
vSAN SDKs Programming
Guide

VMware vSAN 7.0

You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

If you have comments about this documentation, submit your feedback to

docfeedback@vmware.com

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright © 2020 VMware, Inc. All rights reserved. Copyright and trademark information.

vSAN SDKs Programming Guide

VMware, Inc. 2

https://docs.vmware.com/
mailto:docfeedback@vmware.com
http://pubs.vmware.com/copyright-trademark.html

Contents

1 Introduction to the vSAN Management SDKs 5

2 Using the vSAN Management SDKs 6
vSAN Management SDK for Java 6

vSAN Management SDK for .NET 7

vSAN Management SDK for Python 8

vSAN Management SDK for Perl 9

vSAN Management SDK for Ruby 10

3 Setting Up a vSAN Cluster 12
Connecting to vCenter Server and Selecting a Cluster for vSAN 12

Configuring VMkernel Networking for vSAN 13

Enabling vSAN on a Cluster 14

Claiming and Managing Disks 15

Enabling Deduplication and Compression on All-Flash Clusters 17

Configuring Fault Domains 18

Assigning the vSAN License 19

4 Configuring Stretched and Two-Host Clusters 20
Deploying the vSAN Witness Appliance 20

Adding the vSAN Witness Appliance to vCenter Server 24

Configuring a vSAN Stretched Cluster or Two-Host Cluster 25

5 Upgrading the vSAN On-Disk Format 27
Determining the Current vSAN On-Disk Format 27

Performing the On-Disk Upgrade Preflight Check 29

Upgrading with Reduced Redundancy 29

6 Managing iSCSI Service 30
Enabling vSAN iSCSI Service 30

Creating iSCSI Targets and LUNs 31

Disabling iSCSI Service 31

7 Managing vSAN File Service 33
Downloading File Service OVF 34

Enabling File Service 34

Creating File Service Domain 35

Creating a File Share 36

VMware, Inc. 3

Querying File Share Information 36

Querying File Service Domain Information 36

Removing a File Share 37

Removing File Service Domain 37

Disabling File Service 38

8 Monitoring vSAN 39
Viewing vSAN Health Check Status 39

Monitoring vSAN Performance 39

Enabling the Performance Service 40

Viewing vSAN Cluster Performance 40

Viewing vSAN Host Performance 40

Viewing vSAN VM Performance 41

vSAN SDKs Programming Guide

VMware, Inc. 4

Introduction to the vSAN
Management SDKs 1
The vSAN Management SDKs bundle language bindings for accessing the vSAN Management API and
creating client applications for automating vSAN management tasks.

The vSAN Management API
The vSAN Management API is an extension of the vSphere API. Both vCenter Server® and ESXi hosts
expose the vSAN Management API. You can use the vSAN Management API to implement the client
applications that perform the following tasks:

n Configure a vSAN cluster - Configure all aspects of a vSAN cluster, such as set up VMkernel
networking, claim disks, configure fault domains, enable the deduplication and compression of all
flash clusters, and assign the vSAN license.

n Configure a vSAN stretched cluster - Deploy the vSAN Witness Appliance and configure a vSAN
stretched cluster.

n Upgrade the vSAN on-disk format.

n Track the vSAN performance.

n Monitor the vSAN health.

n Manage iSCSI Service.

n Manage vSAN File Service.

The vSAN Management SDKs
The vSAN Management SDKs are separated into five programming languages that you can use to
access the vSAN Management API with similar functionality and develop client applications for managing
vSAN clusters.

VMware, Inc. 5

Using the vSAN Management
SDKs 2
The vSAN Management SDKs are separated into five different programming languages, Java, .NET,
Python, Perl, and Ruby. Each of the five vSAN Management SDKs depends on the vSphere SDK with
similar functionality delivered for the corresponding programming language.

You can download these vSphere SDKs from https://code.vmware.com/home or from Github.

This chapter includes the following topics:

n vSAN Management SDK for Java

n vSAN Management SDK for .NET

n vSAN Management SDK for Python

n vSAN Management SDK for Perl

n vSAN Management SDK for Ruby

vSAN Management SDK for Java
The vSAN Management SDK for Java provides WSDL files, sample code, and API reference for
developing custom Java clients against the vSAN Management API. The vSAN Management SDK for
Java depends on the vSphere Web Services SDK of similar level. You use the vSphere Web Services
SDK for logging in to vCenter Server and for retrieving vCenter Server managed objects.

API Reference
The vSAN API reference documentation is included in the /docs directory. To view the API Reference,
open index.html with a Web browser.

WSDL Files and vSAN Java Bindings
The vSAN Management SDK for Java includes the vsan.wsdl and vsanService.wsdl files in the
bindings/wsdl directory. You can use the WSDL definitions to build Java bindings for accessing the
vSAN Management API. You can build Java bindings using the build.py script.

Note You must have Python 2.7.13 or later to run the build.py script.

VMware, Inc. 6

https://code.vmware.com/home

Running the Sample Applications
The vSAN Management SDK for Java includes sample applications, build and run scripts, and
dependent libraries. They are located under the samplecode directory in the SDK.

You can use the sample code to get vSAN managed objects on vCenter Server or ESXi hosts.

Before running the sample applications, make sure that you have the vSphere Web Services SDK on
your development environment, with the following directory structure:

VMware-vSphere-SDK-<version number>-build

 SDK

 vsphere-ws

Then copy the vsan-sdk-java directory at the same level as the vsphere-vs directory in the vSphere
Web Services SDK:

VMware-vSphere-SDK-<version number>-build

 SDK

 vsphere-ws

 vsan-sdk-java

Build the sample applications by running the build.py command.

Run the sample applications using the run.sh script on Linux, or the run.bat script on Windows:

./run.sh com.vmware.vsan.samples.<sample_name>

 --url https://<vCenter Server or host address>/sdk

 --username <username>

 --password <password>

To get information about the parameter usage, use -h or --help.

vSAN Management SDK for .NET
The vSAN Management SDK for .NET provides libraries, sample code, and API reference for developing
custom .NET clients against the vSAN Management API. The vSAN Management SDK for .NET depends
on the vSphere Web Services SDK of similar level. You use the vSphere Web Services SDK for logging in
to vCenter Server and for retrieving vCenter Server managed objects.

API Reference
The vSAN API reference documentation is included in the /docs directory. To view the API Reference,
open index.html with a Web browser.

WSDL Files
The vSAN Management SDK for .NET includes vsan.wsdl and vsanService.wsdl in the bindings/
wsdl directory. You can use the WSDL definitions to build C# bindings for accessing the vSAN
Management API.

vSAN SDKs Programming Guide

VMware, Inc. 7

Building the vSAN C# DLL
You must have the following components to build the vSAN C# DLL:

n csc.exe - Microsoft® Visual C# Compiler version 4.5 or later.

n sgen.exe - An XML serializer generator tool

n wsdl.exe - Web Service Description Language 4.0 for Microsoft® .NET.

n Microsoft.Web.Services3.dll

n .NET Framework 4.0

n Python 2.7.6

To build the vSAN C# DLL, run the following command:

$ python builder.py vsan_wsdl vsanservice_wsdl

This command generates the following DLL files:

n VsanhealthService.dll

n VsanhealthService.XmlSerializers.dll

Running the Sample Applications
To run the sample applications, run the following command:

.\VsanHealth.exe --username <host or vCenter Server username>

 --url https://<host or vCenter Server address>/sdk

 --hostName <host or cluster name> --ignorecert --disablesso

To view information about the parameters, use --help.

vSAN Management SDK for Python
The vSAN Management SDK for Python provides language bindings, sample code, and API reference for
developing custom Python clients against the vSAN Management API. The vSAN Management SDK for
Python depends on pyVmomi of similar release level, which is the Python SDK for the vSphere API. You
use pyVmomi for logging in to vCenter Server and for retrieving vCenter Server managed objects.

Note You can download pyVmomi from GitHub.

API Reference
The vSAN API reference documentation is included in the /docs directory. To view the API Reference,
open index.html with a Web browser.

Python Bindings
You can access the vSAN Management API by using the Python vsanmgmtObjects.py script under the
bindings directory.

vSAN SDKs Programming Guide

VMware, Inc. 8

https://github.com/vmware/pyvmomi

To use the Python bindings, place vsanmgmtObjects.py on a path where your Python applications
import.

Running the Sample Applications
The vSAN Management SDK for Python provides sample applications, which you can find under the
samplecode directory.

You can use the sample code to get vSAN managed objects on vCenter Server or ESXi hosts. The code
automatically identifies the target server type.

The vsaniscsisamples.py and vsaniscsisamples.py depend on the vsanapiutis.py, which
provides utility libraries for retrieving vSAN managed objects.

To run the sample applications, use the following commands:

python vsanapisamples.py -s <host or vCenter Server address> -u <username> -p <password>

 --cluster <cluster name>

python vsaniscsisamples.py -s <host or vCenter Server address> -u <username> -p <password>

 --cluster <cluster name>

To view information about the parameter usage, use -h or --help.

vSAN Management SDK for Perl
The vSAN Management SDK for Perl provides libraries, sample code, and API reference for developing
custom Perl clients against the vSAN Management API. The vSAN Management SDK for Perl depends
on viperl of similar release level, which is the Perl SDK for the vSphere API. You use viperl for logging in
to vCenter Server and for retrieving vCenter Server managed objects. VI Perl Toolkit, which is a client-
side framework from VMware that simplifies the programming effort associated with the VI API.

API Reference
The vSAN API reference documentation is included in the /docs directory. To view the API Reference,
open index.html with a Web browser.

Perl Bindings
You can access the vSAN Management API by using the VIM25VsanmgmtRuntime.pm and
VIM25VsanmgmtStub.pm files that are located under the bindings directory. To use the Perl bindings,
place these files on a path where Perl can find them.

Running the Sample Applications
The vSAN Management SDK for Perl SDK provides sample applications that are located under the
samplecode directory.

You can use the sample code to get vSAN managed objects on vCenter Server or ESXi hosts. The code
automatically identifies the target server type.

vSAN SDKs Programming Guide

VMware, Inc. 9

The vsanapisamples.pl depends on the VsanapiUtil.pm, which provides a utility library for retrieving
vSAN managed objects.

To test the vCenter Server side API, run the following sample:

vsanapisample.pl --url https://<host>:<port>/sdk/vimService

 --username <username> --password <mypassword> --cluster_name <cluster name>

vsanapisample.pl --url https://<host>:<port>/sdk/vimService

 --username <username> --password <mypassword> --cluster_moid <cluster manager object ID>

Use this sample to test the iSCSI target service:

vsaniscsisample.pl --url https://<host>:<port>/sdk/vimService

 --username <username> --password <mypassword> --cluster_name <cluster name>

vsaniscsisample.pl --url https://<host>:<port>/sdk/vimService

 --username <username> --password <mypassword> --cluster_moid <cluster manager object ID>

To test the ESXi side API:

vsanapisample.pl --url https://<host>:<port>/sdk

 -username <username> --password <mypassword>

To view information about the parameters, use --help.

vSAN Management SDK for Ruby
The vSAN Management SDK for Ruby provides language bindings, sample code, and API reference for
developing custom Ruby clients against the vSAN Management API. The vSAN Management SDK for
Ruby depends on RbVmomi of similar release level, which is the Ruby SDK for the vSphere API. You use
RbVmomi for logging in to vCenter Server and to retrieve vCenter Server managed objects.

Note VMware does not officially support rbVmomi, but you can download it from GitHub.

API Reference
The vSAN API reference documentation is included in the /docs directory. To view the API Reference,
open index.html with a Web browser.

Ruby Bindings
You can access the vSAN Management API by using vsanmgmt.api.rb file under the bindings
directory. Place the file on a path where Ruby can find it.

Running the Sample Applications
The vSAN Management SDK for Ruby SDK provides sample applications that are located under the
samplecode directory.

You can use the sample code to get vSAN managed objects on vCenter Server or ESXi hosts. The code
automatically identifies the target server type.

vSAN SDKs Programming Guide

VMware, Inc. 10

https://github.com/vmware/rbvmomi

The vsanapisamples.rb depends on the vsanapiutis.rb, which provides a utility library for retrieving
vSAN managed objects.

To run the Ruby sample applications, use the following commands:

ruby vsanapisamples.rb -o <host or vCenter Server address> -u <username> -p <password>

 <cluster name>

ruby vsaniscsisamples.rb -o <host or vCenter Server address> -u <username> -p <password>

 <cluster name>

Use -h or --help to view information about the parameters.

vSAN SDKs Programming Guide

VMware, Inc. 11

Setting Up a vSAN Cluster 3
By using the vSAN Management API, you can automate the configuration of a cluster for vSAN or you
can configure multiple clusters at a time. The procedure for setting up a vSAN cluster using the vSAN
Management API is similar to the procedure that you follow while using the vSphere Client.

Note All examples in this chapter are in Python language.

This chapter includes the following topics:

n Connecting to vCenter Server and Selecting a Cluster for vSAN

n Configuring VMkernel Networking for vSAN

n Enabling vSAN on a Cluster

n Claiming and Managing Disks

n Enabling Deduplication and Compression on All-Flash Clusters

n Configuring Fault Domains

n Assigning the vSAN License

Connecting to vCenter Server and Selecting a Cluster for
vSAN
Before configuring a vSAN cluster by using the vSAN Management API, you must establish a secure
connection with vCenter Server and filter the clusters on which you want to enable vSAN.

In the following example, a secure connection is established with the vCenter Server using the user name
and password authentication. Later, the getClusterInstance function is called by passing the cluster
name as an argument.

if sys.version_info[:3] > (2, 7, 8):

 context = ssl.create_default_context()

 context.check_hostname = False

 context.verify_mode = ssl.CERT_NONE

Connect to vCenter Server

si = SmartConnect(

VMware, Inc. 12

 host=args.host,

 user=args.user,

 pwd=password,

 port=int(args.port),

 sslContext=context)

Disconnect from vSAN upon exit

atexit.register(Disconnect, si)

Connect to the cluster passed as an argument

cluster = getClusterInstance(args.clusterName, si)

After establishing a secure connection with the vCenter Server and identifying the cluster, a connection is
made to that cluster. The getClusterInstance function can be reused across the client application to
connect to the clusters on which you want to configure vSAN.

def getClusterInstance(clusterName, serviceInstance):

 content = serviceInstance.RetrieveContent()

 searchIndex = content.searchIndex

 datacenters = content.rootFolder.childEntity

Look for the cluster in each datacenter attached to vCenter Server

for datacenter in datacenters:

 cluster = searchIndex.FindChild(datacenter.hostFolder, clusterName)

 if cluster is not None:

 return Cluster

 else:

 return None

Configuring VMkernel Networking for vSAN
You must configure every host that is part of the vSAN cluster with a VMkernel adapter that is tagged for
vSAN.

In the vSphere Client, you configure VMkernel networking for vSAN on each host by using a standard
switch. You can also do this by using a vSphere Distributed Switch for easier and consistent
configuration. In both cases, prior to configuring the cluster for vSAN, you must configure the hosts with
VMkernel network adapters for vSAN.

vSAN SDKs Programming Guide

VMware, Inc. 13

When you configure vSAN on a cluster, the Configure vSAN wizard validates the networking configuration
on the hosts. If some of the hosts does not have the VMkernel network adapter enabled for vSAN, then
you must suspend the configuration of the cluster, and set up the host networking for the vSAN traffic.

In your client applications, you can set up preselected VMkernel network adapters for the vSAN traffic.

Update configuration spec for VMkernel networking

configInfo = vim.vsan.host.ConfigInfo(

 networkInfo=vim.vsan.host.ConfigInfo.NetworkInfo(port=[

 vim.vsan.host.ConfigInfo.NetworkInfo.PortConfig(device=args.vmknic)

]))

Enumerate the selected VMkernel adapter for each host and add it to the list of tasks

for hosts in hosts:

 print 'Enable vSAN traffic on host {} with {}'.format(

 hostProps[host]['name'], args.vmknic)

task = hostProps[host]['configManager.vsanSystem'].UpdateVsan_Task(configInfo)

tasks.append(task)

Execute the tasks

vsanapiutils.WaitForTasks(tasks, si)

Enabling vSAN on a Cluster
After filtering the clusters that you want to configure for vSAN, the next step is to enable vSAN on these
clusters.

In the vSphere Client, you use the Configure vSAN wizard to configure individual clusters for vSAN. You
must use the Configure vSAN wizard to configure each cluster.

vSAN SDKs Programming Guide

VMware, Inc. 14

To enable vSAN in your vSAN Management API client applications, build an object of type
VimVsanReconfigSpec by passing a VsanClusterConfigInfo parameter with the property enable set to
true.

Build vsanReconfigSpec step by step. It takes effect only after calling the VsanClusterReconfig

method

clusterConfig = vim.VsanClusterConfigInfo(enabled=True)

vsanReconfigSpec = vim.VimVsanReconfigSpec(

 modify=True, vsanClusterConfig=clusterConfig)

Claiming and Managing Disks
You can add disks to the vSAN cluster during the initial configuration, or you can add them later on.

When claiming disks by using the Configure vSAN wizard in the vSphere Client, you can only see the
disks that are eligible, meaning they do not have existing vSAN partitions. vCenter Server filters out the
non-eligible disks and they are not exposed for adding to the vSAN cluster.

For both hybrid and all-flash vSAN clusters, you assign the devices for cache and capacity tiers.

vSAN SDKs Programming Guide

VMware, Inc. 15

While claiming disks using the client applications, do the following:

Query for ineligible disks, and if required, clear the existing vSAN partitions on them.

Enumerate the ineligible disks

for host in hosts:

 disks = [

 result.disk

 for result in hostProps[host]['configManager.vsanSystem']

 .QueryDisksForVsan() if result.state == 'ineligible'

]

 print 'Find ineligible disks {} in host {}'.format(

 [disk.displayName for disk in disks], hostProps[host]['name'])

For each disk, interactively ask admin whether to individually wipe ineligible disks or not

for disk in disks:

 if yes('Do you want to wipe disk {}?\nPlease Always check the partition table and the data'

 ' stored on those disks before doing any wipe! (yes/no)?'.format(

 disk.displayName)):

 hostProps[host]['configManager.storageSystem'].UpdateDiskPartitions(

 disk.deviceName, vim.HostDiskPartitionSpec())

If the vSAN cluster is all-flash configuration, then segregate the devices as small and large. If the vSAN
cluster is hybrid configuration then segregate the devices as flash and HDD.

diskmap = {host: {'cache': [], 'capacity': []} for host in hosts}

cacheDisks = []

capacityDisks = []

For all flash architectures

if isallFlash:

 for host in hosts:

 ssds = [result.disk for result in hostProps[host]

 ['configManager.vsanSystem'].QueryDisksForVsan() if

 result.state == 'eligible' and result.disk.ssd]

smallerSize = min([disk.capacity.block * disk.capacity.blockSize for disk in ssds])

for ssd in ssds:

 size = ssd.capacity.block * ssd.capacity.blockSize

if size == smallerSize:

 diskmap[host]['cache'].append(ssd)

cacheDisks.append((ssd.displayName, sizeof_fmt(size), hostProps[host]['name']))

else:

diskmap[host]['capacity'].append(ssd)

capacityDisks.append((ssd.displayName, sizeof_fmt(size), hostProps[host]['name']))

else:

For hybrid architectures

for host in hosts:

 disks = [result.disk for result in hostProps[host]

 ['configManager.vsanSystem'].QueryDisksForVsan() if

 result.state == 'eligible']

ssds = [disk for disk in disks if disk.ssd]

hdds = [disk for disk in disks if not disk.ssd]

vSAN SDKs Programming Guide

VMware, Inc. 16

for disk in ssds:

 diskmap[host]['cache'].append(disk)

size = disk.capacity.block * disk.capacity.blockSize

cacheDisks.append((disk.displayName, sizeof_fmt(size), hostProps[host]['name']))

for disk in hdds:

 diskmap[host]['capacity'].append(disk)

size = disk.capacity.block * disk.capacity.blockSize

capacityDisks.append((disk.displayName, sizeof_fmt(size), hostProps[host]['name']))

for host, disks in diskmap.iteritems():

 if disks['cache'] and disks['capacity']:

 dm = vim.VimVsanHostDiskMappingCreationSpec(

 cacheDisks=disks['cache'], capacityDisks=disks['capacity'],

 creationType='allFlash' if isallFlash else 'hybrid',

 host=host)

Execute the task

task = vsanVcDiskManagementSystem.InitializeDiskMappings(dm)

tasks.append(task)

Enabling Deduplication and Compression on All-Flash
Clusters
It is often advantageous to enable Deduplication and Compression on All-Flash vSAN deployments.
Reduced capacity utilization can often make All-Flash vSAN more cost effective than Hybrid vSAN
deployments.

If you are using the Configure vSAN wizard, the Enable Deduplication and Compression option can be
selected while creating the vSAN cluster. However, after creating vSAN cluster, the process of enabling or
disabling the Deduplication and Compression option using the Configure vSAN wizard can be time
consuming. In some scenarios it might lead to reduced availability.

However, using the vSAN Management API, the process of enabling the Deduplication and Compression
is simple.

In the vSphere Client, you enable deduplication and compression in the Configure vSAN wizard, before
you claim any disks for the cluster.

vSAN SDKs Programming Guide

VMware, Inc. 17

To enable deduplication and compression with the vSAN Management API, you set the
dataEfficiencyConfig property of the vsanReconfigSpec object with an object of type
VsanDataEfficiencyConfig.

if isallFlash:

 print 'Enable deduplication and compression for VSAN'

vsanReconfigSpec.dataEfficiencyConfig = vim.VsanDataEfficiencyConfig(

 compressionEnabled=args.enabledc, dedupEnabled=args.enabledc)

Enable/disable deduplication and compression

task = vsanClusterSystem.VsanClusterReconfig(cluster, vsanReconfigSpec)

vsanapiutils.WaitForTasks([task], si)

Configuring Fault Domains
If your vSAN cluster spans across multiple racks or blade server chassis, you can logically group the
hosts in fault domains to protect them against rack or chassis failure. You can separate the vSAN hosts in
the same manner that they are physically separated.

In the vSphere Client, you can group hosts in fault domains during the initial configuration of the vSAN
cluster or later.

Following is an example of how to configure fault domains by using the vSAN Management API:

Perform these tasks if fault domains are passed as an argument

if args.faultdomains:

 print 'Add fault domains in vsan'

faultDomains = []

args.faultdomains is a string like f1:host1,host2 f2:host3,host4

for faultdomain in args.faultdomains.split():

 fname, hostnames = faultdomain.split(':')

domainSpec = vim.cluster.VsanFaultDomainSpec(

vSAN SDKs Programming Guide

VMware, Inc. 18

 name=fname,

 hosts=[

 host for host in hosts

 if hostProps[host]['name'] in hostnames.split(',')

])

faultDomains.append(domainSpec)

Apply domain specification to vSAN Config

vsanReconfigSpec.faultDomainsSpec = vim.VimClusterVsanFaultDomainsConfigSpec(

 faultDomains=faultDomains)

Configure fault domains

task = vsanClusterSystem.VsanClusterReconfig(cluster, vsanReconfigSpec)

vsanapiutils.WaitForTasks([task], si)

Assigning the vSAN License
You must assign the vSAN license to the vSAN cluster before the 60-day evaluation period expires.

By using the vSAN Management API, you can automate the license assignment on the vSAN clusters in
your environment. This way, you can handle license upgrades and renewal more efficiently.

if args.vsanlicense:

 print 'Assign VSAN license'

lm = si.content.licenseManager

lam = lm.licenseAssignmentManager

lam.UpdateAssignedLicense(entity=cluster._moId, licenseKey=args.vsanlicense)

vSAN SDKs Programming Guide

VMware, Inc. 19

Configuring Stretched and Two-
Host Clusters 4
You can automate the configuration of stretched and two-host vSAN clusters using the vSAN
Management API.

Note All examples in this chapter are in Python language.

This chapter includes the following topics:

n Deploying the vSAN Witness Appliance

n Adding the vSAN Witness Appliance to vCenter Server

n Configuring a vSAN Stretched Cluster or Two-Host Cluster

Deploying the vSAN Witness Appliance
Deploying the vSAN Witness Appliance is an alternative to using a physical host to serve as the witness
host in your stretched cluster configuration. Unlike a physical host, the appliance does not require a
dedicated license or physical disks to store vSAN data.

You can download the vSAN Witness Appliance from the VMware website as a standard OVA file. Then
you can install it by using the vSphere Client just like any other OVA file.

You can also upload the vSAN Witness Appliance OVA file through a script. Start with uploading each of
the consisting OVA files separately in vCenter Server. First, create a function that uploads a single file in
vCenter Server.

def uploadFile(srcURL, dstURL, create, lease, minProgress, progressIncrement, vmName=None, log=None):

 '''

 This function will upload vmdk file to vc by using http protocol

 @param srcURL: source url

 @param dstURL: destnate url

 @param create: http request method

 @param lease: HttpNfcLease object

 @param minProgress: file upload progress initial value

 @param progressIncrement: file upload progress update value

 @param vmName: imported virtual machine name

 @param log: log object @return:

VMware, Inc. 20

 '''

srcData = urllib2.urlopen(srcURL)

length = int(srcData.headers['content-length'])

ssl._create_default_https_context = ssl._create_unverified_context

protocol, hostPort, reqStr = splitURL(dstURL)

dstHttpConn = createHttpConn(protocol, hostPort)

reqType = create and 'PUT' or 'POST'

dstHttpConn.putrequest(reqType, reqStr)

dstHttpConn.putheader('Content-Length', length)

dstHttpConn.endheaders()

bufSize = 1048768 # 1 MB

total = 0

progress = minProgress

if log:

If args.log is available, then log to it

log = log.info

else

log = sys.stdout.write

log("%s: %s: Start: srcURL=%s dstURL=%s\n" % (time.asctime(time.localtime()), vmName, srcURL,

 dstURL))

log("%s: %s: progress=%d total=%d length=%d\n" % (time.asctime(time.localtime()), vmName, progress,

 total, length))

while True:

 data = srcData.read(bufSize)

if lease.state != vim.HttpNfcLease.State.ready:

 break

dstHttpConn.send(data)

total = total + len(data)

progress = (int)(total * (progressIncrement) / length)

progress += minProgress

lease.Progress(progress)

if len(data) == 0:

 break

log("%s: %s: Finished: srcURL=%s dstURL=%s\n" % (time.asctime(time.localtime()), vmName, srcURL,

 dstURL))

log("%s: %s: progress=%d total=%d length=%d\n" % \ (time.asctime(time.localtime()), vmName,

 progress, total, length))

log("%s: %s: Lease State: %s\n" % \

 (time.asctime(time.localtime()), vmName, lease.state))

if lease.state == vim.HttpNfcLease.State.error:

 raise lease.error

dstHttpConn.getresponse()

return progress

Once you have a function for deploying a single file, create another one for uploading multiple files.

def uploadFiles(fileItems, lease, ovfURL, vmName=None, log=None):

 '''

 Upload witness vm's vmdk files to vCenter Server by using the HTTP protocol

 @param fileItems: the source vmdks read from ovf file

 @param lease: Represents a lease on a VM or a vApp, which can be used to import or export disks

for

 the entity

 @param ovfURL: witness vApp ovf url

 @param vmName: The name of witness vm @param log: @return:

vSAN SDKs Programming Guide

VMware, Inc. 21

 '''

uploadUrlMap = {}

for kv in lease.info.deviceUrl:

 uploadUrlMap[kv.importKey] = (kv.key, kv.url)

progress = 5

increment = (int)(90 / len(fileItems))

for file in fileItems:

 ovfDevId = file.deviceId

srcDiskURL = urlparse.urljoin(ovfURL, file.path)

(viDevId, url) = uploadUrlMap[ovfDevId]

if lease.state == vim.HttpNfcLease.State.error:

 raise lease.error

elif lease.state != vim.HttpNfcLease.State.ready:

 raise Exception("%s: file upload aborted, lease state=%s" % (vmName,

 lease.state))

progress = uploadFile(srcDiskURL, url, file.create, lease, progress, increment,

 vmName, log)

The next step is to define and implement a function that configures the networking settings, the supplied
password as a vApp option, and the placement of the appliance on a specific host or resource pool.

The DeployWitnessOVF function, defined in the following example, configures the networking settings,
the supplied password as a vApp option, and the placement of the appliance on a specific host or
resource pool. This function parses only the contents of the OVF and not the entire vSAN Witness
Appliance OVA. Password is the only additional argument required by the vSAN Witness Appliance. You
must extract the contents of the witness OVA file to a folder containing the OVF and other required files.
The OVA file is a .tar archive, that you can extract by using a wide variety of tools.

"""

Deploying witness VM to vCenter.

The import process consists of the following steps:

1>Creating the VMs and/or vApps that make up the entity.

2>Uploading the virtual disk contents.

@param ovfURL: ovf source url

@param si: Managed Object ServiceInstance

@param host: HostSystem on which the VM located

@param vmName: VM name

@param dsRef: Datastore on which the VM located

@param vmFolder: Folder to which the VM belong to

@param vmPassword: Password for the VM

@param network: Managed Object Network of the VM

@return: Witness VM entity

"""

def DeployWitnessOVF(ovfURL, si, host, vmName, dsRef, vmFolder, vmPassword=None, network=None):

 rp = host.parent.resourcePool

 params = vim.OvfManager.CreateImportSpecParams()

 params.entityName = vmName

 params.hostSystem = host

 params.diskProvisioning = 'thin'

vSAN SDKs Programming Guide

VMware, Inc. 22

 f = urllib.urlopen(ovfURL)

 ovfData = f.read()

 import xml.etree.ElementTree as ET

 params.networkMapping = []

 if vmPassword:

 params.propertyMapping = [vim.KeyValue(key='vsan.witness.root.passwd', value=vmPassword)]

 ovf_tree = ET.fromstring(ovfData)

 for nwt in ovf_tree.findall('NetworkSection/Network'):

 nm = vim.OvfManager.NetworkMapping()

 nm.name = nwt.attrib['name']

 if network != None:

 nm.network = network

 else:

 nm.network = host.parent.network[0]

 params.networkMapping.append(nm)

 res = si.content.ovfManager.CreateImportSpec(ovfDescriptor=ovfData,

 resourcePool=rp, datastore=dsRef, cisp=params)

 if isinstance(res, vim.MethodFault):

 raise res

 if res.error and len(res.error) & gt; 0:

 raise res.error[0]

 if not res.importSpec:

 raise Exception("CreateImportSpec raised no errors, but importSpec is not set")

 lease = rp.ImportVApp(spec=res.importSpec, folder=vmFolder, host=host)

 while lease.state == vim.HttpNfcLease.State.initializing:

 time.sleep(1)

 if lease.state == vim.HttpNfcLease.State.error:

 raise lease.error

 # Upload files

 uploadUrlMap = {}

 for kv in lease.info.deviceUrl:

 uploadUrlMap[kv.importKey] = (kv.key, kv.url)

 progress = 5

 increment = (int)(90 / len(res.fileItem))

 for file in res.fileItem:

 ovfDevId = file.deviceId

 srcDiskURL = urlparse.urljoin(ovfURL, file.path)

 (viDevId, url) = uploadUrlMap[ovfDevId]

 if lease.state == vim.HttpNfcLease.State.error:

 raise lease.error

 elif lease.state != vim.HttpNfcLease.State.ready:

 raise Exception("%s: file upload aborted, lease state=%s" % \

 (vmName, lease.state))

 srcData = urllib2.urlopen(srcDiskURL)

 length = int(srcData.headers['content-length'])

 result = urlparse.urlparse(url)

vSAN SDKs Programming Guide

VMware, Inc. 23

 protocol, hostPort, reqStr = result.scheme, result.netloc, result.path

 if protocol == 'https':

 dstHttpConn = httplib.HTTPSConnection(hostPort)

 else:

 dstHttpConn = httplib.HTTPConnection(hostPort)

 reqType = file.create and 'PUT' or 'POST'

 dstHttpConn.putrequest(reqType, reqStr)

 dstHttpConn.putheader('Content-Length', length)

 dstHttpConn.endheaders()

 bufSize = 1048768 # 1 MB

 total = 0

 currProgress = progress

 while True:

 data = srcData.read(bufSize)

 if lease.state != vim.HttpNfcLease.State.ready:

 break

 dstHttpConn.send(data)

 total = total + len(data)

 currProgress += (int)(total * (increment) / length)

 progress += minProgress

 lease.Progress(progress)

 if len(data) == 0:

 break

 if lease.state == vim.HttpNfcLease.State.error:

 raise lease.error

 dstHttpConn.getresponse()

 progress = currProgress

 lease.Complete()

 return lease.info.entity

Adding the vSAN Witness Appliance to vCenter Server
After you deploy the vSAN Witness Appliance, you must add it to vCenter Server to serve as the witness
host in your stretched cluster or two-host configuration. The witness host must not be part of the vSAN
cluster.

You can use the vSphere Client to add the vSAN Witness Appliance as a host to vCenter Server.

To add the host programmatically, first create a function that adds the vSAN Witness Appliance as a host
in vCenter Server.

def AddHost(host, user='root', pwd=None, dcRef=None, si=None, sslThumbprint=None, port=443):

 ''' Add a host to a data center Returns a host system '''

cnxSpec = vim.HostConnectSpec(

 force=True, hostName=host, port=port, userName=user, password=pwd, vmFolder=dcRef.vmFolder)

if sslThumbprint:

 cnxSpec.sslThumbprint = sslThumbprint

hostParent = dcRef.hostFolder

vSAN SDKs Programming Guide

VMware, Inc. 24

try:

 task = hostParent.AddStandaloneHost(addConnected=True, spec=cnxSpec)

vsanapiutils.WaitForTasks([task], si)

return getHostSystem(host, dcRef, si)

except vim.SSLVerifyFault as e:

By catching this exception, you do not need to input the host's thumb print of the SSL certificate

The following script does this automatically.

cnxSpec.sslThumbprint = e.thumbprint

task = hostParent.AddStandaloneHost(addConnected=True, spec=cnxSpec)

vsanapiutils.WaitForTasks([task], si)

return getHostSystem(host, dcRef, si)

except vim.DuplicateName as e:

raise Exception("AddHost: ESX host %s has already been added to VC." % host)

Then add the host by calling the function.

print 'Add witness host {} to datacenter {}'.format(witnessVm.name,

 args.witnessdc)

dcRef = searchIndex.FindChild(

 entity=si.content.rootFolder, name=args.witnessdc)

witnessHost = AddHost(

 witnessVm.guest.ipAddress, pwd=args.vmpassword, dcRef=dcRef, si=si)

Configuring a vSAN Stretched Cluster or Two-Host
Cluster
You can configure a vSAN stretched cluster or two-host cluster.

Following is the process for configuring an existing vSAN cluster as a stretched cluster:

1 Select the hosts that participate in the preferred fault domain.

2 Select the hosts that participate in the secondary fault domain.

3 Select the witness host and configure cache and capacity disks for it.

4 Finish the configuration.

To configure a stretched cluster or two-host setup by using the vSAN Management API, enumerate the
hosts in the cluster, select which hosts to add to each fault domain, and then save this data to an array.

preferedFd = args.preferdomain

secondaryFd = args.seconddomain

firstFdHosts = []

secondFdHosts = []

for host in hosts:

 if yes('Add host {} to preferred fault domain ? (yes/no)'.format(hostProps[host]['name'])):

 firstFdHosts.append(host)

for host in set(hosts) - set(firstFdHosts):

 if yes('Add host {} to second fault domain ? (yes/no)'.format(hostProps[host]['name'])):

 secondFdHosts.append(host)

faultDomainConfig = vim.VimClusterVSANStretchedClusterFaultDomainConfig(

vSAN SDKs Programming Guide

VMware, Inc. 25

 firstFdHosts=firstFdHosts,

 firstFdName=preferedFd,

 secondFdHosts=secondFdHosts,

 secondFdName=secondaryFd)

The next step is to define the eligible disks for the witness host.

disks = [result.disk for result in witnessHost.configManager.vsanSystem.QueryDisksForVsan() if

 result.state == 'eligible']

diskMapping = None

if disks:

 ssds = [disk for disk in disks if disk.ssd]

nonSsds = [disk for disk in disks if not disk.ssd]

host with hybrid disks

if len(ssds) > 0 and len(nonSsds) > 0:

 diskMapping = vim.VsanHostDiskMapping(

 ssd=ssds[0],

 nonSsd=nonSsds

)

host with all-flash disks,choose the ssd with smaller capacity for cache layer.

if len(ssds) > 0 and len(nonSsds) == 0:

 smallerSize = min([disk.capacity.block * disk.capacity.blockSize for disk in ssds])

smallSsds = []

biggerSsds = []

for ssd in ssds:

 size = ssd.capacity.block * ssd.capacity.blockSize

if size == smallerSize:

 smallSsds.append(ssd)

biggerSsds.append(ssd)

diskMapping = vim.VsanHostDiskMapping(

 ssd=smallSsds[0]

nonSsd = biggerSsds

)

After adding the host to the fault domain arrays and defining the eligible disks for the witness host,
configure the stretched cluster.

print 'start to create stretched cluster'

task = vsanScSystem.VSANVcConvertToStretchedCluster(

 cluster=cluster,

 faultDomainConfig=faultDomainConfig,

 witnessHost=witnessHost, preferredFd=preferedFd,

 diskMapping=diskMapping)

vsanapiutils.WaitForTasks([task], si)

vSAN SDKs Programming Guide

VMware, Inc. 26

Upgrading the vSAN On-Disk
Format 5
After upgrading the vSphere environment to a newer version, upgrade the vSAN on-disk format. The
latest on-disk format provides the complete feature set of vSAN.

Depending on the size of disk groups, the disk format upgrade can be time-consuming because the disk
groups are upgraded one at a time. For each disk group upgrade, all data from each device is evacuated
and the disk group is removed from the vSAN cluster. The disk group is then added back to vSAN with
the new on-disk format. For more details, see Administering VMware vSAN at http://docs.vmware.com.

Note All examples in this chapter are in Python language.

This chapter includes the following topics:

n Determining the Current vSAN On-Disk Format

n Performing the On-Disk Upgrade Preflight Check

n Upgrading with Reduced Redundancy

Determining the Current vSAN On-Disk Format
Before upgrading the vSAN on-disk format, determine the current version of the on-disk format of your
vSAN cluster. You must also determine the latest supported format for the ESXi build that the vSAN
cluster is running.

In the vSphere Client, you can determine the current on-disk format under Configure > vSAN > Disk
Management on the vSAN cluster.

VMware, Inc. 27

http://docs.vmware.com

To determine the vSAN on-disk format programmatically, first connect to the cluster:

cluster = getClusterInstance(args.clusterName, si)

vcMos = vsanapiutils.GetVsanVcMos(si._stub, context=context)

vsanUpgradeSystem = vcMos['vsan-upgrade-systemex']

supportedVersion = vsanUpgradeSystem.RetrieveSupportedVsanFormatVersion(cluster)

print 'The highest vSAN disk format version that given cluster supports is

{}

'.format(supportedVersion)

Next, create a function that compares the current on-disk format version to the latest supported version:

def hasOlderVersionDisks(hostDiskMappings, supportedVersion):

 for hostDiskMappings in hostDiskMappings:

 for diskMapping in hostDiskMappings:

 if diskMapping.ssd.vsanDiskInfo.formatVersion < supportedVersion:

 return True

for disk in diskMapping.nonSsd:

 if disk.vsanDiskInfo.formatVersion < supportedVersion:

 return True

return False

Finally, gather each of the disk group member devices into diskMappings, and then pass them into the
hasOlderVersionDisks function to determine if an upgrade is necessary or not:

vsanSystems = CollectMultiple(si.content, cluster.host,

 ['configManager.vsanSystem']).values()

vsanClusterSystem = vcMos['vsan-cluster-config-system']

diskMappings = CollectMultiple(

 si.content,

 [vsanSystem['configManager.vsanSystem'] for vsanSystem in vsanSystems],

 ['config.storageInfo.diskMapping']).values()

diskMappings = [

vSAN SDKs Programming Guide

VMware, Inc. 28

 diskMapping['config.storageInfo.diskMapping']

 for diskMapping in diskMappings

]

needsUpgrade = hasOlderVersionDisks(diskMappings, supportedVersion)

Performing the On-Disk Upgrade Preflight Check
When you upgrade the vSAN on-disk format using the vSphere Client, a preflight check is performed.
Similarly, when you upgrade the on-disk format programmatically, you must perform the preflight check
using the following script:

print 'Perform VSAN upgrade preflight check'

upgradeSpec = vim.VsanDiskFormatConversionSpec(

 dataEfficiencyConfig=vim.VsanDataEfficiencyConfig(

 compressionEnabled=args.enabledc, deduplicationEnabled=args.enabledc))

If many problems exist with the pre-flight check, you must resolve them before you upgrade. You can list
the reported problems so that they can be addressed.

issues = vsanUpgradeSystem.PerformVsanUpgradePreflightCheckEx(cluster, spec=upgradeSpec).issues

if issues:

 print 'Please fix the issues before upgrade VSAN'

for issue in issues:

 print issue.msg

return

Upgrading with Reduced Redundancy
vSAN on-disk format upgrades require the existing VM storage policies to be satisfied during the upgrade
process. For example, in a three node cluster, a Failure To Tolerate =1 policy requires three nodes.
Bringing a node offline to perform the upgrade can create reduced redundancy.

By default, the upgrade process does not permit reduced redundancy. Attempts to perform an on-disk
format upgrade without sufficient spare resources fail. In cases where the vSAN cluster has insufficient
resources to satisfy a VM storage policy, such as a three node cluster with FTT=1 using mirroring, you
must set a reduced redundancy flag. You can use the Ruby vSphere Remote Console (RVC) to set the
reduced redundancy flag.

You can also set the reduced redundancy flag programmatically. You can set the flag when you initiate the
upgrade using the following script:

print 'call PerformVsanUpgradeEx to upgrade disk versions'

task = vsanUpgradeSystem.PerformVsanUpgradeEx(

 cluster=cluster,

 performObjectUpgrade=args.objupgrade,

 allowReducedRedundancy=args.reduceredundancy)

vSAN SDKs Programming Guide

VMware, Inc. 29

Managing iSCSI Service 6
vSAN iSCSI target service enables hosts and physical workloads that reside outside the vSAN cluster to
access the vSAN datastore.

This service enables an iSCSI initiator on a remote host to transport block-level data to an iSCSI target on
a storage device in the vSAN cluster. vSAN 6.7 and later releases support Windows Server Failover
Clustering (WSFC), so WSFC nodes can access vSAN iSCSI targets.

After configuring the vSAN iSCSI target service, you can discover the vSAN iSCSI targets from a remote
host. To discover vSAN iSCSI targets, use the IP address of any host in the vSAN cluster, and the TCP
port of the iSCSI target.

Note All examples in this chapter are in Python language.

This chapter includes the following topics:

n Enabling vSAN iSCSI Service

n Creating iSCSI Targets and LUNs

n Disabling iSCSI Service

Enabling vSAN iSCSI Service
To enable iSCSI target service using the vSphere Client, navigate to vSAN cluster and then click the
Configure tab. Under vSAN, select the Enable vSAN iSCSI target service check box.

Here is an example of how to enable iSCSI target service using the vSAN Management API. This
example is based on the code in the vsaniscsisamples.py sample file located under the samplecode
directory.

Enable iSCSI service using the vSAN Cluster Reconfiguration API on vCenter, and

The config port is set to 3260 by default. However, this can be customized.

def EnableIscsi(vsanStoragePolicy, si, context, apiVersion, vcMos, cluster):

 defaultVsanConfigSpec = vim.cluster.VsanIscsiTargetServiceDefaultConfigSpec(

 networkInterface="vmk0",

 port=2300)

 vitEnableSpec = vim.cluster.VsanIscsiTargetServiceSpec(

 homeObjectStoragePolicy=vsanStoragePolicy,

 defaultConfig=defaultVsanConfigSpec,

 enabled=True)

 vccs = vcMos['vsan-cluster-config-system']

VMware, Inc. 30

 clusterReconfigSpec = vim.vsan.ReconfigSpec(iscsiSpec=vitEnableSpec)

 vitEnableVsanTask = vccs.ReconfigureEx(cluster, clusterReconfigSpec)

 vitEnableVcTask = vsanapiutils.ConvertVsanTaskToVcTask(

 vitEnableVsanTask, si._stub)

 vsanapiutils.WaitForTasks([vitEnableVcTask], si)

 print('Enable vSAN iSCSI service task finished with status: %s' %

 vitEnableVcTask.info.state)

Creating iSCSI Targets and LUNs
To create an iSCSI target and its associated LUN using the vSphere Client, navigate to vSAN cluster and
then click the Configure tab. Under vSAN, click iSCSI Targets and then click the Add a new iSCSI
target icon.

Here is an example of how to create iSCSI targets and LUNs using the vSAN Management API. This
example is based on the code in the vsaniscsisamples.py sample file located under the samplecode
directory.

Creating vSAN iSCSI targets and an associated LUN of 1GB size.

def CreateIscsiTargetAndLun(cluster, si):

 targetAlias = "sampleTarget"

 targetSpec = vim.cluster.VsanIscsiTargetSpec(

 alias=targetAlias,

 iqn='iqn.2015-08.com.vmware:vit.target1')

 vsanTask = vits.AddIscsiTarget(cluster, targetSpec)

 vcTask = vsanapiutils.ConvertVsanTaskToVcTask(vsanTask, si._stub)

 vsanapiutils.WaitForTasks([vcTask], si)

 print('Create vSAN iSCSI target task finished with status: %s' %

 vcTask.info.state)

 lunSize = 1 * 1024 * 1024 * 1024 # 1GB

 lunSpec = vim.cluster.VsanIscsiLUNSpec(

 lunId=0,

 lunSize=lunSize,

 storagePolicy=vsanStoragePolicy)

 vsanTask = vits.AddIscsiLUN(cluster, targetAlias, lunSpec)

 vcTask = vsanapiutils.ConvertVsanTaskToVcTask(vsanTask, si._stub)

 vsanapiutils.WaitForTasks([vcTask], si)

 print('Create vSAN iSCSI LUN task finished with status: %s' %

 cTask.info.state)

Disabling iSCSI Service
To disable iSCSI target service using the vSphere Client, navigate to vSAN cluster and then click the
Configure tab. Under vSAN, deselect the Enable vSAN iSCSI target service check box.

vSAN SDKs Programming Guide

VMware, Inc. 31

Here is an example of how to disable iSCSI target service using the vSAN Management API. This
example is based on the code in the vsaniscsisamples.py sample file located under the samplecode
directory.

Disable iSCSI service through vSAN iSCSI API on vCenter.

def DisableIscsi(vitDisableSpec, si, context, apiVersion, vcMos):

 vitDisableSpec = vim.cluster.VsanIscsiTargetServiceSpec(enabled=False)

 clusterReconfigSpec = vim.vsan.ReconfigSpec(iscsiSpec=vitDisableSpec)

 vccs = vcMos['vsan-cluster-config-system']

 vitDisableVsanTask = vccs.ReconfigureEx(cluster, clusterReconfigSpec)

 vitDisableVcTask = vsanapiutils.ConvertVsanTaskToVcTask(

 vitDisableVsanTask, si._stub)

 vsanapiutils.WaitForTasks([vitDisableVcTask], si)

 print('Disable vSAN iSCSI service task finished with status: %s' %

 vitDisableVcTask.info.state)

vSAN SDKs Programming Guide

VMware, Inc. 32

Managing vSAN File Service 7
vSAN File Service is a layer that sits on top of vSAN to provide file shares. It currently supports NFSv3
and NFSv4.1 file shares. vSAN File Service comprises of vSAN Distributed File System (vDFS) which
provides the underlying scalable file system by aggregating vSAN objects, a Storage Services Platform
which provides resilient file server end points and a control plane for deployment, management, and
monitoring. File shares are integrated into the existing vSAN Storage Policy Based Management, and on
a per-share basis. vSAN file service brings in capability to host NFS shares directly on the vSAN cluster.

When you configure vSAN file service, vSAN creates a single VDFS distributed filesystem for the cluster
which will be used internally for management purposes. A file service VM (FSVM) is placed on each host.
The FSVMs manage file shares in the vSAN datastore. Each FSVM contains an NFS file server.

A static IP address pool should be provided as an input while enabling file service workflow. One of the IP
addresses is designated as the primary IP address. The primary IP address can be used for accessing all
the shares in the file services cluster with the help of NFSv4 referrals. An NFS server is started for every
IP address provided in the IP pool. An NFS share is exported by only one NFS server. However, the NFS
shares are evenly distributed across all the NFS servers. To provide computing resources that help
manage access requests, the number of IP addresses must be equal to the number of hosts in the vSAN
cluster.

This chapter includes the following topics:

n Downloading File Service OVF

n Enabling File Service

n Creating File Service Domain

n Creating a File Share

n Querying File Share Information

n Querying File Service Domain Information

n Removing a File Share

n Removing File Service Domain

n Disabling File Service

VMware, Inc. 33

Downloading File Service OVF
You can download the OVF using the vSphere Client during the vSAN File Service configuration process.
You can also download the OVF file while upgrading the vSAN File Service using the vSphere Client.

Here is an example of how to download the compatible OVF from the VMware server using the vSAN
Management API. This example is based on the code in the vsanfssamples.py sample file located under
the Python sample code directory.

Download compatible OVF from VMware server

 #Find OVF download url

 print("Finding OVF download url ...")

 ovfUrl = vcfs.FindOvfDownloadUrl(cluster)

 if not ovfUrl:

 print("Failed to find the OVF download url.")

 return -1

 print("Found OVF download url: %s" % ovfUrl)

 # Download FSVM OVF files to vCenter

 print("Downloading ovf files from %s to vCenter ..." % ovfUrl)

 vsanTask = vcfs.DownloadFileServiceOvf(downloadUrl=ovfUrl)

 vcTask = vsanapiutils.ConvertVsanTaskToVcTask(vsanTask, si._stub)

 vsanapiutils.WaitForTasks([vcTask], si)

 if vcTask.info.state != 'success':

 print("Failed to download ovf files with error: %s"

 % vcTask.infor.error)

 return -1

 print("Downloaded ovf files to vCenter successfully")

Note You can also use the API DownloadFileServiceOvf() directly with a specific URL that points to
the .ovf file on your own HTTP server. You should have all the following files under the same folder with
the .ovf file:

n VMware-vSAN-File-Services-Appliance-x.x.x.x-x_OVF10.mf

n VMware-vSAN-File-Services-Appliance-x.x.x.x-x-x_OVF10.cert

n VMware-vSAN-File-Services-Appliance-x.x.x.x-x-x-system.vmdk

n VMware-vSAN-File-Services-Appliance-x.x.x.x-x-cloud-components.vmdk

n VMware-vSAN-File-Services-Appliance-x.x.x.x-x-log.vmdk

n VMware-vSAN-File-Services-Appliance-x.x.x.x-x_OVF10.ovf

Enabling File Service
You can enable vSAN File Service using the vSphere Client. Navigate to the vSAN cluster and click
Configure > vSAN > Services. On the File Service row, click Enable.

vSAN SDKs Programming Guide

VMware, Inc. 34

Here is an example of how to enable vSAN File Service using the vSAN Management API. This example
is based on the code in the vsanfssamples.py sample file located under the Python sample code
directory.

Enable file service

 print("Enabling the file service")

 network = cluster.host[0].network[0]

 fileServiceConfig = vim.vsan.FileServiceConfig(

 enabled=True,

 network=network,

 domains=[],

)

 clusterSpec = vim.vsan.ReconfigSpec(fileServiceConfig=fileServiceConfig)

 vsanTask = vccs.ReconfigureEx(cluster, clusterSpec)

 vcTask = vsanapiutils.ConvertVsanTaskToVcTask(vsanTask, si._stub)

 vsanapiutils.WaitForTasks([vcTask], si)

 if vcTask.info.state != 'success':

 print("Failed to enable file service with error: %s"

 % vcTask.info.error)

 return -1

 print("Enabled file service successfully")

Creating File Service Domain
You can create file service domain using the vSphere Client during the vSAN File Service configuration
process. To begin the configuration process, navigate to the vSAN cluster and click Configure > vSAN >
Services. On the File Service row, click Enable. Follow the wizard to configure the vSAN File Service
including creating the file service domain.

Here is an example of how to create file service domain using the vSAN Management API. This example
is based on the code in the vsanfssamples.py sample file located under the Python sample code
directory.

Create file service domain

 fsDomainConfig = getFileServiceDomainConfig()

 domainName = fsDomainConfig.name

 print("Creating file service domain")

 vsanTask = vcfs.CreateFileServiceDomain(fsDomainConfig, cluster)

 vcTask = vsanapiutils.ConvertVsanTaskToVcTask(vsanTask, si._stub)

 vsanapiutils.WaitForTasks([vcTask], si)

 if vcTask.info.state != 'success':

 print("Failed to create file service domain with error: %s"

 % vcTask.info.error)

 return -1

 print("Created file service domain %s successfully"

 % domainName)

vSAN SDKs Programming Guide

VMware, Inc. 35

Creating a File Share
You can create a file share using the vSphere Client. Navigate to the vSAN cluster and then click
Configure > vSAN > File Service Shares > Add.

vSAN File Service does not support using these file shares as NFS datastores on ESXi.

Here is an example of how to create file shares using the vSAN Management API. This example is based
on the code in the vsanfssamples.py sample file located under the Python sample code directory.

Create a file share

 fileShareConfig = getFileShareConfig(si._stub, context, domainName)

 if not fileShareConfig:

 print("Failed to get file share config")

 return -1

 fileShareName = fileShareConfig.name

 print("Creating a file share: %s" % fileShareName)

 vsanTask = vcfs.CreateFileShare(fileShareConfig, cluster)

 vcTask = vsanapiutils.ConvertVsanTaskToVcTask(vsanTask, si._stub)

 vsanapiutils.WaitForTasks([vcTask], si)

 if vcTask.info.state != 'success':

 print("Failed to create a file share with error: %s"

 % vcTask.info.error)

 return -1

 print("Created file share %s successfully" % fileShareName)

Querying File Share Information
You can query the file share information using the vSAN Management API.

Here is an example based on the code in the vsanfssamples.py sample file located under the Python
sample code directory.

 # Query file share information

 print("Query file share information: %s" % fileShareName)

 fileShareQuerySpec = vim.vsan.FileShareQuerySpec()

 fileShareQuerySpec.domainName = domainName

 fileShareQuerySpec.names = [fileShareName]

 QueryResult = vcfs.QueryFileShares(fileShareQuerySpec, cluster)

Querying File Service Domain Information
You can query the file service domain information using the vSAN Management API.

Here is an example based on the code in the vsanfssamples.py sample file located under the Python
sample code directory.

Query file service domain information

 fsDomainQuerySpec = vim.vsan.FileServiceDomainQuerySpec()

 result = vcfs.QueryFileServiceDomains(fsDomainQuerySpec, cluster)

vSAN SDKs Programming Guide

VMware, Inc. 36

Removing a File Share
You can remove a file share using the vSphere Client. Navigate to the vSAN cluster and then click
Configure > vSAN > File Service Shares. Select the file share that you want to remove and then click
DELETE.

Here is an example of how to remove a file share using the vSAN Management API. This example is
based on the code in the vsanfssamples.py sample file located under the Python sample code directory.

Remove a file share

 print("Removing file share: %s" % fileShareName)

 fileShareQuerySpec = vim.vsan.FileShareQuerySpec()

 fileShareQuerySpec.domainName = domainName

 fileShareQuerySpec.names = [fileShareName]

 QueryResult = vcfs.QueryFileShares(fileShareQuerySpec, cluster)

 result = QueryResult.fileShares

 vsanTask = vcfs.RemoveFileShare(result[0].uuid, cluster)

 vcTask = vsanapiutils.ConvertVsanTaskToVcTask(vsanTask, si._stub)

 vsanapiutils.WaitForTasks([vcTask], si)

 if vcTask.info.state != 'success':

 print("Failed to remove a file share with error: %s"

 % vcTask.info.error)

 return -1

 print("Removed file share %s successfully"

 % result[0].config.name)

Removing File Service Domain
You can remove the file service domain using the vSphere Client by removing all the file shares and then
disabling the vSAN File Service.

Here is an example of how to remove a file service domain using the vSAN Management API. This
example is based on the code in the vsanfssamples.py sample file located under the Python sample code
directory.

 # Remove file service domain

 fsDomainQuerySpec = vim.vsan.FileServiceDomainQuerySpec()

 result = vcfs.QueryFileServiceDomains(fsDomainQuerySpec, cluster)

 print("Removing file service domain: %s" % result[0].config.name)

 vsanTask = vcfs.RemoveFileServiceDomain(result[0].uuid, cluster)

 vcTask = vsanapiutils.ConvertVsanTaskToVcTask(vsanTask, si._stub)

 vsanapiutils.WaitForTasks([vcTask], si)

 if vcTask.info.state != 'success':

 print("Failed to remove file service domain with error: %s"

 % vcTask.info.error)

 return -1

 print("Removed file service domain %s successfully"

 % result[0].config.name)

vSAN SDKs Programming Guide

VMware, Inc. 37

Disabling File Service
You can disable vSAN File Service using the vSphere Client. Navigate to the vSAN cluster and click
Configure > vSAN > Services. On the File Service row, click Disable.

Here is an example of how to disable vSAN File Service using the vSAN Management API. This example
is based on the code in the vsanfssamples.py sample file located under the Python sample code
directory.

 # Disable file service

 print("Disabling file service")

 fileServiceConfig = vim.vsan.FileServiceConfig(enabled=False)

 clusterSpec = vim.vsan.ReconfigSpec(fileServiceConfig=fileServiceConfig)

 vsanTask = vccs.ReconfigureEx(cluster, clusterSpec)

 vcTask = vsanapiutils.ConvertVsanTaskToVcTask(vsanTask, si._stub)

 vsanapiutils.WaitForTasks([vcTask], si)

 if vcTask.info.state != 'success':

 print("Failed to disable file service with error: %s"

 % vcTask.info.error)

 return -1

 print("Disabled file service successfully")

vSAN SDKs Programming Guide

VMware, Inc. 38

Monitoring vSAN 8
You can obtain statistical data about various aspects of vSAN performance, as generated and maintained
by the vSAN performance service of the cluster. You can also view vSAN cluster health information.

Note All examples in this chapter are in Python language.

This chapter includes the following topics:

n Viewing vSAN Health Check Status

n Monitoring vSAN Performance

Viewing vSAN Health Check Status
To view the vSAN health using the vSphere Client, navigate to the vSAN cluster, click the Monitor tab,
and then click vSAN. Select Health to review the vSAN health check categories.

Here is an example of how to the vSAN health using the vSAN Management API.

Caching vSAN cluster health summary at vCenter.

def GetClusterHealthSummary(cluster, vcMos):

 fetchFromCache = True

 vhs = vcMos['vsan-cluster-health-system']

 healthSummary = vhs.QueryClusterHealthSummary(

 cluster=cluster, includeObjUuids=True, fetchFromCache=fetchFromCache)

 clusterStatus = healthSummary.clusterStatus

 return clusterStatus

Monitoring vSAN Performance
You can use vSAN the performance service to monitor the performance of your vSAN cluster, and
investigate potential problems.

The performance service collects and analyzes performance statistics and displays the data. You can use
the performance charts to manage your workload and determine the root cause of problems.

VMware, Inc. 39

Enabling the Performance Service
The performance service is disabled by default upon the creation of the vSAN cluster. You can enable the
performance service after you configure the vSAN cluster to monitor the performance of the cluster, the
participating hosts, disks, and VMs.

In the vSphere Client, you can enable the performance service from Health and Performance settings on
the cluster.

To enable the vSAN performance service using the vSphere Client, navigate to the vSAN cluster, click the
Monitor tab, and then click vSAN. Click Performance and then click Enable.

Following is an example of how to enable the performance service by using the vSAN Management API:

print 'Enable perf service on this cluster'

Apply the Performance Service to the VSAN config

vsanPerfSystem = vcMos['vsan-performance-manager']

Apply the config update

task = vsanPerfSystem.CreateStatsObjectTask(cluster)

vsanapiutils.WaitForTasks([task], si)

Viewing vSAN Cluster Performance
To view the vSAN cluster performance, using the vSphere Client, navigate to the vSAN cluster, click the
Monitor tab, and then click Performance. Select vSAN - Virtual Machine Consumption with a time
range for your query.

Here is an example of how to view the vSAN cluster performance using the vSAN Management API.

Get vSAN cluster performance

def getClusterPerformance(cluster, vsanPerfSystem):

 spec = vim.cluster.VsanPerfQuerySpec()

 spec.entityRefId = "cluster-domclient:5287a00e-e90d-dbdc-1909-bf952fdaad3a"

 endTime = datetime.datetime.utcnow()

 startTime = endTime - datetime.timedelta(hours=1)

 spec.startTime = startTime

 spec.endTime = endTime

 result = vsanPerfSystem.VsanPerfQueryPerf(querySpecs=[spec], cluster=clusterMoID)

 return result

Viewing vSAN Host Performance
To view the vSAN host performance, using the vSphere Client, navigate to the vSAN cluster and select a
host. Click the Monitor tab and then click Performance. Select vSAN - Virtual Machine Consumption
with a time range for your query.

The sample code for getting vSAN host performance is similar to the sample code for getting vSAN
cluster performance above, except for the following:

n Instead of spec.entityRefId, specify host-domclient.

n In place of cluster-domclient, specify host-UUID.

vSAN SDKs Programming Guide

VMware, Inc. 40

Viewing vSAN VM Performance
To view the vSAN VM performance, using the vSphere Client, navigate to the vSAN cluster and select a
VM. Click the Monitor tab, and then click Performance. Select vSAN - Virtual Machine Consumption
with a time range for your query. Now, select vSAN - Virtual Disk with a time range for your query.

The sample code for getting vSAN VM performance is similar to the sample code for getting vSAN cluster
performance above, except for the following:

n Instead of spec.entityRefId, specify virtual-machine.

n In place of cluster-domclient, specify VM-UUID.

vSAN SDKs Programming Guide

VMware, Inc. 41

	vSAN SDKs Programming Guide
	Contents
	Introduction to the vSAN Management SDKs
	Using the vSAN Management SDKs
	vSAN Management SDK for Java
	vSAN Management SDK for .NET
	vSAN Management SDK for Python
	vSAN Management SDK for Perl
	vSAN Management SDK for Ruby

	Setting Up a vSAN Cluster
	Connecting to vCenter Server and Selecting a Cluster for vSAN
	Configuring VMkernel Networking for vSAN
	Enabling vSAN on a Cluster
	Claiming and Managing Disks
	Enabling Deduplication and Compression on All-Flash Clusters
	Configuring Fault Domains
	Assigning the vSAN License

	Configuring Stretched and Two-Host Clusters
	Deploying the vSAN Witness Appliance
	Adding the vSAN Witness Appliance to vCenter Server
	Configuring a vSAN Stretched Cluster or Two-Host Cluster

	Upgrading the vSAN On-Disk Format
	Determining the Current vSAN On-Disk Format
	Performing the On-Disk Upgrade Preflight Check
	Upgrading with Reduced Redundancy

	Managing iSCSI Service
	Enabling vSAN iSCSI Service
	Creating iSCSI Targets and LUNs
	Disabling iSCSI Service

	Managing vSAN File Service
	Downloading File Service OVF
	Enabling File Service
	Creating File Service Domain
	Creating a File Share
	Querying File Share Information
	Querying File Service Domain Information
	Removing a File Share
	Removing File Service Domain
	Disabling File Service

	Monitoring vSAN
	Viewing vSAN Health Check Status
	Monitoring vSAN Performance
	Enabling the Performance Service
	Viewing vSAN Cluster Performance
	Viewing vSAN Host Performance
	Viewing vSAN VM Performance

