
vSphere Web Services
SDK Programming Guide

02 APR 2020
VMware vSphere 7.0
VMware ESXi 7.0
vCenter Server 7.0

You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

If you have comments about this documentation, submit your feedback to

docfeedback@vmware.com

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright © 2011-2020 VMware, Inc. All rights reserved. Copyright and trademark information.

vSphere Web Services SDK Programming Guide

VMware, Inc. 2

https://docs.vmware.com/
mailto:docfeedback@vmware.com
http://pubs.vmware.com/copyright-trademark.html

Contents

About This Book 13

1 About the vSphere Web Services SDK 15
vSphere Web Services SDK 15

SDK Developer Setup for the Web Services SDK 16

SDK Samples for the Web Services SDK 16

UML Diagrams Used in the Web Services SDK Programming Guide 16

2 vSphere Web Services API Programming Model 18
vSphere Client-Server Architecture 18

Web Services API as a Web Service 19

WSDL Files and the Client-Side Proxy Interface 19

Network Access to the vSphere Web Service 20

Language-Specific Classes and Methods 21

Mapping XML Data Types to Java and C# Data Types 22

Access to Managed Objects 22

Access to vSphere Server Data 23

Obtaining Information from a Server 23

Working with Data Structures 24

Accessing Property Values 24

Nested Properties and Property Paths in Composite Data Structures 25

xsd:anyType Arrays 25

Indexed Array and Key-Based Array Properties 28

Unset Optional Properties 28

Escape Character in Name and Path Properties 29

3 Client Applications for the Web Services API 30
vCenter Server Connections 30

Establishing a Single Sign-On Session with a vCenter Server 31

LoginByToken to vCenter Server By Using C# 31

vCenter Server Single Sign On Session Using C# 31

Persistent vCenter Server Sessions 32

Sample Code 32

Using LoginByToken in C# 32

LoginByToken to vCenter Server By Using Java 37

vCenter Server Single Sign-On Session Using Java 38

HTTP and SOAP Header Handlers in Java 38

Creating the HTTP Connection in Java 40

VMware, Inc. 3

Using LoginByToken in Java 41

Establishing a Session with Username and Password Credentials 43

Overview of a Java Sample Application for the Web Services SDK 44

Build a Simple vSphere Client Application for the Web Services SDK 44

Java Client Example for the Web Services SDK 45

Web Server Session Token 48

Accessing the vSphere Web Services HTTP Endpoint with JAX-WS 48

Accessing the vSphere Server from a Web Services Client 50

Closing the Connection from a Web Services Client 51

Using the Java Samples as Reference 52

Multiple Versions of the vSphere API 53

Java and C# Sample Applications in the Web Services SDK 54

Java Samples in the Web Services SDK 54

C# Samples in the Web Services SDK 54

4 Datacenter Inventory 56
Inventory Overview for the Web Services SDK 56

Inventory Hierarchies and ServiceInstance 56

Folders in the Hierarchy 57

ESXi Inventory Hierarchy 58

Accessing Inventory Objects 58

Creating Inventory Objects 59

Privileges Required for Inventory Management 59

Privileges 60

Permissions 60

Managed and Standalone ESXi Hosts 61

5 Property Collector 63
Introduction to the PropertyCollector 63

Data Retrieval 64

Inventory Traversal and Object Selection 64

vSphere Data Objects for Property Collection 64

vSphere Methods for Property Collection 65

Retrieve Properties with the PropertyCollector 66

Simple Property Collector Program in Java for Web Services SDK 68

Inventory Traversal 73

TraversalSpec Traversal 73

Traverse the Inventory By Using the Property Collector 75

Inventory Traversal Example in Java 76

SelectionSpec Traversal 81

Client Data Synchronization (WaitForUpdatesEx) 87

vSphere Web Services SDK Programming Guide

VMware, Inc. 4

Property Filters 87

WaitForUpdatesEx 88

Server Data Transmission 89

PropertyCollector Performance 90

SearchIndex 90

6 Authentication and Authorization 91
Objects for Authentication and Authorization Management 91

Authentication and Authorization for ESXi and vCenter Server 92

ESXi User Model 93

vCenter Server User Model 94

vSphere Security Model 94

Setting Up Users, Groups, and Permissions 96

Obtaining User and Group Information from UserDirectory 96

RetrieveUserGroups Method 97

Managing ESXi Users with HostLocalAccountManager 97

Methods Available for Local Account Management 98

Create a Local User Account on an ESXi System 98

Managing Roles and Permissions with AuthorizationManager 98

Using Roles to Consolidate Sets of Privileges 100

Modifying Sample Roles to Create New Roles 101

Granting Privileges Through Permissions 101

Authenticating Users Through SessionManager 103

Using VMware Single Sign On for vCenter Server Sessions 104

Using the Credential Store for Automated Login 104

Credential Store Libraries 105

Credential Store Methods 105

Credential Store Backing File 106

Credential Store Samples 107

Specifying Roles and Users with the Credential Store 107

Managing Licenses with LicenseManager 108

7 Hosts 109
Host Management Objects 109

Retrieving Host Information 110

Configuring and Reconfiguring Hosts 111

Managing the Host Lifecycle 111

Reboot and Shutdown 111

Using Standby Mode 111

Disconnecting and Reconnecting Hosts 112

Querying and Changing the Host Time 112

vSphere Web Services SDK Programming Guide

VMware, Inc. 5

Querying Virtual Machine Memory Overhead 113

8 Storage 114
Storage Management Objects 114

Introduction to Storage 115

How Virtual Machines Access Storage 116

Datastores 117

Choosing the Storage API to Use 118

Managed Objects for Working with Storage 119

Configuring Disk Partitions 119

Multipath Management 120

Configuring iSCSI Storage 120

Configure the VMkernel To Support Software iSCSI 121

Configure iSCSI Initiators 122

Creating and Managing Datastores 123

Accessing Datastores 124

Creating and Modifying a VMFS Datastore 124

Removing and Updating Datastores 126

Managing VMFS Datastores with HostStorageSystem 126

Managing VMFS Volume Copies (Resignaturing) 127

Resignaturing Volumes with ResignatureUnresolvedVmfsVolume_Task 128

Managing Diagnostic Partitions 128

Retrieving Diagnostic Partition Information 129

Create a Diagnostic Partition 129

Sample Code Reference 130

9 vSphere Networks 131
Virtual Switches 131

Port Groups 131

Virtual Machine Network Interfaces 132

VMkernel Network Interfaces 132

Physical Network Adapter (pnic) 133

Using a Distributed Virtual Switch 133

Distributed Virtual Switch Configuration 134

Backup, Rollback, and Query Operations 135

VMware Standard Virtual Switch 136

Configuring a Standard Virtual Switch 136

vNetwork Standard Switch Environment 137

Setting Up Networking with vSS 137

Defining the Host Network Policies 140

NIC Teaming 140

vSphere Web Services SDK Programming Guide

VMware, Inc. 6

Setting Up IPv6 Networking 141

Adding Networking Services 142

Sample Code Reference 143

10 Virtual Machine Configuration 145
VirtualMachine Management Objects and Methods 145

Creating Virtual Machines and Virtual Machine Templates 146

Creating a Virtual Machine Using VirtualMachineConfigSpec 146

Creating Virtual Machine Templates 148

Cloning a Virtual Machine 148

Converting a Template to a Virtual Machine 149

Accessing Information About a Virtual Machine 149

Configuring a Virtual Machine 150

Name and Location 151

Hardware Version 152

Boot Options 152

Operating System 152

CPU and Memory Information 153

Networks 156

Fibre Channel NPIV Settings 157

File Locations 157

Adding Devices to Virtual Machines 157

Performing Virtual Machine Power Operations 159

Registering and Unregistering Virtual Machines 160

Customizing the Guest Operating System 161

Installing VMware Tools 162

Upgrading a Virtual Machine 162

11 Virtual Machine Management 163
Virtual Machine Migration 163

Cold Migration 164

Migration with vMotion 164

Using Storage vMotion 164

Snapshots 165

Creating a Snapshot 165

Reverting to a Snapshot 166

Deleting a Snapshot 166

Linked Virtual Machines 166

Linked Virtual Machines and Disk Backings 166

Creating a Linked Virtual Machine 167

Instant Clone Virtual Machines 169

vSphere Web Services SDK Programming Guide

VMware, Inc. 7

Removing Snapshots and Deleting Linked Virtual Machines 174

Relocating a Virtual Machine in a Linked Virtual Machine Group 175

Promoting a Virtual Machine's Disk 175

Performing Advanced Manipulation of Delta Disks 176

12 Virtual Machine Guest Operations 178
Authenticating with the Guest Operating System 178

Running Guest OS Operations 178

Guest Operating System Customization 181

Guest Network Customization for Stopped Virtual Machines 182

Guest Network Customization for Instant Clone Virtual Machines 183

Installing the Guest Customization Engine 184

Disconnecting Virtual NICs 185

Customizing Guest Network Settings for Running Virtual Machines 185

Reconnecting Virtual NICs in a Running Virtual Machine 187

Restarting the Guest Network After Customization 187

Recovering from Guest Network Customization Errors 187

Application-Dependent Customization 188

Resetting the Network Stack in a Running Virtual Machine 188

Resetting the Network Stack in a Linux Virtual Machine 188

Resetting the Network Stack in a Windows Virtual Machine 188

13 Virtual Machine Encryption APIs 191
How Virtual Machine Encryption Protects a Datacenter 191

What Keys are Used 191

What Is Encrypted 192

What Is Not Encrypted 192

Who Can Perform Cryptographic Operations 193

How Can I Perform Cryptographic Operations 193

vSphere Virtual Machine Encryption Components 193

Key Management Server 194

vCenter Server 194

ESXi Hosts 195

Encryption Process Flow 195

Prerequisites and Required Privileges for Encryption Tasks 196

Cryptography Privileges and Roles 196

Host Encryption Mode 196

Encrypted vSphere vMotion 197

API Methods for vSphere Virtual Machine Encryption 197

vSphere API Methods for KMS Management 197

API Methods to Prepare an ESXi Host 198

vSphere Web Services SDK Programming Guide

VMware, Inc. 8

vSphere API Methods for Cryptographic Operations 199

SPBM API Methods for Encryption 200

Workflows for vSphere Virtual Machine Encryption 200

Set Up the Key Management Server Cluster 200

Create an Encryption Storage Policy 203

Create an Encrypted Virtual Machine 206

Clone an Encrypted Virtual Machine 207

Encrypt an Existing Virtual Machine or Disk 207

Decrypt an Encrypted Virtual Machine or Disk 208

Encrypt Using Different Keys 209

Recrypting Encrypted Virtual Machines 210

Query Crypto Key In-Use Status 211

Encrypted vSphere vMotion 211

Virtual Disk Manager 212

Best Practices 212

14 Virtual Applications 214
About Virtual Applications 214

Management Overview 215

Direct and Linked Children 215

OVF Packages 216

Creating a VirtualApp 216

Managing VirtualApp Children 217

Exporting a Virtual Application 217

VirtualApp and OvfManager Methods 220

VirtualApp Data Structures 220

OvfManager Data Structures 221

Example of Generating an OVF Package 222

Importing an OVF Package 224

Virtual Application Life Cycle 225

Powering a Virtual Application On or Off 225

Unregistering a Virtual Application 225

Suspending a Virtual Application 226

Destroying a Virtual Application 226

15 Resource Management 227
Resource Management Objects 227

Introduction to Resource Management 228

Resource Allocation 228

Resource Pool Hierarchies 228

Cluster Overview 229

vSphere Web Services SDK Programming Guide

VMware, Inc. 9

Creating and Configuring Resource Pools 229

Configuring Reservation and Limit for Resource Pools 230

Configuring Priority Shares for Resource Pools 233

Deleting Child Resource Pools 243

Moving Resource Pools or Virtual Machines Into a Resource Pool 243

Introduction to vSphere Clusters 244

VMware DRS 244

VMware HA 244

VMware HCI 245

Creating and Configuring Clusters 245

Creating a Cluster 246

Adding a Host to a Cluster 247

Reconfiguring a Cluster 247

Managing DRS Clusters 248

Managing HA Clusters 248

Primary and Secondary Hosts 248

Failure Detection and Host Network Isolation 249

Using VMware HA and DRS Together 249

16 Tasks and Scheduled Tasks 251
Creating Tasks 251

Session Persistence 252

Cancelling a Task 252

Using TaskInfo to Determine Task Status 252

Monitoring TaskInfo Properties 253

Accessing and Manipulating Multiple Tasks 254

Gathering Data with a ViewManager Object 255

Gathering Data with a TaskManager Interface 264

Understanding the ScheduledTaskManager Interface 266

Scheduling Tasks 267

Cancelling a Scheduled Task 271

Using a TaskHistoryCollector 271

Managing the HistoryCollector 272

Sample Code Reference 272

17 Events and Alarms 274
Event and Alarm Management Objects 274

Understanding Events 275

Managing Events with EventManager 275

Event Data Objects 276

Formatting Event Message Content 277

vSphere Web Services SDK Programming Guide

VMware, Inc. 10

Creating Custom Events 277

Using an EventHistoryCollector 279

Creating an EventHistoryCollector Filter 280

Managing the HistoryCollector 280

Using Alarms 280

Obtaining a List of Alarms 281

Creating an Alarm 281

Defining Alarms Using the AlarmSpec Data Object 282

Specifying Alarm Trigger Conditions with AlarmExpression 283

Specifying Alarm Actions 284

Deleting or Disabling an Alarm 285

Sample Code Reference 285

18 vSphere Performance 287
vSphere Performance Data Collection 287

PerformanceManager Objects and Methods 290

Retrieving vSphere Performance Data 291

Performance Counter Example (QueryPerf) 292

Large-Scale Performance Data Retrieval 303

Using the QueryPerf Method as a Raw Data Feed 303

Comparison of Query Methods 304

Retrieving Summary Performance Data 304

Performance Counter Metadata 305

PerfCounterInfo 305

Performance Intervals 306

ESXi Server Performance Intervals 306

vCenter Server Performance Intervals 307

vSphere Performance and Data Storage 307

Modifying Historical Intervals 308

Modifying Performance Counter Collection Levels 308

Sample Code Reference 309

19 Diagnostics and Troubleshooting 311
Troubleshooting Best Practices 311

Overview of Configuration Files and Log Files 312

ESXi Log File 313

Virtual Machine Log Files 313

vCenter Server Log Files 314

Modifying the Log Level to Obtain Detailed Information 315

Setting the Log Level on ESXi Systems 315

Generating Logs 316

vSphere Web Services SDK Programming Guide

VMware, Inc. 11

Setting the Log Level on vCenter Server Systems 316

Using DiagnosticManager 316

Using the MOB to Explore the DiagnosticManager 318

Generating Diagnostic Bundles 319

Export Diagnostic Data By Using the vSphere Client 319

20 Managed Object Browser 320
Using the MOB to Explore the Object Model 320

Accessing the MOB 320

Using the MOB to Navigate the VMware Infrastructure Object Model 321

Using the MOB to Invoke Methods 322

Passing Primitive Datatypes to Method 322

Passing Arrays of Primitives to Methods 322

Passing Complex Structures to Methods 323

Using the MOB Along With the API Reference 326

21 HTTP Access to vSphere Server Files 328
Introduction to HTTP Access 328

URL Syntax for HTTP Access 329

Datastore Access (/folder) 329

Host File Access (/host) 330

Update Package Access (/tmp) 331

Privilege Requirements for HTTP Access 331

22 Sample Program Overview 332
Java Sample Programs (JAXWS Bindings) 332

C# Sample Programs 336

vSphere Web Services SDK Programming Guide

VMware, Inc. 12

About This Book

The vSphere Web Services SDK Programming Guide provides information about developing applications
using the VMware® vSphere Web Services SDK 6.7.

VMware provides different APIs and SDKs for various applications and goals. The vSphere Web Services
SDK targets developers who create client applications for managing VMware® vSphere components
available on VMware ESXi and VMware vCenter Server systems.

To view the current version of this book as well as all VMware API and SDK documentation, go to http://
www.vmware.com/support/pubs/sdk_pubs.html.

Revision History
This book is revised with each release of the product or when necessary. A revised version can contain
minor or major changes. The following table summarizes the significant changes in each version of this
book.

Table 1-1. Revision History

Revision Date Description

02APR2020 vSphere 7.0

Added scalable shares feature. Reworked and expanded fixed shares and other resource anagement material.

Added Virtual Machine Guest Operations chapter, including guest customization for instant clone virtual
machines.

20AUG2019 vSphere 6.7 Update 3

Bug fixes. Added section on crypto key query for VM encryption.

16OCT2018 vSphere 6.7 Update 1

Added section on Hyperconverged Infrastructure (HCI) clusters.

17APR2018 vSphere 6.7 - GA

Added Instant Clone material to VM Management chapter.

Minor updates elsewhere.

12APR2017 Removed appendix with list of permissions. Was not maintained.

15NOV2016 vSphere 6.5 - GA

Added chapter about vSphere virtual machine encryption.

Removed description of deprecated CIM Storage Management API.

Updated information about session cookie management.

04SEP2015 Updated information about migrating VMs with vMotion across data centers.

12MAR2015 vSphere 6.0 - Rewrote “Exporting a Virtual Application” section in Virtual Applications chapter.

VMware, Inc. 13

http://www.vmware.com/support/pubs/sdk_pubs.html
http://www.vmware.com/support/pubs/sdk_pubs.html

Table 1-1. Revision History (continued)

Revision Date Description

19SEP2013 vSphere 5.5 – Added a C# example of using LoginByToken; clarified limitation for HA clusters.

10SEP2012 vSphere 5.1 – Added information about using the SessionManager.LoginByToken method; added information
about distributed virtual switches.

24AUG2011 vSphere 5.0 - Revised performance manager chapter. Added information about: unset properties, using vCenter
to access host data, and using the QueryConfigOption to add devices; emphasized ListView instead of
TaskManager; clarified limits and limitations of Linked Virtual Machines; updated samples in chapters 3,5,14,
and 16; replaced information about Axis bindings with JAX-WS; and updated paths to samples supplied with
SDK.

13JUL2010 Restructured manual and added chapters about host, storage, and networking. Revised property collector
chapter and added appendix about HTTP access.

07MAY2009 vSphere Web Services SDK 4.0 Programming Guide.

Intended Audience
This book is intended for anyone who needs to develop applications using the vSphere Web Services
SDK. Developers typically create client applications using Java or C# (in the Microsoft .NET environment)
targeting VMware vSphere. An understanding of Web Services technology and some programming
background in one of the stub languages (C# or Java) is required.

VMware Technical Publications Glossary
VMware Technical Publications provides a glossary of terms that might be unfamiliar to you. For
definitions of terms as they are used in VMware technical documentation go to http://www.vmware.com/
support/pubs.

Document Feedback
VMware welcomes your suggestions for improving our documentation. Send your feedback to
docfeedback@vmware.com.

vSphere Web Services SDK Programming Guide

VMware, Inc. 14

http://www.vmware.com/support/pubs
http://www.vmware.com/support/pubs
mailto:docfeedback@vmware.com

About the vSphere Web Services
SDK 1
VMware vSphere supports robust, fault-tolerant virtualized applications, networking, and storage.
vSphere offers many optional components and modules such as VMware High Availability and VMware
VMotion. The VMware vSphere Web Services SDK gives Web services developers programmatic access
to vSphere components.

This chapter includes the following topics:

n vSphere Web Services SDK

n SDK Developer Setup for the Web Services SDK

n SDK Samples for the Web Services SDK

n UML Diagrams Used in the Web Services SDK Programming Guide

vSphere Web Services SDK
The vSphere Web Services SDK is the most comprehensive of the available management APIs. The SDK
works against both ESXi and vCenter Server systems.

As a Web Services SDK, the SDK is language neutral. The SDK includes stubs and examples for Java
and C# and a comprehensive documentation set including an API Reference generated from the source.

VMware, Inc. 15

Figure 1-1. vSphere APIs and CLIs

SDK Developer Setup for the Web Services SDK
Before you can start developing applications with the vSphere Web Services SDK, you must download
the software and set up your system. The vSphere Web Services SDK Developers Setup Guide has
complete instructions for Java and C# development and discusses a simplified security configuration for
development environments.

SDK Samples for the Web Services SDK
The SDK includes a set of samples that illustrate much of the SDK features. Two sample sets are
available:

n Java samples use the generated Java stubs that are shipped with the SDK.

n C# samples use the generated C# stubs that are shipped with the SDK.

Both sample sets include a set of utility applications that are used by the sample code.

The code fragments in this guide are in part based on the Java sample applications, but present code that
does not require utility applications to run.

See #unique_6 for lists of samples for the two languages and a brief explanation of what each sample
does.

UML Diagrams Used in the Web Services SDK
Programming Guide
This guide uses UML (unified modeling language) diagrams to illustrate the API objects and their
relationships.

vSphere Web Services SDK Programming Guide

VMware, Inc. 16

The guide includes class diagrams and instance diagrams. Figure 1-2. Legend for UML Class Diagrams
shows the UML notation used for managed objects and data objects. The diagrams use a tilde (~) if an
object has no properties or methods. Ellipses (...) means some properties or methods are omitted.

Figure 1-2. Legend for UML Class Diagrams

vSphere Web Services SDK Programming Guide

VMware, Inc. 17

vSphere Web Services API
Programming Model 2
The vSphere Web Services API is implemented as a language-neutral Web service. The API is based on
a remote procedure call mechanism that client applications use to access services and components on
ESXi and vCenter Server systems.

This chapter includes the following topics:

n vSphere Client-Server Architecture

n Web Services API as a Web Service

n Access to Managed Objects

n Access to vSphere Server Data

vSphere Client-Server Architecture
VMware vSphere client applications participate in a distributed architecture that uses an asynchronous
communications model. This architecture is based on server-side managed objects, client-side managed
object references, and data objects.

n Managed objects exist on a vSphere server (ESX/ESXi or vCenter Server system). They represent
vSphere services and components. Services include PropertyCollector, SearchIndex,
PerformanceManager, and ViewManager. Components include inventory objects such as
VirtualMachine, Datastore, and Folder.

n Managed object references are client application references to server-side managed objects. Your
client application uses ManagedObjectReference objects when it invokes operations on a server. A
ManagedObjectReference is guaranteed to be unique and persistent during an object's lifetime. The
reference persists after an object has moved within the inventory, across sessions, and across server
restarts. If you remove an object, for example, a virtual machine, from the inventory, and then put it
back, the reference changes.

n Data objects contain information about managed objects. Your client application sends data objects to
and receives data objects from a vSphere server. Examples are the different specification and
capability objects such as VirtualMachineConfigSpec and HostCapability.

VMware, Inc. 18

Figure 2-1. vSphere Server and Client shows a vSphere server and client application. The client has a
managed object reference to a virtual machine on the server, and a copy of the GuestInfo data object for
the virtual machine. A client must maintain its copy of a data object because, depending on the type of
client request, a vSphere server might send property data for a data object as a set of name-value pairs
associated with a managed object reference. See the description of the ObjectContent data object in
the vSphere API Reference.

Figure 2-1. vSphere Server and Client

The VMware vSphere application model uses an asynchronous client-server communication model in
most cases. Methods are nonblocking and return a reference to a Task managed object. For more
information about the Task managed object, see Tasks and Scheduled Tasks.

Web Services API as a Web Service
The vSphere Web Services API is a language-neutral Web service that runs on ESXi and vCenter Server
systems.

The API complies with the Web Services Interoperability Organization (WS-I) Basic Profile 1.0. The WS-I
Basic Profile 1.0 includes support for the following standards:

n XML Schema 1.0

n SOAP 1.1

n WSDL 1.1

For information about the WS-I Basic Profile 1.0, go to the Web Services Interoperability Organization
(WS-I) Web site at http://www.ws-i.org.

Web services support operations, which are the same as methods in other programming languages. The
vSphere API Web service provides access to all operations necessary for monitoring and managing
vSphere components, such as compute resources, virtual machines, networks, storage, and so on.

WSDL Files and the Client-Side Proxy Interface
The vSphere Web Services SDK provides a set of WSDL (Web Services Description Language) files that
define the vSphere Web Services API. Web-services development tools such as JAX-WS wsimport, or
Microsoft .NET wsdl.exe use these WSDL files to generate client-side proxy code (stubs).

vSphere Web Services SDK Programming Guide

VMware, Inc. 19

http://www.ws-i.org

The client proxy provides a language-specific interface proxy, for example, using Java or C#. The proxy
facilitates remote method invocation, organization of object data, and other aspects of distributed, object-
oriented, applications programming. Your client application calls proxy interface methods. The client proxy
uses SOAP (Simple Object Access Protocol) to exchange WSDL messages with a vSphere server.

Figure 2-2. Client-Server Communication Through a Client Proxy Interface is a representation of a client
application that uses the client proxy interface to call a method. The client proxy interface is based on the
WSDL definitions.

Figure 2-2. Client-Server Communication Through a Client Proxy Interface

To use the VMware client proxy interface, you must import the vSphere Web Services API client libraries
in to your client application using the following Java and C# statements.

C# using VimApi;

Java import com.vmware.vim25.*;

Important The vSphere Web Services SDK includes Java client-side proxy code that was generated
using the JAX-WS toolkit. If the versions of Java and JAX-WS on your development platform are the
same as those used to generate the proxy interface shipped in the SDK, you do not have to generate
client-side proxy code from the WSDL. See the Developer’s Setup Guide for information about how to
configure a development environment for the vSphere Web Services SDK.

Network Access to the vSphere Web Service
Your client application can use the vSphere Web Services API to communicate with vSphere servers over
HTTPS (HTTP over an encrypted Secure Sockets Layer connection) at port 443. HTTPS is the default
protocol.

You can configure the server to support HTTP. Use HTTP access only for test or development
environments, not for production. For information about how to configure the server to support HTTP
access, see the vSphere Web Services SDK Developer’s Setup Guide.

vSphere Web Services SDK Programming Guide

VMware, Inc. 20

Language-Specific Classes and Methods
The SOAP tools generate language-specific classes and methods that match the WSDL definitions. The
tools also produce objects and methods that are not in the WSDL files.

n Generated objects. The additional objects provide access to the vSphere Web Service to establish
the client-server connection (VimService, AppUtil) and declare the methods defined for the
vSphere API (VimPortType, VimService).

n Generated methods. The additional methods are accessor (getter) and mutator (setter) methods for
properties. For Java, the method names are constructed by adding get and set prefixes to a
property name, and changing the first character of the property name to upper case.

The following table identifies client proxy definitions for the vSphere Web Services SDK WSDL.

Element Access Java C#

Access to vSphere Web
service (HTTPS/HTTP)

VimService class AppUtil class

Access to vSphere API
methods

VimPortType class VimPortType class

(Vim25Api.VimService in vSphere 6.0 and before)

Access to vSphere API
properties

getPropertyName and setPropertyName
methods defined for data objects

get and set methods defined for properties

vSphere API data objects Data objects in the vSphere API (see the vSphere API Reference) defined as objects in the proxy
interface

The following code fragments show getter and setter method definitions for the
AfterStartupTaskScheduler.minute property.

Java

public int getMinute() {

 return minute; }

public void setMinute(int minute) {

 this.minute = minute; }

C#

public int minute {

 set; get; }

You can extrapolate the getter and setter methods that are available in the client proxy interface from the
vSphere API Reference. For example, the ScsiLun data object has a displayName property. For the
Java API, you can use a setDisplayName method to assign a string value to the property, and obtain the
string value by using the getDisplayName method. The vSphere Web Services SDK includes Java and
C# sample code that illustrates how to use the proxy interfaces. See #unique_15.

vSphere Web Services SDK Programming Guide

VMware, Inc. 21

Mapping XML Data Types to Java and C# Data Types
In this guide, the UML class and object diagrams use the primitive data type names such as string and
integer, without the XML Schema definition namespace prefix (xsd:). The vSphere API Reference
contains the complete data type name, such as xsd:string. The data types map to the primitive data
types of the programming language used for the client application.

The following table lists some of the more common XML primitive data type mappings.

XML Schema Java .NET Data Type

xsd:base64binary byte[] Byte[]

xsd:boolean boolean Boolean

xsd:byte byte SByte

xsd:dateTime java.util.Calendar DateTime

xsd:decimal java.math.BigDecimal Decimal

xsd:double double Double

xsd:float float Single

xsd:int int Int32

xsd:string java.lang.String String

Access to Managed Objects
Your client application obtains access to managed objects through the ServiceInstance managed
object and its associated ServiceContent data object. The ServiceContent data object contains
managed object references to services and manager entities, and to the root folder of the inventory.

The ServiceInstance managed object is the root object of the inventory on both ESX/ESXi and vCenter
Server systems. The server creates the ServiceInstance, and creates the manager entities that provide
services in the virtual environment. Examples of manager entities are LicenseManager,
PerformanceManager, and ViewManager.

The ServiceInstance is the primary point of access to the server inventory. Your client application starts
by connecting to a server and creating a reference to the ServiceInstance. After you have connected to
the server, you can call the ServiceInstance.RetrieveServiceContent method to a
ServiceContent data object. ServiceContent provides access to the vSphere managed object
services. See Overview of a Java Sample Application for the Web Services SDK for an example of
connecting to a server and using the ServiceInstance reference to retrieve the ServiceContent
object.

Figure 2-3. ManagedObjectReference Data Object shows the object model for the ServiceInstance and
ServiceContent objects. The figure shows some of the ServiceContent managed object references
and the target objects of the references. Each managed object reference identifies a specific managed
object on the server with its type and a value. (The value property is an opaque string.)

vSphere Web Services SDK Programming Guide

VMware, Inc. 22

Figure 2-3. ManagedObjectReference Data Object

Access to vSphere Server Data
To obtain information about the virtual infrastructure, you retrieve managed object properties. Managed
object properties can be simple data types, such as integer or string data, or they can be complex types
such as data objects that contain sets of properties.

Obtaining Information from a Server
With a reference to a managed object, you can obtain information about the state of the server-side
inventory objects and populate client-side data objects based on the values. You can use one of the
following approaches:

n Use an accessor (getter) method. The client proxy interface provides accessor methods for each data
object property. You can use these accessor methods to obtain the values of the object. See
Language-Specific Classes and Methods for information about client proxy interface accessor
methods.

n Use a PropertyCollector to navigate to a selected point on the server and obtain values from
specific properties. See #unique_21 for more information about PropertyCollector.

vSphere Web Services SDK Programming Guide

VMware, Inc. 23

n Use the SearchIndex managed object to obtain a managed object reference to the managed entity
of interest. The SearchIndex can return managed object references to specific managed entities—
ComputeResource, Datacenter, Folder, HostSystem, ResourcePool, VirtualMachine—given an
inventory path, IP address, or DNS name.

Important You can use API methods to operate on managed objects in the vSphere inventory. A
method that updates properties in one managed object may also update properties in other managed
objects. The Server performs asynchronous updates to the inventory. There is no guarantee that the
inventory will be completely updated when the method returns to the caller. Use the PropertyCollector
method WaitForUpdatesEx to obtain property changes.

Working with Data Structures
Properties contain information about the server-side objects at a given point in time. The value of a
property can be of one of the following types:

n Simple data types, such as a string, boolean, or integer (or other numeric) data type. For example,
the ManagedEntity managed object has a name property that takes a string value.

n Arrays of simple data types or data objects. For example, a HostSystem managed object contains an
array of managed object references (a type of data object) to virtual machines hosted by that physical
machine. As another example, the SessionManager managed object has a sessionList property
that is an array of UserSession data objects.

n Enumerated types (enumeration, enum) of predefined values. The values can be a collection of
simple data types or data objects. For example, a virtual machine's power state can be one of three
possible string values—poweredOn, poweredOff, or suspended.

The type of a property is often a string, but the property actually expects one of the values an
enumeration encapsulates. For example, when you set VirtualMachineConfigSpec.guestid you
can specify one of the elements of the VirtualMachineGuestOSIdentifier as a string.

n Complex (or composite) data types. For example, the HostProfileConfigInfo object contains data
objects, an array of data objects, and an array of strings.

Accessing Property Values
To use the composite data structures and arrays that contain Server data:

n Use dot notation to access nested properties in composite data structures.

n Cast unconstrained property values (xsd:anyType) to array types.

n Use keys or index values as appropriate to access array values.

vSphere Web Services SDK Programming Guide

VMware, Inc. 24

Nested Properties and Property Paths in Composite Data
Structures
vSphere Data objects can include properties that are defined as composite data types, such as data
objects. The embedded data objects can also contain properties that are data objects. Properties can
nest to several levels.

For example, the following figure shows a UML class diagram of the VirtualMachine managed object,
which has a runtime property that is defined as an xsd:dateTime data type. VirtualMachine also has
a summary property that is a VirtualMachineSummary data object. The VirtualMachineSummary data
object contains a config property that is a VirtualMachineConfigSummary data object.

Figure 2-4. VirtualMachine Managed Object and Nested Properties

To refer to a nested property, use dot notation to separate the object names in the sequence that defines
the path to the property. Your code must handle the type referenced at the end of the sequence.

For example, you can compare the property referenced by the path summary.config.guestId (a string
value) to the property referenced in the path summary.config (the complete VirtualMachineSummary
data object).

The following table shows examples of property references and the corresponding data types for some of
the properties of the VirtualMachine managed object shown in Figure 2-4. VirtualMachine Managed
Object and Nested Properties.

Reference Data Type

summary VirtualMachineSummary data object

summary.config VirtualMachineConfigSummary data object

summary.config.guestID string

xsd:anyType Arrays
The vSphere Web Services API uses xsd:anyType unconstrained type declarations. A vSphere client
must map values of xsd:anyType to explicit data types. An xsd:anyType value can represent a single
data value or it can represent an array. The WSDL for the vSphere Web Services API defines array types
for all of the data values that a vSphere client can send or receive as arrays. The array types use the
prefix “Array Of”. An example of an array type is ArrayOfString for string values.

vSphere Web Services SDK Programming Guide

VMware, Inc. 25

When a client sends data to a vSphere Server, the client must use explicit datatypes. For example, a
client can define a MethodAction for a ScheduledTask. The vSphere Web Services API defines
arguments to the action (the MethodActionArgument.value property) as type xsd:anyType. If the
action takes an array argument, the client must set the corresponding
MethodAction.argument[].value to the appropriate ArrayOf... type.

When a client receives xsd:anyType data from a vSphere server, it must cast the data to an explicit type.
For example, the PropertyCollector method RetrievePropertiesEx returns a set of ObjectContent
data objects. The ObjectContent.propSet property is a list of DynamicProperty objects that contains
the requested property values. Each DynamicProperty object contains a name-value pair. The value
property (DynamicProperty.val) is of type xsd:anyType. It can represent a single object or an array of
objects.

When the returned value is a single object such as an Event, ManagedObjectReference, or String, you
can cast it directly to a variable of the appropriate type. However, when the value is an array of objects
you cannot cast the anyType value directly to an array variable.

When the PropertyCollector returns array data, it sends it as an xsd:anyType value. The language-
specific bindings contain definitions for array objects such as ArrayOfEvent,
ArrayOfManagedObjectReference, and ArrayOfString, and corresponding “get” methods. To extract
the actual array from a property of type xsd:anyType, cast DynamicProperty.val to the appropriate
array type and use the matching get method – for example, getEvent(),
getManagedObjectReference(), or getString().

The following sections provide some examples of how to cast returned values for a few of the array types.

Cast an xsd:anyType Array to an Event Array

When the PropertyCollector returns array data representing an array of Event objects, the array has
the type xsd:anyType. To use the data in your application, you must first cast it to a specialized type for
Event arrays.

This example code uses the JAX-WS-generated Java bindings for the VMware vSphere Web Services
SDK WSDL.

Procedure

1 Use the DynamicProperty.getVal() method to retrieve the anyType property value.

2 Cast the anyType value to a value of type ArrayOfEvent.

3 Use the corresponding get method to assign the result of the cast operation to a list variable.

Example

/*

* Handling arrays of Event objects.

* Cast the return value to ArrayOfEvent and use getEvent().

*/

List[] eventList = ((ArrayOfEvent) dynamicProp.getVal()).getEvent();

vSphere Web Services SDK Programming Guide

VMware, Inc. 26

Cast an xsd:anyType Array to an Array of Managed Object References

When the PropertyCollector returns array data representing an array of managed objects, the array
has the type xsd:anyType. To use the data in your application, you must first cast it to a specialized type
for arrays of managed object references.

This example code uses the JAX-WS-generated Java bindings for the VMware vSphere Web Services
SDK WSDL.

Procedure

1 Use the DynamicProperty.getVal() method to retrieve the anyType property value.

2 Cast the anyType value to a value of type ArrayOfManagedObjectReference.

3 Use the corresponding get method to assign the result of the cast operation to a list variable.

Example

/*

* Handling arrays of ManagedObjectReference objects.

* Cast the return value to ArrayOfManagedObjectReference and use getManagedObjectReference().

*/

List[] morList =

 ((ArrayOfManagedObjectReference)dynamicProp.getVal()).getManagedObjectReference();

Cast an xsd:anyType Array to an Array of String

When the PropertyCollector returns array data representing an array of strings, the array has the type
xsd:anyType. To use the data in your application, you must first cast it to a specialized type for arrays of
strings.

This example code uses the JAX-WS-generated Java bindings for the VMware vSphere Web Services
SDK WSDL.

Procedure

1 Use the DynamicProperty.getVal() method to retrieve the anyType property value.

2 Cast the anyType value to a value of type ArrayOfString.

3 Use the corresponding get method to assign the result of the cast operation to a list variable.

Example

/*

* Handling arrays of strings.

* Cast the return value to ArrayOfString and use getString().

*/

List[] stringList = ((ArrayOfString) dynamicProp.getVal()).getString();

vSphere Web Services SDK Programming Guide

VMware, Inc. 27

Indexed Array and Key-Based Array Properties
The VMware vSphere data structures include array properties, which can be indexed arrays or key-based
arrays.

n Indexed arrays are accessed by using an index integer. Indexed arrays are used for arrays of data
types whose positions in the array do not change. For example, the roleList property of the
AuthorizationManager managed object is an array of authorization roles. Adding a new role to the
array does not change the position of existing elements in the array.

n Key-based arrays are used for information whose position is subject to change. A key-based array
(same basic concept as a Perl hash or a Python dictionary) uses a unique, unchanging value as a
key to access an element’s value.

Typically, the key is a string, but integers can also be used. For example, Event arrays use integers
as keys.

The vSphere management object model uses key-based arrays to track managed object references.
The contents of a key-based array property are accessed by the value of either the key property or, in
the case of a managed object reference, its value property. The value of these fields is unique across
all of the components of an array.

Nested properties can also refer to entries in a key-based array. For example, a.b.c["xyz"] refers
to the property c that has the key value of xyz.

Unset Optional Properties
Many of the Data Objects in the vSphere Web Services SDK have optional properties that may be set by
your client application or by a Server process or event. If you retrieve a data object that has an optional
property that is unset, the Server will not return a value for the optional property. If you call an accessor
function to retrieve the property value, the value returned by the function depends on the programming
language that you are using.

For example, if you are programming in Java or C#, the value you will receive for an unset property is
null.

Figure 2-5. Data Object - HostFirewallInfo Properties shows part of the Properties table for the
HostFirewallInfo data object in the vSphere Web Services SDK API Reference. When you look at
properties in the vSphere Web Services SDK API Reference, you can see that optional properties are
marked with a red asterisk.

In this example, that the defaultPolicy property is always returned, but the ruleset property will be
returned as a null value if it has not been set.

vSphere Web Services SDK Programming Guide

VMware, Inc. 28

Figure 2-5. Data Object - HostFirewallInfo Properties

Since Data Objects are part of many different constructs, there is no standard scenario for when an
optional property should be set, what will happen if an optional property is left unset, or what you should
do if a null value is returned.

Escape Character in Name and Path Properties
The percent sign (%) is used as an escape character to embed special characters in strings. For
example, %2f (or %2F) is interpreted as the slash (/) character. To include a percent sign as a literal in a
string, use %%.The path to the inventory starts from the root folder (ServiceContent.rootFolder
property), denoted by the slash character.

Character Description Representation in URL

% Percent sign %25

/ Slash %2F, %2f

\ Backslash %5C, %5c

- Dash %2D, %2d

. Dot %2E, %2e

“ Double quotation mark %2B, %2b

vSphere Web Services SDK Programming Guide

VMware, Inc. 29

Client Applications for the Web
Services API 3
Any client application written for the Web Services API must perform certain basic functions. These
include making a connection to the server, authenticating and creating a session, and closing the
connection.

This chapter includes the following topics:

n vCenter Server Connections

n Establishing a Single Sign-On Session with a vCenter Server

n LoginByToken to vCenter Server By Using C#

n LoginByToken to vCenter Server By Using Java

n Establishing a Session with Username and Password Credentials

n Overview of a Java Sample Application for the Web Services SDK

n Accessing the vSphere Server from a Web Services Client

n Closing the Connection from a Web Services Client

n Using the Java Samples as Reference

n Multiple Versions of the vSphere API

n Java and C# Sample Applications in the Web Services SDK

vCenter Server Connections
Every vCenter Server client application must connect to the server and pass user account credentials to
authenticate to the server. After the connection has been established, the client application can use
vSphere services to access the virtual environment.

vSphere uses SSL certificates, HTTP tokens, and vCenter Single Sign-On tokens to authenticate a client
and support a persistent connection between the client and vCenter Server. The following table provides
an overview of these elements.

VMware, Inc. 30

Security Element Description

SSL certificates vSphere Servers use standard X.509 version 3 (X.509v3) certificates to encrypt session
information sent over Secure Socket Layer (SSL) protocol connections. In a production
environment, client applications verify the vSphere Server certificate during the connection
sequence. The examples in this chapter and the examples in the vSphere Web Services
SDK accept all certificates.

HTTP tokens A vSphere Server uses an HTTP token to identify a client session. The Server provides the
HTTP token in its response to a client connection request. Subsequent messages between
the client and the Server include the HTTP token in the HTTP header.

Client authentication

vCenter
Single Sign On token

vSphere supports vCenter Single Sign-On. A vCenter client can obtain a vCenter Single
Sign-On token from a vCenter Single Sign-On Server and use that token to login to a
vCenter Server.

Client authentication

username/password

Username/password authentication for client-server connections. A client can present user
credentials either directly to vCenter Server to establish a session, or to the vCenter Single
Sign-On Service in exchange for a SAML token.

Establishing a Single Sign-On Session with a vCenter
Server
vSphere uses single sign-on to provide a single point of authentication for clients. vSphere includes the
vCenter Single Sign-On Server. To use vCenter Single Sign-On, your client obtains a SAML token
(Security Assertion Markup Language) from the vCenter Single Sign-On Server and passes the token to
the vCenter Server in the login request. The token represents the client and contains claims that support
client authentication. Components in the vSphere environment perform operations based on the original
authentication. For information about obtaining a vCenter Single Sign-On token from the vCenter Single
Sign-On Server, see vCenter Single Sign On Programming Guide.

To use single sign on, your client calls the LoginByToken method. Your client must send a SAML token to
the vCenter Server by embedding the token in the SOAP header for the LoginByToken request. During
the login sequence, your client must save and restore the HTTP session cookie. The vCenter Single
Sign-On SDK contains sample code that demonstrates how to use the LoginByToken method.

The following sections describe examples of using the LoginByToken method to establish a vCenter
Single Sign On session with a vCenter Server.

LoginByToken to vCenter Server By Using C#
The following sections describe a C# example of using the LoginByToken method.

vCenter Server Single Sign On Session Using C#
After you obtain a SAML token from the vCenter Single Sign On Server, you can use the vSphere API
method LoginByToken to establish a single sign on session with a vCenter Server. To establish a vCenter
Server session that is based on SAML token authentication, the client must embed the SAML token in the
SOAP header of the LoginByToken request. The C# LoginByToken example uses the following .NET
services to support a single sign on session.

vSphere Web Services SDK Programming Guide

VMware, Inc. 31

.NET Element /
Namespace vCenter Single Sign On Usage

SecurityPolicyAssertion

Microsoft.Web.Services3.Security

The sample creates a custom policy assertion derived from the
SecurityPolicyAssertion class. The custom assertion contains the
SAML token and X509 certificate.

SendSecurityFilter

Microsoft.Web.Services3.Security

The sample defines a custom output filter derived from the
SendSecurityFilter class. The custom filter adds the token and
certificate to the outgoing SOAP message.

ServicePointManager

System.net

The sample uses the ServicePointManager to specify SSL3 and HTTP
100-Continue behavior.

ConfigurationManager

System.Configuration

The sample uses the ConfigurationManager to specify certificate
metadata (password and certificate type).

CookieContainer

System.Net

The sample uses the CookieContainer class to manage vCenter
session cookies.

Persistent vCenter Server Sessions
A persistent vCenter Server session relies on a session cookie. When the vCenter Server receives a login
request, the server creates a session cookie and returns it in the HTTP header of the response. The
client-side .NET framework embeds the cookie in HTTP messages that the client sends to the Server.

The LoginByToken request includes the SAML token and client certificate security assertions for client
authentication. After successful login, the authentication overhead is no longer needed. The client resets
the VimService context to eliminate the security overhead. Subsequent client requests will contain the
session cookie, which is enough to support the persistent, authenticated session.

Sample Code
The code examples in the following sections show how to use the LoginByToken method with a holder-
of-key security token. The code examples are based on the LoginByTokenSample project contained in
the vCenter Single Sign-On SDK. The project is located in the dotnet samples directory (SDK/
ssoclient/dotnet/cs/samples/LoginByToken).

n Project file – LoginByToken.csproj

n Sample code – LoginByTokenSample.cs

n SOAP header manipulation code – CustomSecurityAssertionHok.cs

Using LoginByToken in C#
A Web Services API client can authenticate by using a token provided by the vCenter Single Sign-On
Service. This example shows C# client code for dealing with token authentication.

The example program uses the following elements and general steps:

n LoginByTokenSample Constructor in a C# Web Services SDK Client

n Security Policies in a C# Web Services SDK Client

vSphere Web Services SDK Programming Guide

VMware, Inc. 32

n Custom Security Assertion in a C# Web Services SDK Client

n Custom Output Filter for a C# Web Services SDK Client

n Login for a C# Web Services SDK Client

n Session Handling in C# Web Services Client

LoginByTokenSample Constructor in a C# Web Services SDK Client
The LoginByTokenSample class constructor creates the following elements to set up access to the
vCenter Server.

n VimService object – Provides access to vSphere API methods and support for security policies and
session cookie management. It also stores the vCenter Server URL.

n CookieContainer – Provides local storage for the vCenter Server session cookie.

n ManagedObjectReference – Manually created ManagedObjectReference to retrieve a
ServiceInstance at the beginning of the session.

The following code fragment shows the LoginByTokenSample constructor.

Example: LoginByTokenSample Constructor

// Global variables

private VimService _service;

private ManagedObjectReference _svcRef;

private ServiceContent _sic;

private string _serverUrl;

public LoginByTokenSample(string serverUrl)

{

 _service = new VimService();

 _service.Url = serverUrl;

 _serverUrl = serverUrl;

 _service.CookieContainer = new System.Net.CookieContainer();

 _svcRef = new ManagedObjectReference();

 _svcRef.type = "ServiceInstance";

 _svcRef.Value = "ServiceInstance";

}

Security Policies in a C# Web Services SDK Client
The LoginByToken sample creates a custom policy assertion that is derived from the .NET class
SecurityPolicyAssertion. The assertion class gives the .NET framework access to the SAML token
and the X509 certificate.

vSphere Web Services SDK Programming Guide

VMware, Inc. 33

The sample performs the following operations to set up the security policy and message handling.

1 Sets the ServicePointManager properties to specify SSL3 and HTTP 100-Continue response
handling. 100-Continue response handling supports more efficient communication between the client
and vCenter Server. When the client-side .NET framework sends a request to the Server, it sends the
request header and waits for a 100-Continue response from the Server. After it receives that
response, it sends the request body to the Server.

2 Creates an X509Certificate2 object, specifies the certificate file, and imports the certificate. The
certificate file specification indicates a PKCS #12 format file (Public-Key Cryptography Standards) –
PfxCertificateFile. The file contains the client’s private key and public certificate. The
PfxCertificateFile setting is defined in the app.config file in the LoginByToken project. The
definition specifies the location of the file.

3 Creates a custom security assertion to store the SAML token and the certificate. The token and
certificate will be included in the policy data for the LoginByToken request.

4 Defines a custom output filter that is derived from the .NET class SendSecurityFilter.

Custom Security Assertion in a C# Web Services SDK Client
The following code fragment shows the LoginByTokenSample class method
GetSecurityPolicyAssertionForHokToken. The method returns a CustomSecurityAssertionHok
instance which overrides the .NET class SecurityPolicyAssertion. The security assertion contains the
SAML token and the X509 certificate token. This code is taken from the LoginByToken project file
samples/LoginByToken/CustomSecurityAssertionHok.cs.

Example: Setting Up Security Policies

private SecurityPolicyAssertion

GetSecurityPolicyAssertionForHokToken(XmlElement xmlToken)

{

 //When this property is set to true, client requests that use the POST method

 //expect to receive a 100-Continue response from the server to indicate that

 //the client should send the data to be posted. This mechanism allows clients

 //to avoid sending large amounts of data over the network when the server,

 //based on the request headers, intends to reject the request

 ServicePointManager.Expect100Continue = true;

 ServicePointManager.SecurityProtocol = SecurityProtocolType.Ssl3;

 X509Certificate2 certificateToBeAdded = new X509Certificate2();

 string certificateFile = ConfigurationManager.AppSettings["PfxCertificateFile"];

 string password = ConfigurationManager.AppSettings["PfxCertificateFilePassword"];

 certificateToBeAdded.Import(certificateFile,

 password ?? string.Empty,

 X509KeyStorageFlags.MachineKeySet);

 var customSecurityAssertion = new CustomSecurityAssertionHok();

 customSecurityAssertion.BinaryToken = xmlToken;

 customSecurityAssertion.TokenType = strSamlV2TokenType;

 customSecurityAssertion.SecurityToken = new X509SecurityToken(certificateToBeAdded);

vSphere Web Services SDK Programming Guide

VMware, Inc. 34

 return customSecurityAssertion;

}

Custom Output Filter for a C# Web Services SDK Client
The following code fragment shows the custom output filter for the custom security assertion. The custom
filter provides three methods:

CustomSecurityClientOutputFilterHok Class constructor that creates token and message signature objects for the SOAP
message.

SecureMessage An override method for the .NET method SendSecurityFilter.SecureMessage. The
override method adds the SAML token and message signature to the .NET Security
element.

CreateKeyInfoSignatureElement Creates an XML document that specifies the SAML token type and ID.

Example: Output Filter for the Custom SecurityPolicyAssertion

internal class CustomSecurityClientOutputFilterHok : SendSecurityFilter

{

 IssuedToken issuedToken = null;

 string samlAssertionId = null;

 MessageSignature messageSignature = null;

 /// Create a custom SOAP request filter.

 /// (Save the token and certificate.)

 public CustomSecurityClientOutputFilterHok(CustomSecurityAssertionHok parentAssertion)

 : base(parentAssertion.ServiceActor, true)

 {

 issuedToken = new IssuedToken(parentAssertion.BinaryToken, parentAssertion.TokenType);

 samlAssertionId = parentAssertion.BinaryToken.Attributes.GetNamedItem("ID").Value;

 messageSignature = new MessageSignature(parentAssertion.SecurityToken);

 }

 /// Secure the SOAP message before its sent to the server.

 public override void SecureMessage(SoapEnvelope envelope, Security security)

 {

 //create KeyInfo XML element

 messageSignature.KeyInfo = new KeyInfo();

 messageSignature.KeyInfo.LoadXml(CreateKeyInfoSignatureElement());

 security.Tokens.Add(issuedToken);

 security.Elements.Add(messageSignature);

 }

 /// Helper method to create a custom key info signature element.

 /// Returns Key info XML element.

 private XmlElement CreateKeyInfoSignatureElement()

 {

 var xmlDocument = new XmlDocument();

 xmlDocument.LoadXml(@"<root><SecurityTokenReference

 xmlns=""http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd""

 xmlns:wsse=""http://docs.oasis-open.org/wss/oasis-wss-wssecurity-secext-1.1.xsd""

 wsse:TokenType=""http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0"">

vSphere Web Services SDK Programming Guide

VMware, Inc. 35

 <KeyIdentifier

 xmlns=""http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd""

 ValueType=""http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLID"">"

 + samlAssertionId + @"</KeyIdentifier></SecurityTokenReference></root>");

 return xmlDocument.DocumentElement;

 }

Login for a C# Web Services SDK Client
The client must obtain a SAML token from a vCenter Single Sign-On Server. See the vCenter Single
Sign-On Programming Guide. This code fragment performs the following actions:

Procedure

1 Calls the LoginByTokenSample class method GetSecurityPolicyAssertionForHokToken (see
Security Policies in a C# Web Services SDK Client) and adds the security policy to the VimService
object.

The VimService object contains the following data:

n vCenter Server URL.

n SAML token (stored in the security policy assertion).

n X509 certificate (stored in the security policy assertion).

2 Calls the RetrieveServiceContent method. The method establishes the connection with the
vCenter Server and provides access to the SessionManager managed object.

3 Calls the LoginByToken method. The .NET framework uses the security policy assertion to construct
the login request. The response includes a session cookie.

4 Calls the LoginByTokenSample class method resetService to create a new VimService object.
The session cookie is stored in the cookie container in the VimService object.

Example: Connection and Login

// Construct the security policy assertion

SecurityPolicyAssertion securityPolicyAssertion = null;

securityPolicyAssertion = GetSecurityPolicyAssertionForHokToken(xmlToken);

// Setting up the security policy for the request

Policy policySAML = new Policy();

policySAML.Assertions.Add(securityPolicyAssertion);

// Setting policy of the service

_service.SetPolicy(policySAML);

_sic = _service.RetrieveServiceContent(_svcRef);

if (_sic.sessionManager != null)

{

 _service.LoginByToken(_sic.sessionManager, null);

}

resetService();

vSphere Web Services SDK Programming Guide

VMware, Inc. 36

Session Handling in C# Web Services Client
The following code fragment shows the resetService method. The method creates a new VimService
object and a new cookie container. The method also adds the session cookie to the cookie container.

The resetService method

/// Resetting the VimService without the security policies

/// as we need the policy only for the LoginByToken method

/// and not the other method calls. resetService also maintains the

/// authenticated session cookie post LoginByToken.

///

/// This method needs to be called only after successful

/// login

private void resetService()

{

 var _cookie = getCookie();

 _service = new VimService();

 _service.Url = _serverUrl;

 _service.CookieContainer = new CookieContainer();

 if (_cookie != null)

 {

 _service.CookieContainer.Add(_cookie);

 }

}

/// Method to save the session cookie

private Cookie getCookie()

{

 if (_service != null)

 {

 var container = _service.CookieContainer;

 if (container != null)

 {

 var _cookies = container.GetCookies(new Uri(_service.Url));

 if (_cookies.Count > 0)

 {

 return _cookies[0];

 }

 }

 }

 return null;

}

LoginByToken to vCenter Server By Using Java
The following example is based on the LoginByTokenSample.java file contained in the vCenter Single
Sign On SDK. The SDK contains Java code that supports HTTP and SOAP header manipulation.

vSphere Web Services SDK Programming Guide

VMware, Inc. 37

vCenter Server Single Sign-On Session Using Java
After you obtain a SAML token from the vCenter Single Sign-On Server, you can use the vSphere Web
Services API method LoginByToken to establish a vCenter Single Sign-On session with a vCenter
Server. At the beginning of the session, your client is responsible for the following tasks:

n Insert the vCenter Single Sign-On token and a timestamp into the SOAP header of the
LoginByToken message.

n Maintain the vCenter session cookie. During the login sequence, the Server produces an HTTP
session cookie to support the persistent connection. Your client must save this cookie and re-
introduce it at the appropriate times.

n If at a later time your client invokes the LoginByToken method, or other login method, the Server
issues a new session cookie in response. You must have a cookie handler in place to save the cookie
for subsequent requests.

The example program uses these general steps:

Procedure

1 Call the RetrieveServiceContent method to establish an HTTP connection with the vCenter Server
and get the Session Manager managed object reference.

2 Call the LoginByToken method to authenticate the vCenter session. To send the token to the vCenter
Server, the client uses a handler to embed the token and a time stamp in the SOAP header for the
message. The client uses an HTTP header handler method to extract the session cookie from the
vCenter Server response.

3 Restore the session cookie for future requests. To identify the session started with the LoginByToken
method, the client uses a handler to embed the session cookie in the HTTP header.

HTTP and SOAP Header Handlers in Java
To use a vCenter Single Sign On token to login to a vCenter Server, the example uses header handlers to
manipulates the HTTP and SOAP header elements of the login request. After establishing a handler,
subsequent requests automatically invoke the handler.

n Insertion handlers put the vCenter Single Sign On token and a timestamp into the SOAP header into
the HTTP header of the login request.

n An extraction handler obtains the HTTP session cookie provided by the vCenter Server. After setting
up the handler, a call to the LoginByToken method will invoke the handler to extract the cookie from
the Server response.

The following figure shows the use of handlers to manipulate header elements when establishing a
vCenter Single Sign On session with a vCenter Server.

vSphere Web Services SDK Programming Guide

VMware, Inc. 38

Figure 3-1. Starting a vCenter Session

Important Every call to the vCenter Server will invoke any message handlers that have been
established. The overhead involved in using the SOAP and HTTP message handlers is not necessary
after the session has been established. The example saves the default message handler before setting
up the SOAP and HTTP handlers. After establishing the session, the example will reset the handler chain
and restore the default handler.

The example code also uses multiple calls to the VimPortType.getVimPort method to manage the
request context. The getVimPort method clears the HTTP request context. After each call to the
getVimPort method, the client resets the request context endpoint address to the vCenter Server URL.
After the client has obtained the session cookie, it will restore the cookie in subsequent requests.

Sample Code for a Java Client to the Web Services SDK
The code examples in the following sections show how to use the LoginByToken method with a holder-
of-key security token. The code examples are based on the sample code contained in the vCenter Single
Sign On SDK. The files are located in the Java samples directory (SDK/ssoclient/java/JAXWS/
samples):

n LoginByToken sample:

samples/com/vmware/vsphere/samples/LoginByTokenSample.java

n Header cookie handlers:

samples/com/vmware/vsphere/soaphandlers/HeaderCookieHandler.java

samples/com/vmware/vsphere/soaphandlers/HeaderCookieExtractionHandler.java

n SOAP header handlers. These are the same handlers that are used in the vCenter Single Sign-On
example in vCenter Single Sign On Programming Guide. The SOAP handler files are contained in the
vCenter Single Sign-On SDK and are located in the SSO client soaphandlers directory:

SDK/ssoclient/java/JAXWS/samples/com/vmware/sso/client/soaphandlers

vSphere Web Services SDK Programming Guide

VMware, Inc. 39

Creating the HTTP Connection in Java
The code fragment in this section establishes an HTTP session with the vCenter Server and saves the
HTTP session cookie.

The following sequence describes these steps and shows the corresponding objects and methods.

1 Use the getHandlerResolver method to save the default
message handler. To use the HTTP and SOAP message
handlers, you must first save the default message handler so
that you can restore it after login. The HTTP and SOAP
message handlers impose overhead that is unnecessary after
login.

VimService.getHandlerResolver()

2 Get the VIM port. The VIM port provides access to the vSphere
API methods, including the LoginByToken method. VimPortTypeVimService

3 Set the request context endpoint address to the vCenter Server
URL. Request ContextVimService

4 Retrieve the ServiceContent. This method establishes the HTTP
connection. VimPortType ServiceContent

The following example shows Java code that saves the session cookie.

Example: Saving the vCenter Server Session Cookie

/*

 * The example uses a SAML token (obtained from a vCenter Single Sign On Server)

 * and the vCenter Server URL.

 * The following declarations indicate the datatypes; the token datatype (Element) corresponds

 * to the token datatype returned by the vCenter Single Sign On Server.

 *

 * Element token; -- from vCenter Single Sign On Server

 * String vcServerUrl; -- identifies vCenter Server

 *

 * First, save the default message handler.

 */

HandlerResolver defaultHandler = vimService.getHandlerResolver();

/*

 * Create a VIM service object.

 */

vimService = new VimService();

/*

 * Construct a managed object reference for the ServiceInstance.

 */

ManagedObjectReference SVC_INST_REF = new ManagedObjectReference();

SVC_INST_REF.setType("ServiceInstance");

SVC_INST_REF.setValue("ServiceInstance");

vSphere Web Services SDK Programming Guide

VMware, Inc. 40

/*

 * Get the VIM port for access to vSphere API methods. This call clears the request context.

 */

vimPort = vimService.getVimPort();

/*

 * Get the request context and set the connection endpoint.

 */

Map<String, Object> ctxt = ((BindingProvider) vimPort).getRequestContext();

ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, vcServerUrl);

ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

/*

 * Retrieve the ServiceContent. This call establishes the HTTP connection.

 */

serviceContent = vimPort.retrieveServiceContent(SVC_INST_REF);

Using LoginByToken in Java
The code fragment in this section sets up the message handlers and calls the LoginByToken method to
get the session cookie. The following sequence describes the steps and shows the corresponding objects
and methods.

1 Create a new HeaderHandlerResolver. Then set
the message security handlers for cookie extraction
and for inserting the SAML token and credentials in
the SOAP header.

HeaderHandler Resolver

WsSecurityUserCertificateSignatureHandler (key, certificate, ID)

TimestampHandler
SamlTokenHandler (SAML token)

HeaderCookieExtractionHandler (session cookie)

2 Get the VIM port.
VimPortTypeVimService

3 Set the connection endpoint in the HTTP request
context. Request ContextVimService

4 Call the LoginByToken() method. The method
invocation executes the handlers to insert the
elements into the message headers. The method
returns a session cookie that identifies the newly
created session.

VimPortType.LoginByToken()

5 Extract the cookie and save it for later use. HeaderCookieExtractionHandler.getCookie()

The following examples shows Java code that calls the LoginByToken() method.

Example: Using LoginByToken

/*

 * Create a handler resolver and add the handlers.

 * Create a cookie extraction handler and add it to the handler resolver.

vSphere Web Services SDK Programming Guide

VMware, Inc. 41

 */

HeaderHandlerResolver handlerResolver = new HeaderHandlerResolver();

HeaderCookieExtractionHandler cookieExtractor = new HeaderCookieExtractionHandler();

handlerResolver.addHandler(cookieExtractor);

handlerResolver.addHandler(new TimeStampHandler());

handlerResolver.addHandler(new SamlTokenHandler(token));

handlerResolver.addHandler(new WsSecuritySignatureAssertionHandler(

 userCert.getPrivateKey(),

 userCert.getUserCert(),

 Utils.getNodeProperty(token, "ID")));

vimService.setHandlerResolver(handlerResolver);

/*

 * Create a handler resolver.

 * Set the VIM service handler resolver.

 */

vimService.setHandlerResolver(handlerResolver);

/*

 * Get the Vim port; this call clears the request context.

 */

vimPort = vimService.getVimPort();

/*

 * Retrieve the request context and set the server URL.

 */

Map<String, Object> ctxt = ((BindingProvider) vimPort).getRequestContext();

ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, vcServerUrl);

ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

/*

 * Call LoginByToken.

 */

UserSession us = vimPort.loginByToken(serviceContent.getSessionManager(), null);

/*

 * Save the HTTP cookie.

 */

 String cookie = cookieExtractor.getCookie();

Restoring the vCenter Server Session Cookie in a Java Client
After you log in, you must restore the standard vCenter Server session context. The code fragment in this
section restores the default message handler and the session cookie. As the cookie handler has been
replaced by the default handler, the client resets the session cookie by calling request context methods to
access the context fields directly. The following sequence describes these steps and shows the
corresponding objects and methods.

1 Restore the default message handler. The handlers used for
LoginByToken() are not used in subsequent calls to the
vSphere API.

VimService.setHandlerResolver()

2 Get the VIM port.

VimPortTypeVimService

vSphere Web Services SDK Programming Guide

VMware, Inc. 42

3 Set the connection endpoint in the HTTP request context.
Request ContextVimService

4 Set the HTTP request header (vCenter Server session cookie). RequestContext.get()

RequestContext.put()

The following example shows Java code that restores the vCenter Server session. This code requires the
vCenter Server URL and the cookie and default handler that were retrieved before login. See Sample
Code for a Java Client to the Web Services SDK.

Example: Restoring the vCenter Server Session

/*

 * Reset the default handler. This overwrites the existing handlers, effectively removing them.

 */

vimService.setHandlerResolver(defaultHandler);

vimPort = vimService.getVimPort();

/*

 * Restore the connection endpoint in the request context.

 */

// Set the validated session cookie and set it in the header for once,

// JAXWS will maintain that cookie for all the subsequent requests

Map<String, Object> ctxt = ((BindingProvider) vimPort).getRequestContext();

ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, vcServerUrl);

ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

/*

 * Reset the cookie in the request context.

 */

Map<String, List<String>> headers =

 (Map<String, List<String>>) ctxt.get(MessageContext.HTTP_REQUEST_HEADERS);

if (headers == null) {

 headers = new HashMap<String, List<String>>();

}

headers.put("Cookie", Arrays.asList(cookie));

ctxt.put(MessageContext.HTTP_REQUEST_HEADERS, headers);

Establishing a Session with Username and Password
Credentials
You can specify username and password credentials to establish a session with a vCenter Server. The
following steps describe how a client application specifies username and password credentials for access
to a vCenter Server.

Procedure

1 Create a connection to the vSphere server Web service.

vSphere Web Services SDK Programming Guide

VMware, Inc. 43

2 Instantiate a local proxy object for reference to ServiceInstance. Use this local proxy object to
retrieve the ServiceContent object from the server. ServiceContent contains a reference to the
root folder for the inventory and references to the managed objects that provide the vSphere services.

3 Instantiate a local proxy object for access to vSphere API methods.

4 Log in to the server using appropriate credentials (user account, password, and optionally the locale).

5 Access server-side objects to retrieve data and perform management operations.

6 Close the connection.

Overview of a Java Sample Application for the Web
Services SDK
This section includes an example of a complete client application that demonstrates the basic client
capability. The sample client application prints out the product name, server type, and product version to
demonstrate that it is connected and able to retrieve information from the server.

While Java Test Client Application is a complete client application that demonstrates the basic client
capability, it uses a slightly different format than the Java sample files in the SDK\ directory. This example,
and the Java samples that are included with your vSphere Web Service SDK, have been compiled using
JAX-WS bindings.

Most of the vSphere Web Services SDK samples do not handle exceptions, and they accept all security
certificates. Use the samples as examples for extracting the types of data you want to view, but do not
use these security or exception techniques in your production applications.

Build a Simple vSphere Client Application for the Web Services
SDK
This simple client application accepts command-line arguments for the vSphere server name (DNS name
or IP address), user name, and password.

To build a simple vSphere client application in Java, use the following steps.

Procedure

1 Import the vSphere Web Services API libraries:

import com.vmware.vim25.*;

2 Import the necessary Java (and JAX-WS connection, bindings, and SOAP) libraries:

import java.util.*;

import javax.net.ssl.HostnameVerifier;

import javax.net.ssl.HttpsURLConnection;

import javax.net.ssl.SSLSession;

import javax.xml.ws.BindingProvider;

import javax.xml.ws.soap.SOAPFaultException;

vSphere Web Services SDK Programming Guide

VMware, Inc. 44

3 Create the TestClient class:

public class TestClient {

4 Include the class variable declarations/definitions. Use a TrustManager class to accept all certificates,
as shown in Accessing the vSphere Web Services HTTP Endpoint with JAX-WS . This is not
appropriate for a production environment. Production code should implement certificate support.

5 Use the vSphere Web Services APIs to create the connection, as shown in Accessing the vSphere
Server from a Web Services Client.

6 Retrieve data from the vSphere or vCenter Server. In this example, we are just going to print out the
product name, server type, and product version to prove that the client is connected and working
correctly.

System.out.println(serviceContent.getAbout().getFullName());

System.out.println("Server type is " + serviceContent.getAbout().getApiType());

System.out.println("API version is " + serviceContent.getAbout().getVersion());

7 Use the VimPort object to close the connection, as shown in Closing the Connection from a Web
Services Client. Always close your server connections to maintain security.

Java Client Example for the Web Services SDK
This example shows the complete sample client application code, without the explanatory steps. The
example opens a connection with the server, retrieves the service content, uses the session manager
managed object reference to log in, displays information about the server, and closes the connection.

Example: Java Test Client Application

import com.vmware.vim25.*;

import java.util.*;

import javax.net.ssl.HostnameVerifier;

import javax.net.ssl.HttpsURLConnection;

import javax.net.ssl.SSLSession;

import javax.xml.ws.BindingProvider;

import javax.xml.ws.soap.SOAPFaultException;

public class TestClient {

// Authentication is handled by using a TrustManager and supplying

// a host name verifier method. (The host name verifier is declared

// in the main function.)

private static class TrustAllTrustManager

 implements javax.net.ssl.TrustManager,

 javax.net.ssl.X509TrustManager {

 public java.security.cert.X509Certificate[] getAcceptedIssuers() {

 return null;

 }

 public boolean isServerTrusted(java.security.cert.X509Certificate[] certs) {

vSphere Web Services SDK Programming Guide

VMware, Inc. 45

 return true;

 }

 public boolean isClientTrusted(java.security.cert.X509Certificate[] certs) {

 return true;

 }

 public void checkServerTrusted(java.security.cert.X509Certificate[] certs,

 String authType)

 throws java.security.cert.CertificateException {

 return;

 }

 public void checkClientTrusted(java.security.cert.X509Certificate[] certs,

 String authType)

 throws java.security.cert.CertificateException {

 return;

 }

}

public static void main(String[] args) {

 try {

 // Server URL and credentials.

 String serverName = args[0];

 String userName = args[1];

 String password = args[2];

 String url = "https://"+serverName+"/sdk/vimService";

 // Variables of the following types for access to the API methods

 // and to the vSphere inventory.

 // -- ManagedObjectReference for the ServiceInstance on the Server

 // -- VimService for access to the vSphere Web service

 // -- VimPortType for access to methods

 // -- ServiceContent for access to managed object services

 ManagedObjectReference SVC_INST_REF = new ManagedObjectReference();

 VimService vimService;

 VimPortType vimPort;

 ServiceContent serviceContent;

 // Declare a host name verifier that will automatically enable

 // the connection. The host name verifier is invoked during

 // the SSL handshake.

 HostnameVerifier hv = new HostnameVerifier() {

 public boolean verify(String urlHostName, SSLSession session) {

 return true;

 }

 };

 // Create the trust manager.

 javax.net.ssl.TrustManager[] trustAllCerts = new javax.net.ssl.TrustManager[1];

 javax.net.ssl.TrustManager tm = new TrustAllTrustManager();

 trustAllCerts[0] = tm;

 // Create the SSL context

 javax.net.ssl.SSLContext sc = javax.net.ssl.SSLContext.getInstance("SSL");

vSphere Web Services SDK Programming Guide

VMware, Inc. 46

 // Create the session context

 javax.net.ssl.SSLSessionContext sslsc = sc.getServerSessionContext();

 // Initialize the contexts; the session context takes the trust manager.

 sslsc.setSessionTimeout(0);

 sc.init(null, trustAllCerts, null);

 // Use the default socket factory to create the socket for the secure connection

 javax.net.ssl.HttpsURLConnection.setDefaultSSLSocketFactory(sc.getSocketFactory());

 // Set the default host name verifier to enable the connection.

 HttpsURLConnection.setDefaultHostnameVerifier(hv);

 // Set up the manufactured managed object reference for the ServiceInstance

 SVC_INST_REF.setType("ServiceInstance");

 SVC_INST_REF.setValue("ServiceInstance");

 // Create a VimService object to obtain a VimPort binding provider.

 // The BindingProvider provides access to the protocol fields

 // in request/response messages. Retrieve the request context

 // which will be used for processing message requests.

 vimService = new VimService();

 vimPort = vimService.getVimPort();

 Map<String, Object> ctxt = ((BindingProvider) vimPort).getRequestContext();

 // Store the Server URL in the request context and specify true

 // to maintain the connection between the client and server.

 // The client API will include the Server's HTTP cookie in its

 // requests to maintain the session. If you do not set this to true,

 // the Server will start a new session with each request.

 ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, url);

 ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

 // Retrieve the ServiceContent object and login

 serviceContent = vimPort.retrieveServiceContent(SVC_INST_REF);

 vimPort.login(serviceContent.getSessionManager(),

 userName,

 password,

 null);

 // print out the product name, server type, and product version

 System.out.println(serviceContent.getAbout().getFullName());

 System.out.println("Server type is " + serviceContent.getAbout().getApiType());

 System.out.println("API version is " + serviceContent.getAbout().getVersion());

 // close the connection

 vimPort.logout(serviceContent.getSessionManager());

 } catch (Exception e) {

 System.out.println(" Connect Failed ");

 e.printStackTrace();

 }

 }//end main()

}// end class TestClient

// See Obtaining a Session Token - Code Fragments from VMPromoteDisks.java for more details.

vSphere Web Services SDK Programming Guide

VMware, Inc. 47

Compiling the Java Test Client in the Web Services SDK
Use the following command to compile the code for the Java Test Client Application, after you have saved
it as a .java file:

c:>javac -classpath path-to-vim25.jar TestClient.java

Use the following command to execute the compiled class (binary) file:

c:>java -classpath path-to-vim25.jar TestClient web-service-url user-name user-password

Web Server Session Token
As with other Web services, the vSphere Web service maintains session state for each client connection
by using a token in the HTTP header to identify the session. The vSphere server returns a session token
to the client in its response to the client connection request. Subsequent messages between client and
server automatically include the token.

Each of the stand-alone samples in the SDK\vsphere-ws\java\JAX-WS\samples\com\vmware\ uses
the JAX-WS TrustAllTrustCertificates class, as discussed in Obtaining a Session Token - Code Fragments
from VMPromoteDisks.java to ignore certificates, obtain a session token, and then connect to the server.

Caution We do not recommend that you trust all certificates in a production environment. Instead, you
can look at the sample code to see how the JAX-WS libraries are used when making the connection, but
set up an SSL policy that allows connection only with trusted certificates.

The logic for getting a cookie and putting it in the header looks like this:

//cookie logic

List cookies = (List) headers.get("Set-cookie");

cookieValue = (String) cookies.get(0);

StringTokenizer tokenizer = new StringTokenizer(cookieValue, ";");

cookieValue = tokenizer.nextToken();

String path = "$" + tokenizer.nextToken();

String cookie = "$Version=\"1\"; " + cookieValue + "; " + path;

// set the cookie in the new request header

Map map = new HashMap();

map.put("Cookie", Collections.singletonList(cookie));

((BindingProvider) vimPort).getRequestContext().put(

MessageContext.HTTP_REQUEST_HEADERS, map);

Accessing the vSphere Web Services HTTP Endpoint with JAX-WS
The steps for accessing any HTTP endpoint with JAX-WS bindings include the vSphere Web Services
SDK Server URL, vSphere server object, and variables.

These steps are listed at the beginning of Obtaining a Session Token - Code Fragments from
VMPromoteDisks.java.

vSphere Web Services SDK Programming Guide

VMware, Inc. 48

Procedure

1 Create a TrustManager class to handle certificate checking.

In this example we use a TrustManager class to accept all certificates. This is not appropriate for a
production environment. Production code should implement certificate support.

private static class TrustAllTrustManager

 implements javax.net.ssl.TrustManager,

 javax.net.ssl.X509TrustManager {

 public java.security.cert.X509Certificate[] getAcceptedIssuers() {

 return null;

 }

 public boolean isServerTrusted(

 java.security.cert.X509Certificate[] certs) {

 return true;

 }

 public boolean isClientTrusted(java.security.cert.X509Certificate[] certs) {

 return true;

 }

 public void checkServerTrusted(java.security.cert.X509Certificate[] certs,

 String authType)

 throws java.security.cert.CertificateException {

 return;

 }

 public void checkClientTrusted(java.security.cert.X509Certificate[] certs,

 String authType)

 throws java.security.cert.CertificateException {

 return;

 }

}

2 Include the Server URL and credentials as arguments in the main method:

public static void main(String[] args) {

 try {

 String serverName = args[0];

 String userName = args[1];

 String password = args[2];

 String url = "https://"+serverName+"/sdk/vimService";

3 Declare variables of the following types for access to vSphere server objects:

n ManagedObjectReference for the ServiceInstance.

n VimService object for access to the Web service.

n VimPortType object for access to all of the methods defined in the vSphere API.

n ServiceContent for access to the managed object services on the server.

vSphere Web Services SDK Programming Guide

VMware, Inc. 49

The following Java code fragment shows these variable declarations:

ManagedObjectReference SVC_INST_REF

VimService vimService;

VimPortType vimPort;

ServiceContent serviceContent;

4 Declare a host name verifier that will automatically enable the connection. The host name verifier is
invoked during the SSL handshake.

HostnameVerifier hv = new HostnameVerifier() {

 public boolean verify(String urlHostName, SSLSession session) {

 return true;

 }

};

5 Instantiate the trust manager object.

// Create the trust manager.

javax.net.ssl.TrustManager[] trustAllCerts = new javax.net.ssl.TrustManager[1];

javax.net.ssl.TrustManager tm = new TrustAllTrustManager();

trustAllCerts[0] = tm;

6 Create the SSL context

javax.net.ssl.SSLContext sc = javax.net.ssl.SSLContext.getInstance("SSL");

7 Create the session context

javax.net.ssl.SSLSessionContext sslsc = sc.getServerSessionContext();

8 Initialize the contexts; the session context takes the trust manager.

sslsc.setSessionTimeout(0);

sc.init(null, trustAllCerts, null);

9 Use the default socket factory to create the socket for the secure connection

javax.net.ssl.HttpsURLConnection.setDefaultSSLSocketFactory(sc.getSocketFactory());

10 Set the default host name verifier to enable the connection.

HttpsURLConnection.setDefaultHostnameVerifier(hv);

Accessing the vSphere Server from a Web Services Client
The steps that use the vSphere Web Services API to create the connection are:

vSphere Web Services SDK Programming Guide

VMware, Inc. 50

Procedure

1 Create a managed object reference for the ServiceInstance object on the server.

ManagedObjectReference SVC_INST_REF = new ManagedObjectReference();

SVC_INST_REF.setType("ServiceInstance");

SVC_INST_REF.setValue("ServiceInstance");

2 Create a VimService object to obtain a VimPort binding provider. The BindingProvider object
provides access to the protocol fields in request/response messages. Retrieve the request context
which will be used for processing message requests.

The VimServiceLocator and VimPortType objects provide access to vSphere servers. The
getVimPort method returns a VimPortType object that provides access to the vSphere API
methods.

vimService = new VimService();

vimPort = vimService.getVimPort();

Map<String, Object> ctxt = ((BindingProvider) vimPort).getRequestContext();

3 Store the Server URL in the request context and specify true to maintain the connection between the
client and server. The client API will include the server's HTTP cookie in its requests to maintain the
session. If you do not set this to true, the server will start a new session with each request.

ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, url);

ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

4 Retrieve the ServiceInstance content (the ServiceContent data object) and log in to the server.

serviceContent = vimPort.retrieveServiceContent(SVC_INST_REF);

vimPort.login(serviceContent.getSessionManager(),

 userName,

 password,

 null);

isConnected = true;

Closing the Connection from a Web Services Client
Use the VimPort object again to close the connection. Always close your server connections to maintain
security.

 vimPort.logout(serviceContent.getSessionManager());

 } catch (Exception e) {

 System.out.println(" Connect Failed ");

 e.printStackTrace();

 }

 }//end main()

}// end class TestClient

vSphere Web Services SDK Programming Guide

VMware, Inc. 51

Using the Java Samples as Reference
The following code fragment from the SDK\vsphere-ws\java\JAX-WS\samples\com\vmware\vm\
VMPromoteDisks.java sample shows another implementation of the server connection. Review the
stand-alone Java samples that are shipped with your vSphere Web Services SDK, and use similar code
to get a session token for your client application.

Example: Obtaining a Session Token - Code Fragments from
VMPromoteDisks.java

 .

 .

 .

 private static String cookieValue = "";

 private static Map headers = new HashMap();

 .

 .

 .

 private static void trustAllHttpsCertificates()

 throws Exception {

 javax.net.ssl.TrustManager[] trustAllCerts = new javax.net.ssl.TrustManager[1];

 javax.net.ssl.TrustManager tm = new TrustAllTrustManager();

 trustAllCerts[0] = tm;

 javax.net.ssl.SSLContext sc = javax.net.ssl.SSLContext.getInstance("SSL");

 javax.net.ssl.SSLSessionContext sslsc = sc.getServerSessionContext();

 sslsc.setSessionTimeout(0);

 sc.init(null, trustAllCerts, null);

 javax.net.ssl.HttpsURLConnection.setDefaultSSLSocketFactory(sc.getSocketFactory());

 }

 ...

 private static void connect()

 throws Exception {

 HostnameVerifier hv = new HostnameVerifier() {

 public boolean verify(String urlHostName, SSLSession session) {

 return true;

 }

 };

 trustAllHttpsCertificates();

 HttpsURLConnection.setDefaultHostnameVerifier(hv);

 SVC_INST_REF.setType(SVC_INST_NAME);

 SVC_INST_REF.setValue(SVC_INST_NAME);

 vimService = new VimService();

 vimPort = vimService.getVimPort();

 Map<String, Object> ctxt =

 ((BindingProvider) vimPort).getRequestContext();

 ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, url);

 ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

vSphere Web Services SDK Programming Guide

VMware, Inc. 52

 serviceContent = vimPort.retrieveServiceContent(SVC_INST_REF);

 headers =

 (Map) ((BindingProvider) vimPort).getResponseContext().get(

 MessageContext.HTTP_RESPONSE_HEADERS);

 vimPort.login(serviceContent.getSessionManager(),

 userName,

 password, null);

 isConnected = true;

 propCollectorRef = serviceContent.getPropertyCollector();

 rootRef = serviceContent.getRootFolder();

 }

 ...

Multiple Versions of the vSphere API
When a client application connects to a Web service running on a vSphere server (ESXi or vCenter
Server system), the server detects the version of the API that was used to develop the client and makes
available only those operations supported by the client.

Client applications convey information about the API version used in the SOAP messages that they send
to a vSphere server. These SOAP messages include a versionID in the soapAction attribute. The
details are handled transparently by the SOAP toolkit and the client proxy code. The server adjusts its
behavior based on the client’s version information, exposing the API version that the client supports to the
client.

Starting with vSphere 4.0, information about the supported API versions is contained in an XML file,
vimServiceVersions.xml, located on the server (see Service-Versions File (vimServiceVersions.xml)).
You can access this file with the URL https://server_hostname/sdk/vimServiceVersions.xml.

Example: Service-Versions File (vimServiceVersions.xml)

<?xml version="1.0" encoding="UTF-8" ?>

- <!-- Copyright 2008-2010 VMware, Inc. All rights reserved. -->

- <namespaces version="1.0">

 - <namespace>

 <name>urn:vim25</name>

 <version>5.0</version>

 - <priorVersions>

 <version>2.5u2</version>

 <version>2.5</version>

 </priorVersions>

 </namespace>

 - <namespace>

 <name>urn:vim2</name>

 <version>2.0</version>

 </namespace>

 </namespaces>

vSphere Web Services SDK Programming Guide

VMware, Inc. 53

If you are developing a client application that must support multiple server versions at the same time
(ESXi 5.0 and ESXi 5.5, for example), you must obtain information about the API versions that are
supported on the server and provide logic in your code to use or not use features, based upon the version
information.

One approach to targeting multiple versions of the API from the same client application code is to check
for the existence of the server versions file on the server. If you do not find a vimServiceVersions.xml
file on the server, the server is older than ESX/ESXi 4.x, vCenter Server 4.x.

Java and C# Sample Applications in the Web Services
SDK
The vSphere Web Services SDK includes sample applications, written in Java and C#, that demonstrate
features of the vSphere API and object model. Most of the samples do not handle exceptions, and they
accept all security certificates. So use the applications as examples for extracting the types of data you
want to view, but do not use the helper classes, trust store methods or exception handling techniques in
your production environment.

Java Samples in the Web Services SDK
The Java samples in your vSphere Web Services SDK include .java files that you can compile and then
run using any Java editor or IDE. The samples accept command-line arguments for the vSphere server
name (DNS name or IP address), user name, and password.

C# Samples in the Web Services SDK
The C# samples in your vSphere Web Services SDK include a .cs file and three project files in each
directory (.proj, 2008.proj, and 2010.proj) so you can run them using Microsoft’s Visual Studio.

Like the Java samples, the C# samples also accept command-line arguments for the vSphere server
name (DNS name or IP address), user name, and password, and they accept all certificates to establish
the SSL handshake.

Unlike the Java samples, the C# samples use the helper classes discussed in Helper Classes for C#
Sample Applications in the Web Services SDK.

Helper Classes for C# Sample Applications in the Web Services SDK
The C# sample applications included with the vSphere Web Services SDK include C# helper classes that
handle the details of creating sessions, obtaining session tokens, saving the session token as a string to
a file, and reusing the session. The Microsoft .NET Web services implementation uses the Cookie class
to handle the session information from the server.

The helper classes (listed in the following table) handle command-line input such as common parameters,
server name, and other details. These helper classes are located in the unpacked C# version of the SDK
download, in this location:

vSphere Web Services SDK Programming Guide

VMware, Inc. 54

C# Helper Classes

%SDKHOME%\vsphere-ws\dotnet\cs\samples\AppUtil

AppUtils Functional Description

AppUtil.cs Convenient methods you can use to handle user input from command line.
Catches errors (faults). Logs output to console.

AppUtil.csproj Convenient methods you can use to handle user input from command line.,
built to run on versions of Microsoft Visual Studio that were released before
2008.

ArgumentHandlingException.cs Convenient methods you can use to handle exceptions.

CertPolicy.cs Convenient methods you can use to customize certificate error messages.

ClientUtil.cs Convenient methods you can use to handle user input from command line.
Catches errors (faults). Logs output to console.

CustomSecurity.cs Convenient methods you can use to override the SOAP security filter.

CustomSecurityAssertionBearer.cs Convenient methods you can use to create a custom policy assertion that
applies security to a SOAP message exchange.

Log.cs Convenient methods you can use to create a log file or send log output to
the console.

OptionSpec.cs Helper class for handling default and custom command-line arguments.

PropertyManager.cs Convenient methods you can use to listen for Property Manager updates.

ServiceUtil.cs Wrapper methods for the vimService methods (the local proxy code
methods) for API 2.0 and prior releases.

SvcConnection.cs Convenient methods you can use to create a Web service connection
handler.

TrustAllCertificatePolicy.cs Creates an instance of local proxy for connecting to the server, and obtains
managed object references to several needed managed objects—
ServiceInstance, ServiceContent, rootFolder.

VersionUtil.cs Convenient methods you can use to retrieve the namespace and API
version.

VMUtils.cs Convenient methods you can use to create a virtual machine configuration
spec.

vSphere Web Services SDK Programming Guide

VMware, Inc. 55

Datacenter Inventory 4
The vSphere inventory is a representation of the vSphere datacenter and the objects in the datacenter.
Knowing how the objects in the datacenter relate to each other helps you traverse the inventory hierarchy
and access the objects you want to manipulate.

This chapter includes the following topics:

n Inventory Overview for the Web Services SDK

n Inventory Hierarchies and ServiceInstance

n Accessing Inventory Objects

n Creating Inventory Objects

n Privileges Required for Inventory Management

n Managed and Standalone ESXi Hosts

Inventory Overview for the Web Services SDK
The vSphere inventory contains the following types of objects:

n Systems in the datacenter: Host, VirtualMachine, and VirtualApp.

n Support components: ComputeResource, Datastore, Network, and virtual devices.

n Organizational components: Folder and Datacenter

When you manage the virtual infrastructure, you access objects and their properties and methods based
on their location in the inventory. Understanding the inventory structure is therefore critical for any
programming task. You always start with the ServiceInstance associated with a session, which is the
root object of the inventory, and traverse the inventory hierarchy from there. See Chapter 5 Property
Collector. How you access objects depends on whether your client application is connected to a vCenter
Server or an ESXi host.

Inventory Hierarchies and ServiceInstance
When you start a session, vSphere creates a ServiceInstance with one root folder, one Datacenter,
and four folders that hold the different types of inventory objects.

VMware, Inc. 56

When you access a vCenter Server System, the hierarchy shown in the illustration below allows you to
traverse the inventory.

Figure 4-1. vCenter Server Inventory Hierarchy

Caution If your ESXi hosts are managed by vCenter Server, you must always access your hosts
through vCenter Server. The vCenter service keeps track of all synchronous and asynchronous
operations, and will have the latest status and inventory information about each ESXi host. Therefore,
connecting directly to a managed host may give you incorrect or incomplete data.

When you have ESXi hosts that are not managed by vCenter Server, your application can connect to
each host directly.

Folders in the Hierarchy
If your installation includes a vCenter Server system, you can create additional datacenters under the root
folder. For every Datacenter object, the server automatically creates the following Folder objects:

n A folder for VirtualMachine, template, and VirtualApp objects.

n A folder for a ComputeResource hierarchy.

n A folder for Network, DistributedVirtualSwitch, and DistributedVirtualPortgroup objects.

n A folder for Datastore objects.

In a large deployment, the nested structure allows you to organize the objects in the datacenter into an
easily manageable structure by using multiple folders and datacenters.

vSphere Web Services SDK Programming Guide

VMware, Inc. 57

For a standalone ESXi system, only a single datacenter is supported, and the Folder managed entity
does not support creating additional Folder objects or Datacenter objects.

ESXi Inventory Hierarchy
When you access an ESXi host directly, rather than accessing the host through a vCenter Server system,
the hierarchy shown in the illustration below allows you to traverse the inventory.

Figure 4-2. ESXi Inventory Hierarchy

Accessing Inventory Objects
To retrieve information from an inventory object, you start with ServiceInstance, the root object of the
inventory. You access an object using a TraversalSpec in conjunction with a property collector, using the
properties that identify an object’s position in the hierarchy.

n Every managed entity has a parent property that identifies its relative position in the inventory
hierarchy.

n The Folder managed object has a childEntity property that identifies objects in a folder instance.

Figure 4-3. Instance Diagram of Root Folders in an Inventory shows the childEntity and folder
properties that define the default objects in the inventory of a standalone ESXi system. The inventory
begins with the ServiceContent.rootFolder property. The rootFolder has a childEntity that
consists of a managed object reference to a Datacenter managed object.

vSphere Web Services SDK Programming Guide

VMware, Inc. 58

Figure 4-3. Instance Diagram of Root Folders in an Inventory

Creating Inventory Objects
The Folder managed entity provides methods for creating instances of the following managed entities.

n Datacenter

n DistributedVirtualSwitch

n VirtualMachine

n Cluster

n Folder

When you create these objects, they appear in the folder you invoked the creation method from.

While some managed entities are created through a method on the Folder managed entity, other
managed entities are instantiated directly. For example, the HostDatastoreSystem has methods for
creating datastores such as CreateNasDatastore and CreateVmfsDatastore.

Important When you create an inventory object, you must stay within the bounds of the host’s
capabilities, accessible through the HostSystem.capability property, which is a HostCapability data
object. For example, a HostCapability object might have the maxSupportedVMs property specified.

Privileges Required for Inventory Management
Navigating the inventory requires a user account that can connect to the server and obtain a valid
session. The user identity associated with the session is called a principal. When a client application

vSphere Web Services SDK Programming Guide

VMware, Inc. 59

attempts to access an object in the inventory, the server checks the permission object or objects and
compares the permissions with the principal’s privileges.

For example, creating a virtual machine requires that the principal associated with the session have the
following privileges:

n The VirtualMachine.Inventory.Create privilege on the folder in which to create the virtual
machine.

n The Resource.AssignVMToPool privilege on the resource pool from which the virtual machine
obtains its allocation of CPU and memory resources.

Reading the perfCounter property of the PerformanceManager managed object requires the
System.View privilege on the root folder.

Important Some privileges are specific to objects on vCenter Server or specific to ESXi. For example,
the Alarm.Create privilege associated with AlarmManager is available only through vCenter Server
systems.

See Chapter 6 Authentication and Authorization for more information on authentication, authorization,
roles, and user identity.

Privileges
A privilege is a system-defined requirement associated with a VMware vSphere managed object.
Privileges are static and do not change for a version of a product. Privileges for vSphere components are
defined as follows:

<group>[.<group>].privilege

For example:

Datacenter.Create

Host.Config.Connection

Host.Config.Snmp

Permissions
Permissions are the associations of roles with privileges on a specified managed entity. You use
permissions to specify which users can access which managed entity.

A child entity inherits the permissions of its parent if the parent’s propagate property is set to true. A
permission that is set directly on a child overrides the permission in the parent. To grant permission to all
child entities of a Datacenter object, assign permissions to the Datacenter object and set the
Permission object’s propagate property to true.

vSphere Web Services SDK Programming Guide

VMware, Inc. 60

Figure 4-4. Inventory and Permissions shows that users root and vpxuser both have permissions on the
rootFolder of the inventory. The vpxuser is the account created on a host by the vCenter Server
system when that host is added to the vCenter Server system. The vCenter Server system needs access
to the inventory objects of the host systems that it manages, so the vpxuser account is granted privileges
to the rootFolder of each host.

Important See Chapter 6 Authentication and Authorization for a detailed discussion of privileges,
permissions, and user management.

Figure 4-4. Inventory and Permissions

Managed and Standalone ESXi Hosts
You can run ESXi as a managed or standalone ESXi host.

n Standalone ESXi hosts are standalone hosts with limited capabilities. The inventory of a standalone
host can support multiple virtual machines and multiple resource pools, but it contains a single default
datacenter and a single root folder. The default datacenter and root folder are not visible in the
vSphere Client, but they exist in the inventory of a standalone host and they are visible in the MOB.

n Managed ESXi hosts have been added to the vCenter Server inventory. Available features depend on
the licenses available for that host. For example, you can configure two or more hosts for VMware
DRS resource management or VMware HA failover protection.

The following table summarizes the differences between the number of objects that an inventory can
contain. See also Figure 4-2. ESXi Inventory Hierarchy and Figure 4-1. vCenter Server Inventory
Hierarchy.

vSphere Web Services SDK Programming Guide

VMware, Inc. 61

ManagedEntity Subtype ESX/ESXi Inventory vCenter Server Inventory

ClusterComputeResource None. Multiple instances supported.

ComputeResource Exactly one only. Multiple instances supported.

Datacenter Exactly one only. Cannot be destroyed.
Transparent.

Multiple instances supported.

Datastore Multiple instances supported. Multiple instances supported.

DistributedVirtualSwitch Multiple instances supported. Multiple instances supported.

Folder Exactly one only. Cannot be destroyed.
Transparent.

Multiple instances supported.

HostSystem Exactly one only. Multiple instances supported.

Network Multiple instances supported. Multiple instances supported.

ResourcePool Multiple instances supported. Multiple instances supported.

VirtualApp None. Multiple instances supported.

VirtualMachine Multiple instances supported. Multiple instances supported.

vSphere Web Services SDK Programming Guide

VMware, Inc. 62

Property Collector 5
vSphere servers provide the PropertyCollector service for accessing data and monitoring changes.
Use the PropertyCollector to obtain references to managed objects, to obtain values of managed
object properties, and to monitor and retrieve modified property values.

This chapter includes the following topics:

n Introduction to the PropertyCollector

n vSphere Data Objects for Property Collection

n vSphere Methods for Property Collection

n Retrieve Properties with the PropertyCollector

n Inventory Traversal

n Client Data Synchronization (WaitForUpdatesEx)

n Server Data Transmission

n PropertyCollector Performance

n SearchIndex

Introduction to the PropertyCollector
The PropertyCollector service interface provides a way to monitor and retrieve information about
managed objects, such as whether a virtual machine is powered on or whether a host in a cluster is
offline.

The PropertyCollector uses one or more filters to determine the scope of collection and it has
methods to retrieve data. A filter uses a set of data objects that specify the following information:

n Starting point for inventory traversal during the collection operation.

n Inventory traversal path.

n Objects and properties from which data will be collected.

VMware, Inc. 63

A vSphere server creates a default PropertyCollector for every session, and allows you to create
multiple, additional PropertyCollector objects. Create additional PropertyCollector objects, using
one per thread, to perform mutually independent collection operations.

Data Retrieval
There are two ways to retrieve data:

n Property retrieval as a single operation uses the RetrievePropertiesEx and
ContinueRetrievePropertiesEx methods. These methods perform a single collection operation.

n Incremental property retrieval, also referred to as property monitoring, uses the WaitForUpdatesEx
method. The initial call to this method retrieves a baseline set of managed object property values.
Subsequent calls retrieve changes in property values since the last retrieval. Use WaitForUpdatesEx
to monitor changes to the inventory or any managed object properties.

Note The PropertyCollector does not guarantee the order of data that it returns in response to a
request for data.

Inventory Traversal and Object Selection
PropertyCollector filter properties identify object properties and paths that define inventory traversal.
For example, you can retrieve the properties for a VirtualMachine object and specify a traversal path
using the VirtualMachine.network property to obtain the properties for the associated Network
objects.

You can use vSphere view objects (for example, ContainerView) in filters to simplify traversal
specification. A view maintains a subset of inventory objects, so if there is a change in the inventory
hierarchy, you do not have to recreate the view. Use a view to specify a set of objects that the
PropertyCollector can use for data collection.

For information about the vSphere inventory, see Inventory Traversal and Object Selection.

vSphere Data Objects for Property Collection
The following table provides an overview of the PropertyCollector data objects. For more detailed
descriptions, see the vSphere API Reference.

Data Object Description

PropertyFilterSpec Provides access to object and property selection data. A PropertyFilterSpec must
have at least one ObjectSpec and one PropertySpec.

ObjectSpec Identifies the starting object for property collection. An ObjectSpec also identifies
additional objects for collection.

TraversalSpec Identifies the type of object for property collection. It also provides one or more paths
for inventory traversal.

SelectionSpec Acts as a placeholder reference to a TraversalSpec.

vSphere Web Services SDK Programming Guide

VMware, Inc. 64

Data Object Description

PropertySpec Identifies properties for collection.

View objects Identify a subset of the vSphere inventory objects.

vSphere Methods for Property Collection
The PropertyCollector supports the following approaches to obtaining objects and properties from the
server:

n If your client application does not keep a synchronized representation of server state, use the
RetrievePropertiesEx method. RetrievePropertiesEx instantiates a filter, collects the specified
objects and properties, and returns the data to your client application as an ObjectContent data
object. The server does not add the filter to the PropertyCollector.filter array. The server
destroys the filter after returning the results to your client.

n If your application maintains a synchronized representation of server state, use the CreateFilter
and WaitForUpdatesEx methods. WaitForUpdatesEx returns descriptions of property changes,
organized by the filter that identified the properties.

In either case, you create a PropertyFilterSpec data object to specify the objects and properties you
want to retrieve from the server.

The following table shows the PropertyCollector methods organized by the context in which you use
them. For more information about these methods, see the vSphere API Reference.

Method Context Method Description

Monitor properties
using different filters

CreatePropertyCollector Creates a new PropertyCollector object to monitor
properties using different filters. The vSphere server
handles requests for a PropertyCollector instance
independently of any other instances of the
PropertyCollector on the server.

DestroyPropertyCollector Destroys an instance of a PropertyCollector that was
created by a call to CreatePropertyCollector from
your client application.

Single collection
operation

RetrievePropertiesEx Retrieves property data for the specified managed
objects.

ContinueRetrievePropertiesEx Retrieves additional property data for an operation started
by RetrievePropertiesEx.

CancelRetrievePropertiesEx Cancels a RetrievePropertiesEx or
ContinueRetrievePropertiesEx operation.

Incremental
collection or
monitoring operation

WaitForUpdatesEx Retrieves changes to property data since the last
WaitForUpdatesEx cycle. WaitForUpdatesEx blocks
until it can satisfy the request or until the request times
out. WaitForUpdatesEx supports chunked data
transmission (see Server Data Transmission).

vSphere Web Services SDK Programming Guide

VMware, Inc. 65

Method Context Method Description

CancelWaitForUpdatesEx Cancels a WaitForUpdatesEx operation.

General CreateFilter Creates a new instance of a PropertyFilter managed
object.

Retrieve Properties with the PropertyCollector
The following procedure shows how to retrieve properties of managed objects by using the
RetrievePropertiesEx method. The procedure steps are illustrated by code fragments.

This procedure shows only the task of using the PropertyCollector. For a description of server
connection, see Build a Simple vSphere Client Application for the Web Services SDK. You can also see
these code fragments in the context of an end-to-end example that includes connection and
authentication logic, in Build a Simple vSphere Client Application for the Web Services SDK.

To do a single retrieval operation with the PropertyCollector, use the following steps.

Procedure

1 Get references to the ViewManager and the PropertyCollector.

In the example, sContent is the variable for the ServiceContent data object. sContent provides
the methods to retrieve the managed object references to the vSphere services.

ManagedObjectReference viewMgrRef = sContent.getViewManager();

ManagedObjectReference propColl = sContent.getPropertyCollector();

2 Create a container view for virtual machines.

methods is the variable for the VimPortType object. VimPortType defines the Java methods that
correspond to the vSphere API methods. The createContainerView parameters container (the
inventory root folder, returned by the method sContent.getRootFolder) and type (“Virtual
Machine”) direct the ViewManager to select virtual machines, starting at the root folder. The value
true for the recursive parameter extends the selection beyond the root folder so that the
ViewManager will follow child folder paths to add virtual machines to the view. The container view
provides references to all virtual machines in the inventory.

List<String> vmList = new ArrayList<String>();

vmList.add("VirtualMachine");

ManagedObjectReference cViewRef = methods.createContainerView(viewMgrRef,

 sContent.getRootFolder(),

 vmList,

 true);

vSphere Web Services SDK Programming Guide

VMware, Inc. 66

3 Create an object specification to define the starting point for inventory navigation.

The ObjectSpec.obj property identifies the starting object (the container view). This example
collects only virtual machine data, so the skip property is set to true to ignore the container view
itself during collection.

ObjectSpec oSpec = new ObjectSpec();

oSpec.setObj(cViewRef);

oSpec.setSkip(true);

4 Create a traversal specification to identify the path for collection.

The TraversalSpec properties type and path determine path traversal. TraversalSpec.type
identifies an object type. TraversalSpec.path identifies a property in the type object. The
PropertyCollector uses the path object to select additional objects.

This example uses a single TraversalSpec to walk the list of virtual machines that are available
through the container view. The following code fragment specifies the ContainerView object for the
TraversalSpec.type property and the view property in the ContainerView for the
TraversalSpec.path property. The skip property is set to false, so the PropertyCollector will
collect data from the path objects (the virtual machines in the container view).

TraversalSpec tSpec = new TraversalSpec();

tSpec.setName("traverseEntities");

tSpec.setPath("view");

tSpec.setSkip(false);

tSpec.setType("ContainerView");

5 Add the TraversalSpec to the ObjectSpec.selectSet array.

oSpec.getSelectSet().add(tSpec);

6 Identify the properties to be retrieved.

The example program creates a PropertySpec data object to specify the properties to be collected.
The type property is set to VirtualMachine to match the object selections in the container view.
The pathSet property identifies one or more properties in the type object.

This example specifies the VirtualMachine.name property.

PropertySpec pSpec = new PropertySpec();

pSpec.setType("VirtualMachine");

pSpec.getPathSet().add("name");

7 Add the object and property specifications to the property filter specification.

A PropertyFilterSpec must have at least one ObjectSpec and one PropertySpec.

PropertyFilterSpec fSpec = new PropertyFilterSpec();

fSpec.getObjectSet().add(oSpec);

fSpec.getPropSet().add(pSpec);

vSphere Web Services SDK Programming Guide

VMware, Inc. 67

8 Create a list for the filters and add the spec to it.

List<PropertyFilterSpec> fSpecList = new ArrayList<PropertyFilterSpec>();

fSpecList.add(fSpec);

9 Retrieve the data.

To invoke a single property collection operation, call the RetrievePropertiesEx method. The
example application passes the populated PropertyFilterSpec and an empty options structure to
the method. The default for the RetrieveOptions.maxObjects specifies that no maximum for the
number of objects that can be returned is set. The PropertyCollector can impose a maximum. If
the number of collected objects is greater than the maximum, the PropertyCollector returns a
token value in the RetrieveResult data object and this token is used to retrieve the remaining
properties using the ContinueRetrievePropertiesEx API method. For more information, see
Server Data Transmission.

RetrieveOptions ro = new RetrieveOptions();

RetrieveResult props = methods.retrievePropertiesEx(propColl,fSpecList,ro);

10 Print the virtual machine names.

The following code fragment walks the list of ObjectContent objects returned in the
RetrieveResult object. For each object (ObjectContent), the inner loop prints the name-value
pairs.

if (props != null) {

 for (ObjectContent oc : props.getObjects()) {

 String vmName = null;

 String path = null;

 List<DynamicProperty> dps = oc.getPropSet();

 if (dps != null) {

 for (DynamicProperty dp : dps) {

 vmName = (String) dp.getVal();

 path = dp.getName();

 System.out.println(path + " = " + vmName);

 }

 }

}

Simple Property Collector Program in Java for Web Services SDK
The Property Collector provides a powerful, flexible, and efficient way to collect data from vCenter Server
or ESXi.

Simple PropertyCollector Example (Java) is a simple PropertyCollector example written in Java. The
example uses a ContainerView for efficient access to the inventory and a PropertyFilterSpec that
contains one ObjectSpec, one TraversalSpec, and one PropertySpec. The program performs the
following tasks:

1 Accepts command line arguments for the vSphere server name (DNS name or IP address), user
name, and password.

vSphere Web Services SDK Programming Guide

VMware, Inc. 68

2 Connects to a vSphere server.

3 Uses a ContainerView to create a subset of the inventory; the subset contains only virtual
machines.

4 Uses the RetrievePropertiesEx method for a single retrieval operation.

5 Collects the names of all of the virtual machines in the inventory and prints the names using the
standard output stream.

6 Closes the connection to the server.

Figure 5-1. Property Filter Specification shows the objects used in Simple PropertyCollector Example
(Java). The figure represents properties that identify inventory elements directly or indirectly. It does not
show all the properties for the different objects.

Figure 5-1. Property Filter Specification

Example: Simple PropertyCollector Example (Java)

import com.vmware.vim25.*;

import java.util.*;

import javax.net.ssl.HostnameVerifier;

import javax.net.ssl.HttpsURLConnection;

import javax.net.ssl.SSLSession;

import javax.xml.ws.BindingProvider;

import javax.xml.ws.soap.SOAPFaultException;

// PropertyCollector example

// command line input: server name, user name, password

public class PCollector {

vSphere Web Services SDK Programming Guide

VMware, Inc. 69

 private static void collectProperties(VimPortType methods,

 ServiceContent sContent) throws Exception {

 // Get references to the ViewManager and PropertyCollector

 ManagedObjectReference viewMgrRef = sContent.getViewManager();

 ManagedObjectReference propColl = sContent.getPropertyCollector();

 // use a container view for virtual machines to define the traversal

 // - invoke the VimPortType method createContainerView (corresponds

 // to the ViewManager method) - pass the ViewManager MOR and

 // the other parameters required for the method invocation

 // - createContainerView takes a string[] for the type parameter;

 // declare an arraylist and add the type string to it

 List<String> vmList = new ArrayList<String>();

 vmList.add("VirtualMachine");

 ManagedObjectReference cViewRef = methods.createContainerView(viewMgrRef,

 sContent.getRootFolder(),

 vmList,

 true);

 // create an object spec to define the beginning of the traversal;

 // container view is the root object for this traversal

 ObjectSpec oSpec = new ObjectSpec();

 oSpec.setObj(cViewRef);

 oSpec.setSkip(true);

 // create a traversal spec to select all objects in the view

 TraversalSpec tSpec = new TraversalSpec();

 tSpec.setName("traverseEntities");

 tSpec.setPath("view");

 tSpec.setSkip(false);

 tSpec.setType("ContainerView");

 // add the traversal spec to the object spec;

 // the accessor method (getSelectSet) returns a reference

 // to the mapped XML representation of the list; using this

 // reference to add the spec will update the list

 oSpec.getSelectSet().add(tSpec);

 // specify the property for retrieval (virtual machine name)

 PropertySpec pSpec = new PropertySpec();

 pSpec.setType("VirtualMachine");

 pSpec.getPathSet().add("name");

 // create a PropertyFilterSpec and add the object and

 // property specs to it; use the getter method to reference

 // the mapped XML representation of the lists and add the specs

 // directly to the list

 PropertyFilterSpec fSpec = new PropertyFilterSpec();

 fSpec.getObjectSet().add(oSpec);

 fSpec.getPropSet().add(pSpec);

 // Create a list for the filters and add the spec to it

 List<PropertyFilterSpec> fSpecList = new ArrayList<PropertyFilterSpec>();

vSphere Web Services SDK Programming Guide

VMware, Inc. 70

 fSpecList.add(fSpec);

 // get the data from the server

 RetrieveOptions ro = new RetrieveOptions();

 RetrieveResult props = methods.retrievePropertiesEx(propColl,fSpecList,ro);

 // go through the returned list and print out the data

 if (props != null) {

 for (ObjectContent oc : props.getObjects()) {

 String vmName = null;

 String path = null;

 List<DynamicProperty> dps = oc.getPropSet();

 if (dps != null) {

 for (DynamicProperty dp : dps) {

 vmName = (String) dp.getVal();

 path = dp.getName();

 System.out.println(path + " = " + vmName);

 }

 }

 }

 }

 }//end collectProperties()

 // Authentication is handled by using a TrustManager and supplying

 // a host name verifier method. (The host name verifier is declared

 // in the main function.)

 //

 // For the purposes of this example, this TrustManager implementation

 // will accept all certificates. This is only appropriate for

 // a development environment. Production code should implement certificate support.

 private static class TrustAllTrustManager

 implements javax.net.ssl.TrustManager,

 javax.net.ssl.X509TrustManager {

 public java.security.cert.X509Certificate[] getAcceptedIssuers() {

 return null;

 }

 public boolean isServerTrusted(java.security.cert.X509Certificate[] certs) {

 return true;

 }

 public boolean isClientTrusted(java.security.cert.X509Certificate[] certs) {

 return true;

 }

 public void checkServerTrusted(java.security.cert.X509Certificate[] certs,

 String authType)

 throws java.security.cert.CertificateException {

 return;

 }

 public void checkClientTrusted(java.security.cert.X509Certificate[] certs,

 String authType)

 throws java.security.cert.CertificateException {

vSphere Web Services SDK Programming Guide

VMware, Inc. 71

 return;

 }

 }

 public static void main(String [] args) throws Exception {

 // arglist variables

 String serverName = args[0];

 String userName = args[1];

 String password = args[2];

 String url = "https://"+serverName+"/sdk/vimService";

 // Variables of the following types for access to the API methods

 // and to the vSphere inventory.

 // -- ManagedObjectReference for the ServiceInstance on the Server

 // -- VimService for access to the vSphere Web service

 // -- VimPortType for access to methods

 // -- ServiceContent for access to managed object services

 ManagedObjectReference SVC_INST_REF = new ManagedObjectReference();

 VimService vimService;

 VimPortType vimPort;

 ServiceContent serviceContent;

 // Declare a host name verifier that will automatically enable

 // the connection. The host name verifier is invoked during

 // the SSL handshake.

 HostnameVerifier hv = new HostnameVerifier() {

 public boolean verify(String urlHostName, SSLSession session) {

 return true;

 }

 };

 // Create the trust manager.

 javax.net.ssl.TrustManager[] trustAllCerts = new javax.net.ssl.TrustManager[1];

 javax.net.ssl.TrustManager tm = new TrustAllTrustManager();

 trustAllCerts[0] = tm;

 // Create the SSL context

 javax.net.ssl.SSLContext sc = javax.net.ssl.SSLContext.getInstance("SSL");

 // Create the session context

 javax.net.ssl.SSLSessionContext sslsc = sc.getServerSessionContext();

 // Initialize the contexts; the session context takes the trust manager.

 sslsc.setSessionTimeout(0);

 sc.init(null, trustAllCerts, null);

 // Use the default socket factory to create the socket for the secure connection

 javax.net.ssl.HttpsURLConnection.setDefaultSSLSocketFactory(sc.getSocketFactory());

 // Set the default host name verifier to enable the connection.

 HttpsURLConnection.setDefaultHostnameVerifier(hv);

 // Set up the manufactured managed object reference for the ServiceInstance

 SVC_INST_REF.setType("ServiceInstance");

 SVC_INST_REF.setValue("ServiceInstance");

vSphere Web Services SDK Programming Guide

VMware, Inc. 72

 // Create a VimService object to obtain a VimPort binding provider.

 // The BindingProvider provides access to the protocol fields

 // in request/response messages. Retrieve the request context

 // which will be used for processing message requests.

 vimService = new VimService();

 vimPort = vimService.getVimPort();

 Map<String, Object> ctxt = ((BindingProvider) vimPort).getRequestContext();

 // Store the Server URL in the request context and specify true

 // to maintain the connection between the client and server.

 // The client API will include the Server's HTTP cookie in its

 // requests to maintain the session. If you do not set this to true,

 // the Server will start a new session with each request.

 ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, url);

 ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

 // Retrieve the ServiceContent object and login

 serviceContent = vimPort.retrieveServiceContent(SVC_INST_REF);

 vimPort.login(serviceContent.getSessionManager(),

 userName,

 password,

 null);

 // retrieve data

 collectProperties(vimPort, serviceContent);

 // close the connection

 vimPort.logout(serviceContent.getSessionManager());

 }

}

Inventory Traversal
The Property Collector provides a facility to traverse the inventory on the server in arbitrary ways,
enabling you to follow links between related objects.

Simple PropertyCollector Example (Java) uses a ContainerView to specify the objects that start the
collection process. This is the simplest way to set up a filter, using a single reference to a view to provide
the PropertyCollector with access to a set of objects. To select objects from the inventory, a filter
includes TraversalSpec and possibly SelectionSpec objects. Use these objects to make object
selections based on the references in a view, and to extend inventory traversal beyond those objects (or
beyond the object specified in ObjectSpec.obj).

TraversalSpec Traversal
Use a TraversalSpec object to identify a managed object type and a traversal property in that type.
TraversalSpec contains the following properties:

n type – identifies an inventory object type.

vSphere Web Services SDK Programming Guide

VMware, Inc. 73

n path – specifies a managed object reference property in the type object. This property provides the
traversal path extending from this object.

n selectSet – specifies an optional list of selection objects for additonal object traversal paths. The
PropertyCollector applies the TraversalSpec objects in the selectSet array to the result of the
traversal (the target of TraversalSpec.path). The selectSet array can also contain
SelectionSpec objects; a SelectionSpec is a reference to a TraversalSpec. See SelectionSpec
Traversal.

n skip – indicates whether to collect properties for the path object.

During inventory traversal, the PropertyCollector applies the PropertySpec object or objects
(PropertyFilterSpec.propSet) to objects. Inventory traversal begins with the object identified by
ObjectSpec.obj and continues by following TraversalSpec paths. If PropertySpec.type matches the
current object type, and the skip property is false, the PropertyCollector sends the
PropertySpec.pathSet properties to your client.

Figure 5-2. Inventory Navigation is a representation of a PropertyFilterSpec that defines traversal of
VirtualMachine objects. The filter uses a ContainerView as a starting point. The TraversalSpec for
the ContainerView specifies the view property for access to the view’s virtual machines. The figure
shows TraversalSpec objects that extend navigation from a VirtualMachine object to the associated
Network and ResourcePool objects. The PropertyCollector applies these TraversalSpec objects to
each of the VirtualMachine objects in the view list. The figure also shows the PropertySpec objects for
collecting data from VirtualMachine, Network, and ResourcePool objects.

vSphere Web Services SDK Programming Guide

VMware, Inc. 74

Figure 5-2. Inventory Navigation

Traverse the Inventory By Using the Property Collector
To traverse inventory objects, you define one or more TraversalSpec objects. In each TraversalSpec
object, you specify a property of one managed object that holds a reference to another managed object.
The TraversalSpec defines a path that the PropertyCollector can follow between objects.

To define inventory traversal, use the following steps.

vSphere Web Services SDK Programming Guide

VMware, Inc. 75

Procedure

1 Create a ContainerView for virtual machines.

2 Create an ObjectSpec that uses the container view as the collection starting point.

3 Create a TraversalSpec to be applied to the ContainerView to select VirtualMachine objects.

4 Create additional TraversalSpec objects to select additional objects.

The SelectSet list for the container view TraversalSpec has two TraversalSpec objects. Both
specify a VirtualMachine object context. One object uses the network property to extend traversal
to the Network managed object. The other uses the resourcePool property to extend traversal to
the ResourcePool managed object.

5 Create PropertySpec objects to retrieve VirtualMachine, Network, and ResourcePool properties.

To retrieve properties that are embedded in data objects, the PropertySpec.PathSet property uses
dot notation to specify the property paths.

Inventory Traversal Example in Java
This example shows a complete Java program that collects and prints selected properties from the
inventory, using traversal specs with a property collector. The example lists networks, resource pool
status, and virtual machines.

Example: Inventory Traversal in Java

import com.vmware.vim25.*;

import java.util.*;

import javax.net.ssl.HostnameVerifier;

import javax.net.ssl.HttpsURLConnection;

import javax.net.ssl.SSLSession;

import javax.xml.ws.BindingProvider;

import javax.xml.ws.soap.SOAPFaultException;

// PropertyCollector example

// command line input: server name, user name, password

public class PCollector_traversal {

 private static void collectProperties(VimPortType methods,

 ServiceContent sContent) throws Exception {

 // Get references to the ViewManager and PropertyCollector

 ManagedObjectReference viewMgrRef = sContent.getViewManager();

 ManagedObjectReference propColl = sContent.getPropertyCollector();

 // use a container view for virtual machines to define the traversal

 // - invoke the VimPortType method createContainerView (corresponds

 // to the ViewManager method) - pass the ViewManager MOR and

 // the other parameters required for the method invocation

 // (use a List<String> for the type parameter's string[])

vSphere Web Services SDK Programming Guide

VMware, Inc. 76

 List<String> vmList = new ArrayList<String>();

 vmList.add("VirtualMachine");

 ManagedObjectReference cViewRef =

 methods.createContainerView(viewMgrRef,

 sContent.getRootFolder(),

 vmList,

 true);

 // create an object spec to define the beginning of the traversal;

 // container view is the root object for this traversal

 ObjectSpec oSpec = new ObjectSpec();

 oSpec.setObj(cViewRef);

 oSpec.setSkip(true);

 // create a traversal spec to select all objects in the view

 TraversalSpec tSpec = new TraversalSpec();

 tSpec.setName("traverseEntities");

 tSpec.setPath("view");

 tSpec.setSkip(false);

 tSpec.setType("ContainerView");

 // add the traversal spec to the object spec;

 // the accessor method (getSelectSet) returns a reference

 // to the mapped XML representation of the list; using this

 // reference to add the spec will update the selectSet list

 oSpec.getSelectSet().add(tSpec);

 // extend from virtual machine to network

 TraversalSpec tSpecVmN = new TraversalSpec();

 tSpecVmN.setType("VirtualMachine");

 tSpecVmN.setPath("network");

 tSpecVmN.setSkip(false);

 // extend from virtual machine to resourcepool

 TraversalSpec tSpecVmRp = new TraversalSpec();

 tSpecVmRp.setType("VirtualMachine");

 tSpecVmRp.setPath("resourcePool");

 tSpecVmRp.setSkip(false);

 // add the network and resource pool traversal specs

 // to the virtual machine traversal;

 // the accessor method (getSelectSet) returns a reference

 // to the mapped XML representation of the list; using this

 // reference to add the spec will update the selectSet list

 tSpec.getSelectSet().add(tSpecVmN);

 tSpec.getSelectSet().add(tSpecVmRp);

 // specify the properties for retrieval

 // (virtual machine name, network summary accessible, rp runtime props);

 // the accessor method (getPathSet) returns a reference to the mapped

 // XML representation of the list; using this reference to add the

 // property names will update the pathSet list

 PropertySpec pSpec = new PropertySpec();

 pSpec.setType("VirtualMachine");

vSphere Web Services SDK Programming Guide

VMware, Inc. 77

 pSpec.getPathSet().add("name");

 PropertySpec pSpecNs = new PropertySpec();

 pSpecNs.setType("Network");

 pSpecNs.getPathSet().add("summary.accessible");

 PropertySpec pSpecRPr = new PropertySpec();

 pSpecRPr.setType("ResourcePool");

 pSpecRPr.getPathSet().add("runtime.cpu.maxUsage");

 pSpecRPr.getPathSet().add("runtime.memory.maxUsage");

 pSpecRPr.getPathSet().add("runtime.overallStatus");

 // create a PropertyFilterSpec and add the object and

 // property specs to it; use the getter methods to reference

 // the mapped XML representation of the lists and add the specs

 // directly to the objectSet and propSet lists

 PropertyFilterSpec fSpec = new PropertyFilterSpec();

 fSpec.getObjectSet().add(oSpec);

 fSpec.getPropSet().add(pSpec);

 fSpec.getPropSet().add(pSpecNs);

 fSpec.getPropSet().add(pSpecRPr);

 // Create a list for the filters and add the spec to it

 List<PropertyFilterSpec> fSpecList = new ArrayList<PropertyFilterSpec>();

 fSpecList.add(fSpec);

 // get the data from the server

 RetrieveOptions ro = new RetrieveOptions();

 RetrieveResult props = methods.retrievePropertiesEx(propColl,fSpecList,ro);

 // go through the returned list and print out the data

 if (props != null) {

 for (ObjectContent oc : props.getObjects()) {

 String value = null;

 String path = null;

 List<DynamicProperty> dps = oc.getPropSet();

 if (dps != null) {

 for (DynamicProperty dp : dps) {

 path = dp.getName();

 if (path.equals("name")) {

 value = (String) dp.getVal();

 }

 else if (path.equals("summary.accessible")) {

 // summary.accessible is a boolean

 value = String.valueOf(dp.getVal());

 }

 else if (path.equals("runtime.cpu.maxUsage")) {

 // runtime.cpu.maxUsage is an xsd:long

 value = String.valueOf(dp.getVal());

 }

 else if (path.equals("runtime.memory.maxUsage")) {

 // runtime.memory.maxUsage is an xsd:long

 value = String.valueOf(dp.getVal());

 }

 else if (path.equals("runtime.overallStatus")) {

vSphere Web Services SDK Programming Guide

VMware, Inc. 78

 // runtime.overallStatus is a ManagedEntityStatus enum

 value = String.valueOf(dp.getVal());

 }

 System.out.println(path + " = " + value);

 }

 }

 }

 }

 }//end collectProperties()

 // Authentication is handled by using a TrustManager and supplying

 // a host name verifier method. (The host name verifier is declared

 // in the main function.)

 //

 // For the purposes of this example, this TrustManager implementation

 // will accept all certificates. This is only appropriate for

 // a development environment. Production code should implement certificate support.

 private static class TrustAllTrustManager

 implements javax.net.ssl.TrustManager,

 javax.net.ssl.X509TrustManager {

 public java.security.cert.X509Certificate[] getAcceptedIssuers() {

 return null;

 }

 public boolean isServerTrusted(java.security.cert.X509Certificate[] certs) {

 return true;

 }

 public boolean isClientTrusted(java.security.cert.X509Certificate[] certs) {

 return true;

 }

 public void checkServerTrusted(java.security.cert.X509Certificate[] certs, String authType)

 throws java.security.cert.CertificateException {

 return;

 }

 public void checkClientTrusted(java.security.cert.X509Certificate[] certs, String authType)

 throws java.security.cert.CertificateException {

 return;

 }

 }

 public static void main(String [] args) throws Exception {

 // arglist variables

 String serverName = args[0];

 String userName = args[1];

 String password = args[2];

 String url = "https://"+serverName+"/sdk/vimService";

 // Variables of the following types for access to the API methods

 // and to the vSphere inventory.

vSphere Web Services SDK Programming Guide

VMware, Inc. 79

 // -- ManagedObjectReference for the ServiceInstance on the Server

 // -- VimService for access to the vSphere Web service

 // -- VimPortType for access to methods

 // -- ServiceContent for access to managed object services

 ManagedObjectReference SVC_INST_REF = new ManagedObjectReference();

 VimService vimService;

 VimPortType vimPort;

 ServiceContent serviceContent;

 // Declare a host name verifier that will automatically enable

 // the connection. The host name verifier is invoked during

 // the SSL handshake.

 HostnameVerifier hv = new HostnameVerifier() {

 public boolean verify(String urlHostName, SSLSession session) {

 return true;

 }

 };

 // Create the trust manager.

 javax.net.ssl.TrustManager[] trustAllCerts = new javax.net.ssl.TrustManager[1];

 javax.net.ssl.TrustManager tm = new TrustAllTrustManager();

 trustAllCerts[0] = tm;

 // Create the SSL context

 javax.net.ssl.SSLContext sc = javax.net.ssl.SSLContext.getInstance("SSL");

 // Create the session context

 javax.net.ssl.SSLSessionContext sslsc = sc.getServerSessionContext();

 // Initialize the contexts; the session context takes the trust manager.

 sslsc.setSessionTimeout(0);

 sc.init(null, trustAllCerts, null);

 // Use the default socket factory to create the socket for the secure connection

 javax.net.ssl.HttpsURLConnection.setDefaultSSLSocketFactory(sc.getSocketFactory());

 // Set the default host name verifier to enable the connection.

 HttpsURLConnection.setDefaultHostnameVerifier(hv);

 // Set up the manufactured managed object reference for the ServiceInstance

 SVC_INST_REF.setType("ServiceInstance");

 SVC_INST_REF.setValue("ServiceInstance");

 // Create a VimService object to obtain a VimPort binding provider.

 // The BindingProvider provides access to the protocol fields

 // in request/response messages. Retrieve the request context

 // which will be used for processing message requests.

 vimService = new VimService();

 vimPort = vimService.getVimPort();

 Map<String, Object> ctxt = ((BindingProvider) vimPort).getRequestContext();

 // Store the Server URL in the request context and specify true

 // to maintain the connection between the client and server.

 // The client API will include the Server's HTTP cookie in its

 // requests to maintain the session. If you do not set this to true,

vSphere Web Services SDK Programming Guide

VMware, Inc. 80

 // the Server will start a new session with each request.

 ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, url);

 ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

 // Retrieve the ServiceContent object and login

 serviceContent = vimPort.retrieveServiceContent(SVC_INST_REF);

 vimPort.login(serviceContent.getSessionManager(),

 userName,

 password,

 null);

 // retrieve data

 collectProperties(vimPort, serviceContent);

 // close the connection

 vimPort.logout(serviceContent.getSessionManager());

 }

}

SelectionSpec Traversal
The selectSet array in ObjectSpec and TraversalSpec objects can include TraversalSpec objects
and SelectionSpec objects. SelectionSpec is the base class for TraversalSpec objects.
SelectionSpec defines the name property. You can use a SelectionSpec object in a selectSet array
as a reference to a named TraversalSpec object. By using SelectionSpec references, you can reuse a
TraversalSpec and you can define recursive traversal.

Simple Reference SelectionSpec
Use SelectionSpec references to avoid writing duplicate TraversalSpec declarations.

The TraversalSpec identified in a SelectionSpec reference must be within the same
PropertyFilterSpec. Figure 5-3. SelectionSpec Reference shows the use of SelectionSpec
references to a virtual machine TraversalSpec. The SelectionSpec references are associated with
Network and Datastore traversals.

vSphere Web Services SDK Programming Guide

VMware, Inc. 81

Figure 5-3. SelectionSpec Reference

If the ObjectSpec.selectSet array contains a SelectionSpec, the referenced TraversalSpec must
identify the same object type. TraversalSpec.type must match the type of the object specified in
ObjectSpec.obj. The PropertyCollector applies the TraversalSpec to the object and uses the
TraversalSpec.path property to extend its traversal.

Recursive Traversal
Use a SelectionSpec to apply a TraversalSpec to the results of its own traversal. To use a recursive
filter construction, create a SelectionSpec that specifies the name of a TraversalSpec and add it to the
named TraversalSpec selection set. The recursive construction extends inventory traversal beyond the
paths directly represented by TraversalSpec objects.

You can use recursive traversal on any inventory objects that can be nested. See Inventory Hierarchies
and ServiceInstance for a general representation of the structure of an inventory. For example, on a
vCenter Server, folders can nest to arbitrary depths. To describe a traversal path through a succession of
folders, you can add a SelectionSpec to the Folder TraversalSpec. The SelectionSpec must
reference the TraversalSpec. Figure 5-4. Recursive TraversalSpec and SelectionSpec shows a
representation of a TraversalSpec and its associated SelectionSpec for nested folder traversal.

vSphere Web Services SDK Programming Guide

VMware, Inc. 82

Figure 5-4. Recursive TraversalSpec and SelectionSpec

Use Recursive TraversalSpec to Traverse Nested Inventory Folders
To traverse inventory objects that are nested to a variable depth, define one or more recursive
TraversalSpec objects. In each TraversalSpec object, you specify a property of one managed object that
holds a reference to another managed object. The TraversalSpec defines a path that the property
collector can follow between objects.

To define recursive inventory traversal, use the following steps.

Procedure

1 Use the SearchIndex managed object to retrieve the managed object reference for the top-level
virtual machine folder.

This folder is used as the beginning of the inventory traversal. For more information see SearchIndex.

2 Create an ObjectSpec object that references the top-level virtual machine folder.

3 Create a SelectionSpec object that references the Folder TraversalSpec by name.

4 Create a named TraversalSpec for Folder objects.

The TraversalSpec.path property identifies the Folder.childEntity property for traversal to any
child objects.

5 Add the SelectionSpec to the TraversalSpec to create the recursive filter.

6 Add the TraversalSpec to the ObjectSpec.

7 Create a PropertySpec for the Folder name.

8 Add the object and property specifications to the PropertyFilterSpec.

9 Call the RetrievePropertiesEx method.

Nested Folder Traversal in Java
This example shows the use of a recursive TraversalSpec with the property collector. The recursive
traversal spec enables the property collector to navigate a chain of nested objects of the same type.

Example: Nested Folder Traversal

import com.vmware.vim25.*;

import java.util.*;

import javax.net.ssl.HostnameVerifier;

vSphere Web Services SDK Programming Guide

VMware, Inc. 83

import javax.net.ssl.HttpsURLConnection;

import javax.net.ssl.SSLSession;

import javax.xml.ws.BindingProvider;

import javax.xml.ws.soap.SOAPFaultException;

// PropertyCollector example

// command line input: server name, user name, password

public class nestedTraversal {

 private static void collectProperties(VimPortType methods,

 ServiceContent sContent)

 throws Exception {

 // Get reference to the PropertyCollector

 ManagedObjectReference propColl = sContent.getPropertyCollector();

 // get the top-level vm folder mor

 ManagedObjectReference sIndex = sContent.getSearchIndex();

 ManagedObjectReference rootVmFolder =

 methods.findByInventoryPath(sIndex,"datacenter1/vm");

 // create an object spec to define the beginning of the traversal;

 // root vm folder is the root object for this traversal

 ObjectSpec oSpec = new ObjectSpec();

 oSpec.setObj(rootVmFolder);

 oSpec.setSkip(true);

 // folder traversal reference

 SelectionSpec sSpecF = new SelectionSpec();

 sSpecF.setName("traverseFolder");

 // create a folder traversal spec to select childEntity

 TraversalSpec tSpecF = new TraversalSpec();

 tSpecF.setType("Folder");

 tSpecF.setPath("childEntity");

 tSpecF.setSkip(false);

 tSpecF.setName("traverseFolder");

 // use the SelectionSpec as a reflexive spec for the folder traversal;

 // the accessor method (getSelectSet) returns a reference to the

 // mapped XML representation of the list; using this reference

 // to add the spec will update the list

 tSpecF.getSelectSet().add(sSpecF);

 // add folder traversal to object spec

 oSpec.getSelectSet().add(tSpecF);

 // specify the property for retrieval (folder name)

 PropertySpec pSpec = new PropertySpec();

 pSpec.setType("Folder");

 pSpec.getPathSet().add("name");

 // create a PropertyFilterSpec and add the object and

 // property specs to it; use the getter method to reference

 // the mapped XML representation of the lists and add the specs

vSphere Web Services SDK Programming Guide

VMware, Inc. 84

 // directly to the lists

 PropertyFilterSpec fSpec = new PropertyFilterSpec();

 fSpec.getObjectSet().add(oSpec);

 fSpec.getPropSet().add(pSpec);

 // Create a list for the filter and add the spec to it

 List<PropertyFilterSpec> fSpecList = new ArrayList<PropertyFilterSpec>();

 fSpecList.add(fSpec);

 // get the data from the server

 RetrieveOptions ro = new RetrieveOptions();

 RetrieveResult props = methods.retrievePropertiesEx(propColl,fSpecList,ro);

 // go through the returned list and print out the data

 if (props != null) {

 for (ObjectContent oc : props.getObjects()) {

 String folderName = null;

 String path = null;

 List<DynamicProperty> dps = oc.getPropSet();

 if (dps != null) {

 for (DynamicProperty dp : dps) {

 folderName = (String) dp.getVal();

 path = dp.getName();

 System.out.println(path + " = " + folderName);

 }

 }

 }

 }

 }//end collectProperties()

 // Authentication is handled by using a TrustManager and supplying

 // a host name verifier method. (The host name verifier is declared

 // in the main function.)

 //

 // For the purposes of this example, this TrustManager implementation

 // will accept all certificates. This is only appropriate for

 // a development environment. Production code should implement certificate support.

 private static class TrustAllTrustManager

 implements javax.net.ssl.TrustManager,

 javax.net.ssl.X509TrustManager {

 public java.security.cert.X509Certificate[] getAcceptedIssuers() {

 return null;

 }

 public boolean isServerTrusted(java.security.cert.X509Certificate[] certs) {

 return true;

 }

 public boolean isClientTrusted(java.security.cert.X509Certificate[] certs) {

 return true;

 }

 public void checkServerTrusted(java.security.cert.X509Certificate[] certs, String authType)

 throws java.security.cert.CertificateException {

vSphere Web Services SDK Programming Guide

VMware, Inc. 85

 return;

 }

 public void checkClientTrusted(java.security.cert.X509Certificate[] certs, String authType)

 throws java.security.cert.CertificateException {

 return;

 }

 }

 public static void main(String [] args) throws Exception {

 // arglist variables

 String serverName = args[0];

 String userName = args[1];

 String password = args[2];

 String url = "https://"+serverName+"/sdk/vimService";

 // Variables of the following types for access to the API methods

 // and to the vSphere inventory.

 // -- ManagedObjectReference for the ServiceInstance on the Server

 // -- VimService for access to the vSphere Web service

 // -- VimPortType for access to methods

 // -- ServiceContent for access to managed object services

 ManagedObjectReference SVC_INST_REF = new ManagedObjectReference();

 VimService vimService;

 VimPortType vimPort;

 ServiceContent serviceContent;

 // Declare a host name verifier that will automatically enable

 // the connection. The host name verifier is invoked during

 // the SSL handshake.

 HostnameVerifier hv = new HostnameVerifier() {

 public boolean verify(String urlHostName, SSLSession session) {

 return true;

 }

 };

 // Create the trust manager.

 javax.net.ssl.TrustManager[] trustAllCerts = new javax.net.ssl.TrustManager[1];

 javax.net.ssl.TrustManager tm = new TrustAllTrustManager();

 trustAllCerts[0] = tm;

 // Create the SSL context

 javax.net.ssl.SSLContext sc = javax.net.ssl.SSLContext.getInstance("SSL");

 // Create the session context

 javax.net.ssl.SSLSessionContext sslsc = sc.getServerSessionContext();

 // Initialize the contexts; the session context takes the trust manager.

 sslsc.setSessionTimeout(0);

 sc.init(null, trustAllCerts, null);

 // Use the default socket factory to create the socket for the secure connection

 javax.net.ssl.HttpsURLConnection.setDefaultSSLSocketFactory(sc.getSocketFactory());

 // Set the default host name verifier to enable the connection.

vSphere Web Services SDK Programming Guide

VMware, Inc. 86

 HttpsURLConnection.setDefaultHostnameVerifier(hv);

 // Set up the manufactured managed object reference for the ServiceInstance

 SVC_INST_REF.setType("ServiceInstance");

 SVC_INST_REF.setValue("ServiceInstance");

 // Create a VimService object to obtain a VimPort binding provider.

 // The BindingProvider provides access to the protocol fields

 // in request/response messages. Retrieve the request context

 // which will be used for processing message requests.

 vimService = new VimService();

 vimPort = vimService.getVimPort();

 Map<String, Object> ctxt = ((BindingProvider) vimPort).getRequestContext();

 // Store the Server URL in the request context and specify true

 // to maintain the connection between the client and server.

 // The client API will include the Server's HTTP cookie in its

 // requests to maintain the session. If you do not set this to true,

 // the Server will start a new session with each request.

 ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, url);

 ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

 // Retrieve the ServiceContent object and login

 serviceContent = vimPort.retrieveServiceContent(SVC_INST_REF);

 vimPort.login(serviceContent.getSessionManager(),

 userName,

 password,

 null);

 // retrieve data

 collectProperties(vimPort, serviceContent);

 // close the connection

 vimPort.logout(serviceContent.getSessionManager());

 }

}

Client Data Synchronization (WaitForUpdatesEx)
To maintain a client-side representation of server object state (by monitoring the properties for the
inventory), use the CreateFilter and WaitForUpdatesEx methods. The WaitForUpdatesEx method
supports an incremental retrieval model.

Important The filters you use for incremental retrieval persist for the duration of the session or until you
destroy them.

Property Filters
A PropertyCollector can have one or more associated PropertyFilter objects. A PropertyFilter
has one or more associated PropertyFilterSpec objects. A PropertyFilterSpec that is used with the
RetrievePropertiesEx method has a limited lifespan; the server destroys the filter after returning

vSphere Web Services SDK Programming Guide

VMware, Inc. 87

results to your client. For a sequence of incremental property collection operations, the
WaitForUpdatesEx method relies on PropertyFilterSpec objects that are available for multiple calls to
the method.

To create persistent property filter specifications, use the CreateFilter method. When you call
CreateFilter, you pass a PropertyFilterSpec object to the method. The method adds the new filter
to the PropertyCollector associated with the method invocation and returns a reference to the new
filter. After you have created the filter, you can add additional PropertyFilterSpec objects. You cannot
share a filter with a PropertyCollector in another session.

WaitForUpdatesEx
The WaitForUpdatesEx method supports a polling mechanism for property collection that is based on a
specified wait time.

Specify the following parameters when you call WaitForUpdatesEx:

n Managed object reference to a PropertyCollector instance.

n version value that identifies a sequence value. The first time you call WaitForUpdatesEx, specify
an empty string (““) to retrieve a complete set of results for the specified properties. Your subsequent
calls should use the version value returned in the previous call. If you don’t include the version value,
the server returns everything. For more information about data versions, see Server Data
Transmission.

n options specifying the amount of data to transmit in a single response (the
WaitOptions.maxObjectUpdates property) and the number of seconds the PropertyCollector
should wait for updates (the WaitOptions.maxWaitSeconds property).

The value of the WaitOptions.maxWaitSeconds property determines whether the PropertyCollector
uses an instant retrieval or a polling model. When you call WaitForUpdatesEx with a wait time of 0, it
checks for updates and returns immediately. When you call WaitForUpdatesEx with a wait time greater
than 0, the method waits until the specified time or until a change. WaitForUpdatesEx blocks your
process until updates occur or until it times out. The time-out is affected by the maxWaitSeconds value,
the amount of time it takes to collect updated property values, and PropertyCollector policy.

If the property collection operation times out, and there are no updates to the requested properties, the
PropertyCollector returns null for the WaitForUpdatesEx response.

n maxWaitSeconds is an optional property. If you do not specify a value, the PropertyCollector waits
as long as possible for updates. Therefore, if maxWaitSeconds is unset, the waitForUpdatesEx
method will block the thread after all of the data has been retrieved, waiting for the TCP connection
with the vSphere server to timeout. Your code can handle this in one of the following ways: call
waitForUpdatesEx from a separate thread; look for specific updates and then stop calling the
method; or change the TCP connection timeout, BindingProviderProperties.CONNECT_TIMEOUT.

n maxWaitSeconds set to zero specifies an immediate call and response. The PropertyCollector
checks for updates for all properties specified by the union of all filters associated with that instance
of the PropertyCollector. The PropertyCollector returns any results, or null if there have been
no updates.

vSphere Web Services SDK Programming Guide

VMware, Inc. 88

n maxWaitSeconds greater than zero specifies a wait followed by polling. The PropertyCollector
returns null if no updates are available within maxWaitSeconds.

Comparing Usage of MaxWaitSeconds
The following table lists some of the advantages and disadvantages of these two operations.

Operation Advantages Disadvantages

MaxWaitSeconds=0 Returns only properties that have changed
since the version specified. Returns changed
data only, providing better network utilization
than RetrieveProperties.

Returns an empty set even when nothing has
changed on the server. Depending on your
client application, this might be inefficient.

MaxWaitSeconds>0 Blocks thread until an update occurs. Efficient
use of network resources. The only operation
that you can cancel.

Blocks processing thread until updates occur.
However, this call can be cancelled so you can
monitor the time the operation is taking and
cancel if necessary.

UpdateSet Data Object from the Property Collector
The WaitForUpdatesEx method returns an UpdateSet data object, the composite data structure shown
in the following figure.

Figure 5-5. UpdateSet Data Object Returned by WaitForUpdates Operations

Server Data Transmission
Property collection can involve the retrieval of large amounts of data, depending on the number of
properties implied in the collection request. The vSphere server supports segmented data transmission,
or chunking, when it sends collected data to a client. If the amount of collected data exceeds the chunk
size, the server returns a chunk of data in a single response, and indicates additional data can be
retrieved. For information about chunk size, see the description of the RetrieveOptions.maxObjects
and WaitOptions.maxObjectUpdates properties in the vSphere API Reference.

n The WaitForUpdatesEx method returns an UpdateSet data object. The UpdateSet.truncated
property indicates whether you must call WaitForUpdatesEx again to retrieve additional data. If

vSphere Web Services SDK Programming Guide

VMware, Inc. 89

truncated is true, the WaitForUpdatesEx method returns a version string to identify chunked data.
When your client application receives an indication that additional data are available, it must send the
returned UpdateSet.version string in the subsequent call to WaitForUpdatesEx to retrieve the next
chunk of data.

n The RetrievePropertiesEx method returns a RetrieveResult data object. The
RetrieveResult.token property indicates whether you must call the
ContinueRetrievePropertiesEx method to retrieve additional data. If the token property has a
value, it identifies chunked data. When your client application receives an indication that additional
data are available, it must send the returned token in the subsequent call to
ContinueRetrievePropertiexEx to retrieve the next chunk of data.

Version strings and tokens are sequenced. Your client application must keep track of the sequence of
values. If an error interrupts the collection operation, resume the operation by using the version string or
token that was submitted before the interruption.

PropertyCollector Performance
These factors can affect the performance of a PropertyCollector for any given session:

n Number of objects

n Number of properties

n Density of property data (composite, nested data objects)

n Frequency of changes to the objects and properties on the server

n Depth of traversal (number of properties traversed)

In addition, a vSphere server is affected by the number of PropertyCollector instances and the
number of filters each instance is supporting across all sessions on the server.

To minimize PropertyCollector overhead and the amount of network traffic for your client application,
use View objects with the PropertyCollector. Simple PropertyCollector Example (Java) illustrates
using views with the PropertyCollector.

SearchIndex
The SearchIndex managed object provides a set of methods to retrieve references to managed objects
in the vSphere inventory. You can search by managed objects inventory path, IP address, datastore path,
DNS name, and various other identifying attributes.

For example, if you know the IP address of a virtual machine, you can obtain its managed object
reference by using the SearchIndex.FindByIp method. You can use SearchIndex to obtain the
reference to a server object, and then use that reference as the starting object for property collection. See
the sample applications SearchIndex.java and SearchIndex.cs for more information about using
SearchIndex. See the vSphere API Reference for more information about SearchIndex methods.

vSphere Web Services SDK Programming Guide

VMware, Inc. 90

Authentication and
Authorization 6
VMware vSphere implements mechanisms to ensure that only valid users can access virtual
infrastructure components.Each property and method in the API has an associated privilege requirement,
and only uses with corresponding privileges can access the entities. This chapter discusses approaches
to securing the system and the related service interfaces. The chapter also discusses the user model,
which is different in ESXi systems and vCenter Server systems.

See the vSphere Datacenter Administration Guide for a list of required privileges for common tasks and
best practices for roles and permissions.

This chapter includes the following topics:

n Objects for Authentication and Authorization Management

n Authentication and Authorization for ESXi and vCenter Server

n Obtaining User and Group Information from UserDirectory

n Managing ESXi Users with HostLocalAccountManager

n Managing Roles and Permissions with AuthorizationManager

n Authenticating Users Through SessionManager

n Using the Credential Store for Automated Login

n Managing Licenses with LicenseManager

Objects for Authentication and Authorization
Management
VMware vSphere includes the following interfaces for authenticating users and protecting virtual
infrastructure components from unauthorized access:

n HostLocalAccountManager is used to create and manage user accounts on ESXi systems.
Authenticated users can view objects or invoke operations on the server depending on the
permissions associated with their account. See Managing ESXi Users with
HostLocalAccountManager.

VMware, Inc. 91

n AuthorizationManager protects vSphere components from unauthorized access. Access to
components is role-based: Users are assigned roles that encompass the privileges needed to view
and perform operations on vSphere objects. AuthorizationManager has operations for creating
new roles, modifying roles, setting permissions on entities, and handling the relationship between
managed objects and permissions.

n UserDirectory provides a look-up mechanism that returns user-account information to
AuthorizationManager or to another requestor, such as a client application. See Obtaining User
and Group Information from UserDirectory.

n SessionManager provides an interface to the authentication infrastructure on the target server
system (see Authenticating Users Through SessionManager).

n For vCenter Server systems, SessionManager supports single sign-on based on SSO tokens
obtained from a VMware SSO Server. See Establishing a Single Sign-On Session with a vCenter
Server.

n For ESXi systems, SessionManager supports authenticating user accounts as defined on the
host system, such as accounts created using vSphere Client or accounts created
programmatically through the HostLocalAccountManager API.

n Even if a user is authorized to perform operations on a vSphere object, the operation fails if the
licenses for the host or the feature have not been assigned. You use LicenseManager and
LicenseAssignmentManager to manage the licenses. See Managing Licenses with
LicenseManager.

Authentication and Authorization for ESXi and vCenter
Server
Several server-side mechanisms authenticate a human user when a client application, such as the
vSphere Client or a vSphere Web Services SDK application, connects to the server. Because ESXi uses
Linux-based authentication, and vCenter Server ran on Windows, the two systems can use different
approaches for handling user accounts. The following illustration shows two different user management
mechanisms associated with the VMware vSphere server.

vSphere Web Services SDK Programming Guide

VMware, Inc. 92

Figure 6-1. Managed Objects for Handling User Accounts

These services work together to ensure that only authenticated users can connect to ESXi or vCenter
Server systems, and that they can access only those objects—folders, virtual machines, datacenters,
virtual services, and so on—for which they have the required privileges and which they are authorized to
use or to view.

In addition, the vSphere Web Services SDK supports automated login through a credential store. See
Using the Credential Store for Automated Login.

ESXi User Model
When users enter their user account and credential from a client application, the server consults the
appropriate user account store and validates the authenticity of the user account and the associated
credential. Currently, the credential consists of a password, but vSphere also supports certificates, such
as X.509 certificates. Authenticated users can then access objects they are authorized to use.
Authentication succeeds if a user identity exists as a user account on the target system or in a supported
directory service.

ESXi leverages standard Linux infrastructure, including the Linux pluggable authentication module (PAM)
mechanism for user account creation and management. The VMware authentication daemon (vmware-
authd) is implemented as a PAM module. You can create and manage user accounts on an ESXi system
by using HostLocalAccountManager.

vSphere Web Services SDK Programming Guide

VMware, Inc. 93

vCenter Server User Model
The pre-appliance vCenter Server was a Windows-based service using native Windows facilities and the
Windows user model for identification and authentication. The vCenter Server Web service is associated
with the Windows user account that was logged in to the machine for vCenter Server installation. This
vCenter Server administrator account was a member of the local Windows Administrator group on the
machine.

VMware recommended creating a dedicated Windows user account for installing and managing the
vCenter Server system. Other vCenter Server users who connect to the Web service also needed a
Windows account on the local Administrator group.

More recently the vCenter Server Appliance uses the Platform Services Controller for authentication.

Important Even if a user with the same name exists on an ESXi host and a vCenter Server system, the
two users have different accounts.

For details, see the Datacenter Administration Guide in the VMware vSphere documentation set.

Organizations that are using Microsoft Active Directory can use the user identities contained in a
Windows Server domain controller or Active Directory service across their virtual infrastructure. Microsoft
Active Directory identities are supported for all clients that run vSphere Web Services SDK applications
from Windows-based systems.

A vCenter Server client uses a SAML token to establish a single sign on session with the Server. See
Establishing a Single Sign-On Session with a vCenter Server.

vSphere Security Model
Although the details of authentication and authorization differ between ESXi and vCenter Server, the
model itself is the same for both systems. It relies on privileges, roles, and permissions.

Privileges
A privilege is a system-defined requirement associated with a VMware vSphere object. Privileges are
defined by VMware. Privileges are static, and do not change for a single version of a product. Each
managed object has one or more privileges that a principal (user, group member) must have to invoke an
operation or to view a property. For example, managed entities such as Folder and VirtualMachine
require the principal to have the System.Read privilege on the entity to view the values of its properties.

The vSphere API Reference includes information about privileges required to invoke operations and to
view properties on the Required Privileges labels on the documentation page for each managed object.
Privileges for vSphere components are defined as follows:

<group>[.<group>].privilege

vSphere Web Services SDK Programming Guide

VMware, Inc. 94

For example:

Datacenter.Create

Host.Config.Connection

Host.Config.Snmp

A privilege might be specific to vCenter Server or to ESXi systems. For example, the Alarm.Create
privilege is defined on vCenter Server. Setting alarms is done through the AlarmManager service
interface, which requires a running vCenter Server system.

Privilege requirements apply to system objects regardless of how a given client application attempts to
access server content (vSphere Client, CLI, or SDK). For example, you can use the following URL to
access virtual machine datastore files:

https://<hostname>/folder[/<path>]/?dcPath=<datacenter_path>[&dsName=<datastore_name>]

The URL accesses a Datastore object in the inventory. You must have privileges to access each object
in the hierarchy, corresponding to the elements of the URL.

Privileges for Datastore Objects in the Web Services API
The following table shows the privileges needed by methods that access datastore objects..

Object Associated with File URL Element Required Privileges

Root folder /folder System.View

Datacenter ?dcPath Datastore.Browse

Datastore.FileManagement

Datastore &dsName Datastore.Browse

Datastore.FileManagement

Host /host Host.Config.AdvancedConfig

/tmp/ Host.Config.SystemManagement

Roles
A role is a predefined set of privileges. Users are granted privileges to objects through roles.

When you assign user or group permissions, you pair the user or group with a role and associate that
pairing with an inventory object. A single user might have different roles for different objects in the
inventory.

For example, if you have two resource pools in your inventory, Pool A and Pool B, you might assign a
particular user the role Virtual Machine User on Pool A and the role ReadOnly on Pool B. These
assignments allow that user to turn on virtual machines in Pool A. In Pool B, the user can view the status
of virtual machines, but cannot turn on virtual machines.

vSphere Web Services SDK Programming Guide

VMware, Inc. 95

Permissions
In vSphere, a permission consists of a user or group and an assigned role for an inventory object, such
as a virtual machine or ESXi host. Permissions grant users the right to perform the activities specified by
the role on the object to which the role is assigned.

For example, to configure memory for an ESXi host, a user must be granted a role that includes the
Host.Configuration.Memory privilege. By assigning different roles to users or groups for different
objects, you can control the tasks that users can perform in your vSphere environment.

Many tasks require permissions on more than one object.

Setting Up Users, Groups, and Permissions
Setting up users, groups, and permissions consists of these tasks:

1 Get information about privilege requirements and privileges associated with system and sample roles.

n Find out which operations on vSphere objects require which privileges. See the API Reference.

n Find out which operations the system roles and sample roles can perform. See Description of
Roles on vSphere Servers.

2 If necessary, create additional roles (sets of privileges). See Modifying Sample Roles to Create New
Roles.

3 Retrieve information about existing users and groups (see Obtaining User and Group Information
from UserDirectory) and create additional groups if needed.

4 Associate users or groups with roles using permissions. See Managing Roles and Permissions with
AuthorizationManager.

At runtime, use SessionManager to log in to the server. vCenter Servers support single sign-on sessions.
To establish a single sign-on session, use the SessionManager.LoginByToken method. To establish a
session with a standalone ESXi host, use the SessionManager.Login method.

Obtaining User and Group Information from
UserDirectory
The UserDirectory managed object allows a client application to obtain information about users and
groups on a VMware vSphere server. Properties and results vary, depending on whether the server is a
vCenter Server or an ESXi system.

n vCenter Server system. Domain controller, Active Directory, or local Windows account repository.

n ESXi host. Linux password file in /etc/passwd on the host.

For example, vCenter Server user accounts can be managed in a Windows Active Directory server or
domain controller from which the domainList property of UserDirectory is derived. For ESXi systems,
the domainList property is empty.

vSphere Web Services SDK Programming Guide

VMware, Inc. 96

Figure 6-2. UserDirectory Managed Object

RetrieveUserGroups Method
UserDirectory allows you to obtain information about users and groups using the
RetrieveUserGroups method. The method can obtain a list of all user accounts from the host, and can
search for specific users or groups based on specific criteria to filter the results. You can search by user
name, by group name, for an exact match, or for a partial string (substring).

n ESXi does not support local user groups, so this method will not return group information for a host.
This method will return information about Active Directory groups.

n For ESXi systems, search returns all users from the passwd file. If this file contains Network
Information System (NIS) or NIS+ users, RetrieveUserGroups returns these accounts as well.

n For vCenter Server, search is limited to the specified Windows domain. If the domain is omitted, the
search is performed on local users and groups.

Important Do not configure an ESXi system to use NIS or NIS+, unless it is acceptable to have NIS
(or NIS+) user information available through the UserDirectory.RetrieveUserGroups API.

Managing ESXi Users with HostLocalAccountManager
The HostLocalAccountManager managed object supports user administration tasks.
HostLocalAccountManager is available only on ESXi system.

Important vCenter Server systems use different methods. See vCenter Server User Model.

Figure 6-3. HostLocalAccountManager Managed Object

vSphere Web Services SDK Programming Guide

VMware, Inc. 97

Methods Available for Local Account Management
HostLocalAccountManager provides the following methods for local user account management:

n CreateUser

n RemoveUser

n UpdateUser

These methods accept a HostAccountSpec data object. Specify the object properties according to the
requirements on the target system. Examples of user account requirements are password length
requirements and restricted use of dictionary words.

Create a Local User Account on an ESXi System
You can use the API to create a user account on an ESXi system.

Procedure

1 Obtain a managed object reference to the HostLocalAccountManager of the target system.

2 Create a HostAccountSpec data object that defines the properties of the user account, including
description and password.

Define account names and passwords according to the configuration required by your ESXi system
for user account naming conventions and password requirements, such as minimum length,
character set, and other requirements.

3 Call the HostLocalAccountManager.CreateUserAccount method, passing in the managed object
reference (from step 1) and the HostAccountSpec data object (step 2).

After creating user accounts on the ESXi system, you can grant these users access to virtual
components by using AuthorizationManager methods. See Managing Roles and Permissions with
AuthorizationManager.

Managing Roles and Permissions with
AuthorizationManager
AuthorizationManager is the service interface for handling permissions and roles assigned to the users
and groups you define with HostLocalAccountManager. AuthorizationManager methods allow you to
create, modify, and manage roles and permissions, and to obtain information about the roles and
permissions defined in the system. If a predefined role does not meet your needs, define a new one that
contains only the minimum set of required privileges.

The AuthorizationManager also allows access and prevents access to specific server objects based on
the permissions associated with the object.

vSphere Web Services SDK Programming Guide

VMware, Inc. 98

AuthorizationManager includes methods for managing roles and for managing permissions:

n Roles Management. AddAuthorizationRole, RemoveAuthorizationRole, and
UpdateAuthorizationRole. See Using Roles to Consolidate Sets of Privileges and Modifying
Sample Roles to Create New Roles.

n Permissions Management. MergePermissions, RemoveEntityPermission,
ResetEntityPermissions, RetrieveAllPermissions, RetrieveEntityPermissions,
RetrieveRolePermissions, and SetEntityPermissions. See Granting Privileges Through
Permissions.

The following diagram shows these methods in a UML diagram for AuthorizationManager and some of
its associated data objects.

Figure 6-4. AuthorizationManager Managed Object

AuthorizationManager properties allow access to information. For example:

n The privilegeList property returns a list of all privileges defined on the system, as an array of
AuthorizationPrivilege data objects. Privileges are defined by VMware, on the objects and
properties contained in the system. These privileges are fixed and cannot be changed by client
applications.

n The roleList property returns a list of all currently defined roles, including the system-defined roles,
as an array of AuthorizationRole data objects.

vSphere Web Services SDK Programming Guide

VMware, Inc. 99

Using Roles to Consolidate Sets of Privileges
A role is a named set of one or more privileges. A role is normally defined for a group of people who have
common responsibilities in the system, for example, administrators. Each role can have zero to multiple
privileges. ESXi defines system roles and user roles.

n System roles. Cannot be modified or deleted.

n User roles. Apply to different user communities or restrict access for add-on tools. Several predefined
user roles are included with vCenter Server and with ESXi systems. You can create new roles using
these predefined user roles as a starting point.

Description of Roles on vSphere Servers
The following table describes system roles and user roles in more detail and lists currently available roles
as examples.

Type Role name Role ID Description

System
Roles

Administrator -1 Superuser access. Encompasses the set of all defined privileges. This
role cannot be deleted. By default, the Administrator role is granted to
the user or group that owns the root node.

Anonymous -4 Cannot be granted. Default access role associated with any user
account that has logged in.

No Access -5 No access. Explicitly denies access to the user or group with this role.
Assigning this role to a user account prevents the user from seeing any
objects. Use the No Access role to mask subobjects under a higher-
level object that has propagated permissions defined.

Read-Only -2 Read-only access. Encompasses the set of all nonmutable privileges.
(System.Anonymous, System.Read, and System.View). Equivalent to
a user role with no permissions. Users with this role can read data or
properties and call query methods, but cannot make changes to the
system.

View -3 Visibility access consisting of System.Anonymous and System.View
privileges. Cannot be granted.

Sample
Roles

Virtual Machine
Administrator

1 Set of privileges necessary to manage virtual machines and hosts
within the system.

Datacenter
Administrator

2 Set of privileges necessary to manage resources, but not interact with
virtual machines.

Virtual Machine
Provider

3 Set of privileges necessary to provision resources.

Virtual Machine Power
User

4 Set of privileges for a virtual machine user that can also make
configuration changes and create new virtual machines.

Virtual Machine User 5 Set of privileges necessary to use virtual machines only. Cannot
reconfigure virtual machines.

vSphere Web Services SDK Programming Guide

VMware, Inc. 100

Type Role name Role ID Description

ResourcePool
Administrator

6 Available on vCenter Server systems only.

VMware Consolidated
Backup Utility

7 Available on vCenter Server systems only. Set of privileges necessary
to run the Consolidated Backup Utility.

Modifying Sample Roles to Create New Roles
The system roles cannot be modified or deleted. However, you can create new roles, or modify the
sample roles.

To create new roles using the API, use the following steps.

Procedure

1 Starting with the ServiceContent object in ServiceInstance.content, obtain a managed object
reference to the AuthorizationManager for the server.

2 Invoke the AddAuthorizationRole method. Parameters are a reference to
AuthorizationManager, a name for the role (as a string), and an array of privileges (array of strings)
that should be assigned to the role.

AddAuthorizationRole returns an integer (xsd:int) value for the roleId that the system assigns
to the newly defined role.

3 In subsequent code, use the roleID to assign the role to specific users or groups.

Granting Privileges Through Permissions
When you use one of the AuthorizationManager objects to assign or modify permissions, you use a
Permission data object. Permission associates a principal with a set of privileges. A permission
identifies:

n The user or group (principal) to which the permission applies.

n The role containing the privileges that should be granted to the user or group.

n The managed object reference to the entity to which the permission applies.

Every managed entity has at least one Permission object associated with it. A managed entity can have
more than one Permission assigned to it, effectively granting different privileges to different users or
groups. Permissions are defined for managed entities either explicitly or through inheritance.

Obtaining Information About Permissions
Users with the Administrator role can obtain information about Permission objects at different levels of
detail.

n For an array of Permission objects, call the AuthorizationManager.RetrieveAllPermissions
method.

vSphere Web Services SDK Programming Guide

VMware, Inc. 101

n For specific inventory objects, such as managed entities, folders, datacenters, or virtual services, call
the AuthorizationManager.RetrieveEntityPermissions method.

n For a role defined in the system, call the AuthorizationManager.RetrieveRolePermissions
method.

See the vSphere API Reference.

Setting, Changing, or Deleting Permissions
The Permission data object associates the privileges required to perform an action on an object with the
principals (user, group). Principals have privileges through their role. To set or update permissions on an
object, use the AuthorizationManager.SetEntityPermissions method.

To set permissions on an entity, use the following steps.

Procedure

1 Obtain a reference to the AuthorizationManager for the server from the ServiceContent object
associated with the ServiceInstance. For example:

ManagedObjectReference hostAuthorizationManager = service.getAuthorizationManager();

2 Create a Permission data object that identifies the user (or group) name, the role, the entity to which
the permission should apply, and whether the permission should be applied to the entity’s children.

For example, the following code fragment creates a permission on the root folder of the inventory
granting a user Administrator role to the root folder and all its children.

Permission per = new Permission();

per.setGroup(false);

per.setPrincipal(“new_user_name”);

per.setRoleId(-1);

per.setPropagate(true);

per.setEntity(rootFolder);

Permissions cannot be set directly on children in a complex entity. For complex entities, set
permissions on the parent entity and set the propagate flag to true to apply permissions to the child
entities.

To replace existing permissions with a new set of permissions, use the
AuthorizationManager.ResetEntityPermissions method.

Impact of Group Membership on Permissions
Users can be members of multiple groups. The system handles multigroup membership as follows:

n Permissions are applied to inventory objects from the containing object to each of its child entities.

n If a user has no explicit user-level permissions, group-level permissions apply as if granted to the
user directly.

n Membership in multiple groups with permissions on the same object results in a union of permissions.

vSphere Web Services SDK Programming Guide

VMware, Inc. 102

n User-level permissions always take precedence over group-level permissions.

Applying Permission to a Managed Entity
The following example shows some of the code required to create a user account and apply a permission
to an entity that grants access to the user account based on a role.

The role with role ID 4, assigned in this example, is defined as a “Virtual Machine Power User.” The
sample uses AuthorizationManager to grant permissions to the user and to associate the permission
with the managed entity in the inventory—in this example, the rootFolder. The example uses the
apputil helper classes to access the objects.

Example: Creating a User Account

...

ManagedObjectReference _authManRef = _sic.getAuthorizationManager();

public class CreateUser {

private static AppUtil appUtil= null;

private void createUser() throws Exception {

ManagedObjectReference hostLocalAccountManager =

appUtil.getConnection().getServiceContent().getAccountManager();

ManagedObjectReference hostAuthorizationManager =

 appUtil.getConnection().getServiceContent().getAuthorizationManager();

// Create a user

HostAccountSpec hostAccountSpec = new HostAccountSpec();

hostAccountSpec.setId(userName);

hostAccountSpec.setPassword(password);

hostAccountSpec.setDescription("my delegated admin auto-agent software");

appUtil.getConnection().getService().createUser(hostLocalAccountManager, hostAccountSpec);

ManagedObjectReference rootFolder = appUtil.getConnection().getServiceContent().getRootFolder();

Permission permission = new Permission();

permission.setGroup(false);

permission.setPrincipal(userName);

// Assign the Virtual Machine Power User role

permission.setRoleId(4);

permission.setPropagate(true);

permission.setEntity(rootFolder);

appUtil.getConnection().getService().setEntityPermissions(hostAuthorizationManager, rootFolder,

 new Permission [] {permission});

...

Authenticating Users Through SessionManager
The SessionManager managed object controls user access to the server. SessionManager includes
methods for logging in to the server, obtaining a session, and logging out. The SessionManager defines

vSphere Web Services SDK Programming Guide

VMware, Inc. 103

the lifetime and visibility of many objects. Session-specific objects are not visible outside the session in
which they are created.

Important Each user session uses system resources and creates locks on the server side. Too many
concurrent sessions can slow down the server. By default, vCenter Server terminates a session after 30
minutes.

Upon successful authentication of a user account, SessionManager returns a UserSession data object
to the client application. The session is associated with that user account for the duration of the session.
The client application can save the session locally, to a secure file, and reuse the session later to
reconnect to the server. You can also configure an ESXi or vCenter Server system to support local
sessions, which enable users with credentials on the host to log in based on those privileges.

The SessionManager provides these capabilities:

n Log in and log out. Basic operations to log in to ESXi or vCenter Server system, obtain a session, and
log out. When a session terminates, all session-specific objects are destroyed.

n Impersonation. One user session adopts the authorization level of another user session.
Impersonation is common in Web based scenarios in which a middle-tier application functions as a
central account that interacts with other back-end servers or processes. Windows services
impersonate a client when accessing resources on behalf of the client. SesssionManager supports
impersonation through its ImpersonateUser method.

n Delegation. A client application that is running on behalf of a local user can call the
SessionManager.AcquireLocalTicket method to obtain a one-time user name and password for
logging in. Delegation is useful for host-based utilities that run in the local console.

If the user account associated with the session does not have the permissions required to perform an
action, the AuthorizationManager returns a NoPermission fault to the client application.

Using VMware Single Sign On for vCenter Server Sessions
vSphere supports single sign on for a single point of authentication for vCenter Server clients. To use
VMware Single Sign On, your vSphere Web Services SDK client connects to the VMware SSO Server to
obtain an SSO token. Your client includes the token in the SessionManager.LoginByToken request to
start a vSphere session.

For more information about creating a session, see Establishing a Single Sign-On Session with a vCenter
Server.

Using the Credential Store for Automated Login
To facilitate automated login for unattended applications, the vSphere Web Services SDK includes client-
side credential store libraries and tools for automating the login process in a more secure manner. The
libraries eliminate the need for system administrators to keep passwords in local scripts.

Important These libraries are built on top of the vSphere Web Services SDK.

vSphere Web Services SDK Programming Guide

VMware, Inc. 104

The credential store has the following components:

n A persistence file (credential store backing file) that stores authentication credentials. Currently, only
passwords are supported. The persistence file maps a remote user account from an ESXi host to the
password for that user on the server.

n C#, Java, and Perl libraries for managing the credential store programmatically. See Credential Store
Methods for available methods.

n Java and Microsoft PowerShell-based command-line utilities for managing the credential store.

In addition to the libraries listed in Credential Store Libraries, the vSphere Web Services SDK includes the
CredentialStoreAdmin tool for creating, examining, and managing the credential store. You can use the
tool to examine the contents of the credential store, for example, the generated user accounts and
passwords.

If you use these credential store client libraries in an application, you must set up the credential store on
all client machines that run your application.

Credential Store Libraries
The following table shows the credential management libraries for Java and C#.

Package com.vmware.security.credstore (Java) Namespace VMware.Security.CredentialStore(C#)

CredentialStore.java CredentialStoreFactory.cs

CredentialStoreFactory.java CredentialStore.cs

Several of the helper classes provided with the sample applications use the credential store mechanism.

Credential Store Methods
The following table shows the methods used in Java and C# clients for managing credentials.

Java C# Description

addPassword(hostname,

username, password)

AddPassword(hostname,

username, password)

Stores the password for the specified host
and user. Overwrites any existing
password for that user in the credential
store. Creates the default credential store
backing file in the default location (if it does
not exist).

removePassword(hostname,

username)

RemovePassword(hostname,

username)

Deletes the password for the specified
user from the credential store.

clearPasswords() ClearPasswords() Deletes all passwords from the credential
store.

getPassword(hostname,

username)

GetPassword(hostname,

username)

Returns the password for the specified
host and user from the credential store.

getHosts() GetHosts() Returns the set of hosts contained in the
credential store.

vSphere Web Services SDK Programming Guide

VMware, Inc. 105

Java C# Description

getUsernames(hostname) GetUsernames(hostname) Returns the collection of all user names
that have passwords stored for the
specified hostname.

close() Close() Closes the credential store, preventing
further method invocations. Releases
associated resources.

Credential Store Backing File
The credential store backing file is an XML file that is saved locally on the client machine for access at
runtime. Unless otherwise specified, the backing file is located in the following location:

n Linux. $HOME/.vmware/credstore/vicredentials.xml

n Windows Vista and later. C:\Users\[user_name]\AppData\Roaming\VMware\credstore
\vicredentials.xml

n Windows XP and Windows 2000.
C:\Documents and Settings\[user_name]\Application Data\VMware\credstore

\vicredentials.xml

The credential store persists locally on a per-user basis—each user has his or her own credential store
backing file.

Caution The credential store backing files use filesystem-level permissions to ensure that passwords
remain confidential. Protect the credential store backing file with appropriate file permissions.

Credential Store File Format shows the XML elements that are read and written to the file.

Example: Credential Store File Format

<?xml version="1.0" encoding="UTF-8"?>

 <viCredentials>

 <version>1.0</version>

 <passwordEntry>

 <host>mi6.vmware.com</host>

 <username>agent007</username>

 <password>IhWS1saIhtsw2FbIh0w2F2...</password>

 </passwordEntry>

 <passwordEntry>

 ...

 </passwordEntry>

 ...

 </viCredentials>

vSphere Web Services SDK Programming Guide

VMware, Inc. 106

Credential Store Samples
The CreateUser and SimpleAgent sample applications demonstrate how to use the credential store
client libraries.

n The CreateUser sample creates a user account and password for the server based on random-
number-generation scheme. The sample populates the local credential store backing file with this
information. If the backing file does not exist, it is created in the default location.

When you run CreateUser, specify the name of an ESXi system, and an administrator user name
and password. A user account name and password are created on the server. Specify --ignorecert
unless your system has a secure connection to the target. Do not use --ignorecert in a production
environment.

java com.vmware.samples.simpleagent.CreateUser --server <servername> --url

https://<servername>/sdk --username <adminuser> --password <pwd> --ignorecert ignorecert

Caution The CreateUser sample application is for demonstration purposes only and should not be
used as a model for production code. The sample breaks the principle of least privilege by granting
the user account the Administrator role (-1). Never do this in a production environment.

n The SimpleAgent sample application demonstrates how to use credential store libraries to extract
the user account and password at runtime to authenticate a user noninteractively.

java com.vmware.samples.simpleagent.SimpleAgent <servername>

Specifying Roles and Users with the Credential Store
VMware recommends that you apply the principle of least privilege to any agent-like software or
automated application that uses the credential store in a production environment. Give user accounts the
minimal number of privileges on the system that they require to do their jobs.

Specify roles and users as follows:

Procedure

1 For each SDK-based application, use one specific role, newly created or predefined, that has
appropriate privileges.

For example, if you are developing an agent-like application to automatically start the VMware
Consolidated Backup utility, you might use the “VMware Consolidated Backup Utility” role (roleID 7).

If no predefined user role that meets the needs of your application exists, create a role with only those
privileges needed for the application. See Using Roles to Consolidate Sets of Privileges for more
information about roles.

2 Create a user account for use with the agent or application.

3 Apply the role created in Step Step 1 to the user account created in Step Step 2.

vSphere Web Services SDK Programming Guide

VMware, Inc. 107

4 Store the user account and password in the credential store, using the
CredentialStoreAdministration tool.

Never grant administrator privileges to a user account associated with an automated script or
software agent, especially one that uses the credential store.

Managing Licenses with LicenseManager
When you want to perform tasks in the vSphere environment, you must have licenses to do so. Licensing
applies to ESXi hosts, vCenter Server, and special features such as VMware HA or VMware vMotion.

The vSphere Datacenter Administration Guide explains how to manage ESXi and vCenter Server
licenses using the vSphere Client, and gives background information about license keys, license
inventory, and related topics.

You can also manage licenses using the LicenseManager and LicenseAssignmentManager managed
objects. You use LicenseManager to explicitly manage the pool of available licenses on ESXi systems
released before vSphere 4.0. You use LicenseAssignmentManager, available through the
LicenseManager.licenseAssignmentManager property, to manage assignment of licenses to entities
in the vCenter Server inventory. You can retrieve information, add licenses, and remove licenses.

Retrieve Information
n Retrieve the LicenseManager.evaluation and LicenseManager.licenses properties to obtain

information on evaluation licenses and full licenses.

n Call LicenseManager.DecodeLicense to decode license information. The call returns a
LicenseManagerLicenseInfo data object, which encapsulates information about the license.

n Call LicenseAssignmentManager.QueryAssignedLicenses for information about assigned
licenses.

Add Licenses
n Call LicenseManager.AddLicense, passing in a license key, to add a license to the inventory of

available licenses.

n Call LicenseAssignmentManager.UpdateAssignedLicense, passing in a license key, to update the
licenses for an entity, for example, a host system.

Remove Licenses
n Call LicenseAssignmentManager.RemoveAssignedLicense to remove all licenses from an entity,

passing in an entity to remove licenses from. You can then assign those licenses to other entities.

n Call LicenseManager.RemoveLicense, passing in a license key, to remove a license from the
inventory of available licenses.

vSphere Web Services SDK Programming Guide

VMware, Inc. 108

Hosts 7
Many of the operations in your vSphere environment involve setting up the ESXi hosts on which the
virtualization layer runs. You can set up storage and networking, and those settings directly affect the
virtual machine. You must also manage other aspects of the host, as discussed in this chapter.

Important See the ESX Configuration Guide and the ESXi Configuration Guide for important information
on security considerations, not included here.

This chapter includes the following topics:

n Host Management Objects

n Retrieving Host Information

n Configuring and Reconfiguring Hosts

n Managing the Host Lifecycle

n Querying and Changing the Host Time

n Querying Virtual Machine Memory Overhead

Host Management Objects
The vSphere Web Services SDK includes several objects for host management.

The central object is HostSystem. Each property of HostSystem is a data object that encapsulates some
information about the host. For example, the capability property is a HostCapability object, the
runtime property is a HostRuntimeInfo object. See the API Reference for a list of the properties and
the corresponding data objects.

HostSystem methods allow you to perform certain tasks on ESX/ESXi hosts. However, many tasks are
not performed through HostSystem methods, but through methods in managed objects related to
HostSystem. For example, you manage the host time using the HostDateTimeSystem and you manage
kernel modules using HostKernelModuleSystem.

VMware, Inc. 109

Retrieving Host Information
You retrieve information about the host by accessing data objects defined for the HostSystem.

n HostSystem.capability is a HostCapability object. The HostCapability properties indicate the
features that are supported by the host, for example, maintenanceModeSupported or
recursiveResourcePoolsSupported.

n HostSystem.runtimeInfo is a HostRuntimeInfo object that contains several data objects with
detailed information about the current state of the host. You can, for example, extract the health
status as a HealthSystemRuntime object or the power state as a HostPowerState object.

n HostSystem.hardware is a HostHardwareInfo object that allows you to retrieve the host’s
hardware configuration including CPU and NUMA information and memory size.

n HostSystem.config is a HostConfigInfo object. This data object type encapsulates a typical set of
host configuration information that is useful for displaying and configuring a host. You can access the
HostConfigInfo object only on managed hosts, and only if the host is connected.

HostSystem has several additional properties that allow you to directly access the virtual machines,
datastores, and networks associated with that system.

The QueryHostConnectionInfo, QueryMemoryOverhead, and QueryMemoryOverheadEx methods are
available for information retrieval.

Figure 7-1. HostSystem and Information Properties

vSphere Web Services SDK Programming Guide

VMware, Inc. 110

Configuring and Reconfiguring Hosts
When you configure or reconfigure an ESX/ESXi host, you usually do not use the methods in
HostSystem directly, but work with managed objects available for configuration of that part of the system.
For example, HostNetworkSystem allows you to configure the network, and
HostAuthorizationManager is for managing users, groups, and permissions on a host. The objects and
related methods are discussed in the corresponding chapters of this guide.

Some methods are defined locally in HostSystem. See the vSphere API Reference for details on each
method.

n CIM Management – AcquireCimServicesTicket. For additional information on using vSphere with
CIM, see the VMware CIM APIs documentation.

n Host Lifecycle – RebootHost_Task, ShutdownHost_Task, PowerDownHostToStandBy_Task,
PowerUpHostFromStandBy_Task, DisconnectHost_Task, ReconnectHost_Task. See Managing
the Host Lifecycle.

n Maintenance Mode – EnterMaintenanceMode_Task, ExitMaintenanceMode_Task.

n Updates – UpdateFlags, UpdateIpmi, UpdateSystemResources.

Managing the Host Lifecycle
A host’s lifecycle depends in part on whether the host is a standalone host or managed by a vCenter
Server system.

Reboot and Shutdown
You can reboot and shut down managed and standalone hosts. The ShutdownHost_Task method is not
supported on all hosts. Check the host capability shutdownSupported.

You can call both methods with a force parameter, which specifies whether to reboot hosts even when
virtual machines are running or other operations are in progress on the host. If you set the parameter to
false, hosts are rebooted only when they are in maintenance mode.

n ShutdownHost_Task – Shuts down a host. If connected directly to the host, the client never receives
an indicator of success in the returned task, but temporarily loses connection to the host. If the
method does not succeed, an error is returned.

n RebootHost_Task – Reboots a host. If the command is successful, then the host has been rebooted.
Clients connected directly to the host do not receive an indication of success in the returned task, but
temporarily lose connection to the host. If the method does not succeed, an error is returned.

Using Standby Mode
Standby is a power state in which the host does not support provisioning or power on of virtual machines.
VMware power management module might evacuate and put a host in standby mode to save power. The
host can be powered up remotely by using PowerUpHostFromStandBy_Task.

vSphere Web Services SDK Programming Guide

VMware, Inc. 111

The following methods support standby mode. Both methods are cancelable.

n PowerDownHostToStandBy_Task – Puts the host in standby mode, a mode in which the host is in a
standby state from which it can be powered up remotely. The command is only supported on hosts on
which the host capability standbySupported is true.

While this task is running, no virtual machines can be powered on and no provisioning operations can
be performed on the host.

Calling this method does not directly initiate any operations to evacuate or power down powered-on
virtual machines. However, if VMware DRS is enabled, the vCenter Server migrates powered-off
virtual machines or recommends migration to a different host, depending on the automation level. If
the host is part of a cluster and the task is issued with a vCenter Server target with the method’s
evacuatePoweredOffVms parameter set to true, the task does not succeed unless all the powered-
off virtual machines are reregistered to other hosts.

n PowerUpHostFromStandBy_Task – Takes the host out of standby mode. If the command is
successful, the host wakes up and starts sending heartbeats. This method might be called
automatically by VMware DRS to add capacity to a cluster, if the host is not in maintenance mode.

Disconnecting and Reconnecting Hosts
You can make a host a managed host by adding it to the vCenter Server system. You can later disconnect
and reconnect the host, for example, to refresh the agents.

You can use the following methods, which are only supported if you access the host through a vCenter
Server system.

n QueryHostConnectionInfo – Returns a HostConnectInfo object, which is the same object that the
Datacenter.QueryConnectionInfo returns. The information in this object can be used by a
connection wizard, like the wizard used in the vSphere Client.

n DisconnectHost_Task – Disconnects from a host and instructs the vCenter Server system to stop
sending heartbeats to the host.

n ReconnectHost_Task – Reconnects a host to the vCenter Server system. This process reinstalls
agents and reconfigures the host, if it has gotten out of sync with the server. The reconnection
process checks for the correct set of licenses and for the number of CPUs on the host, ensures the
correct set of agents is installed, and ensures that networks and datastores are discovered and
registered with the vCenter Server system.

Client applications can change the IP address and port of the host when doing a reconnect operation.
This can be useful if the client wants to preserve existing metadata, such as statistics, alarms, and
privileges, even though the host is changing its IP address.

Querying and Changing the Host Time
The HostDateTimeSystem supports date and time related configuration on a host and supports NTP
configuration.

vSphere Web Services SDK Programming Guide

VMware, Inc. 112

The HostDateTimeSystem.dateTimeInfo property allows you to retrieve and set date and time
information. The HostDateTimeInfo data object’s properties contain two data object for date time
management:

n HostNTPConfig contains a list of NTP servers for use by the host.

n HostDateTimeSystemTimeZone specifies the time zone including the GMT offset, identifier for the
time zone, and name.

You can also query the host’s time information by calling one of the HostDateTimeSystem methods.

n QueryAvailableTimeZones – Retrieves the list of available timezones on the host. The method uses
the public domain tz timezone database. The method returns an array of
HostDateTimeSystemTimeZone objects.

n QueryDateTime – Returns the current date and time on the host.

You can modify the host’s date time information by calling one of the following HostDateTimeSystem
methods:

n RefreshDateTimeSystem – Refreshes the date and time related settings to pick up any changes that
might have occurred.

n UpdateDateTime – Updates the date and time on the host using the date and time passed into the
method. Use with caution. Network delays or execution delays can result in time skews.

n UpdateDateTimeConfig – Updates the date and time configuration of the host. You call this method
with a HostDateTimeConfig parameter, which allows you to specify both the NTP configuration and
the time zone.

Querying Virtual Machine Memory Overhead
Each virtual machine you power on requires a certain amount of memory for its use. In addition, the host
must have some memory overhead available for each virtual machine. To find out about memory
overheat, call the HostSystem.QueryMemoryOverheadEx method. The method takes a
virtualMachineConfigInfo data object as an argument, and determines the amount of overhead
necessary to power on a virtual machine with those characteristics.

The methods returns the amount of memory required, in bytes.

vSphere Web Services SDK Programming Guide

VMware, Inc. 113

Storage 8
A virtual machine uses a virtual disk to store its operating system, program files, and other data. A virtual
disk is a large physical file, or a set of files, that can be copied, moved, archived, and backed up like other
files. To store and manipulate virtual disk files, a host requires dedicated storage space. ESX/ESXi
supports storage in multiple ways. Hosts that are managed by a vCenter Server system can share
storage.

Any type of network-attached storage requires complete configuration of networking in the VMkernel to
support network-based access to the storage media. The VMkernel requires its own IP address. See
#unique_148.

This chapter includes the following topics:

n Storage Management Objects

n Introduction to Storage

n Choosing the Storage API to Use

n Configuring Disk Partitions

n Multipath Management

n Configuring iSCSI Storage

n Creating and Managing Datastores

n Managing VMFS Volume Copies (Resignaturing)

n Managing Diagnostic Partitions

n Sample Code Reference

Storage Management Objects
You can access the objects that support storage management through the HostSystem managed object.

n HostStorageSystem – The HostSystem.storageSystem property is a managed object reference to
the HostStorageSystem of the ESX/ESXi system. HostStorageSystem is a low-level interface that
is used mainly for configuring the physical storage. See Configuring Disk Partitions.

VMware, Inc. 114

n HostDatastoreSystem – The HostSystem.datastoreSystem property is a managed object
reference to a HostDatastoreSystem managed object. HostDatastoreSystem methods allow you
to create, configure, extend, and remove datastores. While HostStorageSystem supports access
and configuration of physical storage, HostDatastoreSystem supports access and configuration of
logical storage through the volumes (Datastore managed objects) the host can use for virtual
machines. See Creating and Managing Datastores.

n HostDatastoreBrowser – Provides access to the contents of one or more datastores. The items in a
datastore are files that contain configuration, virtual disk, and other data associated with a virtual
machine.

n Datastore – The Datastore managed entity provides methods for mounting datastores, browsing
datastores, and obtaining information about the datastores associated with a virtual machine. See
Creating and Managing Datastores.

n HostDiagnosticPartition – Supports creating and querying diagnostic partitions for your ESX/
ESXi host. See Managing Diagnostic Partitions.

Introduction to Storage
The VMware vSphere storage architecture consists of layers of abstraction that hide and manage the
complexity and differences of physical storage subsystems, shown in the following illustration.

Figure 8-1. Storage Architecture

vSphere Web Services SDK Programming Guide

VMware, Inc. 115

How Virtual Machines Access Storage
Virtual machines use virtual disks for their operating system, application software, and other data files.
A virtual disk is stored as a VMDK file on a datastore. The virtual disk hides the physical storage layer
from the virtual machine’s operating system. Regardless of the type of storage device that your host uses,
the virtual disk always appears to the virtual machine as a local SCSI device. As a result, you can run
operating systems that are not certified for specific storage equipment, such as SAN, in the virtual
machine.

When a virtual machine communicates with its virtual disk stored on a datastore, it issues SCSI
commands. Because datastores can exist on different types of physical storage, these commands are
encapsulated into other forms, depending on the protocol that the ESX/ESXi host uses to connect to the
physical storage device.

To the applications and guest operating systems running on each virtual machine, the storage subsystem
appears as a virtual SCSI controller connected to one or more virtual SCSI disks as shown in the top half
of Figure 8-1. Storage Architecture. These controllers are the only types of SCSI controllers that a virtual
machine can see and access, and include the objects that extend VirtualSCSIController:

n ParaVirtualSCSIController

n VirtualBusLogicController

n VirtualLsiLogicController

n VirtualLsiLogicSASController

How precisely a virtual machine accesses storage depends on the setup of the host. Figure 8-2. Storage
API Architecture gives an overview of the different possibilities.

vSphere Web Services SDK Programming Guide

VMware, Inc. 116

Figure 8-2. Storage API Architecture

Datastores
A datastore is a manageable storage entity, usually used as a repository for virtual machine files including
log files, scripts, configuration files, virtual disks, and so on. vSphere supports two types of datastores,
VMFS and NAS.

n If you want to use a NAS volume, mount it using CreateNasDatastore and unmount it using
RemoveDatastore. The two commands are host specific, you must invoke the create and remove
methods on each host on which you want to mount or unmount the datastore.

n To create a VMFS datastore, call CreateVmfsDatastore, passing in any existing disk. As a result of
the call, the disk is formatted with VMFS and the datastore is automounted on all ESX/ESXi hosts on
which the disk is visible the next time you perform a rescan. When you call RemoveDatastore on a
VMFS datastore, the datastore is destroyed. After a rescan, the datastore is no longer available to
any ESX/ESXi systems. In contrast to NAS datastores, you do not have to invoke methods for
creation and removal of the datastore on each host.

An ESX/ESXi host automatically discovers the VMFS volume on attached Logical Unit Numbers (LUNs)
on startup and after re-scanning the host bus adapter. When you create a VMFS datastore, the datastore
label is based on the VMFS volume label. If there is a conflict with an existing datastore, the label is made
unique by appending a suffix. The VMFS volume label remains unchanged.

Destroying a VMFS datastore removes the partitions that compose the VMFS volume.

vSphere Web Services SDK Programming Guide

VMware, Inc. 117

Datastores can span multiple physical storage devices. A single VMFS volume can contain one or more
LUNs from a local SCSI disk array on a physical host, a Fibre Channel SAN disk farm, or iSCSI SAN disk
farm. The ESX/ESXi system detects new LUNS that are added to any of the physical storage
subsystems. When the user queries for a list of available devices, the newly discovered devices are
included. You can extend storage capacity on an existing VMFS volume without powering down physical
hosts or storage subsystems.

If any of the LUNs within a VMFS volume fails or becomes unavailable, only virtual machines with data on
that LUN are affected. An exception is the LUN that has the first extent of the spanned volume (multi-
extent volume). All other virtual machines with virtual disks residing on other LUNs continue to function
normally.

Choosing the Storage API to Use
The HostStorageSystem APIs are low-level enough for performing VMFS provisioning operations. They
require a knowledge of partitioning details and VMFS extent composition. They do not enforce VMFS best
practices like partition alignment and optimum VMFS block sizes, and they allow you to mix extents from
different datastores on the same LUN and to add extents even though expansion is preferable in most
cases.

The HostDatastoreSystem APIs are primarily used for managing VMFS volumes. They don’t require an
in-depth knowledge of storage systems, and do enforce best practices.

Figure 8-3. Storage APIs gives an overview of the different APIs. See Managed Objects for Working with
Storage to determine which tasks are commonly performed with which API.

Figure 8-3. Storage APIs

vSphere Web Services SDK Programming Guide

VMware, Inc. 118

Managed Objects for Working with Storage
The Web Services API provides several managed objects that are designed to work with ESXi storage
devices.

Managed Object Task See

HostStorageSystem Low-level operations associated with
individual hosts, such as resizing or
updating disk partitions.

Configuring Disk Partitions

HostStorageSystem Multipath management. Multipath Management

HostStorageSystem iSCSI Storage setup and configuration. Configuring iSCSI Storage

HostDatastoreSystem Creating and managing VMFS datastores
and remote datastores.

Creating and Managing Datastores

HostDatastoreSyste
m
HostStorageSystem

Managing VMFS volume copies
(resignature or force mount).

Managing VMFS Volume Copies
(Resignaturing)

HostDiagnosticSyst
em

Creating and managing diagnostic
partitions.

Managing Diagnostic Partitions

Configuring Disk Partitions
HostStorageSystem manages low-level storage components including HBAs, SCSI LUNs, file system
volumes, and so on. You can use this API to set up the partitions before creating, extending, or expanding
a VMFS file system.

n ComputeDiskPartitionInfo – Computes the disk partition information based on the specified disk
layout. The server computes a new HostDiskPartitionInfo object for a specific disk using the
layout that is specified by the HostDiskPartitionLayout object. Inside the
HostDiskPartitionLayout object, you specify the list of block ranges for that partition, and
optionally the total number and size of the blocks. You can then use that information inside the
HostDiskPartitionSpec when updating a disk partition.

n ComputeDiskPartitionInfoForResize – Computes the disk partition information to support
resizing a given partition. Returns the resized disk partition information as a
HostDiskPartitionInfo object. You can then use that information inside the
HostDiskPartitionSpec when resizing the disk partition.

n RetrieveDiskPartitionInfo – Allows you to specify an array of device path names that identify
disks and returns an array of HostPartitionInfo objects for each of those disks.

n UpdateDiskPartitions – Changes the partitions on a disk by supplying a partition specification
(HostDiskPartitionSpec) and device name.

vSphere Web Services SDK Programming Guide

VMware, Inc. 119

After you have updated the disk partitions for the host, you must perform a rescan by using one of the
following methods. Complete rescans might take a long time.

n RefreshStorageSystem – Refreshes the storage information and settings to pick up changes, but
does not explicitly issue commands to discover new devices.

n RescanAllHba – Rescans all host bus adapters for new storage devices. This method might take a
long time.

n RescanHba – Rescans a specific host bus adapter for new devices.

HostStorageSystem methods are also used for setting up iSCSI storage. See Configuring iSCSI
Storage.

Multipath Management
The vSphere Storage documentation includes information about using multipathing for failover and load
balancing. You can manage multipathing using the vSphere Client, the esxcli command, or using the
following commands. Use the HostStorageSystem.multipathStateInfo property to access the
HostMultipathStateInfo data object that describes runtime information about the state of multipathing
on a given host.

n EnableMultipathPath – Enables a disabled path for a device. Use the pathname from
HostMultipathStateInfoPath or HostMultipathInfoPath.

n QueryPathSelectionPolicyOptions – Obtains the set of path-selection-policy options. These
options determine the path that can be used by a device that is managed by native multipathing. A
HostMultipathInfo data object identifies the devices that are managed through native multipathing.

n QueryStorageArrayTypePolicyOptions – Obtains the set of storage-array-type policy options.
These options determine the storage-array-type policies that a device that is managed by native
multipathing might use. A HostMultipathInfo data object identifies the devices that are managed
through native multipathing.

n SetMultipathLunPolicy – Updates the path selection policy for a LUN. Specify the LUN using the
LUN UUID from the HostMultipathInfoLogicalUnit object.

n DisableMultipathPath – Disables an enabled path for a device. Use the pathname from
HostMultipathStateInfoPath or HostMultipathInfoPath.

Configuring iSCSI Storage
vSphere supports software iSCSI, dependent hardware iSCSI, and independent hardware iSCSI. See
Configuring iSCSI Adapters and Storage in the vSphere Storage documentation for a detailed discussion.

The following HostStorageSystem methods are available for iSCSI storage management.

n Add a dynamic or static target.

n AddInternetScsiSendTarget – Adds send target entries to the host bus adapter discovery list if
the DiscoveryProperties.sendTargetsDiscoveryEnabled flag is set to true.

vSphere Web Services SDK Programming Guide

VMware, Inc. 120

n AddInternetScsiStaticTargets – Adds static target entries to the host bus adapter discovery
list. The DiscoveryProperty.staticTargetDiscoveryEnabled flag must be set to true.

n Configure targets.

n UpdateInternetScsiAdvancedOptions – Updates the advanced options that the iSCSI host
bus adapter or the discovery addresses and targets associated with it.

n UpdateInternetScsiAlias – Updates the alias of an iSCSI host bus adapter.

n UpdateInternetScsiAuthenticationProperties – Updates the authentication properties for
one or more targets or discovery addresses associated with an iSCSI host bus adapter.

n UpdateInternetScsiDigestProperties – Updates the digest properties for the iSCSI host bus
adapter or the discovery addresses and targets associated with it.

n UpdateInternetScsiDiscoveryProperties – Updates the discovery properties for an iSCSI
host bus adapter.

n UpdateInternetScsiIPProperties – Updates the IP properties for an iSCSI host bus adapter.

n UpdateInternetScsiName – Updates the name of an iSCSI host bus adapter.

n UpdateSoftwareInternetScsiEnabled – Enables and disables software iSCSI in the
VMkernel.

n Remove a dynamic or static target.

n RemoveInternetScsiSendTargets – Removes send target entries from the host bus adapter
discovery list. The DiscoveryProperty.sendTargetsDiscoveryEnabled must be set to true. If
any of the targets provided as parameters are not found in the existing list, the other targets are
removed and an exception is thrown.

n RemoveInternetScsiStaticTargets – Remove static target entries from the host bus adapter
discovery list. The DiscoveryProperty.staticTargetDiscoveryEnabled must be set to true.
If any of the targets provided as parameters are not found in the existing list, the other targets are
removed and an exception is thrown.

iSCSI initiators and targets have unique, permanent iSCSI names and addresses. An iSCSI name
correctly identifies a specific iSCSI initiator or target, regardless of physical location. Names must be in
EUI or IQN format, as specified by the storage vendor’s hardware.

Configure the VMkernel To Support Software iSCSI
Before you can set up iSCSI on a system, you must create a dedicated VMkernel network interface. See.
You can then enable the VMkernel to support iSCSI and configure the initiator.

To enable the VMkernel to support software iSCSI, use the following steps.

Procedure

1 Obtain a managed object reference to the host system’s HostStorageSystem.

vSphere Web Services SDK Programming Guide

VMware, Inc. 121

2 Invoke the UpdateSoftwareInternetScsiEnabled method, passing the reference to the
HostStorageSystem and the value true.

Configure iSCSI Initiators
After you have configured the VMkernel to support software iSCSI, you can configure the storage
initiators for iSCSI.

To configure iSCSI initiators, use the following steps.

Procedure

1 Access the list of available HBAs on the host system.

You can do this by creating a property collector with HostSystem as the starting point. See
#unique_21. From the HostSystem.config property, you can obtain the list (array) of host bus
adapters by specifying this property path:

config.storageDevice.hostBusAdapter

The property path returns an array of host bus adapters. For example:

hostBusAdapter["key-vim.host.BlockHba-vmhba32"]

hostBusAdapter["key-vim.host.BlockHba-vmhba33"]

hostBusAdapter["key-vim.host.BlockHba-vmhba34"]

hostBusAdapter["key-vim.host.BlockHba-vmhba35"]

hostBusAdapter["key-vim.host.BlockHba-vmhba1"]

...

2 From the array, select the host bus adapter (instance of HostHostBusAdapter) that you want to
configure and obtain its key property, which is the device name of the host bus adapter as a string.

3 Determine the capabilities of the adapter by retrieving the properties of the HostHostBusAdapter
object.

4 Configure the initiator.

n For an independent hardware initiator, configure the IP address.

n For a software initiator, enable the software initiator in the VMkernel.

5 Configure the iSCSI name by calling HostStorageSystem.UpdateInternetScisiName and the
alias by running HostStorageSystem.UpdateInternetScisiAlias.

6 Configure target discovery by calling
HostStorageSystem.UpdateInternetScisiHbaDiscoveryProperties.

The method takes a HostInternetScisiHbaDiscoveryProperties data object that you can
configure.

vSphere Web Services SDK Programming Guide

VMware, Inc. 122

7 (Optional) Set the authentication information by calling
HostStorageSystem.UpdateInternetScisiAuthenticationProperties.

The HostInternetScsiHbaAuthenticationProperties object you pass into that method includes
properties for configuring CHAP and Mutual CHAP. See the vSphere Storage documentation for
information about securing your iSCSI storage array.

8 Configure access to the targets.

9 Rescan the HBAs.

Rescan enables the HBAs to discover the new storage devices. You can either rescan a single HBA
with HostStorageSystem.RescanHba, specifying the HBA ID as a parameter, or rescan all HBAs
using HostStorageSystem.RescanAllHba.

Creating and Managing Datastores
Each datastore is a logical container, analogous to a file system on a logical volume, where the host
places virtual disk files and other virtual machine files. Datastores hide specifics of the physical storage
device and provide a uniform model for storing virtual machine files.

The HostDatastoreSystem managed object provides methods for creating and managing datastores. All
HostDatastoreSystem methods require a managed object reference to HostDatastoreSystem, and
return a reference to the Datastore object after it is created.

HostDatastoreSystem allows you to create and expand, query, and remove or update datastores.
HostDatastoreSystem also allows you to configure a datastore principal for a host by calling
ConfigureDatastorePrincipal. All virtual machine-related file I/O is performed under this user.

VMFS provisioning tasks are often performed as follows:

1 Call QueryAvailableDisksForVmfs to get the subset of disks that are well suited for holding VMFS
datastores.

QueryAvailableDisksForVmfs obtains a list of disks that can be used to contain VMFS datastore
extents. You can provide a datastore name to obtain the list of disks that can contain extents for the
specified VMFS datastore. The operation does not return disks currently used by the VMFS
datastore, nor does it return management LUNs and disks that are referenced by RDMs. RDM disks
are not usable for VMFS datastores.

2 Get information about provisioning options by calling one of the following methods, passing in the
selected disk:

n QueryVmfsDatastoreCreateOptions – Obtains information about options for creating a new
VMFS datastore on a disk. The method returns an array of VmfsDatastoreOption data objects.

n QueryVmfsDatastoreExpandOptions – Obtains information about options for expanding the
extents of an existing VMFS datastore.

n QueryVmfsDatastoreExtendOptions – Obtains information about options for extending an
existing VMFS datastore for a disk.

vSphere Web Services SDK Programming Guide

VMware, Inc. 123

3 If required, change the layout by calling HostStorageSystem.ComputeDiskPartitionInfo and
then HostStorageSystem.UpdateDiskPartition to resize the partition.

4 Call CreateVmfsDatastore, ExtendVmfsDatastore, or ExpandVmfsDatastore to complete the
VMFS provisioning operation.

Accessing Datastores
The following diagram illustrates how you can access or specify datastores.

n Each Datacenter managed object has a datastore property that contains an array of datastores.

n Each Datacenter managed object has a datastoreFolder property that is a reference to the folder
(or folder hierarchy) that contains the datastores for this datacenter.

n Each Datacenter managed object has a hostFolder property that is a reference to the folder (or
folder hierarchy) that contains the compute resources, including hosts and clusters, for this
datacenter. Each HostSystem or ComputeResource has a datastore property that is an array of
Datastore managed objects.

Figure 8-4. Datastore Managed Object

For more information about the hierarchy of managed objects, see Chapter 4 Datacenter Inventory.

Creating and Modifying a VMFS Datastore
A datastore is a manageable storage entity, usually used as a repository for virtual machine files including
log files, scripts, configuration files, virtual disks, and so on.

vSphere Web Services SDK Programming Guide

VMware, Inc. 124

VMFS is a proprietary file system VMware designed for virtual machines. VMFS is well suited for storing a
small number of large data files like virtual disks. These files are mostly used by a single host. VMFS
differs from other filesystem formats like FAT16/FAT32 and so on in that it can be accessed by multiple
hosts connected to the same SAN LUN.

You can set up a VMFS datastore on any SCSI-based storage device that the host can access. VMFS
volume creation, extension, and expansion requires first partitioning operations and the VMFS volume
operations.

Set Up Disk Partitions
The Web Services API enables you to manage disk partitions on ESXi host storage devices.

To set up the disk partitions, use the following steps.

Procedure

1 Call HostStorageSystem.RetrieveDiskPartitionInfo to retrieve information about existing
partitions.

2 Call HostStorageSystem.ComputeDiskPartition, passing in the desired disk layout. The server
computes a new partition information object for a specific disk representing the desired layout and
returns a HostDiskPartitionInfo object that you can use in the HostDiskPartitionSpec you
pass into UpdateDiskPartitions.

3 Call HostStorageSystem.UpdateDiskPartitions to update partitions by passing in a
HostDiskPartitionSpec.

Create the VMFS Datastore
After you create disk partitions on host storage, you can configure VMFS datastores.

To create a VMFS datastore, use the following steps.

Procedure

1 Configure and install any third-party adapter your storage requires and rescan the adapters by calling
HostStorageSystem.RescanAllHba.

2 Call HostDatastoreSystem.QueryAvailableDisksForVmfs for information about disks that can be
used to contain VMFS datastore.

This method filters out disks that are currently in use by an existing VMFS unless the VMFS using the
disk is one being extended. It will also filter out management LUNs and disks that are referenced by
RDMs. These disk LUNs are also unsuited for use by a VMFS. The method returns an array of
HostScisiDisk objects.

3 Call HostDatastoreSystem.QueryVmfsDatastoreCreateOptions for information about options for
for creating a new VMFS datastore. The call returns an array of VmfsDatastoreCreateOption data
objects that allow you to access the UUIDs of suitable data stores.

4 (Optional) If no suitable partitions for your VMFS volume exist, you might have to create them. Use
the ComputeDiskPartitionInfo and UpdateDiskPartitions methods in HostStorageSystem.

vSphere Web Services SDK Programming Guide

VMware, Inc. 125

5 Create the datastore.

n Call HostDatastoreSystem.CreateVmfsDatastore to create a VMFS datastore. The method
takes a VmfsDatastoreCreateSpec data object that consists of a a partition, a
HostVmfsSpec, and an optional extent. The HostVmfsSpec allows you to specify the block size,
extent, major version, and volume name for the VMFS.

n Call HostDatastoreSystem.CreateNasDatastore to create a network-attached storage based
datastore.

Results

You can later expand and extend the VMFS datastore by calling one of the following methods.

n Call first QueryVmfsDatastoreExpandOptions and then ExpandVmfsDatastore to expand an
existing VMFS datastore using the specification provided in the VmfsDatastoreExpandSpec data
object (which contains the name of the extent and partition information). ExpandVmfsDatastore
increases the size of the datastore up to the full size provisioned for the datastore, if necessary.

n Call first QueryVmfsDatastoreExtendOptions and then ExtendVmfsDatastore to extend an
existing VMFS datastore using the specification provided in the VmfsDatastoreExtendSpec data
object.

Removing and Updating Datastores
The Web Services API has methods to update and remove datastores.

n RemoveDatastore – Removes a datastore from a host.

n UpdateLocalSwapDatastore – Choose the localSwapDatastore for this host. Any change to this
setting affects virtual machines that subsequently power on or resume from a suspended state at this
host, or that migrate to this host while powered on. Virtual machines that are currently powered on at
this host are not affected.

See the vSphere API Reference for more information about the HostDatastoreSystem operations,
including constraints and limitations.

Managing VMFS Datastores with HostStorageSystem
In most cases, the Datastore methods are appropriate for creating and managing VMFS datastores.
However, in some cases the following HostStorageSystem commands are used instead:

n AttachVmfsExtent – Extends a VMFS by attaching a disk partition as an extent.

n ExpandVmfsExtent – Expands a VMFS extent as specified by the disk partition specification.

n FormatVmfs – Formats a new VMFS on a disk partition based on the HostVmfsSpec that you pass
in. Returns a HostVmfsVolume that represents the new VMFS file system. The HostVmfsVolume
includes the block size, list of partition names of the disk’s VMFS extents, and other information
including the UUID.

vSphere Web Services SDK Programming Guide

VMware, Inc. 126

This command is a low-level API you can use to partition disks explicitly. In most cases, the
Datastore VMFS commands are more suitable.

n RescanVmfs – Rescans for new VMFS instances.

n UpgradeVmfs – Upgrades the VMFS to the current VMFS version.

Update and Upgrade with HostStorageSystem
You can use the HostStorageSystem managed object to alter characteristics of storage units.

n HostStorageSystem.UpdateScsiLunDisplayName – Update the mutable display name associated
with a SCSI LUN. The SCSI LUN to be updated is identified using the LUN UUID.

n HostStorageSystem.UpgradeVmLayout – Iterates over all registered virtual machines. For each
virtual machine, upgrades the layout and logs an event. After the method has been called, the
information in the VirtualMachineFileLayout data object data object is correct.

Managing VMFS Volume Copies (Resignaturing)
By default, ESX/ESXi hosts mount all VMFS datastores. Each VMFS datastore that is created in a
partition on a LUN has a unique UUID that is stored in the file system superblock. In addition, the LUN ID
of the source LUN is unique and is stored in the VMFS metadata.

When a LUN is replicated or a copy is made, the resulting LUN copy is identical, byte-for-byte, with the
original LUN. As a result, if the original LUN contains a VMFS datastore with UUID X, the LUN copy
appears to contain an identical VMFS datastore, or a VMFS datastore copy, with exactly the same UUID
X. ESX/ESXi can determine whether a LUN contains the VMFS datastore copy, and considers the copy
unresolved and does not mount it automatically.

To make the data on the LUN copy available, you can either force mount the copy if you are sure the
original is not in use, or you can resignature the copy. When you perform datastore resignaturing,
consider the following points:

n Datastore resignaturing is irreversible because it overwrites the original VMFS UUID.

n The LUN copy that contains the VMFS datastore that you resignature is no longer treated as a LUN
copy, but instead appears as an independent datastore with no relation to the source of the copy.

n A spanned datastore can be resignatured only if all its extents are online.

n The resignaturing process is crash and fault tolerant. If the process is interrupted, you can resume it
later.

n You can mount the new VMFS datastore without a risk of its UUID colliding with UUIDs of any other
datastore, such as an ancestor or child in a hierarchy of LUN snapshots.

See the vSphere Storage documentation for additional information.

vSphere Web Services SDK Programming Guide

VMware, Inc. 127

Resignaturing Volumes with
ResignatureUnresolvedVmfsVolume_Task

The easiest way to resignature unresolved volumes is by using the
HostDatastoreSystem.ResignatureUnresolvedVmfsVolume_Task method. The method assigns a
new DiskUuid to a VMFS volume, but keep its contents intact. The method supports safe volume sharing
across hosts and is appropriate in most cases.

You can instead use the low-level HostStorageSystem methods to find, force mount, or unmount
unresolved volumes:

n HostStorageSystem.QueryUnresolvedVmfsVolume – Obtains the list of unbound VMFS volumes.
For sharing a volume across hosts, a VMFS volume is bound to its underlying block device storage.
When a low-level block copy is performed to copy or move the VMFS volume, the copied volume is
unbound.

n HostStorageSystem.ResolveMultipleUnresolvedVmfsVolumes – Resignatures or force mounts
unbound VMFS volumes. This method takes a HostUnresolvedVmfsResolutionSpec data object
as input. The HostUnresolvedVmfsResolutionSpec.resolutionSpec property is an array of
HostUnresolvedVmfsResolutionSpec data objects that contain a
HostUnresolvedVmfsResolutionSpecVmfsUuidResolution enumeration. The enumeration is
either forceMount or resignature.

n UnmountForceMountedVmfsVolume – Unmounts a force mounted VMFS volume. When a low-level
block copy is performed to copy or move the VMFS volume, the copied volume is unresolved. For the
VMFS volume to be usable, a resolution operation is applied. As part of resolution operation, you
might decide to keep the original VMFS UUID. Once the resolution is applied, the VMFS volume is
mounted on the host for its use. This method allows you to unmount the VMFS volume if it is not used
by any registered virtual machines.

Managing Diagnostic Partitions
Your host must have a diagnostic partition (dump partition) to store core dumps for debugging and for use
by VMware technical support.

For more information about diagnostic bundles, see Generating Diagnostic Bundles. For information
about how to collect diagnostic partitions for a purple screen fault in ESXi, see the VMware knowledge
base article at http://kb.vmware.com/kb/1004128.http://kb.vmware.com/kb/1004128.

vSphere Web Services SDK Programming Guide

VMware, Inc. 128

http://kb.vmware.com/kb/1004128

A 100MB diagnostic partition for each host is recommended. If more than one ESX/ESXi host uses the
same LUN as the diagnostic partition, that LUN must be zoned so that all the ESX/ESXi host can access
it. Each host needs 100MB of space, so the size of the LUN determines how many servers can share it.
Each ESX/ESXi host is mapped to a diagnostic slot. VMware recommends at least 16 slots (1600MB) of
disk space if servers share a diagnostic partition. You can set up a SAN LUN with FibreChannel or
hardware iSCSI. SAN LUNs accessed through a software iSCSI initiator are not supported.

Caution If two hosts that share a diagnostic partition fail and save core dumps to the same slot, the core
dumps might be lost. To collect core dump data, reboot a host and extract log files immediately after the
host fails. If another host fails before you collect the diagnostic data of the first host, the second host does
not save the core dump.

Retrieving Diagnostic Partition Information
The HostDiagnosticSystem managed object allows you to retrieve information in several ways.

n Retrieve the HostDiagnosticPartition object from the
HostDiagnosticSystem.activePartition property to examine the properties of the active
partition.

n Call the HostDiagnosticPartition.QueryAvailablePartition method to retrieve a list of
available diagnostic partitions, in order of suitability.

n Call the HostDiagnosticPartition.QueryPartitionCreateOptions method to retrieve a list of
disks with sufficient space to contain a diagnostic partition of the specified type. The choices are
returned in order of suitability.

Create a Diagnostic Partition
Creating a diagnostic partition requires that you find a suitable partition using one of the query methods.
You can then retrieve a creation specification, and perform the actual creation.

To create a diagnostic partition, use the following steps.

Procedure

1 Find a suitable partition by calling HostDiagnosticPartition.QueryAvailablePartition or
HostDiagnosticPartition.QueryPartitionCreateOptions.

2 Call HostDiagnosticPartition.CreateDiagnosticPartition, passing in a
HostDiagnosticPartitionCreateSpec, which includes information about the diagnostic type, id,
storage type, and so on.

Results

On success, this method creates the partition and makes the partition the active partition if specified in
the active parameter. On failure, the diagnostic partition might exist, but will not be active even if the
partition was supposed to be made active.

vSphere Web Services SDK Programming Guide

VMware, Inc. 129

Sample Code Reference
The following table lists the sample applications included with the vSphere Web Services SDK that
demonstrate some of the topics discussed in this chapter.

Java (SDK\vsphere-ws\java\JAXWS\samples\com\vmware
\)

C#
(SDK\vsphere-ws\dotnet\cs\samples\)

scsilun\SCSILunName.java SCSILunName\SCSILunName.cs

-- SCSILunName\SCSILunName.csproj

-- SCSILunName\SCSILunName2008.csproj

-- SCSILunName\SCSILunName2010.csproj

httpfileaccess\GetVMFiles.java GetVirtualDiskFiles\GetVirtualDiskFiles.cs

vSphere Web Services SDK Programming Guide

VMware, Inc. 130

vSphere Networks 9
Before you add storage and virtual machines to an ESXi system, you should have completed networking
setup. This chapter describes how to set up virtual switches in the vSphere environment.

This chapter includes the following topics:

n Virtual Switches

n Using a Distributed Virtual Switch

n VMware Standard Virtual Switch

n Sample Code Reference

Virtual Switches
vSphere supports the use of virtual switches to manage network traffic to and from virtual machines.

n vCenter Server supports a distributed network model in which a distributed virtual switch manages
ESXi host proxy switch configuration. In the distributed network model, a host proxy switch reflects
the distributed virtual switch port settings, describes how physical network adapters are bridged to the
switch, and performs network I/O.

n On a standalone ESXi host, you can use a VMware standard virtual switch to support network traffic
to and from virtual machines on the host.

To configure a vSphere network you perform the following operations:

n Set up virtual switches

n Define portgroups

n Configure physical network adapters

Port Groups
Port groups aggregate multiple ports under a common configuration. Each port can connect to a network
adapter of a virtual machine, or an uplink adapter on the physical machine.

VMware, Inc. 131

Each port group is identified by a network label, which is unique to the current host. Network labels make
virtual machine configuration portable across hosts. All port groups in a datacenter that are physically
connected to the same network (in the sense that each can receive broadcasts from the others) are given
the same label. Conversely, if two port groups cannot receive broadcasts from each other, they have
distinct labels.

You can use a VLAN ID to restrict port group traffic to a logical Ethernet segment within the physical
network. For a port group to reach port groups located on other VLANs, the VLAN ID must be set to 4095.
If you use VLAN IDs, you must change the port group labels and VLAN IDs together so that the labels
properly represent connectivity.

Virtual Machine Network Interfaces
When you create a virtual machine, you include a VirtualMachineConfigSpec, which, in turn, includes
a VirtualDeviceConfigSpec. The device property of VirtualDeviceConfigSpec is a
VirtualDevice data object.

One of the available virtual devices is VirtualEthernetCard. You can use one of the subtypes of
VirtualEthernetCard to specify the virtual card to use and to specify the MAC address and whether
wake-on-LAN is enabled for this virtual card. See Adding Devices to Virtual Machines. A limited number
of adapters is supported. KB article 1001805 (http://kb.vmware.com/kb/1001805) discusses available
network adapters and which adapter is appropriate in which situation.

VMkernel Network Interfaces
The network services that the VMkernel provides (iSCSI, NFS, and VMotion) use a TCP/IP stack in the
VMkernel. This stack accesses various networks by attaching to one or more port groups on one or more
virtual switches.

The VMware VMkernel TCP/IP networking stack handles iSCSI, NFS, and VMotion in the following ways.

n iSCSI as a virtual machine datastore

n iSCSI for the direct mounting of ISO files, which are presented as CD-ROMs to virtual machines

n NFS as a virtual machine datastore

n NFS for the direct mounting of ISO files, which are presented as CD-ROMs to virtual machines

n Migration with VMotion

If you have two or more physical NICs for iSCSI, you can create multiple paths for the software iSCSI by
using port binding. For more information on port binding, see the iSCSI SAN Configuration Guide.

A freshly installed ESX/ESXi system does not include VMkernel network interfaces. When you wish to
migrate a virtual machine with VMotion, your VMkernel networking stack must be set up properly. When
you want to use storage types that use TCP/IP network communications, such as iSCSI, you must
provide a separate VMkernel network interface for that storage device. You must create any VMkernel
ports you might need (see Adding a VMkernel Network Interface).

vSphere Web Services SDK Programming Guide

VMware, Inc. 132

http://kb.vmware.com/kb/1001805

Physical Network Adapter (pnic)
The term pnic refers to the physical network adapters as seen by the primary operating system. When
using the vSphere Web Services SDK, you can manipulate the adapter directly. When using the vSphere
Client GUI, you manipulate instead the uplink adapter. On an ESXi host, each pnic has one associated
uplink adapter.

In a vDS environment, you use a DVS uplink instead of an uplink adapter.

Using a Distributed Virtual Switch
A DistributedVirtualSwitch managed object is a virtual network switch that is located on a vCenter
Server. A distributed virtual switch manages configuration for proxy switches (HostProxySwitch). A
proxy switch is located on an ESXi host that is managed by the vCenter Server and is a member of the
switch. A distributed switch also provides virtual port state management so that port state is maintained
when vCenter Server operations move a virtual machine from one host to another.

A proxy switch performs network I/O to support the following network traffic and operations:

n Network traffic between virtual machines on any hosts that are members of the distributed virtual
switch.

n Network traffic between a virtual machine that uses a distributed virtual switch and a virtual machine
that uses a VMware standard virtual switch.

n Network traffic between a virtual machine and a remote system on a physical network connected to
the ESXi host.

n vSphere system operations to support capabilities such as VMotion or High Availability.

A DistributedVirtualSwitch is the base distributed switch implementation. It supports a VMware
distributed virtual switch implementation and it supports third party distributed switch implementations.
The base implementation provides the following capabilities (defined in the DVSFeatureCapability
object):

n NIC teaming

n Network I/O control

n Network resource allocation

n Quality of service tag support

n User-defined resource pools

n I/O passthrough (VMDirectPath Gen2)

A VmwareDistributedVirtualSwitch supports the following additional capabilities (defined in the
DVSFeatureCapability and VMwareDVSFeatureCapability objects):

n Backup, restore, and rollback for a VMware distributed virtual switch and its associated portgroups.

n Maximum Transmission Unit (MTU) configuration.

vSphere Web Services SDK Programming Guide

VMware, Inc. 133

n Health check operations for NIC teaming and VLAN/MTU support.

n Monitoring switch traffic using Internet Protocol Flow Information Export (IPFIX).

n Link Layer Discovery Protocol (LLDP).

n Virtual network segmentation using a Private VLAN (PVLAN).

n VLAN-based SPAN (VSPAN) for virtual distributed port mirroring.

n Link Aggregation Control Protocol (LACP) defined for uplink portgroups.

Distributed Virtual Switch Configuration
To use a distributed virtual switch, you create a switch and portgroups on a vCenter Server, and add
hosts as members of the switch.

Procedure

1 Use the Folder.CreateDVS_Task method to create a distributed virtual switch. Use a
DVSConfigSpec to create a switch for a third-party implementation. Use a VMwareDVSConfigSpec to
create a VMware distributed virtual switch.

2 Use the CreateDVPortgroup_Task method to create portgroups for host and virtual machine
network connections and for the connection between proxy switches and physical NICs. A
DistributedVirtualPortgroup specifies how virtual ports (DistributedVirtualPort) will be
used. When you create a distributed virtual switch, the vCenter Server automatically creates one
uplink portgroup (config.uplinkPortgroup). Uplink portgroups are distributed virtual portgroups
that support the connection between proxy switches and physical NICs.

Port creation on a distributed switch is determined by the portgroup type
(DVPortgroupConfigSpec.type):

n If a portgroup is early binding (static), then DVPortgroupConfigSpec.numPorts determines the
number of ports that get created when the portgroup is created. This number can be increased if
DVPortgroupConfigSpec.autoExpand is true.

n If a portgroup is ephemeral (dynamic), then numPorts is ignored and ports are created as needed.

You can also specify standalone ports that are not associated with a port group and uplink ports
that are created on ESXi hosts (DVSConfigSpec.numStandalonePorts).

The DVPortgroupConfigInfo.numPorts property is the total number of ports for a distributed
virtual switch. This total includes the ports generated by the static and dynamic portgroups and
the standalone ports.

3 If you have created additional uplink portgroups, use the ReconfigureDvs_Task method to add the
portgroup(s) to the DVSConfigSpec.uplinkPortgroup array.

4 Retrieve physical NIC device names from the host
(HostSystem.config.network.pnic[].device).

vSphere Web Services SDK Programming Guide

VMware, Inc. 134

5 Add host member(s) to the distributed virtual switch. To configure host members:

n Specify hosts (DVSConfigSpec.host[]).

n For each host, specify one or more physical NIC device names to identify the pNIC(s) for the host
proxy connection to the network
(DistributedVirtualSwitchHostMemberConfigSpec.backing.pnicSpec[].pnicDevice)

n Use the DistributedVirtualSwitch.ReconfigureDvs_Task method to update the switch
configuration.

When you add a host to a distributed virtual switch (DistributedVirtualSwitch.config.host), the
host automatically creates a proxy switch. The proxy switch is removed automatically when the
host is removed from the distributed virtual switch.

6 Connect hosts and virtual machines to the distributed virtual switch.

Host connection Specify port or portgroup connections in the host virtual NIC spec
(HostVirtualNicSpec.distributedVirtualPort or
HostVirtualNicSpec.portgroup).

Virtual machine
connection

Specify port or portgroup connections in the distributed virtual port backing
(VirtualEthernetCardDistributedVirtualPortBackingInfo) for the virtual
Ethernet cards on the virtual machine (VirtualEthernetCard.backing).

Backup, Rollback, and Query Operations
If you are using a VmwareDistributedVirtualSwitch, you can perform backup and rollback operations
on the switch and its associated distributed virtual portgroups.

When you reconfigure a VMware distributed virtual switch (ReconfigureDvs_Task), the server saves the
current switch configuration before applying the configuration updates. The saved switch configuration
includes portgroup configuration data. The server uses the saved switch configuration as a checkpoint for
rollback operations. You can rollback the switch or portgroup configuration to the saved configuration, or
you can rollback to a backup configuration (EntityBackupConfig).

n To backup the switch and portgroup configuration, use the
DistributedVirtualSwitchManager.DVSManagerExportEntity_Task method. The export
method produces a EntityBackupConfig object. The backup configuration contains the switch
and/or portgroups specified in the SelectionSet parameter. To backup the complete configuration you
must select the distributed virtual switch and all of its portgroups.

n To rollback the switch configuration, use the DVSRollback_Task method to determine if the switch
configuration has changed. If it has changed, use the ReconfigureDvs_Task method to complete
the rollback operation.

n To rollback the portgroup configuration, use the
DistributedVirtualPortgroup.DVPortgroupRollback_Task method to determine if the
portgroup configuration has changed. If it has changed, use the ReconfigureDVPortgroup_Task
method to complete the rollback operation.

vSphere Web Services SDK Programming Guide

VMware, Inc. 135

To perform query operations on a distributed virtual switch, use the
DistributedVirtualSwitchManager methods.

VMware Standard Virtual Switch
Network setup for ESXi hosts can consist of several parts:

n Setting up one or more virtual switches. Virtual switches provide the connectivity between virtual
machines on the same host or on different hosts. Virtual switches also support VMkernel network
access for VMotion, iSCSI, and NFS. You set up virtual switches independently on each host. See
Adding a Standard Virtual Switch.

n Adding virtual machine port groups. A virtual machine always accesses the network through a port
group. See Adding a Virtual Port Group.

n Specifying the adapter for the virtual machine. This adapter is specified as a virtual device, configured
as part of virtual machine setup, and discussed in Configuring a Virtual Machine.

n Adding VMkernel network interfaces, for example, to support iSCSI storage or VMotion. See Adding a
VMkernel Network Interface.

n Configuring a physical adapter (pnic), the actual connection from the host to the network. You can
configure the pnic through the HostNetworkSystem.pnic property, which is a PhysicalNic data
object. You can specify the set of pnics associated with a virtual switch through the
VirtualSwitch.pnic property, which takes an array of physical network adapters.

n Network configuration for the host (IP routing, DNS, SNMP). See Adding Networking Services.

Configuring a Standard Virtual Switch
To use a VMware standard virtual switch, you use the following elements to configure the switch on an
ESXi host.

n HostNetworkSystem – Managed object that represents the host’s networking configuration. This
object’s properties point to the networking data objects you can use for network management,
including HostDnsConfig and HostIpRouteConfig.

HostNetworkSystem properties allow you to access HostNetCapabilities and HostNetworkInfo
data objects, and access and modify the HostNetworkConfig data object.

HostNetworkSystem includes methods for retrieving and changing the network configuration. See
the API Reference for a complete list of methods and the permissions required to run them.

n HostNetworkConfig – Allows you to specify the network configuration for the host. You can apply
the configuration by running the HostNetworkSystem.UpdateNetworkConfig method.

n Network – Represents a network accessible by either hosts or virtual machines. This can be a
physical network or a logical network, such as a VLAN.

When you add a host to a vCenter Server system, or when you add a virtual machine to an ESX/ESXi
host, a Network is added automatically.

vSphere Web Services SDK Programming Guide

VMware, Inc. 136

n HostSystem.QueryHostConnectionInfo and Datacenter.QueryConnectionInfo both return a
HostConnectInfo data object, which describes the current network configuration.

HostSNMPSystem – Supports SNMP setup. See Setting Up SNMP.

vNetwork Standard Switch Environment
A vNetwork Standard Switch (vSS) can route traffic internally between virtual machines and can link
virtual machines to external networks.

The following diagram shows the elements of a vSS environment.

Figure 9-1. vSS Environment

Virtual Switches
At the center of networking with vSS is the virtual switch itself. The vSS can send network traffic between
virtual machines on the same host (private network) or network traffic to an external network (public
network). The public network uses the Ethernet adapter associated with the physical host (uplink
adapter).

When two or more virtual machines are connected to the same vSS, network traffic between them is
routed locally. If an uplink adapter is attached to the vSS, each virtual machine can access the external
network that the adapter is connected to.

Setting Up Networking with vSS
You can use the HostNetworkSystem managed object to access and manipulate the elements of an
ESXi network.

vSphere Web Services SDK Programming Guide

VMware, Inc. 137

Retrieving Information About the Network Configuration
You can retrieve information about the network configuration as follows:

n The properties of the HostNetworkConfig object, which you access through
HostNetworkSystem.networkConfig, allow you to retrieve configuration information. This
information is comprehensive and includes the physical adapters, virtual switches, virtual network
interfaces, and so on.

You can also use HostNetworkConfig to make changes to the configuration.

n The properties of the HostNetworkInfo object, which you access through
HostNetworkSystem.networkInfo, allow you to retrieve runtime information.

Adding a Standard Virtual Switch
You call the HostNetworkSystem.AddVirtualSwitch method to add one or more virtual switches. Pass
in the name of the virtual switch and a HostVirtualSwitchSpec data object as parameters.

Inside HostVirtualSwitchSpec you can specify the MTU, number of ports, network policy, and bridge
specification. The bridge specifies how the virtual switch connects to the physical adapter. The currently
supported bond bridge provides network adapter (NIC) teaming capabilities through the use of a list of
physical devices and, optionally, a beacon probe to test connectivity with physical adapters.

After you have created the virtual switch, you can connect it to a pnic for connection to the outside, and to
a VMkernel port or a port group.

To add a virtual switch, use the following steps.

Procedure

1 Obtain information about the current networking configuration.

You can use a property collector to retrieve the HostNetworkSystem managed object and several of
its properties, such as networkInfo.

2 Define a HostVirtualSwitchSpec that specifies the attributes of the virtual switch. You can specify
the number of ports (56 to 4088 on ESXi systems) and the HostNetworkPolicy. See “Defining the
Host Network Policies” on page 122.

3 Call HostNetworkSystem.AddVirtualSwitch to add a virtual switch. Specify a unique name and a
HostVirtualSwitchSpec that defines the switch attributes.

The following fragment from AddVirtualSwitch.java illustrates this.

Example: Adding a Virtual Switch

vswitchId = vSwitch42;

...

ManagedObjectReference nwSystem = configMgr.getNetworkSystem();

HostVirtualSwitchSpec spec = new HostVirtualSwitchSpec();

spec.setNumPorts(8);

service.addVirtualSwitch(nwSystem, vswitchId, spec);

System.out.println(" : Successful creating : " + vswitchId);

vSphere Web Services SDK Programming Guide

VMware, Inc. 138

Adding a Virtual Port Group
Port groups allow you to differentiate between different kinds of traffic passing through a virtual switch.
You can also use port groups as a boundary for communication or for security policy configuration. The
default port groups for ESXi systems are Management Network and VM Network.

When you create a port group, you can specify a VLAN ID for it. VLANs are an important part of ESXi
networking because they allow you to group traffic. For example, you could create separate network
segments for VMotion, for management and for development. Using VLANS, you only need to have a
separate uplink adapter for each network segment and a single virtual switch connecting to that adapter.
That setup can greatly reduce the number of switches you need.

To add a virtual port group, use the following steps.

Procedure

1 Define a HostPortgroupSpec. For each port group, you can specify the network policy, the VLAN ID,
and the virtual switch to which the port group belongs.

2 Call HostNetworkSystem.AddPortGroup, passing in the PortGroupSpec.

Adding a VMkernel Network Interface
VMkernel network interfaces provide the network access for the VMkernel TCP/IP stack. You must create
new VMkernel ports for your ESXi system if you plan on using VMotion, VMware FT, or iSCSI and NAS
storage. A VMkernel port consists of a port on the virtual switch and a VMkernel interface.

To add a VMkernel Network Interface to your ESXi system, use the following steps.

Procedure

1 Create a HostVirtualNicSpec data object. Inside the object, you can specify the IP configuration in
a HostIpConfig data object. For vSS, specify the portgroup property. For vDS, specify the
distributedVirtualPort property.

2 Call HostNetworkSystem.AddVirtualNic, passing in the HostVirtualNicSpec.

3 You can then use the VMkernel network interface for software iSCSI or NAS, or call the
HostVmotionSystem.SelectVnic method to use this VMkernel NIC for VMotion.

Adding a VMkernel Network Interface, a code fragment from the AddVirtualNic example, illustrates
this. The sample retrieves the IP address from the command line using the cb.get_option call.

Example: Adding a VMkernel Network Interface

private HostVirtualNicSpec createVNicSpecification() {

 HostVirtualNicSpec vNicSpec = new HostVirtualNicSpec();

 HostIpConfig ipConfig = new HostIpConfig();

 ipConfig.setDhcp(false);

 ipAddr = cb.get_option("ipaddress");

 ipConfig.setIpAddress(ipAddr);

 ipConfig.setSubnetMask("255.255.255.0");

 vNicSpec.setIp(ipConfig);

 return vNicSpec;

vSphere Web Services SDK Programming Guide

VMware, Inc. 139

}

HostVirtualNicSpec vNicSpec = createVNicSpecification();

service.addVirtualNic(nwSystem, portGroup, vNicSpec);

Defining the Host Network Policies
When you configure host networks, you can define specific policies for the network. The
HostNetworkPolicy data object type describes network policies for both virtual switches and port
groups. If the settings are not specified for the port group explicitly, the port group inherits policy settings
from the virtual switch with which it is associated.

The policies are defined by the following data objects available as properties of HostNetworkPolicy.

n HostNicTeamingPolicy – Defines the connection to the physical network. This includes failure
criteria, active and standby NICs, and failover and load balancing information. See NIC Teaming.

n HostNetworkSecurityPolicy – Defines the security policies for the network. See the ESXi
Configuration Guide.

n HostNetworkTrafficShapingPolicy – Establishes parameters for three traffic characteristics:
average bandwidth, peak bandwidth, and maximum burst size.

You can also specify the VLAN policy by assigning an integer to the HostPortgroupSpec.vlanid
property. The VMkernel takes care of tagging and untagging the packets as they pass through the virtual
switch. See the HostPortgroupSpec and HostNetworkPolicy data objects in the API Reference.

NIC Teaming
Virtual machines connect to the public network through a virtual switch, which, in turn, connects to the
physical network interface (pnic). When the physical adapter or the adapter’s network connection fails,
connectivity for the associated virtual switch and all port groups and virtual machines is lost.

To resolve this issue, you can set up your environment so each virtual switch connects to two uplink
adapters. Each uplink adapter connects to two different physical switches. The teams can then either
share the load of traffic between physical and virtual networks among some or all of its members, or
provide passive failover in the event of a hardware failure or a network outage.

You set up NIC teaming by setting the HostNetworkPolicy. The path to the HostNicTeamingPolicy is:

HostConfigSpec.network.vswitch[].spec.policy.nicTeaming

If you specify NIC teaming for a virtual switch, the HostVirtualSwitchSpec.bridge property must be
set to HostVirtualSwitchBondBridge.

vSphere Web Services SDK Programming Guide

VMware, Inc. 140

Figure 9-2. NIC Teaming

Setting Up IPv6 Networking
vSphere supports both Internet Protocol version 4 (IPv4) and Internet Protocol version 6 (IPv6)
environments. With IPv6, you can use vSphere features such as NFS in an IPv6 environment.

An IPv6-specific configuration in vSphere involves providing IPv6 addresses, either by entering static
addresses or by using DHCP for all relevant vSphere networking interfaces. IPv6 addresses can also be
configured using stateless autoconfiguration sent by router advertisement.

You can set up IPv6 networking for a host by changing the HostIpConfig.ipV6Config property, which is
a HostIpConfigIpV6AddressConfiguration data object. HostIpConfigIpV6AddressConfiguration
allows you to specify whether auto-configuration is enabled, whether DHCP for ipV6 addresses is
enabled, and an array of IPv6 addresses (HostIpConfigIpV6Address data objects).

HostIpConfigIpV6Address allows you to specify all aspects of the IPv6 address including the state of
the address, the address (unless DHCP is enabled), life time, operation, origin, and prefix length. See the
API Reference. The following code fragment illustrates setting the VMkernel NIC to get an automatic IPv6
address from router advertisements and through DHCP. The user provides the IP address on the
command line when calling the program from which the fragment is taken. The sample retrieves the
address using the cb.get_option utility applications call.

Example: IPv6 Setup

private HostVirtualNicSpec createVNicSpecification() {

 HostVirtualNicSpec vNicSpec = new HostVirtualNicSpec();

 HostIpConfig ipConfig = new HostIpConfig();

 //setting the vnic to get an automatic ipv6 address from router advertisements

 // and through dhcp

vSphere Web Services SDK Programming Guide

VMware, Inc. 141

 ipV6Config = new HostIpConfigIpV6AddressConfiguration();

 ipV6Config.setAutoConfigurationEnabled(true);

 ipV6Config.setDhcpV6Enabled(true);

 ipConfig.setIpV6Config(ipV6Config);

 vNicSpec.setIp(ipConfig);

 return vNicSpec;

....

Adding Networking Services
You can set up network services for your ESXi system by using HostConfigManager properties and
methods.

Adding an NTP Service
The HostConfigManager.dateTimeSystem property contains a HostDateTimeSystem data object. This
object allows you to perform NTP and date and time related configuration.

n Query and update the date and time information by using one of the methods defined in
HostDateTimeSystem.

n Modify the HostDateTimeSystem.dateTimeInfo property, which contains a HostDateTimeInfo
object, to set up NTP. The NTP information is stored in the HostDateTimeInfo.ntpConfig property,
which is a HostNtpConfig object. The HostNtpConfig objects’s server property contains a list of
time servers, specified by IP address or fully qualified domain name.

Important You can start and stop the NTP daemon and retrieve information about it by using the
HostServiceSystem object.

Setting Up the IP Route Configuration
You can use the HostNetworkSystem.UpdateIPRouteConfig method to specify the IP route
configuration for an ESXi system. The method takes a HostIPRouteConfig data object as an argument.
In this object, you can specify the default gateway address and the IPv6 gateway address.

Setting Up SNMP
Simple Network Management Protocol (SNMP) allows management programs to monitor and control
networked devices. vCenter Server and ESXi systems include different SNMP agents:

n The SNMP agent included with vCenter Server can send traps when the vCenter Server system is
started or when an alarm is triggered on vCenter Server. The vCenter Server SNMP agent functions
only as a trap emitter and does not support other SNMP operations such as GET.

n ESXi 4.0 includes an SNMP agent embedded in the host daemon (hostd) that can send traps and
receive polling requests such as GET requests.

vSphere Web Services SDK Programming Guide

VMware, Inc. 142

Versions of ESX released before ESX/ESXi 4.0 included a Net-SNMP-based agent. You can continue to
use this Net-SNMP-based agent in ESX 4.x with MIBs supplied by your hardware vendor and other third-
party management applications. However, to use the VMware MIB files, you must use the embedded
SNMP agent. To use the NET-SNMP based agent and embedded SNMP agent at the same time, make
one of the agents listen on a nondefault port. By default, both agents use the same port.

The SDK supports SNMP agent configuration through the HostSnmpSystem managed object. This object
includes two methods, ReconfigureSnmpAgent and SendTestNotification.

n HostSnmpSystem.ReconfigureSnmpAgent allows you to specify agent properties through a
HostSnmpConfigSpec. That data object allows you to specify the SNMP port, read only communities,
and the trap targets in an HostSnmpDestination object. The HostSnmpDestination object allows
you to specify the community, and a host and port listening for notification.

n HostSnmpSystem.SendTestNotification allows you to test your configuration.

A HostSnmpSystemAgentLimits data object in the HostSnmpSystem.limits property specifies limits of
the agent.

Sample Code Reference
The following table lists the sample applications included with the vSphere SDK that demonstrate how to
use some of the managed objects discussed in this chapter.

Java C#

(SDK\vsphere-ws\java\JAXWS\samples\com
\vmware\host)

(SDK\vsphere-ws\dotnet\cs\samples\)

AddVirtualNic.java AddVirtualNic\AddVirtualNic.cs

AddVirtualNic\AddVirtualNic.csproj

AddVirtualNic\AddVirtualNic2008.csproj

AddVirtualNic\AddVirtualNic2010.csproj

AddVirtualSwitch.java AddVirtualSwitch\AddVirtualSwitch.cs

AddVirtualSwitch\AddVirtualSwitch.csproj

AddVirtualSwitch\AddVirtualSwitch2008.csproj

AddVirtualSwitch\AddVirtualSwitch2010.csproj

AddVirtualSwitchPortGroup.java AddVirtualSwitchPortGroup\AddVirtualSwitchPortGroup.cs

AddVirtualSwitchPortGroup\AddVirtualSwitchPortGroup.csproj

AddVirtualSwitchPortGroup\AddVirtualSwitchPortGroup2008.csproj

AddVirtualSwitchPortGroup\AddVirtualSwitchPortGroup2010.csproj

RemoveVirtualNic.java RemoveVirtualNic\RemoveVirtualNic.cs

RemoveVirtualNic\RemoveVirtualNic.csproj

RemoveVirtualNic\RemoveVirtualNic2008.csproj

RemoveVirtualNic\RemoveVirtualNic2010.csproj

vSphere Web Services SDK Programming Guide

VMware, Inc. 143

Java C#

RemoveVirtualSwitch.java RemoveVirtualSwitch\RemoveVirtualSwitch.cs

RemoveVirtualSwitch\RemoveVirtualSwitch.csproj

RemoveVirtualSwitch\RemoveVirtualSwitch2008.csproj

RemoveVirtualSwitch\RemoveVirtualSwitch2010.csproj

RemoveVirtualSwitchPortGroup.java RemoveVirtualSwitchPortGroup\RemoveVirtualSwitchPortGroup.cs

RemoveVirtualSwitchPortGroup

\RemoveVirtualSwitchPortGroup.csproj

RemoveVirtualSwitchPortGroup

\RemoveVirtualSwitchPortGroup2008.csproj

RemoveVirtualSwitchPortGroup

\RemoveVirtualSwitchPortGroup2010.csproj

vSphere Web Services SDK Programming Guide

VMware, Inc. 144

Virtual Machine Configuration 10
A virtual machine is a software computer that, like a physical computer, runs an operating system and
applications. Virtual machines are compatible with all standard x86 computers. Each virtual machine
encapsulates a complete computing environment and runs independently of underlying hardware.

This chapter includes the following topics:

n VirtualMachine Management Objects and Methods

n Creating Virtual Machines and Virtual Machine Templates

n Configuring a Virtual Machine

n Adding Devices to Virtual Machines

n Performing Virtual Machine Power Operations

n Registering and Unregistering Virtual Machines

n Customizing the Guest Operating System

n Installing VMware Tools

n Upgrading a Virtual Machine

VirtualMachine Management Objects and Methods
Virtual machines are the central elements of your vSphere environment.

You create a virtual machine by calling Folder.CreateVM_Task, and configure the virtual machine by
using properties and methods of the VirtualMachine managed object. Most of the properties point to
data objects that the methods use as input. Figure 10-1. VirtualMachine Managed Object with Some
Properties and Methods shows some of the properties and methods.

Client applications commonly access and manipulate the following virtual machine related objects:

n VirtualMachine – Managed object used for most virtual machine manipulation. Includes methods
that create templates, clones, or snapshots of a virtual machine, perform power operations and guest
OS management, and install VMware Tools.

n VirtualMachineConfigInfo – Data object which allows you to retrieve configuration-specific
information from a virtual machine.

VMware, Inc. 145

n VirtualMachineCloneSpec – Data object which allows you to specify virtual machine properties for
a clone operation. Argument to VirtualMachine.CloneVM_Task.

Figure 10-1. VirtualMachine Managed Object with Some Properties and Methods

Creating Virtual Machines and Virtual Machine Templates
To create a virtual machine, you use the Folder.CreateVM_Task method. The method takes a
VirtualMachineConfigSpec data object as input argument. VirtualMachineConfigSpec allows you to
specify the attributes of the virtual machine you are creating.

If you need several identical virtual machines, you can convert an existing virtual machine to a template
and create multiple copies (clones) from the template. You can also create multiple virtual machines by
cloning an existing virtual machine directly.

Creating a Virtual Machine Using VirtualMachineConfigSpec
Use the Folder.CreateVM_Task method to create a virtual machine by specifying its attributes. You
must specify either a host or a resource pool (or both). The virtual machine uses the CPU and memory
resources from the host or resource pool.

Calling the CreateVM_Task Method
Create a virtual machine by calling the Folder.CreateVM_Task method with the following arguments:

n _this —Folder where you want to place the virtual machine.

vSphere Web Services SDK Programming Guide

VMware, Inc. 146

n config— VirtualMachineConfigSpec data object that specifies CPU, memory, networking, and so
on. See Specifying Virtual Machine Attributes with VirtualMachineConfigSpec)

n pool— Resource pool for the virtual machine to draw resources from.

n host— HostSystem managed object that represents the target host on which to run the virtual
machine. If you invoke this method on a standalone host, omit this parameter. If the target host is part
of a VMware DRS cluster, this parameter is optional; if no host is specified, the system selects one.

Important All objects must be located in the same datacenter.

Specifying Virtual Machine Attributes with VirtualMachineConfigSpec
The actual customization of the virtual machine happens through the properties of the
VirtualMachineConfigSpec that is passed in as an argument to Folder.CreateVM_Task. For
example, you can specify the name, boot options, number of CPUs, and memory for the virtual machine.
All properties of VirtualMachineConfigSpec are optional to support incremental changes. See the API
Reference.

The following example fragment from the VMCreate sample program illustrates how to define a
VirtualMachineConfigSpec.

Example: Defining a VirtualMachineConfigSpec Data Object

VirtualMachineConfigSpec vmConfigSpec = new VirtualMachineConfigSpec();

 ...

 vmConfigSpec.setName(“MyVM”);

 vmConfigSpec.setMemoryMB(new Long(Integer.parseInt 500));

 vmConfigSpec.setNumCPUs(Integer.parseInt 4);

 vmConfigSpec.setGuestId(cb.get_option("guestosid"));

 ...

The VMware SDK SDK/samples/Axis/java/com/vmware/apputils/vim/VMUtils.java sample
defines a more comprehensive virtual machine that also includes a Floppy, CD-ROM, disk, and virtual
NIC. See Configuring a Virtual Machine for a discussion of commonly set properties.

When you create a virtual machine, the virtual machine files are added at the virtual machine’s storage
location. See Table 10-1. Default Files.

Additional Configuration Information

The VirtualMachineConfigInfo and VirtualMachineConfigSpec objects provide the extraConfig
property for additional configuration information. The extraConfig property is an array of key/value pairs
that identify configuration options. The Server stores the extraConfig options in the .vmx file for the
virtual machine. As the vSphere API evolves from version to version, an extraConfig option may become
a standard configuration property that is part of the defined inventory data model. In this case, you must
use the standard data model property for access; you cannot use the extraConfig property.

vSphere Web Services SDK Programming Guide

VMware, Inc. 147

Creating Virtual Machine Templates
Templates allow you to create multiple virtual machines with the same characteristics, such as resources
allocated to CPU and memory, or type of virtual hardware. A virtual machine template is a virtual machine
that cannot be powered on and that is not associated with a resource pool.

You can convert any powered off virtual machine to a template by calling
VirtualMachine.MarkAsTemplate. After the conversion, the original virtual machine no longer exists.
You can use the template to create multiple clones of the same configuration.

Cloning a Virtual Machine
A clone is a copy of a virtual machine. The main difference between a virtual machine and a clone is that
the VirtualMachine.config.template property is set to true.

You can create a clone in one of the following ways:

n If you no longer need a specific instance of a virtual machine, but you want to use the virtual
machine’s configuration as a template, use the VirtualMachine.MarkAsTemplate method. This
method sets the config.template property to true, and disables the virtual machine.

n If you want to use an existing virtual machine as a template, but keep the virtual machine, call the
VirtualMachine.CloneVM_Task method to create a duplicate of the virtual machine.

If you use the VirtualMachine.CloneVM_Task method, you can customize certain attributes of the
clone by specifying them in the VirtualMachineCloneSpec data object you pass in when you call the
method.

The following code fragment from VMClone.java illustrates how you can customize a clone and specify a
new location for it.

Example: Cloning a Virtual Machine

VirtualMachineCloneSpec cloneSpec = new VirtualMachineCloneSpec();

VirtualMachineRelocateSpec relocSpec = new VirtualMachineRelocateSpec();

cloneSpec.setLocation(relocSpec);

cloneSpec.setPowerOn(false);

cloneSpec.setTemplate(false);

String clonedName = cloneName;

ManagedObjectReference cloneTask

 = service.cloneVM_Task(vmRef, vmFolderRef, clonedName, cloneSpec);

The VirtualMachine.CloneVM_Task method takes the source virtual machine, target folder, name, and
VirtualMachineCloneSpec as arguments.

The VirtualMachineCloneSpec data object includes the location, power state, and whether the clone
should be a template. The location, in turn, is a VirtualMachineRelocateSpec data object that specifies
the target location (datastore, disk, and host or resource pool) and any transformation to be performed on
the disk.

vSphere Web Services SDK Programming Guide

VMware, Inc. 148

Converting a Template to a Virtual Machine
You can change a template back to an operational virtual machine.

n To convert the template to a virtual machine, call the MarkAsVirtualMachine method on the
template. You must specify a resource pool and, optionally, a host for the virtual machine. Host and
resource pool must be under the same ComputeResource. When the operation completes, the
template no longer exists.

n To keep the template, clone the template by calling the CloneVM_Task method on the template. In the
VirtualMachineCloneSpec (the spec parameter), set the template property to false.

Accessing Information About a Virtual Machine
After you have created a virtual machine, you can retrieve information about the virtual machine through
the VirtualMachineConfigInfo properties. See the API Reference for a complete list.

Checking Default Files
After you have created a virtual machine, several files are generated and placed in the directory specified
in the VirtualMachineConfigSpec.files property.

Table 10-1. Default Files

File Usage File Description File Format

.vmx .vmname.vmx Virtual machine configuration file. ASCII

.vmxf vmname.vmxf Additional virtual machine configuration files, available, for
example, with teamed virtual machines.

ASCII

.vmdk vmname.vmdk Virtual disk file. ASCII

.flat.vmdk vmname.flat.vmd
k

Preallocated virtual disk in binary format. Binary

.vswp vmname.vswp Swap file.

.nvram vmname.nvram or
nvram

Non-volatile RAM. Stores virtual machine BIOS information.

.vmss vmname.vmss Virtual machine suspend file.

.log vmware.log Virtual machine log file. ASCII

#.log vmware-#.log Old virtual machine log files. # is a number starting with 1. ASCII

.vmtx vmname.vmtx Virtual machine template file. ASCII

If you are using snapshots, the following additional files might be available. See Snapshots.

File Extension Usage File Description

.vmsd vmname.vms
d

Virtual machine snapshot file.

.vmsn vmname.vms
n

Virtual machine snapshot data file.

vSphere Web Services SDK Programming Guide

VMware, Inc. 149

File Extension Usage File Description

**.delta.vmdk Snapshot difference file. A number preceding the extension increases with more
snapshots.

**.vmdk Metadata about a snapshot.

-Snapshot#.vmsn Snapshot of virtual machine memory. Snapshot size is equal to the size of you
virtual machine’s maximum memory.

Checking Default Devices
When you create a virtual machine, you are also creating a set of default devices, based on the hardware
version associated with your SDK. You can see these devices using the
EnvironmentBrowser.QueryConfigOption method. For example, the IDE controllers are created by
default. Many of these default devices contain properties that you cannot change.

However, you can add the following optional devices to the default set: VirtualSerialPort,
VirtualParallelPort, VirtualFloppy, VirtualCdrom, VirtualUSB, VirtualEthernetCard,

VirtualDisk, and VirtualSCSIPassthrough. See the VirtualDevice Data Object in the API Reference
for more information about each of these optional devices.

Caution Do not try to change default device properties using the
VirtualMachineConfigSpec.deviceChange method discussed in Adding Devices to Virtual Machines,
because the deviceChange method is not applicable to default device properties.

Configuring a Virtual Machine
You can configure a virtual machine during creation (Folder.CreateVM_Task) or cloning
(VirtualMachine.CloneVM_Task). You can also reconfigure a virtual machine using
VirtualMachine.ReconfigVM_Task.

In vSphere 5.5 and later, the ReconfigVM_Task method will throw an error when it attempts to change
certain virtual machine properties while the virtual machine is powered on. In previous releases, the
server would modify the properties in the configuration specification and the changes would take effect
after the virtual machine resets, reboots, or performs a fast suspend and resume.

Since vSphere 5.5, a reconfigure operation modifies the virtual machine in real time, so that the virtual
machine properties have been changed by the time the method returns control to the client.

You cannot reconfigure a powered on virtual machine successfully if you specify any of the following
properties in the VirtualMachineConfigSpec when you call the ReconfigVM_Task method.

Property VirtualMachineConfigSpec Path

VirtualDevice.unitNumber deviceChange.device.unitNumber

VirtualDevicePciBuslSlotInfo.pciSlotNumber deviceChange.device.slotInfo.pciSlotNumber

vSphere Web Services SDK Programming Guide

VMware, Inc. 150

Property VirtualMachineConfigSpec Path

VirtualDiskFlatVer1BackingInfo.diskMode

VirtualDiskFlatVer2BackingInfo.diskMode

VirtualDiskRawDiskMappingVer1BackingInfo.diskMode

VirtualDiskSeSparseBackingInfo.diskMode

VirtualDiskSparseVer1BackingInfo.diskMode

VirtualDiskSparseVer2BackingInfo.diskMode

deviceChange.device.backing.diskMode

VirtualDiskFlatVer2BackingInfo.digestEnabled

VirtualDiskSeSparseBackingInfo.digestEnabled

deviceChange.device.backing.digestEnabled

VirtualMachineConfigSpec.changeTrackingEnabled changeTrackingEnabled

VirtualEthernetCard.addressType deviceChange.device.addressType

VirtualEthernetCard.macAddress deviceChange.device.macAddress

VirtualEthernetCard.wakeOnLanEnabled deviceChange.device.wakeOnLanEnabled

VirtualSCSIController.sharedBus deviceChange.device.sharedBus

VirtualSerialPort.yieldOnPoll deviceChange.device.yieldOnPoll

VirtualUSBController.autoConnectDevices

VirtualUSBXHCIController.autoConnectDevices

deviceChange.device.autoConnectDevices

VirtualUSBController.ehciEnabled deviceChange.device.ehciEnabled

VirtualMachineVideoCard.useAutoDetect deviceChange.device.useAutoDetect

VirtualMachineVideoCard.videoRamSizeInKB deviceChange.device.videoRamSizeInKB

VirtualMachineVideoCard.numDisplays deviceChange.device.numDisplays

VirtualMachineVideoCard.use3dRendererSupported deviceChange.device.use3dRendererSupported

The API Reference lists all properties and includes information about required permissions for these
configuration methods. The following sections describe some commonly specified attributes.

Name and Location
You can specify the display name for the virtual machine by setting the
VirtualMachineConfigSpec.name property. Any % (percent) character used in this name parameter
must be escaped, unless it is used to start an escape sequence. Clients can also escape any other
characters in this name parameter.

Use the annotation field to provide a description of the virtual machine. To remove an existing
description, specify the empty string as the value of annotation.

The location of the virtual machine is determined implicitly during creation because you call a
Folder.CreateVM_Task method and specify resource pool and optional target host the virtual machine
should belong to. See #unique_217 for a discussion of resource pools and virtual machine location.

vSphere Web Services SDK Programming Guide

VMware, Inc. 151

Hardware Version
The hardware version of a virtual machine indicates the lower-level virtual hardware features a virtual
machine supports, such as BIOS, number of virtual slots, maximum number of CPUs, maximum memory
configuration, and other hardware characteristics.

For a newly created virtual machine, the default hardware version is the most recent version available on
the host where the virtual machine is created. To increase compatibility, you might want to create a virtual
machine with a hardware version older than the highest supported version. You can do so by specifying
the VirtualMachineConfigSpec.version property during virtual machine creation. For existing virtual
machines, call the VirtualMachine.UpgradeVM_Task method.

The hardware version of a virtual machine can be lower than the highest version supported by the ESXi
host it is running on under the following conditions:

n You migrate a virtual machine to a newer version of ESXi after it was created on a host that was
running an earlier version of ESXi.

n You create a virtual machine on a newer version of ESXi by using an existing virtual disk that was
created on a host that was running an earlier version of ESXi.

n You add a virtual disk created on a host that was running an earlier version of ESXi to a virtual
machine created on a newer version of ESXi.

Virtual machines with hardware versions lower than 4 can run on ESX/ESXi 4.x hosts but have reduced
performance and capabilities. In particular, you cannot add or remove virtual devices on virtual machines
with hardware versions lower than 4 when they reside on an ESX/ESXi 4.x host. To make full use of these
virtual machines, upgrade the virtual hardware.

Boot Options
You can control a virtual machine’s boot behavior by setting the
VirtualMachineConfigSpec.bootOptions property. The VirtualMachineBootOptions data object in
that property allows you to specify the following properties:

n bootDelay – Delay before starting the boot sequence, in milliseconds.

n bootRetryDelay – Delay before a boot retry, in milliseconds. This property is only considered if the
bootRetryEnabled property is set to true.

n bootRetryEnabled – If set to true, a virtual machine that fails to boot tries again after the
bootRetryDelay time period has elapsed.

n enterBIOSSetup – If set to true, the virtual machine enters BIOS setup the next time it boots. The
virtual machine resets this flag to false so subsequent boots proceed normally.

Operating System
The guest operating system that you specify affects the supported devices and available number of virtual
CPUs. You specify the guest operating system in the following two properties:

n guestosid – Specify one of the constants in the VirtualMachineGuestOsIdentifier as a string.

vSphere Web Services SDK Programming Guide

VMware, Inc. 152

n alternateGuestName – Full name for the guest operating system. Use this property if guestosid is
one of the values of VirtualMachineGuestOsIdentifier starting with other*.

CPU and Memory Information
To manage compute and memory resources at the virtual machine level, you use several properties of the
VirtualMachineConfigSpec data object. These properties specify the CPU and memory configuration
for the virtual machine. You can also specify the operational boundaries for resource allocation, and the
priority of the virtual machine in case of resource contention.

Configuring Virtual CPUs and Memory
To configure the capabilities of a virtual machine, you use properties of the VirtualMachineConfigSpec
data object to specify the machine characteristics available to the guest operating system. The guest
uses these capabilities in the same way as resources on a physical machine.

Configuring Virtual CPUs

Set the number of virtual CPU cores for the virtual machine with the VirtualMachineConfigSpec.numCPUs
property. Legal values for this property change depending on the guestosid value you specify. If you use
VirtualMachineConfigSpec to update the virtual machine properties, you can omit this property to leave it
unchanged.

The guest operating system acts as if it had numCPUs cores available at all times, but the host's physical
resources are shared by all its virtual machines. The host allocates physical cores in time slices aa
backing for virtual cores. For information about how to specify guidance for resource allocation, see
Configuring Resource Allocation Constraints for Virtual Machines.

Configuring Multi-Core CPUs

Set the number of cores per CPU chip with the VirtualMachineConfigSpec.numCoresPerSocket property.
The value must be an integral divisor of VirtualMachineConfigSpec.numCPUs. The default value is 1 if the
property is omitted for virtual machine creation. If you use VirtualMachineConfigSpec to update the virtual
machine properties, you can omit this property to leave it unchanged.

Configuring Memory

Set the RAM size for a virtual machine with the VirtualMachineConfigSpec.memoryMB property. If you use
VirtualMachineConfigSpec to update the virtual machine properties, you can omit this property to leave it
unchanged.

The guest operating system acts as if it had memoryMB available at all times, but the host's physical
resources are shared by all its virtual machines. The amount of physical memory available as backing for
virtual machines can vary over time, and it can affect virtual machine performance. For information about
how to specify guidance for resource allocation, see Configuring Resource Allocation Constraints for
Virtual Machines.

vSphere Web Services SDK Programming Guide

VMware, Inc. 153

CPU Processors and Memory Affinity

If your virtual machine is on an ESXi system, and if you have a license that supports Symmetric
Multiprocessors (SMP), you can configure the virtual machine to have multiple virtual CPUs by setting
cpuAffinity and memoryAffinity. You define a set of integers that represents the processors (for
CPU) and NUMA nodes (for memory). If you are reconfiguring the affinity setting and leave the array
empty, any existing affinity is removed. See the Resource Management Guide for a discussion of NUMA
nodes and affinity.

CPU Features

You can use the VirtualMachineConfigSpec.cpuFeatureMask[].info property to represent the CPU
features requirements for a virtual machine or guest operating system. See the HostCpuIdInfo data
object discussion in the API Reference for a detailed discussion.

CPU and Memory Modification for Running Virtual Machines

Set CpuHotAddEnabled and CpuHotRemoveEnabled to specify whether virtual processors can be added
to or removed from a virtual machine while the virtual machine is running. Set MemoryHotAddEnabled to
specify whether memory can be added while the virtual machine is running.

Configuring Resource Allocation Constraints for Virtual Machines
The host hypervisor allocates physical resources as backing for the virtual resources needed by guest
operating systems. You can specify resource allocation preferences that guide and constrain the
hypervisor when allocating resources to running virtual machines.

To specify allocation preferences for CPU and memory, use the cpuAllocation and memoryAllocation
properties of VirtualMachineConfigSpec. Both properties are data objects of type
ResourceAllocationInfo objects. The ResourceAllocationInfo object has properties to specify
upper and lower allocation limits, and properties to specify relative priorities when virtual machines
contend for resources.

vSphere Web Services SDK Programming Guide

VMware, Inc. 154

Resource Total

VM cannot use
more than its limit

VM limit

VM reservation

0

VM shares can be
used here to resolve
resources contention.

VM does not
start unless reserved
amount is available

Resource Pool usage
(compute or memory)

To specify boundaries for resource allocation, use these properties of ResourceAllocationInfo:

n reservation – Lower limit for resource allocation to the virtual machine. If the hypervisor cannot
reserve this amount, it does not start the virtual machine. If the running virtual machine uses less than
its reserved amount, other running virtual machines can use a part of the reserved resources
temporarily.

n limit – Upper limit for CPU or memory resources assigned to this virtual machine. The virtual
machine does not exceed this limit, even if unused resources are available. This property is typically
used to limit the impact of the virtual machine on other running virtual machines. If the property is set
to -1, the configured virtual memory size or the configured number of virtual cores limits the resource
allocation.

Note Although the number of virtual CPU cores limits the compute resource allocated, the virtual
bandwidth allocated also depends on the speed of the physical CPU cores assigned as backing.

To specify preferences for resource allocation in case of contention, use the shares property of
ResourceAllocationInfo. The shares property is a nested data object of type SharesInfo, which
specifies a relative priority for resolving resource contention between virtual machines. The SharesInfo
data object has two properties, level and shares:

n level – An enum type with four potential values: high, normal, low, and custom. If you specify the
value custom, you must also specify the shares property. If you specify any other value for level,
the shares property is ignored.

n shares – In a situation of resource contention, the shares value is compared against the shares
values of other virtual machines, and resources are allocated first to the virtual machine with the
highest shares value.

vSphere Web Services SDK Programming Guide

VMware, Inc. 155

The most direct way to specify resource priority is to set the shares values manually. This is most useful
in environments where all virtual machines use custom shares values. In a mixed environment, the
configuration settings do not compare directly, which can lead to unexpected results.

A more sophisticated way of specifying priority is to specify high, normal, or low for the level property.
These settings cause the host to calculate the shares of a virtual machine in a way that factors in the
configured memory size or the configured virtual CPU cores of the virtual machine. The result gives more
priority shares to virtual machines with larger configurations.

Note Both the custom shares values and the calculated shares values prioritize virtual machines only
among their siblings running in the same resource pool. For a system of virtual machines running only in
the default root resource pool, determining priority is fairly simple. For data centers with nested resource
pools, a virtual machine's priority in the larger context of all running virtual machines depends also on the
priority of its parent resource pool.

For a detailed examination of resource pools and how they affect priority shares calculations, see
Resource Management. The Resource Management Guide includes a detailed discussion of resource
allocation in the vSphere environment.

Networks
You configure network settings so that a virtual machine can communicate with the host and with other
virtual machines.

Virtual Network Interfaces
You can add a virtual network interface to a virtual machine using a subclass of VirtualEthernetCard,
you can set the addressType to Manual, Generated, or Assigned. If you choose Assigned, you can
specify a MAC address explicitly.

For more information about virtual devices in general, see Adding Devices to Virtual Machines.

The number of virtual network interfaces depends on the hardware version you specify for a virtual
machine. Hardware version 7 virtual machines support up to ten virtual NICs. Hardware version 4 virtual
machines support up to four virtual NICs.

Virtual Machine MAC Address
Upon virtual machine creation, ESXi or vCenter Server systems assign each virtual network interface its
own unique MAC address. The first three bytes of the MAC address that is generated for each virtual
network adapter consists of a manufacturer-specific Organizationally Unique Identifier (OUI). The MAC
address-generation algorithm produces the other three bytes. vSphere generates MAC addresses that
are checked for conflicts. After the MAC address has been generated, it does not change unless the
virtual machine is moved to a different location.

All MAC addresses that have been assigned to virtual network interfaces of running and suspended
virtual machines on a given physical machine are tracked. The MAC address of a powered off virtual
machine is not checked against those of running or suspended virtual machines. It is possible that a
virtual machine acquires a different MAC address after a move.

vSphere Web Services SDK Programming Guide

VMware, Inc. 156

The ESXi Configuration Guide discusses virtual machine MAC addresses in detail.

Fibre Channel NPIV Settings
N-port ID virtualization (NPIV) supports sharing a single physical FC HBA port among multiple virtual
ports, each with unique identifiers. This capability lets you control virtual machine access to LUNs on a
per-virtual machine basis.

Each virtual port is identified by a pair of world wide names (WWNs): a world wide port name (WWPN)
and a world wide node name (WWNN). These WWNs are assigned by vCenter Server. For detailed
information on how to configure NPIV for a virtual machine, see the Fibre Channel SAN Configuration
Guide.

NPIV support is subject to the following limitations:

n NPIV must be enabled on the SAN switch. Contact switch vendors for information about enabling
NPIV on their devices.

n NPIV is supported only for virtual machines with RDM disks. Virtual machines with regular virtual
disks continue to use the WWNs of the host’s physical HBAs.

n Virtual machines on a host have access to a LUN using their NPIV WWNs if the physical HBAs on the
ESXi host have access to a LUN using its WWNs. Ensure that access is provided to both the host
and the virtual machines

You can set up NPIV with the VirtualMachineConfigSpec properties that start with npiv.

File Locations
File locations for a virtual machine are specified in the following properties:

n VirtualMachineConfigSpec.files is a VirtualMachineFileInfo data object that allows you to
specify the log directory, snapshot directory, suspend directory, and configuration file location. Most
locations have a default that you can change as needed.

n VirtualMachineConfigSpec.locationID is a 128-bit hash based on the virtual machine’s
configuration file location and the UUID of the host the virtual machine is assigned to. This property is
not usually set by developers; however, clearing this property by setting it to an empty string is
recommended if you move the virtual machine.

If a virtual machine’s VirtualMachineCapability.swapPlacementSupported property is true for a
virtual machine, you can specify a value for the VirtualMachineConfigSpec.swapPlacement property.
The value must be one of the values of the VirtualMachineConfigInfoSwapPlacementType
enumeration, as a string.

Adding Devices to Virtual Machines
You can add devices to a virtual machine during creation using the
VirtualMachineConfigSpec.deviceChange property, which is a VirtualDeviceSpec. You specify the

vSphere Web Services SDK Programming Guide

VMware, Inc. 157

host device that the virtual device should map to by using a backing object. A backing object represents
the host device associated with a virtual device.

n Backing option objects – You can find out which devices the host supports by extracting the relevant
backing option object.

n Backing information object – The backing information object allows you to supply data for virtual
device configuration. You access a VirtualDeviceBackinInfo object as follows:

VirtualMachineConfigSpec.deviceChange[].device.backing

To add a device to a virtual machine, you must first find out which devices are supported on the
corresponding ESXi host, and then specify a VirtualDevice object. Perform these tasks to add a device
to a virtual machine:

Procedure

1 Find out which devices your ESXi system supports by calling the QueryConfigOption method, which
you can access through the VirtualMachine.environmentBrowser property. The method returns a
VirtualMachineConfigOption data object that specifies what the ESXi supports. For example,
VirtualMachineConfigOption.hardwareOptions includes information about supported CPU and
memory and an array of VirtualDeviceOption data objects.

Note You cannot use the QueryConfigOption method to create another instance of a default
device. If you attempt to add a default device, such as an IDE controller, the server ignores the
operation.

2 Specify the backing information object for the device. The actual process for defining the object differs
for different objects. For example, for a CD-ROM passthrough device, you use a
VirtualCdromPassthroughBackingInfo device. The VirtualDevice.backing property is a
VirtualDeviceBackingInfo object which is extended by devices.

The following code fragment adds a CD-ROM passthrough device:

VirtualCdromPassthroughBackingInfo vcpbi = new VirtualCdromPassthroughBackingInfo();

// Does the virtual device have exclusive access to the CD-ROM device?

vcpbi.setExclusive(false);

// Specifies the device name.

vcpbi.setDeviceName('cdrom0');

3 Specify connection information for the device.

The VirtualDevice.connectable property is a VirtualDeviceConnectInfo data object. This
object provides information about restrictions on removing the device while a virtual machine is
running. This property is null if the device is not removable.

VirtualDeviceConnectInfo vdci = new VirtualDeviceConnectInfo();

// Allow the guest to control whether the virtual device is connected?

vdci.setAllowGuestControl(false);

vSphere Web Services SDK Programming Guide

VMware, Inc. 158

// Is the device currently connected?

vdci.setConnected(true);

// Connect the device when the virtual machine starts?

vdci.setStartConnected(true);

4 Define the controller key, the virtual device key, and the unit number.

You define these items with the integer properties: controllerKey, key, and unitNumber. See the
VirtualDevice data object in the API Reference.

5 Specify device Information.

The deviceInfo property is a Description data object that has a name property and a summary
property. You can supply a string value for each, describing the device.

Description vddesc = new Description();

vddesc.setLabel('CD-ROM Device cdrom0');

vddesc.setSummary('The CD-ROM device for this virtual machine.');

6 Specify the virtual device as the device property of a VirtualDeviceConfigSpec.

7 Specify the VirtualDeviceConfigSpec as the deviceChange property to the
VirtualMachineConfigSpec that you pass in to a Folder.CreateVM_Task or
VirtualMachine.ReconfigVM_Task method.

Example

Here’s the complete code fragment for a CD-ROM passthrough device:

VirtualDevice vd = new VirtualDevice();

vd.setBacking(vcpbi);

vd.setConnectable(vdci);

vd.setControllerKey(257);

vd.setDeviceInfo(vddesc);

vd.setKey(2);

vd.setUnitNumber(25);

Performing Virtual Machine Power Operations
Just like physical machines, virtual machines have power states.

n Powered on – The virtual machine is running. If no OS has been installed, you can perform OS
installation as you would for a physical machine.

n Powered off – The virtual machine is not running. You can still update the software on the virtual
machine’s physical disk, which is impossible for physical machines.

vSphere Web Services SDK Programming Guide

VMware, Inc. 159

n Suspended – The virtual machine is paused and can be resumed; like a physical machine in standby
or hibernate state.

Important Before you power on a virtual machine, you must make sure that the host has sufficient
resources. You must have enough memory for the virtual machine, and some memory overhead. See
Querying Virtual Machine Memory Overhead.

VirtualMachine power operations allow you to change the power state. Each operation is sensitive to
the current power state, for example, powering on a powered off virtual machine has the desired result
while powering on a powered on virtual machine results in an error. You must check the current state
before you run one of these tasks.

n PowerOnVM_Task – Powers on a virtual machine. If the virtual machine is suspended, this method
resumes execution from the suspend point.

n PowerOffVM_Task – Powers off a virtual machine.

n ResetVM_Task – Resets power on this virtual machine. If the current state is poweredOn,
ResetVM_Task first performs a hard powerOff operation. After the power state is poweredOff,
ResetVM_Task performs a powerOn operation.

Although this method functions as a powerOff followed by a powerOn, the two operations are atomic
with respect to other clients, meaning that other power operations cannot be performed until the reset
method completes.

n SuspendVM_Task – Suspends the virtual machine. You can later power on the suspended virtual
machine to the same state.

Virtual machines are often configured to start up the guest operating system when they are started, and
try to shut down the guest operating system when being shut down. However, starting and stopping a
virtual machine differs from starting and stopping the guest operating system (see Customizing the Guest
Operating System).

Important Power operations might affect other virtual machines that are participating in a DRS cluster or
VMware HA. See #unique_217 for information about DRS clusters and VMware HA.

You can use the Datacenter.PowerOnMultiVM_Task to power on multiple virtual machines in a
datacenter. Pass an array of VirtualMachine managed object references and an array of option values
to the method. If any of the virtual machines in the list is manually managed by VMware DRS, the system
generates a DRS recommendation that the user needs to apply manually. Standalone or DRS disabled
virtual machines are powered on for the current host. Virtual machines managed by DRS, to be placed by
DRS, are powered on for the recommended host.

Registering and Unregistering Virtual Machines
When you create a virtual machine, it becomes part of the inventory (inside the folder from which you
called the creation method by default), and it is registered. If you copy virtual machine files to relocate the
virtual machine, or if you remove the files from the inventory using the vSphere Client, it becomes
unregistered and unusable. You cannot power on a virtual machine that is not part of the inventory.

vSphere Web Services SDK Programming Guide

VMware, Inc. 160

To restore the virtual machine to the inventory, and make it usable again, you can use the
RegisterVM_Task method, defined in the Folder managed object. You can register the virtual machine
to a host or to a resource pool. You can register the virtual machine as a template if you want to use it to
clone other virtual machines from.

The ColdMigration.java sample illustrates both registering and reconfiguring a virtual machine. At the
heart of the sample is the following call, which registers the virtual machine. Arguments include the virtual
machine’s current folder, datastore path, and name, whether to register as a template, and the resource
pool or host to register the machine in.

ManagedObjectReference taskmor = cb.getConnection().getService().registerVM_Task(

 vmFolderMor,vmxPath,getVmName(),false,resourcePool,host);

After registration, the virtual machine takes its resources (CPU, memory, and so on) from the resource
pool or host to which it is registered.

The RemoveManagedObject.java sample illustrates unregistering a virtual machine.

Customizing the Guest Operating System
You install the guest operating system on the virtual machine just as you would install it on a physical
machine. Afterwards, you can use the Web Services API to retrieve information and perform some
customization if VMware Tools is installed on top of the guest operating system.

VirtualMachine includes the following methods for managing the guest operating system:

n ShutdownGuest and RebootGuest shut down and reboot the guest OS, and StandbyGuest puts the
guest in hybernate mode. In each case, you perform the action on the guest OS. For example, you
might shut down Windows but leave the virtual machine running.

n ResetGuestInformation clears cached guest information. Guest information can be cleared only if
the virtual machine is powered off. Use this method if stale information is cached, preventing reuse of
an IP address or MAC address.

n SetScreenResolution sets the console screen size of the guest operating system. When you call
this method, the change is reflected immediately the virtual machine console you can access in the
vSphere Client.

You can customize the identity and network settings of the guest OS with the CustomizationSpec data
object that is a parameter to VirtualMachine.CustomizeVM_Task. The CustomizationSpec is also a
property of the VirtualMachineCloneSpec you pass in when cloning a virtual machine.

The settings you customize with this method are primarily virtual machine settings, but because the virtual
machine and the guest OS share the information, you are also customizing the guest OS with this
method.

The CustomizationSpec allows you to set the following properties:

n encryptionKey – Array of bytes that can be used as the public key for encrypting passwords of
administrators.

vSphere Web Services SDK Programming Guide

VMware, Inc. 161

n globalIPSettings – Contains a CustomizationGlobalIPSettings data object which specifies a
list of DNS servers and a list of name resolution suffixes for the virtual network adapter.

n identity – Allows you to specify the network identity and settings, similar to the Microsoft Sysprep
tool.

n nicSettingMap – Custom IP settings that are specific to a particular virtual network adapter.

n options – Optional operations (either LinuxOptions or WinOptions).

Installing VMware Tools
VMware Tools is a suite of utilities that enhances the performance of a virtual machine's guest operating
system and improves virtual machine management. For each guest OS, VMware provides a specific
binary-compatible version of VMware Tools. The SDK requires that you install VMware Tools, or some
operations related to the guest operating system fail.

Important You must install the guest operating system before you install VMware Tools.

With VMware Tools installed on the guest OS, the virtual machine obtains its DNS (domain name server)
name and an IP address and is therefore reachable over the network.

VirtualMachine includes three methods for automating installation and upgrade of VMware Tools.

n MountToolsInstaller – Mounts the VMware Tools CD installer as a CD-ROM for the guest
operating system. To monitor the status of the tools installallation, check GuestInfo.toolsStatus.
Check GuestInfo.toolsVersionStatus and GuestInfo.toolsRunningStatus for related
information.

n UnmountToolsInstaller – Unmounts the VMware Tools installer CD.

n UpgradeToolsTask – Performs an upgrade of VMware Tools. This method assumes VMware Tools
has been installed and is running. The method takes one argument, InstallerOptions, which
allows you to specify command-line options passed to the installer to modify the installation
procedure for tools.

Use theToolsConfigInfo data object in VirtualMachineConfigSpec.toolsInfo property to specify
the settings for the VMware Tools software running on the guest operating system.

Upgrading a Virtual Machine
You can upgrade virtual machine hardware by running the VirtualMachine.UpgradeVM_Task method.
The method upgrades this virtual machine's virtual hardware to the latest revision that is supported by the
virtual machine's current host. You can specify the version number as an argument. This method is useful
if you want to run your virtual machine on a newer hypervisor that supports newer versions of the
hardware.

vSphere Web Services SDK Programming Guide

VMware, Inc. 162

Virtual Machine Management 11
Virtual machines can perform like physical computers and can be configured like physical computers.
Virtual machines also support special features that physical computers do not support. This chapter
discusses some of these features: migrating virtual machines, using snapshots, and using linked virtual
machines.

For more information about configuring virtual machines, see the chapter Configuring a Virtual Machine.

This chapter includes the following topics:

n Virtual Machine Migration

n Snapshots

n Linked Virtual Machines

Virtual Machine Migration
Migration is the process of moving a virtual machine from one host or storage location to another.
Copying a virtual machine creates a new virtual machine. It is not a form of migration. vSphere supports
the following migration types:

Migration Type Description

Cold migration Moves a powered-off virtual machine to a new host. Optionally, you can relocate configuration
and disk files to new storage locations.

Migration of a
suspended virtual
machine

Moves a suspended virtual machine to a new host. Optionally, you can relocate configuration
and disk files to new storage location.

Migration with vMotion Moves a powered-on virtual machine to a new host. Migration with vMotion allows you to move
a virtual machine to a new host without interruption in the availability of the virtual machine.

Migration with Storage
vMotion

Moves the virtual disks or configuration file of a powered-on virtual machine to a new datastore.
Migration with Storage vMotion allows you to move a virtual machine’s storage without
interruption in the availability of the virtual machine.

Migration of a suspended virtual machine and migration with vMotion are both sometimes called hot
migration, because they allow migration of a virtual machine without powering it off.

You can move virtual machines manually or set up a scheduled task to perform the cold migration.

VMware, Inc. 163

Cold Migration
If a virtual machine is shut down, you can move it to a different cluster, resource pool, or host by copying
all virtual machine files to a different directory. The ColdMigration example illustrates this.

Migration with vMotion
VMware vMotion supports the live migration of running virtual machines from one physical server to
another with no downtime. The source and destination physical servers may be in the same datacenter or
in different datacenters.

When calling the VirtualMachine object’s MigrateVM_Task method, you can specify a host or resource
pool to migrate to, and optionally the task priority and power state of the virtual machine. The VMotion
example makes the following queries, and performs the migration if possible:

n Uses QueryVMotionCompatibility_Task to check that two hosts are compatible.

n Uses CheckMigrate_Task to check whether migration is feasible. If two hosts are not compatible,
virtual machines cannot be migrated from one to the other.

n Uses CheckRelocation_Task to check whether relocation is possible.

MigrateVM_Task was deprecated in vSphere 6.5 and can be replaced with RelocateVM_Task.

Using Storage vMotion
Storage vMotion allows you to move a running virtual machine from one storage cluster to another. Taking
the virtual machine or its associated storage offline is not required. All datastore types are supported,
including local storage, VMFS, NAS (network attached storage), and VVols (virtual volumes).

You can place the virtual machine and all its disks in a single location, or select separate locations for the
virtual machine configuration file and each virtual disk. The virtual machine remains on the same host
during Storage vMotion.

To perform Storage vMotion, call the VirtualMachine object's RelocateVM_Task method. The
RelocateVMSpec passed in to the method allows you to specify the target datastore and target host or
resource pool.

As of vSphere 6.5, you should call RelocateVM_Task for all types of vMotion:

n cold relocate, whether VM storage moves or not

n vMotion within a cluster

n Storage vMotion

n cross-datacenter vMotion (XvMotion)

n Folder moves not involving VM moves

vSphere Web Services SDK Programming Guide

VMware, Inc. 164

Snapshots
A snapshot is reproduction of the virtual machine just as it was when you took the snapshot. The
snapshot includes the state of the data on all virtual machine disks and the virtual machine power state
(on, off, or suspended). You can take a snapshot when a virtual machine is powered on, powered off, or
suspended.

When you create a snapshot, the system creates a delta disk file for that snapshot in the datastore and
writes any changes to that delta disk. You can later revert to the previous state of the virtual machine.

The VirtualMachine object has methods for creating snapshots, reverting to any snapshot in the tree,
and removing snapshots.

Figure 11-1. Virtual Machine Snapshots

Snapshot hierarchies can become fairly complex. For example, assume that, in the example in Figure
11-1. Virtual Machine Snapshots, you revert to snapshot_a. You might then work with and make changes
to the snapshot_a virtual machine, and create a new snapshot, creating, in effect, a branching tree.

Creating a Snapshot
The VirtualMachine.CreateSnapshot_Task method creates a new snapshot of a virtual machine. As
a side effect, the current snapshot becomes the parent of the new snapshot.

The method allows you to specify a name for the snapshot and also requires you set the memory and
quiesce properties:

n memory – If true, a dump of the internal state of the virtual machine (basically a memory dump) is
included in the snapshot. Memory snapshots consume time and resources, and take a while to
create. When set to false, the power state of the snapshot is set to powered off.

vSphere Web Services SDK Programming Guide

VMware, Inc. 165

n quiesce – If true and the virtual machine is powered on when the snapshot is taken, VMware Tools
is used to quiesce the file system in the virtual machine. This ensures that a disk snapshot represents
a consistent state of the guest file systems. If the virtual machine is powered off or VMware Tools is
not available, the quiesce flag is ignored.

The VMSnapshot.java example calls this method as follows:

ManagedObjectReference taskMor = service.createSnapshot_Task(

 vmMor, snapshotName, desc, false, false);

The method returns MOR to a Task object with which to monitor the operation. The info.result
property in the Task contains the newly created VirtualMachineSnapshot upon success.

Reverting to a Snapshot
When you revert to a snapshot, you restore a virtual machine to the state it was in when the snapshot
was taken. The VirtualMachine.RevertToSnapshot_Task allows you to specify a target host and
whether the virtual machine should be powered on.

If the virtual machine was running when the snapshot was taken, and you restore it, you must either
specify the host to restore the snapshot to, or set the SupressPowerOn flag to true.

Deleting a Snapshot
You can delete all snapshots by calling VirtualMachine.RemoveAllSnapshots or by calling the
VirtualMachineSnapshot.RemoveSnapshot_Task method. The VirtualMachineSnapshot object was
previously returned in the task returned by the CreateSnapshot_Task method.

Linked Virtual Machines
Linked virtual machines are two or more virtual machines that share storage and support efficient sharing
of duplicated data.

Linked Virtual Machines and Disk Backings
In its simplest form, shared storage is achieved through the use of delta disk backings. A delta disk
backing is a virtual disk file that sits on top of a standard virtual disk backing file. Each time the guest
operating system on a virtual machine writes to disk, the data is written to the delta disk. Each time the
guest operating system on a virtual machine reads from disk, the virtual machine first targets the disk
block in the delta disk. If the data is not on the delta disk, the virtual machine looks for it on the base disk.

Linked virtual machines can be created from a snapshot or from the current running point. After you
create a set of linked virtual machines, they share the base disk backing and each virtual machine has its
own delta disk backing, as shown in Figure 11-2. Linked Virtual Machines with Shared Base Disk Backing
and Separate Delta Disk Backing.

vSphere Web Services SDK Programming Guide

VMware, Inc. 166

Figure 11-2. Linked Virtual Machines with Shared Base Disk Backing and Separate Delta Disk
Backing

Caution We recommend a limit of up to eight host virtual machines accessing the same base disk in a
linked virtual machine group. However, you can have an unlimited number of linked virtual machines
within each host virtual machine in the group.

Limitation for HA Clusters
Virtual machines in a linked clone group can be part of a VMware HA (high availability) cluster. The
number of hosts in a cluster might affect HA’s ability to restart a failed virtual machine.

n Clusters that contain ESXi 5.0 or earlier hosts – If a cluster has eight or fewer hosts, then linked
virtual machines restart properly. However, if the cluster has more than eight hosts and any of the
hosts are ESXi 5.0 or earlier, HA might not be able to restart a virtual machine after it fails. HA is not
aware that virtual machines in the linked clone group are subject to the eight host limit. In this case,
when HA responds to a failure, it might try to restart the virtual machine on a host that cannot
participate in the group due to the maximum host limit. HA will attempt failover five times to different
hosts. Thus, in clusters with 13 or more hosts, it is possible that HA will never try a host that is
associated with the linked clone group.

n Clusters that contain only ESXi 5.1 or later hosts – The maximum host limit for a linked clone group is
the maximum number of hosts allowed in a cluster. In this case, the number of hosts in the cluster
does not affect the ability to restart failed virtual machines.

Creating a Linked Virtual Machine
You can create linked virtual machines in one of two ways:

n Clone the virtual machine from a snapshot.

n Clone the virtual machine from the current virtual machine state. This state might differ from the
snapshot point.

Creating a Linked Virtual Machine From a Snapshot
You first create a snapshot, and then create the linked virtual machine from the snapshot.

vSphere Web Services SDK Programming Guide

VMware, Inc. 167

Procedure

1 To create the snapshot, call the CreateSnapshot_Task method for the virtual machine. The virtual
machine can be in any power state. The following pseudo code creates a snapshot named snap1.
The code does not include a memory dump. VMware Tools is used to quiesce the file system in the
virtual machine if the virtual machine is powered on.

myVm.CreateSnapshot("snap1", "snapshot for creating linked virtual machines", False, True)

2 To create the linked virtual machine, specify the snapshot you created and use a
VirtualMachineRelocateDiskMoveOptions.diskMoveType of createNewDeltaDiskBacking, as
illustrated in Creating a Linked Virtual Machine from a Snapshot. Creating linked virtual machines
from a snapshot works with virtual machines in any power state.

Example: Creating a Linked Virtual Machine from a Snapshot

relSpec = new VirtualMachineRelocateSpec()

relSpec.diskMoveType = VirtualMachineRelocateDiskMoveOptions.createNewChildDiskBacking

cloneSpec = new VirtualMachineCloneSpec()

cloneSpec.powerOn = False

cloneSpec.template = False

cloneSpec.location = relSpec

cloneSpec.snapshot = myVm.snapshot.currentSnapshot

myVm.Clone(myVm.parent, myVm.name + "-clone", cloneSpec)

The result is a virtual machine with the same base disk as the original, but a new delta disk backing.

Figure 11-3. Creating a Linked Virtual Machine from a Snapshot

Creating a Linked Virtual Machine From the Current Running Point
To create a virtual machine from the current running point, clone the virtual machine, as in , but use a
diskMoveType of moveChildMostDiskBacking. The virtual machine can be in any power state.

For more information about cloning a virtual machine, see Creating a Linked Virtual Machine from a
Snapshot.

Example: Creating a Linked Virtual Machine from the Current Running Point

relSpec = new VirtualMachineRelocateSpec()

relSpec.diskMoveType = VirtualMachineRelocateDiskMoveOptions.moveChildMostDiskBacking

vSphere Web Services SDK Programming Guide

VMware, Inc. 168

cloneSpec = new VirtualMachineCloneSpec()

cloneSpec.powerOn = False

cloneSpec.template = False

cloneSpec.location = relSpec

myVm.Clone(myVm.parent, myVm.name + "-clone", cloneSpec)

Figure 11-4. Creating a Linked Virtual Machine from the Current Running Point

Instant Clone Virtual Machines
The instant clone operation creates a running virtual machine that continues running from the current
state of the source virtual machine. There is no delay to power on the cloned virtual machine.

An instant clone virtual machine is a kind of linked clone with these characteristics:

n The clone starts out powered on and running.

n The clone replicates the running state of the source virtual machine.

n The clone shares memory pages with the source virtual machine as long as they remain unmodified.

The instant clone operation facilitates rapid deployment of virtual machines for low-latency response to
peak computing demand. It also uses memory and disk space as efficiently as possible.

Because the clone replicates the running state of the source virtual machine, it usually requires
customization of some network properties in the guest operating system to eliminate conflicts with the
source. An instant clone virtual machine may also require new backings for some dedicated virtual
devices, such as ISO files that back virtual optical drives.

Instant Clone Terminology
The instant clone feature has its own set of terminology, which uses some terms in ways specific to the
feature.

stun

To stop the clock of a virtual machine temporarily, preventing guest operations during an instant clone
operation.

freeze

vSphere Web Services SDK Programming Guide

VMware, Inc. 169

To stop the clock of a virtual machine indefinitely, allowing a series of instant clone operations that
reproduce the exact process state of the source virtual machine.

suspend

Save the state of a virtual machine so applications can resume, and put it to sleep.

resume

Continue running the virtual machine that was suspended, including its applications.

unstun

To release a stunned source virtual machine, allowing I/O operations to proceed.

source

A virtual machine that is cloned during an instant clone operation.

instant clone

1 An operation that quickly creates a new virtual machine that is an exact copy of a source virtual
machine.

2 A new virtual machine created by an instant clone operation.

Run State of the Instant Clone Source
An instant clone can be created either from a source virtual machine in a frozen state, or from the current
running point of a source virtual machine. Certain characteristics of the process and of the result can
affect your choice of frozen virtual machine or current running point for the source virtual machine.

Advantages of Cloning from the Current Running Point

An instant Clone created from the current running point of a source virtual machine does not require an
agent running in the guest operating system to invoke the frozen state.

If you create an instant clone from the current running point, the source virtual machine continues running
from that point after a very brief delay, whereas a frozen source virtual machine requires intervention by
the host to thaw it.

Advantages of Cloning from a Frozen Virtual Machine

A source virtual machine in the frozen state allows you to deploy any number of instant clones in exactly
the same state, because the guest operating system retains its state after the clone operation.

When you create instant clones from the current running point of a source virtual machine, each cloning
operation adds another delta disk to the source virtual machine. Each delta disk adds a small
performance penalty, but a long chain of delta disks causes a noticeable performance penalty for virtual
disk accesses.

vSphere Web Services SDK Programming Guide

VMware, Inc. 170

The Instant Clone Process from a Frozen Source
The process to create an instant clone from a frozen source virtual machine requires one-time initial
preparation, but after that it proceeds faster than creating an instant clone from the current running point.
The source virtual machine must be booted and running, in a state that you want to replicate to other
virtual machines. VMware Tools must be installed and running in the guest operating system so that you
can run the command to freeze the source virtual machine .

Freezing the Source Virtual Machine for an Instant Clone Operation

Before you start the instant clone operation, you issue a VMware Tools command in the guest operating
system, which freezes the source virtual machine. This is only needed one time, prior to the first instant
clone operation. After that, the source virtual machine remains frozen. When VMware Tools receives the
command to freeze the virtual machine, it passes the command through a back door to the host
hypervisor.

The command to freeze the virtual machine depends on the guest operating system.

n For a Linux guest operating system, either of the following commands will freeze the virtual machine:

n vmware-rpctool "instantclone.freeze"

n vmtoolsd -cmd "instantclone.freeze"

n For a Windows guest operating system, the following command will freeze the virtual machine:

n C:\Program Files\VMware\VMware Tools\vmtoolsd.exe --cmd "instantclone.freeze"

When a virtual machine is frozen, the hypervisor prevents future context switches to the guest operating
system, which in effect stops the virtual machine's clock, although the virtual machine status continues to
indicate that it is running. You can determine whether the virtual machine is frozen by examining the
runtimeinfo.InstantCloneFrozen flag.

Instant Clone API Methods
The vSphere Web Services API offers several methods that implement different parts of the instant clone
operation. By dividing the functionality into separate methods, the API provides flexibility in the timing and
customization of the operation.

You can think of the instant clone operation as having three divisions: preparation, cloning, and
customization.

Preparation includes these options:

n Installing the guest customization engine. The engine assists with customization of the guest network
from the Web Services API. For more information, see Installing the Guest Customization Engine.

n Disconnecting virtual NICs. You have the option to disconnect the NICs in the source virtual machine
before you start the clone operation, to avoid network collisions between the source and its clones.
For more information, see Avoiding Network Identity Collisions after Instant Clone Operations.

n Freezing the source virtual machine. If you need to create a large number of clones, consider cloning
from a frozen source. For more information, see Run State of the Instant Clone Source.

vSphere Web Services SDK Programming Guide

VMware, Inc. 171

Creating a clone of the source virtual machine requires a single method call. The
VirtualMachine.InstantClone_Task method takes a parameter of type InstantCloneSpec, which enables
you to give the clone a new name and configuration values. By using the key-value pairs in the config
array, you can specify that the virtual NICs of the clone will start in a disconnected state, which avoids
network conflicts with the source virtual machine. The location property of InstantCloneSpec is ignored.

Customization of a clone virtual machine takes place after the InstantClone_Task method completes. To
customize, you invoke methods of the VirtualMachineGuestCustomizationManager managed object, as
well as optional steps for application-dependent customization. For more information, see Guest Network
Customization for Instant Clone Virtual Machines.

How the Instant Clone Operation Works
The instant clone operation involves the following sequence of steps.

Stunning the Instant Clone Source Virtual Machine

When you issue the API command to initiate an instant clone operation, the host begins by doing a stun
operation on the source virtual machine. The stunned condition lasts a very short time, and is not directly
visible to the API user.

The stunned condition blocks all I/O operations of the source virtual machine while the instant clone is
created. The stun is redundant in the case of a frozen virtual machine. During the time the source virtual
machine is stunned, the host creates a delta disk for the source virtual machine, which remains empty as
long as the source virtual machine is stunned or frozen.

Copying Virtual Disks During the Instant Clone Operation

Then the host creates an empty delta disk for the instant clone virtual machine. This delta disk links to the
base disk of the source virtual machine. More precisely, if the source virtual machine already had one or
more delta disks, the instant clone delta disk links to the second delta disk in the disk chain of the source.
The second delta disk is the delta disk that was the topmost delta disk when the stun operation was
invoked.

Copying Memory During the Instant Clone Operation

The host creates a new virtual memory paging file for the instant clone virtual machine, whose page
tables link to the paging file of the source virtual machine. When the instant clone virtual machine is
complete and is allowed to run instructions, all its memory pages will be shared with the source virtual
machine until either virtual machine does a write to memory.

Configuring the Instant Clone Virtual Machine

Then the host creates a virtual machine configuration file for the instant clone, which links to its delta disk
and memory paging file. At this point, the instant clone virtual machine is capable of running instructions,
and the host unstuns it. Both the memory and the virtual disks are shared with the source virtual machine,
so the instant clone is identical to the source virtual machine, from the guest operating system point of
view.

vSphere Web Services SDK Programming Guide

VMware, Inc. 172

When you create virtual machines with identical guest operating systems, the network settings conflict.
Usually you will want to customize these settings and reset the network stack for each instance of the
guest operating system.

Limitations of Instant Clones
The instant clone feature provides good performance and scalability, but it has a few limitations:

n The instant clone feature is not available when you connect directly to ESXi. Instant clone depends
on functionality available only in vCenter Server.

n Delta disks created during the instant clone operation are not visible in the snapshot trees of the
virtual machines. They cannot be managed with the VirtualMachineSnapshot managed object.
Instead, you must manage the delta disks using the VirtualMachine.Reconfigure() method.

n The instant clone operation is partly parallel and partly serialized. You can start several operations
concurrently, but part of the process is exclusive and requires serialization of requests.

n The instant clone operation responds to errors by backing out changes, such as delta disks, to
restore the previous state of the file system and the source virtual machine. However, there is a small
window of failure at the end of the operation where the cloned virtual machine is independent and
cannot be backed out to recover from an error. This is a low risk situation.

n Instant clones create a delta disk for both the source and generated virtual machine, so resources
can run out after vSphere raises a warning. The source virtual machine may be frozen to avoid
excess growth. For current limits and ways to deal with failures, see the KB article Instant Clone fails
due to exceeding maximum number of delta disks.

n The instant clone operation does not allow you to specify a different host for the clone. The clone
must be on the same host as the source virtual machine because they share memory and virtual disk
files.

Guest Customization of Instant Clone Virtual Machines
The instant clone operation produces a virtual machine whose memory is exactly the same as the source
virtual machine. This can cause conflicts in network addressing, if two different virtual machines respond
concurrently with the same network identity. The conflicting network attributes are usually the host name,
IP address, and MAC address.

In the case of an instant clone derived from a frozen source virtual machine, a conflict might not
immediately arise, because the source virtual machine is not active on the network. The instant clone
simply assumes the identity of the source virtual machine when the host unstuns it. However, a second
clone derived from the same frozen virtual machine could create a network conflict by duplicating the
same identity as the first instant clone.

For an instant clone derived from the current running point of the source virtual machine, the problem is
more acute because the source virtual machine resumes operation simultaneously with the instant clone.

vSphere Web Services SDK Programming Guide

VMware, Inc. 173

To avoid network conflicts, you customize the instant clone to adopt a new identity, before allowing both
the source virtual machine and the instant clone to run concurrently. In a situation where temporary
network disruption is tolerable, you can ignore the conflict while you customize the network settings in the
guest operating system of the instant clone.

Otherwise, you have two options to avoid the race condition that results when both virtual machines
resume running from the same point. You can either disable the virtual NIC before the instant clone
operation, or else you can specify that the virtual NIC in the instant clone will be disabled at the time when
it resumes running after the operation. You specify the latter by setting the config property of the spec
parameter when you invoke the InstantClone_Task method.

Avoiding Network Identity Collisions after Instant Clone Operations
To avoid a network conflict between a source virtual machine and its instant clone, you must disable at
least one of the two conflicting virtual NICs until you complete network customization in the guest
operating system of the instant clone. Here are some common approaches:

If the source virtual machine is frozen, its virtual NIC is effectively disabled, and you can reconfigure the
guest network settings of the instant clone at any time before the source virtual machine is thawed.

If you derive the instant clone from the current running point of the source virtual machine, you can set
the connected property of the virtual NIC backing to false, which disables it in the source before you start
the instant clone operation. Then you re-enable the virtual NIC after the instant clone operation
completes. After you customize the network settings in the guest operating system of the instant clone,
you must re-enable the virtual NIC in the instant clone as well. This approach requires that you tolerate a
network interruption until the instant clone operation is complete.

To avoid a network interruption, you can issue the instant clone operation with an InstantCloneSpec that
specifies that the virtual NIC in the instant clone will be disconnected. The virtual NIC in the source virtual
machine is not affected. After you complete guest operating system customization in the instant clone,
you set the connected property of its virtual NIC back to true, and the instant clone operates under its
new network identity.

In any case where you change the network identity settings in the guest operating system of the instant
clone, you must reset the network stack for the virtual NIC to cause it to adopt the new settings. You can
do this by invoking the VirtalMachineGuestCustomizationManager.StartGuestNetwork_Task method after
you customize the clone's network settings, or you do the reset from the guest operating system, as with
a physical machine. For more information, see Restarting the Guest Network After Customization and
Resetting the Network Stack in a Running Virtual Machine.

Removing Snapshots and Deleting Linked Virtual Machines
After you have created a group of linked virtual machines, you can remove a snapshot that was the basis
for a linked virtual machine, or delete a virtual machine. Those actions affect disks in the linked virtual

vSphere Web Services SDK Programming Guide

VMware, Inc. 174

machine group. Perform the actions when connected to a vCenter Server system for disk consolidation or
deletion.

n Snapshot removal – During snapshot removal, the snapshot metadata is also removed, and the
virtual machine from which the snapshot was taken is no longer shown as having snapshots. If you
remove a snapshot while connected to the ESXi host directly, shared disks are not consolidated and
unnecessary levels of delta disks might result. If you remove a snapshot while connected to a
vCenter Server system, shared disks are not consolidated, but unshared disks are consolidated.

n Virtual machine deletion – When you delete a virtual machine by directly connecting to the ESXi host,
shared disks are not deleted. When you delete a virtual machine by connecting to a vCenter Server
system, shared disks are not deleted, but unshared disks are deleted.

Caution Delete all linked virtual machines before deleting the master from which they were created,
so that you don’t have orphaned or corrupt disk files on your file system.

Relocating a Virtual Machine in a Linked Virtual Machine Group
You can move the virtual machines in a linked virtual machine group between datastores and save
storage. he contents of the delta disk might not be as important as the contents of the base, and you can
save storage by removing the delta disk.

For more information, see Figure 11-3. Creating a Linked Virtual Machine from a Snapshot.

Example: Relocating a Linked Virtual Machine

relSpec = new VirtualMachineRelocateSpec()

relSpec.diskMoveType = VirtualMachineRelocateDiskMoveOptions.moveChildMostDiskBacking

relSpec.datastore = localDatastore

myVm.Relocate(relSpec)

You can relocate multiple linked virtual machines to a new datastore, but keep all shared storage during
the relocation. To achieve the relocation, relocate the desired virtual machines one by one, giving the
option to allow reattaching to an existing disk, as shown in Relocating Multiple Linked Virtual Machines.

Example: Relocating Multiple Linked Virtual Machines

relSpec = new VirtualMachineRelocateSpec()

relSpec.diskMoveType = VirtualMachineRelocateDiskMoveOptions.moveAllDiskBackingsAndAllowSharing

relSpec.datastore = targetDatastore

myVm.Relocate(relSpec)

Promoting a Virtual Machine's Disk
Promoting a virtual machine’s disk improves performance.

Important You can use the PromoteDisks API only when connected to a vCenter Server system.

vSphere Web Services SDK Programming Guide

VMware, Inc. 175

You can use PromoteDisks to copy disk backings or to consolidate disk backings.

n Copy – If the unlink parameter is true, any disk backing that is shared by multiple virtual machines
is copied so that this virtual machine has its own unshared version. Files are copied into the home
directory of the virtual machine. This setting results in improved read performance, but higher space
requirements. The following call copies and shares disks, and then collapses all unnecessary disks.

myVm.PromoteDisks(True, [])

n Consolidate – If the unlink parameter is false, any disk backing that is not shared between multiple
virtual machines and not associated with a snapshot is consolidated with its child backing. The net
effect is improved read performance at the cost of inhibiting future sharing. The following call
eliminates any unnecessary disks:

myVm.PromoteDisks(False, [])

Promoting a virtual machine’s disk might also be useful if you end up with disk backings that are not
needed for snapshots or for sharing with other virtual machines.

Both uses of PromoteDisks take an optional second argument, which allows you to apply the method to
only a subset of disks. For example, you can unshare and consolidate only the virtual disk with key 2001
as follows:

for any of my VMs in dev

 if (dev.key == 2001)

 disk2001 = dev

myVm.PromoteDisks(True, [disk2001])

Performing Advanced Manipulation of Delta Disks
For advanced manipulation of delta disks, you can use VirtualDeviceConfigSpec methods such as
VirtualDeviceConfigSpec.create and VirtualDeviceConfigSpec.add.

Together add and create allow you to create a blank delta disk on top of an existing disk. For the
VirtualDeviceConfigSpec you specify add to prepare the VM for a new delta disk, then create to initiate
the file operation for the delta disk whose parent property is an existing disk. These methods create a
new delta disk whose parent is the pre-existing disk.

One use case is adding a delta disk on top of an existing virtual disk in a virtual machine without creating
a snapshot. Adding a Delta Disk Backing illustrates how to add the delta disk for the first virtual disk in the
virtual machine.

Example: Adding a Delta Disk Backing

disk = None

for any of my VMs in dev

 if (VirtualDisk.isinstance == dev):

 disk = dev

Remove the disk

vSphere Web Services SDK Programming Guide

VMware, Inc. 176

removeDev = new VirtualDeviceConfigSpec()

removeDev.operation = "remove"

removeDev.device = disk

Create a new delta disk which has the

original disk as its parent disk

addDev = new VirtualDeviceConfigSpec()

addDev.operation = "add"

addDev.fileOperation = "create"

addDev.device = copy.copy(disk)

addDev.device.backing = copy.copy(disk.backing)

addDev.device.backing.fileName = "[" + disk.backing.datastore.name + "]"

addDev.device.backing.parent = disk.backing

spec = new VirtualMachineConfigSpec()

spec.deviceChange = [removeDev, addDev]

For working code with a similar use case, see the JAXWS sample program VMDeltaDisk.java in the
SDK under vsphere-ws/java.

vSphere Web Services SDK Programming Guide

VMware, Inc. 177

Virtual Machine Guest
Operations 12
The vSphere Web Services SDK enables you to do operations inside a virtual machine, by
communicating with the guest operating system.

This chapter includes the following topics:

n Authenticating with the Guest Operating System

n Running Guest OS Operations

n Guest Operating System Customization

n Guest Network Customization for Stopped Virtual Machines

n Guest Network Customization for Instant Clone Virtual Machines

n Resetting the Network Stack in a Running Virtual Machine

Authenticating with the Guest Operating System
Authentication is required for most guest operations. Before you invoke a method that affects the guest,
you must establish your credentials with the guest operating system and acquire a GuestAuthentication
object that you pass to the method.

The GuestAuthentication type has several subclasses that hold guest credentials acquired by different
methods. You can choose from several ways to authenticate:

n NamePasswordAuthentication

n SAMLTokenAuthentication

n SSPIAuthentication

n TicketedSessionAuthentication

Running Guest OS Operations
Guest OS operations manipulate processes, files, folders, and environment variables in a virtual
machine's guest operating system.

The vSphere API offers the following managed object types for guest operations:

n GuestAuthManager – authenticate to acquire credentials in the guest OS.

VMware, Inc. 178

n GuestFileManager – manipulate files, directories, and remote copying in the guest OS.

n GuestProcessManager – manipulate processes in the guest OS.

n GuestAliasManager – support single sign-on for guest operations; create and delete user aliases.

n GuestWindowsRegistryManager – manipulate keys and values in the Windows registry.

n VirtualMachineGuestCustomizationManager – customize guest settings, especially for instant clone
virtual machines.

All the above managed objects are subclasses that inherit properties from GuestOperationsManager. In
the vSphere API, the VirtualMachine and GuestInfo managed objects contain information about what
guest operations might be running and relevant virtual machine state:

vim.VirtualMachine.guest()

vim.vm.GuestInfo.guestOperationsReady

vim.vm.GuestInfo.interactiveGuestOperationsReady

VMware Tools must be present to run guest operations. To perform interactive guest operations, the user
must be logged into the console, for example through the vSphere Client. Steps involved are:

1 Java or C# program translates to SOAP bindings.

2 Directives of vSphere API pass through vCenter Server.

3 Directives are relayed to ESXi host agent process.

4 Virtual machine executable passes guest operations to VMware tools.

5 Guest OS performs guest operations.

Figure 12-1. Guest operations control flow

The following table summarizes the methods available for guest operations.

vSphere Web Services SDK Programming Guide

VMware, Inc. 179

Table 12-1. GuestOperationsManager methods

Managed Object Methods Description

GuestAliasManager AddGuestAlias define alias for guest account

ListGuestAliases list guest aliases for specified user

ListGuestMappedAliases list alias map for in-guest user

RemoveGuestAliasByCert remove certificate associated aliases

GuestAuthManager AcquireCredentialsInGuest authenticate, return session object

ReleaseCredentialsInGuest release session object

ValidateCredentialsInGuest check authentication data or timeout

GuestFileManager ChangeFileAttributesInGuest change attributes of file in guest

CreateTemporaryDirectoryInGuest make a temporary directory

CreateTemporaryFileInGuest create a temporary file

DeleteDirectoryInGuest remote directory in guest OS

DeleteFileInGuest remove file in guest OS

InitiateFileTransferFromGuest start file transfer from guest OS

InitiateFileTransferToGuest start file transfer to guest OS

ListFilesInGuest list files or directories in guest

MakeDirectoryInGuest make a directory in guest

MoveDirectoryInGuest move or rename a directory in guest

MoveFileInGuest rename a file in guest

GuestWindowsRegistryManager CreateRegistryKeyInGuest create a registry key

DeleteRegistryKeyInGuest delete a registry key

DeleteRegistryValueInGuest delete a registry value

ListRegistryKeysInGuest list registry subkeys for a given key

ListRegistryValuesInGuest list registry values for a given key

SetRegistryValueInGuest set or create a registry value

GuestProcessManager ListProcessesInGuest list processes running in guest OS

ReadEnvironmentVariableInGuest read environment variable in guest

StartProgramInGuest start running program in guest

TerminateProcessInGuest stop a running process in guest

InitiateFileTransferFromGuest and InitiateFileTransferToGuest are useful for transferring small files
between the host and guest. For large file transfers, virtual machines should be connected to the network
because networking transfers are much faster.

vSphere Web Services SDK Programming Guide

VMware, Inc. 180

Java Source Code Samples
Four Java code samples based on JAX-WS are available in the vSphere SDK for Web services, in this
directory:

SDK/vsphere-ws/java/JAXWS/samples/com/vmware/guest

CreateTemporaryFile.java creates a temporary file inside a virtual machine, by calling the following
method:

vimPort.createTemporaryFileInGuest(fileManagerRef, vmMOR, auth, prefix, suffix, directoryPath);

DownloadGuestFile.java downloads a file from the guest to a specified path on the host where the
client is running. The destination, a local file on the client host, is specified on the command line as --
localfilepath.

vimPort.initiateFileTransferFromGuest(fileManagerRef, vmMOR, auth, guestFilePath);

RunProgram.java runs a specified program inside a guest operating system, with output re‐directed to a
temporary file, and downloads the resulting output to a file on the local client. The program must already
exist on the guest, and is specified on the command line as --guestprogrampath. The output file to store
on the client host is specified on the command line as --localoutputfilepath.

vimPort.startProgramInGuest(processManagerRef, vmMOR, auth, spec);

UploadGuestFile.java uploads a file from the client machine to a specified location inside the guest.
The source, a local file on the client host, is specified on the command line as --localfilepath.

vimPort.initiateFileTransferToGuest(fileManagerRef, vmMOR, auth, guestFilePath,

 guestFileAttributes, fileSize, optionsmap.containsKey("overwrite"));

Guest Operating System Customization
You can use the vSphere Web Services SDK to customize several attributes of the guest operating
system. The CustomizationSpec data object allows you to specify network and identity settings in the
guest operating system.

Use the CustomizationSpec data object to specify the settings that you choose to modify. You can specify
the following areas:

n IP addresses and gateway addresses for virtual NIC devices

n DNS servers

n Host name

n Domain name

n Time zone

vSphere Web Services SDK Programming Guide

VMware, Inc. 181

You can customize a guest operating system while the virtual machine is stopped, by invoking the
VirtualMachine.CustomizeVM_Task method. You can customize the guest operating system while the
virtual machine is running, by invoking the
VirtualMachineGuestCustomizationManager.CustomizeGuest_Task method. The instant clone feature
requires that you customize the virtual machine while it is running.

The two ways to customize a virtual machine are compared in the following table.

Table 12-2. Comparing Guest Operating System Customization

Customization While Stopped Instant Clone Customization

vSphere Compatibility n vSphere 5 and later

n Both vSphere and VMC

n vSphere 7 and later

n vSphere only (not VMC)

API Method VirtualMachine.CustomizeVM_Task() n VirtualMachineGuestCustomizationM

anager.CustomizeGuest_Task()

n VirtualMachineGuestCustomizationM

anager.StartGuestNetwork_Task()

n VirtualMachineGuestCustomizationM

anager.AbortCustomization_Task()

Creating CustomizationSpec Create customization specifications in
vSphere Client or in API.

Create customization specifications in
API.

Virtual Machine State Must be powered off. Must be powered on.

vmtools Must be installed. Must be installed and running.

Customization Engine Not used. Required.

Supported Guests Both Linux and Windows. For supported
versions, see https://
partnerweb.vmware.com/programs/
guestOS/guest-os-customization-
matrix.pdf.

Linux only. Supported distributions are
listed in Customizing Guest Network
Settings for Running Virtual Machines.

Network Adapter State CustomizeVM_Task() disconnects virtual
adapters and prepares customization.
The next time the virtual machine
powers on, the customization will take
effect and vmtools will restart virtual
adapters.

InstantClone_Task() disconnects virtual
adapters before creating a clone. Use
StartGuestNetwork() to restart virtual
adapters after customization.

Rebooting the Guest vmtools reboots the guest operating
system after reconnecting virtual
network adapters.

No reboot needed. StartGuestNetwork()
restarts network services after
customization

Guest Network Customization for Stopped Virtual
Machines
You can customize certain settings in the guest operating system with the help of the vSphere Web
Services SDK. Customization is simpler for a virtual machine that is not running.

vSphere Web Services SDK Programming Guide

VMware, Inc. 182

https://partnerweb.vmware.com/programs/guestOS/guest-os-customization-matrix.pdf
https://partnerweb.vmware.com/programs/guestOS/guest-os-customization-matrix.pdf
https://partnerweb.vmware.com/programs/guestOS/guest-os-customization-matrix.pdf
https://partnerweb.vmware.com/programs/guestOS/guest-os-customization-matrix.pdf

Use this procedure to customize a guest operating system that you can shut down without a significant
service impact.

Prerequisites

A guest operating system can be easily customized while it is not running. If stopping the guest will cause
a significant service impact, such as in an instant clone virtual machine, see Guest Network
Customization for Instant Clone Virtual Machines instead.

Procedure

1 Shut down the guest operating system by using the ShutdownGuest method or the PowerOffVM_Task
method.

2 Prepare a CustomizationSpec data object that specifies the desired global IP settings, virtual NIC
settings, and so on.

3 Invoke the CustomizeVM_Task method of the VirtualMachine managed object.

4 Start the guest operating system by using the PowerOnVM_Task method of the VirtualMachine
managed object.

What to do next

For more information about customizing the guest operating system, in the context of virtual machine
configuration, see Customizing the Guest Operating System.

Guest Network Customization for Instant Clone Virtual
Machines
You can customize the network settings in the guest operating system with the help of the vSphere Web
Services SDK. For instant clone operations, you must customize the clone without stopping the guest
operating system.

Guest network customization for a running virtual machine involves several steps:

n Installation of the guest customization engine

n Disconnecting virtual NICs

n Customizing guest network settings

n Reconnecting virtual NICs

n Restarting the guest network

n Recovering from guest customization errors

n Running scripts for application-dependent customization

vSphere Web Services SDK Programming Guide

VMware, Inc. 183

You can use these steps independently and you can run your own scripts in between steps as needed to
customize, reset status, or restart processes in the guest.

Note You must authenticate using credentials accepted by the guest operating system before you can
run guest operations.

Installing the Guest Customization Engine
The guest customization engine needs to be installed in a virtual machine before using the
VirtualMachineGuestCustomizationManager.CustomizeGuest_Task method.You can download the
installer from the My VMware web site.

The guest customization engine is available for most popular Linux distributions, using either an RPM
package or a DEB package. To download and install it within the guest operating system, use the
following steps.

Prerequisites

Start a web browser in a running virtual machine. For instant clone operations, prepare the source virtual
machine by installing the customization engine before creating clones.

Procedure

1 Login to https://my.vmware.com.

2 Navigate to the Download VMware vSphere page for vSphere7.0.

3 Click the Drivers & Tools tab.

4 Find the entry for the instant clone customization engine.

5 Download the installation package appropriate for your Linux distribution:

n The .rpm file for RHEL or SLES

n The .deb file for Ubuntu

6 Run the command to install the package in the guest:

n For the .rpm package, use this command:

sudo /bin/rpm -i --force yourdpkgFilePath >> ./rpm.log 2>&1

n For the .deb package, use this command:

sudo /usr/bin/dpkg -i --force-all yourdpkgFilePath >> ./dpkg.log 2>&1

What to do next

After the guest customization engine is installed, the guest is prepared to invoke
VirtualMachine.InstantClone_Task or
VirtualMachineGuestCustomizationManager.CustomizeGuest_Task. You can delete the installation
package to save virtual disk space.

vSphere Web Services SDK Programming Guide

VMware, Inc. 184

https://my.vmware.com

Disconnecting Virtual NICs
Before you customize the guest network, you should disconnect the virtual NICs to quiesce network traffic
during the operation. Disconnecting virtual NICs is a key step in the instant clone process.

You can disconnect a virtual NIC in one of these ways:

n In the spec parameter to the InstantClone_Task method you can specify that the virtual NIC should
be disconnected during the instant clone operation. This way leaves the NIC in the source virtual
machine active immediately after the clone operation, while the NIC in the clone is idle and ready for
customization.

n In the spec parameter to the ReconfigVM_Task method you can change the connection state of a
virtual NIC. This way is available either with or without an instant clone operation.

Disconnecting a Virtual NIC with InstantClone_Task
To disconnect a virtual NIC during an instant clone operation, prepare a VirtualMachineInstantCloneSpec
data object that specifies the device should be in the disconnected state after the clone operation
completes. You pass the clone specification in the spec parameter of InstantClone_Task. Assign a value
of disconnect to the property spec.location.deviceChange[].device.connectable.migrateConnect.

Disconnecting a Virtual NIC with ReconfigVM_Task
To disconnect a virtual NIC by reconfiguring the virtual machine, prepare a VirtualMachineConfigSpec
data object that specifies a disconnected virtual NIC. You pass the config specification in the spec
parameter of the ReconfigVM_Task method. Assign a value of False to the property
spec.deviceChange[].device.connectable.connected.

Customizing Guest Network Settings for Running Virtual Machines
You can use a method of the VirtualMachineGuestCustomizationManager managed object to apply new
settings to the virtual NICs in the guest. The VirtualMachineGuestCustomizationManager uses the guest
customization engine designed for instant clone operations to customize the guest while it continues
running.

The customization step applies new settings for IP address, DNS server, and gateway server of one or
more virtual NICs.

Note DNS settings can be specific to individual NICs in Windows operating systems. DNS settings are
global in a Linux operating system.

The guest customization engine must be installed in the virtual machine before you call this method. See
Installing the Guest Customization Engine for instructions.

Customization applies the new guest network settings that you specify in the spec parameter to the
VirtualMachineGuestCustomizationManager.CustomizeGuest_Task method. The spec parameter is a data
object of type CustomizationSpec, which contains a nicSettingMap property that holds an array that maps
MAC address to network settings for one or more virtual NICs in the guest.

vSphere Web Services SDK Programming Guide

VMware, Inc. 185

There are two ways to use the nicSettingsMap array in the spec parameter. You can do one of the
following:

n Specify each virtual NIC explicitly by its MAC address, in spec.nicSettingMap[i].macAddress, and
specify the virtual NIC's new settings in the properties of spec.nicSettingMap[i].adapter.

n Omit spec.nicSettingMap[i].macAddress for all virtual NICs and specify the new settings for each
NIC in PCI bus order.

In addition to virtual NIC settings, you can customize these properties of a virtual machine:

n You can set the CustomizationSpec.identity property to a data object derived from the type
CustomizationIdentitySettings. You must choose a subclass of the type that corresponds to the
guest operating system installed in the virtual machine. In the identity object you can specify a new
host name, domain name, and system time settings.

n You can set the CustomizationSpec.globalIPSettings property to a data object of type
CustomizationGlobalIPSettings in which you specify DNS settings for all virtual NICs. Use this for
Linux guest operating systems.

The CustomizeGuest_Task method supports the following guest operating systems:

n Red Hat Enterprise Linux 6.8 and higher

n Red Hat Enterprise Linux 7.4 and higher

n CentOS 7.4 and higher

n SUSE 11SP4

n SUSE 12SP3 and higher

n Ubuntu 16.04 and higher (LTS distributions)

The toolsd service must be running and available for this customization step.

Note The CustomizeGuest_Task method is asynchronous, but a critical part of the operation, which uses
the customization engine, is synchronous.

You can pipeline the instant clone and customization operations to minimize the time needed to clone a
virtual machine.

Note During an instant clone operation, the toolsd service is briefly offline while it resets connections in
the clone. This results in no noticeable delay, but you might need to allow for a retry if you run pre-
customization code.

The customization data is stored in the Namespace database in a cust.cfg format containing name-value
pairs. This makes the customization process resilient to vMotion operations. It also means that you can
access the data if needed as input for user-supplied customization scripts.

vSphere Web Services SDK Programming Guide

VMware, Inc. 186

Reconnecting Virtual NICs in a Running Virtual Machine
After you customize a guest network in a running virtual machine, you must reconnect the virtual NICs
before the guest operating system can use them.

To reconnect a virtual NIC by reconfiguring the virtual machine, prepare a VirtualMachineConfigSpec
data object that specifies a connected virtual NIC. You pass the config specification in the spec parameter
of the ReconfigVM_Task method. Assign a value of True to the property
spec.deviceChange[].device.connectable.connected.

Restarting the Guest Network After Customization
After customizing guest network settings, you can restart the guest network manually from within the
guest operating system, or by using a method of the VirtualMachineGuestCustomizationManager
managed object. This method is important for instant clone operations, but it can be used for other
purposes as well.

To restart the guest network manually, see Resetting the Network Stack in a Running Virtual Machine.

To restart the guest network using the vSphere Web Services API, use the
VirtualMachineGuestCustomizationManager.StartGuestNetwork_Task method. This method both
reconnects the virtual NICs to the network and restarts the guest network service.

The StartGuestNetwork_Task method is supported on most popular Linux distributions.

Recovering from Guest Network Customization Errors
Guest network customization is a long-running operation with several potential failure points. If you
encounter a failure, consider the following steps.

The guest network customization engine holds a lock on the VirtualMachineGuestCustomizationManager
interface while it applies changes to the guest. A failure during customization or while restarting the
network might leave a hung process or an orphaned lock.

If any step of the network cutsomization returns an error, use the
VirtualMachineGuestCustomizationManager.AbortCustomization_Task method to kill all running
instances of the customization engine and to release the lock.

To troubleshoot a failure, you can examine the log file used by the
VirtualMachineGuestCustomizationManager.CustomizeGuest_Task method. The log file is on the host file
system at /var/log/vmware-gosc/instant_clone_customization.log for Linux hosts.

When you abort a guest customization operation, the guest network can be left in an inconsistent state.
After the abort operation completes, you should check your customization settings and retry the
CustomizeGuest_Task method in case of transient error conditions.

Note When you use the VirtualMachineGuestCustomizationManager, the customization procedure
tolerates vMotion without failure.

vSphere Web Services SDK Programming Guide

VMware, Inc. 187

Application-Dependent Customization
After you customize and restart the guest network, the virtual machine might need additional
customization steps, depending on the applications that run in the guest operatin system. For example,
you might need to generate new encryption keys for an instant clone, or signal an application to close and
re-open network sockets when you have configured new network IP addresses.

To do additional customization steps in the guest, use the GuestFileManager and the
GuestProcessManager interfaces in the GuestOperationsManager managed object.

Resetting the Network Stack in a Running Virtual Machine
In any case where you change the network identity settings in the guest operating system of a running
virtual machine, you must reset the network stack for the virtual NIC to cause it to adopt the new settings.
You can do this by invoking the VirtualMachineGuestCustomizationManager.RestartNetwork_Task
method after you customize the network settings, or you can do the reset from the guest operating
system, as with a physical machine. The way to reset a NIC differs, depending on the operating system.

For information about the RestartNetwork_Task method, see Restarting the Guest Network After
Customization.

Resetting the Network Stack in a Linux Virtual Machine
When you change network settings in an instant clone, you must reset the network stack of the virtual
NIC to adopt the new settings. For a Linux guest operating system, you must unbind and rebind the
network driver so it adopts a new MAC address.

The following shell script rebinds all network drivers:

#!/bin/bash

for NETDEV in /sys/class/net/*

do

 DEV_LABEL=`basename \`readlink -f $NETDEV/device\``

 DEV_DRIVR=`basename \`readlink -f $NETDEV/device/driver\``

 echo $DEV_LABEL > /sys/bus/pci/drivers/$DEV_DRIVR/unbind

 echo $DEV_LABEL > /sys/bus/pci/drivers/$DEV_DRIVR/bind

done

If the guest operating system was configured to use DHCP, you must also force a DHCP refresh after the
MAC addresses refresh has completed.

Tip: Avoid resetting the network stack in the guest operating system while you are working over a network
connection, such as SSH. You can run the shell commands to reset the stack as part of a customization
script installed in the guest operating system of the source virtual machine before running the instant
clone operation.

Resetting the Network Stack in a Windows Virtual Machine
When you change network settings in a Windows virtual machine, you must disable and re-enable the
network object. There are several ways to do that in Windows.

vSphere Web Services SDK Programming Guide

VMware, Inc. 188

Reset the Network Stack in a Windows Virtual Machine Using the Control
Panel
When you change network settings in a Windows virtual machine, you must reset the network stack of the
virtual NIC to adopt the new settings. For a Windows guest operating system, you must disable and re-
enable the network connection so it adopts a new MAC address. You can do this using the Control Panel.

Procedure

1 In the Control Panel, navigate to Control Panel > Networks and Internet > Network Connections.

2 Right-click the network adapter icon and choose disable.

3 Right-click the network adapter icon and choose enable.

4 Repeat these steps for each network adapter.

Reset the Network Stack in a Windows Virtual Machine Using PowerShell
When you change network settings in a Windows virtual machine, you must reset the network stack of the
virtual NIC to adopt the new settings. For a Windows guest operating system, you must disable and re-
enable the network connection so it adopts a new MAC address. To perform this task with PowerShell,
use the Restart-NetAdapter cmdlet.

The cmdlet is described in more detail at https://technet.microsoft.com/en-us/itpro/powershell/windows/
netadapter/restart-netadapter.

Procedure

1 List the virtual network adapters in the guest operating system.

Get-NetAdapter

The names of the virtual network adapters appear in the first column of output.

2 Restart the network adapter representing the external interface.

Restart-NetAdapter -Name "Ethernet0"

3 If you have more than one virtual interface, repeat the previous step for each one.

Reset the Network Stack in a Windows Virtual Machine Using netsh
When you change network settings in a Windows virtual machine, you must reset the network stack of the
virtual NIC to adopt the new settings. For a Windows guest, you must disable and re-enable the network
connection so it adopts a new MAC address. To perform this task, run netsh with interface command.

Run the following commands in a command prompt (Run > cmd).

Procedure

1 List the network interfaces.

netsh interface show interface

vSphere Web Services SDK Programming Guide

VMware, Inc. 189

HTTPS://TECHNET.MICROSOFT.COM/EN-US/ITPRO/POWERSHELL/WINDOWS/NETADAPTER/RESTART-NETADAPTER
HTTPS://TECHNET.MICROSOFT.COM/EN-US/ITPRO/POWERSHELL/WINDOWS/NETADAPTER/RESTART-NETADAPTER

2 Choose the interface that represents the external network connection and disable it.

netsh interface set interface name="Ethernet0" admin=DISABLED

3 Re-enable the interface with a similar command.

netsh interface set interface name="Ethernet0" admin=ENABLED

4 Repeat the previous two commands if you have more than one NIC that needs to be reset.

vSphere Web Services SDK Programming Guide

VMware, Inc. 190

Virtual Machine Encryption APIs 13
vSphere virtual machine encryption protects virtual machines, virtual disks, and related files. First you set
up a trusted connection between vCenter Server and a key management server (KMS), then vCenter
Server can retrieve keys from the KMS as needed.

Various aspects of virtual machine encryption are handled differently. You manage setup of the KMS
trusted connection and perform most encryption workflows from the vSphere Client. You manage
automation of some advanced features using the vSphere Web Services SDK, as discussed in this
chapter. You use the crypto-util command-line tool directly on ESXi hosts for some special cases, for
example, to decrypt the core dumps in a vm-support bundle.

This chapter includes the following topics:

n How Virtual Machine Encryption Protects a Datacenter

n vSphere Virtual Machine Encryption Components

n Prerequisites and Required Privileges for Encryption Tasks

n API Methods for vSphere Virtual Machine Encryption

n Workflows for vSphere Virtual Machine Encryption

n Best Practices

How Virtual Machine Encryption Protects a Datacenter
With vSphere virtual machine encryption, you can create encrypted virtual machines and encrypt existing
ones. Because all virtual machine files with sensitive information are encrypted, the virtual machine is
protected. Only administrators with encryption privileges can perform encryption and decryption tasks.

What Keys are Used
Two types of keys are used for encryption.

n The ESXi host generates and uses internal keys to encrypt virtual machines and disks. These keys
are used as the disk encryption key (DEK) and are XTS-AES-256 keys.

n The key management server (KMS) sends keys to the vCenter Server upon request. These keys are
used as the key encryption key (KEK) and are AES-256 keys. vCenter Server stores only the ID of
each KEK, but not the key itself.

VMware, Inc. 191

n ESXi hosts use the KEK to encrypt their internal keys, and store only the encrypted internal keys on
disk, but not the KEK itself. When an ESXi host reboots, vCenter Server requests the necessary
KEKs by sending the corresponding IDs to the KMS, and upon receipt, make the KEKs available to
the ESXi host, which can then decrypt its internal keys as needed.

What Is Encrypted
Virtual machine encryption supports encrypting virtual machine files, virtual disk files, and core dump files.

Virtual Machine Files
Most virtual machine files, in particular guest data that are not stored in the VMDK file, are encrypted.
This set of files includes but is not limited to the NVRAM (memory), VSWP (swap), and VMSN (snapshot)
files. The key that vCenter Server retrieves from the KMS unlocks an encrypted bundle in the VMX file
that contains internal keys and other secrets.

If you use the vSphere Client to create an encrypted virtual machine, all virtual disks are encrypted by
default. For other encryption tasks, such as encrypting an existing virtual machine, you can encrypt and
decrypt virtual disks separate from virtual machine files.

Note You cannot associate an encrypted virtual disk with an unencrypted virtual machine.

Virtual Disk Files
Data in an encrypted virtual disk (VMDK) file are never written in cleartext to storage or physical disk, and
is never transmitted over the network in cleartext. The VMDK descriptor file is mostly cleartext, but
contains a key ID for the KEK and the internal key (DEK) in the encrypted bundle.

You can use the vSphere API to perform either a shallow recrypt operation with a new KEK, or a deep
recrypt operation with new internal keys.

Core Dump Files
Core dumps on an ESXi host that has encryption mode enabled are always encrypted. You can decrypt
and password protect ESXi core dumps using the crypto-util command-line tool on the ESXi host.

Note Core dumps on the vCenter Server (Appliance) are not encrypted. Be sure to protect access to all
vCenter Server systems.

What Is Not Encrypted
Some files that are associated with a virtual machine are not encrypted or partially encrypted.

Log Files
Log files are not encrypted because they should not contain sensitive data.

Virtual Machine Configuration Files
Most of the virtual machine configuration information, stored in the VMX and VMSD files, is not encrypted.
Information about the KMS and the key ID is visible in those files.

vSphere Web Services SDK Programming Guide

VMware, Inc. 192

Virtual Disk Descriptor File
To support disk management without a key, most of the virtual disk descriptor file is not encrypted.

Who Can Perform Cryptographic Operations
Only users who are assigned the Cryptographic Operations privileges can perform cryptographic
operations. The privilege set is fine grained; see the vSphere Security guide. The default Administrator
system role includes all Cryptographic Operations privileges. A new system role, No Cryptography
Administrator, supports all Administrator privileges except for the Cryptographic Operations privileges.

You can create additional custom roles, for example, to allow a group of users to encrypt virtual machines
but to prevent them from decrypting virtual machines.

For a full list of privileges, see the section “Cryptographic Operations Privileges” in the vSphere Security
manual.

How Can I Perform Cryptographic Operations
The vSphere Client supports many cryptographic operations. For other tasks, you must use the API.

Table 13-1. Interfaces for performing cryptographic operations

Interface Operations Information

vSphere Client Create encrypted virtual machines

Encrypt and decrypt virtual machines

The vSphere Security guide.

vSphere Web Services SDK Create encrypted virtual machines

Encrypt and decrypt virtual machines

Perform a deep recrypt of virtual machines
(use a different KEK and DEK).

Perform a shallow recrypt of virtual machines
(use a different KEK).

This chapter.

crypto-util Decrypt encrypted core dumps, check whether files
are encrypted, and perform other management tasks
directly on the ESXi host,

Command-line help and the
vSphere Security guide.

vSphere Virtual Machine Encryption Components
An external key management server (KMS), the vCenter Server system, and ESXi hosts all contribute to
the vSphere virtual machine encryption solution.

vSphere Web Services SDK Programming Guide

VMware, Inc. 193

Figure 13-1. vSphere Virtual Machine Encryption Architecture

Key Management Server
The vCenter Server requests keys from an external KMS. The KMS generates and stores the keys, and
passes them to vCenter Server for distribution.

You can use the vSphere Client or the vSphere API to add a cluster of KMS instances to the vCenter
Server system. If you use multiple KMS instances in a cluster, all instances must be from the same
vendor and must replicate keys.

If your environment uses different KMS vendors in different environments, you can add a KMS cluster for
each KMS and specify a default KMS cluster. The first cluster that you add becomes the default cluster.
You can explicitly change the default later.

As a KMS client, vCenter Server uses the Key Management Interoperability Protocol (KMIP) and makes it
easy to use the KMS of your choice.

vCenter Server
Only vCenter Server has credentials for logging in to the KMS. The ESXi hosts do not have those
credentials. The vCenter Server obtains keys from the KMS and pushes them to the ESXi hosts. The
vCenter Server does not store the KMS keys, it merely keeps a list of key IDs.

The vCenter Server checks the privileges of users who perform cryptographic operations. You can use
the vSphere Client to assign cryptographic privileges or to assign the No cryptography administrator
custom role to groups of users. See Prerequisites and Required Privileges for Encryption Tasks.

The vCenter Server adds cryptography events to the list of events that you can view and export from the
vSphere Client Event Console. Each event includes the user, time, key ID, and cryptographic operation.

vSphere Web Services SDK Programming Guide

VMware, Inc. 194

ESXi Hosts
ESXi hosts are responsible for several aspects of the encryption workflow.

n Accepting keys and storing them in memory (never on disk). If a host has encryption mode enabled,
and the current user’s role includes cryptographic operations privileges, vCenter Server pushes keys
to the ESXi host upon request. See Prerequisites and Required Privileges for Encryption Tasks.

n Ensuring that guest data for encrypted virtual machines are encrypted when stored on disk.

n Ensuring that guest data for encrypted virtual machines are never sent unencrypted over the network.

The keys that the ESXi host generates are called internal keys in this document. These keys are typically
act as data encryption keys (DEKs).

Encryption Process Flow
After vCenter Server is connected to the KMS, users with the required privileges can create encrypted
virtual machines and disks. Those users can also perform other encryption tasks such as encrypting
existing virtual machines and decrypting encrypted virtual machines. During the encryption process,
different components interact as follows.

1 When the user performs an encryption task, for example, creating an encrypted virtual machine,
vCenter Server requests a new key from the default KMS. This key will be used as the KEK.

2 The vCenter Server stores the key ID and passes the key to an ESXi host. If the ESXi host is part of a
cluster, vCenter Server sends the KEK to each host in the cluster. The key itself is not stored on the
vCenter Server system. Only the key ID is stored.

3 The ESXi host generates internal keys (DEKs) for the virtual machine and its disks, using the KEK
that it received from vCenter Server to encrypt the internal keys. The the internal keys are kept in
memory only. Only the encrypted data are stored on disk.

4 The ESXi host encrypts the virtual machine and its disks with the encrypted internal key.

ESXi hosts that have the KEK and can access the encrypted key file can perform operations on an
encrypted virtual machine or disk. Because they come from the KMS, ESXi hosts can use the same KEK
across reboots.

If you later want to decrypt a virtual machine, you change its storage policy either for the virtual machine
or for its disks. If you want to decrypt individual components, first decrypt selected disks, then decrypt the
virtual machine by changing the storage policy for VM Home. Both keys are required for decryption of
each component, virtual disks or VM Home.

When you encrypt an existing virtual machine, you need at least twice the space that the virtual machine
is currently using, in most cases.

vSphere Web Services SDK Programming Guide

VMware, Inc. 195

Prerequisites and Required Privileges for Encryption
Tasks
Users who perform encryption related tasks must have the appropriate privileges. Additional privileges
are required if virtual machine encryption tasks require changing the host encryption mode. An extensive
number of Cryptographic Operations privileges allow fine-grained control.

Encryption tasks are possibly only in environments that include a vCenter Server. Additionally, the ESXi
host must have encryption mode enabled for most encryption tasks. The user who performs an
encryption task must have the appropriate privileges. Additional privileges are required if virtual machine
encryption tasks require changing the host encryption mode. An extensive number of Cryptographic
Operations privileges allow fine-grained control.

Cryptography Privileges and Roles
By default, the user with the vCenter Server Administrator role has all Cryptographic Operations
privileges. You can assign the No cryptography administrator role to all vCenter Server administrators
who do not need cryptographic privileges.

The user with the vCenter Server Administrator role has all privileges by default. You can assign the
No cryptography administrator role to vCenter Server users who do not need Cryptographic Operations
privileges. The No cryptography administrator lacks the following privileges for cryptographic operations:

n Add Cryptographic Operations privileges

n Global.Diagnostics

n Host.Inventory.Add host to cluster

n Host.Inventory.Add standalone host

n Host.Local operations.Manage user groups

To further limit what users can do, you can clone the No cryptography administrator role and create a
custom role with only some of the Cryptographic Operations privileges. For example, you can create a
role that allows users to encrypt but not to decrypt virtual machines, or that does grant privileges for
management operations. See the vSphere Security manual for details.

Host Encryption Mode
You can encrypt virtual machines only if host encryption mode is enabled for the ESXi host. Host
encryption mode is often enabled automatically, but it can be enabled explicitly.

You can check and explicitly set the current host encryption mode from the vSphere Client or by using the
vSphere API; see API Methods to Prepare an ESXi Host.

After host encryption mode is enabled, it cannot be disabled easily. See the vSphere Security guide for
details.

vSphere Web Services SDK Programming Guide

VMware, Inc. 196

Automatic changes occur when encryption operations attempt to enable host encryption mode. For
example, suppose that you add an encrypted virtual machine to an ESXi host, and host encryption mode
is not enabled. If you have the required privileges on the host, encryption mode automatically changes to
enabled.

Assume a cluster that includes three ESXi hosts, host A, B, and C. You add an encrypted virtual machine
to host A. What happens depends on several factors. If all three hosts have encryption enabled, you can
create an encrypted virtual machine if you have Encrypt new privileges. If none of the hosts has
encryption enabled, and you have Register host privileges on host A, then the virtual machine creation
process enables host encryption on that host; otherwise an error results. The scenario is more
complicated if host B or C is not enabled for encryption; see the vSphere Security guide for details.

Encrypted vSphere vMotion
vSphere vMotion always tries to use encryption when migrating encrypted virtual machines. You cannot
disable encrypted vMotion for encrypted virtual machines in a cluster.

For virtual machines that are not encrypted, you can set encrypted vMotion to Opportunistic (use
encrypted vMotion if supported) or Required (do not migrate if unsupported). See Encrypted vSphere
vMotion.

API Methods for vSphere Virtual Machine Encryption
Methods for managing vSphere virtual machine encryption are in the vSphere API, part of the Web
Services SDK. In addition, you need a few Storage Policy APIs to create and assign encryption storage
policies.

vSphere API Methods for KMS Management
Cryptographic key management interfaces are defined in the following hierarchy.

n CryptoManager – managed object, parent of CryptoManagerKmip.

CryptoManager defines methods that are covered in vSphere API Methods for Cryptographic
Operations.

n CryptoManagerKmip – managed object for handing the cryptographic keys.

n CertificateInfo – basic information of a certificate.

n ClusterStatus – status of a KMS cluster.

n ServerCertInfo – information about the KMS certificate.

n ServerStatus – status of a KMS.

CryptoManagerKmip defines the following methods:

n String generateClientCsr(cluster) – generate a certificate signing request with its private
key.

vSphere Web Services SDK Programming Guide

VMware, Inc. 197

n String generateSelfSignedClientCert(cluster) – generate self-signed client certificate
with its private key.

n KmipClusterInfo[] kmipServers() – get a list of registered KMS, grouped by clusters.

n KmipClusterInfo[] listKmipServers(limit) – get a list of registered KMS.

n void markDefault(clusterId) – set the default KMS cluster.

n void registerKmipServer(server) – register a KMS.

n void removeKmipServer(clusterId, serverName) – remove a KMS, even if in use.

n String retrieveClientCert(cluster) – get the client certificate of the KMS cluster.

n String retrieveClientCsr(cluster) – get the generated client certificate signing request.

n ServerCertInfo retrieveKmipServerCert(keyProvider, server) – get the server
certificate.

n ClusterStatus[] retrieveKmipServersStatus(clusters[]) – get status of the KMS
instances.

n String retrieveSelfSignedClientCert(cluster) – get generated self signed client
certificate.

n void updateKmipServer(server) – update a KMS.

n void updateKmsSignedCsrClientCert(cluster, certificate) – Set KMS signed certificate
as the client certificate for a KMS cluster.

n void updateSelfSignedClientCert(cluster, certificate) – set a self-signed certificate as
the client certificate for the KMS cluster.

n void uploadClientCert(cluster, certificate, privateKey) – set a client certificate with
private key for the KMS cluster.

n void uploadKmipServerCert(cluster, certificate) – upload a server certificate.

n CryptoKeyResult generateKey(keyProvider) – generate a new encryption key.

The generateKey method is out of alphabetic order because it is called after the others.

API Methods to Prepare an ESXi Host
Encryption interfaces for ESXi hosts are additions to a previously existing managed object, HostSystem.

n HostSystem – managed object providing access to the ESXi host, including these additions:

n HostCryptoState – enumeration indicating whether the ESXi host is incapable of, prepared for
encryption mode, or cryptography safe with its host key already set. Safe means that the ESXi
host can encrypt virtual machines and will not leak keys.

vSphere Web Services SDK Programming Guide

VMware, Inc. 198

n ConfigureCryptoKey – vCenter Server calls this method to set or change the key used for core
dump encryption, and to place the host in safe mode. It is like calling PrepareCrypto and
EnableCrypto in quick succession. Not supported if called on an ESXi host. As of vSphere 7.0
you can disable encryption on a host, after next reboot, by setting pendingIncapable in
HostCryptoState.

n PrepareCrypto – this method puts the ESXi host in prepared mode so it can receive sensitive
data, after being enabled.

n EnableCrypto – this method sets or changes the key for core dump encryption and puts the ESXi
host in safe mode. It must be called in sequence after PrepareCrypto.

The following data objects are used by the ConfigureCryptoKey and EnableCrypto methods above,
and by the CryptoManager methods below in vSphere API Methods for Cryptographic Operations.

n CryptoKeyPlain – data object representing a plain text cryptographic key.

n CryptoKeyId – data object representing a cryptographic key.

n CryptoKeyResult – data object representing the result of a cryptographic key operation.

vSphere API Methods for Cryptographic Operations
Cryptographic operations are defined in the following hierarchy.

n CryptoManager – managed object for handling cryptographic keys.

CryptoManager defines the following methods:

n void addKey(CryptoKeyPlain key) – add plain key to the vCenter Server.

n CryptoKeyResult[] addKeys(CryptoKeyPlain[] keys) – add multiple plain keys to vCenter.

n boolean enabled() – indicate if the encryption feature is enabled.

n CryptoKeyId[] listKeys(int limit) – list keys.

n void removeKey(CryptoKeyId key, boolean force) – remove a key (only its ID is needed).

n CryptoKeyResult[] removeKeys(CryptoKeyId[] keys, boolean force) – multiple keys.

n VirtualMachineConfigSpec – previously existing data object passed as parameter to CreateVM_Task
and ReconfigVM_Task. One of its newly added properties is crypto, a CryptoSpec with one of the
following options, which is inherited by all virtual disks and virtual machine configuration files (VM
home).

n CryptoSpecEncrypt – indicates that the virtual machine should be encrypted.

n CryptoSpecDecrypt – indicates that the virtual machine should be decrypted.

n CryptoSpecDeepRecrypt – indicates that all KEKs and DEKs should be replaced.

n CryptoSpecShallowRecrypt – indicates that only KEKs should be replaced.

n CryptoSpecNoOp – indicates that encryption settings should not be changed.

vSphere Web Services SDK Programming Guide

VMware, Inc. 199

n CryptoSpecRegister – indicates that the operation should send keys but should not modify the
encryption settings of the virtual machine or virtual disk. When an encrypted disk is hot attached,
the program must pass CryptoSpecRegister with the key ID that encrypted the disk. The key can
be obtained from the Datastore Browser.

These data objects are informational properties of VMConfigFileInfo and VMDiskFileInfo,
respectively. They can be used to check whether the VM home and its virtual disks are encrypted.

n VmConfigFileEncryptionInfo – the encryption information of a virtual machine configuration.

n VmDiskFileEncryptionInfo – the encryption information of a virtual disk.

The enumeration EncryptedVMotionModes controls whether encrypted vMotion is disabled, required, or
opportunistic (fall back to unencrypted vMotion if necessary, the default option).

More information about the encryption interfaces is available in vSphere Management SDK
Documentation under vSphere Web Services SDK, in the vSphere API Reference.

SPBM API Methods for Encryption
The managed object PbmProfileProfileManager (pbm.profile.ProfileManager) provides methods to
set encryption related storage policies, including create and update.

n PbmCreate(createSpec) – create a capability-based storage profile defining storage requirements.

n PbmUpdate(profileId, createSpec) – update a storage profile with new capability requirements.

Workflows for vSphere Virtual Machine Encryption
The sections below present vSphere API methods for key acquisition and encryption.

Set Up the Key Management Server Cluster
Before you can start encrypting virtual machines, you must set up the Key Management Server (KMS)
cluster. This includes adding the KMS, establishing trust with the KMS, and setting the default KMS
cluster. The KMS must support the KMIP (Key Management Interoperability Protocol) 1.1 standard, and it
must be capable of acting as a symmetric key foundry and server.

Add Key Management Server(s) to Your Datacenter
Your organization’s security administrator may be responsible for this task. This person will need to
provide the cluster name (if it already exists), the KMS server name, its IP address, its connection port
number, and possibly a proxy address, proxy port number, KMS user name, and corresponding
password.

The CryptoManager.java code to add a KMS and set the default KMS cluster appears in
CryptoManager Java program to add KMS and set default cluster. The user running this program must
have Cryptographic operations.Manage key servers privileges.

vSphere Web Services SDK Programming Guide

VMware, Inc. 200

Establish a Trusted Connection by Exchanging Certificates
There are four ways to establish trust between a KMS and vCenter Server. Different KMS vendors require
different ways.

Java examples for these four ways follow.

1 Upload your Root CA Certificate to the KMS. Obtain it manually and upload with the self-signed call.

2 Upload a self-signed vCenter Certificate to the KMS.

3 Have vCenter Server generate a certificate signing request (CSR), which the KMS signs and returns.

4 Download a security certificate and private key generated by the KMS to vCenter Server.

Example: CryptoManager Java program to add KMS and set default cluster

package com.vmware.general;

import com.vmware.common.annotations.Action;

import com.vmware.common.annotations.Option;

import com.vmware.common.annotations.Sample;

import com.vmware.connection.ConnectedVimServiceBase;

import com.vmware.vim25.CryptoKeyId;

import com.vmware.vim25.CryptoKeyResult;

import com.vmware.vim25.CryptoManagerKmipServerCertInfo;

import com.vmware.vim25.KeyProviderId;

import com.vmware.vim25.KmipServerInfo;

import com.vmware.vim25.KmipServerSpec;

import com.vmware.vim25.ManagedObjectReference;

import com.vmware.vim25.RuntimeFaultFaultMsg;

/**

 * CryptoManager. Demonstrates uses of the CryptoManager API. Parameters:

 * url [required] : web service url, for example https://10.9.8.7/sdk

 * username [required] : username for the authentication

 * password [required] : corresponding password

 * Command line to run CryptoManager code:

 * run.bat com.vmware.general.CryptoManager ^

 * --url webserviceurl --username name --password pass ^

 * --kmsname kms --kmsip ipaddr --kmsclusterid providerId

 */

@Sample(name = "CryptoManager", description = "Demonstrates uses of the CryptoManager API")

public class CryptoManager extends ConnectedVimServiceBase {

 private ManagedObjectReference cryptoManager = null;

 private KmipServerSpec kmipSpec = null;

 private String kmsName;

 private String kmsIp;

 private int kmsPort = 5696; // default

 private String kmsClusterId;

 public void initCryptoManager() throws RuntimeFaultFaultMsg {

 if (serviceContent != null) {

 cryptoManager = serviceContent.getCryptoManager();

 if (cryptoManager == null) {

 throw new RuntimeFaultFaultMsg("CryptoManager could not be obtained", null);

 }

 } else {

vSphere Web Services SDK Programming Guide

VMware, Inc. 201

 throw new RuntimeFaultFaultMsg("ServiceContent could not be obtained", null);

 }

 }

 public void registerKmipServer() throws RuntimeFaultFaultMsg {

 KmipServerInfo serverInfo = new KmipServerInfo(); // Create KMS info

 serverInfo.setName(kmsName); // Set the name of your KMS here

 serverInfo.setAddress(kmsIp); // Set the IP addr of your KMS

 serverInfo.setPort(kmsPort); // Set KMS port, if different from default

 KeyProviderId providerId = new KeyProviderId(); // Set the name of KMS cluster here

 providerId.setId("KMScluster");

 kmipSpec = new KmipServerSpec();

 kmipSpec.setInfo(serverInfo); // KMS spec with server and cluster ID

 kmipSpec.setClusterId(providerId);

 vimPort.registerKmipServer(cryptoManager, kmipSpec); // Register server

 }

 public void trustKmip() throws RuntimeFaultFaultMsg { // Get KMS certificate

 CryptoManagerKmipServerCertInfo certInfo = vimPort.retrieveKmipServerCert(

 cryptoManager, kmipSpec.getClusterId(), kmipSpec.getInfo());

 // Upload retrieved certificate to vCenter Server and trust it

 vimPort.uploadKmipServerCert(

 cryptoManager, kmipSpec.getClusterId(), certInfo.getCertificate());

 }

 public void establishTrust() throws RuntimeFaultFaultMsg {

 // Make KMS trust vCenter Server by uncommenting and calling one of these lines

 // - establishTrustUsingSelfSignedCert() - see Example 12-2 for source code

 // - establishTrustUsingSignedCsr() - see Example 12-3 for source code

 // - establishTrustUsingCertAndKey() - see Example 12-4 for source code

 trustKmip(); // Now make the vCenter Server trust KMS

 }

 public void setDefaultKmipCluster() throws RuntimeFaultFaultMsg {

 vimPort.markDefault(cryptoManager, kmipSpec.getClusterId()); // Mark cluster as default

 }

 public void generateNewKey() throws RuntimeFaultFaultMsg {

 CryptoKeyResult keyResult = vimPort.generateKey(cryptoManager, kmipSpec.getClusterId());

 CryptoKeyId keyId = keyResult.getKeyId(); // Generate new key for encryption

 }

 @Action

 public void action() throws RuntimeFaultFaultMsg {

 initCryptoManager();

 registerKmipServer();

 establishTrust();

 setDefaultKmipCluster();

 generateNewKey();

 }

 @Option(name = "kmsname", description = "Name of the KMS", required = true)

 public void setKMSName(String name) {

 this.kmsName = name;

 }

 @Option(name = "kmsip", description = "IP address of the KMS", required = true)

 public void setKMSIp(String ip) {

 this.kmsIp = ip;

 }

 @Option(name = "kmsport", description = "KMS port", required = false)

 public void setKMSPort(String port) {

 this.kmsPort = Integer.parseInt(port);

vSphere Web Services SDK Programming Guide

VMware, Inc. 202

 }

 @Option(name = "kmsclusterid", description = "KMS cluster Id", required = true)

 public void setKMSClusterId(String clusterId) {

 this.kmsClusterId = clusterId;

 }

}

This example method uploads a self-signed vCenter certificate, or the Root CA certificate, to the KMS.

Example: Trust with self-signed certificate or Root CA certificate

public void establishTrustUsingSelfSignedCert() throws RuntimeFaultFaultMsg {

 // Generate self-signed cert, or obtain the Root CA certificate

 String selfSignedCert = vimPort.generateSelfSignedClientCert(

 cryptoManager, kmipSpec.getClusterId());

 // Follow steps for KMS to trust self-signed or Root CA cert, update vCenter to use it

 vimPort.updateSelfSignedClientCert(

 cryptoManager, kmipSpec.getClusterId(), selfSignedCert);

}

This example method generates a CSR and downloads the KMS signed certificate onto vCenter Server.

Example: Trust with CSR then downloading KMS signed certificate

public void establishTrustUsingSignedCsr() throws RuntimeFaultFaultMsg {

 // Generate a Certificate Signing Request

 String csr = vimPort.generateClientCsr(cryptoManager, kmipSpec.getClusterId());

 String signedCert = null;

 // Follow steps for your KMS to sign CSR and get the signedCert to update on vCenter

 vimPort.updateKmsSignedCsrClientCert(

 cryptoManager, kmipSpec.getClusterId(), signedCert);

}

This example method downloads a certificate and private key generated by the KMS to vCenter Server.

Example: Trust by downloading KMS certificate and private key

public void establishTrustUsingCertAndKey() throws RuntimeFaultFaultMsg {

 String certFromKms = null;

 String privateKeyKms = null;

 // Follow steps for KMS to generate certificate and private key (certFromKms, privateKeyKms)

 vimPort.uploadClientCert(

 cryptoManager, kmipSpec.getClusterId(), certFromKms, privateKeyKms);

}

Create an Encryption Storage Policy
Before any virtual machines can be encrypted, vCenter Server must contain an encryption storage policy.
The policy only needs to be created once; it can be assigned to any virtual machines that you want to
encrypt.

vSphere Web Services SDK Programming Guide

VMware, Inc. 203

Example: Java program to set storage policy for encryption

package com.vmware.spbm.samples;

import java.util.ArrayList;

import java.util.List;

import com.vmware.common.annotations.Action;

import com.vmware.common.annotations.Option;

import com.vmware.common.annotations.Sample;

import com.vmware.pbm.InvalidArgumentFaultMsg;

import com.vmware.pbm.PbmCapabilityConstraintInstance;

import com.vmware.pbm.PbmCapabilityInstance;

import com.vmware.pbm.PbmCapabilityMetadata;

import com.vmware.pbm.PbmCapabilityMetadataPerCategory;

import com.vmware.pbm.PbmCapabilityProfileCreateSpec;

import com.vmware.pbm.PbmCapabilityPropertyInstance;

import com.vmware.pbm.PbmCapabilityPropertyMetadata;

import com.vmware.pbm.PbmCapabilitySubProfile;

import com.vmware.pbm.PbmCapabilitySubProfileConstraints;

import com.vmware.pbm.PbmCapabilityVendorNamespaceInfo;

import com.vmware.pbm.PbmCapabilityVendorResourceTypeInfo;

import com.vmware.pbm.PbmDuplicateNameFaultMsg;

import com.vmware.pbm.PbmFaultProfileStorageFaultFaultMsg;

import com.vmware.pbm.PbmProfileId;

import com.vmware.pbm.PbmServiceInstanceContent;

import com.vmware.spbm.connection.ConnectedServiceBase;

import com.vmware.spbm.connection.helpers.PbmUtil;

import com.vmware.vim25.ManagedObjectReference;

import com.vmware.vim25.RuntimeFaultFaultMsg;

/**

 * CreateVMEncryptionProfile

 * Create new Storage Profile with one rule-set based on vmwarevmcrypt capabilities.

 * Parameters:

 * vcurl [required] : web service url, for example https://10.9.8.7/sdk

 * username [required] : username for the authentication

 * password [required] : corresponding password

 * profilename [required] : name of the storage profile

 * Command Line:

 * run.bat com.vmware.spbm.samples.CreateVMEncryptionProfile --vcurl [webserviceurl] ^

 * --username [username] --password [password] --profilename [Storage Profile Name]

 */

@Sample(name = "CreateVMEncryptionProfile",

 description = "Create a new storage profile with "

 + "one rule-set based on vmwarevmcrypt capabilities.")

public class CreateVMEncryptionProfile extends ConnectedServiceBase {

 private PbmServiceInstanceContent spbmsc;

 private String profileName;

 // Build capability instance based on capability name associated with vmwarevmcrypt provider

 PbmCapabilityInstance buildCapability(String capabilityName,

 List<PbmCapabilityMetadataPerCategory> metadata)

 throws InvalidArgumentFaultMsg {

 // Create Property Instance with capability vmwarevmcrypt

 PbmCapabilityMetadata capabilityMeta =

 PbmUtil.getCapabilityMeta(capabilityName,metadata);

 if (capabilityMeta == null)

vSphere Web Services SDK Programming Guide

VMware, Inc. 204

 throw new InvalidArgumentFaultMsg("Specified Capability does not exist", null);

 // Create and associate Property Instances with a Rule

 PbmCapabilityConstraintInstance rule = new PbmCapabilityConstraintInstance();

 for (PbmCapabilityPropertyMetadata propMeta : capabilityMeta.getPropertyMetadata()) {

 PbmCapabilityPropertyInstance prop = new PbmCapabilityPropertyInstance();

 prop.setId(propMeta.getId());

 prop.setValue(propMeta.getDefaultValue());

 rule.getPropertyInstance().add(prop);

 }

 // Associate Rule with a Capability Instance

 PbmCapabilityInstance capability = new PbmCapabilityInstance();

 capability.setId(capabilityMeta.getId());

 capability.getConstraint().add(rule);

 return capability;

 }

 @Action

 public void createProfile() throws RuntimeFaultFaultMsg,

 com.vmware.pbm.RuntimeFaultFaultMsg, InvalidArgumentFaultMsg,

 PbmDuplicateNameFaultMsg, PbmFaultProfileStorageFaultFaultMsg {

 // Get PBM Profile Manager & Associated Capability Metadata

 spbmsc = connection.getPbmServiceContent();

 ManagedObjectReference profileMgr = spbmsc.getProfileManager();

 // Step 1: Check if there is a vmwarevmcrypt Provider

 Boolean encryptionCapable = false;

 List<PbmCapabilityVendorResourceTypeInfo> vendorInfo =

 connection.getPbmPort().pbmFetchVendorInfo(profileMgr, null);

 for (PbmCapabilityVendorResourceTypeInfo vendor : vendorInfo)

 for (PbmCapabilityVendorNamespaceInfo vnsi : vendor .getVendorNamespaceInfo())

 if (vnsi.getNamespaceInfo().getNamespace().equals("vmwarevmcrypt")) {

 encryptionCapable = true;

 break;

 }

 if (!encryptionCapable)

 throw new RuntimeFaultFaultMsg(

 "Cannot create storage profile. 'vmwarevmcrypt' Provider not found.", null);

 // Step 2: Get PBM Supported Capability Metadata

 List<PbmCapabilityMetadataPerCategory> metadata =

 connection .getPbmPort().pbmFetchCapabilityMetadata(profileMgr,

 PbmUtil.getStorageResourceType(),

 "com.vmware.iofilters");

 // Step 3: Add Provider Specific Capabilities

 List<PbmCapabilityInstance> capabilities = new ArrayList<PbmCapabilityInstance>();

 capabilities.add(buildCapability("vmwarevmcrypt@ENCRYPTION", metadata));

 // Step 4: Add Capabilities to a RuleSet

 PbmCapabilitySubProfile ruleSet = new PbmCapabilitySubProfile();

 ruleSet.getCapability().addAll(capabilities);

 // Step 5: Add Rule-Set to Capability Constraints

 PbmCapabilitySubProfileConstraints constraints = new PbmCapabilitySubProfileConstraints();

 ruleSet.setName("Rule-Set " + (constraints.getSubProfiles().size() + 1));

 constraints.getSubProfiles().add(ruleSet);

 // Step 6: Build Capability-Based Profile

 PbmCapabilityProfileCreateSpec spec = new PbmCapabilityProfileCreateSpec();

 spec.setName(profileName);

 spec.setDescription("Storage Profile in SDK. Rule based on Encryption capability");

 spec.setResourceType(PbmUtil.getStorageResourceType());

vSphere Web Services SDK Programming Guide

VMware, Inc. 205

 spec.setConstraints(constraints);

 // Step 7: Create Storage Profile

 PbmProfileId profile = connection.getPbmPort().pbmCreate(profileMgr, spec);

 System.out.println("Profile " + profileName + " with ID: " + profile.getUniqueId());

 }

 @Option(name = "profilename", description = "Name of the storage profile", required = true)

 public void setProfileName(String profileName) {

 this.profileName = profileName;

 }

}

Create an Encrypted Virtual Machine
The Web Services SDK provides Java and C# code to create a virtual machine. The Java code can be
modified to create an encrypted virtual machine. Steps below show how to implement virtual machine
encryption in the VMCreate.java sample program. The crypto property in
VirtualMachineConfigSpec should be set to CryptoSpecEncrypt, and an encryption key provided.
The storage profile must have been previously set to specify encryption. If the CryptoSpec is unset, but a
storage profile with encryption is set, vCenter Server automatically generates new keys and sets
CryptoSpec, if a default KMS has been configured.

To enhance the com.vmware.spbm.samples.VMCreate program for encryption, follow these steps:

1 Import the following classes:

import com.vmware.vim25.CryptoKeyId;

import com.vmware.vim25.CryptoSpecEncrypt;

import com.vmware.vim25.KeyProviderId;

import com.vmware.vim25.VirtualDeviceConfigSpecBackingSpec;

2 Declare the following variables:

private CryptoKeyId cryptoKeyId;

private String keyId;

private String providerId;

3 In the createVirtualDisk() function, find the following line:

diskSpec.setOperation(VirtualDeviceConfigSpecOperation.ADD);

4 In the createVirtualDisk() function, add the following code after the line you found in the previous
step:

if ((keyId != null) && (providerId != null)) {

 CryptoSpecEncrypt cSpec = new CryptoSpecEncrypt();

 VirtualDeviceConfigSpecBackingSpec backingSpec =

 new VirtualDeviceConfigSpecBackingSpec();

 cSpec.setCryptoKeyId(buildCryptoKeyId());

 backingSpec.setCrypto(cSpec);

 diskSpec.setBacking(backingSpec);

}

vSphere Web Services SDK Programming Guide

VMware, Inc. 206

5 In the createVmConfigSpec() function, find the following line:

VirtualMachineConfigSpec configSpec = new VirtualMachineConfigSpec();

6 In the createVmConfigSpec() function, add the following code after the line you found in the
previous step:

if ((keyId != null) && (providerId != null)) {

 CryptoSpecEncrypt cryptoSpecForVMHome = new CryptoSpecEncrypt();

 cryptoSpecForVMHome.setCryptoKeyId(buildCryptoKeyId());

 configSpec.setCrypto(cryptoSpecForVMHome);

}

7 Add the following options toward the end of file:

@Option(name = "keyid", description = "Key Id", required = false)

public void setKeyId(String kid) {

 this.keyId = kid;

}

@Option(name = "providerid", description = "Cluster/Provider Id", required = false)

public void setProviderId(String pid) {

 this.providerId = pid;

}

The SPBM sample code is in the Storage Policy SDK, not in the vSphere Web Services SDK.

Clone an Encrypted Virtual Machine
Set the crypto property in RelocateSpec at cloneSpec.location. The virtual machine must be
powered off, with no existing snapshots. The encrypted virtual machine will be cloned, still encrypted.

Example: Clone an encrypted virtual machine

// Step 5: Create Specs

VirtualMachineRelocateSpec relocSpec = new VirtualMachineRelocateSpec();

VirtualMachineCloneSpec cloneSpec = new VirtualMachineCloneSpec();

VirtualMachineConfigSpec configSpec = new VirtualMachineConfigSpec();

// Step 6: Associate Storage Profile

relocSpec.getProfile().add(getVMDefinedProfileSpec(profileName));

cloneSpec.setConfig(configSpec);

cloneSpec.setLocation(relocSpec);

cloneSpec.setPowerOn(false);

cloneSpec.setTemplate(false);

// Step 7: Clone VM

ManagedObjectReference

 cloneTask = connection.getVimPort().cloneVMTask(vmRef, vmFolderRef, cloneName, cloneSpec);

Encrypt an Existing Virtual Machine or Disk
First set the crypto property in the VirtualMachineConfigSpec to CryptoSpecEncrypt and provide a
key. The virtual machine must be powered off, with no existing snapshots.

vSphere Web Services SDK Programming Guide

VMware, Inc. 207

Storage profiles must also be set to specify encryption. If the CryptoSpec is unset, but a storage profile
with encryption is set, the vCenter Server automatically generates new keys and sets CryptoSpec, if the
default KMS cluster has been configured.

Example: Encrypt a virtual machine based on storage profile

void Encrypt() throws Exception {

 // Create VirtualMachineConfigSpec

 VirtualMachineConfigSpec vmConfigSpec = new VirtualMachineConfigSpec();

 // Create VirtualDeviceConfigSpec

 VirtualDeviceConfigSpec diskSpec = new VirtualDeviceConfigSpec();

 // Get VirtualMachineProfileSpec for new encryption profile and name it encryptionProfile

 VirtualMachineProfileSpec encryptionProfile = new VirtualMachineDefinedProfileSpec();

 // Get VirtualDisk for disk to be reconfigured as in com.vmware.vm.VMReconfig, name it disk

 diskSpec.setDevice(disk);

 diskSpec.setOperation(VirtualDeviceConfigSpecOperation.EDIT);

 // Add encryption profile to VirtualDeviceConfigSpec

 diskSpec.getProfile().add(encryptionProfile);

 // Create CryptoSpec for encryption

 // Get Key Id from CryptoManager as keyId

 // See CryptoManager for details on generating or retrieving CryptoKeyId

 CryptoSpecEncrypt cryptoSpec = new CryptoSpecEncrypt();

 cryptoSpec.setCryptoKeyId(keyId);

 // Add CryptoSpecEncrypt to diskSpec backing

 VirtualDeviceConfigSpecBackingSpec backingSpec = new VirtualDeviceConfigSpecBackingSpec();

 backingSpec.setCrypto(cryptoSpec);

 diskSpec.setBacking(backingSpec);

 // When encrypting a VirtualDisk, the VM home needs to be encrypted also.

 // You can choose the same key to encrypt VM home and virtual disk, or use different keys.

 // Set cryptoSpec and profile for encrypting virtual machine home.

 vmConfigSpec.setCrypto(cryptoSpec);

 vmConfigSpec.getVmProfile().add(encryptionProfile);

 // Set the device changes

 vmConfigSpec.getDeviceChange().add(diskSpec);

 // Issue reconfigure - See reConfig() in com.vmware.vm.VMReconfig for how to reconfigure VM

}

Decrypt an Encrypted Virtual Machine or Disk
This is similar to encrypting an existing virtual machine, but with a different CryptoSpec. First set the
crypto property in the VirtualMachineConfigSpec to CryptoSpecDecrypt. The virtual machine must
be powered off, and the storage profiles must be set not to specify encryption.

If the CryptoSpec is unset, but a storage profile without encryption is set, the vCenter Server sets
CryptoSpecDecrypt. The ConfigSpec.crypto parameter must be set explicitly. Only encryption is
deduced from the storage profile.

Example: Decrypt a virtual machine based on storage profile

void Decrypt() throws Exception {

 // Create VirtualMachineConfigSpec

 VirtualMachineConfigSpec vmConfigSpec = new VirtualMachineConfigSpec();

 // Create VirtualDeviceConfigSpec

vSphere Web Services SDK Programming Guide

VMware, Inc. 208

 VirtualDeviceConfigSpec diskSpec = new VirtualDeviceConfigSpec();

 // Create Empty VirtualMachineProfileSpec for decryption

 VirtualMachineProfileSpec emptyProfile = new VirtualMachineEmptyProfileSpec();

 // Get VirtualDisk for disk to be reconfigured as in com.vmware.vm.VMReconfig, name it disk.

 diskSpec.setDevice(disk);

 diskSpec.setOperation(VirtualDeviceConfigSpecOperation.EDIT);

 // Remove any encryption profile set for the disk

 diskSpec.getProfile().add(emptyProfile);

 // Create CryptoSpec for decryption

 CryptoSpecDecrypt cryptoSpec = new CryptoSpecDecrypt();

 // Add CryptoSpecEncrypt to diskSpec backing

 VirtualDeviceConfigSpecBackingSpec backingSpec = new VirtualDeviceConfigSpecBackingSpec();

 backingSpec.setCrypto(cryptoSpec);

 diskSpec.setBacking(backingSpec);

 // Decrypting virtual machine home is not necessary when decrypting a virtual disk.

 // If no encrypted disk is present on the virtual machine after the above disk is decrypted,

 // you can choose to decrypt virtual machine home.

 // Set cryptoSpec and profile for decrypting virtual machine home

 vmConfigSpec.setCrypto(cryptoSpec);

 vmConfigSpec.getVmProfile().add(emptyProfile);

 // Set the device changes

 vmConfigSpec.getDeviceChange().add(diskSpec);

 // Issue reconfigure - See reConfig() in com.vmware.vm.VMReconfig for how to reconfigure VM

}

Encrypt Using Different Keys
This method shows how to use two different keys to encrypt the virtual machine (VM home) and its disk.

Example: Different encryption keys for VM home and virtual disk

void EncryptUsingDifferentKeys() throws Exception {

 // Create VirtualMachineConfigSpec and VirtualDeviceConfigSpec

 VirtualMachineConfigSpec vmConfigSpec = new VirtualMachineConfigSpec();

 VirtualDeviceConfigSpec diskSpec = new VirtualDeviceConfigSpec();

 // Get VirtualMachineProfileSpec for encryption profile you created and name it

 VirtualMachineProfileSpec encryptionProfile = new VirtualMachineDefinedProfileSpec();

 // Get VirtualDisk for disk to be reconfigured as shown in VMReconfig and name it

 diskSpec.setDevice(disk);

 diskSpec.setOperation(VirtualDeviceConfigSpecOperation.EDIT);

 // Add encryption profile to VirtualDeviceConfigSpec

 diskSpec.getProfile().add(encryptionProfile);

 // Create CryptoSpec for disk encryption and get KeyId from from CryptoManager

 // See CryptoManager for details on generating or retrieving CryptoKeyId

 CryptoSpecEncrypt cryptoSpecForDisk = new CryptoSpecEncrypt();

 cryptoSpecForDisk.setCryptoKeyId(keyIdForDiskEncryption);

 // Add CryptoSpecEncrypt to diskSpec backing

 VirtualDeviceConfigSpecBackingSpec backingSpec = new VirtualDeviceConfigSpecBackingSpec();

 backingSpec.setCrypto(cryptoSpecForDisk);

 diskSpec.setBacking(backingSpec);

 // When encrypting a VirtualDisk, the virtual machine home must also be encrypted.

 // You can choose the same key to encrypt VM home and disk, or use different keys.

 // Create CryptoSpec for VM Home encryption and get KeyId from CryptoManager.

 CryptoSpecEncrypt cryptoSpecForVMHome = new CryptoSpecEncrypt();

vSphere Web Services SDK Programming Guide

VMware, Inc. 209

 cryptoSpecForVMHome.setCryptoKeyId(keyIdForVMHomeEncryption);

 // Set cryptoSpec and profile for encrypting virtual machine home

 vmConfigSpec.setCrypto(cryptoSpecForVMHome);

 vmConfigSpec.getVmProfile().add(encryptionProfile);

 // Set the device changes

 vmConfigSpec.getDeviceChange().add(diskSpec);

}

Recrypting Encrypted Virtual Machines
Currently it is not possible to recrypt virtual machines using the vSphere Client. Only the vSphere API can
accomplish this task.

There are two kinds of recryption operations. Deep recrypt replaces all keys, rewriting encrypted data in a
powered-off virtual machine and its disks. Shallow recrypt replaces only top-level keys and is
comparatively fast.

For details on generating or retrieving the CryptoKeyId, see CryptoManager code in CryptoManager Java
program to add KMS and set default cluster.

Recrypt Only Key Encryption Keys
For shallow recrypt, which affects only the key encryption keys (KEKs), set the crypto property in the
VirtualMachineConfigSpec to CryptoSpecShallowRecrypt and call the Reconfigure method.

Example: Shallow Recrypt

void ShallowRecrypt() throws Exception {

 // Shallow recrypt follows the same flow as encrypt. The two differences are:

 // - Instead of using a new encryption profile, just get the previously

 // applied profile from the virtual machine to be reconfigured and use it.

 // - The type of CryptoSpec object created is CryptoSpecShallowRecrypt()

 // Create CryptoSpec for shallow recrypt

 // Get Key Id from CryptoManager as newKeyId

 CryptoSpecShallowRecrypt cryptoSpec = new CryptoSpecShallowRecrypt();

 cryptoSpec.setNewKeyId(newKeyId);

 // Follow steps from Encrypt()

}

Shallow recrypt can be done with the virtual machine powered on. Deep recrypt requires power off.

Recrypt Both Key and Disk Encryption Keys
For deep recrypt, which affects both KEKs and disk encryption keys (DEKs), set the crypto property in
the VirtualMachineConfigSpec to CryptoSpecDeepRecrypt and call the Reconfigure method.

Example: Deep Recrypt

void DeepRecrypt() throws Exception {

 // Deep recrypt follows the same flow as encrypt. The two differences are:

 // - Instead of using a new encryption profile, just get the previously

 // applied profile from the virtual machine to be reconfigured and use it.

 // - The type of CryptoSpec object created is CryptoSpecDeepRecrypt()

vSphere Web Services SDK Programming Guide

VMware, Inc. 210

 // Create CryptoSpec for deep recrypt

 // Get Key Id from CryptoManager as newKeyId

 CryptoSpecDeepRecrypt cryptoSpec = new CryptoSpecDeepRecrypt();

 cryptoSpec.setNewKeyId(newKeyId);

 // Follow steps from Encrypt()

}

Query Crypto Key In-Use Status
Sometimes it is useful to determine key status, for example whether a key is available on vCenter Server,
which virtual machines and ESXi hosts are using it, and if third party applications reference it.

As of vSphere 6.7 Update 2, the queryCryptoKeyStatus method is available to check use of a KMS key,
such as if vCenter Server can access the key, if the key is being used by some virtual machines, or as a
host key. The first parameter is a key ID or an array of key IDs to query. The second parameter is a
bitmap defining items to check:

n 0x01 - ask if key data is available to vCenter Server

n 0x02 - query which virtual machines use this key

n 0x04 - check the ESXi hosts using this as a host key

n 0x08 - check third party programs using this key.

Key status results are returned in a CryptoManagerKmip::CryptoKeyStatus data object, called
keyStatusArray in the code below. If your program queried multiple keys, an array of results is returned.

The queryCryptoKeyStatus method and its returned data object are new in vSphere 6.7 U2, so it does not
work in earlier releases.

The following Java code checks all items above by passing 15, a bitwise OR of the settings above.

CryptoManagerKmipCryptoKeyStatus[] keyStatusArray =

 vimPort.queryCryptoKeyStatus(cryptoManager,

 [vmKeyId, diskKeyId, srcHostkey, dstHostkey], 15);

for (CryptoManagerKmipCryptoKeyStatus keyStatus : keyStatusArray[]) {

 System.out.println("keyId: " + keyStatus.getKeyId);

 System.out.println("keyAccessible: " + keyStatus.getKeyAvailable)

 System.out.println("reason: " + keyStatus.getReason)

 System.out.println("encryptedVMs: " + keyStatus.getEncryptedVMs)

 System.out.println("affectedHosts: " + keyStatus.getAffectedHosts)

 System.out.println("referencedByTags: " + keyStatus.getReferencedByTags)

}

The keyAccessible means the key is available on vCenter Server. The reason is either valid, or indicates
why the key is not available. The encryptedVMs is an array of virtual machine MoRefs, and affectedHosts
is an array of MoRefs to ESXi hosts. The referencedByTags field gives names of third party applications
using the key.

Encrypted vSphere vMotion
When virtual machines and data move across the network, all sensitive data remain encrypted.

vSphere Web Services SDK Programming Guide

VMware, Inc. 211

Enable Encrypted vMotion
The enumeration VirtualMachineConfigSpecEncryptedVMotionModes controls whether encrypted
vMotion is disabled, opportunistic (fall back to default unencrypted vMotion if necessary), or required.

If encrypted vMotion is required, or opportunistic and available, the vCenter Server can migrate either
encrypted or unencrypted virtual machines within a disk cluster, or from one disk cluster to another using
Storage vMotion. However, in this release vMotion across vCenter Servers is not supported for encrypted
virtual machines.

Virtual Disk Manager
The following methods in managed object VirtualDiskManager are affected by encryption:

copyVirtualDisk – If the source disk is encrypted, its copied disk is encrypted with the same key,
regardless of the crypto spec. When calling copyVirtualDisk_Task on vCenter Server, do not specify
the destSpec parameter, which throws a Not Implemented fault; destSpec is supported only on ESXi
hosts.

createVirtualDisk – Given a valid crypto spec, this task directly creates an encrypted virtual disk.

moveVirtualDisk – An encrypted virtual disk cannot be moved to an unencrypted virtual machine.

createChildDisk – The child disk of an encrypted disk remains encrypted with the same key.

reparentDisks – Encrypted child disk cannot be reparented to a new disk that is not in the same disk
chain.

Best Practices
This section gives tips for optimum use of keys and virtual machine encryption.

Key Lifecycle and Removal
The removeKey and removeKeys methods delete key(s) from vCenter Server, but they do not delete keys
from the KMS. Key lifecycle is managed entirely from the KMS, where stale keys persist. You can invoke
the listKeys method to show keys in use on the vCenter Server, but there is currently no method to
query whether a specific key is in use.

Be Careful with Force Remove
The force parameter of removeKey and removeKeys should be used judiciously. With the force option,
the removeKey and removeKeys methods delete key(s) from both the vCenter Server and ESXi hosts,
even if the key is currently in use. The result can leave virtual machines in a locked state until the key is
replaced. The use case for the force option is for customers to prevent a key from being used anywhere,
after it was compromised or expired.

vSphere Web Services SDK Programming Guide

VMware, Inc. 212

Remove Keys on ESXi host
If you call removeKey on an ESXi host, even without the force option, the key gets deleted from the
host’s key cache, and the encrypted virtual machine becomes unusable. ESXi hosts do not track which
keys are in use. Rebooting the ESXi host causes vCenter Server to push all keys to the host again, but
the virtual machine may not be fully recoverable from its failed state.

Carefully Manage Differential Keys
When you encrypt both a virtual machine and its virtual disks from the vSphere Client, the same key is
used for both. When you encrypt a virtual machine and its disks using the API, you can set different
encryption keys for the virtual machine and each virtual disk. If one of the disk keys is missing, the power
on operation may fail. If the missing key is for a non-boot virtual disk, you can remove that disk from the
virtual machine and retry the power on operation. Take care when managing the lifecycle of different keys
for a virtual machine and its disks.

Rename During Registration
The registerVM_Task method can rename a virtual machine at registration time. In vSphere 6.5 this
required a two-step workaround for encrypted virtual machines, but in vSphere 6.7, this operation is
supported with encryption. Also in vSphere 6.7, the reloadVirtualMachineFromPath_Task is supported for
encrypted virtual machines. The reload API is equivalent to unregistering and registering a virtual
machine on a different configuration path.

Encryption on vSAN Datastores
For security on vSAN datastores, you should use vSAN encryption instead of virtual machine encryption.
This is because vSAN encryption is designed to be compatible with deduplication and compression.
Whereas virtual machine encryption causes vSAN deduplication and compression to become less
effective.

Unlocking Encrypted Virtual Machines
There are many reasons why an encrypted virtual machine could be, in effect, locked. For solutions, see
section “Resolve Missing Key Issues” in the vSphere Security manual.

In vSphere 6.7 and later you can unlock locked virtual machines with the cryptoUnlock_Task method. A
vCenter Server alarm notifies you when an encrypted virtual machine is in a locked state. To unlock it you
must have Cryptographic operations.RegisterVM privilege. Before unlocking, it is a good idea to
troubleshoot and attempt to fix the cause of the locked virtual machine. The cryptoUnlock_Task method
takes one parameter, the MoRef of a virtual machine.

vSphere Web Services SDK Programming Guide

VMware, Inc. 213

Virtual Applications 14
A virtual application consists of one or more virtual machines, which are deployed, managed, and
maintained as a single unit. This chapter explains how to use the vSphere Web Services SDK for building
and managing a virtual application.

This chapter includes the following topics:

n About Virtual Applications

n Creating a VirtualApp

n Managing VirtualApp Children

n Exporting a Virtual Application

n Importing an OVF Package

n Virtual Application Life Cycle

About Virtual Applications
A virtual application specifies and encapsulates the components of virtual machines and applications, and
the operational policies and service levels associated with those components. A virtual application can be
as simple as an individual virtual machine with a specific operating system (virtual appliance), or as
complex as a complete corporate Web site. Each virtual machine in a virtual application contains a
preinstalled, preconfigured operating system and might contain an application stack optimized to provide
a specific set of services.

In the vSphere Web Services SDK, the VirtualApp managed object represents a virtual application. A
VirtualApp object extends ResourcePool with the following capabilities:

n Store product information such as product name, vendor, properties, and licenses in
vAppConfigInfo.

n Specify power-on and power-off sequence specification.

n Import and export of VirtualApp objects as OVF packages.

n Perform application-level customization using the OVF environment.

VMware, Inc. 214

Management Overview
You can use the Web Services SDK to create and manage virtual applications by following these steps:

Procedure

1 Call the CreateVApp method to create a virtual application without children. See Creating a
VirtualApp.

2 Add child objects. See Managing VirtualApp Children.

3 Export the VirtualApp to OVF (ExportVApp method) See Exporting a Virtual Application.

You can then import the OVF to create and customize the virtual application.

Direct and Linked Children
A virtual application consists of one or more child virtual machines or virtual applications. VirtualApp
children have the following characteristics:

n Each child has exactly one parent VirtualApp.

n Each child can participate in power-on and power-off sequences.

n The lifetime of each child is determined by the parent VirtualApp object.

VirtualApp children are either direct or linked, based on where a child derives its resources.

n Direct Children. A direct child of a virtual application is a virtual machine or virtual application object
that you add explicitly. See Managing VirtualApp Children for a list of methods. Direct children share
resources with the parent VirtualApp object. Both virtual machines and virtual application can be
direct children.

n Linked Children. A linked child of a virtual application is a virtual machine or virtual application that
you add by calling the UpdateLinkedChildren method. Linked children increase the flexibility of the
VirtualApp by allowing child entities to use different resources from the parent VirtualApp object.
Linked children can be part of a different clusters, but a virtual application and its children must be in
the same Datacenter. Both virtual machines and virtual applications can be linked children.

Linked children gives better flexibility. In particular, you can create virtual applications that span clusters.
The vSphere Client does not support adding or removing links, though it does show links.

When you add a linked child to a virtual application, the following rules apply:

n An InvalidArgument fault is thrown if the UpdateLinkedChildren method is called on a link target
that is a direct child of another virtual application.

n When you add a virtual machine or virtual application that is already a linked child of another virtual
application, the existing link is removed and replaced with the new link.

n The life-time of a linked child is determined by the destroyWithParent property on the
VAppEntityConfigInfo data object. If set to true, the child is destroyed when the parent
VirtualApp is destroyed. Otherwise, the link is removed when the VirtualApp is destroyed.

vSphere Web Services SDK Programming Guide

VMware, Inc. 215

If you add a virtual application that consists of multiple entities, for example multiple virtual machines, the
entities are moved sequentially and committed one at a time, as specified in the list. If a failure is
detected, the method terminates with an exception.

OVF Packages
Open Virtualization Format (OVF) is a distribution format for virtual applications. vSphere uses the OVF
package as a unit of distribution and storage for virtual applications. Because these entities are uploaded,
downloaded, and stored in OVF package format, vSphere supports access to and deployment of a wide
variety of virtual applications.

A virtual application typically consists of one or more virtual disk files and a configuration file.

n The virtual disk files contain the operating systems and applications that run on the virtual machines
in the virtual application.

n The configuration file contains metadata that describes how the virtual application is configured and
deployed.

An OVF package might also include certificate and manifest files.

The OVF package contains metadata that describes the capabilities and infrastructure requirements of
the virtual application, and contains references to the virtual disks and other files that store the virtual
machine state. Most of this information is stored in an XML document called the OVF envelope. When an
OVF package is instantiated into either a VirtualApp or a VirtualMachine object (which depends on
metadata in the envelope), then the configuration stored in the OVF envelope is applied to the
VirtualVApp and the VirtualMachine objects.

Some of the information in the OVF file is used unaltered, with entire ovf:Section_Type elements
included in the VirtualApp object body. Other sections are transformed or extended by instantiation. You
do not need detailed knowledge of all OVF package elements, but a basic understanding of key parts of
the package and how they relate to virtual applications is useful.

See the OVF specification at the DMTF Web site for additional information.

Creating a VirtualApp
You always create a VirtualApp without children. The CreateVApp method includes the following
parameters:

n resSpec – Properties you would specify for a ResourcePool.

n configSpec – VAppConfigSpec data object for specifying virtual-application specific information.

n vmFolder – Depends on the VirtualApp structure:

n When creating top-level virtual applications, that is, virtual applications with no ancestor virtual
applications, you must specify a folder.

n If the VirtualApp has another virtual application in the ancestry chain, the folder parameter
must be NULL when you create the VirtualApp.

vSphere Web Services SDK Programming Guide

VMware, Inc. 216

Managing VirtualApp Children
You can add virtual machines and virtual applications to your virtual application as direct or linked
children.

You use different methods for adding or removing direct or linked children, as follows:

n Direct children. Use one of the following methods:

n CreateChildVMTask adds a new virtual machine.

n CreateVApp adds a new virtual application.

n MoveIntoResourcePool adds or removes an existing virtual machine or virtual application

n Linked children. Use UpdateLinkedChildren to add or remove virtual machines or virtual
applications.

You can call the UpdateVappConfig method to specify how each virtual machine fits into the virtual
application.

Property Enumeration

destroyWithParent True if the entity should be removed when the VirtualApp is removed.

key Key for the virtual machine or virtual application, a managed object reference to the child.

startAction One of the strings in the VAppAutoStartAction enumeration.

startDelay Delay, in seconds, before continuing with the next entity.

startOrder Specifies the start order for this entity. Entities are started from lower numbers to higher-
numbers and reverse on shutdown. Multiple entities with the same start order are started in
parallel and the order is unspecified. This value must be 0 or higher.

stopAction Defines the stop action for the entity. Can be set to none, powerOff, guestShutdown, or
suspend. If set to none, then the entity does not participate in auto-stop.

stopDelay Delay, in seconds, before continuing with the next entity.

tag Tag for the entity.

waitingForGuest Determines if the virtual machine should start after receiving a heartbeat, from the guest.

For more information about direct children and linked children, see Direct and Linked Children.

Exporting a Virtual Application
To export a virtual application, you must generate an OVF package. The Web Services API supports the
generation of OVF packages. It does not support the generation of OVA files. An OVA file is a tar file that
contains an OVF package. The OVF package consists of one of more images and an OVF file descriptor.
You can create an OVA file by creating a tar file out of the OVF package for your exported virtual
application.

vSphere Web Services SDK Programming Guide

VMware, Inc. 217

The following steps describe how to use the vSphere VirtualApp and OvfManager API to generate an
OVF package for a virtual application. The steps assume the simplest scenario: downloading one image
from one device URL. You use the same steps to download many images from many device URLs. You
can also export a VirtualMachine with the same steps, but use VirtualMachine.ExportVm rather than
VirtualApp.ExportVApp.

Procedure

1 Call the VirtualApp.ExportVApp method, which returns HttpNfcLease. The deviceURL is stored in the
info property of HttpNfcLease.

2 Call the HttpNfcLeaseInfo.getDeviceUrl method to access the device URL and download the image
data from the device URL.

3 Add the image to the OVF package.

4 Call the OvfManager.CreateDescriptor method, which returns OvfCreateDescriptorResult. Write the
file descriptor to a file with the file extension .ovf. Add the .ovf file to the OVF package.

Example

Figure 14-1. Generating an OVF Package shows the major steps.

vSphere Web Services SDK Programming Guide

VMware, Inc. 218

Figure 14-1. Generating an OVF Package

image data

OvfManager.CreateDescriptor

Client

1. Get the lease.

2. Download the
 image.

3. Add the image
 to the OVF
 package.

4.Get the OVF
 descriptor and
 add it to the OVF
 package.

VirtualApp.ExportVApp

HttpNfcLease

HttpNfcLeaseInfo.getDeviceUrl

OvfCreateDescriptorResult

Server

vSphere Web Services SDK Programming Guide

VMware, Inc. 219

VirtualApp and OvfManager Methods
The following table describes the methods used by the VirtualApp and the OvfManager API:

Method Description

CreateDescriptor Creates an OVF descriptor for the specified ManagedEntity, which may be a VirtualMachine or
a VirtualApp. CreateDescriptor is a method in the OvfManager managed object.

ExportVApp Obtains an export lease on the virtual application. The export lease contains a list of URLs for
the disks of the virtual machines in this virtual application. ExportVApp is a method in the
VirtualApp managed object.

getDeviceUrl Retrieves the device IDs and URLs from the server. getDeviceUrl is an accessor method
provided in the generated JAX-WS bindings. It does not appear in the class diagram in
VirtualApp Data Structures.

The next two sections deal with the VirtualApp and OvfManager data structures.

VirtualApp Data Structures
The VirtualApp managed object contains the ExportVApp method, which returns an HttpNfcLease. The
HttpNfcLease contains the info and state properties, where info is of type HttpNfcLeaseInfo and state is
of type HttpNfcLeaseState. The HttpNfcLeaseInfo data object has several properties, one of which is the
deviceUrl of type HttpNfcLeaseDeviceUrl[]. The HttpNfcLeaseState has four different states—done,
error, initializing and ready.

The following class diagram shows the UML representation of the data structures used in the VirtualApp
API.

vSphere Web Services SDK Programming Guide

VMware, Inc. 220

Figure 14-2. VirtualApp Class Diagram

The VirtualApp API data structures are the following:

n VirtualApp—A managed object that is a collection of virtual machines (and potentially other
VirtualApp containers) that are operated and monitored as a unit.

n HttpNfcLease—A managed object returned when you call VirtualApp.ExportVApp. It represents a
lease on the virtual application. While you hold the lease, you block the operations that alter the state
of the virtual application.

n HttpNfcLeaseInfo—A data object that holds information about the lease, such as the virtual
application covered by the lease, and the device URLs for up/downloading images.

n HttpNfcLeaseState—An enumeration that is a list of possible states of a lease.

HttpNfcLeaseDeviceUrl—A data object that provides a mapping from logical device IDs to upload/
download URLs.

OvfManager Data Structures
The OvfManager managed object has a CreateDescriptor method that returns an
OvfCreateDescriptorResult. The OvfCreateDescriptorResult has the ovfDescriptor string.

Figure 14-3. OvfManager Class Diagram shows the UML representation of the data structures used in the
OvfManager API.

vSphere Web Services SDK Programming Guide

VMware, Inc. 221

Figure 14-3. OvfManager Class Diagram

The OvfManager data structures are the following:

n OvfManager—A managed object that provides a service interface to parse and generate OVF
descriptors.

n OvfCreateDescriptorResult—A data object that contains the result of creating the OVF descriptor for
the virtual application.

Example of Generating an OVF Package
In summary, the steps in generating an OVF package are the following:

Procedure

1 Get the managed object reference to the VirtualApp object. Call the ExportVApp method, which
returns an HttpNfcLease data object. Wait for the state of the lease to turn to READY. Get the list of
device URLs from the lease and store them in an array.

2 For each of the URLs in the list of device URLs, download the images from that URL to the client.

3 Save the image to the OVF package (directory/folder). Create an OvfFile object using the deviceID,
absolute path of the downloaded image, and the size of the image on the local disk.

vSphere Web Services SDK Programming Guide

VMware, Inc. 222

4 Call the OvfManager.CreateDescriptor method by passing the managed object reference to the
VirtualApp and the OvfFile object wrapped in an OvfCreateDescriptorParams object. This method
returns OvfCreateDescriptorResult, which contains the file descriptor. Write the file descriptor to a
file with the file extension .ovf. Add the .ovf file to the OVF package.

The following is an example of how to generate an OVF package. The example assumes a more
complex scenario: downloading more than one image from more than one device URL. The example
is based on the OVFManagerExportVAAP.java sample, which is located in the SDK/vsphere-ws/
java/JAXWS/samples/com/vmware/vapp/ directory.

Example

You can use the ExportVM method instead of the ExportVapp method when exporting a VirtualMachine.

package com.vmware.vapp;

import java.io.*;

import java.net.URL;

import java.util.*;

...

 /** 1. Get the MOR of the VirtualApp.

 ManagedObjectReference vAppMoRef = getVAPPByName(vApp);

...

 /** Call the ExportVApp method, which returns an HttpNfcLease data object. */

 ManagedObjectReference httpNfcLease = vimPort.exportVApp(vAppMoRef);

...

 /** Wait for the state of the lease to turn to READY. */

 Object[] result = waitForValues.wait(httpNfcLease,

 new String[]{"state"},

 new String[]{"state"},

 new Object[][]{new Object[]{

 HttpNfcLeaseState.READY,

 HttpNfcLeaseState.ERROR}});

 if (result[0].equals(HttpNfcLeaseState.READY)) {

...

 /** Get the list of device URLs from the lease. */

 List<HttpNfcLeaseDeviceUrl> deviceUrlArr = httpNfcLeaseInfo.getDeviceUrl();

 if (deviceUrlArr != null) {

...

 /** 2. For each of the URLs in the list of device URLs,

 * download the images from that URL to the client. */

 for (int i = 0; i < deviceUrlArr.size(); i++) {

 String deviceId = deviceUrlArr.get(i).getKey();

 String deviceUrlStr = deviceUrlArr.get(i).getUrl();

 String absoluteFile = deviceUrlStr.substring(deviceUrlStr.lastIndexOf("/") + 1);

 /** 3. Save the image to the OVF package (directory/folder). Create an OvfFile object using

 * the deviceID, absolute path of the downloaded image, and the size of the image on the

 * local disk.

 */

 long writtenSize = writeVMDKFile(absoluteFile, deviceUrlStr.replace("*", host));

vSphere Web Services SDK Programming Guide

VMware, Inc. 223

 OvfFile ovfFile = new OvfFile();

 ovfFile.setPath(absoluteFile);

 ovfFile.setDeviceId(deviceId);

 ovfFile.setSize(writtenSize);

 ovfFiles.add(ovfFile);

 }

 /** 4. Call the OvfManager.CreateDescriptor method by passing the managed object reference

 * to the VirtualApp and the OvfFile object wrapped in an OvfCreateDescriptorParams object.

 * This method returns OvfCreateDescriptorResult, which contains the file descriptor.

 * Write the file descriptor to a file with the file extension .ovf. Add the .ovf file to

 * the OVF package.

 */

 ovfCreateDescriptorParams.getOvfFiles().addAll(ovfFiles);

 OvfCreateDescriptorResult ovfCreateDescriptorResult =

 vimPort.createDescriptor(serviceContent.getOvfManager(),

 vAppMoRef,

 ovfCreateDescriptorParams);

 String outOVF = localpath + "/" + vApp + ".ovf";

 File outFile = new File(outOVF);

 FileWriter out = new FileWriter(outFile);

 out.write(ovfCreateDescriptorResult.getOvfDescriptor());

 out.close();

Importing an OVF Package
To import the virtual application OVF template, you follow a few basic steps. The steps are the same for
an OVF package that contains a single virtual machines or an OVF package that contains a more
complex virtual application.

Procedure

1 Parse the OVF descriptor by calling OvfManager.parseDescriptor.

2 Validate the target ESX/ESXi host by calling OvfManager.validateHost.

3 Create the VirtualAppImportSpec by calling OvfManager.createImportSpec.

This structure contains all the information needed to create the entities on the vCenter Server,
including children. Clients do not have to read or modify VirtualAppImportSpec to perform basic
OVF operations.

4 Create the vCenter Server entities by calling ResourcePool.importVApp.

The method uses a parsed OVF descriptor to create VirtualApp and VirtualMachine objects in
the vSphere environment.

Results

The import process itself consists of two steps:

n The server creates the virtual machines and virtual applications.

vSphere Web Services SDK Programming Guide

VMware, Inc. 224

You must wait for the server to create all inventory objects. During object creation, the server monitors
the state property on the HttpNfcLease object returned from the ImportVApp call. When the server
completes object creation, the server changes the lease to ready state and you can begin uploading
virtual disk contents. If an error occurs while the server is creating inventory objects, the lease
changes to the error state, and the import process is aborted.

n The client application uploads virtual disk contents do an HTTP POST request with the content of the
disk to the provided URLs. The disk is in the stream-optimized VMDK format (http://
www.vmware.com/technical-resources/interfaces/vmdk.html). As an alternative, you can use the OVF
tool, available at http://communities.vmware.com/community/developer/forums/ovf at VMware
Communities.

When all inventory objects have been created and the HttpNfcLease has changed to ready state,
you can upload disk contents by using the URLs provided in the info property of the HttpNfcLease
object. You must call the HttpNfcLeaseProgress method on the lease periodically to keep the lease
alive and report progress to the server. Failure to do so causes the lease to time out, aborting the
import process.

When you are done uploading disks, complete the lease by calling the HttpNfcLeaseComplete method.
You can terminate the import process by calling the HttpNfcLeaseAbort method.

If the import process fails, is terminated, or times out, all created inventory objects are removed, including
all virtual disks.

Virtual Application Life Cycle
You can power a virtual application on or off and perform other lifecycle operations.

Powering a Virtual Application On or Off
You can use the PowerOnVApp_Task method to power on a VirtualApp object. This method starts the
virtual machines or child virtual applications in the order specified in the virtual application configuration.

While a virtual application is starting, all power operations performed on subentities are disabled.

If a virtual machine in a virtual application fails to start, an exception is returned and the power-on
sequence terminates. In case of a failure, virtual machines that are already started remain powered on.

You can use the PowerOffVApp_Task method to power off a virtual application. This method stops the
virtual machines or child virtual applications in the order specified in the VirtualApp object configuration
if force is false. If force is set to true, this method stops all virtual machines (in no specific order and
possibly in parallel) regardless of the VirtualApp object auto-start configuration.

While a virtual application is stopping, all power operations performed on subentities are disabled.

Unregistering a Virtual Application
You can call the UnregisterVApp_Task method to remove a VirtualApp object from the inventory
without removing any of the component virtual machine files on disk. All high-level information stored with

vSphere Web Services SDK Programming Guide

VMware, Inc. 225

http://www.vmware.com/technical-resources/interfaces/vmdk.html
http://www.vmware.com/technical-resources/interfaces/vmdk.html
http://communities.vmware.com/community/developer/forums/ovf

the management server (ESXi or vCenter Server system) is removed, including information about
VirtualApp object configuration, statistics, permissions, and alarms.

Suspending a Virtual Application
You can call the SuspendVApp_Task method to suspend all running virtual machines in a virtual
application, including virtual machines running in child virtual application. The virtual machines are
suspended in the order that is used for a power off operation, which is the reverse of a power on
sequence.

While a virtual application is being suspended, all power operations performed on subentities are
disabled. If you attempt to perform a power operation, a TaskInProgress error results.

Destroying a Virtual Application
When a VirtualApp object is destroyed, all of its virtual machines and any child virtual applications are
destroyed.

The VirtualAppVAppState type defines the set of states a VirtualApp object can be in. The transitory
state between started and stopped is modeled explicitly, since the starting or stopping of a virtual
application might take minutes to complete.

The life-time of a linked child is determined by the destroyWithParent property on the
VAppEntityConfigInfo data object. If set to true, the child is destroyed when the parent virtual
application is destroyed. Otherwise, only the link is removed when the virtual application is destroyed.

vSphere Web Services SDK Programming Guide

VMware, Inc. 226

Resource Management 15
Underlying all virtual components are the actual physical resources of the host system, such as CPU,
RAM, storage, network infrastructure, and so on. vSphere supports sharing of resources on an individual
host or across hosts using resource pools. vSphere also supports clusters for failover or load balancing.

This chapter includes the following topics:

n Resource Management Objects

n Introduction to Resource Management

n Resource Allocation

n Creating and Configuring Resource Pools

n Introduction to vSphere Clusters

n Creating and Configuring Clusters

n Managing DRS Clusters

n Managing HA Clusters

Resource Management Objects
Central to resource management for all environments is either a ComputeResource or a
ClusterComputeResource managed object.

n The ComputeResource managed object represents the set of resources for a set of virtual machines. A
ComputeResource is always associated with a root ResourcePool object, representing the resources of
a single host.

n The ClusterComputeResource data object aggregates the compute resources of multiple associated
HostSystem objects into a single compute resource for use by virtual machines. A
ClusterComputeResource is associated with a root ResourcePool representing the combined resources
of the cluster. If you plan on using VMware cluster services such as HA (High Availability), DRS
(Distributed Resource Scheduling), or on using EVC (Enhanced vMotion Compatibility), use
ClusterComputeResource.

Important HA, DRS, and EVC may require feature licenses. If any clustering functionality does not
work properly, check whether you have licenses for it.

VMware, Inc. 227

n The ResourcePool managed object represents a set of physical resources of a single host, a subset of
a host's resources, or resources spanning multiple hosts. Resource pools can be subdivided by
creating child resource pools. Only virtual machines associated with a resource pool can be powered
on.

Introduction to Resource Management
An ESXi host allocates to each virtual machine a portion of the underlying hardware resources based on
several factors:

n Total available resources for the ESXi host, resource pool, or cluster to which the virtual machine
belongs.

n Number of virtual machines powered on and resource usage by those virtual machines.

n Overhead required to manage the virtualization.

n Constraints defined by the user.

Resource management allows you to dynamically allocate resources to virtual machines so that you can
more efficiently use available capacity. You can change resource allocation in the following ways.

n Specify resource allocation for individual virtual machines. See Configuring Resource Allocation
Constraints for Virtual Machines.

n Create a hierarchy of resource pools and add the virtual machine to a resource pool with
characteristics appropriate for its use. See Resource Pool Hierarchies.

n Add hosts and virtual machines to a cluster so you can take advantage of VMware DRS for
recommendations or automatic resource redistribution. See Creating and Configuring Clusters.

Resource Allocation
When you create a virtual machine, you always specify the resource pool that the virtual machine can
draw resources from and optionally a host on which the virtual machine should run. You can access the
resource pool as follows:

n Standalone host – When you call Folder.AddStandaloneHost_Task, the call returns a Task object
that contains the ComputeResource. The ComputeResource.resourcePool property is the root
resource pool associated with the compute resource (and with the host).

n Cluster – When you call Folder.CreateClusterEx, the method returns a managed object reference
to a ClusterComputeResource instance. Because ClusterComputeResource inherits all properties
of ComputeResource, you can access the root resource pool through the
ClusterComputeResource.resourcePool property.

Resource Pool Hierarchies
Resource pool hierarchies allow detailed control over which virtual machines are allowed how many
resources, by dividing resources between children at each level of the hierarchy. Child resource pools can

vSphere Web Services SDK Programming Guide

VMware, Inc. 228

be configured with reservations and limits, similar to virtual machines. Child resource pools can also be
configured with shares settings, which take effect in resource contention situations.

For more information about how reservations and limits apply to resource pool hierarchies, see
Configuring Reservation and Limit for Resource Pools. For more information about how shares apply to
resource pool hierarchies, see Configuring Priority Shares for Resource Pools.

Cluster Overview
vSphere supports grouping ESXi hosts that are managed by the same vCenter Server system into
clusters. Clusters take advantage of features such as VMware DRS and VMware HA.

n VMware HA (VMware High Availability) fails over virtual machines from one host in a cluster to
another host, in the event of host failure.

n VMware DRS (VMware Distributed Resource Scheduler) provides dynamic redistribution of
resources. DRS also includes support for Distributed Power Management (DPM), which makes
recommendations or decisions to power off hosts and power them on again as needed, to save
energy.

You can set up VMware DRS to automatically migrate virtual machines, or to display
recommendations if resources are not used efficiently across the cluster.

See Creating and Configuring Clusters and Managing DRS Clusters.

Creating and Configuring Resource Pools
A root resource pool is associated with each ComputeResource and with each
ClusterComputeResource.

You can create a hierarchy of resource pools by calling the ResourcePool.CreateResourcePool
method and passing in a ResourceConfigSpec argument. The ResourceConfigSpec.cpuAllocation
and ResourceConfigSpec.memoryAllocation properties point to ResourceAllocationInfo objects
that allow you to specify the following information.

n reservation – Amount of CPU or memory that is guaranteed available to virtual machines within the
resource pool. Reserved resources are not wasted if they are not used. If the utilization is less than
the reservation, the resources can be borrowed by virtual machines running within other resource
pools.

n expandableReservation – In a resource pool with an expandable reservation, the reservation on a
resource pool can expand beyond the specified value, if the parent resource pool has unreserved
resources. A non-expandable reservation is called a fixed reservation. See Understanding
Expandable Reservations.

n limit – Upper limit for CPU or memory resources assigned to this resource pool. The resource pool
does not allocate more resources to its children, even if resources are available through its parent.
This property is typically used to ensure consistent performance by isolating other resource pools
from the effects of the running virtual machines within this pool. Set this property to -1 to indicate no
fixed upper limit on resource usage.

vSphere Web Services SDK Programming Guide

VMware, Inc. 229

n shares – Relative metric for allocating memory or processing capacity among multiple resource
pools in resource contention situations. The shares value indicates resource priority relative to the
shares values of sibling resource pools or virtual machines. The SharesInfo data object has two
properties, level and shares, that allow you to specify resource allocation.

n level – Choose high, low, or normal to map to a predetermined set of numeric values for
shares. See the API Reference Guide for the numbers for CPU, memory, and disk shares. Set
this property to custom to specify an explicit number of shares instead.

n shares – Allows you to specify a custom value for the number of shares you want to allocate to
the resource pool. This property is ignored unless the level is set to custom.

To change the configuration, call the ResourcePool.UpdateConfig or
ResourcePool.UpdateChildResourceConfiguration method and pass in a ResourceConfigSpec that
contains values for all fields you want to update.

Configuring Reservation and Limit for Resource Pools
Resource pools are a tool to aggregate physical host resources and channel the aggregated resources to
individual virtual machines. You use resource pools to group virtual machines, either to isolate portions af
aggregated resources or to prioritize resource allocations between groups of virtual machines.

Resource pools, like individual virtual machines, can be configured with boundaries for resource
allocation. Resource pools can also be configured with priority shares, although shares settings act
somewhat differently for resource pools than for virtual machines. See Understanding Fixed Shares and
Understanding Scalable Shares.

You configure a reservation value for a resource pool to help protect its virtual machines from the
negative impact of virtual machines in other pools. If you configure a fixed reservation for a resource pool,
the host will always make at least that much of the resource available for the resource pool to distribute
among its children. See Understanding Fixed Reservations.

Note If a resource pool's virtual machines are not using the resource pool's entire reserved amount of a
resource, the host may allocate the unused amount to virtual machines in other pools, on a temporary
basis. The host will return the borrowed resource to the resource pool that reserved it, whenever needed
to start virtual machines within that resource pool.

You configure a limit value for a resource pool to help prevent its virtual machines from negatively
impacting performance of virtual machines in other resource pools. The host will never allocate more than
that quantity of the resource to any or all of the virtual machines within the pool, whether immediate
children or chidlren of a nested pool. After all of the resource is allocated, a resource shortage might
cause virtual machines within the pool to fail to start or fail to progress, but it has no effect on virtual
machines outside the pool.

If you configure expandable reservations for a resource pool and its siblings, and you configure no
reserved amounts for any of the siblings, then they share the parent's reservation amount on a 'first
come first serve' basis. If any siblings are configured for fixed reservations, those siblings are guaranteed
their fixed reservations but no more, while the remainder of the parent's reservation is available to share
among the pools configured for expandable reservations. See Understanding Exxpandable Reservations.

vSphere Web Services SDK Programming Guide

VMware, Inc. 230

Understanding Fixed Reservations
A fixed reservation for a resource pool provides a way to guarantee that all virtual machines running
simultaneously within the pool have access to a minimum quantity of the resource. The pool's reservation
should be large enough to allocate among the virtual machines such that each one has its configured
minimum required to start up.

To configure fixed reservations, set the epandableReservation property to false in
ResourceConfigSpec.ResourceAllocationInfo. Set the pool's reservation amount to an aggregate value
that is sufficient to support the maximum number of virtual machines that need to run concurrently within
the resource pool. If the pool has nested resource pools that are also configured for fixed reservations,
you should determine their reservation amounts in the same way, recursively.

When you configure a resource pool hierarchy for fixed reservations, consider these guidelines:

n A resource pool that contains only virtual machines should be configured with a reservation amount at
least as great as the sum of the reservations of its children, or as many of them as need to run
concurrently. Otherwise, one or more virtual machines will fail to get its minimum resource allocation
and the host will not start it.

n A resource pool that contains only nested resource pools configured for fixed reservations must be
configured with a reservation amount at least as great as the sum of the reservations of its children.
This ensures that its child resource pools can fulfill their obligations to their own children, according to
their configured reservation amounts. If you cannot configure the parent pool with an adequate
amount of the resource, consider configuring the nested resource pools for expandable reservations
instead.

n A resource pool that contains both virtual machines and nested resource pools is not a best practice,
because it can complicate configuration management. If you configure a resource pool in this way,
you should first make sure the virtual machines can receive their own reservation amount, and then
configure reservations for the nested pools from the remainder of the parent's reservation after
subtracting the virtual machine reservations.

Before you create new child resource pools, check available resources in the parent pool. The
ResourcePool.runtimeInfo property is a ResourcePoolRuntimeInfo data object. The
ResourcePoolRuntimeInfo.cpu and ResourcePoolRuntimeInfo.memory properties are
ResourcePoolResourceUsage objects with resource usage information, including an unreservedForPool
property. If the parent pool does not have enough available resources, reconfigure the reservation values
of child pools before adding the new pool.

Understanding Expandable Reservations
Expandable reservations enable dynamic allocation of resources to meet the minimum requirements of
virtual machines within a number of resource pools. When you set the expandableReservation property
on sibling resource pools, you enable them to act as a single resource pool for the purpose of providing
the minimum of resource that virtual machines need to power on. When a virtual machine starts in any
one of the sibling resource pools, it draws its reservation amount from the parent's reservation amount,
rather than from its own resource pool.

vSphere Web Services SDK Programming Guide

VMware, Inc. 231

If the parent resource pool is also expandable, it can draw resources in turn from its parent, and the
sequence can continue in this way until it ends with a parent resource pool that has a fixed reservation.

To configure expandable reservations, set the expandableReservation property to true in the
ResourceConfigSpec.cpuAllocation or ResourceConfigSpec.memoryAllocation of sibling resource pools
to true. For maximum flexibility, set the reservation amount of each sibling pool 0. When sibling pools do
not reserve any resources, any virtual machine that starts in the sibling pools will take its reservation
amount from the parent pool's reservation.

If a sibling pool contains critical virtual machines whose reservations need to be prioritized, set the pool's
reservation to the sum of the reservations of the prioritized virtual machines. That reservation amount is
saved for the resource pool's virtual machines, and is unavailable for siblings to use.

To illustrate how expandable reservations work, consider the following examples.

Expandable Reservation Example 1

Assume an administrator manages a parent pool P1, and defines two child resource pools, C1 and C2,
for two different groups of users. C1 and C2 are self-serve resource pools, allowing users to configure
their own virtual machines. The administrator does not know in advance exactly what resources the users
will need, so the administrator wants the resource pool configuration to be flexible.

Without expandable reservations, the administrator needs to explicitly allocate fixed amounts of resources
to C1 and C2. Such specific allocations can be inflexible, especially in deep resource pool hierarchies,
and can complicate setting reservations for C1 and C2. By making the reservations for C1 and C2
expandable, the administrator allows users to more flexibly share and inherit the common reservation for
pool P1.

Expandable reservations cause a loss of resource pool isolation in the context of admission control. For
example, if C1 and C2 have their reservation amounts set to 0, then virtual machines in C1 might use all
of P1's memory reservation, so that no memory is available to start virtual machines in C2.

Expandable Reservation Example 2

Assume a parent resource pool RP-MOM has a reservation of 6GHz and one running virtual machine
VM-M1 that reserves 1GHz. RP-MOM also has a child resource pool RP-KID with a reservation of 2GHz
and with Expandable Reservation selected. RP-KID contains two virtual machines, VM-K1 and VM-K2,
with reservations of 2GHz each.

When a user powers on VM-K1, it can reserve the resources it needs directly from RP-KID (which has
2GHz). When the user tries to power on VM-K2, RP-KID has already allocated its 2GHz reservation to
VM-K1, but it has Expandable Reservation configured, so it tries to borrow resources from RP-MOM's
reservation. RP-MOM has 6GHz minus 1GHz (reserved by VM-M1) minus 2GHz (reserved by RP-KID),
which leaves 3GHz of RP-MOM's reservation that is not reserved by other resource pools or virtual
machines in RP-MOM. With 3GHz available, VM-K2 is able to power on.

vSphere Web Services SDK Programming Guide

VMware, Inc. 232

Figure 15-1. Admission Control with Expandable Resource Pools, Scenario 1

Expandable Reservation Example 3

Assume a parent resource pool RP-MOM has a reservation of 6GHz and two running virtual machines,
VM-M1 that reserves 1GHz, and VM-M2 that reserves 2GHz. RP-MOM also has a child resource pool
RP-KID with a reservation of 2GHz and with Expandable Reservation selected. RP-KID contains two
virtual machines, VM-K1 and VM-K2, with reservations of 2GHz each.

When a user powers on VM-K1, it can reserve the resources it needs directly from RP-KID (which has
2GHz). When the user tries to power on VM-K2, RP-KID has already allocated its 2GHz reservation to
VM-K1, but it has Expandable Reservation configured, so it tries to borrow resources from RP-MOM's
reservation. RP-MOM has 6GHz minus 3GHz (reserved by VM-M1 and VM-M2) minus 2GHz (reserved
by RP-KID), which leaves only 1GHz of RP-MOM's reservation that is not reserved by other resource
pools or virtual machines in RP-MOM. Since VM-K2 requires 2GHz to pass admission control, VM-K2 is
not able to power on.

Figure 15-2. Admission Control with Expandable Resource Pools, Scenario 2

Configuring Priority Shares for Resource Pools
In cases of resource contention, data center hosts need a way to arbitrate between competing virtual
machines. You can configure the shares settings of a virtual machine to set its priority relative to its
siblings. You can configure the shares settings of a resource pool to affect the priorities of all virtual
machines within the resource pool, as a group.

vSphere Web Services SDK Programming Guide

VMware, Inc. 233

The following illustration shows a standalone host that has several virtual machines. The marketing
department uses three of the virtual machines and the QA department uses two virtual machines.
Because the QA department needs larger amounts of CPU and memory, the administrator creates one
resource pool for each group. The administrator sets CPU Shares to High for the QA department pool
and to Normal for the Marketing department pool so that the QA department users can run automated
tests. The second resource pool with fewer CPU and memory resources is sufficient for the lighter load of
the marketing staff.

Whenever the QA department is not fully using its allocation, the marketing department can use the
available resources. When there is resource contention because running virtual machines demand more
resources than are available from the host, the resource shares configuration guides arbitration between
the competing virtual machines.

Figure 15-3. Allocating Resources to Resource Pools

You have two options for priority shares configuration that cause the priorities to be applied in different
ways. The fixed shares option limits the adverse performance impact of resource contention to a single
resource pool and all its descendants. The scalable shares option distributes the performance impact
across all resource pools, in proportion to their priority levels.

The chief benefit of configuring fixed shares for a parent resource pool is the predictability of performance
for virtual machines within its child resource pools. You can know in advance that its virtual machines can
demand a fixed fraction of a virtual resource available from a host or cluster. The drawback of configuring
fixed shares is that adding virtual machines to a resource pool impacts the performance of all virtual
machines in the same pool and its descendants because the resource pool is not entitled to allocate
additional resources.

The chief benefit of configuring scalable shares for a parent resource pool is that resource allocation
during contention is adjusted at run time to achieve a fair allocation to virtual machines beyond the
boundary of a single resource pool. In effect, the child pool's resource entitlement expands to
accommodate more virtual machines as they are added to the pool. The drawback of configuring scalable
shares is that a child resource pool cannot isolate its virtual machines from the demands of virtual
machines in other pools that draw from the same scalable parent resource pool.

vSphere Web Services SDK Programming Guide

VMware, Inc. 234

Understanding Fixed Shares
When a parent resource pool is not configured to be scalable, the shares configured for its child resource
pools provide a way to prioritize allocation of fixed fractions of the parent resource pool to its children.
This serves to isolate users of sibling resource pools so that virtual machines in one child resource pool
cannot impact the performance of virtual machines in other child resource pools.

Suppose for example a cluster has 3 physical cores running at 2GHz, for a total of 6GHz. The root
resource pool has a total of 6GHz of virtual CPU capacity to divide between its children. If there is no
resource contention, all running virtual machines can be allocated their configured amounts of CPU. If
there is contention for CPU resources, the 6GHz is divided between child resource pools according to the
CPU shares configured for them.

This fictional data center has two child resource pools, each supporting the users in a different division of
a business. Division 1 and Division 2 start out about the same size, so the IT department configures RP1
and RP2 with equal values for custom shares, and an equal number of virtual machines.

Figure 15-4. Example Resource Pool Configuration with Custom Shares

VM1
1vCPU
1000

RP1
1000

Root RP: (6GHz)

1000
1.5GHz

1000
3GHz

1000
3GHz

1000
1.5GHz

1000
1.5GHz

1000
1.5GHz

RP2
1000

VM2
1vCPU
1000

VM3
1vCPU
1000

VM4
1vCPU
1000

All child resource pools and virtual machines are configured with custom settings of 1000 shares each.
Because the two resource pools are configured with the same number of shares, they can allocate the
same amount of compute resource to their virtual machines in cases of resource contention. Likewise, all
virtual machines are entitled to draw the same fraction of compute resource as their siblings.

Note For simplicity of illustration, these examples deal only with CPU shares. A real configuration would
include both CPU and memory resources, which act independently in regard to calculating the absolute
resources available to a running virtual machine.

In effect, a non-scalable resource pool guarantees that each of its children gets a fixed fraction of its
resources. However, the amount allocated to each child is fixed only in relation to the quantity of
resources controlled by the resource pool itself. If a root resource pool gains additional resources due to a
hardware upgrade, all its children gain resource entitlements in proportion to their configured shares.

For example, suppose the cluster has been upgraded from 3 to 6 physical cores running at 2GHz, for a
total of 12GHz of pooled physical capacity. The root resource pool now has a total of 12GHz of virtual
CPU capacity to divide between its children. If there is contention for CPU resources, the 12GHz is
divided between child resource pools according to the CPU shares configured for them.

vSphere Web Services SDK Programming Guide

VMware, Inc. 235

Figure 15-5. Increased Physical Capcity Provides Increased Virtual Capacity to All Virtual
Machines

VM1
1vCPU
1000

RP1
1000

Root RP: 12GHz

1000
3GHz

1000
6GHz

1000
6GHz

1000
3GHz

1000
3GHz

1000
3GHz

RP2
1000

VM2
1vCPU
1000

VM3
1vCPU
1000

VM4
1vCPU
1000

After the upgrade, each virtual machine is entitled to twice its previous resource allocation, in absolute
terms. However, if another child, whether resource pool or virtual machine, is added to a parent pool,
previously existing children find their resource allocation reduced, as the pool's resources are shared
between more children.

Suppose Division 2 hires some new users, and IT adds an extra virtual machine to RP2 for their use.

Figure 15-6. Dilution of Fixed Shares From Adding a Virtual Machine to a Resource Pool

VM1
1vCPU
1000

RP1
1000

Root RP: 12GHz

1000
3GHz

1000
6GHz

1000
6GHz

1000
3GHz

1000
2GHz

1000
2GHz

1000
2GHz

RP2
1000

VM2
1vCPU
1000

VM3
1vCPU
1000

VM4
1vCPU
1000

VM5
1vCPU
1000

Where previously all virtual machines in the business had the same priority for allocation of scarce
compute resource, increasing the virtual machine load in RP2 means that more virtual machines contend
for the same quantity of its resource. Consequently, each virtual machine in RP2 might see its
performance reduced when all virtual machines are running at full capacity.

To continue from the previous example, some users in Division 1 might be concerned about performance
because they plan to hire more employees in the future. Suppose they persuade the IT department that
their virtual machines should be in a higher priority resource pool than others, so they will have access to
more compute resource if needed. The IT department configures different custom shares values for RP1
and RP2, so that RP1 has twice the priority of RP2.

vSphere Web Services SDK Programming Guide

VMware, Inc. 236

Figure 15-7. Effects of Reprioritizing a Resource Pool in a Fixed Shares Configurotion

VM1
1vCPU
1000

RP1
2000

Root RP: 12GHz

1000
4GHz

2000
8GHz

1000
4GHz

1000
4GHz

1000
1.3GHz

1000
1.3GHz

1000
1.3GHz

RP2
1000

VM2
1vCPU
1000

VM3
1vCPU
1000

VM4
1vCPU
1000

VM5
1vCPU
1000

The child resource pool RP1 has 2000 shares configured, and RP2 has 1000 shares configured, so RP1
gets 2/3 of the physical CPU resources to share among its children, and RP2 gets 1/3 of the physical
CPU resources to share among its children. You can calculate the amount of compute resource available
to RP1 for its children as 12 x 2000 / (2000+1000) = 8GHz, and the amount of compute resource
available to RP2 for its children as 12 x 1000 / (2000+1000) = 4 virtual GHz. The children within each
resource pool have identical shares settings, so they share their own pool's resources equally.

Now suppose a new CIO joins the business and decides that from now on priority shares should be
specified as levels rather than custom values. The IT department reconfigures all the shares settings to
use the enums for shares levels.

Figure 15-8. Priority Shares Expressed as Levels Instead of Custom Values

VM1
1vCPU

N

RP1 (4vCPU) H RP2 (4vCPU) N

Root RP: 12GHz

1 x N =
1000

4GHz

1 x N =
1000

4GHz

1 x N =
1000

1.3GHz

1 x N =
1000

1.3GHz

1 x N =
1000

1.3GHz

4 x H =
8000

8GHz

4 x N =
4000

4GHz

VM2
1vCPU

N

VM3
1vCPU

N

VM4
1vCPU

N

VM5
1vCPU

N

Legend
High:2000
Normal:1000
Low:500

vSphere Web Services SDK Programming Guide

VMware, Inc. 237

When you specify shares levels, you have to make two calculations. First you convert the specified level
to a numeric value that corresponds to custom shares settings. This conversion takes into account the
number of virtual cores.

Note For memory resources, the conversion takes into account the configured memory size of the virtual
machine.

Then you use that numeric value to calculate the proportion of resources to allocate to the child pool, in
the same way as with the custom shares settings.

To convert a shares level to a numeric value, multiply the number of vCPUs by a constant that
corresponds to the level. For the purpose of this calculation, all resource pools have an implicit size of 4
vCPUs. Use the VirtualMachine.config.hardware.numCPU value as the number of vCPUs for virtual
machines. The constant for the high priority level is 2000, and the constant for the normal level is 1000.
You can calculate that the numeric shares belonging to RP1 are 4 x 2000 = 8000. RP2 has a priority
level of normal, so the numeric shares belonging to RP2 are 4 x 1000 = 4000. The compute resource that
RP1 can allocate is 12 x 8000 / (8000+4000) = 8 GHz, and the compute resource that RP2 can allocate
to its children is 12 x 4000 / (8000+4000) = 4 GHz. The new CIO is satisfied that RP1 and RP2 achieve
the same result with priority levels as with the previous custom shares values.

Note For memory shares, the constants are different. See the vSphere Web Services API Reference.

But suppose the IT department is asked to support a 3rd division, newly acquired by the business, which
is about the same size as the division assigned to RP2. The IT department creates a new child resource
pool, RP3, and configures the same number of virtual machines and the same shares levels as RP2. Now
the division of resources looks like this:

Figure 15-9. Resource Dilution from Adding a Resource Pool

VM1
1vCPU

N

RP1 (4vCPU) H RP2 (4vCPU) N RP3 (4vCPU) N

Root RP: 12GHz

1 x N =
1000

3GHz

1 x N =
1000

3GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

4 x H =
8000

6GHz

4 x N =
4000

3GHz

4 x N =
4000

3GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

VM2
1vCPU

N

VM3
1vCPU

N

VM4
1vCPU

N

VM5
1vCPU

N

VM6
1vCPU

N

VM7
1vCPU

N

VM8
1vCPU

N

Legend
High:2000
Normal:1000
Low:500

vSphere Web Services SDK Programming Guide

VMware, Inc. 238

Assume the hardware resources available to the root resource pool have not changed at the time of the
acquisition, so the 12GHz of virtual compute resource must be divided into fractions according to the
configured shares of the child resource pools. After adding RP3, both RP1 and RP2 get less of the virtual
compute resource to divide among their own children.

Virtual machines available to Division 1 now compete for 12 x 8000 / (8000+4000+4000) = 6GHz in
RP1. Virtual machines available to Division 2 compete for 12 x 4000 / (8000+4000+4000) = 3GHz in
RP2. Virtual machines available to Division 3 similarly compete for 12 x 4000 / (8000+4000+4000) =
3GHz in RP3.

In this example, Division 1 and Division 2 employees might both perceive reduced performance until the
IT department's capital budget increases to support the new configuration.

When Division 1 hires a number of new employees, IT adds two more virtual machines to RP1 to
accommodate the increased size of Division 1. All four virtual machines in RP1 still benefit from RP1's
high priority level, but now that RP1's compute resources are spread among a larger number of virtual
machines, each of its virtual machines gets a smaller allocation when they are competing for CPU cycles.

Figure 15-10. Resource Dilution from Adding Virtual Machines to a High Priority Resource
Pool

VM1
1vCPU

N

RP1 (4vCPU) H RP2 (4vCPU) N RP3 (4vCPU) N

Root RP: 12GHz

1 x N =
1000

1.5GHz

1 x N =
1000

1.5GHz

1 x N =
1000

1.5GHz

1 x N =
1000

1.5GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

4 x H =
8000

6GHz

4 x N =
4000

3GHz

4 x N =
4000

3GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

VM2
1vCPU

N

VM9
1vCPU

N

VM10
1vCPU

N

VM3
1vCPU

N

VM4
1vCPU

N

VM5
1vCPU

N

VM6
1vCPU

N

VM7
1vCPU

N

VM8
1vCPU

N

Legend
High:2000
Normal:1000
Low:500

Some virtual machine users who were in Division 1 before the new employees joined are noticing greatly
reduced performance. They are only getting 1.5GHz where they used to get 3GHz. When they learn that
Division 2 employees are getting 1GHz from their virtual machines in RP2, which has normal priority, they
might not be happy that they are getting only 1.5GHz from virtual machines in RP1, which has high
priority.

The disappointed users speak to the IT department, where they learn that this is the way fixed shares for
resource pools are intended to work. They isolate Division 1 virtual machine performance from the other
divisions, but not from other users of the same resource pool. These Division 1 users learn that there are
other ways to protect the performance of high priority virtual machines.

vSphere Web Services SDK Programming Guide

VMware, Inc. 239

Some Division 1 users try other ways to get more compute resource from RP1's fixed allocation. They
request changes to virtual machine configurations, which result in increased priority for some of their
virtual machines at the expense of others.

Figure 15-11. Prioritizing Individual Virtual Machines Within a Resource Pool

VM1
1vCPU

H

RP1 (4vCPU) H RP2 (4vCPU) N RP3 (4vCPU) N

Root RP: 12GHz

1 x H =
2000

2GHz

2 x N =
2000

2GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

4 x H =
8000

6GHz

Legend
High:2000
Normal:1000
Low:500

4 x N =
4000

3GHz

4 x N =
4000

3GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

VM2
2vCPU

N

VM9
1vCPU

N

VM10
1vCPU

N

VM3
1vCPU

N

VM4
1vCPU

N

VM5
1vCPU

N

VM6
1vCPU

N

VM7
1vCPU

N

VM8
1vCPU

N

After VM1 is reconfigured, you calculate its numeric shares by multiplying the configured numCPU (1) by its
shares level (high), getting 1 x 2000 = 2000. You calculate its resource allocation by using its numeric
shares to prorate the allocation available to its parent resource pool: 6GHz x 2000 / (2x2000+2x1000) =
2GHz.

You calculate VM2's numeric shares by multiplying the configured numCPU (2) by its shares level (normal),
getting 2 x 1000 = 2000. You calculate its resource allocation by using its numeric shares to prorate the
allocation available to its parent resource pool: 6GHz x 2000 / (2x2000+2x1000) = 2GHz.

In a similar way, calculate VM9's numeric shares by multiplying its configured numCPU (1) by its shares
level (normal), getting 1 x 1000 = 1000. You calculate its resource allocation by using its numeric shares
to prorate the allocation available to its parent resource pool: 6GHz x 1000 / (2x2000+2x1000) = 1GHz.
VM10's resource configuration and associated calculations are identical to VM9.

When other Division 1 users realize that VM9 and VM10 only get 1GHz of virtual compute resource, they
might not be satisfied with this result. These virtual machines are in a high priority resource pool, but they
get the same resource allocation as Division 2's virtual machines, which are in a normal priority resource
pool. That doesn't seem fair.

Division 1 users request a meeting with the CIO, who explains that the scalable shares feature is the best
solution to their problem.

Understanding Scalable Shares
Configuring scalable shares for a parent resource pool means that all its child resource pools are not
isolated from each other. This avoids the resource dilution problem within child resource pools, by

vSphere Web Services SDK Programming Guide

VMware, Inc. 240

expanding their resource entitlements when they have more virtual machines running.The effect is to
negate resource pool isolation while retaining the proportions of resource pool priority levels. A high
priority resource pool is entitled to give twice as much of the available resource to its virtual machines, in
comparison with a normal priority sibling resource pool, but all virtual machines suffer proportionately
when many virtual machines run in the normal priority pool .

To illustrate the use of the scalable shares option, consider how it might apply to a fictional situation in
which a data center is configured, with non-scalable shares, to support three divisions of a business.
Division 1 is supported by resource pool RP1, which is configured as high priority, in an attempt to
compensate for the dilution of RP1's resources that resulted from adding new virtual machines to RP1.
Some virtual machines in RP1 are individually configured to get higher priority than their siblings.

Note For simplicity of illustration, these examples deal only with CPU shares. A real configuration would
include both CPU and memory resources, which act independently in regard to calculating the absolute
resources available to a running virtual machine.

Figure 15-12. Example Data Center Configured with Fixed Shares

VM1
1vCPU

H

RP1 (4vCPU) H RP2 (4vCPU) N RP3 (4vCPU) N

Root RP: 12GHz

1 x H =
2000

2GHz

2 x N =
2000

2GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

4 x H =
8000

6GHz

Legend
High:2000
Normal:1000
Low:500

4 x N =
4000

3GHz

4 x N =
4000

3GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

VM2
2vCPU

N

VM9
1vCPU

N

VM10
1vCPU

N

VM3
1vCPU

N

VM4
1vCPU

N

VM5
1vCPU

N

VM6
1vCPU

N

VM7
1vCPU

N

VM8
1vCPU

N

As a result of resource dilution within RP1 in a fixed shares configuration, some of RP1's virtual machines
are entitled to exactly the same resource allocation as RP2's virtual machines, even though RP2 is
configured as normal priority but RP1 is configured as high priority. Some users in Division 1 are
disappointed because they expected their virtual machines to receive twice the allotment of RP2's virtual
machines. The company's CIO agrees to reconfigure the data center to take advantage of the scalable
shares option.

vSphere Web Services SDK Programming Guide

VMware, Inc. 241

Figure 15-13. Example Scalable Shares Configuration

VM1
1vCPU

H

RP1 (4vCPU) H RP2 (4vCPU) N RP3 (4vCPU) N

Root RP: 12GHz scalable

1 x H =
2000

2.7GHz

2 x N =
2000

2.7GHz

1 x N =
1000

1.3GHz

1 x N =
1000

1.3GHz

1 x N =
1000

0.7GHz

1 x N =
1000

0.7GHz

1 x N =
1000

0.7GHz

1 x N =
1000

0.7GHz

4 x H x
(2 x 2000 + 2 x 1000)

= 48,000,000
8GHz

4 x N x
(3 x 1000)

= 12,000,000
2GHz

4 x N x
(3 x 1000)

= 12,000,000
2GHz

1 x N =
1000

0.7GHz

1 x N =
1000

0.7GHz

VM2
2vCPU

N

VM9
1vCPU

N

VM10
1vCPU

N

VM3
1vCPU

N

VM4
1vCPU

N

VM5
1vCPU

N

VM6
1vCPU

N

VM7
1vCPU

N

VM8
1vCPU

N

Legend
High:2000
Normal:1000
Low:500

With scalable shares enabled on a parent resource pool, resource entitlements change. Because RP1
has more virtual machines than RP2 or RP3, it is entitled to a larger fraction of the root resource pool's
resources during a resource contention situation. This is represented mathematically by multiplying the
resource pool's numeric shares by the total of the shares of its children.

Calculating resource pool allocation in a scalable shares configuration is conceptually a six-step recursive
process, working from leaf to root of the resource pool tree:

1 Convert the priority levels of its child virtual machines into numeric shares equivalents, in the same
way as in a fixed shares configuration: Multiply VirtualMachine.config.hardware.numCPU by a
constant that depends on the priority level. The constants are 2000, 1000, and 500 for high, normal,
and low respectively.

2 If the resource pool has child resource pools, convert their priority levels into numeric shares
equivalents, recursively.

3 Do the same conversion for the resource pool itself. For the purpose of this conversion, all resource
pools are assigned an implicit size of 4 vCPUs.

4 Sum the children's numeric shares and multiply the sum by the parent's numeric shares.

5 Repeat steps 1-4 for all the parent's siblings.

6 Allocate the available resources among all siblings, in proportion to the products from steps 4 and 5.

As a result of the scalable shares configuration, Division 1 users find their virtual machine performance
improved, but Divisions 2 and 3 suffer by comparison. To rectify this, the IT department resets the priority
levels of RP1, RP2, and RP3 to normal. This adjustment leaves virtual machine performance comparable
across divisions: high priority virtual machines get twice the resource allocation of normal priority virtual
machines, even across resource pool boundaries.

vSphere Web Services SDK Programming Guide

VMware, Inc. 242

Figure 15-14. Scalable Shares Configuration with All Resource Pools Configured at normal
Level

VM1
1vCPU

H

RP1 (4vCPU) N RP2 (4vCPU) N RP3 (4vCPU) N

Root RP (12GHz) scalable

1 x H =
2000

2GHz

2 x N =
2000

2GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

4 x N x
(2 x 2000 + 2 x 1000)

= 24,000,000
6GHz

4 x N x
(3 x 1000)

= 12,000,000
3GHz

4 x N x
(3 x 1000)

= 12,000,000
3GHz

1 x N =
1000

1GHz

1 x N =
1000

1GHz

VM2
2vCPU

N

VM9
1vCPU

N

VM10
1vCPU

N

VM3
1vCPU

N

VM4
1vCPU

N

VM5
1vCPU

N

VM6
1vCPU

N

VM7
1vCPU

N

VM8
1vCPU

N

Legend
High:2000
Normal:1000
Low:500

A best practice when configuring scalable shares is to configure resource pools to the normal priority level
and apply high priority levels or low priority levels to specific virtual machines.

Deleting Child Resource Pools
The ResourcePool.DestroyChildren method recursively deletes all the child resource pools of a
resource pool. The operation takes a single parameter, a reference to the parent ResourcePool
managed object. Any virtual machines associated with the child resource pool are reassigned to the
parent resource pool.

Moving Resource Pools or Virtual Machines Into a Resource Pool
You can move a resource pool and its children within a resource pool hierarchy.

The ResourcePool.MoveIntoResourcePool method lets you move virtual machines, virtual
applications, or resource pool hierarchies into a new resource pool. You call the method with an array of
ResourcePool or VirtualMachine managed object references that you want to move. The whole
resource pool hierarchy, including child resource pools and virtual machines, is moved when you move a
resource pool.

Minimum available resources of the immediate children must always be less than or equal to the
resources of the immediate parent. The root resource pool cannot be moved.

vSphere Web Services SDK Programming Guide

VMware, Inc. 243

Introduction to vSphere Clusters
Clusters are useful with VMware DRS (distributed resource scheduler) and VMware HA (high availability).
Clusters can be created quickly with VMware HCI. This guide briefly introduces the vSphere interfaces for
cluster configuration. Clusters are useful to reduce power use, downtime, and maintenance.

n VMware DRS. vSphere Resource Management guide

n VMware HA. vSphere Availability guide

n VMware HCI, Hyper-converged infrastructure. In vSphere Client, click New Cluster.

VMware DRS
A VMware DRS cluster is a collection of ESXi hosts and associated virtual machines with shared
resources and a shared management interface. To obtain the benefits of cluster-level resource scheduling
you create a DRS cluster.

When you add a host to a DRS cluster, the host’s resources become part of the cluster’s resources. In
addition to aggregation of resources, a DRS cluster supports cluster-wide resource pools and enforces
cluster-level resource allocation policies. The following cluster-level resource management capabilities
are available.

n Load Balancing. The vCenter Server monitors distribution and use of CPU and memory resources for
all hosts and virtual machines in the cluster. DRS compares these metrics to an ideal resource
utilization given the attributes of the cluster’s resource pools and virtual machines, the current
demand, and the DRS Score, which measures the execution efficiency of the virtual machine. DRS
then performs (or recommends) virtual machine migrations. When you first power on a virtual
machine in the cluster, DRS attempts to maintain proper load balancing either by placing the virtual
machine on an appropriate host or by recommending one.

n Power Management. When the VMware DPM (Distributed Power Management) feature is enabled,
DRS compares cluster- and host-level capacity to the demands of the cluster’s virtual machines,
including recent historical demand. DPM places (or recommends placing) hosts in standby power
mode if sufficient excess capacity is found. DPM powers on (or recommends powering on) hosts if
capacity is needed. Depending on the resulting host power state recommendations, virtual machines
might need to be migrated to and from the hosts.

n Virtual Machine Placement. You can control the placement of virtual machines on hosts within a
cluster, by assigning DRS affinity or antiaffinity rules.

See Managing DRS Clusters.

VMware HA
VMware HA supports high availability for virtual machines by pooling the hosts they reside on into a
cluster. If one host fails, its virtual machines move to a different host in the cluster.

VMware HA monitors ESXi hosts and in the event of host failure, migrates virtual machines to hosts with
capacity. When you add new virtual machines to a VMware HA cluster, VMware HA checks whether
enough capacity to power on that virtual machine is available on that host or a different host.

vSphere Web Services SDK Programming Guide

VMware, Inc. 244

See Managing HA Clusters.

VMware HCI
VMware HCI manages the configuration of hyper-converged compute, storage, and network resources for
a cluster, as a collection of identically configured ESXi hosts. This unified approach simplifies cluster
configuration, offering a way to configure all resource types as a group, using a single interface.

VMware HCI clusters are ideal for newly established datacenters. Only conformant hosts are allowed to
be a part of the HCI cluster. They must have the same CPU design and contain the minimum number of
physical NICs specified in DvsProfile. Network settings are wiped to a clean state before configuration.
Non-management port groups in standard switches are migrated to a virtual distributed switch.

The ConfigureHCI_Task method configures a VMware HCI (hyper converged infrastructure) cluster. The
ExtendHCI_Task method expands and reconfigures a VMware HCI cluster. Before and after HCI cluster
configuration, you can run the ValidateHCIConfiguration method to check that the
ClusterComputeResourceHCIConfigSpec is correct.

The BatchAddHostsToCluster_Task method adds more hosts as needed to a VMware HCI cluster, but
cannot change cluster configuration.

These configure, extend, and host add methods are composite tasks. That is, they perform multiple
operations in a single task. For example, ConfigureHCI_Task can:

n Set up cluster services such as DRS, HA, and vMotion

n For an HCI cluster, verify that all hosts have same CPU vendor

n Add new standalone hosts and set state (lockdown)

n Move all hosts into the HCI cluster

n Configure vSAN datastore

n Configure virtual distributed switch and port groups

Automatic remediation of failed hosts is not attempted. The administrator must intervene to correct issues
before attempting to place hosts back in the cluster. Remediated hosts must be ready to participate in the
vSAN datastore.

Creating and Configuring Clusters
The vSphere Web Services SDK includes objects and methods for all cluster management tasks. Some
documentation is available in the vSphere API Reference. For additional background and details about
the failover and load balancing behavior, see vSphere Resource Management and vSphere Availability.

vSphere Web Services SDK Programming Guide

VMware, Inc. 245

Creating a Cluster
If your environment includes a vCenter Server and multiple ESXi hosts, you can create a cluster by
calling the Folder.CreateClusterEx method. You pass in a name for the new cluster and a
ClusterConfigSpecEx data object. In the data object, you can specify the following properties:

n VMware DRS

n drsConfig property in the ClusterDrsConfigInfo data object contains configuration
information for the VMware DRS service. Properties in this object specify the cluster-wide
(default) behavior for virtual machine and the threshold for generating cluster recommendations.
You can enable and disable VMware DRS with the ClusterDrsConfigInfo.enabled property.

n drsVmConfigSpec property in the ClusterDrsVMConfigSpec data object points to a
ClusterDrsVmConfigInfo data object that specifies the DRS configuration for a single virtual
machine. ClusterDrsVmConfigInfo overrides the default DRS configuration for an individual
virtual machine and allows you to specify the DRS behavior and whether DRS can perform
migration or recommend initial placement for a virtual machine.

To update a DRS configuration, you call
ComputeResource.ReconfigureComputeResource_Task and pass in a ClusterConfigSpecEx
object. In the ClusterConfigSpecEx.drsVmConfigSpec property, you can specify an array of
ClusterDrsVMConfigSpec objects that define the configuration for individual virtual machines.

n rulesSpec property in the ClusterRuleSpec data object points a ClusterRuleInfo data object
that specifies the affinity and antiaffinity rules DRS should use. See the vSphere API Reference
entry for ClusterRuleInfo.

n VMware HA – distributed availability service (DAS)

n dasConfig property in the ClusterDasConfigInfo data object specifies HA service on the
cluster. Properties in this object determine whether strict admission control is enabled, what the
default virtual machine settings in this cluster are, whether VMware HA restarts virtual machines
after host failure, and so on. See the vSphere API Reference.

n dasVMConfigSpec property in ClusterDasVMConfigSpec object, where the info property is a
ClusterDasVmConfigInfo data object that specifies the HA configuration for a single virtual
machine. You can apply different settings to different virtual machines, or use the default specified
in the dasConfig property for all virtual machines in the cluster.

n VMware HCI

n The ClusterComputeResourceHCIConfigInfo data object contains properties to capture the
configured hosts, virtual distributed switch settings, host configurations, and HCI workflow state.
The HCI cluster includes vSphere facilities for DRS, HA, vMotion, and vSAN.

n The ClusterComputeResourceHCIConfigSpec data object specifies the virtual distributed
switch settings, host configurations, enhanced vMotion capability, and vSAN configuration.

n Once configurations are specified, you create an HCI cluster with the ConfigureHCI_Task
method, and reconfigure an HCI cluster with the ExtendHCI_Task method.

vSphere Web Services SDK Programming Guide

VMware, Inc. 246

Adding a Host to a Cluster
The methods available for adding hosts to a cluster are useful under different circumstances. Each
method returns a managed object reference to a task.

n ClusterComputeResource.AddHost_Task adds a host to the cluster. The host may be specified by
a numeric IP address or a DNS resolvable name. If the cluster supports nested resource pools and
you pass an optional resourcePool argument, the host's resource pool hierarchy is imported into the
new nested resource pool. If a cluster does not support nested resource pools, the host resource pool
hierarchy is discarded and all virtual machines on the host are added to the cluster's root resource
pool.

n ClusterComputeResource.MoveInto_Task moves a host in the datacenter into a cluster, or from
one cluster into another. The MoveHostInto_Task method is similar, with extra resourcePool
parameter.

n Folder.BatchAddStandaloneHosts_Task adds a list of newHosts to the inventory as standalone
hosts. This operation works though the list of hosts and returns, in the task result, a list of hosts that
were successfully added.

Reconfiguring a Cluster
You can alter a vSphere cluster by calling the ComputeResource.ReconfigureComputeResource_Task
method. You can alter an HCI cluster by calling the ClusterComputeResource.ExtendHCI_Task
method.

To reconfigure a vSphere cluster, for instance to enable or disable VMware DRS or VMware HA, you can
change properties in the ComputeResourceConfigSpec data object, and pass it in to
ReconfigureComputeResource_Task. For relevant properties, see Creating a Cluster. To enlarge a
vSphere cluster, you can call AddHost_Task.

To enlarge an HCI cluster, possibly after adding hosts with BatchAddStandaloneHosts_Task, you can
call ClusterComputeResource.ExtendHCI_Task, passing in the new hosts as parameter hostInputs.

To move a datacenter host into a cluster, or from one cluster to another if the host is in maintenance
mode, you can call the ClusterComputeResource.MoveInto_Task method. The MoveHostInto_Task
method is similar but allows moving the host into a nested resource pool.

To move hosts out of a cluster, and make them standalone hosts in the datacenter, you can call the
Folder.MoveIntoFolder_Task method.

To remove a host from a cluster, and from the datacenter, you can call the Folder.Destroy_Task
method, if you are granted the Host.Inventory.RemoveHostFromCluster privilege.

vSphere Web Services SDK Programming Guide

VMware, Inc. 247

Managing DRS Clusters
The vSphere Client UI allows you to explore DRS cluster behavior, which is also described in the vSphere
Resource Management guide. When DRS is running, it generates recommendations and associated
information that result in a well balanced cluster, including:

n Initial placement of virtual machines

n Virtual machine migration for load balancing. Each migration recommendation has a rating, which you
can find in the ClusterRecommendation.rating property. Client applications can choose to
consider only high-priority migrations or migrations with multiple priority levels.

n Whether or not DRS clusters are valid, and have enough resources to start additional virtual
machines.

DRS recommendations are stored in the ClusterComputeResource.recommendation property, which is
an array of ClusterRecommendation data objects. Each ClusterRecommendation includes information
about the action to perform and information you can use to display information to end users or for logging.

n Client applications can call ClusterComputeResource.ApplyRecommendation to apply one or more
recommendations.

n For more fine-grained control, client applications can perform individual actions only. The
ClusterRecommendation.action property is an array of ClusterAction objects. Each
ClusterAction includes a target for the action and the type, which is a string that is one of the
values of the ActionType enum (HostPowerV1, MigrationV1, VmPowerV1). Client applications can
use the ActionType information to act on DRS recommendations by powering on hosts, migrating
virtual machines, or powering on virtual machines by calling Datacenter.PowerOnMultiVM_Task.

Managing HA Clusters
You can add a host to an HA cluster by calling the AddHost_Task method, or move a host into a cluster
by calling the MoveHostInto_Task method or similar.

You might have to call HostSystem.ReconfigureHostForDAS_Task to reconfigure the host for HA if the
automatic HA configuration fails. See Adding a Host to a Cluster.

Primary and Secondary Hosts
You can add a secondary host to a cluster by calling the ClusterComputeResource.AddHost_Task
method, which requires that you specify the host name, port, and password for the host to be added as a
HostConnectSpec.

When you add a host to a VMware HA cluster, an agent is uploaded to the host and configured to
communicate with other agents in the cluster. The first five hosts added to the cluster are designated as
primary hosts, and all subsequent hosts are designated as secondary hosts. The primary hosts maintain
and replicate all cluster state and are used to initiate failover actions. If a primary host is removed from
the cluster, VMware HA promotes another host to primary status.

vSphere Web Services SDK Programming Guide

VMware, Inc. 248

Any host that joins the cluster must communicate with an existing primary host to complete its
configuration (except when you are adding the first host to the cluster). At least one primary host must be
functional for VMware HA to operate correctly. If all primary hosts are unavailable (not responding), no
hosts can be successfully configured for VMware HA.

One of the primary hosts is also designated as the active primary host and its responsibilities include:

n Deciding where to restart virtual machines

n Keeping track of failed restart attempts

n Determining when it is appropriate to keep trying to restart a virtual machine.

Failure Detection and Host Network Isolation
Agents on the different hosts contact and monitor each other through the exchange of heartbeats, by
default every second. If a 15-second period elapses without the receipt of heartbeats from a host, and the
host cannot be pinged, the host is declared as failed. The virtual machines running on the failed host are
restarted on the alternate hosts with the most available unreserved capacity (CPU and memory).

Host network isolation occurs when a host is still running, but it can no longer communicate with other
hosts in the cluster. With default settings, if a host stops receiving heartbeats from all other hosts in the
cluster for more than 12 seconds, it attempts to ping its isolation addresses. If this also fails, the host
declares itself isolated from the network.

When the isolated host's network connection is not restored for 15 seconds or longer, the other hosts in
the cluster treat that host as failed and try to fail over its virtual machines. However, when an isolated host
retains access to the shared storage it also retains the disk lock on virtual machine files. To avoid
potential data corruption, VMFS disk locking prevents simultaneous write operations to the virtual
machine disk files. Therefore attempts to fail over the isolated host's virtual machines do not succeed. By
default, the isolated host leaves its virtual machines powered on, but you can change HA host isolation
response as described in the vSphere Availability guide.

Using VMware HA and DRS Together
Using VMware HA with VMware DRS combines automatic failover with load balancing. This combination
can result in faster rebalancing of virtual machines after VMware HA has moved virtual machines to
different hosts.

When VMware HA performs failover and restarts virtual machines on different hosts, its first priority is the
immediate availability of all virtual machines. After the virtual machines have been restarted, those hosts
on which they were powered on might be heavily loaded, while other hosts might be comparatively lightly
loaded. VMware HA uses the CPU and memory reservation to determine failover, but the actual usage
might be higher.

In a cluster using DRS and VMware HA with admission control turned on, virtual machines might not be
evacuated from hosts entering maintenance mode because of resources reserved to maintain the failover
level. You must manually migrate the virtual machines off of the hosts using VMotion.

vSphere Web Services SDK Programming Guide

VMware, Inc. 249

When VMware HA admission control is disabled, failover resource constraints are not passed on to DRS
and VMware Distributed Power Management (DPM). The constraints are not enforced.

n DRS evacuates virtual machines from hosts and place the hosts in maintenance mode or standby
mode regardless of the effect this might have on failover requirements.

n VMware DPM powers off hosts (place them in standby mode) even if doing so violates failover
requirements.

The VMware HCI cluster includes VMware DRS and VMware HA features, so all the above remarks
apply.

vSphere Web Services SDK Programming Guide

VMware, Inc. 250

Tasks and Scheduled Tasks 16
VMware vSphere uses an asynchronous client-server communication model. Methods that end with
_Task are non-blocking, returning a reference to a Task managed object. You can use Task and
ViewManager managed objects to monitor tasks, cancel certain tasks, and create custom tasks.

If you are using a vCenter Server system, the ScheduledTaskManager allows you to schedule your own
tasks for a one-time run or for repeated runs.

This chapter includes the following topics:

n Creating Tasks

n Accessing and Manipulating Multiple Tasks

n Understanding the ScheduledTaskManager Interface

n Using a TaskHistoryCollector

n Managing the HistoryCollector

n Sample Code Reference

Creating Tasks
Each time a vSphere server runs a method, it creates a Task and a corresponding TaskInfo data object.
Some methods run synchronously and return data as the Task completes. But methods that end with
_Task run asynchronously, and return a reference to a Task that will be created and completed as a
processor becomes available. They are created to perform the functions in a non-blocking manner.
Therefore, you must use the reference to the Task to monitor the status and results of the Task. vSphere
operations that include the suffix _Task in their names are asynchronous and return Task references.

The Task object provides information about the status of the invoked operation through its TaskInfo data
object. An instance of TaskInfo populates the info property of the Task managed object at runtime. By
monitoring properties of the TaskInfo object, a client application can take appropriate action when the
Task completes, or can handle errors if the Task does not complete successfully.

VMware, Inc. 251

When a vSphere server creates a Task, it also creates a TaskEvent object. The TaskEvent object
contains a copy of the TaskInfo object (TaskEvent.info). The TaskEvent copy of the TaskInfo object
is a snapshot of the Task state at the time of its creation. It does not change after it is created. To find the
current status of the task, use the Task.info.eventChainId property.

Session Persistence
A Task and its associated objects are session specific, so they will not persist after the session is closed.
When your client opens a session, you can only obtain information about the Task objects that your client
is authorized to view.

Cancelling a Task
To cancel a Task that is still running, call the Task.CancelTask method, passing in the managed object
reference to the Task you want to cancel, as shown in this example:

my_conn.cancelTask(taskMoRef);

You can only cancel a Task that has its cancelable property set to true and its state property set to
running. The operation that initiates the Task sets the value of cancelable when it creates the Task.
For example, a CreateVM_Task cannot be cancelled. Before attempting to cancel a running Task, you
can check the values of the cancelable property and the state property of the TaskInfo data object
associated with the Task.

Using TaskInfo to Determine Task Status
A Task object provides information about the status of the invoked operation through its TaskInfo data
object. An instance of TaskInfo populates the info property of the Task managed object at runtime. By
monitoring properties of the TaskInfo object, a client application can take appropriate action when the
Task completes, or can handle errors if the Task does not complete successfully.

The Task.info property contains a TaskInfo data object that contains information about the Task the
server returns to your client application.

When a Task is instantiated by the server, the TaskInfo.result property is initialized to Unset. Upon
successful completion of an operation, the result property is populated with the return type specific to
the operation. The result might be a data object, a reference to a managed object, or any other data
structure as defined by the operation.

For example:

1 The ClusterComputeResource.AddHost_Task method returns a Task object whose info property
contains a TaskInfo data object.

2 At the start of the operation, the result property is Unset.

3 Upon successful completion of the operation, the result property of TaskInfo contains the
managed object reference of the newly added HostSystem.

vSphere Web Services SDK Programming Guide

VMware, Inc. 252

TaskInfo Values
The following table lists some of the values obtained from a TaskInfo data object at the beginning and
the end of the Task instantiated by the CreateVM_Task method.

Property Datatype Start of Task Sample Values End of Task Sample Values

cancelable boolean false false

...

completeTime dateTime Unset "2009-02-19T22:53:35.015338Z"

progress int 36 100

queueTime dateTime "2009-02-19T22:50:39.111604Z" "2009-02-19T22:50:39.111604Z"

reason TaskReason reason reason

result anyType Unset 64

....

state TaskInfoState "running" "success"

Monitoring TaskInfo Properties
To monitor the state of a Task, use the PropertyCollector.WaitForUpdatesEx method.

You can monitor the values of TaskInfo properties, which change as the Task runs to completion. For
example, you can check the values of startTime, queueTime, completeTime, progress, result, and
state as the operation progresses. Monitor these properties in your code in a separate thread until the
Task completes, while the main line of your code continues with other activities.

For more information about monitoring properties, see Client Data Synchronization (WaitForUpdatesEx).

Your code must handle the datatype returned when the Task completes (managed object reference, data
object, and so on). In addition to success, queued, and running, an operation can enter an error state,
which your code must handle.

A Task object has a lifecycle that is independent of the TaskManager that creates it and independent of
the entity with which it is associated. It exists to convey status about an operation. You can discard the
reference to it when your application no longer needs the information.

The following example shows a code fragment that obtains values for the info property from each Task
object in the array.

Example: Displaying TaskInfoState Values for Tasks in recentTask Array

...

private void displayTasks(ObjectContent[] oContents) {

 for(int oci=0; oci<oContents.length; ++oci) {

 System.out.println("Task");

 DynamicProperty[] dps = oContents[oci].getPropSet();

 if(dps!=null) {

 String op="", name="", type="", state="", error="";

 for(int dpi=0; dpi<dps.length; ++dpi) {

vSphere Web Services SDK Programming Guide

VMware, Inc. 253

 DynamicProperty dp = dps[dpi];

 if("info.entity".equals(dp.getName())) {

 type = ((ManagedObjectReference)dp.getVal()).getType();

 } else if ("info.entityName".equals(dp.getName())) {

 name = ((String)dp.getVal());

 } else if ("info.name".equals(dp.getName())) {

 op = ((String)dp.getVal());

 } else if ("info.state".equals(dp.getName())) {

 TaskInfoState tis = (TaskInfoState)dp.getVal();

 if(TaskInfoState.error.equals(tis)) {

 state = "-Error";

 } else if(TaskInfoState.queued.equals(tis)) {

 state = "-Queued";

 } else if(TaskInfoState.running.equals(tis)) {

 state = "-Running";

 } else if(TaskInfoState.success.equals(tis)) {

 state = "-Success";

 }

 } else if ("info.cancelled".equals(dp.getName())) {

 Boolean b = (Boolean)dp.getVal();

 if(b != null && b.booleanValue()) {

 state += "-Cancelled";

 }

 }...

Sample Run of the TaskList Java Application shows output from a run of the program. See the source
code listing for TaskList.java or for TaskList.cs in the vSphere Web Services SDK package for
details.

Example: Sample Run of the TaskList Java Application

java com.vmware.samples.general.TaskList --url https://srv/sdk --username root --password *******

Started

Task

Operation AcquireCimServicesTicket

Name srv

Type HostSystem

State -Success

Error

======================

Ended TaskList

Accessing and Manipulating Multiple Tasks
Use the ViewManager’s ListView method to identify the set of Tasks you want to monitor.

You can specify a smaller and more efficient data set using one of the ViewManager views with the
Property Collector. Each view represents objects you have selected on the server. Views are more
efficient because you only need a single instance of a PropertyCollector object, instead of multiple
instances with multiple filter specifications.

vSphere Web Services SDK Programming Guide

VMware, Inc. 254

Gathering Data with a ViewManager Object
Use one of the ViewManager methods to obtain information about Task objects and references while the
session is running. The ViewManager’s ListView method allows you to customize your view with an
input object list, the ContainerView method lets you view all objects in a folder, datacenter, resource
pool, or other data container, and the InventoryView method lets you monitor the entire inventory. The
smallest view you can create will be the most efficient way to retrieve task data.

The ViewManager has the following property:

viewList – An array of view references. Each array entry is a managed object reference to a view
created by this View Manager.

See Retrieve Properties with the PropertyCollector for an example that uses the ContainerView method
to access Inventory data.

Task Monitoring Example Using the ListView Object
Use the ViewManager’s ListView method to specify the set of tasks that you want to monitor.

The following example uses the ViewManager service interface with a ListView method to access and
manipulate Task objects. This example uses the property collector to monitor tasks that are created in the
process of virtual machine cloning. This program creates two clones of the specified virtual machine and
then monitors the tasks and prints out status and reference values when the tasks have completed.

The following steps describe the procedure for creating a program that uses the ListView managed
object.

You can run the example below as a stand-alone program against your own server by copying the code
sections into a .java file, compiling it, and then using the following command line syntax:

>cloneVMTask server-name username password vm-name

Procedure

1 Import the vSphere Web Services API libraries:

import com.vmware.vim25.*;

2 Import the necessary Java (and JAX-WS connection, bindings, and SOAP) libraries:

import java.util.*;

import javax.net.ssl.HostnameVerifier;

import javax.net.ssl.HttpsURLConnection;

import javax.net.ssl.SSLSession;

import javax.xml.ws.BindingProvider;

import javax.xml.ws.soap.SOAPFaultException;

3 Create the cloneVMTask class to create cloned virtual machine Tasks on a host, so we can
demonstrate how to monitor these Tasks.

public class cloneVMTask {

vSphere Web Services SDK Programming Guide

VMware, Inc. 255

4 Declare variables for the service instance objects and methods:

// Services and methods

static ManagedObjectReference pCollector;

static ManagedObjectReference viewMgr;

static ServiceContent serviceContent;

static VimPortType methods;

/**

* getVmRef() retrieves a reference to the specified virtual machine.

*

* vmName - name of the virtual machine specified on the command line

*

* This function retrieves references to all of the virtual machines

* in the datacenter and looks for a match to the specified name.

*/

5 Create a function that retrieves references to all of the virtual machines in the datacenter and looks
for a match to the specified name. The function in this example uses getVMRef(String, vmName),
which retrieves a reference to the virtual machine that you specify on the command line (vmName)
when you run this sample. The function also initializes the vmRef variable to null.

private static ManagedObjectReference getVmRef(String vmName)

throws Exception

{

 ManagedObjectReference vmRef = null;

6 Use a container view to collect references to all virtual machines in the datacenter.

 List<String> vmList = new ArrayList<String>();

 vmList.add("VirtualMachine");

 ManagedObjectReference cViewRef =

 methods.createContainerView(viewMgr,

 serviceContent.getRootFolder(),

 vmList,

 true);

7 Create an ObjectSpec to define the beginning of the traversal. Use the setObj method to specify
that the container view is the root object for this traversal. Set the setSkip method to true to indicate
that you don't want to include the container in the results.

 ObjectSpec oSpec = new ObjectSpec();

 oSpec.setObj(cViewRef);

 oSpec.setSkip(true);

8 Create a traversal spec to select all objects in the view.

 TraversalSpec tSpec = new TraversalSpec();

 tSpec.setName("traverseEntities");

 tSpec.setPath("view");

 tSpec.setSkip(false);

 tSpec.setType("ContainerView");

vSphere Web Services SDK Programming Guide

VMware, Inc. 256

9 Add the traversal spec to the object spec.

 oSpec.getSelectSet().add(tSpec);

10 Specify the property for retrieval (virtual machine name).

 PropertySpec pSpec = new PropertySpec();

 pSpec.setType("VirtualMachine");

 pSpec.getPathSet().add("name");

11 Create a PropertyFilterSpec and add the object and property specs to it.

 PropertyFilterSpec fSpec = new PropertyFilterSpec();

 fSpec.getObjectSet().add(oSpec);

 fSpec.getPropSet().add(pSpec);

12 Create a list for the filters and add the spec to it.

 List<PropertyFilterSpec> fSpecList = new ArrayList<PropertyFilterSpec>();

 fSpecList.add(fSpec);

13 Get the data from the server.

 RetrieveOptions ro = new RetrieveOptions();

 RetrieveResult props = methods.retrievePropertiesEx(pCollector,fSpecList,ro);

14 Go through the returned list and look for a match to the specified vmName.

 if (props != null) {

 for (ObjectContent oc : props.getObjects()) {

 String vmname = null;

 List<DynamicProperty> dps = oc.getPropSet();

 if (dps != null) {

 for (DynamicProperty dp : dps) {

 vmname = (String) dp.getVal();

 // If the name of this virtual machine matches

 // the specified name, save the managed object reference.

 if (vmname.equals(vmName)) {

 vmRef = oc.getObj();

 break;

 }

 }

 if (vmRef != null) { break; }

 }

 }

 }

 if (vmRef == null) {

 System.out.println("Specified Virtual Machine not found.");

 throw new Exception();

 }

 return vmRef;

}

vSphere Web Services SDK Programming Guide

VMware, Inc. 257

15 Get the folder that contains the specified virtual machine (VirtualMachine.parent)

private static ManagedObjectReference getVMParent(ManagedObjectReference vmRef)

throws Exception {

16 Create an Object Spec to define the property collection. Use the setObj method to specify that the
vmRef is the root object for this traversal. Set the setSkip method to true to indicate that you don't
want to include the virtual machine in the results.

 // don't include the virtual machine in the results

 ObjectSpec oSpec = new ObjectSpec();

 oSpec.setObj(vmRef);

 oSpec.setSkip(false);

17 Specify the property for retrieval (virtual machine parent).

 PropertySpec pSpec = new PropertySpec();

 pSpec.setType("VirtualMachine");

 pSpec.getPathSet().add("parent");

18 Create a PropertyFilterSpec and add the object and property specs to it.

 PropertyFilterSpec fSpec = new PropertyFilterSpec();

 fSpec.getObjectSet().add(oSpec);

 fSpec.getPropSet().add(pSpec);

19 Create a list for the filters and add the property filter spec to it.

 List<PropertyFilterSpec> fSpecList = new ArrayList<PropertyFilterSpec>();

 fSpecList.add(fSpec);

20 Get the data from the server.

 RetrieveOptions ro = new RetrieveOptions();

 RetrieveResult props = methods.retrievePropertiesEx(pCollector,fSpecList,ro);

21 Get the parent folder reference.

 ManagedObjectReference folderRef = null;

 if (props != null) {

 for (ObjectContent oc : props.getObjects()) {

 List<DynamicProperty> dps = oc.getPropSet();

 if (dps != null) {

 for (DynamicProperty dp : dps) {

 folderRef = (ManagedObjectReference) dp.getVal();

 }

 }

 }

 }

 if (folderRef == null) {

 System.out.println("Folder not found.");

vSphere Web Services SDK Programming Guide

VMware, Inc. 258

 throw new Exception();

 }

 return folderRef;

}

Now that we have the reference information for the virtual machine that you specified on the
command line (vmRef) and a reference for the parent directory (folderRef), we are ready to create
the clone virtual machines.

22 To create clones, use the cloneVM method and pass in the vmRef that we retrieved previously.

private static void cloneVM(ManagedObjectReference vmRef) throws Exception {

23 After you have created the clone managed object, create a clone specification. Use default values
whenever possible.

 VirtualMachineCloneSpec cloneSpec = new VirtualMachineCloneSpec();

 VirtualMachineRelocateSpec vmrs = new VirtualMachineRelocateSpec();

 cloneSpec.setLocation(vmrs);

 cloneSpec.setPowerOn(true);

 cloneSpec.setTemplate(false);

24 Get the destination folder for the clone virtual machines (VirtualMachine.parent). The clones will be
created in the same folder that contains the specified virtual machine (vmName).

 ManagedObjectReference folder = getVMParent(vmRef);

25 Create two clone virtual machines.

 ManagedObjectReference cloneTask = methods.cloneVMTask(vmRef,

 folder,

 "clone__1",

 cloneSpec);

 ManagedObjectReference cloneTask2 = methods.cloneVMTask(vmRef,

 folder,

 "clone__2",

 cloneSpec);

26 Create a list view for the clone tasks.

 List<ManagedObjectReference> taskList = new ArrayList<ManagedObjectReference>();

 taskList.add(cloneTask);

 taskList.add(cloneTask2);

 ManagedObjectReference cloneTaskList = methods.createListView(viewMgr,

 taskList);

Next we will set up a property filter for WaitForUpdatesEx. This includes creating an object spec, a
traversal spec, a property spec, a filter spec, and finally a property filter. The next six steps will
describe these procedures.

vSphere Web Services SDK Programming Guide

VMware, Inc. 259

27 Create an object spec to start the traversal.

 ObjectSpec oSpec = new ObjectSpec();

 oSpec.setObj(cloneTaskList);

 oSpec.setSkip(true);

28 Create a traversal spec to select the list of tasks in the view.

 TraversalSpec tSpec = new TraversalSpec();

 tSpec.setName("traverseTasks");

 tSpec.setPath("view");

 tSpec.setSkip(false);

 tSpec.setType("ListView");

29 Add the traversal spec to the object spec.

 oSpec.getSelectSet().add(tSpec);

30 Create property spec for Task.info.state and Task.info.result.

 PropertySpec pSpec = new PropertySpec();

 pSpec.setType("Task");

 pSpec.setAll(false);

 pSpec.getPathSet().add("info.state");

 pSpec.getPathSet().add("info.result");

31 Create a filter spec.

 PropertyFilterSpec fSpec = new PropertyFilterSpec();

 fSpec.getObjectSet().add(oSpec);

 fSpec.getPropSet().add(pSpec);

32 Create the filter.

 ManagedObjectReference pFilter = methods.createFilter(pCollector,

 fSpec,

 true);

In the next section, we use the waitForUpdatesEx method to look for a change in
cloneTask.info.state and cloneTask.info.result. When the state is “success”,
cloneTask.info.result is the managed object reference of the clone. Note that the order of
property retrieval is not guaranteed, and it may take more than one call to waitForUpdatesEx to
retrieve both properties for a task.

This code does not set a time-out (WaitOptions.maxWaitSeconds is unset), so after it has retrieved
all of the property values, waitForUpdatesEx will block the thread, waiting for the TCP connection
with the vSphere Server to time-out.

How a client application handles the session depends on the particular context. (The client can call
WaitForUpdatesEx from its own thread, look for specific updates and then stop calling the method.)

vSphere Web Services SDK Programming Guide

VMware, Inc. 260

For more information about WaitOptions and the waitForUpdatesEx method, see Client Data
Synchronization (WaitForUpdatesEx).

33 Initialize wait loop (?)

 String version = "";

 Boolean wait = true;

 WaitOptions waitOptions = new WaitOptions();

 while (wait) {

34 Call WaitForUpdatesEx.

 UpdateSet uSet = methods.waitForUpdatesEx(pCollector,

 version,

 waitOptions);

 if (uSet == null) {

 wait = false;

 } else {

35 Get the version for subsequent calls to WaitForUpdatesEx.

 version = uSet.getVersion();

36 Get the list of property updates.

 List<PropertyFilterUpdate> pfUpdates = uSet.getFilterSet();

 for (PropertyFilterUpdate pfu : pfUpdates) {

37 Get the list of object updates produced by the filter.

 List<ObjectUpdate> oUpdates = pfu.getObjectSet();

 for (ObjectUpdate ou : oUpdates) {

38 Look for ObjectUpdate.kind=MODIFY (property modified).

 if (ou.getKind() == ObjectUpdateKind.MODIFY) {

 String name = "";

 TaskInfoState state;

 ManagedObjectReference cloneRef = new ManagedObjectReference();

39 Get the changed data.

 List<PropertyChange> pChanges = ou.getChangeSet();

40 Retrieve the name of the property

 for (PropertyChange pc : pChanges) {

 name = pc.getName();

 //The task property names are info.state or info.result;

vSphere Web Services SDK Programming Guide

VMware, Inc. 261

 //pc.val is an xsd:anyType:

 //-- for info.state, it is the state value

 //-- for info.result, it is the clone reference

 if (name.equals("info.state")) {

 state = (TaskInfoState)pc.getVal();

 System.out.println("State is "+state.value());

 } else if (name.equals("info.result")) {

 cloneRef = (ManagedObjectReference)pc.getVal();

 System.out.println("Clone reference is "+cloneRef.getValue());

 }

 }

Authentication is handled using a TrustManager and supplying a host name verifier method. (The
host name verifier is declared in the main function.)

For the purposes of this example, this TrustManager implementation will accept all certificates. This is
only appropriate for a development environment. Production code should implement certificate
support.

 private static class TrustAllTrustManager implements javax.net.ssl.TrustManager,

 javax.net.ssl.X509TrustManager {

 public java.security.cert.X509Certificate[] getAcceptedIssuers() {

 return null;

 }

 public boolean isServerTrusted(

 java.security.cert.X509Certificate[] certs) {

 return true;

 }

 public boolean isClientTrusted(

 java.security.cert.X509Certificate[] certs) {

 return true;

 }

 public void checkServerTrusted(java.security.cert.X509Certificate[] certs,

 String authType)

 throws java.security.cert.CertificateException {

 return;

 }

 public void checkClientTrusted(java.security.cert.X509Certificate[] certs,

 String authType)

 throws java.security.cert.CertificateException {

 return;

 }

 }

Now we are set to retrieve the task information, so we implement the main method.

 // cloneVMTask(server, user, password, virtual-machine)

 public static void main(String [] args) throws Exception {

vSphere Web Services SDK Programming Guide

VMware, Inc. 262

41 We create variables to hold the values passed in from the command line.

 String serverName = args[0];

 String userName = args[1];

 String password = args[2];

 String vmName = args[3];

 String url = "https://"+serverName+"/sdk/vimService";

42 Add variables for access to the API methods and services.

 // -- ManagedObjectReference for the ServiceInstance on the Server

 // -- VimService for access to the vSphere Web service

 // -- VimPortType for access to methods

 // -- ServiceContent for access to managed object services

 ManagedObjectReference SVC_INST_REF = new ManagedObjectReference();

 VimService vimService;

43 Declare a host name verifier that will automatically enable the connection. The host name verifier is
invoked during the SSL handshake.

 HostnameVerifier hv = new HostnameVerifier() {

 public boolean verify(String urlHostName, SSLSession session) {

 return true;

 }

 };

44 Create the trust manager.

 javax.net.ssl.TrustManager[] trustAllCerts = new javax.net.ssl.TrustManager[1];

 javax.net.ssl.TrustManager tm = new TrustAllTrustManager();

 trustAllCerts[0] = tm;

 // Create the SSL context

 javax.net.ssl.SSLContext sc = javax.net.ssl.SSLContext.getInstance("SSL");

 // Create the session context

 javax.net.ssl.SSLSessionContext sslsc = sc.getServerSessionContext();

 // Initialize the contexts; the session context takes the trust manager.

 sslsc.setSessionTimeout(0);

 sc.init(null, trustAllCerts, null);

 // Use the default socket factory to create the socket for the secure connection

 javax.net.ssl.HttpsURLConnection.setDefaultSSLSocketFactory(sc.getSocketFactory());

45 Set the default host name verifier to enable the connection.

 HttpsURLConnection.setDefaultHostnameVerifier(hv);

46 Set up the manufactured managed object reference for the ServiceInstance

 SVC_INST_REF.setType("ServiceInstance");

 SVC_INST_REF.setValue("ServiceInstance");

vSphere Web Services SDK Programming Guide

VMware, Inc. 263

47 Create a VimService object to obtain a VimPort binding provider. The BindingProvider provides
access to the protocol fields in request/response messages. Retrieve the request context which will
be used for processing message requests.

 vimService = new VimService();

 methods = vimService.getVimPort();

 Map<String, Object> ctxt = ((BindingProvider) methods).getRequestContext();

48 Store the Server URL in the request context and specify true to maintain the connection between the
client and server. The client API will include the Server's HTTP cookie in its requests to maintain the
session. If you do not set this to true, the Server will start a new session with each request.

 ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, url);

 ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

49 Retrieve the ServiceContent object and login.

 serviceContent = methods.retrieveServiceContent(SVC_INST_REF);

 methods.login(serviceContent.getSessionManager(),

 userName,

 password,

 null);

50 Get references to the property collector and the view manager.

 pCollector = serviceContent.getPropertyCollector();

 viewMgr = serviceContent.getViewManager();

51 Get a reference to the specified virtual machine.

 ManagedObjectReference vmRef = getVmRef(vmName);

52 Clone the virtual machine and wait for the result.

 cloneVM(vmRef);

53 Close the connection.

 methods.logout(serviceContent.getSessionManager());

 }

}

Note For general task monitoring, it is a best practice to use a ViewManager to monitor specific
tasks. See the API Reference for more information about using views.

Gathering Data with a TaskManager Interface
TaskManager is a service interface that you can also use for accessing and manipulating Task objects.
This approach uses a PropertyCollector that includes the recentTask property of the TaskManager

vSphere Web Services SDK Programming Guide

VMware, Inc. 264

managed object that corresponds to the Recent Tasks pane at the bottom of the vSphere client User
Interface.

You can use the following TaskManager properties in your client application.

n description – TaskDescription object that includes a methodInfo property. methodInfo
contains a key-based array that TaskManager uses to populate the value of a TaskInfo data object’s
descriptionId property with the name of the operation. Examples of two elements from this key-
based array are methodInfo["Folder.createVm"] and
methodInfo["Folder.createClusterEx"].

n recentTask – Array of Task managed object references that are queued to run, running, or
completed within the past 10 minutes. On ESX/ESXi hosts that are managed by a vCenter Server, a
completed task must also be one of the 200 most recent tasks to be included in the array. A vSphere
Client connected to a vSphere Server displays queued, running, and completed tasks in the Recent
Tasks pane.

In addition to these properties, TaskManager has the following methods:

n CreateTask – Used by other methods to create a custom Task object. Developers creating
extensions can use this method to create custom Task objects.

n CreateCollectorForTasks – Creates an object that contains all tasks from the vCenter Server
database that meet specific criteria. You cannot run this method against an ESX/ESXi system. See
Using a TaskHistoryCollector.

Figure 16-1. TaskManager and Task Managed Objects shows a UML class diagram for TaskManager and
associated objects.

Figure 16-1. TaskManager and Task Managed Objects

Examining Recent Tasks with TaskManager
To obtain the list of recent tasks, use a PropertyCollector to obtain references to the TaskManager
and to all Task objects from the recentTask property of the TaskManager.

vSphere Web Services SDK Programming Guide

VMware, Inc. 265

The following example shows an excerpt from the TaskList.java sample that creates the ObjectSpec,
PropertySpec, and a TraversalSpec to obtain references to all Task objects on the server from the
TaskList. See also Chapter 5 Property Collector.

Example: PropertyFilterSpec Definition to Obtain recentTask Property Values

private PropertyFilterSpec[] createPFSForRecentTasks(ManagedObjectReference taskManagerRef) {

 PropertySpec pSpec = new PropertySpec();

 pSpec.setAll(Boolean.FALSE);

 pSpec.setType("Task");

 pSpec.setPathSet(new String[] {"info.entity", "info.entityName", "info.name",

 "info.state", "info.cancelled", "info.error"});

 ObjectSpec oSpec = new ObjectSpec();

 oSpec.setObj(taskManagerRef);

 oSpec.setSkip(Boolean.FALSE);

 TraversalSpec tSpec = new TraversalSpec();

 tSpec.setType("TaskManager");

 tSpec.setPath("recentTask");

 tSpec.setSkip(Boolean.FALSE);

 oSpec.setSelectSet(new SelectionSpec[]{tSpec});

 PropertyFilterSpec pfSpec = new PropertyFilterSpec();

 pfSpec.setPropSet(new PropertySpec[]{pSpec});

 pfSpec.setObjectSet(new ObjectSpec[]{oSpec});

 return new PropertyFilterSpec[]{pfSpec};

}

For ESXi hosts managed by vCenter Server, use a TaskHistoryCollector. See Using a
TaskHistoryCollector.

Understanding the ScheduledTaskManager Interface
You can use the ScheduledTaskManager to schedule tasks. In the vSphere Client, scheduled tasks
display in the Task & Events tab.

You can define actions to occur on vCenter Server at different times:

n When a vCenter Server system starts up operations, such as after a reboot

n At a specific time and day

n At hourly, daily, weekly, or monthly intervals

You can schedule scripts to be run or methods to be invoked on the server. You apply the action to an
entity in the inventory, such as a virtual machine or a host.

You can perform the following actions with ScheduledTaskManager.

n Retrieve scheduled tasks for a specific managed entity by calling the
ScheduledTaskManager.RetrieveEntityScheduledTask method.

n Create a scheduled task by calling the ScheduledTaskManager.CreateScheduledTask method.
See Scheduling Tasks.

vSphere Web Services SDK Programming Guide

VMware, Inc. 266

Figure 16-2. ScheduledTaskManager and ScheduledTask Managed Objects shows the
ScheduledTaskManager service interface and associated data objects.

Figure 16-2. ScheduledTaskManager and ScheduledTask Managed Objects

The ScheduledTaskManager.scheduledTask property contains an array of the ScheduledTask objects
configured for the server. If you have no actions scheduled, this property is empty. For any
ScheduledTask objects in this array, you can use the info property of the ScheduledTask object to
obtain information about the status of the scheduled action. Information includes the task’s progress,
state, previous and next runtimes, and other details contained in the ScheduledTaskInfo data object.

If the action specified for a ScheduledTask creates its own Task (such as with any of the asynchronous
operations), the managed object reference to the Task populates the activeTask property of
ScheduledTaskInfo.

Scheduling Tasks
You create a ScheduledTask by invoking the ScheduledTaskManager.CreateScheduledTask method.
When you invoke the method, you include a ScheduledTaskSpec object that defines the schedule and
specifies the action to take at the specified time. A scheduled action applies to an object based on these
rules:

n If you specify a container object as the entity for the scheduled action, the schedule applies to all
entities that are direct descendants of the container. You can set a ScheduledTask at the Folder,
Datacenter, or VirtualApp level and have the scheduled action apply to all entities associated with
the Folder, Datacenter, or VirtualApp.

n If you specify a node object in the inventory, such as a virtual machine, the action applies only to the
virtual machine.

vSphere Web Services SDK Programming Guide

VMware, Inc. 267

Figure 16-3. Using ScheduledTaskManager to Create a ScheduledTask

Defining the Schedule and Action
The ScheduledTaskSpec data object contains all the information to create a ScheduledTask.

n action – Action to take when the ScheduledTask runs. Specify an Action data object, which is an
abstract type that is extended by several specific action types. The Action data objects are also used
by the Alarm infrastructure. See Specifying Alarm Actions.

n notification – Specifies the email address for sending notification messages about the
ScheduledTask. To use notifications, the vCenter Server system must have an SMTP email gateway
configured. By default, notification is set to an empty string.

n scheduler – Specifies the time, frequency, and other details of the schedule. The TaskScheduler
data object is the base type for several specific schedule objects. See Scheduling Recurring
Operations.

Scheduling Recurring Operations
You can specify the times, days, or frequency of scheduled tasks by creating the appropriate instances of
TaskScheduler subtypes and setting the scheduler property of the ScheduledTaskSpec.

The TaskScheduler base type has two properties:

n activeTime is the time at which the action should occur. If you leave this property unset, it defaults to
the time when that specification for the scheduled task was submitted to the server.

n expireTime is the time after which the scheduled action should not occur. By default, this property is
unset, so the scheduled task does not expire.

The following table provides some usage information about the TaskScheduler subtypes. The examples
in the table are Java code fragments.

vSphere Web Services SDK Programming Guide

VMware, Inc. 268

TaskScheduler Subtype Usage

AfterStartupTaskScheduler Schedule a task to start as soon as the vCenter Server system is started, or at a defined
time after startup. The value must be zero (task triggered at startup) or higher.

Example: Schedule a task to run 10 minutes after vCenter Server startup.

AfterStartupTaskScheduler asts =
 new AfterStartupTaskScheduler();

asts.setMinute(10);

OnceTaskScheduler Schedule an action to run once only at the specified date and time.

Example: Schedule a task to run 30 minutes after the schedule is submitted to the server.

Calendar runTime = Calendar.getInstance();
runtime.add(Calendar.MINUTE, 30);
OnceTaskScheduler ots = new OnceTaskScheduler();
ots.setRunAt(runTime);

RecurrentTaskScheduler Base type for HourlyTaskScheduler, DailyTaskScheduler, WeeklyTaskScheduler,
and MonthlyTaskScheduler objects. Set the interval property to define how frequently a
task should run. For example, setting the interval property of an hourly task to 4 causes the
task to run every 4 hours.

HourlyTaskScheduler Schedule a task to run once every hour (or every specified number of hours) at a specified
time. Set the interval property to run the task after a specified number of hours.

Example: Schedule a task to run every 4 hours at half-past the hour.

HourlyTaskScheduler hts =
 new HourlyTaskScheduler();
hts.setMinute(30);
hts.setInterval(4);

DailyTaskScheduler Schedule a task to run daily or a specified number of days at a specified time (hour and
minutes). Use in conjunction with the interval property to run the task after a specified
number of days.

Example: Schedule a task to run daily at 9:30 am (EST).

DailyTaskScheduler dts =
 new DailyTaskScheduler();
dts.setMinute(30);
dts.setHour(14);

WeeklyTaskScheduler Schedule a task to run every week (or every specified number of weeks) on a specified
day (or days) at a specific time. The hours and minutes are set as UTC values. At least
one of the boolean values must be set to true. You can also set the interval property to
run the task after a specified number of weeks.

Example: Schedule a task to run every Tuesday and Sunday at 30 minutes past midnight.

vSphere Web Services SDK Programming Guide

VMware, Inc. 269

TaskScheduler Subtype Usage

WeeklyTaskScheduler wts =
 new WeeklyTaskScheduler();
wts.setMonday(true);
wts.setTuesday(true);
...
wts.setSaturday(false);
wts.setSunday(true);
dts.setMinute(30);
dts.setHour(4);

MonthlyByDayTaskScheduler Schedule a task to run every month (or every specified number of months) on a specified
day at a specified time (hour and minutes). You can also set the interval property to run the
task after a specified number of months.

Example: Schedule a task to run every 3 months (on the last day of the month) at 12:30
p.m.

MonthlyByDayTaskScheduler mbdts =
 new MonthlyByDayTaskScheduler();
mbdts.setDay(31);
mbdts.setInterval(3);
mbdts.setMinute(30);
mbdts.setHour(14);

MonthlyByWeekdayTaskScheduler Schedule a task to run every month (or every specified number of months) on a specified
week, weekday, and time (hour: minutes). You can also set the interval property to run the
task after a specified number of months.

Example: Schedule a task to run on the last Wednesday of each month at 12:30 a.m.

MonthlyByWeekdayTaskScheduler mbwts =
 new MonthlyByWeekdayTaskScheduler();
mbwts.setOffset(WeekOfMonth.last);
mbwts.setWeekday(DayOfWeek.wednesday);
mbwts.setHour(4);
mbwts.setMinute(30);

The hour and minute properties of all objects that extend the RecurrentTaskSchedule data object are
specified in Coordinated Universal Time (UTC) values rather than the local time of the server. When you
define the schedule, convert your local time to a UTC value.

The following code fragment defines a ScheduledTask that powers on virtual machines daily at 4:15
a.m., if the server local time is in the Pacific Standard Time (PST) time zone. For a server in the Eastern
European Summer Time (EEST) zone, the setting is read by the system as 3:15 pm.

Example: Scheduled Task for Powering-on Virtual Machines

...

// Set the schedule using the DailyTaskScheduler subtype.

DailyTaskScheduler dTScheduler = new DailyTaskScheduler();

dTScheduler.setHour(12);

dTScheduler.setMinute(15);

ScheduledTaskSpec tSpec = new ScheduledTaskSpec();

tSpec.setDescription("Start virtual machine as per schedule.");

tSpec.setEnabled(Boolean=TRUE);

vSphere Web Services SDK Programming Guide

VMware, Inc. 270

tSpec.setName("Power On Virtual Machine");

tSpec.setAction(ma);

tSpec.setScheduler(dTScheduler);

tSpec.setNotification("admin@vmware.com");

my_conn.createScheduledTask(_sic.getScheduledTaskManager, vmRef, tSpec);

...

Cancelling a Scheduled Task
You can cancel a scheduled task in several ways.

n To cancel the current run of a scheduled task, call ScheduledTask.RemoveScheduledTask. This
method does not cancel subsequent runs of the ScheduledTask.

n To cancel an upcoming run of a ScheduledTask, call ScheduledTask.ReconfigureScheduledTask
with a new ScheduledTaskSpec data object containing the new specifications for the schedule.

n To cancel a ScheduledTask that spawns a second task, create a PropertyCollector to obtain the
reference to the Tasks and call its CancelTask method. The task must be cancellable.

Using a TaskHistoryCollector
A TaskHistoryCollector lets you gather information about tasks. You create a
TaskHistoryCollector using the TaskManager.CreateCollectorForTasks method.

To create a TaskHistoryCollector

1 Identify the type of Task objects that you want to collect, and create an instance of a
TaskFilterSpec data object that specifies your filter criteria.

The TaskFilterSpec includes an taskTypeId property, which you use to limit the set of collected
task objects to specific types. You can also provide a time range in the TaskFilterSpec by defining
an TaskFilterSpecByTime data object for its time property. See the vSphere API Reference.

2 Obtain the managed object reference to the TaskManager on your server instance.

3 Submit the filter and the reference to the server in the CreateTaskHistoryCollector method.
The server returns a reference to a TaskHistoryCollector object.

After a HistoryCollector has been created, the server appends new objects that meet the filter criteria
to the collection as they occur. The system appends the new object to the collection by placing it in the
first position of the latestPage and removes the oldest object from the collection. The latestPage
property of the TaskHistoryCollector object has a property that consists of the 1000 most recent
objects in the collection. Use a PropertyCollector to obtain the items from the latestPage property.

A HistoryCollector exists only for the duration of the session that instantiated it. Call the
HistoryCollector.DestroyCollector method to delete the collector before the session ends.

vSphere Web Services SDK Programming Guide

VMware, Inc. 271

Creating a TaskHistoryCollector Filter
When you create a TaskHistoryCollector, you can define filters. For example, rather than returning all
Task objects associated with virtual machines, you might create a filter to collect only Task objects
associated with virtual machines that were executed by the backup-administrator between 2:00 and 4:00
a.m. on a specific date.

The TaskFilterSpec object allows you to specify the collection criteria. Most of the properties are
optional and can be submitted as null values. The TaskFilterSpec lets you collect tasks based on user
name, entity type, time, and state of the Task.

Managing the HistoryCollector
The HistoryCollector managed object provides operations for managing the life-cycle and scrollable
view of a collection.

n DestroyCollector – A HistoryCollector exists only for the current session. Invoke the
DestroyCollector operation to explicitly destroy the collector before the session ends.

n ResetCollector – Adjusts the starting position for the subset of objects from the collector to the
object immediately preceding the current latestPage.

n RewindCollector – Positions the latestPage to the oldest item in the array. When a
HistoryCollector is created, this is the default location.

n SetCollectorPageSize – Accepts an integer parameter to set the size of the latestPage property
of a HistoryCollector. The default size of a HistoryCollector is an array that consists of at most
1000 objects of the appropriate type (Task, Event). The array is sorted by creation date and time of
the objects.

Sample Code Reference
The following table lists the sample applications included with the vSphere SDK that demonstrate how to
use some of the managed objects discussed in this chapter.

Java C#

(SDK\vsphere-ws\java\JAXWS\samples\com
\vmware\host)

(SDK\vsphere-ws\dotnet\cs\samples\)

AddVirtualNic.java AddVirtualNic\AddVirtualNic.cs

AddVirtualNic\AddVirtualNic.csproj

AddVirtualNic\AddVirtualNic2008.csproj

AddVirtualNic\AddVirtualNic2010.csproj

AddVirtualSwitch.java AddVirtualSwitch\AddVirtualSwitch.cs

AddVirtualSwitch\AddVirtualSwitch.csproj

AddVirtualSwitch\AddVirtualSwitch2008.csproj

AddVirtualSwitch\AddVirtualSwitch2010.csproj

vSphere Web Services SDK Programming Guide

VMware, Inc. 272

Java C#

AddVirtualSwitchPortGroup.java AddVirtualSwitchPortGroup\AddVirtualSwitchPortGroup.cs

AddVirtualSwitchPortGroup\AddVirtualSwitchPortGroup.csproj

AddVirtualSwitchPortGroup\AddVirtualSwitchPortGroup2008.csproj

AddVirtualSwitchPortGroup\AddVirtualSwitchPortGroup2010.csproj

RemoveVirtualNic.java RemoveVirtualNic\RemoveVirtualNic.cs

RemoveVirtualNic\RemoveVirtualNic.csproj

RemoveVirtualNic\RemoveVirtualNic2008.csproj

RemoveVirtualNic\RemoveVirtualNic2010.csproj

RemoveVirtualSwitch.java RemoveVirtualSwitch\RemoveVirtualSwitch.cs

RemoveVirtualSwitch\RemoveVirtualSwitch.csproj

RemoveVirtualSwitch\RemoveVirtualSwitch2008.csproj

RemoveVirtualSwitch\RemoveVirtualSwitch2010.csproj

RemoveVirtualSwitchPortGroup.java RemoveVirtualSwitchPortGroup\RemoveVirtualSwitchPortGroup.cs

RemoveVirtualSwitchPortGroup

\RemoveVirtualSwitchPortGroup.csproj

RemoveVirtualSwitchPortGroup

\RemoveVirtualSwitchPortGroup2008.csproj

RemoveVirtualSwitchPortGroup

\RemoveVirtualSwitchPortGroup2010.csproj

vSphere Web Services SDK Programming Guide

VMware, Inc. 273

Events and Alarms 17
Events are sent by vSphere to convey information about things that happen in the system. You can
monitor events directly or use an EventHistoryCollector to retrieve events from a certain period.

Alarms are sent by vSphere to alert users to problems. You can also create your own alarm to monitor the
system and set up follow-up actions. Alarm setup includes specifying the trigger condition and defining
the action that should result.

This chapter includes the following topics:

n Event and Alarm Management Objects

n Understanding Events

n Using an EventHistoryCollector

n Using Alarms

n Defining Alarms Using the AlarmSpec Data Object

n Sample Code Reference

Event and Alarm Management Objects
EventManager is the service interface for working with the event infrastructure.

Event subtypes define the events that the system generates. See Event Data Objects and Creating
Custom Events.

EventHistoryCollector allows you to monitor events. You can create a filter to limit the number of
events your code retrieves. You can monitor both system events and your own events. See Using an
EventHistoryCollector.

The AlarmManager is the service interface for creating, setting, and managing alarms. You create an
alarm, specifying trigger conditions and the action to take. When the conditions defined for the Alarm
occur on the system, the Action specified for the alarm starts. The alarm also generates an Event that
you can retrieve with an EventHistoryCollector.

VMware, Inc. 274

Understanding Events
An Event is a data object type that contains information about state changes of managed entities and
other objects on the server. Events include user actions and system actions that occur on datacenters,
datastores, clusters, hosts, resource pools, virtual machines, networks, and distributed virtual switches.
For example, these common system activities generate one or more Event data objects:

n Powering a virtual machine on or off

n Creating a virtual machine

n Installing VMware Tools on the guest OS of a virtual machine

n Reconfiguring a compute resource

n Adding a newly configured ESXi system to a vCenter Server system

In the vSphere Client, information from Event objects generated on a standalone ESXi hosts displays in
the Events tab. For managed hosts, information from Event objects displays in the Tasks & Events tab.

Persistence of Event objects depends on the system setup.

n Standalone ESXi hosts – Event objects are not persistent. Events are retained only for as long as the
host system’s local memory can contain them. Rebooting a standalone ESXi host or powering off a
virtual machine removes Event objects from local memory.

A standalone ESXi host might keep about 15 minutes worth of Event data, but this can vary
depending on the processing load of the host, the number of virtual machines, and other factors.

n Managed ESXi systems. Event objects are persistent. Managed ESXi systems send Event data to
the vCenter Server system that manages them, and the vCenter Server system stores the information
its database.

You can use the event sample applications included in the SDK package with either managed or
standalone ESXi systems and with vCenter Server systems.

Using an EventHistoryCollector, you can obtain information about these objects as they are being
collected on a specific ESXi system, or from a specific historical period from the database. See Using an
EventHistoryCollector.

Managing Events with EventManager
EventManager is the service interface for working with the event infrastructure.

Figure 17-1. EventManager Managed Object and Associated Objects shows EventManager and related
objects. An EventManager has these properties:

n A description property, defined as an instance of an EventDescription data object, which
contains an event category and other information.

n A latestEvent property that contains the most recent Event data object in memory.

n A maxCollector property that specifies the number of EventHistoryCollector objects per client
session that can be created. This value is set by the vCenter Server system.

vSphere Web Services SDK Programming Guide

VMware, Inc. 275

Figure 17-1. EventManager Managed Object and Associated Objects

Event Data Objects
Event subtypes define the events that the system generates.

Figure 17-2. Event Data Object and Sample Subtypes shows only a few of the subtypes that extend the
Event data object. For example, TaskEvent inherits all Event properties and includes an info property
that is an instance of a TaskInfo object (see Monitoring TaskInfo Properties).

The following event objects are commonly generated by a console-style client application:

com.vmware.vim.VmPoweredOnEvent

com.vmware.vim.VmStartingEvent

com.vmware.vim.VmReconfiguredEvent

com.vmware.vim.VmCreatedEvent

com.vmware.vim.VmBeingCreatedEvent

vSphere Web Services SDK Programming Guide

VMware, Inc. 276

Figure 17-2. Event Data Object and Sample Subtypes

Formatting Event Message Content
When displayed at the console, Event data objects are not formatted and do not provide context
information. You can format an Event message using the predefined string in the
Event.fullFormattedMessage property.

You can also format an Event message based on contextual information. At runtime, the Event data
object is populated with values that contain information associated with the source of an event, for
example, the Event data object’s computeResource, datacenter, ds, dvs, host, net, and vm
properties.

You can use the properties of an Event object with the information in the
EventDescriptionEventDetail in EventManager.description.eventInfo to format event
messages.

Creating Custom Events
The Web Services API allows you to create custom Event objects that convey information specific to your
application. There are two types of custom events, the user log event and the extended event.

Creating User Log Events
The EventManager.LogUserEvent method allows you to create user log Event objects. You can
associate your custom Event with any managed entity. User log events are useful for marking actions or
status associated with the objects your application deals with.

The following steps show how to create a user log Event.

vSphere Web Services SDK Programming Guide

VMware, Inc. 277

Procedure

1 Obtain the managed object reference to the EventManager.

..

ManagedObjectReference _svcRef = new ManagedObjectReference();

ServiceContent _sic = my_conn.retrieveServiceContent(_svcRef);

ManagedObjectReference eMgrRef = _sic.getEventManager();

...

2 Obtain the managed object reference to the entity with which you are associating the Event.

For example, suppose you have a reference to a virtual machine (myVMRef) and you want to log a
message to record the fact that a virus check completed. You want to use myVMRef as a parameter to
the LogUserEvent method in the next step.

3 Call the LogUserEvent method, passing in the EventManager and the Event reference and a string
consisting of the Event message for the msg parameter of the operation.

LogUserEvent(eMgrRef, myVMRef, "Completed virus check at 1:05 AM on Sunday December 21.");

Results

User-defined Event objects display in the vSphere Client among the other events on the system, with the
prefix User logged event: followed by the text submitted in your msg parameter. In other client
applications, such as in the console-based Event sample applications, custom events display as
com.vmware.vim.GeneralUserEvent objects.

Creating Extended Events
The EventManager.EventEx method allows you to create an event that contains an arbitrary dictionary
of key-value pairs. This kind of custom event allows greater flexibility to store application data that is not
associated with a managed entity, and is not limited to a single string value. The custom event structure
also contains more sophisticated metadata than user log events.

The following steps show pseudocode examples of the operations you need to do in your client code.

Procedure

1 Obtain the managed object reference to the EventManager.

si = connection.retrieveServiceContent(svc_ref);

em = si.eventManager;

2 Choose a severity for the custom event.

severity = EventEventSeverity.warning;

3 Create a local copy of an extended event with metadata.

e = vim.event.EventEx(severity,

 eventTypeId=”com.example.events.Total_System_Backup”,

vSphere Web Services SDK Programming Guide

VMware, Inc. 278

 createdTime = si.CurrentTime(),

 chainId=0,

 key=0,

 userName=local_account_name);

4 Create a set of key-value pairs to store the information you want to associate with the event.

arg_list = {};

arg1 = vmodl.KeyAnyValue(key=”reason”, value=”Upcoming governance audit”);

arg2 = vmodl.KeyAnyValue(key=”datacenter”, value=”Washington South”);

arg3 = vmodl.KeyAnyValue(key=”organization”, value=”IT Cloud Services”);

arg_list.append(arg1, arg2, arg3);

5 Add the set of key-value pairs to the event object.

e.arguments = arg_list;

6 Use the Event Manager to post the event to the server.

em.PostEvent(e);

Using an EventHistoryCollector
An EventHistoryCollector lets you gather information about events that the server has generated.
You create an EventHistoryCollector using the EventManager.CreateCollectorForEvents
method.

The following steps show how to create an EventHistoryCollector.

Procedure

1 Identify the type of Event objects that you want to collect, and create an instance of an
EventFilterSpec data object that specifies your filter criteria. See Creating an EventHistoryCollector
Filter.

The EventFilterSpec includes an eventTypeId property, which you use to limit the set of collected
event objects to specific types. You can also provide a time range in the EventFilterSpec, by
defining an EventFilterSpecByTime data object for its time property. See the vSphere API
Reference for details.

2 Obtain the managed object reference to the EventManager on your server instance.

3 Submit the filter and the reference to the server in the CreateEventHistoryCollector
operation. The server returns a reference to an EventHistoryCollector object.

vSphere Web Services SDK Programming Guide

VMware, Inc. 279

Results

After you have created the HistoryCollector, the server appends new objects that meet the filter
criteria to the collection as they occur. The system appends the new object to the collection by placing it
in the first position of the latestPage and it removes the oldest object from the collection. The
latestPage property of the EventHistoryCollector object has a property that consists of the 1000
most recent objects in the collection. Use a PropertyCollector to obtain the items from the
latestPage property.

A HistoryCollector exists only for the duration of the session that instantiated it. You invoke the
DestroyCollector operation to explicitly eliminate the collector before the session ends.

Creating an EventHistoryCollector Filter
When you create an EventHistoryCollector, you can define filters. For example, rather than returning
all Event objects associated with virtual machines, you might create a filter to collect only those Event
objects associated with virtual machines that were executed by the backup-administrator between 2:00
and 4:00 a.m. on a specific date.

The EventFilterSpec object allows you to specify the collection criteria. Most of the properties are
optional and can be submitted as null values. The EventFilterSpec lets you collect events based on
user name, entity type, time, and state of the Event.

Managing the HistoryCollector
The HistoryCollector managed object provides operations for managing the life-cycle and scrollable
view of a collection.

n DestroyCollector – A HistoryCollector exists only for the current session. Invoke the
DestroyCollector operation to explicitly destroy the collector before the session ends.

n ResetCollector – Adjusts the starting position for the subset of objects from the collector to the
object immediately preceding the current latestPage.

n RewindCollector – Positions the latestPage to the oldest item in the array. When a
HistoryCollector is created, this is the default location.

n SetCollectorPageSize – Accepts an integer parameter to set the size of the latestPage property
of a HistoryCollector. The default size of a HistoryCollector is an array that consists of at most
1000 objects of the appropriate type (Task, Event). The array is sorted by creation date and time of
the objects.

Using Alarms
The vSphere alarm infrastructure supports automating actions and sending different types of notification
in response to certain server conditions. Many Alarms exist by default on vCenter Server systems. You
can also create alarms yourself. For example, an Alarm can send an alert email message when CPU
usage on a specific virtual machine exceeds 99% for more than 30 minutes.

vSphere Web Services SDK Programming Guide

VMware, Inc. 280

The alarm infrastructure integrates with other server components, such as events and performance
counters.

The AlarmManager is the service interface for creating, setting, and managing alarms. You create an
alarm, specifying trigger conditions and the action to take. When the conditions defined for the Alarm
occur on the system, the Action specified for the alarm starts. The alarm also generates an Event that is
posted to the Event history database. In addition, the action initiated by the Alarm might also post a
second Event to the database, depending on the Action type.

Obtaining a List of Alarms
Use the AlarmManager.GetAlarm method to obtain an array of references to all Alarm managed objects
defined for a specific managed entity. When you call the method, you can pass in an optional reference to
a managed entity. Without a reference to a managed entity, the GetAlarm operation returns all Alarm
objects for all entities that are visible to the principal associated with the session invoking the operation.

Figure 17-3. Alarm Managed Object

The Alarm.info property is an AlarmInfo data object. You can obtain information about active Alarms
by collecting the properties of the AlarmInfo data object.

Creating an Alarm
You create an alarm with the AlarmManager.CreateAlarm method. In the simplest case, you specify the
trigger condition in the AlarmSpec.expression property and the action to perform in the
AlarmSpec.action property. When the expression evaluates to true, the alarm performs the action.

Figure 17-4. CreateAlarm Method Inputs and Outputs shows the CreateAlarm method.

vSphere Web Services SDK Programming Guide

VMware, Inc. 281

Figure 17-4. CreateAlarm Method Inputs and Outputs

The following steps show how to create an alarm.

Procedure

1 Obtain a managed object reference to the AlarmManager associated with the vCenter Server.

2 Obtain a managed object reference of the entity on which you want to set the Alarm.

3 Create an AlarmSpec data object and specify the alarm details in its properties. See Defining Alarms
Using the AlarmSpec Data Object.

4 Call AlarmManager.CreateAlarm, passing in the references and the AlarmSpec data object. The
system returns a managed object reference to the Alarm (see Figure 17-4. CreateAlarm Method
Inputs and Outputs).

Results

The state of an alarm is contained in an AlarmState data object.

Defining Alarms Using the AlarmSpec Data Object
The AlarmSpec data object has properties for all aspects of an Alarm, including its expression and the
action to take when the expression evaluates to true. The following properties define the alarm; see the
API Reference for a complete list.

n action – Action to initiate when the Alarm becomes active. Specify one of the Action subtypes. See
Specifying Alarm Actions.

n actionFrequency – Number of seconds that the Alarm remains in the state required to initiate the
specified action.

vSphere Web Services SDK Programming Guide

VMware, Inc. 282

n expression – One or more AlarmExpression data objects combined in a way that evaluates to a
true-false expression. See Specifying Alarm Trigger Conditions with AlarmExpression.

n setting – Tolerance and frequency limits for the Alarm defined in the AlarmSetting data object.
AlarmSetting contains two integer properties:

n reportingFrequency, which specifies the number of seconds between activation of an alarm.
Use 0 to specify that the alarm can activate as frequently as required.

n toleranceRange, which specifies the acceptable range (measured in hundredth percentage)
above and below the specified value defined in a MetricAlarmExpression.

Specifying Alarm Trigger Conditions with AlarmExpression
You use the AlarmExpression data object to specify the conditions under which you want the Alarm to
become active. The AlarmExpression data object is an abstract type with several subtypes, which allow
you to specify thresholds on objects, state of objects, or specify specific events to monitor.

Figure 17-5. AlarmExpression and Its Subtypes

AlarmExpression Types
By using the appropriate type of AlarmExpression, you can set alarms for different conditions, states, or
events.

AlarmExpression Description Example

StateAlarmExpression Specifies thresholds that trigger the
alarm.

Triggered by a power state change of a
virtual machine or state change of a
distributed virtual switch.

MetricAlarmExpression Specifies levels at which the alarm
changes state. See Using
MetricAlarmExpression.

Triggered when resource utilization metrics
exceed a specified limit.

EventAlarmExpression Specifies a type of event as the basis for
the alarm.

Triggered by power on or power off events
of primary or secondary virtual machines in
a fault-tolerant cluster.

vSphere Web Services SDK Programming Guide

VMware, Inc. 283

AlarmExpression Description Example

EventAlarmComparison Specifies the property of the Event that
should trigger the alarm and the operator
to use as the basis for comparison.

AndAlarmExpression

OrAlarmExpression

Combines one or more instances of the
AndAlarmExpression and the
OrAlarmExpression data objects into an
expression that evaluates to true or
false.

Using MetricAlarmExpression
The MetricAlarmExpression data object lets you set an alarm to monitor performance metrics. The
vSphere Client uses the data object to indicate when hosts or clusters do not have sufficient resources in
a DAS or DRS cluster environment. See the Resource Management Guide.

You set the metric property to the PerfMetricId of a performance metric that you want to monitor on
the system. Set the red or yellow properties to identify the level at which the metric value moves from
green, to yellow, to red. You must define red, yellow, or both properties. Use each of these properties
with the isAbove or isBelow MetricAlarmOperator enumerations to complete the definition of the
threshold.

In conjunction with red and yellow properties, you can use the redInterval or yellowInterval
properties. These properties enable you to set the number of seconds that the performance metric must
be in red or yellow state before the expression becomes true and triggers the defined action.

Specifying Alarm Actions
You specify the actions that the system should take by setting the action property of the AlarmSpec data
object to the AlarmAction data object defined for the purpose.

The AlarmAction data object is an abstract type that has two descendent objects.

n The AlarmTriggeringAction data object has an action property and a transitionSpecs
property. AlarmTriggeringActionTransitionSpec allows you to define a starting state and a final
state for the Alarm. You can limit the number of Alarm objects actually triggered to a single Alarm by
specifying false for the repeats property of the AlarmTriggeringActionTransitionSpec.

n The GroupAlarmAction data object is an array version of the AlarmAction base type. You can
create a single AlarmAction instance or an array of AlarmAction instances to take effect when the
conditions specified for your alarm are met on the system.

The system can respond to an alarm in several ways:

n Invoking an operation. To invoke an operation, create a MethodAction data object.

n Running a Script. To run a script, create an instance of the RunScriptAction data object that
specifies the fully qualified path to the shell script on the vCenter Server.

n Send an email message. To send an email message to a system administrator, use the
SendEmailAction data object.

vSphere Web Services SDK Programming Guide

VMware, Inc. 284

Figure 17-6. AlarmAction and Related Objects

For example, you can use the MethodAction data object type to invoke an operation on the server.
The MethodAction data object contains the following properties:

n name—Name of the operation that you want to invoke at the scheduled time.

n argument—Specifies required parameters, if any, as an array of MethodArgumentAction data
objects.

Depending on the entity associated with the alarm, the MethodAction.argument property might not
be needed.

Deleting or Disabling an Alarm
An Alarm remains active until you delete it or disable it. To delete the alarm, obtain a managed object
reference to the Alarm and invoke its RemoveAlarm operation.

To disable the Alarm, obtain managed object references to the AlarmManager and to the entity on which
the Alarm is set. Call AlarmManager.EnableAlarmActions operation, passing the value false for the
enabled parameter.

Sample Code Reference
The following table lists the sample applications included with the vSphere Web Services SDK that
demonstrate some of the topics discussed in this chapter.

Java C#

\samples\alarms\MPowerStateAlarm.java VMPowerStateAlarm

\samples\events\EventFormat.java EventFormat

vSphere Web Services SDK Programming Guide

VMware, Inc. 285

Java C#

\samples\events\EventHistoryCollectorMonitor.java EventHistoryCollectorMonitor

\samples\events\VMEventHistoryCollectorMonitor.java VMEventHistoryCollectorMonitor

vSphere Web Services SDK Programming Guide

VMware, Inc. 286

vSphere Performance 18
VMware vSphere servers use performance counters to track resource use. At runtime, vSphere
components generate performance data which the vSphere servers store in performance counters. You
can use the PerformanceManager interface to retrieve the data.

This chapter includes the following topics:

n vSphere Performance Data Collection

n PerformanceManager Objects and Methods

n Retrieving vSphere Performance Data

n Performance Counter Metadata

n Performance Intervals

n vSphere Performance and Data Storage

n Sample Code Reference

vSphere Performance Data Collection
In a vSphere environment, virtual and physical components generate performance data. To track the use
of resources, ESXi Servers perform real-time data collection and vCenter Servers store the data in the
vCenter database. vCenter Servers also store a historical rollup of the data according to defined
performance intervals.

n Real-time data collection – An ESXi Server collects data for each performance counter every 20
seconds and maintains that data for one hour.

n Historical data rollup – A vCenter Server collects data from all of the hosts that the vCenter Server
manages. The PerformanceManager defines performance intervals that specify time periods for
performance data rollup, a methodology for combining data values. The server stores the rolled up
performance counter data in the vCenter database.

The following figure represents vSphere performance data collection and retrieval.

VMware, Inc. 287

Figure 18-1. vSphere Performance Data Collection and Retrieval

ESXi Server vCenter Server

Virtual
Machine

CPU core 0

CPU core 1

CPU core 2

CPU core 3

Performance
Manager

vCenter Server
Database

Performance
Manager

Historical
Rollup
Data

2

vSphere client
application1

3

Real-time
Instance Data

Instance Data

Rollup Data

Aggregated
Instance Data

Summary Data

1 ESXi Servers sample performance counter instances every 20 seconds and maintain the real-time

vSphere Web Services SDK Programming Guide

VMware, Inc. 288

instance data for one hour. For example, the figure shows collection of CPU statistics for four CPU
cores.

2 The vCenter Server retrieves and stores data from the servers that it manages. The Server produces
rollup data according to the settings of the historical intervals.

3 vSphere client applications can retrieve real-time instance data, aggregated instance data, historical
rollup data, and summary data.

The following table defines terms that are used to describe vSphere performance management.

Term Definition

performance providers Performance providers include managed entities, such as hosts, virtual machines,
compute resources, resource pools, datastores, and networks.

performance counter Unit of statistical data collected on a vSphere server. For example, a vCenter server
collects the average CPU utilization for hosts, virtual machines and clusters (the counter
cpu.usage.average).

counter ID System-generated identifier for a performance counter.

instance An identifier derived from device configuration names. Examples of counter instances
are the name of a virtual Ethernet adapter such as “vmnic0:”, or a number that identifies
a CPU core, such as 0, 1, 2, or 3. Performance data is retrieved as specific instances of
performance counters.

instance data Performance data collected at 20-second intervals.

metric ID Combination of a counter ID and an instance. You use metric IDs – PerfMetricId
objects – when you construct a performance query specification to identify the data to
be collected.

There are two system-defined instances that you can use to specify aggregate retrieval.
See the description of aggregate performance data below.

n “*” – An asterisk directs the vSphere Server to return all instances plus rollup data.
This is not supported for some disk-related counters.

n ““ – A string of length zero directs the vSphere Server to return only aggregated
instance data or rollup type data.

The vSphere Server returns metric IDs embedded in the data objects that it returns as a
response to performance queries.

performance interval Data object (PerfInterval) which defines the time interval between collection events,
the collection level, and the time period that the data will be stored on the Server.

n ESXi Servers define a built-in performance interval that specifies data collection
every 20 seconds for each performance counter. ESXi Servers also define a single
historical interval (PerformanceManager.historicalInterval) that defines
aggregate performance data. This system-defined performance interval specifies
aggregate data collection every 300 seconds for each counter. You cannot modify
the performance intervals on an ESXi Server.

n vCenter Servers define four performance intervals that determine how collected
instance data is aggregated and stored. You can modify the system-defined
intervals on a vCenter Server to a limited extent.

vSphere Web Services SDK Programming Guide

VMware, Inc. 289

Term Definition

collection level Number between one and four that is assigned to a performance interval
(PerformanceManager.historicalInterval[].level). The interval collection level
corresponds to the level specified for individual performance counters
(PerfCounterInfo.level). A vCenter Server uses a performance interval to perform
performance data aggregation, using data for the counters with levels that match the
performance interval collection level.

rollup type Methodology for producing a single value from a set of statistical values
(PerformanceManager.perfCounter[].rollupType). Examples of rollup types are
average, latest, and summation.

aggregate performance data A single value that represents a set of instance data values collected for a performance
counter. The single value is derived using one of the rollup types.

PerformanceManager Objects and Methods
PerformanceManager provides methods for obtaining statistical data about various aspects of system
performance, as generated and maintained by the performance providers. It also defines historical
performance intervals and it identifies the set of performance counters that you can use to obtain
performance data. The following table shows the PerformanceManager properties.

Property Description

description Composite object that includes information about the types of counters (counterType) and
statistics (statsType) available on the system.

historicalInterval Array of system-defined performance intervals (PerfInterval data objects). Each object
defines the interval between rollup events, the collection level, and the time period that the data
is stored on the system.

n For an ESXi system, the array contains a single performance interval. You cannot modify
the ESXi performance interval.

n For vCenter Server systems, the PerfInterval objects control how ESXi performance data
are rolled up and stored in the database. You can modify some of the PerfInterval
properties on a vCenter Server.

perfCounter Array of PerfCounterInfo data objects. The array identifies all of the performance counters
known to the vCenter Server at the time a client accesses the array. The set of counters may
change as ESXi hosts are added or removed from vCenter management. Each
PerfCounterInfo object contains metadata associated with a performance counter.

The PerformanceManager methods allow you to retrieve performance statistics and to retrieve metadata
that defines the statistics. The following table classifies the methods and describes their purposes.

vSphere Web Services SDK Programming Guide

VMware, Inc. 290

Method Type Method Purpose

Performance data availability QueryAvailablePerfMetric Returns PerfMetricId objects which identify the
counter data available on the specified entity. For
example, a virtual machine provides the memory
counter granted, which indicates the amount of
physical memory that is mapped for the virtual
machine. The PerfMetricId object for the
mem.granted.average counter specifies the
system-defined counter ID. Since this is a
memory counter, the PerfMetricId.instance
property is empty.

Performance data retrieval QueryPerf Returns statistics for a specific list of managed
entities that provide performance data.

QueryPerfComposite Returns statistics for a host and its virtual
machines. This method accepts the refreshRate
for current statistics or the intervalId of one of
the historical intervals as a parameter. Supported
for the HostSystem managed entity only.

Performance counter metadata
retrieval

QueryPerfCounter Returns PerfCounterInfo data objects for the
specified list of counter IDs.

QueryPerfCounterByLevel Returns PerfCounterInfo data objects for the
specified collection level.

Performance provider
information

QueryPerfProviderSummary Returns the PerfProviderSummary data object
for the specified managed object.

Collection parameters ResetCounterLevelMapping Restores a set of performance counters to their
default collection levels.

UpdateCounterLevelMapping Changes the collection level for a set of
performance counters.

UpdatePerfInterval Modifies the system-defined performance
intervals.

Retrieving vSphere Performance Data
To retrieve collected data, your client application creates a query specification and passes the
specification to a performance query method. The query specification is composed of one or more
PerfQuerySpec objects. Each object identifies the following:

n Performance provider – managed entity for which the Server will return performance data
(PerfQuerySpec.entity).

n Performance counters – PerfMetricId objects that identify performance counter instances
(PerfQuerySpec.metricId).

n Performance interval – the sampling period that defines the data rollup
(PerfQuerySpec.intervalId).

vSphere Web Services SDK Programming Guide

VMware, Inc. 291

n Amount of data to be returned – start and end times (PerfQuerySpec.startTime,
PerfQuerySpec.endTime) and maximum number of values (PerfQuerySpec.maxSample) to limit
the amount of data to be returned.

n Output data format (PerfQuerySpec.format) – one of two kinds:

n Normal output returned as values contained in data objects.

n Formatted output returned as strings containing comma-separated values.

The combination of the entity and metricID properties determine the set of counters for which the
server will return performance data. The combination of the interval, startTime, endTime properties
produce instance, aggregated instance, rollup, or summarized data. The following table summarizes the
different classifications of performance data that you can retrieve from a vCenter Server.

Performance Data Description

Instance ESXi Servers sample performance data every 20 seconds. 20-second interval data is called
instance data or real-time data. To retrieve instance data, specify a value of 20 seconds for the
PerfQuerySpec.intervalId property.

Aggregated
Instance

A vSphere client can retrieve aggregated instance data. To obtain aggregated instance data,
specify the following PerfQuerySpec properties.

n intervalId – Specify 20 seconds to indicate instance data.

n metricId[].instance – specify a zero-length string ("") for aggregated instance data.

Rollup The vCenter Server uses the historical intervals to rollup performance data from the servers that it
manages. To retrieve historical performance data, specify the following PerfQuerySpec
properties.

n intervalId – Specify a value that corresponds to one of the historical intervals
(PerformanceManager.historicalInterval[].samplingPeriod) .

n startTime/endTime – If specified, use time values that are not within the last 30 minutes of
the current time. If you do not specify a starting time, the Server will return values starting with
the earliest data. If you do not specify an end time, the Server will return values that include
the latest data.

Summary When you call the QueryPerf method and specify a performance interval
(PerfQuerySpec.intervalId) that does not match one of the historical intervals
(PerformanceManager.historicalInterval[].samplingPeriod), the Server will attempt to
summarize the stored data for the specified interval. In this case, the Server may return values
that are different from the values that were stored for the historical intervals.

Performance Counter Example (QueryPerf)
The following code fragments are part of an example that uses the PerformanceManager.QueryPerf
method to obtain performance statistics for a virtual machine.

The example code in this section does not include server connection code and it does not show the code
for obtaining the managed object reference for the virtual machine. See Chapter 3 Client Applications for
the Web Services API for an example of server connection code.

This example retrieves the following statistics:

n disk.provisioned.LATEST – virtual machine storage capacity.

vSphere Web Services SDK Programming Guide

VMware, Inc. 292

n mem.granted.AVERAGE – amount of physical memory mapped for the virtual machine.

n power.power.AVERAGE – current power usage.

The example creates a query specification (PerfQuerySpec) to identify the data to be retrieved, calls the
QueryPerf method, and prints out the retrieved performance data and corresponding performance
counter metadata. The following sections describe the basic steps involved in retrieving performance
statistics.

n Map the performance counters – Mapping Performance Counters (Counter Ids and Metadata).

n Create a performance query specification and call the QueryPerf method – Retrieving Statistics.

n Process the returned data – Handling Returned Performance Data.

Mapping Performance Counters (Counter Ids and Metadata)
Performance counters are represented by string names, for example disk.provisioned.LATEST or
mem.granted.AVERAGE. A vSphere server tracks performance counters by using system-generated
counter IDs. When you create a performance query, you use counter IDs to specify the statistics to be
retrieved, so it is useful to map the names to IDs.

The example must specify counter IDs in the calls to QueryPerf, and it will use performance counter
metadata when it prints information about the returned data. To obtain performance counter IDs and the
corresponding performance counter metadata, the example creates two hash maps. This example maps
the entire set of performance counters to support retrieval of any counter.

HashMap Declarations

The following code fragment declares two hash maps.

n countersIdMap – Uses full counter names to index performance counter IDs. A full counter name is
the combination of counter group, name, and rollup type. The example uses this map to obtain
counter IDs when it builds the performance query specification.

n countersInfoMap – Uses performance counter IDs to index PerformanceCounterInfo data
objects. The example uses this map to obtain metadata when it prints the returned performance data.

/*

 * Map of counter IDs indexed by counter name.

 * The full counter name is the hash key - group.name.ROLLUP-TYPE.

 */

private static HashMap<String, Integer> countersIdMap = new HashMap<String, Integer>();

/*

 * Map of performance counter data (PerfCounterInfo) indexed by counter ID

 * (PerfCounterInfo.key property).

 */

private static HashMap<Integer, PerfCounterInfo> countersInfoMap =

 new HashMap<Integer, PerfCounterInfo>();

The following figure shows a representation of the hash maps.

vSphere Web Services SDK Programming Guide

VMware, Inc. 293

Figure 18-2. Performance Counter Hash Maps

countersIdMap countersInfoMap

PerfCounterInfo

performance
counter name counter ID PerfCounterInfo

PerfCounterInfo

Key Value
performance
counter name counter ID

performance
counter name counter ID

counter ID

Key Value

counter ID

counter ID

performance
counter name counter ID

performance
counter name counter ID PerfCounterInfo

PerfCounterInfocounter ID

counter ID

vSphere Web Services SDK Programming Guide

VMware, Inc. 294

Creating the Map

The example uses the Property Collector to retrieve the array of performance counters
(PerfCounterInfo) known to the vCenter Server (PerformanceManager.perfCounter[]). It then uses
the data to create the maps. The code fragment uses the variable apiMethods, which is a VimPortType
object that provides access to the vSphere API methods. For information about the VimPortType object,
see Overview of a Java Sample Application for the Web Services SDK.

The following code fragment performs these steps:

1 Create an ObjectSpec to define the property collector context. This example specifies the
Performance Manager.

2 Create a PropertySpec to identify the property to be retrieved. This example retrieves the
perfCounter property, which is an array of PerfCounterInfo objects.

3 Create a PropertyFilterSpec for the call to the PropertyCollector. The PropertyFilterSpec
creates the association between the ObjectSpec and PropertySpec for the operation.

4 Call the PropertyCollector.RetrievePropertiesEx method. This method blocks until the server
returns the requested property data.

5 Cast the returned xsd:anyType value into the array of PerfCounterInfo objects.

6 Cycle through the returned array and load the maps. The counter-name to counter-ID map uses a
fully qualified counter name. The qualified name is a path consisting of counter group, counter name,
and rollup type – group.counter.ROLLUP-TYPE The rollup type must be coded in uppercase letters.
Examples of qualified names are disk.provisioned.LATEST and mem.granted.AVERAGE.

/*

 * Create an object spec to define the context to retrieve the PerformanceManager property.

 */

ObjectSpec oSpec = new ObjectSpec();

oSpec.setObj(performanceMgrRef);

/*

 * Specify the property for retrieval

 * (PerformanceManager.perfCounter is the list of counters the vCenter Server is aware of.)

 */

PropertySpec pSpec = new PropertySpec();

pSpec.setType("PerformanceManager");

pSpec.getPathSet().add("perfCounter");

/*

 * Create a PropertyFilterSpec and add the object and property specs to it.

 */

PropertyFilterSpec fSpec = new PropertyFilterSpec();

fSpec.getObjectSet().add(oSpec);

fSpec.getPropSet().add(pSpec);

/*

 * Create a list for the filter and add the spec to it.

 */

List<PropertyFilterSpec> fSpecList = new ArrayList<PropertyFilterSpec>();

vSphere Web Services SDK Programming Guide

VMware, Inc. 295

fSpecList.add(fSpec);

/*

 * Get the performance counters from the server.

 */

RetrieveOptions ro = new RetrieveOptions();

RetrieveResult props = apiMethods.retrievePropertiesEx(pCollectorRef,fSpecList,ro);

/*

 * Turn the retrieved results into an array of PerfCounterInfo.

 */

List<PerfCounterInfo> perfCounters = new ArrayList<PerfCounterInfo>();

if (props != null) {

 for (ObjectContent oc : props.getObjects()) {

 List<DynamicProperty> dps = oc.getPropSet();

 if (dps != null) {

 for (DynamicProperty dp : dps) {

 /*

/*

 * Cycle through the PerfCounterInfo objects and load the maps.

 */

 * DynamicProperty.val is an xsd:anyType value to be cast

 * to an ArrayOfPerfCounterInfo and assigned to a List<PerfCounterInfo>.

 */

 perfCounters = ((ArrayOfPerfCounterInfo)dp.getVal()).getPerfCounterInfo();

 }

 }

 }

}

for(PerfCounterInfo perfCounter : perfCounters) {

 Integer counterId = new Integer(perfCounter.getKey());

 /*

 * This map uses the counter ID to index performance counter metadata.

 */

 countersInfoMap.put(counterId, perfCounter);

 /*

 * Obtain the name components and construct the full counter name,

 * for example – power.power.AVERAGE.

 * This map uses the full counter name to index counter IDs.

 */

 String counterGroup = perfCounter.getGroupInfo().getKey();

 String counterName = perfCounter.getNameInfo().getKey();

 String counterRollupType = perfCounter.getRollupType().toString();

 String fullCounterName = counterGroup + "." + counterName + "." + counterRollupType;

 /*

 * Store the counter ID in a map indexed by the full counter name.

 */

 countersIdMap.put(fullCounterName, counterId);

}

vSphere Web Services SDK Programming Guide

VMware, Inc. 296

Retrieving Statistics
The following code fragment calls the QueryPerf method to retrieve statistics. It performs these tasks:

Procedure

1 Create a list of qualified performance counter names for retrieval. The name is a path consisting of
group-name.counter-name.ROLLUP-TYPE, for example mem.granted.AVERAGE. The rollup type
must be coded in uppercase letters to match the character case of the rollup type in the performance
counter metadata (PerfCounterInfo.rollupType). See the vSphere API Reference for tables of
available counters. The vSphere API Reference page for the PerformanceManager managed object
contains links to the tables.

2 Create a list of PerfMetricId objects, one for each counter to be retrieved. The metric ID is a
combination of the counter ID and the instance. To fill in the PerfMetricId properties, the example
does the following:

n Use the countersIdMap to translate a full counter name into a counter ID.

n Specify an asterisk (*) for the PerfMetricId.instance property. The asterisk is the system-
defined instance specification for combined instance and rollup retrieval.

3 Build a query specification for the method call. This query specifies the following:

n Virtual machine for which performance data is being retrieved (entityMor);

n Interval ID of 300 to collect 5-minute rollup data.

n Comma-separated value (CSV) format for the retrieved data.

4 Call the QueryPerf method.

Example

/*

 * Use <group>.<name>.<ROLLUP-TYPE> path specification to identify counters.

 */

String[] counterNames = new String[] {"disk.provisioned.LATEST",

 "mem.granted.AVERAGE",

 "power.power.AVERAGE"};

/*

 * Create the list of PerfMetricIds, one for each counter.

 */

List<PerfMetricId> perfMetricIds = new ArrayList<PerfMetricId>();

for(int i = 0; i < counterNames.length; i++) {

 /*

 * Create the PerfMetricId object for the counterName.

 * Use an asterisk to select all metrics associated with counterId (instances and rollup).

 */

 PerfMetricId metricId = new PerfMetricId();

 /* Get the ID for this counter. */

 metricId.setCounterId(countersIdMap.get(counterNames[i]));

 metricId.setInstance("*");

 perfMetricIds.add(metricId);

vSphere Web Services SDK Programming Guide

VMware, Inc. 297

}

/*

 * Create the query specification for queryPerf().

 * Specify 5 minute rollup interval and CSV output format.

 */

int intervalId = 300;

PerfQuerySpec querySpecification = new PerfQuerySpec();

querySpecification.setEntity(

querySpecification.setIntervalId(intervalId);

querySpecification.setFormat("csv");

querySpecification.getMetricId().addAll(perfMetricIds);

List<PerfQuerySpec> pqsList = new ArrayList<PerfQuerySpec>();

pqsList.add(querySpecification);

/*

 * Call queryPerf()

 *

 * QueryPerf() returns the statistics specified by the provided

 * PerfQuerySpec objects. When specified statistics are unavailable -

 * for example, when the counter doesn't exist on the target

 * ManagedEntity - QueryPerf() returns null for that counter.

 */

List<PerfEntityMetricBase> retrievedStats = apiMethods.queryPerf(performanceMgrRef, pqsList);

Performance Data Returned by a vSphere Server
The query methods return sampling information and performance data. The sampling information
indicates the collection interval in seconds and the time that the data was collected. When you call
performance query methods, you pass in query specifications (PerfQuerySpec) to identify the
performance data to be retrieved. To indicate the format of the output data, specify either "normal" or
"csv" for the PerfQuerySpec.format property.

The query methods return PerfEntityMetricBase objects which you must cast into the appropriate type
that corresponds to the PerfQuerySpec.format value specified in the call to the method.

n The QueryPerf method returns a list of PerfEntityMetricBase objects.

n The QueryPerfComposite method returns a PerfCompositeMetric object, which contains
PerfEntityMetricBase objects.

Normal Output Format

When you specify "normal" format, you must cast the returned PerfEntityMetricBase objects into
PerfEntityMetric objects. Each PerfEntityMetric object contains the following properties:

n entity – Reference to the performance provider.

n sampleInfo – Array of sample information (PerfSampleInfo data objects), encoded as xsd:int
and xsd:dateTime values.

vSphere Web Services SDK Programming Guide

VMware, Inc. 298

n value – Array of data values (PerfMetricIntSeries data objects). Each object in the array
contains the following properties:

n id – Performance metric ID that identifies the counter instance.

n value – Array of integers that corresponds to the array of sample information
(PerfEntityMetric.sampleInfo).

The following figure shows a representation of the data object hierarchy returned by the query methods
for normal format.

vSphere Web Services SDK Programming Guide

VMware, Inc. 299

Figure 18-3. PerfEntityMetric Object Hierarchy

PerfEntityMetric

sampleInfo : PerfSampleInfo[]

value : PerfMetricIntSeries[]

PerfSampleInfo
interval : xsd:int
timestamp : xsd:dateTime

PerfMetricIntSeries

id : PerfMetricId PerfMetricId

value : xsd:long[]
instance : xsd:string

entity : ManagedObjectReference

counterId : xsd:int

vSphere Web Services SDK Programming Guide

VMware, Inc. 300

CSV Output Format

When you specify "csv" format, you must cast the returned PerfEntityMetricBase objects into
PerfEntityMetricCSV objects. Both the sampling information and the collected data are encoded as
comma-separated values suitable for display in tabular format.

The PerfEntityMetricCSV object contains the following properties:

n entity – Reference to the performance provider.

n sampleInfoCSV – String containing a set of interval and date-time values. The property contains
string representations of PerfSampleInfo xsd:int and xsd:dateTime values. The string values
are encoded in the following CSV format:

interval1, date1, interval2, date2

n value – Array of data values (PerfMetricSeriesCSV data objects). Each object in the array contains
the following properties:

n id – Performance metric ID that identifies the counter instance.

n value – Set of sample values in CSV format, corresponding to the list of sample information
(PerfEntityMetricCSV.sampleInfoCSV).

The following figure shows a representation of the data object hierarchy returned by the query methods
for CSV format.

Figure 18-4. PerfEntityMetricCSV Object Hierarchy

PerfEntityMetricCSV

sampleInfoCSV : xsd:string

value : PerfMetricIntSeriesCSV[] PerfMetricSeriesCSV

id : PerfMetricId PerfMetricId

value : xsd:string
instance : xsd:string

entity : ManagedObjectReference

counterId : xsd:int

Handling Returned Performance Data
The following code fragment prints out the returned performance data. This example uses CSV formatted
data. The code fragment performs these tasks:

n Loop through the list of PerfEntityMetricBase objects returned by the QueryPerf method
(retrievedStats).

n Cast the PerfEntityMetricBase object to a PerfEntityMetricCSV object to handle the CSV
output specified in the PerfQuerySpec.

n Retrieve the sampled values.

n Retrieve the interval information (csvTimeInfoAboutStats). The sampleInfoCSV string
(PerfEntityMetricCSV.sampleInfoCSV) is PerfSampleInfo data formatted as interval,time
pairs separated by commas – interval-1,time-1,interval-2,time-2. The list of pairs
embedded in the string corresponds to the list of sampled values
(PerfEntityMetricCSV.value[]).

n Print the time and interval information.

vSphere Web Services SDK Programming Guide

VMware, Inc. 301

n Loop through the sampled values (metricsValues).

n Use the counter metadata to print out identifying information about the counter along with the
returned sampled value for the counter.

n Use the countersInfoMap to translate the counter ID returned in the PerfMetricSeriesCSV
object into the corresponding PerfCounterInfo object.

/*

 * Cycle through the PerfEntityMetricBase objects. Each object contains

 * a set of statistics for a single ManagedEntity.

 */

for(PerfEntityMetricBase singleEntityPerfStats : retrievedStats) {

 /*

 * Cast the base type (PerfEntityMetricBase) to the csv-specific sub-class.

 */

 PerfEntityMetricCSV entityStatsCsv = (PerfEntityMetricCSV)singleEntityPerfStats;

 /* Retrieve the list of sampled values. */

 List<PerfMetricSeriesCSV> metricsValues = entityStatsCsv.getValue();

 if(metricsValues.isEmpty()) {

 System.out.println("No stats retrieved. " +

 "Check whether the virtual machine is powered on.");

 throw new Exception();

 }

 /*

 * Retrieve time interval information (PerfEntityMetricCSV.sampleInfoCSV).

 */

 String csvTimeInfoAboutStats = entityStatsCsv.getSampleInfoCSV();

 /* Print the time and interval information. */

 System.out.println("Collection: interval (seconds),time (yyyy-mm-ddThh:mm:ssZ)");

 System.out.println(csvTimeInfoAboutStats);

 /*

 * Cycle through the PerfMetricSeriesCSV objects. Each object contains

 * statistics for a single counter on the ManagedEntity.

 */

 for(PerfMetricSeriesCSV csv : metricsValues) {

 /*

 * Use the counterId to obtain the associated PerfCounterInfo object

 */

 PerfCounterInfo pci = countersInfoMap.get(csv.getId().getCounterId());

 /* Print out the metadata for the counter. */

 System.out.println("--");

 System.out.println(pci.getGroupInfo().getKey() + "."

 + pci.getNameInfo().getKey() + "."

 + pci.getRollupType() + " - "

 + pci.getUnitInfo().getKey());

 System.out.println("Instance: "+csv.getId().getInstance());

 System.out.println("Values: " + csv.getValue());

vSphere Web Services SDK Programming Guide

VMware, Inc. 302

 }

}

Large-Scale Performance Data Retrieval
The example described in the previous sections shows how to retrieve performance data for a single
entity. When you design your application to retrieve performance data on a large scale, take the following
information into consideration for more efficient processing.

n Use CSV formatted output. CSV format provides a more compact representation of the output data
which can save on meta-data overhead.

n Create query specifications to reference a set of vSphere entities.

n Using one QueryPerf method call per entity is not efficient.

n Using a single call to QueryPerf to retrieve all of the performance data is not efficient.

n As a general rule, specify between 10 and 50 entities in a single call to the QueryPerf method.
This is a general recommendation because your system configuration may impose different
constraints.

n Do not retrieve statistics more frequently than they are refreshed. For example, when you retrieve 20-
second interval data, the data will not change until the next 20-second data collection event.

n Use QueryAvailablePerfMetric only when you intend to send a query for a specific counter using
a specific performance interval. The method will return PerfMetricId objects that you can use for
the query.

In all other cases, create the PerfMetricId objects for the query.

n For the counterId property, use the counter IDs from the PerformanceManager counter list
(PerformanceManager.perfCounter[].key).

n For the instance property, specify an asterisk (“*”) to retrieve instance and aggregate data or a
zero-length string (““) to retrieve aggregate data only.

Using the QueryPerf Method as a Raw Data Feed
The QueryPerf method can operate as a raw data feed that bypasses the vCenter database and instead
retrieves performance data from an ESXi host. You can use a raw data feed to obtain real-time instance
data associated with 20-second interval collection and aggregate data associated with the 5-minute
intervals.

You can use a raw data feed on vCenter Server 2.5 and later.

vSphere Web Services SDK Programming Guide

VMware, Inc. 303

Performance Interval Description

20-second ESXi servers collect data for each performance counter every 20 seconds and maintain that
data for an hour. When you specify a 20-second interval in the query specification for the
QueryPerf method (PerfQuerySpec.intervalId), the method operates as a raw data feed.
The Server ignores the historical interval collection levels and retrieves data for all of the
requested counters from the ESXi servers. When you send a query for 20-second instance
data, the server returns the most recent data collected for the 20-second interval. The server
does not perform additional, unscheduled data collection to satisfy the query.

5-minute ESXi servers aggregate performance data according to the system-defined performance
interval which specifies data collection every 300 seconds. To use a raw data feed for this
data, specify the following PerfQuerySpec properties in the call to the QueryPerf method.

n intervalId – Specify 300 seconds to match the system-defined performance interval.

n startTime/endTime – Specify time values within the last 30 minutes of the current time.
The QueryPerf method checks the performance interval collection level on the vCenter
Server. The method returns aggregated statistics for performance counters that specify a
collection level (PerfCounterInfo.level) at or below the vCenter Server performance
interval for the 300 second sampling period (PerfInterval.level). For example, if the
vCenter Server performance interval is set to level one, and your query specification
requests only performance counters that specify level four, the QueryPerf method will not
return any data.

Comparison of Query Methods
The following table presents a comparison of performance query methods.

Method Notes

QueryPerf n Specify an array of PerfQuerySpec objects.

n An unset PerfQuerySpec.metricId property produces results for all counters defined for
PerfQuerySpec.entity.

n PerfQuerySpec.maxSample is ignored for historical statistics.

You can use this method to retrieve historical statistics; you can also use it as a raw data feed.
For information about retrieving the raw data collected on ESXi servers, see Using the
QueryPerf Method as a Raw Data Feed.

QueryPerfComposite n Method works only at the host level. You can use a single call to the
QueryPerfComposite method to retrieve performance data for a host and its virtual
machines.

n Specify a single PerfQuerySpec object.

n You must specify a list of performance metrics to identify the data to be retrieved
(PerfQuerySpec.metricId).

n You cannot specify PerfQuerySpec.maxSample.

This method is designed for efficient client-server communications. QueryPerfComposite
usually generates less network traffic than QueryPerf because it returns a large-grained
object, a PerfCompositeMetric data object, that contains all the data.

Retrieving Summary Performance Data
You can obtain near real-time summary information about performance or utilization without using the
PerformanceManager methods. vSphere servers maintain "quick stats" data objects for hosts

vSphere Web Services SDK Programming Guide

VMware, Inc. 304

(HostListSummaryQuickStats), virtual machines (VirtualMachineQuickStats), and resource pools
(ResourcePoolQuickStats). For more information about these objects, see the vSphere API Reference.

Performance Counter Metadata
Performance counters are organized by groups of system resources. Examples of performance counter
groups are memory, CPU, and disk. The counter groups and specific counters used on any vSphere
server depend on the server configuration. The vSphere API Reference contains a table for each counter
group. The table includes the counter name, type of statistics being collected, unit of measurement, level,
and so on. The vSphere API Reference page for the PerformanceManager managed object contains
links to the tables.

PerfCounterInfo
The PerformanceManager.perfCounter property is an array of PerfCounterInfo data objects. Each
object provides metadata for the collected data. A PerfCounterInfo object has a unique key, the
counter ID. The actual performance data collected at runtime are identified by this counter ID. The
following table lists the PerfCounterInfo properties.

Property Description

groupInfo Name of the resource group to which this counter belongs, such as disk, cpu, or memory.

key Unique integer that identifies the counter. Also called the counter ID. The value is unique and
it is not static—it might, for example, change between system reboots. The counter key on an
ESXi system might not be the same as the counter key for the same counter on the vCenter
Server system managing the ESXi system. However, the system maps the keys from ESXi to
vCenter Server systems automatically.

level Number from 1 to 4 that identifies the level at which data values for this counter are
aggregated.

nameInfo Descriptive name for the counter. The name component of a fully qualified counter name, for
example "granted" is the nameInfo property for the mem.granted.AVERAGE counter.

rollupType Indicates how multiple samples of a counter are transformed into a single statistical value.
Examples of rollup types are average, summation, and minimum. No conversion of values
occurs for counters that specify absolute values, such as the total number of seconds that the
system has been running continuously since startup. The PerfSummaryType is an
enumeration containing valid constants for this property.

statsType Type of statistical data that the value represents over the course of the interval, such as an
average, a rate, the minimum value, and so on. The PerfStatsType is an enumeration
containing valid constants for this property.

unitInfo Unit of measure, such as megahertz, kilobytes, kilobytes per second, and so on. The
ElementDescription’s key property is populated using one of the constants available in the
PerformanceManagerUnit enumeration.

vSphere Web Services SDK Programming Guide

VMware, Inc. 305

Performance Intervals
The PerformanceManager defines performance intervals which specify the period of time between
collection events, how much data will be collected, and how long the collected data will be saved.

n An ESXi server has a built-in performance interval that produces discrete data values from counter
instances sampled every 20 seconds. The server will maintain this instance data for one hour.

n Additional data collection is specified by historical performance intervals which produce data
aggregated from counter instances according to the individual intervals.

The PerformanceManager.historicalInterval property is an array of PerfInterval objects. The
following table lists the PerfInterval properties.

Property Description

samplingPeriod Number of seconds for the interval. You can modify this property on a vCenter Server only.

length Period of time for which the server will save the data that it collects. You can modify this property
on a vCenter Server only.

level Level at which the Server collects data. The interval level corresponds to the performance counter
level (PerfCounterInfo.level). The Server will collect data for all counters with levels that
match PerfInterval.level, and for all counters with levels lower than PerfInterval.level.
You can modify this property on a vCenter Server only.

enable Enable/disable performance data collection. You can modify this property on a vCenter Server
only.

key Unique identifier for the interval. You cannot modify this property.

name Label for the historical interval; one of the following strings:

n "Past Day"

n "Past Week"

n "Past Month"

n "Past Year"

The PerformanceManager uses the samplingPeriod, level, and length properties to
determine its collection behavior. It does not interpret the name string. You cannot modify this
property.

ESXi Server Performance Intervals
An ESXi server collects performance data for each performance counter every 20 seconds. The
PerformanceManager.historicalInterval array for an ESXi Server contains a single, readonly
PerfInterval object that specifies rollup data collection every 5 minutes. You cannot retrieve 5-minute
rollup data from an ESXi Server directly. You can use a vCenter Server connection to obtain 5-minute
rollup data for an ESXi Server. The following table shows the historical interval property values on an
ESXi server. You cannot modify this performance interval.

Property Value Description

key 1 Numeric identifier for the PerfInterval.

name PastDay Name of the PerfInterval.

vSphere Web Services SDK Programming Guide

VMware, Inc. 306

Property Value Description

samplingPeriod 300 Time interval between data sampling events.

length 129600 Number of seconds that statistics associated with the interval are kept
by the vCenter Server.

enabled true This PerfInterval is enabled on the system.

level null Statistics collection level. For an ESXi system, this property is null.
The PerfInterval object on an ESXi system defines the baseline
interval.

vCenter Server Performance Intervals
A vCenter Server system aggregates performance data from all ESXi systems that it manages.
The amount of data aggregated depends on the level setting configured for the vCenter Server. The level
settings are reflected in the PerformanceManager.historicalInterval property for the vCenter
Server system. historicalInterval is an array of PerfInterval data objects that define four different
level settings, 1 through 4.

The following table lists the default values for the performance intervals on a vCenter Server system.

Key Name Sampling Period Length Enabled Level

1 Past Day 300 86400 TRUE 1

2 Past Week 1800 604800 TRUE 1

3 Past Month 7200 2592000 TRUE 1

4 Past Year 86400 31536000 TRUE 1

By default, the collection level is set to 1 for each of the four intervals. Using the default level, a vCenter
Server will collect data for all performance counters that specify collection level 1. Using the default length
value, a vCenter Server will save collection data for the following time periods:

n 5-minute samples for the past day

n 30-minute samples for the past week

n 2-hour samples for the past month

n 1-day samples for the past year

Data older than a year is purged from the vCenter Server database.

vSphere Performance and Data Storage
The following sections provide information about modifying the operation of the PerformanceManager
and vSphere Server performance data collection and storage.

n Modifying Historical Intervals

n Modifying Performance Counter Collection Levels

vSphere Web Services SDK Programming Guide

VMware, Inc. 307

Modifying Historical Intervals
Changes to a vCenter performance interval are global and apply to all entities in the system. VMware
recommends that you do not modify the historical intervals. The PerfInterval data objects in the
PerformanceManager.historicalInterval array are related. Modifications to a performance interval
affects the entire system and may cause problems.

If you must modify a performance interval, use the PerformanceManager.UpdatePerfInterval method and
follow these guidelines.

n Performance data retention time (PerfInterval.length) must be a multiple of the collection interval
(PerfInterval.samplingPeriod).

n Performance data retention length must increase in each interval compared to its predecessor. The
PerfInterval.length value for each successive performance interval must be greater than the length
property for the previous interval in the historical interval array.

n You cannot modify the value of the PerfInterval.samplingPeriod property on ESXi systems.

Modifying Performance Counter Collection Levels
The PerformanceManager provides the UpdateCounterLevelMapping method to change the collection
level for individual performance counters (PerfCounterInfo.level). Consider carefully the performance
and storage consequences of using the UpdateCounterLevelMapping method. If you use this method,
you may cause a significant increase in data collection and storage, along with a corresponding decrease
in performance. vCenter Server performance and database storage requirements depend on the
collection levels defined for the performance intervals (PerformanceManager.historicalInterval)
and the collection levels specified for individual performance counters (PerfCounterInfo.level).

Performance Counter Data Collection
vSphere defines four levels of data collection for performance counters. Each performance counter
specifies a level for collection. The historical performance intervals
(PerformanceManger.historicalInterval) define the sampling period and length for a particular
collection level.

The amount of data collected for a performance counter depends on the performance interval and on the
type of entity for which the counter is defined. For example, a datastore counter such as datastoreIops
(the aggregate number of IO operations on the datastore) will generate a data set that corresponds to the
number of datastores on a host. If a vCenter Server manages a large number of hosts with a large
number of datastores, the Server will collect a large amount of data.

There are other counters for which the vCenter Server collects a relatively smaller amount of data. For
example, memory counters are collected as a single counter per virtual machine and a single counter per
host.

vSphere Web Services SDK Programming Guide

VMware, Inc. 308

Performance Counter Data Storage
The performance interval collection level (PerfInterval.level) defines the set of counters for which the
vCenter Server stores performance data. The Server will store data for counters at the specified level and
for counters at all lower levels.

By default, all the performance intervals specify collection level one. Using these defaults, the vCenter
Server stores performance counter data in the vCenter database for all counters that specify collection
level one. It does not store data for counters that specify collection levels two through four.

Performance Manager Method Interaction
You can use the UpdateCounterLevelMapping method to change the collection level for individual
counters. You can also use the UpdatePerfLevel method to change the collection level for the system-
defined performance intervals. These methods can cause a significant increase in the amount of data
collected and stored in the vCenter database.

n By default the system-defined performance intervals use collection level one, storing data for all
counters that specify collection level one. If you use the UpdateCounterLevelMapping method to
change the collection level of performance counters to level one, you will increase the amount of
stored performance data.

n If you use the UpdatePerfLevel method to increase the collection level for the system-defined
performance intervals, you will increase the amount of stored performance data.

To restore counter levels to default settings use the ResetCounterLevelMapping method.

vSphere Client Management of Performance Statistics
The vSphere Client displays the Performance Manager historical interval collection levels in the vCenter
management statistics display. The vSphere Client also displays an estimate of the amount of storage
that is required for data collection at the displayed levels. If individual counter levels are modified through
the vSphere API (the UpdateCounterLevelMapping method), the vSphere Client will show a modified
estimate. However, the vSphere Client cannot detect that the method has been called and it cannot
display the current levels for individual counters. If you see a significantly increased estimate for storage,
be aware that someone may have used the vSphere API to modify data collection.

Sample Code Reference
The following table lists the sample applications included with the vSphere Web Services SDK that
demonstrate some of the topics discussed in this chapter.

Java
(SDK\vsphere-ws\java\JAX-WS\samples\com\vmware\performance)

C#
(SDK\vsphere-ws\dotnet\cs\samples\)

Basics.java Basics\Basics.cs

Basics\Basics.csproj

Basics\Basics2008.csproj

Basics\Basics2010.csproj

vSphere Web Services SDK Programming Guide

VMware, Inc. 309

Java
(SDK\vsphere-ws\java\JAX-WS\samples\com\vmware\performance)

C#
(SDK\vsphere-ws\dotnet\cs\samples\)

History.java History\History.cs

History\History.csproj

History\History2008.csproj

History\History2010.csproj

PrintCounters.java PrintCounters\PrintCounters.cs

PrintCounters\PrintCounters.csproj

PrintCounters\PrintCounters2008.csproj

PrintCounters\PrintCounters2010.csproj

QueryMemoryOverhead

\QueryMemoryOverhead.cs

QueryMemoryOverhead

\QueryMemoryOverhead.csproj

QueryMemoryOverhead

\QueryMemoryOverhead2008.csproj

QueryMemoryOverhead

\QueryMemoryOverhead2010.csproj

RealTime.java RealTime\RealTime.cs

RealTime\RealTime.csproj

RealTime\RealTime2008.csproj

RealTime\RealTime2010.csproj

VITop.java

VIUsage.java

vSphere Web Services SDK Programming Guide

VMware, Inc. 310

Diagnostics and Troubleshooting 19
vSphere includes several logs, which you can access and customize. You can also use the
DiagnosticManager service interface for troubleshooting.

This chapter includes the following topics:

n Troubleshooting Best Practices

n Overview of Configuration Files and Log Files

n Modifying the Log Level to Obtain Detailed Information

n Using DiagnosticManager

n Using the MOB to Explore the DiagnosticManager

n Generating Diagnostic Bundles

Troubleshooting Best Practices
Approach troubleshooting and problem-solving systematically, and take notes so you can trace your
steps. Follow these guidelines to resolve issues with your client application.

n Do not change more than one thing at a time, and document each change and its result. Try to isolate
the problem: Does it seem to be local, to the client? An error message generated from the server? A
network problem between client and server?

n Use the logging facilities for your programming language to capture runtime information for the client
application. See the Log.cs sample application as an example.

n C# client logging example: \SDK\vsphere-ws\dotnet\cs\samples\AppUtil\Log.cs

n Use the following VMware tools for analysis and to facilitate debugging.

n vSphere Web Services API. The DiagnosticManager service interface allows you to obtain
information from the server log files, and to create a diagnostic bundle that contains all system log
files and all server configuration information. The vSphere Client and the MOB provide graphical
and Web based access to the DiagnosticManager. PerformanceManager supports exploration
of bottlenecks. See #unique_450.

VMware, Inc. 311

n Managed Object Browser (MOB). The MOB provides direct access to live runtime server-side
objects. You can use the MOB to explore the object hierarchy, obtain property values, and invoke
methods. See #unique_451.

n VMware vSphere Client GUI. The vSphere Client allows you to examine log files for ESXi,
vCenter Server, and virtual machines, and to change log level settings. Use vSphere Client menu
commands to create reports that summarize configuration information, performance, and other
details, and to export diagnostic bundles. The vSphere Client maintains its own local log files.

Overview of Configuration Files and Log Files
ESXi and vCenter Server configuration files control the behavior of the system. Most configuration file
settings are set during installation, but can be modified after installation. Log files capture messages
generated by the kernel and different subsystems and services. ESXi and vCenter Server services
maintain separate log files. The following table lists log files or reports, their locations and associated
configuration files.

Description Log Location Filename or Names Configuration File

ESXi service log /var/log/vmware/ hostd.log

[hostd-0.log, ...hostd-

9.log]

config.xml

vCenter Server agent log /var/log/vmware/vpx/ vpxa.log

Virtual machine kernel
core file

/root/ vmkernel-core.<date>

vmkernel-log.<date>

syslog.conf,

logrotate.conf, various

other

syslogd log /var/log/ messages

[messages.1,...

messages.4]

syslog.conf,

logrotate.conf

Service console
availability report

/var/log/ vmkernel

[vmkernel.1, ...

vmkernel.8]

syslog.conf,

logrotate.conf

VMkernel messages,
alerts, and availability
reports

/var/log/vmkernel syslog.conf,

logrotate.conf

VMkernel warning /var/log/ vmkwarning

[vmkwarning.1 ... 4 for

history]

syslog.conf,

logrotate.conf

Virtual machine log file vmfs/volume/<vm_name> vmware.log <vm_name>/<vm_name>.vmx

For developers, the following files are most relevant:

n hostd.log – Host daemon log, see ESXi Log File. Can be used as a SOAP monitor when set to
trivia log level as in Generating Logs.

n vpxa.log – Agent log file found on each managed ESXi system.

n vmware.log – Virtual machine log. See Virtual Machine Log Files.

vSphere Web Services SDK Programming Guide

VMware, Inc. 312

In addition to viewing log files in real time you can also generate reports and complete diagnostic
bundles. See Generating Diagnostic Bundles.

ESXi Log File
The ESXi log (hostd.log) captures information of varying specificity and detail, depending on the log
level. Each request to the server is logged.

You can view the file using the vSphere Client. The raw text form of an ESXi (hostd) log file is shown in
Sample ESXi Log (hostd.log) Data.

Example: Sample ESXi Log (hostd.log) Data

...

[2008-05-07 09:50:04.857 'SOAP' 2260 trivia] Received soap response from

[TCP:myservername.vmware.com:443]: GetInterfaceVersion

[2008-05-07 09:50:04.857 'ClientConnection' 2260 info] UFAD interface version is vmware-

converter-4.0.0

[2008-05-07 09:50:04.857 'SOAP' 2260 trivia] Sending soap request to

[TCP:myservername.eng.vmware.com:443]: logout

[2008-05-07 09:50:04.857 'ProxySvc Req00588' 3136 trivia] Client HTTP stream read error

[2008-05-07 09:50:04.872 'ProxySvc Req00612' 3136 trivia] Request header:

POST /vmc/sdk HTTP/1.1

User-Agent: VMware-client

Content-Length: 435

Content-Type: text/xml; charset=utf-8

Cookie: vmware_soap_session="F127B435-56C7-4580-BAC4-3034DA1E67B6"; $Path=/

Host: myservername.vmware.com

[2008-05-07 09:50:04.872 'ProxySvc Req00588' 3816 trivia] Closed

[2008-05-07 09:50:08.450 'App' 3560 verbose] [VpxdHeartbeat] Invalid heartbeat from 10.17.218.46

[2008-05-07 09:50:10.013 'App' 3560 verbose] [VpxdHeartbeat] Queuing 10.17.218.45:829 (host-55)

[2008-05-07 09:50:10.013 'App' 1928 verbose] [HeartbeatHandler] 50208862-2752-d94c-2a73-

fa2ec9e38ecc:829 (host-55)

Virtual Machine Log Files
Each running virtual machine has its own log file, vmware.log, stored on the VMFS volume. By default,
the log file is rotated whenever the virtual machine is powered on, but file rotation is configurable.

n ESXi maintains six log files that rotate at each power-cycle (the default) or at a configured file size.

n ESXi can be configured to maintain a specific number of log files. When the limit is reached, the
oldest file is deleted.

n VMware recommends a log file size of 500 KB.

n Messages that are generated by VMware Tools are logged separately.

Example: VMkernel Availability Report

Availability Report for <servername>

Feb 27, 2008 - May 7, 2008

vSphere Web Services SDK Programming Guide

VMware, Inc. 313

Availability: 99.949%

 Total time: 69 days, 15 hours

 Uptime: 69 days, 14 hours

 Downtime: 51 minutes

Note: Downtime is any time the system isn't capable of running

Virtual Machines. This includes reboots, crashes, configuration and running linux

Downtime Analysis:

 0.1% (51 minutes) downtime caused by:

 13.1% (6 minutes) scheduled downtime

 86.9% (44 minutes) unscheduled downtime

Reasons for scheduled downtime:

 84.9% server rebooting (1 instance)

 9.4% VMkernel unloaded (1 instance)

 5.7% server booting (3 instances)

Reasons for unscheduled downtime:

100.0% unknown (powerfail / reset?) (1 instance)

Stats:

 Current uptime: 8 days, 11 hours

 Longest uptime: 61 days, 2 hours

 Shortest uptime: 38 minutes

 Average uptime: 23 days, 4 hours

 Longest downtime: 44 minutes

 Shortest downtime: 7 seconds

 Average downtime: 8 minutes

 Maximum VMs Sampled: 1

 Average VMs Sampled: 0.94

Server Information: Number of CPUs: 4 logical 4 cores

 2 packages, Intel(R) Xeon(R) CPU 5150 @ 2.66GHz

 Installed Memory: 2096416 kB

 Current Build: 78591

Report generated Wed May 7 04:02:04 PDT 2008

vCenter Server Log Files
vCenter Server log files are located by default in the Documents and Settings subdirectory of the
Windows account used to install the software. For example:

C:\Documents and Settings\Administrator\Local Settings\Application Data\VMware\

Important VMware recommends creating a user account especially for vCenter Server installation.

By default, the log files are hidden files. See the procedure for your Windows operating system to make
the files visible.

vSphere Web Services SDK Programming Guide

VMware, Inc. 314

Modifying the Log Level to Obtain Detailed Information
The amount of information captured in the log files varies, depending on the level setting.

Log Level Setting Description

None Disables logging.

Error Logging limited to error messages.

Warning Error messages plus warning messages are logged.

Info Default setting on ESXi and vCenter Server systems. Errors, warnings, plus informational
messages about normal operations are logged. Acceptable for production environments.

Verbose Can facilitate troubleshooting and debugging. Not recommended for production environments.

Trivia Extended verbose logging. Provides complete detail, including content of all SOAP messages
between client and server. Use for debugging and to facilitate client application development only.
Not recommended for production environments.

For example, the hostd service running on ESXi systems has a default log level setting of info. The
vCenter Server logs are controlled by settings through the vSphere Client.

Setting the Log Level on ESXi Systems
The default log level setting for the ESXi Host Agent is info. If you run into issues during development,
you can set the log level to verbose, or to trivia to obtain SOAP message content to use in debugging.

To change the log level for hostd on an ESXi system, use the following steps.

Procedure

1 Connect to the ESXi system using the vSphere Client.

2 On the Host > Manage screen, select the System tab.

3 On the System tab screen, select Advanced Settings.

4 Scroll to find the Config.HostAgent.log.level setting.

By default this setting is info.

5 Select the Config.HostAgent.log.level setting and click Edit option.

A dialog box opens, where you can enter a new setting.

6 Use the drop-down menu to select a new setting, such as Verbose, and click Save.

The Recent Tasks pane updates to confirm that the change completed.

Results

After the service restarts, the new log level is in effect.

vSphere Web Services SDK Programming Guide

VMware, Inc. 315

Generating Logs
If you are connected to ESXi by SSH, you can use the tail command to explicitly create a log file that
captures detail about actions that follow. For example, you can use the vSphere Client to create a new
virtual machine and then use the content from the log as a model for how to create your own code.

To start the logging process and capture content to a file, use the following steps.

Procedure

1 Navigate to the location of the hostd.log file:

cd /var/log/vmware

2 Run the tail command, passing a filename in which to capture output:

tail -f hostd.log > yourfilenamehere

3 Use the vSphere Client to perform whatever action you are having difficulty modeling in your own
code. For example, create a new virtual machine and stop the tail process with Ctrl-C when the
operation completes.

Results

The file contains the SOAP message content and other log messages sent and received by hostd during
the execution.

Setting the Log Level on vCenter Server Systems
To change log-level settings on vCenter Server, you must use the vSphere Client.

To set logging level for vCenter Server using the VMware vSphere Client, use the following steps.

Procedure

1 Log in to the vSphere Client and connect to the vCenter Server instance.

2 Choose Administration and click Server Settings > Logging Options.

3 Choose Trivia from the pop-up menu and click OK.

Using DiagnosticManager
The vSphere API provides access to the DiagnosticManager, the service interface for obtaining
information from the log files and for generating diagnostic bundles. The logs are populated based on
configuration settings, such as info, trivia, and so on.

The DiagnosticManager is a managed object that works service-wide, rather than on a per-session
basis. The DiagnosticManager has no properties, but provides operations for these tasks:

n Obtaining information about the logs and how they have been defined.

n Generating a diagnostic bundle that can be sent to VMware support for analysis.

vSphere Web Services SDK Programming Guide

VMware, Inc. 316

Figure 19-1. DiagnosticManager Managed Object and Associated Data Objects shows a UML class
diagram for DiagnosticManager, which is available on ESXi and vCenter Server systems.

Figure 19-1. DiagnosticManager Managed Object and Associated Data Objects

As shown in Figure 19-1. DiagnosticManager Managed Object and Associated Data Objects,
DiagnosticManager supports these methods:

n BrowseDiagnosticLog

n GenerateLogBundleTask

n QueryDescriptions

The DiagnosticManagerLogDescriptor.creator property contains the creator of the log, which is the
system or subsystem that controls a specific log.

The creator value is populated from the DiagnosticManagerLogCreator enumeration. The following
table lists all string values currently available from the DiagnosticManagerLogCreator enumeration that
can populate the creator property of the DiagnosticManagerLogDescriptor data object.

Name Description

hostd Host daemon

install Installation

recordLog System record log

serverd Host server agent

vpxa vCenter agent

vpxClient vSphere Client

vpxd vCenter service

Creator File Name Format Info.label Info.summary Key Mime Type

hostd /var/log/vmware/

hostd.log

plain ESX Log ESX log in
plain format

hostd text/plain

hostd /var/log/messages plain ESX Log ESX log in
plain format

messages text/plain

vSphere Web Services SDK Programming Guide

VMware, Inc. 317

Creator File Name Format Info.label Info.summary Key Mime Type

hostd /var/log/vmkernel plain ESX Log ESX log in
plain format

vmkernel text/plain

hostd /var/log/vmksummary.txt plain ESX Log ESX log in
plain format

vmksummary text/plain

hostd /var/log/vmkwarning plain ESX Log ESX log in
plain format

vmkwarning text/plain

vpxa /var/log/vmware/vpx/

vpxa.log

plain vCenter
Agent Log

vCenter agent
log in plain
format

vpxa text/plain

Using the MOB to Explore the DiagnosticManager
The Managed Object Browser (MOB) is a graphical interface that allows you to navigate the objects on a
server and to invoke methods. You can access the DiagnosticManager using the MOB.

The following steps show how to explore DiagnosticManager.

Procedure

1 Start the mob by typing the MOB URL (https://hostname.yourcompany.com/mob) into a Web browser.

2 In the ServiceContent data object, click the link (ha-diagnosticmanager or DiagMgr) in the Value
column for the diagnosticManager property, to navigate to the DiagnosticManager for the system.

n For ESXi, ha-diagnosticsmanager is the managed object ID.

n For vCenter Server, DiagMgr is typically the managed object ID.

3 Click the link to the reference to display the managed object reference to the DiagnosticManager in
the MOB.

DiagnosticManager provides three operations that allow you to obtain information about the
descriptions currently available in the log file and log file content.

Because DiagnosticManager can track multiple ESXi systems, you can use the
QueryDescriptions operation to return the names of keys used for all hosts. From this array, select
the key for the host from which you want to obtain the log file.

4 On QueryDescriptions, click the Invoke Method link.

The vCenter Server system returns the contents of the log file for the selected host as a string array
for the lineText property of DiagnosticManagerLogHeader.

Results

The string array returned through the MOB in this way is the content of the log file. The content contained
in the log file is the same content that is available through the following other mechanisms:

n Displayed in the vSphere Client

vSphere Web Services SDK Programming Guide

VMware, Inc. 318

n Included in a diagnostic bundle created through the
DiagnosticManager.GenerateLogBundles_Task method.

n Available in the hostd.log file

n Returned to a client application that you write

What to do next

For more information about using the DiagnosticManager, see Chapter 20 Managed Object Browser.

Generating Diagnostic Bundles
Typically, customers create diagnostic bundles at the request of VMware technical support. Diagnostic
bundles also allow developers to quickly obtain all configuration files and log files in a complete package.

The generated compressed files are packaged in a file having the following pattern:

<fqdn-hostname>-esxsupport-yyyy-mm-dd@hh-mm-ss.tgz

Export Diagnostic Data By Using the vSphere Client
You can use the vSphere Client interface to generate diagnostic bundles.

Procedure

1 Connect to the ESXi system using the vSphere Client.

2 On the Host > Monitor screen, select the Logs tab.

The Recent Tasks pane updates to indicate that the system is generating a diagnostic bundle.

Results

When the task completes, the vSphere Client opens a dialog box that allows you to download the bundle.

vSphere Web Services SDK Programming Guide

VMware, Inc. 319

Managed Object Browser 20
The Managed Object Browser (MOB) is a graphical interface that allows you to navigate the objects on a
server and to invoke methods. Any changes you make through the MOB take effect on the server.

This appendix explains how to use the MOB. The examples invoke PerformanceManager query methods
to demonstrate how to pass primitive data types, arrays, and complex data types (data objects, including
managed object references) using the MOB.

This chapter includes the following topics:

n Using the MOB to Explore the Object Model

n Using the MOB to Invoke Methods

Using the MOB to Explore the Object Model
The Managed Object Browser, or MOB, is a Web-based server application available for all ESXi and
vCenter Server systems. The MOB lets you examine the objects that exist on the server and navigate
through the hierarchy of live objects by clicking on links. The MOB populates the browser with actual
runtime information, for example, the names of properties.

Caution Despite the word "browser" in its name, the MOB is not a read-only mechanism. The MOB
allows you to make changes on the server by clicking the InvokeMethod link associated with methods.

Accessing the MOB
The MOB runs in a web browser and is accessed by using the fully-qualified domain name or IP address
for the ESXi or vCenter Server system.

To access the MOB, use the following steps.

Procedure

1 Start a Web browser.

2 Enter the fully-qualified domain name (or the IP address) for the ESXi or vCenter Server system:

https://hostname.yourcompany.com/mob

VMware, Inc. 320

3 Enter the user account and password for the system.

If warning messages regarding the SSL certificate appear, you can disregard them and continue to
log in to the MOB, if VMware is the certificate authority and you are not in a production environment.

Results

The MOB reveals the underlying structures of the object model. Seeing the structure in conjunction with
the API Reference Guide, can help with understanding the model.

Using the MOB to Navigate the VMware Infrastructure Object
Model
Upon successful connection to the MOB, the browser displays the managed object reference for
ServiceInstance. Client applications do not use managed objects directly, but interact with server-side
managed objects by reference, using instances of the ManagedObjectReference data created for this
purpose.

The page lists the properties and methods available through a ServiceInstance object. The
ServiceInstance methods and properties provide access to the entire set of services and inventory
objects available on the server. See #unique_467.

Figure 20-1. Managed Object Browser Connected to a vCenter Server

vSphere Web Services SDK Programming Guide

VMware, Inc. 321

The MOB lets you examine the relationships among objects by looking at the properties and their values,
and then drilling down into the objects. To explore the objects on the server, click the links in the Value
column to navigate to the page that displays the object.

For example, to find out more about ServiceContent, click the content link to display the
ServiceContent data object instance.

Using the MOB to Invoke Methods
You can use the MOB to invoke methods as follows:

Procedure

1 In the display of the object in which the method lives, click the name of the method.

A browser window displays information about the parameter name and type and allows you to specify
parameter values.

2 Specify parameter values, using the method appropriate for the type, and click Invoke Method.

The rest of this section discusses how to pass different types of parameters to the MOB.

Passing Primitive Datatypes to Method
vSphere Web Services SDK data types are defined in the WSDL using XML Schema markup. The
primitive data types are specified using the xsd namespace. For example, a string value for a property is
defined as data type xsd:string. Enter a primitive value in the MOB as plain text, without quotation
marks or other markup. For example, to enter an integer value of 10, type 10 in the field.

To obtain information about the available performance counters at level 4 on the server, enter a 4 in the
level field of the PerformanceManager.QueryPerfCounterByLevel method. (This method is available
only on the vCenter Server PerformanceManager API, not from an ESXi system.)

In response to the query, the array of PerfCounterInfo data objects and nested objects, with populated
values from the server, displays in the Web browser.

Passing Arrays of Primitives to Methods
For an array, use the name of the parameter as the name of the property. For example, the
PerformanceManager.QueryPerfCounter method requires an array of integers for the counterId
parameter, as follows:

<counterId>58</counterId><counterId>65603</counterId><counterId>65604</counterId>

Even if you want to submit a single value for a single array element, you must wrap the parameter name
around the value in this way.

vSphere Web Services SDK Programming Guide

VMware, Inc. 322

Passing Complex Structures to Methods
For complex datatypes, enter the value as defined by the XML Schema in the WSDL. You can obtain the
WSDL definition from the vSphere API Reference using the Show WSDL type definition links. Each
data object type has an associated link.

Simple Content
The data object type ManagedObjectReference is one of the most commonly required parameters to be
passed to the server. For example, the MOB for the
PerformanceManager.QueryPerfProviderSummary method shows that the method requires a single
parameter, the managed object reference (an instance of ManagedObjectReference) of the entity for
which you want to obtain the PerfProviderSummary object.

Using the vSphere API Reference for ManagedObjectReference type, you can obtain the schema
information from the Show WSDL type definition link at the bottom of the documentation page for
ManagedObjectReference.

Example: XML Schema Definition of ManagedObjectReference Data Object

<complexType xmlns="http://www.w3.org/2001/XMLSchema" xmlns:vim25="urn:vim25"

name="ManagedObjectReference">

 <simpleContent>

 <extension base="xsd:string">

 <attribute name="type" type="xsd:string"/>

 </extension>

 </simpleContent>

</complexType>

XML Schema Definition of ManagedObjectReference Data Object shows that a managed object
reference is defined as a <SimpleContent> element that consists of a string that specifies the attribute
type with its associated value, also as string. Use this information to construct the appropriate structure
by replacing type with the parameter name from the MOB, setting the value as needed, and submitting in
the entry field of the MOB. (The value for the Datacenter is displayed in the MOB.)

<entity type=”Datacenter”>datacenter-21</entity>

Figure 20-2. Using the MOB to Pass Complex Types to a Method shows the result of using the definition
listed in XML Schema Definition of ManagedObjectReference Data Object to specify the managed object
reference for a target datacenter to the PerformanceManager.QueryPerfProviderSummary method.

Figure 20-2. Using the MOB to Pass Complex Types to a Method

vSphere Web Services SDK Programming Guide

VMware, Inc. 323

As another example, one of the parameters required by the VirtualMachine.CloneVM_Task method is
a folder. In this case, the parameter is defined as a managed object reference to a specific Folder
object. Using the same definition shown in XML Schema Definition of ManagedObjectReference Data
Object, the result is as follows:

<folder type=”Folder”>folder-87</folder>

Although both examples submit a ManagedObjectReference to the MOB, each is specific to the
parameter name required by the method (entity type for
PerformanceManager.QueryPerfProviderSummary method, folder type for the
VirtualMachine.CloneVM_Task method).

Complex Content
Many of the data objects required for method invocation consist of XML Schema elements defined as
<complexContent> that can encompass many other elements.

For example, the PropertyCollector.CreateFilter method has a spec parameter that must be
defined before method invocation. The spec parameter is defined as an instance of a
PropertyFilterSpec.

Figure 20-3. PropertyFilterSpec and Associated Data Objects shows the relationships among several
data objects that PropertyFilterSpec consists of.

Figure 20-3. PropertyFilterSpec and Associated Data Objects

To submit complex data structures such as this to the MOB, start by navigating the vSphere API
Reference. Find the PropertyFilterSpec data object. Find the Show WSDL type definition link, and
click it to display the XML Schema definition (see XML Schema Definition of PropertyFilterSpec Data
Object Type).

XML Schema Definition of PropertyFilterSpec Data Object Type shows that the PropertyFilterSpec
data object is a <complexContent> element that extends the DynamicData class with a sequence of two
additional properties propSet (of type PropertySpec) and objectSet (of type ObjectSpec).

vSphere Web Services SDK Programming Guide

VMware, Inc. 324

Example: XML Schema Definition of PropertyFilterSpec Data Object Type

<complexType xmlns="http://www.w3.org/2001/XMLSchema" xmlns:vim25="urn:vim25"

name="PropertyFilterSpec">

 <complexContent>

 <extension base="vim25:DynamicData">

 <sequence>

 <element name="propSet" type="vim25:PropertySpec" maxOccurs="unbounded"/>

 <element name="objectSet" type="vim25:ObjectSpec" maxOccurs="unbounded"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

Because both elements are defined as a sequence, they must exist in the order listed. To obtain the
definitions of propSet and objectSet, you must navigate further into the vSphere API Reference. XML
Schema Extract for PropertySpec shows only the relevant parts of the XML Schema definition for
PropertySpec. The minOccurs=”0” attribute means that the element does not have to exist. The
maxOccurs=”unbounded” attribute means that the element can be populated as an array of any size.
(When minOccurs is not set, but maxOccurs is set, the default for minOccurs defaults to 1, meaning one
instance is required.)

Example: XML Schema Extract for PropertySpec

<sequence>

 <element name="type" type="xsd:string"/>

 <element name="all" type="xsd:boolean" minOccurs="0"/>

 <element name="pathSet" type="xsd:string" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

Navigate through the vSphere API Reference to the ObjectSpec definition. ObjectSpec Definition as XML
Schema shows the excerpt.

Example: ObjectSpec Definition as XML Schema

...

<sequence>

 <element name="obj" type="vim25:ManagedObjectReference"/>

 <element name="skip" type="xsd:boolean" minOccurs="0"/>

 <element name="selectSet" type="vim25:SelectionSpec" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

...

Extrapolating from the WSDL definitions shown in XML Schema Definition of PropertyFilterSpec Data
Object Type, XML Schema Extract for PropertySpec, and ObjectSpec Definition as XML Schema might
produce results similar to those shown in CreateFilter Spec Property Entry.

Example: CreateFilter Spec Property Entry

<spec>

 <propSet>

 <type>VirtualMachine</type>

vSphere Web Services SDK Programming Guide

VMware, Inc. 325

 <all>false</all>

 <pathSet>config.guestFullName</pathSet>

 </propSet>

 <objectSet>

 <obj type=”Folder”>group-v4</obj>

 <skip>true</skip>

 </objectSet>

</spec>

In this example, the <spec> element identifies the spec parameter of the CreateFilter method. The
order of the element tags is as defined in the XML Schema for the property (XML Schema Definition of
PropertyFilterSpec Data Object Type). The pathSet property defines the full path to the nested data
object of interest. In CreateFilter Spec Property Entry, the pathSet property defines the path to the
guestFullName property of the target virtual machine. ObjectSpec Definition as XML Schema shows the
UML of these nested data objects.

Figure 20-4. Nested Data Objects

All of these details are available in the vSphere API Reference. By examining the WSDL definition, you
can construct the strings needed to submit parameters through the MOB.

Using the MOB Along With the API Reference
The following table provides a brief summary of the steps involved when you use the MOB and the
vSphere API Reference together.

vSphere Web Services SDK Programming Guide

VMware, Inc. 326

Datatype How to Input Values for Methods

Primitive Enter the value as plain text regardless of its data type (int, string, boolean). Do not use quotes or
other markup.

Array Use the name of the parameter as the name of the element, wrap the values in a series of opening and
closing tags for each array element.

Complex Obtain XML Schema format information from the vSphere API Reference for the type (from the Show
WSDL type definition link).

Use the schema definition to construct the sequence of tags around the value (or values) you want to
pass to the MOB.

vSphere Web Services SDK Programming Guide

VMware, Inc. 327

HTTP Access to vSphere Server
Files 21
In most cases, client applications interact with vSphere servers by using the vSphere Web Services SDK.
In some cases, direct access to configuration files, log files, and other data on an ESXi or vCenter Server
systems is more efficient.

This chapter includes the following topics:

n Introduction to HTTP Access

n URL Syntax for HTTP Access

Introduction to HTTP Access
ESXi and vCenter Server systems support file access using HTTP and secure HTTP. You can use HTTP/
HTTPS for the following kinds of access.

n Datastore access on ESXi and vCenter Server systems.

n ESXi configuration and log file access on ESXi systems.

n Update bundle access on ESXi systems.

You can use the HTTP methods GET, HEAD, PUT, and DELETE to access files. The URL of the HTTP/
HTTPS request must contain an embedded keyword that specifies the type of access. The following table
shows the server access types with the corresponding URL keyword and HTTP methods.

Server Access URL Keyword HTTP Method or Methods

Datastore folder GET, HEAD, PUT, DELETE

ESXi configuration file host GET, HEAD, PUT

(See Host File Access (/host) for the specific methods supported for
each file type.)

Update bundle tmp PUT

Use the PUT method to create new files or overwrite existing files. You can create a subdirectory by using
a URL that is consistent with the supported top-level directories. You cannot create datastores or
datacenters because the URL must refer to a valid datacenter or datastore.

You can use a Web browser to browse and download files. You cannot use a Web browser to post or
delete files.

VMware, Inc. 328

URL Syntax for HTTP Access
The URL specification in an HTTP request to a vSphere server includes one of the following keywords,
which determines the type of access.

n Datastore Access (/folder)

n Host File Access (/host)

n Update Package Access (/tmp)

Datastore Access (/folder)
An HTTP request for datastore access uses the following syntax:

http-method http[s]://server/folder[[/path]?dcPath=path[&dsName=name]]

http-method One of the methods GET, HEAD, PUT, or DELETE.

http:// or https:// Access protocol (standard access or secure access).

server ESXi or vCenter Server target system. The server value can be an IP address or a DNS
name.

/folder Specifies datastore access on an ESXi or vCenter Server system. The datastore URL can
include the following optional elements:

n path – Path to a file or directory in the datastore, relative to the root of the datastore.

n dcPath – Inventory path to a datacenter. Specify the datacenter path as a name-value
pair in the request. For a datacenter named Datacenter located in the root folder, the
dcPath value is MyDatacenter. For a datacenter named YourDatacenter located in
the folder NorthAmerica which is located in the root folder, the cdPath value is
NorthAmerica/YourDatacenter.

n dsName – Datastore associated with the datacenter. Specify the datastore name as a
name-value pair in the request.

The following examples illustrate the syntax. If the target server is an ESXi system, dcPath=DCPATH& is
optional and defaults to dcPath=ha-datacenter.

Example Description

/folder
Directory listing of known datacenters on this server.

/folder?dcPath=path
Directory listing of all datastores available at the specified
datacenter.

/folder?dcPath=path&dsName=name
Top-level directory listing of the datastore.

/folder/path?dcPath=path&dsName=name
Directory listing of all files in a datastore directory.

/folder/path/disk-flat.vmdk?
dcPath=path&dsName=name

Access individual files.

vSphere Web Services SDK Programming Guide

VMware, Inc. 329

Host File Access (/host)
An HTTP request for access to ESXi configuration files uses the following syntax:

GET http[s]://my_system/host

http-method http[s]://my_system/host/file

Syntax Element Description

http-method One of GET, HEAD, or PUT, depending on the type of configuration file (see the following table).

http:// or https:// Access protocol (standard access or secure access).

esx-server IP address or a DNS name.

/host List of configuration files that you can access. (Use /host to retrieve the list.)

/host/file A specific ESXi configuration file.

The following table shows ESXi host configuration files and the corresponding HTTP/HTTPS methods for
access. The set of files might change from version to version.

Configuration File
HTTP Access
Method(s) Configuration File HTTP Access Method(s)

hostAgentConfig.xml GET, HEAD, PUT ipmi0_sel.raw GET, HEAD

sfcb.cfg GET, HEAD, PUT ipmi0_sel GET, HEAD

openwsman.conf GET, HEAD, PUT ipmi0_sdr_content.raw GET, HEAD

license.cfg GET, HEAD, PUT ipmi0_sdr_header.raw GET, HEAD

vmware.lic GET, HEAD, PUT ipmi0_sensor_readings.raw GET, HEAD

vmware_config GET, HEAD, PUT ipmi1_sel.raw GET, HEAD

vmware_configrules GET, HEAD, PUT ipmi1_sel GET, HEAD

proxy.xml GET, HEAD, PUT ipmi1_sdr_content.raw GET, HEAD

snmp.xml GET, HEAD, PUT ipmi1_sdr_header.raw GET, HEAD

syslog.conf GET, HEAD, PUT ipmi1_sensor_readings.raw GET, HEAD

ssl_cert GET, HEAD, PUT ipmi2_sel.raw GET, HEAD

ssl_key PUT ipmi2_sel GET, HEAD

hosts GET, HEAD, PUT ipmi2_sdr_content.raw GET, HEAD

motd GET, HEAD, PUT ipmi2_sdr_header.raw GET, HEAD

vpxa.cfg GET, HEAD, PUT ipmi2_sensor_readings.raw GET, HEAD

esx.conf GET, HEAD, PUT ipmi3_sel.raw GET, HEAD

config.log GET, HEAD ipmi3_sel GET, HEAD

messages GET, HEAD ipmi3_sdr_content.raw GET, HEAD

hostd.log GET, HEAD ipmi3_sdr_header.raw GET, HEAD

vpxa.log GET, HEAD ipmi3_sensor_readings.raw GET, HEAD

vSphere Web Services SDK Programming Guide

VMware, Inc. 330

Update Package Access (/tmp)
An HTTP request for update package access uses the following syntax:

PUT http[s]://esx-server/tmp/file-path

http:// or https:// Access protocol.

esx-server IP address or a DNS name.

/tmp/file-path Target file on an ESX/ESXi system.

Privilege Requirements for HTTP Access
HTTP access to a vSphere file is access to a datastore object that is associated with the folder structure
in the vSphere inventory. HTTP access requires the same privileges needed to obtain these files using
any other mechanism, such as the vSphere Client.

The following table shows the required privileges.

Object Associated with File Portion of URL Required Privileges

Root folder /folder System.View

Datacenter ?dcPath Datastore.Browse

Datastore.FileManagement

Datastore &dsName Datastore.Browse

Datastore.FileManagement

Host /host Host.Config.AdvancedConfig

/tmp/ Host.Config.SystemManagement

vSphere Web Services SDK Programming Guide

VMware, Inc. 331

Sample Program Overview 22
The VMware vSphere Web Services SDK includes samples for the Java and C# platforms. This chapter
lists the available sample programs and provides some information about each program. Both the Java
and C# samples have been re-compiled with JAX-WS bindings, and they use JAX-WS credential store
classes that allow you to ignore certificates when you connect to a server with the samples.

This chapter includes the following topics:

n Java Sample Programs (JAXWS Bindings)

n C# Sample Programs

Java Sample Programs (JAXWS Bindings)
When you download the SDK, you can find the Java sample programs and related files in the following
directories.

n SDK\vsphere-ws\java\JAXWS\samples\com\vmware – Top-level directory for Java samples.
Details listed in the following table.

n SDK\vsphere-ws\java\JAXWS\samples\com\vmware\security – Credential store utilities

n SDK\vsphere-ws\java\JAXWS\samples\com\vmware\vim25 – Stub directory. The vim25 directory
contains stubs for release 2.5 and later.

n SDK\vsphere-ws\java\JAXWS\samples\com\vmware\vm – samples written for a single VM

Directory Example Description

alarms VMPowerStateAlarm Create an alarm to monitor a virtual machine's power
state.

cim CIMReader Walks the Common Information Model (CIM) data
associated with an ESXi host.

connection BasicConnection (among others) Shows how to set up a vSphere connection with user
name and password.

events EventFormat Retrieve and format the last event from the host daemon
or vpxd. Includes a function that formats the event
message.

EventHistoryCollectorMonitor Demonstrates how to create and monitor an
EventHistoryCollector. Uses the latestPage
property of EventHistoryCollector to filter the events.

VMware, Inc. 332

Directory Example Description

VMEventHistoryCollectorMonitor Standalone client that demonstrates how to perform the
following tasks:

(1) Logging into the web service. (2)Creating
EventHistoryCollector filtered for a single virtual
machine. (3) Monitoring events using the latestPage
property of the EventHistoryCollector.

fcd FcdCreate, FcdDelete Create and delete a first class disk (FCD) virtual storage
object.

FcdAttachToVM, FcdDetachFromVM Attach or detach FCD to or from VM.

FcdRegisterLegacyDisk Register legacy disk as a first class disk.

general Browser Print all managed entities and for each entity its type,
reference value, property name, property value, inner
object type, inner reference value and inner property
value.

Connect Connect to an ESXi host or a vCenter Server system.

Create Create a managed entity such as a folder, datacenter, or
cluster.

Delete Delete a managed entity from the inventory tree. The
managed entity can be a virtual machine, a
ClusterComputeResource, or a folder.

GetCurrentTime Retrieve the current time from the vSphere Server.

GetHostName Retrieve the hostname of the ESXi Server.

GetUpdates Demonstrates how to use the PropertyCollector to
monitor one or more properties of one or more managed
objects. In particular this sample monitors one or all virtual
machines and all hosts or one host for changes to some
basic properties.

LicenseManager Demonstrates uses of the licensing API using License
managed object reference.

Move Move a managed entity from its current location in the
inventory to a new location in a specified folder

PropertyCollector Illustrates the use of the PropertyCollector API.

RemoveManagedObject Destroy or unregister a managed inventory object like a
Host, VirtualMachine, or Folder.

Rename Rename a managed entity object.

SearchIndex Illustrates the use of the SearchIndex API.

SimpleClient Connect to the server, log in, list the inventory contents
(managed entities) at the console, and log out.

TaskList Display a list of tasks performed on a specified managed
object.

guest CreateTemporaryFile Create a temporary file inside a virtual machine.

vSphere Web Services SDK Programming Guide

VMware, Inc. 333

Directory Example Description

DownloadGuestFile Download a file from the guest to a specified path on the
host where the client is running.

RunProgram Run a specified program inside a virtual machine.
RunProgram re-directs output to a temporary file inside
the guest and downloads the output file.

UploadGuestFile Upload a file from the client machine to a specified
location inside the guest operating system.

hcl HCIBatchAddHostAndExtendCluster Call batch-add-host to add four or more new hosts to an
HCI cluster.

HCIComputeOnlyCluster Call HCI configure to create a simple cluster configuration.

host AcquireSessionInfo Acquire session with a vCenter Server or ESXi host and
print a CIM service ticket and related session information
to a file.

AddVirtualNic

RemoveVirtualNic

Add a virtual NIC to a port group on a virtual switch.
Remove a virtual NIC from a port group.

AddVirtualSwitch

RemoveVirtualSwitch

Add a virtual switch to a host. Remove a virtual switch
from the host.

AddVirtualSwitchPortGroup

RemoveVirtualSwitchPortGroup

Add a port group to a virtual switch. Remove a port group
from a virtual switch.

DVSCreate Create a distributed virtual switch.

HostProfileManager Demonstrates the use of HostProfileManager and
ProfileComplainceManager.

NIOCForDVS Add a network resource pool to a distributed virtual switch.

httpfileaccess GetVMFiles Retrieve configuration files, snapshot files, log files, and
virtual disk files of a virtual machine; place them on the
system on which the program is run.

PutVMFiles Put virtual machine files into a specified datacenter and
datastore; register and reconfigure the corresponding
virtual machine.

performance Basics Display available performance counters or other metadata
for an ESXi host.

History Read performance measurements from the current time,
or from a specified start time, for a specified duration.

PrintCounters Write the available counters of a managed entity into the
specified file at the specified location. The managed entity
can be a host system, a virtual machine, or a resource
pool.

RealTime Display performance measurements from the current time
at the console.

VItop An ESXtop-like sample application that lets administrators
specify the CPU and memory counters by name to obtain
metrics for a specified host.

VIUsage Create a GUI for graphical representation of the counters.

vSphere Web Services SDK Programming Guide

VMware, Inc. 334

Directory Example Description

scheduling DeleteOneTimeScheduledTask Demonstrates deleting a ScheduledTask.

OneTimeScheduledTask Demonstrates creating a ScheduledTask using the
ScheduledTaskManager.

WeeklyRecurrenceScheduledTask Demonstrates creating a weekly recurrent scheduled task.

scsilun SCSILunName Display the CanonicalName,Vendor, Model, Data,
Namespace and NamespaceId of the host’s SCSI LUN.

security credstore Base64 A fast, memory efficient class that encodes and decodes
to and from BASE64 in full accordance with RFC 2045.

CredentialStore Create an example credential store.

CredentialStoreAdmin A command-line tool that provides complete access to the
credential store backing file on the local machine.

CredentialStoreCipher This class uses the JVM provided classes in javax.crypto
to encrypt and decrypt text.

CredentialStoreFactory Factory class providing instances of a credential store.

CredentialStoreImpl Implementation class for CredentialStoreAdmin.

CredentialStoreStorage This class provides the same functionality as
FileInputStream, except that the close() method is
overridden so that FileInputStream class’ close()
method does not get called.

simpleagent CreateUser Create a user account and password and store them in
the local credential store.

SimpleAgent Access the local credential store to obtain a single user
account for login to a server.

storage CreateStorageDRS Creates storage DRS.

SDRSRecommendation Runs storage DRS on an SDRS cluster to obtain SDRS
recommendations.

SDRSRules Configures rules for an SDRS cluster.

vApp OVFManagerExportVapp Demonstrates the OvfManager by exporting VMDKs and
OVF Descriptors of all VMs in the vApps.

OVFManagerExportVMDK Demonstrates how the OvfManager exports VMDKs from
a VM to the localSystem.

OVFManagerImportLocalVapp Use this class to import or deploy an OVF Appliance from
a local drive.

OVFManagerImportVAppFromUrl Use this class to import or deploy an OVF Appliance from
a specified URL.

vim25 This directory contains the many Java classes that define JAX-WS bindings to the vSphere API.

vm VMApplyEvc Apply a per-VM extended vMotion compatibility (EVC)
setting to an existing virtual machine.

VMClone Locate an existing virtual machine on the vCenter Server
system, make a template from this virtual machine, and
deploy instances of the template onto a datacenter.

vSphere Web Services SDK Programming Guide

VMware, Inc. 335

Directory Example Description

VMCreate Create a virtual machine. Different command-line input
creates the virtual machine in different ways.

VMDeltaDisk Create a delta disk on top of an existing virtual disk in a
virtual machine, and simultaneously removes the original
disk using the reconfigure API.

Use delta disks in conjunction with linked virtual
machines.

VMDiskCreate Create a virtual disk.

VMLinkedClone Create a linked virtual machine from an existing snapshot.

VMManageCD Configure a CDROM for a virtual machine. Also list
information about the CDROMs associated with a virtual
machine.

VMManageFloppy Configure a floppy drive for a virtual machine. Also list
information about the floppy drives associated with a
virtual machine.

VMotion Check whether migration with VMotion is feasible
between two hosts. Perform a migration if the hosts are
compatible.

VMpowerOps Perform power operations on a virtual machine.

VMPromoteDisks Consolidate a linked virtual machine by using the
VirtualMachine.PromoteDisks method.

VMReconfig Reconfigure a virtual machine. Includes reconfiguring the
disk size and disk mode.

VMRelocate Relocate a linked virtual machine using disk move type.

VMSnapshot Perform virtual machine snapshot operations

XVCvMotion Relocate virtual machine across from one vCenter Server
to another.

XVMotion Relocate virtual machine to the computing resource
recommended by the DRS.

C# Sample Programs
The C# (.NET) sample programs are located in the SDK\vsphere-ws\dotnet\cs\samples\ directory, as
detailed in the following table. Each of the listed examples is actually a directory that contains a .cs file,
a .csproj file, and an app.config file.

See the readme_dotnet.html file for more information. It explains how to build the examples using
Visual Studio and run them from the command line.

vSphere Web Services SDK Programming Guide

VMware, Inc. 336

Example Description

AcquireBearerTokenByUserCredentia

l

Generate a bearer token based on basic user credentials.

AcquireSessionInfo Acquire session with a vCenter Server or ESXi and print a CIM service ticket and
related session information to a file.

AddVirtualNic Add a virtual NIC to the ESXi system. First specifies a HostVirtualNicSpec, and then
adds the NIC to the host.

AddVirtualSwitch Add a virtual switch to the ESXi system.

AddVirtualSwitchPortGroup Add a virtual port group to the ESXi system.

AppUtil Contains the following utility applications:

n AppUtil – Utility application that drives the user input mechanism for other samples
and includes some other utility functions.

n ArgumentHandlingException – Handles command-line exceptions. Used by
AppUtil.

n CertPolicy – Handles certification problems by displaying informational
messages.

n ClientUtil – Client utilities related to prompting the user and logging. Used by
AppUtil.

n Log – Logger to file or console.

n OptionSpec – Option parsing utility.

n ServiceUtil – Utility for connecting to the server.

n VersionUtil – Utility to determine name space and supported versions.

n VMUtils – Utility that sets values for a basic virtual machine. Some of the setup,
such as adding a floppy disk drive, might not always be needed.

Basics Use the PerformanceManager for basic monitoring.

Browser Retrieve the contents of the ServiceInstance starting at the root folder, and print a
listing of ManagedEntity objects. Optionally, obtain properties for a specific type, or by
default, for ManagedEntity itself.

ColdMigration Migrate a powered off virtual machine from one host to another.

Connect Simple example that logs in and logs out.

Create Create a Folder, Cluster, Datacenter or standalone host. Prompts the user for the
item to create and where to put the item, for example, in a folder.

CreateStorageDRS Demonstrates how to create a DRS group in storage.

CreateUser Create a user, specifying permissions for the user with the AuthorizationManager.

CredentialStorePSCmdLets Multiple cmdlets for managing the credential store.

Delete Delete a managed entity.

DeleteOneTimeScheduledTask Extract a task from scheduledTaskManager and delete it. This sample is well
commented and illustrates using the PropertyCollector. You can create the task
using the OneTimeScheduledTask example.

DisplayNewProperties Display properties of an ESXi host. The properties displayed depend on the version of
the host.

DisplayNewPropertiesVM Display a set of properties for a virtual machine. The properties displayed depend on
the version of the software on the host.

vSphere Web Services SDK Programming Guide

VMware, Inc. 337

Example Description

DVSCreate Create a distributed virtual switch, or add a port group.

EventFormat Retrieve and format the last event on the ESXi or vCenter Server system.
Demonstrates event formatting.

EventHistoryCollectorMonitor Create an EventHistoryCollector and monitor the corresponding events.

GetUpdates Retrieve updates for a virtual machine or an ESXi host.

GetVirtualDiskFiles Retrieve the virtual disk files from a host’s datastores.

GetVMFiles Download the files in the virtual machine configuration directory as well as the files in
the virtual machine snapshot, suspend, and log directories. Write progress to the
console.

History Display the performance measurements of a specified counter of a specified ESXi for a
specified duration, or 20 minutes (default) at the console.

HostPowerOps Perform reboot, shutdown, or suspend (power off to standby) operations on an ESXi
system.

HostProfileManager Demonstrates HostProfileManager and ProfileComplainceManager.

LicenseManager Display licensing information. The user can specify a license server.

MobStartPage Includes a program, image files, and HTML files for displaying a Managed Object
browser.

MoveEntity Move a managed entity from one folder to another.

OneTimeScheduledTask Create a ScheduledTask that powers off a virtual machine and schedules the task
using a OnceTaskScheduler. You can delete the task using the
DeleteOneTimeScheduledTask cmdlet.

OVFManagerExportVapp Export VMDK files and OVF descriptors of all virtual machines in the vApp to local disk.

OVFManagerExportVMDK Export VMDK files of a virtual machine to local disk.

OVFManagerImportLocalVapp Import or deploy an OVF Appliance from the local drive.

PrintCounters Define a printEntityCounters function to print counters for a virtual machine, host,
or resource pool.

PropertyCollector Illustrate use of the PropertyCollector.

QueryMemoryOverhead Illustrate use of the QueryMemoryOverhead method. The folder contains example
QueryMemoryOverheadV25 using the currently valid QueryMemoryOverheadEx method.

RealTime Display the current performance measurements of selected CPU counters of any
specified virtual machine at the console.

RecordSession Record a session that allows you to retrieve a specified set of properties for a specified
managed object reference into an array of result objects.

RemoveManagedObject Remove a host from a cluster or a virtual machine from a host. Handles errors, for
example, if the host is not in a cluster, by printing information to the command line.

RemoveVirtualNic Remove a virtual NIC from the ESXi host.

RemoveVirtualSwitch Remove a virtual switch from the vSphere datacenter.

RemoveVirtualSwitchPortGroup Remove a virtual port group from the vSphere datacenter.

RenameEntity Rename a managed entity.

vSphere Web Services SDK Programming Guide

VMware, Inc. 338

Example Description

SCSILunName Print the virtual machine file system volumes on a specified SCSI LUN.

SDRSRecommendation Run Storage DRS on a given SDRS cluster and generate a list of recommendations.

SDRSRules Show how to add, list, modify, and delete rules for an existing SDRS cluster.

SearchIndex Illustrate use of the SearchIndex API.

SimpleClient Demonstrate connecting to a service, logging on to service, obtaining service content,
and logging out from the service.

SSPI Illustrate how to use an SDK application with Microsoft SSPI.

SSPICIMClient Illustrate how to use a CIM client application with Microsoft SSPI.

TaskList Display currently running tasks and their state.

VMClone Clone a virtual machine.

VMCreate Create a virtual machine.

VMEventHistoryCollectorMonitor Return all events on the latest page in the EventHistoryCollector.

VMotion Validate that migration with vMotion is feasible between two hosts, and perform the
migration if hosts are compatible.

VmPowerOps Retrieve a reference to a virtual machine and invoke power operations specified on the
command line for that virtual machine.

VMPowerStateAlarm Create an alarm that monitors virtual machine state and sends email if the virtual
machine power is off. Includes error handling, for example, when the command is
attempted with an ESXi host as a target.

VMReconfig Reconfigure a virtual machine by changing its memory, cpu, disk, nic, or cd.

VMSnapshot Perform snapshot operations such as create, revert to, remove, remove all, and so on.

VMware.Binding.WsTrust Illustrate endpoint behavior that implements the WS-Security protocol for VMware SSO
authentication.

VMware.Security.CredentialStore Illustrate use of the VMware credential store.

WatchVM Monitor updates on a virtual machine using the PropertyCollector.

WeeklyRecurrenceScheduledTask Create a task that reboots a virtual machine once a week.

XVCvMotion Migrate (reloate) VM from one vCenter Server to another.

XVMotion Migrate VM to another datastore using DRS placement recommendations.

vSphere Web Services SDK Programming Guide

VMware, Inc. 339

	vSphere Web Services SDK Programming Guide
	Contents
	About This Book
	About the vSphere Web Services SDK
	vSphere Web Services SDK
	SDK Developer Setup for the Web Services SDK
	SDK Samples for the Web Services SDK
	UML Diagrams Used in the Web Services SDK Programming Guide

	vSphere Web Services API Programming Model
	vSphere Client-Server Architecture
	Web Services API as a Web Service
	WSDL Files and the Client-Side Proxy Interface
	Network Access to the vSphere Web Service
	Language-Specific Classes and Methods
	Mapping XML Data Types to Java and C# Data Types

	Access to Managed Objects
	Access to vSphere Server Data
	Obtaining Information from a Server
	Working with Data Structures
	Accessing Property Values
	Nested Properties and Property Paths in Composite Data Structures
	xsd:anyType Arrays
	Cast an xsd:anyType Array to an Event Array
	Cast an xsd:anyType Array to an Array of Managed Object References
	Cast an xsd:anyType Array to an Array of String

	Indexed Array and Key-Based Array Properties
	Unset Optional Properties
	Escape Character in Name and Path Properties

	Client Applications for the Web Services API
	vCenter Server Connections
	Establishing a Single Sign-On Session with a vCenter Server
	LoginByToken to vCenter Server By Using C#
	vCenter Server Single Sign On Session Using C#
	Persistent vCenter Server Sessions
	Sample Code
	Using LoginByToken in C#
	LoginByTokenSample Constructor in a C# Web Services SDK Client
	Security Policies in a C# Web Services SDK Client
	Custom Security Assertion in a C# Web Services SDK Client
	Custom Output Filter for a C# Web Services SDK Client
	Login for a C# Web Services SDK Client
	Session Handling in C# Web Services Client

	LoginByToken to vCenter Server By Using Java
	vCenter Server Single Sign-On Session Using Java
	HTTP and SOAP Header Handlers in Java
	Sample Code for a Java Client to the Web Services SDK

	Creating the HTTP Connection in Java
	Using LoginByToken in Java
	Restoring the vCenter Server Session Cookie in a Java Client

	Establishing a Session with Username and Password Credentials
	Overview of a Java Sample Application for the Web Services SDK
	Build a Simple vSphere Client Application for the Web Services SDK
	Java Client Example for the Web Services SDK
	Compiling the Java Test Client in the Web Services SDK

	Web Server Session Token
	Accessing the vSphere Web Services HTTP Endpoint with JAX-WS

	Accessing the vSphere Server from a Web Services Client
	Closing the Connection from a Web Services Client
	Using the Java Samples as Reference
	Multiple Versions of the vSphere API
	Java and C# Sample Applications in the Web Services SDK
	Java Samples in the Web Services SDK
	C# Samples in the Web Services SDK
	Helper Classes for C# Sample Applications in the Web Services SDK

	Datacenter Inventory
	Inventory Overview for the Web Services SDK
	Inventory Hierarchies and ServiceInstance
	Folders in the Hierarchy
	ESXi Inventory Hierarchy

	Accessing Inventory Objects
	Creating Inventory Objects
	Privileges Required for Inventory Management
	Privileges
	Permissions

	Managed and Standalone ESXi Hosts

	Property Collector
	Introduction to the PropertyCollector
	Data Retrieval
	Inventory Traversal and Object Selection

	vSphere Data Objects for Property Collection
	vSphere Methods for Property Collection
	Retrieve Properties with the PropertyCollector
	Simple Property Collector Program in Java for Web Services SDK

	Inventory Traversal
	TraversalSpec Traversal
	Traverse the Inventory By Using the Property Collector
	Inventory Traversal Example in Java
	SelectionSpec Traversal
	Simple Reference SelectionSpec
	Recursive Traversal
	Use Recursive TraversalSpec to Traverse Nested Inventory Folders
	Nested Folder Traversal in Java

	Client Data Synchronization (WaitForUpdatesEx)
	Property Filters
	WaitForUpdatesEx
	Comparing Usage of MaxWaitSeconds
	UpdateSet Data Object from the Property Collector

	Server Data Transmission
	PropertyCollector Performance
	SearchIndex

	Authentication and Authorization
	Objects for Authentication and Authorization Management
	Authentication and Authorization for ESXi and vCenter Server
	ESXi User Model
	vCenter Server User Model
	vSphere Security Model
	Privileges
	Privileges for Datastore Objects in the Web Services API
	Roles
	Permissions

	Setting Up Users, Groups, and Permissions

	Obtaining User and Group Information from UserDirectory
	RetrieveUserGroups Method

	Managing ESXi Users with HostLocalAccountManager
	Methods Available for Local Account Management
	Create a Local User Account on an ESXi System

	Managing Roles and Permissions with AuthorizationManager
	Using Roles to Consolidate Sets of Privileges
	Description of Roles on vSphere Servers

	Modifying Sample Roles to Create New Roles
	Granting Privileges Through Permissions
	Obtaining Information About Permissions
	Setting, Changing, or Deleting Permissions
	Impact of Group Membership on Permissions
	Applying Permission to a Managed Entity

	Authenticating Users Through SessionManager
	Using VMware Single Sign On for vCenter Server Sessions

	Using the Credential Store for Automated Login
	Credential Store Libraries
	Credential Store Methods
	Credential Store Backing File
	Credential Store Samples
	Specifying Roles and Users with the Credential Store

	Managing Licenses with LicenseManager

	Hosts
	Host Management Objects
	Retrieving Host Information
	Configuring and Reconfiguring Hosts
	Managing the Host Lifecycle
	Reboot and Shutdown
	Using Standby Mode
	Disconnecting and Reconnecting Hosts

	Querying and Changing the Host Time
	Querying Virtual Machine Memory Overhead

	Storage
	Storage Management Objects
	Introduction to Storage
	How Virtual Machines Access Storage
	Datastores

	Choosing the Storage API to Use
	Managed Objects for Working with Storage

	Configuring Disk Partitions
	Multipath Management
	Configuring iSCSI Storage
	Configure the VMkernel To Support Software iSCSI
	Configure iSCSI Initiators

	Creating and Managing Datastores
	Accessing Datastores
	Creating and Modifying a VMFS Datastore
	Set Up Disk Partitions
	Create the VMFS Datastore

	Removing and Updating Datastores
	Managing VMFS Datastores with HostStorageSystem
	Update and Upgrade with HostStorageSystem

	Managing VMFS Volume Copies (Resignaturing)
	Resignaturing Volumes with ResignatureUnresolvedVmfsVolume_Task

	Managing Diagnostic Partitions
	Retrieving Diagnostic Partition Information
	Create a Diagnostic Partition

	Sample Code Reference

	vSphere Networks
	Virtual Switches
	Port Groups
	Virtual Machine Network Interfaces
	VMkernel Network Interfaces
	Physical Network Adapter (pnic)

	Using a Distributed Virtual Switch
	Distributed Virtual Switch Configuration
	Backup, Rollback, and Query Operations

	VMware Standard Virtual Switch
	Configuring a Standard Virtual Switch
	vNetwork Standard Switch Environment
	Virtual Switches

	Setting Up Networking with vSS
	Retrieving Information About the Network Configuration
	Adding a Standard Virtual Switch
	Adding a Virtual Port Group
	Adding a VMkernel Network Interface

	Defining the Host Network Policies
	NIC Teaming
	Setting Up IPv6 Networking
	Adding Networking Services
	Adding an NTP Service
	Setting Up the IP Route Configuration
	Setting Up SNMP

	Sample Code Reference

	Virtual Machine Configuration
	VirtualMachine Management Objects and Methods
	Creating Virtual Machines and Virtual Machine Templates
	Creating a Virtual Machine Using VirtualMachineConfigSpec
	Calling the CreateVM_Task Method
	Specifying Virtual Machine Attributes with VirtualMachineConfigSpec

	Creating Virtual Machine Templates
	Cloning a Virtual Machine
	Converting a Template to a Virtual Machine
	Accessing Information About a Virtual Machine
	Checking Default Files
	Checking Default Devices

	Configuring a Virtual Machine
	Name and Location
	Hardware Version
	Boot Options
	Operating System
	CPU and Memory Information
	Configuring Virtual CPUs and Memory
	CPU Processors and Memory Affinity
	CPU Features
	CPU and Memory Modification for Running Virtual Machines

	Configuring Resource Allocation Constraints for Virtual Machines

	Networks
	Virtual Network Interfaces
	Virtual Machine MAC Address

	Fibre Channel NPIV Settings
	File Locations

	Adding Devices to Virtual Machines
	Performing Virtual Machine Power Operations
	Registering and Unregistering Virtual Machines
	Customizing the Guest Operating System
	Installing VMware Tools
	Upgrading a Virtual Machine

	Virtual Machine Management
	Virtual Machine Migration
	Cold Migration
	Migration with vMotion
	Using Storage vMotion

	Snapshots
	Creating a Snapshot
	Reverting to a Snapshot
	Deleting a Snapshot

	Linked Virtual Machines
	Linked Virtual Machines and Disk Backings
	Limitation for HA Clusters

	Creating a Linked Virtual Machine
	Creating a Linked Virtual Machine From a Snapshot
	Creating a Linked Virtual Machine From the Current Running Point

	Instant Clone Virtual Machines
	Instant Clone Terminology
	Run State of the Instant Clone Source
	Advantages of Cloning from the Current Running Point
	Advantages of Cloning from a Frozen Virtual Machine

	The Instant Clone Process from a Frozen Source
	Freezing the Source Virtual Machine for an Instant Clone Operation

	Instant Clone API Methods
	How the Instant Clone Operation Works
	Limitations of Instant Clones
	Guest Customization of Instant Clone Virtual Machines
	Avoiding Network Identity Collisions after Instant Clone Operations

	Removing Snapshots and Deleting Linked Virtual Machines
	Relocating a Virtual Machine in a Linked Virtual Machine Group
	Promoting a Virtual Machine's Disk
	Performing Advanced Manipulation of Delta Disks

	Virtual Machine Guest Operations
	Authenticating with the Guest Operating System
	Running Guest OS Operations
	Guest Operating System Customization
	Guest Network Customization for Stopped Virtual Machines
	Guest Network Customization for Instant Clone Virtual Machines
	Installing the Guest Customization Engine
	Disconnecting Virtual NICs
	Customizing Guest Network Settings for Running Virtual Machines
	Reconnecting Virtual NICs in a Running Virtual Machine
	Restarting the Guest Network After Customization
	Recovering from Guest Network Customization Errors
	Application-Dependent Customization

	Resetting the Network Stack in a Running Virtual Machine
	Resetting the Network Stack in a Linux Virtual Machine
	Resetting the Network Stack in a Windows Virtual Machine
	Reset the Network Stack in a Windows Virtual Machine Using the Control Panel
	Reset the Network Stack in a Windows Virtual Machine Using PowerShell
	Reset the Network Stack in a Windows Virtual Machine Using netsh

	Virtual Machine Encryption APIs
	How Virtual Machine Encryption Protects a Datacenter
	What Keys are Used
	What Is Encrypted
	Virtual Machine Files
	Virtual Disk Files
	Core Dump Files

	What Is Not Encrypted
	Log Files
	Virtual Machine Configuration Files
	Virtual Disk Descriptor File

	Who Can Perform Cryptographic Operations
	How Can I Perform Cryptographic Operations

	vSphere Virtual Machine Encryption Components
	Key Management Server
	vCenter Server
	ESXi Hosts
	Encryption Process Flow

	Prerequisites and Required Privileges for Encryption Tasks
	Cryptography Privileges and Roles
	Host Encryption Mode
	Encrypted vSphere vMotion

	API Methods for vSphere Virtual Machine Encryption
	vSphere API Methods for KMS Management
	API Methods to Prepare an ESXi Host
	vSphere API Methods for Cryptographic Operations
	SPBM API Methods for Encryption

	Workflows for vSphere Virtual Machine Encryption
	Set Up the Key Management Server Cluster
	Add Key Management Server(s) to Your Datacenter
	Establish a Trusted Connection by Exchanging Certificates

	Create an Encryption Storage Policy
	Create an Encrypted Virtual Machine
	Clone an Encrypted Virtual Machine
	Encrypt an Existing Virtual Machine or Disk
	Decrypt an Encrypted Virtual Machine or Disk
	Encrypt Using Different Keys
	Recrypting Encrypted Virtual Machines
	Recrypt Only Key Encryption Keys
	Recrypt Both Key and Disk Encryption Keys

	Query Crypto Key In-Use Status
	Encrypted vSphere vMotion
	Enable Encrypted vMotion

	Virtual Disk Manager

	Best Practices

	Virtual Applications
	About Virtual Applications
	Management Overview
	Direct and Linked Children
	OVF Packages

	Creating a VirtualApp
	Managing VirtualApp Children
	Exporting a Virtual Application
	VirtualApp and OvfManager Methods
	VirtualApp Data Structures
	OvfManager Data Structures
	Example of Generating an OVF Package

	Importing an OVF Package
	Virtual Application Life Cycle
	Powering a Virtual Application On or Off
	Unregistering a Virtual Application
	Suspending a Virtual Application
	Destroying a Virtual Application

	Resource Management
	Resource Management Objects
	Introduction to Resource Management
	Resource Allocation
	Resource Pool Hierarchies
	Cluster Overview

	Creating and Configuring Resource Pools
	Configuring Reservation and Limit for Resource Pools
	Understanding Fixed Reservations
	Understanding Expandable Reservations
	Expandable Reservation Example 1
	Expandable Reservation Example 2
	Expandable Reservation Example 3

	Configuring Priority Shares for Resource Pools
	Understanding Fixed Shares
	Understanding Scalable Shares

	Deleting Child Resource Pools
	Moving Resource Pools or Virtual Machines Into a Resource Pool

	Introduction to vSphere Clusters
	VMware DRS
	VMware HA
	VMware HCI

	Creating and Configuring Clusters
	Creating a Cluster
	Adding a Host to a Cluster
	Reconfiguring a Cluster

	Managing DRS Clusters
	Managing HA Clusters
	Primary and Secondary Hosts
	Failure Detection and Host Network Isolation
	Using VMware HA and DRS Together

	Tasks and Scheduled Tasks
	Creating Tasks
	Session Persistence
	Cancelling a Task
	Using TaskInfo to Determine Task Status
	TaskInfo Values

	Monitoring TaskInfo Properties

	Accessing and Manipulating Multiple Tasks
	Gathering Data with a ViewManager Object
	Task Monitoring Example Using the ListView Object

	Gathering Data with a TaskManager Interface
	Examining Recent Tasks with TaskManager

	Understanding the ScheduledTaskManager Interface
	Scheduling Tasks
	Defining the Schedule and Action
	Scheduling Recurring Operations

	Cancelling a Scheduled Task

	Using a TaskHistoryCollector
	Managing the HistoryCollector
	Sample Code Reference

	Events and Alarms
	Event and Alarm Management Objects
	Understanding Events
	Managing Events with EventManager
	Event Data Objects
	Formatting Event Message Content
	Creating Custom Events
	Creating User Log Events
	Creating Extended Events

	Using an EventHistoryCollector
	Creating an EventHistoryCollector Filter
	Managing the HistoryCollector

	Using Alarms
	Obtaining a List of Alarms
	Creating an Alarm

	Defining Alarms Using the AlarmSpec Data Object
	Specifying Alarm Trigger Conditions with AlarmExpression
	AlarmExpression Types
	Using MetricAlarmExpression

	Specifying Alarm Actions
	Deleting or Disabling an Alarm

	Sample Code Reference

	vSphere Performance
	vSphere Performance Data Collection
	PerformanceManager Objects and Methods
	Retrieving vSphere Performance Data
	Performance Counter Example (QueryPerf)
	Mapping Performance Counters (Counter Ids and Metadata)
	Retrieving Statistics
	Performance Data Returned by a vSphere Server
	Handling Returned Performance Data

	Large-Scale Performance Data Retrieval
	Using the QueryPerf Method as a Raw Data Feed
	Comparison of Query Methods
	Retrieving Summary Performance Data

	Performance Counter Metadata
	PerfCounterInfo

	Performance Intervals
	ESXi Server Performance Intervals
	vCenter Server Performance Intervals

	vSphere Performance and Data Storage
	Modifying Historical Intervals
	Modifying Performance Counter Collection Levels
	Performance Counter Data Collection
	Performance Counter Data Storage
	Performance Manager Method Interaction
	vSphere Client Management of Performance Statistics

	Sample Code Reference

	Diagnostics and Troubleshooting
	Troubleshooting Best Practices
	Overview of Configuration Files and Log Files
	ESXi Log File
	Virtual Machine Log Files
	vCenter Server Log Files

	Modifying the Log Level to Obtain Detailed Information
	Setting the Log Level on ESXi Systems
	Generating Logs
	Setting the Log Level on vCenter Server Systems

	Using DiagnosticManager
	Using the MOB to Explore the DiagnosticManager
	Generating Diagnostic Bundles
	Export Diagnostic Data By Using the vSphere Client

	Managed Object Browser
	Using the MOB to Explore the Object Model
	Accessing the MOB
	Using the MOB to Navigate the VMware Infrastructure Object Model

	Using the MOB to Invoke Methods
	Passing Primitive Datatypes to Method
	Passing Arrays of Primitives to Methods
	Passing Complex Structures to Methods
	Simple Content
	Complex Content

	Using the MOB Along With the API Reference

	HTTP Access to vSphere Server Files
	Introduction to HTTP Access
	URL Syntax for HTTP Access
	Datastore Access (/folder)
	Host File Access (/host)
	Update Package Access (/tmp)
	Privilege Requirements for HTTP Access

	Sample Program Overview
	Java Sample Programs (JAXWS Bindings)
	C# Sample Programs

