VMware vSphere
Automation SDKs
Programming Guide

Update 1

VMware vSphere 8.0
VMware ESXi 8.0
vCenter Server 8.0

VMware vSphere Automation SDKs Programming Guide

You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

VMware, Inc.

3401 Hillview Ave.
Palo Alto, CA 94304
Www.vmware.com

Copyright © 2015-2023 VMware, Inc. All rights reserved. Copyright and trademark information.

VMware, Inc.

https://docs.vmware.com/
https://docs.vmware.com/copyright-trademark.html

Contents

About vSphere Automation SDKs Programming Guide 9

1 Introduction to the vSphere Automation SDKs 10
vSphere Automation SDK Overview 10

Supported Programming Languages 12

2 Components of the vSphere Automation Virtualization Layer 13
Components and Services of the vSphere Environment 13

3 Retrieving Service Endpoints 16
Filtering for Predefined Service Endpoints 17
Filter Parameters for Predefined Service Endpoints 18
Connect to the Lookup Service and Retrieve the Service Registration Object 19

Java Example of Connecting to the Lookup Service and Retrieving the Service Registration
Object 19

Python Example of Connecting to the Lookup Service and Retrieving a Service Registration
Object 21

Retrieve Service Endpoints on vCenter Server Instances 21
Java Example of Retrieving a Service Endpoint on a vCenter Server Instance 22
Python Example of Retrieving a Service Endpoint on a vCenter Server Instance 23
Retrieve a vCenter Server ID by Using the Lookup Service 24
Java Example of Retrieving a vCenter Server ID by Using the Lookup Service 24
Python Example of Retrieving a vCenter Server ID by Using the Lookup Service 25
Retrieve a vSphere Automation API Endpoint on a vCenter Server Instance 26

Java Example of Retrieving a vSphere Automation Endpoint on a vCenter Server Instance
26

Python Example of Retrieving a vSphere Automation Endpoint on a vCenter Server Instance
27

4 Authentication Mechanisms 28
Authentication Terminolgy 29
Create a vSphere Automation Session with User Credentials 31
Java Example of Creating a vSphere Automation API Session with User Credentials 32
Python Example of Creating a vCloud Suite Session with Username and Password 33
Retrieve a SAML Token 34
Java Example of Retrieving a SAML Token 34
Python Example of Retrieving a SAML Token 35
Create a vSphere Automation Session with a SAML Token 35

Java Example of Creating a vSphere Automation API Session with a SAML Token 36

VMware, Inc.

VMware vSphere Automation SDKs Programming Guide

Python Example of Creating a vSphere Automation API Session with a SAML Token
Create a Web Services Session 38

Java Example of Creating a vSphere Web Services Session 39

Python Example of Creating a Web Services Session 39
Identity Provider Federation for vCenter Server 40

Federate vCenter Server to Microsoft Active Directory Federation Services (AD FS)

5 Accessing vSphere Automation Services 46
Access a vSphere Automation Service 47

Java Example of Accessing a vSphere Automation Service 48

6 ESXiHosts 50
Retrieving Information About ESXi Hosts 50
Adding a Standalone ESXi Host to vCenter Server 51
Disconnecting and Reconnecting ESXi Hosts 51

Configuring ESXi Entropy 51

7 Managing the Life Cycle of Hosts and Clusters 54
vSphere Lifecycle Manager Terms 55
vSphere Lifecycle Manager Overview 56
Options for Managing the ESXi Life Cycle 58
Software Depots 59
Types of Software Depots 59
Working with Online Depots 61
Working with UMDS Depots 62
Synchronizing Software Depots 63
Working with Offline Depots 64
Managing Depot Overrides 64
Inspecting Depot Contents 65
Enabling a Cluster to Use a Software Specification 66
Creating a Cluster with Enabled vSphere Lifecycle Manager 66
Enabling an Existing Cluster to Use vSphere Lifecycle Manager 67
Enabling a Standalone Host to Use a Software Specification 68
Working with Draft Software Specifications 69
Creating a Draft Software Specification 69
Editing a Draft Software Specification 70
Validating the Draft Software Specification 71
Committing the Draft Software Specification 71
Working with Desired Software States 72
Exporting and Importing a Desired State 72
Checking the Compliance Against the Desired State 74

VMware, Inc.

VMware vSphere Automation SDKs Programming Guide

Hardware Compatibility Data 76
Checking the Hardware Compatibility of an ESXi Host 76
Configuring Remediation Settings 77
Remediating an ESXi Cluster and a Standalone Host 82
Integrate Third-Party Solutions with vSphere Lifecycle Manager 82

8 Virtual Machine Configuration and Management 87

Creating Virtual Machines 87

Creating a Virtual Machine Without a Clone or Template 88
Configuring Virtual Machines 90

Name and Location 91

Hardware Version 93

Boot Options 94

Guest Operating System 97

CPU and Memory 97

Networks 101
Managing Virtual Machines 105

Filtering Virtual Machines 105

Installing VMware Tools 106

Performing Virtual Machine Power Operations 107

Registering and Unregistering Virtual Machines 108
Virtual Machine Guest Operations 109

Upload and Run a Script on a Guest Operating System 109
Managing Data Sets 114

Data Set Operations 115

9 Working with Content Libraries 116

Content Library Overview 117
Content Library Types 117
Content Library Items 118
Content Library Storage 118

Querying Content Libraries 120
Listing All Content Libraries 120
Listing Content Libraries of a Specific Type 121
Listing Content Libraries by Using Specific Search Criteria 121

Content Libraries 122
Create a Local Content Library 123
Publish an Existing Content Library 125
Publish a Library at the Time of Creation 127
Subscribe to a Content Library 128
Synchronize a Subscribed Content Library 130

VMware, Inc.

VMware vSphere Automation SDKs Programming Guide

Editing the Settings of a Content Library 131
Removing the Content of a Subscribed Library 132
Delete a Content Library 133
Library Iltems 133
Create an Empty Library Item 134
Querying Library Items 136
Edit the Settings of a Library Item 137
Upload a File from a Local System to a Library Iltem 138
Upload a File from a URL to a Library Item 141
Download Files to a Local System from a Library Item 143
Synchronizing a Library Item in a Subscribed Content Library 146
Removing the Content of a Library Item 147
Deleting a Library Item 147
Content Library Support for OVF and OVA Packages 147
Working with OVF and OVA Packages in a Content Library 148
Creating Virtual Machines and vApps from Templates in a Content Library 152
Create a VM Template in a Content Library from a Virtual Machine 152
Create an OVF Template in a Content Library from a Virtual Machine or vApp 155
Deploy a Virtual Machine from a VM Template in a Content Library 158
Deploy a Virtual Machine or vApp from an OVF Template in a Content Library 160

10 vSphere Tag Service 164
Creating vSphere Tags 164
Creating a Tag Category 164
Creating a Tag 166
Creating Tag Associations 167
Assign the Tag to a Content Library 167
Assign a Tag to a Cluster 168
Updatinga Tag 170
Java Example of Updating a Tag Description 170
Python Example of Updating a Tag Description 170
Using Tags to Create and Manage Compute Policies 171

Create a Compute Policy 171

11 vSphere with Tanzu Configuration and Management 174
vSphere with Tanzu Terminology 174
vSphere with Tanzu Components and Services 176
Configuring and Managing a Supervisor 177
Persistent Storage in vSphere with Tanzu 178
Supervisor Networking 179

Enable vSphere with Tanzu on a Cluster with NSX as the Networking Stack 182

VMware, Inc.

VMware vSphere Automation SDKs Programming Guide

Enable vSphere with Tanzu on a Cluster with the vSphere Networking Stack 190
Upgrading a Supervisor 194
Monitoring the Enable and Upgrade Supervisor Operations 195
Reconfiguring a Supervisor 195
Disabling a Supervisor 195
Content Libraries in vSphere with Tanzu 196

Creating, Securing, and Synchronizing Content Libraries for Tanzu Kubernetes Releases
196

Creating and Managing Content Libraries for VM Provisioning in vSphere with Tanzu 198
Associating a Content Library with a Namespace 198
Managing Namespaces on a Supervisor 199
Create a vSphere Namespace 199
Updating the Namespace Configuration 202
Configuring the Access to a Namespace 202
Self-Service Namespace Management 203
Virtual Machines in vSphere with Tanzu 204
Create a VM Class in vSphere with Tanzu 205
Editing or Removing a VM Class from Your Environment 206

Associating a VM Class with a vSphere Namespace 207

12 vSphere Security 208

VMware, Inc.

Managing Certificates 208
Certificate Management Operations 208
Add a Root Certificate to vCenter Server 211
Delete a Root Certificate from vCenter Server 212
Change the Machine SSL Certificate of vCenter Server 213
Refresh the vCenter Server STS Signing Certificate with a VMCA-Issued Certificate 218
Set a Custom STS Signing Certificate to vCenter Server 220
vSphere Trust Authority 221
Configure a vSphere Trust Authority Cluster 222
Configure Key Providers 222
Establish Trust Between Key Provider and Key Server 223
Configure Trusted TPMs of Attested ESXi Hosts on a Cluster Level 224
Configure Trusted ESXi Builds on a Cluster Level 225
Retrieve vSphere Trust Authority Components Information 226
Configure vSphere Trust Authority Components 227
Configure vSphere Trust Authority Components for Trusted Clusters 228

Establish Trust Between Hosts in a vSphere Trust Authority Cluster and a Workload vCenter
Server 229

Check Trusted Cluster Health 230
Remediate a Trusted Cluster 232

Retrieve Host Hardware TPM Information 233

VMware vSphere Automation SDKs Programming Guide

Manage Host Hardware TPM Endorsement Keys 234

13 vCenter Server Management 235
Authorization Model for Administration of vCenter Server 235
Authorization Model Mapping to the vCenter Single Sign-On Domain 235
Using the Operator Role 236
Using the Admin Role 236
Using the SuperAdmin Role 236
Performing Privilege Checks Operations 237
vCenter Server Installation and Setup 238
Install Stage 2 238
File-Based Backup and Restore of vCenter Server 242
Troubleshooting for vCenter Server Installation or Deployment 252
vCenter Server Upgrade 257
Upgrade Stage 2 257
Historical Data Transfer 263
vCenter Server Configuration 269
Health Monitoring of vCenter Server 269
Capacity Monitoring of vCenter Server 270
Managing the Global FIPS Compliance 276
Performing Infrastructure Profile Management Operations 276
Patching and Updating vCenter Server Deployments 277
Planning vCenter Server Updates 277

Updating vCenter Server 282

VMware, Inc.

About vSphere Automation SDKs
Programming Guide

VMware vSphere Automation SDKs Programming Guide provides information about how to use
the VMware vSphere® Automation™ SDK to automate different vSphere management tasks.

At VMware, we value inclusion. To foster this principle within our customer, partner, and internal
community, we have updated this guide to remove instances of non-inclusive language.

Intended Audience

This manual is intended for anyone who wants to develop applications for accessing and using
vSphere features such as virtual machine management, tagging, content libraries, managing the
life cycle of clusters with the vSphere Lifecycle Manager, vSphere with Tanzu, and so on. The
information is written for developers who have understanding of the targeted vSphere features
and some experience with Java and Python programming languages.

VMware, Inc.

Introduction to the vSphere
Automation SDKs

The vSphere Automation SDKs bundle client libraries for accessing new vSphere features
such as using content libraries and existing features such as virtual machine configuration and
management, vSphere tags and attributes, and so on.

The vSphere Automation SDKs contain sample applications and API reference documentation for
the vSphere services that are accessible via the vSphere Automation APl endpoint. The vSphere
Automation SDKs also provide sample code that demonstrates how you can establish a secure
connection with the vSphere Automation API endpoint and access the available vSphere services
for working with vSphere objects.

vSphere Automation SDKs support two programming languages for developing client
applications for managing components in your virtual environment by accessing the vSphere
Automation API services.

This chapter includes the following topics:
m vSphere Automation SDK Overview

m Supported Programming Languages

vSphere Automation SDK Overview

The vSphere Automation API provides a unified programming interface to vSphere Automation
services that you can use through the SDKs provided for two programming languages. The
vSphere Automation API provides a service-oriented architecture for accessing resources in the
virtual environment by issuing requests to the vSphere Automation API endpoint.

Client applications use the vSphere Automation API to communicate with infrastructure and
management vCenter Server services.

VMware, Inc. 10

VMware vSphere Automation SDKs Programming Guide

Figure 1-1. Communication Model Between a Client Application and the vSphere Automation API

Retrieve service

endpoint Lookup Service
Establish
authenticated
session vCenter Single Sign-On

Communicate
with services

Client vSphere Automation API Endpoint

Application

Content Image Tagging
Library Manager Service

vSphere Web Services

vCenter Server

Client applications use the Lookup Service to retrieve the vCenter Single Sign-On endpoint, the
vSphere Automation API endpoint, and the endpoints of services that are exposed through the
VMware vSphere® API. To access vSphere Automation services such as those for managing
content libraries and vSphere tags, client applications send requests to the vSphere Automation
API endpoint. By using the vCenter Single Sign-On service, client applications can either establish
an authenticated vSphere Automation session, or authenticate individual requests to the vSphere
Automation API endpoint.

Client applications can access services that are exposed through the vSphere Web Services API
by using the VMware vS|ohere® Management SDK.

SDK Developer Setup

To start developing client applications that use the vSphere Automation API, you must download
the desired SDK from the VMware GitHub Repository or from the respective vSphere Automation
SDK landing page at https://developer.vmware.com and set up your development environment.
You can find instructions for setting up your development environment in the README files
contained in each vSphere Automation SDK.

VMware, Inc. n

https://developer.vmware.com

VMware vSphere Automation SDKs Programming Guide

APl Explorer

The API Explorer is a VMware utility similar to the Managed Object Browser (MOB). Access

the API Explorer at https://<vcenter ip address or fgdn>/apiexplorer or from the API
Explorer tab of the Developer Center pane in vSphere Client. Use the utility to connect to the
vSphere Automation API endpoint, browse through the available vSphere REST APIs, and make
calls to your vCenter Server instance.

SDK Samples

The vSphere Automation SDKs provide code samples that demonstrate how the vSphere
Automation API work and how they interoperate with the vSphere Web Services API. The code
snippets included in this documentation are based on the samples in the vSphere Automation
SDKs.

Supported Programming Languages

The vSphere Automation SDKs provide bindings for two different programming languages that
let you build client applications on your preferred programming language.

m VMware vSphere Automation SDK for Java

= VMware vSphere Automation SDK for Python

VMware, Inc.

12

Components of the vSphere
Automation Virtualization Layer

At the core of vSphere Automation is vSphere, which provides the virtualization layer of the
software-defined data center. You can use vSphere deployment options for vCenter Server and
ESXi hosts to build virtual environments of different scales.

This chapter includes the following topics:

m Components and Services of the vSphere Environment

Components and Services of the vSphere Environment

Starting with vSphere 7.0, the installation and setup of vSphere is simplified to the deployment
and upgrade of vCenter Server. vCenter Server is a preconfigured virtual machine optimized for
running the vCenter Server service and the vCenter Server components. vCenter Server service
acts as a central administrator for ESXi hosts.

Authentication Services Installed with vCenter Server

The vCenter Server group of authentication services includes vCenter Single Sign-On, License
Service, Lookup Service, and VMware Certificate Authority. The services installed with the
vCenter Server appliance are common to the entire virtual environment. A vCenter Server can be
connected to one or more vCenter Server instances. In a deployment that consists of more than
one vCenter Server, the data of each service is replicated across all vCenter Server instances.

In the client applications that use the vSphere Automation API, you use the vCenter Single
Sign-On and the Lookup Service on the vCenter Server to provide a range of functionality.

Authentication and Session Management

You use the vCenter Single Sign-On service to establish an authenticated session with the
vSphere Automation APl endpoint. You send credentials to the vCenter Single Sign-On
service and receive a SAML token that you use to retrieve a session ID from the vSphere
Automation API endpoint. Alternatively, you can access the vSphere Automation APIs in a
sessionless manner. You must simply include the SAML token in every request that you issue
to the vSphere Automation API endpoint.

Service Discovery

VMware, Inc. 13

VMware vSphere Automation SDKs Programming Guide

You use the Lookup Service to retrieve the endpoint URL for the vCenter Single Sign-On
service on the vCenter Server, the location of the vCenter Server instances, and the vSphere
Automation API endpoint.

Components Installed with vCenter Server

vCenter Server is a central administration point for ESXi hosts. The group of components installed
when you install vCenter Server include the vCenter Server service, vSphere Client, VMware
vSphere® Auto Deploy™, VMware vSphere® ESXi™ Dump Collector, VMware vSphere® Syslog
Collector, and vSphere Lifecycle Manager service.

You can use the vSphere Automation APl endpoint to access the following services running on
vCenter Server.

Content Library

You can use content libraries to share virtual machines, vApps, and other files, such as ISO,
OVA, and text files, across the software-defined data center. You can create, share, and
subscribe to content libraries on the same vCenter Server instance or on a remote instance.
Sharing content libraries promotes consistency, compliance, efficiency, and automation in
deploying workloads at scale.

You can also create OVF and VM templates from virtual machines and vApps in hosts,
resource pools, and clusters. You can then use the OVF and VM templates to deploy new
virtual machines and vApps.

Starting with vSphere 7.0, you can edit the contents of a VM template. You can check out the
library item that contains the VM template. After editing the VM template, check in the library
item to save the changes to the virtual machine.

Virtual Machine

You can use the vSphere Automation APIs to create, configure, and manage the life cycle of
virtual machines in your environment.

Starting with vSphere 7.0, you can also clone, create an instant clone, migrate, register, and
unregister a virtual machine.
vSphere Lifecycle Manager

Starting with vSphere 7.0, the life cycle of ESXi hosts and clusters can be managed through
the VMware vSphere® Lifecycle Manager™ feature. Based on the current state of the hosts
in a cluster, you can easily create a desired software specification by using the contents of
a software depot. Then you validate the desired software specification and you apply the
specification on all hosts in the cluster.

vSphere Tags

VMware, Inc. 14

VMware vSphere Automation SDKs Programming Guide

With vSphere tags you can attach metadata to vSphere objects, and as a result, make it
easier to filter and sort these objects. You can use the vSphere Automation APIs to automate
the management of vSphere tags.

vSphere with Tanzu

Starting with vSphere 7.0, you can enable vSphere with Tanzu on an existing vSphere cluster
in your environment. Create and configure namespaces on the Supervisors to run Kubernetes
workloads in dedicated resource pools.

VMware, Inc. 15

Retrieving Service Endpoints

To access services and resources in the virtual environment, client applications that use the
vSphere Automation APl must know the endpoints of vSphere Automation and vSphere services.
Client applications retrieve service endpoints from the Lookup Service that runs on vCenter
Server.

The Lookup Service provides service registration and discovery by using the vSphere Web
Services API. By using the Lookup Service, you can retrieve endpoints of services on vCenter
Server. The following endpoints are available from the Lookup Service.

m The vCenter Single Sign-On endpoint on vCenter Server. You can use the vCenter Single
Sign-On service to get a SAML token and establish an authenticated session with a vSphere
Automation API endpoint or a vCenter Server endpoint.

m The vSphere Automation APl endpoint on vCenter Server. Through the vSphere Automation
endpoint, you can make requests to vSphere Automation API services such as virtual machine
management, Content Library, and Tagging.

m The vCenter Server endpoint. In case you want to retrieve service endpoints on a vCenter
Server instance that is part of a vCenter Enhances Linked Mode group, use the vCenter
Server endpoint to get the node IDs of all linked instances. You can use the node ID of the
specific vCenter Server instance to retrieve service endpoints on that instance.

m The vSphere Web Services APl endpoint and endpoints of other vSphere Web services that
run on vCenter Server.

Workflow for Retrieving Service Endpoints

The workflow that you use to retrieve service endpoints from the Lookup Service might vary
depending on the endpoints that you need and their number. Follow this general workflow for
retrieving service endpoints.

1 Connect to the Lookup Service on vCenter Server and service registration object so that you
can query for registered services.

2 Create a service registration filter for the endpoints that you want to retrieve.

3 Use the filter to retrieve the registration information for services from the Lookup Service.

VMware, Inc. 16

VMware vSphere Automation SDKs Programming Guide

4 Extract one or more endpoint URLs from the array of registration information that you
receive from the Lookup Service.

This chapter includes the following topics:

m Filtering for Predefined Service Endpoints

m Filter Parameters for Predefined Service Endpoints

m Connect to the Lookup Service and Retrieve the Service Registration Object
m Retrieve Service Endpoints on vCenter Server Instances

m Retrieve a vCenter Server ID by Using the Lookup Service

m Retrieve a vSphere Automation API Endpoint on a vCenter Server Instance

Filtering for Predefined Service Endpoints

The Lookup Service maintains a registration list of vSphere services. You can use the Lookup
Service to retrieve registration information for any service by setting a registration filter that you
pass to the List () function on the Lookup Service. The functions and objects that you can use
with the Lookup Service are defined in the 1ookup.wsdl file that is part of the SDK.

Lookup Service Registration Filters

You can query for service endpoints through a service registration object that you obtain from
the Lookup Service. You invoke the List () function on the Lookup Service to list the endpoints
that you need by passing LookupServiceRegistrationFilter. LookupServiceRegistrationFilter
identifies the service and the endpoint type that you can retrieve.

Optionally, you can include the node ID parameter in the filter to identify the vCenter Server
instance where the endpoint is hosted. When the node ID is omitted, the List () function returns
the set of endpoint URLs for all instances of the service that are hosted on different vCenter
Server instances in the environment.

For example, a LookupServiceRegistrationFilter for querying the vSphere Automation service
has these service endpoint elements.

Table 3-1. Service Registration Filter Parameters

Filter Types Value Description
LookupServiceRegistrationServiceType product= "com.vmware.cis" vSphere Automation
namespace.
type="cs.vapi" Identifies the vSphere

Automation service.

VMware, Inc. 17

VMware vSphere Automation SDKs Programming Guide

Table 3-1. Service Registration Filter Parameters (continued)

Filter Types Value

LookupServiceRegistrationEndpointType

"

protocol=

"vapi.Jjson.https.public"”

Description

type="com.vmware.vapi.endpoint Specifies the endpoint path for

the service.

Identifies the protocol that will
be used for communication
with the endpoint .

For information about the filter parameter of the available predefined service endpoints, see

Filter Parameters for Predefined Service Endpoints.

Filter Parameters for Predefined Service Endpoints

Depending on the service endpoint that you want to retrieve, you provide different parameters
to the LookupServiceRegistrationFilter that you pass to the List () function on the Lookup

Service. To search for services on a particular vCenter Server instance, set the node ID parameter

to the filter.

Table 3-2. Input Data for URL Retrieval for the Lookup Service Registration Filter

Service Input Data
vCenter Single Sign-On product namespace
service type
protocol

endpoint type
vSphere Automation Endpoint product namespace
service type
protocol

endpoint type
vCenter Server product namespace
service type
protocol

endpoint type

vCenter Storage Monitoring product namespace

Service
service type

protocol

endpoint type

VMware, Inc.

Value

com.vmware.cis

cs.identity

wsTrust

com.vmware.cis.cs.identity.sso

com.vmware.cis

cs.vapi

vapi.json.https.public

com.vmware.vapi.endpoint

com.vmware.cis

vcenterserver

vmomi

com.vmware.vim

com.vmware.vim.sms

sms

https

com.vmware.vim.sms

VMware vSphere Automation SDKs Programming Guide

Table 3-2. Input Data for URL Retrieval for the Lookup Service Registration Filter (continued)

Service Input Data
vCenter Storage Policy-Based product namespace
Management

service type

protocol

endpoint type

vSphere ESX Agent Manager product namespace

service type

protocol

endpoint type

Connect to the Lookup Service and Retrieve the Service

Registration Object

You must connect to the Lookup Service to gain access to its operations. After you connect
to the Lookup Service, you must retrieve the service registration object to make registration

queries.

Procedure

1 Connect to the Lookup Service.

Value

com.vmware.

https

com.vmware.

com.vmware.

Cs.eam

vmomi

com.vmware.

vim.

vim.

vim.

cis.

sms

pbm

sms

cs.eam.sdk

a Configure a connection stub for the Lookup Service endpoint, which uses SOAP bindings,

by using the HTTPS protocol.

b Create a connection object to communicate with the Lookup Service.

2 Retrieve the Service Registration Object.

a Create a managed object reference to the Service Instance.

b Invoke the RetrieveServiceContent () method to retrieve the ServiceContent data

object.

c Save the managed object reference to the service registration object.

With the service registration object, you can make registration queries.

Java Example of Connecting to the Lookup Service and Retrieving

the Service Registration Object

The example is based on the code in the LookupServiceHelper. java sample file.

VMware, Inc.

VMware vSphere Automation SDKs Programming Guide

This example uses the steps that are described in the Connect to the Lookup Service and
Retrieve the Service Registration Object procedure.

Note For a complete and up-to-date version of the Java sample code, see the vsphere-
automation-sdk-java VMware repository at GitHub.

Note The connection code in the example disables certificate and host name checking for the
connection for simplicity. For a production deployment, supply appropriate handlers. See the
SDK sample file for a more detailed example of connection code.

String lookupServiceUrl;

LsService lookupService;

LsPortType lsPort;

ManagedObjectReference servicelnstanceRef;
LookupServiceContent lookupServiceContent;
ManagedObjectReference serviceRegistration;

//1 - Configure Lookup Service stub.
HostnameVerifier hostVerifier = new HostnameVerifier () {
public boolean verify(String urlHostName, SSLSession session) {
return true;
}
}i

HttpsURLConnection.setDefaultHostnameVerifier (hostVerifier);
SslUtil.trustAllHttpsCertificates();

//2 - Create the Lookup Service stub.
lookupService = new LsService();

lsPort = new LsPorType.getLsPort () ;

((BindingProvider) lsProvider) .getRequestContext () .put (BindingProvider .ENDPOINT ADDRESS PROPERT
Y, lookupServiceUrl);

//4 - Create a predetermined management object.
serviceInstanceRef = new ManagedObjectReference() ;
serviceInstanceRef.setType ("LookupServiceInstance") ;
servicelInsanceRefl.setValue ("ServiceInstance");

//5 - Retrieve the ServiceContent object.

lookupServiceContent = lsPort.retrieveServiceContent (serviceInstanceRef) ;

//6 - Retrieve the service registration
serviceRegistration = lookupServiceContent.getServiceRegistration();

VMware, Inc.

20

VMware vSphere Automation SDKs Programming Guide

Python Example of Connecting to the Lookup Service and Retrieving

a Service Registration Object
The example is based on the code from the lookup service helper.py sample file.

This example uses the steps that are described in the Connect to the Lookup Service and
Retrieve the Service Registration Object procedure.

Note For a complete and up-to-date version of the sample code, see the vsphere-
automation-sdk-python VMware repository at GitHub.

1 - Create SOAP client object to communicate with the Lookup Service.

my ls stub = Client (url=wsdl url, location=ls url)

2 - Configure service & port type for client transaction.

my ls stub.set options(service='LsService', port='LsPort')

3 - Manufacture a managed object reference.
managed object ref = \

my ls_stub.factory.create('ns0:ManagedObjectReference')

managed object ref. type = 'LookupServicelnstance'
managed object ref.value = 'Servicelnstance'

4 - Retrieve the ServiceContent object.
ls_service content = \

my ls stub.service.RetrieveServiceContent (managed object ref)

5 - Retrieve the service registration object.

service registration = ls service content.serviceRegistration

Retrieve Service Endpoints on vCenter Server Instances

You can create a function that obtains the endpoint URLs of a service on all vCenter Server
instances in the environment. You can modify that function to obtain the endpoint URL of a
service on a particular vCenter Server instance.

Prerequisites
m Establish a connection with the Lookup Service.

m Retrieve a service registration object.

Procedure
1 Create a registration filter object, which contains the following parts:

m A filter criterion for service information

VMware, Inc.

21

VMware vSphere Automation SDKs Programming Guide

m A filter criterion for endpoint information

Option Description

Omit the node ID parameter Retrieves the endpoint URLs of the service on all vCenter Server instances.

Include the node ID parameter Retrieves the endpoint URL of the service on a particular vCenter Server
instance.

2 Retrieve the specified service information by using the List () function.

Results

Depending on whether you included the node ID parameter, the List () function returns one of
the following results:

m Alist of endpoint URLs for a service that is hosted on all vCenter Server instances in the
environment.

m An endpoint URL of a service that runs on a particular vCenter Server instance.

What to do next

Call the function that you implemented to retrieve service endpoints. You can pass different filter
parameters depending on the service endpoints that you need. For more information, see Filter
Parameters for Predefined Service Endpoints.

To retrieve a service endpoint on a particular vCenter Server instance, you must retrieve the
node ID of that instance and pass it to the function. For information about how to retrieve the ID
of a vCenter Server instance, see Retrieve a vCenter Server ID by Using the Lookup Service.

Java Example of Retrieving a Service Endpoint on a vCenter Server
Instance

This example provides a common pattern for filtering Lookup Service registration data. This
example is based on the code in the LookupServiceHelper. java sample file.

This example uses the steps that are described in the Retrieve Service Endpoints on vCenter
Server Instances procedure.

Note For a complete and up-to-date version of the Java sample code, see the vsphere-
automation-sdk-java VMware repository at GitHub.

/‘k*

* Define filter criterion for retrieving a service endpoint.
* Omit the nodelID parameter to retrieve the endpoints hosted
* on all vCenter Server instances in the environment.

*/

List<LookupServiceRegistrationInfo> lookupServiceUrls (String prod,

String svcType,

VMware, Inc. 22

VMware vSphere Automation SDKs Programming Guide

String proto,
String epType,
String nodelID) {

LookupServiceRegistrationServiceType filterServiceType =
new
LookupServiceRegistrationServiceType () ;
filterServiceType.setProduct (prod) ;
filterServiceType.setType (svcType) ;

LookupServiceRegistrationEndpointType filterEndpointType =
new
LookupServiceRegistrationEndpointType () ;
filterEndpointType.setProtocol (proto) ;
filterEndpointType.setType (epType) ;

LookupServiceRegistrationFilter filterCriteria = new LookupServiceRegistrationFilter();
filterCriteria.setServiceType (filterServiceType) ;

filterCriteria.setEndpointType (filterEndpointType) ;

filterCriteria.setNode (nodelD) ;

return lsPort.list (serviceRegistration, filterCriteria);

Python Example of Retrieving a Service Endpoint on a vCenter
Server Instance

This example provides a common pattern for filtering Lookup Service registration data. This
example is based on the code in the lookup service helper.py sample file.

This example uses the steps that are described in the Retrieve Service Endpoints on vCenter
Server Instances procedure.

Note For a complete and up-to-date version of the sample code, see the vsphere-
automation-sdk-python VMware repository at GitHub.

def lookup service infos(prod, svc type, proto, ep type, node id)

1 - Create a filter criterion for service info.
filter service type = \

my ls stub.factory.create('ns0:LookupServiceRegistrationServiceType')
filter service type.product = prod

filter service type.type = svc type

2 - Create a filter criterion for endpoint info.
filter endpoint type = \
my ls stub.factory.create('ns0:LookupServiceRegistrationEndpointType')
filter endpoint type.protocol = proto
filter endpoint type.type = ep type

3 - Create the registration filter object.

VMware, Inc.

23

VMware vSphere Automation SDKs Programming Guide

filter criteria = \

my ls stub.factory.create('ns0:LookupServiceRegistrationFilter")
filter criteria.serviceType = filter service type
filter criteria.endpointType = filter endpoint type

filter criteria.nodeld = node_ id

4 - Retrieve specified service info with the List () method.
service infos = my ls stub.service.List (service registration,
filter criteria)

return service infos

Retrieve a vCenter Server ID by Using the Lookup Service

You use the node ID of a vCenter Server instance to retrieve the endpoint URL of a service on
that vCenter Server instance. You specify the node ID in the service registration filter that you
pass to the List () function on the Lookup Service.

Managed services are registered with the instance name of the vCenter Server instance where
they run. The instance name maps to a unique vCenter Server ID. The instance name of a vCenter
Server system is specified during installation and might be an FQDN or an IP address.

Prerequisites
m Establish a connection with the Lookup Service.

m Retrieve a service registration object.

Procedure
1 List the vCenter Server instances.

2 Find the matching node name of the vCenter Server instance and save the ID.

Results

Use the node ID of the vCenter Server instance to filter subsequent endpoint requests. You can
use the node ID in a function that retrieves the endpoint URL of a service on a vCenter Server
instance. For information about implementing such a function, see Retrieve Service Endpoints on
vCenter Server Instances.

Java Example of Retrieving a vCenter Server ID by Using the Lookup
Service

This example is based on the in the LookupServiceHelper.java sample file.

VMware, Inc. 24

VMware vSphere Automation SDKs Programming Guide

This example uses the steps that are described in the Retrieve a vCenter Server ID by Using the

Lookup Service procedure.

Note For a complete and up-to-date version of the Java sample code, see the vsphere-
automation-sdk-java VMware repository at GitHub.

getMgmtNodeId (String targetNodeName)
{
// 1 - List the vCenter Server instances.
List<LookupServiceRegistrationInfo> servicelInfos =
lookupServiceUrls (“com.vmware.cis”,
“vcenterserver”,
“vmomi”,

“com.vmware.vim”) ;

// 2 - Find the matching node name and save the ID.
for (LookupServiceRegistrationInfo serviceInfo : serviceInfos) {

for (LookupServiceRegistrationAttribute serviceAtttr

serviceInfo.getServiceAttributes()) {
if (“com.vmware.vim.vcenter.instanceName”.equals (serviceAttr.getKey())) {
if (serviceAttr.getValue () .equals (targetNodeName)) {

return serviceInfo.getNodeId() ;

Python Example of Retrieving a vCenter Server ID by Using the
Lookup Service

This example provides a common pattern for filtering Lookup Service registration data. This
example is based on the code in the lookup service helper.py sample file.

This example uses the steps that are described in the Retrieve a vCenter Server ID by Using the
Lookup Service procedure.

Note For a complete and up-to-date version of the sample code, see the vsphere-
automation-sdk-python VMware repository at GitHub.

def get mgmt node id(node instance name)

1 - List the vCenter Server instances.

mgmt node infos = lookup service infos (prod='com.vmware.cis',
svc_type='vcenterserver',
proto='vmomi', ep type='com.vmware.vim',

node id='*")

VMware, Inc. 25

VMware vSphere Automation SDKs Programming Guide

2 - Find the matching node name and save the ID.
for node in mgmt node infos :
for attribute in node.serviceAttributes :
if attribute.key == 'com.vmware.vim.vcenter.instanceName' :
if attribute.value == node instance name :

return node.nodeId

Retrieve a vSphere Automation APl Endpoint on a vCenter
Server Instance

Through the vSphere Automation API endpoint, you can access other vSphere Automation
services that run on vCenter Server, such as Content Library and Tagging. To use a vSphere
Automation service, you must retrieve the vSphere Automation API endpoint.

Prerequisites
m Establish a connection with the Lookup Service.
m Retrieve a service registration object.

m Determine the node ID of the vCenter Server instance where the vSphere Automation service
runs.

= Implement a function that retrieves the endpoint URL of a service on a vCenter Server
instance.

Procedure

1 Invoke the function for retrieving the endpoint URL of a service on a vCenter Server instance
by passing filter strings that are specific to the vSphere Automation API endpoint.

2 Save the URL from the resulting single-element list.

Java Example of Retrieving a vSphere Automation Endpoint on a
vCenter Server Instance

This example is based on the in the LookupServiceHelper.java sample file.

This example uses the steps that are described in the Retrieve a vSphere Automation API
Endpoint on a vCenter Server Instance procedure.

Note For a complete and up-to-date version of the Java sample code, see the vsphere-
automation-sdk-java VMware repository at GitHub.

//1 - Determine management node ID.
String targetNodeId = getMgmtNodeld (targetNodeFqgdn) ;

//2 - List filtered registration info.

VMware, Inc. 26

VMware vSphere Automation SDKs Programming Guide

List<LookupServiceRegistrationInfo> results =
lookupSingleServiceUrl (“com.vmware.cis”,
“cs.vapi”,
“wvapi.json.https.public”,

“com.vmware.vapi.endpoint”,

targetNodeId) ;
//3 - Extract endpoint URL from registration info.
LookupServiceRegistrationInfo registrationInfo = results.get(0);

LookupServiceRegistrationEndpoint serviceEndpoint =
registrationInfo.getServiceEndpoints () .get (0) ;

String ssoUrl = serviceEndpoint.getUrl();

Python Example of Retrieving a vSphere Automation Endpoint on a
vCenter Server Instance

This example provides a common pattern for filtering Lookup Service registration data. This
example is based on the code in the lookup service helper.py sample file.

This example uses the steps that are described in the Retrieve a vSphere Automation API
Endpoint on a vCenter Server Instance procedure.

Note For a complete and up-to-date version of the sample code, see the vsphere-
automation-sdk-python VMware repository at GitHub.

service_infos = lookup service infos(prod='com.vmware.cis',
svc_type='cs.vapi',
proto='vapi.json.https.public',
ep_type='com.vmware.vapi.endpoint',
node_id=my mgmt node_id)

my vapi url = service infos[0].serviceEndpoints[0].url

VMware, Inc.

27

Authentication Mechanisms

To perform operations in the vSphere environment, principals must authenticate to the vSphere
Automation services. You can use different authentication mechanisms to achieve this goal.

To authenticate to the vSphere Automation services, client applications and users must obtain a
session identifier. You can choose from several supported authentication mechanisms to obtain a
session identifier and access the vSphere Automation services in the virtual environment.

First, you must decide whether to authenticate to vCenter Server by using the default identity
provider, vCenter Single Sign-On, or leverage your enterprise configuration to an external
identity provider, such as Microsoft Active Directory Federation Services (AD FS) or Okta.

Identity Provider Management

vCenter Server acts as the default identity provider, by using its built-in vCenter Single Sign-
On service to authenticate users and service accounts.

In vSphere 7.0 and later, you can delegate vSphere identity management to an

external identity provider and activate benefits such as increased security and multifactor
authentication. In this scenario, vCenter Single Sign-On is replaced by an external identity
provider, such as Microsoft Active Directory Federation Services (AD FS) or Okta, as the
entity that performs the authentication of applications and users.

Identity provider federation enhances the security and compliance of your applications and
provides access to flexible benefits such as multifactor authentication (MFA) and automatic
account synchronization.

You can federate vCenter Server authentication to:
m AD FS (vSphere 7.0 and later)
m Okta (starting in vSphere 8.0 Update 1)

For more information, see Identity Provider Federation for vCenter Server.

Authentication Mechanisms

You can choose between basic and token-based authentication for login to the vSphere
Automation API. VMware encourages you to use token-based authentication as it provides
more security and flexibility for your applications and users.

Basic Authentication

VMware, Inc. 28

VMware vSphere Automation SDKs Programming Guide

Basic authentication passes a user name and password to vCenter Server.

By default, principals can use basic authentication with their vCenter Single Sign-On
credentials to connect to the vSphere Automation endpoint . The vSphere Automation
endpoint checks whether the user name and password are present in vmdir. On success,
the system returns a session identifier valid for the vSphere Automation endpoint.

If your vCenter Server is federated to an external identity provider, you can use basic

authentication through the OAuth 2.0 Password grant type.

Note VMware encourages you to move away from basic authentication and use token-
based authentication instead, as it is more secure and provides you with more options.

Token-based Authentication

Token-based authentication involves the use of an encrypted token that provides
authentication and authorization data to the vSphere Automation endpoint. The vCenter
Server token complies with the Security Assertion Markup Language (SAML) specification, an
XML-based schema for communicating authentication data. To acquire a SAML token, client
applications must issue a token request to vCenter Single Sign-On. Client applications then
send the SAML token to the vSphere Automation API endpoint in exchange for a session
identifier.

Starting with vSphere 7.0, you can use token-based authentication for your federated
vCenter Server through the OAuth 2.0 grant types.

For code examples of authentication with the various OAuth 2.0 grant types, see the
vsphere-automation-sdk-java VMware repository at GitHub.

This chapter includes the following topics:

Authentication Terminolgy

Create a vSphere Automation Session with User Credentials
Retrieve a SAML Token

Create a vSphere Automation Session with a SAML Token
Create a Web Services Session

Identity Provider Federation for vCenter Server

Authentication Terminolgy

To use the vSphere programming features effectively, you must understand a set of specific
authentication terms and concepts.

VMware, Inc. 29

VMware vSphere Automation SDKs Programming Guide

Table 4-1. vCenter Single Sign-On Glossary

Term

Principal

Identity Provider

Identity Source (Directory Service)

Authentication

Authorization

Token

vmdir

OAuth 2.0

OpenlD Connect (OIDC)

System for Cross-domain Identity Management (SCIM)

VMware Identity Services

VMware, Inc.

Definition

An entity that can be authenticated, such as a user.

A service that manages identity sources and
authenticates principals. Examples: Microsoft Active
Directory Federation Services (AD FS) and vCenter Single
Sign-On.

Stores and manages principals. Principals consist of

a collection of attributes about a user or a service
account such as name, address, email, and group
membership. Examples: Microsoft Active Directory and
VMware Directory Service (vmdir).

The means of determining whether someone or
something is, in fact, who or what it declares itself to be.
For example, users are authenticated when they provide
their credentials, such as smart cards, user name and
correct password, and so on.

The process of verifying what objects principals have
access to.

A signed collection of data comprising the identity
information for a given principal. A token might include
not only basic information about the principal such as
email address and full name, but also, depending on the
token type, the principal's groups and roles.

VMware Directory Service. The internal (local) LDAP
repository in vCenter Server that contains user identities,
groups, and configuration data.

An open authentication standard that enables the
exchange of information among principals and web
services without exposing principals’ credentials.

Authentication protocol based on OAuth 2.0 that
augments OAuth with user-identifying information. It is
represented by the ID token that the authorization server
returns together with the access token during OAuth
authentication. vCenter Server uses OIDC capabilities
when interacting with Active Directory Federation
Services (AD FS) and Okta.

The standard for automating the exchange of user
identity information between identity domains or IT
systems.

Starting in version 8.0 Update 1, VMware Identity Services
is a built-in container within vCenter Server that you can
use for identity federation to external identity providers. It
serves as an independent identity broker within vCenter
Server and comes with its own set of APIs. Currently,
Okta is the only external identity provider supported by
VMware Identity Services.

30

VMware vSphere Automation SDKs Programming Guide

Table 4-1. vCenter Single Sign-On Glossary (continued)

Term Definition

Tenant A VMware ldentity Services concept. A tenant provides a
logical separation of data from other tenants’ data in one
and the same virtual environment.

JSON Web Token (JWT) A token format defined by the OAuth 2.0 specification.
A JWT token carries authentication and authorization
information about a principal.

Relying party A relying party “relies” on the authorization server,
VMware ldentity Services or AD FS, for identity
management. For example, through federation, vCenter
Server establishes relying party trust to VMware Identity
Services or AD FS.

Create a vSphere Automation Session with User Credentials

With the vSphere Automation SDKs , you can create authenticated sessions by using only user
credentials.

You connect to the vSphere Automation endpoint by using a user name and password known
to the vCenter Single Sign-On service. The vSphere Automation uses your credentials to
authenticate with the vCenter Single Sign-On Service and obtain a SAML token.

Prerequisites
m Retrieve the vSphere Automation endpoint URL from the Lookup Service.

m Verify that you have valid user credentials for the vCenter Single Sign-On identity store.

Procedure

1 Create a connection stub by specifying the vSphere Automation endpoint URL and the
message protocol to be used for the connection.

2 Create a stub configuration instance and set the specific security context to be used.

The security context object uses the user name and password that are used for
authenticating to the vCenter Single Sign-On service.

3 Create a session stub that uses the stub configuration instance.

4 Call the create operation on the session stub to create an authenticated session to the
vSphere Automation endpoint.

The operation returns a session identifier.
5 Create a security context instance and add the session ID to it.

6 Update the stub configuration instance with the session security context.

VMware, Inc.

VMware vSphere Automation SDKs Programming Guide

What to do next

You can use the authenticated session to access vSphere Automation services. For more
information about creating stubs to the vSphere Automation services, see Chapter 5 Accessing
vSphere Automation Services.

Java Example of Creating a vSphere Automation API Session with
User Credentials

This example is based on the code in the VapiAuthenticationHelper.java sample.

This example uses the steps that are described in the Create a vSphere Automation Session with
User Credentials procedure

Note For a complete and up-to-date version of the Java sample code, see the vsphere-
automation-sdk-java VMware repository at GitHub.

this.stubFactory = createApiStubFactory(server, httpConfig);

// Create a security context for username/password authentication
SecurityContext securityContext =
SecurityContextFactory.createUserPassSecurityContext (

username, password.toCharArray()):;

// Create a stub configuration with username/password security context

StubConfiguration stubConfig = new StubConfiguration (securityContext);

// Create a session stub using the stub configuration.
Session session =

this.stubFactory.createStub(Session.class, stubConfig);

// Login and create a session

char[] sessionId = session.create();

// Initialize a session security context from the generated session id
SessionSecurityContext sessionSecurityContext =

new SessionSecurityContext (sessionId);

// Update the stub configuration to use the session id

stubConfig.setSecurityContext (sessionSecurityContext) ;

/*
* Create a stub for the session service using the authenticated
* session
=2/

this.sessionSvc =

this.stubFactory.createStub(Session.class, stubConfig);

VM vmService = this.stubFactory.createStub (VM.class, stubConfig);

VMware, Inc. 32

VMware vSphere Automation SDKs Programming Guide

Python Example of Creating a vCloud Suite Session with Username
and Password

This example is based on code in the connection workflow.py sample file. This file is located
in the following vSphere Automation SDK for Python directory: client/samples/src/com/

vmware/vcloud/suite/sample/workflow.

from vars import (my vapi hostname,
my Sso_username,
my sso_password,
my stub config)

import requests

from com.vmware.cis client import Session

from vmware.vapi.lib.connect import get requests connector

from vmware.vapi.security.session import create session security context

from vmware.vapi.security.user password import create user password security context

from vmware.vapi.stdlib.client.factories import StubConfigurationFactory

Create a session object in the client.

session = requests.Session|()

For development environment only, suppress server certificate checking.
session.verify = False

from requests.packages.urllib3 import disable warnings

from requests.packages.urllib3.exceptions import InsecureRequestWarning
disable warnings (InsecureRequestWarning)

Create a connection for the session.
vapi url = 'https://' + my vapi hostname + '/api'

connector = get requests connector (session=session, url=vapi url)

Add username/password security context to the connector.

basic context = create user password security context (my sso username,
my sso_password)

connector.set security context (basic context)

Create a stub configuration by using the username-password security context.
my stub config = StubConfigurationFactory.new std configuration (connector)

Create a Session stub with username-password security context.
session_stub = Session(my_stub_config)

Use the create operation to create an authenticated session.

session id = session stub.create()

Create a session ID security context.

session id context = create session security context (session_ id)

Update the stub configuration with the session ID security context.
my stub config.connector.set security context(session id context)

VMware, Inc. 33

VMware vSphere Automation SDKs Programming Guide

Retrieve a SAML Token

The vCenter Single Sign-On service provides authentication mechanisms for securing the
operations that your client application performs in the virtual environment. Client applications
use SAML security tokens for authentication.

Client applications use the vCenter Single Sign-On service to retrieve SAML tokens. For more
information about how to acquire a SAML security token, see the vCenter Single Sign-On
Programming Guide documentation.

Prerequisites

Verify that you have the vCenter Single Sign-On URL. You can use the Lookup Service on
vCenter Server to obtain the endpoint URL. For information about retrieving service endpoints,
see Chapter 3 Retrieving Service Endpoints.

Procedure
1 Create a connection object to communicate with the vCenter Single Sign-On service.
Pass the vCenter Single Sign-On endpoint URL, which you can get from the Lookup Service.

2 Issue a security token request by sending valid user credentials to the vCenter Single Sign-On
service on vCenter Server.

Results

The vCenter Single Sign-On service returns a SAML token.

What to do next

You can present the SAML token to the vSphere Automation API endpoint or other endpoints,
such as the vSphere Web Services endpoint. The endpoint returns a session ID and establishes a
persistent session with that endpoint. Each endpoint that you connect to uses your SAML token
to create its own session.

Java Example of Retrieving a SAML Token

The example is based on the code in the ExternalPscSsoWorkflow. java sample.

This example uses the steps that are described in the Retrieve a SAML Token procedure.

Note For a complete and up-to-date version of the Java sample code, see the vsphere-
automation-sdk-java VMware repository at GitHub.

LookupServiceHelper lookupServiceHelper = new LookupServiceHelper (
this.lookupServiceUrl) ;

System.out.println ("\nStep 2: Discover the Single Sign-On service URL"
+ " from lookup service.");

VMware, Inc. 34

VMware vSphere Automation SDKs Programming Guide

String ssoUrl = lookupServiceHelper.findSsoUrl () ;

System.out.println("\nStep 3: Connect to the Single Sign-On URL and "
+ "retrieve the SAML bearer token.");
SamlToken samlBearerToken = SsoHelper.getSamlBearerToken (ssoUrl,
username,

password) ;

Python Example of Retrieving a SAML Token

This example is based on the code in the external psc_sso workflow.py sample file.
This example uses the steps that are described in the Retrieve a SAML Token procedure.
This example uses the following global variables.

m my_vapi_hostname

® /My_SSo_username

m /My _Sso_password

Note For a complete and up-to-date version of the sample code, see the vsphere-
automation-sdk-python VMware repository at GitHub.

from vsphere.samples.common import sso

Use the SsoAuthenticator utility class to retrieve

a bearer SAML token from the vCenter Single Sign-On service.

sso_url = 'https://' + my vapi hostname + ':7444/ims/STSService'

authenticator = sso.SsoAuthenticator(sso_url)

saml_ token = authenticator.get bearer saml assertion(my sso_username,
my Sso_password,

delegatable=True)

Create a vSphere Automation Session with a SAML Token

To establish a vSphere Automation session, you create a connection to the vSphere Automation
APl endpoint and then you authenticate with a SAML token to create a session for the
connection.

Prerequisites
m Retrieve the vSphere Automation endpoint URL from the Lookup Service.

m Obtain a SAML token from the vCenter Single Sign-On service.

VMware, Inc. 35

VMware vSphere Automation SDKs Programming Guide

Procedure
1 Create a connection by specifying the vSphere Automation API endpoint URL and the

message protocol to be used for the connection.

Note To transmit your requests securely, use https for the vSphere Automation AP
endpoint URL.

2 Create the request options or stub configuration and set the security context to be used.

The security context object contains the SAML token retrieved from the vCenter Single

Sign-On service. Optionally, the security context might contain the private key of the client

application.
3 Create aninterface stub or a REST path that uses the stub configuration instance.
The interface stub corresponds to the interface containing the method to be invoked.

4 Invoke the session create method.

The service creates an authenticated session and returns a session identification cookie to

the client.
5 Create a security context instance and add the session ID to it.

6 Update the stub configuration instance with the session security context.

What to do next

Use the updated stub configuration with the session ID to create a stub for the interface that you

want to use. Method calls on the new stub use the session ID to authenticate.

Java Example of Creating a vSphere Automation API Session with a

SAML Token

This example is based on the code in the ExternalPscSsoWorkflow. java sample.

This example uses the steps that are described in the Create a vSphere Automation Session with

a SAML Token

Note For a complete and up-to-date version of the Java sample code, see the vsphere-
automation-sdk-java VMware repository at GitHub.

this.stubFactory = createApiStubFactory(server, httpConfig);

// Create a SAML security context using SAML bearer token
SecurityContext samlSecurityContext =
SecurityContextFactory.createSamlSecurityContext (
samlBearerToken, null);

// Create a stub configuration with SAML security context
StubConfiguration stubConfig =

VMware, Inc.

36

VMware vSphere Automation SDKs Programming Guide

new StubConfiguration (samlSecurityContext) ;

// Create a session stub using the stub configuration.
Session session =

this.stubFactory.createStub (Session.class, stubConfig);

// Log in and create a session

char[] sessionId = session.create();

// Initialize a session security context from the generated session id
SessionSecurityContext sessionSecurityContext =

new SessionSecurityContext (sessionId);

// Update the stub configuration to use the session id

stubConfig.setSecurityContext (sessionSecurityContext) ;

/*
* Create a stub for the session service using the authenticated
* session
=/

this.sessionSvc =

this.stubFactory.createStub (Session.class, stubConfig);

VM vmService = this.stubFactory.createStub (VM.class, stubConfig);

Python Example of Creating a vSphere Automation API Session with
a SAML Token

This example is based on code in the external psc sso workflow.py sample file.

This example uses the steps that are described in the Create a vSphere Automation Session with
a SAML Token

This example uses the following global variables.

m my_vapi_hostname

m my_stub_config

m saml/_token

The example assumes that you previously obtained a vSphere Automation API URL from the

Lookup Service, and a SAML token from the vCenter Single Sign-On Service.

Note For a complete and up-to-date version of the sample code, see the vsphere-
automation-sdk-python VMware repository at GitHub.

Create a session object in the client.

session = requests.Session()

For development environment only, suppress server certificate checking.

session.verify = False

VMware, Inc. 37

VMware vSphere Automation SDKs Programming Guide

from requests.packages.urllib3 import disable warnings
from requests.packages.urllib3.exceptions import InsecureRequestWarning

disable warnings (InsecureRequestWarning)

Create a connection for the session.
vapi_url = 'https://' + my vapi hostname + '/api'

connector = get requests connector(session=session, url=vapi url)

Add SAML token security context to the connector.
saml_token context = create saml bearer security context (saml token)

connector.set security context (saml_token context)

Create a stub configuration by using the SAML token security context.

my stub config = StubConfigurationFactory.new std configuration (connector)

Create a Session stub with SAML token security context.

session_stub = Session(my_stub_ config)

Use the create operation to create an authenticated session.

session_id = session_stub.create()

Create a session ID security context.

session_id context = create session security context (session_id)

Update the stub configuration with the session ID security context.

my stub config.connector.set security context (session_id context)

Create a Web Services Session

To develop a complex workflow, you might need to send requests to vSphere Web Services
running in your virtual environment. To achieve this, you access the vSphere Web Services API
by using the Web Services endpoint.

The vSphere Web Services API also supports session-based access. To establish an
authenticated session, you can send the SAML token retrieved from the vCenter Single Sign-On
service to a vSphere Web Service. In return, you receive a session identifier that you can use to
access the service. For more information about accessing Web Services and additional examples,
see the vSphere Web Services SDK Programming Guide documentation.

The vSphere Automation SDK for Python supports a simplified way of creating connections to
the Web Services API by using the pyvim library.

Prerequisites
m Retrieve the vSphere Web Services endpoint URL from the Lookup Service.

= Obtain a SAML token from the vCenter Single Sign-On service.

Procedure
1 Connect to the vSphere Web Services endpoint.

2 Send the SAML token to a specific Web service to create an authenticated session.

VMware, Inc. 38

VMware vSphere Automation SDKs Programming Guide

3 Add the retrieved session ID to the service content object.
The Service Content object gives you access to several server-side managed objects that
represent vSphere services and components.

Java Example of Creating a vSphere Web Services Session

This example is based on the code in the VapiAuthenticationHelper.java and
VimUtil.java samples.

This example uses the steps that are described in the Create a Web Services Session procedure.

Note For a complete and up-to-date version of the Java sample code, see the vsphere-
automation-sdk-java VMware repository at GitHub.

// Log in to the vSphere Web Services endpoint and retrieve a session
identifier. SamlTokenElement tokenElement = ssoConnection.getSamlBearerTokenElement (); String
sessionId = LoginByTokenSample.LoginUsingSAMLToken (tokenElement, vimUrl, null, null); //
Use the VimPortType and VimService objects from // the vSphere Web Services API for
accessing Web Services and // retrieve the request context. VimService vimService =

new VimService(); vimPortType vimPort = vimService.getVimPort(); // Add the retrieved
session ID to the request context. Map<String, Object> ctxt = ((BindingProvider)
vimPort) .getRequestContext (); ctxt.put (BindingProvider.ENDPOINT ADDRESS PROPERTY, vimUrl);

ctxt.put (BindingProvider.SESSION MAINTAIN PROPERTY, true); Map<String, List<String>> headers
= (Map<String, List<String>>) ctxt.getMessageContext.HTTP REQUEST HEADERS); if (headers

== null) { headers = new HashMap<String, List<String>>(); } headers.put (“Cookie”,
Arrays.asList (vcSessionId); ctxt.put (MessageContext.HTTP REQUEST HEADERS, headers); // Use
the session ID context when retrieving the ServiceContent object. // The ServiceContent
object gives you access to a number of // server-side managed objects that represent vSphere
services and components. // For more information about the vSphere Web Services, // see the
vSphere Web Services SDK Programming Guide documentation.

ServiceContent serviceContent = VimUtil.getServiceContent (vimPort) ;

Python Example of Creating a Web Services Session

This example is based on code in the service manager.py sample file.

This example uses the steps that are described in the Create a Web Services Session procedure.

This example uses the following global variables.
. my_ws_url
® My_SSo_username

m My _Sso_password

VMware, Inc.

39

VMware vSphere Automation SDKs Programming Guide

The my_ws_url/variable represents the URL of the vCenter Server Web Services APl endpoint.
You can retrieve the endpoint URL from the Lookup Service.

Note For a complete and up-to-date version of the sample code, see the vsphere-
automation-sdk-python VMware repository at GitHub.

Extract the hostname from the endpoint URL.

url scheme, url host, url path, url params, url query, url fragment = \
urlparse (my ws url)

pattern = ' (?P<host>[":/ 1+).? (?P<port>[0-9]%*)"'

match = re.search(pattern, url host)

host name = match.group('host"')

Invoke the SmartConnect () method by supplying

the host name, user name, and password.

service instance stub = SmartConnect (host=host name,
user=my_ sSsoO_username,

pwd=my sso_ password)

Retrieve the service content.

service content = service instance stub.RetrieveContent ()

Identity Provider Federation for vCenter Server

Starting with vSphere 7.0, you can federate your vCenter Server to enterprise identity providers
through the OAuth 2.0 authentication framework and the OpenlID Connect (OIDC) authorization
protocol.

With identity federation, you can use the same identity source for your vCenter Server that you
use for your other federated desktop and cloud applications.

vCenter Server Identity Provider Federation Basics

In vSphere 7.0 and later, vCenter Server supports federated authentication. In this scenario, when
a user logs in to vCenter Server, vCenter Server redirects the user login to the external identity
provider. The user credentials are no longer provided to vCenter Server directly. Instead, the user
provides credentials to the external identity provider. vCenter Server trusts the external identity
provider to perform the authentication. In the federation model, users never provide credentials
directly to any service or application but only to the identity provider. As a result, you "federate"
your applications and services, such as vCenter Server, with your identity provider.

Why Is Identity Provider Federation Useful

Federating vCenter Server to an enterprise identity provider alleviates the burden of identity
management and provides flexible options such as multifactor authentication (MFA), automatic
registration and termination of users across services, and many more. Identity provider
federation uses token-based authentication and minimizes the risk of bad actors acquiring

VMware, Inc. 40

VMware vSphere Automation SDKs Programming Guide

protected credentials such as user names and passwords. Identity provider federation also helps
your organization with compliance as various international standards already require MFA to
guarantee data security. In addition, with identity provider federation, you can automate vCenter
Server user management because you utilize the users and groups from your main enterprise
identity source, for example Microsoft Active Directory.

vCenter Server External Identity Provider Support
vCenter Server supports the following external identity providers:
m AD FS (vSphere 7.0 and later)

m Okta (starting in vSphere 8.0 Update 1)

Identity Provider Federation to Microsoft Active Directory Federation
Services (AD FS)

In vSphere 7.0 and later, you can activate identity federation to Microsoft Active Directory
Federation Services (AD FS). In this scenario, vCenter Server federates directly to the enterprise
identity provider, AD FS, without the use of an authentication intermediary service.

You can configure federation to AD FS with the help of the vSphere Automation API. For more
information, see Federate vCenter Server to Microsoft Active Directory Federation Services (AD
FS).

Identity Provider Federation to Okta Through VMware Identity
Services

In vSphere 8.0 Update 1 and later, you can activate federation to Okta as the identity provider.
This configuration uses VMware Identity Services, an authentication intermediary that functions
as a built-in container within vCenter Server. With VMware ldentity Services, you can configure
principals to authenticate to vCenter Server by using a single identity provider. For now, you can
configure VMware ldentity Services to point to Okta only.

Important Configuring VMware Identity Services for Okta is not possible through the vSphere
Automation API. To federate vCenter Server to Okta, you must use the vSphere Client. For more
information, see Configure vCenter Server Identity Provider Federation for Okta in the
vSphere Authentication Guide.

Federate vCenter Server to Microsoft Active Directory Federation
Services (AD FS)

You can federate vCenter Server to Microsoft Active Directory Federation Services (AD FS) as an
external identity provider by using the vCenter Server Identity Providers Service.

VMware, Inc. 141

https://docs.vmware.com/en/VMware-vSphere/8.0/vsphere-authentication/GUID-88933505-9299-49FB-9C30-56E43683099B.html

VMware vSphere Automation SDKs Programming Guide

Prerequisites

Active Directory Federation Services requirements:

AD FS for Windows Server 2016 or later must already be deployed.
AD FS must be connected to Active Directory.

An Application Group for vCenter Server must be created in AD FS as part of the
configuration process. See the VMware knowledge base article at https://kb.vmware.com/s/
article/78029.

An AD FS root CA certificate added to the Trusted Root Certificates Store (also called the
VMware Certificate Store).

You have created a vCenter Server administrators group in AD FS that contains the users you
want to grant vCenter Server administrator privileges to.

For more information about configuring AD FS, see the Microsoft documentation.

vCenter Server and other requirements:

vSphere 7.0 or later

vCenter Server must be able to connect to the AD FS discovery endpoint, and the
authorization, token, logout, JWKS, and any other endpoints advertised in the discovery
endpoint metadata.

You need the VcldentityProviders.Manage privilege to create, update, or delete a vCenter
Server ldentity Provider that is required for federated authentication. To limit a user to view
the ldentity Provider configuration information only, assign the VcldentityProviders.Read
privilege.

Procedure
1 Authenticate to the vSphere Automation API endpoint and establish a session.
2 Addyour AD FS root CA certificate to the Trusted Root Certificates Store.
See Managing Certificates.
3 Create a providersTypes.OidcCreateSpec Object by using the Application Group

configuration from AD FS.

Method Description

setDiscoveryEndpoint =~ The OpenlD address of the AD FS server.

setClientId The client identifier of the AD FS Application Group.
setClientSecret The secret shared between the client and the provider.
setClaimMap This parameter is required but not applicable to AD FS. Use an empty array [].

VMware, Inc. 42

https://kb.vmware.com/s/article/78029
https://kb.vmware.com/s/article/78029

VMware vSphere Automation SDKs Programming Guide

4 Create an object of type ProvidersTypes.ActiveDirectoryOverLdap.

Method

setUserName

setPassword

setUsersBaseDn

setGroupsBaseDn

setServerEndpoints

setCertChain

VMware, Inc.

Description

The user name of a user in the domain who has a minimum of read-only access to base
Distinguished Name (DN) for users and groups.

The password of a user in the domain who has a minimum of read-only access to base DN for
users and groups.

The base DN for users in the Active Directory environment connected to AD FS that you want
to be able to federate with vCenter Server.

The base DN for groups in the Active Directory environment connected to AD FS that you
want to be able to federate with vCenter Server.

Active directory server endpoints. At least one Active Directory server endpoint must be set.

Use the format 1dap://<hostname>:<port> or ldaps://<hostname>:<port>. The portis
typically 389 for LDAP connections and 636 for LDAPS connections. For Active Directory
multi-domain controller deployments, the port is typically 3268 for LDAP and 3269 for LDAPS.

The SSL certificate chain in base64 encoding. You can skip this parameter only if all the Active
Directory server endpoints use the LDAP (and not the LDAPS) protocol.

43

VMware vSphere Automation SDKs Programming Guide

5 Add the identity provider by using the Identity Providers Service.

a Create an object of type ProvidersTypes.CreateSpec.

Method

setConfigTag

setName

setUpnClaim

setGroupsClaim

setIsDefault

setOidc

setIdmProtocol

setActiveDirectoryOverLdap

Description

The configuration type of the identity provider. The possible values are Oauth2
and Oidc. For AD FS federation, use Oidc.

The user-friendly name for the identity provider. You must use the exact string
Microsoft ADFS for proper configuration.

The name of the claim in the AD FS JWT token that contains the user principal
name of the user that is logging in. You must use the same value that you used
when you set up the AD FS Application Group. The procedure from the article in
the prerequisites uses upn. If unset, the default value is acct.

The name of the claim in the AD FS JWT token that contains the group
membership of the user that is logging in. You must use the same value that
you used when you set up the AD FS Application Group. The procedure from
the article in the prerequisites uses group. If unset, the groups for the subject
consist of the groups in group _names and group ids claims.

Set to true. Specifies whether the provider is the default provider. Setting to
true makes all other providers non-default.

If unset:
B |n case it is the first created provider, it is set as the default provider.

m |n case it is not the first created provider, it is not set as the default provider.
Use the ProvidersTypes.OidcCreateSpec object.

The communication protocol used to connect to AD FS to search for users

and groups when assigning permissions in vCenter Server. You must use LDAP.
If unset, no communication protocol is configured for the users and groups
search.

Use the ProvidersTypes.ActiveDirectoryOverLdap object.

b To add the provider, call the create (ProvidersTypes.CreateSpec) method.

The operation returns the ID of the provider you added.

6 Configure vCenter Server permissions for Active Directory users or groups in your AD FS

environment.

You can do this in two ways:

m Add a user from your AD FS environment to a group in vCenter Server.

m Configure Global Permissions for an AD FS user.

Note In vSphere 8.0 and later, you cannot configure permissions through the vSphere
Automation API. Instead, you use either the vSphere Client or the vSphere Web Services API.
For more information, see the vSphere Authentication Guide or the vSphere Web Services

SDK Programming Guide.

VMware, Inc.

44

VMware vSphere Automation SDKs Programming Guide
7 (Optional) Copy the two redirect URIs from the Identity Provider Configuration page in the
vSphere Client and add them to your AD FS Application Group.

Note You must do this step to enable logging in to vCenter Server through AD FS by using
the vSphere Client.

Results

You configured vCenter Server to use AD FS as the identity provider.

VMware, Inc.

45

Accessing vSphere Automation
Services

vSphere Automation SDK provides mechanisms for creating remote stubs to give clients access
to vSphere Automation services.

The sequence of tasks you must follow to create a remote stub starts with creating
a ProtocolFactory. YOU use the protocol factory object to create a ProtocolConnection.
Connection objects provide the basis for creating stub interfaces tovSphere Automation services.

When you establish a connection to the vSphere Automation endpoint, you can create a
StubFactory object and a stubConfiguration object. With these objects, you can create the
remote stub for the vSphere Automation service that you want to access.

The complete connection sequence also includes SSL truststore support and a temporary
StubConfiguration that you use for SAML token authentication and session creation.

SSL Handshake

The vSphere Automation endpoint (https://host/api) is an SSL-enabled service that
requires client authentication during login. The SSL connection relies on certificate verification
supported by the Java security architecture. The Java security architecture defines
truststores for SSL connections. A truststore contains vCenter Single Sign-On credentials. You
use a truststore to verify credentials from a vCenter Server instance.

VMware, Inc. 46

VMware vSphere Automation SDKs Programming Guide

The vSphere Automation SDK for Java includes an SSL utility sample
code that supports the creation of a truststore for the HTTP connection,

com.vmware.vcloud.suite.samples.common.SslUtil.

Note The vSphere Automation SDK for Java SSL utility creates an instance of the

Java security certificate class Xx509TrustManager. This instance declares an override client-
side method, checkServerTrusted, that accepts all HTTPS certificates. This method is
suitable only for development environments. For a production environment, do not use
the x509TrustManager override methods. Instead, set up a truststore for use by the default
X509TrustManager implementation.

For greater security, use an external utility to create a certificate store:

keytool -import -noprompt -trustcacerts \
-alias <alias name> \

-file <certificate file> \

-keystore <truststore filename> \

-storepass <truststore password>

This chapter includes the following topics:

m Access a vSphere Automation Service

Access a vSphere Automation Service

To access a vSphere Automation service, you must have a valid session connection. The
sequence for accessing a vSphere Automation service includes creating a protocol connection
object and using it to create the service stub.

Prerequisites

Establish a connection to the vSphere Automation endpoint URL. For more information about the
authentication mechanisms that you can use, see Chapter 4 Authentication Mechanisms.

Procedure
1 Create a protocol factory object.
2 Create a protocol connection object to access an API provider.

The vSphere Automation API clients use apiProvider instances to invoke operations on
services running in the virtual environment. To invoke an operation, you must specify the
target service and operation, input parameters, and execution context.

3 Create a stubFactory object by using the apiprovider instance.

4 Create a stubConfiguration instance and set the security context to be used for the service
stub.

VMware, Inc. 47

VMware vSphere Automation SDKs Programming Guide

5 Create the stub for the vSphere Automation service interface by calling the create method
of the stubFactory instance. Pass the service class and the stubConfiguration instance as
arguments.

Java Example of Accessing a vSphere Automation Service
The example is based on the code in the LibraryCrud. java sample.

This example shows the steps for creating an authenticated session to the vSphere Automation
endpoint and creating the service stub for the Content Library API provider.

This example uses the steps described in the Access a vSphere Automation Service procedure.

Note For a complete and up-to-date version of the Java sample code, see the vsphere-
automation-sdk-java VMware repository at GitHub.

// Log in by using username/password

this.stubFactory = createApiStubFactory(server, httpConfig);

// Create a security context for username/password authentication
SecurityContext securityContext =
SecurityContextFactory.createUserPassSecurityContext (

username, password.toCharArray());

// Create a stub configuration with username/password security context

StubConfiguration stubConfig = new StubConfiguration (securityContext);

// Create a session stub by using the stub configuration.
Session session =

this.stubFactory.createStub (Session.class, stubConfig);

// Log in and create a session

char|[] sessionId = session.create();

// Initialize a session security context from the generated session id
SessionSecurityContext sessionSecurityContext =

new SessionSecurityContext (sessionId);

// Update the stub configuration to use the session id

stubConfig.setSecurityContext (sessionSecurityContext) ;

/*
* Create a stub for the session service using the authenticated
* session
=/

this.sessionSvc =

this.stubFactory.createStub (Session.class, stubConfig);

// Create service stubs for the Content Library service.

Library libraryService = stubFactory.createStub (Library.class, stubConfig);

VMware, Inc.

VMware vSphere Automation SDKs Programming Guide

// Invoke an operation of the Content Library service.

List<String> listContentLibraries = libraryService.list();

VMware, Inc.

49

ESXi Hosts

Use the vSphere Automation APIs to run general operations on the ESXi hosts in your vSphere
environment.

You can retrieve information about the hosts, create a standalone host, disconnect, and
reconnect an ESXi host to a vCenter Server system.

This chapter includes the following topics:

m Retrieving Information About ESXi Hosts

m Adding a Standalone ESXi Host to vCenter Server
m Disconnecting and Reconnecting ESXi Hosts

m Configuring ESXi Entropy

Retrieving Information About ESXi Hosts

You retrieve information about the ESXi hosts running in a vCenter Server instance by listing only
the ESXi hosts that you are interested in.

To filter the ESXi hosts on a vCenter Server instance and get only the ones you want, call the
1list function and pass your criteria with a HostTypes.FilterSpec instance. Combine several filter
criteria by including one or more of the following parameters:

m The name or unique identifier of the host.
m Clusters, data centers, or folders that contain the host.

m Connection state of the host which can be one of the following: CONNECTED, DISCONNECTED, Of
NOT_RESPONDING.

m Power state of the host which can be one of the following: POWERED OFF, POWERED ON, Of
STANDBY.

The function returns a list of com.vmware.vcenter.HostTypes.Summary objects that contain
information about up to 2500 hosts that match all specified criteria. You can use the list to
retrieve information about the returned ESXi hosts.

VMware, Inc. 50

VMware vSphere Automation SDKs Programming Guide

Adding a Standalone ESXi Host to vCenter Server

You can use the vSphere AutomationAPIs to add a standalone host to a vCenter Server instance.

Add a single ESXi host to a vCenter Server instance by calling the create function and passing
a com.vmware.vcenter.HostTypes.CreateSpec instance as parameter. When you create the host
specification, make sure that you set the IP address or the DNS resolvable host name and the
administrator credentials.

Disconnecting and Reconnecting ESXi Hosts

You can use the vSphere Automation APIs to connect ESXi hosts to a vCenter Server instance
and make the hosts managed. You can temporarily disconnect a managed host from a vCenter
Server instance and reconnect the host, for example, to refresh the ESX agents on the host.

When you add a host to a vCenter Server instance, the host is connected to vCenter Server

and becomes a managed host. To disconnect a managed host from a vCenter Server instance,
call the disconnect function and pass the host identifier as a parameter. The managed host

and its associated virtual machines remain in the inventory but vCenter Server temporarily stops
managing and monitoring them.

To reconnect a managed host to a vCenter Server instance, call the connect function and pass
the host identifier as a parameter. As a result, the connection status of the host changes, and
vCenter Server resumes managing the host and its associated virtual machines.

If you want to delete a host and all its associated virtual machines from the inventory, you can
remove the host from the vCenter Server instance. To delete a disconnected host from a vCenter
Server instance, call the delete function and pass the host identifier as a parameter.

Configuring ESXi Entropy

You can use the vSphere Automation API to feed external entropy data to an ESXi host in your
inventory. You can also query the current entropy levels on the host and add external entropy
data when needed.

Entropy is a measure of the randomness or diversity of a data-generating function. In releases
prior to vSphere 8.0 Update 1, ESXi supported only CPU-based entropy data generated from
interrupts or manufacturer provided interfaces, such as RDSEED and RDRAND. High-quality
entropy is important for the proper functioning of security-related operations such as generating
encryption keys for secure communication over the network. Starting with vSphere 8.0 Update
1, you can add external entropy sources to an ESXi host and in this way ensure the high quality
of the entropy data on that host. You provide external entropy data by using devices such as
hardware security modules (HSMs) which are FIPS 140-3 and EAL4 certified.

VMware, Inc. 51

VMware vSphere Automation SDKs Programming Guide

You can configure the ESXi entropy sources by using the VMkernel boot options. To use
external entropy sources, set the entropySources value to more than or equal to 8. For more
information about how to set the desired entropy sources by using the VMkernel boot options,
see Controlling ESXi Entropy in the vSphere Security documentation.

You can also configure external entropy sources in the kickstart file for the ESXi scripted
installation. See Configuring External Entropy Sources During Scripted Installation.

Note If a host is configured to use only external entropy sources, that is, entropySources is set
to 8, you must keep supplying the external entropy data through the vSphere Automation API. In
case the entropy in the host gets exhausted, the host becomes unresponsive and might require a
hard reboot or re-installation to recover the host from this situation.

Querying Entropy Data on a Host

To retrieve details about the external entropy available on an ESXi host, use the ExternalPool
service. You must have the Host.Entropy.Read privilege.

You can check whether an external entropy source is added to a host by calling the

get (host_id) method of the com.vmware.vcenter.host.entropy.ExternalPool interface and
passing the host ID as parameter. The method returns an ExternalPool.Info instance that
contains detailed information about the external entropy data on the host.

Table 6-1. Details for the External Entropy Data on a Host

External Entropy Data Detail Description

getStatus () Indicates whether an external entropy source is added for
a host.

getCapacity () Shows the maximum capacity of external entropy data in

bytes that a host can store in the VMkernel entropy pool.
When you feed the host with additional external entropy
data, make sure that you do not exceed this maximum
capacity. Otherwise, all extra entropy data is discarded.

getCurrentlyAvailable () Indicates the current amount of entropy data in bytes
available in the VMkernel entropy pool on the host.

VMware, Inc. 52

https://docs.vmware.com/en/VMware-vSphere/8.0/vsphere-security/GUID-EBE0C0FF-C671-44A0-BBB7-67DB8B76D80F.html
https://docs.vmware.com/en/VMware-vSphere/8.0/vsphere-esxi-installation/GUID-4F589313-492F-4DD3-BD12-F807564A58BB.html

VMware vSphere Automation SDKs Programming Guide

Table 6-1. Details for the External Entropy Data on a Host (continued)

External Entropy Data Detail

getInactiveSourceTimeout ()

getLowWatermark ()

Description

Indicates the amount of time in seconds that can

elapse without any activity between the host and

the external entropy source. Your application must

check periodically the levels of entropy data on

the host and send entropy data from the external

source when required. When this timeout exceeds

an esx.audit.entropy.external.source.disconnected
VMkernel Observation (VOB) is logged. This system event
suggests possible loss of connection to the external
entropy source. For the full list of available entropy VOBs
in vSphere 8.0, see the VMware knowledge base article at
https://kb.vmware.com/s/article/89074.

Indicates the threshold in bits sufficient for the in-memory
cache to operate successfully. When the in-memory
entropy cache is running low and the threshold is
reached, an esx.audit.entropy.available.low VOB is
logged. For more information about the entropy VOBSs,
see the VMware knowledge base article at https://
kb.vmware.com/s/article/89074.

Adding External Entropy Data to a Host

To add entropy data from an external entropy source to a host, you must have the
Host.Entropy.Write privilege. Use the ExternalpPool service and call the add (host id, add spec)

method. Pass the host ID and an ExternalPool.AddSpec instance as method parameters. The

ExternalPool.AddSpec instance contains the Base64 encoded external entropy data. You must

convert the binary data coming from the external entropy source to Base64 format so that the
host can consume it. As a result, the method returns an instance of the ExternalPool.AddResult

class.

When the external entropy data reaches the host, the entropy daemon stores it first in the in-
memory cache and the storage cache. Then the external entropy data is pushed to the VMkernel
entropy pool from which it is fed to the applications in need.

The entropy data in the storage cache persists on the host disk and is only consumed during
the ESXi booting. The default storage file size is 4MiB and can be configured through the ESXCLI
commands. See the ESXCL/ Command Reference documentation.

VMware, Inc.

53

https://kb.vmware.com/s/article/89074
https://kb.vmware.com/s/article/89074
https://kb.vmware.com/s/article/89074

Managing the Life Cycle of Hosts
and Clusters

You can manage the life cycle of ESXi hosts collectively by using the vSphere Lifecycle Manager
feature through the vSphere Automation API. Starting with vSphere 8.0, you can manage the
lifecycle of a standalone ESXi host by using an image only through the vSphere Lifecycle
Manager automation API.

You can automate the life cycle management of a cluster or standalone host by performing the
following operations:

m Retrieve information about the current state of the cluster or the standalone host.

m Create a desired state that includes a specific version of the ESXi host. You can also add
some compatible partner software and firmware components and add-ons.

m Validate the desired state to detect any discrepancies between the desired state and the
host hardware.

m Check the compliance of a cluster or host against the desired state and determine whether
some additional steps must be taken to ensure the success of the cluster or host remediation.

m Apply the desired state on a cluster or a standalone host.

You can use the vSphere Lifecycle Manager to manage the life cycle of hosts in a cluster that
meet the following requirements:

m Hosts must be of version 7.0 and later.
m Hosts must be stateful.
m All hosts in the cluster must be from the same vendor and with identical hardware.

m The hosts must include only integrated solutions, such as VMware vSAN™, vSphere with
Tanzu, NSX and VMware vSphere® High Availability.

A standalone host is a host that is added to a vCenter Server instance but is not part of any
cluster. For more information about how to add, connect, and disconnect standalone host, see
Chapter 6 ESXi Hosts. You can manage the life cycle of a standalone host by performing almost
all vSphere Lifecycle Manager operations that you can perform on a cluster level. The only
limitation for managing the life cycle of a standalone host through the vSphere Automation AP, is
that you can't update the firmware of the host.

This chapter includes the following topics:

VMware, Inc. 54

VMware vSphere Automation SDKs Programming Guide

m vSphere Lifecycle Manager Terms

m vSphere Lifecycle Manager Overview

m Options for Managing the ESXi Life Cycle

m Software Depots

m Enabling a Cluster to Use a Software Specification

m Enabling a Standalone Host to Use a Software Specification

s Working with Draft Software Specifications

s Working with Desired Software States

m Hardware Compatibility Data

m Configuring Remediation Settings

m Remediating an ESXi Cluster and a Standalone Host

m Integrate Third-Party Solutions with vSphere Lifecycle Manager

vSphere Lifecycle Manager Terms

You must understand the basic terminology that is used within this chapter to be able to use the
vSphere Lifecycle Manager functionality efficiently.

vSphere Lifecycle Manager Terminology

Term

Upgrade, update, and patch

Depot

Component

Base image

VMware, Inc.

Definition

You can upgrade to another major version of the software running on an ESXi
host, and install patches and updates that include smaller changes, bug fixes, or
other small improvements.

A depot is a well-defined folder structure that is used for distributing payloads
and their metadata. Depots are consumed by different products and features
such as the vSphere Lifecycle Manager and ESXCLI. The vSphere Lifecycle
Manager works with three types of depots: online, offline, and UMDS. See
Software Depots.

A component is the smallest unit that the vSphere Lifecycle Manager uses during
the installation and update processes. Software vendors use components to
encapsulate a group of payloads that can be managed together.

A base image is a collection of components that shape the bootable ESXi used
for the installation or upgrade process. Base images are currently distributed only
by VMware and support x86 servers. VMware provides new versions of the base
image for each upgrade, update, and patch release of the ESXi.

Base images are hosted at the VMware online depot that is available by

default to the vSphere Lifecycle Manager. Furthermore, you can download a
different base image version, in the form of an offline ZIP bundle, from https://
my.vmware.com/web/vmware/downloads.

55

https://my.vmware.com/web/vmware/downloads
https://my.vmware.com/web/vmware/downloads

VMware vSphere Automation SDKs Programming Guide

Term

Vendor add-on

Solution

Desired state

OEMs

IOVP

Third-party software providers

vSphere Configuration Profiles

Definition

An add-on is a collection of components that different OEMs provide on top

of a base image. Vendors use an add-on to group some customizations for a
family of servers. Unlike base images, add-ons are not complete and are not
sufficient to boot an ESXi. Each add-on must have a unique name and version. An
add-on allows vendors to add, remove, or update components that are part of
the VMware base image, if there are no unresolved dependencies and conflicts
between the components.

A solution contains one or more components, and provides information about its
constraints and compatibility with the different ESXi versions. For example, from
the perspective of the vSphere Lifecycle Manager solutions are VMware NSX,
VMware vSphere® High Availability, vVSAN.

A desired state of a cluster is represented with a software specification. The
desired state defines a set of components that a user wants to install on a single
ESXi host or on a cluster of hosts.

Original Equipment Manufacturers. VMware partners enrolled in the VMware
Partner Connect application, such as Dell, Inc., HP Inc., Lenovo Group Ltd., and
so on.

I/O Vendor Partner. Qualified VMware partners providing certified I/O device
drivers for network and storage host bus adapters.

Providers of 1/O filters, device drivers, CIM modules, and so on, that are not part of
VMware partner programs.

With vSphere Configuration Profiles, you can manage the configuration of all
hosts in a cluster collectively. This ensures consistency in host configuration at

a cluster level. You can enable vSphere Configuration Profiles only on clusters that
have the vSphere Lifecycle Manager enabled.

vSphere Lifecycle Manager Overview

The vSphere Lifecycle Manager feature provides means for managing the life cycle of hosts on a
cluster level. The functionality of this feature is achieved through several major services that are
running on both vCenter Server and ESXi.

After you install vSphere 8.0 Update 1, you can access the feature through several major services
available on vCenter Server and on each ESXi host.

VMware, Inc.

56

VMware vSphere Automation SDKs Programming Guide

Figure 7-1. vSphere Lifecycle Manager System Architecture

=

Unified Depot

Use the Depot D

contents to create —_—
a desired state Co-Ordinator

« Base Image

« Components

Y,

Customer

VMware

Store desired

vCenter state specifications | Validate the desired
Component Server DB state and remediate
an ESXi Cluster
1/0 Vendor vCenter Server
Partner
ESXi Cluster

il

OEM Depot Manager Update Image DB
Partner @

ESXi Image Manager

ESXi27.0

Depot Manager

For each upgrade and patch release, VMware, OEMs, and other third-party companies make
the software updates of their products available to the customers. Software updates are
distributed to different locations and in different formats depending on the way they are
accessed, downloaded, and used. Depot Manager allows these different software resources to
be presented to the vSphere customers in a unified format and as a result, makes them easier to
use.

Depending on your environment and specific use case, Depot Manager gives you access to the
software updates within three different types of depots: online, offline, and UMDS. See Software
Depots.

Depot Manager that runs on the vCenter Server instance achieves the following goals:
m Represents the contents of all depots in a unified way.
m Caches the payloads and their metadata locally prior to their use.

m Enables depot overrides on a cluster or host level for Remote Office/Branch Office (ROBO)
environments, or Edge computing environments.

Depot Manager that runs on the hosts serves as a proxy to the vCenter Server Depot Manager. If
ROBO cluster or ROBO host, or Edge computing environments are enabled, Depot Manager that
runs on the ESXi hosts serves as a proxy to the nearby vSphere Lifecycle Manager compatible
depot.

VMware, Inc. 57

VMware vSphere Automation SDKs Programming Guide

Image Manager

Image Manager allows you to create a desired state that you can apply on a cluster or a
standalone host. The specification describes all components, add-ons, and the base image that
you can use to update or upgrade the hosts in your environment. Image Manager supports
validation of the desired state and the detecting drifts from the desired state.

Coordinator and ESXi Updater Managers

Coordinator Manager runs on the vCenter Server instance and makes sure that the desired state

is applied to all hosts in the cluster. This module also runs pre-checks to evaluate how each host

in the cluster is affected by the remediation and whether you must take some additional steps to
ensure the success of the procedure. Coordinator Manager also allows you to query the status of

the remediation operation for the cluster and for each host part of the cluster.

The ESXi Updater Manager takes care of the actual remediation happening on each host.

Options for Managing the ESXi Life Cycle

Based on your needs and environment setup, you can choose from several methods for
managing the life cycle of the ESXi hosts. The vSphere Lifecycle Manager provides means for
updating all hosts in a cluster or a standalone host with a desired software state.

To manage the life cycle of the hosts in your environment, you can use the vSphere Lifecycle
Manager through the vSphere Client. See Managing Host and Cluster Lifecycle.

This chapter of the vSphere Automation SDKs Programming Guide discusses how you can access

and use the functionality provided by the vSphere Lifecycle Manager Automation API.

vSphere Lifecycle Manager Features

You can use the vSphere Automation API to manage the life cycle of all hosts in a cluster or
of standalone hosts by using a vSphere Lifecycle Manager image. You can access and use the
following vSphere Lifecycle Manager functionality:

m Depot management. You can add, remove, explore the contents of different types of depots.

See Software Depots. The content of the depots is provided by VMware and VMware
partners. Partners can use the ESXi Packaging Kit (EPK) to assemble a custom bootable

ESXiimage. The custom image can then be shared to other third-party customers and used
through the Depot Manager service. For more information about how to create custom ESXi

images, see ESXi Packaging Kit (EPK) Development Guide.

m Desired software state. You can create, edit, and delete a desired software state for a cluster
or a standalone host on which the vSphere Lifecycle Manager is enabled. A desired software

state must contain at least a single ESXi image provided by VMware. You can also set an
add-on provided by OEMs, and one or more components by different software vendors.
Furthermore, during the process of creating the desired software state, you can check the
validity of the specification and compare the current state of the hosts in the cluster or the
standalone host with the desired software state.

VMware, Inc.

58

VMware vSphere Automation SDKs Programming Guide

m Cluster remediation. You can apply the desired state on each of the hosts in a cluster which
current state is different from the desired specification. Applying a desired state on a cluster
level has the following prerequisites:

m The cluster must have the vSphere Lifecycle Manager enabled.
m All hosts in the cluster must store their data on a local or remote disk, or on a USB drive.
m All hosts in the cluster must be of version 7.0 or higher.

= All hosts must contain only components that the vSphere Lifecycle Manager can
recognize and maintain. If a host contains some old content that the vSphere Lifecycle
Manager does not recognize, the content is removed from the host during remediation.

m Standalone host remediation. You can apply the desired software state on a standalone host
that is managed with baselines or on a standalone host that is managed with images but its
current state differs from the desired state.

Software Depots

A software depot represents a well-defined file structure used for storing and hosting the

ESXi software updates, patches, and upgrades that VMware, partners, and third-party vendors
provide. You can use the vSphere Automation APIs to manage the life cycle of the hosts in your
environment by applying software updates hosted on different depots.

Software depots are managed by the Depot Manager which is part of the vSphere Lifecycle
Manager. Software depots contain the actual payloads and the metadata of the software
updates. Depending on the way you access the software updates, the Depot Manager
recognizes three types of software depots: online, offline, and UMDS.

The following section of the documentation explains the concept of a software depot in terms of
the vSphere Lifecycle Manager feature. You can also find common use cases available through
the APIs for working with the different types of depots and their content.

Types of Software Depots

Depot Manager works with the software updates provided by three different types of software
depots: online, offline, and UMDS.

Regardless of the different way in which you access each type of software depot, all depots
have the same structure. The same depot structure allows content from different vendors to be
uploaded to one depot. By default, you can access the content of the VMware online depot

at https://hostupdate.vmware.com/software/VUM/PRODUCTION/ Furthermore, partners
and third-party customers can use the ESXi Packaging Kit to build and distribute software
updates in the form of offline or online depots. You can access their content by adding the
online vendor depot to the vSphere Lifecycle Manager or by downloading the content of the
offline depot to the vCenter Server instance.

VMware, Inc. 59

VMware vSphere Automation SDKs Programming Guide

Figure 7-2. Types of Software Depots

C) a Depot Manager

Vendor Online Depot

Store depots
metadata
o and locations

UMDS Depot @
Download depot |:|

ﬂ ﬂ metadata and
Base Image I Component I

payloads

Offline Depot

Unified Depot = Vmware online
depot + Offline Depots + Vendor
Online Depots

vCenter Server

Online Depot

VMware and partners upload software updates to the VMware online depot at https://
hostupdate.vmware.com/software/VUM/PRODUCTION/. .. or to a custom online depot.
Software updates can be patches of the ESXi base image, different versions of the partner add-
ons, the IOVP drivers certified by VMware, and the VMware Tools™ updates. Online depots are
accessible through a URL. By default, you can see the base images, add-ons, and components
provided within the VMware online depot at the following locations:

m https://hostupdate.vmware.com/software/VUM/PRODUCTION/main/vmw-depot-

index.xml

m https://hostupdate.vmware.com/software/VUM/PRODUCTION/addon-main/vmw-

depot-index.xml

m https://hostupdate.vmware.com/software/VUM/PRODUCTION/iovp-main/vmw-depot-

index.xml

m https://hostupdate.vmware.com/software/VUM/PRODUCTION/vmtools—main/vmw—

depot-index.xml

VMware, Inc. 60

VMware vSphere Automation SDKs Programming Guide

When you deploy the vCenter Server, the vSphere Lifecycle Manager is configured to access the
VMware online depot, by default. You can use the vSphere Automation APIs to add a custom
online depot to be managed by Depot Manager. The metadata of the newly added online depot
is not synchronized immediately. To synchronize the metadata, you can run a synchronization
operation or wait for the scheduled synchronization to take place.

The Depot Manager stores in the vCenter Server database only the metadata of the software
updates and the location of the added online depots. You can create a schedule to synchronize
the software updates metadata stored in the vCenter Server with the metadata available in the
accessible depots. The payloads of the software updates are downloaded only during the cluster
remediation process.

To add, remove, list, and retrieve information about the online depots, you can use the
com.vmware.esx.settings.depots.Online interface. See Working with Online Depots.

Offline Depot

The offline depot is also called an offline bundle and is distributed as a downloadable ZIP file.
Offline depots contain both the metadata and the payloads of the software update. Partners
and third-party customers can use the ESXi Packaging Kit to build and distribute offline bundles.
You can download offline bundles from the VMware website or from the websites of third-party
vendors. When you add an offline depot to the vSphere Lifecycle Manager depot, the software
updates are downloaded to the vCenter Server database.

To manage offline depots, you can use the com.vmware.esx.settings.depots.0Offline interface.
See Working with Offline Depots.

UMDS Depot

In case, the vCenter Server instance is in an air-gapped environment and has no access to

any wire or wireless network, you can use a UMDS depot. The Update Manager Download
Service (UMDS) is available as a VMware-UMDS-8.0.1.-build number.tar.gz file within the
ISO image of the vCenter Server appliance 8.0 UMDS is a 64-bit application and requires a 64-bit
Linux-based system. Install UMDS on a machine that has Internet access and is different from the
machine on which the vSphere Lifecycle Manager is running. For further information about how
to install and configure the UMDS module, see the Managing Host and Cluster Lifecycle.

You can set up a synchronization schedule for downloading specific software updates from
online vendor depots to the UMDS depot. Then use these updates to create desired software
state for the clusters in your environment.

To manage UMDS depots through the vSphere Automation API, you can use the

com.vmware.esx.settings.depots.Unds interface.

Working with Online Depots

You can use the vSphere Automation APIs to add online depots to the list of currently configured
online software depots.

VMware, Inc. 61

VMware vSphere Automation SDKs Programming Guide

Use online depots to add new content over time to the management scope of the Depot
Manager. The Depot Manager periodically updates the software depots metadata stored on the
vCenter Server instance. In case new software updates are uploaded to the online depots, the
Depot Manager makes sure that the metadata stored on the vCenter Server database is updated
accordingly.

To add an online depot to the Depot Manager, you must first create the online

depot specification by using the com.vmware.esx.settings.depots.OnlineTypes.CreateSpec
class. To specify the URI to the vendor-index.xml file of the online depot, use the

setLocation (location) method of the onlineTypes.CreateSpec class. Optionally, you can add

a description and enable the depot. By default, when you add an online depot to the Depot
Manager, the depot is enabled and its metadata is synchronized following the defined schedule.
If you want to synchronize the added online depot immediately, call the sync_Task () method of
the com.vmware.esx.settings.Depots interface. When you complete the depot specification, call
the create (spec) method of the com.vmware.esx.settings.depots.Online interface to add the
depot.

You can edit the depot description and disable the depot by creating an
com.vmware.esx.settings.depots.OnlineTypes.UpdateSpec object and pass it to the
update (depot, update spec) method of the com.vmware.esx.settings.depots.Online interface.

You can remove an online depot from the list of currently configured depots by using

the delete (depot1D) method of the com.vmware.esx.settings.depots.Online interface. The
invocation of this method does not remove the already downloaded metadata and payloads
from the deleted depot. You cannot delete the default VMware online depot, you can only
disable it.

To retrieve a list of currently configured online depots, call the 1ist () method of the online
interface. You can also retrieve information about a currently configured online depot by using
the get (depotID) method of the online interface.

Working with UMDS Depots

In an air-gapped vCenter Server environment, you can use the vSphere Automation API to add a
UMDS depot to the depots managed by Depot Manager.

After you install and configure the Update Manager Download Service (UMDS) on a physical
machine with Internet access, you can add the UMDS depot to Depot Manager. Only one UMDS
depot can be added at a time to Depot Manager. When you add a UMDS depot, its content is not
immediately synchronized. To synchronize the content of the UMDS depots, you must call the
sync Task () method of the com.vmware.esx.settings.Depots interface or wait for the scheduled
synchronization to take place.

VMware, Inc. 62

VMware vSphere Automation SDKs Programming Guide

To add a UMDS depot, call the set (set_spec) method

of the com.vmware.esx.settings.depots.Unds interface and pass a
com.vmware.esx.settings.depots.UmdsTypes.SetSpec Object as an argument. The UMDS
specification must contain the URI location to the index.xml file of the depot. Optionally, you
can set a description and indicate whether the depot must be enabled. By enabling the UMDS
depot, you instruct Depot Manager to synchronize only the content that is available on that
depot.

You can always edit the initial UMDS depot settings, by calling the update (update spec) method

of the Umds interface and passing an com.vmware.esx.settings.depots.UndsTypes.UpdateSpec
object.

To retrieve information about the currently configured UMDS depot, use the get () method
of the umds interface. You can remove a currently configured UMDS depot and all its
downloaded content from Depot Manager by calling the delete Task() method of the

com.vmware.esx.settings.depots.Unds interface.

Synchronizing Software Depots

The VMware online depot, the vendor online depots, and the UMDS depot must be synchronized

regularly if you want to have the most recent software updates delivered by VMware, partners,
and other third-party vendors. Use the vSphere Automation APIs to create a synchronization
schedule or to synchronize the added depot immediately.

The Depot Manager does not synchronize immediately the metadata of the newly

added online and UMDS depots. If you want to force the synchronization and not wait

for the scheduled synchronization to take place, call the sync_Task () method of the
com.vmware.esx.settings.Depots interface. You can also define a custom schedule to sync the
metadata from the currently configured online or UMDS depots.

To create a custom schedule for checking for new software

updates, you must first define the schedule parameters by using the
com.vmware.esx.settings.depots.SyncScheduleTypes.Schedule class. Then you can add the
schedule to the schedule specification by using the setSchedule (schedule) method of the
com.vmware.esx.settings.depots.SyncScheduleTypes.Spec class. Optionally, you can use the
schedule specification to add an email to which notifications will be sent and define whether
updates will be downloaded automatically. To apply the custom schedule, call the set (spec)
method of the com.vmware.esx.settings.depots.SyncSchedule interface.

The default schedule is set to update the metadata daily at a random time. To reset the schedule

to the default settings, call the set (spec) of the syncSchedule interface and pass null as an
argument.

VMware, Inc.

63

VMware vSphere Automation SDKs Programming Guide

Working with Offline Depots

An offline depot is a ZIP file that contains the metadata and payloads of software updates and
follows the same structure as the online depot. Use the vSphere Automation APIs to import the
content of an offline depot to the vCenter Server database.

To add an offline depot to the depots managed by the Depot

Manager, you must create an offline depot specification by using the
com.vmware.esx.settings.depots.OfflineTypes.CreateSpec class. When you define the

offline depot parameters, call the create Task (create spec) method of the
com.vmware.esx.settings.depots.0ffline interface. Depending on the location of the offline
depot, when you create the offline depot specification, you must provide either the URI location
or the file ID returned by the Jetty Web server embedded in the vSphere Lifecycle Manager.
You set the type of the source from which the offline depot is downloaded by using the
setSourceType (sourceType) method of the 0fflineTypes.CreateSpec class.

Pull Depot Content from a URI

To indicate that the offline depot resides on a URI location, call the setlLocation (java.net.URI
location) method of the 0fflineTypes.CreateSpec class. You can pass as an argument the
depot location in one of the following URI schemes: http, https, or file. If you provide an HTTPS
location to the offline depot, make sure you also provide a certificate trusted by the VMware
Certificate Authority (VMCA) or a custom certificate from the VMware Endpoint Certificate

Store (VECS). For detailed information about how to manage certificates, see the vSphere
Authentication documentation.

Push Depot Content to the Depot Manager

To push the content of an offline depot to the Depot Manager, you must first upload the ZIP
file to the Jetty Web server at the https://<vcenter FODN>:9087/vum-fileupload URL.
The server returns a file identifier that you can pass as an argument to the setFileId (fileId)
method of the 0fflineTypes.CreateSpec class.

Managing Depot Overrides

In case, you have a smaller Remote Office/ Branch Office (ROBO) cluster environment, or Edge
computing environment, your clusters have no, or limited access to the Internet and limited
connection to a vCenter Server instance. In such an environment, you can use Depot Manager to
fetch the metadata and payloads of a desired software state from a local to the cluster depot.

To remediate a ROBO cluster, you must have access to a local software depot that hosts

the components of the desired state. You can use Depot Manager to either export the whole
vSphere Lifecycle Manager depot to an offline bundle, or export only the content of the desired
state required for remediating the ROBO cluster.

VMware, Inc. 64

VMware vSphere Automation SDKs Programming Guide

To export the desired state image from the vSphere Lifecycle Manager depot, call the
export (cluster,export spec) method of the com.vmware.esx.settings.clusters.Software
interface. The method returns the URI of the offline bundle that is hosted on the vSphere
Lifecycle Manager Jetty Web server. To move the content of the offline bundle to the ROBO
location, you must physically copy the ZIP file, unarchive, and mount its content to an HTTP
server inside the ROBO environment.

To redirect a ROBO cluster to download software updates from a local repository and not

from the vSphere Lifecycle Manager depot on the vCenter Server instance, the vSphere
Automation API offer the cluster pepotoOverrides service. To add a depot override location to

a ROBO cluster, call the add (cluster, override depot) method of the bepotoverrides interface.
Specify the URI location of the local depot with the setLocation (location) method of the
com.vmware.esx.settings.clusters.DepotOverridesTypes.Depot class. During the ROBO cluster
remediation, Depot Manager instructs the hosts in the ROBO cluster to download the software
updates from the configured local depots within the ROBO cluster.

Inspecting Depot Contents

You can use the vSphere Automation API to inspect the contents of the already synchronized
and imported depots. You can list the available base images, add-ons, and components, or
retrieve some detailed information about a specific software update.

To retrieve a list of the base images available on a vCenter Server instance, call

the 1ist (filter spec) method of the com.vmware.esx.settings.depot content.BaselImages
interface. To narrow the list of returned base images and retrieve only items matching to specific
criteria, you must pass a com.vmware.esx. settings.depot content.BaseImagesTypes.FilterSpec
instance as an argument to the list method. Use the retrieved list to get some information about
each base image, including their display name and version, release date, and their category. You
can also get some detailed information about a single base image by using the get (version)
method of the com.vmware.esx.settings.depot content.base images.Versions interface. The
information includes a list of the components present in this base image.

To retrieve a list of all currently available add-ons in the vSphere Lifecycle Manager depot, call
the list (filter spec) method of the com.vmware.esx.settings.depot content.AddOns interface
and pass null as an argument. You can filter the available add-ons by using some specific criteria
such as the add-on vendor, name, versions, or minimum version. You can retrieve some detailed
information about a single add-on version, by calling the get (name, version) method of the
com.vmware.esx.settings.depot content.add ons.Versions interface. The information includes
the list of components part of the add-on, and the list of components that were removed by this
add-on version.

VMware, Inc. 65

VMware vSphere Automation SDKs Programming Guide

To retrieve a list of all components currently available in the vSphere

Lifecycle Manager depot, you can call the 1ist (filter spec) method of the
com.vmware.esx.settings.depot content.Components interface and pass null as an argument.
To retrieve a list of components that matches some specific criteria, define your preferences with
a com.vmware.esx.settings.depot content.ComponentsTypes.FilterSpec instance and pass it as
an argument to the list method. Use the retrieved list to get some information regarding each
component.

Enabling a Cluster to Use a Software Specification

If you want to use the vSphere Lifecycle Manager to manage the life cycle of clusters in your
environment, you have two options for enabling this feature. You can enable the vSphere
Lifecycle Manager when you create the cluster. You can also turn an already created cluster
into one managed by the vSphere Lifecycle Manager.

Creating a Cluster with Enabled vSphere Lifecycle Manager

You can use only the vSphere Web Services API or the Virtual Infrastructure Management API to
create a cluster in your virtual environment and specify the initial desired state of the cluster. Use
the vSphere Automation API to specify the detailed desired state after the cluster creation.

Starting with vSphere 8.0 Update 1, you can use the Virtual Infrastructure Management API
which introduced a new way of accessing and using the vSphere Web Services. That is, you can
now use the JSON data format over HTTP and create REST-like requests to the vSphere Web
Services. Use the Virtual Infrastructure API or the vSphere Web Services API to create a cluster.
For more information about how to authenticate and use the Virtual Infrastructure Management
API, see the vSphere Web Services SDK Programming Guide.

You can call the Folder.CreateClusterEx (createClusterkEx) method and pass as arguments the
name for the new cluster and a clusterConfigSpecEx data object. In the data object, among
other properties, you can specify the desired state for the cluster. The desiredSoftwareSpec
property in the ComputeResourceConfigSpec data object contains the desired software
specification for the cluster. This property is available for applications using the vSphere Web
Services API of version 7.0 and later. You can create a bDesiredSoftwareSpec data object and
specify the base image that must be applied on the cluster with the baseImageSpec property.
Optionally, you can specify a vendor add-on to be added to the software specification with the
vendorAddOnSpec property.

Starting with vSphere 8.0, you can also enable the cluster to use vSphere Configuration Profiles
by setting the enableConfigManager property of the ComputeResourceConfigsSpec data object to

true.

VMware, Inc. 66

VMware vSphere Automation SDKs Programming Guide

Enabling an Existing Cluster to Use vSphere Lifecycle Manager

If you want to manage the life cycle of a cluster by using a single software specification,
you must first enable vSphere Lifecycle Manager on that cluster. You can use the vSphere
Automation API to enable a cluster to use the vSphere Lifecycle Manager feature.

Before you enable vSphere Lifecycle Manager on a cluster, you can check whether the cluster
meets all prerequisites. vSphere Lifecycle Manager can be enabled for a cluster only if the
following requirements are met:

m All hosts in the cluster are of version 7.0 or later.
m All hosts in the cluster are stateful.

= All hosts in the cluster include only components that belong to integrated solutions, such as
VMware vSAN™ and VMware vSphere® High Availability.

m None of the hosts in the cluster are in the process of active remediation through the VMware
®
vSphere Update Manager™,

m The cluster has a desired state already created for it.

If you want to run a preliminary check about whether all hosts in

the cluster meet these requirements, call the check Task (cluster ID,check spec)
method of the com.vmware.esx.settings.clusters.enablement.Software interface.
Pass as arguments the cluster ID, and optionally, a

com.vmware.esx.settings.clusters.enablement.SoftwareTypes.CheckSpec instance.

The cluster ID represents the unique identifier for a cluster resource. To retrieve

commonly used information about clusters including their IDs, call the 1ist (filter spec)
method of the com.vmware.vcenter.Cluster interface and pass as argument a
com.vmware.vcenter.ClusterTypes.FilterSpec instance to list the clusters that match specific
criteria. You receive a list of com.vmware.vcenter.ClusterTypes.Summary Objects which you can
use to get the cluster ID.

You pass a CkeckSpec instance to specify which checks can be skipped during the cluster
preliminary check. Though you can skip some checks with this operation, the Image Manager
runs all checks during the enablement operation. If you leave the check specification empty, all
checks are run for each host in the cluster. You can select among the following checks to be
skipped when running a pre-check operation:

m SOFTWARE. Checks whether there are any orphaned vSphere Installation Bundles (VIBs) and
any software that cannot co-exist with vSphere Lifecycle Manager.

m VERSION. Checks whether all hosts in the cluster are of version greater than a predefined one.

m STATELESSNESS. Checks whether there are any stateless hosts in the cluster. vSphere Lifecycle
Manager can be enabled only if the cluster does not contain stateless hosts.

m VUM REMEDIATION. Checks whether any of the hosts in the cluster are currently remediated
through the VMware vS|ohere® Update Manager™,

VMware, Inc. 67

VMware vSphere Automation SDKs Programming Guide

B SOFTWARE SPECIFICATION EXISTENCE. Checks whether there is a software specification already
associated with this cluster. In case, this check reports that the cluster does not have a
software specification, you must first create a draft software specification for this cluster and
then commit the draft.

®m VSAN WITNESS ELIGIBILITY. Checks whether the software specification can be used on any
VSAN witness hosts in the cluster. For information about how you can manage a vSAN cluster
by using vSphere Lifecycle Manager, see vSAN Clusters and vSphere Lifecycle Manager
chapter in the Managing Host and Cluster Lifecycle documentation.

To enable a cluster to be managed with vSphere

Lifecycle Manager, call the enable Task(cluster ID,enable spec) method

of the com.vmware.esx.settings.clusters.enablement.Software interface.

Pass as arguments the cluster ID and optionally, a
com.vmware.esx.settings.clusters.enablement.SoftwareTypes.EnableSpec instance. To specify
checks that you want to be skipped during the enablement process, pass the EnableSpec
instance. Currently, you can only skip the softwareTypes.CheckType.SOFTWARE check.

You can also get information about which clusters in your environment are managed with a single
software specification. Call the get (cluster 1D) method and pass the cluster ID as an argument.

Enabling a Standalone Host to Use a Software Specification

Starting with vSphere 8.0, you can use the vSphere Lifecycle Manager to manage the life cycle of
standalone hosts in your vCenter Server system.

You can add a standalone host to a vCenter Server instance under a data center object or into
a folder. See Chapter 6 ESXi Hosts. If you remove a host from a cluster but leave it in the data
center, the host is also considered a standalone host.

To manage a standalone host with a software specification, you must first enable

the vSphere Lifecycle Manager on that host. You can run a preliminary check

to establish whether the standalone host meets all requirements for enabling the

vSphere Lifecycle Manager. Call the check Task (host ID, check spec) method of the
com.vmware.esx.settings.hosts.enablement.Software interface and pass as arguments the host
identifier and a checkSpec instance. The pre-checks that you can skip before enabling the
vSphere Lifecycle Manager on a standalone host are the same as for a cluster.

To enable vSphere Lifecycle Manager on a standalone host, call the enable Task (host 1ID,
check _spec) method of the com.vmware.esx.settings.hosts.enablement.Software
interface. Pass as arguments the host unique identifier and optionally, a
com.vmware.esx.settings.hosts.enablement.SoftwareTypes.EnableSpec instance to define
whether any checks can be skipped during the feature enablement operation. Currently, you
can skip only the check for orphaned vSphere Installation Bundles (VIBS).

VMware, Inc. 68

VMware vSphere Automation SDKs Programming Guide

Working with Draft Software Specifications

You create a draft software specification to describe the components of the desired state that
you want to apply on a cluster or a standalone host.

The draft software specification is the working copy of the desired software state. Only one user
at a time is allowed to edit a single draft for a cluster or a standalone host. Before saving the
changes to the edited draft version, you can validate the content of the draft.

Figure 7-3. Drafts Workflow for a Cluster

Apply the Software
Create a Draft Edit the Draft Commit the Draft Desired State Specification Cluster is remediated
on a Cluster
Customer
! | A | | A A‘

v : v : v :
Run Cluster Prechecks

check_Task(cluster,
checkSpec)

Validate Draft Check Cluster Compliance [

scan_Task(cluster)

scan_Task(cluster,draft)

A typical workflow for working with draft software specifications starts with creating a draft
software specification for a specific cluster or a standalone host. If the cluster or the standalone
host already have a software specification defined, this action takes the latest committed draft
and you can edit its contents according to your needs. If the cluster or the standalone host have
no software specification created yet, this method creates an empty draft. The only mandatory
item for a draft is a base image of a specific version.

After you complete adding components, an add-on, and a base image, you can save your
changes by committing the draft. This operation results in setting the committed draft as the
current desired state of the cluster or the standalone host. Before committing the draft software
specification, you can validate the contents of the draft or check whether all hosts in the cluster
or the single standalone host are compliant with the draft.

If the commit operation is successful, the draft becomes the desired state for the cluster or the
standalone host. You can now export the software specification and use it, for example, in a
ROBO cluster scenario or another standalone host. You can also validate the compliance of the
hosts in the cluster or the standalone host against the desired state and then apply the software
specification, if feasible.

Creating a Draft Software Specification

To describe the components of a desired state for a cluster or a standalone host, create a draft
software specification and save the desired state when ready.

To edit an existing desired state or to create an empty draft software specification:

m For a cluster, call the create (cluster ID) method of the

com.vmware.esx.settings.clusters.software.Drafts interface.

VMware, Inc. 69

VMware vSphere Automation SDKs Programming Guide

m For a standalone host, call the create (host 1D) method of the

com.vmware.esx.settings.hosts.software.Drafts interface.

Pass the cluster ID or the host ID as an argument to the respective method. As a result, you
receive a draft ID which you can use to add a base image, an add-on, or some components to
the draft.

Editing a Draft Software Specification

After you have created a draft software specification, use the vSphere Automation API to edit its
items.

To set a base image to a draft software specification:

m For a cluster, call the set (cluster ID, draft ID, base image spec) method of
the com.vmware.esx.settings.clusters.software.drafts.software.BaselImage interface and

pass as arguments the cluster and the draft IDs, and a base image specification.

m For a standalone host, call the set (host ID, draft ID, base image spec) method of the
com.vmware.esx.settings.hosts.software.drafts.software.BaseImage interface and pass
as arguments the standalone host and draft ID, and a base image specification.

If the draft contains a base image, this method overwrites the existing image. The base

image specification contains the version of the bootable ESXi that must be included in

the desired state. To retrieve details about the base image that is currently present in

a draft, call the get (cluster ID,draft ID) Or get (host ID, draft ID) methods of the
com.vmware.esx.settings.clusters.software.drafts.software.BaselImage interface. Pass as
arguments the cluster or the standalone host ID and the draft ID. Use the returned
com.vmware.esx.settings.BaseImageInfo Object to query the version, display name and version,
and the release date of the ESXi host.

To add an OEM add-on to a draft software specification:

m For a cluster, call the set (cluster ID,draft ID,addon_spec) method of the

com.vmware.esx.settings.clusters.software.drafts.software.Addon interface.

m For a standalone host, call the set (host 1D, draft ID,addon_spec) method of the

com.vmware.esx.settings.hosts.software.drafts.software.Addon interface.

Pass as arguments to these methods the cluster or the standalone host ID, the draft ID,

and the add-on specification. If you want to remove an add-on from a draft, call the

delete (cluster ID,draft ID) Of delete (host ID,draft ID) method of the respective addon
interface and pass as arguments the cluster or the standalone host ID, and the draft ID.

You can add a component, change the version, or delete an existing component from a draft
software specification. To change the version of a component included in a draft:

m For a cluster, call the set (cluster ID,draft ID,component ID,version) method of the

com.vmware.esx.settings.clusters.software.drafts.software.Components interface.

VMware, Inc. 70

VMware vSphere Automation SDKs Programming Guide

m For a standalone host, call the set (host ID, draft ID, component ID, version) method of

the com.vmware.esx.settings.hosts.software.drafts.software.Components interface.

As a result, you add the component specified with the component ID and version

arguments to the draft, if it is missing. To remove a component from a draft, call

the delete (cluster ID,draft ID,component ID) Of delete (host ID,draft ID,component ID)
method of the respective components interface. You can change multiple

components in a draft by calling the update (cluster ID,draft ID,update spec) OF

update (host ID,draft ID,update spec) method of the respective components interface. To
specify the components you want to remove, add, or update for a draft, pass a cluster or a
host ComponentsTypes.UpdateSpec instance as an argument to the update method.

To retrieve information about all components present in a draft, or a single component, you can
use the list methods of the respective components interface.

Validating the Draft Software Specification

Before saving a draft and turning it into a desired state for a cluster or a standalone host, you
can check whether the specification is complete and valid. You can also check whether the draft
specification drifts in any way from the current state of the cluster or the host.

The prafts service offers two methods for validating the draft software specification.

To check whether a draft is complete and there are no conflicts between the draft

components, or unresolved dependencies, call the validate Task(cluster ID,draft ID) Of
validate Task(host ID,draft ID) method of the respective Drafts interface. Pass as arguments
to the method the cluster or the standalone host ID, and the draft ID. You validate whether there
were any other drafts committed for this cluster or standalone host, which can make the current
commit operation invalid. The method also validates whether all components defined in the
software specification are available in the depot metadata. This method does not run compliance
checks against the cluster or the standalone host.

To check whether all hosts in the cluster or the standalone host are compliant

with the draft software specification, call the scan_Task (cluster ID,draft ID) Of

scan_Task (host ID,draft ID) method of the respective prafts interface. Pass as arguments to
this method the cluster or the standalone host ID, and the draft ID. This method results in running
a comparison between the draft specification and the current state of each host in the cluster or
the current state of the standalone host.

Committing the Draft Software Specification

When you commit a draft software specification, it becomes the desired state for the cluster or
the standalone host.

VMware, Inc. 71

VMware vSphere Automation SDKs Programming Guide

To save the draft that you created for a cluster or a standalone host, call the

commit Task(cluster ID,draft ID,draft commit spec) Or commit Task (host ID, draft ID,
draft commit spec) method of the respective prafts interface. The Image Manager component
runs a validation check before the draft gets saved to the database. This method returns an
identifier of the commit operation. You can use the ID to retrieve information about a specific
commit such as the author of the commit operation, the time when the draft was committed, and
so on.

Working with Desired Software States

When you commit a draft software specification, you make the committed draft the desired state
for that cluster or standalone host. If all hosts in the cluster are compliant with the desired state,
you can remediate the cluster. If the single standalone host is compliant with the desired state,
you can update the ESXi host to that state.

You can use the methods provided with the com.vmware.esx.settings.clusters.Software Or
com.vmware.esx.settings.hosts.Software interface to manage a desired state for a cluster or
a standalone host. Before you apply a desired state on a cluster or a standalone host, you

can run pre-checks to ensure that all hosts in the cluster or the single host are in a good

state to be remediated. The pre-checks verify whether any of the hosts in the cluster or the
single standalone host must be rebooted or are in maintenance mode. You can also check the
compliance of the cluster or the standalone host against the desired state. See Checking the
Compliance Against the Desired State.

You can export a software specification created for a cluster or a standalone host by using one
of the following formats:

m An offline bundle in a ZIP file format.
s AnISO image.
m A JSON file.

Use the vSphere Lifecycle Manager API to import a software specification as a draft and then
edit it. You have several options for running the import operation depending on the location and
format of the desired software state.

Exporting and Importing a Desired State

Use the vSphere Automation API to export the desired software state of a cluster or a
standalone host. Then you can import the desired state to a different cluster or host in the same
or a different vCenter Server instance.

Exporting a Desired State

To export a desired state, you can use one of the following methods:

m For a cluster, call the export (cluster ID, export spec) method of the

com.vmware.esx.settings.clusters.Software interface.

VMware, Inc. 72

VMware vSphere Automation SDKs Programming Guide

m For a standalone host, call the export (host ID, export spec) method of the

com.vmware.esx.settings.hosts.Software interface.

This method does not export any information about the solutions available on the cluster or the
standalone host since the constraints set by these solutions might not be applicable for another
cluster or host. Pass as parameters the cluster or the standalone host ID, and an instance of the
respective softwareTypes.ExportSpec class.

You can choose how to export the desired software specification.

m Export as an ISO image. Call the setExportIsoImage (exportIsoImage) method of the
ExportSpec instance and pass true as an argument. Use the exported ISO image for
performing clean installs and for bootstrapping purposes. You can upload the ISO file into
the Jetty Web server on the target vCenter Server instance but you cannot use ISO files to
manage the life cycle of clusters or a standalone host through the vSphere Lifecycle Manager
feature.

m Export as an offline bundle in a ZIP file format. Call the getExportOfflineBundle () method of
the ExportSpec instance. You can use the exported offline bundle to create a depot and add
its components to the resources managed by the Depot Manager module.

m Export as a JSON file holding the desired state specification. Call the
setExportSoftwareSpec (exportSoftwareSpec) method of the Exportspec instance and pass
true as argument. You can then reuse the JSON file to apply the desired state that it contains
to another cluster or standalone host in the same or in a different vCenter Server instance.
Note that the JSON file holds only the description of the desired state. You must check
whether all components described in the JSON file are available in the depot for the target
cluster. See Importing a Desired State Specification for information about how you can use a
desired state specification for another cluster or standalone host.

Importing a Desired State Specification

To import a desired state of a cluster or a standalone host and assign it to another cluster or
standalone host in the same or different vCenter Server instance:

m For a cluster, call the importSoftwareSpec (cluster ID, drafts import spec) method of the

com.vmware.esx.settings.clusters.software.Drafts interface.

m For a standalone host, call the importSoftwareSpec (host ID, drafts import spec) method

of the com.vmware.esx.settings.hosts.software.Drafts interface.

VMware, Inc. 73

VMware vSphere Automation SDKs Programming Guide

Pass as parameters the cluster or the standalone host ID, and an instance of the respective
DraftsTypes.ImportSpec class. Use the instance of the import specification to describe the
download source and the source type of the imported software specification. Depending on the
location and the source type of the exported desired state, you can choose from the following
import options:

m Import a file from the vCenter Server or your local file system. Call the setFileId (fileId)
method of the Importspec instance. Pass as argument the file ID of the software specification
which was previously uploaded on the Jetty Web server running on the vCenter Server
at https://<vcenter FQDN>:9087/vum-fileupload URL. You can also use this option to
import a specification file that resides on your local file system. Make sure you set the source
type of the import specification to puss through the setSourceType (sourceType) method of
the Importspec instance.

m Import a file that resides on a URI location. Call the setLocation (location) method of the
ImportSpec instance. Pass as argument the URI location of the software specification file. The
software specification can be pulled from a URI location with one of the following schemes:
file, http, or https. You can use this import mechanism only if you set the source type to

SourceType.PULL.

m Import a desired state as a JSON string. Call the setSoftwareSpec (softwareSpec) method
of the Importspec instance. Pass as argument the JSON string representing the software
specification you want to import. Use this mechanism only if you set the source type to
SourceType.JSON_ STRING.

Checking the Compliance Against the Desired State

Before applying a desired state on a cluster, you can scan all hosts in the cluster against the
desired state and check the cluster compliance against the desired state. Before applying a
desired state on a standalone host, you can scan the host and check its compliance against the
desired state.

To check the compliance of all hosts in a cluster or of the single standalone host:

m For a cluster, call the scan Task (cluster ID) method of the

com.vmware.esx.settings.clusters.Software interface.

m For a standalone host, call scan Task (host ID) method of the

com.vmware.esx.settings.hosts.Software interface.

Pass as an parameter the cluster or the host identifier. The method compares the desired state
against the current state of each host in the cluster or of the single host and as a result calculates
the compliance.

VMware, Inc. 74

VMware vSphere Automation SDKs Programming Guide

You can retrieve the cluster or the standalone host compliance status by calling the

get (cluster ID) Or get (host ID) method of the respective compliance interface and

passing as argument the cluster or the standalone host ID. As a result you receive a
com.vmware.esx.settings.ClusterCompliance OF @ com.vmware.esx.settings.HostCompliance
object. You can use the clusterCompliance Or the HostCompliance instance to retrieve the
following information:

m The overall cluster compliance status regarding the target version of the components
described within the cluster desired state.

m The impact of applying the desired state on the cluster in case the cluster is non-compliant.
m Alist of all compliant hosts in the cluster.

m Alist of the incompatible hosts in the cluster.

m A list of the non-compliant hosts in the cluster.

m Alist of the unavailable hosts which cannot be checked for compliance against the desired
state.

m The compliance status of each host in the cluster.
m The notifications returned by the compliance check operation.
m The time that the compliance check takes.

m The ID of the committed draft for which the compliance check is performed. If the
getCommit () method of the ClusterCompliance Or the HostCompliance instance returns null,
the compliance check is run against a draft software specification.

m The compliance overall stage status of the cluster or the standalone host and is relevant
when the compliance status of the cluster or the standalone host is NON COMPLIANT.

m The compliance of the OEM add-on on the standalone host with respect to the add-on in the
desired state.

m The compliance of the base image on the standalone host with respect to the base image in
the desired state.

m The compliance of all effective components and all components present on the standalone
host in respect to the components in the desired state.

m The compliance of all DPU devices on the standalone host with respect to the desired state.

m The compliance of the hardware support on the standalone host with respect to the
hardware support defined in the target state.

A cluster or a standalone host can have one of the following compliance statuses regarding the
target versions:

m COMPLIANT. The target versions of the components described in the desired state of the
cluster or the standalone host are the same as the versions of the components currently
present on the hosts in the cluster or on the standalone host.

VMware, Inc. 75

VMware vSphere Automation SDKs Programming Guide

B NON COMPLIANT. The desired state of the cluster or the standalone host describes components
with higher versions than the versions of the components currently present on the hosts in
the cluster or on the standalone host. Non-compliant clusters or hosts are those clusters or
hosts which have orphaned VIBs, or components on the hosts that are not present in the
desired state specification.

m INCOMPATIBLE. One or more hosts in the cluster or in the standalone host have components
with higher versions than the components described in the desired state specification.

m UNAVAILABLE. The current state of one or more hosts in the cluster or of the standalone host
cannot be retrieved and as a result the compliance check cannot be performed.

You can check the compliance impact of applying the desired state on a non-compliant

cluster or a standalone host by calling the getImpact () method of the ClusterCompliance oOr
the HostCompliance instance. A com.vmware.esx.settings.ComplianceImpact object is returned.
Use it to retrieve information about the steps you must take to remediate the cluster or the
standalone host successfully. You might need to reboot a host or put a host into maintenance
mode to remediate the cluster or the standalone host successfully.

Hardware Compatibility Data

The hardware compatibility data contains information about the compatibility between ESXi
hosts and ESXi versions.

You can use the com.vmware.esx.hcl.CompatibilityData Service to retrieve information about
the compatibility data or to update the local compatibility data on a vCenter Server instance. To
retrieve information about the compatibility data stored on your vCenter Server instance, call the
get () method. To update the local compatibility data with the latest version available from the
official VMware source, call the update Task () method.

Checking the Hardware Compatibility of an ESXi Host

You can query the hardware compatibility for a host before upgrading to a new ESXi version.
You can also download the information generated by the hardware compatibility report.

To use services form the com.vmware.esx.hcl.hosts package, you must verify that you have
accepted to participate in the CEIP and there is available compatibility data.

You can use the com.vmware.esx.hcl.hosts.CompatibilityReleases interface to list available
releases for generating a compatibility report for a specific ESXi host. To list the locally
available ESXi releases for the host that can be used to generate a compatibility report, call

the 1ist (host_ID) method. The list includes only major and update releases. Patch releases are
not listed.

VMware, Inc. 76

VMware vSphere Automation SDKs Programming Guide

You can use the com.vmware.esx.hcl.hosts.CompatibilityReport interface to generate a
hardware compatibility report for an ESXi host against a specific ESXi release. To return the

last generated hardware compatibility report for a specific host, call the get (host 1D) method.
To generate a hardware compatibility report for a specific host against specific ESXi release, call
the create Task(host ID,spec) method.

You can use the com.vmware.esx.hcl.Reports interface to download information generated by
the hardware compatibility report. To retrieve the URI location for downloading a compatibility
report, call the get (report ID) method.

Configuring Remediation Settings

You can control the behavior of the ESXi hosts and virtual machines during the remediation
process. You can create a global remediation policy that applies to all clusters and standalone
hosts in a vCenter Server instance. You can also set a remediation policy to a specific cluster and
a standalone host.

When you run cluster and standalone host compliance checks, the Coordinator module runs a
series of checks on each host to determine their state and whether some additional actions must
be taken to ensure the success of the remediation operation. In case one or more hosts in the
cluster and any of the standalone hosts are evaluated as non-compliant, additional checks are
run on those hosts to evaluate whether they must be rebooted or put into maintenance mode.
Currently, VMware provides a set of behavior controls (remediation policies) regarding the virtual
machines and the hosts in a cluster or a standalone host. This set of remediation policies might
change with the next vSphere release.

How Remediation Policies Overrides Work

The vSphere Lifecycle Manager provides a default global policy configuration that must

be applied on each cluster and standalone host during remediation. Through the vSphere
Automation API, you can change the global policies and create some cluster-and host-specific
policies. Before remediating a cluster and standalone host, you can use the API to determine
the effective global and cluster-and host-specific remediation policies. The following graphic
describes how the mechanism of the policy overrides works.

VMware, Inc. 77

VMware vSphere Automation SDKs Programming Guide

Figure 7-4. How Remediation Policies Work

Global Remediation Policies

Enable Quick Boot = false

Disable HA Admission Control = false Override Global Remediation Policies

--------- >
_____________ Enable Quick Boot = unset

Effective Global Remediation Policies ! Disable HA Admission Control = true

Enable Quick Boot = false ‘I

Disable HA Admission Control = true ' Override Cluster Remediation Policies
Enable Quick Boot = true
--------- >|

Effective Cluster Remediation Policies Disable HA Admission Control = unset

Enable Quick Boot = true
Disable HA Admission Control = true (€ -

All clusters and standalone hosts in a vCenter Server instance inherit the default or the
overridden global policy settings unless the global policy is explicitly overridden on a cluster
and host level.

Editing Global or Cluster- and Host-Specific Remediation Policies

To view the currently set global remediation policy, call the get (cluster ID) or

get (host_id) method of the com.vmware.esx.settings.defaults.clusters.policies.Apply Of
com.vmware.esx.settings.defaults.hosts.policies.Apply interface. You receive a default
ApplyTypes.ConfiguredPolicySpec instance that contains the configuration settings of the
global remediation policy. To edit a global remediation policy, call the set (policy spec)
method of the respective com.vmware.esx.settings.defaults.clusters.policies.Apply

Or com.vmware.esx.settings.defaults.hosts.policies.Applyinterface. Pass as an

argument an ApplyTypes.ConfiguredPolicySpec instance and define new values

to the global policy settings. To view the effective global remediation

policy settings for a cluster and host, call the get () method of

the respective com.vmware.esx.settings.defaults.clusters.policies.apply.Effective Or
com.vmware.esx.settings.defaults.hosts.policies.apply.Effective interface. The method
returns an EffectivePolicySpec instance that contains the effective global policies applicable
for all clusters and hosts in your vCenter Server environment.

To view the cluster- and host-specific remediation policies, call the get (cluster ID) or

get (host_id) method of the respective com.vmware.esx.settings.clusters.policies.Apply
Or com.vmware.esx.settings.hosts.policies.Apply interface. The method returns an instance
of the com.vmware.esx.settings.clusters.policies.ApplyTypes.ConfiguredPolicySpec Of
com.vmware.esx.settings.hosts.policies.ApplyTypes.ConfiguredPolicySpec class which
contain the cluster- and host-specific policies to be applied during

VMware, Inc.

VMware vSphere Automation SDKs Programming Guide

remediation. To change the cluster- and host-specific policy, call the
set (cluster ID,policy spec) Of set (host ID,policy spec) method of the respective

Apply interface. Pass as argument an ApplyTypes.ConfiguredPolicySpec instance
and describe the cluster- and host-specific remediation policies. To view
the effective cluster- and host-specific policies, call the get (cluster ID) or

get (host id) method of the com.vmware.esx.settings.clusters.policies.apply.Effective Or

com.vmware.esx.settings.hosts.policies.apply.Effective interface. The method returns an

EffectivePolicySpec instance that describes the effective cluster- and host-specific policies.

Remediation Policy Options for Clusters

To describe a global or cluster-specific remediation policy, use the

com.vmware.esx.settings.defaults.clusters.policies.ApplyTypes.ConfiguredPolicySpec and

com.vmware.esx.settings.clusters.policies.ApplyTypes.ConfiguredPolicySpec classes. For
the vSphere 8.0 release, VMware provides the following methods to configure a global or

cluster-specific policy.

Method

setDisableDpm (disableDpm)

setDisableHac (disableHac)

setEvacuateOfflineVms (evacu

ateOfflineVms)

VMware, Inc.

Description

Deactivate the VMware Distributed Power Management (DPM) feature for all clusters or
for a specific cluster. DPM monitors the resource consumption of the virtual machines in
a cluster. If the total available resource capacity of the hosts in a cluster is exceeded,
DPM powers off (or recommends powering off) one or more hosts after migrating their
virtual machines. When resources are considered underutilized and capacity is needed,
DPM powers on (or recommends powering on) hosts. Virtual machines are migrated
back to these hosts.

During the cluster remediation, the vSphere Lifecycle Manager cannot wake up and
remediate hosts that are automatically put into a stand-by mode by DPM. These

hosts stay non-compliant when DPM turns them on. The vSphere Distributed Resource
Scheduler (DRS) is unable to migrate virtual machines to the hosts which are not
remediated with the desired state for the cluster.

To deactivate DPM during the cluster remediation, call the setbisableDpm (disableDpm)
method of the configuredPolicySpec instance and pass as argument true. By default,
the vSphere Lifecycle Manager temporarily deactivates DPM and turns on the hosts to
complete the remediation. DPM is enabled again when the cluster remediation finishes.

Deactivate the vSphere HA admission control. vSphere HA uses admission control to
ensure that a cluster has sufficient resources to guarantee the virtual machines recovery
when a host fails. If vSphere HA admission control is enabled during remediation, putting
a cluster into maintenance mode fails because vMotion cannot migrate virtual machines
within the cluster for capacity reasons.

To allow the vSphere Lifecycle Manager to temporary deactivate vSphere HA admission
control, call the setDisableHac (disableHac) method of the configuredPolicySpec
instance and pass as argument true. By default, the vSphere HA admission control is
enabled because DRS should be able to detect issues with the admission control and
deactivate it to allow the remediation to complete.

Migrate the suspended and powered off virtual machines from the hosts that must enter
maintenance mode to other hosts in the cluster. To enable this remediation policy, call
the setEvacuateOfflineVms (evacuateOfflinevms) method of the configuredPolicySpec
instance and pass as argument true. By default, this setting is deactivated in the global
remediation policy.

79

VMware vSphere Automation SDKs Programming Guide

Method

setFailureAction (failureAct

ion)

setEnforceHclValidation (enf

orceHclValidation)

setParallelRemediationActio
n(parallelRemediationAction

)

VMware, Inc.

Description

Specify what actions vSphere Lifecycle Manager must take if a host fails to

enter maintenance mode during the remediation. To configure this policy on a

global or cluster-specific level, call the setFailureAction (failureAction) method of
the configuredpPolicySpec instance. Pass as argument an ApplyTypes.FailureAction
instance. You can set the number of times that vSphere Lifecycle Manager tries to put
a host into maintenance mode and the delay between the tries. When the threshold is
reached and the host failed to enter maintenance mode, the cluster remediation fails.
By default, vSphere Lifecycle Manager tries to put a host into maintenance mode three
times with a five minute delay between each try before the cluster remediation fails.

Prevents the remediation of VSAN clusters if vSphere Lifecycle Manager reports
hardware compatibility issues during the hardware compatibility check performed as
part of the remediation pre-check or the remediation tasks of the cluster. If you pass
null as a parameter, detected hardware issues are reported as warnings and do not
prevent the remediation of the vVSAN cluster.

Enable simultaneous remediation of all hosts that are in maintenance mode with in the
cluster. Pass an instance of the
com.vmware.esx.settings.defaults.clusters.policies.ApplyTypes.ParallelRemediat
ionAction class to indicate the maximum number of hosts that can be remediated in
parallel.

Note If the hosts have NSX virtual distributed switches that are ready to be migrated to
vSphere Distributed Switches, you must manually set the maximum number of parallel
remediations to no more than 4. In cases when host switch migration is needed, if more
than 4 hosts are remediated in parallel, the remediation might fail, because the host
switch migration takes more time than the time vSphere Lifecycle Manager needs to
complete the parallel remediation.

80

VMware vSphere Automation SDKs Programming Guide

Method

setPreRemediationPowerActio
n

(preRemediationPowerAction)

setEnableQuickBoot (enableQu

ickBoot)

Description

Specify how the power state of the virtual machines must change before the host enters
maintenance mode. If DRS is not enabled on a cluster or the automation level of a

DRS cluster is not set to fully automated, the Coordinator module fails to remediate the
cluster if the remediation requires a reboot or maintenance mode. You can set a policy
that powers off or suspends the virtual machines on hosts that must be rebooted or
must enter maintenance mode during remediation. The DRS takes care of changing the
power state of the virtual machines when the host enters and exits maintenance mode.
To set a policy for the power state of the virtual machines during the
remediation, call the setPreRemediationPowerAction (preRemediationPowerAction)
method of the configuredpPolicySpec instance. Pass as a parameter an instance of the
PreRemediationPowerAction enumeration class and specify one of the following values:

B DO NOT CHANGE VMS POWER STATE. Indicates that the power state of the virtual
machines must not be changes.

B POWER OFF VMS. Indicates that the virtual machines must be powered off before the
hosts enter maintenance mode.

B SUSPEND VMs. Indicates that the virtual machines must be suspended before the
hosts enter maintenance mode.

B SUSPEND VMS TO MEMORY. Indicates that the virtual machines must be suspended
before the hosts enter maintenance mode.

By default, the Coordinator must leave the power state of the virtual machines

unchanged.

Reduce the reboot time of an ESXi host by skipping all the hardware initialization
processes and restarting only the hypervisor. This policy is applicable only if the host
platform supports the Quick Boot feature.

To enable the Quick Boot feature on the hosts during the remediation, call the
setEnableQuickBoot (enableQuickBoot) method of the configuredPolicySpec instance
and pass as argument true. By default, this policy is deactivated.

Remediation Policy Options for Standalone Hosts

To describe a global or cluster-specific remediation policy, use the

com.vmware.esx.settings.defaults.hosts.policies.ApplyTypes.ConfiguredPolicySpec and

com.vmware.esx.settings.hosts.policies.ApplyTypes.ConfiguredPolicySpec classes. For the

vSphere 8.0 release, VMware provides the following methods to configure a global or host-

specific policy.

VMware, Inc.

81

VMware vSphere Automation SDKs Programming Guide

Method

setEnableQuickBoot (enableQu

ickBoot)

setPreRemediationPowerActio
n

(preRemediationPowerAction)

setFailureAction (failureAct

ion)

Description

Optimize the host patching and upgrade operations by reducing the reboot time of an
ESXi host. Since the patching and upgrading operations do not affect the hardware of
the host, the hardware initialization processes can be skipped. This policy is applicable
only if the host platform supports the Quick Boot feature. For more information

about which hosts are Quick Boot compatible, see the following KB article https://
kb.vmware.com/s/article/52477.

Specify how the power state of the virtual machines must change before the standalone

host enters maintenance mode. You can choose between the following power actions:

B DO NOT CHANGE VMS POWER STATE. Indicates that the power state of the virtual
machines must not be changed.

B POWER OFF VMS. Indicates that the virtual machines must be powered off before the
standalone host enters maintenance mode.

B SUSPEND vMs. Indicates that the virtual machines must be suspended before the
standalone host enters maintenance mode.

B SUSPEND VMS TO MEMORY. Indicates that the virtual machines must be suspended
before the standalone host enters maintenance mode.

Specify what actions vSphere Lifecycle Manager must take if a standalone host fails to
enter maintenance mode during the remediation. You can set the number of times that
vSphere Lifecycle Manager tries to put a standalone host into maintenance mode and
the delay between the tries. When the threshold is reached and the standalone host
failed to enter maintenance mode, the host remediation fails.

Remediating an ESXi Cluster and a Standalone Host

You can use the vSphere Automation API to initiate the remediation of a cluster or a standalone
host through the vSphere Lifecycle Manager.

To remediate a cluster with a desired state, call the apply Task(cluster ID, apply spec)

method of the com.vmware.esx.settings.clusters.Software interface. Pass as argument

a SoftwareTypes.ApplySpec instance and specify whether the VMware End User License

Agreement (EULA) must be accepted. You can also set the minimum commit ID of the draft
software specification that must be used for remediating the cluster. Upon successful completion
of the remediation task, all hosts in the cluster have the same software state.

To remediate a standalone host with a desired state, call apply Task(host ID, apply spec)

method of the com.vmware.esx.settings.hosts.Software interface and pass as arguments the

standalone host ID and an instance of the softwareTypes.ApplySpec class. Use the software
apply specification to set the minimum commit identifier of the draft software specification. See
Committing the Draft Software Specification. You can also specify whether the VMware End User
License Agreement (EULA) must be accepted.

Integrate Third-Party Solutions with vSphere Lifecycle

Manager

A solution is an ESXi software package that extends the functionality and capabilities of a host
and integrates with the vCenter Server system. To be able to manage the life cycle of your

VMware, Inc.

82

https://kb.vmware.com/s/article/52477
https://kb.vmware.com/s/article/52477

VMware vSphere Automation SDKs Programming Guide

third-party solutions on a cluster managed with images, you must integrate the solutions with
vSphere Lifecycle Manager.

Examples of VMware integrated solutions are VMware NSX®, vSAN, and vSphere with Tanzu. For
more information about the VMware integrated solutions, see vSphere Lifecycle Manager Images
and Other VMware Products and Solutions section in the Managing Host and Cluster Lifecycle
documentation.

Third-party software providers can use the vSphere APIs, VMware vSphere APIs for I/O Filtering
(VAIO), VMware Daemon Software Development Kit, and others to develop third-party solutions
for their vSphere platforms.

You can use the vSphere Lifecycle Manager automation APIs to manage the life cycle of third-
party solutions on a cluster managed with a single image. First you need to package and upload
your solution components to thevSphere Lifecycle Manager depot. Use the depot to store and
manage the software updates for your third-party solutions. To make a solution available on

a cluster, create a software specification that contains the solution and remediate all hosts in
the cluster with that image. vSphere Lifecycle Manager manages the life cycle of the solution
components by consuming the software updates from the vSphere Lifecycle Manager depot.

Note If you export an image from the cluster where your third-party solution is running, the
solution components are not part of the exported image.

Prerequisites

To enable vSphere Lifecycle Manager to manage your third-party solutions, you must use the
ESXi Packaging Kit (EPK) to create installable packages. As of the vSphere 7.0 release, partner
development kits generate components as installation packages. For more information about
how to use the EPK to create components, assemble components into add-ons, then merge the
add-ons with the base image to author a depot, see the ESXi Packaging Kit (EPK) Development
Guide documentation.

Integrate a Third-Party Solution to Work with vSphere Lifecycle
Manager

1 Create an online or offline depot to host your third-party solutions. See Working with Online
Depots and Working with Offline Depots.

m The following example creates an online depot that can be accessed through the
http://my online depot.com URL.

POST https://<vcenter server ip or fgdn>/api/esx/settings/depots/online
{

"description" : "My online depot adds the My Solution component to the ESXi 7.0U3d
base image",

"ownerdata" : "ACME Company",

"location" : "http://my online depot.com",

"enabled" : true

VMware, Inc. 83

VMware vSphere Automation SDKs Programming Guide

m The following example creates an offline depot, also called an offline bundle, that can be
imported to the vSphere Lifecycle Manager depot.

POST https://{server}/api/esx/settings/depots/offline?vmw-task=true

"file id" : "string",
"description" : "string",
"ownerdata" : "string",

"source_ type" : "PULL",
"location”™ : "http://myurl.com"

Synchronize the online depot to download the depot metadata and make the vSphere
Lifecycle Manager aware of your solutions. See Synchronizing Software Depots.

POST https://<vcenter server ip or fqgdn>/api/esx/settings/depots/online?vmw-—

task=truegaction=sync

Create a draft software specification. See Creating a Draft Software Specification.

POST https://<vcenter server ip or fqdn>/api/esx/settings/clusters/<cluster id>/software/
drafts

Add your solution to the created draft software specification. See Editing a Draft Software
Specification.

PUT https://<vcenter server ip or fqgdn>/api/esx/settings/clusters/<cluster id>/software/
drafts/<draft_id>/software/components/<component_ id>

Save the created draft software specification to make it the desired state for the cluster. See
Committing the Draft Software Specification.

POST https://<vcenter server ip or fqdn>/api/esx/settings/clusters/<cluster id>/software/
drafts/<draft_id>?action=commité&vmw-task=true

Remediate the ESXi cluster with the desired state that contains your solution to apply the
desired state on all hosts in that cluster. See Remediating an ESXi Cluster and a Standalone
Host.

POST https://<vcenter server ip or fqdn>/api/esx/settings/clusters/<cluster id>/software?
action=apply&vmw-task=true

{

"hosts" : [
"obj-103",
"obj-103"

1,

"commit" : "obj-103",

"accept eula" : true

VMware, Inc. 84

VMware vSphere Automation SDKs Programming Guide

Results

You set up an image for the cluster which includes your third-party solution. You now manage all
hosts in the cluster collectively with a single image. Upon remediation, the image is installed on all
hosts in the cluster.

What to do next

You can update, delete or add new solutions to the draft software specification and then commit
the changes to make the draft the desired state for the cluster.

Enable vSphere Lifecycle Manager on a Cluster Managed with
Baselines

For more information about how to convert a cluster to use vSphere Lifecycle Manager images
instead of baselines, see Enabling an Existing Cluster to Use vSphere Lifecycle Manager.

vSphere Lifecycle Manager APIs Equivalent to the vSphere Host
Patch Manager APIs

To manage the life cycle of a single host with baselines, you use the vSphere Host Patch
Manager APIs which are part of the vSphere Web Services APl. To manage the life cycle of all
hosts in a cluster collectively with an image, you use the vSphere Lifecycle Manager APIs which
are part of the vSphere Automation APIs. The following table compares the APIs for life cycle
management of the hosts and clusters in your environment.

Operation vSphere Lifecycle ManagerAPI vSphere Host Patch Manager API

Check com.vmware.esx.settings.clusters.Software.check vim.host.PatchManager.CheckHostPatch_Task
whether

hosts can

be

remediate

d

Check the = com.vmware.esx.settings.clusters.Software.scan vim.host.PatchManager.ScanHostPatchV2 Task
complianc

e of the

cluster or

host with

the

desired

state

Remediat com.vmware.esx.settings.clusters.Software.apply vim.host.PatchManager.InstallHostPatchV2 Tas
e the k

cluster or

host with

the

desired

state

VMware, Inc. 85

VMware vSphere Automation SDKs Programming Guide

Operation

Retrieve
informatio
n about
the
cluster or
host that
you want
to
remediate

Stage a
desired
state on a
cluster or
host

Uninstall a
compone
nt

VMware, Inc.

vSphere Lifecycle ManagerAPI

B com.vmware.esx.settings.clusters.Software.get -
View information about the current desired state.

B com.vmware.esx.settings.clusters.software.Comp
onents.list - View all components in the current
desired state.

B com.vmware.esx.settings.clusters.software.Comp
onents.get - View detailed information about a
specific component.

com.vmware.esx.settings.clusters.Software.stage

com.vmware.esx.settings.clusters.Software.apply -
When a software component is removed from the
desired software specification and then the cluster is
remediated, the component will be uninstalled from all
hosts in that cluster.

vSphere Host Patch Manager API

vim.host.PatchManager.QueryHostPatch Task -
View information about the bulletins installed on
an ESXi host.

vim.host.PatchManager.StageHostPatch Task

vim.host.PatchManager.UninstallHostPatch Tas
k

86

Virtual Machine Configuration and
Management

A virtual machine is a software computer that, like a physical computer, runs an operating system
and applications. The virtual machine consists of a set of specification and configuration files and
is backed by the physical resources of a host. Each virtual machine encapsulates a complete
computing environment and runs independently of the underlying hardware.

Starting with vSphere 6.5, you can create virtual machines, configure virtual machine settings,
and perform power operations on the virtual machines through the vSphere Automation APIs.

Starting with vSphere 7.0, you can use the vSphere Automation APIs to perform various virtual
machine management operations. For example, you can deploy virtual machines by using several
approaches, clone an existing virtual machine, create an instant clone of a running virtual
machine. You can also install VMware Tools which enables you to manage the life cycle and
customize the networking and identity settings of the guest operating system installed on the
virtual machine.

This chapter includes the following topics:
m Creating Virtual Machines

m Configuring Virtual Machines

m Managing Virtual Machines

m Virtual Machine Guest Operations

m Managing Data Sets

Creating Virtual Machines

You can use the vSphere Automation APIs to create virtual machines depending on your needs
and infrastructure setup.

You can create a basic virtual machine and then configure it according to your needs. You can
also create a more comprehensive virtual machine and then edit its settings. To create a virtual
machine, you must specify the datastore, resource pool, folder, or host where the virtual machine
is placed. Later, you can customize the virtual machine by specifying the boot options, number of
CPUs, the guest OS, and virtual NIC. See Creating a Virtual Machine Without a Clone or Template
and Configuring Virtual Machines.

VMware, Inc. 87

VMware vSphere Automation SDKs Programming Guide

You can use a turned off virtual machine to create a VM template from which to deploy other
virtual machines. See Create a VM Template in a Content Library from a Virtual Machine. You can
also mark a virtual machine as template by calling the virtualMachine.MarkAsTemplate method
from the vSphere Web Services APIs. See vSphere Web Services SDK Programming Guide.

You can capture a virtual machine or a vApp in an OVF template and store the template in a
content library. Then you can use the OVF template to deploy a virtual machine or a vApp in
your environment. See Creating Virtual Machines and vApps from Templates in a Content Library.

Creating a Virtual Machine Without a Clone or Template

You can create a virtual machine by using the vM.create method. The method takes as
parameter a createspec instance that describes the details of the virtual machine.

When you create a virtual machine without a template or clone, you can configure the virtual
hardware, including processors, hard disc, memory. To create a virtual machine, you must specify
the virtual machine attributes by using the createspec class. For example, you can specify a
name, boot options, networking, and memory for the new virtual machine.

All attributes are optional except the virtual machine placement information that you must
provide by using the placementspec class. Use the virtual machine placement specification to

set the datastore, cluster, folder, host, or resource pool of the created virtual machine. You must
make sure that all these vSphere objects are located in the same data center in a vCenter Server
instance.

For more information, refer to the AP/ Reference documentation inside the SDK.

Java Example of Creating a Basic Virtual Machine

This example is based on the code in the CreateBasicVM. java sample file.

This example uses the information provided in Creating a Virtual Machine Without a Clone or
Template.

Note For a complete and up-to-date version of the Java sample code, see the vsphere-
automation-sdk-java VMware repository at GitHub.

private void createBasicVM(
VMTypes.PlacementSpec vmPlacementSpec, String standardNetworkBacking) {
// Create the scsi disk as a boot disk
DiskTypes.CreateSpec bootDiskCreateSpec =
new DiskTypes.CreateSpec.Builder () .setType (
DiskTypes.HostBusAdapterType.SCSI)
.setScsi (new ScsiAddressSpec.Builder (01) .setUnit (01)
build())
.setNewVmdk (new DiskTypes.VmdkCreateSpec())
build () ;

// Create a data disk

VMware, Inc. 88

VMware vSphere Automation SDKs Programming Guide

DiskTypes.CreateSpec dataDiskCreateSpec =
new DiskTypes.CreateSpec.Builder () .setNewVmdk (
new DiskTypes.VmdkCreateSpec()) .build();
List<DiskTypes.CreateSpec> disks = Arrays.asList (bootDiskCreateSpec,
dataDiskCreateSpec) ;

// Create a nic with standard network backing
EthernetTypes.BackingSpec nicBackingSpec =
new EthernetTypes.BackingSpec.Builder (
BackingType.STANDARD PORTGROUP) .setNetwork (
standardNetworkBacking) .build() ;
EthernetTypes.CreateSpec nicCreateSpec =
new EthernetTypes.CreateSpec.Builder () .setStartConnected (true)
.setBacking (nicBackingSpec)
.build();
List<EthernetTypes.CreateSpec> nics = Collections.singletonList (

nicCreateSpec) ;

// Specify the boot order
List<DeviceTypes.EntryCreateSpec> bootDevices = Arrays.asList(
new DeviceTypes.EntryCreateSpec.Builder (DeviceTypes.Type.ETHERNET)

.build(),
new DeviceTypes.EntryCreateSpec.Builder (DeviceTypes.Type.DISK)
Lbuild());

VMTypes.CreateSpec vmCreateSpec = new VMTypes.CreateSpec.Builder (
this.vmGuestOS) .setName (BASIC VM NAME)
.setBootDevices (bootDevices)
.setPlacement (vmPlacementSpec)
.setNics (nics)
.setDisks (disks)
.build();
System.out.println ("\n\n#### Example: Creating Basic VM with spec:\n

+ vmCreateSpec) ;

this.basicVMId = vmService.create (vmCreateSpec);

Python Example of Creating a Basic Virtual Machine

This example is based on the code in the create basic vm.py sample file.

This example uses the information provided in Creating a Virtual Machine Without a Clone or
Template.

Note For a complete and up-to-date version of the sample code, see the vsphere-
automation-sdk-python VMware repository at GitHub.

def create basic vm(stub config, placement spec, standard network):
win

Create a basic VM.

Using the provided PlacementSpec, create a VM with a selected Guest OS

VMware, Inc.

89

VMware vSphere Automation SDKs Programming Guide

and provided name.

Create a VM with the following configuration:
* Create 2 disks and specify one of them on scsi0:0 since it's the boot disk
* Specify 1 ethernet adapter using a Standard Portgroup backing

* Setup for PXE install by selecting network as first boot device

Use guest and system provided defaults for most configuration settings.

guest _os = testbed.config['VM GUESTOS']

boot disk = Disk.CreateSpec (type=Disk.HostBusAdapterType.SCSI,
scsi=ScsiAddressSpec (bus=0, unit=0),
new_vmdk=Disk.VmdkCreateSpec ())

data disk = Disk.CreateSpec(new_vmdk=Disk.VmdkCreateSpec ())

nic = Ethernet.CreateSpec (
start_connectedzTrue,
backing=Ethernet.BackingSpec (
type=Ethernet.BackingType.STANDARD PORTGROUP,

network=standard network))

boot device order = [BootDevice.EntryCreateSpec (BootDevice.Type.ETHERNET),
BootDevice.EntryCreateSpec (BootDevice.Type.DISK)]

vim_create spec = VM.CreateSpec (name=vm_name,
guest os=guest_os,
placement=placement spec,
disks=[boot disk, data disk],
nics=[nic],
boot devices=boot device order)

print ('\n# Example: create basic_vm: Creating a VM using spec\n----- ")

print (pp(vm_create spec))

vm_svc = VM(stub_config)

vm = vm_svc.create(vm_create spec)

print ("create basic_vm: Created VM '{}' ({})".format (vm name, vm))

vm_info = vm_svc.get (vm)

print ('vm.get ({}) -> {}'.format(vm, pp(vm_info)))

return vm

Configuring Virtual Machines

You configure a virtual machine in the process of creation by using
com.vmware.vcenter.CteareSpec. YOU can later view and edit virtual machine settings by adding
or changing the type of the storage controllers, configure the virtual disks, boot options, CPU

VMware, Inc.

VMware vSphere Automation SDKs Programming Guide

and memory information, or networks. Virtual machine settings can be configured when cloning,
registering and relocating an existing virtual machine.

Name and Location

You specify the display hame and the location of the virtual machine by using the CreateSpec and
PlacementSpec classes.

When you create your virtual machine, use the setName method of the CreatesSpec class to pass
as argument the display name of the virtual machine.

You must create also a PlacementSpec instance that describes the location of the virtual
machine in regards to the resources of a given vCenter Server instance. Use the

setPlacement (PlacementSpec placement) method of the createspec class to set the placement
information for the virtual machine. You can set one or all of the following vSphere resources:
datastore, cluster, folder, host, and resource pool.

Java Example of Configuring the Name and Placement of a Virtual Machine

This example is based on the code in the CreateDefaultVM. java and PlacementHelper. java
sample files.

Note For a complete and up-to-date version of the Java sample code, see the vsphere-
automation-sdk-java VMware repository at GitHub.

private static final String DEFAULT VM NAME = "Sample-Default-VvM";
private VM vmService;

private GuestOS vmGuestOS = GuestOS.WINDOWS 9 64;

private String defaultVMId;

public VMTypes.PlacementSpec getPlacementSpecForCluster (
StubFactory stubFactory, StubConfiguration sessionStubConfig,
String datacenterName, String clusterName,

String vmFolderName, String datastoreName) ({

String clusterId =
ClusterHelper.getCluster (stubFactory,
sessionStubConfig,
datacenterName,
clusterName) ;
System.out.println("Selecting cluster " + clusterName + " (id="
+ clusterId + ")");

String vmFolderId =
FolderHelper.getFolder (stubFactory,
sessionStubConfig,
datacenterName,

vmFolderName) ;

VMware, Inc. 91

VMware vSphere Automation SDKs Programming Guide

System.out.println("Selecting folder " + vmFolderName + "id=("

+ vmFolderId + ")");

String datastorelId =
DatastoreHelper.getDatastore (stubFactory,
sessionStubConfig,
datacenterName,
datastoreName) ;
System.out.println("Selecting datastore " + datastoreName + " (id="

+ datastoreId + ")");

/*
* Create the virtual machine placement spec with the datastore, resource pool,
* cluster and vm folder
*/
VMTypes.PlacementSpec vmPlacementSpec = new VMTypes.PlacementSpec () ;
vmPlacementSpec.setDatastore (datastorelId) ;
vmPlacementSpec.setCluster (clusterId);

vmPlacementSpec.setFolder (vmFolderId) ;

return vmPlacementSpec;

private void createDefaultVM() {
VMTypes.PlacementSpec vmPlacementSpec =

this.getPlacementSpecForCluster (
this.vapiAuthHelper.getStubFactory (),
this.sessionStubConfig,
this.datacenterName,
this.clusterName,
this.vmFolderName,

this.datastoreName) ;

VMTypes.CreateSpec vmCreateSpec =
new VMTypes.CreateSpec.Builder (this.vmGuestOS)
.setName (DEFAULT VM NAME)
.setPlacement (vmPlacementSpec)
.build () ;

Python Example of Configuring the Placement of a Virtual Machine

This example is based on the code in the vin_ placement helper.py sample file.

Note For a complete and up-to-date version of the sample code, see the vsphere-
automation-sdk-python VMware repository at GitHub.

def get placement spec for resource pool (stub_config,

datacenter name,

VMware, Inc.

VMware vSphere Automation SDKs Programming Guide

vim_folder name,

datastore name) :

Returns a VM placement spec for a resourcepool. Ensures that the

vm folder and datastore are all in the same datacenter which is specified.

resource pool = resource pool helper.get resource pool (stub config,

datacenter name)

folder = folder helper.get folder (stub_config,
datacenter name,

vim_folder name)

datastore = datastore helper.get datastore(stub_config,
datacenter name,

datastore name)

Create the vm placement spec with the datastore, resource pool and vm

folder

placement spec = VM.PlacementSpec (folder=folder,
resource_pool=resource_ pool,

datastore=datastore)

print ("get placement spec for resource pool: Result is '{}'".
format (placement spec))

return placement_ spec

Hardware Version

The hardware version of a virtual machine reflects the virtual hardware features supported by a
virtual machine. These features depend on the physical hardware available on the ESXi host on
which the virtual machine is running.

Virtual hardware features include the BIOS and Extensible Firmware Interface (EFI), the maximum
number of CPUs, the maximum memory configuration, and other hardware characteristics.

When you create a virtual machine, the default hardware version of the virtual machine is the
most recent version available on the host where the virtual machine is created. For information
about the latest VMware products and virtual hardware versions, see Virtual machine hardware
versions (1003746).

To set a different than the default hardware version, call the

setHardwareVersion (hardwareVersion) function of the com.vmware.vcenter.VMTypes.CreateSpec
class. Use the HardwareTypes.Version class to define a valid hardware version for a virtual
machine. For information about the hardware features available for the virtual hardware versions,
see Hardware features available with virtual machine compatibility settings (2051652).

You can set a lower virtual hardware version of a virtual machine than the highest supported
by the ESXi host on which the virtual machine is running. Setting a lower hardware version can
provide flexibility and is useful in the following cases:

m To help you standardize testing and deployment in your environment.

VMware, Inc. 93

https://kb.vmware.com/s/article/1003746
https://kb.vmware.com/s/article/1003746
https://kb.vmware.com/s/article/2051652

VMware vSphere Automation SDKs Programming Guide

m In case you do not need the hardware features of the latest hardware version of the host.

= To maintain compatibility with hosts with a lower hardware version.

Boot Options

You can configure the boot options of a virtual machine by using the setBoot (CreateSpec boot)
method of the Createspec class.

The method takes as argument the BootTypes.CreateSpec class. You can select one of the
following settings when booting the virtual machine:

m Delay - Indicates a delay in milliseconds before starting the firmware boot process when the
virtual machine is powered on.

m Retry - Indicates whether the virtual machine automatically retries to boot after a failure.
m Retry delay - Indicates a delay in milliseconds before retrying the boot process after a failure.

m Enter setup mode - If set to true, indicates that the firmware boot process automatically
enters BIOS setup mode the next time the virtual machine boots. The virtual machine resets
this flag to false once it enters setup mode.

m EFllegacy boot - If set to true, indicates that the EFIl legacy boot mode is used.

Java Example of Configuring the Boot Options of a Virtual Machine

This example is based on the code in the BootConfiguration.java sample file.

Note For a complete and up-to-date version of the Java sample code, see the vsphere-
automation-sdk-java VMware repository at GitHub.

private String vmName;

private String vmId;

private BootTypes.Info originalBootInfo;
private Boot bootService;

this.bootService = vapiAuthHelper.getStubFactory () .createStub (Boot.class,
this.sessionStubConfigqg) ;

System.out.println ("\n\n#### Setup: Get the virtual machine id");

this.vmId = VmHelper.getVM(vapiAuthHelper.getStubFactory(),
sessionStubConfig,
vmName) ;

// Print the current boot configuration

System.out.println ("\n\n#### Print the original Boot Info");

BootTypes.Info bootInfo = this.bootService.get (this.vmId);

System.out.println (bootInfo);

// Save the current boot info to verify that we have cleaned up properly

VMware, Inc. 94

VMware vSphere Automation SDKs Programming Guide

Python

this.originalBootInfo = bootInfo;

System.out.println(
"\n\n#### Example: Update firmware to EFI for boot configuration.");
BootTypes.UpdateSpec bootUpdateSpec = new BootTypes.UpdateSpec.Builder ()
.setType (BootTypes.Type.EFI)
.build();
this.bootService.update (this.vmId, bootUpdateSpec);
System.out.println (bootUpdateSpec) ;
bootInfo = this.bootService.get (this.vmId) ;
System.out.println (bootInfo);

System.out.println(
"\n\n#### Example: Update boot firmware to tell it to enter setup"
+ " mode on next boot.");

bootUpdateSpec = new BootTypes.UpdateSpec.Builder ()
.setEnterSetupMode (true)
.build();

this.bootService.update (this.vmId, bootUpdateSpec);

System.out.println (bootUpdateSpec) ;

bootInfo = this.bootService.get (this.vmId) ;

System.out.println (bootInfo);

System.out.println(

"\n\n#### Example: Update firmware to introduce a delay in boot
+ "process and automatically reboot after a failure to boot, "
+ "retry delay = 30000 ms.");
bootUpdateSpec = new BootTypes.UpdateSpec.Builder ()
.setDelay(100001)
.setRetry (true)
.setRetryDelay (300001)
.build();
this.bootService.update (this.vmId, bootUpdateSpec);
bootInfo = this.bootService.get (this.vmId) ;
System.out.println (bootInfo);

Example of Configuring the Boot Options

The following example is based on the code of the boot .py sample file.

Note For a complete and up-to-date version of the sample code, see the vsphere-

automation-sdk-python VMware repository at GitHub.

Demonstrates how to configure the settings used when booting a virtual machine.

Sample Prerequisites:

The sample needs an existing VM.

VMware, Inc.

95

VMware vSphere Automation SDKs Programming Guide

vm = None

vm_name = None
stub_config = None
boot_svc = None
cleardata = False

orig boot info = None

def run():
global vm
vm = get vm(stub_config, vm_name)
if not wvm:
exit ('Sample requires an existing vm with name ({}). '
'Please create the vm first.'.format (vm_name))

print ("Using VM '{}' ({}) for Boot Sample".format (vm_name, wvm))

Create Boot stub used for making requests
global boot svc

boot svc = Boot (stub_config)

print ('\n# Example: Get current Boot configuration')
boot info = boot svc.get (vm)

print ('vm.hardware.Boot.get ({}) -> {}'.format(vm, pp(boot info)))

Save current Boot info to verify that we have cleaned up properly
global orig boot info

orig boot info = boot info

print ('\n# Example: Update firmware to EFI for Boot configuration')

update spec = Boot.UpdateSpec (type=Boot.Type.EFI)

print ('vm.hardware.Boot.update({}, {})'.format(vm, update spec))

boot_svc.update(vm, update spec)

boot info = boot svc.get (vm)

print ('vm.hardware.Boot.get ({}) -> {}'.format(vm, pp(boot info)))

print ('\n# Example: Update boot firmware to tell it to enter setup mode on '
'next boot')

update spec = Boot.UpdateSpec (enter setup mode=True)

print ('vm.hardware.Boot.update({}, {})'.format(vm, update spec))

boot_svc.update (vm, update spec)

boot info = boot svc.get (vm)

print ('vm.hardware.Boot.get ({}) -> {}'.format(vm, pp(boot info)))

print ('\n# Example: Update boot firmware to introduce a delay in boot'
' process and to reboot')
print ('# automatically after a failure to boot. '
' (delay=10000 ms, retry=True,')
print ('# retry delay=30000 ms')
update spec = Boot.UpdateSpec (delay=10000,
retry=True,
retry delay=30000)
print ('vm.hardware.Boot.update({}, {})'.format(vm, update spec))
boot_svc.update (vm, update spec)

boot info = boot svc.get (vm)

VMware, Inc.

VMware vSphere Automation SDKs Programming Guide

print ('vm.hardware.Boot.get ({}) -> {}'.format(vm, pp(boot info)))

Guest Operating System

The guest operating system that you specify affects the supported devices and available number
of virtual CPUs.

When you create a virtual machine, you specify the guest operating system by using the
setGuestOS (Guest0S guest0S) method of the vMTypes.CreateSpec class. The Guestos class
defines the valid guest OS types that you can choose from for configuring a virtual machine.

After the create operation finishes successfully, you can install the guest operating system

on the mew virtual machine in the same way as you install it on a physical machine. For

further information on installing a guest operating system, refer to the Guest Operating System
Installation Guide at http://partnerweb.vmware.com/GOSIG/home.html and the vSphere Virtual
Machine Administration guide.

Starting with vSphere 7.0, you can use the vSphere Automation APIs to install the VMware
Tool on the quest operating system and perform some guest OS customizations. See Installing
VMware Tools.

CPU and Memory

The createspec class allows you to specify the CPU and memory configuration of a virtual
machine.

To change the CPU and memory configuration settings, use the cpuTypes.UpdateSpec and
MemoryTypes .UpdateSpec classes.

CPU Configuration

You can set the number of CPU cores in the virtual machine by using the setCount

method of the CpuTypes.UpdateSpec class. The supported range of CPU cores depends on
the guest operating system and virtual hardware version of the virtual machine. If you set
CpuTypes.Info.getHotAddEnabled () and CpuTypes.Info.getHotRemoveEnabled () tO true, yOu
allow virtual processors to be added or removed from the virtual machine at runtime.

Memory Configuration

You can set the memory size of a virtual machine by using the setsizeMiB method of

the MemoryTypes.UpdateSpec class. The supported range of memory sizes depends on the
configured guest operating system and virtual hardware version of the virtual machine. If you set
MemoryTypes.UpdateSpec.setHotAddEnabled () to true while the virtual machine is not powered
on, you enable adding memory while the virtual machine is running.

VMware, Inc. 97

http://partnerweb.vmware.com/GOSIG/home.html

VMware vSphere Automation SDKs Programming Guide

Java Example of Configuring the CPU and Memory of a Virtual Machine

This example is based on the code in the CpuConfiguration.java and
MemoryConfiguration.java sample files.

Note For a complete and up-to-date version of the Java sample code, see the vsphere-

automation-sdk-java VMware repository at GitHub.

private String vmName;
private String vmId;
private Memory memoryService;

private Cpu cpuService;

this.memoryService = vapiAuthHelper.getStubFactory () .createStub (Memory.class,

this.sessionStubConfig);

this.vmId = VmHelper.getVM (vapiAuthHelper.getStubFactory (), sessionStubConfig,

vmName) ;

// Update the memory size of the virtual machine

MemoryTypes.UpdateSpec memoryUpdateSpec = new
MemoryTypes.UpdateSpec.Builder () .setSizeMiB (8 * 10241) .build();

memoryService.update (this.vmId, memoryUpdateSpec);

memoryInfo = memoryService.get (this.vmId) ;

// Enable adding memory while the virtual machine is running
memoryUpdateSpec = new
MemoryTypes.UpdateSpec.Builder () .setHotAddEnabled (true) .build() ;

memoryService.update (this.vmId, memoryUpdateSpec);

this.cpuService = vapiAuthHelper.getStubFactory () .createStub(Cpu.class,

this.sessionStubConfig);

// Get the current CPU information

CpuTypes.Info cpulnfo = cpuService.get (this.vmId) ;

// Update the number of CPU cores
CpuTypes.UpdateSpec cpuUpdateSpec = new CpuTypes.UpdateSpec.Builder ()
.setCount (21) .build();
cpuService.update (this.vmId, cpuUpdateSpec) ;

cpulnfo = cpuService.get (this.vmId);

// Update the number of cores per socket in the virtual machine and
// allow CPU cores to be added to the virtual machine while it is running
cpuUpdateSpec = new
CpuTypes.UpdateSpec.Builder () .setCoresPerSocket (21) .setHotAddEnabled (true) .build() ;
cpuService.update (this.vmId, cpuUpdateSpec) ;

VMware, Inc.

98

VMware vSphere Automation SDKs Programming Guide

Python Example of Configuring the CPU and Memory of a Virtual Machine

These examples are based on the code in the cpu.py and memory.py sample files.

Note For a complete and up-to-date version of the sample code, see the vsphere-
automation-sdk-python VMware repository at GitHub.

The following example shows how you can update the CPU configuration of a virtual machine.

vm = None

vm_name = None
stub config = None
cpu_svc = None
cleardata = False

orig_cpu_info = None

server, username, password, cleardata, skip verification, vm name = \
parse cli args vm(testbed.config['VM NAME DEFAULT'])
stub config = vapiconnect.connect (server,
username,
password,

skip verification)

def run():
global vm
vm = get vm(stub config, vm name)
if not wvm:
exit ('Sample requires an existing vm with name ({}). '
'Please create the vm first.'.format (vm name))
print ("Using VM '{}' ({}) for Cpu Sample".format (vm name, vm))

Create CPU stub used for making requests
global cpu_ svc

cpu_svc = Cpu(stub config)

Get the current CPU configuration
cpu_info = cpu svc.get (vm)
print ('vm.hardware.Cpu.get ({}) -> {}'.format (vm, pp(cpu info)))

Save current CPU info to verify that we have cleaned up properly
global orig cpu info

orig_cpu_info = cpu_info

Update the number of CPU cores of the virtual machine
update spec = Cpu.UpdateSpec (count=2)
print ('vm.hardware.Cpu.update ({}, {})'.format(vm, update spec))

cpu_svc.update (vm, update spec)
Get the new CPU configuration

cpu _info = cpu svc.get (vm)
print ('vm.hardware.Cpu.get ({}) -> {}'.format (vm, pp(cpu info)))

VMware, Inc.

VMware vSphere Automation SDKs Programming Guide

Update the number of cores per socket and

enable adding CPUs while the virtual machine is running

update spec = Cpu.UpdateSpec(cores per socket=2, hot add enabled=True)
print ('vm.hardware.Cpu.update ({}, {})'.format(vm, update spec))

cpu_svc.update (vm, update_ spec)

The following example demonstrates how you can add memory to a running virtual machine.

vm = None

vm_name = None
stub _config = None
memory_svc = None
cleardata = False

orig memory info = None

server, username, password, cleardata, skip verification, vm name = \
parse cli args vm(testbed.config['VM NAME DEFAULT'])
stub config = vapiconnect.connect (server,
username,
password,
skip verification)

global vm
vm = get vm(stub config, vm name)
if not wvm:
exit ('Sample requires an existing vm with name ({}). '
'Please create the vm first.'.format (vm name))
print ("Using VM '{}' ({}) for Memory Sample".format (vm name, vm))

Create Memory stub used for making requests
global memory svc
memory svc = Memory (stub config)

Get the current Memory configuration
memory info = memory svc.get (vm)

print ('vm.hardware.Memory.get ({}) -> {}'.format (vm, pp(memory info)))

Update the memory size of the virtual machine
update spec = Memory.UpdateSpec (size mib=8 * 1024)
print ('vm.hardware.Memory.update ({}, {})'.format (vm, update spec))

memory svc.update(vm, update spec)
Get the new Memory configuration
memory info = memory svc.get (vm)

print ('vm.hardware.Memory.get ({}) -> {}'.format (vm, pp(memory info)))

Enable adding memory while the virtual machine is running
update spec = Memory.UpdateSpec (hot add enabled=True)

VMware, Inc. 100

VMware vSphere Automation SDKs Programming Guide

print ('vm.hardware.Memory.update({}, {})'.format (vm, update spec))

memory svc.update (vm, update spec)

Networks

You configure network settings so that a virtual machine can communicate with the host and with
other virtual machines. When you configure a virtual machine, you can add network adapters
(NICs) and specify the adapter type.

You can add virtual Ethernet adapters to a virtual machine by using the
VMTypes.CreateSpec.setNics method. Pass as argument a List of EthernetTypes.CreateSpec
objects that provide the configuration information of the created virtual Ethernet

adapters. You can set the MAC address type to EthernetTypes.MacAddressType .MANUAL,
EthernetTypes.MacAddressType.GENERATED, Of EthernetTypes.MacAddressType.ASSIGNED. Select
MANUAL to specify the MAC address explicitly.

You can specify also the physical resources that back a virtual Ethernet adapter by

using the EthernetTypes.BackingSpec.setType method. The method takes as argument
one of the following types: EthernetTypes.BackingType.STANDARD PORTGROUP, HOST DEVICE,
DISTRIBUTED PORTGROUP, OF OPAQUE NETWORK.

Java Example of Configuring the Virtual Machine Network

This example is based on the code in the EthernetConfiguration.java sample file.

Note For a complete and up-to-date version of the Java sample code, see the vsphere-
automation-sdk-java VMware repository at GitHub.

private String vmName;

private String datacenterName;

private String stdPortgroupName;

private String distPortgroupName;

private String vmId;

private List<String> createdNics = new ArrayList<String>();
private Power powerService;

private Ethernet ethernetService;
this.ethernetService = vapiAuthHelper.getStubFactory () .createStub (
Ethernet.class, this.sessionStubConfig);
// Get the virtual machine ID
this.vmId = VmHelper.getVM (vapiAuthHelper.getStubFactory (),
sessionStubConfig,

vmName) ;

// List all Ethernet adapters of the virtual machine

VMware, Inc. 101

VMware vSphere Automation SDKs Programming Guide

List<EthernetTypes.Summary> nicSummaries = this.ethernetService.list(
this.vmId) ;
System.out.println ("\n\n#### List of all Ethernet NICS on the VM:\n"

+ nicSummaries) ;

// Get info for each Ethernet adapter on the VM
System.out.println ("\n\n####Print info for each Ethernet NIC on the"
+ " ovm.");
for (EthernetTypes.Summary ethSummary : nicSummaries) {
EthernetTypes.Info ethInfo = this.ethernetService.get (vmId,
ethSummary.getNic()) ;
System.out.println(ethInfo);

// Create Ethernet NIC by using STANDARD PORTGROUP with default settings
String stdNetworkId = NetworkHelper.getStandardNetworkBacking (
this.vapiAuthHelper.getStubFactory(), sessionStubConfig,
this.datacenterName, this.stdPortgroupName) ;
EthernetTypes.CreateSpec nicCreateSpec =
new EthernetTypes.CreateSpec.Builder () .setBacking(
new EthernetTypes.BackingSpec.Builder (
EthernetTypes.BackingType.STANDARD PORTGROUP)
.setNetwork (stdNetworkId) .build()) .build() ;
String nicId = this.ethernetService.create(this.vmId, nicCreateSpec);
this.createdNics.add (nicId);
EthernetTypes.Info nicInfo = this.ethernetService.get (this.vmId, nicId);

// Update the Ethernet NIC with a different backing
EthernetTypes.UpdateSpec nicUpdateSpec = new
EthernetTypes.UpdateSpec.Builder () .setBacking(
new
EthernetTypes.BackingSpec.Builder (EthernetTypes.BackingType.STANDARD PORTGROUP)
.setNetwork (stdNetworkId) .build()) .build() ;
this.ethernetService.update (this.vmId, lastNicId, nicUpdateSpec) ;
nicInfo = this.ethernetService.get (this.vmId, lastNicId);

// Update the Ethernet NIC configuration
nicUpdateSpec = new EthernetTypes.UpdateSpec.Builder ()
.setAllowGuestControl (false)
.setStartConnected (false)
.setWakeOnLanEnabled (false)
.build();
this.ethernetService.update (this.vmId, lastNicId, nicUpdateSpec) ;
nicInfo = this.ethernetService.get (this.vmId, lastNicId);

// Powering on the VM to connect the virtual Ethernet adapter to its backing
this.powerService.start (this.vmId) ;

nicInfo = this.ethernetService.get (this.vmId, lastNicId);
// Connect Ethernet NIC after powering on the VM
this.ethernetService.connect (this.vmId, lastNicId);

nicInfo = this.ethernetService.get (this.vmId, lastNicId);

// Disconnect Ethernet NIC after powering on VM

this.ethernetService.disconnect (this.vmId, lastNicId);

VMware, Inc. 102

VMware vSphere Automation SDKs Programming Guide

nicInfo = this.ethernetService.get (this.vmId, lastNicId);

Python Example of Configuring the Virtual Machine Network

This example is based on the code in the ethernet.py sample file.

Note For a complete and up-to-date version of the sample code, see the vsphere-
automation-sdk-python VMware repository at GitHub.

vm = None

vm_name = None
stub_config = None
ethernet svc = None
cleardata = False
nics_to_delete = []

orig nic summaries = None

server, username, password, cleardata, skip verification, vm name = \
parse_cli args vm(testbed.config['VM NAME DEFAULT'])
stub_config = vapiconnect.connect (server,
username,
password,

skip verification)

global vm
vm = get_vm(stub_config, vm_name)
if not wvm:
exit ('Sample requires an existing vm with name ({}). '
'Please create the vm first.'.format (vm_name))

print ("Using VM '{}' ({}) for Disk Sample".format (vm_name, wvm))

Get standard portgroup to use as backing for sample

standard network = network helper.get standard network backing(
stub_config,
testbed.config['STDPORTGROUP NAME'],
testbed.config['VM_DATACENTER_NAME'})

Create Ethernet stub used for making requests
global ethernet svc

ethernet svc = Ethernet (stub_config)
vm_power_ svc = Power (stub config)

nic_summaries = ethernet svc.list (vm=vm)

Save current list of Ethernet adapters to verify that we have cleaned
up properly

global orig nic_ summaries

orig nic summaries = nic summaries

global nics_to_delete

VMware, Inc.

103

VMware vSphere Automation SDKs Programming Guide

Create Ethernet Nic using STANDARD PORTGROUP with the default settings
nic_create spec = Ethernet.CreateSpec(
backing=Ethernet.BackingSpec (
type=Ethernet.BackingType.STANDARD PORTGROUP,
network=standard network))
nic = ethernet svc.create(vm, nic create_ spec)
nics to_delete.append(nic)

nic_info = ethernet svc.get(vm, nic)

Create Ethernet Nic by using STANDARD PORTGROUP
nic_create spec = Ethernet.CreateSpec(
start_connectedzTrue,
allow_guest control=True,
mac_type=Ethernet.MacAddressType.MANUAL,
mac_address='01:23:45:67:89:10",
wake on_ lan_ enabled=True,
backing=Ethernet.BackingSpec (
type=Ethernet.BackingType.STANDARD PORTGROUP,
network=standard network))
nic = ethernet svc.create(vm, nic create_ spec)
nics to_delete.append(nic)

nic_info = ethernet svc.get(vm, nic)

Update the Ethernet NIC with a different backing
nic_update spec = Ethernet.UpdateSpec (
backing=Ethernet.BackingSpec (
type=Ethernet.BackingType.STANDARD PORTGROUP,
network=standard network))
ethernet svc.update(vm, nic, nic update_ spec)

nic_info = ethernet svc.get(vm, nic)

Update the Ethernet NIC configuration
nic_update spec = Ethernet.UpdateSpec (
wake on lan enabled=False,
mac_type=Ethernet.MacAddressType.GENERATED,
start_connected=False,
allow_guest control=False)
ethernet svc.update(vm, nic, nic update_ spec)

nic_info = ethernet svc.get(vm, nic)
Powering on the VM to connect the virtual Ethernet adapter to its backing
vm_power svc.start (vm)

nic_info = ethernet svc.get(vm, nic)

Connect the Ethernet NIC after powering on the VM

ethernet svc.connect (vm, nic)

Disconnect the Ethernet NIC while the VM is powered on

ethernet svc.disconnect (vm, nic)

VMware, Inc. 104

VMware vSphere Automation SDKs Programming Guide

Managing Virtual Machines

Virtual machines can be configured like physical computers. You can change the guest operating
system settings after installing VMware Tools. You can add and remove virtual machines from the

vCenter Server inventory. You can also move virtual machines from one host or storage location

to another.

Filtering Virtual Machines

You can retrieve commonly used information about virtual machines that match specific criteria.
You can retrieve information for up to 4000 virtual machines in a single vCenter Server instance.

You can retrieve a list of virtual machines in a single vCenter Server instance by filtering the
results based on a specific requirement. For example, you can use as filter criteria the power

state of the virtual machines, or the host, cluster, data center, folder, or resource pool that must
contain the virtual machines. In case you specify multiple filter criteria, only virtual machines that

match all filter criteria are returned.

To retrieve a list of the virtual machines that match your specific criteria, call the 1ist methods

of the vu service. The method takes as parameter the vMTypes.FilterSpec instance that you can

use to provide your filter criteria.

Java Example of Filtering Virtual Machines

The code example is based on the VvmHelper. java sample file.

The following code example shows how you can retrieve the VM ID of a virtual machine with a

specific name.

This example uses the information provided in Filtering Virtual Machines.

Note For a complete and up-to-date version of the Java sample code, see the vsphere-

automation-sdk-java VMware repository at GitHub.

public static String getVM(

StubFactory stubFactory, StubConfiguration sessionStubConfig,

String vmName) {

VM vmService = stubFactory.createStub (VM.class, sessionStubConfig);

// Get summary information about the virtual machine

VMTypes.FilterSpec vmFilterSpec = new VMTypes.FilterSpec.Builder ()

.setNames (Collections.singleton (vmName)) .build() ;

List<VMTypes.Summary> vmList = vmService.list (vmFilterSpec);

assert vmList.size() > 0 && vmList.get (0) .getName ().equals (

vmName) : "VM with name " + vmName + " not found";

return vmList.get (0) .getVm() ;

VMware, Inc.

105

VMware vSphere Automation SDKs Programming Guide

Python Example of Filtering Virtual Machines

This example is based on the code in the vm_helper.py sample file.

This example uses the information provided in Filtering Virtual Machines.

Note For a complete and up-to-date version of the sample code, see the vsphere-
automation-sdk-python VMware repository at GitHub.

def get vms(stub config, vm names):
"""Return identifiers of a list of vms"""
vm_svc = VM(stub config)

vms = vm_svc.list (VM.FilterSpec (names=vm_nanmes))

if len(vms) ==
print ('No vm found')

return None

print ("Found VMs '{}' ({})".format (vm names, vms))

return vms

Installing VMware Tools

VMware Tools is a set of drivers and utilities that you install on the guest operating system

of a virtual machine to enhance the performance of the guest OS. VMware Tools also improve
the management of the virtual machine. For each guest OS, VMware provides a specific binary-
compatible version of VMware Tools.

Before you install VMware tools, you must install and boot the guest operating system.

To mount and unmount the VMware Tools installer CD as a CD-ROM for the guest operating
system, use the methods of the com.vmware.vcenter.vm.tools.Installer interface.

To mount the VMware Tools, call the connect (vm_1D) method of the Installer interface. On
Windows guest operating systems with activated Autorun feature, this method automatically
initiates the installation of the VMware Tools and requires a user input to complete. On other
guest operating systems, this method only mounts the VMware Tools disk image on the virtual
CD/DVD drive and the user is required to do some guest OS-specific actions. For example,

for some Linux distributions, the user is required to extract the contents of the VMware Tools
installation archive and run the installer.

To unmount the VMware Tools installer CD image from the virtual CD/DVD drive, call the
disconnect (vm_ID) method of the Installer interface.

To monitor the status of the VMware Tools installation, you can first retrieve the properties of the
VMware Tools by calling the get (vm_vM) method of the com.vmware.vcenter.vm.Tools interface.
The method returns a ToolsTypes.Info object which you can use to call the getversionStatus ()
and getRunState () methods.

VMware, Inc. 106

VMware vSphere Automation SDKs Programming Guide

To upgrade the VMware Tools, call the upgrade (vm_ID, commandLineOptions) method of the
Tools interface. The method takes as arguments the ID of the virtual machine on which the
VMware Tools is installed and running. Use the commandLineOptions argument to specify the
command-line options that you want to pass to the installer to modify the tools installation
procedure. You can monitor the upgrade operation in the same way you monitor the installation
operation.

To update the properties of the VMware Tools, call the update (vm_ID, update spec) method
of the Tools interface. Pass as argument a ToolsTypes.UpdateSpec object and define the tools
upgrade policy settings for the virtual machine by calling the setUpgradePolicy (upgradePolicy)
method.

Performing Virtual Machine Power Operations

You can start, stop, reboot, and suspend virtual machines by using the methods of the power
class.

A virtual machine can have one of the following power states:

m PowerTypes.State.POWERED ON - Indicates that the virtual machine is running. If a guest
operating system is not currently installed, you can perform the guest OS installation in the
same way as for a physical machine.

m PowerTypes.State.POWERED OFF - Indicates that the virtual machine is not running. You can
still update the software on the physical disk of the virtual machine, which is impossible for
physical machines.

m PowerTypes.State.SUSPENDED - Indicates that the virtual machine is paused and can be
resumed. This state is the same as when a physical machine is in standby or hibernate state.

To perform a power operation on a virtual machine, you can use one of the methods of the power
class. Before you call one of the methods to change the power state of a virtual machine, you
must first check the current state of the virtual machine by using the power.get method. Pass as
argument the virtual machine identifier.

Following is a list if the power operations:

m Power.start - Powers on a powered off or suspended virtual machine. The method takes as
argument the virtual machine identifier.

m Power.stop - Powers off a powered on or suspended virtual machine. The method takes as
argument the virtual machine identifier.

m Power.suspend - Pauses all virtual machine activity for a powered on virtual machine. The
method takes as argument the virtual machine identifier.

m Power.reset - Shuts down and restarts the guest operating system without powering off the
virtual machine. Although this method functions as a stop method that is followed by a start
method, the two operations are atomic with respect to other clients, meaning that other
power operations cannot be performed until the reset method completes.

VMware, Inc. 107

VMware vSphere Automation SDKs Programming Guide

Java Example of Powering On a Virtual Machine

This example is based on the code in the EthernetConfiguration.java sample file.

Note For a complete and up-to-date version of the Java sample code, see the vsphere-
automation-sdk-java VMware repository at GitHub.

private String vmName;
private String vmId;

private Power powerService;

this.powerService = vapiAuthHelper.getStubFactory () .createStub (
Power.class, this.sessionStubConfig);

this.vmId = VmHelper.getVM(vapiAuthHelper.getStubFactory(),
sessionStubConfig,
vmName) ;

this.powerService.start (this.vmId) ;

Python Example of Powering On a Virtual Machine

This example is based on the code in the ethernet.py sample file.

Note For a complete and up-to-date version of the sample code, see the vsphere-
automation-sdk-python VMware repository at GitHub.

vm = None
vm_name = None

stub_config = None
server, username, password, cleardata, skip verification, vm name = \

parse cli args vm(testbed.config['VM NAME DEFAULT'])

stub _config = vapiconnect.connect (server, username, password, skip verification)

Get the virtual machine ID

vm = get vm(stub_ config, vm name)
Create the Power stub for running power operations on virtual machines

vmm_power svc = Power (stub config)

vm_power svc.start (vm)

Registering and Unregistering Virtual Machines

When you create a virtual machine, it becomes part of the vCenter Server inventory and is
registered to the host and vCenter Server. If you remove a virtual machine from the vCenter

VMware, Inc.

VMware vSphere Automation SDKs Programming Guide

Server inventory, it becomes unusable. Virtual machine files remain in the same datastore but
you cannot power on the virtual machine when it is not registered in the inventory.

You can temporarily remove a virtual machine from vCenter Server by unregistering it. Virtual
machine files are not deleted from the datastore. Though all high-level information about the
virtual machine such as statistics, resource pool association, permissions, and alarms, is removed
from the host and the vCenter Server instance. To remove a virtual machine from the inventory,
call the unregister (vm_ID) method of the vM service and pass as argument the ID of the virtual
machine.

To restore a virtual machine to the vCenter Server inventory, and make it usable again,

call the register (register spec) method of the vM service. You pass as argument a
VMTypes.RegisterSpec instance that contains information about the current location of the virtual
machine files on the datastore. You can also define the location within the vCenter Server
inventory, for example, the cluster, folder, or the host, where you want to register the virtual
machine. After registration, the virtual machine takes its resources (CPU, memory, and so on)
from the resource pool or host to which it is registered.

If you no longer need a virtual machine and you want to free up datastore space, you can
permanently delete a virtual machine from the inventory. Call the delete (vm_1D) method of the
VM service and pass as argument the ID of the virtual machine. Upon a successful completion
of the operation, the virtual machine files are removed from the datastore, including the
configuration file and the virtual disk files.

Virtual Machine Guest Operations

The vSphere Automation APIs enable you to run operations on the guest operating system
such as running scripts, performing power operations, and customizing the network and identity
settings.

Upload and Run a Script on a Guest Operating System

You can create a directory, create files, copy a script, and run the script on a guest operating
system.

Before you perform operations on the guest operating system, you must prepare the
environment. You must create the process.CreateSpec for initiating processes in the guest

and create the Transfer.CreateSpec for the file transfer to or from the guest. The content of

the optional FileAttributeCreateSpec associated with the Transfer.CreateSpec establishes the
direction of the transfer and controls guest operating system specific file attributes. You must
set up equivalent download and upload functions for URL management of the file transfer to or
from the guest. You can also create an argument parser for standard inputs, such as server, user
name, and password, and you can add custom input arguments.

Procedure

1 Find the virtual machine on which the guest operating system runs, verify that VMware Tools
is running, and provide credentials.

VMware, Inc. 109

VMware vSphere Automation SDKs Programming Guide

0o N o (2 I w N

Create a temporary directory from which to run the script and capture any output.

Create temporary files for stdout and stderr.

(Optional) Copy the script that you want to run.

Start the script and capture stdout and stderr in the temporary files that you created earlier.
Create a loop to handle processes that run longer.

Create a download URL and copy the results.

Clean up the temporary files and directories on the guest operating system.

Python Example of Uploading and Running a Script on a Guest Operating
System

This example is based on the code in the guest ops.py sample file.

Note For a complete and up-to-date version of the sample code, see the vsphere-

automation-sdk-python VMware repository at GitHub.

Create the Process.CreateSpec for initiating processes in the guest
def process_create spec(self, path, args=None, dir=None, env={}):
return Processes.CreateSpec (path=path,
arguments=args,
working directory=dir,

environment variables=env)

Create the Transfer.CreateSpec for the file transfer to/from the guest
def create transfer spec(self,
path,
attributes=None) :
return Transfers.CreateSpec(attributes=attributes,
path=path)

Create a FileAttributeCreateSpec for a generic (non-0S specific) guest
def fileAttributeCreateSpec Plain(self,
size,
overwrite=None,
last modified=None,
last_accessed=None) :
return Transfers.FileCreationAttributes (size,
overwrite=overwrite,
last modified=last modified,

last accessed=last_accessed)

Create a FileAttributeCreateSpec for a linux (Posix) guest
def fileAttributeCreateSpec Linux(self,

size,

overwrite=None,

last modified=None,

last_accessed=None,

VMware, Inc. 110

VMware vSphere Automation SDKs Programming Guide

owner id=None,
group_id=None,
permissions=None) :
posix = Transfers.PosixFileAttributesCreateSpec (owner id=owner id,
group_id=group_id,
permissions=permissions)
return Transfers.FileCreationAttributes (size,
overwrite=overwrite,
last modified=last modified,
last_accessed=last_accessed,

posix=posix)

def download(self,
url,
expectedLen=None) :
urloptions = urlparse (url)
Skip server cert verification.
This is not recommended in production code.
conn = httpclient.HTTPSConnection (urloptions.netloc,

context=ssl. create unverified context())

conn.request ("GET", urloptions.path + "?" + urloptions.query)

res = conn.getresponse ()
if res.status != 200:
print ("GET request failed with errorcode : %$s" % res.status)

raise HTTPError (res.status, res.reason)

body = res.read() .decode ()

return body

def upload(self, url, body):
urloptions = urlparse (url)
conn = httpclient.HTTPSConnection (urloptions.netloc,

context=ssl. create unverified context())

headers = {"Content-Length": len (body)}
Skip server cert verification.
This is not recommended in production code.

conn.request ("PUT", urloptions.path + "?" + urloptions.query,

body,
headers)
res = conn.getresponse ()
if res.status != 200:
print ("PUT request failed with errorcode : %$s" % res.status)

raise HTTPError (res.status, res.reason)
return res
def init (self):
Create argument parser for standard inputs:
server, username, password, cleanup and skipverification

parser = sample cli.build arg parser()

Add your custom input arguments

parser.add_argument ('--vm_name',

VMware, Inc.

VMware vSphere Automation SDKs Programming Guide

action='store',

help='Name of the testing wvm')
parser.add_argument ('--root user',

action='store',

help='Administrator account user name')
parser.add_argument ('--root passwd',

action='store',

help='Administrator account password')

args = sample util.process cli args(parser.parse_args())
self.vm name = args.vm_name
self.root user = args.root user

self.root passwd = args.root passwd
self.cleardata = args.cleardata

Skip server cert verification if needed.
This is not recommended in production code.

session = get unverified session() if args.skipverification else None

Connect to vSphere client

self.client = create vsphere client (server=args.server,
username=args.username,
password=args.password,

session=session)

def run(self):
Using vAPI to find VM.
filter spec = VM.FilterSpec (names=set ([self.vm name]))
vms = self.client.vcenter.VM.list (filter spec)
if len(vms) != 1:
raise Exception('Could not locate the required VM with name ' +
self.vm name + '. Please create the vm first.')
if vms[0] .power state != 'POWERED ON':
raise Exception('VM is not powered on: ' + vms[0].power state)

vm_id = vms[0].vm

Check that wvmtools svc (non-interactive user) is running.
info = self.client.vcenter.vm.guest.Operations.get (vm_id)
if info.guest operations_ready is not True:

raise Exception ('VMware Tools/open-vm-tools is not running as required.')

Establish the user credentials that will be needed for all Guest Ops APIs.
creds = Credentials(interactive session=False,
user name=self.root user,
password=self.root passwd,
type=Credentials.Type.USERNAME PASSWORD)

Step 2 - Create a temporary directory from which to run the command and capture any
output
tempDir = self.client.vcenter.vm.guest.filesystem.Directories.create temporary(
vm_id, creds, '', '', parent path=None)
Step 3 - Create temproary files to reveive stdout and stderr as needed.
stdout = self.client.vcenter.vm.guest.filesystem.Files.create temporary (

VMware, Inc. 12

VMware vSphere Automation SDKs Programming Guide

vm_id, creds, '', '.stdout', parent path=tempDir)
stderr = self.client.vcenter.vm.guest.filesystem.Files.create temporary (
vm_id, creds, '', '.stderr', parent path=tempDir)
Step 4 - (Optional) Copy the script to be run.
scriptPath = self.client.vcenter.vm.guest.filesystem.Files.create temporary (
vm_id, creds, '', '.sh', tempDir)

Create script contents and transfer to the guest.

baseFN = os.path.basename (scriptPath)

script = ('#! /bin/bash\n’'
V4 [
baseFN + '\n'
l\nl
'sleep 5 # Adding a little length to the process.\n'
'ps —ef\n'
'echo\n'
'rpm -ga | sort\n'
"\n'")

print (script)
attr = self. fileAttributeCreateSpec Linux(size=len (script),
overwrite=True,
permissions='0755")
spec = self. create transfer spec(path=scriptPath,
attributes=attr)
toURL = self.client.vcenter.vm.guest.filesystem.Transfers.create(vm_id,
creds,
spec)

res = self. upload(toURL, script)

Check that the uploaded file size is correct.

info = self.client.vcenter.vm.guest.filesystem.Files.get (vm_id,
creds,
scriptPath)

if info.size != len(script):

raise Exception('Uploaded file size not as epected.')

Step 5 - Start the program on the guest, capturing stdout and stderr in the
separate temp files obtained earlier.

options = (" > " + stdout + " 2> " + stderr)

spec = self. process create spec(scriptPath,
args=options,
dir=tempDir)
pid = self.client.vcenter.vm.guest.Processes.create(vm _id, creds, spec)

print ('process created with pid: %$s\n' % pid)

Step 6 - Need a loop to wait for the process to finish to handle longer running
processes.
while True:
time.sleep(1.0)
try:
List the single process for pid.
result = self.client.vcenter.vm.guest.Processes.get (vm_id,

creds,

VMware, Inc. 13

VMware vSphere Automation SDKs Programming Guide

pid)
if result.exit code is not None:
print ('Command: ' + result.command)
print ('Exit code: %$s\n' % result.exit code)
break
if result.finished is None:
print ('Process with pid %s is still running.' % pid)
continue
except Exception as e:
raise e
Step 7 Copy out the results (stdout).
spec = self. create transfer spec(path=stdout)
Create the download URL
fromURL = self.client.vcenter.vm.guest.filesystem.Transfers.create(vm_id,
creds,
spec)
body = self. download(fromURL, expectedLen=info.size)
print ("-—-———-——-—- stdout ——\———-—-—-"-"-—"-"-"-"———- ")
print (body)
T (R i ")
Optionally the contents of "stderr" could be downloaded.
And finally, clean up the temporary files and directories on the
Linux guest. Deleting the temporary diretory and its contents.
self.client.vcenter.vm.guest.filesystem.Directories.delete(vm_id,
creds,
tempDir,

recursive=True)

Managing Data Sets

You can use data sets to share information between a virtual machine and its guest operating
system.

Data sets provide a communication infrastructure that you can use to share information between
the host and guest. This information can then be used by guest agents or applications to
configure the guest itself or guest applications. The information is grouped into data sets,

each of which contains key-value entries comprising the data. Each application that uses the
service should have at least one unique data set in which to store its data to avoid conflict with
other applications. Each data set has attributes that define its access control and interoperability
configuration.

Note You should not store sensitive data, such as passwords or private keys, in plain text.

To perform data set operations, the virtual machine must be running virtual hardware version 20
or later.

VMware, Inc. 114

VMware vSphere Automation SDKs Programming Guide

You should modify each data set by using the application that originally created that data set. If
your application modifies a data set owned by another application, the other application might
stop working.

For more information about data sets, see vSphere Virtual Machine Administration and the
VMware Guest SDK Programming Guide.

Data Set Operations

You can use the vSphere Automation API to manipulate entries in data sets.

You can use data set operations to share information between a virtual machine and its

guest operating system. The available operations include listing data sets, retrieving data set
information, creating, modifying, and deleting a data set. You can also manipulate individual
entries in a data set. The available operations include listing entry keys in a data set, retrieving
the value of an entry in a data set, modifying and deleting an entry in a data set.

Table 8-1. User Operations

Operation Description

List data sets You can list all available data sets of a virtual machine.
Get data set You can retrieve information about a specific data set.
Create data set You can create a new data set.

Update data set You can modify the attributes of a data set.

Delete data set You can delete a data set.

List data set entry keys You can list all entry keys in a data set.

Get data set entry key value You can retrieve the value of a specific entry in a data set.
Set data set entry key value You can create or update an entry in a data set. If

the new entry does not contain a key that matches an
existing key, the operation creates a new entry. If the new
entry contains a key that matches an existing key, the
new key overwrites the value of the existing key.

Delete data set entry key value You can delete an entry in a data set.

VMware, Inc. 15

Working with Content Libraries

You can use the Content Library feature to store and share different types of content in your
vSphere environment. Content libraries are vSphere container objects for storing and sharing
OVF and OVA packages, VM templates, vApp templates, and other types of files.

You can use content libraries to share VM and vApp templates, and other types of files, such as
ISO images, text files, and so on, across the vCenter Server instances in the same or different
locations. Sharing templates across your virtual environment promotes consistency, compliance,
efficiency, and automation in deploying workloads at scale.

You use library items to store and manage content in a content library. A single library item can
contain one or more files. For example, an OVF package consists of a .vmdk file, manifest file,
and others, but it is represented by a single library item.

Starting with vSphere 7.0 Update 3, you can add a security policy to a local or subscribed
content library and thus protect your system when you synchronize or download library content
from third party providers.

m Content Library Overview
A content library instance represents a container for a set of library items. A content library
item instance represents the logical object stored in the content library, which might be one
or more usable files.

m Querying Content Libraries
You can create queries to find libraries that match your criteria. You can also retrieve a list of
all libraries or only the libraries of a specific type.

m Content Libraries

The Content Library API provides services that allow you to create and manage content
libraries programmatically. You can create a local library and publish it for the entire virtual
environment. You can also subscribe to use the contents of a local library and enable
automatic synchronization to ensure that you have the latest content.

m Library Items

A library item groups multiple files within one logical unit. You can perform various tasks with
the items in a content library.

VMware, Inc. 16

VMware vSphere Automation SDKs Programming Guide

m Content Library Support for OVF and OVA Packages
You can use the objects and methods provided by the Content Library APl to manage OVF
and OVA packages.

m Creating Virtual Machines and vApps from Templates in a Content Library

You can create VM and OVF templates from virtual machines and vApps in your inventory.
You can then deploy virtual machines and vApps from the templates that are stored in a
content library.

Content Library Overview

A content library instance represents a container for a set of library items. A content library item
instance represents the logical object stored in the content library, which might be one or more
usable files.

You create and manage the content of a content library on a single vCenter Server instance, but
you can distribute the content to other vCenter Server instances. Depending on your needs, you
can maintain two types of content libraries: local and subscribed. You can shape the contents of
a library item and then combine several library items in a local content library. Furthermore, you

can publish the library to make its content available to other users.

m Content Library Types
You can create two types of libraries, local and subscribed.

m Content Library Items

Library items are VM templates, vApp templates, or other VMware objects that can be
contained in a content library.

m Content Library Storage

When you create a local library, you can store its contents on a datastore managed by the
vCenter Server instance or on a remote file system.

Content Library Types

You can create two types of libraries, local and subscribed.

Local library.

You can create a local library as the source for content you want to save or share. Create
the local library on a single vCenter Server instance. You can add items to a local library
or remove them. You can publish a local library and as a result this content library service
endpoint can be accessed by other vCenter Server instances in your virtual environment.
When you publish a library, you can configure a password for authentication.

Subscribed library.

You can create a subscribed library and populate its content by synchronizing to a local
library. A subscribed library contains copies of the local library files or just the metadata of

VMware, Inc. 17

VMware vSphere Automation SDKs Programming Guide

the library items. The local library can be located on the same vCenter Server instance as
the subscribed library, or the subscribed library can reference a local library on a different
vCenter Server instance. You cannot add library items to a subscribed library. You can only
add items to the source library. After synchronization, both libraries will contain the same
items.

Content Library Items

Library items are VM templates, vApp templates, or other VMware objects that can be contained
in a content library.

VMs and vApps have several files, such as log files, disk files, memory files, and snapshot files
that are part of a single library item. You can create library items in a specific local library or
remove items from a local library. You can also upload files to an item in a local library so that the
libraries subscribed to it can download the files to their NFS or SMB server, or datastore.

For information about the tasks that you can perform by using the content library service, see
Content Libraries.

Content Library Storage

When you create a local library, you can store its contents on a datastore managed by the
vCenter Server instance or on a remote file system.

Depending on the type of storage that you have, you can use Virtual Machine File System
(VMFS) or Network File System (NFS) for storing content on a datastore.

For storing content on a remote file system, you can enter the path to the NFS storage that

is mounted on the Linux file system of the vCenter Server instance. For example, you can use

the following URI formats: nfs://<server>/<path>?version=4 and nfs://<server>/<path>. If you
have a vCenter Server instance that runs on a Windows machine, you can specify the Server
Massage Block (SMB) URI to the Windows shared folders that store the library content. For
example, you can use the following URI format: smb://<unc-server>/<path>.

Java Example of Storing Library Content on a Datastore

This example is based on the code in the LibraryCrud. java sample file.

For more information about storing the contents of a local library, see Content Library Storage.

Note For a complete and up-to-date version of the Java sample code, see the vsphere-
automation-sdk-java VMware repository at GitHub.

// Create a StorageBacking instance for storing the library content on a datastore.

StorageBacking libraryBacking = new StorageBacking() ;
libraryBacking.setType (Type.DATASTORE) ;

VMware, Inc. 118

VMware vSphere Automation SDKs Programming Guide

/‘k

* Pass the value of the datastore ManagedObjectReference.

* See the vSphere Web Services SDK Programming Guide

* and the vSphere Web Services SDK samples. In addition, the vSphere

Automation SDK for Java provides

* the vimUtil utility class in the vmware.samples.vim.helpers package.

* You can use the utility to retrieve the ManagedObjectReference

* of the datastore entity.

=/

libraryBacking.setDatastoreId("datastore-123");

// Create a LibraryModel that represents a local library backed on a datastore.

LibraryModel libraryModel = new LibraryModel () ;

libraryModel.setName ("AcmeLibrary") ;

libraryModel.setDescription ("Local library backed by VC datastore");
libraryModel.setType (LibraryType.LOCAL) ;

libraryModel.setStorageBackings (Collections.singletonList (libraryBacking)) ;

Python Example of Storing Library Content on a Datastore

This example is based on the code in the 1ibrary crud.py sample file.

For more information about storing the contents of a local library, see Content Library Storage.

Note For a complete and up-to-date version of the sample code, see the vsphere-
automation-sdk-python VMware repository at GitHub.

Create a StorageBacking instance of datastore type.
library backing = library client.StorageBacking /()
library backing.type = library client.StorageBacking.Type.DATASTORE

Pass the value of the datastore managed object reference.
The

B

vSphere Automation SDK for Python contains
the GetDatastoreByName class, which sample resource is located in the
/client/samples/src/com/vmware/vcloud/suite/sample/vim/helpers/ directory.
You can use the utility to retrieve the managed object reference of the datastore entity.
library backing.datastore id = ‘datastore-123’

Create a LibraryModel that represents a local library backed on a datastore.
library model = content client.LibraryModel ()

library model.name = ‘AcmelLibrary’

library model.storage backings = [library backing]

VMware, Inc. 119

VMware vSphere Automation SDKs Programming Guide

Querying Content Libraries

You can create queries to find libraries that match your criteria. You can also retrieve a list of all
libraries or only the libraries of a specific type.
m Listing All Content Libraries

You can retrieve a list of all content library IDs in your virtual environment, regardless of their
type, by using the Library service.

m Listing Content Libraries of a Specific Type

You can use the vSphere Automation API to retrieve content libraries of a specific type. For
example, you can list only the local libraries in your virtual environment.

m Listing Content Libraries by Using Specific Search Criteria

You can filter the list of content libraries and retrieve only the libraries that match your
specific criteria. For example, you might want to publish all local libraries with a specific
name.

Listing All Content Libraries

You can retrieve a list of all content library IDs in your virtual environment, regardless of their
type, by using the Library service.

You can use the 1ist function to retrieve all local and subscribed libraries in your system.

Java Example of Retrieving a List of All Content Libraries

The example is based on the code in the ContentUpdate. java sample file.
This example uses the steps that are described in Listing All Content Libraries.

Note For a complete and up-to-date version of the Java sample code, see the vsphere-
automation-sdk-java VMware repository at GitHub.

// Access the Library Service.
Library libraryService = vapiAuthHelper.getStubFactory () .createStub (Library.class,

sessionStubConfig) ;

// List all content libraries.
List<String> alllibraries = libraryService.list();
System.out.println("List of all library identifiers: /n");
for (String cl : alllibraries) {
System.out.println(cl);

Python Example of Retrieving a List of All Content Libraries

This example is based on the code in the 1ibrary crud.py sample file.

VMware, Inc. 120

VMware vSphere Automation SDKs Programming Guide

This example uses the steps that are described in Listing All Content Libraries.

Note For a complete and up-to-date version of the sample code, see the vsphere-
automation-sdk-python VMware repository at GitHub.

library stub = content client.Library(my stub config)
libraries = library stub.list()
print ('List of all library identifiers:’)
for library id in library ids :
library = library stub.get (library id)
print (Library ID {}: {}’.format(library id, library.name))

Listing Content Libraries of a Specific Type

You can use the vSphere Automation API to retrieve content libraries of a specific type. For
example, you can list only the local libraries in your virtual environment.

If you want to retrieve only a list of the local libraries, you must retrieve the LocalLibrary service
and use the 1ist function on the LocalLibrary service. To list only subscribed libraries, you

must retrieve the subscribedLibrary service and call the 1ist function on the subscribedLibrary
service.

Listing Content Libraries by Using Specific Search Criteria

You can filter the list of content libraries and retrieve only the libraries that match your specific
criteria. For example, you might want to publish all local libraries with a specific name.

To a filter with specific search criteria, call the find (find spec) function of the Library service.
Pass as argument a LibraryTypes.FindSpec instance that contains your search criteria. Upon a
successful completion of the call, you receive a list of all content libraries that match your search
criteria.

Java Example of Retrieving a List of All Local Libraries with a Specific Name

This example retrieves a list of all local libraries with the name AcmeLibrary that exist in your
virtual environment.

Note For related code samples, see the vsphere-automation-sdk-java VMware repository at
GitHub.

// Create a FindSpec instance to set your search criteria.

FindSpec findSpec = new FindSpec();

// Filter the local content libraries by using a library name.

findSpec.setName ("AcmeLibrary") ;

VMware, Inc. 121

VMware vSphere Automation SDKs Programming Guide

findSpec.setType (LibraryType.LOCAL) ;
List<String> ids = libraryService.find (findSpec) ;

Python Example of Retrieving a List of All Local Libraries with a Specific Name

This example retrieves a list of all local libraries with the name AcmeLibrary that exist in your
virtual environment.

Note For related code samples, see the vsphere-automation-sdk-python VMware repository
at GitHub.

Create a FindSpec object to specify your search criteria.
find spec = content client.Library.FindSpec/()
find spec.name = ’AcmelLibrary’

find spec.type = content client.LibraryModel.LibraryType.LOCAL

Invoke the find() function by using the FindSpec instance.
library stub = content client.Library(my stub_config)

library ids = library stub.find(find_spec)

Content Libraries

The Content Library API provides services that allow you to create and manage content
libraries programmatically. You can create a local library and publish it for the entire virtual
environment. You can also subscribe to use the contents of a local library and enable automatic
synchronization to ensure that you have the latest content.

m Create a Local Content Library

You can create a local content library programmatically by using the vSphere Automation
API. The API allows you to populate the content library with OVF and vApp templates. You
can use these templates to deploy virtual machines or vApps in your virtual environment.

m Publish an Existing Content Library

To make the library content available for other vCenter Server instances across the vSphere
Automation environment, you must publish the library. Depending on your workflow, select
a method for publishing the local library. You can publish a local library that already exists in
your vSphere Automation environment.

m Publish a Library at the Time of Creation
You can publish a local library at the time of creation to enable other libraries to subscribe
and use the library content.

m Subscribe to a Content Library

You can subscribe to local content libraries. When you subscribe to a library, you
must specify the backing storage for the library content. If the library requires basic
authentication, you must also provide the correct user name and password.

VMware, Inc. 122

VMware vSphere Automation SDKs Programming Guide

m Synchronize a Subscribed Content Library
When you subscribe to a published library, you can configure the settings for downloading
and updating the library content.

m Editing the Settings of a Content Library
You can update the settings of content library types in your virtual environment by using the
vSphere Automation API.

m Removing the Content of a Subscribed Library
You can free storage space in your virtual environment by removing the subscribed library
content that you no longer need.

m Delete a Content Library

When you no longer need a content library, you can invoke the delete method on either the
LocalLibrary Or the subscribedLibrary service depending on the library type.

Create a Local Content Library

You can create a local content library programmatically by using the vSphere Automation API.
The API allows you to populate the content library with OVF and vApp templates. You can use
these templates to deploy virtual machines or vApps in your virtual environment.

Prerequisites
Required privileges:

m Content library.Create local library on the vCenter Server instance where you want to create
the library.

m Datastore.Allocate space on the destination datastore.

Procedure
1 Access the LocallLibrary service that provides support for creating local content libraries.
2 Create a storageBacking instance and define the storage location.

3 (Optional) Create a securitypPolicies instance to define the security policy rules for the
library. For vSphere 7.0 Update3, you can only define rules for an OVF and OVA templates
in the library by using the ovF STRICT VERIFICATION Security rule. When the OVF security
policy is configured for a local content library, an OVF or OVA template can be synchronized
or imported to the library only after its certificate is validated against a trusted certificate
authority.

4 Create a LibraryModel instance and set the properties of the new local library.

If you want to apply a security policy on the local library, you must
use the setSecurityPolicyId(java.lang.String securityPolicyId) method or the
security policy id parameter of the LibraryModel instance.

VMware, Inc. 123

VMware vSphere Automation SDKs Programming Guide

5 Call the create function on the LocalLibrary object and pass the LibraryModel as a
parameter.

Results

A local content library is created on the vCenter Server instance and you can edit its contents.

What to do next

You maintain the contents of the local library by managing its library items. See Library Items and
Content Library Support for OVF and OV A Packages. You can also share the library content by
publishing the local library. See Publish an Existing Content Library.

Java Example of Creating a Local Library

This example is based on the code in the LibraryCrud. java sample file.

This example uses the steps that are described in the Create a Local Content Library procedure.

Note For a complete and up-to-date version of the Java sample code, see the vsphere-
automation-sdk-java VMware repository at GitHub.

// Create a StorageBacking instance to back the library content on the local file system.
StorageBacking libraryBacking = new StorageBacking() ;
libraryBacking.setType (Type.OTHER) ;
libraryBacking.setStorageUri (URI.create ("file:///tmp")) ;
libraryModel.setStorageBackings (Collections.singletonList (libraryBacking)) ;

// Create a LibraryModel that represents a local library.
LibraryModel libraryModel = new LibraryModel () ;
libraryModel.setType (LibraryModel.LibraryType.LOCAL) ;
libraryModel.setName ("AcmeLibrary") ;

// Access the Locallibrary service by using the endpoint.
Locallibrary locallibraryService =

this.vapiAuthHelper.getStubFactory () .createStub(Locallibrary.class, sessionStubconfig);

// Call the create method of the Locallibrary service passing as an
// argument the LibraryModel instance.

String libraryId = locallibraryService.create (UUID.randomUUID () .toString(), libraryMod

Python Example of Creating a Local Content Library

This example creates a local library with name acmeLibrary , which is stored on the local file
system where vCenter Server runs.

VMware, Inc. 124

VMware vSphere Automation SDKs Programming Guide

This example uses the steps that are described in the Create a Local Content Library procedure.

Note For related code samples, see the vsphere-automation-sdk-python VMware repository
at GitHub.

1 - Create a storage backing instance on a local file system.
library backing = library client.StorageBacking/()

library backing.type = library client.StorageBacking.Type.OTHER
library backing.storage uri = ’file:///tmp’

2 - Create a Library model to specify properties of the new library.
library model = content client.LibraryModel ()

library model.type = content client.LibraryModel.LibraryType.LOCAL
library model.name = ’AcmelLibrary’

library model.storage backings = [library backing]

3 - Call the create() method, passing the library model as a parameter.
idem token = str(uuid.uuid4())

local library stub = content client.LocallLibrary(my stub config)
library id = local library stub.create(create spec=library model,

client token=idem_ token)

Publish an Existing Content Library

To make the library content available for other vCenter Server instances across the vSphere
Automation environment, you must publish the library. Depending on your workflow, select a
method for publishing the local library. You can publish a local library that already exists in your
vSphere Automation environment.

Procedure

—

Retrieve a reference to the LocallLibrary service.
Retrieve an existing local library by using the library ID.

Create a PublishInfo instance to define how the library is published.

H w N

Specify the authentication method to be used by a subscribed library to authenticate to
the local library. You can enable either basic authentication or no authentication. Basic
authentication requires a user name and password.

5 (Optional) If you publish the library with basic authentication, you must specify a user name
and password for the publishInfo instance, which must be used for authentication.

Important Use the predefined user name vesp or leave the user name undefined. You must
set only a password to protect the library.

6 Set the local library to published.

7 Use the retrieved local library to configure it with the publishInfo instance.

VMware, Inc. 125

VMware vSphere Automation SDKs Programming Guide

8 Update the properties of the LibraryModel object returned for the local library.

Java Example of Publishing an Existing Content Library

This example is based on the code in the LibraryPublishSubscribe.java sample file.

This example uses the steps that are described in the Publish an Existing Content Library
procedure.

Note For a complete and up-to-date version of the Java sample code, see the vsphere-
automation-sdk-java VMware repository at GitHub.

// Access the Locallibrary service.
Locallibrary locallibraryService =
this.vapiAuthHelper.getStubFactory () .createStub (Locallibrary.class, sessionStubconfig);

// Retrieve an existing local library.
LibraryModel libraryModel = locallibraryService.get (libraryId);
PublishInfo publishInfo = new PublishInfo();

// Configure how the local library is published by using BASIC authentication.
publishInfo.setUserName ("vcsp");
publishInfo.setPassword("password".toCharArray());
publishInfo.setAuthenticationMethod (AuthenticationMethod.BASIC) ;

// Set the local library to published and update the library instance.
publishInfo.setPublished (true);
libraryModel.setPublishInfo (publishInfo);
locallibraryService.update (libraryModel.getId (), libraryModel) ;

Python Example of Publishing an Existing Content Library

This example is based on the code in the 1library publish subscribe.py sample file.

This example uses the steps that are described in the Publish an Existing Content Library
procedure.

Note For a complete and up-to-date version of the sample code, see the vsphere-
automation-sdk-python VMware repository at GitHub.

Retrieve an existing local library.
local library stub = content client.LocalLibrary(my stub config)

local library = local library stub.get (my library id)

Specify how the local library is published, using BASIC authentication.
publish info = library client.PublishInfo ()
publish info.user name = ’vcsp’ # Can omit this value; if specified, it must be ’vcsp’.

publish info.password = ’'password’

VMware, Inc.

VMware vSphere Automation SDKs Programming Guide

publish info.authentication method = library client.PublishInfo.AuthenticationMethod.BASIC
publish info.published = True

Update the LibraryModel object retieved in step 1
and configure it with the PublishInfo object.
local library.publish info = publish info

Use the LibraryModel object to update the library instance.
local library stub.update(library id=my library id,
update spec=local library)

Publish a Library at the Time of Creation

You can publish a local library at the time of creation to enable other libraries to subscribe and
use the library content.

Procedure
1 Retrieve the LocalLibrary service.
2 Create a publishInfo instance to define how the library is published.

3 Specify the authentication method to be used by a subscribed library to authenticate to the
local library.

You can enable either basic authentication or no authentication on the library. Basic
authentication requires a user name and password.

4 (Optional) If you publish the library with basic authentication, you must specify a user name
and password for the pPublishInfo instance, which must be used for authentication.

Important Use the predefined user name vesp or leave the user name undefined. You must
set only a password to protect the library.

5 (Optional) Create a securityPolicies instance to define the security policy rules for the
library. For vSphere 7.0 Update3, you can only define rules for an OVF and OVA templates
in the library by using the ovF STRICT VERIFICATION Security rule. When the OVF security
policy is configured for a local content library, an OVF or OVA template can be synchronized
or imported to the library only after its certificate is validated against a trusted certificate
authority.

6 Create a LibraryModel instance and configure the instance.

If you want to apply a security policy on the local library, you must
use the setSecurityPolicyId(java.lang.String securityPolicyId) method or the
security policy id parameter of the LibraryModel instance.

7 Set the library type to local and use the configured publishInfo instance to set the library to
published.

8 Define where the content of the local library is stored by using the storageBacking class.

9 Create a published local library.

VMware, Inc. 127

VMware vSphere Automation SDKs Programming Guide

Subscribe to a Content Library

You can subscribe to local content libraries. When you subscribe to a library, you must specify
the backing storage for the library content. If the library requires basic authentication, you must
also provide the correct user name and password.

Note If you subscribe to libraries created with basic authentication on a vCenter Server instance,
make sure that you pass vesp as an argument for the user name.

Prerequisites

Required privileges:

m Content library.Create subscribed library on the vCenter Server instance where you want to
create the library.

m Datastore.Allocate space on the destination datastore.

Procedure

1 Create a storageBacking instance to define the location where the content of the subscribed
library is stored.

2 Create a subscriptionInfo instance to define the subscription behavior of the library.

a Provide the mechanism to be used by the subscribed library to authenticate to the
published library.

You can select between no authentication and basic authentication depending on the
settings of the published library you subscribe to. If the library is published with basic
authentication, you must set the basic authentication in the subscriptionInfo instance.
To match the credentials of the published library, set the user name and the password of
the subscriptionInfo instance.

b Provide the URL to the endpoint where the metadata of the published library is stored.
c Define the synchronization mechanism of the subscribed library.

You can select between two synchronization modes: automatic and on demand. If you
enable automatic synchronization for a subscribed library, both the content and the
metadata are synchronized with the published library. To save storage space, you can
synchronize the subscribed library on demand and update only the metadata for the
published library content.

d Set the thumbprint that is used for validating the certificate of the published library.

3 Create a LibraryModel instance and set the library type to subscribed
(LibraryModel.LibraryType.SUBSCRIBED).

4 Access the subscribedLibrary service and create the subscribed library instance.

VMware, Inc. 128

VMware vSphere Automation SDKs Programming Guide

Java Example of Subscribing to a Published Library

This example is based on the code in the LibraryPublishSubscribe.java sample file.

This example uses the steps that are described in the Subscribe to a Content Library procedure.

Note For a complete and up-to-date version of the Java sample code, see the vsphere-
automation-sdk-java VMware repository at GitHub.

// Create a StorageBacking instance to store

// the contents of the subscribed library on the local file system.
StorageBacking libraryBacking = new StorageBacking() ;
libraryBacking.setType (StorageBacking.Type.OTHER) ;
libraryBacking.setStorageUri (URI.create ("/mnt/nfs/cls-root"));

// Create a new SubscriptionInfo object to define the subscription
// behavior of the library.
SubscriptionInfo subscriptionInfo = new SubscriptionInfo();
subscriptionInfo.setAuthenticationMethod
(com.vmware.content.library.SubscriptionInfo.AuthenticationMethod.BASIC) ;
subscriptionInfo.setUserName ("libraryUser") ;
subscriptionInfo.setPassword ("password".toCharArray());
subscriptionInfo.setSubscriptionUrl (URI.create ("https://www.acmecompary.com/
library inventory/lib.json")):;

// Specify that the content of the subscribed library will be downloaded immediately.
subscriptionInfo.setAutomaticSyncEnabled (true) ;

// Set an SHA-1 hash of the SSL certificate of the remote endpoint.

subscriptionInfo.setSslThumbprint ("9B:00:3F:C4:4E:B1:F3:F9:0D:70:47:48:E7:0B:D1:A7:0E:DE:60:A5
")

// Create a new LibraryModel object for the subscribed library.
LibraryModel libraryModel = new LibraryModel () ;
libraryModel.setType (LibraryModel.LibraryType.SUBSCRIBED) ;
libraryModel.setName ("SubscrLibrary") ;

// Attach the storage backing and the subscription info to the library model.
libraryModel.setStorageBackings (Collections.singletonList (libraryBacking)) ;
libraryModel.setSubscriptionInfo (subscriptionInfo) ;

// Create the new subscribed library.
String clientToken = UUID.randomUUID() .toString();
SubscribedLibrary subscribedLibService =
this.vapiAuthHelper.getStubFactory () .createStub (SubscribedlLibrary.class, sessionStubconfig);
String subscribedLibId = subscribedLibService.create(clientToken, libraryModel) ;

Python Example of Subscribing to a Published Library

This example is based on the code in the 1library publish subscribe.py sample file.

VMware, Inc. 129

VMware vSphere Automation SDKs Programming Guide

This example uses the steps that are described in the Subscribe to a Content Library procedure.

Note For a complete and up-to-date version of the sample code, see the vsphere-
automation-sdk-python VMware repository at GitHub.

Create a StorageBacking instance on a local file system.
library backing = library client.StorageBacking()
library backing.type = library client.StorageBacking.Type.OTHER

library backing.storage uri = ’/mnt/nfs/cls-root’

Create a new SubscriptionInfo object to describe the subscription behavior.
subscription _info = library client.SubscriptionInfo ()
subscription_info.authentication method =

library client.SubscriptionInfo.AuthenticationMethod.BASIC

subscription _info.user name = ’libraryUser’
subscription info.password = ’‘password’
subscription_info.subscription url = ’"https://www.acmecompary.com/library inventory/lib.json’

subscription_info.automatic_sync_enabled = True
subscription_info.ssl thumbprint
= '9B:00:3F:C4:4E:B1:F3:F9:0D:70:47:48:E7:0B:D1:A7:0E:DE:60:A5"

Create a new LibraryModel object for the subscribed library.
library model = content client.LibraryModel ()
library model.type = content client.LibraryModel.LibraryType.SUBSCRIBED

library model.name = ’subscrLibrary’

Attach the storage backing and the subscription info to the library model.
library model.storage backings = [library backing]

library model.subscription_info = subscription_info

Create the new library instance.
idem token = str(uuid.uuid4())
local library stub = content client.LocallLibrary(my stub config)

library id = local library stub.create(create spec=library model,client token=idem token)

Synchronize a Subscribed Content Library

When you subscribe to a published library, you can configure the settings for downloading and
updating the library content.

= You can enable automatic synchronization of the subscribed library and download a copy of
the content of the local library immediately.

m You can save storage space and download only the metadata for the items that are part of
the local library.

To ensure that your subscribed library contains the most recent published library content, you
can force a synchronization task.

VMware, Inc. 130

VMware vSphere Automation SDKs Programming Guide

Procedure
1 Access the subscribedLibrary vSphere Automation service.
2 Retrieve the subscribed library ID from the subscribedLibrary Service.

3 Force the synchronization of the subscribed library.

Results

The synchronization operation depends on the update settings of the subscribed library. If the
subscribed library is configured to update only on demand, only the metadata of the library items
will be synchronized.

Editing the Settings of a Content Library

You can update the settings of content library types in your virtual environment by using the
vSphere Automation API.

VMware, Inc. 131

VMware vSphere Automation SDKs Programming Guide

Table 9-1. Options for Updating a Content Library

Content Library Types

Local content library

Subscribed content library

Option

You can change the settings of a local library before
calling the update function on the LocalLibrary object:
Before a library is published, you can edit the name,
description, version, and so on.

After a library is published, you must first retrieve the
PublishInfo instance of the published library you want.
You can use the instance to configure the following
settings.

m Unpublish the local library.

m Change the authentication method of the library.

m Change the password that must be used for
authentication.

You can edit the settings of a subscribed library if you
retrieve the subscriptionInfo instance associated with it.
To apply the changes, you must update the library by
using the subscribedLibrary object.

You can configure the following settings:

m The authentication method required by the local
library

m The user name and password of the subscribed library
for authentication to the local library

m The method for synchronizing the metadata and the
content of the subscribed library

m The thumbprint used for validating the SSL certificate
of the local library

Note Starting with vSphere 7.0 Update 3, you can use the Security Policies service to secure
a content library. You can set, update, or remove a security policy when you update a local or

subscribed content library.

m To update or set a security policy, pass false to the unset security policy id/

setUnsetSecurityPolicyId(java.lang.Boolean unsetSecurityPolicyId) parameter and then

use securityfpolicyfid/ setSecurityPolicyId(java.lang.String securityPolicyId) to

pass the security policy identifier.

m Toremove a security policy, pass true to the unset security policy id/

setUnsetSecurityPolicyId(java.lang.Boolean unsetSecurityPolicyId) parameter of the

LibraryModel update specification.

Removing the Content of a Subscribed Library

You can free storage space in your virtual environment by removing the subscribed library

content that you no longer need.

VMware, Inc.

132

VMware vSphere Automation SDKs Programming Guide

You can create a subscribed library with the option to download the library content on demand.
As a result, only the metadata for the library items is stored in the associated with the subscribed
library storage. When you want to deploy a virtual machine from a VM temple in the subscribed
library, you must synchronize the subscribed library to download the entire published library
content. When you no longer need the VM template, you can call the evict function on the
SubscribedLibrary service. You must provide the subscribed library ID to this function. As a
result, the subscribed library content that is cached on the backing storage is deleted.

If the subscribed library is not configured to synchronize on demand, an exception is thrown.
In this case the subscribed library always attempts to have the most recent published library
content.

Delete a Content Library

When you no longer need a content library, you can invoke the delete method on either the
LocalLibrary Or the subscribedLibrary service depending on the library type.

Procedure

1 Access the subscribedLibrary Or the LocallLibrary service by using the vSphere Automation
Endpoint.

2 Retrieve the library ID you want to delete.
3 Call the delete function on the library service and pass the library ID as argument.

All library items cashed on the storage backing are removed asynchronously. If this operation
fails, you must manually remove the content of the library.

Library Items

A library item groups multiple files within one logical unit. You can perform various tasks with the
items in a content library.

You can upload files to a library item in a local library and update existing items. You can
download the content of a library item from a subscribed library and use the item, for example,
to deploy a virtual machine. You can remove the content of a library item from a subscribed
library to free storage space and keep only the metadata of the library item. When you no longer
need local library items, you can delete them and they are removed from the subscribed library
when a synchronization task is completed.

VMware, Inc. 133

VMware vSphere Automation SDKs Programming Guide

You can create a library item from a specific item type, for example .ovf and VM template. The
Content Library service must support the library item type to handle the item correctly. If no
support is provided for a specified type, the Content Library service handles the library item in
the default way, without adding metadata to the library item or guiding the upload process.
For information about the supported VM template types, see the vSphere Virtual Machine
Administration documentation.
m Create an Empty Library Iltem
You can create as many library items as needed and associate them with a local content
library.
m Querying Library Items

You can perform numerous query operations on library items.

m Edit the Settings of a Library Item

You can edit the name, description, and type of a library item.

m Upload a File from a Local System to a Library Iltem

You can upload different types of files from a local system to a library item that you want to
use in the vSphere Automation environment.

m Upload a File from a URL to a Library Iltem

You can upload different types of files from a local system to a library item that you want to
use in the vSphere Automationenvironment.

m Download Files to a Local System from a Library Iltem

You might want to download files to a local system from a library item and then make
changes to the files before you use them.

m Synchronizing a Library Item in a Subscribed Content Library

The items in a subscribed library have features that are distinct from the items in a local
library. Synchronizing the content and the metadata of an item in a subscribed library
depends on the synchronization mechanism of the subscribed library.

m Removing the Content of a Library Item

You can remove the content from a library item to free space on your storage.

m Deleting a Library Item

You can remove a library item from a local library when you no longer need it.

Create an Empty Library Item

You can create as many library items as needed and associate them with a local content library.

Procedure
1 Access the 1tem service by using the vSphere Automation endpoint.

2 Instantiate the ItemModel class.

VMware, Inc. 134

VMware vSphere Automation SDKs Programming Guide

3 Define the settings of the new library item.

4 Associate the library item with an existing local library.

5 Invoke the create function on the 1tem object to pass the library item specification and the
unique client token.

What to do next

Upload content to the new library item. See Upload a File from a Local System to a Library Item
and Upload a File from a URL to a Library Item.

Java Example of Creating a Library Item
This example shows how to create an empty library item that stores an ISO image file.

This example uses the steps that are described in the Create an Empty Library Item procedure.

Note For related code samples, see the vsphere-automation-sdk-java VMware repository at
GitHub.

// Create an instance of the ItemModel class and specify the item settings.
ItemModel libItemSpec = new ItemModel () ;

libItemSpec.setName ("ESXi ISO image");

libItemSpec.setDescription ("ISO image with the latest security patches for ESXi");
libItemSpec.setType ("iso") ;

// Associate the item with an existing content library.
libItemSpec.setLibraryId("<content library ID>");

// Create the new Item instance, using the specified model.

Item libItemService = this.vapiAuthHelper.getStubFactory() .createStub(Item.class,
sessionStubconfig) ;

String itemID = UUID.randomUUID () .toString();

String newItem = libItemService.create(itemID, libItemSpec);

Python Example of Creating a Library Item
This example shows how to create an empty library item that stores an ISO image file.
This example uses the steps that are described in the Create an Empty Library Item procedure.

Note For related code samples, see the vsphere-automation-sdk-python VMware repository
at GitHub.

1 - Create an instance of the ItemModel class and specify the item settings.
item model = library client.ItemModel ()

item model.name = 'ESXi ISO image’

item model.description = 'ISO image with the latest security patches for ESXi’

VMware, Inc. 135

VMware vSphere Automation SDKs Programming Guide

item model.type = ’iso’

2 - Associate the new item with an existing library.

item model.library id = my library id

3 - Create the new instance of the Item class, using the specified model.
idem token = str(uuid.uuid4())
item stub = library client.Item(my stub config)

item id = item stub.create(create spec=item model, client token=idem token)

Querying Library Iltems
You can perform numerous query operations on library items.

You can retrieve a list of all items in a library, retrieve a library item that has a specific type or
name, and find a library item that is not cached on the disk. You can then update the library item
content from the subscribed library.

List Library Items

You can use the 1ist method of the Ttem object to retrieve a list of all items in a particular library.

Prerequisites

Verify that you have access to the Ttem service.

Procedure
1 Retrieve the ID of the content library whose items you want to list.
2 List the items of the specific library.

3 Retrieve a list of the files that belong to a library item.

Example

You can see an example query operation in the code example for Edit the Settings of a Library
ltem. The beginning of the example lists the items of a published library and prints a list with the
names and size of each file in the listed items.

List Library Items That Match Specific Criteria

You can filter the items contained in a library and retrieve only the items matching specific
criteria. For example, you might want to remove or update only specific items in a library.

Prerequisites

Verify that you have access to the 1tem service.

Procedure
1 Create an instance in the Findspec class.

2 Specify the filter properties by using the FindSpec instance.

VMware, Inc. 136

VMware vSphere Automation SDKs Programming Guide

3 List the items matching the specified filter.

Results

A list of items matching the filter criteria is created as a result.

Edit the Settings of a Library ltem

You can edit the name, description, and type of a library item.

Prerequisites

Verify that you have access to the 1tem service.

Procedure

1 Retrieve the item that you want to update.

2 Create an ItemModel instance.

3 Change the human-readable name and description of the library item.
4

Update the library item with the configured item model.

Java Example of Changing the Settings for a Library Item

This example shows how to find an item by using the item name and then how to change the

name and description of the retrieved item.

This example uses the steps that are described in the Edit the Settings of a Library Item
procedure.

Note For related code samples, see the vsphere-automation-sdk-java VMware repository at

GitHub.

// List the items in a published library
Item libItemService = this.vapiAuthHelper.getStubFactory () .createStub (Item.class,
sessionStubconfig) ;
List<String> itemIds = libItemService.list (libraryId.getId());
for (String itemId : itemIds) {
ItemModel singlelItem = libItemService.get (itemId) ;

// List the files uploaded to each library item and print their names and size
com.vmware.content.library.item.File itemFilesService =
this.vapiAuthHelper.getStubFactory () .createStub (com.vmware.content.library.item.File.class,
sessionStubconfiqg) ;
List<com.vmware.content.library.item.FileTypes.Info> fileInfos =
itemFilesService.list (itemId) ;
for (com.vmware.content.library.item.FileTypes.Info singleFile : fileInfos) {
System.out.println("Library item with name "+ singleFile.getName () + " has
size

" + singleFile.getSize());

VMware, Inc.

137

VMware vSphere Automation SDKs Programming Guide

// Change the name and description of the library item with the specified name
if (singleltem.getName () .equals ("simpleVmTemplate")) {
ItemModel libItemUpdated = new ItemModel () ;
libItemUpdated. setName ("newItemName") ;
libItemUpdated.setDescription ("Description of the newItemName") ;

libItemService.update (singlelItem.getId(), libItemUpdated) ;

Python Example of Changing the Settings for a Library Item

This example shows how to find an item by using the item name and then how to change the
name and description of the retrieved item.

This example uses the steps that are described in the Edit the Settings of a Library Item
procedure.

Note For related code samples, see the vsphere-automation-sdk-python VMware repository
at GitHub.

1 - List the items in a published library.
item_stub = library client.Item(my_stub_config)

item ids = item stub.list(my library id)

2 - List the files uploaded to each library item and print their names and sizes.
file stub = item client.File(my_stub_config)
for item id in item_ids
item = item stub.get (item id)
file infos = file stub.list(item id)
for file info in file_infos
print (' Library item {} has file {} with size {}’.format (item.name, file info.name,

file info.size))

3 - For a library item with a specified name,
create an ItemModel to change the name and description of the library item.
if item.name == ’simpleVmTemplate’

print (' Library item {} with description {}’.format (item.name, item.description))

item model = library client.ItemModel ()

item _model.name = ’'newltemName’

item _model.description = ’Description of the newItemName'’

item stub.update (library item id=item id,

update spec=item model)
print (" has been changed to:’)
print (' library item {} with description {}’.format (item model.name, item model.description))

Upload a File from a Local System to a Library Item

You can upload different types of files from a local system to a library item that you want to use
in the vSphere Automation environment.

VMware, Inc. 138

VMware vSphere Automation SDKs Programming Guide

Prerequisites
m Create an empty library item. See Create an Empty Library Iltem.

m Verify that you have access to the UpdateSession and File services.

Procedure

1 Create an UpdateSessionModel instance to track the changes that you make to the library
item.

2 Create an update session by using the UpdateSession service.

3 Create an addspec instance to describe the upload method and other properties of the file to
be uploaded.

4 Create the request for changing the item by using the File service.
5 Upload the file that is on the local system.

6 Complete and delete the update session to apply the changes to the library item.

Java Example of Uploading Files to a Library Item from a Local System
This example shows how to upload an ISO image file from a local system to a library item.

This example uses the steps that are described in the Upload a File from a Local System to a
Library Item procedure.

Note For related code samples, see the vsphere-automation-sdk-java VMware repository at
GitHub.

// Access the com.vmware.content.library.item.updatesession.File.
// and the UpdateSession services by using the vSphere Automation Endpoint.

File uploadFileService = this.vapiAuthHelper.getStubFactory () .createStub(File.class,
sessionStubconfig) ;

UpdateSession uploadService=

this.vapiAuthHelper.getStubFactory () .createStub (UpdateSession.class, sessionStubconfig);

// Create an UpdateSessionModel instance to track the changes you make to the item.
UpdateSessionModel updateSessionModel = new UpdateSessionModel () ;

updateSessionModel.setLibraryItemId (newlItem) ;

// Create a new update session.
String clientToken = UUID.randomUUID() .toString() ;

String sessionlId = uploadService.create(clientToken, updateSessionModel) ;
// Create an instance of the HttpClient class which is part of the
// com.vmware.vcloud.suite.samples.common package.

try {

HttpClient httpClient = new HttpClient (true);

// Create a new AddSpec instance to describe the properties of the file to be uploaded.

VMware, Inc. 139

VMware vSphere Automation SDKs Programming Guide

FileTypes.AddSpec fileSpec = new FileTypes.AddSpec () ;
fileSpec.setName ("ESXi patch");
fileSpec.setSourceType (FileTypes.SourceType.PUSH) ;

// Link the ISO file specification to the update session.
FileTypes.Info fileInfo = uploadFileService.add(sessionId, fileSpec);

// Use the HTTP library to upload the file to the library item.
URI uploadUri = fileInfo.getUploadEndpoint () .getUri();
java.io.File file = new java.io.File("/updates/esxi/esxi patch.iso");
String transferUrl = uploadUri.toURL() .toString();
httpClient.upload(file, transferUrl);

// Mark the upload session as completed.
uploadService.complete (sessionId) ;
} finally {

uploadService.delete (sessionId) ;

Python Example of Uploading Files to a Library Item from a Local System

This example shows how to upload an ISO image file from the local system to a library item.

This example uses the steps that are described in the Upload a File from a Local System to a

Library Item procedure.

Note For related code samples, see the vsphere-automation-sdk-python VMware repository

at GitHub.
1 - Create an instance of the ItemModel class and specify the item settings.
item model = library client.ItemModel ()
item model.name = ’ESXi patches’
item model.description = ’'ESXi security patches’
item model.type = ’iso’

item model.library id = my library id

idem token = str(uuid.uuidd())

item stub = library client.Item(my stub config)
item id = item stub.create(create_ spec=item model,

client token=idem token)

2 - Create an UpdateSessionModel instance to track the changes you make to the item.
update session model = item client.UpdateSessionModel ()

update session model.library item id = item id

3 - Create an update session from the model.

idem token = str(uuid.uuid4())

update session stub = update session_client.UpdateSession(my_ stub config)
session_id = update session_stub.create(create spec=update session model

client token=idem token)

try

4 - Create a new AddSpec instance to describe the properties of the file to be uploaded.

VMware, Inc.

140

VMware vSphere Automation SDKs Programming Guide

file spec = update session_client.AddSpec()
file spec.name = 'ESXi patch’

file spec.source type = update session client.File.SourceType.PUSH

5 - Link the ISO file spec to the update session.

update file stub = update session stub.File(my stub config)

file info = update file stub.File.add(update session_id=session_id,
file spec=file spec)

6 - Use HTTP library to upload the file to the library item.

upload uri = file info.upload endpoint.uri

file name = “/updates/esxi/esxi patch.iso”

host = urlparse.urlsplit (upload uri)

connection = httplib.HTTPConnection (host.netloc)

with open(file name, “rb”) as f :

connection.request (“PUT”, upload uri, f)

7 - Commit the updates.

library item service.UpdateSession.complete (session_id)

finally :
8 - Delete the session.

library item service.UpdateSession.delete(session_id)

Upload a File from a URL to a Library Item

You can upload different types of files from a local system to a library item that you want to use
in the vSphere Automationenvironment.

Prerequisites
m Create an empty library item. See Create an Empty Library Item.

m Verify that you have access to the UpdateSession and File services.

Procedure

1 Create an UpdatesessionModel instance to track the changes that you make to the library
item.

2 Create an update session by using the UpdateSession service.

w

Create a file specification to describe the upload method and other properties of the file to
be uploaded.

Specify the location of the file to be uploaded by creating a TransferEndpoint instance.
Add the file source endpoint to the file specification.

Create a request for changing the item by using the configured file specification.

N (o)} ul I

Complete the update session to apply the changes to the library item.

VMware, Inc. 141

VMware vSphere Automation SDKs Programming Guide

Java Example of Uploading a File from a URL to a Library Item

This example shows how to upload a file from a URL to a library item. The example is based on
the code in the TtemUploadHelper.java sample file.

This example uses the steps that are described in the Upload a File from a URL to a Library Item
procedure.

Note For a complete and up-to-date version of the Java sample code, see the vsphere-
automation-sdk-java VMware repository at GitHub.

// Create a new library item. See Create an Empty Library

Item.

// Access the com.vmware.content.library.item.updatesession.File
// and the UpdateSession services by using the vSphere Automation Endpoint.

File uploadFileService = this.vapiAuthHelper.getStubFactory () .createStub(File.class,
sessionStubConfigqg) ;

UpdateSession uploadService =
this.vapiAuthHelper.getStubFactory () .createStub (UpdateSession.class, sessionStubConfig);

// Create an UpdateSessionModel instance to track the changes you make to the item.
UpdateSessionModel updateSessionModel = new UpdateSessionModel () ;
updateSessionModel.setLibraryItemId (newlItem) ;

// Create a new update session.
String clientToken = UUID.randomUUID() .toString() ;
String sessionId = uploadService.create(clientToken, updateSessionModel) ;

// Create a new AddSpec instance to describe the properties of the file to be uploaded.
FileTypes.AddSpec fileSpec = new AddSpec();
fileSpec.setName ("ESXi patch");
fileSpec.setSourceType (SourceType.PULL) ;

// Specify the location from which the file is uploaded to the library item.
TransferEndpoint endpoint = new TransferEndpoint();
endpoint.setUri (URI.create ("http://www.acme.com/patches ESXi65/ESXi patch.iso"));
fileSpec.setSourceEndpoint (endpoint) ;
uploadFileService.add (sessionId, fileSpec);

// Mark the session as completed.
uploadService.complete (sessionId);

Python Example of Uploading a File from a URL to a Library Item

This example shows how to upload a file from a URL to a library item. The example is based on
the code inthe cls api helper.py sample file.

VMware, Inc. 142

VMware vSphere Automation SDKs Programming Guide

This example uses the steps that are described in the Upload a File from a URL to a Library Item
procedure.

Note For a complete and up-to-date version of the sample code, see the vsphere-
automation-sdk-python VMware repository at GitHub.

1 - Create a new library item to hold the uploaded file.
item model = library client.ItemModel ()

item model.name = ’'ESXi patches’

item model.description = 'ESXi security patches’

item model.type = ’iso’

item model.library id = my library id

idem token = str(uuid.uuid4())

item stub = library client.Item(my stub config)

item id = item stub.create(create spec=item model, client token=idem token)

2 - Create an UpdateSessionModel instance to track the changes you make to the item.
update session model = item client.UpdateSessionModel ()

update session _model.library item id = item id

3 - Create an update session from the model.

idem token = str(uuid.uuid4())

update session stub = update session client.UpdateSession(my stub config)
session id = update session stub.create(create spec=update session model,

client_ token=idem_ token)

try
4 - Create a new AddSpec instance to describe the properties of the file to be uploaded.
file spec = update session client.AddSpec ()
file spec.name = 'ESXi patch’

file spec.source type = update session client.File.SourceType.PULL

5 - Specify the location from which the file is to be uploadod to the library item.
endpoint = item client.TransferEndpoint ()
endpoint.uri = ’"http://www.example.com/patches ESXi65/ESXi patch.iso’

file spec.source endpoint = endpoint
6 - Link the file specification to the update session.
update file stub = update session client.File(my stub config)

update file stub.File.add(update session id=session id, file spec=file spec)

7 - Mark session as completed, to initiate the asynchronous transfer.

update session stub.complete(session_ id)

Download Files to a Local System from a Library Item

You might want to download files to a local system from a library item and then make changes to
the files before you use them.

VMware, Inc. 143

VMware vSphere Automation SDKs Programming Guide

Procedure

1 Create a download session model to specify the item, which contains the file that you want to
download.

2 Access the File service and retrieve the file that you want to export to your system within
the new download session.

3 Prepare the files that you want to download and wait until the files are in the prepared state.
4 Retrieve the download endpoint URI of the files.

5 Download the files with an HTTP GET request.
6

Delete the download session after all files are downloaded.

Java Example of Downloading Files from a Library Item to Your Local System

This example is based on the code in the ItembownloadHelper. java sample file.

This example uses the steps that are described in the Download Files to a Local System from a
Library Item procedure.

Note For a complete and up-to-date version of the Java sample code, see the vsphere-
automation-sdk-java VMware repository at GitHub.

// Access the DownloadSession service.
DownloadSession downloadSessionService =

vapiAuthHelper.getStubFactory () .createStub (DownloadSession.class, sessionStubConfig);

// Create a new download session model.
DownloadSessionModel downloadSessionModel = new DownloadSessionModel () ;
downloadSessionModel.setLibraryItemId(libItem.getId());
String downloadSessionId = downloadSessionService.create (UUID.randomUUID() .toString(),

downloadSessionModel) ;

// Access the File service and retrieve the files you want to export.
File downloadFileService = vapiAuthHelper.getStubFactory () .createStub(File.class,
sessionStubConfig) ;
List<FileTypes.Info> downloadFileInfos = downloadFileService.list (downloadSessionId) ;
for (FileTypes.Info downloadFileInfo : downloadFileInfos) {

// Make sure all files are in the prepared state before you precede with the downloading
operation.

downloadFileService.prepare (downloadSessionId, downloadFileInfo.getName (),
EndpointType.HTTPS) ;

long timeOut = 360;

Long endTime = System.currentTimeMillis() + timeOut * 1000;
try {
Thread.sleep (5000) ;
} catch (InterruptedException e) {
System.out.println(e);

VMware, Inc. 144

VMware vSphere Automation SDKs Programming Guide

FileTypes.PrepareStatus expectedStatus =
com.vmware.content.library.item.downloadsession.File.PrepareStatus.PREPARED;

downloadFileInfo = downloadFileService.get (downloadSessionId,
downloadFileInfo.getName()) ;

FileTypes.PrepareStatus currentStatus = downloadFileInfo.getStatus();

if (currentStatus == expectedStatus) {

// When the files are prepared, you can retrieve the download information for each file.
downloadFileInfo = downloadFileService.get (downloadSessionId,
downloadFileInfo.getName());
try {
URI downloadUri = downloadFileInfo.getDownloadEndpoint ().getUri();
String downloadUrl = downloadUri.toURL() .toString();

// Run an HTTP GET request and pass the download endpoints of the files.
HttpClient httpClient = new HttpClient (true);
InputStream inputStream = httpClient.downloadFile (downloadUrl) ;
String fileNameDownload = downloadFileInfo.getName () ;
File tmpDir = new java.io.File("tmp");
tmpDir.mkdir () ;
String fullPath = tmpDir.getAbsolutePath() +

System.getProperty("file.separator") + fileNameDownload;

// Copy the files to the directory on your machine.
Files.copy (inputStream,
Paths.get (fullPath), StandardCopyOption.REPLACE EXISTING) ;
} catch (MalformedURLException e) {
System.out.println("Failed to download due to IOException!" + e);
throw new RuntimeException ("Failed to download due to IOException!", e);
} catch (IOException e) {
System.out.println ("IO exception during download" + e);

throw new RuntimeException ("Failed to download due to IOException!", e);

// Delete the download session after all files are downloaded.
} finally {
downloadFileService.delete (downloadSessionId) ;
}
} else {
while (endTime > System.currentTimeMillis()) {
downloadFileInfo = downloadFileService.get (downloadSessionId,

downloadFileInfo.getName()) ;

currentStatus = downloadFileInfo.getStatus();
if (currentStatus == expectedStatus) {
return;

} else if (currentStatus ==
com.vmware.content.library.item.downloadsession.File.PrepareStatus.ERROR) {
System.out.println ("DownloadSession Info : " +

downloadSessionService.get (downloadSessionId)) ;

throw new RuntimeException ("Error while waiting for download file status

be PREPARED...");
}

VMware, Inc.

to

145

VMware vSphere Automation SDKs Programming Guide

Python Example of Downloading Files from a Library Item to Your Local System

This example uses the code in the cls api helper.py sample file.

This example uses the steps that are described in the Download Files to a Local System from a
Library Item procedure.

Note For a complete and up-to-date version of the sample code, see the vsphere-
automation-sdk-python VMware repository at GitHub.

1 - Create a new download session model.

download session model = item client.DownloadSessionModel ()

download session model.library item id = my library item id

download session stub = item client.DownloadSession(my stub config)

idem token = str(uuid.uuidd4())

download session_id = download session stub.create(create spec=download session model,

client token=idem token)

2 - Access the File service and retrieve the files you want to export.
download session file stub = download session client.File(my stub config)
file infos = download session file stub.list (download session_id)

for file info in file infos

download session file stub.prepare(download session id, file info.name)

3 - Wait until the file is in the prepared state before downloading.
download info = download session file stub.get(download session id, file info.name)
while (DownloadSessionFile.PrepareStatus.PREPARED != download info.status)
time.sleep (30)

4 - Download the file with an HTTP GET request.
response = urllib2.urlopen(download info.download endpoint.uri)
file path = os.path.join(my directory, file info.name)
with open(file path, ’wb’) as f

f.write (response.read())

5 - Delete the download session after all files are downloaded.

download session_stub.delete(download session_id)

Synchronizing a Library Item in a Subscribed Content Library

The items in a subscribed library have features that are distinct from the items in a local library.
Synchronizing the content and the metadata of an item in a subscribed library depends on the
synchronization mechanism of the subscribed library.

VMware, Inc. 146

VMware vSphere Automation SDKs Programming Guide

Table 9-2. Options for Synchronizing a Library Iltem

Synchronization Type of the Subscribed
Library Description

Synchronized on demand If the subscribed library is synchronized on demand, you can use the
sync method on the subscribedItem Service and pass as arguments
the library item ID and true. When you perform the task, both the
item metadata and the content are synchronized. To synchronize
only the metadata of the item, pass the library ID and false as
arguments to the method.

Not synchronized on demand If the subscribed library is not synchronized on demand, you can
use the sync method on the subscribedItem service and pass as
argument the item ID. In this case, the content of the item is always
synchronized and the Boolean value is ignored when the call is run.

Synchronized automatically If the subscribed library is synchronized automatically, you can also
use the sync method to force the synchronization of an item. Method
execution depends on whether the subscribed library is synchronized
on demand.

Removing the Content of a Library Item

You can remove the content from a library item to free space on your storage.

If you create a subscribed library with the option to synchronize library content on demand, only
the metadata for the library items is stored. When you want to use the items in the library, you
must force synchronization on the items to download their content. When you no longer need
the files in an item, you can remove the cached content of the library item and free storage
space. To achieve this task use the evict function of the subscribedItem Object.

Deleting a Library Item

You can remove a library item from a local library when you no longer need it.

To remove a library item from a library, you can call the delete method on the 1tem Object and
pass the library item ID as an argument. The item content is asynchronously removed from the
storage.

You cannot remove items from a subscribed library. If you remove an item from a local library,
the item is removed from the subscribed library when you perform a synchronization task on the
subscribed library item.

Content Library Support for OVF and OVA Packages

You can use the objects and methods provided by the Content Library API to manage OVF and
OVA packages.

Open Virtualization Format (OVF) is an industry standard that describes metadata about a virtual
machine image in an XML format. An OVF package includes an XML descriptor file and optionally
disk images, resource files (such as ISO files), manifest files, and certificate files.

VMware, Inc. 147

VMware vSphere Automation SDKs Programming Guide

An OVA package is a single file that contains all OVF package files in an archived form. After
you upload an OVA package to a content library, the OVA file is converted to the standard OVF
package.

When you try to upload signed content to a content library, you might receive preview warnings.
Signed content can be either OVF or OVA packages that contain manifest and certificate files. If
you do not respond to the preview warnings, the upload fails. To complete an upload operation
successfully, you must ignore any preview warnings by using the warningBehavior class.

With the vSphere Automation API, you can use the OVF package in a content library to deploy
virtual machines and vApps on hosts, resource pools, and clusters. You can also use the API to
create OVF packages in content libraries from vApps and virtual machines on hosts, resource
pools, and clusters.

When you create library items to store OVF packages, you must set the item type to ovf. TO
comply with the specific standards of the OVF packages, the vSphere Automation API provides
the LibraryItem Class.

Working with OVF and OVA Packages in a Content Library

You can upload an OVF or OVA package to a library item by using the Updatesession interface.
You can also download an OVF and OVA packages from a content library to your local file
system.

In case you want to upload an OVF package, the location of the content determines whether you
can pull the content from a URL or push the content directly to a content library. For information

about uploading content to library items, see Upload a File from a Local System to a Library Item
and Upload a File from a URL to a Library Item.

To download the files that are included in an OVF or OVA package to your local file system, use
the DownloadSession interface. For more information, see Download Files to a Local System from
a Library Iltem .

Upload an OVF or an OVA Package from a URL to a Library Item

You can upload an OVF or an OVA package from a Web server to a library item.

Note If you try to upload a signed OVF package and it returns preview warnings, you must
ignore the preview warnings to complete the upload.

Prerequisites

m Create a new local content library or retrieve the desired existing content library.

m Required privileges: Content library.Add library item and Content library.Update files on the
library.

Procedure

1 Create an empty library item.

VMware, Inc. 148

VMware vSphere Automation SDKs Programming Guide

2 Create an update session object.

3 Create an addspec object to describe the properties and the upload location of the OVF
descriptor file or of the OVA package file.

4 Link the addspec object to the update session.
All files that are included in the OVF package are automatically uploaded.

5 Complete the asynchronous transfer.

Python Example of Uploading an OVF Package from a URL to a Library Item

This example is based on the ovf import export.py sample file.

This example uses the steps that are described in the Upload an OVF or an OVA Package from a
URL to a Library Item procedure.

Note For a complete and up-to-date version of the sample code, see the vsphere-
automation-sdk-python VMware repository at GitHub.

1 - Create a empty library item to describe the virtual machine.
item model = library client.ItemModel ()

item model.name = “ubuntu-vm”

item model.description = “ubuntu 7.0”

item model.library id = my library id

item model.type = “ovf”

client token = str(uuid.uuid4())

item stub = library client.Item(my stub config)

item id = item stub.create(create spec=item model,

client token=client token)

2 - Create an update session.

update session model = item client.UpdateSessionModel ()

update session model.library item id = item id

client token = str(uuid.uuid4())

update session stub = update session_client.UpdateSession(my stub config)
session_id = update session_stub.create(create spec=update session model,

client token=client token)

3 - Create a file specification for the OVF envelope file.
file spec = update session_client.AddSpec()

file spec.name = “ubuntu.ovf”

file spec.source type = File.SourceType.PULL

endpoint = item client.TransferEndpoint ()

endpoint.uri = “http://www.example.com/images/ubuntu.ovf”

file spec.source endpoint = endpoint

4 - Link the file specification to the update session.
update file stub = update session client.File(my_stub config)
update file stub.File.add(update session id=session_id,

file spec=file spec)

VMware, Inc. 149

VMware vSphere Automation SDKs Programming Guide

5 - Initiate the asynchronous transfer.

update session_stub.complete (session_id)

Upload an OVF or OVA Package from a Local File System to a Library Item
You can upload an OVF or OVA package from a local file system. This procedure describes how

to use the addspec object after you have created a library item and initiated an update session.

Note If you try to upload a signed OVF package and it returns preview warnings, you must
ignore the preview warnings to complete the upload.

Prerequisites

m Create a new local content library or retrieve the desired existing content library.

m Required privileges: Content library.Add library item and Content library.Update files on the
library.

Procedure
1 Create a library item.
2 Create an update session.

3 Create an addspec object to describe the properties and the upload locations of the OVF
descriptor file or of the OVA package file.

4 Link the addspec object to the update session.
5 (Optional) Create an addspec object for each VMDK file included in the OVF package.
6 Add all addspec objects to the update session.

If you upload an OVF package and it has a VMDK file included, you must repeat steps 5 and
6. If you are uploading a signed OVF package, steps 5 and 6 must also be repeated for the
manifest and certificate files included in the OVF package.

7 Initiate the upload operation.
8 Complete the update session.

9 Delete the session.

Python Example of Uploading an OVA Package to a Library Item

This example is based on the signed ova import.py sample file.

VMware, Inc. 150

VMware vSphere Automation SDKs Programming Guide

This example uses the steps that are described in the Upload an OVF or OVA Package from a
Local File System to a Library Item procedure.

Note For a complete and up-to-date version of the sample code, see the vsphere-
automation-sdk-python VMware repository at GitHub.

1 - Specify the OVA filename and location.
SIGNED OVA FILENAME = 'nostalgia-signed.ova'
SIGNED OVA RELATIVE DIR = '../resources/signedOvaWithCertWarning'

2 - Create a new library item in the content library for uploading the files.
self.lib item id = self.helper.create library item(library id=self.local 1lib id,

item name=self.lib item name,

item description='Sample template from ova
file',

item type='ovf')

3 - Set a pointer to the OVA file you want to upload.
ova_file map = self.helper.get ova file map(self.SIGNED_OVA RELATIVE DIR,
local filename=self.SIGNED OVA FILENAME)

4 - Create a new update session for uploading the files.

session id = self.client.upload service.create(
create spec=UpdateSessionModel (library item id=self.lib item id),
client token=generate random uuid())

self.helper.upload files in session(ova file map, session id)

5 - Wait for terminal preview state and obtain preview warnings.

self.wait for terminal preview state(session id, AVAILABLE)

session = self.client.upload service.get (session id)
preview info = session.preview info
6 - Ignore preview warnings on session, if any.

ignore warning behaviors = []

for warning type in preview warning types:
warning behavior = WarningBehavior (type=warning type, ignored=True)
ignore warning behaviors.append(warning behavior)

self.client.upload service.update(session id, update spec=UpdateSessionModel (

warning behavior=ignore warning behaviors))

7 - Complete the update session.

self.client.upload service.complete (session_ id)

8 - Delete the session.

self.client.upload service.delete(session_ id)

VMware, Inc.

151

VMware vSphere Automation SDKs Programming Guide

Creating Virtual Machines and vApps from Templates in a
Content Library

You can create VM and OVF templates from virtual machines and vApps in your inventory. You
can then deploy virtual machines and vApps from the templates that are stored in a content
library.

Create a VM Template in a Content Library from a Virtual Machine

By using the vSphere Automation API, you can create a VM template in a content library from an
existing virtual machine in your vCenter Server inventory.

When you call the create function of the com.vmware.vcenter.vm template.LibraryItems
service, a VM template is created as a library item in your local content library. If the operation is
successful, the LibraryItems service returns the ID of the newly created library item.

To create a library item that contains a VM template, you can use the ctreate function of the
LibraryItems interface. You can review the information about a VM template by using the get
function of the LibraryItems interface. For information about how to create a VM template by
using the vSphere Client, see the vSphere Virtual Machine Administration documentation.

For information about the available and mandatory parameters, see the AP/ Reference
documentation.

Prerequisites
m Verify that you have administrative privileges on your vCenter Server instance.
m Verify that you created a vSphere Automation session to your vCenter Server.

m Verify that you created a local library by using the vSphere Client or the vSphere Automation
APIs.

Procedure
1 Get the ID of your ESXi host on which you want to store the VM template.
You can use the 1ist function of the com.vmware.vcenter.Host interface.
2 Get the ID of the datastore on which you want to store the VM template files.
You can use the 1ist function of the com.vmware.vcenter client.Datastore interface.
3 Get the ID of the virtual machine that you want to save as a VM template.
You can use the 1ist method of the com.vmware.vcenter client.VM interface.
4 Get the ID of your local library.

You can get the list of the local libraries in your vCenter Server and review the
information about each library by using the 1ist and get (1ibrary id) functions of the

com.vmware.content client.LocallLibrary class.

VMware, Inc. 152

VMware vSphere Automation SDKs Programming Guide

5 Create alibrary item specification for the VM template.

You can use the com.vmware .vcenter.vm template.LibraryItems.CreateSpec class.

a

d

Specify the local library, source virtual machine, and the name of the library item by using
the library, source vm, and name parameters. You must use the IDs of the local library
and source virtual machine.

Specify the placement information for your VM template.

You can use the LibraryItems.CreatePlacementSpec class. To specify the host, resource
pool, cluster, and folder, you must use their IDs.

Specify the datastore on which you want to store the log, configuration, and disk files of
your VM template.

To specify the storage backing for the VM template, you can use
the com.vmware.vcenter. vm_template.LibrarylItems.CreateSpecVmHomeStorage and
com.vmware.vcenter.vm template.LibraryItems.CreateSpecDiskStorage classes. You

must use the ID of the datastore.

Include the placement and storage specifications in the library item specification.

6 Create a library item for storing the VM template.

You can use the create (spec) function of the

com.vmware.vcenter.vm template.LibraryItems interface.

Results

If the operation is successful, the LibraryItems service returns the ID of the library item that

contains the VM template. For information about the available responses, see the AP/ Reference
documentation.

What to do next

m Review the information stored in the library item by using the get (VM template item ID)

function of the com.vmware.vcenter.vm template.LibraryItems interface. If you did not save

the ID of the library item holding the VM template, you can check the UUID by using the
vSphere Client. The URN ends with the ID of the library item and has the following format:

urn:vapi:com.vmware.content.library.Item:<VMTemplateItemID>.

VMware, Inc. 153

VMware vSphere Automation SDKs Programming Guide

Python Example of Creating a VM Template in a Content Library from a Virtual
Machine

This example shows how you can create a VM template from a virtual machine and add the

template to a content library by using the vSphere Automation API. The example is based on the

create vm template.py sample.

Note For a complete and up-to-date version of the sample code, see the vsphere-
automation-sdk-python VMware repository at GitHub.

class CreateVmTemplate (SampleBase) :

def setup(self):
Required arguments
self.vm name = self.args.vmname
self.datacenter name = self.args.datacentername
self.resource pool name = self.args.resourcepoolname

self.datastore name = self.args.datastorename

Optional arguments
self.item name = (self.args.itemname if self.args.itemname

else rand('vmtx-item-"'))

self.servicemanager = self.get service manager ()
self.client = ClsApiClient (self.servicemanager)

self.helper = ClsApiHelper (self.client, self.skip verification)

session = get unverified session() if self.skip verification else None

self.vsphere client = create vsphere client (server=self.server,
username=self.username,
password=self.password,

session=session)

def execute(self):
Get the identifiers for the virtual machine and resource pool
vm_id = get vm(self.vsphere client, self.vm name)
assert vm_ id
resource pool id = get resource pool (self.vsphere client,
self.datacenter name,
self.resource pool name)

assert resource pool id

Create a local content library

storage backings = self.helper.create storage backings(self.servicemanager,
self.datastore name)

self.library id = self.helper.create local library(storage backings,

self.library name)

Build the library item create specification
create spec = VmtxLibraryItem.CreateSpec /()
create_ spec.source vm = vm_id

create_ spec.library = self.library id

VMware, Inc.

154

VMware vSphere Automation SDKs Programming Guide

create spec.name = self.item name
create_spec.placement =

VmtxLibraryItem.CreatePlacementSpec (resource pool=resource pool id)

Create a new library item from the source virtual machine

self.item id = self.client.vmtx service.create(create_spec)

Create an OVF Template in a Content Library from a Virtual Machine
or VApp

You can create library items from existing virtual machines or vApp. Use those library items later
to deploy virtual machines and vApps on hosts and clusters in your vCenter Server environment.

Procedure

1 Create a com.vmware.vcenter.ovf.LibraryItemTypes.DeployableIdentity instance to specify
the source virtual machine or vApp to be captured in an OVF template.

2 Create a com.vmware.vcenter.ovf.LibraryItemTypes.CreateTarget instance to identify the
content library where the OVF template is stored.

3 Create a com.vmware.vcenter.ovf.LibraryItemTypes.CreateSpec instance to specify the
properties of the OVF template.

4 Initiate a synchronous create operation by invoking the create function of the

com.vmware.vcenter.ovf.LibraryItem Service.

5 Verify the outcome of the create operation.

Java Example of Creating an OVF Template in a Content Library from a Virtual
Machine

This example shows how to capture a virtual machine in an OVF template and store the file in a
new library item in a specified library.

This example uses the steps that are described in the Create an OVF Template in a Content
Library from a Virtual Machine or vApp procedure.

Note For related code samples, see the vsphere-automation-sdk-java VMware repository at
GitHub.

// Specify the resource to be captured.
LibraryItemTypes.DeployableIdentity deployableIdentity = new
LibraryItemTypes.DeployableIdentity() ;
deployableIdentity.setType ("VirtualMachine") ;
deployableIdentity.setId("vm-32") ;

// Create a target spec to identify a library to hold the new item.
LibraryItemTypes.CreateTarget createTarget = new LibraryItemTypes.CreateTarget () ;

VMware, Inc. 155

VMware vSphere Automation SDKs Programming Guide

createTarget.setlibraryId (myLibraryId) ;

// Specify OVF properties.
LibraryItemTypes.CreateSpec createSpec = new LibraryItemTypes.CreateSpec();
createSpec.setName ("snap-32") ;

createSpec.setDescription ("Snapshot of VM-32");

// Initiate synchronous capture operation.

LibraryItem itemStub = myStubFactory.createStub (LibraryItem.class, myStubConfiguration);

String clientToken = UUID.randomUUID() .toString() ;
LibraryItemTypes.CreateResult result = itemStub.create(clientToken, deployableldentity,

createTarget, createSpec);

// Verify capture status.

System.out.printf ("Resource Type=%s (ID=%s) status:",
deployableIdentity.getType (),
deployableIdentity.getId());

if (result.getSucceeded() == true) {

System.out.println ("Resource captured.");

lelse {

System.out.println ("Capture failed.");

if (result.getError() != null) {

for (OvfError error : result.getError().getErrors()) {

System.out.printf ("Error: %$s", error.getMessage () .toString());

for (OvfWarning warning : result.getError().getWarnings()) {

System.out.printf ("Warning: %$s", warning.getMessage () .toString());

for (OvfInfo info : result.getError().getInformation()) {

List<LocalizableMessage> messages = info.getMessage () ;

for (LocalizableMessage message : messages) {

System.out.printf ("Message: %$s", message.toString());

Python Example of Creating an OVF Template in a Content Library from a Virtual

Machine

This example shows how to capture a virtual machine in an OVF template and store the files in a

new library item in a specified library.

VMware, Inc.

156

VMware vSphere Automation SDKs Programming Guide

This example uses the steps that are described in the Create an OVF Template in a Content
Library from a Virtual Machine or vApp procedure.

Note For related code samples, see the vsphere-automation-sdk-python VMware repository
at GitHub.

Specify the resource to be captured.

deployable identity = ovf client.LibraryItem.DeployableIdentity();
deployable identity.type = “VirtualMachine”

deployable identity.id = “vm-32"

Create a target spec to identify a library to hold the new item.
create target = ovf client.LibraryItem.CreateTarget ()

create target.library id = my library id

Specify OVF properties.

create spec = ovf client.LibraryItem.CreateSpec/()
create_ spec.name = “snap-32”
create spec.description = “Snapshot of VM-32”"

Initiate synchronous capture operation.

lib_item stub = ovf client.LibraryItem(my stub config)

client token = str(uuid.uuid4())

result = 1lib _item stub.create (source=deployable identity,
target=create_ target,
create_ spec=create_spec,

client token=client token)

Verify capture status.
print ("Resource Type={} (ID={}) status:".format (deployable identity.type,
deployable identity.id))

if result.succeeded == True
print ("Resource captured.”)
else
print ("Capture failed.")
if result.error is not None
for error in result.error.errors
print ("Error {}".format (error.message))
if len(result.error.warnings) > 0
print ("Warnings:")
for warning in result.error.warnings
print ("{}".format (warning.message))
if len(result.error.information) > 0
print ("Messages:")
for info in result.error.information
for message in info.messages

print ("{}".format (message))

VMware, Inc. 157

VMware vSphere Automation SDKs Programming Guide

Deploy a Virtual Machine from a VM Template in a Content Library

By using the vSphere Automation APIs, you can deploy a virtual machine from a VM template
stored in a content library.

To deploy a virtual machine from a VM template in a content library, call the deploy function of
the com.vmware.vcenter.vm template.LibraryItems interface. You can specify the power state
and customize the guest operation system prior to the virtual machine deployment.

For information about the available and mandatory parameters, see the AP/ Reference
documentation.

Prerequisites
m Verify that you have administrative privileges on your vCenter Server instance.

m Verify that you created a vSphere Automation session to your vCenter Server instance.

Procedure
1 Review the information stored in the VM template library item.

You can use the get (VM template item ID) function of the

com.vmware.vcenter.vm template.LibraryItems interface and pass the ID of your VM
template item. If you did not save the ID of your item, you can select the UUID of your

VM template item by using the vSphere Client. The URN ends with the ID of the item and has
the following format: urn:vapi:com.vmware.content.library.Ttem:<VMTemplateItemID>.

2 Get the ID of the host on which you want to deploy the virtual machine.
You can use the 1ist function of the com.vmware.vcenter.Host interface.

3 Get the ID of the resource pool to which you want to add your virtual machine.
You can use the 1ist function of the com.vmware.vcenter.ResourcePool interface.

4 Get the ID of the virRTUAL MACHINE folder to which you want to add your virtual machine.
You can use the 1ist function of the com.vmware.vcenter.Folder.

5 Get the ID of the datastore on which you want to store log, configuration, and disk files of the
virtual machine.

You can use the 1ist function of the com.vmware.vcenter.Datastore interface.
6 Create a deployment specification.

You can use the com.vmware .vcenter.vm template.LibraryItems.DeploySpec class.

a Specify a name and description of the virtual machine that you want to deploy.

b Specify the place in your inventory on which you want to deploy the virtual machine such
as an ESXi host, resource pool, and VM folder.

You can use the com.vmware .vcenter.vm template.LibraryItems.DeployPlacementSpec
class. You must use the IDs of your inventory objects.

VMware, Inc. 158

VMware vSphere Automation SDKs Programming Guide

c Specify the datastore on which you want to store the log, configuration, and disk files of

the virtual machine. You must use the ID of the datastore.

You can use the DeploySpecVmHomeStorage and DeploySpecDiskStorage classes.

d (Optional) Specify the guest operating system and hardware customization specifications

that you want to apply to the virtual machine during the deployment process. Add this

information to the deployment specification.

You can use the GuestCustomizationSpec and HardwareCustomizationSpec classes

You can get a list of the guest operating system customization specifications
that are available in your vCenter Server by using the 1ist function of the

com.vmware.vcenter.guest.CustomizationSpecsinteﬁace.
e Include the placement and storage specifications in the deployment specification.
7 Deploy a virtual machine from your VM template.

You can use the deploy (template library item, spec) function of the

com.vmware.vcenter.vm template.LibraryItems interface by passing the library item ID

where the VM template is stores and the deployment specification.

Results

If the operation is successful, the ID of the deployed virtual machine is returned. For information

about the possible exceptions, see the AP/ Reference documentation.

Python Example of Deploying a VM from a VM Template Library Iltem

This example shows how you can deploy a VM from a VM Template library item by using the API.

The example is based on the deploy vm template.py sample.

Note For a complete and up-to-date version of the sample code, see the vsphere-
automation-sdk-python VMware repository at GitHub.

class DeployVmTemplate (SampleBase) :

def setup(self):
Required arguments
self.item name = self.args.itemname
self.datacenter name = self.args.datacentername
self.folder name = self.args.foldername
self.resource pool name = self.args.resourcepoolname

self.datastore name = self.args.datastorename

Optional arguments

self.vm name = self.args.vmname if self.args.vmname else rand('vm-')
self.servicemanager = self.get_ service_manager ()

self.client = ClsApiClient (self.servicemanager)
self.helper = ClsApiHelper (self.client, self.skip verification)

VMware, Inc.

159

VMware vSphere Automation SDKs Programming Guide

def

Deploy a Virtual Machine or vApp from an OVF Template in a

session = get unverified session() if self.skip verification else None

self.vsphere client = create vsphere client (server=self.server,
username=self.username,
password=self.password,

session=session)

_execute (self):
Get the identifiers of the resources used for deployment
item id = self.helper.get item id by name(self.item name)
assert item id
folder id = get folder(self.vsphere client,
self.datacenter name,
self.folder name)
assert folder id
resource pool id = get resource pool (self.vsphere client,
self.datacenter name,
self.resource pool name)
assert resource pool id
datastore id = get datastore id(self.servicemanager,
self.datastore name)

assert datastore_ id

Build the deployment specification

placement spec = VmtxLibraryItem.DeployPlacementSpec (
folder=folder_ id,
resource_pool=resource pool id)

vm_home storage spec = VmtxLibraryItem.DeploySpecVmHomeStorage (
datastore=datastore_id)

disk storage spec = VmtxLibraryItem.DeploySpecDiskStorage (
datastore=datastore_id)

deploy spec = VmtxLibraryItem.DeploySpec (
name=self.vm name,
placement=placement spec,
vm_home storage=vm home storage spec,

disk storage=disk storage_ spec)

Deploy a virtual machine from the VM template item
self.vm id = self.client.vmtx service.deploy(item id, deploy spec)
self.vm = get obj by moId(self.servicemanager.content,

[vim.VirtualMachine], self.vm_id)

Content Library

You can use the com.vmware.vcenter.ovf.LibraryItem Service to deploy a virtual machine or

VApPP on

a host, cluster, or resource pool from a library item.

Procedure

1 Create a com.vmware.vcenter.ovf.LibraryItemTypes.DeploymentTarget instance to specify

the deployment location of the virtual machine or vApp.

VMware, Inc.

160

VMware vSphere Automation SDKs Programming Guide

2 Create a com.vmware.vcenter.ovf.LibraryItemTypes.ResourcePoolDeploymentSpec instance

to define all necessary parameters for the deployment operation.

For example, you can assign a name for the deployed virtual machine or vApp, and accept
the End User License Agreements (EULAS) to complete the deployment successfully.

3 (Optional) Retrieve information from the descriptor file of the OVF template and use the
information during the OVF template deployment.

4 Call the deploy method on the LibraryItem Service.

5 Verify the outcome of the deployment operation.

Java Example of Deploying a Virtual Machine from a Library Item in a Resource
Pool

This example shows how to deploy a virtual machine from a local library item in a resource pool.

You can also see how to verify the results of the deployment operation.

This example uses the steps that are described in the Deploy a Virtual Machine or vApp from an

OVF Template in a Content Library procedure.

Note For related code samples, see the vsphere-automation-sdk-java VMware repository at

GitHub.

// Create a virtual machine deployment specification to accept any network resource.
ResourcePoolDeploymentSpec deploymentSpec = new ResourcePoolDeploymentSpec() ;

String vmName = "MyVirtualMachine";

deploymentSpec.setName (vmName) ;

deploymentSpec.setAcceptAllEULA (true) ;

// Create a deployment target specification to accept any resource pool.

String clusterName = "myCluster";

ManagedObjectReference clusterMoRef = VimUtil.getCluster (this.vimAuthHelper.getVimPort (),
this.vimAuthHelper.getServiceContent (), clusterName) ;

DeploymentTarget deploymentTarget = new DeploymentTarget () ;
deploymentTarget.setResourcePoolId (clusterMoRef.getValue()) ;

// Retrieve the library items OVF information and use it for populating the
// deployment spec instance.
LibraryItem libItemStub = stubFactory.createStub (LibraryItem.class, myStubConfiguration) ;
OviSummary ovfSummary = libItemStub.filter (libItemId, deploymentTarget);
deploymentSpec.setAnnotation (oviSummary.getAnnotation()) ;
String clientToken = UUID.randomUUID() .toString() ;
DeploymentResult result = libItemStub.deploy(clientToken,libItemId,
deploymentTarget,
deploymentSpec) ;

// Verify the status of the resource deployment.

System.out.printf ("Resource Type=%s (ID=%s) status: ",

VMware, Inc.

161

VMware vSphere Automation SDKs Programming Guide

result.getResourcelId() .getType (),
result.getResourceId() .getId());

if (result.getSucceeded() == true) {

System.out.println ("Resource instantiated.");

} else {

System.out.println("Instantiation failed.");

Python Example of Deploying a Virtual Machine from a Library Item on a
Resource Pool

This example is based on the deploy ovf template.py sample file.

This example uses the steps that are described in the Deploy a Virtual Machine or vApp from an
OVF Template in a Content Library procedure.

Note For a complete and up-to-date version of the sample code, see the vsphere-
automation-sdk-python VMware repository at GitHub.

Create a VM deployment specification to accept any network resource.
deployment spec = ovf client.LibraryItem.ResourcePoolDeploymentSpec ()

deployment spec.accept _all eula = True

Create deployment target spec to accept any resource pool.

target spec = ovf client.LibraryItem.DeploymentTarget ()

Initiate synchronous deployment operation.
item stub = ovf client.LibraryItem(my stub config)
result = item stub.deploy(my library item id,
target_spec,
deployment spec,

client token=str (uuid.uuid4())

Verify deployment status.
print ("Resource Type={} (ID={}) status:".format (result.resource id.type,
result.resource id.id))
if result.succeeded == True
print ("Resource instantiated.”)
else
print ("Instantiation failed.")
if result.error is not None
for error in result.error.errors
print ("Error {}".format (error.message))
if len(result.error.warnings) > 0
print ("Warnings:")
for warning in result.error.warnings
print ("{}".format (warning.message))
if len(result.error.information) > 0

print ("Messages:")

VMware, Inc. 162

VMware vSphere Automation SDKs Programming Guide

for info in result.error.information
for message in info.messages

print ("{}".format (message))

VMware, Inc. 163

vSphere Tag Service

The vSphere Automation Tag Service supports the definition of tags that you can associate with
vSphere objects or vSphere Automation resources.

Starting with vSphere 6.5, the vSphere Automation APIs provide programmatic access to
creating and managing vSphere tags in your vSphere inventory.

For example, if you want to tag your virtual machines by guest operating system type, you can
create a category called operating system. You can specify that it applies to virtual machines
only and that only a single tag can be applied to a virtual machines at any time. This category can
include the following tags: Windows, Linux, and Mac OS.

This chapter includes the following topics:
m Creating vSphere Tags

m Creating Tag Associations

m Updating a Tag

m Using Tags to Create and Manage Compute Policies

Creating vSphere Tags

You create a vSphere tag to add metadata to objects in the vSphere inventory. Tags are
grouped in categories and each tag must have at least one category related to it. After you
create the tag, you can associate the tag with a vSphere object.

Tags and categories can span multiple vCenter Server instances.

m If multiple on-premises vCenter Server instances are configured to use Enhanced Linked
Mode, tags and tag categories are replicated across all these vCenter Server instances.

m When you use Hybrid Linked Mode, tags and tag categories are maintained across your
linked domain. That means the on-premises SDDC and the VMware Cloud on AWS SDDC
share tags and tag attributes. For more information about Hybrid Linked Mode, see "Hybrid
Linked Mode" in the VMware Cloud on AWS Product Documentation.

Creating a Tag Category

You create tags in the context of a tag category. You must create a category before you can add
tags within that category.

VMware, Inc. 164

VMware vSphere Automation SDKs Programming Guide

A tag category has the following properties:

m name

m description

m cardinality, or how many tags it can contain

m the types of elements to which the tags can be assigned

You can associate tags with both vSphere APl managed objects and VMware vSphere
Automation API resources.

Java Example of Creating a Tag Category

This example is based on code in the TaggingWorkflow. java sample file.

This example is based on the information that is provided in Creating a Tag Category.

The category create () function returns an identifier that you use when you create a tag for
that category. The empty set for the associable types indicates that any object type can be
associated with a tag in this category.

Note For a complete and up-to-date version of the Java sample code, see the vsphere-
automation-sdk-java VMware repository at GitHub.

Category categoryStub = myStubFactory.createStub (Category.class,
myStubConfiguration) ;

// Set up a tag category create spec.

CategoryTypes.CreateSpec createSpec = new CategoryTypes.CreateSpec();
createSpec.setName (“favorites”);

createSpec.setDescription(“My favorite virtual machines.”);
createSpec.setCardinality (CategoryModel.Cardinality .MULTIPLE) ;
Set<String> associableTypes = new HashSet<String>();

createSpec.setAssociableTypes (associableTypes) ;

String newCategoryId = categoryStub.create (createSpec);

Python Example of Creating a Tag Category

This example is based on code in the tagging workflow.py sample file.

This example is based on the information that is provided in Creating a Tag Category.

VMware, Inc.

165

VMware vSphere Automation SDKs Programming Guide

The category create () function returns an identifier that you use when you create a tag for
that category. The empty set for the associable types indicates that any object type can be
associated with a tag in this category.

Note For a complete and up-to-date version of the sample code, see the vsphere-
automation-sdk-python VMware repository at GitHub.

category stub = tagging client.Category(my stub config)

Set up a tag category create spec.

tc_create spec = category stub.CreateSpec(name = ‘favorites’,
description = My favorite virtual machines’,
cardinality = CategoryModel.Cardinality.MULTIPLE,

associable types = set())

Create the tag category.

fav_category id = category stub.create (create_spec)

Creating a Tag

After you create a tag category, you can create tags within that category
A tag has the following properties:

. name

m description

m category ID

Java Example of Creating a Tag

This example is based on code in the TaggingWorkflow. java sample file.

This example creates a tag specification and then uses it to create the tag. The tag specification
references the category identifier that was returned from the category create operation. Use the

returned tag identifier for subsequent operations on the tag.

This example is based on the information that is provided in Creating a Tag.

Note For a complete and up-to-date version of the Java sample code, see the vsphere-
automation-sdk-java VMware repository at GitHub.

Tag tagStub = myStubFactory.createStub(Tag.class,
myStubConfiguration) ;

// Set up a tag create spec.

TagTypes.CreateSpec spec = new TagTypes.CreateSpec();

spec.setName (“red”) ;

VMware, Inc.

166

VMware vSphere Automation SDKs Programming Guide

spec.setDescription (“My favorite color”);

spec.setCategoryld(newCategoryId) ;

String tagId = tagStub.create (spec);

Python Example of Creating a Tag

This example is based on code in the tagging workflow.py sample file.

This example creates a tag specification and then uses it to create the tag. The tag specification
references the category identifier that was returned from the category create operation. Use the
returned tag identifier for subsequent operations on the tag.

This example is based on the information that is provided in Creating a Tag.

Note For a complete and up-to-date version of the sample code, see the vsphere-
automation-sdk-python VMware repository at GitHub.

Set up a tag create spec.
tag create spec = tag_stub.CreateSpec (name='red’,
description="My favorite color’,

category id=fav_category id)

Create the tag.
tag_stub = tagging client.Tag(my stub config)

tag_id = tag stub.create(create_ spec)

Creating Tag Associations

After you create a tag category and create a tag within the category, you can associate the tag
with a vSphere managed object or a vSphere Automation resource. An association is a simple link
that contains no data of its own. You can enumerate objects that are attached to a tag or tags
that are attached to an object.

Tag associations are local to a vCenter Server instance. When you request a list of tag
associations from a vCenter Server system, it enumerates only the associations that it has stored.

When you associate a tag with an object, the object's type must match one of the associable
types specified for the category to which the tag belongs.

Assign the Tag to a Content Library
After you create a tag, you can assign the tag to a vSphere Automation resource.

Procedure
1 Construct a dynamic object identifier for the library.

The dynamic identifier includes the type and ID of the object.

VMware, Inc. 167

VMware vSphere Automation SDKs Programming Guide

2 Attach the tag to the content library.

Java Example of Assigning a Tag to a Content Library

This example is based on code in the TaggingWorkflow. java sample file.

This example uses the steps that are described in the Assign the Tag to a Content Library
procedure.

Note For a complete and up-to-date version of the Java sample code, see the vsphere-
automation-sdk-java VMware repository at GitHub.

// 1 - Create a dynamic type ID for the content library.
DynamicID libraryDynamicId = new DynamicID(Library.RESOURCE TYPE,
myLibrary.getId());

// 2- Attach the tag to the ClusterComputeResource managed object.
TagAssociation tagAssociationStub = myStubFactory.createStub (TagAssociation.class,
myStubConfig) ;
tagAssociationStub.attach (myLibrary.getId(),
libraryDynamicId) ;

Python Example of Assigning a Tag to a Content Library

This example is based on code in the tagging workflow.py sample file.
This example uses the steps that are described in the Assign the Tag to a Content Library

procedure.

Note For a complete and up-to-date version of the sample code, see the vsphere-
automation-sdk-python VMware repository at GitHub.

1 - Create a dynamic type ID for the content library.
library dynamic_id = DynamicID (type=Library.RESOURCE_TYPE,
id=my library.id)

2- Attach the tag to the ClusterComputeResource managed object.
tag association stub = tagging client.TagAssociationStub (my stub config)
tag association stub.attach(tag id,

library dynamic_id)

Assign a Tag to a Cluster

After you create a tag, you can assign the tag to a vSphere managed object. Tags make the
inventory objects in your virtual environment more sortable and searchable.

This procedure describes the steps for applying tag a to a cluster object in your inventory.

VMware, Inc.

168

VMware vSphere Automation SDKs Programming Guide

Prerequisites
Obtain the managed object identifier for the specified cluster.

To get the managed object identifier of the clusterComputeResource, you must access vCenter
Server by using the vSphere Web Services API. For more information about how to access Web
Services, see Create a Web Services Session.

Procedure
1 Construct a dynamic object identifier for the cluster.
The dynamic identifier includes the type and ID of the managed object reference.

2 Attach the tag to the cluster.

Java Example of Assigning a Tag to a Cluster

This example is based on code in the TaggingWorkflow. java sample file.

This example is based on the information that is provided in Assign a Tag to a Cluster.

Note For a complete and up-to-date version of the Java sample code, see the vsphere-
automation-sdk-java VMware repository at GitHub.

// 1 - Determine the MOID of the ClusterComputeResource from its name.
ManagedObjectReference clusterMoRef = VimUtil.getCluster (vimPort,
serviceContent,

myClusterName) ;

// 2 - Create a dynamic type ID for the cluster.
DynamicID clusterDynamicId = DynamicID(clusterMoRef.getType (),
clusterMoRef.getValue());

// 3 - Attach the tag to the ClusterComputeResource managed object.

TagAssociation tagAssociationStub = myStubFactory.createStub (TagAssociation.class,
myStubConfig) ;

tagAssociationStub.attach (tagId,

clusterDynamicId) ;

Python Example of Assigning a Tag to a Cluster

This example is based on code in the tagging workflow.py sample file.

This example is based on the information that is provided in Assign a Tag to a Cluster.

Note For a complete and up-to-date version of the sample code, see the vsphere-
automation-sdk-python VMware repository at GitHub.

VMware, Inc. 169

VMware vSphere Automation SDKs Programming Guide

1 - Determine the MOID of the ClusterComputeResource from its name.
cluster object = get obj (service content,
[vim.ClusterComputeResource],
my cluster name)

cluster moid = cluster obj. GetMoId()

2 - Create a dynamic type ID for the cluster.

dynamic_id = DynamicID (type='ClusterComputeResource', id=cluster moid)

3 - Attach the tag to the ClusterComputeResource managed object.
tag_association stub = tagging client.TagAssociation(my stub config)
tag_association stub.attach(tag id=tag id,

object id=dynamic_id)

Updating a Tag

To update a tag, you must create an update spec for the tag. In the update spec, you set
values for the fields to be changed, and omit values for the other fields. When you do an update
operation using the update spec, only the fields that contain values are changed.

For example, you might use a timestamp in a tag description to identify a resource's last
reconfiguration. After reconfiguring the resource, you update the tag description to contain the
current time.

Java Example of Updating a Tag Description

This example is based on code in the TaggingWorkflow. java sample file.

This example adds timestamp in a tag description to identify when a resource was last
reconfigured. The tag description is updated with the timestamp after the resources is
reconfigured.

This example is based on the information that is provided in Updating a Tag .

Note For a complete and up-to-date version of the Java sample code, see the vsphere-
automation-sdk-java VMware repository at GitHub.

String newDateTime = Dateformat.getDateInstance () .format (new Date());

”

String newDescription = String.format (“Server tag updated at (%s).”, newDateTime) ;
TagTypes.UpdateSpec updateSpec = new TagTypes.UpdateSpec();

updateSpec.setDescription (newDescription) ;

tagStub.update (myTagId, updateSpec);

Python Example of Updating a Tag Description

This example is based on code in the tagging workflow.py sample file.

VMware, Inc. 170

VMware vSphere Automation SDKs Programming Guide

This example adds timestamp in a tag description to identify when a resource was last
reconfigured. The tag description is updated with the timestamp after the resources is
reconfigured.

This example is based on the information that is provided in Updating a Tag .

Note For a complete and up-to-date version of the sample code, see the vsphere-
automation-sdk-python VMware repository at GitHub.

tag stub = tagging client.Tag(my stub config
1 - Format the current time.

date time = time.strftime (‘'%d/%m/%Y $H:%M:%S’)

description = ‘Server tag updated at ' + date time

2 - Set up a tag update spec.
tag update spec = tag stub.UpdateSpec()

tag update spec.description = description

3 - Apply the update spec to change the tag description.
tag stub.update(tag id, tag update spec)

Using Tags to Create and Manage Compute Policies

Compute policies rely on tags to identify inventory objects on which to enforce a policy.

Create a Compute Policy

You can create a compute policy and check the compliance status of the policy for a specific
virtual machine.

Procedure
1 Retrieve the object ID of a virtual machine.

2 Retrieve the object ID of the host you want the virtual machine to run on.

Note The host should be different from the host the virtual machine is already running on.

3 Tag the virtual machine.

For example, use the tag-7tag.
4 Tag the host.

For example, use the tag-2tag.
5 Create a compute policy.

For example, use the tag-7and tag-2tags.

VMware, Inc. 171

VMware vSphere Automation SDKs Programming Guide

6 Check the compliance status of the policy on this virtual machine.

Note The compliance status can take up to 3 minutes to update.

Python Example of Creating a Compute Policy

This example is based on code in the compute policy vcls workflow.py sample file.

This example uses the steps that are described in the Create a Compute Policy procedure.

Note For a complete and up-to-date version of the sample code, see the vsphere-
automation-sdk-python VMware repository at GitHub.

def run(self):
Get the virtual machine and power it off.
self.vm id = get vm(self.client, self.vm name)
self.vm _info = self.client.vcenter.VM.get (self.vm_id)
if not self.vm info:
raise ValueError ("Virtual machine {} not found".format (

self.vm name))

else:
if self.vm _info.power state == Power.State.POWERED ON:
self.client.vcenter.vm.Power.stop (self.vm id)
elif self.vm info.power_state == Power.State.SUSPENDED:

self.client.vcenter.vm.Power.start (self.vm id)

self.client.vcenter.vm.Power.stop(self.vm id)

Get the tags.

tags = self.client.tagging.Tag.list ()

for tag in tags:
info = self.client.tagging.Tag.get (tag)
if info.name == self.vm tag name:

vm_tag = info

if not vm_tag:

raise ValueError ("Provided tag(s) not found")

Tag the virtual machine.

attach tag(self.client, self.vm id, "VirtualMachine", vm tag)

Create a vCLS VM anti-affinity policy.
create spec = CreateSpec(vm_ tag=vm tag.id,
name=self.policy name,
description=self.policy desc)
print ("Creating a vCLS VM anti-affinity policy")
try:
self.policy id = self.client.vcenter.compute.\
Policies.create (create spec)
except Exception as e:
print ("Policy creation failed")
raise e

print ("Policy created with id: {}".format (self.policy id))

VMware, Inc. 172

VMware vSphere Automation SDKs Programming Guide

VMware, Inc.

Power on the virtual machine.

print ("Powering on {}".format (self.vm name))
self.client.vcenter.vm.Power.start (self.vm_id)
self.vm info = self.client.vcenter.VM.get (self.vm_id)

assert self.vm info.power state == Power.State.POWERED ON

Check the compliance status of the policy on this virtual machine.

status = self.client.vcenter.vm.compute.Policies.get (self.vm id,
self.policy id)
print ("The compliance status of policy {} for virtual machine "

"{} is {}".format (self.policy id, self.vm id, status.status))

173

vSphere with Tanzu Configuration
and Management

Starting with vSphere 7.0, you can use the vSphere Automation APIs to enable and configure
vSphere with Tanzu on a vSphere cluster. Then you can run Kubernetes workloads directly on
ESXi hosts.

You can use the vSphere Automation to automate the enabling and disabling of vSphere with
Tanzu on a vSphere cluster, creating and managing namespaces.

The information in this chapter is intended for vSphere administrators who want to use the
vSphere Automation APIs to configure their environment to run Kubernetes workloads in
vSphere. To take fully advantage of these vSphere Automation APIs, you must have basic
knowledge about the Kubernetes technology and containers.

For more information about how to configure and manage vSphere with Tanzu through the
vSphere Client, see the /nstalling and Configuring vSphere with Tanzu and vSphere with Tanzu
Configuration and Management documentation.

This chapter includes the following topics:

m vSphere with Tanzu Terminology

m vSphere with Tanzu Components and Services
m Configuring and Managing a Supervisor

m Content Libraries in vSphere with Tanzu

m Managing Namespaces on a Supervisor

m Virtual Machines in vSphere with Tanzu

vSphere with Tanzu Terminology

You must understand the basic terminology in this chapter to be able use the vSphere with Tanzu

automation APIs effectively.

VMware, Inc.

174

VMware vSphere Automation SDKs Programming Guide

vSphere with Tanzu Basic Terms

Term
Supervisor

Tanzu Kubernetes cluster

vSphere Namespace

vSphere Pod

Spherelet

Kubernetes Workload

Supervisor control plane

Supervisor worker nodes

Container Runtime Executive (CRX)

VM Service

VMware, Inc.

Description
A vSphere cluster that has the vSphere with Tanzu enabled.

An upstream Kubernetes cluster provisioned and managed
by using the VMware Tanzu™ Kubernetes Grid™. A Tanzu
Kubernetes resides in a vSphere Namespace. You can deploy
workloads and services to such clusters in the same way as
you do with standard Supervisor.

A namespace that is created within a Supervisor. Each
namespace sets the resource boundaries for CPU, memory,
storage, and also the number of Kubernetes objects that can
run within the namespace. After a namespace is configured,
you can run Kubernetes workloads within the namespace.

A virtual machine with a small footprint that runs one or
more Linux containers. A vSphere Pod is equivalent to a
Kubernetes pod. vSphere Pods are compatible with the
Open Container Initiative (OCI) and can run OCI compatible
containers regardless the operating system.

A spherelet is an implementation of the kubelet functionality
ported natively on each host in the Supervisor.

Workloads are applications that are deployed in one of the
following ways:

m As containers running inside vSphere Pods.
m Workloads provisioned through the VM service.

m Tanzu Kubernetes Gridclusters deployed by using the
Tanzu Kubernetes Grid.

m Applications running inside the Tanzu Kubernetes Grid
clusters.

vSphere with Tanzu creates a Kubernetes control plane
directly on the hypervisor layer. The control plane manages
the worker nodes and the vSphere Pods in the Supervisor.

ESXi hosts that are part of a Supervisor are considered as
worker nodes. You run your Kubernetes workloads on the
worker nodes.

CRX is an isolated Linux execution environment similar to a VM
that works together with ESXi.

The VM Service functionality allows DevOps engineers to
deploy and manage virtual machines in their Kubernetes
environment through standard Kubernetes APIs. vSphere
administrators are responsible for providing VM Classes and
VM Images for the DevOps engineers to choose from, as well
as managing resource allocations to self-service provisioned
VMs.

175

VMware vSphere Automation SDKs Programming Guide

Term Description

Self-Service Namespace vSphere administrators can activate the Self-Service
Namespace service on a Supervisor and create namespace
templates for DevOps engineers to create a vSphere
Namespace themselves.

vSphere Zones vSphere Zones provide high availability against clusters-level
failures to workloads deployed on vSphere with Tanzu. You
can configure a three-zone Supervisor mapped to three
vSphere clusters or a one-zone Supervisor mapped to a
single vSphere cluster. In a single cluster deployment, the high
availability is provided by vSphere HA and is only on a host
level.

vSphere with Tanzu Components and Services

Before you can automate some of the administrative tasks for using vSphere with Tanzu, you
must first familiarize yourself with the high-level system architecture and components involved.

The vSphere with Tanzu API consists of two packages, namespace management and namespaces.
In the namespace management package, you can find APIs for enabling a vSphere cluster with
vSphere with Tanzu, configuring the network and storage policies of the Supervisor, upgrading a
cluster to the desired version of vSphere with Tanzu, and so on. In the namespaces package, you
can find APIs for creating, configuring, and deleting a vSphere Namespace, and also for setting
the necessary permissions for accessing the namespace.

Figure 11-1. Services and Components Involved in Using vSphere with Tanzu

1 VvSphere with
1 Tanzu Services |

Virtual Virtual

Machine | Machine
Image Class
Virtual Machine

vSphere vSphere Tanzu . vSphere
Pod Pod Kubernetes Cluster) Pod

Enable Mraeond | Vitual | Virtual | Virtual | Virtual
vSphere Supervisor | Machine | | Machine | | Machine | | Machine
with Tanzu Namespace Class | ! Class | ! Class | ! Class
on a vSphere P [[[[
Cluster Supervisor Namespace / Supervisor Namespace / Supervisor Namespace / Supervisor Namespace /
o Instances Instances Instances Instances
()]

vSphere
Admin

Virtual Machine
Classes Service

Virtual Machine
Classes Service

Supervisor Cluster / Clusters Supervisor Cluster / Clusters

Create

and Manage
Kubernetes
Clusters

Create a
Supervisor
Cluster

vSphere Cluster

Postgres DB

vCenter Server

The vSphere Kubernetes Services component runs on vCenter Server and communicates the
vSphere admin requests to the Supervisor control plane. The component comprises of several
services which vSphere Automation endpoints you can use to enable vSphere with Tanzu on a
vSphere cluster and create Kubernetes workloads.

VMware, Inc. 176

VMware vSphere Automation SDKs Programming Guide

You can use the Cluster Compatibility service to query a vCenter Server instance about the
available clusters that meet the requirements for enabling vSphere with Tanzu.

You can use the Clusters service to enable or disable vSphere with Tanzu on a cluster. You can
also reconfigure the settings of a Supervisor.

You can use the Instances service to create, edit, and delete a vSphere Namespace from a
Supervisor. You can also change all or some of the settings of an existing namespace.

Starting with vSphere 7.0 Update 1, a Supervisor backed by a vSphere Distributed Switch uses
the HAProxy load balancer to provide connectivity to DevOps and external service. The Load
Balancer service represents the user provisioned load balancers.

Starting with vSphere 7.0 Update 2a, vSphere administrators can use the VM Service
functionality to enable DevOps engineers to deploy and run VMs and containers in one shared
Kubernetes environment through a single Kubernetes native interface. Use the vSphere with
Tanzu APIs to define VM Classes and content libraries to allocate resources to virtual machines
provisioned by DevOps engineers.

As of vSphere 7.0 Update 2a, vSphere administrators can also configure a vSphere Namespace
as a template on a cluster. Then the DevOps engineers can use it to self-service the creation of
vSphere Namespaces and deploy workloads within them.

Configuring and Managing a Supervisor

You use the clusters service to enable and disable a Supervisor, or edit the configuration of an
existing Supervisor. The Clusters service is provided within the namespace management package.

You can enable a vSphere cluster to manage Kubernetes workload objects, only after you enable
vSphere DRS in a fully automated mode and enable HA on the cluster.

Before you enable a vSphere with Tanzu on a vSphere cluster, you must prepare your
environment to meet the specific networking, storage, and infrastructure requirements. See the
Installing and Configuring vSphere with Tanzu documentation.

For more information about how to configure the storage settings to meet the requirements of
vSphere with Tanzu, see Creating Storage Policies for vSphere with Tanzu.

For more information about how to configure the networking settings for Supervisors that are
configured with the VMware NSX-T™ Data Center as the networking stack, see Configuring NSX
for vSphere with Tanzu.

Starting with vSphere 7.0 Update 1, you can enable a Supervisor with vSphere networking or
NSX-T Data Center, to provide connectivity between control planes, services, and workloads.

A Supervisor that is configured with vSphere networking uses a vSphere Distributed Switch to
provide connectivity to Kubernetes workloads and control planes. The cluster also requires a
third-party load balancer that provides connectivity to DevOps users and external services. You
can install in your vSphere environment the HAProxy load balancer implementation that VMware
provides. See Configuring the vSphere Networking Stack for vSphere with Tanzu and Installing
and Configuring the HAProxy Load Balancer.

VMware, Inc. 177

VMware vSphere Automation SDKs Programming Guide

Staring with vSphere 7.0 Update 2, if you are using vSphere networking, you can use the
VMware NSX® Advanced Load Balancer™ to support Tanzu Kubernetes clusters provisioned
by the Tanzu Kubernetes Grid. See Using the NSX Advanced Load Balancer with vSphere
Networking.

Persistent Storage in vSphere with Tanzu

Some Kubernetes workloads use persistent storage to store data permanently. vSphere with
Tanzu integrates with Cloud Native Storage (CNS) to provision persistent storage.

To understand how vSphere with Tanzu uses persistent storage, refer to the vSphere with Tanzu
Concepts and Planning and vSphere Storage documentations.

Creating Storage Policies for vSphere with Tanzu

Before you enable vSphere with Tanzu, you must set up the storage to provision the Kubernetes
infrastructure. You achieve this task by creating storage policies to be used in the Supervisor and
namespaces.

To automate the creation of a tag-based storage policy, use the VMware® vSphere Management
SDK. For more information about how to create a tag-based storage policy through the Web
Services API, see the VMware Storage Policy SDK Programming Guide and vSphere Web
Services SDK Programming Guide documentations.

Optionally, you can use the vSphere Automation APIs to create and add a tag to the datastore.
See the Chapter 10 vSphere Tag Service chapter. Currently, you can create a tag-based storage
policy only through the Web Services APIs.

Use the vSphere Automation APIs to retrieve the default storage policy of a specific datastore
by calling the get (datastore 1D) function of the com.vmware.vcenter.datastore.DefaultPolicy
service. You can also retrieve commonly used information about the storage policies available in
the vCenter Server instance by calling the 1ist () function of the policies service.

You can use the storage policies retrieved through the vSphere Automation APIs to perform the
following tasks:

m Assign the storage policies to the Supervisor. The storage policies set within the Supervisor
enable specification ensure that the Supervisor control plane, the ephemeral disks of all
vSphere Pods, and the container images are placed on the datastores that the policies
represent. See Configuring NSX for vSphere with Tanzu.

m Assign the storage policies to the vSphere Namespace. The storage policies associated with
a namespace determine which datastores the namespace can access and use for persistent
volumes for the vSphere Pod and the pods inside a Tanzu Kubernetes cluster. See Create a
vSphere Namespace.

Enabling ReadWriteMany Support

You can enable the ReadWriteMany support in vSphere with Tanzu and allow multiple pods and
applications to mount simultaneously a single persistent volume.

VMware, Inc. 178

VMware vSphere Automation SDKs Programming Guide

In vSphere 7.0 Update 3, only Tanzu Kubernetes clusters support persistent volumes in
ReadWriteMany mode. When you enable file volume support for vSphere with Tanzu, be aware
of the potential security weaknesses:

m The volumes are mounted without encryption. The unencrypted data might be accessed
while the data transits the network.

m Access Control List (ACL) is used for the file shares to isolate file share access within a
supervisor namespace. It might have risk of IP spoofing.

Follow these guidelines for networking:

m Make sure the vSAN File Services is routable from the Workload network and there is no NAT
between the Workload network and vSAN File Services IP addresses.

m Use common DNS server for vSAN File Services and the vSphere cluster.

m If your vSphere with Tanzu has NSX networking, use the SNAT IP of the Supervisor
namespace and the SNAT IP of the Tanzu Kubernetes cluster for ACL configuration.

m If you have vSphere with Tanzu with vSphere Distributed Switch (VDS) networking, use the
Tanzu Kubernetes cluster VM IP or the IP of the Supervisor namespace for ACL configuration.

Before you activate the file volume support on a Supervisor, you must set up a vSAN cluster
with enabled vSAN File Service. To configure a VSAN cluster with enabled vSAN File Service

in the vSphere Client, see the Configure File Services topic in the Administering VMware vSAN
documentation. For more information about how to programmatically achieve this task, see the
VSAN SDKs Programming Guide documentation.

You activate the ReadWriteMany support on a cluster when you enable vSphere with Tanzu

on it, or reconfigure an existing Supervisor. See Enable vSphere with Tanzu on a Cluster with
NSX as the Networking Stack, Enable vSphere with Tanzu on a Cluster with the vSphere
Networking Stack, and Reconfiguring a Supervisor. Pass the list of vSAN clusters to be used

for provisioning file volumes by using the setCnsFileConfig (CNSFileConfig cnsFileConfig)Java
method . Currently, you can use only the current vSphere cluster for provisioning file volumes if it
is a VSAN cluster with enabled vSAN File Service.

To deactivate the persistent volumes support on a Supervisor, pass an empty list when you
set the Cloud Native Storage persistent storage support for the cluster. After that existing
ReadWriteMany persistent volumes provisioned in the cluster remain unaffected and usable.

Supervisor Networking

You can enable a Supervisor with vSphere networking or NSX to provision connectivity to
Kubernetes control planes, services, and workloads.

A Supervisor that uses the vSphere networking stack is backed by a vSphere Distributed Switch
and requires a load balancer to provide connectivity to DevOps users and external services. The
NSX Advanced Load Balancer and the HAProxy load balancers are supported for vSphere 7.0
Update 2.

VMware, Inc. 179

VMware vSphere Automation SDKs Programming Guide

A Supervisor that is configured with NSX, uses the software-based networks of the solution and
an NSX Edge load balancer to provide connectivity to external services and DevOps users.

Configuring NSX for vSphere with Tanzu

vSphere with Tanzu requires specific networking configuration to allow you to connect to the
Supervisors, vSphere Namespaces, and all objects that run inside the namespaces.

Follow the instructions for installing and configuring the NSX for managing Kubernetes workloads
documented in the /nstalling and Configuring vSphere with Tanzu guide.

First, you need to create a vSphere Distributed Switch and a distributed port group for each
NSX Edge uplink. To automate this step, use the Web Services APIs as described in the vSphere
Web Services SDK Programming Guide. Then, you can use the NSX REST APIs to add a compute
manager, create transport zones, and perform other steps required for configuring the NSX for
vSphere with Tanzu.

Configuring the vSphere Networking Stack for vSphere with Tanzu

To configure a Supervisor with the vSphere networking stack, you must connect all hosts from

the cluster to a vSphere Distributed Switch. Depending on your topology, you must create one
or more distributed port groups on the switch and configure them as workload networks to the
vSphere Namespaces on the cluster.

Workload networks provide connectivity to the nodes of Tanzu Kubernetes clusters and to the
Supervisor control planes. The workload network that provides connectivity to Supervisor control
planes is called primary workload network. Each Supervisor must have one primary workload
network represented by a distributed port group.

The Supervisor control planes on the cluster use three IP addresses from the IP address range
that is assigned to the primary workload network. Each node of a Tanzu Kubernetes cluster has a
separate IP address assigned from the address range of the workload network that is configured
with the namespace where the Tanzu Kubernetes cluster runs.

To create a vSphere Distributed Switch and port groups for configuring the vSphere networking
stack of a Supervisor, you can use the vSphere Web Services APIs as described in the vSphere
Web Services SDK Programming Guide documentation. When you create a distributed virtual
switch, vCenter Server automatically creates one distributed virtual port group. You can use this
port group as the primary workload network and use it to handle the traffic for the Supervisor
control planes. Then you can create as many distributed port groups for the workload networks
as your topology requires. For a topology with one isolated workload network, create one
distributed port group that you will use as a network for all namespaces on the Supervisor.

For a topology with isolated networks for each vSphere Namespace, create the same number of
distributed port groups as the number of namespaces.

To list all workload networks available for a Supervisor and retrieve information
about the configuration of a specific workload network, use the Networks
service from the vSphere Automation APIs. To associate a vSphere Distributed
port group to a workload network, set the necessary information through the

VMware, Inc. 180

VMware vSphere Automation SDKs Programming Guide

setVsphereNetwork (NetworksTypes.VsphereDVPGNetworkSetSpec vsphereNetwork) parameter of
the workload network setspec object. Use the NetworksTypes.VsphereDVPGNetworkSetSpec class
to describe the configuration or retrieve information about the current configuration of the
vSphere Distributed port group of a specific workload network.

If you want to retrieve a list of the distributed switches compatible with vSphere with Tanzu on a
vCenter Server system, use the DistributedSwitchCompatibility service and filter the available
switches by using VSPHERE_NETWORK as the networking provider.

Installing and Configuring the HAProxy Load Balancer

You can use the vSphere Automation APIs to customize the HAProxy control plane VM after you
install the HAProxy in your vSphere with Tanzu environment.

If you use the vSphere networking stack in your vSphere with Tanzu environment, you need to
supply your own load balancer. You can use the open source implementation of the HAProxy
load balancer that VMware provides.

For more information about the prerequisites for installation and the deployment procedure
through the vSphere Client, see the /nstalling and Configuring vSphere with Tanzu
documentation.

You can use the vSphere Automation APIs to install and configure the HAProxy load balancer.
You can download the latest version of the HAProxy OVA file from the VMware-HAProxy site to
a content library item. For more information about how to achieve this task, see Upload an OVF
or OVA Package from a Local File System to a Library Item . Then you can create a new VM from
the OVA template in the content library as described in Deploy a Virtual Machine or vApp from
an OVF Template in a Content Library.

To configure the HAProxy load balancer, call the set (String cluster, String

id, LoadBalancersTypes.SetSpec spec) and pass the configuration through the
LoadBalancersTypes.SetSpec object. The load balancer specification takes as a setting a
LoadBalancers.HAProxyConfigCreateSpec instance that captures the runtime configuration of the
HAProxy load balancer. You must set the following configuration parameters to the HAProxy
load balancer configuration specification:

Parameter Description

setServers (List<LoadBalancersTypes.Server> servers) A list of servers that represent the endpoints for
configuring the HAProxy load balancers. Each endpoint is
described by a load balancer IP address and a Data Plane
API management port.

Each endpoint must be described with the port on the
HAProxy VM on which the Data Plane API service listens.
The Data Plane API service controls the HAProxy server
and runs inside the HAProxy VM. The default port is 5556.
Port 22is reserved for SSH.

setUsername (String username) The administrator user name that is configured with the
HAProxy OVA file and is used to authenticate to the
HAProxy Data Plane API server.

VMware, Inc. 181

https://github.com/haproxytech/vmware-haproxy#download

VMware vSphere Automation SDKs Programming Guide

Parameter Description

setPassword (char[] password) The password for the administrator user name.

setCertificateAuthorityChain (String The certificate in PEM format that is signed or is a trusted

certificateAuthorityChain) root of the server certificate that the Data Plane API server
presents.

Using the NSX Advanced Load Balancer with vSphere Networking

If you use the vSphere networking stack for workload management, you can install and configure
the NSX Advanced Load Balancer, also known as Avi Load Balancer, Essentials Edition, to
support the Tanzu Kubernetes clusters.

For more information about how to install and configure the NSX Advanced Load
Balancerthrough the vSphere Client, see the /nstalling and Configuring vSphere with Tanzu
documentation.

You can use the vSphere Automation APIs to deploy the Avi Controller on your vSphere
Management network. You can upload the latest version of the NSX Advanced Load Balancer
to a library item from your local file system or from a URL. For more information about how to
achieve this task, see Upload an OVF or OVA Package from a Local File System to a Library
Iltem . Then you can deploy the Controller VM on your vSphere Management network from the
OVA template in the content library as described in Deploy a Virtual Machine or vApp from an
OVF Template in a Content Library.

To configure the NSX Advanced Load Balancer settings, create a
LoadBalancers.AviConfigCreateSpec instance and use the following parameters.

Parameter Description

setServer (LoadBalancersTypes.Server server) The address of the Avi Controller that is used to configure
virtual services.

setUsername (java.lang.String username) The administrator user name that is used for accessing the
Controller VM of the NSX Advanced Load Balancer.

setPassword (char[] password) The password for the administrator user name.
setCertificateAuthorityChain(java.lang.String The certificate in PEM format that is used by the Controller.
certificateAuthorityChain) You can use the certificate that you assigned during the

configuration of the NSX Advanced Load Balancer.

Enable vSphere with Tanzu on a Cluster with NSX as the Networking
Stack

Through the vSphere Automation APIs, you can enable a vSphere cluster for managing
Kubernetes workloads. A cluster configured with NSX supports running vSphere Pod and Tanzu
Kubernetes clusters.

To enable a vSphere cluster for Kubernetes workload management, you use the services under
the namespace management package.

VMware, Inc. 182

VMware vSphere Automation SDKs Programming Guide

Prerequisites

Verify that your environment meets the system requirements for enabling vSphere with
Tanzu on the cluster. For more information about the requirements, see the vSphere with
Tanzu Concepts and Planning documentation.

Verify that the NSX is installed and configured. See Configuring NSX for vSphere with Tanzu.

Create storage policies for the placement of pod ephemeral disks, container images, and
Supervisor control plane cache.

Verify that DRS is enabled in fully automated mode and HA is also enabled on the cluster.

Configure shared storage for the cluster. Shared storage is required for vSphere DRS, HA,
and storing persistent volumes of containers.

Verify that the user who you use to access the vSphere Automation services has the Modify
cluster-wide configuration privilege on the cluster.

Create a subscribed content library on the vCenter Server system to accommodate the VM
image that is used for creating the nodes of the Tanzu Kubernetes clusters.

Procedure

1

Retrieve the IDs of the tag-based storage policies that you configured for vSphere with
Tanzu.

Use the policies service to retrieve a list of all storage policies and then filter the policies to
get the IDs of the policies that you configured for the Supervisor.

Retrieve the IDs of the vSphere Distributed Switch and the NSX Edge cluster that you created
when configuring the NSX for vSphere with Tanzu.

Use the pistributedSwitchCompatibility service to list all vSphere Distributed Switches
associated with the specific vSphere cluster and then retrieve the ID of the Distributed

Switch that you configured to handle overlay networking for the Supervisor. Use the
EdgeClusterCompatibility Sservice to retrieve a list of the created NSX Edge clusters for the
specific vSphere cluster and associated with the specific vSphere Distributed Switch. Retrieve
the ID of the NSX Edge cluster that has the tier-O gateway that you want to use for the
namespaces networking.

Retrieve the ID of the port group for the management network that you configured for the
management traffic.

Use the Networks service to list the visible networks available on the vCenter Server instance
that match some criteria and then retrieve the ID of the management network you previously
configured.

VMware, Inc. 183

VMware vSphere Automation SDKs Programming Guide

4 Create a clustersTypes.EnableSpec instance and define the parameters of the Supervisor
that you want to create.

You must specify the following required parameters of the enable specification:

m Storage policies settings and file volume support. The storage policy you set for each of
the following parameters ensures that the respective object is placed on the datastore
referenced in the storage policy. You can use the same or different storage policy for the
different inventory objects.

Parameter Description

setEphemeralStoragePolicy (java.lang.String Specify the ID of the storage policy that you created
ephemeralStoragePolicy) to control the storage placement of the vSphere Pods.
setImageStorage (ClustersTypes.ImageStorageSpec Set the specification of the storage policy that you
imageStorage) created to control the placement of the cache of

container images.

setMasterStoragePolicy(java.lang.String Specify the ID of the storage policy that you created
masterStoragePolicy) to control the placement of the Supervisor control
plane cache.

Optionally, you can activate the file volume support by using
setCnsFileConfig (CNSFileConfig cnsFileConfig). See Enabling ReadWriteMany
Support.

VMware, Inc. 184

VMware vSphere Automation SDKs Programming Guide

Management network settings. Configure the management traffic settings for the

Supervisor control plane.

Parameter

setNetworkProvider (ClustersTypes.NetworkProvider

networkProvider)

setMasterManagementNetwork (ClustersTypes.Network

Spec masterManagementNetwork)

setMasterDNS (java.util.List<java.lang.String>

masterDNS)

VMware, Inc.

Description

Specify the networking stack that must be used
when the Supervisor is created. To use the NSX
as the network solution for the cluster, select
NSXT CONTAINER PLUGIN.

Enter the cluster network specification for the
Supervisor control plane. You must enter values for
the following required properties:

B setNetwork(java.lang.String network)- Use the
management network ID retrieved in Step 3.

B setMode (ClustersTypes.NetworkSpec. Ipv4Mode
mode) - Set STATICRANGE or DHCP for the IPv4
address assignment mode. The pHCcP mode allows
an IPv4 address to be automatically assigned
to the Supervisor control plane by a DHCP
server. You must also set the floating IP address
used by the HA primary cluster by using
setFloatingIP(java.lang.String floatingIP).
Use the DHCP mode only for test purposes. The
STATICRANGE mode, allows the Supervisor control
plane to have a stable IPv4 address. You can use it
in a production environment.

B setAddressRange (ClustersTypes.Ipv4Range
addressRange) - Optionally, you can configure the
IPv4 addresses range for one or more interfaces
of the management network. Specify the following
settings:

B The starting IP address that must be used
for reserving consecutive IP addresses for
the Supervisor control plane. Use up to 5
consecutive IP addresses.

m The number of IP addresses in the range.

m The IP address of the gateway associated with
the specified range.

® The subnet mask to be used for the
management network.

Enter a list of the DNS server addresses that must
be used from the Supervisor control plane. If your
vCenter Server instance is registered with an FQDN,
you must enter the IP addresses of the DNS servers
that you use with the vSphere environment so that
the FQDN is resolvable in the Supervisor. The list

of DNS addresses must be specified in the order of
preference.

185

VMware vSphere Automation SDKs Programming Guide

Parameter

setMasterDNSSearchDomains (java.util.List<java.la

ng.String> masterDNSSearchDomains)

setMasterNTPServers (java.util.List<java.lang.Str

ing> masterNTPServers)

VMware, Inc.

Description

Set a list of domain names that DNS searches when
looking up for a host name in the Kubernetes API
server. Order the domains in the list by preference.

Specify a list of IP addresses or DNS names of the
NTP server that you use in your environment, if any.
Make sure that you configure the same NTP servers
for the vCenter Server instance, all hosts in the cluster,
the NSX, and vSphere with Tanzu. If you do not set

an NTP server, VMware Tools time synchronization is
enabled.

186

VMware vSphere Automation SDKs Programming Guide

m Workload network settings. Configure the settings for the networks for the namespaces.
The namespace network settings provide connectivity to vSphere Pods and namespaces

created in the Supervisor.

Parameter

setNcpClusterNetworkSpec (ClustersTypes.NCPCluste

rNetworkEnableSpec ncpClusterNetworkSpec)

VMware, Inc.

Description

Set the specification for the Supervisor configured

with the NSX networking stack. Specify the following

cluster networking configuration parameters for

NCPClusterNetworkEnableSpec

setClusterDistributedSwitch (java.lang.String
clusterDistributedSwitch) - The vSphere
Distributed Switch that handles overlay networking
for the Supervisor.

setNsxEdgeCluster (java.lang.String
nsxEdgeCluster)- The NSX Edge cluster that
has tier-O gateway that you want to use for
namespace networking.

setNsxTierOGateway (java.lang.String
nsxTierOGateway) - The tier-O gateway that is
associated with the cluster tier-1gateway. You
can retrieve a list of NSXTierOGateway Objects
associated with a particular vSphere Distributed
Switch and determine the ID of the tier-O gateway
you want to set.

setNamespaceSubnetPrefix (java.lang.Long
namespaceSubnetPrefix)- The subnet prefix that
defines the size of the subnet reserved for
namespaces segments. Default is 28.

setRoutedMode (java.lang.Boolean routedMode) -
The NAT mode of the workload network. If set to

false:

m The IP addresses of the workloads are directly
accessible from outside the tier-o gateway
and you do not need to configure the egress
CIDRs.

m File Volume storage is not supported.
Default is true.

setEgressCidrs (java.util.List<Ipv4Cidr>
egressCidrs) - The external CIDR blocks from
which the NSX Manager assigns IP addresses
used for performing source NAT (SNAT) from
internal vSphere Pods IP addresses to external IP
addresses. Only one egress IP address is assigned
for each namespace in the Supervisor. These IP
ranges must not overlap with the IP ranges of

the vSphere Pods, ingress, Kubernetes services, or
other services running in the data center.
setIngressCidrs (java.util.List<Ipv4Cidr>
ingressCidrs) - The external CIDR blocks from
which the ingress IP range for the Kubernetes
services is determined. These IP ranges are used

187

VMware vSphere Automation SDKs Programming Guide

Parameter Description

for load balancer services and Kubernetes ingress.
All Kubernetes ingress services in the same
namespace share a common IP address. Each load
balancer service is assigned a unique IP address.
The ingress IP ranges must not overlap with the IP
ranges of the vSphere Pods, egress, Kubernetes
services, or other services running in the data
center.

B setPodCidrs(java.util.List<Ipv4Cidr>
podcidrs) - The internal CIDR blocks from which
the IP ranges for vSphere Pods are determined.
The IP ranges must not overlap with the IP ranges
of the ingress, egress, Kubernetes services, or
other services running in the data center. All
vSphere Pods CIDR blocks must be of at least /23

subnet size.
setWorkerDNS (java.util.List<java.lang.String> Set a list of the IP addresses of the DNS servers
workerDNS) that must be used on the worker nodes. Use different

DNS servers than the ones you set for the Supervisor
control plane.

setServiceCidr (Ipv4Cidr serviceCidr) Specify the CIDR block from which the IP addresses
for Kubernetes services are allocated. The IP range
must not overlap with the ranges of the vSphere Pods,
ingress, egress, or other services running in the data
center.

For the Kubernetes services and the vSphere Pods,
you can use the default values which are based on the
cluster size that you specify.

m Supervisor size. You must set a size to the Supervisor which affects the resources
allocated to the Kubernetes infrastructure. The cluster size also determines default
maximum values for the IP addresses ranges for the vSphere Pods and Kubernetes
services running in the cluster. You can use the clusterSizeInfo.get () calls to retrieve
information about the default values associated with each cluster size.

m Optional. Associate the Supervisor with the subscribed content library that you created
for provisioning Tanzu Kubernetes clusters. See Creating, Securing, and Synchronizing
Content Libraries for Tanzu Kubernetes Releases.

To set the library, use

the setDefaultKubernetesServiceContentLibrary (java.lang.String
defaultKubernetesServiceContentLibrary) method and pass the subscribed content
library ID.

5 Enable vSphere with Tanzu on a specific cluster by passing the cluster enable specification to
the clusters service.

VMware, Inc. 188

VMware vSphere Automation SDKs Programming Guide

Results

A task runs on vCenter Server for turning the cluster into a Supervisor. Once the task completes,
Kubernetes control plane nodes are created on the hosts that are part of the cluster enabled with
vSphere with Tanzu. Now you can create vSphere Namespaces.

What to do next

Create and configure namespaces on the Supervisor. See Create a vSphere Namespace.

Java Example of Enabling vSphere with Tanzu on a Cluster with NSX-T
Networking

This example enables vSphere with Tanzu on a cluster that has NSX-T configured as the
networking stack.

The following code snippet is part of the EnableSupervisorCluster.java sample. Some parts of
the original code sample are omitted to save space. You can view the complete and up-to-date
version of this sample in the vsphere-automation-sdk-java VMware repository at GitHub.

(oo0o)
@Override
protected void run() throws Exception {

System.out.println ("We are building the Spec for enabling vSphere supervisor

cluster");

ClustersTypes.EnableSpec spec = new ClustersTypes.EnableSpec();
(oo0o)

spec.setSizeHint (SizingHint.TINY) ;

(oo0o)

spec.setServiceCidr (serCidr) ;

spec.setNetworkProvider (ClustersTypes.NetworkProvider .NSXT CONTAINER PLUGIN) ;
(oo0o)

spec.setNcpClusterNetworkSpec (NCPSpec) ;

(oo0o)

spec.setMasterManagementNetwork (masterNet) ;

(oo0o)

spec.setMasterDNS (masterDNS) ;

(oo0o)

spec.setWorkerDNS (workerDNS) ;

(oo0o)

spec.setMasterNTPServers (NTPserver) ;

spec.setMasterStoragePolicy (this.storagePolicyId); // Storage policy identifier
spec.setEphemeralStoragePolicy (this.storagePolicyId);// Storage policy identifier
spec.setLoginBanner ("This is your first Project pacific cluster");

(oo0o)

spec.setImageStorage (imageSpec) ;

this.ppClusterService.enable (clusterId, spec);

System.out.println("Invocation is successful for enabling vSphere supervisor cluster,
check H5C");

VMware, Inc. 189

VMware vSphere Automation SDKs Programming Guide

Enable vSphere with Tanzu on a Cluster with the vSphere
Networking Stack

Starting with vSphere 7.0 Update 1, you can select between creating a Supervisor with

the vSphere networking stack or with NSX as the networking solution. A Supervisor that is
configured with the vSphere networking stack only supports Tanzu Kubernetes clusters. vSphere
Pods are not supported.

To enable a cluster configured with the vSphere networking stack for Kubernetes workloads
management, you must use the services under the namespace management package.

Prerequisites

m Verify that your environment meets the system requirements for enabling vSphere with
Tanzu on the cluster. For more information about the requirements, see the documentation.

m Verify that DRS is enabled in fully automated mode and HA is also enabled on the cluster.

m Configure shared storage for the cluster. Shared storage is required for vSphere DRS, HA,
and storing persistent volumes of containers.

m Create storage policies for the placement of Kubernetes control planes.

m Create a subscribed content library on the vCenter Server system to accommodate the VM
image that is used for creating nodes of Tanzu Kubernetes clusters. See Creating, Securing,
and Synchronizing Content Libraries for Tanzu Kubernetes Releases.

m Add all hosts from the cluster to a vSphere Distributed Switch and create port groups for
workload networks. See Configuring the vSphere Networking Stack for vSphere with Tanzu.

m Configure an HAProxy load balancer instance that is routable to the vSphere Distributed
Switch that is connected to the hosts from the vSphere cluster.

m Verify that the user who you use to access the vSphere Automation services has the
Namespaces.Manage privilege on the cluster.

Procedure
1 Retrieve the ID of the cluster which hosts were added to the vSphere Distributed Switch.

Use the ClusterCompatibility service to filter the clusters by using their network providers.
To retrieve a list of all clusters in the vCenter Server system which are configured with

the vSphere networking stack, set the network provider in the filter specification to

VSPHERE NETWORK.

2 Retrieve the IDs of the tag-based storage policies that you configured for vSphere with
Tanzu.

Use the policies service to retrieve a list of all storage policies and then filter the policies to
get the IDs of the policies that you configured for the Supervisor.

VMware, Inc. 190

VMware vSphere Automation SDKs Programming Guide

3 Retrieve the ID of the port group for the management network that you configured for the
management traffic.

To list the visible networks available on the vCenter Server instance that match some criteria
and then retrieve the ID of the management network you previously configured, use the

Networks Service.

4 Create a Supervisor enable specification and define the parameters of the Supervisor that

you want to enable.

You must specify the following required parameters of the enable specification:

Supervisor size. You must set a size to the Supervisor which affects the resources
allocated to the Kubernetes infrastructure. The cluster size also determines default
maximum values for the IP addresses ranges for the vSphere Pod and Kubernetes
services running in the cluster. You can use the clusterSizeInfo.get () call to retrieve
information about the default values associated with each cluster size.

Storage policy settings and file volume support. To specify the ID of the storage policy
that you created to control the placement of the Supervisor control plane cache, use the
setMasterStoragePolicy (java.lang.String masterStoragePolicy) method. Optionally,
you can activate the file volume support by using the setCnsFileConfig (CNSFileConfig
cnsFileConfig) method. See Enabling ReadWriteMany Support.

Load balancer. To specify the user-provisioned load balancer configuration

for the cluster, use the setLoadBalancerConfigSpec (LoadBalancersTypes.ConfigSpec
loadBalancerConfigSpec) parameter of the enable specification. You must specify the
following parameters of the LoadBalancersTypes.ConfigSpec specification:

Parameter Description

setId(java.lang.String id) A user-friendly name of the load balancer. The name
must be an alphanumeric string with a maximum
length of 63 characters which is unique across the
namespaces in the vCenter Server instance.

setProvider (LoadBalancersTypes.Provider The type of the load balancer that you want to use. In

provider) vSphere 7.0 Update 2, you can choose between the
HAProxy load balancer and the NSX Advanced Load
Balancer. Pass as a value to this parameter one of the
following constants: HA PROXY Or AVI.

setAddressRanges (java.util.List<IPRange> The IP address ranges in CIDR format from which

addressRanges) HAProxy allocates the IP addresses for the virtual
servers. You must provide at least one IP range which
is reserved by HAProxy. The CIDR range specified with
this parameter must not overlap with the IPs allocated
for the Kubernetes control planes and workloads. The
IP range that you configure must be on a separate
subnet.

VMware, Inc. 191

VMware vSphere Automation SDKs Programming Guide

Parameter

setHaProxyConfigCreateSpec (LoadBalancersTypes.HA

ProxyConfigCreateSpec haProxyConfigCreateSpec)

setAviConfigCreateSpec (LoadBalancersTypes.AviCon

figCreateSpec aviConfigCreateSpec)

Description

The HAProxy runtime configuration. See Installing and
Configuring the HAProxy Load Balancer.

The NSX Advanced Load Balancer configuration. See
Using the NSX Advanced Load Balancer with vSphere
Networking.

Management network settings. Configure the network parameters for the Kubernetes

control planes.

Parameter

setNetworkProvider (ClustersTypes.NetworkProvider

networkProvider)

setMasterManagementNetwork (ClustersTypes.Network

Spec masterManagementNetwork)

setMasterDNS (java.util.List<java.lang.String>

masterDNS)

setMasterDNSSearchDomains (java.util.List<java.la

ng.String> masterDNSSearchDomains)

setMasterNTPServers (java.util.List<java.lang.Str

ing> masterNTPServers)

VMware, Inc.

Description

Specify the networking stack that must be used when
the Supervisor is created. To use the vSphere network
as the solution for the cluster, select VSPHERE NETWORK.

Enter the cluster network specification for the
Supervisor control plane. You must enter values for
the following required properties:

B setNetwork(java.lang.String network)- Use the
management network ID retrieved in Step 3.

B setMode (ClustersTypes.NetworkSpec.Ipv4Mode
mode) - Set STATICRANGE or DHCP for the IPv4
address assignment mode. The pHCcP mode allows
an IPv4 address to be automatically assigned
to the Supervisor control plane by a DHCP
server. You must also set the floating IP address
used by the HA primary cluster by using
setFloatingIP(java.lang.String floatingIP).
Use the DHCP mode only for test purposes. The
STATICRANGE mode, allows the Supervisor control
plane to have a stable IPv4 address and can be
used in a production environment.

Enter a list of the DNS server addresses that must
be used from the Supervisor control plane. If your
vCenter Server instance is registered with an FQDN,
you must enter the IP addresses of the DNS servers
that you use with the vSphere environment so that
the FQDN is resolvable in the Supervisor. The list

of DNS addresses must be specified in the order of
preference.

Set a list of domain names that DNS searches inside
the Kubernetes control plane nodes, so that the DNS
server can resolve them. Order the domains in the list
by preference.

Specify a list of IP addresses or DNS names of the NTP
server that you use in your environment, if any. Make
sure that you configure the same NTP servers for the
vCenter Server instance, all hosts in the cluster, and
vSphere with Tanzu. If you do not set an NTP server,
VMware Tools time synchronization is enabled.

192

VMware vSphere Automation SDKs Programming Guide

m Workload network settings. Configure the settings for the network that will handle the
networking traffic for Kubernetes workloads running on the Supervisor.

Parameter

setServiceCidr (Ipv4Cidr serviceCidr)

setWorkloadNetworksSpec (ClustersTypes.WorkloadNe

tworksEnableSpec workloadNetworksSpec)

VMware, Inc.

Description

Specify the CIDR block from which the IP addresses
for Kubernetes services are allocated. The IP range
must not overlap with the ranges of the vSphere Pods,
ingress, egress, or other services running in the data
center.

For the Kubernetes services and the vSphere Pods,
you can use the default values which are based on the
cluster size that you specify.

Enter the workload networks specifications for

the cluster. To configure the primary workload

network that is used to expose the Supervisor

control plane to DevOps and other workloads,

create a NetworksTypes.CreateSpec instance. Enter

the following parameters of the vSphere Distributed

Switch:

B setNetwork(java.lang.String network). The
name of the vSphere Distributed Switch that is
associated with the hosts in the cluster. The name
must be a unique alphanumeric string that does
not exceed 63 characters.

B setNetworkProvider (ClustersTypes.NetworkProvi
der networkProvider).Pass VSPHERE NETWORK as
value to this parameter.

B setVsphereNetwork (NetworksTypes.VsphereDVPGNe
tworkCreateSpec vsphereNetwork). Optionally, you
can create a
NetworksTypes.VsphereDVPGNetworkCreateSpec
instance to describe the configuration of the
namespace network backed by the vSphere
Distributed port group. You must define the
following parameters for the vSphere Distributed
port group specification:

B setPortgroup (java.lang.String portgroup).
Specify the port group that serves as the
primary network to the Supervisor.

B setAddressRanges (java.util.List<IPRange>
addressRanges). Set the IP range for allocating
IP addresses for the Kubernetes control planes
and workloads. You must use unique IP ranges
for each workload network.

B setGateway(java.lang.String gateway). Set
the gateway for the primary network.

B setSubnetMask(java.lang.String
subnetMask). Specify the subnet mask of the
network.

193

VMware vSphere Automation SDKs Programming Guide

m Content library settings. Add the subscribed content library that contains the VM images
for deploying the nodes of Tanzu Kubernetes clusters. See Creating, Securing, and
Synchronizing Content Libraries for Tanzu Kubernetes Releases.

To set the library, use setbDefaultKubernetesServiceContentLibrary (java.lang.String
defaultKubernetesServiceContentLibrary) and pass the subscribed content library ID.

5 Enable the Supervisor by passing the enable specification to the clusters service.

Results

A task runs on vCenter Server for enabling vSphere with Tanzu on the cluster. Once the task
completes, three Kubernetes control planes are created on the hosts that are part of the cluster.

What to do next

Create and configure namespaces on the Supervisor.

Upgrading a Supervisor

You can use the vSphere with Tanzu APIs to upgrade a single or a group of clusters to a specific
version.

vSphere with Tanzu supports rolling upgrades through the vSphere Automation APIs for
Supervisors and for the infrastructure supporting these clusters. This model ensures that there is
minimal downtime for the cluster workloads during the upgrade process.

To retrieve a list of all available vSphere with Tanzu upgrade versions for a specific vCenter
Server system, use the Cluster Available Versions service. You can get information about the
release version, name, description, release date, and release notes for each available upgrade.

You must use the Software Clusters service for upgrading a Supervisor. You can retrieve upgrade
information about all Supervisors enabled on a vCenter Server system by using the 1ist ()

Java method . You receive a list of basic upgrade-related information for each cluster, such

as the current software version, the date of the last successful upgrade, the upgrade status of
the cluster, and so on. In case some of the clusters are in the process of upgrading, you can
retrieve also information about their desired upgrade version. If you want to view a more detailed
upgrade-related information about a cluster, you must use the get (cluster ID) method.

After you view the details about the upgrade versions that you can apply on a single or multiple
Supervisors, you can create upgrade specifications that define the versions you want to upgrade
to. When you upgrade a batch of Supervisor and for some reason one of the clusters fails

to upgrade, you receive information about the pre-check exceptions that led to that cluster
upgrade failure.

Java Example of Upgrading a Supervisor

This example upgrades a Supervisor.

VMware, Inc. 194

VMware vSphere Automation SDKs Programming Guide

The following code snippet is part of the UpgradeSupervisorCluster.java sample. Some parts of
the original code sample are omitted to save space. You can view the complete and up-to-date
version of this sample in the vsphere-automation-sdk-java VMware repository at GitHub.

@Override

protected void run() throws Exception {

System.out.println ("We are building the Spec for upgrading vSphere supervisor
cluster");

com.vmware.vcenter.namespace management.software.ClustersTypes.UpgradeSpec spec = new
UpgradeSpec () ;

spec.setIgnorePrecheckWarnings (true) ;

spec.setDesiredVersion (this.desiredVersion);

this.wcpUpdateService.upgrade (clusterId, spec);

System.out.println (

"Invocation is successful for updating vSphere supervisor cluster, check H5C,
track the status using GET API");
}

Monitoring the Enable and Upgrade Supervisor Operations

When you run the Supervisor enable and upgrade operations, the status of the tasks is not
returned. Since these operations might be time-consuming but critical when automating second-
and third-party products with vSphere with Tanzu, you can write a logic to track the task status.

To monitor the status of the enable and upgrade Supervisor operations, use the
ClustersTypes.Info instance and query the Kubernetes and configuration status of the cluster.
Track the status every two minutes or so, until you receive READY for getKubernetesStatus () and
RUNNING for getConfigStatus (). These statuses indicate that the Supervisor reached the desired
configuration status and is ready for running Kubernetes workloads.

Reconfiguring a Supervisor

You can change some or all the predefined settings of a Supervisor through the vSphere
AutomationAPIs.

To update only some of the Supervisor settings, you must create an instance of UpdatesSpec and
pass it to the update (cluster ID, update spec) method. To reconfigure entirely the Supervisor,
you must create an instance of setSpec and pass it to the set (cluster ID, set spec) method.

The settings you can configure with the Updatespec and setspec specifications are the same as
the ones that you used for enabling the Supervisor. For example, you can change the storage
settings on the Supervisor. Note that the changes that you make to the storage settings after the
initial cluster configuration, apply only to the newly created Supervisor control planes.

Disabling a Supervisor

You can programmatically disable vSphere with Tanzu on a vSphere cluster by using the vSphere
Automation APIs.

VMware, Inc. 195

VMware vSphere Automation SDKs Programming Guide

When you deactivate a Supervisor, the vSphere Kubernetes Service forcefully deletes from

the cluster all objects and configurations part of the Kubernetes infrastructure. To deactivate
Kubernetes workloads on a cluster, call the disable (String cluster) operation of the clusters
service and pass as parameter the ID of the cluster on which you want to deactivate Kubernetes.

Content Libraries in vSphere with Tanzu

vSphere with Tanzu uses content libraries as centralized repositories for templates, VM images,
Tanzu Kubernetes release distributions, and other files related to their deployment.

Creating, Securing, and Synchronizing Content Libraries for Tanzu
Kubernetes Releases

VMware Tanzu distributes Kubernetes software versions as Tanzu Kubernetes releases. To
obtain and use these releases on your Tanzu Kubernetes clusters, you create subscribed or local
content libraries.

A Tanzu Kubernetes release provides the VMware Kubernetes distribution which can be used
with Tanzu Kubernetes clusters. Each Tanzu Kubernetes release is distributed as an OVA
package. The Tanzu Kubernetes Grid uses the OVA package to deploy the virtual machine nodes
for Tanzu Kubernetes clusters.

A Tanzu Kubernetes release is supported on Photon OS. The virtual machine nodes that are
built from the OV A package have a 16 GB disk size. You specify the CPU and RAM resource
reservations when you use a virtual machine class to size the Tanzu Kubernetes cluster.

Depending on your need for synchronization frequency and on the access to the published
content libraries storing the Tanzu Kubernetes releases, you can use two approaches for storing
Tanzu Kubernetes releases.

Note Starting with vSphere 7.0 Update 3, you can protect your content library by a security
policy. In such case, make sure that all library items are compliant. If a protected library includes a
mix of compliant and non-compliant library items, DevOps engineers are not able to retrieve the
list of VM images provided with the library.

Automated Synchronization of Tanzu Kubernetes Releases

VMware publishes a content library that contains the latest VMware distributions of Kubernetes
as an OVA package. If you want to provision Tanzu Kubernetes clusters, you can create a
subscribed content library on the vCenter Server instance where vSphere with Tanzu is enabled.
When configuring the content library subscription, use the following subscription URL of the
publisher : https://wp-content.vmware.com/v2/latest/lib.json. For more information about how to
create a subscribed content library, see Subscribe to a Content Library.

When you create the subscription, you configure the synchronization mechanism for
downloading the content of the published library. You can select between on demand and
automatic download of the virtual machine image for the Tanzu Kubernetes cluster nodes. If
you choose to synchronize the subscribed library on demand, only the metadata for the library

VMware, Inc. 196

https://wp-content.vmware.com/v2/latest/lib.json

VMware vSphere Automation SDKs Programming Guide

content is updated and as a result storage space is saved. This approach is an important
consideration as more images containing different Kubernetes versions are published. However,
the first time you decide to use a new virtual machine image version, you have to wait for it to
download.

Starting with vSphere 7.0 Update3, you can secure a subscribed content library. The Content
Library service verifies the library signing certificate during the synchronization process. If the
certificate verification fails, only the library metadata is synchronized and the library content
is not downloaded. For more information how to apply a security policy when you update a
subscribed content library, see Editing the Settings of a Content Library.

You associate the subscribed content library with the Supervisor on which you want to create
a Tanzu Kubernetes cluster, when you first enable vSphere with Tanzu on a cluster. See Enable
vSphere with Tanzu on a Cluster with NSX as the Networking Stack.

The size of the content library can grow over time as new Kubernetes versions and images are
published. If the underlying storage runs out of space, you will need to move to a new subscribed
content library. After you create a new subscribed content library that has sufficient capacity

for the target cluster, update the library association of the Supervisor. See Reconfiguring a
Supervisor.

Manual Synchronization of Tanzu Kubernetes Releases

In an air-gapped network environment, you can use the storing functionality provided by a local
content library for the needed Tanzu Kubernetes releases. You must first create a local content
library, then download the OVA package for each Tanzu Kubernetes release that you want to
import to the library. See Create a Local Content Library.

Starting with vSphere 7.0 Update3, you can secure a local content library. The Content Library
service verifies the library signing certificate during the synchronization process. If the certificate
verification fails, only the library metadata is synchronized and the library content is not
downloaded. For more information how to apply a security policy when you update a local
content library, see Editing the Settings of a Content Library.

You can find the latest versions of the Kubernetes distribution by navigating to the https://
wp-content.vmware.com/v2/latest URL. You must download the photon-ova.ovf and photon-
ova-diskl.vmdk for each distribution you want and then upload these files from your local file
system to your local content library. See Upload an OVF or OVA Package from a Local File
System to a Library Item .

Note Make sure that you use as a name for each library item the Photon image version
and the Kubernetes version from the directory where you downloaded the files. For example:
photon-3-k8s-v1.20.2---vmware.l-tkg.1.1d4£f79%a.

VMware, Inc. 197

https://wp-content.vmware.com/v2/latest
https://wp-content.vmware.com/v2/latest

VMware vSphere Automation SDKs Programming Guide

Creating and Managing Content Libraries for VM Provisioning in
vSphere with Tanzu

To provision new virtual machines in a vSphere with Tanzu environment, the DevOps engineers
rely on VM templates and images. Your role is to make sure the DevOps engineers have access
to these VM templates and images by using the Content Library service.

You can create a local content library and populate it with VM templates in OVF or OVA file
format, or other types of files. For more information and a sample of how to create a local
content library, see Create a Local Content Library.

You can also create a subscription to download the content of a published local content library
as described in the following topic: Subscribe to a Content Library.

Starting with vSphere 7.0 Update3, you can secure the content library. The Content Library
service verifies the library signing certificate during the synchronization process. If the certificate
verification fails, only the library metadata is synchronized and the library content is not
downloaded. For more information how to apply a security policy when you update a local or
subscribed content library, see Editing the Settings of a Content Library.

After you create the content library, you must populate it with content either from your local file
system or from a Web server. You must use only the VM images available on the VMware Cloud
Marketplace web site. For example, download or subscribe to VM Service Image for Ubuntu if
you want to enable a DevOps engineer to deploy a VM using this image. For more information
about the available ways to populate a content library with content, see Library Items.

You must give the DevOps engineers access to the VM templates stored in the content libraries,
so that they can use these templates to provision VMs through the VM Service functionality. To
give access, you must associate one or more content libraries to the namespace where the VM

Service is present. See Associating a Content Library with a Namespace and Virtual Machines in
vSphere with Tanzu.

Associating a Content Library with a Namespace

You must give access to a source of VM templates, so that the DevOps engineers can use them
to provision VMs in a self-service manner. To give access, you associate a content library with
VM templates to the namespace used by the DevOps engineers.

You can add multiple content libraries to a namespace that has the VM Service enabled or the
same content library to several namespaces. You associate a content library to a namespace
when you create a new namespace, update or reconfigure an existing one.

To make the VM Service aware of the content libraries in your environment that the

DevOps engineers can use to self-service VMs, you must use a vMServiceSpec instance

and pass it to the namespace configuration. The instance contains a list of content

libraries that will be used by the VM Service. You can specify this list by calling the
setContentLibraries (java.util.Set<java.lang.String> contentLibraries) method of the VM
Service specification.

VMware, Inc. 198

https://marketplace.cloud.vmware.com/
https://marketplace.cloud.vmware.com/
https://marketplace.cloud.vmware.com/services/details/vm-service-image-for-ubuntu2?slug=true

VMware vSphere Automation SDKs Programming Guide

You can also associate one or more VM classes with the namespace. See Associating a VM Class
with a vSphere Namespace.

Managing Namespaces on a Supervisor

You can use the vSphere Automation APIs to create namespaces on a Supervisor and configure
them with resource limits and permissions for the DevOps users.

To create and configure a namespace, use the Instances service from the namespaces package.
You can configure the access control to the objects in a namespace by using the Access service.

Create a vSphere Namespace

You can use the vSphere with Tanzu automation APIs to create namespaces on a Supervisor. You
can set resource quotas, storage, as well as permissions for the DevOps users.

Prerequisites
m Enable vSphere with Tanzu on a vSphere cluster.

m Create users and groups for the DevOps engineers who will use the namespace. For more
information about how to create users and groups through the Web Services APIs, see the
vSphere Web Services SDK Programming Guide.

m Create storage policies for persistent storage used by the vSphere Pods and the pods inside
a Tanzu Kubernetes cluster.

m Create VM Classes and content libraries for DevOps provisioned VMs. See Create a VM Class
in vSphere with Tanzu and Creating and Managing Content Libraries for VM Provisioning in
vSphere with Tanzu.

m Required privileges on the Supervisor:
= Namespaces.Modify cluster-wide configuration
= Namespaces.Modify namespace configuration

m Virtual Machine Classes.Manage Virtual Machine Classes

Procedure
1 Retrieve the Supervisor ID by filtering the clusters available in the vCenter Server system.

Call the list method of the clusters service from the
com.vmware.vcenter.namespace management package and retrieve the ID of the cluster on
which you want to create a namespace from the returned cluster summary objects.

2 Retrieve the ID of the storage policy that you configured for placement of the persistent
volumes from vSphere Pods and Tanzu Kubernetes clusters.

VMware, Inc. 199

VMware vSphere Automation SDKs Programming Guide

3 Configure the access control to the objects in the namespace.

Create an instance of the com.vmware.vcenter.namespaces.InstancesTypes.Access class and

specify the following access information:

Parameter

setDomain (domain)

setSubjectType (subjectType)

setSubject (subject)

setRole (role)

Description

Set the domain name of the vCenter Server system on
which the namespace is created.

Set the type of the user accounts that are associated
with the specific role for the namespace. You must select
between the User and Group options.

Set the name of the user or group that have permissions
to access the namespace objects.

Set the role that is associated with the predefined set

of privileges that you want to grant the specific user or
group. You can select between the EDIT, VIEW and OWNER
roles.

The owner role is introduced in vSphere 7.0 Update 2a.
When a DevOps engineer creates a namespace in a self-
service manner, the Namespace Self-Service grants the
owner role to the namespace creator. See Self-Service
Namespace Management.

4 Create a Ccreatespec instance that holds the namespaces specification.

The namespace specification can contain the following information:

Parameter

setCluster (cluster)

setNamespace (namespace)

setNetworks (java.util.List<java.lang.String>

networks)

setDescription (description)

setAccessList (accessList)

VMware, Inc.

Description

Set the ID of the Supervisor on which the namespace is
created.

Set a name of the namespace following the DNS label
standard defined in RFC 1123. The name must be unique
across all namespaces in the current vCenter Server
system.

Optional. You can set the workload networks used by
the vSphere Namespace. Pass null as a value of this
parameter, if the Supervisor is configured to use NSX as
networking solution. The workload networking support
for such namespaces is provisioned by NSX.

If the Supervisor uses the vSphere networking stack,
pass the workload network to be associated with

the namespace. If you pass null as a value of

this parameter, the vSphere Namespaces on the

cluster are automatically associated with the cluster
primary workload network. See Configuring the vSphere
Networking Stack for vSphere with Tanzu.

Optional. You can set a description of the namespace.

Optional. You can set the access control that is
associated with the namespace in Step 3.

200

https://tools.ietf.org/html/rfc1123

VMware vSphere Automation SDKs Programming Guide

Parameter Description

setStorageSpecs (storageSpecs) Optional. You can set the amount of storage dedicated

to each storage policy associated with the namespace
and the maximum amount of storage that is used by
the namespace. Use the storagespec specification to
configure the storage quotas on the namespace.

setResourceSpec (resourceSpec) Optional. You can set resource limitations to the

namespace. You can limit the CPU, memory, the
maximum number of pods that can exist on the
namespace, and so on.

setCreator (InstancesTypes.Principal creator) Optional. The Namespace Self-Service populates this

parameter with information about the DevOps user who
created the namespace with cubectl. The user name and
domain of the namespace creator are stored with this

parameter.
setVmServiceSpec (InstancesTypes.VMServiceSpec Optional. The VM Service specification for the Dev-Ops
vmServiceSpec) provisioned virtual machines.

5 Create a namespace object on the Supervisor by using the namespace create specification.

What to do next

Share the namespace with DevOps engineers and provide them with the user or group
configured for accessing the namespace.

Java Example of Creating a vSphere Namespace

This example creates a vSphere Namespace on a Supervisor.

The following code snippet is part of the CreateNameSpace.java sample. Some parts of the

original code sample are omitted to save space. You can view the complete and up-to-date
version of this sample in the vsphere-automation-sdk-java VMware repository at GitHub.

fooo)

@Override

protected void run() throws Exception {

InstancesTypes.CreateSpec spec =new InstancesTypes.CreateSpec()
spec.setCluster (this.clusterId);

spec.setDescription ("My first namespace, WOW") ;

spec.setNamespace (this.namespaceName) ;

InstancesTypes.StorageSpec storageSpec=new InstancesTypes.StorageSpec()
storageSpec.setlLimit (Long.valueOf (this.storagelLimit) .longValue()) ;
storageSpec.setPolicy(this.storagePolicyId) ;
List<InstancesTypes.StorageSpec> storageSpecs = new

ArrayList<InstancesTypes.StorageSpec> () ;

VMware, Inc.

storageSpecs.add (storageSpec) ;

spec.setStorageSpecs (storageSpecs) ;

InstancesTypes.Access accessList= new InstancesTypes.Access();
accessList.setDomain (this.domainName) ;

if (this.roleName.equalsIgnoreCase ("EDIT")) {
accesslList.setRole (AccessTypes.Role.EDIT) ;

201

VMware vSphere Automation SDKs Programming Guide

} elsef{
accessList.setRole (AccessTypes.Role.VIEW) ;
}
accessList.setSubject(this.subjectName); //Default is Administrator
if (this.subjectType.equalsIgnoreCase ("USER")) {
accessList.setSubjectType (AccessTypes.SubjectType.USER) ;
} else{

accessList.setSubjectType (AccessTypes.SubjectType.GROUP) ;

List<InstancesTypes.Access> accesslists = new ArrayList<InstancesTypes.Access>();

accessLists.add (accessList);

spec.setAccessList (accessLists);

this.namespaceService.create (spec);

System.out.println("Invocation is successful for creating supervisor namespace, check
H5C or call GET API to get status");

Updating the Namespace Configuration

You can change the whole namespace configuration or only some of the namespace settings.

To change the configuration of an existing namespace, you must have the
Namespaces.Configure privilege on the Supervisor.

Note Before deleting a storage policy from vCenter Server or a vSphere Namespace, or
changing the storage policy assignment, make sure that no persistent volume claim with the
corresponding storage class runs in the namespace. Also, ensure that no Tanzu Kubernetes
cluster is using the storage class.

To patch a namespace configuration, create an UpdateSpec specification and set new values
only to the configuration settings that you want to change. The parameters of the update
specification are the same as the ones you configured during the namespace creation. When
you call the update operation, only the settings that you configured in the update specification
are applied, the other settings are left as they are.

To reconfigure a namespace entirely, you must create an instance of the setspec class. You can
change the description, access controls, storage settings, and resource limitations of the specific
namespace.

Configuring the Access to a Namespace

You can use the vSphere with Tanzu APIs to grant access permissions to DevOps engineers on
the vSphere Namespaces.

VMware, Inc. 202

VMware vSphere Automation SDKs Programming Guide

Use the Access service to retrieve information about the access control of the DevOps engineers
on a specific namespace. You can also set up or remove an access control for a specific user or
group on a specific namespace, and add another access control on the namespace. You set up
each access control to allow a user or group to access a namespace in a specific vCenter Server
system. You can grant access to a DevOps engineer to more than one namespace.

You must have the Namespaces.Configure. privilege to grant permissions to a user. You assign
the view and edit access role on the namespace for the user or group.

Starting with vSphere 7.0 Update 2a, you can also assign the owner role to a DevOps engineer.
These roles allow the user to deploy workloads, share the namespace with other DevOps
engineers, and delete it when it is no longer needed.

Self-Service Namespace Management

You can use the vSphere with Tanzu automation APIs to create a vSphere Namespace with
specific resource quotas, set permissions, and assign storage policies. DevOps engineers can
then use the namespace as a template for self-provisioning namespaces on the cluster.

Starting with vSphere 7.0 Update 2a, the Namespace Self-Service feature is available in

vSphere with Tanzu. The service enables Kubernetes users to create vSphere Namespaces from
templates configured through the automation APIs or vSphere Client. To activate the Namespace
Self-Service on a cluster, use one of the following options:

m Create a self-service namespace template and then activate the Namespace Self-Service on
the cluster.

m Create or update a self-service namespace template simultaneously with activating the
Namespace Self-Service on the cluster.

Currently, only one namespace self-service template is allowed per vSphere Namespace.

After a DevOps engineer creates a namespace from the template, the namespace can

also be deleted through kubectl. You can verify whether a namespace is created

from a template by retrieving the value of the getSelfServiceNamespace () flag of the
com.vmware.vcenter.namespaces.InstancesTypes.Info object that you receive when you call the
get (String namespace) method of the Instances interface.

To create a template for a self-service namespace, call the create (String cluster,
NamespaceTemplatesTypes.CreateSpec spec) method of the NamespaceTemplates interface. You
use as parameters the cluster ID and the namespace template create specification.

You define the following configuration settings and resource limitations of the template:

VMware, Inc. 203

VMware vSphere Automation SDKs Programming Guide

Parameter Description

setTemplate (String template) The identifier of the namespace template must be a unique
name across all clusters on the vCenter Server instance.
The name must be compliant with DNS.

setResourceSpec (Structure resourceSpec) The resource quotas, such as CPU and memory, that
are reserved for the namespace on the vCenter Server
instance. The CPU limit is set in MHz and the minimum value
is 10 MHz. The memory and the storage limits are set in
MiB. For more options to configure resource limits for the
namespace, see the ResourceQuotaOptionsvl class in the
API Reference documentation.

setStorageSpecs (List<InstancesTypes.StorageSpec> The amount of storage in MiB utilized for each storage
storageSpecs) policy that you associate with the namespace. You must
specify at least one policy.

setNetworks (List<java.lang.String> networks) Optional. The networks associated with the namespace.
Currently, you can set only one network for the
namespace. Pass null as argument if the Supervisor is
configured with NSX-T Data Center support. If you pass
null for a namespace template on a cluster configured
with a vSphere networking stack, the namespace is
automatically associated with the Supervisor management
workload network.

setPermissions (List<NamespaceTemplatesTypes.Subject> Optional. The permissions that allow DevOps engineers

permissions) to use the template to self-provision namespaces through
kubectl. If set to null, only users with the Administrator
role can use the template.

Once you have the template created, you can activate the Namespace Self-Service on the
cluster by calling the activate (java.lang.String cluster) method of the NamespaceSelfService
interface. If you want to restrict DevOps users to use the namespace template on a cluster,

you can deactivate the Namespace Self-Service feature. Then users are able to delete only the
namespaces already created from the template.

You can activate the Namespace Self-Service on the cluster after

configuring the namespace template by using the NamespaceSelfService

service. You call the activateWithTemplate (java.lang.String cluster,
NamespaceSelfServiceTypes.ActivateTemplateSpec spec) method of the NamespaceSelfService
interface. Depending on the availability of a template on the cluster, this method either creates

a namespace template or activates the deactivated service and at the same time updates the
existing template.

Virtual Machines in vSphere with Tanzu

vSphere with Tanzu offers the VM Service functionality to enable DevOps engineers to provision
and manage VMs on a hamespace in a self-service manner. You use the vSphere with

Tanzu automation APIs to create VM classes that specify the deployment policy and resource
reservations of such VMs.

VMware, Inc. 204

VMware vSphere Automation SDKs Programming Guide

Starting with vSphere 7.0 Update 2a, DevOps engineers can use the VM Service functionality to
deploy and run VMs on a namespace through the kubectl commands. You can use the vSphere
with Tanzu automation APIs to manage the two VM Service components: VM classes and content
libraries. For more information about managing content libraries in the context of vSphere with
Tanzu, see Content Libraries in vSphere with Tanzu.

You can use the automation APIs to create and manage VM classes. A VM class specification
defines the number of CPUs, memory capacity, and resource reservation settings of the

desired virtual machine. vSphere with Tanzu currently offers twelve ready-to-use VM classes
(T-shirt sizes) that are derived from the most popular VMs in Kubernetes. Based on the

resource reservation that a VM specification requests, each predefined VM class has two
editions: guaranteed and best effort. The guaranteed VM class fully reserves the configured
resources. A best effort VM class does not guarantee any resource reservations and allows their
overcommitment.

You associate a VM class with a specific namespace to make it available to the DevOps engineers
who have access to that namespace. You can assign any number of existing VM classes or create
a custom one. Note that VMs deployed by the DevOps engineers through the VM Service can
only be managed with the kubectl commands. A VM provisioned by DevOps engineers shares
the same resources in a namespace as containers.

Use the virtualMachineClasses interface to create and manage a specification of a VM class
object. Through these objects you predefine the number of CPUs, memory capacity, and
reservation settings. See Create a VM Class in vSphere with Tanzu. To make a VM class available
to the DevOps engineers for self-service VM deployment, you must associate it with a specific
namespace. See Associating a VM Class with a vSphere Namespace.

Create a VM Class in vSphere with Tanzu

You can use the vSphere Automation Kubernetes APIs to create custom VM classes to be used
for VM deployment in vSphere with Tanzu.

A VM class specifies the CPU, memory, and resource reservations for a VM. vSphere with
Tanzu offers several preconfigured VM classes which you can use as is, edit, or delete. You
can also create a custom VM class in your vCenter Server instance and it will be available to all
Supervisors and the namespaces created in these clusters. Note that even though a VM class
is available to all namespaces, a DevOps user can only use the VM classes associated with the
namespaces that he/she can access.

Prerequisites

Required privileges:

= Namespaces.Modify cluster-wide configuration
= Namespaces.Modify namespace configuration

m Virtual Machine Classes.Manage Virtual Machine Classes

VMware, Inc. 205

VMware vSphere Automation SDKs Programming Guide

Procedure

1 Create the specification of the VM class object by defining the following options.

Option Description
setId(String id) The identifier of the VM class must follow these DNS

requirements:

B A unique name in the current vCenter Server
instance.

® An alphanumeric name with maximum 63 characters.
m No uppercase letters of spaces.

m A dash can be used anywhere except as a first or
last character.

Note that after a VM class is created, you cannot edit its

ID.

setCpuCount (long cpuCount) The number of virtual CPUs (vCPUs) configured for a VM
that are deployed with this VM class.

setMemoryMB (long memoryMB) The memory in MB configured for a VM that are
deployed with this VM class. The value must be between
4 MB and 24 TB and a multiple of 4.

setDescription (String description) Optional. The description of the VM class.

setCpuReservation (Long cpuReservation) Optional. The percentage of total available CPU
resources reserved for the VM deployed with the VM
class. The percentage you specify with this attribute
is multiplied by the minimum CPU available among all
cluster nodes to get the CPU resources guaranteed by
vSphere for a VM. The resulting value is in MHz.

setMemoryReservation (Long memoryReservation) Optional. The percentage of available memory that is
reserved for a VM deployed with this VM class. The
value can be from O through 100%.

2 Create the VM class object.

Call the create (VirtualMachineClassesTypes.CreateSpec spec) method of the
VirtualMachineClasses interface and pass as argument the created VM class specification.

What to do next

After you create the custom VM class, you can edit its parameters or delete it from your
environment. See Editing or Removing a VM Class from Your Environment.

You can make your VM class available to DevOps engineers by associating it with a namespace.
See Associating a VM Class with a vSphere Namespace.

Editing or Removing a VM Class from Your Environment

You can use the automation APIs to edit the configuration of a VM class that you created or a
predefined VM classes that vSphere with Tanzu offers. When you no longer need an existing VM
class, you can remove it from your vCenter Server instance.

VMware, Inc. 206

VMware vSphere Automation SDKs Programming Guide

Note that editing a VM class specification does not affect the VMs that are already deployed by
the DevOps engineers from this class. Only newly deployed VMs will use the reconfigured VM
class.

Deleting a VM class results in its removal from all related namespaces. All VMs deployed with this
VM class remain unchanged but DevOps engineers can no longer use it.

You can list all VM classes available for a vCenter Server instance by calling the 1ist method
of the virtualMachineClasses interface. You receive a list of all VM classes and a detailed
information about each one of them. Based on the detailed information, you can narrow the
list and retrieve the IDs of the VM classes that you want to edit or delete.

To edit a VM class configuration, call the update (String vmClass,
VirtualMachineClassesTypes.UpdateSpec spec) method of the virtualMachineClasses interface
and pass as arguments the VM class ID and the update specification. You can edit all VM class
attributes except the ID of the class. Only the attributes modified within the update specification
will be edited.

To delete a VM class from your environment, call the delete (java.lang.String vmClass)
method of the virtualMachineClasses interface and pass the ID of the class as argument.

Associating a VM Class with a vSphere Namespace

You must associate a VM class with a namespace to make it available for DevOps engineers to
deploy VMs in a self-service manner.

You can associate one or more VM classes with a single namespace or you can add one VM
class to several namespaces. You can use the predefined VM classes that vSphere with Tanzu
provides or you can create custom ones. See Create a VM Class in vSphere with Tanzu.

Since VM Service is the feature responsible for handling VM classes, you must make that service
aware of the VM classes available to the engineers using a specific namespace. You can achieve
this when you create a new namespace or edit an existing one. See Managing Namespaces on a
Supervisor.

When you create the VM Service specification set the list of VM classes that

must be used to create VMs on the specific namespace. You achieve this by

calling the setvmClasses (java.util.Set<java.lang.String> vmClasses) method of the
VirtualMachineClasses Object.

You can also associate one or more content libraries with a namespace that has the VM Service
enabled. See Associating a Content Library with a Namespace.

VMware, Inc. 207

vSphere Security

This chapter provides information about securing your vSphere environment for vCenter Server
and ESXi.

This chapter includes the following topics:
= Managing Certificates

m vSphere Trust Authority

Managing Certificates

Starting with vSphere 6.7 Update 2, you can use the vSphere Automation APl to manage
certificates in your vSphere environment. You can not only refresh default certificates that are
issued by the VMware Certificate Authority (VMCA) but also add third-party or custom-made
certificates to your environment.

Certificate Management Operations

You can use the vSphere Automation API to manage trusted root certificate chains, VMware
Certificate Authority (VMCA) root certificates, machine SSL (TLS) certificates, and Security Token
Service (STS) signing certificates. You can refresh the VMCA-issued certificates but also add
external and third-party certificates to your vSphere environment. For more information on
vSphere certificate management, see the vSphere Authentication guide.

Location of the Certificate Management Services

You can find the vSphere certificate management services for your automation
in the com.vmware.vcenter.certificate management.vcenter Java package and the

com.vmware.vcenter.certificate management.vcenter client Python module.

Certificate Management Interfaces

You can use the following interfaces to manage certificates with the vSphere Automation API:
m TrustedRootChains

B VMCARooOt

m TLSCSR

VMware, Inc. 208

VMware vSphere Automation SDKs Programming Guide

] TLS

B SigningCertificate

Certificate Management Operations

You can use the operations listed in the following table to manage certificates.

Table 12-1. Certificate Management Operations

Operatio
n

List
trusted
root
certificat
es

Get
trusted
root
certificat
e
informati
on

Add a
trusted
root
certificat
e

Delete a
trusted
root
certificat
e

Replace
the
VMCA
root
certificat
e

Generate
a CSR

Get the
Machine
SSL
certificat
e

VMware, Inc.

Interface

TrustedRoo

tChains

TrustedRoo

tChains

TrustedRoo

tChains

TrustedRoo

tChains

VMCARoOt

TLSCSR

TLS

Java / Python
Operation

list()

get (chain)

create (spec)

delete (chain)

create (spec)

create (spec)

get ()

Description

You can retrieve the identifiers of all trusted root
certificates that are present in vCenter Server.

You can retrieve a root certificate chain by
providing its identifier. You can retrieve the

identifier by using the List trusted root certificates

operation.

You can add a trusted root certificate chain to
your vCenter Server system.

You can delete a root certificate by providing its
unique identifier. You can retrieve the identifier
by using the List trusted root certificates
operation.

You can replace the VMCA root certificate with
a new VMCA-signed certificate. The operation

triggers a restart of the services that are using

this certificate.

You can generate a CSR and use it to issue a
custom certificate from the given spec.

You can retrieve the machine SSL certificate of
your vCenter Server system.

Introduced in

vSphere 6.7 U2

vSphere 6.7 U2

vSphere 6.7 U2

vSphere 6.7 U2

vSphere 7.0

vSphere 6.7 U2

vSphere 6.7 U2

209

VMware vSphere Automation SDKs Programming Guide

Table 12-1. Certificate Management Operations (continued)

Operatio
n

Renew
the
Machine
SSL
certificat
e

Replace
the
Machine
SSL
certificat
e with a
custom
signed
certificat
e

Replace
the
Machine
SSL
certificat
e with a
VMCA-
signed
certificat
e

Retrieve
the STS
signing
certificat
e chains

Replace
the STS
signing
certificat
e

Refresh
the STS
signing
certificat
e

VMware, Inc.

Interface

TLS

TLS

TLS

SigningCer

tificate

SigningCer

tificate

SigningCer

tificate

Java / Python
Operation

renew (duration

)

set (spec)

replaceVmcaSig

ned (spec)

get ()

set (spec)

refresh (force)

Description

You can renew the validity of the machine SSL
certificate for a specified period in days. The
duration must be less than or equal to 730 days.
If you pass null/None, the default duration of 730
days is applied.

You can replace the vCenter Server machine SSL
certificate with a custom certificate signed by

an external or a third-party Certificate Authority
(CA).

You can replace the vCenter Server machine SSL
certificate with a VMCA-signed certificate.

You can retrieve the STS signing certificate
chains, which are used for validating tokens
signed by vCenter Server.

You can replace the current STS signing
certificate with a certificate of your choice. The
accepted file format is PEM.

You can replace the current STS signing
certificate with a new VMCA-signed certificate.
The newly-generated certificate is set as the
active STS signing certificate for the vCenter
Server token service. You can pass true as a
value to the force parameter for environments
that might otherwise prevent the operation from
succeeding.

Introduced in

vSphere 6.7 U2

vSphere 6.7 U2

vSphere 7.0

vSphere 7.0 U3

vSphere 7.0 U3

vSphere 7.0 U3

210

VMware vSphere Automation SDKs Programming Guide

Add a Root Certificate to vCenter Server

You can use the TrustedRootChains interface to add, delete and read trusted root certificate
chains. If you want to use an enterprise or third-party certificate authority (CA) for certificate
management of your vSphere environment, you must first establish trust with that CA. You can
do this by adding the root certificate of the external CA to the trusted root store of your vCenter
Server system.

Adding a root certificate or certificate chain to the vCenter Server trusted certificate store
establishes trust with an enterprise or third-party certificate authority. You can add a root
certificate to vCenter Server as a prerequisite for other scenarios such as setting a third-party
or enterprise machine SSL certificate.

Prerequisites

m Verify that the root certificate or certificate chain you want to add is available on your
machine.

m Verify that you have the required privileges: CertificateManagement.Manage and
CertificateManagement.Administer.

Procedure

1 (Optional) Retrieve the root certificates on your vCenter Server system by calling the 1ist
function of the TrustedRootChains interface.

2 Create a x509certChain instance with the root certificate you want to add.

3 Create a specification with the new x509CertChain instance.

4 To add the root certificate, call the create function of the TrustedrootChains interface.
If the operation is successful, the system returns the unique identifier of the trusted root

certificate you added.

Python Example of Adding a Root Certificate to vCenter Server

This example shows how to add a root certificate or certificate chain to your vCenter Server
system. The example is based on the code in the trusted root chains create.py sample file.

Note For related code samples, see the vsphere-automation-sdk-python VMware repository
at GitHub.

Description: Demonstrates the import of the TRUSTED ROOT CHAIN into vCenter
Sample Prerequisites:
- The user invoking the API should have the CertificateManagement.Manage or the

CertificateManagement.Administer privilege

parser = sample cli.build arg parser()

VMware, Inc. 21

VMware vSphere Automation SDKs Programming Guide

parser.add argument ('--certchain',
required=True,

help='The certificate chain to be imported into vCenter.')
args = sample util.process cli args(parser.parse_args())

session = requests.session()

session.verify = False if args.skipverification else True

Login to vCenter

vsphere client = create vsphere client (server=args.server,
username=args.username,
password=args.password,

session=session)

cert chain = args.certchain.encode (encoding='utf-8"') .decode ('unicode_escape') .split(',")

Creation of the spec for input to the API

x509 cert chain = X509CertChain(cert chain=cert chain)

cert chain = TrustedRootChains.CreateSpec(cert chain=x509 cert chain)

print ('The alias of the certificate chain successfully imported into vCenter listed below ')
print (vsphere client.vcenter.certificate management.vcenter.TrustedRootChains.create(cert chai

n))

Delete a Root Certificate from vCenter Server

You can use the TrustedRootChains interface to add, delete and read trusted root certificate
chains. This use case demonstrates how to delete a root certificate or certificate chain from the
trusted root store of your vCenter Server system.

Deleting certificates is not available through the vSphere Client and you can only do this by using

the vSphere Automation API or the CLI tools.

Deleting a root certificate or certificate chain that is in use might cause breakage of
your systems. Proceed to delete a root certificate only if you are sure it is not in use by your
vCenter Server or any connected systems.

Prerequisites

Verify that you have the required privileges for executing the method:
CertificateManagement.Administer and CertificateManagement.Manage.

Procedure

1 (Optional) Retrieve the root certificates from your vCenter Server system by calling the 1ist
function of the TrustedRootChains interface.

The system lists the unique identifiers (chains) of the certificates in the trusted certificate
store.

VMware, Inc. 212

VMware vSphere Automation SDKs Programming Guide

2 Retrieve the certificate you want to delete by calling the get function and passing the unique
identifier (chain) of the certificate as an argument.

3 Delete the certificate by using the delete function of the TrustedRootChains interface and
passing the unique identifier (chain) of the certificate as an argument.

4 (Optional) To verify you deleted the certificate, list the root certificates from your vCenter
Server system once again.

Python Example of Deleting a Root Certificate from vCenter Server

This example shows how to delete a root certificate or certificate chain from your vCenter Server
system. The example is based on the code in the trusted root chains delete.py sample file.

Note For related code samples, see the vsphere-automation-sdk-python VMware repository
at GitHub.

Description: Demonstrates the deletion of the TRUSTED ROOT CHAIN corresponding to the
provided alias

Sample Prerequisites:

- The user invoking the API should have the CertificateManagement.Manage or the

CertificateManagement.Administer privilege

parser = sample cli.build arg parser()
parser.add argument ('--certalias',

required=True,
help='The alias for the certificate chain to be deleted from vCenter.')

args = sample util.process cli args(parser.parse_args())

session = requests.session()

session.verify = False if args.skipverification else True

Login to vCenter

vsphere client = create vsphere client (server=args.server,
username=args.username,

password=args.password,

session=session)
cert_alias = args.certalias

print ('Deleting the certificate chain corresponding to the alias ' + cert alias)
vsphere client.vcenter.certificate management.vcenter.TrustedRootChains.delete(cert alias)

Change the Machine SSL Certificate of vCenter Server

You can change the machine SSL certificate of a vCenter Server system by using the TLS and the
TLS CSR interfaces of the vSphere Automation API.

VMware, Inc. 213

VMware vSphere Automation SDKs Programming Guide

The machine SSL certificate is used for server verification and for secure communication such as
HTTPS or LDAPS. The machine certificates are the human-facing certificates in vSphere. They are
used to create an SSL socket on the server side to which SSL clients can then connect.

Changing the machine SSL certificate with one issued by an official or enterprise certificate
authority is an essential part of the Hybrid Mode of vSphere certificate management. In this
mode, you replace the machine SSL certificate and you leave the VMCA to manage all other
certificates automatically. The VMCA is a just-enough internal certificate authority that comes
integral with your vSphere deployment. It has been purpose-built to serve the certificate needs
of your vSphere environment. For more information on vSphere certificate management, see the
vSphere Authentication guide.

Prerequisites
m Verify that the root certificate of the CA you are going to use is available on your machine.

m Verify that you have the required privileges: CertificateManagement.Administer and
CertificateManagement.Manage.

Procedure

1 (Optional) Retrieve the current machine SSL certificate of your vCenter Server system by
calling the get function of the T1s interface.

2 Generate a certificate signing request (CSR) by using the T1scCsr interface.

a Create a new object of type T1sCsrTypes.Spec by using the following parameters/

methods.

Parameter/Method Description

setCountry/ country Specify the country in the certificate
subject.

setStateOrProvince / state or province Specify the state or province in the
certificate subject.

setLocality/ locality Specify the locality in the certificate
subject.

setOrganization/organization Specify the organization in the certificate
subject.

setOrganizationUnit /organization unit Specify the organization unit in the
certificate subject.

setEmailAddress/email address Specify the email address in the certificate

subject.

b Create the CSR by calling the create (T1sCsrTypes.Spec) method and passing the CSR
specification.

The system returns the CSR in PEM format.

3 Save the CSR to your machine.

VMware, Inc. 214

VMware vSphere Automation SDKs Programming Guide

4 Send the CSR to the certificate authority of your choice.

Note The private key corresponding to the public key generated by the CSR is stored in the
vCenter Server keystore and does not leave your system.

5 Save the issued third-party machine SSL certificate to your machine.
6 Set the new custom certificate to your vCenter Server system by using the T1s service.

a Create a new object of type T1sTypes.Spec by using the following parameters/methods.

Parameter/Method Description

setCert / cert The Machine SSL certificate in PEM format. You must also paste the intermediate
CA certificate, if you have one.

setRootCert / root cert The third-party root CA certificate in PEM format. You must also paste the
intermediate CA certificate, if you have one.

Note You must not provide the private key as it was generated with the CSR and is
already present on your system.

b Set the new certificate to your vCenter Server system by calling the set (T1sTypes.Spec)
method and passing the TLS specification as an argument.

Results

The services using the certificate restart automatically. Wait for your system to reboot and log in.

Python Example of Generating a Certificate Signing Request (CSR) from vCenter
Server

This example shows how to generate a certificate signing request (CSR) from vCenter Server.
The generation of a CSR is an important step in the workflow to change the machine SSL
certificate of your vCenter Server system with a third-party or enterprise certificate. The example
is based on the code in the gencsr.py sample file.

Note For related code samples, see the vsphere-automation-sdk-python VMware repository
at GitHub.

Description: Demonstrates the generation of the Certificate Signing request

for the MACHINE SSL certificate

Sample Prerequisites:

- The user invoking the API should have the CertificateManagement.Administer or the

CertificateManagement.Manage privilege.

parser = sample cli.build arg parser()
parser.add argument ('--keysize',

help='Key size used to generate the private key.'
'keysize will take 2048 bits if not modified')

VMware, Inc. 215

VMware vSphere Automation SDKs Programming Guide

parser.add_argument ('--commonname',
help='Common name of the certificate subject field.'

'common name will take the Primary Network Identifier (PNID) if not

modified.")
parser.add argument ('--organization',

required=True,

help='Organization field in certificate subject.')
parser.add argument ('--organizationunit',

required=True,

help='Organization unit field in certificate subject')
parser.add argument ('--locality’,

required=True,

help='Locality field in the certificate subject')
parser.add argument ('--stateorprovince',

required=True,

help='State field in certificate subject')
parser.add_argument ('--country',

required=True,

help='Country field in the certificate subject')
parser.add argument ('--emailaddress',

required=True,

help='Email field in Certificate extensions')
parser.add argument ('--subjectaltname’,

help='subjectaltname is list of Dns Names and Ip addresses')
args = sample util.process cli args(parser.parse_args())
session = requests.session()

session.verify = False if args.skipverification else True

Login to vCenter

vsphere client = create vsphere client (server=args.server,
username=args.username,
password=args.password,

session=session)

common_name = args.commonname
organization = args.organization
organization unit = args.organizationunit

locality = args.locality
state or province = args.stateorprovince
country = args.country

email address = args.emailaddress
if args.keysize is None:

key size = args.keysize

else:

VMware, Inc. 216

VMware vSphere Automation SDKs Programming Guide

key size = int (args.keysize)

if args.subjectaltname is None:
subject _alt name = args.subjectaltname
else:

subject _alt name = args.subjectaltname.split(',')

Create the spec for input to the API

Wi

spec = TlsCsr.Spec(key size=key size,
common_name=common_name,
organization=organization,
organization unit=organization unit,
locality=locality,
state or province=state or province,
country=country,
email address=email address,

subject alt name=subject alt name)

print ('Generating the certificate signing request based on the information provided in the
spec ')

print (vsphere client.vcenter.certificate management.vcenter.TlsCsr.create (spec))

Python Example of Setting a New Machine SSL Certificate to vCenter Server

This example shows how to set a a third-party or enterprise machine SSL certificate to your
vCenter Server system. You must have already completed the step of generating a certificate
signing request (CSR) and obtained the new certificate from an enterprise or third-party
certificate authority. This example is based on the code in the replace tls certificate.py
sample file.

Note For related code samples, see the vsphere-automation-sdk-python VMware repository
at GitHub.

Description: Demonstrates the replacement of the MACHINE SSL certificate with a custom
certificate signed by an external third party CA.

Sample Prerequisites:

- The user invoking the API should have the CertificateManagement.Administer privilege.

parser = sample cli.build arg parser()

parser.add argument ('--cert',
required=True,
help='Leaf certificate for replace the MACHINE SSL certificate.')

parser.add argument ('--key',
help='The private key.'
'Not required if the gencsr api was used to generated the

certificate signing request.')

VMware, Inc. 217

VMware vSphere Automation SDKs Programming Guide

parser.add_argument ('--rootcert',
help='The root certificate and the intermediate root certificates '
'required to establish the chain of trust.'

'Not required if the certificates are already present in the

vCenter.")
args = sample util.process cli args(parser.parse_args())
session = requests.session()

session.verify = False if args.skipverification else True

Login to vCenter

vsphere client = create vsphere client (server=args.server,
username=args.username,
password=args.password,

session=session)
cert = args.cert.encode (encoding="'utf-8') .decode('unicode escape')

if args.key is not None:
key = args.encode (encoding='utf-8') .key.decode ('unicode escape')
else:

key = args.key

if args.rootcert is not None:
root cert = args.rootcert.encode (encoding='utf-8"').decode ('unicode escape')
else:

root _cert = args.rootcert

Create the spec for input to the API

spec = Tls.Spec(cert=cert,
key=key,

root cert=root cert)

print ('The MACHINE SSL certificate will be replaced with the custom certificate ')

vsphere client.vcenter.certificate management.vcenter.Tls.set (spec)

Refresh the vCenter Server STS Signing Certificate with a VMCA -
Issued Certificate

You can refresh the vCenter Server Security Token Service (STS) signing certificate with a new
VMCA-issued certificate by using the signingCertificate interface. The STS is an internal entity
that issues and verifies tokens so that vSphere services can communicate with and trust each
other.

You can refresh the current STS signing certificate of your vCenter Server system with a new
VMCA-issued certificate.

VMware, Inc. 218

VMware vSphere Automation SDKs Programming Guide

There are two valid reasons for refreshing your STS signing certificate or certificate chain.

If it is close to expiry. The standard lifespan of the vCenter Server STS signing certificate is

10 years. Your vCenter Server system will notify you in advance of STS certificate expiry. An
alarm is triggered once per week when your STS certificate is 90 days away from expiry, and
then daily when seven days away.

If you already replaced your signing certificate with a third-party or enterprise one and now
want to revert back to a default VMCA-issued certificate. This procedure replaces the custom
or third-party STS signing certificates you added.

Prerequisites

Verify that you have the required privilege: CertificateManagement.Administer.

Procedure

1

(Optional) Retrieve the current vCenter Server signing certificate chain by calling the get
function of the signingCertificate interface.

get ()

2 Refresh the vCenter Server signing certificate by calling the refresh function of the
SigningCertificate interface.
Pass true as a value to the force parameter to force the refresh of the signing certificates
in environments that would otherwise prevent the operation from occurring, such as a mixed-
version environment. If nul1l, the refresh of the vCenter Server signing certificate chain is not
forced.

Results

If successful, the system returns the x509 certificate chain issued in accordance with the vCenter

Server policies.

If you used a forced refresh, you must restart your vCenter Server and all linked

services.

Java Example of Refreshing the vCenter Server STS Signing Certificate

This example shows how to refresh the vCenter Server STS signing certificate. The example is

based on the code in the RefreshSigningCertificate. java sample file.

Note For a complete and up-to-date version of the Java sample code, see the vsphere-

automation-sdk-java VMware repository at GitHub.

/**

* Sample code to refresh the STS Signing Certificate for the vCenter Server.
* Use the force option to attempt to force the refresh in environments

* that would otherwise fail such as mixed-version environments. On success,

* the new signing certificates will be printed.

VMware, Inc.

219

VMware vSphere Automation SDKs Programming Guide

=/
public class RefreshSigningCertificate extends SamplesAbstractBase {
private SigningCertificate certService;

protected boolean force;

@Override
protected void parseArgs (String argsl[]) {
Option forceOption = Option.builder ()
.required(false)
.argName ("FORCE")
.longOpt ("force")
.desc ("Attempt to force refresh")
.build();
List<Option> optionlList = Arrays.asList (forceOption);

super.parseArgs (optionList, args);

this.force = parsedOptions.get ("force") != null;

@Override
protected void setup() throws Exception {
this.certService =
vapiAuthHelper.getStubFactory () .createStub (SigningCertificate.class,
sessionStubConfig) ;

@Override
protected void run() throws Exception {
X509CertChain newCert= certService.refresh(this.force);
if (newCert == null) {
System.out.println ("ERROR: refresh signing certificate did not return a
certificate");
} else {
System.out.println ("New vCenter signing certificate \n"+newCert.toString());

public static void main(String[] args) throws Exception {
RefreshSigningCertificate get = new RefreshSigningCertificate();

get.execute (args);

@Override
protected void cleanup () throws Exception {

// No cleanup required

Set a Custom STS Signing Certificate to vCenter Server

You can import and replace the vCenter Server STS signing certificate with a custom generated
or third-party certificate by using the signingCertificate interface.

VMware, Inc. 220

VMware vSphere Automation SDKs Programming Guide

In the usual case, you must not replace the vCenter Server STS signing certificate as it is not an
external-facing certificate. The STS is an internal service that enables communication between
various vSphere services. A fresh installation of vSphere 7.0 and later comes with a signing
certificate that is issued with a default duration of 10 years. Replace the STS signing certificate
with a custom or third-party certificate only if your company security policy requires you to do
so.

Prerequisites

m Verify that the custom generated or third-party certificate chain and private key are available
on your machine.

m Verify that you have the required privilege: CertificateManagement.Administer.

Procedure

1 Create an object instance of type SigningCertificateTypes.SetSpec With the corresponding
private key and certificate chain.

a Set the private key by calling the setprivateKey (privateKey) method. Pass as value
to the privateKey parameter the corresponding unencrypted PKCS#8 private key in
base64-encoded PEM format.

b Set the custom generated or third-party certificate chain in base64-encoded PEM format
by calling the setSigningCertChain (Xx509CertChain) method. It must be a valid certificate
chain with the leaf certificate marked for Digital Signature key usage. The leaf certificate
must be first in the sequence and the root must be last.

2 Set the STS signing certificate by calling set (SigningCertificateTypes.SetSpec) and passing
the signing certificate specification.

Results

The change of the STS signing certificate might leave systems in the local vCenter
Server domain in a non-functional state. To prevent system failure, restart your vCenter Server
instance and all linked services.

vSphere Trust Authority

You can use the vSphere Automation SDK to perform vSphere Trust Authority operations.

vSphere Trust Authority is a foundational technology that enhances workload security. vSphere
Trust Authority establishes a greater level of trust in your organization by associating an ESXi
host hardware root of trust to the workload itself. For details about vSphere Trust Authority, see
the vSphere Security documentation.

The procedures in this chapter are based on the Java API. For details, see the vSphere
Automation Java APl Reference.

VMware, Inc. 221

VMware vSphere Automation SDKs Programming Guide

Configure a vSphere Trust Authority Cluster

You can use the TrustAuthorityClusters interface from the
com.vmware.vcenter.trusted infrastructure package to perform vSphere Trust Authority
Cluster management operations.

You can retrieve details about vSphere Trust Authority Clusters, update the state of a cluster,
and check the result of the update operation.

Prerequisites
m Verify that you have access to a working vSphere Trust Authority environment.

m Verify that you have Trusted Infrastructure administrative privileges.

Procedure

1 Retrieve a list of clusters for a vCenter Server instance that are configured as Trust Authority
Clusters by calling the 1ist (TrustAuthorityClustersTypes.FilterSpec spec) method of the
TrustAuthorityClusters interface.

2 Update the state of a cluster by calling the update Task(java.lang.String cluster,
TrustAuthorityClustersTypes.UpdateSpec spec) method of the TrustAuthorityClusters
interface.

3 Check the result of the last update operation for the same cluster by calling the
get (java.lang.String cluster) method of the TrustAuthorityClusters interface.

Configure Key Providers

You can use the providers interface from the
com.vmware.vcenter.trusted infrastructure.trust authority clusters.kms package to

perform Key Provider management operations.

You can retrieve, add, update, remove, and retrieve details about Key Providers.

Prerequisites
m Verify that you have access to a working vSphere Trust Authority environment.

m Verify that you have Trusted Infrastructure administrative privileges.

Procedure

1 Retrieve a list of Key Providers to see which Key Providers the cluster is using by calling the
list Task(java.lang.String cluster) method of the providers interface.

2 Add a new Key Provider which all hosts in the cluster can use by calling the
create Task(java.lang.String cluster, ProvidersTypes.CreateSpec spec) method of the
Providers interface.

VMware, Inc. 222

VMware vSphere Automation SDKs Programming Guide

Retrieve information about a Key Provider to verify the configuration by calling
the get Task(java.lang.String cluster, java.lang.String provider) method of the
Providers interface.

Update an existing Key Provider to modify the connection details and primary key for
it by calling the update Task(java.lang.String cluster, java.lang.String provider,
ProvidersTypes.UpdateSpec spec) method of the providers interface.

Remove a Key Provider by calling the delete Task(java.lang.String cluster,
java.lang.String provider) method of the providers interface.

Establish Trust Between Key Provider and Key Server

You can use interfaces from the

com.vmware.vcenter.trusted infrastructure.trust authority clusters.kms.providers

package to perform trust management operations.

You can list and update server certificates, retrieve, generate, and update client certificates,
generate a CSR, and set the key server credential.

Prerequisites

Verify that you have access to a working vSphere Trust Authority environment.

Verify that you have Trusted Infrastructure administrative privileges.

Procedure

1

VMware, Inc.

List the remote server certificates on the configured key servers to verify the trusted key
servers by calling the 1ist Task(java.lang.String cluster, java.lang.String provider,
CurrentPeerCertificatesTypes.FilterSpec spec) method of the CurrentPeerCertificates
interface.

Retrieve the list of trusted server certificates by calling the get Task (java.lang.String
cluster, java.lang.String provider) method of the TrustedPeerCertificates interface.

Update the trusted server certificates by calling the update Task(java.lang.String cluster,
java.lang.String provider, TrustedPeerCertificatesTypes.UpdateSpec spec) method of
the TrustedPeerCertificates interface.

Note This operation overwrites the existing list of trusted certificates.

Retrieve the existing client certificate by calling the get Task(java.lang.String cluster,
java.lang.String provider) method of the ClientCertificate interface.

If the operation is successful, you receive the client certificate in PEM format.

223

VMware vSphere Automation SDKs Programming Guide

5 Generate a new self-signed client certificate, used to establish a secure connection to the key
server by calling the create Task(java.lang.String cluster, java.lang.String provider)
method of the clientCertificate interface.

Note This operation overwrites the existing client certificate.

If the operation is successful, you can provide the newly generated self-signed client
certificate to the key server to establish trust with the Key Provider.

6 Update the client certificate to specify what Key Provider should use to authenticate with
the key server by calling the update Task(java.lang.String cluster, Jjava.lang.String
provider, ClientCertificateTypes.UpdateSpec spec) method of the ClientCertificate
interface.

Note If a client certificate exists, this operation overwrites it.

7 Generate a certificate signing request (CSR) for the client certificate by calling the
create Task(java.lang.String cluster, java.lang.String provider) method of the
ClientCertificate interface.

Note If a CSR exists, this operation overwrites it.

If the operation is successful, you receive the client CSR in PEM format and the host ID which
issued it. The generated CSR can later be signed by a third party. The signed CSR should be
replicated and set on each host.

8 Set the key server credential for key servers that require a password by calling the
set Task(java.lang.String cluster, java.lang.String provider, char[] credential)

method of the credential interface.

Configure Trusted TPMs of Attested ESXi Hosts on a Cluster Level

You can use interfaces from the
com.vmware.vcenter.trusted infrastructure.trust authority clusters.attestation.tpm2

package to manage remote attestation configuration for TPM trust.

You can add, list, remove, and retrieve details about TPM CA certificates and TPM endorsement
keys. You can also set and retrieve TPM 2.0 attestation settings.

Prerequisites
m Verify that you have access to a working vSphere Trust Authority environment.

m Verify that you have Trusted Infrastructure administrative privileges.

Procedure

1 Add anew TPM CA certificate to a Trusted Cluster to specify a trusted platform OEM
by calling the create Task(java.lang.String cluster, CaCertificatesTypes.CreateSpec
spec) method of the cacertificates interface.

VMware, Inc. 224

VMware vSphere Automation SDKs Programming Guide

2 Retrieve a list of configured TPM CA certificates on a Trusted Cluster to identify the
trusted platform OEMSs by calling the 1ist Task(java.lang.String cluster) method of the
CaCertificates interface.

3 Remove a TPM CA certificate from a Trusted Cluster because a platform OEM is no longer
trusted by calling the delete Task(java.lang.String cluster, java.lang.String name)
method of the cacertificates interface.

4 Retrieve details about a specific TPM CA certificate on a Trusted Cluster to get more
information about the trusted platform OEM by calling the get Task(java.lang.String
cluster, java.lang.String name) method of the cacertificates interface.

5 Add anew TPM endorsement key to a Trusted Cluster to specify a trusted ESXi host
by calling the create Task(java.lang.String cluster, EndorsementKeysTypes.CreateSpec
spec) method of the Endorsementkeys interface.

6 Retrieve a list of configured TPM endorsement keys in a Trusted Cluster to identify the
trusted ESXi hosts by calling the 1ist Task(java.lang.String cluster) method of the
EndorsementKeys interface.

7 Remove a TPM endorsement key from a Trusted Cluster because an ESXi host is no longer
trusted by calling the delete Task(java.lang.String cluster, java.lang.String name)
method of the EndorsementKeys interface.

8 Retrieve details about a specific TPM endorsement key on a Trusted Cluster to get more
information about the trusted ESXi host by calling the get Task(java.lang.String cluster,
java.lang.String name) method of the EndorsementKeys interface.

9 Set the TPM 2.0 attestation settings by specifying that TPM endorsement keys on a Trusted
Cluster do not need to be signed because the trusted OEM does not sign endorsement keys
by calling the update Task(java.lang.String cluster, SettingsTypes.UpdateSpec spec)
method of the settings interface.

10 Determine the TPM 2.0 attestation settings in a Trusted Cluster by calling the
get Task(java.lang.String cluster) method of the settings interface.

Configure Trusted ESXi Builds on a Cluster Level

You can use the BaseImages interface from the
com.vmware.vcenter.trusted infrastructure.trust authority clusters.attestation.os.esx

package to manage trusted instances of ESXi software on a cluster level.

You can import, list, remove, and retrieve details about ESXi base images.

Prerequisites
m Verify that you have access to a working vSphere Trust Authority environment.

m Verify that you have Trusted Infrastructure administrative privileges.

VMware, Inc. 225

VMware vSphere Automation SDKs Programming Guide

Procedure

1 Import ESXi metadata as a new trusted base image to each host in a vSphere Trust Authority
Cluster by calling the importFromImgdb Task(java.lang.String cluster, byte[] imgdb)
method of the BaseImages interface.

2 Retrieve a list of trusted ESXi base images in a vSphere Trust Authority Cluster by calling the
list Task(java.lang.String cluster, BaseImagesTypes.FilterSpec spec) method of the
BaselImages interface.

3 Remove an ESXi base image that should no longer be trusted from a vSphere Trust Authority
Cluster by calling the delete Task(java.lang.String cluster, java.lang.String version)
method of the BaseImages interface.

4 Retrieve details about a trusted ESXi base image version in a vSphere Trust Authority Cluster
by calling the get Task(java.lang.String cluster, java.lang.String version) method of
the BaseImages interface.

Retrieve vSphere Trust Authority Components Information

You can use interfaces from the
com.vmware.vcenter.trusted infrastructure.trust authority hosts package to retrieve
information about Attestation Service and Key Provider Service instances running on hosts.

You can use the retrieved information to connect to the hosts running the vSphere Trust
Authority components.

Prerequisites
m Verify that you have access to a working vSphere Trust Authority environment.

m Verify that you have Trusted Infrastructure administrative privileges.

Procedure

1 Retrieve detailed information, including the certificates, about the Attestation Service
instance running on a Trust Authority Host by calling the get (java.lang.String host)
method of the Attestation interface.

2 List Trust Authority Hosts running an Attestation Service instance by using filters by calling
the 1ist (AttestationTypes.FilterSpec spec, AttestationTypes.SummaryType projection)
method of the Attestation interface.

3 Retrieve detailed information, including the certificates, about the Key Provider Service
instance running on a Trust Authority Host by calling the get (java.lang.String host)
method of the kms interface.

4 List Trust Authority Hosts running a Key Provider Service instance by using filters by calling
the 1ist (KmsTypes.FilterSpec spec, KmsTypes.SummaryType projection) method of the kKms
interface.

VMware, Inc. 226

VMware vSphere Automation SDKs Programming Guide

Configure vSphere Trust Authority Components

You can use the services interface from the com.vmware.vcenter.trusted infrastructure.kms
and com.vmware.vcenter.trusted infrastructure.attestation packages to perform Key
Provider Service and Attestation Service management operations.

You can register, list, remove, and retrieve details about Key Provider Service and Attestation
Service instances.

Prerequisites
m Verify that you have access to a working vSphere Trust Authority environment.

m Verify that you have Trusted Infrastructure administrative privileges.

Procedure

1 Register a Key Provider Service instance in a Workload vCenter Server by calling
the create (ServicesTypes.CreateSpec spec) method of the services interface from the

com.vmware.vcenter.trusted infrastructure.kms package.

The Key Provider Service instance is propagated to all Workload ESXi hosts that the
Workload vCenter Server manages.

2 Register an Attestation Service instance in a Workload vCenter Server by calling the
create (ServicesTypes.CreateSpec spec) method of the services interface from the

com.vmware.vcenter.trusted infrastructure.attestation package.

The Attestation Service instance is propagated to all Workload ESXi hosts that the Workload
vCenter Server manages.

3 List Key Provider Service instances registered in a Workload vCenter Server by using filters
by calling the 1ist (ServicesTypes.FilterSpec spec) method of the services interface from

the com.vmware.vcenter.trusted infrastructure.kms package.

4 List Attestation Service instances registered in a Workload vCenter Server by using filters by
calling the 1ist (ServicesTypes.FilterSpec spec) method of the services interface from the

com.vmware.vcenter.trusted infrastructure.attestation package.

5 Remove a registered Key Provider Service instance by calling the
delete (java.lang.String service) method of the services interface from the

com.vmware.vcenter.trusted infrastructure.kms package.

The Workload ESXi hosts can no longer retrieve keys by using that Key Provider Service
instance.

6 Remove a registered Attestation Service instance by calling the
delete (java.lang.String service) method of the services interface from the

com.vmware.vcenter.trusted infrastructure.attestation package.

The Workload ESXi hosts can no longer attest that their configuration is secure by using that
Attestation Service instance.

VMware, Inc. 227

VMware vSphere Automation SDKs Programming Guide

7 Retrieve detailed information, including the certificates, for a registered Key Provider Service
instance by calling the get (java.lang.String service) method of the services interface
from the com.vmware.vcenter.trusted infrastructure.kms package.

8 Retrieve detailed information, including the certificates, for a registered Attestation Service
instance by calling the get (java.lang.String service) method of the services interface
from the com.vmware.vcenter.trusted infrastructure.attestation package.

Configure vSphere Trust Authority Components for Trusted Clusters

You can use the services interface from

the com.vmware.vcenter.trusted infrastructure.trusted clusters.kms and
com.vmware.vcenter.trusted infrastructure.trusted clusters.attestation packages to
manage Key Provider Service and Attestation Service instances that a Trusted Cluster is
configured to use.

You can configure, list, remove, and retrieve details about Key Provider Service and Attestation
Service instances.

Prerequisites

m Verify that you have access to a working vSphere Trust Authority environment.

m Verify that you have Trusted Infrastructure administrative privileges.

Procedure

1 Configure a cluster in a Workload vCenter Server to use a registered Key
Provider Service instance by calling the create Task(java.lang.String cluster,
ServicesTypes.CreateSpec spec) method of the services interface from the

com.vmware.vcenter.trusted infrastructure.trusted clusters.kms package.

You receive the task ID in the response body. You can use the task ID to check the status of
the task by running the following HTTP request.

If the operation is successful, the Key Provider Service instance is propagated to all Trusted
ESXi hosts in the cluster.

2 Configure a cluster in a Workload vCenter Server to use a registered
Attestation Service instance by calling the create Task(java.lang.String cluster,
ServicesTypes.CreateSpec spec) method of the services interface from the

com.vmware.vcenter.trusted infrastructure.trusted clusters.attestation package.

You receive the task ID in the response body. You can use the task ID to check the status of
the task by running the following HTTP request.

If the operation is successful, the Attestation Service instance is propagated to all Trusted
ESXi hosts in the cluster.

VMware, Inc. 228

VMware vSphere Automation SDKs Programming Guide

3 List Key Provider Service instances used by a cluster by using filters by calling the
list (java.lang.String cluster, ServicesTypes.FilterSpec spec) method of the services
interface from the com.vmware.vcenter.trusted infrastructure.trusted clusters.kms

package.

4 List Attestation Service instances used by a cluster by
using filters by calling the 1ist (java.lang.String cluster,
ServicesTypes.FilterSpec spec) method of the services interface from the

com.vmware.vcenter.trusted infrastructure.trusted clusters.attestation package.

5 Remove a Key Provider Service instance from the configuration of
a Trusted Cluster by calling the delete Task(java.lang.String cluster,
java.lang.String service) method of the services interface from the

com.vmware.vcenter.trusted infrastructure.trusted clusters.kms package.

If the operation is successful, the Trusted ESXi hosts can no longer retrieve keys by using that
Key Provider Service instance.

6 Remove a registered Attestation Service instance from the configuration
of a Trusted Cluster by calling the delete Task(java.lang.String cluster,
java.lang.String service) method of the services interface from the

com.vmware.vcenter.trusted infrastructure.trusted clusters.attestation package.

If the operation is successful, the Trusted ESXi hosts can no longer attest that their
configuration is secure by using that Attestation Service instance.

7 Retrieve detailed information, including the certificates, for a configured Key Provider
Service instance used by a Trusted Cluster by calling the get (java.lang.String
cluster, java.lang.String service) method of the services interface from the

com.vmware.vcenter.trusted infrastructure.trusted clusters.kms package.

8 Retrieve detailed information, including the certificates, for a registered Attestation
Service instance used by a Trusted Cluster by calling the get (java.lang.String
cluster, java.lang.String service) method of the services interface from the

com.vmware.vcenter.trusted infrastructure.trusted clusters.attestation package.

Establish Trust Between Hosts in a vSphere Trust Authority Cluster
and a Workload vCenter Server

You can use the ConsumerPrincipals interface from the
com.vmware.vcenter.trusted infrastructure.trust authority clusters package to perform
trust management operations.

You can establish and remove trust between a Workload vCenter Server and the hosts in a
vSphere Trust Authority Cluster. You can also list all Workload vCenter Server instances that
have established trust with the host in a vSphere Trust Authority Cluster.

VMware, Inc. 229

VMware vSphere Automation SDKs Programming Guide

Prerequisites
m Verify that you have access to a working vSphere Trust Authority environment.

m Verify that you have Trusted Infrastructure administrative privileges.

Procedure

1 Establish trust between a vSphere Trust Authority Cluster and a Workload vCenter Server by
creating a profile, so that the Workload vCenter Server can retrieve the health status of the
vSphere Trust Authority components by calling the create Task(java.lang.String cluster,

ConsumerPrincipalsTypes.CreateSpec spec) method of the consumerPrincipals interface.

2 Remove the trust between a Workload vCenter Server and the hosts in the vSphere Trust
Authority Cluster, so that the Workload vCenter Server stops using the hosts for attestation
by calling the delete Task(java.lang.String cluster, java.lang.String profile) method
of the ConsumerPrincipals interface.

3 List all profiles which the vSphere Trust Authority Cluster trusts by calling
the list Task(java.lang.String cluster, ConsumerPrincipalsTypes.FilterSpec spec)

method of the ConsumerPrincipals interface.

Check Trusted Cluster Health

You can use the servicesappliedConfig interface

from the com.vmware.vcenter.trusted infrastructure.trusted clusters.kms,
com.vmware.vcenter.trusted infrastructure.trusted clusters.attestation, and
com.vmware.vcenter.trusted infrastructure.trusted clusters packages to retrieve
information about the health of the applied vSphere Trust Authority component configurations in
a Trusted Cluster.

You can retrieve basic and detailed information about the health of Key Provider Service or
Attestation Service configurations applied to a Trusted Cluster with respect to the desired state.
You can also retrieve detailed information about the health of all applied vSphere Trust Authority
component configurations in a Trusted Cluster.

Prerequisites
m Verify that you have access to a working vSphere Trust Authority environment.

m Verify that you have Trusted Infrastructure administrative privileges.

VMware, Inc. 230

VMware vSphere Automation SDKs Programming Guide

Procedure

1

Retrieve a summary about the health status of all Key Provider Service instances
configured for use in a Trusted Cluster by calling the 1ist Task(java.lang.String cluster,
ServicesAppliedConfigTypes.FilterSpec spec) method of the servicesaAppliedConfig
interface from the com.vmware.vcenter.trusted infrastructure.trusted clusters.kms

package.

If the operation is successful, you can verify whether all Key Provider Service configurations
of the Trusted Cluster are applied successfully and every host in the cluster is consistent with
the desired state.

Retrieve detailed information about the health status of a specific Key Provider Service
instance configured for use in a Trusted Cluster by calling the get Task(java.lang.String
cluster, NetworkAddress address) method of the servicesaAppliedConfig interface from the

com.vmware.vcenter.trusted infrastructure.trusted clusters.kms package.

If the operation is successful, you can verify whether the specified Key Provider Service
configuration of the Trusted Cluster is applied successfully and every host in the cluster is
consistent with the desired state.

Retrieve a summary about the health status of all Attestation

Service instances configured for use in a Trusted Cluster by calling

the list Task(java.lang.String cluster, ServicesAppliedConfigTypes.FilterSpec
spec) method of the servicesaAppliedConfig interface from the

com.vmware.vcenter.trusted infrastructure.trusted clusters.attestation package.

If the operation is successful, you can verify whether all Attestation Service configurations of
the Trusted Cluster are applied successfully and every host in the cluster is consistent with
the desired state.

Retrieve detailed information about the health status of a specific Attestation Service
instance configured for use in a Trusted Cluster by calling the get Task(java.lang.String
cluster, NetworkAddress address) method of the servicesaAppliedConfig interface from the

com.vmware.vcenter.trusted infrastructure.trusted clusters.attestation package.

If the operation is successful, you can verify whether the specified Attestation Service
configuration of the Trusted Cluster is applied successfully and every host in the cluster is
consistent with the desired state.

Retrieve detailed information about the health status of all vSphere Trust
Authority components configured for use in a Trusted Cluster by calling the
get Task(java.lang.String cluster) method of the servicesAppliedConfig interface from

the com.vmware.vcenter. trusted infrastructure.trusted clusters package.

If the operation is successful, you can verify whether the vSphere Trust Authority component
configuration is applied successfully and every host in the cluster is consistent with the
desired state.

VMware, Inc. 231

VMware vSphere Automation SDKs Programming Guide

What to do next

If there are errors, you can try to remediate the Trusted Cluster. See Remediate a Trusted
Cluster.

Remediate a Trusted Cluster

You can use the servicesAppliedConfig interface

from the com.vmware.vcenter.trusted infrastructure.trusted clusters.kms,
com.vmware.vcenter.trusted infrastructure.trusted clusters.attestation, and
com.vmware.vcenter.trusted infrastructure.trusted clusters packages to remediate
vSphere Trust Authority component configurations in a Trusted Cluster or remove the
configurations.

You can update the applied Key Provider Service or Attestation Service configurations in a
Trusted Cluster to become consistent with the desired state or you can remove the applied Key
Provider Service or Attestation Service configurations. You can also update all applied vSphere
Trust Authority component configurations in a Trusted Cluster or remove the configurations. By
removing the configurations, you can move hosts from a Trusted Cluster to another cluster.

Prerequisites

m Verify that you have access to a working vSphere Trust Authority environment.

m Verify that you have Trusted Infrastructure administrative privileges.

Procedure

1 Remediate all Key Provider Service instances configured for use in a Trusted Cluster by
calling the update Task(java.lang.String cluster) method of the servicesAppliedConfig
interface from the com.vmware.vcenter.trusted infrastructure.trusted clusters.kms

package.

If the operation is successful, the Key Provider Service configuration of every host in the
cluster is consistent with the desired state.

2 Remove all Key Provider Service configurations from a Trusted Cluster by calling the
delete Task(java.lang.String cluster) method of the servicesappliedConfig interface

from the com.vmware.vcenter.trusted infrastructure.trusted clusters.kms package.

If the operation is successful, the applied Key Provider Service configurations are removed
from the configuration of every host in the cluster without affecting the desired state.

3 Remediate all Attestation Service instances configured for use
in a Trusted Cluster by calling the update Task(java.lang.String
cluster) method of the servicesaAppliedConfig interface from the

com.vmware.vcenter.trusted infrastructure.trusted clusters.attestation package.

If the operation is successful, the Attestation Service configuration of every host in the cluster
is consistent with the desired state.

VMware, Inc. 232

VMware vSphere Automation SDKs Programming Guide

4 Remove all Attestation Service configurations from a Trusted Cluster by calling the
delete Task(java.lang.String cluster) method of the ServicesAppliedConfig interface
from the com.vmware.vcenter. trusted infrastructure.trusted clusters.attestation

package.

If the operation is successful, the applied Attestation Service configurations are removed
from the configuration of every host in the cluster without affecting the desired state.

5 Remediate all vSphere Trust Authority components configured for use in a Trusted Cluster by
calling the update Task(java.lang.String cluster) method of the servicesAppliedConfig
interface from the com.vmware.vcenter.trusted infrastructure.trusted clusters package.

If the operation is successful, the vSphere Trust Authority component configuration of every
host in the cluster is consistent with the desired state.

6 Remove all vSphere Trust Authority component configurations from a Trusted Cluster by
calling the delete Task(java.lang.String cluster) method of the servicesAppliedConfig
interface from the com.vmware.vcenter.trusted infrastructure.trusted clusters package.

If the operation is successful, the applied vSphere Trust Authority component configurations
are removed from the configuration of every host in the cluster without affecting the desired
state.

What to do next
You can recheck the Trusted Cluster health after the remediation. See Check Trusted Cluster
Health.

Retrieve Host Hardware TPM Information

You can use the Tpm interface from the
com.vmware.vcenter.trusted infrastructure.hosts.hardware package to retrieve a list of
configured TPM devices on a host and information about each TPM device.

Prerequisites
m Verify that you have access to a working vSphere Trust Authority environment.

m Verify that you have Trusted Infrastructure administrative privileges.

Procedure

1 List configured TPM devices on a host by calling the 1ist (java.lang.String host,
TpmTypes.FilterSpec filter) method of the Tpm interface.

2 Retrieve detailed information about a specific TPM device, including the manufacturer, model,
and firmware version by calling the get (java.lang.String host, java.lang.String tpm)
method of the Tpm interface.

VMware, Inc. 233

VMware vSphere Automation SDKs Programming Guide

Manage Host Hardware TPM Endorsement Keys

You can use interfaces from the

com.vmware.vcenter.trusted infrastructure.hosts.hardware.tpm package to retrieve a list of
configured TPM endorsement keys on a host and information about each endorsement key. You
can also retrieve the TPM event log and unseal a secret that is bound to an endorsement key.

You can retrieve the TPM event log for different purposes, such as configuring firmware trust
with an attestation service or validating the boot time TPM measurements. You can unseal a
secret that is bound to an endorsement key to verify reported measurements. For example, you
can verify measurements from the TPM event log.

Prerequisites
m Verify that you have access to a working vSphere Trust Authority environment.

m Verify that you have Trusted Infrastructure administrative privileges.

Procedure

1 List configured TPM endorsement keys on a host by calling the 1ist (java.lang.String
host, java.lang.String tpm, EndorsementKeysTypes.FilterSpec filter) method of the
EndorsementKeys interface.

2 Retrieve detailed information about a specific TPM endorsement key by calling the
get (java.lang.String host, java.lang.String tpm, java.lang.String key) method of the
EndorsementKeys interface.

3 Retrieve the event log associated with a TPM device by calling the get (java.lang.String
host, java.lang.String tpm) method of the EventLog interface.

4 Unseal a secret that is bound to an endorsement key by calling the unseal (java.lang.String
host, java.lang.String tpm, java.lang.String key, EndorsementKeysTypes.UnsealSpec
spec) method of the EndorsementKeys interface.

VMware, Inc. 234

vCenter Server Management

You can use the API to configure, monitor, maintain, and update vCenter Server.
This chapter includes the following topics:

m Authorization Model for Administration of vCenter Server

m Performing Privilege Checks Operations

m vCenter Server Installation and Setup

m vCenter Server Upgrade

m vCenter Server Configuration

m Patching and Updating vCenter Server Deployments

Authorization Model for Administration of vCenter Server

There are three types of authorization levels in vCenter Server.

Table 13-1. Authorization Levels

Authorization Level Description
operator A user has read access to configuration settings.
administrator A user has read and write access to configuration settings, but cannot manage

user accounts.

super administrator A user has all the capabilities of the other roles, and has the additional
capabilities of creating local user accounts and accessing the local Bash shell.

This model applies to the API and all other interfaces to vCenter Server except when you use
SSH and log in by using a local account.
Authorization Model Mapping to the vCenter Single Sign-On Domain

The three-level authorization model of vCenter Server maps to local roles and to vCenter Single
Sign-On groups, depending on how the user authenticated. This model allows consistent security
control regardless of operational context.

The authorization levels map to group and role.

VMware, Inc. 235

VMware vSphere Automation SDKs Programming Guide

Table 13-2. Authorization Mapping

Authorization Level vCenter Single Sign-On Group vCenter Server Local Role
operator SystemConfiguration.Administrators operator

administrator SystemConfiguration.Administrators admin

superAdministrator SystemConfiguration.BashShellAdministrators superAdmin

When a super administrator adds user accounts, the options available include a choice of the role
to assign to the new user.

Using the Operator Role

The operator role is the most restricted of the authorization levels available to users who work
with vCenter Server.

Operators are allowed to view information about vCenter Server. They are not allowed to alter
its configuration. The operator role is suited for monitoring and reporting functions. For example,
the operator role provides access to the following methods.

B resources.system.health.get
] resources.storage.stats.list

B services.status.get

Using the Admin Role

The administrator role provides an intermediate authorization level for users who manage
vCenter Server.

An administrator role is required for users who alter the vCenter Server configuration, exercise
control functions, or other operations that can affect regular users.

For example, the administrator role provides access the following methods.
B networking.ipdv.renew

B networking.firewall.addr.inbound.add

B services.control

] shutdown.reboot

Using the SuperAdmin Role

The superAdmin role is the most expansive authorization level for users who manage vCenter
Server.

The superAdmin role allows unrestricted access to vCenter Server. This role is required for
adding or altering user accounts and for using the Bash shell.

VMware, Inc. 236

VMware vSphere Automation SDKs Programming Guide

Performing Privilege Checks Operations

Privilege checks recorder is a feature which allows you to monitor and subsequently query the
privileges that were checked. You can use the recordings to create scripts that automatically
create roles with minimum required privileges to run specific workflows of operations.

Currently, it is very hard to find out the minimal set of privileges that are required to run a specific
workflow of operations. The privilegeChecks interface provides methods for retrieving a list of
the latest privilege checks along with the corresponding sessions, users, managed objects, and
operation IDs (opIDs).

The following table lists the available privilege checks operations.

Operation Description

List privilege checks Returns a list of privilege checks that match criteria which
you specified.

Get latest privilege check Returns a marker to the last recorded privilege check.
This allows retrieving all privilege checks up to or after a
specified moment in time.

When you retrieve a list of privilege checks, the results are returned in pages due to the possibly
large number of privilege checks that can be returned. You can control the page size either
through a com.vmware.vcenter.authorization.PrivilegeChecks.IterationSpec Structure, which
is passed as an argument to the API call, or with the config.vpxd.privCheck.pageSize advanced
setting.

Filtering Privilege Checks

When you retrieve lists of privilege checks, you can refine your search by using the
PrivilegeChecksTypes.FilterSpec class. The following table lists the available filtering options.

Filtering Option Description

Objects IDs of the managed objects on which the privilege check
was performed. If nul1, all objects match.

OpIDs opIDs of the requests for which the check was performed.
If null, all opIDs mMatch.

Principals Principals for which the privilege check was performed.
The null Principal value matches privilege checks for
anonymous sessions. If null, all principals match.

Privileges Privileges that were checked. If nul1, all privileges match.

Sessions Sessions for which the check was performed. If nu11, all
sessions match.

VMware, Inc. 237

VMware vSphere Automation SDKs Programming Guide

Using Advanced Settings

You can configure advanced settings by using the vSphere Client. Some of the advanced settings
are not available in the API, but are required for the privilege checks recorder to function
properly. For information about configuring advanced settings, see vCenter Server Configuration.

Advanced Setting Name Description
config.vpxd.privCheck.pageSize Specifies the default page size for privilege checks lists.
config.vpxd.privCheck.bufferSize Specifies the count of privileges to be kept in memory. The

default value is O. If you do not change the default value,
the privilege checks recorder does not record any data.

config.vpxd.privCheck.cleanupInterval Specifies the interval on which privilege checks for unused
sessions are cleaned up. The default value is 30 minutes.

vCenter Server Installation and Setup

You can use the API to perform operations related to stage 2 of the installation process. You can
also perform backup, restore, and troubleshooting operations.

Install Stage 2

The vCenter Server API provides methods for performing stage 2 deployment operations on a
newly installed vCenter Server instance.

The vCenter Server instance is deployed in two stages. With stage 1 of the deployment process,
you deploy the OVA file, which is included in the installer. With stage 2 of the deployment
process, you set up and start the services of the newly deployed vCenter Server instance.

To complete stage 1 of the deployment process, you can use the GUI installer or perform a
CLI deployment. For details, see vCenter Server Installation and Setup. Alternatively, you can
perform a deployment by using the VMware OVF Tool. See OVF Tool User's Guide.

Setting Up a Newly Installed vCenter Server Instance

You can use the API to set up a newly deployed vCenter Server instance.

After stage 1 of the deployment process completes successfully, the vCenter Server instance
enters in an INITIALIZED state. If the instance is not initialized, you cannot run stage 2 of the
deployment process. You can get the state of the vCenter Server instance by using the vcenter
deployment service. The vCenter Server instance can enter six states during the deployment
process.

VMware, Inc. 238

VMware vSphere Automation SDKs Programming Guide

Figure 13-1. Install Stage 2 State Diagram

NOT_

Install
Stage 1

INITIALIZED

Start Success

Check spec

CONFIG_
IN_

PROGRESS

Question

Answer

QUESTION_

RAISED

Table 13-3. vCenter Server Instance States During Install Stage 2

State Description

NOT INITIALIZED The install stage 1 phase is in progress, not started, or
failed.

INITIALIZED The vCenter Server instance is deployed and ready for
setup.

CONFIG_IN PROGRESS The setup process is in progress.

QUESTION RAISED You must answer the question to continue the setup

process. The vCenter Server instance stays in the
QUESTION RAISED State until it receives the correct answer.

FAILED Errors occurred during the setup process. You can check
the errors, warnings, and info data structures.

CONFIGURED The vCenter Server instance is installed and configured
successfully.

FAILED and CONFIGURED are final states.

Table 13-4. User Operations lists operations that you can perform to set up your newly deployed
vCenter Server instance.

VMware, Inc. 239

VMware vSphere Automation SDKs Programming Guide

Table 13-4. User Operations

Operation Description
Get deployment You can retrieve information about the current deployment status. This operation is useful
information both before initiating stage 2 of the deployment and for monitoring the progress of the

setup process.

Validate the You can optionally verify whether your install spec is valid before starting the setup
configuration document process.

Configure the vCenter You can initiate the setup process by providing an install spec that defines the values for
Server instance the settings that you want to configure.

Get question You can retrieve a question raised during the setup process.

Answer question You can provide an answer to the question raised during the setup process. The available

answer values are YES, NO, OK, CANCEL, ABORT, RETRY, and IGNORE. The possible answer
values depend on the type of the question.

Note Each question has a default answer value. If you set questions to receive automatic
answers in the install spec and a question is raised during the setup process, the default
answer value is automatically provided as the answer to the question.

Workflows for Install Stage 2

You can use the vcenter deployment API to run the install stage 2 process of your vCenter
Server instance.

Figure 13-2. Install Workflow and Figure 13-3. Install Stage 2 Workflow show example install
workflows.

During stage 1, the vCenter Server instance is in a NOT INITIALIZED state. After a successful
deployment, the vCenter Server instance enters in an INITIALIZED state. If there are errors during
stage 1, the vCenter Server instance stays in a NOT INITIALIZED State and you must redeploy it.

You can check the state of the vCenter Server instance before, during, and after the setup
process. You can run the install stage 2 process if the vCenter Server instance is initialized. You
can check the setup configuration before you initiate stage 2 by running pre-checks. If errors or
warnings appear during the validation of the install specification, you must remove the causes
and correct the specification.

During the setup process, the regular vCenter Server instance state is CONFIG IN PROGRESS. The
vCenter Server instance can also enter in a FAILED Or QUESTION RASED state. If a question appears
during the setup, the vCenter Server instance enters in a QUESTION RAISED state and stays in

it until you provide an answer. You can set questions to receive automatic answers in the

install spec and if a question is raised during the setup process, the default answer value is
automatically provided as the answer to the question.

If errors occur during the setup process, the vCenter Server instance enters in a FAILED state and
you must restart the setup after the causes are removed. If the setup is successful, the vCenter
Server instance enters in a CONFIGURED State.

VMware, Inc. 240

VMware vSphere Automation SDKs Programming Guide

Figure 13-2. Install Workflow

Check the errors
and warnings data
structures and resolve
the issues

VMware, Inc.

Deploy the appliance
by using the GUI or CLI

Check the state of the
applianceby using
the vcenter deployment
service

State=
INITIALIZED

Run validation of the
install spec by using the
vcenter deployment
install service

Run the appliance
setup by using the vcenter
deployment install service

State=
NOT_
INITIALIZED

State=
CONFIG_
IN_PROGRESS

State=
FAILED

State=
QUESTION_
RAISED

Receive
Answer

Answer
Received?

State=

CONFIGURED

241

VMware vSphere Automation SDKs Programming Guide

For information about the states of the vCenter Server instance and available operations, see
Setting Up a Newly Installed vCenter Server Instance.

Figure 13-3. Install Stage 2 Workflow

Create an install spec

Get the deployment status

Validate the install spec by using
the check method of the install
service and check the result data
structure for errors and warnings

Run the setup process by using the
start method of the install service

Check the configuration status by
using the vcenter deployment service

You can run the setup pre-checks and the install stage 2 process by creating and passing an
InstallSpec. In InstallSpec, you define the setup configuration. See Figure 13-3. Install Stage 2
Workflow . You can run the setup in silent mode by setting the InstallSpec.auto_answer tO true.
The default value of Installspec.auto answer iS false and the setup is in interactive mode, in
which you must provide answers to the raised questions.

For information about the classes, variables, and default values, see the AP/ reference
documentation.

File-Based Backup and Restore of vCenter Server

You can back up a vCenter Server instance and later restore the instance from the backup copy.

VMware, Inc. 242

VMware vSphere Automation SDKs Programming Guide

Backing up vCenter Server

The vCenter Server Management API supports backing up key parts of the vCenter Server
instance. This allows you to protect vCenter Server data and to minimize the time required to
restore data center operations.

The backup process collects key files into a tar bundle and compresses the bundle to reduce
network load. To minimize storage impact, the transmission is streamed without caching in the
vCenter Server instance. To reduce total time required to complete the backup operation, the
backup process handles the different components in parallel.

You have the option to encrypt the compressed file before transmission to the backup storage
location. When you choose encryption, you must supply a password which can be used to
decrypt the file during restoration.

The backup operation always includes the vCenter Server database and system configuration
files, so that a restore operation has all the data needed to re-create an operational vCenter
Server instance. Current Alarms are included as well. You also have the option to specify
additional data sets, called parts. In this release, you can specify a data set that includes
Statistics, Events, and Tasks.

Backup and Restore Protocols for vCenter Server

The vCenter Server backup and restore feature supports a number of plug-in communication
protocols.

Choose one of these protocols as the backup location type when you invoke the operation.

= FTP
= FTPS
= SCP

s HTTP
» HTTPS
= NFS

= SMB

The value paTH for the location type field indicates a locally mounted volume.

Note If you specify the scp protocol, you must specify an absolute path as the value of the
location type field when you create the backup job.

Calculate the Size Needed To Store the Backup File

When you prepare to do a backup of a vCenter Server instance, you can use the API to calculate
the storage space needed for the backup file.

You can do this task when you are choosing a backup storage location or whenever your existing
storage location might be approaching full capacity.

VMware, Inc. 243

VMware vSphere Automation SDKs Programming Guide

Prerequisites
m Verify that you have a vCenter Server instance running.

m Verify that you are familiar with authentication methods. See Chapter 4 Authentication
Mechanisms.

Procedure
1 Authenticate to the vSphere Automation API endpoint and establish a session.
2 Request a list of backup parts available.
3 For each available backup part, request the size of the backup file.
The backup process calculates the compressed size of each backup part.
4 Choose which parts to include in the backup, and sum their sizes.

The backup storage server must have sufficient space to contain the chosen parts.

What to do next

After you choose which backup parts you will store, and verify that the backup storage server
has sufficient free space, you can launch a backup job. For information, see Back up a vCenter
Server Instance by Using the API.

Python Example of Calculating the Size Needed To Store the Backup Image

This example shows how to use Python to collect the information you need to calculate the size

needed to store a backup image of the vCenter Server instance.
from com.vmware.appliance.recovery.backup client import Parts

This example assumes you have previously created a session

and stored the session ID in my stub_config.

Issue a request to list the backup image parts.
Parts stub = Parts(my_stub config)
parts = Parts_stub.list()

Extract IDs of backup image parts.
sizes = {}
total = 0
for part in parts
size = Parts_stub.get(part.id)
sizes[part.id] = size

total += size

Show the result.

print ('Backup image parts:')

for part_id in sizes.keys()
print(' part {0} = {1}KB'.format(part_id, sizes[part_id]))
print ('Total size: {0}KB'.format(total))

VMware, Inc.

244

VMware vSphere Automation SDKs Programming Guide

Back up a vCenter Server Instance by Using the API

You can use the Management API to create a backup of the vCenter Server database and key
components of the vCenter Server instance.

This procedure explains the sequence of operations you use to create a backup file of the
vCenter Server instance. You can do this as part of a regular maintenance schedule.

Prerequisites

m Verify that the vCenter Server instance is in a ready state. All processes with start-up type
automatic must be running.

m Verify that no other backup or restore jobs are running.
m Verify that the destination storage location is accessible to the backup process.
m Verify that the path to the destination directory exists, as far as the parent directory.

m If the destination directory does not exist, the backup process creates it. If the directory does
exist, verify that it is empty.

m Verify that the destination storage device has sufficient space for the backup file. For
information about how to calculate the space needed for the backup file, see Calculate the
Size Needed To Store the Backup File.

Procedure
1 Authenticate to the vSphere Automation API endpoint and establish a session.
2 Create a backup request object to describe the backup operation.

The request specifies several attributes, especially the backup location, the protocol used to
communicate with the storage server, the necessary authorization, and which optional parts
of the database you want to back up. The core inventory data and Alarms are always backed
up, but you can choose whether or not to back up Statistics, Events, and Tasks. Collectively,
this optional part of the backup is referred to as seat.

Issue a request to start the backup operation.

3
4 From the response, save the unique job identifier of the backup operation.
5 Monitor the progress of the job until it is complete.

6

Report job completion.

Python Example of Backing Up a vCenter Server Instance

This example specifies that the backup image should include Statistics, Events, and Tasks as well
as the core inventory and alarm data. The value for req.parts indicates the optional data part for
Statistics, Events, and Tasks.

This example uses the following global variables.
m my_storage_server

m my_backup_folder

VMware, Inc. 245

VMware vSphere Automation SDKs Programming Guide

m My _Sscp_user
m My _Sscp_password
m /my_stub_config

When you back up the vCenter Server instance, you need two sets of authentication credentials.
The API client needs to authenticate to the vCenter Server instance, and the backup service
needs to authenticate to the backup storage server.

The example assumes that your API client has already authenticated the connection to the
vCenter Server instance, and the security context is stored in my_stub_config.

In the backup request, you need to specify the folder that will contain the backup image. The
folder name must be specified as a path name relative to the home directory of the user that
authenticates with the storage server.

from com.vmware.appliance.recovery.backup client import Job

import time

This example assumes you have previously created a session
and stored the session ID in my stub config.

Create a backup request object.

req = Job.BackupRequest ()

Include optional backup part for Statistics, Events, and Tasks.

reg.parts = ['seat']

req.location type = Job.LocationType.SCP

req.comment = 'On-demand backup'

req.location = my storage server + ':/home/scpuser/' + my backup folder \
+ '/' + time.strftime ('%Y-%m-%d-%H-%M-%S"')

req.location user = my scp user

req.location password = my scp password

Issue a request to start the backup operation.
backup job = Job(my stub config)

job status = backup job.create(req)

job id = job status.id

Monitor progress of the job until it is complete.
while (job_status.state == Job.BackupRestoreProcessState.INPROGRESS)
print ('Backup job state: {} ({}%)'.format(job status.state, \
job status.progress))
time.sleep(10)
job status = backup job.get(job id)

Report job completion.
print ('Backup job completion status: {}'.format(job status.state))

Schedule a Backup Job

You can automate the backup process by creating a schedule that runs backup jobs at specific
times.

VMware, Inc. 246

VMware vSphere Automation SDKs Programming Guide

You can keep existing backups on the backup server. The retention policy defines the maximum
number of backups that the server keeps. You can also specify whether the backup job should
run once, or on a recurring basis. The recurrence policy defines the days of the week and specific
times at which the backup job is scheduled to run.

Prerequisites

m Verify that you can access the backup server and you have read and write permissions.

m Verify that you have established a connection to the vAPI services.

Procedure
1 Create a schedules Object.
2 Specify the retention and recurrence information.

3 Create a schedule by specifying the backup location, user credentials to access the location,
retention, and recurrence information.

4 Create an Updatespec and pass the updated information.

5 Get a backup schedule by passing a schedule ID.

What to do next

Run the backup job by using the schedule.

Python Example of Scheduling a Backup Job
This example shows how you can schedule a backup job, update the schedule, and get a
schedule. The example is based on the backup schedule.py sample.

Note For a complete and up-to-date version of the sample code, see the vsphere-
automation-sdk-python VMware repository at GitHub.

Connect to VAPI services

self.stub config = vapiconnect.connect (
host=args.server,
user=args.username,
pwd=args.password,

skip verification=args.skipverification)

self.schedule_client = Schedules(self.stub config)

def create schedule(self):
retention_info = Schedules.RetentionInfo(self.max_count)
recurrence info = Schedules.Recurrencelnfo(
days=self.days,
hour=self.hour,
minute=self.minute)
create spec = Schedules.CreateSpec(

location=self.location,

VMware, Inc. 247

VMware vSphere Automation SDKs Programming Guide

location user=self.location_user,
location password=self.location password,
recurrence_info=recurrence_info,

retention info=retention_ info)
self.schedule client.create(self. schedule id, create_ spec)

def update_ schedule (self):

retention info = Schedules.RetentionInfo(self.max count)

recurrence_info = Schedules.RecurrencelInfo (
days=self.days,
hour=self.hour,
minute=self.minute)

update spec = Schedules.UpdateSpec (
location=self.location,
location user=self.location_user,
location password=self.location password,
recurrence_info=recurrence_info,

retention info=retention_info)
self.schedule client.update(self. schedule id, update_ spec)
def get schedule(self):

self.schedule client = Schedules(self.stub config)
schedule spec = self.schedule client.get(self. schedule id)

recurrence_info = schedule spec.recurrence_info
retention info = schedule spec.retention info
table = []

data = [self. schedule id,

"{}:{}".format (recurrence_info.hour, recurrence_info.minute),
" ".join(recurrence info.days),
retention info.max count]

table.append (data)

headers = ["Schedule ID", "Time", "Days", "Retention"]

print (tabulate (table, headers))

Restoring vCenter Server

The vCenter Server Management API supports restoring a vCenter Server instance from a
backup copy. The API simplifies the process by unifying the handling of various components
of vCenter Server in a single operation.

The process of restoring a vCenter Server instance from a backup has two phases.

1 Deploy a new vCenter Server instance. OVF deployment is described in the vSphere
Automation SDKs Programming Guide.

VMware, Inc. 248

VMware vSphere Automation SDKs Programming Guide

2 Invoke the restore operation from the Management API to apply configuration settings and
load the vCenter Server database from the backup file.

Note You cannot specify optional parts for the restore operation. The restore operation includes
all optional parts, such as Events and Tasks, that were specified at the time when the backup file
was created.

Authentication When Restoring a vCenter Server Instance

During the process of restoring a vCenter Server instance from a backup image, you cannot use
token-based authentication. You must use basic authentication until the vCenter Server instance
is fully configured.

When you restore your vCenter Server instance from a backup file, it begins in an unconfigured
state. During this time, you must use basic authentication to access the Management API. When
you use basic authentication, do not use the vSphere Automation API endpoint. Instead, you
must connect your client to port 5480 of the vCenter Server instance.

When you use basic authentication, you must pass user name and password credentials with
each method invocation. Use credentials that are known to the guest operating system of the
vCenter Server instance.

Availability of Services While Restoring a vCenter Server Instance

During the process of restoring the vCenter Server backup file, services in the vCenter Server
instance must restart. While they are restarting, your API client receives an error message.

You can write your client to trap the error, but you have no way to know when the vCenter
Server services are running again. To determine when the restore process is complete, you must
retry the API connection until it succeeds, then request the status of the job.

Restore a vCenter Server Instance by Using the API

You can use the Management API of to restore a vCenter Server instance from a backup file
containing the vCenter Server database and key components of the vCenter Server instance.

Prerequisites
m Verify that the backed up vCenter Server instance is powered off.

m A new vCenter Server instance must be deployed in an unconfigured state, except that it
must have a fully qualified domain name or IP address that matches the old one.

m Verify that the new vCenter Server instance has the same build number as the one in the
backup file.

m Verify that the new vCenter Server instance has a size equal to or greater than the old one. If
the old vCenter Server instance was customized to exceed the largest template size, the new
one must be customized to the same size.

m Verify that no other backup or restore jobs are running.

VMware, Inc. 249

VMware vSphere Automation SDKs Programming Guide

m Verify that the destination storage location is accessible to the vCenter Server restore
process.

Procedure

1 Create a restore request object to describe the restore operation.
2 Issue arequest to start the restore operation.

3 Monitor the progress of the job until it is complete.

4

Report job completion.

What to do next

After the vCenter Server instance is fully configured by the restore operation, you can resume
using the vSphere Automation API endpoint for subsequent operations.

Python Example of Restoring a vCenter Server Instance
This example shows how to use Python to restore a vCenter Server instance. This operation is

the second phase of restoring the vCenter Server instance from a backup image.
This example uses the following global variables.

m My _vcsa_hostname

®m My_vcsa_username

m My _vcsa_password

m my_backup_name

m my_storage_server

m my_scp_user

m My _scp_password

m my_backup_folder

When you restore the vCenter Server instance from a backup image, you need two sets of
authentication credentials. The API client needs to authenticate to the vCenter Server instance,
and the vCenter Server backup service needs to authenticate to the backup storage server.

The example uses local user name and password authentication for the connection to the
vCenter Server instance because the vSphere Automation API endpoint is not yet running when
you restore the vCenter Server instance. The client must connect to port 5480 for this operation.

In the restore request, you need to specify the folder that contains the backup image. The folder
name is the same name that was specified in the backup request. It must be specified as a path
name relative to the home directory of the user that authenticates with the storage server.

This example assumes the backup image is not encrypted.

import requests
from vmware.vapi.lib.connect import get requests_connector

from vmware.vapi.security.user password import create user password security context

VMware, Inc. 250

VMware vSphere Automation SDKs Programming Guide

from vmware.vapi.stdlib.client.factories import StubConfigurationFactory
from com.vmware.appliance.recovery.restore client import (Job)

import time

Create a session object in the client.

session = requests.Session()

For development environment only, suppress server certificate checking.
session.verify = False

from requests.packages.urllib3 import disable warnings

from requests.packages.urllib3.exceptions import InsecureRequestWarning

disable warnings (InsecureRequestWarning)

Create a connection to port 5480.
local url = 'https://%s:5480/api' % my vcsa hostname

connector = get requests connector(session=session, url=local url)

Add username/password security context to the connector.
basic context = create user password security context (my vcsa username, my vcsa password)

connector.set security context (basic_context)

Create a stub configuration by using the username-password security context.

local stub config = StubConfigurationFactory.new std configuration (connector)

Create a restore request object.

req = Job.RestoreRequest ()

reqg.location type = Job.LocationType.SCP

req.location = my storage server + ':/home/scpuser/' + my backup folder + '/' +
my backup_name

req.location user = my_ scp user

req.location password = my scp_password

Issue a request to start the restore operation.
restore job = Job(local stub config)

job_status = restore job.create(req)

Monitor progress of the job until it is complete.
while (job_status.state == Job.BackupRestoreProcessState.INPROGRESS)
print ('Restore job state: {} ({}%)'.format(job status.state,
job_status.progress))
time.sleep(10)

job_status = restore job.get()

Report job completion.

print ('Restore job completion status: {}'.format(job status.state))

Reconcile a vCenter Server Instance with Nodes in Embedded Linked Mode

You can run the reconciliation process after you successfully restored your vCenter Server
instance. By using the APl or HTTP requests, you can reconcile vCenter Server nodes that work in
an embedded linked mode and are connected in a ring or daisy-chain.

VMware, Inc. 251

VMware vSphere Automation SDKs Programming Guide

Reconciliation is a post-restore process that checks whether the vCenter Server partners in
embedded linked mode are available, synchronizes the vCenter Server data and services with
the partners, and runs the vCenter Server services. The processes of restore and reconciliation
depend on the topology and if there are changes in the topology between the backup and
restore, you cannot restore the embedded linked mode. If the replication partners are not
available and you try to restore the first node, you must ignore the warnings. In this case, any
changes that are made in the topology or infrastructure after the backup will be lost. If you
restore a node different from the first one, you must add it to the domain of the first node. If

you use a daisy-chain topology, you must first restore the first node, and after that to restore the
second, link it to the first one, and apply the same to the following nodes.

You can use the reconciliation API after a file-based and an image-based restore. After an
image-based restore, you can run the reconciliation process by using the API or Ul. After

a file-based restore, you can monitor the reconciliation process by using the GET https://
<vcenter ip address_or fgdn>/api/appliance/recovery/reconciliation/job HTTP request.
For information about how to restore a vCenter Server instance from an image or a file by using
the Ul, see the vCenter Server Installation and Setup documentation.

Prerequisites

m Verify that you successfully restored your node from an image.

m Verify that the replication partners are available.

m Verify that you restored your nodes in the correct order, if you use a daisy-chain topology.
m Verify that you have administrator's credentials to your Single Sign-On domain.

m Verify that there is no running or failed reconciliation job.

Procedure

1 Create a Job.CreateSpec Object, specify user name and password of Single Sign-On
administrator, and set the ignore warnings field to true.

The default value of ignore warnings is false. If you do not set ignore warnings to true, the
reconciliation fails due to the validation warnings.

2 Run areconciliation job by using the create (Job.CreateSpec) method.

You can check the result of the operation by reading the Job.Info object. Job.Info contains
information about the job such as description, status, progress, error, start and end time.

3 Get the status of the job by calling the get () method.

The possible states are NONE, RUNNING, FAILED, and SUCCEEDED.

Troubleshooting for vCenter Server Installation or Deployment

You can use the API to perform troubleshooting operations related to the installation and
deployment of vCenter Server.

VMware, Inc. 252

VMware vSphere Automation SDKs Programming Guide

Managing System Logs

You can automate the forwarding of vCenter Server system log messages to remote logging
servers by using the vCenter Server Management API.

You can configure the syslog forwarding by using the API or user interface. For information
about how to manage the syslog by using the user interface, see the vSphere Monitoring and
Performance documentation.

Configuring Syslog Forwarding

You can use the vCenter Server Management APl or HTTP requests to configure the forwarding
of vCenter Server syslog messages and test the connection between the vCenter Server instance
and remote servers.

The table below lists operations that you can perform to manage the forwarding of syslog
messages to remote logging servers.

Table 13-5. User Operations

Operation Description

Get forwarding You retrieve information about the log forwarding configuration. For more information
configuration refer to the diagrams below.

Test forwarding You can validate the current log forwarding configuration. Optionally, you can send a test
configuration diagnostic log message from the vCenter Server instance to all configured logging servers

to allow manual end-to-end validation. For more information refer to the diagrams below.

Set forwarding You can change the log forwarding configuration. For more information refer to the
configuration diagrams below.

The forwarding configuration includes the IP or FQDN of the remote server, the remote port
for receiving syslog information, and the communication protocol. The remote server must be
a server with running rsyslog, for example, another vCenter Server instance. The API supports
the TCP, UDP, TLS, and RELP protocols. For information about the supported TLS versions,
see KB article 2147469. By creating a Forwarding.Config object, you specify the connection
with a remote server. For information about the Forwarding class and its methods, see the AP/
Reference documentation and diagrams below.

You can use several remote servers by creating a list with Forwarding.Config objects

and passing it to the set method. The maximum number of remote servers is three.

You can validate the forwarding configuration by using the test method. The returned
Forwarding.ConnectionStatus object shows the status of the connection between the vCenter
Server instance and a remote server. The state enumeration shows whether the vCenter Server
instance can reach the remote server. state can be UP, DOWN, Or UNKNOWN. If the state is pown or
UNKNOWN, the vCenter Server instance cannot access the remote server and you must check the
remote server and its settings such as network ports, firewall, supported protocols, and syslog
configuration.

Note If you use UDP, the connection status is always UNKNOWN.

VMware, Inc. 253

https://kb.vmware.com/s/article/2147469

VMware vSphere Automation SDKs Programming Guide

Figure 13-4. Forwarding Class Diagram for Python

com.vmware.appliance.logging_client

Forwarding(config)

+Config:Forwarding.Config
+ConnectionStatus:ConnectionStatus

___________________________ <>

+get(): list

+set(cfg_list)

+test(send_test_message): list

Forwarding.Config Forwarding.ConnectionStatus
+hostname:str +hostname:str

+port:long +state:State

+protocol:Protocol +message:LocalizableMessage or None

<<Enumeration>> Protocol <<Enumeration>> State

+TCP +DOWN
+TLS +UP

+UDP +UNKNOWN
+RELP

VMware, Inc. 254

VMware vSphere Automation SDKs Programming Guide

Figure 13-5. Example Configuration Workflow

Set the log forwarding configuration by
creating a Config object and using the set
method

Get the log forwarding configuration
by using the get method

Validate the log forwarding by calling the test
method and passing a default test message

Update the log forwarding configuration
by modifying the Config object and
using the set method

For a code example of configuring the syslog forwarding, see Python Example of Configuring

Syslog Forwarding.
Python Example of Configuring Syslog Forwarding
This example shows how you can configure and test the forwarding of a vCenter Server syslog

by using the API. The example is based on the 1og forwarding.py sample.

Note For a complete and up-to-date version of the sample code, see the vsphere-
automation-sdk-python VMware repository at GitHub.

self.log forwarding client = Forwarding(self.stub config)

def set log forwarding(self):

log forwarding config = [Forwarding.Config(hostname=self.loghost,

VMware, Inc. 255

VMware vSphere Automation SDKs Programming Guide

def

def

def

port=self.port,
protocol=self.protocol)]

self.log forwarding client.set (log forwarding config)

get log forwarding (self):

configs = self.log forwarding client.get()

print ("\nLog forwarding configurations:")
table = [[cfg.hostname, cfg.port, cfg.protocol] for cfg in configs]
headers = ["Loghost", "Port", "Protocol"]

print (tabulate (table, headers))

test log forwarding(self):

test response = self.log forwarding client.test (True)

print ("\nLog forwarding test response:")

table = [[resp.hostname,
resp.state,
resp.message.default message if resp.message else None]
for resp in test response]

headers = ["Loghost", "State", "Message"]

print (tabulate (table, headers))

update log forwarding(self):
Read log forwarding configuration

log forwarding config = self.log forwarding client.get ()

Delete the newly added configuration
log forwarding config = list(filter(
lambda cfg: cfg.hostname != self.loghost,

log forwarding config))

Apply the modified log forwarding configuration

self.log forwarding client.set(log forwarding config)

Managing Support Bundles

You can retrieve information about support bundles and create support bundles.

The following table lists the operations that you can perform to manage support bundles.

Table 13-6. User Operations
Operation Description
Get support bundle You can retrieve a list of components and manifests included in the support bundle.
components Manifests specify the files that must be collected for a component as part of the support
bundle.
List support bundles You can retrieve a list of generated support bundles. The list contains details about each

support bundle.

Create a support bundle You can generate a support bundle. Optionally, you can specify the support bundle

VMware, Inc.

components and the partition where you want to save the support bundle.

256

VMware vSphere Automation SDKs Programming Guide

You can run support bundle management operations by using the vSphere Automation

SDK or sending an HTTP request. You can use the components interface to

get support bundle components and the supportBundleFactory class from the
com.vmware.appliance.support bundle package to list and create support bundles. For more
information, see the Java AP/ Reference documentation.

vCenter Server Upgrade

You can use the API to perform operations related to stage 2 of the upgrade process. You can
also perform historical data transfer operations.

Upgrade Stage 2

You can upgrade your vCenter Server instance by using the API, CLI, or GUI.

For information about how to upgrade the vCenter Server instance by using CLI and GUI, see the
vCenter Server Upgrade documentation.

Upgrading a vCenter Server Instance

You can use the API during stage 2 of the vCenter Server instance upgrade.

By using the API, you can upgrade your vCenter Server instance. For information about

the upgrade process, its stages, supported configurations, upgrade paths, prerequisites for
upgrading, and the sequence for upgrading a vSphere environment, see the vCenter Server
Upgrade documentation.

After you deploy the vCenter Server instance on stage 1 by using the GUI or CLI, the instance
enters in an INITIALIZED state. If the vCenter Server instance is not initialized, you cannot run
stage 2 of the upgrade process. You can get the state of the vCenter Server instance by using
the vcenter deployment service. There are six states during the upgrade process.

VMware, Inc. 257

VMware vSphere Automation SDKs Programming Guide

Figure 13-6. Upgrade Stage 2 State Diagram

NOT_

INITIALIZED Upgrade
Stage 1

Start Success

Check spec
CONFIG_
IN_
PROGRESS
/
Answer

QUESTION_

RAISED

Table 13-7. vCenter Server Instance States During Upgrade Stage 2

Question

State Description

NOT INITIALIZED The upgrade stage 1 phase is in progress, not started, or
failed.

INITIALIZED The vCenter Server instance is deployed and ready for
upgrading.

CONFIG_IN PROGRESS The upgrade process is in progress.

QUESTION RAISED You must answer the question to continue the upgrade

process. The vCenter Server instance stays in the
QUESTION RAISED State until it receives the correct answer.

FAILED Errors appeared during the upgrade process. You can
check the errors, warnings, and info data structures.

CONFIGURED The vCenter Server instance is upgraded or configured
successfully.

FAILED and CONFIGURED are final states.

You can roll back a vCenter Server instance upgrade by using the GUI. For information about
how to roll back a vCenter Server instance, see the vCenter Server Upgrade documentation.

After the upgrade, you can check the vCenter Server instance type, domain registration,
services, their state and health status by using the API. For information about how to verify
whether the upgrade of your vCenter Server instance is successful, see the vCenter Server
Upgrade documentation.

VMware, Inc. 258

VMware vSphere Automation SDKs Programming Guide

Table 13-8. User Operations shows operations that you can perform to upgrade your vCenter
Server instance.

Table 13-8. User Operations

Operation Description

Operations for upgrading

Get the state of the vCenter Server instance You can get the state of the vCenter Serverinstance
before, during and after the upgrade process.

Check You can validate the upgrade spec before you run the
upgrade process. If the vCenter Server instance is in
the INITIALIZED state, you can run the validation. The
operation runs upgrade pre-checks. You can check the
errors, warnings, and status data structures before you
run the upgrade process.

Start If the vCenter Server instance is in an INITIALIZED state,
you can run the upgrade process. If errors appear during
the upgrade, you can download the vCenter Server
support bundle.

Get If the vCenter Server instance is in a CONFIGURED State, you
can get the spec that is used for upgrading.

Operations for getting and answering a question

Get You can get the raised question. If you set the
Upgrade.auto_answer toO true, the upgrade process will be
in a silent mode and the vCenter Serverinstance does
not generate questions. It uses default answers and you
should not provide an answer.

Answer You can provide an answer to the raised question. The
available answers for the upgrading are Ok, CANCEL, YES,
NO, ABORT, RETRY, and IGNORE. The answer depends on the
type of the question. If you set the Upgrade.auto answer
to true, the upgrade process will be in a silent mode and
the vCenter Serverinstance does not generate questions.
It uses default answers and you should not provide an
answer.

For information about the available operations in the API, see the vcenter deployment, vcenter
deployment upgrade, vcenter services, and vcenter system-config deployment type Services
in the AP/ reference documentation.

Workflows for Upgrade Stage 2

You can use the vcenter deployment APIto run the upgrade stage 2 process of your vCenter
Server instance.

Figure 13-7. Upgrade Workflow and Figure 13-8. Upgrade Stage 2 Workflow show example
upgrade workflows.

VMware, Inc. 259

VMware vSphere Automation SDKs Programming Guide

During stage 1, the vCenter Server instance is in a NOT INITIALIZED State. After a successful
deployment, the vCenter Server instance enters in an INITIALIZED state. If there are errors during
stage 1, the vCenter Server instance stays in a NOT INITIALIZED State and you must redeploy it.

You can check the state of the vCenter Server instance before, during, and after the upgrade
process. You can run the upgrade stage 2 process if the vCenter Server instance is initialized.
You can check the upgrade configuration before you run the upgrade by running pre-checks. If
errors or warnings appear during the validation of the upgrade specification, you must remove
the causes and correct the specification.

During the upgrade process, the vCenter Server instance can enter in a FAILED Or

QUESTION RASED State. If a question appears during the upgrade, the vCenter Server instance
enters in a QUESTION RAISED state and stays in it until you provide an answer. You can run the
upgrade in silent mode, in which the vCenter Server instance does not generate questions, and
uses default answers.

If errors appear during the upgrade, the vCenter Server instance enters in a FAILED state and
you must remove the causes, redeploy the instance and restart the upgrade. If stage 2 of the
upgrade process is successful, the vCenter Server instance enters in a CONFIGURED state. If the
vCenter Server instance is configured, you can check its services and pause the historical data
transfer.

VMware, Inc. 260

VMware vSphere Automation SDKs Programming Guide

Figure 13-7. Upgrade Workflow

Deploy the appliance by using
the User Interface or CLI

Check the state of the appliance by
using vcenter deployment service

Check the errors and
warnings data State=
structures and resolve INITIALIZED
the issues

State=
NOT_
INITIALIZED

Run validation of the upgrade spec by using
the vcenter deployment upgrade service

Run the appliance upgrade by using the
vcenter deployment upgrade service

State=
CONFIGURED

State=
FAILED

VMware, Inc.

State=
QUESTION_
RAISED

Receive
Answer

Answer
Received?

261

VMware vSphere Automation SDKs Programming Guide

For information about the states of the vCenter Server instance and available operations, see
Upgrading a vCenter Server Instance.

Figure 13-8. Upgrade Stage 2 Workflow

Create a source appliance spec,
source location spec, and an
upgrade spec

Get the deployment status

Validate the upgrade spec by using
the check method of the upgrade
service and check the result data
structure for errors and warnings

Run the upgrade by using the start
method of the upgrade service

Check the configuration status by
using the vcenter deployment service

You can run the upgrade pre-checks and the upgrade stage 2 process by creating and passing
an UpgradeSpec. In UpgradeSpec, you define the upgrade configuration and specify the source
vCenter Server instance and the source ESXi host in sourceApplianceSpec and LocationSpec. See
Figure 13-8. Upgrade Stage 2 Workflow . You can run the upgrading in silent mode by setting the
UpgradeSpec.auto_answer tO true. The default value of UpgradeSpec.auto answer iS false and
the upgrading is in interactive mode, in which you must provide answers to the raised questions.

For information about the classes, variables, and default values, see the AP/ reference
documentation.

VMware, Inc. 262

VMware vSphere Automation SDKs Programming Guide

Historical Data Transfer

If you migrate vCenter Server for Windows, you can transfer the historical data of your source
vCenter Server instance together with the core configuration data.

Deferred Import

The deferred import is a process of historical data transfer after the successful migration of a
vCenter Server instance with an external database. The historical data includes statistics, events,
and tasks.

By using the deferred import feature, you can postpone the historical data transfer after the
migration process completes, so that you manage the downtime of your environment. You

can select whether all historical data, or only events and tasks, will be migrated with the core
data during the migration. The historical data transfer and deferred import of historical data are
deactivated by default. You can enable and configure the historical data transfer by using the
API, vCenter Server Management Interface, vCenter Server installer, or CLI installer. A vCenter
Server super administrator can run and control the migration and deferred import processes.

If you use the deferred import feature, the historical data is migrated with the core data and
the historical data import process starts automatically after a successful migration and when the
vCenter Server instance is running. You can pause the historical data import and resume it later.

For information about how to configure and run the migration and deferred import processes
by using the vCenter Server Management Interface, see the vCenter Server Upgrade
documentation.

By using the API, you can configure, control, and monitor the data transfer process. If you use
the API to enable the deferred import feature, you must create a history migration spec and set
defer import to true. For information about how to configure the deferred import by using the
API, see the AP/ reference.

The data import process has five states that you can check. If the historical data migration
and the deferred import are configured, the historical data import starts automatically after a
successful migration.

VMware, Inc. 263

VMware vSphere Automation SDKs Programming Guide

Figure 13-9. Deferred Import State Diagram

Pause/error

BLOCKED
RUNNING

Resume

Success

Cancel

Cancel

Table 13-9. User Operations

Operation Description

Pause You can pause the running data transfer process. If the data transfer is paused, you can

resume or cancel it.

Cancel You can cancel the data transfer process if it is in @ RUNNING or BLOCKED State.

Note If you cancel the data transfer, the process enters in a final FATLED state and you

cannot resume the transfer.

VMware, Inc.

264

VMware vSphere Automation SDKs Programming Guide

Table 13-9. User Operations (continued)

Operation Description

Resume You can resume the stopped data transfer.

Get status You can retrieve the status of the data transfer process. There are five states.
PENDING

The transfer is not started.

RUNNING

The transfer is started or resumed.

BLOCKED

The transfer is paused or there was a recoverable error, such as not enough disk
space, during the import.

SUCCEEDED

The transfer is successful.

FAILED

The transfer is canceled.

You can run the deferred import operations by using the API or sending an HTTP request.

Note When you send the requests, you must use an authentication.

If you pause the data transfer by using the APl or an HTTP request, you can resume or cancel the
process by using the API or the vCenter Server Management Interface.

Important If you cancel the transfer process, and want to transfer the historical data later, you
must restart the migration process.

Historical Data Import Errors

If an error appears during the data import, the import stops and the process enters in a BLOCKED
state. You can resume the data import after you eliminate the cause.

You can check the errors, warnings, and info messages by reading the info, status, and

notifications data structures.

If the information in the data structures is not enough, you can download the vCenter Server
support bundle from <vcenter ip address or fqgdn>:443/appliance/support-bundle and
check the log files.

VMware, Inc. 265

VMware vSphere Automation SDKs Programming Guide

Table 13-10. Log Files

Log File Path

API log file /var/log/vmware/applmgmt/applmgmt.log

Backend log file /var/log/vmware/upgrade/upgrade-post-import.log

Upgrade Runner log file /var/log/vmware/upgrade/deferredimport-upgrade-runner.log
Deferred import log file /var/log/vmware/upgrade/

DeferredImport com.vmware.vcdb <date time>.log

Class Diagrams for Deferred Import

The vcenter deployment API provides classes and interfaces that you can use for configuring and
controlling the historical data import.

The historical data transfer during the vCenter Server migration is deactivated by default and
only the core data is migrated. You can enable the historical data transfer and the deferred
import by creating a history migration spec and setting defer import to true. For example, see
Figure 13-10. Python Class Diagrams for Deferred Import . You can change the historical data
scope by using the HistoryMigrationOption enumeration. By default, the data set is set to
EVENTS TASKS.

You can control the deferred import by creating an import history spec and calling the methods
of the ImportHistory class. Figure 13-10. Python Class Diagrams for Deferred Import shows the
classes that you can use to configure and control the deferred import.

VMware, Inc. 266

VMware vSphere Automation SDKs Programming Guide

Figure 13-10. Python Class Diagrams for Deferred Import

.vmware.vcenter.deployment_client

HistoryMigrationSpec

data_set:HistoryMigrationOption
defer_import:bool or None

ImportHistory.CreateSpec
ImportHistory.Info

ImportHistory.cancel()
ImportHistory.get():ImportHistory.Info
ImportHistory.pause()
ImportHistory.resume()

ImportHistory
> ——

<<Enumeration>>
HistoryMigrationOption

ALL
EVENTS_TASKS

ImportHistory.CreateSpec

name: str
description:str

ImportHistory.Info

progress:Progress
result:Notifications
description:LocalizableMessage
service:str
operation:str
parent:str
target:DynamiclD
status:Status
cancelable:bool
error:Exception
start_time:datetime
end_time:datetime
user:str
memberName

Use the Deferred Import Sample

You can use the vCenter Server Management Interface to migrate your vCenter Server instance
and to run the ve_import history sample.py sample to pause and resume the historical data

import.

Prerequisites

m Verify that you cloned or downloaded the vSphere Automation SDK for Python from https://

github.com/vmware/vsphere-automation-sdk-python.

m Verify that you set up a test environment. For information about the prerequisites and how to
set up a test environment, see the README . md file in the deferhistoryimport directory and
the Quick Start guide for vSphere Automation SDK for Python at https://github.com/vmware/

vsphere-automation-sdk-python.

m Verify that you have vCenter Server root credentials.

m Verify that you opened the vCenter Server Management Interface of your target vCenter

Server instance.

VMware, Inc.

https://github.com/vmware/vsphere-automation-sdk-python
https://github.com/vmware/vsphere-automation-sdk-python
https://github.com/vmware/vsphere-automation-sdk-python
https://github.com/vmware/vsphere-automation-sdk-python

VMware vSphere Automation SDKs Programming Guide

Procedure

1 From the getting started page, run the Migrate wizard.

2 Select one of the options for Configuration and historical data.

You can import only events and tasks or import all historical data.

3 Select Import historical data in the background and complete all steps from the wizard.

4 Runthevc import history sample.py sample after successful migration.

Use the IP address of your source vCenter Server instance and the vCenter Server
administrator credentials when you run the sample. You can use or skip the verification of
the vCenter Server certificate. For example, you can use the following command.

vc_import history sample.py --server <IP of migrated instance> --username <admin username>

--password <admin password> --skipverification

Python Example of Pausing and Resuming the Deferred Import Process

The example shows how you can pause and resume the deferred import process by using the
API. The example is based on the vc_import history sample.py sample.

Note For a complete and up-to-date version of the sample code, see the vsphere-
automation-sdk-python VMware repository at GitHub.

self.service manager = ServiceManager (args.

args

args

args.

self.service manager.connect ()

Using REST API service

server,

.username,

.password,

skipverification)

import history = ImportHistory(self.service manager.stub config)

Change the status - either pause or resume it

start_status = get defer history import status (import history)

if start status == Status.RUNNING:

print ('Pausing Defer History Data Import.')

import history.pause ()

elif start status == Status.PAUSED:

print ('Resuming Defer History Data Import.')

import history.resume ()

VMware, Inc.

268

VMware vSphere Automation SDKs Programming Guide

vCenter Server Configuration

You can use the API to perform operations related to health monitoring and capacity monitoring
of vCenter Server. You can also manage the global FIPS compliance and perform infrastructure
profile management operations.

Health Monitoring of vCenter Server

The vCenter Server API offers health status indicators for several key components of the system.
These indicators can be polled periodically to monitor the components for problems.

The health status indicators report graded values from green to red. The general meanings of the
grades are as follows.
green

The component is healthy.

yellow

The component is healthy, but may have some problems.

orange

The component is degraded, and may have serious problems.

red

The component is unavailable, or will stop functioning soon.

gray

No health data is available.

Check Overall System Health of vCenter Server

vCenter Server provides a composite health indicator that enables you to test a single value
that represents the health of all system components. This procedure shows how to test the
composite health indicator.

The value of the overall system health indicator reflects the strongest trouble indication among
the vCenter Server components. If any component has a red indicator, the overall system health
indicator is red, else if any component has an orange indicator, the overall system health indicator
is orange, and so on.

A gray value for any component indicates that data for the subsystem is unknown. If one or
more components have a gray value, but all other subsystems are green, then the overall system
health indicator is gray rather than green. However, if any component has a definite trouble
indication, the overall system health indicator reflects the strongest trouble indication among the
components.

VMware, Inc. 269

VMware vSphere Automation SDKs Programming Guide

Prerequisites

Verify that you have an active authenticated session with vCenter Server. This procedure
assumes that the session ID is present in the security context of a stub configuration.

Procedure
1 Create an interface stub or REST path that uses the stub configuration.
2 Invoke the health.system method.

3 Format and display the resulting value.

Python Example of Checking the Overall System Health of vCenter Server

This example shows the use of Python with the vSphere Automation SDK for Python to request
the overall system health indicator for vCenter Server and the overall health indicator for
management services. The example assumes a previously existing session with the vSphere
Automation API endpoint.

This example depends on the following global variables.

m my_stub_config
from com.vmware.appliance import health client

This example assumes you have previously created a session

and stored the session ID in my stub config.

Issue request for overall system health.
System_stub = health client.System(my_stub_config)
health = System stub.get()

print ('Overall system health: %s' % health)

Issue request for applmgmt services health.

Applmgmt stub = health client.Applmgmt (my stub config)
health = Applmgmt stub.get ()

print ('Applmgmt services health: %$s' % health)

Capacity Monitoring of vCenter Server

vCenter Server keeps a history of statistics that you can use to monitor resources used by the
vCenter Server instance.

You can use the statistics to spot peak usage demands or to monitor trends for advance warning
of potential resource exhaustion.
Frequency and Retention of Statistics Collection in vCenter Server

vCenter Server collects statistics from the guest operating system at regular intervals and stores
them in a database. Users can query the statistics in the database by selecting a time period and
a roll-up function that vCenter Server applies to the statistics before returning them to the client.

VMware, Inc. 270

VMware vSphere Automation SDKs Programming Guide

After the monitoring service starts up, it begins requesting statistics from the guest operating
system periodically, at a frequency that depends on the type of statistic. The service requests
storage statistics once every 10 minutes, while it requests memory, CPU, and networking
statistics once per minute. The collection times are fixed relative to the startup time of the
monitoring service, rather than to clock time.

The monitoring service retains statistics approximately 13 months, by default. Older statistics are
deleted by the service, creating a 13-month moving window within which you can query statistics.
You can choose to delete statistics as needed to conserve storage resources.

Nature of Statistics in vCenter Server
vCenter Server supplies statistics of several types.

The guest operating system computes statistics either as rates, such as CPU cycles per second,
or as snapshots of size, such as KB used for storage. Statistics stored as size snapshots are
collected at the end of their sample periods. Statistics stored as rates are computed as averages
of values sampled frequently during each sample period.

When you query the statistics database, the units are not returned with the data, but you can
determine the units for any metric by requesting metadata for the metric with the get () method.

Requesting Statistics from vCenter Server

To request statistics, you must construct an appropriate request structure to filter statistics from
the database.

To request data or metadata for a metric, you must supply the ID of the metric. You can get a list
of metric IDs by using the 1ist () method, which returns information on all available metrics.

When you query statistics, you provide a list of IDs to specify the metrics in which you are
interested. You also supply a start time, an end time, a roll-up interval, and a roll-up function.
These values interact as follows to determine the data returned to you.

m The response contains a list of data points for each metric ID you specified in the request.

m The start time and end time control the limits for the data you want in the response. The
response contains data points only for statistics that have timestamps between those limits,
inclusive of the endpoints. However, the start time is adjusted to a round number, in some
cases. For more information, see Statistics Interval Adjustment in vCenter Server.

m The roll-up interval enables you to control the granularity of the data points in the response.
Rather than a response with a data point for every statistic between the start time and end
time, you get a response with a number of data points equal to the number of intervals
between the start and end times. Generally, you should specify a time period that is an even
multiple of the interval, so that each data point in the response represents the same number
of statistics.

m The roll-up function specifies how the response summarizes the statistics that fall within each
interval. The resulting data point can be the maximum statistic value within collection interval,
or the mean of the statistics values within the interval, and so on.

VMware, Inc. 271

VMware vSphere Automation SDKs Programming Guide

Statistics Collection Times
The actual time that a statistic was collected is not readily predictable.

The API does not enable you to determine the exact time that a statistic was collected.
Furthermore, some statistics, such as those for storage metrics, might take seconds or minutes
to collect, so that they are not available immediately at the time a request is made to the guest
operating system.

However, because statistics are collected at regular intervals, and roll-up intervals for a request
generally all have the same size, each data point in the response represents the same number of
statistics as the others. See Statistics Interval Adjustment in vCenter Server for more information.

Statistics Interval Adjustment in vCenter Server

When you make a request for statistics, the monitoring service might adjust the specified roll-up
interval times to improve the appearance of statistics graphs in a graphical interface.

The monitoring service adjusts the start time of a data collection request when it is not an exact
multiple of the interval length. In these instances, the start time is rounded downward to the
previous UTC time that is a multiple of the interval. All subsequent intervals of the data collection
are also adjusted to align with the new start time.

For example, if the start time is 10:31 and the interval length is 1 hour, the monitoring service
adjusts the start time to 10:00 and the roll-up intervals have the following continuous pattern.

= 10:00 to 10:59:59.999
= 11:00 to 11:59:59.999
m 12:00 to 12:59:59.999

The monitoring service does not adjust the end time of a data collection. Consequently,
the response to a statistics query might contain one more data value than expected, or an
incomplete final interval might be lengthened.

Empty Data Values

In some instances, you might encounter a response that reports an empty data value, or even a
series of empty data values. This might manifest as a list of data values containing some numeric
values alternating with empty values.

m Empty data values can happen when the report time period is too short to be certain of
containing any statistics. For instance, a time period of 30 seconds is half the length of the
sample period for network metrics, so you have only a 50% chance of finding a network
statistic during any 30-second reporting period.

m Empty data values can also happen when the interval is shorter than the sample period for a
metric you have requested. In this case, some data points are present in the list, while others
are empty because no statistic was collected during those intervals. For instance, an interval
of 5 minutes is only half the length of the sample period for storage metrics, so every second
data value is empty.

VMware, Inc. 272

VMware vSphere Automation SDKs Programming Guide

= Empty data values can also happen when the monitoring service has not finished collecting
and writing the last sample to the database, even if the nominal sample timestamp falls within
the report time period. For example, calculation of storage used can delay writing a storage
statistic to the database. A request for the statistic during that delay time produces an empty
data point in the response.

When a response contains an empty data value, this indicates that no statistics were collected
during a collection interval. An appropriate action for the client in such a case depends on how
the client is using the data. For example, if you are graphing a resource usage trend, you might
choose to interpolate for the missing value to produce a smooth line.

Check Database Usage in vCenter Server

vCenter Server contains a database of all objects managed by the vCenter Server instance. In
addition to inventory objects, the database includes vCenter Server statistics, events, alarms,
and tasks. You can calculate the database storage consumption by adding the sizes of all data
categories.

You need to monitor storage consumption in vCenter Server.

Prerequisites

This task assumes you have previously authenticated and created a client session.

Procedure

1 Prepare a request for database usage statistics.
Include metric IDs both for vedb _core inventory and vcdb seat. The name vcdb_seat refers
to Statistics, Events, and Tasks in the vCenter Server database.

2 Issue the request to the APl endpoint.

3 Process the resulting data points as needed.

4 Format and print the results.

Results

The result of this procedure shows the storage used in the vCenter Server database, which
includes storage overhead used for indexes and other optimizations beyond the actual size of
the data.

Python Example of Checking Database Usage in vCenter Server

This example shows the use of Python with the vSphere Automation SDK for Python to view
recent statistics for the vCenter database usage in vCenter Server. The example assumes a
previously existing session with the vSphere Automation API endpoint.

VMware, Inc. 273

VMware vSphere Automation SDKs Programming Guide

This example requests statistics at 30-minute intervals for a recent 2-hour report period. The
example requests the storage used by the inventory component and the storage used by the

combination of statistics, events, alarms, and tasks. The example adds the two values to calculate

the vCenter Server database usage in each 30-minute roll-up interval, and then reports the
maximum size found over the 2-hour report period.

from com.vmware import appliance client

import datetime

This example assumes you have previously created a session
and stored the session ID in my stub config.

Issue request for core inventory and 'SEAT' (stats, events, & alarms) usage.
req = appliance client.Monitoring.MonitoredItemDataRequest ()
reg.names = ['storage.used.filesystem.vcdb core inventory',
'storage.used.filesystem.vcdb seat']
reqg.interval = appliance client.Monitoring.IntervalType.MINUTES30
req.function = appliance client.Monitoring.FunctionType.MAX
d now = datetime.datetime.utcnow ()
req.start_time = d_now - datetime.timedelta(minutes=135)
reqg.end_time = d now - datetime.timedelta(minutes=15)
Monitoring stub = appliance client.Monitoring(my stub config)
resp = Monitoring stub.query(req)

Extract resulting arrays.

core sizes = resp[0].data

seat sizes = resp[l].data

Remove empty data points:

core sizes = filter((lambda x: x != ''"), core sizes)

seat sizes = filter((lambda x: x != ''), seat sizes)

Add the usage stats for each interval, and display maximum usage.
highest = max(map((lambda a,b: int(a) + int (b)),
core sizes, seat sizes))
print ('vCenter database inventory + stats, events, alarms, tasks:' +
' (max) size = {0} KB'.format(highest))

List Storage Consumption By Data Type in vCenter Server

vCenter Server provides statistics on several types of storage.

For example, you can query statistics about inventory storage, transaction log, and vCenter
Server tasks. Many of these statistics are available both for storage consumed and storage
available.

This task provides data for system administrators who need to monitor storage consumption in
the guest operating system of vCenter Server.

Prerequisites

Verify that you have authenticated and created a client session.

VMware, Inc.

274

VMware vSphere Automation SDKs Programming Guide

Procedure
1 Prepare a request for database usage statistics.
Include metric IDs for each data type you want to monitor.
2 Issue the request to the API endpoint.
3 Process the resulting data points as needed.

4 Format and print the results.

Python Example of Listing Storage Consumption By Data Type in vCenter Server

This example shows how to use the Monitoring interface to break down database usage by data
type. The example requests the individual data types that you can also query as a composite
metric for all storage used by Alarms, Statistics, Events, and Tasks in the vCenter Server instance.

from com.vmware import appliance client

import datetime

This example assumes you have previously created a session
and stored the session ID in my stub config.

Prepare request for chosen data types.
req = appliance client.Monitoring.MonitoredItemDataRequest ()
reqg.interval = appliance client.Monitoring.IntervalType.MINUTES30
req.function = appliance client.Monitoring.FunctionType.MAX
d now = datetime.datetime.utcnow ()
req.start_time = d now - datetime.timedelta(minutes=30)
reg.end time = d now
mon = {'storage.totalsize.directory.vcdb hourly stats'
'Hourly stats',
'storage.totalsize.directory.vcdb daily stats'
'Daily stats',
'storage.totalsize.directory.vcdb monthly stats'
'Monthly stats',
'storage.totalsize.directory.vcdb yearly stats'
'Yearly stats',
'storage.totalsize.directory.vcdb events'
'Events’',
'storage.totalsize.directory.vcdb_alarms'
'Alarms’',
'storage.totalsize.directory.vcdb tasks'
'Tasks'}

reg.names = []
for item in mon.keys ()

reg.names.append(item)
Issue request.
Monitoring stub = appliance client.Monitoring(my stub config)

resp = Monitoring stub.query(req)

Assemble data from response.
out = {}

VMware, Inc. 275

VMware vSphere Automation SDKs Programming Guide

for metric in resp :
Discard empty data points:
stat = "'
while (stat == '")
stat = metric.data.pop()
stat = int (stat)

out [mon[metric.name]] = stat

Format and print statistics.
for label in sorted(out.keys())
print('{0:15s}: {1:8d} KB'.format(label, out[label]))

Managing the Global FIPS Compliance

You can retrieve information about the current FIPS (Federal Information Processing Standards)
settings of vCenter Server. You can also enable or deactivate the global FIPS compliance.

FIPS 140-2 is a U.S. and Canadian government standard that specifies security requirements

for cryptographic modules. vSphere uses FIPS-validated cryptographic modules to match those
specified by the FIPS 140-2 standard. The goal of vSphere FIPS support is to ease the compliance
and security activities in various regulated environments.

The following table lists the operations that you can perform to manage the FIPS settings of your
vCenter Server system.

Table 13-11. User Operations

Operation Description

Get FIPS status You can check whether the global FIPS compliance is currently enabled on the vCenter
Server system.

Manage FIPS status You can enable or deactivate the global FIPS compliance on the vCenter Server system.

Note When you enable FIPS compliance, some components might present functional
constraints. For more information, see vSphere Security.

You can run FIPS management operations by using the vSphere Automation SDK

or sending an HTTP request. You can use the GlobalFips interface from the
com.vmware.appliance.system.security package to check the FIPS status and enable or
deactivate the global FIPS compliance. For more information, see the Java AP/ Reference
documentation.

Performing Infrastructure Profile Management Operations

You can export an existing vCenter Server configuration and import it to other vCenter Server
instances.

VMware, Inc. 276

VMware vSphere Automation SDKs Programming Guide

You can export multiple configuration profiles at once. The exported data can contain general
configuration settings and user content. You can replicate the same configuration across all
vCenter Server instances in your environment by importing the same data package. You can also
use the exported data as a backup if you need to revert to the last known good configuration. To
avoid configuration issues, you can validate the exported data before importing it to a vCenter
Server instance.

The following table lists the operations that you can perform to manage the configuration profiles
in your infrastructure.

Table 13-12. User Operations

Operation Description

List configuration profiles You can retrieve a list of all configuration profiles that are registered with vCenter Server.

Export configuration You can export specific vCenter Server configuration profiles.

profiles

Validate configuration You can validate the exported vCenter Server configuration profiles. The validation
profiles process examines the configuration file for possible errors and conflicts and returns

output. This operation can help avoid configuration issues or loading the wrong
configuration file.

Import configuration You can import specific vCenter Server configuration profiles into another vCenter Server
profiles instance.

You can run infrastructure profile management operations by using the vSphere Automation
SDK or sending an HTTP request. You can use the configs interface from the
com.vmware.appliance.infraprofile package to list, export, validate, and import configuration
profiles. For more information, see the Java AP/ Reference documentation.

Patching and Updating vCenter Server Deployments

You can use the API to perform operations related to the planning and installing of vCenter
Server software updates.

Planning vCenter Server Updates

The vCenter Server API provides operations that can help you plan the life cycle of vCenter
Server instances in your environment.

You can use the operations to discover VMware products that can be associated with vCenter
Server, list associated products, and manage product associations. You can also get details
about available vCenter Server updates, perform pre-checks, and produce reports. The reports
can contain interoperability or pre-check information. Interoperability reports contain information
about the interoperability between the associated products and a specific vCenter Server
version. Pre-check reports contain information about the compatibility of the current vCenter
Server version with a pending update version. You can plan to perform vCenter Server updates
based on the information gathered in the produced reports.

VMware, Inc. 277

VMware vSphere Automation SDKs Programming Guide

Performing Discovery and Planning Operations

You can retrieve information about VMware products associated with vCenter Server, list
available vCenter Server updates, and produce reports. The findings can help you plan vCenter
Server updates in your environment.

The life cycle management API provides operations that are grouped in the discovery, update,
and reports categories. The discovery functionality of the API consists of the operations in the
discovery category. The planning functionality of the API consists of the operations in the update
category. Both functionalities can produce reports that you can download by using the reports
category.

The discovery category provides operations for listing VMware products that can be associated
with vCenter Server, managing products associations, and creating interoperability reports. The
update category provides operations for listing all available updates and upgrades for vCenter
Server and generating a pre-check compatibility report. The reports category provides an
operation for downloading reports generated by interoperability and pre-check operations. By
using the retrieved information, you can select one of the available patches and can plan an
actual patch or upgrade for a specific vCenter Server version.

The following table lists the operations that are available in the discovery category.
Table 13-13. Discovery User Operations

Operation Description

Get product catalog You can retrieve a list of all VMware products that can be associated with vCenter Server.

List associated products You can retrieve a list of all VMware product deployments in the environment that are
associated with vCenter Server.

Note The list contains both product deployments discovered automatically and
deployments registered manually through the API.

Get associated product You can retrieve detailed information about a product associated with vCenter Server.
information

Create product You can manually associate a VMware product with vCenter Server.

association

Update product You can modify a manually added VMware product that is associated with vCenter Server.
association

Note You cannot modify VMware products that are discovered automatically.

Delete product You can delete or dissociate a manually added VMware product that is associated with
association vCenter Server.

Note You cannot delete or dissociate VMware products that are discovered
automatically.

Create interoperability You can create an interoperability report between a vCenter Server release version and all
report products registered with the vCenter Server instance.

The following table lists the operations that are available in the update category.

VMware, Inc. 278

VMware vSphere Automation SDKs Programming Guide

Table 13-14. Update User Operations

Operation Description

List updates You can retrieve a list of all available vCenter Server updates. The list can contain minor,
in-place, updates and major, migration-based, upgrades.

Get update info You can retrieve detailed vCenter Server information about a specific update or upgrade.

Create pre-check report You can create a vCenter Server pre-update compatibility check report for a pending
update version.

Note You can export and download the report in CSV format.

The following table lists the operations that are available in the reports category.
Table 13-15. Reports User Operations

Operation Description

Get report You can download the report generated by the interoperability and pre-check operations.
For information about downloading the report, see the AP/ reference documentation.

You can run life cycle management operations by using the vSphere Automation SDK or
sending an HTTP request. You can use interfaces from the com.vmware.vcenter.lcm.discovery,
com.vmware.vcenter.lcm.update, and com.vmware.vcenter.lcm packages to perform discovery,
update, and reports operations. For more information, see the Java AP/ Reference
documentation.

List Available Products and Manage Associated Products

You can automate the management of VMware products associated with vCenter Server by
using the API.

This procedure includes the operations that you can use to manage the product catalog and
associated products.

Prerequisites

m Verify that you have an active authenticated session with vCenter Server.

Procedure

—

Create a stub configuration.

Retrieve the product catalog.

Retrieve a list of VMware products associated with vCenter Server.
Associate a VMware product with vCenter Server.

Update a VMware product associated with vCenter Server.

o uu A W N

Delete a product form the list of VMware products associated with vCenter Server.

VMware, Inc. 279

VMware vSphere Automation SDKs Programming Guide

Python Example of Listing Available Products and Managing Associated Products

This example shows how you can retrieve the product catalog, list the associated products, add,
update, and delete products associations. The example is based on the discovery sample.py

sample.

Note For a complete and up-to-date version of the sample code, see the vsphere-
automation-sdk-python VMware repository at GitHub.

Create a stub configuration

stub config = StubConfigurationFactory.new std configuration (connector)
self.product client = ProductCatalog(stub config)

self.associated products client = AssociatedProducts(stub config)

def run(self):
Product catalog
product catalog = self.product client.list()
print ("Product catalog list: \n", product catalog)

Associated products
associated products = self.associated products client.list()
print ("Associated products list : \n", associated products)

Add product
spec = {'product name': 'VMware Identity Manager',6 'version': '3.3', 'deployments':

add associated product = self.associated products client.create (spec)
print ('Added new product. \n', add associated product)

associated products = self.associated products client.list()
print ("Associated products after adding the product: \n", associated products)

Update product
update spec = {'deployments': '9'}
update associated product =
self.associated products client.update (add associated product, update spec)
associated products = self.associated products client.list()
print ("Associated products after updating the product: \n", associated products)

Delete product
delete associated product =
self.associated products client.delete(add associated product)
associated products = self.associated products client.list()
print ("Associated products after deleting the product: \n{0}", associated products)

List Available Updates

You can retrieve a list of available vCenter Server updates, details about the updates, and pre-
check information by using the API.

VMware, Inc. 280

VMware vSphere Automation SDKs Programming Guide

Prerequisites

m Verify that you have an active authenticated session with vCenter Server.

Procedure

1 Create a stub configuration.

2 Retrieve a list of available vCenter Server updates.

If there are available updates, you can retrieve details about the updates.

3 Retrieve pre-check information.

Python Example of Listing Available Updates

This example shows how you can retrieve a list of available vCenter Server updates, details

about the updates, and pre-check information. The example is based on the update sample.py

sample.

Note For a complete and up-to-date version of the sample code, see the vsphere-

automation-sdk-python VMware repository at GitHub.

Create a stub configuration

stub _config = StubConfigurationFactory.new std configuration (connector)

self.pending client

self.precheck clien

def run(self):
List updates

available updates =

t

s

Pending (stub_config)
= PrecheckReport (stub config)

elf.pending client.list ()

print ("vCenter Server available updates - ", available updates)

if available updates.updates:

target version
update details

print ("vCenter

Server available update details -

available updates.updates[0].version

self.pending client.get (target version)

Get pre-check result

precheck result

self.precheck client.create task(target version)

print ("Pre-upgrade checks task id started with:

\n{0}".format (precheck result.get task id()))

Retrieve a Report

You can retrieve a report generated by the interoperability and pre-check operations by using

the API.

Prerequisites

m Verify that you have an active authenticated session with vCenter Server.

VMware, Inc.

, update details)

281

VMware vSphere Automation SDKs Programming Guide

Procedure
1 Create a stub configuration.

2 Retrieve the report details.

Python Example of Retrieving a Report

This example shows how you can retrieve a report. The example is based on the 1cm sample.py
sample.

Note For a complete and up-to-date version of the sample code, see the vsphere-
automation-sdk-python VMware repository at GitHub.

Create a stub configuration
stub config = StubConfigurationFactory.new std configuration (connector)

self.report client = Reports(stub config)

def run(self):
Retrieve report
report details = self.report client.retrieve('com.vmware.vcenter.lcm.report')

print ("Report details - ", report details)

Updating vCenter Server

vCenter Server provides interfaces to perform software updates.

Before applying updates, you must make sure that your environment is prepared for the vCenter
Server software update process.

Applying vCenter Server Software Updates

You can automate the installation of vCenter Server software updates to ensure that your system
is stable and protected. Software updates can include security fixes, performance optimizations,
and new features.

Security patches usually address vulnerabilities in third-party components and do not affect the
vCenter Server functionality. vCenter Server bug fixes can introduce changes to the functionality
without affecting the data format or database schema of the system.

Each update contains metadata with information about the updated content, for example,
whether high-priority OS updates are included. The update metadata includes a list of
components to be updated, the release date of the update, a list of fixed issues, time and

disk space requirements, and information whether a reboot is required. The metadata can also
contain a new vCenter Server version number, including a build number. In addition to the
metadata, an update can contain optional components such as update scripts, new versions of
vCenter Server software components, and new versions of OS components.

VMware, Inc. 282

VMware vSphere Automation SDKs Programming Guide

vCenter Server can obtain software updates from either a URL or an ISO image. The URL can
either point to the VMware Web repository or to a custom repository in which you upload the
updates in ZIP format. To perform an update by using an ISO image, attach the image to the
CD/DVD drive of the vCenter Server instance.

There are multiple phases of the update process. For details, see vCenter Server Software
Update Workflow.

If you want to prevent issues related to the possibility of update installation failures, you should
create a backup or take a snapshot of your vCenter Server instance before you start the update
process. A backup can also be useful when an update is successfully installed. For example, you
might decide to revert to the previous version if you encounter any undesired system behavior
related to functional changes in the new software version.

Table 13-16. User Operations

Operation Description

Get state information You can retrieve information about the update state.
Check for update You can check whether a new update is available.

Get update information You can retrieve information about the available updates.

Get update requirements You can retrieve information about the update requirements.

Stage You can initiate the download of the update.

Note The check phase must have completed successfully before you can stage the
update.

Get staging status You can retrieve information about the status of the stage operation.

Note You must provide the task ID value that you received as a response when you
initiated the stage operation.

Install You can initiate the installation of the update.

Note The update must be staged before you can install it.

Get installation status You can retrieve information about the status of the install operation.

Note You must provide the task ID value that you received as a response when you
initiated the install operation.

Stage and install You can initiate the download of the update and the installation starts when the download
completes.

You can run software update operations by using the vSphere Automation SDK or sending

an HTTP request. You can use interfaces from the com.vmware.appliance.update package to
perform the operations. For more information, see the Java AP/ Reference documentation.

VMware, Inc. 283

VMware vSphere Automation SDKs Programming Guide

vCenter Server Software Update Workflow

The vCenter Server software update process consists of three major phases. In the first phase,
the vCenter Server instance performs various checks, in the second phase it stages the update,
and applies the update in the final phase.

To initiate the update process, you must choose whether the vCenter Server instance should
obtain software updates from a URL or an ISO image. If you use an ISO image to update the
vCenter Server instance, the image must remain attached to the CD/DVD drive of the instance
during the stage and install operations.

The workflow in Figure 13-11. Update Process Workflow describes the standard steps of the
update process.

VMware, Inc. 284

VMware vSphere Automation SDKs Programming Guide

Figure 13-11. Update Process Workflow

Point the vCenter Server instance to the update location.

» URL that contains the update
+ IS0 image attached to the virtual CD/DVD drive

The vCenter Server instance downloads the metadata and scripts. Check phase

The vCenter Server instance runs a subset of scripts to determine if the
update is applicable and define a subset of the components to be
updated.

The vCenter Server instance downloads the data for the components

to be updated. Stage phase

If applicable, vCenter Server instance runs a subset of scripts to
prepare the system for update, for example, to resolve conflicts.

The vCenter Server instance stops the running programs to prevent
API or data incompatibility issues.

Update phase

The vCenter Server instance installs the update data.

The vCenter Server instance starts the programs and resumes
operation.

VMware, Inc. 285

VMware vSphere Automation SDKs Programming Guide

You can automate checks for new updates and staging of updates by using an update policy. For
example, you can set an update policy to make the vCenter Server instance perform automatic
checks for new updates at midnight every day. If there are new updates available, the vCenter
Server instance can stage them automatically. Using an update policy reduces the waiting time
by automating the first two phases and giving you the option to initiate only the update phase
manually.

VMware, Inc. 286

	VMware vSphere Automation SDKs Programming Guide
	Contents
	About vSphere Automation SDKs Programming Guide
	Introduction to the vSphere Automation SDKs
	vSphere Automation SDK Overview
	Supported Programming Languages

	Components of the vSphere Automation Virtualization Layer
	Components and Services of the vSphere Environment

	Retrieving Service Endpoints
	Filtering for Predefined Service Endpoints
	Filter Parameters for Predefined Service Endpoints
	Connect to the Lookup Service and Retrieve the Service Registration Object
	Java Example of Connecting to the Lookup Service and Retrieving the Service Registration Object
	Python Example of Connecting to the Lookup Service and Retrieving a Service Registration Object

	Retrieve Service Endpoints on vCenter Server Instances
	Java Example of Retrieving a Service Endpoint on a vCenter Server Instance
	Python Example of Retrieving a Service Endpoint on a vCenter Server Instance

	Retrieve a vCenter Server ID by Using the Lookup Service
	Java Example of Retrieving a vCenter Server ID by Using the Lookup Service
	Python Example of Retrieving a vCenter Server ID by Using the Lookup Service

	Retrieve a vSphere Automation API Endpoint on a vCenter Server Instance
	Java Example of Retrieving a vSphere Automation Endpoint on a vCenter Server Instance
	Python Example of Retrieving a vSphere Automation Endpoint on a vCenter Server Instance

	Authentication Mechanisms
	Authentication Terminolgy
	Create a vSphere Automation Session with User Credentials
	Java Example of Creating a vSphere Automation API Session with User Credentials
	Python Example of Creating a vCloud Suite Session with Username and Password

	Retrieve a SAML Token
	Java Example of Retrieving a SAML Token
	Python Example of Retrieving a SAML Token

	Create a vSphere Automation Session with a SAML Token
	Java Example of Creating a vSphere Automation API Session with a SAML Token
	Python Example of Creating a vSphere Automation API Session with a SAML Token

	Create a Web Services Session
	Java Example of Creating a vSphere Web Services Session
	Python Example of Creating a Web Services Session

	Identity Provider Federation for vCenter Server
	Federate vCenter Server to Microsoft Active Directory Federation Services (AD FS)

	Accessing vSphere Automation Services
	Access a vSphere Automation Service
	Java Example of Accessing a vSphere Automation Service

	ESXi Hosts
	Retrieving Information About ESXi Hosts
	Adding a Standalone ESXi Host to vCenter Server
	Disconnecting and Reconnecting ESXi Hosts
	Configuring ESXi Entropy

	Managing the Life Cycle of Hosts and Clusters
	vSphere Lifecycle Manager Terms
	vSphere Lifecycle Manager Overview
	Options for Managing the ESXi Life Cycle
	Software Depots
	Types of Software Depots
	Working with Online Depots
	Working with UMDS Depots
	Synchronizing Software Depots
	Working with Offline Depots
	Managing Depot Overrides
	Inspecting Depot Contents

	Enabling a Cluster to Use a Software Specification
	Creating a Cluster with Enabled vSphere Lifecycle Manager
	Enabling an Existing Cluster to Use vSphere Lifecycle Manager

	Enabling a Standalone Host to Use a Software Specification
	Working with Draft Software Specifications
	Creating a Draft Software Specification
	Editing a Draft Software Specification
	Validating the Draft Software Specification
	Committing the Draft Software Specification

	Working with Desired Software States
	Exporting and Importing a Desired State
	Checking the Compliance Against the Desired State

	Hardware Compatibility Data
	Checking the Hardware Compatibility of an ESXi Host

	Configuring Remediation Settings
	Remediating an ESXi Cluster and a Standalone Host
	Integrate Third-Party Solutions with vSphere Lifecycle Manager

	Virtual Machine Configuration and Management
	Creating Virtual Machines
	Creating a Virtual Machine Without a Clone or Template
	Java Example of Creating a Basic Virtual Machine
	Python Example of Creating a Basic Virtual Machine

	Configuring Virtual Machines
	Name and Location
	Java Example of Configuring the Name and Placement of a Virtual Machine
	Python Example of Configuring the Placement of a Virtual Machine

	Hardware Version
	Boot Options
	Java Example of Configuring the Boot Options of a Virtual Machine
	Python Example of Configuring the Boot Options

	Guest Operating System
	CPU and Memory
	Java Example of Configuring the CPU and Memory of a Virtual Machine
	Python Example of Configuring the CPU and Memory of a Virtual Machine

	Networks
	Java Example of Configuring the Virtual Machine Network
	Python Example of Configuring the Virtual Machine Network

	Managing Virtual Machines
	Filtering Virtual Machines
	Java Example of Filtering Virtual Machines
	Python Example of Filtering Virtual Machines

	Installing VMware Tools
	Performing Virtual Machine Power Operations
	Java Example of Powering On a Virtual Machine
	Python Example of Powering On a Virtual Machine

	Registering and Unregistering Virtual Machines

	Virtual Machine Guest Operations
	Upload and Run a Script on a Guest Operating System
	Python Example of Uploading and Running a Script on a Guest Operating System

	Managing Data Sets
	Data Set Operations

	Working with Content Libraries
	Content Library Overview
	Content Library Types
	Content Library Items
	Content Library Storage
	Java Example of Storing Library Content on a Datastore
	Python Example of Storing Library Content on a Datastore

	Querying Content Libraries
	Listing All Content Libraries
	Java Example of Retrieving a List of All Content Libraries
	Python Example of Retrieving a List of All Content Libraries

	Listing Content Libraries of a Specific Type
	Listing Content Libraries by Using Specific Search Criteria
	Java Example of Retrieving a List of All Local Libraries with a Specific Name
	Python Example of Retrieving a List of All Local Libraries with a Specific Name

	Content Libraries
	Create a Local Content Library
	Java Example of Creating a Local Library
	Python Example of Creating a Local Content Library

	Publish an Existing Content Library
	Java Example of Publishing an Existing Content Library
	Python Example of Publishing an Existing Content Library

	Publish a Library at the Time of Creation
	Subscribe to a Content Library
	Java Example of Subscribing to a Published Library
	Python Example of Subscribing to a Published Library

	Synchronize a Subscribed Content Library
	Editing the Settings of a Content Library
	Removing the Content of a Subscribed Library
	Delete a Content Library

	Library Items
	Create an Empty Library Item
	Java Example of Creating a Library Item
	Python Example of Creating a Library Item

	Querying Library Items
	List Library Items
	List Library Items That Match Specific Criteria

	Edit the Settings of a Library Item
	Java Example of Changing the Settings for a Library Item
	Python Example of Changing the Settings for a Library Item

	Upload a File from a Local System to a Library Item
	Java Example of Uploading Files to a Library Item from a Local System
	Python Example of Uploading Files to a Library Item from a Local System

	Upload a File from a URL to a Library Item
	Java Example of Uploading a File from a URL to a Library Item
	Python Example of Uploading a File from a URL to a Library Item

	Download Files to a Local System from a Library Item
	Java Example of Downloading Files from a Library Item to Your Local System
	Python Example of Downloading Files from a Library Item to Your Local System

	Synchronizing a Library Item in a Subscribed Content Library
	Removing the Content of a Library Item
	Deleting a Library Item

	Content Library Support for OVF and OVA Packages
	Working with OVF and OVA Packages in a Content Library
	Upload an OVF or an OVA Package from a URL to a Library Item
	Python Example of Uploading an OVF Package from a URL to a Library Item

	Upload an OVF or OVA Package from a Local File System to a Library Item
	Python Example of Uploading an OVA Package to a Library Item

	Creating Virtual Machines and vApps from Templates in a Content Library
	Create a VM Template in a Content Library from a Virtual Machine
	Python Example of Creating a VM Template in a Content Library from a Virtual Machine

	Create an OVF Template in a Content Library from a Virtual Machine or vApp
	Java Example of Creating an OVF Template in a Content Library from a Virtual Machine
	Python Example of Creating an OVF Template in a Content Library from a Virtual Machine

	Deploy a Virtual Machine from a VM Template in a Content Library
	Python Example of Deploying a VM from a VM Template Library Item

	Deploy a Virtual Machine or vApp from an OVF Template in a Content Library
	Java Example of Deploying a Virtual Machine from a Library Item in a Resource Pool
	Python Example of Deploying a Virtual Machine from a Library Item on a Resource Pool

	vSphere Tag Service
	Creating vSphere Tags
	Creating a Tag Category
	Java Example of Creating a Tag Category
	Python Example of Creating a Tag Category

	Creating a Tag
	Java Example of Creating a Tag
	Python Example of Creating a Tag

	Creating Tag Associations
	Assign the Tag to a Content Library
	Java Example of Assigning a Tag to a Content Library
	Python Example of Assigning a Tag to a Content Library

	Assign a Tag to a Cluster
	Java Example of Assigning a Tag to a Cluster
	Python Example of Assigning a Tag to a Cluster

	Updating a Tag
	Java Example of Updating a Tag Description
	Python Example of Updating a Tag Description

	Using Tags to Create and Manage Compute Policies
	Create a Compute Policy
	Python Example of Creating a Compute Policy

	vSphere with Tanzu Configuration and Management
	vSphere with Tanzu Terminology
	vSphere with Tanzu Components and Services
	Configuring and Managing a Supervisor
	Persistent Storage in vSphere with Tanzu
	Creating Storage Policies for vSphere with Tanzu
	Enabling ReadWriteMany Support

	Supervisor Networking
	Configuring NSX for vSphere with Tanzu
	Configuring the vSphere Networking Stack for vSphere with Tanzu
	Installing and Configuring the HAProxy Load Balancer
	Using the NSX Advanced Load Balancer with vSphere Networking

	Enable vSphere with Tanzu on a Cluster with NSX as the Networking Stack
	Java Example of Enabling vSphere with Tanzu on a Cluster with NSX-T Networking

	Enable vSphere with Tanzu on a Cluster with the vSphere Networking Stack
	Upgrading a Supervisor
	Java Example of Upgrading a Supervisor

	Monitoring the Enable and Upgrade Supervisor Operations
	Reconfiguring a Supervisor
	Disabling a Supervisor

	Content Libraries in vSphere with Tanzu
	Creating, Securing, and Synchronizing Content Libraries for Tanzu Kubernetes Releases
	Creating and Managing Content Libraries for VM Provisioning in vSphere with Tanzu
	Associating a Content Library with a Namespace

	Managing Namespaces on a Supervisor
	Create a vSphere Namespace
	Java Example of Creating a vSphere Namespace

	Updating the Namespace Configuration
	Configuring the Access to a Namespace
	Self-Service Namespace Management

	Virtual Machines in vSphere with Tanzu
	Create a VM Class in vSphere with Tanzu
	Editing or Removing a VM Class from Your Environment
	Associating a VM Class with a vSphere Namespace

	vSphere Security
	Managing Certificates
	Certificate Management Operations
	Add a Root Certificate to vCenter Server
	Python Example of Adding a Root Certificate to vCenter Server

	Delete a Root Certificate from vCenter Server
	Python Example of Deleting a Root Certificate from vCenter Server

	Change the Machine SSL Certificate of vCenter Server
	Python Example of Generating a Certificate Signing Request (CSR) from vCenter Server
	Python Example of Setting a New Machine SSL Certificate to vCenter Server

	Refresh the vCenter Server STS Signing Certificate with a VMCA-Issued Certificate
	Java Example of Refreshing the vCenter Server STS Signing Certificate

	Set a Custom STS Signing Certificate to vCenter Server

	vSphere Trust Authority
	Configure a vSphere Trust Authority Cluster
	Configure Key Providers
	Establish Trust Between Key Provider and Key Server
	Configure Trusted TPMs of Attested ESXi Hosts on a Cluster Level
	Configure Trusted ESXi Builds on a Cluster Level
	Retrieve vSphere Trust Authority Components Information
	Configure vSphere Trust Authority Components
	Configure vSphere Trust Authority Components for Trusted Clusters
	Establish Trust Between Hosts in a vSphere Trust Authority Cluster and a Workload vCenter Server
	Check Trusted Cluster Health
	Remediate a Trusted Cluster
	Retrieve Host Hardware TPM Information
	Manage Host Hardware TPM Endorsement Keys

	vCenter Server Management
	Authorization Model for Administration of vCenter Server
	Authorization Model Mapping to the vCenter Single Sign-On Domain
	Using the Operator Role
	Using the Admin Role
	Using the SuperAdmin Role

	Performing Privilege Checks Operations
	vCenter Server Installation and Setup
	Install Stage 2
	Setting Up a Newly Installed vCenter Server Instance
	Workflows for Install Stage 2

	File-Based Backup and Restore of vCenter Server
	Backing up vCenter Server
	Backup and Restore Protocols for vCenter Server
	Calculate the Size Needed To Store the Backup File
	Python Example of Calculating the Size Needed To Store the Backup Image

	Back up a vCenter Server Instance by Using the API
	Python Example of Backing Up a vCenter Server Instance

	Schedule a Backup Job
	Python Example of Scheduling a Backup Job

	Restoring vCenter Server
	Authentication When Restoring a vCenter Server Instance
	Availability of Services While Restoring a vCenter Server Instance
	Restore a vCenter Server Instance by Using the API
	Python Example of Restoring a vCenter Server Instance

	Reconcile a vCenter Server Instance with Nodes in Embedded Linked Mode

	Troubleshooting for vCenter Server Installation or Deployment
	Managing System Logs
	Configuring Syslog Forwarding
	Python Example of Configuring Syslog Forwarding

	Managing Support Bundles

	vCenter Server Upgrade
	Upgrade Stage 2
	Upgrading a vCenter Server Instance
	Workflows for Upgrade Stage 2

	Historical Data Transfer
	Deferred Import
	Historical Data Import Errors
	Class Diagrams for Deferred Import
	Use the Deferred Import Sample
	Python Example of Pausing and Resuming the Deferred Import Process

	vCenter Server Configuration
	Health Monitoring of vCenter Server
	Check Overall System Health of vCenter Server
	Python Example of Checking the Overall System Health of vCenter Server

	Capacity Monitoring of vCenter Server
	Frequency and Retention of Statistics Collection in vCenter Server
	Nature of Statistics in vCenter Server
	Requesting Statistics from vCenter Server
	Statistics Collection Times
	Statistics Interval Adjustment in vCenter Server
	Empty Data Values
	Check Database Usage in vCenter Server
	Python Example of Checking Database Usage in vCenter Server

	List Storage Consumption By Data Type in vCenter Server
	Python Example of Listing Storage Consumption By Data Type in vCenter Server

	Managing the Global FIPS Compliance
	Performing Infrastructure Profile Management Operations

	Patching and Updating vCenter Server Deployments
	Planning vCenter Server Updates
	Performing Discovery and Planning Operations
	List Available Products and Manage Associated Products
	Python Example of Listing Available Products and Managing Associated Products

	List Available Updates
	Python Example of Listing Available Updates

	Retrieve a Report
	Python Example of Retrieving a Report

	Updating vCenter Server
	Applying vCenter Server Software Updates
	vCenter Server Software Update Workflow

