
Guest and HA Application Monitoring
SDK Programming Guide

17 APR 2018

VMware vSphere 6.7
VMware ESXi 6.7

You can find the most up-to-date technical documentation on the VMware by Broadcom website at:

https://docs.vmware.com/

VMware by Broadcom
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright
©

 2005-2018 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc.

and/or its subsidiaries. For more information, go to https://www.broadcom.com. All trademarks, trade

names, service marks, and logos referenced herein belong to their respective companies. Copyright and

trademark information.

Guest and HA Application Monitoring SDK Programming Guide

VMware by Broadcom 2

https://docs.vmware.com/
https://docs.vmware.com/copyright-trademark.html
https://docs.vmware.com/copyright-trademark.html

Contents

About This Book 5

1 Installing the Development Kit 7
About the SDK Contents 7

Displaying vSphere Guest Library Statistics 8

Using the HA Application Monitoring SDK 8

Controlling the Application Monitoring Heartbeat 8

Library Path or Path Environment 9

Compiling the Sample Program on Linux 9

Compiling Sample Programs on Windows 9

Demonstrating the HA Application Monitoring API 9

Security of Remote RPC 10

2 The Guest Programming API 11
Overview of the vSphere Guest API 11

Supported Guest Operating Systems 11

Required Library Versions 12

Virtual Machine Statistics 12

How to Use the vSphere Guest API 13

vSphere Guest API Runtime Components 13

vSphere Guest API Data Types 14

vSphere Guest API Functions 14

vSphere Guest API Error Codes 19

3 Tools for Extended Guest Statistics 21
Introduction to Statistics Fetch 21

Prerequisites 22

Guest Statistics Interfaces 22

Guest SDK Library 22

Command Line Interface 24

Raw RPC interface 24

Fetching a List of Statistics 24

Metadata Fields 25

Metrics Examples 26

Fetch Available Statistics 26

Get Session Information 27

Host Hardware 28

CPU and Memory Statistics 28

VMware by Broadcom 3

Storage Statistics 34

Network Statistics 34

4 vSphere HA Application Monitoring 36
About vSphere HA 36

Prerequisites for HA Application Monitoring 37

Using the HA Application Monitoring APIs 38

HA Application Monitoring API Functions 38

Code Sample for appmon.cpp 40

Calling the APIs from Your Application 40

HA Application Monitoring API Error Messages 42

Guest and HA Application Monitoring SDK Programming Guide

VMware by Broadcom 4

About This Book

The Guest and HA Application Monitoring SDK Programming Guide provides information about
developing applications using the VMware® Guest Application Programming Interface.

VMware provides several different software development kit (SDK) products. They target
different developer communities and platforms. This guide is intended for developers who want
to retrieve information about the virtual machine and host hardware where the application runs.
The supported VMware platforms include ESXi 5.5, ESXi 6.0, ESXi 6.5, and ESXi 6.7.

Revision History

This book is revised with each release of the product or when necessary. A revised version can
contain minor or major changes. Table 1-1. Revision History summarizes the significant changes in
each version of this book.

Table 1-1. Revision History

Revision Date Description

17 Apr 2018 For ESXi 6.7.

15 Nov 2016 For ESXi 6.5. Minor modifications to “Note on vm.cpu.contention.cpu” section.

16 May 2016 Corrected formulas for extended guest statistics; added esxtop comparison.

25 Mar 2016 Added section about checksystem utility to verify glib version.

22 Jun 2015 Documented the vmware-appmonitor postAppState option and arguments.

17 Apr 2015 Added new chapter on fetching extended guest statistics.

29 Sept 2014 Update for ESXi 6.0, with new section about security of Remote RPC.

19 Sept 2013 Update for ESXi 5.5, with new VMGuestAppMonitor_PostAppState function.

17 May 2012 Added vSphere HA Application Monitoring, changed version number for VMware Tools 9.0.

24 Aug 2011 Added information about compatibility with vSphere 5.0.

13 Jul 2010 No new information, but revised to note support for VMware ESX 4.1.

7 May 2009 Revised manual for VMware ESX version 4.0.

29 Nov 2007 No new information, but revised to note support for VMware ESX 3.5 and ESX 3i version 3.5.

18 Jul 2005 Initial release of the VMware Guest SDK providing support for VMware ESX 3.0.

VMware by Broadcom 5

Intended Audience

This book is intended for developers of software for vSphere high availability (HA) application
monitoring, or for gathering statistics about guest operating systems.

VMware Technical Publications Glossary

VMware Technical Publications provides a glossary of terms that might be unfamiliar to you.
For definitions of terms as they are used in VMware technical documentation go to http://
www.vmware.com/support/pubs.

Document Feedback

VMware welcomes your suggestions for improving our documentation. Send your feedback to
docfeedback@vmware.com.

Guest and HA Application Monitoring SDK Programming Guide

VMware by Broadcom 6

http://www.vmware.com/support/pubs
http://www.vmware.com/support/pubs
mailto:docfeedback@vmware.com

Installing the Development Kit 1
Welcome to the VMware Guest and High Availability (HA) Application Monitoring software
development kit.

Read the following topics next:

n About the SDK Contents

n Displaying vSphere Guest Library Statistics

n Using the HA Application Monitoring SDK

n Security of Remote RPC

About the SDK Contents

The Guest and HA Application Monitoring SDK is available as a tarball for Linux or a ZIP file for
Windows. Both have a similar directory structure, shown in Table 1-1. Components of the SDK,
with minor differences for compilation.

Table 1-1. Components of the SDK

Directory or Folder Explanation of Contents

bin/bin32 or bin/win32
bin/bin64 or bin/win64

Contains the vmware-appmonitor program, which controls the HA application

monitoring heartbeat from the command line.

docs/ Contains the Guest SDK terms and conditions, and text of related Open Source
licenses. Also contains sample code for HA application monitoring.

docs/
VMGuestAppMonitor/
 samples/C or

 samples/visualstudio
 samples/java

The samples/C subdirectory (or samples/visualstudio subfolder) contains

the sample.c (or appmon.cpp) program to demonstrate HA application

monitoring API. Follow instructions in the README file to compile with make
or with Visual Studio. The samples/java directory contains a Java native

interface (JNI) implementation that builds on the C implementation. Again, see
the README file.

include/ Header files for basic types, GuestAppMonitor and Guest libraries, and session
ID.

include/
vmGuestLibTest.c

Sample C program to run all the Guest library functions and return statistics.
On Linux, use gcc to compile this program, and run it on an ESXi hosted virtual

machine.

VMware by Broadcom 7

Table 1-1. Components of the SDK (continued)

Directory or Folder Explanation of Contents

lib/lib32 or lib/win32
lib/lib64 or lib/win64

Shared objects or DLL files and libraries for the Guest library, the Guest library
for Java, and the HA application monitoring library.

vmGuestLibJava
vmGuestLibJava/doc

JAR file and standard Javadoc for a prepackaged Java implementation of
the Guest API. For a list of methods, browse index.html and see the

VMGuestLibInterface page.

Displaying vSphere Guest Library Statistics

On a Linux virtual machine hosted by ESXi, go to the include directory and compile the

vmGuestLibTest.c program. Run the output program vmguestlibtest.

gcc -g -o vmguestlibtest -ldl vmGuestLibTest.c
./vmguestlibtest

Guest statistics appear repeatedly until you interrupt the program.

Using the HA Application Monitoring SDK

This section provides a short introduction to the HA Application Monitoring SDK. You need
information in Chapter 4 vSphere HA Application Monitoring to proceed further.

SDK function definitions and simple documentation are in the vmGuestAppMonitorLib.h include

file.

Controlling the Application Monitoring Heartbeat

To run HA application monitoring programs, the virtual machine must be running on an ESXi host,
and application monitoring must have been enabled when configuring HA.

You can enable heartbeats with the compiled vmware-appmonitor program. Usage is as follows:

vmware-appmonitor { enable | disable | markActive | isEnabled | getAppStatus | postAppState }

n enable – Enable application heartbeat so vSphere HA starts listening and monitoring the

heartbeat count from this guest virtual machine. The heartbeats should be sent at least once
every 30 seconds.

n disable – Disable the application heartbeat so vSphere HA stops listening to heartbeats

from this guest.

n markActive – This starts sending the actual heartbeat every 30 seconds or less.

n isEnabled – Indicates whether the heartbeat monitoring was enabled.

n getAppStatus – Gets the status of the application, either Green, Red, or Gray.

Guest and HA Application Monitoring SDK Programming Guide

VMware by Broadcom 8

n postAppState – Posts the state of the application. Arguments can be:

n appStateOk – Sends an “Application State is OK” signal to the HA agent running on the

host.

n appStateNeedReset – Sends an “Immediate Reset” signal to the HA agent running on

the host.

Library Path or Path Environment

On Linux, set your LD_LIBRARY_PATH environment to the install location of GuestSDK/lib/
lib32 or lib64. On Windows, you can set your PATH environment, but it is probably easier

to copy vmware-appmonitor to the same folder as the DLL files.

Compiling the Sample Program on Linux

You need a C compiler and the make program.

Procedure

1 Go to the docs/VMGuestAppMonitor/samples/C directory.

2 Run the make command.

On a 64-bit machine you might want to change lib32 to lib64 in the makefile.

3 Set LD_LIBRARY_PATH as described above.

4 Run the sample program. See below for program usage.

./sample

Compiling Sample Programs on Windows

You need Visual Studio 2008 or later.

Procedure

1 Go to the docs/VMGuestAppMonitor/samples/visualstudio folder.

2 Open the appmon.vcproj file and build the solution.

3 Click Debug > Start Debugging to run appmon.exe. See below for program usage.

Demonstrating the HA Application Monitoring API

The sample program enables HA application monitoring and sends a heartbeat every 15 seconds.
After the program starts running, typing Ctrl+C displays three choices:

n s – stop sending heartbeats and exit the program. The virtual machine will reset.

n d – disable application monitoring and exit the program. This does not cause a reset.

n c – continue sending heartbeats.

Guest and HA Application Monitoring SDK Programming Guide

VMware by Broadcom 9

Security of Remote RPC

Guest RPC is a communication channel between the guest operating system and its VMX, or
virtual machine executable, the user space component of virtual infrastructure. The VMM, or
virtual machine monitor, is the kernel space component.

In the ESXi 6.0 release, Guest RPC was reimplemented on top of VMCI Sockets.

To enforce security for both the Guest SDK and the HA Application Monitoring SDK, allowing only
root and Administrator access to the functions provided by the SDK, on ESXi 6.0 hosts you can
edit the .vmx file for the respective virtual machine and set the secure authentication parameter

as follows:

guest_rpc.rpci.auth.app.APP_MONITOR = TRUE

If you do not need to enforce security and want to allow non-root and non-Administrator users
to access functions in the Guest and HA Application Monitoring SDK, the secure authentication
parameter must not appear in the .vmx file, or it must be set FALSE.

Guest and HA Application Monitoring SDK Programming Guide

VMware by Broadcom 10

The Guest Programming API 2
The VMware Guest API provides functions that you can use in a program that runs in the guest
operating system environment on a VMware ESXi host.

Read the following topics next:

n Overview of the vSphere Guest API

n How to Use the vSphere Guest API

Overview of the vSphere Guest API

The vSphere Guest API provides functions that management agents and other software can use
to collect data about the state and performance of a VMware virtual machine. The Guest API
provides fast access to resource management information, without the need for authentication.

The Guest API provides read-only access. You can read data using the API, but you cannot send
control commands. To send control commands, use the vSphere Web Services SDK. For more
information, see the VMware vSphere Web Services SDK Programming Guide and the VMware
vSphere API Reference, which are available on the VMware developer support Web site.

The version number of this Guest API release is 9.0 to match the version number of VMware
Tools.

Supported Guest Operating Systems

The vSphere Guest API software runs on most Windows or Linux guest operating systems
supported by the various versions of ESXi.

See the VMware Compatibility Guide for a list of supported guest operating system versions. This
guide is now located at http://www.vmware.com/resources/compatibility in Web format.

The Guest API does not support the following guest operating system environments:

n Windows 95 and Windows 98.

n Windows NT 4.0. For Windows NT 4.0 you must use Guest SDK 3.5, which you can find by
going to http://www.vmware.com/support/developer/guest-sdk and selecting an old release.

VMware by Broadcom 11

http://www.vmware.com/resources/compatibility/search.php?action=base&deviceCategory=software

Required Library Versions

To help you verify the minimum library version, the checksystem utility is bundled in the Guest

SDK package for Linux guest OS systems. After you extract the Guest SDK, the utility is available
in the GuestSDK/bin subdirectory. If the guest OS has a compatible glibc, the checksystem
utility prints this message:

This version of GuestSDK is compatible with the version of glibc in this system.

If the Linux guest OS does not have a compatible glibc, this error message appears:

This version of GuestSDK requires version 2.5 or later of glibc. For this system,
use version 9.10.x of GuestSDK from https://www.vmware.com/support/developer/guest-sdk/

Virtual Machine Statistics

With the Guest API, you can monitor various statistics about the virtual machine. You can use
this information to retrieve scheduling and resource usage information about the environment.
With the help of these statistics, a virtual machine can immediately react to changes in its virtual
environment at the application layer.

The information you can retrieve by using the vSphere Guest API includes:

n Amount of memory reserved for the virtual machine.

n Amount of memory being used by the virtual machine.

n Upper limit of memory available to the virtual machine.

n Number of memory shares assigned to the virtual machine.

n Maximum speed of the virtual machine’s CPU.

n Reserved rate at which the virtual machine is allowed to execute. An idling virtual machine
might consume CPU cycles at a much lower rate.

n Number of CPU shares assigned to the virtual machine.

n Elapsed time since the virtual machine was last powered on or reset.

n CPU time consumed by a particular virtual machine. When combined with other
measurements, you can estimate how fast the virtual machine’s CPUs are running compared
to the host CPUs.

Important The API uses a handle that provides access to the statistics. The handle also is a
mechanism to determine whether the API can provide accurate information. (Certain events,
such as migrating a virtual machine with VMotion™, temporarily make it impossible to provide
accurate information.)

Guest and HA Application Monitoring SDK Programming Guide

VMware by Broadcom 12

How to Use the vSphere Guest API

The vSphere Guest API defines functions and data types that you use to extract virtual machine
data. This section covers the following topics:

n vSphere Guest API Runtime Components

n vSphere Guest API Data Types

n vSphere Guest API Functions

n vSphere Guest API Error Codes

vSphere Guest API Runtime Components

To use the vSphere Guest API, the runtime components must be installed in the guest operating
system. The runtime components are dynamically loaded binary modules for 32-bit and 64-
bit guests. When you install VMware Tools, the vSphere Guest API runtime components are
installed as well. You can also download them from http://www.vmware.com/download/sdk/
guest_sdk.html.

To make the vSphere Guest API functions available to your program, use your program’s
standard methods to load the library.

n In a Windows guest operating system, the library file is vmGuestLib.dll. The import library

file is vmGuestLib.lib.

n In a Linux guest operating system, the library file is libvmGuestLib.so.

If you are using a Security-Enhanced Linux (SELinux) guest OS, its security policies might interfere with
dynamic loading of libvmGuestLib.so. Refer to documentation about your SELinux policy configuration

The vSphere Guest SDK includes the test program vmGuestlibTest.c. If you are using a

Windows environment, you must rebuild the test program. The vmGuestLib.dll library file is

a non-Unicode DLL. In Microsoft Visual Studio, build the test program vmGuestlibTest.c as a

non-Unicode executable file so that the program can access the DLL at runtime.

Enabling and Disabling the Runtime Components

The vSphere Guest API runtime components are enabled by default (disable = “FALSE”). To

disable the runtime components, use the configuration editor in the vSphere Client to edit the
configuration file for the virtual machine. The virtual machine must be powered off before you
can use the configuration editor.

1 In the vSphere Client window, right-click the virtual machine in the machine list.

2 In the drop-down menu, select Edit Settings.

3 In the Virtual Machine Properties window, click the Options tab.

4 In the list of “Advanced” settings, select General.

Guest and HA Application Monitoring SDK Programming Guide

VMware by Broadcom 13

http://www.vmware.com/download/sdk/guest_sdk.html
http://www.vmware.com/download/sdk/guest_sdk.html

5 Click Configuration Parameters.

6 In the Configuration Parameters window, add the following line or, if the file already contains
the disable configuration setting, set the value to TRUE:

isolation.tools.guestlibGetInfo.disable = "TRUE"

The default value for the disable setting is FALSE. The default setting enables the runtime

components. Reinstalling VMware Tools does not affect the disable setting. If you disable the
vSphere Guest API and reinstall VMware Tools, the vSphere Guest API remains unavailable
until you change the configuration setting guestLibGetInfo.disable to FALSE.

vSphere Guest API Data Types

The vSphere Guest API uses the data types listed in Table 2-1. Data Types to support access to
virtual machine data.

Table 2-1. Data Types

Data Type Description

VMGuestLibHandle Reference to virtual machine data. VMGuestLibHandle is defined in

vmGuestLib.h.

VMSessionID Unique identifier for a session. The session ID changes after a virtual
machine is migrated using VMotion, suspended and resumed, or reverted to
a snapshot. Any of these events is likely to render any information retrieved
with this API invalid. You can use the session ID to detect those events and
react accordingly. For example, you can refresh and reset any state that
relies on the validity of previously retrieved information.

Use VMGuestLib_GetSessionId to obtain a valid session ID. A session

ID is opaque. You cannot compare a virtual machine session ID with
the session IDs from any other virtual machines.You must always call
VMGuestLib_GetSessionId after calling VMGuestLib_UpdateInfo.

VMSessionID is defined in vmSessionId.h.

VMGuestLibError Status code that indicates success or failure. Each function returns a
VMGuestLibError code. For information about specific error codes, see

vSphere Guest API Error Codes. VMGuestLibError is an enumerated type

defined in vmGuestLib.h.

vSphere Guest API Functions

The vSphere Guest SDK contains the header file vmGuestLib.h. This file declares the functions

and data types that you use to call the vSphere Guest API. The following sections describe the
vSphere Guest API functions:

n Calling Context Functions

n Accessor Functions (Virtual Machine)

Guest and HA Application Monitoring SDK Programming Guide

VMware by Broadcom 14

Calling Context Functions

The vSphere Guest API provides a set of functions that initialize and manipulate the context
where the Guest API operates. Before your application can use the accessor functions to retrieve
information about a virtual machine, use the following functions to initialize the vSphere Guest
API environment.

1 Call the VMGuestLib_OpenHandle function to obtain a handle for accessing information

about the virtual machine. The guest library handle is a parameter to every Guest API
function.

2 Call the VMGuestLib_UpdateInfo function to update the information available through the

handle.

3 Call the VMGuestLib_GetSessionId function to retrieve a session ID.

About Context Functions

#unique_21/unique_21_Connect_42_ID-3875-00000233 shows a C code fragment that illustrates
the function calls for initialization. (The code fragments in this section do not perform error
handling. For information about error handling, see vSphere Guest API Error Codes.)

Initializing the vSphere Guest API Environment

VMGuestLibHandle glHandle;
VMGuestLibError glError;
VMSessionId sid = 0;
glError = VMGuestLib_OpenHandle(&glHandle);
glError = VMGuestLib_UpdateInfo(glHandle);
glError = VMGuestLib_GetSessionId(glHandle, &sid);

You can use the session ID to detect changes that invalidate previously retrieved data.
#unique_21/unique_21_Connect_42_ID-3875-0000023F shows a code fragment that illustrates
how to use the session ID to detect stale data. (The ResetStats function in the following

fragment represents application code to handle the session change.)

Detecting Stale Data

VMGuestLibHandle glHandle;
VMGuestLibError glError;
VMSessionId oldSid;
VMSessionId newSid;

/* [...code here would access data based on an existing, valid session ID (oldSid)...] */

/* Update the library, get the session ID, and compare it to the previous session ID */
glError = VMGuestLib_UpdateInfo(glHandle);
glError = GuestLib_GetSessionId(glHandle, &newSid);
if (oldSid != newSid) {
 ResetStats();
 oldSid = newSid;
}

Guest and HA Application Monitoring SDK Programming Guide

VMware by Broadcom 15

Table 2-2. Open, Close, and Update Functions lists the context functions for creating and
releasing handles, updating information, and obtaining session IDs.

Table 2-2. Open, Close, and Update Functions

Function Description

VMGuestLib_OpenHandle Gets a handle for use with other vSphere Guest API functions. The guest
library handle provides a context for accessing information about the virtual
machine. Virtual machine statistics and state data are associated with a
particular guest library handle, so using one handle does not affect the data
associated with another handle.

VMGuestLib_CloseHandle Releases a handle acquired with VMGuestLib_OpenHandle.

VMGuestLib_UpdateInfo Updates information about the virtual machine. This information is
associated with the VMGuestLibHandle.

VMGuestLib_UpdateInfo requires similar CPU resources to a system

call and therefore can affect performance. If you are concerned about
performance, minimize the number of calls to VMGuestLib_UpdateInfo.

If your program uses multiple threads, each thread must use a different
handle. Otherwise, you must implement a locking scheme around update
calls. The vSphere Guest API does not implement internal locking around
access with a handle.

VMGuestLib_GetSessionId Retrieves the VMSessionID for the current session. Call this function

after calling VMGuestLib_UpdateInfo. If VMGuestLib_UpdateInfo
has never been called, VMGuestLib_GetSessionId returns

VMGUESTLIB_ERROR_NO_INFO.

Accessor Functions (Virtual Machine)

Accessor functions retrieve information about a virtual machine. When you call an accessor
function, you pass a guest library handle (type VMGuestLibHandle) to the function. If the

function is successful, it returns the requested data as an output parameter. The function return
value is an error code (type VMGuestLibError) that indicates success or failure. #unique_21/

unique_21_Connect_42_ID-3875-0000028A shows a C code fragment that illustrates an example
of calling VMGuestLib_GetCpuLimitMHz to retrieve the processor limit available to the virtual

machine.

Using an Accessor Function

uint32 cpuLimitMHz = 0;
glError = VMGuestLib_GetCpuLimitMHz(glHandle, &cpuLimitMHz);

When a call completes successfully, the function returns the value VMGUESTLIB_ERROR_SUCCESS.

If the call is unsuccessful, the error code name contains an appropriate description. For details,
see vSphere Guest API Error Codes.

Call VMGuestLib_UpdateInfo once to refresh all statistics before calling an accessor function or

a series of accessor functions.

Guest and HA Application Monitoring SDK Programming Guide

VMware by Broadcom 16

Table 2-3. Accessor Functions for Virtual Machine Data

Function Description

VMGuestLib_GetCpuLimitMHz Retrieves the upper limit of processor use in MHz available to the
virtual machine. For information about setting the CPU limit, see
Limits and Reservations.

VMGuestLib_GetCpuReservationMHz Retrieves the minimum processing power in MHz reserved for the
virtual machine. For information about setting a CPU reservation,
see Limits and Reservations.

VMGuestLib_GetCpuShares Retrieves the number of CPU shares allocated to the virtual
machine. For information about how an ESXi host uses CPU shares
to manage virtual machine priority, see the vSphere Resource
Management Guide.

VMGuestLib_GetCpuStolenMs Retrieves the number of milliseconds that the virtual machine was
in a ready state (able to transition to a run state), but was not
scheduled to run.

VMGuestLib_GetCpuUsedMs Retrieves the number of milliseconds during which the virtual
machine has used the CPU. This value includes the time used by
the guest operating system and the time used by virtualization
code for tasks for this virtual machine. You can combine this value
with the elapsed time (VMGuestLib_GetElapsedMs) to estimate

the effective virtual machine CPU speed. This value is a subset of
elapsedMs.

VMGuestLib_GetElapsedMs Retrieves the number of milliseconds that have passed in the
virtual machine since it last started running on the server. The
count of elapsed time restarts each time the virtual machine is
powered on, resumed, or migrated using VMotion. This value
counts milliseconds, regardless of whether the virtual machine
is using processing power during that time. You can combine
this value with the CPU time used by the virtual machine
(VMGuestLib_GetCpuUsedMs) to estimate the effective virtual

machine CPU speed. cpuUsedMS is a subset of this value.

VMGuestLib_GetHostProcessorSpee
d

Retrieves the speed of the ESXi host’s physical CPU in MHz.

VMGuestLib_GetMemActiveMB Retrieves the amount of memory the virtual machine is actively
using—its estimated working set size.

VMGuestLib_GetMemBalloonedMB Retrieves the amount of memory that has been reclaimed from this
virtual machine by the vSphere memory balloon driver, which is
also called the “vmmemctl” driver.

VMGuestLib_GetMemLimitMB Retrieves the upper limit of memory that is available to the virtual
machine. For information about setting a memory limit, see Limits
and Reservations.

VMGuestLib_GetMemMappedMB Retrieves the amount of memory that is allocated to the virtual
machine. Memory that is ballooned, swapped, or has never been
accessed is excluded.

VMGuestLib_GetMemOverheadMB Retrieves the amount of “overhead” memory associated with this
virtual machine that is currently consumed on the host system.
Overhead memory is additional memory that is reserved for data
structures required by the virtualization layer.

Guest and HA Application Monitoring SDK Programming Guide

VMware by Broadcom 17

Table 2-3. Accessor Functions for Virtual Machine Data (continued)

VMGuestLib_GetMemReservationMB Retrieves the minimum amount of memory that is reserved for
the virtual machine. For information about setting a memory
reservation, see Limits and Reservations.

VMGuestLib_GetMemSharedMB Retrieves the amount of physical memory associated with this
virtual machine that is copy-on-write (COW) shared on the host.

VMGuestLib_GetMemSharedSavedMB Retrieves the estimated amount of physical memory on the host
saved from copy-on-write (COW) shared guest physical memory.

VMGuestLib_GetMemShares Retrieves the number of memory shares allocated to the virtual
machine. For information about how an ESXi host uses memory
shares to manage virtual machine priority, see the vSphere
Resource Management Guide.

VMGuestLib_GetMemSwappedMB Retrieves the amount of memory that has been reclaimed from this
virtual machine by transparently swapping guest memory to disk.

VMGuestLib_GetMemTargetSizeMB Retrieves the size of the target memory allocation for this virtual
machine.

VMGuestLib_GetMemUsedMB Retrieves the estimated amount of physical host memory currently
consumed for this virtual machine's physical memory.

VMGuestLib_GetResourcePoolPath Retrieves the path name of the resource pool affiliated with the
virtual machine on the ESXi host where it is running.

VMGuestLib_GetResourcePoolPath uses an additional parameter to
determine the size of the path name output string buffer.

VMGuestLibError VmGuestLib_GetResourcePoolPath(
VMGuestLibHandle handle,
size_t *bufferSize,
char *pathBuffer);

handle is an input parameter specifying the guest library handle.

bufferSize is an input/output parameter. It is a pointer to the

size of the pathBuffer in bytes. If bufferSize is not large enough to
accommodate the path (including a NULL terminator), the function
returns VMGUESTLIB_ERROR_BUFFER_TOO_SMALL. In this case,
the function uses the bufferSize parameter to return the number of
bytes required for the string.

pathBuffer is an output parameter. It is a pointer to a buffer that

receives the resource pool path string. The path string is NULL-
terminated.

For information about using resource pools, see the vSphere
Resource Management Guide.

For more information about ESXi resource management, see the vSphere Resource Management
Guide, available on the VMware Web site.

Limits and Reservations

You use the Guest API to retrieve information about limits and reservations for CPU and memory.
To set limits and reservations, you can use the vSphere (Web) Client or the vSphere API. Setting
limits and reservations on a virtual machine ensures that resources are available to that machine
and to other virtual machines that draw resources from the same resource pool.

Guest and HA Application Monitoring SDK Programming Guide

VMware by Broadcom 18

To use the vSphere Client to set limits or reservations:

1 In the vSphere Client window, click the Resource Allocation tab.

2 In either the CPU or Memory section, click Edit.

3 In the Virtual Machine Properties Window, click the Resources tab.

4 Select either the CPU or Memory setting.

5 Use the slider controls to set limits or reservations.

For more information, see online help for the vSphere Client.

To use the vSphere API to set limits or reservations, call the ReconfigVM_Task method. In
the method call, use the VirtualMachineConfigSpec data object to set the cpuAllocation or
memoryAllocation property. These properties are of type ResourceAllocationInfo, which has
limit and reservation properties. For more information, see the VMware vSphere API Reference
Documentation.

vSphere Guest API Error Codes

Each vSphere Guest API function returns an error code. If successful, the returned error code
is VMGUESTLIB_ERROR_SUCCESS. If the function is unable to complete its task, the error code

provides information for diagnosing the problem.

Use the VMGuestLib_GetErrorText function to retrieve the error text associated with a

particular error code. When you call the function, pass the error code to the function;
VMGuestLib_GetErrorText returns a pointer to a string containing the error text.

#unique_22/unique_22_Connect_42_ID-3875-0000035B shows error handling. The C code
fragment declares a guest library handle and calls the function VMGuestLib_OpenHandle. If the

call is not successful, the code calls VMGuestLib_GetErrorText and displays the error text.

Error Handling

VMGuestLibHandle glHandle;
glError = VMGuestLib_OpenHandle(&glHandle);
if (glError != VMGUESTLIB_ERROR_SUCCESS) {
 printf("OpenHandle failed: %s\n", VMGuestLib_GetErrorText(glError));
}

Table 2-4. Error Codes lists all error codes defined for the vSphere Guest API.

Table 2-4. Error Codes

Error Code Description

VMGUESTLIB_ERROR_SUCCESS The function has completed successfully.

VMGUESTLIB_ERROR_OTHER An error has occurred. No additional information about the type
of error is available.

VMGUESTLIB_ERROR_NOT_RUNNING_IN_V
M

The program making this call is not running on a VMware virtual
machine.

Guest and HA Application Monitoring SDK Programming Guide

VMware by Broadcom 19

Table 2-4. Error Codes (continued)

VMGUESTLIB_ERROR_NOT_ENABLED The vSphere Guest API is not enabled on this host, so these
functions cannot be used. For information about how to enable
the library, see Calling Context Functions.

VMGUESTLIB_ERROR_NOT_AVAILABLE The information requested is not available on this host.

VMGUESTLIB_ERROR_NO_INFO The handle data structure does not contain any information.
You must call VMGuestLib_UpdateInfo to update the data

structure.

VMGUESTLIB_ERROR_MEMORY There is not enough memory available to complete the call.

VMGUESTLIB_ERROR_BUFFER_TOO_SMALL The buffer is too small to accommodate the function call. For
example, when you call VMGuestLib_GetResourcePoolPath, if

the path buffer is too small for the resulting resource pool path,
the function returns this error. To resolve this error, allocate a
larger buffer.

VMGUESTLIB_ERROR_INVALID_HANDLE The handle that you used is invalid. Make sure that you have
the correct handle and that it is open. It might be necessary to
create a new handle using VMGuestLib_OpenHandle.

VMGUESTLIB_ERROR_INVALID_ARG One or more of the arguments passed to the function were
invalid.

VMGUESTLIB_ERROR_UNSUPPORTED_VERS
ION

The host does not support the requested statistic.

Guest and HA Application Monitoring SDK Programming Guide

VMware by Broadcom 20

Tools for Extended Guest
Statistics 3
As of the vSphere 6.0 release, VMware Tools have expanded support for guest operating system
statistics. Rather than offering a fixed set of statistics after calling VMGuestLib_UpdateInfo(),

a larger and extensible set of statistics are available by calling VMGuestLib_StatGet(), or by

using the CLI.

Read the following topics next:

n Introduction to Statistics Fetch

n Guest Statistics Interfaces

n Fetching a List of Statistics

n Metadata Fields

n Metrics Examples

Introduction to Statistics Fetch

The fetch-statistics facility returns semi-structured data in a variety of formats for use within a the
guest OS. Four encodings are supported:

n text – simple key-value pairs

n XML – eXtensible Markup Language fragment

n JSON – JavaScript Object Notation

n YAML – Yet Another Markup Language, a human-readable JSON superset intended for data
transmission

Statistics are accurate within the current session only. A session represents a powered-on
virtual machine running on a single ESXi host. Sessions may be discontinuous across session
changes, so monotonically increasing metrics can suddenly decrease. New sessions result from
suspending a virtual machine, reverting to a snapshot, vMotion, or certain types of hot-plug
operations. It is up to the consumer of statistics to notice that the session has changed and deal
with numerical discontinuities.

VMware by Broadcom 21

Guest OS statistics are supported for troubleshooting and support only. Specifically:

n Individual metrics are not guaranteed to be forward or backward compatible. Programs
using these metrics are expected to tolerate incompatibility, and are cautioned against
programming practices that could break when a metric behaves differently.

n Metrics might be added, removed, or modified to have a different meaning. For example:
co-stop time changed meaning between ESXi 4.1 and ESXi 5.0.

n VMware reserves the right to make changes, but will try to avoid gratuitous changes. Most
changes will still provide equivalent information, but possibly in a different form that better
reflects the ESXi host implementation providing the metrics.

This support declaration is similar to the compatibility guarantee for the esxtop command,

whose statistics the Guest SDK reflects. See https://communities.vmware.com/docs/DOC-9279
for details about esxtop.

Prerequisites

Before you start, install the latest version of VMware Tools in all relevant virtual machines.

For extended guest statistics, you must have VMware Tools version 9.10 or later installed in
a virtual machine running on an ESXi 6.0 or later host. There is no minimum virtual hardware
version. Version 9.10 was released with vSphere 6.0. Earlier ESXi hosts return no data for
extended statistics requests, and earlier VMware Tools lack extended statistics. If statistics are
unavailable, a code indicates that the requested item is unsupported.

Guest Statistics Interfaces

You have a choice of three interfaces to fetch the new statistics: the guest SDK library, CLI, or
raw RPC.

Guest SDK Library

The Guest SDK library now offers two new functions, get and free.

VMGuestLib_StatGet

/* Semi-structured hypervisor statistics collection, for troubleshooting.
 */
VMGuestLibError
VMGuestLib_StatGet(const char *encoding, // IN
const char *stat, // IN
char **reply, // OUT
size_t *replySize); // OUT

n encoding – “text” or “xml” or “json” or “yaml” – if not specified, “text” is the default.

n stat – the statistic to print. See examples below.

Guest and HA Application Monitoring SDK Programming Guide

VMware by Broadcom 22

n reply – a pointer to be set with a buffer containing the formatted reply. All current formats

return null-terminated C strings, but future formats may not; the caller should treat the
buffer as binary unless the format is known. The buffer must later be freed by a call to
VMGuestLib_StatFree().

n replySize – a pointer to receive the size of data in the buffer.

VMGuestLib_StatFree

To free the memory returned by VMGuestLib_StatGet, call VMGuestLib_StatFree().

void
VMGuestLib_StatFree(char *reply, size_t replySize);

n reply – the pointer that was supplied by the reply parameter of VMGuestLib_StatGet().

n replySize – the size that was supplied by the replySize parameter of

VMGuestLib_StatGet().

C code with StatGet and StatFree functions shows these two function calls used in a sample
routine:

Example: C code with StatGet and StatFree functions

/*
 * Retrieves semi-structured statistics on ESXi host.
 */
static int
StatGetRaw(const char *encoding, // IN
const char *stat, // IN
const char *param) // IN
{
 int exitStatus = EXIT_SUCCESS;
 VMGuestLibError glError;
 char *result = NULL;
 size_t resultSize = 0;
 char *arg = g_strdup_printf("%s %s", stat, param);

 glError = VMGuestLib_StatGet(encoding, arg, &result, &resultSize);
 if (glError != VMGUESTLIB_ERROR_SUCCESS) {
 exitStatus = EX_TEMPFAIL;
 } else {
 g_print("%*s", (int)resultSize, result);
 }
 VMGuestLib_StatFree(result, resultSize);
 g_free(arg);
 return exitStatus;
}

Guest and HA Application Monitoring SDK Programming Guide

VMware by Broadcom 23

Command Line Interface

The command name varies with each of the three OS types available, but all three have a -v
option to show the VMware Tools version number.

Linux: vmware-toolbox-cmd stat raw <encoding> <stat>
Mac: vmware-tools-cli stat raw <encoding> <stat>
Windows: VMwareToolboxCmd.exe stat raw <encoding> <stat>

These commands are provided for debugging and scripting; the implementation is a wrapper on
top of the VMGuestLib_StatGet() call described above.

Raw RPC interface

The raw RPC interface varies for one of the three OS types available.

Linux: vmtoolsd --cmd="guestlib.stat.get <encoding> <stat>"
Mac: vmtoolsd --cmd="guestlib.stat.get <encoding> <stat>"
Windows: vmtoolsd.exe --cmd="guestlib.stat.get <encoding> <stat>"

This is a raw form of the statistics API. Function calls or CLI are preferred.

Fetching a List of Statistics

To fetch a list of statistics, make a query with no statistics name supplied (in other words, no
argument, NULL, or ""). The returned buffer contains a list of available metric categories. The

list can be emitted in any of four supported formats. The text format is recommended for

user interaction; machine-parsable formats xml, json, and yaml are recommended for program

interaction.

The following examples use the CLI to demonstrate. The C language API works similarly. In the
first example, the virtual machine has three disks and two network interfaces.

Example: Return list of statistics

$ vmware-toolbox-cmd stat raw
session
host
resources
vscsi ide0:0
vscsi scsi0:0
vscsi scsi0:2
vnet 00:0c:29:1e:23:f3
vnet 00:0c:29:1e:23:f4

The second example fetches a specific statistic (vscsi scsi0:0) taken from the first example.

Guest and HA Application Monitoring SDK Programming Guide

VMware by Broadcom 24

Example: Get I/O statistics for a device

$ vmware-toolbox-cmd stat raw text vscsi scsi0:0
num.reads = 12605
num.writes = 1039
size.reads = 533612032
size.writes = 14279680
latency.reads = 1944173239
latency.writes = 102025122

Metadata Fields

When appearing in machine-parsable formats, numeric statistics have these self-describing
metadata fields:

units – What the numbers mean. Example values:

packets, bytes, KB for kilobytes, us for microseconds, and others as appropriate.

type – Indicates how to interpret the number.

static – The value is for configuration and is not expected to change frequently.

For instance: a reservation, or the maximum CPU speed.

instant – Instantaneous measurement of the current value. Expected to go up or down over

time. For instance: current memory usage.

accumulate – Continuous sum of all data over time. Non-decreasing. The statistics consumer

must compute the difference between two values at different times and convert it into a rate. For
instance: CPU time used, bytes sent, memory swapped in.

Four examples below show the same statistic, encoded in different formats:

Example: Text

$ vmware-toolbox-cmd stat raw text vnet 00:0c:29:1e:23:f3
size.tx = 38137
num.rx = 10920
size.rx = 1312789
reservation = 0
limit = -1

Example: YAML

$ vmware-toolbox-cmd stat raw yaml vnet 00:0c:29:1e:23:f3
num.tx:
 type: accumulate
 units: packets
 value: 209
size.tx:
 type: accumulate
 units: bytes

Guest and HA Application Monitoring SDK Programming Guide

VMware by Broadcom 25

 value: 38137
num.rx:
 type: accumulate
 units: packets
 value: 10920
size.rx:
 type: accumulate
 units: bytes
 value: 1312789
reservation:
 type: static
 units: MBps
 value: 0
limit:
 type: static
 units: MBps
 value: -1

Example: XML (formatted here for presentation)

$ vmware-toolbox-cmd stat raw xml vnet 00:0c:29:1e:23:f3
<metrics session="4004861987670969122">
<metric name="num.tx" type="accumulate" units="packets">209</metric>
<metric name="size.tx" type="accumulate" units="bytes">38137</metric>
<metric name="num.rx" type="accumulate" units="packets">10992</metric>
<metric name="size.rx" type="accumulate" units="bytes">1322161</metric>
<metric name="reservation" type="static" units="MBps">0</metric>
<metric name="limit" type="static" units="MBps">-1</metric>
</metrics>

Example: JSON (formatted here for presentation)

$ vmware-toolbox-cmd stat raw json vnet 00:0c:29:1e:23:f3
{"num.tx":{"type":"accumulate","units":"packets","value":209},
 "size.tx":{"type":"accumulate","units":"bytes","value":38137},
 "num.rx":{"type":"accumulate","units":"packets","value":11068},
 "size.rx":{"type":"accumulate","units":"bytes","value":1331791},
 "reservation":{"type":"static","units":"MBps","value":0},
 "limit":{"type":"static","units":"MBps","value":-1}}

Metrics Examples

The examples below use the default “text” format for readability. For actual programming, you
will probably use one of the machine-parsable formats (XML, JSON, or YAML).

Fetch Available Statistics

The statistics command with no parameters fetches a list of available statistics:

$ vmware-toolbox-cmd stat raw
session
host

Guest and HA Application Monitoring SDK Programming Guide

VMware by Broadcom 26

resources
vscsi scsi0:0
vnet 00:0c:29:1e:23:f3

session – the current session. This changes infrequently. Session changes can cause

discontinuities.

host – information about the current hypervisor and hardware the virtual machine is running on.

resources – the CPU and memory usage of this virtual machine.

vscsi <name> – storage statistics for a specific virtual disk, where <name> is the internal name

in the virtual machine’s configuration file. The library does not aggregate storage statistics across
disks.

vnet <Ethernet Address> – network statistics for a specific virtual NIC, where <Ethernet

Address> is the MAC address currently programmed into the virtual NIC. The library does not
aggregate network statistics across NICs.

For information about a specific statistic, enter its name.

Get Session Information

The statistics command with parameters fetches specific statistics:

$ vmware-toolbox-cmd stat raw text session
session = 4004861987670969122
uptime = 1036293956
version = VMware ESXi 6.0.0 build-12345
provider =
uuid.bios = 56 4d 2c 53 43 56 66 8e-7c 05 fd 7e 51 1e 23 f3

Sessions change for a virtual machine with power on, suspend, revert to snapshot, vMotion,
reset, or when it experiences some type of hot-plug. Statistics might be discontinuous across a
session change. The reason for a session change, or whether session change constitutes a host
change, is not exposed to virtual machines.

session – a cryptographically strong random number indicating the current session. Expected to

contain at least 63 bits of entropy. Changes with every session.

uptime – microseconds since the last session change, as measured by the host.

version – string representation of the hypervisor version. Not expected to be parsed. A guest

OS should never change its behavior based on the hypervisor version or build number.

provider – string representing the provider. Set by the ExtraConfig

tools.guestlib.stat.provider and intended for use by vSphere providers such as vCloud

Air. Opaque contents defined by the provider.

Guest and HA Application Monitoring SDK Programming Guide

VMware by Broadcom 27

uuid.bios – the virtual machine’s SMBIOS UUID, cached at boot time. VMware maintains the

SMBIOS UUID as a component of guest licensing; migrating a VM retains the same UUID while
cloning a VM generates a different UUID. The algorithm to generate a new UUID varies from
release to release.
The vSphere API permits changing a VM’s UUID. Although vSphere prevents unintentional
duplication of UUID, it allows deliberate UUID duplication, because legitimate workflows (such
as lab environments) often require duplicated UUIDs.

Host Hardware

In the next example, only the first two values are provided by default. A virtual machine with
ExtraConfig tools.guestlib.enableHostInfo = TRUE (a non-default setting) supplies the

remaining values.

$ vmware-toolbox-cmd stat raw text host
host.cpu.processorMHz = 2399
host.cpu.coresPerPkg = 4
host.cpu.packages = 2
host.cpu.cores = 8
host.cpu.threads = 16
host.dmi.product = ProLiant ML350 G6
host.dmi.vendor = HP

host.cpu.processorMHz – nominal processor speed. Other metrics, such as vm.cpu.used
below, are normalized to this speed.

host.cpu.coresPerPkg – actual cores per socket, not including hyperthreads. Useful for

determining cache effects and other aspects of socket sharing. Information is also available with
CPUID instruction. Note that vSphere does not implement virtual hyperthreads.

host.cpu.packages – number of CPU sockets on the host (non-default).

host.cpu.cores – number of cores on the host across all sockets, not including hyperthreads

(non-default).

host.cpu.threads – number of logical CPUs on the host across all sockets, including

hyperthreads (non-default).

host.dmi.product – “product” field in the host SMBIOS data (non-default).

host.dmi.vendor – “vendor” field in the host SMBIOS data (non-default).

Host information (dmi.product and dmi.vendor) and total capacity are hidden by default,

because this information is considered sensitive and not relevant to virtual machine execution.
VMware discourages use of such information, but permits it to be made available to help with
support.

CPU and Memory Statistics

For implementation reasons, a virtual machine tracks CPU and memory resources slightly
differently. CPU resources, including NUMA, indicate virtualization overhead, shown with vm.

Guest and HA Application Monitoring SDK Programming Guide

VMware by Broadcom 28

prefix. Memory resources are broken out by guest memory, shown with guest. prefix, and by

overhead memory, with ovhd. prefix. Future implementations may add additional metrics.

This example shows various CPU and memory statistics:

$ vmware-toolbox-cmd stat raw text resources
vm.cpu.reserved = 4798
vm.cpu.limit = 11995
vm.cpu.used = 224057517
vm.cpu.contention.cpu = 65606184
vm.cpu.contention.mem = 1488848
vm.numa.local = 1837248
vm.numa.remote = 0
guest.mem.reserved = 204800
guest.mem.limit = 1536000
guest.mem.mapped = 1810144
guest.mem.consumed = 1521680
guest.mem.swapped = 3236
guest.mem.ballooned = 27104
guest.mem.swapIn = 3416
guest.mem.swapOut = 6588
ovhd.mem.swapped = 0
ovhd.mem.swapIn = 0
ovhd.mem.swapOut = 0

vm.cpu.reserved – (static) MHz of current CPU type reserved. Covers all virtual CPU plus

overheads, so for example a 2 virtual CPU machine would need 2x host.cpu.processorMHz
to be fully reserved. Overheads are insignificant except during transient conditions such as taking
a backup snapshot or during a vMotion. Default 0.

vm.cpu.limit – (static) MHz that the virtual machine will not exceed. Default –1 means unlimited.

vm.cpu.used – (cumulative) microseconds of CPU time used by this virtual machine. Equivalent

to esxtop %USED. See Comparison to esxtop for details.

vm.cpu.contention.cpu = (cumulative) CPU time the virtual machine could have run, but did

not run due to CPU contention. This metric includes time losses due to hypervisor factors,
such as overcommit. Specific sources of contention vary widely from release to release. See
Comparison to esxtop for details about calculating CPU contention.

vm.cpu.contention.mem – (cumulative) CPU time the virtual machine could have run, but did

not run due to memory contention. This metric includes losses due to swapping. Equivalent to
esxtop %SWPWT.

vm.numa.local – (instantaneous) KB of memory currently local, sum across the VM’s NUMA

nodes.

vm.numa.remote – (instantaneous) KB of memory currently remote, sum across the VM’s NUMA

nodes.

guest.mem.reserved – (static) KB of memory reserved for the guest OS. This indicates memory

that will never be ballooned or swapped. Default is 0.

Guest and HA Application Monitoring SDK Programming Guide

VMware by Broadcom 29

guest.mem.limit – (static) KB of memory the guest must operate within. Default –1 means

unlimited.

guest.mem.mapped – (instantaneous) KB of memory currently mapped into the guest; that is,

memory the guest can access with zero read latency. This metric represents memory use from a
guest perspective.

guest.mem.consumed – (instantaneous) KB of memory used to provide current mapped

memory. This might be lower than mapped due to ballooning, memory sharing, or future
optimizations. This metric represents memory use from a host perspective. The difference
between guest.mem.mapped and guest.mem.consumed is additional memory made available

due to hypervisor optimizations.

guest.mem.swapped – (instantaneous) KB of memory swapped to disk. A fully reserved virtual

machine should never see memory swapped out in steady-state usage. Transient conditions,
such as resume from memory-included snapshot, might show some swap usage.

guest.mem.ballooned – (instantaneous) KB of memory deliberately copied on write (COWed)

to zero in the guest OS, to reduce memory usage.

guest.mem.swapIn – (cumulative) KB of memory swapped in for the current session.

guest.mem.swapOut – (cumulative) KB of memory swapped out for the current session.

ovhd.mem.swapped – (instantaneous) KB of overhead memory currently swapped.

ovhd.mem.swapIn – (cumulative) KB of overhead memory swapped in for the current session.

ovhd.mem.swapOut – (cumulative) KB of overhead memory swapped out for the current session.

Expected values for some of the statistics:

vm.cpu.contention.mem – usually < 1%, anything greater indicates memory overcommit.

vm.cpu.contention.cpu – < 5% of incremental time during undercommit, < 50% of incremental

time at normal levels of overcommit (vSphere is tuned to perform best when somewhat
overcommitted).

When contention is < 5%, performance will be deterministic but the host is not fully used.

When contention is between 5% and 50%, the host is becoming fully used (maximum CPU
throughput) but individual virtual machines might see less deterministic performance.

vm.numa.local – Expected to match guest.memory.mapped. Transient conditions such as

NUMA rebalance can cause this to temporarily decrease, then return to normal as memory is
migrated.

vm.numa.remote – Expected to be approximately zero in non-overcommitted scenarios.

guest.mem.mapped – Expected to equal configured guest memory; might be smaller if virtual

machine has yet to access all its memory.

guest.mem.consumed – Expected to be approximately equal to configured guest memory; will

be smaller if host memory is overcommitted.

Guest and HA Application Monitoring SDK Programming Guide

VMware by Broadcom 30

guest.mem.swapped – Expected to be zero. Non-zero indicates non-graceful memory

overcommit.

guest.mem.ballooned – Expected to be zero. Non-zero indicates graceful memory overcommit.

ovhd.mem.swapped – Expected to be zero. Non-zero indicates memory overcommit.

Equations for CPU and memory metrics:

session uptime = vm.cpu.used + vm.cpu.contention.cpu + vm.cpu.contention.mem + CPU

idle time

configured memory size = guest.mem.mapped + guest.mem.swapped + (memory not yet

touched)

configured memory size = vm.numa.local + vm.numa.remote
(another formula for arriving at the same statistic above)

guest.mem.mapped = guest.mem.consumed + guest.mem.ballooned + (other copy-on-write

sources)

Comparison to esxtop

Individual reasons for lack of vCPU progress are available to vSphere administrators (using either
esxtop or the vSphere API) but are hidden from the guest OS to preserve isolation between the

virtual machine and the configuration of the infrastructure it runs upon. The guest OS sees only
an aggregate metric.

vm.cpu.used is equivalent to the esxtop statistic %USED for a virtual machine.

vm.cpu.contention.cpu is equivalent to

(%RDY – %MLMTD) + %MLMTD + %CSTP + %WAIT + (%RUN – %USED)

(%RDY – %MLMTD) represents time the guest OS could not run due to host CPU overutilization.
Note that %RDY includes %MLMTD, which is why it is subtracted before being added.

%MLMTD represents time the guest OS did not run due to administrator-configured resource
limits.
ESXi 6.0 and earlier did not add %MLMTD to this computation, but this is fixed in ESXi 6.5.

%CSTP represents time the guest OS could not run due to uneven vCPU progress.

%WAIT represents time the guest OS could not run due to hypervisor overheads.

(%RUN – %USED) corrects for any frequency scaling of the host CPU.

vm.cpu.contention.mem is equivalent to %SWPWT.

See https://communities.vmware.com/docs/DOC-9279 for details about esxtop.

Guest and HA Application Monitoring SDK Programming Guide

VMware by Broadcom 31

Note on nominal CPU speed and CPU metrics

The host.cpu.processorMHz metric (in the host section) reports a nominal speed, and the

virtual machine CPU metrics are normalized to the processorMHz metric. Actual processor speed

might be higher or lower depending on host power management.

A virtual machine can see vm.cpu.used exceed wall clock time due to Turbo Boost, or can

see vm.cpu.used lag wall clock time due to power saving modes used in conjunction with

idle guests. Actual processor speed is not available to the guest OS, but is expected to
be close to nominal clock speed when the guest OS is active. See http://www.vmware.com/
files/pdf/techpaper/hpm-perf-vsphere55.pdf for more information about vSphere host power
management.

Normalizing CPU metrics to nominal CPU speed allows the guest OS to avoid dependence on
host power management settings.

Note on vm.cpu.contention.cpu

Using the Extended Guest Statistics discussed in this section, you can obtain a contention ratio
by comparing contention time to actual time for a particular time interval. As contention time is
reported as a sum across VCPUs, and wall time is reported for the entire virtual machine, the wall
time must be scaled up by the number of VCPUs to normalize contention to a 0-100% range.

Contention% = 100 * (contention_T2 – contention_T1) / (VCPUs * (time_T2 – time_T1))

The vm.cpu.contention.cpu metric is similar to “stolen time” returned by

VMGuestLib_GetCpuStolenMs (see Table 2-3. Accessor Functions for Virtual Machine Data),

except “stolen time” excludes time the virtual machine did not run due to configured resource
limits. Comparing this value to esxtop requires denormalizing the contention ratio, because

esxtop reports a sum of percentages across VCPUs. So:

((%RDY – %MLMTD) + %MLMTD + %CSTP + %WAIT + (%RUN – %USED)) ~= Contention% * VCPUs

Due to sample aliasing where in-guest time samples and esxtop time samples do not occur

simultaneously, instantaneous esxtop values will not match instantaneous in-guest statistics.

Longer time samples or averaging values collected over time will produce more comparable
results.

A contention value of < 5% is normal “undercommit” operating behavior, representing minor
hypervisor overheads. A contention value > 50% is “excess overcommit” and indicates CPU
resource starvation – the workload would benefit from additional CPUs or migrating virtual
machines to different hosts. A contention value between 5% and 50% is “normal overcommit”
and is more complicated. The goal of this metric is to allow direct measurement of the
performance improvement that can be obtained by adding CPU resources.

The following figure illustrates these concepts.

Guest and HA Application Monitoring SDK Programming Guide

VMware by Broadcom 32

Figure 3-1. CPU use across virtual machines

“undercommit”
contention < 5%

“normal overcommit”
5% < contention < 50%

“excess overcommit”
contention > 50%

Effective
performance

~120%

100%

all cores + hyperthreads

all cores

linear scaling

vm.cpu.used

vm.cpu.contention.cpu

vcpus = cores + hyperthreadsvcpus = cores

waste

VMware best practices describe the available CPU capacity of an ESXi host as equal to the
number of cores (not including hyperthreads). A 16 core host with 2.0GHz processors has 16
cores * 2000 MHz/core = 32000 MHz available compute capacity. When actual usage is below

that calculated capacity, the hypervisor is considered “under committed” – the hypervisor is
scaling linearly with load applied, and is wasting capacity.

As actual usage exceeds available compute capacity, the hypervisor begins utilizing
hyperthreads for running virtual machines to keep performance degradation graceful. Maximum
aggregate utilization occurs during this “normal overcommit” (between 5% and 50% contention)
where each virtual machine sees somewhat degraded performance but overall system
throughput still increases. In this “normal overcommit” region, adding load still improves overall
efficiency, though at a declining rate. Eventually, all hyperthreads are fully used. Efficiency peaks
and starts to degrade; this “excess overcommit” (>50% contention) indicates the workload would
be more efficient if spread across more hosts for better throughput.

One specific scenario deserves special mention: the “monster VM” that attempts to give a
single VM all available compute capacity. A VM configured to match the number of host cores
(not including hyperthreads) will peak at the capacity of those cores (with < 5% contention)
but at a performance about 20% lower than an equivalent physical machine utilizing all cores
and hyperthreads. A VM configured to match the number of host threads (2x host cores) will
peak at a performance level more analogous to a physical machine, but will show about 40%
contention (the upper end of “normal overcommit”) running half the cores on hyperthreads. This
contention metric indicates the load would run better on a larger host with additional cores, so
it is technically “overcommitted” even though performance is better than a hypervisor running at
full commit. This behavior is expected when attempting to run maximally sized virtual machines.

Guest and HA Application Monitoring SDK Programming Guide

VMware by Broadcom 33

Storage Statistics

The following example shows some I/O statistics:

$ vmware-toolbox-cmd stat raw text vscsi scsi0:0
num.reads = 12605
num.writes = 1039
size.reads = 533612032
size.writes = 14279680
latency.reads = 1944173239
latency.writes = 102025122

num.reads – read commands.

num.writes – write commands.

size.reads – bytes read.

size.writes – bytes written.

latency.reads – microseconds of all read commands.

latency.writes – microseconds of all write commands.

The read IOPs over the last 10 seconds can be calculated as:

(num.reads @ TimeNow) – (num.reads @ Time10sec)

–––
TimeNow – Time10sec

The average latency of reads over the last ten seconds can be calculated as:

(latency.reads @ TimeNow) – (latency.reads @ Time10sec)

––
(num.reads @ TimeNow) – (num.reads @ Time10sec)

Network Statistics

Reservation and limit are supported on DVS (Distributed Virtual Switch) or “opaque” (NSX)
switch types only; they are not supported on the default VSS switch type. Between
reservation and limit, bandwidth is allocated on a share-based system, which is not

meaningful to expose to a guest OS.

$ vmware-toolbox-cmd stat raw text vnet 00:0c:29:1e:23:f3
num.tx = 209
size.tx = 38137
num.rx = 10920
size.rx = 1312789
reservation = 0
limit = -1

num.tx – number of packets transmitted.

size.tx – bytes transmitted.

Guest and HA Application Monitoring SDK Programming Guide

VMware by Broadcom 34

num.rx – number of packets received.

size.rx – bytes received.

reservation – guaranteed minimum bandwidth for this vNIC.

limit – maximum bandwidth allowed for this vNIC.

Guest and HA Application Monitoring SDK Programming Guide

VMware by Broadcom 35

vSphere HA Application
Monitoring 4
This chapter discusses the vSphere High Availability (HA) Application Monitoring and the
following topics:

Read the following topics next:

n About vSphere HA

n Prerequisites for HA Application Monitoring

n Using the HA Application Monitoring APIs

About vSphere HA

The vSphere High Availability (HA) feature for ESXi hosts in a cluster provides protection for a
guest OS and its applications, by restarting the virtual machine if a guest OS or application failure
occurs. The HA feature provides this reset capability using two different mechanisms:

n VM Monitoring – Guest OS heartbeats issued by the VMware Tools process.

n Application Monitoring – Heartbeats issued by a program that uses the HA Application
Monitoring SDK to communicate with the VMware Tools process and the vSphere HA agent.
This mechanism involves local monitoring by the program to avoid the overhead of sending
messages to and from vCenter Server.

The following figure depicts the monitoring and reset capability of host and virtual machine.

VMware by Broadcom 36

Figure 4-1. Heartbeat and status signals

ESX/ESXi Host

Host passes heartbeat signal and
status data between the virtual

machine and the vSphere HA agent

heartbeat status

Virtual Machine

Virtual machine infrastructure receives
heartbeat signal from application
monitoring program and passes

back status upon request

Monitoring Application or Script

Sends heartbeat signals to and
receives status upon request from

virtual machine infrastructure

Additionally in vSphere 5.5 and later, the in-guest agent can set state to indicate it needs an
immediate reset. This can be done without enabling heartbeats. The HA Application monitoring
facility can reset the guest OS when ready to do so, if the in-guest agent has not changed state
to say reset is no longer needed.

Using the HA Application Monitoring SDK, developers can write HA application monitoring
programs in the C or C++ language. The HA Application Monitoring API is available with C
language bindings only.

The application monitoring program sends an enable request to start the monitoring, possibly
followed by a heartbeat signal. The vSphere infrastructure passes the signal up from your
HA application monitoring program to the virtual machine, and then to the ESXi host. The HA
application monitoring facility will reset the virtual machine if the application monitoring program
stops sending a heartbeat signal, or requests a reset.

For more information about vSphere HA and application monitoring, see the vSphere Availability
guide in the vSphere Documentation Center.

Prerequisites for HA Application Monitoring

Before you start working with the HA Application Monitoring SDK, verify that your vSphere
application is running within a VMware cluster that has both the High Availability and VM and
Application Monitoring options enabled.

You must install VMware Tools on the virtual machines where your HA monitoring applications
are running.

Guest and HA Application Monitoring SDK Programming Guide

VMware by Broadcom 37

The vSphere Availability guide contains information about how to set up a high availability (HA)
cluster, and how to configure VM and Application Monitoring. With VMware’s New Cluster
Wizard, you can choose one of three monitoring options:

n Disabled – Neither VM Monitoring nor Application Monitoring.

n VM Monitoring Only – If you select this option, you will have the Guest OS monitoring
discussed previously (the first mechanism).

n VM and Application Monitoring – If you select this option, you will also have the ability
to employ Application Monitoring and the HA Application Monitoring SDK (the second
mechanism).

For information about Web services interfaces for HA, see the VMware vSphere
API Reference Guide, especially data objects VirtualMachineRuntimeInfo and

VirtualMachineRuntimeInfoDasProtectionState.

Using the HA Application Monitoring APIs

You can use the HA Application Monitoring SDK to create a stand-alone application monitoring
program, or to enhance an existing application or script. The purpose of your application
monitoring program determines the API call sequence and the application behavior that you
write to handle the response data.

For example, if your application monitoring program is tracking critical applications that are
running in a guest OS, your application can intentionally stop sending heartbeat signals if any
application-related process fails. The HA monitoring agent interprets the absence of heartbeats
as a failure, and resets the virtual machine.

Alternatively, instead of not sending heartbeat signals, your application monitoring program
can set the needReset flag using the VMGuestAppMonitor_PostAppState call. When the HA

monitoring agent notices this flag, it will reset the virtual machine.

Most of the calls you make using the HA Application Monitoring APIs send information to the
virtual infrastructure of the ESXi host, and the host relays the information to the HA monitoring
agent. However, the VMGuestAppMonitor_GetAppStatus call is a two-way transaction that lets

you request the virtual machine status from the HA monitoring agent.

Most HA Application Monitoring functions lack input parameters, because the calls are local. The
vSphere infrastructure passes the heartbeat and status data to and from other levels of the
cluster.

Call each function from your application monitoring program. The vSphere infrastructure (in the
virtual machine where the application monitoring program is running) passes the function data
up to the ESXi host. The local virtual machine sends all status responses to your application
monitoring program, even though they are passed down from the HA monitoring agent.

HA Application Monitoring API Functions

The following calls are available to a vSphere HA application monitoring program:

Guest and HA Application Monitoring SDK Programming Guide

VMware by Broadcom 38

Table 4-1. HA Application Monitoring API Calls

Call Name

Data
Type

Returned Description

VMGuestAppMonitor_Enable char Requests the virtual machine infrastructure to monitor the
calling application.

The virtual machine infrastructure returns a
value of VMGUESTAPPMONITORLIB_ERROR_SUCCESS, if
monitoring was enabled.

After your application monitoring program makes this call,
your program must call VMGuestAppMonitor_MarkActive()
at least once every 30 seconds or the virtual machine
infrastructure will change the virtual machine’s status to Red
or Gray.

VMGuestAppMonitor_Disable int Requests the virtual machine infrastructure to stop
monitoring the calling program.

The virtual machine infrastructure returns a value of TRUE if
monitoring was disabled.

VMGuestAppMonitor_IsEnabled int Returns the current recorded state of application
monitoring.

The virtual machine infrastructure returns a value of TRUE if
monitoring is enabled.

VMGuestAppMonitor_MarkActive char Sends a request to mark the program as active. This
function is also called the heartbeat because your program
must call it at least once every 30 seconds while your
application monitoring is enabled, or the virtual machine
infrastructure will determine that the monitoring has failed.

VMGuestAppMonitor_PostAppSta
te

int Publish the application state that the guest OS wants
delivered to vSphere HA. The application should monitor
its environment and update its state accordingly. Heartbeat
counting does not need to be enabled as a pre-condition,
so the enable() call is not necessary. Returns 0 (zero) on

success.

The single state parameter passed to this call can be

either:

n OK – The guest's application agent declared state to be
normal and no action is required.

n needReset – The guest's application agent has

requested an immediate reset. The guest can request
this at any time.

Guest and HA Application Monitoring SDK Programming Guide

VMware by Broadcom 39

Table 4-1. HA Application Monitoring API Calls (continued)

Call Name

Data
Type

Returned Description

VMGuestAppMonitor_GetAppStat
us

char Returns the current status recorded by the virtual machine
infrastructure as ‘Green’, ‘Red’, or ‘Gray’.

n Green. Virtual machine infrastructure acknowledges that
the application is being monitored.

n Red. Virtual machine infrastructure does not think the
application is being monitored. The HA monitoring
agent will initialize an asynchronous reset on the virtual
machine if the status is Red.

n Gray. Application should send
VMGuestAppMonitor_Enable again, followed by
VMGuestAppMonitor_MarkActive, because either
application monitoring failed, or the virtual machine was
vMotioned to a different location.

Use the VMGuestAppMonitor_Free function to free the
result.

If this call returns a nonerror result
that was not anticipated, it can mean
that another program in the same virtual
machine has called VMGuestAppMonitor_Disable or
VMGuestAppMonitor_Enable. If your application is
still running, call VMGuestAppMonitor_Enable again,
followed by calls to VMGuestAppMonitor_MarkActive.

VMGuestAppMonitor_Free char Returns a pointer to the memory to be freed.

Code Sample for appmon.cpp

The HA Application Monitoring SDK includes a code sample called appmon.cpp. The

sample is located in the docs/samples directory and defines the entry point for the

console application. The appmon.cpp program includes interface code that your application

monitoring program can send after receiving results from calls to VMGuestAppMonitor_Enable,
VMGuestAppMonitor_MarkActive, and VMGuestAppMonitor_Disable.

Calling the APIs from Your Application

The following steps provide a possible API sequence of calls:

Procedure

1 Include vmGuestAppMonitorLib.h in the declarations for your C program.

2 To start the monitoring, notify the virtual machine that you are going to start sending a
heartbeat signal by calling #unique_42/unique_42_Connect_42_ID-3875-000006A9.

Guest and HA Application Monitoring SDK Programming Guide

VMware by Broadcom 40

3 After you have called VMGuestAppMonitor_Enable, call #unique_42/
unique_42_Connect_42_ID-3875-000006C2 every 30 seconds or your virtual machine will
be reset.

4 Send VMGuestAppMonitor_IsEnabled to make sure the virtual machine infrastructure
received your requests correctly and has begun monitoring.

5 Periodically, call #unique_42/unique_42_Connect_42_ID-3875-000006D8 to make sure the
vSphere infrastructure is still receiving the heartbeat calls.

The status will be returned as Green, Red, or Gray. See Table 4-1. HA Application Monitoring
API Calls for a description of each status value. The figure below shows a possible coding
flow for the GetAppStatus call.

Figure 4-2. Coding flow for VMGuestAppMonitor_GetAppStatus

Does
GetAppStatus
Return a Value

of Green?

Does
GetAppStatus
Return a Value

of Red?

Continue sending
VMGuestAppMonitor_MarkActive

every 30 seconds.

Call
VMGuestAppMonitor_GetAppStatus

Yes

Does
GetAppStatus
Return a Value

of Gray?

Call VMGuestAppMonitor_Enable
and begin sending

VMGuestAppMonitor_MarkActive
again, because either the monitoring

failed or the VM was vMotioned.

Yes

Yes

No

No

No

Call VMGuestAppMonitor_Enable
and begin sending

VMGuestAppMonitor_MarkActive
again, because either the virtual

machine did not get reset, or the HA
App Monitor has not been enabled
for this cluster. In most cases, the
vSphere HA agent will reset the
virtual machine, so you will not

receive the “Red” value.

Guest and HA Application Monitoring SDK Programming Guide

VMware by Broadcom 41

6 After you call VMGuestAppMonitor_GetAppStatus, call the #unique_42/
unique_42_Connect_42_ID-3875-000006EA function to free the memory that was used to
store the status.

If your application does not free the memory, it can use a large amount of
storage very quickly because a new status is created every 30 seconds, when
VMGuestAppMonitor_MarkActive is called.

7 Call #unique_42/unique_42_Connect_42_ID-3875-000006B2 when you want the agent to
stop monitoring.

HA Application Monitoring API Error Messages

The vSphere infrastructure can return errors in Table 4-2. HA Application Monitoring Error Codes
as a result of HA Application Monitoring calls.

Table 4-2. HA Application Monitoring Error Codes

Error Message

Data
Typ
e

Cod
e Description

VMGUESTAPPMONITORLIB_ERROR_SUCCESS int 0 Call completed successfully.

VMGUESTAPPMONITORLIB_ERROR_OTHER char Unknown error.

VMGUESTAPPMONITORLIB_ERROR_NOT_RUNNING_I
N_VM

char Calling application is not running within a
virtual machine.

VMGUESTAPPMONITORLIB_ERROR_NOT_ENABLED char Monitoring is not enabled.

VMGUESTAPPMONITORLIB_ERROR_NOT_SUPPORTED char Monitoring is not supported.

Guest and HA Application Monitoring SDK Programming Guide

VMware by Broadcom 42

	Guest and HA Application Monitoring SDK Programming Guide
	Contents
	About This Book
	Installing the Development Kit
	About the SDK Contents
	Displaying vSphere Guest Library Statistics
	Using the HA Application Monitoring SDK
	Controlling the Application Monitoring Heartbeat
	Library Path or Path Environment
	Compiling the Sample Program on Linux
	Compiling Sample Programs on Windows
	Demonstrating the HA Application Monitoring API

	Security of Remote RPC

	The Guest Programming API
	Overview of the vSphere Guest API
	Supported Guest Operating Systems
	Required Library Versions
	Virtual Machine Statistics

	How to Use the vSphere Guest API
	vSphere Guest API Runtime Components
	vSphere Guest API Data Types
	vSphere Guest API Functions
	vSphere Guest API Error Codes

	Tools for Extended Guest Statistics
	Introduction to Statistics Fetch
	Prerequisites

	Guest Statistics Interfaces
	Guest SDK Library
	Command Line Interface
	Raw RPC interface

	Fetching a List of Statistics
	Metadata Fields
	Metrics Examples
	Fetch Available Statistics
	Get Session Information
	Host Hardware
	CPU and Memory Statistics
	Storage Statistics
	Network Statistics

	vSphere HA Application Monitoring
	About vSphere HA
	Prerequisites for HA Application Monitoring
	Using the HA Application Monitoring APIs
	HA Application Monitoring API Functions
	Code Sample for appmon.cpp
	Calling the APIs from Your Application
	HA Application Monitoring API Error Messages

