTPMs perform cryptographic coprocessor capabilities in software. When added to a virtual machine, a vTPM enables the guest operating system to create and store keys that are private. These keys are not exposed to the guest operating system itself. Therefore, the virtual machine attack surface is reduced. Usually, compromising the guest operating system compromises its secrets, but enabling a vTPM greatly reduces this risk. These keys can be used only by the guest operating system for encryption or signing. With an attached vTPM, a third party can remotely attest to (validate) the identity of the firmware and the guest operating system.

You can add a vTPM to either a new virtual machine or an existing virtual machine. A vTPM depends on virtual machine encryption to secure vital TPM data. When you configure a vTPM, VM encryption automatically encrypts the virtual machine files but not the disks. You can choose to add encryption explicitly for the virtual machine and its disks.

You can also back up a virtual machine enabled with a vTPM. The backup must include all virtual machine data, including the *.nvram file. If your backup does not include the *.nvram file, you cannot restore a virtual machine with a vTPM. Also, because the VM home files of a vTPM-enabled virtual machine are encrypted, ensure that the encryption keys are available at the time of a restore.

A vTPM does not require a physical Trusted Platform Module (TPM) 2.0 chip to be present on the ESXi host. However, if you want to perform host attestation, an external entity, such as a TPM 2.0 physical chip, is required. See Securing ESXi Hosts with Trusted Platform Module.

Note By default, no storage policy is associated with a virtual machine that has been enabled with a vTPM. Only the virtual machine files (VM Home) are encrypted. If you prefer, you can choose to add encryption explicitly for the virtual machine and its disks, but the virtual machine files would have already been encrypted.
Requirements for vTPM

To use a vTPM, your vSphere environment must meet these requirements:

- **Virtual machine requirements:**
 - EFI firmware
 - Hardware version 14
- **Component requirements:**
 - vCenter Server 6.7.
 - Virtual machine encryption (to encrypt the virtual machine home files).
 - Key Management Server (KMS) configured for vCenter Server (virtual machine encryption depends on KMS). See Set up the Key Management Server Cluster.
- **Guest OS support:**
 - Windows Server 2016 (64 bit)
 - Windows 10 (64 bit)

Differences Between a Hardware TPM and a Virtual TPM

You use a hardware Trusted Platform Module (TPM) as a cryptographic coprocessor to provide secure storage of credentials or keys. A vTPM performs the same functions as a TPM, but it performs cryptographic coprocessor capabilities in software. A vTPM uses the `.nvram` file, which is encrypted using virtual machine encryption, as its secure storage.

A hardware TPM includes a preloaded key called the Endorsement Key (EK). The EK has a private and public key. The EK provides the TPM with a unique identity. For a vTPM, this key is provided either by the VMware Certificate Authority (VMCA) or by a third-party Certificate Authority (CA). Once the vTPM uses a key, it is typically not changed because doing so invalidates sensitive information stored in the vTPM. The vTPM does not contact the CA at any time.

This chapter includes the following topics:

- Add a Virtual Trusted Platform Module to a Virtual Machine
- Enable Virtual Trusted Platform Module for an Existing Virtual Machine
- Remove Virtual Trusted Platform Module from a Virtual Machine
- Identify Virtual Trusted Platform Enabled Virtual Machines
- View vTPM Module Device Certificates
- Export and Replace vTPM Module Device Certificates
Add a Virtual Trusted Platform Module to a Virtual Machine

You can add a Virtual Trusted Platform Module (vTPM) to a virtual machine to provide enhanced security to the guest operating system. You must set up the KMS before you can add a vTPM.

You can enable a vTPM for virtual machines running on vSphere 6.7 and later. The VMware virtual TPM is compatible with TPM 2.0 and creates a TPM-enabled virtual chip for use by the virtual machine and the guest OS it hosts.

Prerequisites

- Ensure your vSphere environment is configured for virtual machine encryption. See Set up the Key Management Server Cluster.
- The guest OS you use must be either Windows Server 2016 (64 bit) or Windows 10 (64 bit).
- The ESXi hosts running in your environment must be ESXi 6.7 or later.
- The virtual machine must use EFI firmware.

Procedure

1. Connect to vCenter Server by using the vSphere Client.
2. Select an object in the inventory that is a valid parent object of a virtual machine, for example, an ESXi host or a cluster.
3. Right-click the object, select New Virtual Machine, and follow the prompts to create a virtual machine.

<table>
<thead>
<tr>
<th>Option</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select a creation type</td>
<td>Create a new virtual machine.</td>
</tr>
<tr>
<td>Select a name and folder</td>
<td>Specify a name and target location.</td>
</tr>
<tr>
<td>Select a compute resource</td>
<td>Specify an object for which you have privileges to create a virtual machine. See Prerequisites and Required Privileges for Encryption Tasks.</td>
</tr>
<tr>
<td>Select storage</td>
<td>Select a compatible datastore.</td>
</tr>
<tr>
<td>Select compatibility</td>
<td>Select ESXi 6.7 and later.</td>
</tr>
<tr>
<td>Select a guest OS</td>
<td>Select Windows Server 2016 (64 bit) or Windows 10 (64 bit) for use as the guest OS.</td>
</tr>
<tr>
<td>Customize hardware</td>
<td>Click Add New Device and select Trusted Platform Module. You can further customize the hardware, for example, by changing disk size or CPU.</td>
</tr>
<tr>
<td>Ready to complete</td>
<td>Review the information and click Finish.</td>
</tr>
</tbody>
</table>

The vTPM-enabled virtual machine appears in your inventory as specified.
Enable Virtual Trusted Platform Module for an Existing Virtual Machine

You can add a Virtual Trusted Platform Module (vTPM) to an existing virtual machine to provide enhanced security to the guest operating system. You must set up the KMS before you can add a vTPM.

You can enable a vTPM for virtual machines running on vSphere 6.7 and later. The VMware virtual TPM is compatible with TPM 2.0, and creates a TPM-enabled virtual chip for use by the virtual machine and the guest OS it hosts.

Prerequisites

- Ensure your vSphere environment is configured for virtual machine encryption. See Set up the Key Management Server Cluster.
- The guest OS you use must be either Windows Server 2016 (64 bit) or Windows 10 (64 bit).
- Verify that the virtual machine is turned off.
- The ESXi hosts running in your environment must be ESXi 6.7 or later.
- The virtual machine must use EFI firmware.

Procedure

1. Connect to vCenter Server by using the vSphere Client.
2. Right-click the virtual machine in the inventory that you want to modify and select Edit Settings.
3. In the Edit Settings dialog box, click Add New Device and select Trusted Platform Module.
4. Click OK.

The virtual machine Summary tab now includes Virtual Trusted Platform Module in the VM Hardware pane.

Remove Virtual Trusted Platform Module from a Virtual Machine

You can remove Virtual Trusted Platform Module (vTPM) security from a virtual machine.

Removing vTPM causes all encrypted information on the virtual machine to become unrecoverable. In addition, removing a vTPM initiates an immediate reboot of the virtual machine. Before removing a vTPM from a virtual machine, disable any applications in the Guest OS, such as BitLocker, that use vTPM. Failure to do so can cause the virtual machine to not boot.

Procedure

1. Connect to vCenter Server by using the vSphere Client.
2. Right-click the virtual machine in the inventory that you want to modify and select Edit Settings.
3. In the **Edit Settings** dialog box, locate the Trusted Platform Module entry in the **Virtual Hardware** tab.

4. Move your cursor over the device and click the **Remove** icon.

 This icon appears only for virtual hardware that you can safely remove.

5. Click **Delete** to confirm you want to remove the device.

 The vTPM device is marked for removal.

6. Click **OK**.

 Verify that the Virtual Trusted Platform Module entry no longer appears in the virtual machine **Summary** tab in the **VM Hardware** pane.

Identify Virtual Trusted Platform Enabled Virtual Machines

You can identify which of your virtual machines are enabled to use a Virtual Trusted Platform Module (vTPM).

You can generate a list of all virtual machines in your inventory showing virtual machine name, operating system, and vTPM status. You can also export this list to a CVS file for use in compliance audits.

Procedure

1. Connect to vCenter Server by using the vSphere Client.

2. Select a vCenter Server instance, a host, or a cluster.

3. Click the **VMs** tab and click **Virtual Machines**.

4. Click the menu bar for any virtual machine column, select **Show/Hide Columns**, and select **TPM**.

 The TPM column displays present for all virtual machines on which TPM is enabled. Virtual machines without a TPM are listed as not present.

5. You can export the contents of an inventory list view to a CSV file.

 a. Click **Export** at the bottom right corner of a list view.

 The Export List Contents dialog box opens and lists the available options for inclusion in the CSV file.

 b. Select whether you want all rows or your current selection of rows to be listed in the CSV file.

 c. From the available options, select the columns you want listed in the CSV file.

 d. Click **Export**.

 The CSV file is generated and available for download.

View vTPM Module Device Certificates

Virtual Trusted Platform Module (vTPM) devices come pre-configured with default certificates, which you can review.
Prerequisites
You must have a vTPM-enabled virtual machine in your environment.

Procedure
1. Connect to vCenter Server by using the vSphere Client.
2. Select an object in the inventory that is a valid parent object of a virtual machine, for example, an ESXi host or a cluster.
3. Select the vTPM-enabled virtual machine whose certificate information you want to view.
4. Click the Configure tab.
5. Under TPM, select Certificates.
6. Select the certificate to view its information.
7. (Optional) To export the certificate information, click Export.
 The certificate is saved to disk.

What to do next
You can replace the default certificate with a certificate issued by a third-party certificate authority (CA). See Export and Replace vTPM Module Device Certificates.

Export and Replace vTPM Module Device Certificates
You can replace the default certificate that comes with a Virtual Trusted Platform Module (vTPM) device.

Prerequisites
You must have a vTPM-enabled virtual machine in your environment.

Procedure
1. Connect to vCenter Server by using the vSphere Client.
2. Select an object in the inventory that is a valid parent object of a virtual machine, for example, an ESXi host or a cluster.
3. Select the vTPM-enabled virtual machine in the inventory whose certificate information you want to replace.
4. Click the Configure tab.
5. Under TPM select Signing Requests.
6. Select a certificate.
7. To export the certificate information, click Export.
 The certificate is saved to disk.
8 Get a certificate issued by a third-party certificate authority (CA) against the certificate signing request (CSR) you exported.

 You can use any test CA that you might have in your IT environment.

9 When you have the new certificate, replace the existing certificate.
 a Right-click the virtual machine in the inventory whose certificate you want to replace and select Edit Settings.
 b In the Edit Settings dialog box, expand Trusted Platform Module.
 The certificates appear.
 c Click Replace for the certificate you want to replace.
 The File Upload dialog box appears.
 d On your local machine, locate the new certificate and upload it.
 The new certificate replaces the default certificate that came with your vTPM device.
 e The certificate name is updated in the virtual machine Summary tab under the Virtual Trusted Platform Module list.
Starting with vSphere 6.7, you can enable Microsoft virtualization-based security (VBS) on supported Windows guest operating systems.

About Virtualization-based Security

Microsoft VBS, a feature of Windows 10 and Windows Server 2016 operating systems, uses hardware and software virtualization to enhance system security by creating an isolated, hypervisor-restricted, specialized subsystem.

VBS permits you to use the following Windows security features to harden your system and isolate key system and user secrets from being compromised:

- Credential Guard: Aims to isolate and harden key system and user secrets against compromise.
- Device Guard: Provides a set of features designed to work together to prevent and eliminate malware from running on a Windows system.
- Configurable Code Integrity: Ensures that only trusted code runs from the boot loader onwards.

See the topic on virtualization-based security in the Microsoft documentation for more information.

After you enable VBS for a virtual machine through vCenter Server, you enable VBS within the Windows guest operating system.

This chapter includes the following topics:

- Virtualization-based Security Best Practices
- Enable Virtualization-based Security on a Virtual Machine
- Enable Virtualization-based Security on an Existing Virtual Machine
- Enable Virtualization-based Security on the Guest Operating System
- Disable Virtualization-based Security
- Identify VBS-Enabled Virtual Machines
Virtualization-based Security Best Practices

Follow best practices for virtualization-based security (VBS) to maximize security and manageability of your Windows guest operating system environment.

Avoid problems by following these best practices.

VBS Hardware

Use the following Intel hardware for VBS:

- Haswell CPU or later. For best performance, use the Skylake-EP CPU or later.
- The Ivy Bridge CPU is acceptable.
- The Sandy Bridge CPU might cause some slow performance.

Not all VBS functionality is available on AMD CPUs. For more information, see the VMware KB article at http://kb.vmware.com/kb/54009.

Windows Guest OS Compatibility

VBS in Windows guest OSs RS1, RS2, and RS3 requires HyperV to be enabled in the guest OS. See [VMware vSphere Release Notes](#) for more information.

Unsupported VMware Features on VBS

The following features are not supported in a virtual machine when VBS is enabled:

- Fault tolerance
- PCI passthrough
- Hot add of CPU or memory

Installation and Upgrade Caveats with VBS

Before you configure VBS, understand the following installation and upgrade caveats:

- New virtual machines configured for Windows 10, Windows Server 2016, and Windows Server 2019 on hardware versions less than version 14 are created using Legacy BIOS by default. You must reinstall the guest operating system after changing the virtual machine's firmware type from Legacy BIOS to UEFI.
- If you plan to migrate your virtual machines from previous vSphere releases to vSphere 6.7 or greater, and enable VBS on your virtual machines, use UEFI to avoid having to reinstall the operating system.
Enable Virtualization-based Security on a Virtual Machine

You can enable Microsoft virtualization-based security (VBS) for supported Windows guest operating systems at the same time you create a virtual machine.

Enabling VBS is a process that involves first enabling VBS in the virtual machine then enabling VBS in the Windows guest OS.

Prerequisites

Intel hosts are recommended. See Virtualization-based Security Best Practices for acceptable CPUs.

Create a virtual machine that uses hardware version 14 or later and one of the following supported guest operating systems:

- Windows 10 (64 bit)
- Windows Server 2016 (64 bit)
- Windows Server 2019 (64 bit)

Procedure

1. Connect to vCenter Server by using the vSphere Client.
2. Select an object in the inventory that is a valid parent object of a virtual machine, for example, an ESXi host or a cluster.
3. Right-click the object, select **New Virtual Machine**, and follow the prompts to create a virtual machine.

<table>
<thead>
<tr>
<th>Option</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select a creation type</td>
<td>Create a virtual machine.</td>
</tr>
<tr>
<td>Select a name and folder</td>
<td>Specify a name and target location.</td>
</tr>
<tr>
<td>Select a compute resource</td>
<td>Specify an object for which you have privileges to create virtual machines.</td>
</tr>
<tr>
<td>Select storage</td>
<td>In the VM storage policy, select the storage policy. Select a compatible datastore.</td>
</tr>
<tr>
<td>Select compatibility</td>
<td>Ensure that ESXi 6.7 and later is selected.</td>
</tr>
<tr>
<td>Select a guest OS</td>
<td>Select either Windows 10 (64-bit), Windows Server 2016 (64-bit), or Windows Server 2019 (64-bit). Select the Enable Windows Virtualization Based Security check box.</td>
</tr>
<tr>
<td>Customize hardware</td>
<td>Customize the hardware, for example, by changing disk size or CPU.</td>
</tr>
<tr>
<td>Ready to complete</td>
<td>Review the information and click Finish.</td>
</tr>
</tbody>
</table>

Once the virtual machine is created, confirm that its **Summary** tab displays “VBS true” in the Guest OS description.

What to do next

See Enable Virtualization-based Security on the Guest Operating System.
Enable Virtualization-based Security on an Existing Virtual Machine

You can enable Microsoft virtualization-based security (VBS) on existing virtual machines for supported Windows guest operating systems.

Enabling VBS is a process that involves first enabling VBS in the virtual machine then enabling VBS in the guest OS.

Note New virtual machines configured for Windows 10, Windows Server 2016, and Windows Server 2019 on hardware versions less than version 14 are created using Legacy BIOS by default. If you change the virtual machine's firmware type from Legacy BIOS to UEFI, you must reinstall the guest operating system.

Prerequisites

Intel hosts are recommended. See Virtualization-based Security Best Practices for acceptable CPUs.

The virtual machine must have been created using hardware version 14 or later, UEFI firmware, and one of the following supported guest operating systems:

- Windows 10 (64 bit)
- Windows Server 2016 (64 bit)
- Windows Server 2019 (64 bit)

Procedure

1. In the vSphere Client, browse to the virtual machine.
2. Right-click the virtual machine and select Edit Settings.
3. Click the VM Options tab.
4. Check the Enable check box for Virtualization Based Security.
5. Click OK.

Confirm that the virtual machine's Summary tab displays "VBS true" in the Guest OS description.

What to do next

See Enable Virtualization-based Security on the Guest Operating System.

Enable Virtualization-based Security on the Guest Operating System

You can enable Microsoft virtualization-based security (VBS) for supported Windows guest operating systems.
You enable VBS from within the Windows Guest OS. Windows configures and enforces VBS through a Group Policy Object (GPO). The GPO gives you the ability to turn off and on the various services, such as Secure Boot, Device Guard, and Credential Guard, that VBS offers. Certain Windows versions also require you to perform the additional step of enabling the Hyper-V platform.

See Microsoft's documentation about deploying Device Guard to enable virtualization-based security for details.

Prerequisites

- Ensure that virtualization-based security has been enabled on the virtual machine.

Procedure

1. In Microsoft Windows, edit the group policy to turn on VBS and choose other VBS-related security options.

2. (Optional) For Microsoft Windows versions less than Redstone 4, in the Windows Features control panel, enable the Hyper-V platform.

3. Reboot the guest operating system.

Disable Virtualization-based Security

If you no longer use virtualization-based security (VBS) with a virtual machine, you can disable VBS. When you disable VBS for the virtual machine, the Windows VBS options remain unchanged but might induce performance issues. Before disabling VBS on the virtual machine, disable VBS options within Windows.

Prerequisites

Ensure that the virtual machine is powered off.

Procedure

1. In the vSphere Client, browse to the VBS-enabled virtual machine.

 See Identify VBS-Enabled Virtual Machines for help in locating VBS-enabled virtual machines.

2. Right-click the virtual machine and select Edit Settings.

3. Click VM Options.

 A message reminds you to disable VBS in the guest OS.

5. Click OK.

6. Verify that the virtual machine's Summary tab no longer displays "VBS true" in the Guest OS description.
Identify VBS-Enabled Virtual Machines

You can identify which of your virtual machines have VBS enabled, for reporting and compliance purposes.

Procedure

1. Connect to vCenter Server by using the vSphere Client.
2. Select a vCenter Server instance, a data center, or a host in the inventory.
3. Click the VMs tab and click Virtual Machines.
4. In the list of virtual machines, click the down arrow in a column header to show/hide columns, and select the VBS check box.
 The VBS column appears.
5. Scan for Present in the VBS column.
Securing vSphere Networking is an essential part of protecting your environment. You secure different vSphere components in different ways. See the vSphere Networking documentation for detailed information about networking in the vSphere environment.

This chapter includes the following topics:

- Introduction to vSphere Network Security
- Securing the Network With Firewalls
- Secure the Physical Switch
- Securing Standard Switch Ports with Security Policies
- Securing vSphere Standard Switches
- Standard Switch Protection and VLANs
- Secure vSphere Distributed Switches and Distributed Port Groups
- Securing Virtual Machines with VLANs
- Creating Multiple Networks Within a Single ESXi Host
- Internet Protocol Security
- Ensure Proper SNMP Configuration
- vSphere Networking Security Best Practices

Introduction to vSphere Network Security

Network security in the vSphere environment shares many characteristics of securing a physical network environment, but also includes some characteristics that apply only to virtual machines.

Firewalls

Add firewall protection to your virtual network by installing and configuring host-based firewalls on some or all its VMs.

For efficiency, you can set up private virtual machine Ethernet networks or virtual networks. With virtual networks, you install a host-based firewall on a VM at the head of the virtual network. This firewall serves as a protective buffer between the physical network adapter and the remaining VMs in the virtual network.
Host-based firewalls can slow performance. Balance your security needs against performance goals before you install host-based firewalls on VMs elsewhere in the virtual network.

See Securing the Network With Firewalls.

Segmentation

Keep different virtual machine zones within a host on different network segments. If you isolate each virtual machine zone on its own network segment, you minimize the risk of data leakage from one zone to the next. Segmentation prevents various threats, including Address Resolution Protocol (ARP) spoofing. With ARP spoofing, an attacker manipulates the ARP table to remap MAC and IP addresses, and gains access to network traffic to and from a host. Attackers use ARP spoofing to generate man in the middle (MITM) attacks, perform denial of service (DoS) attacks, hijack the target system, and otherwise disrupt the virtual network.

Planning segmentation carefully lowers the chances of packet transmissions between virtual machine zones. Segmentation therefore prevents sniffing attacks that require sending network traffic to the victim. Also, an attacker cannot use a nonsecure service in one virtual machine zone to access other virtual machine zones in the host. You can implement segmentation by using one of two approaches.

- Use separate physical network adapters for virtual machine zones to ensure that the zones are isolated. Maintaining separate physical network adapters for virtual machine zones is probably the most secure method. After the initial segment creation. This approach is less prone to misconfiguration.

- Set up virtual local area networks (VLANs) to help safeguard your network. VLANs provide almost all the security benefits inherent in implementing physically separate networks without the hardware overhead. VLANs can save you the cost of deploying and maintaining additional devices, cabling, and so on. See Securing Virtual Machines with VLANs.

Preventing Unauthorized Access

Requirements for securing VMs are often the same as requirements for securing physical machines.

- If a virtual machine network is connected to a physical network, it can be subject to breaches just like a network that consists of physical machines.

- Even if you do not connect a VM to the physical network, the VM can be attacked by other VMs.

VMs are isolated from each other. One VM cannot read or write another VM’s memory, access its data, use its applications, and so forth. However, within the network, any VM or group of VMs can still be the target of unauthorized access from other VMs. Protect your VMs from such unauthorized access.

For additional information about protecting VMs, see the NIST document titled "Secure Virtual Network Configuration for Virtual Machine (VM) Protection" at:

https://csrc.nist.gov/publications/detail/sp/800-125b/final
Securing the Network With Firewalls

Security administrators use firewalls to safeguard the network or selected components in the network from intrusion.

Firewalls control access to devices within their perimeter by closing all ports except for ports that the administrator explicitly or implicitly designates as authorized. The ports that administrators open allow traffic between devices on different sides of the firewall.

Important The ESXi firewall in ESXi 5.5 and later does not allow per-network filtering of vMotion traffic. Therefore, you must install rules on your external firewall to ensure that no incoming connections can be made to the vMotion socket.

In a virtual machine environment, you can plan the layout for firewalls between components.

- Firewalls between physical machines such as vCenter Server systems and ESXi hosts.
- Firewalls between one virtual machine and another, for example, between a virtual machine acting as an external Web server and a virtual machine connected to your company’s internal network.
- Firewalls between a physical machine and a virtual machine, such as when you place a firewall between a physical network adapter card and a virtual machine.

How you use firewalls in your ESXi configuration is based on how you plan to use the network and how secure any given component has to be. For example, if you create a virtual network where each virtual machine is dedicated to running a different benchmark test suite for the same department, the risk of unwanted access from one virtual machine to the next is minimal. Therefore, a configuration where firewalls are present between the virtual machines is not necessary. However, to prevent interruption of a test run from an outside host, you can configure a firewall at the entry point of the virtual network to protect the entire set of virtual machines.

For a diagram of firewall ports, see VMware Knowledge Base article 2131180.

Firewalls for Configurations With vCenter Server

If you access ESXi hosts through vCenter Server, you typically protect vCenter Server using a firewall.

Firewalls must be present at entry points. A firewall might lie between the clients and vCenter Server or vCenter Server and the clients can both be behind a firewall.

For a comprehensive list of TCP and UDP ports, see [Required Ports for vCenter Server and Platform Services Controller](#) and [Additional vCenter Server TCP and UDP Ports](#).

Networks configured with vCenter Server can receive communications through the vSphere Web Client, other UI clients, or clients that use the vSphere API. During normal operation, vCenter Server listens for data from its managed hosts and clients on designated ports. vCenter Server also assumes that its managed hosts listen for data from vCenter Server on designated ports. If a firewall is present between any of these elements, you must ensure that the firewall has open ports to support data transfer.
You might also include firewalls at other access points in the network, depending on network usage and on the level of security that clients require. Select the locations for your firewalls based on the security risks for your network configuration. The following firewall locations are commonly used.

- Between the vSphere Web Client or a third-party network-management client and vCenter Server.
- If your users access virtual machines through a Web browser, between the Web browser and the ESXi host.
- If your users access virtual machines through the vSphere Web Client, between the vSphere Web Client and the ESXi host. This connection is in addition to the connection between the vSphere Web Client and vCenter Server, and it requires a different port.
- Between vCenter Server and the ESXi hosts.
- Between the ESXi hosts in your network. Although traffic between hosts is usually considered trusted, you can add firewalls between them if you are concerned about security breaches from machine to machine.

 If you add firewalls between ESXi hosts and plan to migrate virtual machines between them, open ports in any firewall that divides the source host from the target hosts.
- Between the ESXi hosts and network storage such as NFS or iSCSI storage. These ports are not specific to VMware. Configure them according to the specifications for your network.

Connecting to vCenter Server Through a Firewall

Open TCP port 443 in the firewall to enable vCenter Server to receive data. By default vCenter Server uses TCP port 443 to listen for data from its clients. If you have a firewall between vCenter Server and its clients, you must configure a connection through which vCenter Server can receive data from the clients.

Firewall configuration depends on what is used at your site, ask your local firewall system administrator for information. How you open ports depends on whether you use a vCenter Server Appliance or a vCenter Server Windows installation.

Connecting ESXi Hosts Through Firewalls

If you have a firewall between you ESXi hosts and vCenter Server, ensure that the managed hosts can receive data.

To configure a connection for receiving data, open ports for traffic from services such as vSphere High Availability, vMotion, and vSphere Fault Tolerance. See ESXi Firewall Configuration for a discussion of configuration files, vSphere Web Client access, and firewall commands. See Incoming and Outgoing Firewall Ports for ESXi Hosts for a list of ports.

Firewalls for Configurations Without vCenter Server

If your environment does not include vCenter Server, clients can connect directly to the ESXi network.

You can connect to a standalone ESXi host in several ways.

- VMware Host Client
One of the vSphere command-line interfaces

- vSphere Web Services SDK or vSphere Automation SDKs
- Third-party clients

The firewall requirements for standalone hosts are similar to requirements when a vCenter Server is present.

- Use a firewall to protect your ESXi layer or, depending on your configuration, your clients, and the ESXi layer. This firewall provides basic protection for your network.

- Licensing in this type of configuration is part of the ESXi package that you install on each of the hosts. Because licensing is resident to ESXi, a separate License Server with a firewall is not required.

You can configure firewall ports using ESXCLI or using the VMware Host Client. See vSphere Single Host Management - VMware Host Client.

Connecting to the Virtual Machine Console Through a Firewall

Certain ports must be open for user and administrator communication with the virtual machine console. Which ports must be open depends on the type of virtual machine console, and on whether you connect through vCenter Server with the vSphere Web Client or directly to the ESXi host from the VMware Host Client.

Connecting to a Browser-Based Virtual Machine Console Through the vSphere Web Client

When you are connecting with the vSphere Web Client, you always connect to the vCenter Server system that manages the ESXi host, and access the virtual machine console from there.

If you are using the vSphere Web Client and connecting to a browser-based virtual machine console, the following access must be possible:

- The firewall must allow vSphere Web Client to access vCenter Server on port 9443.
- The firewall must allow vCenter Server to access the ESXi host on port 902.

Connecting to a Standalone Virtual Machine Console Through the vSphere Web Client

If you are using the vSphere Web Client and connecting to a standalone virtual machine console, the following access must be possible:

- The firewall must allow vSphere Web Client to access vCenter Server on port 9443.
- The firewall must allow the standalone virtual machine console to access vCenter Server on port 9443 and to access the ESXi host on port 902.
Connecting to ESXi Hosts Directly with the VMware Host Client

You can use the VMware Host Client virtual machine console if you connect directly to an ESXi host.

Note Do not use the VMware Host Client to connect directly to hosts that are managed by a vCenter Server system. If you make changes to such hosts from the VMware Host Client, instability in your environment results.

The firewall must allow access to the ESXi host on ports 443 and 902.

The VMware Host Client uses port 902 to provide a connection for guest operating system MKS activities on virtual machines. It is through this port that users interact with the guest operating systems and applications of the virtual machine. VMware does not support configuring a different port for this function.

Secure the Physical Switch

Secure the physical switch on each ESXi host to prevent attackers from gaining access to the host and its virtual machines.

For best protection of your hosts, ensure that physical switch ports are configured with spanning tree disabled and ensure that the non-negotiate option is configured for trunk links between external physical switches and virtual switches in Virtual Switch Tagging (VST) mode.

Procedure

1. Log in to the physical switch and ensure that spanning tree protocol is disabled or that Port Fast is configured for all physical switch ports that are connected to ESXi hosts.

2. For virtual machines that perform bridging or routing, check periodically that the first upstream physical switch port is configured with BPDU Guard and Port Fast disabled and with spanning tree protocol enabled.

 In vSphere 5.1 and later, to prevent the physical switch from potential Denial of Service (DoS) attacks, you can turn on the guest BPDU filter on the ESXi hosts.

3. Log in to the physical switch and ensure that Dynamic Trunking Protocol (DTP) is not enabled on the physical switch ports that are connected to the ESXi hosts.

4. Routinely check physical switch ports to ensure that they are properly configured as trunk ports if connected to virtual switch VLAN trunking ports.

Securing Standard Switch Ports with Security Policies

The VMkernel port group or virtual machine port group on a standard switch has a configurable security policy. The security policy determines how strongly you enforce protection against impersonation and interception attacks on VMs.
Just like physical network adapters, virtual machine network adapters can impersonate another VM. Impersonation is a security risk.

- A VM can send frames that appear to be from a different machine so that it can receive network frames that are intended for that machine.
- A virtual machine network adapter can be configured so that it receives frames targeted for other machines.

When you add a VMkernel port group or virtual machine port group to a standard switch, ESXi configures a security policy for the ports in the group. You can use this security policy to ensure that the host prevents the guest operating systems of its VMs from impersonating other machines on the network. The guest operating system that might attempt impersonation does not detect that the impersonation was prevented.

The security policy determines how strongly you enforce protection against impersonation and interception attacks on VMs. To correctly use the settings in the security profile, see the Security Policy section in the vSphere Networking publication. This section explains:

- How VM network adapters control transmissions.
- How attacks are staged at this level.

Securing vSphere Standard Switches

You can secure standard switch traffic against Layer 2 attacks by restricting some of the MAC address modes of the VM network adapters.

Each VM network adapter has an initial MAC address and an effective MAC address.

Initial MAC address

The initial MAC address is assigned when the adapter is created. Although the initial MAC address can be reconfigured from outside the guest operating system, it cannot be changed by the guest operating system.

Effective MAC address

Each adapter has an effective MAC address that filters out incoming network traffic with a destination MAC address that is different from the effective MAC address. The guest operating system is responsible for setting the effective MAC address and typically matches the effective MAC address to the initial MAC address.

Upon creating a VM network adapter, the effective MAC address and initial MAC address are the same. The guest operating system can alter the effective MAC address to another value at any time. If an operating system changes the effective MAC address, its network adapter receives network traffic that is destined for the new MAC address.

When sending packets through a network adapter, the guest operating system typically places its own adapter effective MAC address in the source MAC address field of the Ethernet frames. It places the MAC address for the receiving network adapter in the destination MAC address field. The receiving adapter accepts packets only if the destination MAC address in the packet matches its own effective MAC address.
An operating system can send frames with an impersonated source MAC address. An operating system can therefore impersonate a network adapter that the receiving network authorizes, and stage malicious attacks on the devices in a network.

Protect virtual traffic against impersonation and interception Layer 2 attacks by configuring a security policy on port groups or ports.

The security policy on distributed port groups and ports includes the following options:

- MAC address changes (see MAC Address Changes)
- Promiscuous mode (see Promiscuous Mode Operation)
- Forged transmits (see Forged Transmits)

You can view and change the default settings by selecting the virtual switch associated with the host from the vSphere Client. See vSphere Networking documentation.

MAC Address Changes

The security policy of a virtual switch includes a MAC address changes option. This option affects traffic that a virtual machine receives.

When the Mac address changes option is set to Accept, ESXi accepts requests to change the effective MAC address to a different address than the initial MAC address.

When the Mac address changes option is set to Reject, ESXi does not honor requests to change the effective MAC address to a different address than the initial MAC address. This setting protects the host against MAC impersonation. The port that the virtual machine adapter used to send the request is disabled and the virtual machine adapter does not receive any more frames until the effective MAC address matches the initial MAC address. The guest operating system does not detect that the MAC address change request was not honored.

Note The iSCSI initiator relies on being able to get MAC address changes from certain types of storage. If you are using ESXi iSCSI with iSCSI storage, set the MAC address changes option to Accept.

In some situations, you might have a legitimate need for more than one adapter to have the same MAC address on a network—for example, if you are using Microsoft Network Load Balancing in unicast mode. When Microsoft Network Load Balancing is used in the standard multicast mode, adapters do not share MAC addresses.

Forged Transmits

The Forged transmits option affects traffic that is transmitted from a virtual machine.

When the Forged transmits option is set to Accept, ESXi does not compare source and effective MAC addresses.

To protect against MAC impersonation, you can set the Forged transmits option to Reject. If you do, the host compares the source MAC address being transmitted by the guest operating system with the effective MAC address for its virtual machine adapter to see if they match. If the addresses do not match, the ESXi host drops the packet.
The guest operating system does not detect that its virtual machine adapter cannot send packets by using the impersonated MAC address. The ESXi host intercepts any packets with impersonated addresses before they are delivered, and the guest operating system might assume that the packets are dropped.

Promiscuous Mode Operation

Promiscuous mode eliminates any reception filtering that the virtual machine adapter performs so that the guest operating system receives all traffic observed on the wire. By default, the virtual machine adapter cannot operate in promiscuous mode.

Although promiscuous mode can be useful for tracking network activity, it is an insecure mode of operation, because any adapter in promiscuous mode has access to the packets even if some of the packets are received only by a particular network adapter. This means that an administrator or root user within a virtual machine can potentially view traffic destined for other guest or host operating systems.

See the *vSphere Networking* documentation for information about configuring the virtual machine adapter for promiscuous mode.

Note In some situations, you might have a legitimate reason to configure a standard or a distributed virtual switch to operate in promiscuous mode, for example, if you are running network intrusion detection software or a packet sniffer.

Standard Switch Protection and VLANs

VMware standard switches provide safeguards against certain threats to VLAN security. Because of the way that standard switches are designed, they protect VLANs against a variety of attacks, many of which involve VLAN hopping.

Having this protection does not guarantee that your virtual machine configuration is invulnerable to other types of attacks. For example, standard switches do not protect the physical network against these attacks; they protect only the virtual network.

Standard switches and VLANs can protect against the following types of attacks.

- **MAC flooding**
 Floods a switch with packets that contain MAC addresses tagged as having come from different sources. Many switches use a content-addressable memory table to learn and store the source address for each packet. When the table is full, the switch can enter a fully open state in which every incoming packet is broadcast on all ports, letting the attacker see all of the switch’s traffic. This state might result in packet leakage across VLANs.

 Although VMware standard switches store a MAC address table, they do not get the MAC addresses from observable traffic and are not vulnerable to this type of attack.

- **802.1q and ISL tagging attacks**
 Force a switch to redirect frames from one VLAN to another by tricking the switch into acting as a trunk and broadcasting the traffic to other VLANs.
VMware standard switches do not perform the dynamic trunking required for this type of attack and, therefore, are not vulnerable.

Double-encapsulation attacks

Occur when an attacker creates a double-encapsulated packet in which the VLAN identifier in the inner tag is different from the VLAN identifier in the outer tag. For backward compatibility, native VLANs strip the outer tag from transmitted packets unless configured to do otherwise. When a native VLAN switch strips the outer tag, only the inner tag is left, and that inner tag routes the packet to a different VLAN than the one identified in the now-missing outer tag.

VMware standard switches drop any double-encapsulated frames that a virtual machine attempts to send on a port configured for a specific VLAN. Therefore, they are not vulnerable to this type of attack.

Multicast brute-force attacks

Involve sending large numbers of multicast frames to a known VLAN almost simultaneously to overload the switch so that it mistakenly allows some of the frames to broadcast to other VLANs.

VMware standard switches do not allow frames to leave their correct broadcast domain (VLAN) and are not vulnerable to this type of attack.

Spanning-tree attacks

Target Spanning-Tree Protocol (STP), which is used to control bridging between parts of the LAN. The attacker sends Bridge Protocol Data Unit (BPDU) packets that attempt to change the network topology, establishing themselves as the root bridge. As the root bridge, the attacker can sniff the contents of transmitted frames.

VMware standard switches do not support STP and are not vulnerable to this type of attack.

Random frame attacks

Involve sending large numbers of packets in which the source and destination addresses stay the same, but in which fields are randomly changed in length, type, or content. The goal of this attack is to force packets to be mistakenly rerouted to a different VLAN.

VMware standard switches are not vulnerable to this type of attack.

Because new security threats develop over time, do not consider this an exhaustive list of attacks. Regularly check VMware security resources on the Web to learn about security, recent security alerts, and VMware security tactics.

Secure vSphere Distributed Switches and Distributed Port Groups

Administrators have several options for securing vSphere Distributed Switches in their vSphere environment.
The same rules apply for VLANs in a vSphere Distributed Switch as they do in a standard switch. For more information, see Standard Switch Protection and VLANs.

Procedure

1. **For distributed port groups with static binding, disable the Auto Expand feature.**

 Auto Expand is enabled by default in vSphere 5.1 and later.

 To disable Auto Expand, configure the `autoExpand` property under the distributed port group with the vSphere Web Services SDK or with a command-line interface. See the vSphere Web Services SDK documentation.

2. **Ensure that all private VLAN IDs of any vSphere Distributed Switch are fully documented.**

3. **If you are using VLAN tagging on a dvPortgroup, VLAN IDs must correspond to the IDs on external VLAN-aware upstream switches. If VLAN IDs are not tracked correctly, mistaken reuse of IDs might allow unintended traffic. Similarly, wrong or missing VLAN IDs might lead to traffic not passing between physical and virtual machines.**

4. **Ensure that no unused ports exist on a virtual port group associated with a vSphere Distributed Switch.**

5. **Label all vSphere Distributed Switches.**

 vSphere Distributed Switches associated with an ESXi host require a text box for the name of the switch. This label serves as a functional descriptor for the switch, just like the host name associated with a physical switch. The label on the vSphere Distributed Switch indicates the function or the IP subnet of the switch. For example, you can label the switch as internal to indicate that it is only for internal networking on a virtual machine’s private virtual switch. No traffic goes over physical network adapters.

6. **Disable network health check for your vSphere Distributed Switches if you are not actively using it.**

 Network health check is disabled by default. Once enabled, the health check packets contain information about the host, switch, and port that an attacker can potentially use. Use network health check only for troubleshooting, and turn it off when troubleshooting is finished.

7. **Protect virtual traffic against impersonation and interception Layer 2 attacks by configuring a security policy on port groups or ports.**

 The security policy on distributed port groups and ports includes the following options:

 - MAC address changes (see [MAC Address Changes](#))
 - Promiscuous mode (see [Promiscuous Mode Operation](#))
 - Forged transmits (see [Forged Transmits](#))

 You can view and change the current settings by selecting **Manage Distributed Port Groups** from the right-button menu of the distributed switch and selecting **Security** in the wizard. See the [vSphere Networking](#) documentation.
Securing Virtual Machines with VLANs

The network can be one of the most vulnerable parts of any system. Your virtual machine network requires as much protection as your physical network. Using VLANs can improve networking security in your environment.

VLANs are an IEEE standard networking scheme with specific tagging methods that allow routing of packets to only those ports that are part of the VLAN. When properly configured, VLANs provide a dependable means for you to protect a set of virtual machines from accidental or malicious intrusions.

VLANs let you segment a physical network so that two machines in the network are unable to transmit packets back and forth unless they are part of the same VLAN. For example, accounting records and transactions are among a company’s most sensitive internal information. In a company whose sales, shipping, and accounting employees all use virtual machines in the same physical network, you might protect the virtual machines for the accounting department by setting up VLANs.

Figure 10-1. Sample VLAN Layout

In this configuration, all employees in the accounting department use virtual machines in VLAN A and the employees in sales use virtual machines in VLAN B.

The router forwards packets containing accounting data to the switches. These packets are tagged for distribution to VLAN A only. Therefore, the data is confined to Broadcast Domain A and cannot be routed to Broadcast Domain B unless the router is configured to do so.
This VLAN configuration prevents the sales force from intercepting packets destined for the accounting department. It also prevents the accounting department from receiving packets intended for the sales group. The virtual machines serviced by a single virtual switch can be in different VLANs.

Security Considerations for VLANs

The way you set up VLANs to secure parts of a network depends on factors such as the guest operating system and the way your network equipment is configured.

ESXi features a complete IEEE 802.1q-compliant VLAN implementation. VMware cannot make specific recommendations on how to set up VLANs, but there are factors to consider when using a VLAN deployment as part of your security enforcement policy.

Secure VLANs

Administrators have several options for securing the VLANs in their vSphere environment.

Procedure

1. Ensure that port groups are not configured to VLAN values that are reserved by upstream physical switches.

 Do not set VLAN IDs to values reserved for the physical switch.

2. Ensure that port groups are not configured to VLAN 4095 unless you are using for Virtual Guest Tagging (VGT).

 Three types of VLAN tagging exist in vSphere:
 - **External Switch Tagging (EST)**
 - **Virtual Switch Tagging (VST)** - The virtual switch tags with the configured VLAN ID the traffic that is incoming to the attached virtual machines and removes the VLAN tag from the traffic that is leaving them. To set up VST mode, assign a VLAN ID between 1 and 4095.
 - **Virtual Guest Tagging (VGT)** - Virtual machines handle VLAN traffic. To activate VGT mode, set the VLAN ID to 4095. On a distributed switch, you can also allow virtual machine traffic based on its VLAN by using the **VLAN Trunking** option.

 On a standard switch you can configure VLAN networking mode at switch or port group level, and on a distributed switch at distributed port group or port level.

3. Ensure that all VLANs on each virtual switch are fully documented and that each virtual switch has all required VLANs and only required VLANs.

Creating Multiple Networks Within a Single ESXi Host

The ESXi system is designed so that you can connect some groups of virtual machines to the internal network, others to the external network, and still others to both—all on the same host. This capability is an outgrowth of basic virtual machine isolation coupled with a well-planned use of virtual networking features.
In the figure, the system administrator configured a host into three distinct virtual machine zones: FTP server, internal virtual machines, and DMZ. Each zone serves a unique function.

FTP server

Virtual Machine 1 is configured with FTP software and acts as a holding area for data sent to and from outside resources such as forms and collateral localized by a vendor.

This virtual machine is associated with an external network only. It has its own virtual switch and physical network adapter that connect it to External Network 1. This network is dedicated to servers that the company uses to receive data from outside sources. For example, the company uses External Network 1 to receive FTP traffic from vendors and allow vendors access to data stored on externally available servers though FTP. In addition to servicing Virtual Machine 1, External Network 1 services FTP servers configured on different ESXi hosts throughout the site.

Because Virtual Machine 1 does not share a virtual switch or physical network adapter with any virtual machines in the host, the other resident virtual machines cannot transmit packets to or receive packets from the Virtual Machine 1 network. This restriction prevents sniffing attacks, which require sending network traffic to the victim. More importantly, an attacker...
cannot use the natural vulnerability of FTP to access any of the host’s other virtual machines.

Internal virtual machines

Virtual Machines 2 through 5 are reserved for internal use. These virtual machines process and store company-private data such as medical records, legal settlements, and fraud investigations. As a result, the system administrators must ensure the highest level of protection for these virtual machines.

These virtual machines connect to Internal Network 2 through their own virtual switch and network adapter. Internal Network 2 is reserved for internal use by personnel such as claims processors, in-house lawyers, or adjustors.

Virtual Machines 2 through 5 can communicate with one another through the virtual switch and with internal virtual machines elsewhere on Internal Network 2 through the physical network adapter. They cannot communicate with externally facing machines. As with the FTP server, these virtual machines cannot send packets to or receive packets from the other virtual machines’ networks. Similarly, the host’s other virtual machines cannot send packets to or receive packets from Virtual Machines 2 through 5.

DMZ

Virtual Machines 6 through 8 are configured as a DMZ that the marketing group uses to publish the company’s external website.

This group of virtual machines is associated with External Network 2 and Internal Network 1. The company uses External Network 2 to support the Web servers that use the marketing and financial department to host the corporate website and other Web facilities that it hosts to outside users. Internal Network 1 is the conduit that the marketing department uses to publish its content to the corporate Web site, post downloads, and maintain services like user forums.

Because these networks are separate from External Network 1 and Internal Network 2, and the virtual machines have no shared points of contact (switches or adapters), there is no risk of attack to or from the FTP server or the internal virtual machine group.

By capitalizing on virtual machine isolation, correctly configuring virtual switches, and maintaining network separation, the system administrator can house all three virtual machine zones in the same ESXi host and be confident that there will be no data or resource breaches.

The company enforces isolation among the virtual machine groups by using multiple internal and external networks and making sure that the virtual switches and physical network adapters for each group are separate from those of other groups.
Because none of the virtual switches straddle virtual machine zones, the system administrator succeeds in eliminating the risk of packet leakage from one zone to another. A virtual switch, by design, cannot leak packets directly to another virtual switch. The only way for packets to travel from one virtual switch to another is under the following circumstances:

- The virtual switches are connected to the same physical LAN.
- The virtual switches connect to a common virtual machine, which might be used to transmit packets.

Neither of these conditions occur in the sample configuration. If system administrators want to verify that no common virtual switch paths exist, they can check for possible shared points of contact by reviewing the network switch layout in the vSphere Client.

To safeguard the virtual machines’ resources, the system administrator lowers the risk of DoS and DDoS attacks by configuring a resource reservation and a limit for each virtual machine. The system administrator further protects the ESXi host and virtual machines by installing software firewalls at the front and back ends of the DMZ, ensuring that the host is behind a physical firewall, and configuring the networked storage resources so that each has its own virtual switch.

Internet Protocol Security

Internet Protocol Security (IPsec) secures IP communications coming from and arriving at a host. ESXi hosts support IPsec using IPv6.

When you set up IPsec on a host, you enable authentication and encryption of incoming and outgoing packets. When and how IP traffic is encrypted depends on how you set up the system's security associations and security policies.

A security association determines how the system encrypts traffic. When you create a security association, you specify the source and destination, encryption parameters, and a name for the security association.

A security policy determines when the system should encrypt traffic. The security policy includes source and destination information, the protocol and direction of traffic to be encrypted, the mode (transport or tunnel) and the security association to use.

List Available Security Associations

ESXi can provide a list of all security associations available for use by security policies. The list includes both user created security associations and any security associations the VMkernel installed using Internet Key Exchange.

You can get a list of available security associations using the `esxcli` vSphere CLI command.

Procedure

- At the command prompt, enter the command `esxcli network ip ipsec sa list`.

ESXi displays a list of all available security associations.
Add an IPsec Security Association

Add a security association to specify encryption parameters for associated IP traffic.

You can add a security association using the `esxcli` vSphere CLI command.

Procedure

At the command prompt, enter the command `esxcli network ip ipsec sa add` with one or more of the following options.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>--sa-source= source address</code></td>
<td>Required. Specify the source address.</td>
</tr>
<tr>
<td><code>--sa-destination= destination address</code></td>
<td>Required. Specify the destination address.</td>
</tr>
<tr>
<td><code>--sa-mode= mode</code></td>
<td>Required. Specify the mode, either transport or tunnel.</td>
</tr>
<tr>
<td><code>--sa-spi= security parameter index</code></td>
<td>Required. Specify the security parameter index. The security parameter index identifies the security association to the host. It must be a hexadecimal with a 0x prefix. Each security association you create must have a unique combination of protocol and security parameter index.</td>
</tr>
<tr>
<td><code>--encryption-algorithm= encryption algorithm</code></td>
<td>Required. Specify the encryption algorithm using one of the following parameters.</td>
</tr>
<tr>
<td></td>
<td>3des-cbc</td>
</tr>
<tr>
<td></td>
<td>aes128-cbc</td>
</tr>
<tr>
<td></td>
<td>null (provides no encryption)</td>
</tr>
<tr>
<td><code>--encryption-key= encryption key</code></td>
<td>Required when you specify an encryption algorithm. Specify the encryption key. You can enter keys as ASCII text or as a hexadecimal with a 0x prefix.</td>
</tr>
<tr>
<td><code>--integrity-algorithm= authentication algorithm</code></td>
<td>Required. Specify the authentication algorithm, either hmac–sha1 or hmac–sha2–256.</td>
</tr>
<tr>
<td><code>--integrity-key= authentication key</code></td>
<td>Required. Specify the authentication key. You can enter keys as ASCII text or as a hexadecimal with a 0x prefix.</td>
</tr>
<tr>
<td><code>--sa-name= name</code></td>
<td>Required. Provide a name for the security association.</td>
</tr>
</tbody>
</table>

Example: New Security Association Command

The following example contains extra line breaks for readability.

```
esxcli network ip ipsec sa add
--sa-source 3ffe:501:ffff:0::a
--sa-mode transport
--sa-spi 0x1000
--encryption-algorithm 3des-cbc
--encryption-key 0x6970763672656164796c6f676f336465736362636f757432
--integrity-algorithm hmac–sha1
--integrity-key 0x6970763672656164796c6f6736861316f757432
--sa-name sa1
```
Remove an IPsec Security Association

You can remove a security association using the ESXCLI vSphere CLI command.

Prerequisites

Verify that the security association you want to use is not currently in use. If you try to remove a security association that is in use, the removal operation fails.

 Procedure

◆ At the command prompt, enter the command

```
esxcli network ip ipsec sa remove --sa-name security_association_name
```

List Available IPsec Security Policies

You can list available security policies using the ESXCLI vSphere CLI command.

Procedure

◆ At the command prompt, enter the command `esxcli network ip ipsec sp list`

The host displays a list of all available security policies.

Create an IPSec Security Policy

Create a security policy to determine when to use the authentication and encryption parameters set in a security association. You can add a security policy using the ESXCLI vSphere CLI command.

Prerequisites

Before creating a security policy, add a security association with the appropriate authentication and encryption parameters as described in Add an IPsec Security Association.

Procedure

◆ At the command prompt, enter the command `esxcli network ip ipsec sp add` with one or more of the following options.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>--sp-source= source address</code></td>
<td>Required. Specify the source IP address and prefix length.</td>
</tr>
<tr>
<td><code>--sp-destination= destination address</code></td>
<td>Required. Specify the destination address and prefix length.</td>
</tr>
<tr>
<td><code>--source-port= port</code></td>
<td>Required. Specify the source port. The source port must be a number between 0 and 65535.</td>
</tr>
<tr>
<td><code>--destination-port= port</code></td>
<td>Required. Specify the destination port. The source port must be a number between 0 and 65535.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| **--upper-layer-protocol**= protocol | Specify the upper layer protocol using one of the following parameters.
 - tcp
 - udp
 - icmp6
 - any |
| **--flow-direction**= direction | Specify the direction in which you want to monitor traffic using either in or out. |
| **--action**= action | Specify the action to take when traffic with the specified parameters is encountered using one of the following parameters.
 - none: Take no action
 - discard: Do not allow data in or out.
 - ipsec: Use the authentication and encryption information supplied in the security association to determine whether the data comes from a trusted source. |
| **--sp-mode**= mode | Specify the mode, either tunnel or transport. |
| **--sa-name**=security association name | Required. Provide the name of the security association for the security policy to use. |
| **--sp-name**=name | Required. Provide a name for the security policy. |

Example: New Security Policy Command

The following example includes extra line breaks for readability.

```bash
esxcli network ip ipsec add  
  --sp-source=2001:db8:1::/64  
  --sp-destination=2002:db8:1::/64  
  --source-port=23  
  --destination-port=25  
  --upper-layer-protocol=tcp  
  --flow-direction=out  
  --action=ipsec  
  --sp-mode=transport  
  --sa-name=s1  
  --sp-name=spl
```

Remove an IPsec Security Policy

You can remove a security policy from the ESXi host using the ESXCLI vSphere CLI command.

Prerequisites

Verify that the security policy you want to use is not currently in use. If you try to remove a security policy that is in use, the removal operation fails.
Procedure

At the command prompt, enter the command

```
esxcli network ip ipsec sp remove --sa-name security policy name.
```

To remove all security policies, enter the command

```
esxcli network ip ipsec sp remove --remove-all.
```

Ensure Proper SNMP Configuration

If SNMP is not properly configured, monitoring information can be sent to a malicious host. The malicious host can then use this information to plan an attack.

SNMP must be configured on each ESXi host. You can use vCLI, PowerCLI, or the vSphere Web Services SDK for configuration.

See the Monitoring and Performance publication for detailed setup information for SNMP 3.

Procedure

1. Run the following command to determine whether SNMP is currently used.

```
esxcli system snmp get
```

2. To enable SNMP, run the following command.

```
esxcli system snmp set --enable true
```

3. To disable SNMP, run the following command.

```
esxcli system snmp set --disable true
```

vSphere Networking Security Best Practices

Following networking security best practices helps ensure the integrity of your vSphere deployment.

General Networking Security Recommendations

Following general network security recommendations is the first step in securing your networking environment. You can then move on to special areas, such as securing the network with firewalls or using IPsec.

- If spanning tree is enabled, ensure that physical switch ports are configured with Portfast. Because VMware virtual switches do not support STP, physical switch ports connected to an ESXi host must have Portfast configured to avoid loops within the physical switch network. If Portfast is not set, performance and connectivity issues might arise.

- Ensure that Netflow traffic for a Distributed Virtual Switch is only sent to authorized collector IP addresses. Netflow exports are not encrypted and can contain information about the virtual network. This information increases the potential for a successful man-in-the-middle attack. If Netflow export is required, verify that all Netflow target IP addresses are correct.
- Ensure that only authorized administrators have access to virtual networking components by using the role-based access controls. For example, give virtual machine administrators only access to port groups in which their virtual machines reside. Give network administrators access to all virtual networking components but no access to virtual machines. Limiting access reduces the risk of misconfiguration, whether accidental or malicious, and enforces key security concepts of separation of duties and least privilege.

- Ensure that port groups are not configured to the value of the native VLAN. Physical switches use VLAN 1 as their native VLAN. Frames on a native VLAN are not tagged with a 1. ESXi does not have a native VLAN. Frames with VLAN specified in the port group have a tag, but frames with VLAN not specified in the port group are not tagged. This can cause an issue because virtual machines that are tagged with a 1 end up belonging to native VLAN of the physical switch.

 For example, frames on VLAN 1 from a Cisco physical switch are untagged because VLAN 1 is the native VLAN on that physical switch. However, frames from the ESXi host that are specified as VLAN 1 are tagged with a 1. As a result, traffic from the ESXi host that is destined for the native VLAN is not routed correctly because it is tagged with a 1 instead of being untagged. Traffic from the physical switch that is coming from the native VLAN is not visible because it is not tagged. If the ESXi virtual switch port group uses the native VLAN ID, traffic from virtual machines on that port is not visible to the native VLAN on the switch because the switch is expecting untagged traffic.

- Ensure that port groups are not configured to VLAN values reserved by upstream physical switches. Physical switches reserve certain VLAN IDs for internal purposes and often disallow traffic configured to these values. For example, Cisco Catalyst switches typically reserve VLANs 1001–1024 and 4094. Using a reserved VLAN might result in a denial of service on the network.

- Ensure that port groups are not configured to VLAN 4095 except for Virtual Guest Tagging (VGT). Setting a port group to VLAN 4095 activates VGT mode. In this mode, the virtual switch passes all network frames to the virtual machine without modifying the VLAN tags, leaving it to the virtual machine to deal with them.

- Restrict port-level configuration overrides on a distributed virtual switch. Port-level configuration overrides are disabled by default. When overrides are enabled, you can use different security settings for a virtual machine than the port-group level settings. Certain virtual machines require unique configurations, but monitoring is essential. If overrides are not monitored, anyone who gains access to a virtual machine with a less secure distributed virtual switch configuration might attempt to exploit that access.

- Ensure that distributed virtual switch port mirror traffic is sent only to authorized collector ports or VLANs. A vSphere Distributed Switch can mirror traffic from one port to another to allow packet capture devices to collect specific traffic flows. Port mirroring sends a copy of all specified traffic in unencrypted format. This mirrored traffic contains the full data in the packets captured and can result in total compromise of that data if misdirected. If port mirroring is required, verify that all port mirror destination VLAN, port and uplink IDs are correct.
Labeling Networking Components

Identifying the different components of your networking architecture is critical and helps ensure that no errors are introduced as your network grows.

Follow these best practices:

- Ensure that port groups are configured with a clear network label. These labels serve as a functional descriptor for the port group and help you identify each port group’s function as the network becomes more complex.
- Ensure that each vSphere Distributed Switch has a clear network label that indicates the function or IP subnet of the switch. This label serves as a functional descriptor for the switch, just as physical switches require a host name. For example, you can label the switch as internal to show that it is for internal networking. You cannot change the label for a standard virtual switch.

Document and Check the vSphere VLAN Environment

Check your VLAN environment regularly to avoid addressing problems. Fully document the VLAN environment and ensure that VLAN IDs are used only once. Your documentation can help with troubleshooting and is essential when you want to expand the environment.

Procedure

1. Ensure that all vSwitch and VLAN IDs are fully documented

 If you are using VLAN tagging on a virtual switch, the IDs must correspond to the IDs on external VLAN-aware upstream switches. If VLAN IDs are not tracked completely, mistaken reuse of IDs might allow for traffic between the wrong physical and virtual machines. Similarly, if VLAN IDs are wrong or missing, traffic between physical and virtual machines might be blocked where you want traffic to pass.

2. Ensure that VLAN IDs for all distributed virtual port groups (dvPortgroup instances) are fully documented.

 If you are using VLAN tagging on a dvPortgroup the IDs must correspond to the IDs on external VLAN-aware upstream switches. If VLAN IDs are not tracked completely, mistaken reuse of IDs might allow for traffic between the wrong physical and virtual machines. Similarly, if VLAN IDs are wrong or missing, traffic between physical and virtual machines might be blocked where you want traffic to pass.

3. Ensure that private VLAN IDs for all distributed virtual switches are fully documented.

 Private VLANs (PVLANs) for distributed virtual switches require primary and secondary VLAN IDs. These IDs must correspond to the IDs on external PVLAN-aware upstream switches. If VLAN IDs are not tracked completely, mistaken reuse of IDs might allow for traffic between the wrong physical and virtual machines. Similarly, if PVLAN IDs are wrong or missing, traffic between physical and virtual machines might be blocked where you want traffic to pass.
4 Verify that VLAN trunk links are connected only to physical switch ports that function as trunk links.

When connecting a virtual switch to a VLAN trunk port, you must properly configure both the virtual switch and the physical switch at the uplink port. If the physical switch is not properly configured, frames with the VLAN 802.1q header are forwarded to a switch that not expecting their arrival.

Adopting Network Isolation Practices

Network isolation practices significantly bolster network security in your vSphere environment.

Isolate the Management Network

The vSphere management network provides access to the vSphere management interface on each component. Services running on the management interface provide an opportunity for an attacker to gain privileged access to the systems. Remote attacks are likely to begin with gaining access to this network. If an attacker gains access to the management network, it provides the staging ground for further intrusion.

Strictly control access to management network by protecting it at the security level of the most secure VM running on an ESXi host or cluster. No matter how the management network is restricted, administrators must have access to this network to configure the ESXi hosts and vCenter Server system.

Place the vSphere management port group in a dedicated VLAN on a common standard switch. Production (VM) traffic can share the standard switch if the vSphere management port group’s VLAN is not used by production VMs.

Check that the network segment is not routed, except to networks where other management-related entities are found. Routing a network segment might make sense for vSphere Replication. In particular, make sure that production VM traffic cannot be routed to this network.

Strictly control access to management functionality by using one of the following approaches.

- For especially sensitive environments, configure a controlled gateway or other controlled method to access the management network. For example, require that administrators connect to the management network through a VPN. Allow access to the management network only to trusted administrators.
- Configure jump boxes that run management clients.

Isolate Storage Traffic

Ensure that IP-based storage traffic is isolated. IP-based storage includes iSCSI and NFS. VMs might share virtual switches and VLANs with the IP-based storage configurations. This type of configuration might expose IP-based storage traffic to unauthorized VM users.

IP-based storage frequently is not encrypted. Anyone with access to this network can view IP-based storage traffic. To restrict unauthorized users from viewing IP-based storage traffic, logically separate the IP-based storage network traffic from the production traffic. Configure the IP-based storage adapters on separate VLANs or network segments from the VMkernel management network to limit unauthorized users from viewing the traffic.
Isolate vMotion Traffic

vMotion migration information is transmitted in plain text. Anyone with access to the network over which this information flows can view it. Potential attackers can intercept vMotion traffic to obtain the memory contents of a VM. They might also stage a MiTM attack in which the contents are modified during migration.

Separate vMotion traffic from production traffic on an isolated network. Set up the network to be nonroutable, that is, make sure that no layer-3 router is spanning this and other networks, to prevent outside access to the network.

Use a dedicated VLAN on a common standard switch for the vMotion port group. Production (VM) traffic can use the same standard switch if the vMotion port group’s VLAN is not used by production VMs.

Use Virtual Switches with the vSphere Network Appliance API Only If Required

Do not configure your host to send network information to a virtual machine unless you are using products that use the vSphere Network Appliance API (DvFilter). If the vSphere Network Appliance API is enabled, an attacker might attempt to connect a virtual machine to the filter. This connection might provide access to the network of other virtual machines on the host.

If you are using a product that uses this API, verify that the host is configured correctly. See the sections on DvFilter in Developing and Deploying vSphere Solutions, vServices, and ESX Agents. If your host is set up to use the API, make sure that the value of the Net.DVFilterBindIpAddress parameter matches the product that uses the API.

Procedure

1. Browse to the host in the vSphere Client inventory.
2. Click Configure.
4. Scroll down to Net.DVFilterBindIpAddress and verify that the parameter has an empty value.
 - The order of parameters is not strictly alphabetical. Type DVFilter in the Filter text box to display all related parameters.
5. Verify the setting.
 - If you are not using DvFilter settings, make sure that the value is blank.
 - If you are using DvFilter settings, make sure that the value of the parameter is correct. The value must match the value that the product that uses the DvFilter is using.
Some security best practices, such as setting up NTP in your environment, affect more than one vSphere component. Consider these recommendations when configuring your environment.

See Chapter 3 Securing ESXi Hosts and Chapter 5 Securing Virtual Machines for related information.

This chapter includes the following topics:

- Synchronizing Clocks on the vSphere Network
- Storage Security Best Practices
- Verify That Sending Host Performance Data to Guests Is Disabled
- Setting Timeouts for the ESXi Shell and vSphere Web Client

Synchronizing Clocks on the vSphere Network

Verify that all components on the vSphere network have their clocks synchronized. If the clocks on the physical machines in your vSphere network are not synchronized, SSL certificates and SAML Tokens, which are time-sensitive, might not be recognized as valid in communications between network machines.

Unsynchronized clocks can result in authentication problems, which can cause the installation to fail or prevent the vCenter Server Appliance `vmware-vpxd` service from starting.

Time inconsistencies in vSphere can cause firstboot to fail at different services depending on where in the environment time is not accurate and when the time is synchronized. Problems most commonly occur when the target ESXi host for the destination vCenter Server Appliance is not synchronized with NTP. Similarly, issues can arise if the destination vCenter Server Appliance migrates to an ESXi host set to a different time due to fully automated DRS.

To avoid time synchronization issues, ensure that the following is correct before installing, migrating, or upgrading a vCenter Server Appliance.

- The target ESXi host where the destination vCenter Server Appliance is to be deployed is synchronized to NTP.
- The ESXi host running the source vCenter Server Appliance is synchronized to NTP.
When upgrading or migrating, if the vCenter Server Appliance is connected to an external Platform Services Controller, ensure the ESXi host running the external Platform Services Controller is synchronized to NTP.

If you are upgrading or migrating, verify that the source vCenter Server or vCenter Server Appliance and external Platform Services Controller have the correct time.

Verify that any Windows host machine on which vCenter Server runs is synchronized with the Network Time Server (NTP) server. See Knowledge Base article KB 1318.

To synchronize ESXi clocks with an NTP server, you can use the VMware Host Client. For information about editing the time configuration of an ESXi host, see vSphere Single Host Management.

To learn how to change time synchronization settings for vCenter Server Appliance, see "Configuring Time Synchronization Settings in the vCenter Server Appliance" in vCenter Server Appliance Configuration.

To learn how to edit time configuration for a host, see "Edit Time Configuration for a Host" in vCenter Server and Host Management.

Synchronize ESXi Clocks with a Network Time Server

Before you install vCenter Server or deploy the vCenter Server Appliance, make sure all machines on your vSphere network have their clocks synchronized.

This task explains how to set up NTP from the VMware Host Client. You can instead use the vicfg-ntp vCLI command. See the vSphere Command-Line Interface Reference.

Procedure

1. Start the VMware Host Client, and connect to the ESXi host.
2. Click Manage.
5. In the NTP servers text box, enter the IP address or fully qualified domain name of one or more NTP servers to synchronize with.
6. (Optional) Set the startup policy and service status.
7. Click Save.
 The host synchronizes with the NTP server.
Configuring Time Synchronization Settings in the vCenter Server Appliance

You can change the time synchronization settings in the vCenter Server Appliance after deployment.

When you deploy the vCenter Server Appliance, you can choose the time synchronization method to be either by using an NTP server or by using VMware Tools. In case the time settings in your vSphere network change, you can edit the vCenter Server Appliance and configure the time synchronization settings by using the commands in the appliance shell.

When you enable periodic time synchronization, VMware Tools sets the time of the guest operating system to be the same as the time of the host.

After time synchronization occurs, VMware Tools checks once every minute to determine whether the clocks on the guest operating system and the host still match. If not, the clock on the guest operating system is synchronized to match the clock on the host.

Native time synchronization software, such as Network Time Protocol (NTP), is typically more accurate than VMware Tools periodic time synchronization and is therefore preferred. You can use only one form of periodic time synchronization in the vCenter Server Appliance. If you decide to use native time synchronization software, vCenter Server Appliance VMware Tools periodic time synchronization is disabled, and the reverse.

Use VMware Tools Time Synchronization

You can set up the vCenter Server Appliance to use VMware Tools time synchronization.

Procedure

1. Access the appliance shell and log in as a user who has the administrator or super administrator role.
 The default user with super administrator role is root.
2. Run the command to enable VMware Tools time synchronization.
   ```
   timesync.set --mode host
   ```
3. (Optional) Run the command to verify that you successfully applied the VMware Tools time synchronization.
   ```
   timesync.get
   ```

The command returns that the time synchronization is in host mode.

The time of the appliance is synchronized with the time of the ESXi host.

Add or Replace NTP Servers in the vCenter Server Appliance Configuration

To set up the vCenter Server Appliance to use NTP-based time synchronization, you must add the NTP servers to the vCenter Server Appliance configuration.
Procedure

1. Access the appliance shell and log in as a user who has the administrator or super administrator role. The default user with super administrator role is root.

2. Add NTP servers to the vCenter Server Appliance configuration by running the `ntp.server.add` command.

 For example, run the following command:
   ```
   ntp.server.add --servers IP-addresses-or-host-names
   ```

 Here `IP-addresses-or-host-names` is a comma-separated list of IP addresses or host names of the NTP servers.

 This command adds NTP servers to the configuration. If the time synchronization is based on an NTP server, then the NTP daemon is restarted to reload the new NTP servers. Otherwise, this command just adds the new NTP servers to the existing NTP configuration.

3. (Optional) To delete old NTP servers and add new ones to the vCenter Server Appliance configuration, run the `ntp.server.set` command.

 For example, run the following command:
   ```
   ntp.server.set --servers IP-addresses-or-host-names
   ```

 Here `IP-addresses-or-host-names` is a comma-separated list of IP addresses or host names of the NTP servers.

 This command deletes old NTP servers from the configuration and sets the input NTP servers in the configuration. If the time synchronization is based on an NTP server, the NTP daemon is restarted to reload the new NTP configuration. Otherwise, this command just replaces the servers in NTP configuration with the servers that you provide as input.

4. (Optional) Run the command to verify that you successfully applied the new NTP configuration settings.

   ```
   ntp.get
   ```

 The command returns a space-separated list of the servers configured for NTP synchronization. If the NTP synchronization is enabled, the command returns that the NTP configuration is in Up status. If the NTP synchronization is disabled, the command returns that the NTP configuration is in Down status.

What to do next

If the NTP synchronization is disabled, you can configure the time synchronization settings in the vCenter Server Appliance to be based on an NTP server. See Synchronize the Time in the vCenter Server Appliance with an NTP Server.
Synchronize the Time in the vCenter Server Appliance with an NTP Server

You can configure the time synchronization settings in the vCenter Server Appliance to be based on an NTP server.

Prerequisites

Set up one or more Network Time Protocol (NTP) servers in the vCenter Server Appliance configuration. See Add or Replace NTP Servers in the vCenter Server Appliance Configuration.

Procedure

1. Access the appliance shell and log in as a user who has the administrator or super administrator role. The default user with super administrator role is root.

2. Run the command to enable NTP-based time synchronization.

 `timesync.set --mode NTP`

3. (Optional) Run the command to verify that you successfully applied the NTP synchronization.

 `timesync.get`

 The command returns that the time synchronization is in NTP mode.

Storage Security Best Practices

Follow best practices for storage security, as outlined by your storage security provider. You can also take advantage of CHAP and mutual CHAP to secure iSCSI storage, mask and zone SAN resources, and configure Kerberos credentials for NFS 4.1.

See also the Administering VMware vSAN documentation.

Securing iSCSI Storage

The storage you configure for a host might include one or more storage area networks (SANs) that use iSCSI. When you configure iSCSI on a host, you can take measures to minimize security risks.

iSCSI supports accessing SCSI devices and exchanging data by using TCP/IP over a network port rather than through a direct connection to a SCSI device. An iSCSI transaction encapsulates blocks of raw SCSI data in iSCSI records and transmits the data to the requesting device or user.

iSCSI SANs support efficient use of the existing Ethernet infrastructure to provide hosts access to storage resources that they can dynamically share. iSCSI SANs are an economical storage solution for environments that rely on a common storage pool to serve many users. As with any networked system, your iSCSI SANs can be subject to security breaches.

Note The requirements and procedures for securing an iSCSI SAN are similar for hardware iSCSI adapters associated with hosts and for iSCSI configured directly through the host.
Securing iSCSI Devices

To secure iSCSI devices, require that the ESXi host, or initiator, can authenticate to the iSCSI device, or target, whenever the host attempts to access data on the target LUN.

Authentication ensures that the initiator has the right to access a target. You grant this right when you configure authentication on the iSCSI device.

ESXi does not support Secure Remote Protocol (SRP), or public-key authentication methods for iSCSI. You can use Kerberos only with NFS 4.1.

ESXi supports both CHAP and Mutual CHAP authentication. The vSphere Storage documentation explains how to select the best authentication method for your iSCSI device and how to set up CHAP.

Ensure uniqueness of CHAP secrets. Set up a different mutual authentication secret for each host. If possible, set up a different secret for each client that to the ESXi host. Unique secrets ensure that an attacker cannot create another arbitrary host and authenticate to the storage device even if one host is compromised. With a shared secret, compromise of one host might allow an attacker to authenticate to the storage device.

Protecting an iSCSI SAN

When you plan your iSCSI configuration, take measures to improve the overall security of the iSCSI SAN. Your iSCSI configuration is only as secure as your IP network, so by enforcing good security standards when you set up your network, you help safeguard your iSCSI storage.

The following are some specific suggestions for enforcing good security standards.

Protect Transmitted Data

A primary security risk in iSCSI SANs is that an attacker might sniff transmitted storage data.

Take additional measures to prevent attackers from easily seeing iSCSI data. Neither the hardware iSCSI adapter nor ESXi iSCSI initiator encrypts the data that they transmit to and from the targets, making the data more vulnerable to sniffing attacks.

Allowing your virtual machines to share standard switches and VLANs with your iSCSI configuration potentially exposes iSCSI traffic to misuse by a virtual machine attacker. To help ensure that intruders cannot listen to iSCSI transmissions, make sure that none of your virtual machines can see the iSCSI storage network.

If you use a hardware iSCSI adapter, you can accomplish this by making sure that the iSCSI adapter and ESXi physical network adapter are not inadvertently connected outside the host by virtue of sharing a switch or some other means. If you configure iSCSI directly through the ESXi host, you can accomplish this by configuring iSCSI storage through a different standard switch than the one used by your virtual machines.

In addition to protecting the iSCSI SAN by giving it a dedicated standard switch, you can configure your iSCSI SAN on its own VLAN to improve performance and security. Placing your iSCSI configuration on a separate VLAN ensures that no devices other than the iSCSI adapter have visibility into transmissions within the iSCSI SAN. Also, network congestion from other sources cannot interfere with iSCSI traffic.
Secure iSCSI Ports

When you run iSCSI devices, ESXi does not open any ports that listen for network connections. This measure reduces the chances that an intruder can break into ESXi through spare ports and gain control over the host. Therefore, running iSCSI does not present any additional security risks at the ESXi end of the connection.

Any iSCSI target device that you run must have one or more open TCP ports to listen for iSCSI connections. If any security vulnerabilities exist in the iSCSI device software, your data can be at risk through no fault of ESXi. To lower this risk, install all security patches that your storage equipment manufacturer provides and limit the devices connected to the iSCSI network.

Masking and Zoning SAN Resources

You can use zoning and LUN masking to segregate SAN activity and restrict access to storage devices.

You can protect access to storage in your vSphere environment by using zoning and LUN masking with your SAN resources. For example, you might manage zones defined for testing independently within the SAN so they do not interfere with activity in the production zones. Similarly, you might set up different zones for different departments.

When you set up zones, take into account any host groups that are set up on the SAN device.

Zoning and masking capabilities for each SAN switch and disk array and the tools for managing LUN masking are vendor specific.

See your SAN vendor’s documentation and the vSphere Storage documentation.

Using Kerberos for NFS 4.1

With NFS version 4.1, ESXi supports the Kerberos authentication mechanism.

The RPCSEC_GSS Kerberos mechanism is an authentication service. It allows an NFS 4.1 client installed on ESXi to prove its identity to an NFS server before mounting an NFS share. The Kerberos security uses cryptography to work across an insecure network connection.

The ESXi implementation of Kerberos for NFS 4.1 provides two security models, krb5 and krb5i, that offer different levels of security.

- Kerberos for authentication only (krb5) supports identity verification.
- Kerberos for authentication and data integrity (krb5i), in addition to identity verification, provides data integrity services. These services help to protect the NFS traffic from tampering by checking data packets for any potential modifications.

Kerberos supports cryptographic algorithms that prevent unauthorized users from gaining access to NFS traffic. The NFS 4.1 client on ESXi attempts to use either the AES256-CTS-HMAC-SHA1-96 or AES128-CTS-HMAC-SHA1-96 algorithm to access a share on the NAS server. Before using your NFS 4.1 datastores, make sure that AES256-CTS-HMAC-SHA1-96 or AES128-CTS-HMAC-SHA1-96 are enabled on the NAS server.

The following table compares Kerberos security levels that ESXi supports.
Table 11-1. Types of Kerberos Security

<table>
<thead>
<tr>
<th>Kerberos for authentication only (krb5)</th>
<th>ESXi 6.0</th>
<th>ESXi 6.5 and later</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrity checksum for RPC header</td>
<td>Yes with DES</td>
<td>Yes with AES</td>
</tr>
<tr>
<td>Integrity checksum for RPC data</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Kerberos for authentication and data integrity (krb5i)</td>
<td>Integrity checksum for RPC header</td>
<td>No krb5i</td>
</tr>
<tr>
<td></td>
<td>Integrity checksum for RPC data</td>
<td></td>
</tr>
</tbody>
</table>

When you use Kerberos authentication, the following considerations apply:

- ESXi uses Kerberos with the Active Directory domain.
- As a vSphere administrator, you specify Active Directory credentials to provide access to NFS 4.1 Kerberos datastores for an NFS user. A single set of credentials is used to access all Kerberos datastores mounted on that host.
- When multiple ESXi hosts share the NFS 4.1 datastore, you must use the same Active Directory credentials for all hosts that access the shared datastore. To automate the assignment process, set the user in host profiles and apply the profile to all ESXi hosts.
- You cannot use two security mechanisms, AUTH_SYS and Kerberos, for the same NFS 4.1 datastore shared by multiple hosts.

See the vSphere Storage documentation for step-by-step instructions.

Verify That Sending Host Performance Data to Guests Is Disabled

vSphere includes virtual machine performance counters on Windows operating systems where VMware Tools is installed. Performance counters allow virtual machine owners to do accurate performance analysis within the guest operating system. By default, vSphere does not expose host information to the guest virtual machine.

By default, the capability to send host performance data to a virtual machine is disabled. This default setting prevents a virtual machine from obtaining detailed information about the physical host. If a security breach of the virtual machine occurs, the setting does not make host data available to the attacker.

Note The procedure below illustrates the basic process. Consider using one of the vSphere command-line interfaces (vCLI, PowerCLI, and so on) for performing this task on all hosts simultaneously.

Procedure

1. On the ESXi system that hosts the virtual machine, browse to the VMX file.

 Virtual machine configuration files are located in the /vmfs/volumes/datastore directory, where datastore is the name of the storage device where the virtual machine files are stored.
2 In the VMX file, verify that the following parameter is set.

 tools.guestlib.enableHostInfo=FALSE

3 Save and close the file.

You cannot retrieve performance information about the host from inside the guest virtual machine.

Setting Timeouts for the ESXi Shell and vSphere Web Client

To prevent intruders from using an idle session, be sure to set timeouts for the ESXi Shell and vSphere Web Client.

ESXi Shell Timeout

For the ESXi Shell, you can set the following timeouts from the vSphere Web Client and from the Direct Console User Interface (DCUI).

Availability Timeout

The availability timeout setting is the amount of time that can elapse before you must log in after the ESXi Shell is enabled. After the timeout period, the service is disabled and users are not allowed to log in.

Idle Timeout

The idle timeout is the amount of time that can elapse before the user is logged out of an idle interactive sessions. Changes to the idle timeout apply the next time a user logs in to the ESXi Shell. Changes do not affect existing sessions.

vSphere Web Client Timeout

vSphere Web Client sessions terminate after 120 minutes by default. You can change this default in the webclient.properties file, as discussed in the *vCenter Server and Host Management* documentation.
Managing TLS Protocol Configuration with the TLS Configurator Utility

Starting with vSphere 6.7, only TLS 1.2 is enabled by default. TLS 1.0 and TLS 1.1 are disabled by default. Whether you do a fresh install, upgrade, or migration, vSphere 6.7 disables TLS 1.0 and TLS 1.1. You can use the TLS Configurator utility to enable older versions of the protocol temporarily on vSphere 6.7 systems. You can then disable the older less secure versions after all connections use TLS 1.2.

Note Starting with vSphere 6.7, the TLS Configurator utility is included in the product. You no longer download it separately.

Before you perform a reconfiguration, consider your environment. Depending on your environmental requirements and software versions, you might need to re-enable TLS 1.0 and TLS 1.1, in addition to TLS 1.2, to maintain interoperability. For VMware products, consult VMware Knowledge Base article 2145796 for a list of VMware products that support TLS 1.2. For third-party integration, consult your vendor’s documentation.

This chapter includes the following topics:

- Ports That Support Disabling TLS Versions
- Enabling or Disabling TLS Versions in vSphere
- Perform an Optional Manual Backup
- Enable or Disable TLS Versions on vCenter Server Systems
- Enable or Disable TLS Versions on ESXi Hosts
- Enable or Disable TLS Versions on External Platform Services Controller Systems
- Scan vCenter Server for Enabled TLS Protocols
- Revert TLS Configuration Changes
- Enable or Disable TLS Versions on vSphere Update Manager on Windows

Ports That Support Disabling TLS Versions

When you run the TLS Configurator utility in the vSphere environment, you can disable TLS across ports that use TLS on vCenter Server, Platform Services Controller, and ESXi hosts. You can disable TLS 1.0 or both TLS 1.0 and TLS 1.1.
The following table lists the ports. If a port is not included, the utility does not affect it.

Table 12-1. vCenter Server and Platform Services Controller Affected by the TLS Configurator Utility

<table>
<thead>
<tr>
<th>Service</th>
<th>Windows-based vCenter Server</th>
<th>vCenter Server Virtual Appliance</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMware HTTP Reverse Proxy</td>
<td>rhttpproxy</td>
<td>vmware-rhttpproxy</td>
<td>443</td>
</tr>
<tr>
<td>VMware vCenter Server Service</td>
<td>vpxd</td>
<td>vmware-vpxd</td>
<td>443</td>
</tr>
<tr>
<td>VMware Directory Service</td>
<td>VMwareDirectoryService</td>
<td>vmdird</td>
<td>636</td>
</tr>
<tr>
<td>VMware Syslog Collector</td>
<td>vmwaresyslogcollector</td>
<td>rsyslogd (*)</td>
<td>1514</td>
</tr>
<tr>
<td>VMware Appliance Management Interface</td>
<td>N.A.</td>
<td>vami-lighttp (*)</td>
<td>5480</td>
</tr>
<tr>
<td>vSphere Auto Deploy Waiter</td>
<td>vmware-autodeploy-waiter</td>
<td>vmware-rbd-watchdog</td>
<td>6501</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6502</td>
</tr>
<tr>
<td>VMware Secure Token Service</td>
<td>VMwareSTS</td>
<td>vmware-stsd</td>
<td>7444</td>
</tr>
<tr>
<td>vSphere Authentication Proxy</td>
<td>VMwareCAMService</td>
<td>vmcam</td>
<td>7475</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7476</td>
</tr>
<tr>
<td>vSphere Update Manager Service</td>
<td>vmware-ufad-vci</td>
<td>vmware-updatemgr (*)</td>
<td>8084</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9087</td>
</tr>
<tr>
<td>vSphere Web Client</td>
<td>vspherewebclientsvc</td>
<td>vsphere-client</td>
<td>9443</td>
</tr>
<tr>
<td>VMware vSphere Profile-Driven Storage Service</td>
<td>vimPBSM</td>
<td>vmware-sps</td>
<td>Random port greater than 1024</td>
</tr>
</tbody>
</table>

(*) You can reconfigure these services only on vCenter Server Virtual Appliance. On vCenter Server on Windows, you reconfigure TLS for Update Manager ports by editing configuration files. See Enable or Disable TLS Versions on vSphere Update Manager on Windows.

Table 12-2. ESXi Ports Affected by the TLS Configurator Utility

<table>
<thead>
<tr>
<th>Service</th>
<th>Service Name</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMware HTTP Reverse Proxy and Host Daemon</td>
<td>Hostd</td>
<td>443</td>
</tr>
<tr>
<td>VMware vSAN VASA Vendor Provider</td>
<td>vSANVP</td>
<td>8080</td>
</tr>
<tr>
<td>VMware Fault Domain Manager</td>
<td>FDM</td>
<td>8182</td>
</tr>
<tr>
<td>VMware vSphere API for IO Filters</td>
<td>iofilterVPServer</td>
<td>9080</td>
</tr>
<tr>
<td>ESXi WBEM Service</td>
<td>sfcbd-watchdog</td>
<td>5989</td>
</tr>
<tr>
<td>ESXi vVold Client Service</td>
<td>vvold</td>
<td>Random port greater than 1024</td>
</tr>
</tbody>
</table>
Notes and Caveats

- Starting with vSphere 6.7, you can use TLS 1.2 to encrypt the connection between vCenter Server and an external Microsoft SQL Server. You cannot use a TLS 1.2 only connection to an external Oracle database. See VMware Knowledge Base article 2149745.

- Do not disable TLS 1.0 on a vCenter Server or Platform Services Controller instance that is running on Windows Server 2008. Windows 2008 supports only TLS 1.0. See the Microsoft TechNet Article TLS/SSL Settings in the Server Roles and Technologies Guide.

- If you change the TLS protocols, you must restart the ESXi host to apply the changes. You must restart the host even if you apply the changes through cluster configuration by using host profiles. You can choose to restart the host immediately, or postpone the restart to a more convenient time.

Enabling or Disabling TLS Versions in vSphere

Disabling TLS versions is a multi-phase process. Disabling TLS versions in the right order ensures that your environment stays up and running during the process.

1. If your environment includes vSphere Update Manager on Windows, and vSphere Update Manager is on a separate system, disable protocols explicitly by editing configuration files. See Enable or Disable TLS Versions on vSphere Update Manager on Windows.

 vSphere Update Manager on the vCenter Server Appliance is always included with the vCenter Server system and the script updates the corresponding port.

2. Run the utility on vCenter Server.

3. Run the utility on each ESXi host that is managed by the vCenter Server. You can perform this task for each host or for all hosts in a cluster.

4. If your environment uses one or more Platform Services Controller instances, run the utility on each instance.

Prerequisites

You have two choices for using TLS in your environment.

- Disable TLS 1.0, and enable TLS 1.1 and TLS 1.2.
- Disable TLS 1.0 and TLS 1.1, and enable TLS 1.2.

Perform an Optional Manual Backup

The TLS Configuration utility performs a backup each time the script modifies vCenter Server, Platform Services Controller, or vSphere Update Manager on the vCenter Server Appliance. If you need a backup to a specific directory, you can perform a manual backup.

Backup of the ESXi configuration is not supported.
For vCenter Server or Platform Services Controller, the default directory differs for Windows and the appliance.

<table>
<thead>
<tr>
<th>OS</th>
<th>Backup Directory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td>c:\users\current_user\appdata\local\temp\yearmonthdayTtime</td>
</tr>
<tr>
<td>Linux</td>
<td>/tmp/yearmonthdayTtime</td>
</tr>
</tbody>
</table>

Procedure

1. Change directory to VcTlsReconfigurator.

<table>
<thead>
<tr>
<th>OS</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td>cd %VMWARE_CIS_HOME%\TlsReconfigurator\VcTlsReconfigurator</td>
</tr>
<tr>
<td>Linux</td>
<td>cd /usr/lib/vmware-TlsReconfigurator/VcTlsReconfigurator</td>
</tr>
</tbody>
</table>

2. To make a backup to a specific directory, run the following command.

<table>
<thead>
<tr>
<th>OS</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td>directory_path\VcTlsReconfigurator> reconfigureVc backup -d backup_directory_path</td>
</tr>
<tr>
<td>Linux</td>
<td>directory_path/VcTlsReconfigurator> ./reconfigureVc backup -d backup_directory_path</td>
</tr>
</tbody>
</table>

3. Verify that the backup was successful.

 A successful backup looks similar to the following example. The order of services displayed might be different each time you run the reconfigureVc backup command, due to the way the command runs.

   ```
   vCenter Transport Layer Security reconfigurator, version=6.7.0, build=8070195
   For more information refer to the following article: https://kb.vmware.com/kb/2147469
   Log file: "/var/log/vmware/vSphere-TlsReconfigurator/VcTlsReconfigurator.log".
   ================ Backing up vCenter Server TLS configuration ================
   Using backup directory: /tmp/20180422T224804
   Backing up: vmware-sps
   Backing up: vmdird
   Backing up: vmware-rbd-watchdog
   Backing up: vmware-vpxd
   Backing up: vmware-updatemgr
   Backing up: vmcsm
   Backing up: vsphere-client
   Backing up: vami-lighttp
   Backing up: rsyslog
   Backing up: vmware-rhttpproxy
   Backing up: vmware-stsd
   ```
(Optional) If you later have to perform a restore, you can run the following command.

```
reconfigureVc restore -d optional_custom_backup_directory_path
```

Enable or Disable TLS Versions on vCenter Server Systems

You can use the TLS Configuration utility to enable or disable TLS versions on vCenter Server systems with an external Platform Services Controller and on vCenter Server systems with an embedded Platform Services Controller. As part of the process, you can disable TLS 1.0, and enable TLS 1.1 and TLS 1.2. Or, you can disable TLS 1.0 and TLS 1.1, and enable only TLS 1.2.

Prerequisites

Ensure that the hosts and services that the vCenter Server manages can communicate using a version of TLS that remains enabled. For products that communicate only using TLS 1.0, connectivity becomes unavailable.

Procedure

1. Log in to the vCenter Server system with the user name and password for administrator@vsphere.local, or as another member of the vCenter Single Sign-On Administrators group who can run scripts.

2. Go to the directory where the script is located.

<table>
<thead>
<tr>
<th>OS</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td>cd %VMWARE_CIS_HOME%\TlsReconfigurator\VcTlsReconfigurator</td>
</tr>
<tr>
<td>Linux</td>
<td>cd /usr/lib/vmware-TlsReconfigurator/VcTlsReconfigurator</td>
</tr>
</tbody>
</table>

3. Run the command, depending on your operating system and on which version of TLS you want to use.

 - To disable TLS 1.0 and enable both TLS 1.1 and TLS 1.2, run the following command.

   ```
   directory_path\VcTlsReconfigurator> reconfigureVc update -p TLSv1.1 TLSv1.2
   ```

   ```
   directory_path/VcTlsReconfigurator> ./reconfigureVc update -p TLSv1.1 TLSv1.2
   ```

   ```
   directory_path/VcTlsReconfigurator> .reconfigureVc update -p TLSv1.1 TLSv1.2
   ```

   ```
   directory_path/VcTlsReconfigurator> ./reconfigureVc update -p TLSv1.1 TLSv1.2
   ```

   ```
   directory_path/VcTlsReconfigurator> .reconfigureVc update -p TLSv1.1 TLSv1.2
   ```
To disable TLS 1.0 and TLS 1.1, and enable only TLS 1.2, run the following command.

<table>
<thead>
<tr>
<th>OS</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td>directory_path\VcTlsReconfigurator> reconfigureVc update -p TLSv1.2</td>
</tr>
<tr>
<td>Linux</td>
<td>directory_path/VcTlsReconfigurator> ./reconfigureVc update -p TLSv1.2</td>
</tr>
</tbody>
</table>

4. If your environment includes other vCenter Server systems, repeat the process on each vCenter Server system.

5. Repeat the configuration on each ESXi host and each Platform Services Controller.

Enable or Disable TLS Versions on ESXi Hosts

You can use the TLS Configuration utility to enable or disable TLS versions on an ESXi host. As part of the process, you can disable TLS 1.0, and enable TLS 1.1 and TLS 1.2. Or, you can disable TLS 1.0 and TLS 1.1, and enable only TLS 1.2.

For ESXi hosts, you use a different utility than for the other components of your vSphere environment. The utility is release-specific, and cannot be used on a previous release.

Prerequisites

Ensure that any products or services associated with the ESXi host can communicate using TLS 1.1 or TLS 1.2. For products that communicate only using TLS 1.0, connectivity is lost.

This procedure explains how to perform the task on a single host. You can write a script to configure multiple hosts.

Procedure

1. Log in to the vCenter Server system with the user name and password of the vCenter Single Sign-On user who can run scripts.

2. Go to the directory where the script is located.

<table>
<thead>
<tr>
<th>OS</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td>cd %VMWARE_CIS_HOME%\TlsReconfigurator\EsxTlsReconfigurator</td>
</tr>
<tr>
<td>Linux</td>
<td>cd /usr/lib/vmware-TlsReconfigurator/EsxTlsReconfigurator</td>
</tr>
</tbody>
</table>
3 On a host that is part of a cluster, run one of the following commands.

- To disable TLS 1.0 and enable both TLS 1.1 and TLS 1.2 on all hosts in a cluster, run the following command.

<table>
<thead>
<tr>
<th>OS</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td><code>reconfigureEsx vCenterCluster -c Cluster_Name -u Administrative_User -p TLSv1.1 TLSv1.2</code></td>
</tr>
<tr>
<td>Linux</td>
<td><code>./reconfigureEsx vCenterCluster –c Cluster_Name –u Administrative_User –p TLSv1.1 TLSv1.2</code></td>
</tr>
</tbody>
</table>

- To disable TLS 1.0 and TLS 1.1, and enable only TLS 1.2 on all hosts in a cluster, run the following command.

<table>
<thead>
<tr>
<th>OS</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td><code>reconfigureEsx vCenterCluster -c Cluster_Name -u Administrative_User -p TLSv1.2</code></td>
</tr>
<tr>
<td>Linux</td>
<td><code>./reconfigureEsx vCenterCluster –c Cluster_Name –u Administrative_User –p TLSv1.2</code></td>
</tr>
</tbody>
</table>

4 On an individual host, run one of the following commands.

- To disable TLS 1.0 and enable both TLS 1.1 and TLS 1.2 on an individual host, run the following command.

<table>
<thead>
<tr>
<th>OS</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td><code>reconfigureEsx vCenterHost -h ESXi_Host_Name -u Administrative_User -p TLSv1.1 TLSv1.2</code></td>
</tr>
<tr>
<td>Linux</td>
<td><code>./reconfigureEsx vCenterHost –h ESXi_Host_Name –u Administrative_User –p TLSv1.1 TLSv1.2</code></td>
</tr>
</tbody>
</table>

Note To reconfigure a standalone ESXi host (one that is not part of a vCenter Server system), use the `ESXiHost -h HOST -u ESXi_USER` options. For the `HOST` option, you can specify the IP address or FQDN of a single ESXi host, or a list of host IP addresses or FQDNs. For example, to enable both TLS 1.1 and TLS 1.2 on two ESXi hosts:

 `reconfigureEsx ESXiHost -h 198.51.100.2 198.51.100.3 -u root -p TLSv1.1 TLSv1.2`
To disable TLS 1.0 and TLS 1.1, and enable only TLS 1.2 on an individual host, run the following command.

<table>
<thead>
<tr>
<th>OS</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td><code>reconfigureEsx vCenterHost -h ESXi_Host_Name -u Administrative_User -p TLSv1.2</code></td>
</tr>
<tr>
<td>Linux</td>
<td><code>./reconfigureEsx vCenterHost -h ESXi_Host_Name -u Administrative_User -p TLSv1.2</code></td>
</tr>
</tbody>
</table>

5 Reboot the ESXi host to complete the TLS protocol changes.

Enable or Disable TLS Versions on External Platform Services Controller Systems

If your environment includes one or more Platform Services Controller systems, you can use the TLS Configuration utility to change which versions of TLS are supported.

If your environment uses only an embedded Platform Services Controller, you previously completed this task during the vCenter Server process. See Enable or Disable TLS Versions on vCenter Server Systems.

Note Proceed with this task only after you confirm that each vCenter Server system is running a compatible version of TLS.

As part of the process, you can disable TLS 1.0, and enable TLS 1.1 and TLS 1.2. Or, you can disable TLS 1.0 and TLS 1.1, and enable only TLS 1.2.

Prerequisites

Ensure that the applications, hosts, and services that connect to the Platform Services Controller are eligible or configured to communicate by using a version of TLS that remains enabled. Because the Platform Services Controller handles authentication and certificate management, consider carefully which services might be affected. For services that communicate only using unsupported protocols, connectivity becomes unavailable.

Procedure

1 Log in to the Platform Services Controller as a user who can run scripts and go to the directory where the script is located.

<table>
<thead>
<tr>
<th>OS</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td><code>cd %VMWARE_CIS_HOME%\TlsReconfigurator\VcTlsReconfigurator</code></td>
</tr>
<tr>
<td>Linux</td>
<td><code>cd /usr/lib/vmware-TlsReconfigurator/VcTlsReconfigurator</code></td>
</tr>
</tbody>
</table>
2 You can perform the task on Platform Services Controller on Windows or on the Platform Services Controller appliance.

- To disable TLS 1.0 and enable both TLS 1.1 and TLS 1.2, run the following command.

<table>
<thead>
<tr>
<th>OS</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td><code>directory_path\VcTlsReconfigurator> reconfigureVc update -p TLSv1.1 TLSv1.2</code></td>
</tr>
<tr>
<td>Linux</td>
<td><code>directory_path\VcTlsReconfigurator> ./reconfigureVc update -p TLSv1.1 TLSv1.2</code></td>
</tr>
</tbody>
</table>

- To disable TLS 1.0 and TLS 1.1, and enable only TLS 1.2, run the following command.

<table>
<thead>
<tr>
<th>OS</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td><code>directory_path\VcTlsReconfigurator> reconfigureVc update -p TLSv1.2</code></td>
</tr>
<tr>
<td>Linux</td>
<td><code>directory_path\VcTlsReconfigurator> ./reconfigureVc update -p TLSv1.2</code></td>
</tr>
</tbody>
</table>

3 If your environment includes other Platform Services Controller systems, repeat the process.

Scan vCenter Server for Enabled TLS Protocols

After you enable or disable TLS versions on vCenter Server, you can use the TLS Configuration utility to view your changes.

The TLS Configuration utility `scan` option displays which versions of TLS are enabled for each service.

Procedure

1 Log in to the vCenter Server system.

<table>
<thead>
<tr>
<th>OS</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td>a Log in as a user with Administrator privileges.</td>
</tr>
<tr>
<td></td>
<td>b Go to the VcTlsReconfigurator directory.</td>
</tr>
<tr>
<td></td>
<td>cd %VMWARE_CIS_HOME%\TlsReconfigurator\VcTlsReconfigurator</td>
</tr>
<tr>
<td>Linux</td>
<td>a Connect to the appliance using SSH and log in as a user who has privileges to run scripts.</td>
</tr>
<tr>
<td></td>
<td>b If the Bash shell is not currently enabled, run the following commands.</td>
</tr>
<tr>
<td></td>
<td>shell.set --enabled true shell</td>
</tr>
<tr>
<td></td>
<td>c Go to the VcTlsReconfigurator directory.</td>
</tr>
<tr>
<td></td>
<td>cd /usr/lib/vmware-TlsReconfigurator/VcTlsReconfigurator</td>
</tr>
</tbody>
</table>
2. To display which services have TLS enabled, and the ports used, run the following command.

```
reconfigureVc scan
```

Revert TLS Configuration Changes

You can use the TLS Configuration utility to revert configuration changes. When you revert the changes, the system enables protocols that you disabled using TLS Configurator utility.

You can only perform a recovery if you previously backed up the configuration. Reverting changes is not supported for ESXi hosts.

Perform recovery in this order.

1. **vSphere Update Manager.**

 If your environment runs a separate vSphere Update Manager instance on a Windows system, you must update vSphere Update Manager first.

2. **vCenter Server.**

3. **Platform Services Controller.**

Prerequisites

Before reverting changes, use the vCenter Server Appliance interface to perform a backup of the Windows machine or appliance.

Procedure

1. Connect to the Windows machine or the appliance.

2. Log in to the system where you want to revert changes.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Windows** | a. Log in as a user with Administrator privileges.
b. Go to the VcTlsReconfigurator directory.

```
cd %VMWARE_CIS_HOME\TlsReconfigurator\VcTlsReconfigurator
```
| **Linux** | a. Connect to the appliance using SSH and log in as a user who has privileges to run scripts.
b. If the Bash shell is not currently enabled, run the following commands.

```
shell.set --enabled true
shell
```
c. Go to the VcTlsReconfigurator directory.

```
cd /usr/lib/vmware-TlsReconfigurator/VcTlsReconfigurator
```
3 Review the previous backup.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td>C:\ProgramData\VMware\vCenterServer\logs\vmware\vSphere-TlsReconfigurator\VcTlsReconfigurator.log</td>
</tr>
<tr>
<td></td>
<td>The output looks like the following example.</td>
</tr>
<tr>
<td></td>
<td>c:\users\username\appdata\local\temp\20161108T161539</td>
</tr>
<tr>
<td></td>
<td>c:\users\username\appdata\local\temp\20161110T171539</td>
</tr>
<tr>
<td>Linux</td>
<td>grep "backup directory" /var/log/vmware/vSphere-TlsReconfigurator/VcTlsReconfigurator.log</td>
</tr>
<tr>
<td></td>
<td>The output looks like the following example.</td>
</tr>
<tr>
<td></td>
<td>2016-11-17T17:32:59.019Z INFO Using backup directory: /tmp/20161117T173259</td>
</tr>
</tbody>
</table>

4 Run one of the following commands to perform a restore.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td>reconfigureVc restore -d Directory_path_from_previous_step</td>
</tr>
<tr>
<td></td>
<td>For example: reconfigureVc restore -d c:\users\username\appdata\local\temp\20161108T171539</td>
</tr>
<tr>
<td>Linux</td>
<td>reconfigureVc restore -d Directory_path_from_previous_step</td>
</tr>
<tr>
<td></td>
<td>For example: reconfigureVc restore -d /tmp/20161117T172920</td>
</tr>
</tbody>
</table>

5 Repeat the procedure on any other vCenter Server instances.

6 Repeat the procedure on any other Platform Services Controller instances.

Enable or Disable TLS Versions on vSphere Update Manager on Windows

In vSphere Update Manager 6.7, TLS 1.2 is enabled by default. TLS 1.0 and TLS 1.1 are disabled by default. You can enable TLS version 1.0 and TLS version 1.1, but you cannot disable TLS version 1.2.

You can manage the TLS protocol configuration for other services by using the TLS Configuration Utility. For vSphere Update Manager on Windows, however, you must reconfigure the TLS protocol manually.
Modifying the TLS protocol configuration might involve any of the following tasks.

- Disabling TLS version 1.0 while leaving TLS version 1.1 and TLS version 1.2 enabled.
- Disabling TLS version 1.0 and TLS version 1.1 while leaving TLS version 1.2 enabled.
- Re-enabling a disabled TLS protocol version.

Disable Earlier TLS Versions for Update Manager Port 9087

You can disable earlier versions of TLS for port 9087 by modifying the jetty-vum-ssl.xml configuration file. The process is different for Port 8084.

Note Before you disable a TLS version, make sure that none of the services that communicate with vSphere Update Manager use that version.

Prerequisites

Stop the vSphere Update Manager service. See the *Installing and Administering VMware vSphere Update Manager* documentation.

Procedure

1. Stop the vSphere Update Manager service.
2. Navigate to the Update Manager installation directory, which is different for vSphere 6.0 and vSphere 6.5 and later.

<table>
<thead>
<tr>
<th>Version</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>vSphere 6.0</td>
<td>C:\Program Files (x86)\VMware\Infrastructure\Update Manager</td>
</tr>
<tr>
<td>vSphere 6.5 and later</td>
<td>C:\Program Files\VMware\Infrastructure\Update Manager</td>
</tr>
</tbody>
</table>

3. Make a backup of the jetty-vum-ssl.xml file and open the file.
4. Disable earlier versions of TLS by changing the file.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| Disable TLS 1.0, Leave TLS 1.1 and TLS 1.2 enabled. | `<Set name="ExcludeProtocols">
 <Array type="java.lang.String">
 <Item>TLSv1</Item>
 </Array>
</Set>` |
| Disable TLS 1.0 and TLS 1.1, Leave TLS 1.2 enabled. | `<Set name="ExcludeProtocols">
 <Array type="java.lang.String">
 <Item>TLSv1</Item>
 <Item>TLSv1.1</Item>
 </Array>
</Set>` |

5. Save the file.
Restart the vSphere Update Manager service.

Disable Earlier TLS Versions for Update Manager Port 8084

You can disable earlier versions of TLS for port 8084 by modifying the vci-integrity.xml configuration file. The process is different for Port 9087.

Note Before you disable a TLS version, make sure that none of the services that communicate with vSphere Update Manager use that version.

Prerequisites

Stop the vSphere Update Manager service. See the *Installing and Administering VMware vSphere Update Manager* documentation.

Procedure

1. Stop the vSphere Update Manager service.
2. Navigate to the Update Manager installation directory, which is different for 6.0 and 6.5 and later.

<table>
<thead>
<tr>
<th>Version</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>vSphere 6.0</td>
<td>C:\Program Files (x86)\VMware\Infrastructure\Update Manager</td>
</tr>
<tr>
<td>vSphere 6.5 and later</td>
<td>C:\Program Files\VMware\Infrastructure\Update Manager</td>
</tr>
</tbody>
</table>

3. Make a backup of the vci-integrity.xml file and open the file.
4. Edit the vci-integrity.xml file and add a <protocols> tag.

   ```xml
   <vmacore>
   <ssl>
   <handshakeTimeoutMs>120000</handshakeTimeoutMs>
   <protocols>protocols_value</protocols>
   </ssl>
   </vmacore>
   ``

5. Depending on the TLS version that you want to enable, use one of the following values in the <protocols> tag.

<table>
<thead>
<tr>
<th>TLS Versions to Enable</th>
<th>Use...</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>tls1.0,tls1.1,tls1.2.</td>
</tr>
<tr>
<td>Only TLSv1.1 and TLSv1.2</td>
<td>tls1.1,tls1.2.</td>
</tr>
<tr>
<td>Only TLSv1.2</td>
<td>tls1.2, or do not include a protocols tag. Because the default is TLS 1.2, no protocols tag is present to start with in vmacore.</td>
</tr>
</tbody>
</table>

6. (Optional) Starting from vSphere 6.0 Update 2, you might have an <sslOptions> tag.

   If so, remove the <sslOptions> tag.

7. Save the vci-integrity.xml file.
8 Restart the vSphere Update Manager service.

**Reenable Disabled TLS Versions for Update Manager Port 9087**

If you disable a version of TLS for Update Manager Port 9087 and you encounter problems, you can reenable the version. The process is different for reenabling port 8084.

Reenabling an earlier version of TLS has security implications.

**Procedure**

1 Stop the vSphere Update Manager service.

2 Navigate to the Update Manager installation directory which is different for 6.0 and 6.5 and later.

<table>
<thead>
<tr>
<th>Version</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>vSphere 6.0</td>
<td>C:\Program Files (x86)\VMware\Infrastructure\Update Manager</td>
</tr>
<tr>
<td>vSphere 6.5 and later</td>
<td>C:\Program Files\VMware\Infrastructure\Update Manager</td>
</tr>
</tbody>
</table>

3 Make a backup of the jetty-vum-ssl.xml file and open the file.

4 Remove the TLS tag that corresponds to the TLS protocol version that you want to enable.
   For example, remove `<Item>TLSv1.1</Item>` in the jetty-vum-ssl.xml file to enable TLSv1.1.

5 Save the file.

6 Restart the vSphere Update Manager service.

**Reenable Disabled TLS Versions for Update Manager Port 8084**

If you disable a version of TLS for Update Manager Port 8084 and you encounter problems, you can reenable the version. The process is different for port 9087.

Reenabling an earlier version of TLS has security implications.

**Procedure**

1 Stop the vSphere Update Manager service.

2 Navigate to the Update Manager installation directory, which is different for 6.0 and 6.5 and later.

<table>
<thead>
<tr>
<th>Version</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>vSphere 6.0</td>
<td>C:\Program Files (x86)\VMware\Infrastructure\Update Manager</td>
</tr>
<tr>
<td>vSphere 6.5 and later</td>
<td>C:\Program Files\VMware\Infrastructure\Update Manager</td>
</tr>
</tbody>
</table>

3 Make a backup of the vci-integrity.xml file and open the file.

4 Edit the `<protocols>` tag.

```xml
<vmacore>
 <ssl>
```

VMware, Inc.
5 Depending on the TLS version that you want to enable, use one of the following values in the `<protocols>` tag.

<table>
<thead>
<tr>
<th>TLS Versions to Enable</th>
<th>Use...</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>tls1.0, tls1.1, tls1.2.</td>
</tr>
<tr>
<td>Only TLSv1.1 and TLSv1.2</td>
<td>tls1.1, tls1.2.</td>
</tr>
<tr>
<td>Only TLSv1.2</td>
<td>tls1.2, or do not include a protocols tag. Because the default is TLS 1.2, no protocols tag is present to start with in vmacore.</td>
</tr>
</tbody>
</table>

6 Save the `vci-integrity.xml` file.

7 Restart the vSphere Update Manager service.
Defined Privileges

The following tables list the default privileges that, when selected for a role, can be paired with a user and assigned to an object.

When setting permissions, verify all the object types are set with appropriate privileges for each particular action. Some operations require access permission at the root folder or parent folder in addition to access to the object being manipulated. Some operations require access or performance permission at a parent folder and a related object.

vCenter Server extensions might define additional privileges not listed here. Refer to the documentation for the extension for more information on those privileges.

This chapter includes the following topics:

- Alarms Privileges
- Auto Deploy and Image Profile Privileges
- Certificates Privileges
- Content Library Privileges
- Cryptographic Operations Privileges
- Datacenter Privileges
- Datastore Privileges
- Datastore Cluster Privileges
- Distributed Switch Privileges
- ESX Agent Manager Privileges
- Extension Privileges
- External Stats Provider Privileges
- Folder Privileges
- Global Privileges
- Health Update Provider Privileges
- Host CIM Privileges
- Host Configuration Privileges
- Host Inventory
Alarms Privileges

Alarms privileges control the ability to create, modify, and respond to alarms on inventory objects.

You can set this privilege at different levels in the hierarchy. For example, if you set a privilege at the folder level, you can propagate the privilege to one or more objects within the folder. The object listed in the Required On column must have the privilege set, either directly or inherited.
Table 13-1. Alarms Privileges

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarms.Acknowledge alarm</td>
<td>Allows suppression of all alarm actions on all triggered alarms.</td>
<td>Object on which an alarm is defined</td>
</tr>
<tr>
<td>Alarms.Create alarm</td>
<td>Allows creation of a new alarm.</td>
<td>Object on which an alarm is defined</td>
</tr>
<tr>
<td>Alarms.Disable alarm action</td>
<td>Allows stopping an alarm action from occurring after an alarm has been triggered. This does not disable the alarm.</td>
<td>Object on which an alarm is defined</td>
</tr>
<tr>
<td>Alarms.Modify alarm</td>
<td>Allows changing the properties of an alarm.</td>
<td>Object on which an alarm is defined</td>
</tr>
<tr>
<td>Alarms.Remove alarm</td>
<td>Allows deletion of an alarm.</td>
<td>Object on which an alarm is defined</td>
</tr>
<tr>
<td>Alarms.Set alarm status</td>
<td>Allows changing the status of the configured event alarm. The status can change to Normal, Warning, or Alert.</td>
<td>Object on which an alarm is defined</td>
</tr>
</tbody>
</table>

Auto Deploy and Image Profile Privileges

Auto Deploy privileges control who can perform different tasks on Auto Deploy rules, and who can associate a host. Auto Deploy privileges also allow you to control who can create or edit an image profile.

The table describes privileges that determine who can manage Auto Deploy rules and rule sets and who can create and edit image profiles. See vCenter Server Installation and Setup.

You can set this privilege at different levels in the hierarchy. For example, if you set a privilege at the folder level, you can propagate the privilege to one or more objects within the folder. The object listed in the Required On column must have the privilege set, either directly or inherited.

Table 13-2. Auto Deploy Privileges

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto Deploy.Host.AssociateMachine</td>
<td>Allows users to associate a host with a machine.</td>
<td>vCenter Server</td>
</tr>
<tr>
<td>Auto Deploy.Image Profile.Create</td>
<td>Allows creation of image profiles.</td>
<td>vCenter Server</td>
</tr>
<tr>
<td>Auto Deploy.Image Profile.Edit</td>
<td>Allows editing of image profiles.</td>
<td>vCenter Server</td>
</tr>
<tr>
<td>Auto Deploy.Rule.Create</td>
<td>Allows creation of Auto Deploy rules.</td>
<td>vCenter Server</td>
</tr>
<tr>
<td>Auto Deploy.Rule.Delete</td>
<td>Allows deletion of Auto Deploy rules.</td>
<td>vCenter Server</td>
</tr>
<tr>
<td>Auto Deploy.Rule&gt;Edit</td>
<td>Allows editing of Auto Deploy rules.</td>
<td>vCenter Server</td>
</tr>
<tr>
<td>Auto Deploy.RuleSet.Activate</td>
<td>Allows activation of Auto Deploy rule sets.</td>
<td>vCenter Server</td>
</tr>
<tr>
<td>Auto Deploy.RuleSet&gt;Edit</td>
<td>Allows editing of Auto Deploy rule sets.</td>
<td>vCenter Server</td>
</tr>
</tbody>
</table>
Certificates Privileges

Certificates privileges control which users can manage ESXi certificates.

This privilege determines who can perform certificate management for ESXi hosts. See Required Privileges for Certificate Management Operations in the Platform Services Controller Administration documentation for information on vCenter Server certificate management.

You can set this privilege at different levels in the hierarchy. For example, if you set a privilege at the folder level, you can propagate the privilege to one or more objects within the folder. The object listed in the Required On column must have the privilege set, either directly or inherited.

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificates.Manage</td>
<td>Allows certificate management for ESXi hosts.</td>
<td>vCenter Server</td>
</tr>
<tr>
<td>Certificates</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Content Library Privileges

Content Libraries provide simple and effective management for virtual machine templates and vApps. Content library privileges control who can view or manage different aspects of content libraries.

You can set this privilege at different levels in the hierarchy. For example, if you set a privilege at the folder level, you can propagate the privilege to one or more objects within the folder. The object listed in the Required On column must have the privilege set, either directly or inherited.

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content library.Add library item</td>
<td>Allows addition of items in a library.</td>
<td>Library</td>
</tr>
<tr>
<td>Content library.Create a subscription for a published library</td>
<td>Allows creation of a library subscription.</td>
<td>Library</td>
</tr>
<tr>
<td>Content library.Create local library</td>
<td>Allows creation of local libraries on the specified vCenter Server system.</td>
<td>vCenter Server</td>
</tr>
<tr>
<td>Content library.Create subscribed library</td>
<td>Allows creation of subscribed libraries.</td>
<td>vCenter Server</td>
</tr>
<tr>
<td>Content library.Delete library item</td>
<td>Allows deletion of library items.</td>
<td>Library. Set this permission to propagate to all library items.</td>
</tr>
<tr>
<td>Content library.Delete local library</td>
<td>Allows deletion of a local library.</td>
<td>Library</td>
</tr>
<tr>
<td>Content library.Delete subscribed library</td>
<td>Allows deletion of a subscribed library.</td>
<td>Library</td>
</tr>
<tr>
<td>Privilege Name</td>
<td>Description</td>
<td>Required On</td>
</tr>
<tr>
<td>----------------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Content library.Delete subscription of a published library</td>
<td>Allows deletion of a subscription to a library.</td>
<td>Library</td>
</tr>
<tr>
<td>Content library.Download files</td>
<td>Allows download of files from the content library.</td>
<td>Library</td>
</tr>
<tr>
<td>Content library.Evict library item</td>
<td>Allows eviction of items. The content of a subscribed library can be cached or not cached. If the content is cached, you can release a library item by evicting it if you have this privilege.</td>
<td>Library. Set this permission to propagate to all library items.</td>
</tr>
<tr>
<td>Content library.Evict subscribed library</td>
<td>Allows eviction of a subscribed library. The content of a subscribed library can be cached or not cached. If the content is cached, you can release a library by evicting it if you have this privilege.</td>
<td>Library</td>
</tr>
<tr>
<td>Content library.Import Storage</td>
<td>Allows a user to import a library item if the source file URL starts with ds:// or file://. This privilege is disabled for content library administrator by default. Because an import from a storage URL implies import of content, enable this privilege only if necessary and if now security concern exists for the user who will perform the import.</td>
<td>Library</td>
</tr>
<tr>
<td>Content library.Probe subscription information</td>
<td>This privilege allows solution users and APIs to probe a remote library's subscription info including URL, SSL certificate, and password. The resulting structure describes whether the subscription configuration is successful or whether there are problems such as SSL errors.</td>
<td>Library</td>
</tr>
<tr>
<td>Content library.Publish a library item to its subscribers</td>
<td>Allows publication of library items to subscribers.</td>
<td>Library. Set this permission to propagate to all library items.</td>
</tr>
<tr>
<td>Content library.Publish a library to its subscribers</td>
<td>Allows publication of libraries to subscribers.</td>
<td>Library</td>
</tr>
<tr>
<td>Content library.Read storage</td>
<td>Allows reading of content library storage.</td>
<td>Library</td>
</tr>
<tr>
<td>Content library.Sync library item</td>
<td>Allows synchronization of library items.</td>
<td>Library. Set this permission to propagate to all library items.</td>
</tr>
<tr>
<td>Content library.Sync subscribed library</td>
<td>Allows synchronization of subscribed libraries.</td>
<td>Library</td>
</tr>
<tr>
<td>Content library.Type introspection</td>
<td>Allows a solution user or API to introspect the type support plugins for the content library service.</td>
<td>Library</td>
</tr>
<tr>
<td>Content library.Update configuration settings</td>
<td>Allows you to update the configuration settings. No vSphere Web Client user interface elements are associated with this privilege.</td>
<td>Library</td>
</tr>
<tr>
<td>Content library.Update files</td>
<td>Allows you to upload content into the content library. Also allows you to remove files from a library item.</td>
<td>Library</td>
</tr>
<tr>
<td>Content library.Update library</td>
<td>Allows updates to the content library.</td>
<td>Library</td>
</tr>
</tbody>
</table>
### Table 13-4. Content Library Privileges (continued)

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content library.Update library item</td>
<td>Allows updates to library items.</td>
<td>Library. Set this permission to propagate to all library items.</td>
</tr>
<tr>
<td>Content library.Update local library</td>
<td>Allows updates of local libraries.</td>
<td>Library</td>
</tr>
<tr>
<td>Content library.Update subscribed library</td>
<td>Allows you to update the properties of a subscribed library.</td>
<td>Library</td>
</tr>
<tr>
<td>Content library.Update subscription of a published library</td>
<td>Allows updates of subscription parameters. Users can update parameters such as the subscribed library’s vCenter Server instance specification and placement of its virtual machine template items.</td>
<td>Library</td>
</tr>
<tr>
<td>Content library.View configuration settings</td>
<td>Allows you to view the configuration settings. No vSphere Web Client user interface elements are associated with this privilege.</td>
<td>Library</td>
</tr>
</tbody>
</table>

### Cryptographic Operations Privileges

Cryptographic operations privileges control who can perform which type of cryptographic operation on which type of object.

You can set this privilege at different levels in the hierarchy. For example, if you set a privilege at the folder level, you can propagate the privilege to one or more objects within the folder. The object listed in the Required On column must have the privilege set, either directly or inherited.

### Table 13-5. Cryptographic Operations Privileges

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptographic operations.Direct Access</td>
<td>Allows users access to encrypted resources. For example, users can export virtual machines, have NFC access to virtual machines, and so on.</td>
<td>Virtual machine, host, or datastore</td>
</tr>
<tr>
<td>Cryptographic operations.Add disk</td>
<td>Allows users to add a disk to an encrypted virtual machine.</td>
<td>Virtual machine</td>
</tr>
<tr>
<td>Cryptographic operations.Clone</td>
<td>Allows users to clone an encrypted virtual machine.</td>
<td>Virtual machine</td>
</tr>
<tr>
<td>Cryptographic operations.Decrypt</td>
<td>Allows users to decrypt a virtual machine or disk.</td>
<td>Virtual machine</td>
</tr>
<tr>
<td>Cryptographic operations.Encrypt</td>
<td>Allows users to encrypt a virtual machine or a virtual machine disk.</td>
<td>Virtual machine</td>
</tr>
<tr>
<td>Cryptographic operations.Encrypt new</td>
<td>Allows users to encrypt a virtual machine during virtual machine creation or a disk during disk creation.</td>
<td>Virtual machine folder</td>
</tr>
</tbody>
</table>
Table 13-5. Cryptographic Operations Privileges (continued)

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptographic operations.Manage encryption policies</td>
<td>Allows users to manage virtual machine storage policies with encryption IO filters. By default, virtual machines that use the Encryption storage policy do not use other storage policies.</td>
<td>vCenter Server root folder</td>
</tr>
<tr>
<td>Cryptographic operations.Manage key servers</td>
<td>Allows users to manage the Key Management Server for the vCenter Server system. Management tasks include adding and removing KMS instances, and establishing a trust relationship with the KMS.</td>
<td>vCenter Server system.</td>
</tr>
<tr>
<td>Cryptographic operations.Manage keys</td>
<td>Allows users to perform key management operations. These operations are not supported from the vSphere Web Client but can be performed by using crypto-util or the API.</td>
<td>vCenter Server root folder</td>
</tr>
<tr>
<td>Cryptographic operations.Migrate</td>
<td>Allows users to migrate an encrypted virtual machine to a different ESXi host. Supports migration with or without vMotion and storage vMotion. Does not support migration to a different vCenter Server instance.</td>
<td>Virtual machine</td>
</tr>
<tr>
<td>Cryptographic operations.Recrypt</td>
<td>Allows users to recrypt virtual machines or disks with a different key. This privilege is required for both deep and shallow recrypt operations.</td>
<td>Virtual machine</td>
</tr>
<tr>
<td>Cryptographic operations.Register VM</td>
<td>Allows users to register an encrypted virtual machine with an ESXi host.</td>
<td>Virtual machine folder</td>
</tr>
<tr>
<td>Cryptographic operations.Register host</td>
<td>Allows users to enable encryption on a host. You can enable encryption on a host explicitly, or the virtual machine creation process can enable it.</td>
<td>Host folder for standalone hosts, cluster for hosts in cluster</td>
</tr>
</tbody>
</table>

Datacenter Privileges

Datacenter privileges control the ability to create and edit data centers in the vSphere Web Client inventory.

All data center privileges are used in vCenter Server only. The Create datacenter privilege is defined on data center folders or the root object. All other data center privileges are pair with data centers, data center folders, or the root object.
You can set this privilege at different levels in the hierarchy. For example, if you set a privilege at the folder level, you can propagate the privilege to one or more objects within the folder. The object listed in the Required On column must have the privilege set, either directly or inherited.

### Table 13-6. Datacenter Privileges

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datacenter.Create datacenter</td>
<td>Allows creation of new data center.</td>
<td>Data center folder or root object</td>
</tr>
<tr>
<td>Datacenter.Move datacenter</td>
<td>Allows moving a data center.</td>
<td>Data center, source and destination</td>
</tr>
<tr>
<td>Datacenter.Network protocol profile configuration</td>
<td>Allows configuration of the network profile for a data center.</td>
<td>Data center</td>
</tr>
<tr>
<td>Datacenter.Query IP pool allocation</td>
<td>Allows configuration of a pool of IP addresses.</td>
<td>Data center</td>
</tr>
<tr>
<td>Datacenter.Reconfigure datacenter</td>
<td>Allows reconfiguration of a data center.</td>
<td>Data center</td>
</tr>
<tr>
<td>Datacenter.Release IP allocation</td>
<td>Allows releasing the assigned IP allocation for a data center.</td>
<td>Data center</td>
</tr>
<tr>
<td>Datacenter.Remove datacenter</td>
<td>Allows removal of a data center.</td>
<td>Data center plus parent object</td>
</tr>
<tr>
<td>Datacenter.Rename datacenter</td>
<td>Allows changing the name of a data center.</td>
<td>Data center</td>
</tr>
</tbody>
</table>

### Datastore Privileges

Datastore privileges control the ability to browse, manage, and allocate space on datastores.

You can set this privilege at different levels in the hierarchy. For example, if you set a privilege at the folder level, you can propagate the privilege to one or more objects within the folder. The object listed in the Required On column must have the privilege set, either directly or inherited.

### Table 13-7. Datastore Privileges

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datastore.Allocate space</td>
<td>Allows allocating space on a datastore for a virtual machine, snapshot, clone, or virtual disk.</td>
<td>Data stores</td>
</tr>
<tr>
<td>Datastore.Browse datastore</td>
<td>Allows browsing files on a datastore.</td>
<td>Data stores</td>
</tr>
<tr>
<td>Datastore.Configure datastore</td>
<td>Allows configuration of a datastore.</td>
<td>Data stores</td>
</tr>
<tr>
<td>Datastore.Low level file operations</td>
<td>Allows performing read, write, delete, and rename operations in the datastore browser.</td>
<td>Data stores</td>
</tr>
<tr>
<td>Datastore.Move datastore</td>
<td>Allows moving a datastore between folders.</td>
<td>Datastore, source and destination</td>
</tr>
<tr>
<td></td>
<td>Privileges must be present at both the source and destination.</td>
<td></td>
</tr>
</tbody>
</table>
Table 13-7. Datastore Privileges (continued)

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datastore.Remove datastore</td>
<td>Allows removal of a datastore.</td>
<td>Data stores</td>
</tr>
<tr>
<td></td>
<td>This privilege is deprecated.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>To have permission to perform this operation, a user or group must</td>
<td></td>
</tr>
<tr>
<td></td>
<td>have this privilege assigned in both the object and its parent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>object.</td>
<td></td>
</tr>
<tr>
<td>Datastore.Remove file</td>
<td>Allows deletion of files in the datastore.</td>
<td>Data stores</td>
</tr>
<tr>
<td></td>
<td>This privilege is deprecated.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assign the Low level file operations privilege.</td>
<td></td>
</tr>
<tr>
<td>Datastore.Rename datastore</td>
<td>Allows renaming a datastore.</td>
<td>Data stores</td>
</tr>
<tr>
<td>Datastore.Update virtual machine files</td>
<td>Allows updating file paths to virtual machine files on a datastore</td>
<td>Data stores</td>
</tr>
<tr>
<td></td>
<td>after the datastore has been resignatured.</td>
<td></td>
</tr>
<tr>
<td>Datastore.Update virtual machine metadata</td>
<td>Allows updating virtual machine metadata associated with a</td>
<td>Data stores</td>
</tr>
<tr>
<td></td>
<td>datastore.</td>
<td></td>
</tr>
</tbody>
</table>

**Datastore Cluster Privileges**

Datastore cluster privileges control the configuration of datastore clusters for Storage DRS.

You can set this privilege at different levels in the hierarchy. For example, if you set a privilege at the folder level, you can propagate the privilege to one or more objects within the folder. The object listed in the Required On column must have the privilege set, either directly or inherited.

Table 13-8. Datastore Cluster Privileges

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datastore cluster.Configure a datastore cluster</td>
<td>Allows creation of and configuration of settings for datastore clusters for Storage DRS.</td>
<td>Datastore clusters</td>
</tr>
</tbody>
</table>

**Distributed Switch Privileges**

Distributed Switch privileges control the ability to perform tasks related to the management of Distributed Switch instances.

You can set this privilege at different levels in the hierarchy. For example, if you set a privilege at the folder level, you can propagate the privilege to one or more objects within the folder. The object listed in the Required On column must have the privilege set, either directly or inherited.
Table 13-9. vSphere Distributed Switch Privileges

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distributed switch.Create</td>
<td>Allows creation of a distributed switch.</td>
<td>Data centers, Network folders</td>
</tr>
<tr>
<td>Distributed switch.Delete</td>
<td>Allows removal of a distributed switch. To have permission to perform this operation, a user or group must have this privilege assigned in both the object and its parent object.</td>
<td>Distributed switches</td>
</tr>
<tr>
<td>Distributed switch.Host operation</td>
<td>Allows changing the host members of a distributed switch.</td>
<td>Distributed switches</td>
</tr>
<tr>
<td>Distributed switch.Modify</td>
<td>Allows changing the configuration of a distributed switch.</td>
<td>Distributed switches</td>
</tr>
<tr>
<td>Distributed switch.Move</td>
<td>Allows moving a vSphere Distributed Switch to another folder.</td>
<td>Distributed switches</td>
</tr>
<tr>
<td>Distributed switch.Network I/O control operation</td>
<td>Allow changing the resource settings for a vSphere Distributed Switch.</td>
<td>Distributed switches</td>
</tr>
<tr>
<td>Distributed switch.Policy operation</td>
<td>Allows changing the policy of a vSphere Distributed Switch.</td>
<td>Distributed switches</td>
</tr>
<tr>
<td>Distributed switch.Port configuration operation</td>
<td>Allow changing the configuration of a port in a vSphere Distributed Switch.</td>
<td>Distributed switches</td>
</tr>
<tr>
<td>Distributed switch.Port setting operation</td>
<td>Allows changing the setting of a port in a vSphere Distributed Switch.</td>
<td>Distributed switches</td>
</tr>
<tr>
<td>Distributed switch.VSPAN operation</td>
<td>Allows changing the VSPAN configuration of a vSphere Distributed Switch.</td>
<td>Distributed switches</td>
</tr>
</tbody>
</table>

ESX Agent Manager Privileges

ESX Agent Manager privileges control operations related to ESX Agent Manager and agent virtual machines. The ESX Agent Manager is a service that lets you install management virtual machines, which are tied to a host and not affected by VMware DRS or other services that migrate virtual machines.

You can set this privilege at different levels in the hierarchy. For example, if you set a privilege at the folder level, you can propagate the privilege to one or more objects within the folder. The object listed in the Required On column must have the privilege set, either directly or inherited.

Table 13-10. ESX Agent Manager

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESX Agent Manager.Config</td>
<td>Allows deployment of an agent virtual machine on a host or cluster.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>ESX Agent Manager.Modify</td>
<td>Allows modifications to an agent virtual machine such as powering off or deleting the virtual machine.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>ESX Agent View.View</td>
<td>Allows viewing of an agent virtual machine.</td>
<td>Virtual machines</td>
</tr>
</tbody>
</table>

Extension Privileges

Extension privileges control the ability to install and manage extensions.
You can set this privilege at different levels in the hierarchy. For example, if you set a privilege at the folder level, you can propagate the privilege to one or more objects within the folder. The object listed in the Required On column must have the privilege set, either directly or inherited.

### Table 13-11. Extension Privileges

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extension.Register</td>
<td>Allows registration of an extension (plug-in).</td>
<td>Root vCenter Server</td>
</tr>
<tr>
<td>extension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extension.Unregister</td>
<td>Allows unregistering an extension (plug-in).</td>
<td>Root vCenter Server</td>
</tr>
<tr>
<td>extension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extension.Update</td>
<td>Allows updates to an extension (plug-in).</td>
<td>Root vCenter Server</td>
</tr>
<tr>
<td>extension</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### External Stats Provider Privileges

External stats provider privileges control the ability to notify vCenter Server of Proactive Distributed Resource Scheduler (DRS) statistics.

These privileges apply to an API that is VMware-internal only.

### Folder Privileges

Folder privileges control the ability to create and manage folders.

You can set this privilege at different levels in the hierarchy. For example, if you set a privilege at the folder level, you can propagate the privilege to one or more objects within the folder. The object listed in the Required On column must have the privilege set, either directly or inherited.

### Table 13-12. Folder Privileges

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folder.Create folder</td>
<td>Allows creation of a new folder.</td>
<td>Folders</td>
</tr>
<tr>
<td>Folder.Delete folder</td>
<td>Allows deletion of a folder.</td>
<td>Folders</td>
</tr>
<tr>
<td></td>
<td>To have permission to perform this operation, a user or group must have this privilege assigned in both the object and its parent object.</td>
<td></td>
</tr>
<tr>
<td>Folder.Move folder</td>
<td>Allows moving a folder.</td>
<td>Folders</td>
</tr>
<tr>
<td></td>
<td>Privilege must be present at both the source and destination.</td>
<td></td>
</tr>
<tr>
<td>Folder.Rename folder</td>
<td>Allows changing the name of a folder.</td>
<td>Folders</td>
</tr>
</tbody>
</table>

### Global Privileges

Global privileges control global tasks related to tasks, scripts, and extensions.

You can set this privilege at different levels in the hierarchy. For example, if you set a privilege at the folder level, you can propagate the privilege to one or more objects within the folder. The object listed in the Required On column must have the privilege set, either directly or inherited.
### Table 13-13. Global Privileges

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global.Act as vCenter Server</td>
<td>Allows preparation or initiation of a vMotion send operation or a vMotion receive operation.</td>
<td>Root vCenter Server</td>
</tr>
<tr>
<td>Global.Cancel task</td>
<td>Allows cancellation of a running or queued task.</td>
<td>Inventory object related to the task</td>
</tr>
<tr>
<td>Global.Capacity planning</td>
<td>Allows enabling the use of capacity planning for planning consolidation of physical machines to virtual machines.</td>
<td>Root vCenter Server</td>
</tr>
<tr>
<td>Global.Diagnostics</td>
<td>Allows retrieval of a list of diagnostic files, log header, binary files, or diagnostic bundle. To avoid potential security breaches, limit this privilege to the vCenter Server Administrator role.</td>
<td>Root vCenter Server</td>
</tr>
<tr>
<td>Global.Disable methods</td>
<td>Allows servers for vCenter Server extensions to disable certain operations on objects managed by vCenter Server.</td>
<td>Root vCenter Server</td>
</tr>
<tr>
<td>Global.Enable methods</td>
<td>Allows servers for vCenter Server extensions to enable certain operations on objects managed by vCenter Server.</td>
<td>Root vCenter Server</td>
</tr>
<tr>
<td>Global.Global tag</td>
<td>Allows adding or removing global tags.</td>
<td>Root host or vCenter Server</td>
</tr>
<tr>
<td>Global.Health</td>
<td>Allows viewing the health of vCenter Server components.</td>
<td>Root vCenter Server</td>
</tr>
<tr>
<td>Global.Licenses</td>
<td>Allows viewing installed licenses and adding or removing licenses.</td>
<td>Root host or vCenter Server</td>
</tr>
<tr>
<td>Global.Log event</td>
<td>Allows logging a user-defined event against a particular managed entity.</td>
<td>Any object</td>
</tr>
<tr>
<td>Global.Manage custom attributes</td>
<td>Allows adding, removing, or renaming custom field definitions.</td>
<td>Root vCenter Server</td>
</tr>
<tr>
<td>Global.Proxy</td>
<td>Allows access to an internal interface for adding or removing endpoints to or from the proxy.</td>
<td>Root vCenter Server</td>
</tr>
<tr>
<td>Global.Script action</td>
<td>Allows scheduling a scripted action in conjunction with an alarm.</td>
<td>Any object</td>
</tr>
<tr>
<td>Global.Service managers</td>
<td>Allows use of the resxtop command in the vSphere CLI.</td>
<td>Root host or vCenter Server</td>
</tr>
<tr>
<td>Global.Set custom attribute</td>
<td>Allows viewing, creating, or removing custom attributes for a managed object.</td>
<td>Any object</td>
</tr>
<tr>
<td>Global.Settings</td>
<td>Allows reading and modifying runtime vCenter Server configuration settings.</td>
<td>Root vCenter Server</td>
</tr>
<tr>
<td>Global.System tag</td>
<td>Allows adding or removing system tags.</td>
<td>Root vCenter Server</td>
</tr>
</tbody>
</table>

### Health Update Provider Privileges

Health update provider privileges control the ability for hardware vendors to notify vCenter Server of Proactive HA events.

These privileges apply to an API that is VMware-internal only.
Host CIM Privileges

Host CIM privileges control the use of CIM for host health monitoring.

You can set this privilege at different levels in the hierarchy. For example, if you set a privilege at the folder level, you can propagate the privilege to one or more objects within the folder. The object listed in the Required On column must have the privilege set, either directly or inherited.

### Table 13-14. Host CIM Privileges

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host.CIM.CIM Interaction</td>
<td>Allow a client to obtain a ticket to use for CIM services.</td>
<td>Hosts</td>
</tr>
</tbody>
</table>

Host Configuration Privileges

Host configuration privileges control the ability to configure hosts.

You can set this privilege at different levels in the hierarchy. For example, if you set a privilege at the folder level, you can propagate the privilege to one or more objects within the folder. The object listed in the Required On column must have the privilege set, either directly or inherited.

### Table 13-15. Host Configuration Privileges

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host.Configuration.Advanced Settings</td>
<td>Allows setting advanced host configuration options.</td>
<td>Hosts</td>
</tr>
<tr>
<td>Host.Configuration.Change PciPassthru settings</td>
<td>Allows changes to PciPassthru settings for a host.</td>
<td>Hosts</td>
</tr>
<tr>
<td>Host.Configuration.Change SNMP settings</td>
<td>Allows changes to SNMP settings for a host.</td>
<td>Hosts</td>
</tr>
<tr>
<td>Host.Configuration.Change date and time settings</td>
<td>Allows changes to date and time settings on the host.</td>
<td>Hosts</td>
</tr>
<tr>
<td>Host.Configuration.Change settings</td>
<td>Allows setting of lockdown mode on ESXi hosts.</td>
<td>Hosts</td>
</tr>
<tr>
<td>Host.Configuration.Connection</td>
<td>Allows changes to the connection status of a host (connected or disconnected).</td>
<td>Hosts</td>
</tr>
<tr>
<td>Host.Configuration.Firmware</td>
<td>Allows updates to the ESXi host’s firmware.</td>
<td>Hosts</td>
</tr>
<tr>
<td>Host.Configuration.Hyperthreading</td>
<td>Allows enabling and disabling hyperthreading in a host CPU scheduler.</td>
<td>Hosts</td>
</tr>
<tr>
<td>Host.Configuration.Image configuration</td>
<td>Allows changes to the image associated with a host.</td>
<td></td>
</tr>
<tr>
<td>Host.Configuration.Maintenance</td>
<td>Allows putting the host in and out of maintenance mode and shutting down and restarting the host.</td>
<td>Hosts</td>
</tr>
<tr>
<td>Host.Configuration.Memory configuration</td>
<td>Allows modifications to the host configuration.</td>
<td>Hosts</td>
</tr>
</tbody>
</table>
Table 13-15. Host Configuration Privileges (continued)

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host.Configuration.Network configuration</td>
<td>Allows configuration of network, firewall, and vMotion network.</td>
<td>Hosts</td>
</tr>
<tr>
<td>Host.Configuration.Power</td>
<td>Allows configuration of host power management settings.</td>
<td>Hosts</td>
</tr>
<tr>
<td>Host.Configuration.Query patch</td>
<td>Allows querying for installable patches and installing patches on the host.</td>
<td>Hosts</td>
</tr>
<tr>
<td>Host.Configuration.Security profile and firewall</td>
<td>Allows configuration of Internet services, such as SSH, Telnet, SNMP, and of the host firewall.</td>
<td>Hosts</td>
</tr>
<tr>
<td>Host.Configuration.Storage partition configuration</td>
<td>Allows VMFS datastore and diagnostic partition management. Users with this privilege can scan for new storage devices and manage iSCSI.</td>
<td>Hosts</td>
</tr>
<tr>
<td>Host.Configuration.System Management</td>
<td>Allows extensions to manipulate the file system on the host.</td>
<td>Hosts</td>
</tr>
<tr>
<td>Host.Configuration.System resources</td>
<td>Allows updates to the configuration of the system resource hierarchy.</td>
<td>Hosts</td>
</tr>
<tr>
<td>Host.Configuration.Virtual machine autostart config</td>
<td>Allows changes to the auto-start and auto-stop order of virtual machines on a single host.</td>
<td>Hosts</td>
</tr>
</tbody>
</table>

Host Inventory

Host inventory privileges control adding hosts to the inventory, adding hosts to clusters, and moving hosts in the inventory.

The table describes the privileges required to add and move hosts and clusters in the inventory.

You can set this privilege at different levels in the hierarchy. For example, if you set a privilege at the folder level, you can propagate the privilege to one or more objects within the folder. The object listed in the Required On column must have the privilege set, either directly or inherited.

Table 13-16. Host Inventory Privileges

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host.Inventory.Add host to cluster</td>
<td>Allows addition of a host to an existing cluster.</td>
<td>Clusters</td>
</tr>
<tr>
<td>Host.Inventory.Add standalone host</td>
<td>Allows addition of a standalone host.</td>
<td>Host folders</td>
</tr>
<tr>
<td>Host.Inventory.Create cluster</td>
<td>Allows creation of a new cluster.</td>
<td>Host folders</td>
</tr>
<tr>
<td>Host.Inventory.Modify cluster</td>
<td>Allows changing the properties of a cluster.</td>
<td>Clusters</td>
</tr>
<tr>
<td>Host.Inventory.Move cluster or standalone host</td>
<td>Allows moving a cluster or standalone host between folders. Privilege must be present at both the source and destination.</td>
<td>Clusters</td>
</tr>
<tr>
<td>Host.Inventory.Move host</td>
<td>Allows moving a set of existing hosts into or out of a cluster. Privilege must be present at both the source and destination.</td>
<td>Clusters</td>
</tr>
</tbody>
</table>
Table 13-16. Host Inventory Privileges (continued)

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host.Inventory.Remove cluster</td>
<td>Allows deletion of a cluster or standalone host. To have permission to perform this operation, a user or group must have this privilege assigned in both the object and its parent object.</td>
<td>Clusters, Hosts</td>
</tr>
<tr>
<td>Host.Inventory.Remove host</td>
<td>Allows removal of a host. To have permission to perform this operation, a user or group must have this privilege assigned in both the object and its parent object.</td>
<td>Hosts plus parent object</td>
</tr>
<tr>
<td>Host.Inventory.Rename cluster</td>
<td>Allows renaming a a cluster.</td>
<td>Clusters</td>
</tr>
</tbody>
</table>

Host Local Operations Privileges

Host local operations privileges control actions performed when the VMware Host Client is connected directly to a host.

You can set this privilege at different levels in the hierarchy. For example, if you set a privilege at the folder level, you can propagate the privilege to one or more objects within the folder. The object listed in the Required On column must have the privilege set, either directly or inherited.

Table 13-17. Host Local Operations Privileges

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host.Local operations.Add host to vCenter</td>
<td>Allows installation and removal of vCenter agents, such as vpxa and aam, on a host.</td>
<td>Root host</td>
</tr>
<tr>
<td>Host.Local operations.Create virtual machine</td>
<td>Allows creation of a new virtual machine from scratch on a disk without registering it on the host.</td>
<td>Root host</td>
</tr>
<tr>
<td>Host.Local operations.Delete virtual machine</td>
<td>Allows deletion of a virtual machine on disk. Supported for registered and unregistered virtual machines.</td>
<td>Root host</td>
</tr>
<tr>
<td>Host.Local operations.Manage user groups</td>
<td>Allows management of local accounts on a host.</td>
<td>Root host</td>
</tr>
<tr>
<td>Host.Local operations.Reconfigure virtual machine</td>
<td>Allows reconfiguring a virtual machine.</td>
<td>Root host</td>
</tr>
</tbody>
</table>

Host vSphere Replication Privileges

Host vSphere replication privileges control the use of virtual machine replication by VMware vCenter Site Recovery Manager™ for a host.

You can set this privilege at different levels in the hierarchy. For example, if you set a privilege at the folder level, you can propagate the privilege to one or more objects within the folder. The object listed in the Required On column must have the privilege set, either directly or inherited.
Table 13-18. Host vSphere Replication Privileges

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host.vSphere Replication.Manage</td>
<td>Allows management of virtual machine replication on this host.</td>
<td>Hosts</td>
</tr>
</tbody>
</table>

Host Profile Privileges

Host Profile privileges control operations related to creating and modifying host profiles.

You can set this privilege at different levels in the hierarchy. For example, if you set a privilege at the folder level, you can propagate the privilege to one or more objects within the folder. The object listed in the Required On column must have the privilege set, either directly or inherited.

Table 13-19. Host Profile Privileges

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host profile.Clear</td>
<td>Allows clearing of profile related information.</td>
<td>Root vCenter Server</td>
</tr>
<tr>
<td>Host profile.Create</td>
<td>Allows creation of a host profile.</td>
<td>Root vCenter Server</td>
</tr>
<tr>
<td>Host profile.Delete</td>
<td>Allows deletion of a host profile.</td>
<td>Root vCenter Server</td>
</tr>
<tr>
<td>Host profile.Edit</td>
<td>Allows editing a host profile.</td>
<td>Root vCenter Server</td>
</tr>
<tr>
<td>Host profile.Export</td>
<td>Allows exporting a host profile.</td>
<td>Root vCenter Server</td>
</tr>
<tr>
<td>Host profile.View</td>
<td>Allows viewing a host profile.</td>
<td>Root vCenter Server</td>
</tr>
</tbody>
</table>

Network Privileges

Network privileges control tasks related to network management.

You can set this privilege at different levels in the hierarchy. For example, if you set a privilege at the folder level, you can propagate the privilege to one or more objects within the folder. The object listed in the Required On column must have the privilege set, either directly or inherited.

Table 13-20. Network Privileges

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network.Assign network</td>
<td>Allows assigning a network to a virtual machine.</td>
<td>Networks, Virtual Machines</td>
</tr>
<tr>
<td>Network.Configure</td>
<td>Allows configuring a network.</td>
<td>Networks, Virtual Machines</td>
</tr>
<tr>
<td>Network.Move network</td>
<td>Allows moving a network between folders. Privilege must be present at both the source and destination.</td>
<td>Networks</td>
</tr>
<tr>
<td>Network.Remove</td>
<td>Allows removal of a network.</td>
<td>Networks</td>
</tr>
</tbody>
</table>

This privilege is deprecated. To have permission to perform this operation, a user or group must have this privilege assigned in both the object and its parent object.
Performance Privileges

Performance privileges control modifying performance statistics settings.

You can set this privilege at different levels in the hierarchy. For example, if you set a privilege at the folder level, you can propagate the privilege to one or more objects within the folder. The object listed in the Required On column must have the privilege set, either directly or inherited.

Table 13-21. Performance Privileges

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance.Modify intervals</td>
<td>Allows creating, removing, and updating performance data collection intervals.</td>
<td>Root vCenter Server</td>
</tr>
</tbody>
</table>

Permissions Privileges

Permissions privileges control the assigning of roles and permissions.

You can set this privilege at different levels in the hierarchy. For example, if you set a privilege at the folder level, you can propagate the privilege to one or more objects within the folder. The object listed in the Required On column must have the privilege set, either directly or inherited.

Table 13-22. Permissions Privileges

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permissions.Modify permission</td>
<td>Allows defining one or more permission rules on an entity, or updating rules if rules are already present for the given user or group on the entity. To have permission to perform this operation, a user or group must have this privilege assigned in both the object and its parent object.</td>
<td>Any object plus parent object</td>
</tr>
<tr>
<td>Permissions.Modify privilege</td>
<td>Allows modifying a privilege's group or description. No vSphere Web Client user interface elements are associated with this privilege.</td>
<td>Any object</td>
</tr>
<tr>
<td>Permissions.Modify role</td>
<td>Allows updating a role's name and the privileges that are associated with the role.</td>
<td>Any object</td>
</tr>
<tr>
<td>Permissions.Reassign role permissions</td>
<td>Allows reassigning all permissions of a role to another role.</td>
<td>Any object</td>
</tr>
</tbody>
</table>

Profile-driven Storage Privileges

Profile-driven storage privileges control operations related to storage profiles.

You can set this privilege at different levels in the hierarchy. For example, if you set a privilege at the folder level, you can propagate the privilege to one or more objects within the folder. The object listed in the Required On column must have the privilege set, either directly or inherited.
Table 13-23. Profile-driven Storage Privileges

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile-driven storage.Profile-driven storage update</td>
<td>Allows changes to be made to storage profiles, such as creating and updating storage capabilities and virtual machine storage profiles.</td>
<td>Root vCenter Server</td>
</tr>
<tr>
<td>Profile-driven storage.Profile-driven storage view</td>
<td>Allows viewing of defined storage capabilities and storage profiles.</td>
<td>Root vCenter Server</td>
</tr>
</tbody>
</table>

**Resource Privileges**

Resource privileges control the creation and management of resource pools, as well as the migration of virtual machines.

You can set this privilege at different levels in the hierarchy. For example, if you set a privilege at the folder level, you can propagate the privilege to one or more objects within the folder. The object listed in the Required On column must have the privilege set, either directly or inherited.

Table 13-24. Resource Privileges

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource.Apply recommendation</td>
<td>Allows accepting a suggestion by the server to perform a migration with vMotion.</td>
<td>Clusters</td>
</tr>
<tr>
<td>Resource.Assign vApp to resource pool</td>
<td>Allows assignment of a vApp to a resource pool.</td>
<td>Resource pools</td>
</tr>
<tr>
<td>Resource.Assign virtual machine to resource pool</td>
<td>Allows assignment of a virtual machine to a resource pool.</td>
<td>Resource pools</td>
</tr>
<tr>
<td>Resource.Create resource pool</td>
<td>Allows creation of resource pools.</td>
<td>Resource pools, clusters</td>
</tr>
<tr>
<td>Resource.Migrate powered off virtual machine</td>
<td>Allows migration of a powered off virtual machine to a different resource pool or host.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Resource.Migrate powered on virtual machine</td>
<td>Allows migration with vMotion of a powered on virtual machine to a different resource pool or host.</td>
<td>Resource pools</td>
</tr>
<tr>
<td>Resource.Modify resource pool</td>
<td>Allows changes to the allocations of a resource pool.</td>
<td>Resource pools</td>
</tr>
<tr>
<td>Resource.Move resource pool</td>
<td>Allows moving a resource pool. Privilege must be present at both the source and destination.</td>
<td>Resource pools</td>
</tr>
<tr>
<td>Resource.Query vMotion</td>
<td>Allows querying the general vMotion compatibility of a virtual machine with a set of hosts.</td>
<td>Root vCenter Server</td>
</tr>
<tr>
<td>Resource.Remove resource pool</td>
<td>Allows deletion of a resource pool. To have permission to perform this operation, a user or group must have this privilege assigned in both the object and its parent object.</td>
<td>Resource pools</td>
</tr>
</tbody>
</table>
Scheduled Task Privileges

Scheduled task privileges control creation, editing, and removal of scheduled tasks.

You can set this privilege at different levels in the hierarchy. For example, if you set a privilege at the folder level, you can propagate the privilege to one or more objects within the folder. The object listed in the Required On column must have the privilege set, either directly or inherited.

**Table 13-25. Scheduled Task Privileges**

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Scheduled task.Create tasks</strong></td>
<td>Allows scheduling of a task. Required in addition to the privileges to perform the scheduled action at the time of scheduling.</td>
<td>Any object</td>
</tr>
<tr>
<td><strong>Scheduled task.Modify task</strong></td>
<td>Allows reconfiguration of the scheduled task properties.</td>
<td>Any object</td>
</tr>
<tr>
<td><strong>Scheduled task.Remove task</strong></td>
<td>Allows removal of a scheduled task from the queue.</td>
<td>Any object</td>
</tr>
<tr>
<td><strong>Scheduled task.Run task</strong></td>
<td>Allows running the scheduled task immediately. Creating and running a scheduled task also requires permission to perform the associated action.</td>
<td>Any object</td>
</tr>
</tbody>
</table>

Sessions Privileges

Sessions privileges control the ability of extensions to open sessions on the vCenter Server system.

You can set this privilege at different levels in the hierarchy. For example, if you set a privilege at the folder level, you can propagate the privilege to one or more objects within the folder. The object listed in the Required On column must have the privilege set, either directly or inherited.

**Table 13-26. Session Privileges**

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Sessions.Impersonate user</strong></td>
<td>Allow impersonation of another user. This capability is used by extensions.</td>
<td>Root vCenter Server</td>
</tr>
<tr>
<td><strong>Sessions.Message</strong></td>
<td>Allow setting of the global login message.</td>
<td>Root vCenter Server</td>
</tr>
<tr>
<td><strong>Sessions.Validate session</strong></td>
<td>Allow verification of session validity.</td>
<td>Root vCenter Server</td>
</tr>
<tr>
<td><strong>Sessions.View and stop sessions</strong></td>
<td>Allow viewing sessions and forcing log out of one or more logged-on users.</td>
<td>Root vCenter Server</td>
</tr>
</tbody>
</table>

Storage Views Privileges

Storage Views privileges control privileges for Storage Monitoring Service APIs. Starting with vSphere 6.0, storage views are deprecated and these privileges no longer apply to them.

You can set this privilege at different levels in the hierarchy. For example, if you set a privilege at the folder level, you can propagate the privilege to one or more objects within the folder. The object listed in the Required On column must have the privilege set, either directly or inherited.
Table 13-27. Storage Views Privileges

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage views. Configure service</td>
<td>Allows privileged users to use all Storage Monitoring Service APIs. Use Storage views.View for privileges to read-only Storage Monitoring Service APIs.</td>
<td>Root vCenter Server</td>
</tr>
<tr>
<td>Storage views.view</td>
<td>Allows privileged users to use read-only Storage Monitoring Service APIs.</td>
<td>Root vCenter Server</td>
</tr>
</tbody>
</table>

Tasks Privileges

Tasks privileges control the ability of extensions to create and update tasks on the vCenter Server.

You can set this privilege at different levels in the hierarchy. For example, if you set a privilege at the folder level, you can propagate the privilege to one or more objects within the folder. The object listed in the Required On column must have the privilege set, either directly or inherited.

Table 13-28. Tasks Privileges

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tasks.Create task</td>
<td>Allows an extension to create a user-defined task. No vSphere Web Client user interface elements are associated with this privilege.</td>
<td>Root vCenter Server</td>
</tr>
<tr>
<td>Tasks.Update task</td>
<td>Allows an extension to update a user-defined task. No vSphere Web Client user interface elements are associated with this privilege.</td>
<td>Root vCenter Server</td>
</tr>
</tbody>
</table>

Transfer Service Privileges

Transfer service privileges are VMware internal. Do not use these privileges.

Virtual Machine Configuration Privileges

Virtual Machine Configuration privileges control the ability to configure virtual machine options and devices.

You can set this privilege at different levels in the hierarchy. For example, if you set a privilege at the folder level, you can propagate the privilege to one or more objects within the folder. The object listed in the Required On column must have the privilege set, either directly or inherited.

Table 13-29. Virtual Machine Configuration Privileges

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual machine.Configuration.Acquire disk lease</td>
<td>Allows disk lease operations for a virtual machine.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine.Configuration.Add existing disk</td>
<td>Allows adding an existing virtual disk to a virtual machine.</td>
<td>Virtual machines</td>
</tr>
</tbody>
</table>
### Table 13-29. Virtual Machine Configuration Privileges (continued)

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual machine.Configuration.Add new disk</td>
<td>Allows creation of a new virtual disk to add to a virtual machine.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine.Configuration.Add or remove device</td>
<td>Allows addition or removal of any non-disk device.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine.Configuration.Advanced configuration</td>
<td>Allows addition or modification of advanced parameters in the virtual machine's configuration file.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine.Configuration.Change CPU count</td>
<td>Allows changing the number of virtual CPUs.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine.Configuration.Change Memory</td>
<td>Allows changing the amount of memory allocated to the virtual machine.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine.Configuration.Change Swapfile placement</td>
<td>Allows changing the swapfile placement policy for a virtual machine.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine.Configuration.Change resource</td>
<td>Allows changing the resource configuration of a set of virtual machine nodes in a given resource pool.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine.Configuration.Configure Host USB device</td>
<td>Allows attaching a host-based USB device to a virtual machine.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine.Configuration.Configure Raw device</td>
<td>Allows adding or removing a raw disk mapping or SCSI pass through device. Setting this parameter overrides any other privilege for modifying raw devices, including connection states.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine.Configuration.Configure managedBy</td>
<td>Allows an extension or solution to mark a virtual machine as being managed by that extension or solution.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine.Configuration.Display connection settings</td>
<td>Allows configuration of virtual machine remote console options.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine.Configuration.Extend virtual disk</td>
<td>Allows expansion of the size of a virtual disk.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine.Configuration.Modify device settings</td>
<td>Allows changing the properties of an existing device.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine.Configuration.Query Fault Tolerance compatibility</td>
<td>Allows checking if a virtual machine is compatible for Fault Tolerance.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine.Configuration.Query unowned files</td>
<td>Allows querying of unowned files.</td>
<td>Virtual machines</td>
</tr>
</tbody>
</table>
### Table 13-29. Virtual Machine Configuration Privileges (continued)

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual machine.Configuration.Reload from path</td>
<td>Allows changing a virtual machine configuration path while preserving the identity of the virtual machine. Solutions such as VMware vCenter Site Recovery Manager use this operation to maintain virtual machine identity during failover and failback.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine.Configuration.Remove disk</td>
<td>Allows removal of a virtual disk device.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine.Configuration.Rename</td>
<td>Allows renaming a virtual machine or modifying the associated notes of a virtual machine.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine.Configuration.Reset guest information</td>
<td>Allows editing the guest operating system information for a virtual machine.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine.Configuration.Set annotation</td>
<td>Allows adding or editing a virtual machine annotation.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine.Configuration.Toggle disk change tracking</td>
<td>Allows enabling or disabling of change tracking for the virtual machine's disks.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine.Configuration.Toggle fork parent</td>
<td>Allows enabling or disabling a vmfork parent.</td>
<td>Virtual machines</td>
</tr>
</tbody>
</table>

### Virtual Machine Guest Operations Privileges

Virtual Machine Guest Operations privileges control the ability to interact with files and programs inside a virtual machine's guest operating system with the API.

See the *VMware vSphere API Reference* documentation for more information on these operations.

You can set this privilege at different levels in the hierarchy. For example, if you set a privilege at the folder level, you can propagate the privilege to one or more objects within the folder. The object listed in the Required On column must have the privilege set, either directly or inherited.
### Virtual Machine Guest Operations

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Effective on Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual machine.Guest Operations.Guest Operation Alias modification</td>
<td>Allows virtual machine guest operations that involve modifying the alias for the virtual machine.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine.Guest Operations.Guest Operation Alias query</td>
<td>Allows virtual machine guest operations that involve querying the alias for the virtual machine.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine.Guest Operations.Guest Operation Modifications</td>
<td>Allows virtual machine guest operations that involve modifications to a guest operating system in a virtual machine, such as transferring a file to the virtual machine. No vSphere Web Client user interface elements are associated with this privilege.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine.Guest Operations.Guest Operation Program Execution</td>
<td>Allows virtual machine guest operations that involve executing a program in the virtual machine. No vSphere Web Client user interface elements are associated with this privilege.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine.Guest Operations.Guest Operation Queries</td>
<td>Allows virtual machine guest operations that involve querying the guest operating system, such as listing files in the guest operating system. No vSphere Web Client user interface elements are associated with this privilege.</td>
<td>Virtual machines</td>
</tr>
</tbody>
</table>

### Virtual Machine Interaction Privileges

Virtual Machine Interaction privileges control the ability to interact with a virtual machine console, configure media, perform power operations, and install VMware Tools.

You can set this privilege at different levels in the hierarchy. For example, if you set a privilege at the folder level, you can propagate the privilege to one or more objects within the folder. The object listed in the Required On column must have the privilege set, either directly or inherited.
<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual machine.Interaction .Answer question</td>
<td>Allows resolution of issues with virtual machine state transitions or runtime errors.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine .Interaction .Configure CD media</td>
<td>Allows configuration of a virtual DVD or CD-ROM device.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine .Interaction .Configure floppy media</td>
<td>Allows configuration of a virtual floppy device.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine .Interaction .Console interaction</td>
<td>Allows interaction with the virtual machine’s virtual mouse, keyboard, and screen.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine .Interaction .Create screenshot</td>
<td>Allows creation of a virtual machine screen shot.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine .Interaction .Defragment all disks</td>
<td>Allows defragment operations on all disks of the virtual machine.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine .Interaction .Device connection</td>
<td>Allows changing the connected state of a virtual machine’s disconnectable virtual devices.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine .Interaction .Drag and Drop</td>
<td>Allows drag and drop of files between a virtual machine and a remote client.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine .Interaction .Guest operating system management by VIX API</td>
<td>Allows management of the virtual machine's operating system through the VIX API.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine .Interaction .Inject USB HID scan codes</td>
<td>Allows injection of USB HID scan codes.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine .Interaction .Pause or Unpause</td>
<td>Allows pausing or unpausing of the virtual machine.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine .Interaction .Perform wipe or shrink operations</td>
<td>Allows performing wipe or shrink operations on the virtual machine.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine .Interaction .Power Off</td>
<td>Allows powering off a powered-on virtual machine. This operation powers down the guest operating system.</td>
<td>Virtual machines</td>
</tr>
</tbody>
</table>
Table 13-31. Virtual Machine Interaction (continued)

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual machine .Interaction .Record session on Virtual Machine</td>
<td>Allows recording a session on a virtual machine.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine .Interaction .Replay session on Virtual Machine</td>
<td>Allows replaying of a recorded session on a virtual machine.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine .Interaction .Reset</td>
<td>Allows resetting of a virtual machine and reboots the guest operating system.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine .Interaction .Suspend</td>
<td>Allows suspending a powered-on virtual machine. This operation puts the guest in standby mode.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine .Interaction .Test failover</td>
<td>Allows testing of Fault Tolerance failover by making the Secondary virtual machine the Primary virtual machine.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine .Interaction .Turn On Fault Tolerance</td>
<td>Allows turning on Fault Tolerance for a virtual machine.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine .Interaction .VMware Tools install</td>
<td>Allows mounting and unmounting the VMware Tools CD installer as a CD-ROM for the guest operating system.</td>
<td>Virtual machines</td>
</tr>
</tbody>
</table>
Virtual Machine Inventory Privileges

Virtual Machine Inventory privileges control adding, moving, and removing virtual machines.

You can set this privilege at different levels in the hierarchy. For example, if you set a privilege at the folder level, you can propagate the privilege to one or more objects within the folder. The object listed in the Required On column must have the privilege set, either directly or inherited.

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual machine .Inventory.Create from existing</td>
<td>Allows creation of a virtual machine based on an existing virtual machine or template, by cloning or deploying from a template.</td>
<td>Clusters, Hosts, Virtual machine folders</td>
</tr>
<tr>
<td>Virtual machine .Inventory.Create new</td>
<td>Allows creation of a virtual machine and allocation of resources for its execution.</td>
<td>Clusters, Hosts, Virtual machine folders</td>
</tr>
<tr>
<td>Virtual machine .Inventory.Move</td>
<td>Allows relocating a virtual machine in the hierarchy. The privilege must be present at both the source and destination.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine .Inventory.Register</td>
<td>Allows adding an existing virtual machine to a vCenter Server or host inventory.</td>
<td>Clusters, Hosts, Virtual machine folders</td>
</tr>
<tr>
<td>Virtual machine .Inventory.Remove</td>
<td>Allows deletion of a virtual machine. Deletion removes the virtual machine's underlying files from disk. To have permission to perform this operation, a user or group must have this privilege assigned in both the object and its parent object.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine .Inventory.Unregister</td>
<td>Allows unregistering a virtual machine from a vCenter Server or host inventory. To have permission to perform this operation, a user or group must have this privilege assigned in both the object and its parent object.</td>
<td>Virtual machines</td>
</tr>
</tbody>
</table>

Virtual Machine Provisioning Privileges

Virtual Machine Provisioning privileges control activities related to deploying and customizing virtual machines.

You can set this privilege at different levels in the hierarchy. For example, if you set a privilege at the folder level, you can propagate the privilege to one or more objects within the folder. The object listed in the Required On column must have the privilege set, either directly or inherited.

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual machine .Provisioning.Allow disk access</td>
<td>Allows opening a disk on a virtual machine for random read and write access. Used mostly for remote disk mounting.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine .Provisioning.Allow file access</td>
<td>Allows operations on files associated with a virtual machine, including vmx, disks, logs, and nvram.</td>
<td>Virtual machines</td>
</tr>
</tbody>
</table>
Table 13-33. Virtual Machine Provisioning Privileges (continued)

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual machine .Provisioning.Allow read-only disk access</td>
<td>Allows opening a disk on a virtual machine for random read access. Used mostly for remote disk mounting.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine .Provisioning.Allow virtual machine download</td>
<td>Allows read operations on files associated with a virtual machine, including vmx, disks, logs, and nvram.</td>
<td>Root host or vCenter Server</td>
</tr>
<tr>
<td>Virtual machine .Provisioning.Allow virtual machine files upload</td>
<td>Allows write operations on files associated with a virtual machine, including vmx, disks, logs, and nvram.</td>
<td>Root host or vCenter Server</td>
</tr>
<tr>
<td>Virtual machine .Provisioning.Clone template</td>
<td>Allows cloning of a template.</td>
<td>Templates</td>
</tr>
<tr>
<td>Virtual machine .Provisioning.Clone virtual machine</td>
<td>Allows cloning of an existing virtual machine and allocation of resources.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine .Provisioning.Create template from virtual machine</td>
<td>Allows creation of a new template from a virtual machine.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine .Provisioning.Customize</td>
<td>Allows customization of a virtual machine’s guest operating system without moving the virtual machine.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine .Provisioning.Deploy template</td>
<td>Allows deployment of a virtual machine from a template.</td>
<td>Templates</td>
</tr>
<tr>
<td>Virtual machine .Provisioning.Mark as template</td>
<td>Allows marking an existing powered off virtual machine as a template.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine .Provisioning.Mark as virtual machine</td>
<td>Allows marking an existing template as a virtual machine.</td>
<td>Templates</td>
</tr>
<tr>
<td>Virtual machine .Provisioning.Modify customization specification</td>
<td>Allows creation, modification, or deletion of customization specifications.</td>
<td>Root vCenter Server</td>
</tr>
<tr>
<td>Virtual machine .Provisioning.Promote disks</td>
<td>Allows promote operations on a virtual machine's disks.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine .Provisioning.Read customization specifications</td>
<td>Allows reading a customization specification.</td>
<td>Virtual machines</td>
</tr>
</tbody>
</table>

Virtual Machine Service Configuration Privileges

Virtual machine service configuration privileges control who can perform monitoring and management task on service configuration.
You can set this privilege at different levels in the hierarchy. For example, if you set a privilege at the folder level, you can propagate the privilege to one or more objects within the folder. The object listed in the Required On column must have the privilege set, either directly or inherited.

Table 13-34. Virtual machine Service Configuration Privileges

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Machine. Service configuration. Allow notifications</td>
<td>Allows generating and consuming notification about service status.</td>
</tr>
<tr>
<td>Virtual Machine. Service configuration. Allow polling of global event notifications</td>
<td>Allows querying whether any notifications are present.</td>
</tr>
<tr>
<td>Virtual Machine. Service configuration. Manage service configurations</td>
<td>Allows creating, modifying, and deleting virtual machine services.</td>
</tr>
<tr>
<td>Virtual Machine. Service configuration. Modify service configuration</td>
<td>Allows modification of existing virtual machine service configuration.</td>
</tr>
<tr>
<td>Virtual Machine. Service configuration. Query service configurations</td>
<td>Allows retrieval of list of virtual machine services.</td>
</tr>
<tr>
<td>Virtual Machine. Service configuration. Read service configuration</td>
<td>Allows retrieval of existing virtual machine service configuration.</td>
</tr>
</tbody>
</table>

Virtual Machine Snapshot Management Privileges

Virtual machine snapshot management privileges control the ability to take, delete, rename, and restore snapshots.

You can set this privilege at different levels in the hierarchy. For example, if you set a privilege at the folder level, you can propagate the privilege to one or more objects within the folder. The object listed in the Required On column must have the privilege set, either directly or inherited.

Table 13-35. Virtual Machine State Privileges

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual machine .Snapshot management. Create snapshot</td>
<td>Allows creation of a snapshot from the virtual machine’s current state.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine .Snapshot management.Remove Snapshot</td>
<td>Allows removal of a snapshot from the snapshot history.</td>
<td>Virtual machines</td>
</tr>
</tbody>
</table>
Table 13-35. Virtual Machine State Privileges (continued)

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual machine .Snapshot management .Rename Snapshot</td>
<td>Allows renaming a snapshot with a new name, a new description, or both.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine .Snapshot management .Revert to snapshot</td>
<td>Allows setting the virtual machine to the state it was in at a given snapshot.</td>
<td>Virtual machines</td>
</tr>
</tbody>
</table>

Virtual Machine vSphere Replication Privileges

Virtual Machine vSphere replication privileges control the use of replication by VMware vCenter Site Recovery Manager™ for virtual machines.

You can set this privilege at different levels in the hierarchy. For example, if you set a privilege at the folder level, you can propagate the privilege to one or more objects within the folder. The object listed in the Required On column must have the privilege set, either directly or inherited.

Table 13-36. Virtual Machine vSphere Replication

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual machine .vSphere Replication .Configure Replication</td>
<td>Allows configuration of replication for the virtual machine.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine .vSphere Replication .Manage Replication</td>
<td>Allows triggering of full sync, online sync or offline sync on a replication.</td>
<td>Virtual machines</td>
</tr>
<tr>
<td>Virtual machine .vSphere Replication .Monitor Replication</td>
<td>Allows monitoring of replication.</td>
<td>Virtual machines</td>
</tr>
</tbody>
</table>

dvPort Group Privileges

Distributed virtual port group privileges control the ability to create, delete, and modify distributed virtual port groups.

The table describes the privileges required to create and configure distributed virtual port groups.

You can set this privilege at different levels in the hierarchy. For example, if you set a privilege at the folder level, you can propagate the privilege to one or more objects within the folder. The object listed in the Required On column must have the privilege set, either directly or inherited.
Table 13-37. Distributed Virtual Port Group Privileges

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>dvPort group.Create</td>
<td>Allows creation of a distributed virtual port group.</td>
<td>Virtual port groups</td>
</tr>
<tr>
<td>dvPort group.Delete</td>
<td>Allows deletion of distributed virtual port group. To have permission to perform this operation, a user or group must have this privilege assigned in both the object and its parent object.</td>
<td>Virtual port groups</td>
</tr>
<tr>
<td>dvPort group.Modify</td>
<td>Allows modification of a distributed virtual port group configuration.</td>
<td>Virtual port groups</td>
</tr>
<tr>
<td>dvPort group.Policy operation</td>
<td>Allows setting the policy of a distributed virtual port group.</td>
<td>Virtual port groups</td>
</tr>
<tr>
<td>dvPort group.Scope operation</td>
<td>Allows setting the scope of a distributed virtual port group.</td>
<td>Virtual port groups</td>
</tr>
</tbody>
</table>

vApp Privileges

vApp privileges control operations related to deploying and configuring a vApp.

You can set this privilege at different levels in the hierarchy. For example, if you set a privilege at the folder level, you can propagate the privilege to one or more objects within the folder. The object listed in the Required On column must have the privilege set, either directly or inherited.

Table 13-38. vApp Privileges

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>vApp.Add virtual machine</td>
<td>Allows adding a virtual machine to a vApp.</td>
<td>vApps</td>
</tr>
<tr>
<td>vApp.Assign resource pool</td>
<td>Allows assigning a resource pool to a vApp.</td>
<td>vApps</td>
</tr>
<tr>
<td>vApp.Assign vApp</td>
<td>Allows assigning a vApp to another vApp</td>
<td>vApps</td>
</tr>
<tr>
<td>vApp.Clone</td>
<td>Allows cloning of a vApp.</td>
<td>vApps</td>
</tr>
<tr>
<td>vApp.Create</td>
<td>Allows creation of a vApp.</td>
<td>vApps</td>
</tr>
<tr>
<td>vApp.Delete</td>
<td>Allows deletion a vApp. To have permission to perform this operation, a user or group must have this privilege assigned in both the object and its parent object.</td>
<td>vApps</td>
</tr>
<tr>
<td>vApp.Export</td>
<td>Allows export of a vApp from vSphere.</td>
<td>vApps</td>
</tr>
<tr>
<td>vApp.Import</td>
<td>Allows import of a vApp into vSphere.</td>
<td>vApps</td>
</tr>
<tr>
<td>vApp.Move</td>
<td>Allows moving a vApp to a new inventory location.</td>
<td>vApps</td>
</tr>
<tr>
<td>vApp.Power Off</td>
<td>Allows power off operations on a vApp.</td>
<td>vApps</td>
</tr>
<tr>
<td>vApp.Power On</td>
<td>Allows power on operations on a vApp.</td>
<td>vApps</td>
</tr>
<tr>
<td>vApp.Rename</td>
<td>Allows renaming a vApp.</td>
<td>vApps</td>
</tr>
<tr>
<td>vApp.Suspend</td>
<td>Allows suspension of a vApp.</td>
<td>vApps</td>
</tr>
<tr>
<td>vApp.Unregister</td>
<td>Allows unregistering a vApp.</td>
<td>vApps</td>
</tr>
</tbody>
</table>
### Table 13-38. vApp Privileges (continued)

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>vApp.View OVF Environment</td>
<td>Allows viewing the OVF environment of a powered-on virtual machine within a vApp.</td>
<td>vApps</td>
</tr>
<tr>
<td>vApp.vApp application configuration</td>
<td>Allows modification of a vApp's internal structure, such as product information and properties.</td>
<td>vApps</td>
</tr>
<tr>
<td>vApp.vApp instance configuration</td>
<td>Allows modification of a vApp's instance configuration, such as policies.</td>
<td>vApps</td>
</tr>
<tr>
<td>vApp.vApp managedBy configuration</td>
<td>Allows an extension or solution to mark a vApp as being managed by that extension or solution. No vSphere Web Client user interface elements are associated with this privilege.</td>
<td>vApps</td>
</tr>
<tr>
<td>vApp.vApp resource configuration</td>
<td>Allows modification of a vApp's resource configuration. To have permission to perform this operation, a user or group must have this privilege assigned in both the object and its parent object.</td>
<td>vApps</td>
</tr>
</tbody>
</table>

### vServices Privileges

vServices privileges control the ability to create, configure, and update vService dependencies for virtual machines and vApps.

You can set this privilege at different levels in the hierarchy. For example, if you set a privilege at the folder level, you can propagate the privilege to one or more objects within the folder. The object listed in the Required On column must have the privilege set, either directly or inherited.

### Table 13-39. vServices

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>vService.Create dependency</td>
<td>Allows creation of a vService dependency for a virtual machine or vApp.</td>
<td>vApps and virtual machines</td>
</tr>
<tr>
<td>vService.Destroy dependency</td>
<td>Allows removal of a vService dependency for a virtual machine or vApp.</td>
<td>vApps and virtual machines</td>
</tr>
<tr>
<td>vService.Reconfigure dependency configuration</td>
<td>Allows reconfiguration of a dependency to update the provider or binding.</td>
<td>vApps and virtual machines</td>
</tr>
<tr>
<td>vService.Update dependency</td>
<td>Allows updates of a dependence to configure the name or description.</td>
<td>vApps and virtual machines</td>
</tr>
</tbody>
</table>

### vSphere Tagging Privileges

vSphere Tagging privileges control the ability to create and delete tags and tag categories, and assign and remove tags on vCenter Server inventory objects.
You can set this privilege at different levels in the hierarchy. For example, if you set a privilege at the folder level, you can propagate the privilege to one or more objects within the folder. The object listed in the Required On column must have the privilege set, either directly or inherited.

Table 13-40. vSphere Tagging Privileges

<table>
<thead>
<tr>
<th>Privilege Name</th>
<th>Description</th>
<th>Required On</th>
</tr>
</thead>
<tbody>
<tr>
<td>vSphere Tagging.Assign or Unassign</td>
<td>Allows assignment or unassignment of a tag for an object in the vCenter Server inventory.</td>
<td>Any object</td>
</tr>
<tr>
<td>vSphere Tagging.Create vSphere Tag</td>
<td>Allows creation of a tag.</td>
<td>Any object</td>
</tr>
<tr>
<td>vSphere Tagging.Create vSphere Tag Category</td>
<td>Allows creation of a tag category.</td>
<td>Any object</td>
</tr>
<tr>
<td>vSphere Tagging.Create vSphere Tag Scope</td>
<td>Allows creation of a tag scope.</td>
<td>Any object</td>
</tr>
<tr>
<td>vSphere Tagging.Delete vSphere Tag</td>
<td>Allows deletion of a tag.</td>
<td>Any object</td>
</tr>
<tr>
<td>vSphere Tagging.Delete vSphere Tag Category</td>
<td>Allows deletion of a tag category.</td>
<td>Any object</td>
</tr>
<tr>
<td>vSphere Tagging.Delete vSphere Tag Scope</td>
<td>Allows deletion of a tag scope.</td>
<td>Any object</td>
</tr>
<tr>
<td>vSphere Tagging.Edit vSphere Tag</td>
<td>Allows editing of a tag.</td>
<td>Any object</td>
</tr>
<tr>
<td>vSphere Tagging.Edit vSphere Tag Category</td>
<td>Allows editing of a tag category.</td>
<td>Any object</td>
</tr>
<tr>
<td>vSphere Tagging.Edit vSphere Tag Scope</td>
<td>Allows editing of a tag scope.</td>
<td>Any object</td>
</tr>
<tr>
<td>vSphere Tagging.Modify UsedBy Field for Category</td>
<td>Allows changing the UsedBy field for a tag category.</td>
<td>Any object</td>
</tr>
<tr>
<td>vSphere Tagging.Modify UsedBy Field for Tag</td>
<td>Allows changing the UsedBy field for a tag.</td>
<td>Any object</td>
</tr>
</tbody>
</table>
Understanding vSphere Hardening and Compliance

Organizations expect to keep their data secure by reducing the risk of data theft, cyberattack, or unauthorized access. Organizations also must often comply with one or more regulations from government standards to private standards, such as the National Institute of Standards and Technology (NIST) and Defense Information Systems Agency Security Technical Implementation Guides (DISA STIG). Ensuring that your vSphere environment is in compliance with such standards involves understanding a broader set of considerations including people, processes, and technology.

A high-level overview of security and compliance topics that require attention helps you plan your compliance strategy. You also benefit from other compliance-related resources on the VMware Web site.

This chapter includes the following topics:

- Security Versus Compliance in the vSphere Environment
- Understanding the vSphere Security Configuration Guide
- About the National Institute of Standards and Technology
- About DISA STIGs
- About VMware Security Development Lifecycle
- Audit Logging
- Understanding Security and Compliance Next Steps

Security Versus Compliance in the vSphere Environment

The terms security and compliance are often used interchangeably. However, they are unique and distinct concepts.

Security, often thought of as information security, is commonly defined as a set of technical, physical, and administrative controls that you implement to provide confidentiality, integrity, and availability. For example, you secure a host by locking down which accounts can log into it, and by what means (SSH, direct console, and so on). Compliance, by contrast, is a set of requirements necessary to meet the minimum controls established by different regulatory frameworks that provide limited guidance on any specific type of technology, vendor, or configuration. For example, the Payment Card Industry (PCI) has established security guidelines to help organizations proactively protect customer account data.
Security reduces the risk of data theft, cyberattack, or unauthorized access, while compliance is the proof that a security control is in place, typically within a defined time line. Security is primarily outlined in the design decisions and highlighted within the technology configurations. Compliance is focused on mapping the correlation between security controls and specific requirements. A compliance mapping provides a centralized view to list out many of the required security controls. Those controls are further detailed by including each security control's respective compliance citations as dictated by a domain such as NIST, PCI, FedRAMP, HIPAA, and so forth.

Effective cybersecurity and compliance programs are built on three pillars: people, process, and technology. A general misconception is that technology alone can solve all your cybersecurity needs. Technology does play a large and important role in the development and execution of an information security program. However, technology without process and procedures, awareness and training, creates a vulnerability within your organization.

When defining your security and compliance strategies, keep the following in mind:

- People need general awareness and training, whereas IT staff need specific training.
- Process defines how your organization's activities, roles, and documentation are used to mitigate risk. Processes are only effective if people follow them correctly.
- Technology can be used to prevent or reduce the impact of cybersecurity risk to your organization. Which technology to use depends on your organization's risk acceptance level.

## Glossary of Compliance Terms

Compliance introduces specific terms and definitions that are important to understand.

**Table 14-1. Compliance Terms**

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CJIS</td>
<td>Criminal Justice Information Services. In the context of compliance, the CJIS produces a Security Policy for how local, state, and federal criminal justice and law enforcement agencies must take security precautions to protect sensitive information such as fingerprints and criminal backgrounds.</td>
</tr>
<tr>
<td>DISA STIG</td>
<td>Defense Information Systems Agency Security Technical Implementation Guide. The Defense Information Systems Agency (DISA) is the entity responsible for maintaining the security posture of the Department of Defense (DoD) IT infrastructure. DISA accomplishes this task by developing and using Security Technical Implementation Guides, or &quot;STIGs.&quot;</td>
</tr>
<tr>
<td>FedRAMP</td>
<td>Federal Risk and Authorization Management Program. FedRAMP is a government-wide program that provides a standardized approach to security assessment, authorization, and continuous monitoring for cloud products and services.</td>
</tr>
</tbody>
</table>
### Table 14-1. Compliance Terms (continued)

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIPAA</td>
<td>Health Insurance Portability and Accountability Act. Passed by Congress in 1996, HIPAA does the following:</td>
</tr>
<tr>
<td></td>
<td>- Gives millions of American workers and their families the ability to transfer and continue health insurance coverage for when they change or lose jobs</td>
</tr>
<tr>
<td></td>
<td>- Reduces health care fraud and abuse</td>
</tr>
<tr>
<td></td>
<td>- Mandates industry-wide standards for health care information on electronic billing and other processes</td>
</tr>
<tr>
<td></td>
<td>- Requires the protection and confidential handling of protected health information</td>
</tr>
<tr>
<td></td>
<td>The latter bullet is of most importance to <em>vSphere Security</em> documentation.</td>
</tr>
<tr>
<td>NCCoE</td>
<td>National Cybersecurity Center of Excellence. NCCoE is a U.S government organization that produces and publicly shares solutions to cybersecurity problems that U.S. businesses encounter. The center forms a team of people from cybersecurity technology companies, other federal agencies, and academia to address each problem.</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards and Technology. Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST’s mission is to advocate for U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that increase economic security and improve our quality of life.</td>
</tr>
<tr>
<td>PAG</td>
<td>Product Applicability Guide. A document that provides general guidance for organizations that are considering a company's solutions to help them address compliance requirements.</td>
</tr>
<tr>
<td>PCI DSS</td>
<td>Payment Card Industry Data Security Standard. A set of security standards designed to ensure that all companies that accept, process, store, or transmit credit card information maintain a secure environment.</td>
</tr>
<tr>
<td>VVD/VCF Compliance Solutions</td>
<td>VMware Validated Design/VMware Cloud Foundation. The VMware Validated Designs provide comprehensive and extensively tested blueprints to build and operate a Software-Defined Data Center. VVD/VCF compliance solutions enable customers to meet compliance requirements for multiple government and industry regulations.</td>
</tr>
</tbody>
</table>

### Understanding the *vSphere Security* Configuration Guide

VMware creates Security Hardening Guides that provide prescriptive guidance about deploying and operating VMware products in a secure manner. For *vSphere*, this guide is called the *vSphere Security Configuration Guide* (formerly know as the *Hardening Guide*).
Presented in a spreadsheet format, the vSphere Security Configuration Guide enables you to view security guidelines easily, and describes how to apply them, either through the vSphere Client or command-line interfaces. In addition, the vSphere Security Configuration Guide includes script examples for enabling security automation. For more information, see the VMware Security Hardening Guides webpage at https://www.vmware.com/security/hardening-guides.html.

The vSphere Security Configuration Guide does not discuss securing the following items:

- Software running inside the virtual machine, such as the Guest OS and applications
- Traffic running through the virtual machine networks
- Security of add-on products

The vSphere Security Configuration Guide is not meant to be used as a “compliance” tool. The vSphere Security Configuration Guide does enable you to take initial steps towards compliance, but used by itself, it does not ensure that your deployment is compliant. For more information about compliance, see Security Versus Compliance in the vSphere Environment.

Reading the vSphere Security Configuration Guide

The vSphere Security Configuration Guide is a spreadsheet that contains security-related guidelines to assist you with modifying your vSphere security configuration. These guidelines are organized into the following columns.

Table 14-2. vSphere Security Configuration Guide Spreadsheet Columns

<table>
<thead>
<tr>
<th>Column Heading</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guideline ID</td>
<td>A unique two-part ID to reference a security configuration or hardening recommendation. The first part indicates the component, defined as follows:</td>
</tr>
<tr>
<td></td>
<td>- ESXi: ESXi hosts</td>
</tr>
<tr>
<td></td>
<td>- VM: Virtual machines</td>
</tr>
<tr>
<td></td>
<td>- vNetwork: Virtual switches</td>
</tr>
<tr>
<td>Description</td>
<td>A short explanation of the particular recommendation.</td>
</tr>
<tr>
<td>Vulnerability Discussion</td>
<td>Description of the vulnerability behind a particular recommendation.</td>
</tr>
<tr>
<td>Configuration Parameter</td>
<td>Provides the applicable configuration parameter or filename, if any.</td>
</tr>
<tr>
<td>Desired Value</td>
<td>The desired state or value of the recommendation. Possible values include:</td>
</tr>
<tr>
<td></td>
<td>- N/A</td>
</tr>
<tr>
<td></td>
<td>- Site Specific</td>
</tr>
<tr>
<td></td>
<td>- False</td>
</tr>
<tr>
<td></td>
<td>- True</td>
</tr>
<tr>
<td></td>
<td>- Enabled</td>
</tr>
<tr>
<td></td>
<td>- Disabled</td>
</tr>
<tr>
<td></td>
<td>- Not present or False</td>
</tr>
<tr>
<td>Default Value</td>
<td>The default value set by vSphere.</td>
</tr>
<tr>
<td>Is desired value the default?</td>
<td>States if the security setting is the default product configuration.</td>
</tr>
</tbody>
</table>
### Table 14-2. vSphere Security Configuration Guide Spreadsheet Columns (continued)

<table>
<thead>
<tr>
<th>Column Heading</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action Type</td>
<td>The type of action to take on the particular recommendation. Actions include:</td>
</tr>
<tr>
<td></td>
<td>◦ Update</td>
</tr>
<tr>
<td></td>
<td>◦ Audit Only</td>
</tr>
<tr>
<td></td>
<td>◦ Modify</td>
</tr>
<tr>
<td></td>
<td>◦ Add</td>
</tr>
<tr>
<td></td>
<td>◦ Remove</td>
</tr>
<tr>
<td>Assessment using Web Client</td>
<td>Steps for checking on the value by using the Web Client.</td>
</tr>
<tr>
<td>Negative Functional Impact</td>
<td>Description, if any, of a potential negative impact from using the security</td>
</tr>
<tr>
<td></td>
<td>recommendation.</td>
</tr>
<tr>
<td>Remediation using Web Client</td>
<td>Steps for setting (remediating) the value by using the Web Client.</td>
</tr>
<tr>
<td>vSphere API</td>
<td>Link to the applicable vSphere API documentation.</td>
</tr>
<tr>
<td>ESXi Shell Command Assessment</td>
<td>Steps for checking on the value by using the ESXi shell commands.</td>
</tr>
<tr>
<td>ESXi Shell Command Remediation</td>
<td>Steps for setting (remediating) the value by using the ESXi shell commands.</td>
</tr>
<tr>
<td>vCLI Command Assessment</td>
<td>Steps for checking on the value by using the vCLI commands.</td>
</tr>
<tr>
<td>vCLI Command Remediation</td>
<td>Steps for setting (remediating) the value by using the vCLI commands.</td>
</tr>
<tr>
<td>PowerCLI Command Assessment</td>
<td>Steps for checking on the value by using the PowerCLI commands.</td>
</tr>
<tr>
<td>PowerCLI Command Remediation</td>
<td>Steps for setting (remediating) the value by using the PowerCLI commands.</td>
</tr>
<tr>
<td>Able to set using Host Profile</td>
<td>Whether the setting can be accomplished by using Host Profiles (applies only to ESXi guidelines).</td>
</tr>
<tr>
<td>Reference</td>
<td>Link to documentation or other related information based on the recommendation.</td>
</tr>
<tr>
<td>Hardening</td>
<td>If TRUE, then the guideline has only one implementation to be compliant. If FALSE then you can satisfy the guideline implementation by more than one configuration setting. The actual setting is often site-specific.</td>
</tr>
<tr>
<td>Site Specific Setting</td>
<td>If TRUE, then the setting to be compliant with the guideline depends on rules or standards that are specific to that vSphere deployment.</td>
</tr>
<tr>
<td>Audit Setting</td>
<td>If TRUE, then the value of the listed setting might need to be modified to satisfy site-specific rules.</td>
</tr>
</tbody>
</table>

**Note** These columns might change over time as required. For example, recent additions include the DISA STIG ID, Hardening, and Site Specific Setting columns. Check [https://blogs.vmware.com](https://blogs.vmware.com) for announcements about updates to the *vSphere Secure Configuration Guide*.

Do not blindly apply guidelines in the *vSphere Secure Configuration Guide* to your environment. Rather, take time to evaluate each setting and make an informed decision whether you want to apply it. At a minimum, you can use the instructions in the Assessment columns to verify the security of your deployment.
The **vSphere Secure Configuration Guide** is an aid to begin implementing compliance in your deployment. When used with the Defense Information Systems Agency (DISA) and other compliance guidelines, the **vSphere Secure Configuration Guide** enables you to map vSphere security controls to the compliance flavor per each guideline.

### About the National Institute of Standards and Technology

The National Institute of Standards and Technology (NIST) is a non-regulatory government agency that develops technology, metrics, standards, and guidelines. Compliance with NIST standards and guidelines has become a top priority in many industries today.

The National Institute of Standards and Technology (NIST) was founded in 1901 and is now part of the U.S. Department of Commerce. NIST is one of the nation's oldest physical science laboratories. Today, NIST measurements support the smallest of technologies to the largest and most complex of human-made creations, from nanoscale devices, up to earthquake-resistant skyscrapers and global communication networks.

The Federal Information Security Management Act (FISMA) is a United States federal law passed in 2002 that made it a requirement for federal agencies to develop, document, and implement an information security and protection program. NIST plays an important role in the FISMA implementation by producing key security standards and guidelines (for example, FIPS 199, FIPS 200, and SP 800 series).

Government and private organizations use NIST 800-53 to secure information systems. Cybersecurity and privacy controls are essential to protect organizational operations (including mission, functions, image, and reputation), organizational assets, and individuals from a diverse set of threats. Some of these threats include hostile cyber-attacks, natural disasters, structural failures, and human errors. VMware has enlisted a third-party audit partner to evaluate VMware products and solutions against the NIST 800-53 catalog of controls. For more information, visit the NIST webpage at [https://www.nist.gov/cyberframework](https://www.nist.gov/cyberframework).

### About DISA STIGs

The Defense Information Systems Agency (DISA) is the entity responsible for maintaining the security posture of the Department of Defense (DoD) IT infrastructure. DISA accomplishes this task by developing and using Security Technical Implementation Guides, or "STIGs." The **vSphere Security Configuration Guide** correlates Configuration Guide controls with STIG IDs.

The Defense Information Systems Agency (DISA) is the U.S. Department of Defense (DoD) combat support agency responsible for maintaining the security posture of the DOD Information Network (DODIN). One of the ways DISA accomplishes this task is by developing, disseminating, and mandating the implementation of Security Technical Implementation Guides, or STIGs. In brief, STIGs are portable, standards-based guides for hardening systems to reduce threats and mitigate impact as part of a larger defense in-depth strategy. STIGs are mandatory for U.S. DoD IT systems and, as such, provide a vetted,
secure baseline for non-DoD entities to measure themselves against. Starting with vSphere 6.5, the vSphere Security Configuration Guide includes a column labeled "DISA STIG" that correlates Configuration Guide controls with vSphere 6 STIG IDs. For more information, see Understanding the vSphere Security Configuration Guide.

For more information about DISA STIGs and to see the complete list, visit https://iase.disa.mil/stigs/Pages/index.aspx. For more information about VMware Security Configuration Guides, see the webpage at http://www.vmware.com/security/hardening-guides.html.

About VMware Security Development Lifecycle

The VMware Security Development Lifecycle (SDL) program identifies and mitigates security risk during the development phase of VMware software products. VMware also operates the VMware Security Response Center (VSRC) to conduct the analysis and remediation of software security issues in VMware products.

The SDL is the software development methodology that the VMware Security Engineering, Communication, and Response (vSECR) group, and VMware product development groups, use to help identify and mitigate security issues. For more information about the VMware Security Development Lifecycle, see the webpage at https://www.vmware.com/security/sdl.html.

The VSRC works with customers and the security research community to achieve the goals of addressing security issues and providing customers with actionable security information in a timely manner. For more information about the VMware Security Response Center, see the webpage at https://www.vmware.com/security/vsrc.html.

Audit Logging

Audit logging of network traffic, compliance alerts, firewall activity, operating system changes, and provisioning activities is considered a best practice for maintaining the security of any IT environment. In addition, logging is a specific requirement of many regulations and standards.

One of the first steps to take for ensuring you are aware of changes to your infrastructure is to audit your environment. By default, vSphere includes tools that enable you to view and track changes. For example, you can use the Tasks and Events tab in the vSphere Client on any object in your vSphere hierarchy to see what changes have occurred. You can also use the PowerCLI to retrieve events and tasks. Also, vRealize Log Insight offers audit logging to support collection and retention of important system events. In addition, many third-party tools are available that provide vCenter auditing.

Log files can provide an audit trail to help determine who or what is accessing a host, a virtual machine, and so on. For more information, see ESXi Log File Locations.

Single Sign-On Audit Events

Single Sign-On (SSO) audit events are records of user or system actions for accessing the SSO services.
When a user logs in to vCenter Server through Single Sign-On, or makes changes that affect SSO, the following audit events are written to the SSO audit log file:

- **Login and Logout Attempts**: Events for all the successful and failed login and logout operations.
- **Privilege Change**: Event for change in a user role or permissions.
- **Account Change**: Event for change in the user account information, for example, user name, password, or any additional account information.
- **Security Change**: Event for change in a security configuration, parameter, or policy.
- **Account Enabled or Disabled**: Event for when an account is enabled or disabled.
- **Identity Source**: Event for adding, deleting, or editing an identity source.

In the vSphere Client and the vSphere Web Client, event data is displayed in the Monitor tab. See the *vSphere Monitoring and Performance* documentation.

**Note**  The ability to view events using either of the GUI clients is only enabled for the vCenter Server Appliance.

SSO audit event data includes the following details:

- Timestamp of when the event occurred.
- User who performed the action.
- Description of the event.
- Severity of the event.
- IP address of client used to connect to vCenter Server, if available.

**SSO Audit Event Log Overview**

The vSphere Single-Sign On process writes audit events to the *audit_events.log* file in the following locations.

**Table 14-3. SSO Audit Log Location**

<table>
<thead>
<tr>
<th>OS</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>vCenter Server Appliance</td>
<td>/var/log/audit/sso-events/</td>
</tr>
<tr>
<td>vCenter Server Windows</td>
<td>C:\ProgramData\VMware\vCenterServer\runtime\VMwareSTSService\logs\</td>
</tr>
</tbody>
</table>

**Caution**  Never manually edit the *audit_events.log* file, as doing so might cause the audit logging to fail.

Keep the following in mind when working with the *audit_events.log* file:

- The log file is archived once it reaches 50 MB.
- A maximum of 10 archive files is kept. If the limit is reached, the oldest file is purged when a new archive is created.
The archive files are named `audit_events-<index>.log.gz`, where the index is a numeral from 1 to 10. The first archive created is index 1, and is increased with each subsequent archive.

The oldest events are in archive index 1. The highest indexed file is the latest archive.

**Understanding Security and Compliance Next Steps**

Conducting a security assessment is the first step in understanding any vulnerabilities in your infrastructure. A security assessment is part of a security audit, which looks at both systems and practices, including security compliance.

A security assessment generally refers to scanning your organization’s physical infrastructure (firewalls, networks, hardware, and so on) to identify vulnerabilities and flaws. A security assessment is not the same as a security audit. A security audit includes not only a review of physical infrastructure but other areas such as policy and standard operating procedures, including security compliance. After you have the audit, you can decide on the steps to remedy the problems within the system.

You might ask these general questions when preparing to conduct a security audit:

1. Is our organization mandated to adhere to a compliance regulation? If so which one(s)?
2. What is our audit interval?
3. What is our internal self-assessment interval?
4. Do we have access to previous audit results and have we viewed them?
5. Do we use a third-party audit firm to help us prepare for an audit? If so, what is their level of comfort with virtualization?
6. Do we run vulnerability scans against the systems and applications? When and how often?
7. What are our internal cybersecurity policies?
8. Is your audit logging configured according to your needs? See Audit Logging.

In the absence of specific guidance or direction on where to begin, you can jumpstart securing your vSphere environment by:

- Keeping your environment up-to-date with the latest software and firmware patches
- Maintaining good password management and hygiene for all accounts
- Reviewing vendor-approved security recommendations
- Referring to the VMware Security Configuration Guides (see Understanding the vSphere Security Configuration Guide)
- Using readily available and proven guidance from policy frameworks such as NIST, ISO, and so forth
- Following guidance from regulatory compliance frameworks such as PCI, DISA, and FedRAMP