
Developing and Deploying vSphere
Solutions, vServices, and ESX Agents

Update 1
vSphere Web Services SDK 8.0
vCenter 8.0
VMware ESXi 8.0

You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright
©

 2007-2023 VMware, Inc. All rights reserved. Copyright and trademark information.

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 2

https://docs.vmware.com/
https://docs.vmware.com/copyright-trademark.html

Contents

Developing and Deploying vSphere Solutions, vServices, and ESXi Agents 5

1 Introduction to vSphere Solution Development 6
Download the vSphere ESX Agent Manager SDK 8

Overview of the vSphere Extension APIs 8

Introducing the vCenter Server Extensions 9

Standard Tabs in the vCenter Server Extensions 9

Introducing vSphere ESX Agents and Agencies 10

Introducing vSphere ESX Agent Manager 10

Introducing vServices 11

Introducing vService Manager 11

Introducing the vCenter Extension vService 11

2 Creating vSphere Solutions 13
Contents and Structure of an Extension 13

Key Objects in the vSphere API for Extension and Solution Development 15

Register an Extension with vCenter Server 16

Create the Program that Manages the Extension 17

Connect the Extension to vCenter Server 18

Set the Extension Key 21

Set the Extension Product Information 22

Set the Extension Name and Localization Resources 23

Identify the Virtual Machines or vApps that an Extension Manages 27

Set the Types of the Virtual Machines or vApps that the Extension Manages 30

Set the Description for a Type of Virtual Machine or vApp that a Solution Manages 31

Unregister the Extension from vCenter Server 32

3 SDK Objects for Integration with vCenter Server Extensions 33
Properties of the Extension Data Object That Relate to the vCenter Server Extensions 33

vCenter Server Extensions Data Objects 34

4 Integrate a Solution with vCenter Server Extensions 35
Add a Solution to vCenter Server Extensions 35

Set the Icon for a Type of Virtual Machine or vApp That an Extension Manages 36

How to Add Tabs to a Solution 37

Set Up Health Monitoring for a Solution 39

Solution Health XML Schema 41

VMware, Inc. 3

5 Integrating Solutions with vSphere ESX Agent Manager 43
Benefits of Integrating Solutions with ESX Agent Manager 44

Overview of vSphere ESX Agent Manager Architecture 46

Configuration Components of ESX Agencies 46

ESX Agency Scope 47

ESX Agency Goal State 47

ESX Agency Status 48

Status of ESX Agency Scope Changes 49

Requirements for Integrating a Solution with ESX Agent Manager 50

Authenticating Against ESX Agent Manager 50

Availability of ESX Agent Virtual Machines 51

Monitoring and Resolving ESX Agent Issues 51

Remediation of Issues by ESX Agent Manager 52

Integrate a Solution with ESX Agent Manager 52

Connect a Solution to ESX Agent Manager 53

Configure an ESX Agency and ESX Agents 55

Create an ESX Agency 59

Update the Agency Scope of a Solution 61

Change the Goal State of an Agency 63

Delete an ESX Agency 64

Resolve ESX Agent Issues 66

6 Integrating an Extension with the vCenter Extension vService 68
Integrate a Virtual Machine with the vCenter Extension vService 68

Configure the OVF Descriptor File 69

Provide a Script in the Extension Virtual Machine to Register as a vCenter Extension 72

Deploy an Extension in the vSphere Client By Using the vCenter Extension vService 74

vCenter Extension vService XML Schema 75

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 4

Developing and Deploying vSphere
Solutions, vServices, and ESXi Agents

Developing and Deploying vSphere Solutions, vServices, and ESX Agents provides information
about how to extend the function of vSphere by integrating solutions with ExtensionManager,
vCenter Server Extensions, vServices, and vSphere ESX Agent Manager.

Intended Audience

This information is intended for anyone who wants to deploy vSphere extensions as vSphere
solutions by integrating with ExtensionManager, vCenter Server Extensions, vServices, and ESX
Agent Manager features. This publication does not describe how to develop vSphere extensions
in detail.

Related Documentation

For information about how to develop vSphere Client extensions, see the Developing Remote
Plug-ins with the vSphere Client SDK documentation.

For information about the data objects that the vSphere ESX Agent Manager provides, see the
vSphere ESX Agent Manager API Reference documentation.

For information about developing vSphere applications, see the vSphere Web Services SDK
Programming Guide and the VMware vSphere API Reference documentation.

VMware, Inc. 5

Introduction to vSphere Solution
Development 1
You can add functions to vSphere by developing software applications that you register as
vCenter Server extensions. A vSphere solution is an extension that registers with vCenter Server
and implements some or all of the extension features of the vSphere API.

Developing and Deploying vSphere Solutions, vServices, and ESX Agents uses the terms solution
and extension interchangeably.

A vSphere solution is an object or program that you create by extending specific classes
in the vSphere Web Services API. After you register your solution with the instance of the
ExtensionManager managed object associated with your vCenter Server, you see your solution

under Menu > Administration > Solutions > vCenter Server Extensions of your vSphere Client.

You can create a vService solution to provide access for a specific application to connect to a
service across the network.

You can create an ESX Agent to extend the functions of an ESXi host and provide additional
services that a vSphere solution requires.

The vService Manager and ESX Agent Manager are pre-built solutions that are part of the
vCenter Server Extensions functionality within the vCenter Server.

The extension features in the vSphere Web Services API include functions so that you can
perform the following tasks:

n Register permissions, faults, and events for an extension.

n Identify and prevent manual operations on virtual machines and vApps that extensions
deploy.

n Integrate extensions with ExtensionManager.

n Store data about extensions in the vSphere database.

n Provide user interface plug-ins that extend the vSphere Client.

To use the extension functions of the vSphere API, a solution must register itself with the
ExtensionManager that runs in a vCenter Server instance. By registering with ExtensionManager, a

solution can access the extension features of the vSphere extension API.

VMware, Inc. 6

You can develop solutions that add functions to the standard functions of vCenter Server. You
can deploy a solution as an Open Virtualization Format (OVF) package, with optional VMware
vSphere Installation Bundles (VIB). You can also install solutions by using an installer, such as
Windows Installer (MSI) or RPM Package Manager. Most of the extension functions in the vSphere
API are independent of the technology that you use to deploy a solution. If you deploy a solution
by using OVF, you can use the vCenter Extension vService to simplify the registration of the
solution with vCenter Server.

vCenter Server 8.0 provides built-in solutions.

n vSphere ESX Agent Manager

n vService Manager

vSphere ESX Agent Manager and vService Manager are part of a standard vCenter Server
installation. These solutions appear in vCenter Server Extensions and ExtensionManager with any
other solutions that register with ExtensionManager.

n Download the vSphere ESX Agent Manager SDK

The ESX Agent Manager SDK is part of the vSphere SDK.

n Overview of the vSphere Extension APIs

The vSphere SDK provides a set of APIs that you can use to register extensions with
vCenter Server. To develop vSphere extensions, the most important object in the vSphere
Extension API is the ExtensionManager managed object.

n Introducing the vCenter Server Extensions

The vCenter Server Extensions allows you to monitor and interact with solutions that are
registered with a vCenter Server instance.

n Introducing vSphere ESX Agents and Agencies

A vSphere ESX agent is a virtual machine and an optional vSphere Installation Bundle (VIB)
that extends the functions of an ESXi host to provide additional services that a vSphere
solution requires.

n Introducing vSphere ESX Agent Manager

vSphere ESX Agent Manager automates the process of deploying and managing vSphere
ESX agents.

n Introducing vServices

A vService is a service that a solution provides to specific applications that run inside virtual
machines and vApps. A solution can provide several types of vServices. Virtual machines or
vApps can have dependencies on several types of vServices.

n Introducing vService Manager

vService Manager allows you to manage the set of vServices that extensions provide and to
configure virtual machines and vApps to be dependent on these vServices.

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 7

n Introducing the vCenter Extension vService

The vCenter Extension vService is a standard vService that vSphere 8.0 provides. With the
vCenter Extension vService you can register virtual machines as vCenter Server extensions
with minimal user interaction.

Download the vSphere ESX Agent Manager SDK

The ESX Agent Manager SDK is part of the vSphere SDK.

The ESX Agent Manager SDK includes the WSDL file definitions for the vSphere ESX Agent
Manager API and the ESX Agent Manager API reference documentation.

Procedure

1 Download the vSphere Management SDK 8.0 Update 1 bundle, VMware-
vSphere-SDK-8.0.1-build_number.zip, from the VMware Developer site at https://

developer.vmware.com/home.

2 Unzip the vSphere SDK to a convenient location in your development environment.

3 Navigate to the ESX Agent Manager SDK at the following location in the vSphere SDK.

VMware-vSphere-SDK-8.0.1-build_number\SDK\eam

4 Copy the contents of VMware-vSphere-SDK-8.0.1-build_number\SDK\eam to a folder

where you can modify the files.

For example, copy the files to eam_work_folder.

Results

You downloaded and located the ESX Agent Manager SDK, and made a copy of its contents to
work on.

What to do next

Create your solution.

Overview of the vSphere Extension APIs

The vSphere SDK provides a set of APIs that you can use to register extensions with vCenter
Server. To develop vSphere extensions, the most important object in the vSphere Extension API
is the ExtensionManager managed object.

Use the ExtensionManager managed object in your vCenter Server instance to register a new

extension. Extensions can add new objects to the vCenter inventory. Extensions define tasks,
events, and faults that relate to actions that the solution performs on the objects, the events
that occur in the extension, and the problems that the objects encounter. You can also use
ExtensionManager to add user interface elements to the vSphere Client to allow users to interact

with the objects that your extension provides to vCenter Server.

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 8

https://developer.vmware.com/home
https://developer.vmware.com/home

vCenter Server extensions can have both a client and a server component, or they can consist of
just a client component or just a server component. Each instance of an extension is represented
by an Extension data object.

You can indicate that an extension manages the virtual machines or vApps that it creates by
setting the managedBy property in the ManagedEntityInfo data object for that virtual machine

or vApp. When you register an extension with vCenter Server, you can define an icon that
represents the virtual machines that the extension manages. Virtual machines that an extension
manages display the icon that you define in the inventory of virtual machines in the vSphere
Client. The vCenter Server shows a warning if users try to perform manual operations on a virtual
machine or vApp that the extension manages.

ExtensionManager adds data objects to the vSphere Extension APIs that integrate extensions as
vCenter solutions that you can manage.

For information about how to develop vSphere Client extensions, see the Developing Remote
Plug-ins with the vSphere Client SDK documentation.

For information about developing vSphere applications, see the vSphere Web Services SDK
Programming Guide and the VMware vSphere API Reference documentation.

Introducing the vCenter Server Extensions

The vCenter Server Extensions allows you to monitor and interact with solutions that are
registered with a vCenter Server instance.

The vCenter Server Extensions shows four standard tabs for each running solution. The tabs list
the virtual machines that a solution deploys and manages, show the status, name, company URL,
and version of the solution.

A solution can also use the Solutions portlet on the Summary tab to add links to Web pages that
provide some functionality specific to the solution. For example, the pages can be used to allow
users to configure the solution, or to provide access to the functions of the solution.

Standard Tabs in the vCenter Server Extensions

vCenter Server Extensions displays standard tabs for each solution that is running on a vCenter
Server instance.

Table 1-1. Standard Tabs in the vCenter Server Extensions

Tab Description

Summary General information about the solution, including its name,
vendor, and version.

Monitor Filters all vSphere events and lists only the system
activities that are related to the specific solution.

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 9

Table 1-1. Standard Tabs in the vCenter Server Extensions (continued)

Tab Description

Configure Displays one or more ESX Agents, the services they
contain, and actions you can perform on them.

VMs Information about the virtual machines and vApps that
the solution deploys. You can perform all operations
applicable for a VM and vApp.

Introducing vSphere ESX Agents and Agencies

A vSphere ESX agent is a virtual machine and an optional vSphere Installation Bundle (VIB) that
extends the functions of an ESXi host to provide additional services that a vSphere solution
requires.

For example, a solution might require a particular network filter or firewall configuration to
function. A solution can use an ESX agent to connect to the vSphere Hypervisor and extend
the host with functions specific to that solution. For example, the ESX agent can filter network
traffic, act as a firewall, or gather other information about the virtual machines on the host.

ESX agent virtual machines are similar to services in Windows or Linux. They start when the
operating system starts and they stop when it shuts down. The behavior of ESX agent virtual
machines is transparent to the user. A vSphere host reaches the ready state when the ESXi
operating system has started and all ESX agent virtual machines have been provisioned and
powered on.

To integrate an agent with vSphere ESX Agent Manager and extend the capabilities of an ESXi
server, an ESX agent must be packaged as an OVF or a VIB module.

ESX agencies act as containers for ESX agents. ESX agencies aggregate information about the
agents that they manage. For example, ESX agencies provide an overview of the ESX agents
that they contain by aggregating all the issues that relate to the ESX agents.

Introducing vSphere ESX Agent Manager

vSphere ESX Agent Manager automates the process of deploying and managing vSphere ESX
agents.

The services that ESX Agent Manager provides include out-of-the-box integration of agents with
vSphere features such as DRS, AddHost, High Availability, DRM, and maintenance mode. Each of

these features can be difficult to integrate manually. ESX Agent Manager allows you to monitor
the health of ESX agents. You can also block users from performing certain operations on ESX
agents that might affect the virtual machines that use them. For example, ESX Agent Manager
can prevent an ESX agent virtual machine from being powered off or moved from an ESXi host
that contains other virtual machines that use that agent.

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 10

ESX Agent Manager adds an ESX Agencies entry to the table of contents under the Configure
tab of vSphere ESX Agent Manager. The ESX Agencies tab shows information about running
agencies, lists any orphaned ESX agents, and logs information about the ESX agents that ESX
Agent Manager manages.

Introducing vServices

A vService is a service that a solution provides to specific applications that run inside virtual
machines and vApps. A solution can provide several types of vServices. Virtual machines or
vApps can have dependencies on several types of vServices.

A vService is similar to a virtual hardware device upon which virtual machines and vApps can
depend. Instead of providing a piece of virtual hardware, vServices typically provide access to
a service across a network. By providing a vService, a solution can expose application-aware
services to virtual machines and vApps. For example, a vService can provide a backup service or
a logging service to virtual machines and vApps.

Virtual machines that use a vService have a vService dependency. If you mark a virtual machine
as having a vService dependency, the virtual machine cannot power on unless you bind it to a
provider of that vService.

If you deploy virtual machines by using Open Virtualization Format (OVF), you can specify in
the OVF descriptor that the virtual machine depends on a vService. If you configure a virtual
machine to have dependency on a vService, the solution that provides the vService receives
notifications when specific events occur on that virtual machine. The vService can modify the
OVF environment and OVF descriptor of the virtual machines and vApps that depend on it.
With vServices, you can encode application-specific information in the OVF package about how
a virtual machine or vApp interacts with a specific solution. You can also add solution-specific
information to code running inside the guest operating system.

Introducing vService Manager

vService Manager allows you to manage the set of vServices that extensions provide and to
configure virtual machines and vApps to be dependent on these vServices.

You access vService Manager from vCenter Server Extensions. You can add dependencies on
vServices to virtual machines and vApps directly in the vSphere Client.

Introducing the vCenter Extension vService

The vCenter Extension vService is a standard vService that vSphere 8.0 provides. With the
vCenter Extension vService you can register virtual machines as vCenter Server extensions with
minimal user interaction.

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 11

Typically, you register an extension with vCenter Server by running an MSI installer or an
installation script in which you enter the credentials of a vCenter Server administrator and the
connection parameters of the vCenter Server system. You can avoid these manual steps by
using the vCenter Extension vService to register extensions in vCenter Server. vCenter Extension
vService performs the following functions.

n Provides the virtual machine with the connection parameters and a login token of the vCenter
Server system on which you install the extension.

n Registers the vCenter extension certificate of the solution with vCenter Server.

To deploy an extension using the vCenter Extension vService, you must deliver the vCenter
extension in a virtual appliance that you deploy using OVF.

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 12

Creating vSphere Solutions 2
The vSphere SDK provides a set of APIs that you can use to create extensions for vCenter
Server. The key SDK objects for extension development are ExtensionManager and Extension.

Use the ExtensionManager managed object in your vCenter Server instance to register a new

extension. Extensions can add new objects to the vCenter inventory. Extensions define tasks,
events, and faults that relate to actions that the solution performs on the objects, the events
that occur in the extension, and the problems that the objects encounter. You can also use
ExtensionManager to add user interface elements to the vSphere Client to allow users to interact

with the objects that your extension provides to vCenter Server.

ExtensionManager adds data objects to the vSphere Extension APIs that integrate extensions as
vCenter solutions that you can manage.

For information about how to develop vSphere Client extensions, see the Developing Remote
Plug-ins with the vSphere Client SDK documentation.

For information about developing vSphere applications, see the vSphere Web Services SDK
Programming Guide and the VMware vSphere API Reference documentation.

n Contents and Structure of an Extension

A vSphere solution must register with vCenter Server as an extension. If you register a
solution with vCenter Server, you can mark virtual machines as belonging to that solution,
and integrate it with ExtensionManager and ESX Agent Manager.

n Register an Extension with vCenter Server

You must provide information about an extension when you register it with vCenter Server.

Contents and Structure of an Extension

A vSphere solution must register with vCenter Server as an extension. If you register a solution
with vCenter Server, you can mark virtual machines as belonging to that solution, and integrate it
with ExtensionManager and ESX Agent Manager.

vCenter Server extensions can have both a client and a server component, or they can consist of
just a client component or just a server component. Each instance of an extension is represented
by an Extension data object.

VMware, Inc. 13

An extension can define events, tasks, faults, and privileges for performing operations on the
objects that the solution exposes to vCenter Server, or on existing vCenter Server objects.

n Events inform users about occurrences in the solution.

n Tasks are operations that the extension performs.

n Faults signal errors in the extension to the end users.

n Privileges define which users or user groups can access the objects in the extension and
perform tasks on them.

Solutions typically include Web pages that appear in vSphere Client. You can use the pages to
configure the solution and to manage the objects that the solution exposes.

An extension is typically a Web application that runs in an application server or a script that
vCenter Server accesses through a URL. You can implement the Web server features by using
any of the following programming languages.

n Java Servlets or Java Server Pages (JSP)

n Microsoft Active Server Pages (ASP.NET)

n Common Gateway Interface (CGI) scripting

n Static or dynamic HTML pages

An extension performs the following types of tasks:

n Establishes the connection to vCenter Server.

n Registers the extension with ExtensionManager.

n Deploys virtual machines or vApps by using Open Virtualization Format (OVF).

n Deploys VMkernel modules or ESXi applications as vSphere Installation Bundles (VIB).

n Exposes the functions of the product that the extension integrates into vCenter Server.

n Provides a user interface to access, configure, and use the extension.

To integrate an extension as a solution with ExtensionManager, the solution must be a valid
extension and it must implement the Extension.shownInSolutionsManager property. The solution

can also provide information about itself to vCenter Server in the ExtSolutionManagerInfo object.

The requirements for integrating a solution with ESX Agent Manager are slightly more restrictive
than for integrating with ExtensionManager. For information about requirements, see Chapter 5
Integrating Solutions with vSphere ESX Agent Manager.

For information about how to develop vSphere Client extensions, see the Developing Remote
Plug-ins with the vSphere Client SDK documentation.

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 14

For information about developing vSphere applications, see the vSphere Web Services SDK
Programming Guide and the VMware vSphere API Reference documentation.

n Key Objects in the vSphere API for Extension and Solution Development

The vSphere API contains objects that are key for developing extensions and for integrating
the extensions with ExtensionManager.

Key Objects in the vSphere API for Extension and Solution
Development

The vSphere API contains objects that are key for developing extensions and for integrating the
extensions with ExtensionManager.

Table 2-1. Key Objects in the vSphere API for Extension and Solution Development

Object Description

ExtensionManager You call ExtensionManager.registerExtension() to

register an Extension instance with ExtensionManager.

Extension Information about extension instances, including
properties that you set in an ExtSolutionManagerInfo
object to integrate an extension as a solution in
ExtensionManager.

ExtensionClientInfo Information about the client side of an extension.

ExtensionEventTypeInfo Information about the types of events that occur on the
objects in the extension.

ExtensionFaultTypeInfo Information about the types of problems that the objects
in the extension encounter.

ExtensionHealthInfo Information about the health of a solution.

ExtensionPrivilegeInfo Information about access privileges for the extension.

ExtensionResourceInfo Information about resource files that contain localizable
user interface text and messages that appear in vSphere
Client in different locales.

ExtensionServerInfo Information about the server side of an extension.

ExtensionTaskTypeInfo Information about the types of tasks that the objects
perform in the extension.

ExtExtendedProductInfo Information about the product that the extension exposes
to vCenter Server.

ExtManagedEntityInfo Information about the objects that the extension
manages.

ExtSolutionManagerInfo Information that the solution exposes about itself.

ExtSolutionManagerInfoTabInfo Information about the tabs that a solution adds to its
Summary page.

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 15

Register an Extension with vCenter Server

You must provide information about an extension when you register it with vCenter Server.

n A description of the extension

n A unique identifier for the extension

n Version information

n URLs to any server or client interfaces that the extension exposes

n An email address for the extension administrator

n Any additional metadata that the extension defines, for example, URLs to the the company
and product Web sites, the managed object reference (MoRef) of the virtual machine or
vApp in which the solution is running, and so on

n Definitions of the tasks, events, faults, and privileges that the extension adds to vCenter
Server

n Localization data for the task, event, fault, and privilege descriptions

n A public key which vCenter Server uses to register the extension in the registry of the
vCenter Server system on which it is running.

Procedure

1 Create the Program that Manages the Extension

An extension communicates with vCenter Server across a network, so you can use any
programming language to create the program that manages an extension.

2 Connect the Extension to vCenter Server

You must provide information about the vCenter Server instance to which you connect an
extension. Set the details of the connection to vCenter Server in the client-side stub of the
extension.

3 Set the Extension Key

Every extension that you register with vCenter Server must have a unique extension key
that vCenter Server uses to identify the extension.

4 Set the Extension Product Information

You provide product information about an extension by setting properties when you
instantiate the Extension object in the program that manages the extension. The product

information that you set appears in the vSphere Client.

5 Set the Extension Name and Localization Resources

When you develop extensions, the vSphere Client can appear in different languages in
different locales. You can set the information that appears in the vSphere Client, for
example, the extension name, as resources that can be translated.

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 16

6 Identify the Virtual Machines or vApps that an Extension Manages

If an extension manages virtual machines or vApps, you can identify those virtual machines
or vApps as being managed by that extension. You can add icons to the objects that the
extension manages that appear in the vCenter Server inventory, and warn users if they try
to perform actions on those objects.

7 Set the Types of the Virtual Machines or vApps that the Extension Manages

You can set properties in the ExtManagedEntityInfo data object to define how the vSphere

Client displays the different types of virtual machines and vApps that an extension deploys.

8 Set the Description for a Type of Virtual Machine or vApp that a Solution Manages

If a solution deploys different types of virtual machine or vApp, you can provide a
description for each type by setting the ExtManagedEntityInfo description property.

9 Unregister the Extension from vCenter Server

When you develop an extension, the best practice is to provide a means of unregistering the
extension from vCenter Server.

Create the Program that Manages the Extension

An extension communicates with vCenter Server across a network, so you can use any
programming language to create the program that manages an extension.

The product that you are exposing as an extension to vCenter Server determines the way you
create the program that will manage your extension. The managing program must implement
Extension to provide the information that vCenter Server requires to register the extension.

For example, you can create a solution that defines its server side in a MyManager class.

The MyManager.java can performs the following tasks for your solution.

n Sets up your solution by obtaining the values for the extension key, vCenter Server
connection, IP addresses, and port configuration from the mysolution.properties file.

n Secures the connection to vCenter Server by using TLS.

n Defines methods to construct the URLs through which to access the server side of the
extension.

n Implements the Extension object to register your solution as an extension with vCenter

Server.

n Integrates your solution as a solution with ExtensionManager.

n Connects the solution to the ESX Agent Manager.

n Instantiates the class that defines the ESX agents that the solution deploys.

n Starts the solution in vCenter Server.

n Defines a task to unregister the solution from vCenter Server.

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 17

Prerequisites

Download the vSphere ESX Agent Manager SDK.

Procedure

1 Create a program to manage your extension using the programming language of your choice.

For example, you can create a MyManager class to manage the extension. MyManager can

implement the Spring Framework API.

public class MyManager implements InitializingBean {
}

2 Create an instance of the Extension data object with which to register the extension with

vCenter Server.

The MyManager class can define an internal method that instantiates an Extension.

public class MyManager implements InitializingBean {

 [...]
 private Extension createExtensionObject() {
 Extension extension = new Extension();
 [...]
 }
}

What to do next

Connect the extension to vCenter Server.

Connect the Extension to vCenter Server

You must provide information about the vCenter Server instance to which you connect an
extension. Set the details of the connection to vCenter Server in the client-side stub of the
extension.

Note If you deploy your extension using the Open Virtualization Format (OVF), you can
integrate it with the vCenter Extension vService. The vCenter Extension vService automates
the process of registering extension with vCenter Server, so you do not need to provide any
connection parameters. See Chapter 6 Integrating an Extension with the vCenter Extension
vService.

To connect an extension to vCenter Server, provide the following information to the client-side
stub of the connection.

n A username and password for a vCenter Server administrator account, if you do not use the
vCenter Extension vService

n The extension key for the extension

n A reference to the SessionManager instance in the vCenter Server

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 18

You can define the connection to vCenter Server in the MyVimConnection class.

The MyManager class can perform the following functions.

n Implement the MyVimConnection class to establish the connection to vCenter Server when the

My Solution starts.

n Uses the Spring framework to obtain the connection information from the
mysolution.properties file that you configure when you set up My Solution.

n Passes the connection property values to MyVimConnection.

Prerequisites

n Download the vSphere ESX Agent Manager SDK.

Procedure

1 Create an instance of the ManagedObjectReference data object to define the connection to

the extension.

The MyVimConnection class creates a ManagedObjectReference object of type

ServiceInstance, named _siRef.

 public MyVimConnection(String host, int port) {
 [...]
 _siRef = new ManagedObjectReference();
 _siRef.setType("ServiceInstance");
 _siRef.setValue("ServiceInstance");
 }

2 Define methods to get and set the vCenter Server host, ports, username, password,
connection timeout, and session cookie.

The MyVimConnection constructor defines methods to obtain the host, ports, username,

password, connection timeout, and session cookie from the information that you set in the
mysolution.properties file.

3 Connect to vCenter Server by obtaining the SessionManager managed object for the vCenter

Server.

MyVimConnection.java defines a method named connect(). The connect() method defines

a standard connection to vCenter Server that uses WSDL. The following segment shows the
calls to the SessionManager.login() and SessionManager.loginExtensionByCertificate()
methods that establish the connection to vCenter Server. The _stub variable is an instance

of VimPortType, _sc is a ServiceContent object, and _siRef is the ManagedObjectReference
object of type ServiceInstance.

 private synchronized void connect() {
 [...]
 try {
 [...]

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 19

 VimService locator = new VimService(wsdlURL, new QName("urn:vim25Service",
 "VimService"));

 _stub = locator.getVimPort();
 [...]

 _sc = _stub.retrieveServiceContent(_siRef);

 ManagedObjectReference sessionManager = _sc.getSessionManager();

 if (_extensionKey == null) {
 _stub.login(sessionManager, _username, _password, null);
 }
 else {
 _stub.loginExtensionByCertificate(sessionManager, _extensionKey, null);
 }
 [...]
 _connectionStatus = ConnectionStatus.Connected;
 } catch (Exception e) {
 _logger.error(e, e);
 }
 }

4 Register the extension by calling the ExtensionManager.registerExtension() method.

MyVimConnection defines a registerExtension() method that

implements ExtensionManager.registerExtension(). MyManager calls

MyVimConnection.registerExtension() after it has set the properties for the extension.

 public void registerExtension(Extension ex) {
 try {
 Extension findExtension = _stub.findExtension(_sc.getExtensionManager(),
 ex.getKey());
 if (findExtension == null) {
 _stub.registerExtension(_sc.getExtensionManager(), ex);
 } else {
 _stub.updateExtension(_sc.getExtensionManager(), ex);
 }
 _stub.setExtensionCertificate(_sc.getExtensionManager(),
 ex.getKey(), null);
 } catch (Exception e) {
 _logger.error(e, e);
 }
 }

Results

You registered an extension with vCenter Server.

What to do next

Provide an extension key with which to register the extension with vCenter Server.

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 20

Set the Extension Key

Every extension that you register with vCenter Server must have a unique extension key that
vCenter Server uses to identify the extension.

To ensure uniqueness, you can use the Java package-naming convention for the key value,
for example com.yourcompany.yourextension. Your solution can set the extension key by

defining the extensionKey=com.mycompany.mysolution property in the mysolution.properties
file. The MyManager.java class picks up this property by calling the Extension.setKey() method.

If you change the extension key in the extensionKey property in mysolution.properties, you

can see the changed name in the vSphere Client.

You can see the extensions that you register with ExtensionManager in the vCenter Managed

Object Browser at https://<vcenter_server_ip_address>/mob/?moid=ExtensionManager

Prerequisites

Download the vSphere ESX Agent Manager SDK.

Procedure

u Call the Extension.setKey() method to set the extension key.

MyManager.java sets the extension key to the extensionKey variable that the

mysolution.properties file defines.

public class MyManager implements InitializingBean {
 [...]
 public final String EXTENSION_KEY;
 [...]
 EXTENSION_KEY = extensionKey;
 [...]
}
 [...]
 private Extension createExtensionObject() {
 Extension extension = new Extension();
 extension.setKey(EXTENSION_KEY);
 [...]
 }

Results

You set the extension key for an extension.

What to do next

Provide information about the extension to vCenter Server.

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 21

Set the Extension Product Information

You provide product information about an extension by setting properties when you instantiate
the Extension object in the program that manages the extension. The product information that

you set appears in the vSphere Client.

You can instantiate the Extension data object in the MyManager.java class. Your solution can

set the Extension product information properties directly in MyManager.java, but you can set the

property values in configuration files that the program that manages the extension accesses.

Prerequisites

Download the vSphere ESX Agent Manager SDK.

Procedure

1 Provide a description for the extension by creating an instance of the Description data

object and passing it to Extension.

 private Extension createExtensionObject() {
 Extension extension = new Extension();
 [...]
 Description description = new Description();
 description.setLabel("My Solution");
 description.setSummary("This extension represents my solution.");
 extension.setDescription(description);
 [...]
 }

2 Provide a version number for the extension by calling the Extension.setVersion() method.

private Extension createExtensionObject() {
 Extension extension = new Extension();
 [...]
 extension.setVersion("0.1");
 [...]
 }

3 (Optional) Change the value of the version property in MyManager.java.

4 Provide information about the vendor of the extension by calling the Extension.setCompany()
method.

You can set the vendor property by adding the following line of code to MyManager.java.

private Extension createExtensionObject() {
 Extension extension = new Extension();
 [...]
 extension.setVersion("0.1");
 extension.setCompany("My Company");
 [...]
 }

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 22

5 Provide URLs to Web pages for the product and for the vendor of the extension by creating
an instance of the ExtExtendedProductInfo data object and passing it to Extension.

You can set the companyUrl property for ExtExtendedProductInfo by calling the

ExtExtendedProductInfo.setCompanyUrl() method in MyManager.java:

private Extension createExtensionObject() {
 Extension extension = new Extension();
 [...]
 ExtExtendedProductInfo extExtendedProductInfo = new
 ExtExtendedProductInfo();
 extExtendedProductInfo.setCompanyUrl("www.mycompany.com");
 extExtendedProductInfo.setProductUrl("www.mycompany.com/myproduct");
 extension.setExtendedProductInfo(extExtendedProductInfo);
 [...]
 }

6 Save, build and deploy your solution.

7 (Optional) View your changes in the vSphere Client.

If you edit the values of the version, company, companyUrl, and productUrl properties,

your changes appear in the Summary tab of your solution.

Results

You provided product information about an extension by setting properties in the Extension and

ExtExtendedProductInfo data objects.

What to do next

Set the extension name and localization information.

Set the Extension Name and Localization Resources

When you develop extensions, the vSphere Client can appear in different languages in different
locales. You can set the information that appears in the vSphere Client, for example, the
extension name, as resources that can be translated.

You provide the information that requires translation in an ExtensionResourceInfo data object.

You can add an ExtensionResourceInfo object for every locale that your extension supports. You

set an array of ExtensionResourceInfo objects in the resourceList property of the Extension
instance that defines your extension.

You provide onscreen messages and labels to ExtensionResourceInfo in a key and value pairing

that you add to a KeyValue array in the ExtensionResourceInfo data property. You can set the

values for the KeyValue pair directly in the ExtensionResourceInfo object, or you can refer to

entries in resource files that contain the message text in different languages, according to the
locale in which vSphere is running.

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 23

You provide a two-character ISO-639 language ID for the KeyValue locale property, and set the

module property to the type of resource to which this locale applies. For example, you can set

the module value to task, event, auth, or extension, depending on whether the messages that

the resource contains relate to tasks, events, privileges, or extensions.

Prerequisites

Download the vSphere ESX Agent Manager SDK.

Procedure

1 Create an instance of the ExtensionResourceInfo data object.

For example, in MyManager.java you can instantiate ExtensionResourceInfo in the

implementation of Extension.

private Extension createExtensionObject() {
 Extension extension = new Extension();
 [...]
 ExtensionResourceInfo extensionResourceInfo = new ExtensionResourceInfo();
 [...]
}

2 Set the locale and module properties for the ExtensionResourceInfo object.

For example, in MyManager.java you can set the default locale to en and apply this locale to

the Extension instance, extension.

private Extension createExtensionObject() {
 Extension extension = new Extension();
 [...]
 ExtensionResourceInfo extensionResourceInfo = new ExtensionResourceInfo();
 extensionResourceInfo.setLocale("en");
 extensionResourceInfo.setModule("extension");
 [...]
}

3 Provide the data to the ExtensionResourceInfo in the form of a KeyValue array.

The label property is a property of the Description object, that Extension implements, and

defines the name of the extension as it appears in the vSphere Client.

For example, in MyManager.java you can add the text My Solution as the value of the label
property.

private Extension createExtensionObject() {
 Extension extension = new Extension();
 [...]
 ExtensionResourceInfo extensionResourceInfo = new ExtensionResourceInfo();
 extensionResourceInfo.setLocale("en");
 extensionResourceInfo.setModule("extension");
 KeyValue keyValue = new KeyValue();

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 24

 keyValue.setKey(EXTENSION_KEY + ".label");
 keyValue.setValue("My Solution");
 [...]
}

4 Call the ExtensionResourceInfo.getData() method to add the KeyValue array that contains

the localization data to the data property of the ExtensionResourceInfo object.

private Extension createExtensionObject() {
 Extension extension = new Extension();
 [...]
 ExtensionResourceInfo extensionResourceInfo = new ExtensionResourceInfo();
 extensionResourceInfo.setLocale("en");
 extensionResourceInfo.setModule("extension");
 KeyValue keyValue = new KeyValue();
 keyValue.setKey(EXTENSION_KEY + ".label");
 keyValue.setValue("My Solution");
 extensionResourceInfo.getData().add(keyValue);
 [...]
}

5 (Optional) Add another KeyValue object to the ExtensionResourceInfo data property that

adds a description of the extension for a given locale.

For example, you can add the following description to MyManager.java in a KeyValue object

named keyValue_summary.

private Extension createExtensionObject() {
 Extension extension = new Extension();
 [...]
 ExtensionResourceInfo extensionResourceInfo = new ExtensionResourceInfo();
 extensionResourceInfo.setLocale("en");
 extensionResourceInfo.setModule("extension");
 KeyValue keyValue = new KeyValue();
 keyValue.setKey(EXTENSION_KEY + ".label");
 keyValue.setValue("My Solution");

 KeyValue keyValue_summary = new KeyValue();
 keyValue_summary.setKey(EXTENSION_KEY + ".summary");
 keyValue_summary.setValue("This is a brief description of My Solution.");

 extensionResourceInfo.getData().add(keyValue);
 extensionResourceInfo.getData().add(keyValue_summary);
 [...]
}

6 Call the Extension.getResourceList() method to pass the ExtensionResourceInfo object to

the Extension instance.

private Extension createExtensionObject() {
 Extension extension = new Extension();
 [...]
 ExtensionResourceInfo extensionResourceInfo = new ExtensionResourceInfo();

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 25

 extensionResourceInfo.setLocale("en");
 extensionResourceInfo.setModule("extension");
 KeyValue keyValue = new KeyValue();
 keyValue.setKey(EXTENSION_KEY + ".label");
 keyValue.setValue("My Solution");

 KeyValue keyValue_summary = new KeyValue();
 keyValue_summary.setKey(EXTENSION_KEY + ".summary");
 keyValue_summary.setValue("This is a brief description of My Solution.");

 extensionResourceInfo.getData().add(keyValue);
 extensionResourceInfo.getData().add(keyValue_summary);

 extension.getResourceList().add(extensionResourceInfo);
 [...]
}

7 (Optional) Add more ExtensionResourceInfo instances to provide localized text that displays

when the extension runs in different locales.

For example, you can add an ExtensionResourceInfo instance to MyManager.java to

provide a French translation of the extension name.

private Extension createExtensionObject() {
 Extension extension = new Extension();
 [...]
 ExtensionResourceInfo extensionResourceInfo = new ExtensionResourceInfo();
 extensionResourceInfo.setLocale("en");
 extensionResourceInfo.setModule("extension");
 KeyValue keyValue = new KeyValue();
 keyValue.setKey(EXTENSION_KEY + ".label");
 keyValue.setValue("My Solution");

 KeyValue keyValue_summary = new KeyValue();
 keyValue_summary.setKey(EXTENSION_KEY + ".summary");
 keyValue_summary.setValue("This is a brief description of My Solution.");

 extensionResourceInfo.getData().add(keyValue);
 extensionResourceInfo.getData().add(keyValue_summary);

 ExtensionResourceInfo extensionResourceInfo_FR = new ExtensionResourceInfo();
 extensionResourceInfo_FR.setLocale("fr");
 extensionResourceInfo_FR.setModule("extension");
 KeyValue keyValue_FR = new KeyValue();
 keyValue_FR.setKey(EXTENSION_KEY + ".label");
 keyValue_FR.setValue("Ceci est une brève description de Ma solution.");

 extensionResourceInfo_FR.getData().add(keyValue_FR);

 extension.getResourceList().add(extensionResourceInfo);
 extension.getResourceList().add(extensionResourceInfo_FR);
 [...]
}

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 26

8 (Optional) Save your changes, build, and deploy your solution.

If you edit the label value, the extension appears in vCenter Server Extensions with the new

name. If you added an ExtensionResourceInfo object for a different locale, the localized text

that you added appears in vCenter Server Extensions when you connect your solution to a
vCenter Server instance that runs in that locale.

Results

You added localizable message resources to the extension, so that onscreen messages and
labels that your extension provides can appear in different languages in different locales.

Identify the Virtual Machines or vApps that an Extension Manages

If an extension manages virtual machines or vApps, you can identify those virtual machines or
vApps as being managed by that extension. You can add icons to the objects that the extension
manages that appear in the vCenter Server inventory, and warn users if they try to perform
actions on those objects.

For example, your solution can create ESX agent virtual machines. The ESX agent virtual
machines that it manages appear in the vCenter Server inventory with an icon that identifies
them as ESX agents. A panel appears in the Summary tab for those virtual machines that
identifies ESX Agent Manager as the solution that manages them. If you attempt to perform
an operation directly on an ESX agent virtual machine, you see a warning that instructs you to
perform the operation by using ESX Agent Manager, rather than by performing it manually on the
virtual machine. For the list of operations that trigger warnings when you try to perform them on
a virtual machine or vApp that an extension manages, see Operations that Trigger Warnings from
Extensions.

You identify a virtual machine or vApp as belonging to an extension by setting the managedBy
property in the VirtualMachineConfigSpec or VAppConfigSpec implementations that define the

virtual machines or vApps that the extension manages. You set the managedBy property to a

ManagedByInfo object.

You identify the extension that manages a virtual machine or vApp by setting the extensionKey
property in the ManagedByInfo object. You specify different types of virtual machine or vApp that

an extension manages by setting the type property in ManagedByInfo.

If you set the ManagedByInfo type property in the virtual machine or vApp definition, you

can pass this value to the ExtManagedEntityInfo implementation in the extension definition.

ExtManagedEntityInfo applies descriptions and icons to all the virtual machines or vApps of this

type that the extension manages.

For information about configuring and deploying virtual machines programmatically, see the
vSphere Web Services SDK Programming Guide and the VMware vSphere API Reference.

Prerequisites

You have a vCenter Server extension that manages virtual machines or vApps.

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 27

Procedure

1 In the program that defines the virtual machines or vApps that an extension deploys, create
an instance of VirtualMachineConfigSpec or VAppConfigSpec.

For example, you can instantiate VirtualMachineConfigSpec.

VirtualMachineConfigSpec configSpec = new VirtualMachineConfigSpec();

2 Create an instance of ManagedByInfo.

ManagedByInfo managedByInfo = new ManagedByInfo();

3 Set the ManagedByInfo extensionKey property to the extension key of the extension that

deploys the virtual machines or vApps.

Use the extension key that you define in the implementation of Extension in your extension.

managedByInfo.setExtensionKey("com.mycompany.myextension");

4 Set the ManagedByInfo type property to identify the virtual machine or vApp as being of a

certain type.

Set the type property to a descriptive name for this type of virtual machine. In the

implementation of Extension that manages the extension, you can apply icons and

descriptions to all virtual machines or vApps of this type that the extension deploys.

managedByInfo.setType("my VM type");

5 Pass the ManagedByInfo instance to the managedBy property of the

VirtualMachineConfigSpec or VAppConfigSpec implementation.

configSpec.setManagedBy(managedByInfo);

Results

You set the managedBy properties in a virtual machine or vApp definition, to identify the virtual

machines or vApps as being of a certain type and as belonging to an extension.

What to do next

Set the types of virtual machines or vApps that an extension manages by implementing
ExtManagedEntityInfo.

Operations that Trigger Warnings from Extensions

If an extension deploys virtual machines or vApps, you can configure them as being virtual
machines or vApps that the extension manages. If users attempt to perform operations on these
virtual machines or vApps, they see a warning.

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 28

You configure a virtual machine or vApp as belonging to an extension by implementing
ManagedByInfo in the configuration of that virtual machine or vApp.

The following operations result in a warning if a user attempts to run them from the vSphere
Client on a virtual machine or vApp that an extension manages:

n PowerOn

n PowerOff

n Suspend

n Reset

n RebootGuest

n ShutdownGuest

n StandbyGuest

n Edit

n Clone

n Templatize

n ConvertToVirtualMachine

n Deploy

n CloneTemplateToTemplate

n CloneVmToTemplate

n TakeSnapshot

n GotoSnapshot

n StartRecording

n Remove

n CreateSecondaryVm

n DisableFaultTolerance

n TurnFaultToleranceOff

n MigrateHost

n Migrate

n RelocateDatastore

n Rename

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 29

Set the Types of the Virtual Machines or vApps that the Extension
Manages

You can set properties in the ExtManagedEntityInfo data object to define how the vSphere Client

displays the different types of virtual machines and vApps that an extension deploys.

If you set the ManagedByInfo type property in a virtual machine or vApp configuration, you

can configure an extension to apply certain properties to all the virtual machines or vApps of
that type that it deploys. You can implement the ExtManagedEntityInfo data object to apply a

common description and an icon that appears in the vCenter inventory for all virtual machines of
that type that the extension deploys.

You add an array of ExtManagedEntityInfo objects to an extension by setting the Extension
managedEntityInfo property. If your extension deploys different types of virtual machine

or vApp, you can add one ExtManagedEntityInfo object to the array for each type of

virtual machine or vApp. By creating several instances of ExtManagedEntityInfo with different

properties, you can differentiate the different types of virtual machines or vApps that the
extension deploys in the vCenter inventory.

Prerequisites

Verify that you have set the managedBy property in the configuration of the virtual machines or

vApps that an extension deploys. See Identify the Virtual Machines or vApps that an Extension
Manages.

Procedure

1 Create an instance of ExtManagedEntityInfo in the implementation of Extension in the

program that manages the extension.

Extension extension = new Extension();
ExtManagedEntityInfo extManagedEntityInfo = new ExtManagedEntityInfo();

2 Set the ExtManagedEntityInfo type property to the type value that you set in the

ManagedByInfo property in the program that defines the virtual machine or vApp to deploy.

For example, set the type property to the same value as the type property of the

ManagedByInfo object.

extManagedEntityInfo.setType("my VM type");

3 Add the ExtManagedEntityInfo instance to the array of ExtManagedEntityInfo instances in

the Extension managedEntityInfo property.

extension.getManagedEntityInfo().add(extManagedEntityInfo);

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 30

Results

You set the types of virtual machine or vApp that the extension manages. When you set different
types of virtual machine or vApp in an extension, you can change how those types of object
appear in the vSphere inventory.

What to do next

Set a description for the types of object that the extension manages.

Set the Description for a Type of Virtual Machine or vApp that a
Solution Manages

If a solution deploys different types of virtual machine or vApp, you can provide a description for
each type by setting the ExtManagedEntityInfo description property.

The text that you set in the ExtManagedEntityInfo description property allows you to add

a description to the types of virtual machines or vApps that your solution deploys. If a
solution deploys different types of virtual machine, you can create several ExtManagedEntityInfo
instances, each with a different description.

Prerequisites

n Verify that you have set the managedBy property in the configuration of the virtual machines

or vApps that an extension deploys. See Identify the Virtual Machines or vApps that an
Extension Manages.

n Verify that you have created an instance of ExtManagedEntityInfo in the program that

defines an extension.

Procedure

u Call the ExtManagedEntityInfo.setDescription() method to set the ExtManagedEntityInfo
description property for a type of virtual machine or vApp that the solution deploys.

Extension extension = new Extension();
ExtManagedEntityInfo extManagedEntityInfo = new ExtManagedEntityInfo();
extManagedEntityInfo.setType("my VM type");
extManagedEntityInfo.setDescription("Description of this type of virtual machine or
vApp.");
extension.getManagedEntityInfo().add(extManagedEntityInfo);

Results

You added a description to all virtual machines or vApps of a certain type that your solution
deploys. The description appears in the vSphere Client when the solution registers with vCenter
Server.

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 31

Unregister the Extension from vCenter Server

When you develop an extension, the best practice is to provide a means of unregistering the
extension from vCenter Server.

You unregister an extension from vCenter Server by calling the
ExtensionManager.unregisterExtension() method. To unregister an extension, you pass

to unregisterExtension() the ManagedObjectReference instance that identifies the

ExtensionManager for the vCenter Server and the extension key for the extension.

Prerequisites

Download the vSphere ESX Agent Manager SDK.

Procedure

u Define a method that unregisters the extension by calling
ExtensionManager.unregisterExtension().

For example, in MyManager.java you can define a method named cleanup() that unregisters

your solution from vCenter Server. In the MyVimConnection.java class you can define the

connection to vCenter Server. MyManager.java creates an instance of MyVimConnection,

_myvimConnection, with which it connects to vCenter Server. The MyVimConnection.getStub()
method obtains the port on which the vCenter Server is running.

public void cleanup()
 throws NotFoundFaultMsg, RuntimeFaultFaultMsg {
 [...]
 _myvimConnection.getStub().unregisterExtension(
 _myvimConnection.getExtensionManager(),
 EXTENSION_KEY);
}

Results

You defined a method to unregister an extension from vCenter Server.

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 32

SDK Objects for Integration with
vCenter Server Extensions 3
You integrate a solution with vCenter Server Extensions by implementing certain properties and
data objects from the vSphere Management SDK in a vCenter Server extension.

vCenter Server Extensions provides a graphical view in the vSphere Client of the list of
extensions that the ExtensionManager managed object exposes to vCenter Server. To integrate

a solution with vCenter Server Extensions, you set properties in the implementation of the
Extension data object that defines an instance of a vCenter Server extension. Some of the

properties that you set in the Extension implementation refer to data objects in the vSphere

Management SDK that are specific to vCenter Server Extensions.

This chapter includes the following topics:

n Properties of the Extension Data Object That Relate to the vCenter Server Extensions

n vCenter Server Extensions Data Objects

Properties of the Extension Data Object That Relate to the
vCenter Server Extensions

Certain properties of the Extension data object are specific to vCenter Server Extensions.

You can use the properties of the Extension data object to integrate a solution with vCenter

Server Extensions.

Properties Type Description

shownInSolutionManager Boolean You must set this property to true for

a solution to appear in vCenter Server
Extensions.

solutionManagerInfo ExtSolutionManagerInfo data object Provides the names for tabs and URLs
to the Web applications that define the
contents of the tabs.

VMware, Inc. 33

Properties Type Description

extendedProductInfo ExtExtendedProductInfo data object Provides information about the
solution, such as URLs to product and
vendor Web pages.

managedEntityInfo ExtManagedEntityInfo data object

that represent virtual machines and
vApps

Provides information about the objects
that the solution manages, such as
their type, a description of the objects,
and an icon to represent the objects in
the vCenter Server inventory.

vCenter Server Extensions Data Objects

You set properties in the Extension implementation to integrate a solution with the vCenter

Server Extensions. Some of the properties that you set refer to data objects in the vSphere
Management SDK that are specific to the vCenter Server Extensions.

For information about the properties and implementation details of each data object, see the
VMware vSphere API Reference documentation.

Table 3-1. Data Objects in the vSphere Management SDK that relate to the vCenter Server
Extensions

Data Object Description

ExtSolutionManagerInfo Provides an array of ExtSolutionManagerInfoTabInfo
objects that implement the tabs that the solution adds to
vCenter Server Extensions.

ExtExtendedProductInfo Provides URLs to information about the solution, such as
the solution vendor's Web site, a management interface
for the solution, and a description of the solution. Also
provides links to the virtual machine or vApp that runs the
solution.

ExtManagedEntityInfo Provides information about the objects that the solution
manages, such as a description, an icon to represent the
objects that the solution creates in the vCenter Server
inventory, and the types of the objects.

ExtSolutionManagerInfoTabInfo Provides label for the solution in the Solutions portlet on
the Summary page. You can also add URLs to the Web
application.

ManagedByInfo Identifies types of virtual machine or vApp as belonging
to a solution. You can configure the virtual machines
or vApps that a solution deploys so that they appear
in the vCenter Server inventory with special icons and
descriptions. You can also warn users about performing
operations on virtual machines or vApps that a solution
manages.

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 34

Integrate a Solution with vCenter
Server Extensions 4
You can use the vSphere Web Services API to add a solution to vCenter Server Extensions.

This chapter includes the following topics:

n Add a Solution to vCenter Server Extensions

n Set the Icon for a Type of Virtual Machine or vApp That an Extension Manages

n How to Add Tabs to a Solution

n Set Up Health Monitoring for a Solution

Add a Solution to vCenter Server Extensions

You add a solution to vCenter Server Extensions by setting the shownInSolutionManager
property in the implementation of the Extension data object that manages the solution.

You can set the shownInSolutionManager property in the MyManager.java class.

Prerequisites

Download the vSphere ESX Agent Manager SDK.

Procedure

1 Call the ExtSolutionManagerInfo() constructor to create an instance of

ExtSolutionManagerInfo in the class that implements Extension.

You can add the following code to the MyManager.java class to create an instance of

ExtSolutionManagerInfo for your solution.

private Extension createExtensionObject() {
 Extension extension = new Extension();

 [...]
 ExtSolutionManagerInfo extSolutionManagerInfo =
 new ExtSolutionManagerInfo();
 [...]

}

VMware, Inc. 35

2 Call the setSolutionManagerInfo() method to set the ExtSolutionManagerInfo instance in

the solution implementation.

You can add the following code to the MyManager.java class to call the

setSolutionManagerInfo() method.

private Extension createExtensionObject() {
 Extension extension = new Extension();

 [...]
 ExtSolutionManagerInfo extSolutionManagerInfo =
 new ExtSolutionManagerInfo();
 [...]
 extension.setSolutionManagerInfo(extSolutionManagerInfo);

}

3 Set the value of the shownInSolutionManager property to true by calling the

setShownInSolutionManager() method on the implementation of the Extension object.

You can add the following code to the MyManager.java class to set the

shownInSolutionManager property.

private Extension createExtensionObject() {
 Extension extension = new Extension();

 [...]
 ExtSolutionManagerInfo extSolutionManagerInfo =
 new ExtSolutionManagerInfo();
 [...]
 extension.setSolutionManagerInfo(extSolutionManagerInfo);
 extension.setShownInSolutionManager(true);
 [...]

}

Results

You set the shownInSolutionManager property in the implementation of the Extension data

object that defines the solution. By setting the shownInSolutionManager property to true, a

solution appears in vCenter Server Extensions when it registers with vCenter Server.

Set the Icon for a Type of Virtual Machine or vApp That an
Extension Manages

You can provide an icon for each type of virtual machine or vApp that an extension manages by
setting the smallIconUrl property of ExtManagedEntityInfo.

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 36

The icon that you set with the smallIconUrl property of ExtManagedEntityInfo allows you to

identify the types of virtual machines or vApps that your extension deploys. If an extension
deploys different types of virtual machines, you can create several ExtManagedEntityInfo
instances, with a different icon for each type. The virtual machines that the extension deploys
appear in the vCenter Server inventory with the icons that you set.

The icon image must be in the PNG format and must measure 16 by 16 pixels. You must save
the icon image to an appropriate location in the Web application that defines the extension. You
provide a URL or path to the image to the ExtManagedEntityInfo instance for the type of virtual

machine or vApp that this icon represents. Extensions access the icon image by using HTTP.
Extensions do not support HTTPS URLs to icon images.

Prerequisites

n Verify that you have set the managedBy property in the configuration of the virtual machines

or vApps that an extension deploys. See Identify the Virtual Machines or vApps that an
Extension Manages.

n Verify that you have created an instance of ExtManagedEntityInfo in the program that

defines an extension.

Procedure

1 Create an icon image of type PNG and of dimensions 16 by 16 pixels.

2 Save the icon image to an appropriate location in the Web application that defines your
extension.

3 Call ExtManagedEntityInfo.setSmallIconUrl() to set the smallIconUrl property for a type

of virtual machine or vApp that the extension deploys.

Extension extension = new Extension();
ExtManagedEntityInfo extManagedEntityInfo = new ExtManagedEntityInfo();
extManagedEntityInfo.setType("my_vm_type");
extManagedEntityInfo.setDescription("Description of this type of virtual machine or
vApp.");
extManagedEntityInfo.setSmallIconUrl("path_to_PNG_image");
extension.getManagedEntityInfo().add(extManagedEntityInfo);

Results

Virtual machines and vApps that your extension deploys appear in the vCenter Server inventory
with the icon that you set.

How to Add Tabs to a Solution

When you create a solution, you can add tabs to your solution to allow users to configure the
solution and to access the functions of the solution in the vSphere Client.

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 37

You define the content of tabs as dynamic Web pages. For example, you can define tabs that
allow you to perform the following kinds of actions.

n Configure the solution.

n Show events triggered by the solution events or vCenter Server.

n Deploy predefined virtual machines or vApps of different types.

n Monitor the solution application or the virtual machines that it deploys.

n Uninstall the solution.

You create tabs by implementing the ExtSolutionManagerInfoTabInfo data object in the

program that manages the solution. You set properties in ExtSolutionManagerInfoTabInfo to

provide a label for the tabs and a URL to the dynamic Web pages that provide the content of the
tabs. You create one ExtSolutionManagerInfoTabInfo instance for each tab that you add to your

solution. You pass that instance to ExtSolutionManagerInfo in an array.

How you define the content of the tabs depends on the function of the application that the
solution adds to vCenter Server.

You can implement ExtSolutionManagerInfoTabInfo in the MyManager.java class.

Prerequisites

Download the vSphere ESX Agent Manager SDK.

Procedure

1 Create an instance of ExtSolutionManagerInfo in the program that manages the solution.

Add the following lines in the MyManager.java class to create an instance of

ExtSolutionManagerInfo.

private Extension createExtensionObject() {
 Extension extension = new Extension();
 [...]
 ExtSolutionManagerInfo extSolutionManagerInfo =
 new ExtSolutionManagerInfo();
 [...]
}

2 Create an instance of ExtSolutionManagerInfoTabInfo to contain the name of the page and a

link to the Web page that defines its contents.

ExtSolutionManagerInfoTabInfo extSolutionManagerInfoTabInfo =
 new ExtSolutionManagerInfoTabInfo();

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 38

3 Call the ExtSolutionManagerInfoTabInfo.setLabel() method to provide a name for the

page.

Add the following line to MyManager.java to name your solution Configuration page.

extSolutionManagerInfoTabInfo.setLabel("Configuration");

4 Call the ExtSolutionManagerInfoTabInfo.setUrl() method to provide a URL to the Web

page that defines the contents of your solution Configuration page.

You can set in MyManager.java that your solution uses the config.html Web page to

define the contents of the configuration page.

extSolutionManagerInfoTabInfo.setUrl("/config.html");

5 Add the tab to the array of ExtSolutionManagerInfoTabInfo instances that define the tabs

for the solution in the ExtSolutionManagerInfo object.

extSolutionManagerInfo.getTab().add(extSolutionManagerInfoTabInfo);

Results

You added solution-specific tabs that appear on the Summary page of your solution.

What to do next

Set up health monitoring for the solution and the objects that it manages.

Set Up Health Monitoring for a Solution

vCenter Server pulls data from solutions about their health status. Solutions expose health data
by providing a URL to an XML file that defines the health model of the solution.

All solutions must provide an XML file that specifies their health model. The health specification
XML file for your solution must conform to the VMware Health Service extensible schema
definition (XSD). See Solution Health XML Schema for the complete VMware solution health
schema.

Solutions expose health data about themselves to vCenter Server by publishing XML documents
that declare different health statuses, depending on the events that occur in the solution. You
provide messages to accompany each health status in the XML document that the solution
exposes to vCenter Server. Solutions can provide the following statuses to vCenter Server:

n alert

n warning

n info

When you develop a solution, you must include a program or function that generates the health
status XML file for the solution. The health status of a solution can be red, yellow, or green.

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 39

You must pass a URL to the XML file that defines the health model for a solution to the
ExtensionHealthInfo object in the program that manages the solution. For example, you can

create the following classes as part of your solution:

n MyHealthProvider.java define the health statuses for your solution.

n MyHealthStatusServlet.java dynamically create the XML file in which the solution

exposes health status data.

You can implement the ExtensionHealthInfo in the MyManager.java class. The

MyManager.java class can set a URL to a health definition XML file in the ExtensionHealthInfo
url property. The URL that MyManager.java provides must be the path to the health.xml file

that MyHealthStatusServlet.java will create.

Prerequisites

Download the vSphere ESX Agent Manager SDK.

Procedure

1 Create a program that defines the health statuses of the solution.

You can define the health statuses of your solution in the MyHealthProvider.java class.

2 Create a program that creates an XML file that exposes the health status data, conforming to
the VMware health service XSD.

You can create the health data XML file in the MyHealthStatusServlet.java class.

MyHealthStatusServlet.java implements MyHealthProvider to extract the health status

from the solution. The class creates an XML file, health.xml, that exposes the health data

about the solution according to the health status that MyHealthProvider provides.

3 Create an instance of ExtensionHealthInfo in the program that manages the solution.

You can implement ExtensionHealthInfo in MyManager.java.

private Extension createExtensionObject() {
 Extension extension = new Extension();
 [...]
 ExtensionHealthInfo healthInfo = new ExtensionHealthInfo();
 [...]
}

4 Call the ExtensionHealthInfo.setUrl() method to set the URL at which the solution

publishes its health data XML file.

Your solution can publish an XML file, health.xml, that the MyHealthStatusServlet.java
class generates.

healthInfo.setUrl(_url.toString() + "/health/health.xml");

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 40

5 Call the Extension.setHealthInfo() method to add the ExtensionHealthInfo object to the

solution.

MyManager.java can provide a link to the health.xml XML file that the

MyHealthStatusServlet.java class generates.

private Extension createExtensionObject() {
 Extension extension = new Extension();
 [...]
 ExtensionHealthInfo healthInfo = new ExtensionHealthInfo();
 healthInfo.setUrl(_url.toString() + "/health/health.xml");
 extension.setHealthInfo(healthInfo);
 [...]
}

Example: Contents of a Solution Health XML File
Your solution can publish health data at http://<solution_ip_address>:<solution_port>/
my_sample/health/health.xml. The MyHealthStatusServlet.java class in your solution

can generate this file when the solution starts. This example shows the XML file that
MyHealthStatusServlet.java generates when your solution is running correctly.

<vimhealth schemaVersion="1.0">
 <health id="com.mycompany.mysolution">
 <name>My Solution</name>
 <status>green</status>
 <message id="com.mycompany.mysolution" level="info"
time="<current_date_and_time>">Running</message>
 </health>
</vimhealth>

Solution Health XML Schema

Solutions must provide data about their health status to vCenter Server in XML documents.

The health status XML documents that a solutions pushes to vCenter Server must conform to the
VMware health schema.

<?xml version="1.0" encoding="utf-8"?>
 <xs:schema targetNamespace="http://www.vmware.com/vi/healthservice"
 elementFormDefault="qualified"
 xmlns="http://www.vmware.com/vi/healthservice"
 xmlns:xs="http://www.w3.org/2001/XMLSchema" version="1.0">

 <xs:complexType name="healthType">
 <xs:sequence>
 <xs:element name="name" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element name="status" minOccurs="1" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="green" />
 <xs:enumeration value="yellow" />

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 41

 <xs:enumeration value="red" />
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="message" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType mixed="true">
 <xs:sequence>
 <xs:element name="param" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:string" use="required"/>
 <xs:attribute name="level" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="info" />
 <xs:enumeration value="warning" />
 <xs:enumeration value="alert" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="time" type="xs:dateTime" use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="health" type="healthType" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:string" use="required"/>
 </xs:complexType>

 <xs:element name="vimhealth">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="health" type="healthType" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="schemaVersion" type="xs:decimal" use="required"/>
 </xs:complexType>
 </xs:element>
</xs:schema>

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 42

Integrating Solutions with vSphere
ESX Agent Manager 5
vSphere ESX Agent Manager is a standard vCenter Server solution that allows other solutions to
deploy, monitor, and manage ESX agents on ESXi hosts.

ESX Agent Manager performs the following functions:

n Provisions ESX agent virtual machines for solutions.

n Monitors changes to the ESX agent virtual machines and their scope in vCenter Server.

n Reports configuration issues in the ESX agents to the solution.

n Integrates agent virtual machines with vSphere features such as Distributed Resource
Scheduler (DRS), Distributed Power Management (DPM), vSphere High Availability (HA), fault
tolerance, maintenance mode, and operations such as adding and removing hosts to and
from clusters.

A solution can add functions to an ESXi host by deploying an ESX agent virtual machine and an
optional vSphere Installation Bundle (VIB) that provide this function.

Every vCenter Server instance contains a running ESX Agent Manager.

n Benefits of Integrating Solutions with ESX Agent Manager

Integrating a solution with ESX Agent Manager has several benefits and eliminates potential
problems that can occur when you deploy ESX agent virtual machines.

n Overview of vSphere ESX Agent Manager Architecture

ESX Agent Manager is an intermediary between vCenter Server and a solution. ESX Agent
Manager provides a WSDL based SOAP API that you can use to create solutions that
deploy and monitor ESX agent virtual machines on ESXi hosts, and integrate the ESX agents
with Distributed Resource Scheduler (DRS), Distributed Power Management (DPM), High
Availability (HA), and other vSphere features.

n Configuration Components of ESX Agencies

For a solution to integrate with ESX Agent Manager, it must register with vCenter Server as
an extension, and create an ESX agency that defines the configuration of the solution and
the ESX agents that the solution deploys.

n Requirements for Integrating a Solution with ESX Agent Manager

To integrate with ESX Agent Manager, a solution must meet certain requirements.

VMware, Inc. 43

n Authenticating Against ESX Agent Manager

vCenter Server handles the authentication of ESX Agent Manager clients, so a solution must
first log in to vCenter Server before it can call the methods of the ESX Agent Manager API.

n Availability of ESX Agent Virtual Machines

You can configure ESX agencies so that they only mark ESX agent virtual machines
as available after the client of the agency has performed additional configuration after
provisioning or powering on the ESX agent virtual machine.

n Monitoring and Resolving ESX Agent Issues

With the ESX Agent Manager API, you can obtain status and state data about all the ESX
agencies that a solution creates. The status of an ESX agency reflects the status of all the
ESX agents that are running in the ESX agency.

n Integrate a Solution with ESX Agent Manager

You can integrate your solution with ESX Agent Manager.

Benefits of Integrating Solutions with ESX Agent Manager

Integrating a solution with ESX Agent Manager has several benefits and eliminates potential
problems that can occur when you deploy ESX agent virtual machines.

Monitoring Solutions

When you integrate a solution with ESX Agent Manager, users can monitor the health of agent
virtual machines in the vSphere Client. The solution can monitor ESX agents by using the ESX
Agent Manager API. Integrating a solution with ESX Agent Manager also helps you to add
functions to ESXi hosts.

User Privileges

By integrating a solution with ESX Agent Manager, you can limit certain operations on ESX agent
virtual machines to certain types of user. For example, you can block all users from powering off
an ESX agent unless they have the EAM.Modify privilege.

Integration with vSphere Features

When you develop solutions that deploy virtual machines that extend the function of ESXi hosts,
integrate the solution with ESX Agent Manager. If you do not integrate the solution and ESX
Agent Manager, vSphere does not detect that virtual machines are ESX agent virtual machines,
Virtual machines that ESX Agent Manager deploys integrate with vSphere features in ways that
other virtual machines do not. For example, if an ESXi host implements vSphere High Availability
(VMware HA) and that host stops running unexpectedly, normally all the virtual machines running
on that host migrate to another ESXi host. An ESX agent virtual machine should not migrate to

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 44

another host. Features such as vSphere Distributed Resource Scheduler (DRS), the Add Host to
Cluster operation, vSphere Distributed Power Management (DPM), and maintenance mode can
also create problems if they modify or migrate ESX agents. Similarly, if one of these features
migrates or modifies an ESX agent that a solution requires, that solution can stop running.

ESX Agent Manager is compatible with the VMware HA, DRS, AddHost, DPM, and maintenance

mode features. By integrating a solution with ESX Agent Manager, you can deploy ESX agent
virtual machines that modify the function of ESXi hosts and implement VMware HA, DRS,
AddHost, DPM, and maintenance mode. ESX Agent Manager ensures that solutions that deploy

ESX agents integrate correctly with these vSphere features.

ESX Agent Virtual Machines and High Availability

If you have a configuration with a very large virtual appliance per host, a best practice is to use
an ESX Agent VM as a container for the appliance, because vCenter Server High Availability (HA)
feature gives special priority to ESX Agent VMs.

The HA feature will power on an ESX Agent VM before any other VMs.

If a failover host policy is in use, the HA feature allows Agent VMs to be powered on with the
failover hosts.

The HA feature does not include ESX Agent VMs in admission control calculations. Therefore,
if you want to use a VM that is not included in the slot size for the 'host failures to tolerate'
admission control policy, you can use an Agent VM.

To take advantage of these special priorities, you must include an ESX Agent VM on each host in
a cluster.

Table 5-1. Interaction Between vSphere Features and ESX Agent Manager

vSphere Feature Interaction with ESX Agent Manager

VMware HA n If a host stops unexpectedly, VMware HA does not
start an ESX agent virtual machine on another host,
unless a failover policy is in use.

n When a host restarts, VMware HA restarts the ESX
agent virtual machines before it restarts other virtual
machines.

n ESX agent virtual machines are not included in slot
size for admission control calculations.

Distributed Resource Scheduler (DRS) n ESX Agent Manager pins ESX agent virtual machines
to the hosts on which they are running. DRS does not
move ESX agent virtual machines between hosts in a
cluster.

n ESX Agent Manager blocks DRS from moving virtual
machines that are not ESX agents to hosts in clusters
where ESX agents that the virtual machines require
are not available.

Add Host to Cluster operation When a user adds a host to a cluster of hosts that require
an ESX agent, ESX Agent Manager deploys the required
ESX agents on the new host.

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 45

Table 5-1. Interaction Between vSphere Features and ESX Agent Manager (continued)

vSphere Feature Interaction with ESX Agent Manager

vSphere Distributed Power Management (DPM) DPM can put a host into standby mode even when ESX
agent virtual machines are present. DPM powers off ESX
agent virtual machines only after it has moved all the
other virtual machines to another host and put the host
into standby mode.

Maintenance mode When a host enters maintenance mode, ESX Agent
Manager powers off any ESX agent virtual machines and
restarts the ESX agents when the host exits maintenance
mode.

Overview of vSphere ESX Agent Manager Architecture

ESX Agent Manager is an intermediary between vCenter Server and a solution. ESX Agent
Manager provides a WSDL based SOAP API that you can use to create solutions that deploy and
monitor ESX agent virtual machines on ESXi hosts, and integrate the ESX agents with Distributed
Resource Scheduler (DRS), Distributed Power Management (DPM), High Availability (HA), and
other vSphere features.

For an overview of the architecture of ESX Agent Manager and how it integrates with vCenter
Server, see the introduction to the ESX Agent Manager API Reference.

Configuration Components of ESX Agencies

For a solution to integrate with ESX Agent Manager, it must register with vCenter Server as an
extension, and create an ESX agency that defines the configuration of the solution and the ESX
agents that the solution deploys.

ESX agencies encapsulate the ESX agents that they deploy from a solution. When you create
an ESX agency, you must provide configuration information that the solution applies to the
individual ESX agents that it deploys.

You must set the scope of the ESX agents that the agency defines and the ESX agency goal
state. You provide a URL to an Open Virtualization Format (OVF) file that defines the ESX agent
virtual machines. You also provide a URL to an optional vSphere installation bundle (VIB) that
provides a function that extends an ESXi host, for example, a VMkernel module or a custom ESXi
server application.

n ESX Agency Scope

When you create an ESX agency, you must define the scope of the agency. You define the
scope of an ESX agent in terms of compute resources, namely standalone hosts or clusters.

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 46

n ESX Agency Goal State

When you create an ESX agency, you define a goal state for that ESX agency. The goal
state of an ESX agency defines the state in which all the ESX agents in that ESX agency
should be when the solution is running correctly.

n ESX Agency Status

When you create an agency, you define the goal state of the ESX agents that the agency
contains. The status of an ESX agency reflects the situation of the ESX agency in relation to
its goal state.

n Status of ESX Agency Scope Changes

When a solution updates its ESX agency scope, ESX Agent Manager provisions new ESX
agents on new hosts and removes ESX agents from hosts that are no longer in the scope.

ESX Agency Scope

When you create an ESX agency, you must define the scope of the agency. You define the
scope of an ESX agent in terms of compute resources, namely standalone hosts or clusters.

For example, ESX agents can run on standalone ESXi hosts or on clusters of ESXi hosts.

A solution must obtain from vCenter Server the set of compute resource instances on which to
deploy ESX agents. For example, you can implement a query in your solution that obtains a list
of all the hosts that are running in a vCenter Server instance. Users can then select the hosts on
which to deploy ESX agents.

You set the initial ESX agency scope in the ESX agency configuration. As the solution runs, the
scope of the ESX agency can change. For example, your solution runs on compute resources
that users select from your solution Configuration page. As users select different compute
resources on which to run the solution, the scope of the ESX agency changes as it adds the
MoRefs of the selected compute resources to the scope.

ESX Agency Goal State

When you create an ESX agency, you define a goal state for that ESX agency. The goal state of
an ESX agency defines the state in which all the ESX agents in that ESX agency should be when
the solution is running correctly.

If the ESX agency is not in its goal state, ESX Agent Manager attempts to remediate the issues
that it discovers, so that the agency can achieve or return to its goal state.

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 47

Table 5-2. ESX Agent Goal States

Goal State Description

Enabled Solution has deployed all ESX agents in the ESX agency
successfully, and they are running with a heartbeat.
For ESX agent virtual machines without VMware Tools
installed, which do not return a heartbeat, ESX Agent
Manager considers them to be enabled when they are
powered on.

Disabled Solution has deployed all ESX agents in the ESX agency
successfully, but they are not running.

Undeployed Solution has removed all ESX agents in the ESX agency
from all the compute resources in the ESX agent scope.

ESX Agency Status

When you create an agency, you define the goal state of the ESX agents that the agency
contains. The status of an ESX agency reflects the situation of the ESX agency in relation to its
goal state.

ESX Agent Manager notifies a solution of the status of its ESX agencies. ESX Agent Manager
defines three possible statuses for ESX agencies.

Table 5-3. ESX Agent Status

Status Description

Green The ESX agency has achieved its goal state.

Yellow ESX Agent Manager is working to move the ESX agency
into its goal state.

Red The ESX agency cannot achieve its goal state. The
solution or the vSphere administrator must actively
resolve one or more issues. ESX Agent Manager reports
the issues to the solution in the agency runtime. ESX
Agent Manager can resolve certain issues if you select
the agency, click the vertical ellipsis and click Resolve All
Issues, for example if an ESX agent is powered off.

ESX Agent Manager sets the ESX agency status to yellow until the ESX agency reaches its
goal state. This can either mean that the deployment of the ESX agents is still ongoing, or that
ESX Agent Manager is attempting to remediate issues. You define the remediation of issues in
the implementation of the solution, or you can leave the remediation of issues to the vSphere
administrator, who can resolve the issue by using the ESX Agent Manager user interface.

The criteria on which ESX Agent Manager determines that the status of an ESX agency is green
depends on the goal state of that ESX agency.

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 48

Table 5-4. Criteria for Meeting the Goal State of an ESX Agency

ESX Agency Goal State Criteria for Green Status

Enabled ESX Agent Manager has downloaded the ESX agent
binaries from the OVF and VIB URLs, deployed the ESX
agent virtual machines, installed the VIB, started the ESX
agent virtual machines, and received heartbeats from all
of them.

Disabled ESX Agent Manager has downloaded the ESX agent
binaries from the OVF and VIB URLs, deployed the ESX
agent virtual machines, and installed the VIB.

Undeployed ESX Agent Manager has powered off and deleted all the
ESX agent virtual machines and uninstalled the VIB.

If the ESX agency cannot reach its goal state, ESX Agent Manager reports the issues to the
solution and sets the status to red.

Note If the scope of an ESX agency is empty, there are no compute resources onto which to
deploy ESX agents, so no ESX agents are deployed. In this case, ESX Agent Manager determines
that the ESX agency has performed correctly, and sets the status to green.

Status of ESX Agency Scope Changes

When a solution updates its ESX agency scope, ESX Agent Manager provisions new ESX agents
on new hosts and removes ESX agents from hosts that are no longer in the scope.

When the scope of an ESX agency changes, vSphere ESX Agent Manager detects the change
and displays the status of the ESX agents in the scope and operations that are in progress. You
can add functions in the solution definition to remediate the issues, or the solution can report the
issues so that administrators can fix them manually.

When a solution adds or removes compute resources from the ESX agency scope, the status of
the ESX agency changes as the solution works to achieve the goal state of the ESX agency.

Table 5-5. Status of ESX Agency Scope Changes

Scope Change Current ESX Agency State ESX Agency Status

Add compute resource. Undeployed Unchanged. New ESX agents always
start in the undeployed state.

Remove compute resource. Undeployed Unchanged. Old ESX agents that the
solution has not removed yet are
pending undeployment.

Add compute resource. Disabled Yellow, until the solution deploys the
ESX agents on the new compute
resource.

Remove compute resource. Disabled Yellow, until the solution undeploys
the ESX agents from the compute
resource.

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 49

Table 5-5. Status of ESX Agency Scope Changes (continued)

Scope Change Current ESX Agency State ESX Agency Status

Add compute resource. Enabled Yellow, until the solution deploys the
ESX agents on the new compute
resource, starts the ESX agents, and
receives heartbeats.

Remove compute resource. Enabled Yellow, until the solution stops and
undeploys the ESX agents from the
compute resource.

Requirements for Integrating a Solution with ESX Agent
Manager

To integrate with ESX Agent Manager, a solution must meet certain requirements.

To integrate a solution with ESX Agent Manager, you must develop the solution according to the
following requirements:

n The solution must be a vCenter Server extension that implements the Extension data object

and registers with ExtensionManager.

n Use Open Virtualization Format (OVF) to package ESX agent virtual machines or vApps. ESX
Agent Manager only supports the deployment of virtual machines using OVF.

n Use HTTP or HTTPS to publish OVF files to ESX Agent Manager.

n Use vSphere installation bundles (VIB) to add functions to ESXi hosts, for example to add
VMkernel modules or custom ESX Server applications to ESXi hosts.

n Use HTTP or HTTPS to publish VIB files to ESX Agent Manager.

n Use vCenter Server Compute Resources to define the ESX agent scope.

Authenticating Against ESX Agent Manager

vCenter Server handles the authentication of ESX Agent Manager clients, so a solution must first
log in to vCenter Server before it can call the methods of the ESX Agent Manager API.

ESX Agent Manager registers itself with the vCenter Server reverse proxy in the eam namespace.

You find the ESX Agent Manager API under eam/sdk. You must direct all ESX Agent Manager API

calls in your solution to vcenter_server_ip_address/eam/sdk.

ESX Agent Manager grants access to clients that are also clients of the vCenter Server instance
in which ESX Agent Manager is an extension. All vCenter Server extensions that have an
active vCenter Server session have access to ESX Agent Manager. These extensions can
create ESX agencies and monitor existing ESX agencies in ESX Agent Manager. The user
name that the extension provides is the extension key that the extension sets in the vCenter
ServerExtensionManager instance.

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 50

Users can access the ESX Agent Manager user interface only if they have the Eam.View
and Eam.Modify privileges. Solutions by definition have all vCenter Server privileges, but the
Eam.View and Eam.Modify privileges limit what users can do in the vSphere Client.

Table 5-6. ESX Agent Manager Privileges

Privilege Permitted Actions

Eam.View Users can monitor all running ESX agencies in ESX Agent
Manager.

Eam.Modify Users can modify the ESX agencies, for example by
powering off ESX agent virtual machines.

When you make an HTTP request to call an object in the ESX Agent Manager API for the first
time, you must set the VMware SOAP session cookie. You set it to the value of the VMware
SOAP session cookie of the vCenter Server HTTP connection. You must add a function in your
solution to obtain the SOAP session cookie from vCenter Server when the solution establishes
the connection to vCenter Serverr. The cookie remains set for the duration of the ESX Agent
Manager session.

Availability of ESX Agent Virtual Machines

You can configure ESX agencies so that they only mark ESX agent virtual machines as available
after the client of the agency has performed additional configuration after provisioning or
powering on the ESX agent virtual machine.

You configure an ESX agency in the Agency.ConfigInfo object. You can set two options in

Agency.ConfigInfo that set when ESX agents can be marked as available.

Table 5-7. ESX Agent Availability Options

Option Description

Boolean
manuallyMarkAgentVmAvailableAfterProvisioning

If set to true, the client of this ESX agency must manually
mark the agent as ready after the ESX agent virtual
machine has been provisioned. This is useful if the client
of this solution performs some extra reconfiguration of
the ESX agent virtual machine before it is powered on.

Boolean manuallyMarkAgentVmAvailableAfterPowerOn If set to true, the client of this ESX agency must manually
mark the agent as ready after the ESX agent virtual
machine has been powered on. In this case, DRS will not
regard the ESX agent virtual machine as ready until the
client has marked the agent as ready.

Monitoring and Resolving ESX Agent Issues

With the ESX Agent Manager API, you can obtain status and state data about all the ESX
agencies that a solution creates. The status of an ESX agency reflects the status of all the ESX
agents that are running in the ESX agency.

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 51

Solutions can only access data about ESX agencies that they create. A solution cannot access
the data of ESX agencies that other solutions create on the same host.

You can use ESX Agent Manager to monitor and track many of the issues that can occur when
you deploy ESX agent virtual machines. ESX Agent Manager handles updates to the deployment
specifications of ESX agent virtual machines. ESX Agent Manager responds to changes in the
vCenter Server instance in which it runs. If ESX Agent Manager encounters a conflict and cannot
satisfy the requirements of an update to a deployment specification, it reports the conflict to the
solution as an issue and shows the issue in the ESX Agent Manager user interface.

The issues that the ESX Agent Manager monitors relate to the goal state and status of ESX
agencies and agents. If ESX Agent Manager encounters an issue, it sets the status of the ESX
agency or agent to red and alerts the solution about the issue. ESX Agent Manager can resolve
certain issues if you click the vertical ellipsis icon and then select Resolve Issues in the ESX Agent
Manager user interface.

Remediation of Issues by ESX Agent Manager

ESX Agent Manager reports to the solution or to the vSphere administrator issues that can occur
during the deployment of ESX agent virtual machines. ESX Agent Manager can resolve certain
issues, if the solution or the administrator requests that it does so.

ESX Agent Manager defines standard issues that can occur during the deployment of ESX
agent virtual machines. For example, deployment of ESX agents can fail because the network,
datastore, or resource pool settings are incorrect.

Certain errors occur only in the certain goal states. Other errors can occur in any ESX agency
goal state.

Table 5-8. Remediation of Issues by ESX Agent Manager (Partial List)

Issue Goal State Resolved by ESX Agent Manager?

AgentVmPoweredOffIssue Enabled Yes

AgentVmWrongDatastoreIssue Any No

AgentVmWrongNetworkIssue Any No

AgentVmWrongResourcePoolIssue Any Yes

AgentVmWrongFolderIssue Any Yes

InsufficientSpaceOnDatastoreIssue Enabled No

Integrate a Solution with ESX Agent Manager

You can integrate your solution with ESX Agent Manager.

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 52

For more information about the objects that your solution can implement, see the vSphere ESX
Agent Manager API Reference.

Procedure

1 Connect a Solution to ESX Agent Manager

To connect a solution to ESX Agent Manager, you must obtain connection information
from the vCenter Server in which you run the solution. You pass a reference to the
EsxAgentManager instance that is running in vCenter Server to the solution.

2 Configure an ESX Agency and ESX Agents

You must define the configuration of the ESX agencies in the implementation of the solution.
You set the configuration for ESX agencies and ESX agents in the AgencyConfigInfo and

AgentConfigInfo data objects.

3 Create an ESX Agency

You create an ESX agency by calling the EsxAgentManager.createAgency() method. You

must specify ESX agent configurations for each version of ESXi on which you deploy ESX
agents.

4 Update the Agency Scope of a Solution

You define the ESX agency scope of a solution by passing the managed object references
(MoRefs) of the vSphere compute resources to the solution.

5 Change the Goal State of an Agency

A solution can change the goal state of its ESX agencies while the solution is running. For
example, when a solution starts, the goal state of its ESX agencies can be ENABLED. If the

solution includes a function to remove ESX agencies, when this function runs, the goal state
of the ESX agency changes to UNDEPLOYED.

6 Delete an ESX Agency

A solution can delete an ESX agency by calling the Agency.destroyAgency() method on the

Agency object.

7 Resolve ESX Agent Issues

ESX Agent Manager can detect issues in the ESX agents that solutions deploy. Solutions can
try to resolve issues when the status of an ESX agency or an ESX agent is set to red.

Connect a Solution to ESX Agent Manager

To connect a solution to ESX Agent Manager, you must obtain connection information from
the vCenter Server in which you run the solution. You pass a reference to the EsxAgentManager
instance that is running in vCenter Server to the solution.

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 53

You pass the connection information to a solution by calling the appropriate methods from the
vSphere API.

Note If you integrate your solution with the vCenter Extension vService, the vService obtains the
vCenter Server connection information for you. See Chapter 6 Integrating an Extension with the
vCenter Extension vService.

You can define the connection to vCenter Server in the MyVimConnection.java class and the

connection to ESX Agent Manager in the MyEamConnection.java class.

The MyVimConnection class defines methods to obtain the vCenter Server host ID, HTTPS proxy,

and the session cookie. The MyManager.java class implements MyVimConnection to connect

to the vCenter Server on which your solution is running. See Connect the Extension to vCenter
Server.

Prerequisites

n Download the vSphere ESX Agent Manager SDK.

n Obtain the following information from the vCenter Server instance on which you run a
solution:

n The vCenter Server host ID.

n The HTTPS proxy port for vCenter Server.

n The session cookie for the current user session in which the solution is logged in as an
extension.

n The managed object reference (MoRef) of the ESX Agent Manager instance that is
running in the vCenter Server instance.

Procedure

1 Establish a connection to the vCenter Server instance on which the solution runs.

Your solution can establish the connection to vCenter Server in the MyVimConnection.java
class.

2 Create an instance of the ManagedObjectReference object of type EsxAgentManager.

The MyEamConnection.java class can define a constructor that creates a MoRef named

_myeamRef and a method named getEsxAgentManager() that returns the MoRef to the

solution.

public MyEamConnection(String vcHost, int vcHttpsProxyPort, String sessionCookie) {
 [...]

 _myeamRef = new ManagedObjectReference();
 _myeamRef.setType("EsxAgentManager");
 _myeamRef.setValue("EsxAgentManager");
}

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 54

 [...]

 public ManagedObjectReference getEsxAgentManager() {
 return _myeamRef;
}

3 Connect to the ESX Agent Manager with the URL to the ESX Agent Manager service and the
session cookie for the current session in which the solution is logged as an extension.

The MyEamConnection class can define a connect() method that connects to the ESX Agent

Manager service.

public void connect() {
 if (_isConnected) {
 return;
 }

 try {
 [...]

 String myeamUrl = "https://" + _vcHost + ":" + _vcHttpsProxyPort + "/eam/sdk/";
 [...]
 Map<String, List<String>> map = new HashMap<String, List<String>>();
 map.put("Cookie", Collections.singletonList(_sessionCookie));
 ((BindingProvider) _stub).getRequestContext()
 .put(MessageContext.HTTP_REQUEST_HEADERS, map);
 _isConnected = true;
 }
}

Results

You obtained the connection details for vCenter Server and connected a solution to ESX Agent
Manager.

What to do next

Configure ESX agencies and agents to deploy from the solution.

Configure an ESX Agency and ESX Agents

You must define the configuration of the ESX agencies in the implementation of the solution.
You set the configuration for ESX agencies and ESX agents in the AgencyConfigInfo and

AgentConfigInfo data objects.

When you create ESX agencies, you provide the AgencyConfigInfo object with an array of

AgentConfigInfo objects for each version of ESXi on which the agency deploys ESX agents. You

also define the name of the ESX agency and of the ESX agents and the scope of the ESX agency
in the AgencyConfigInfo object.

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 55

You define the deployment of the ESX agent virtual machines in the AgentConfigInfo object. You

set the following information in the AgentConfigInfo object.

n A URL to the Open Virtualization Format (OVF) file from which to deploy the ESX agent.

n A URL to an optional vSphere Installation Bundle (VIB) that adds function to ESXi, for example
a VMkernel module or a custom ESXi application that you developed.

The URL to the ESX agent virtual machine OVF and the URL to an optional VIB must lead to
a server that ESX Agent Manager can access. ESX Agent Manager downloads the ESX agent
virtual machine from the URLs that you provide and deploys the virtual machines on the ESXi
hosts. ESX Agent Manager installs one ESX agent instance per agency per host.

Note To install VIBs, all ESXi hosts must have configured the firewall so that they can access the
HTTP port on the vCenter Server instance.

Setting the ovfEnvironment property allows a solution to provide OVF properties specific to the

ESX agent virtual machine. ESX Agent Manager sets the OVF properties when it deploys an ESX
agent. A typical use of the ovfEnvironment field is to specify the IP address and credentials of the

solution so that ESX agents can connect back to the solution when they are running.

Prerequisites

Download the vSphere ESX Agent Manager SDK.

Procedure

1 Create a program to configure and create ESX agencies and agents.

Your solution can define the configuration and creation of ESX agencies and agents in the
MyAgentHandler.java class.

public MyAgentHandler(String selfUrl,
 String selfIp,
 String ovfUrl4x,
 String ovfUrl50,
 String vibUrl4x,
 String vibUrl50,
 boolean deployVibs,
 Map<String, String> ovfEnvironment,
 VcUtils vcUtils) {
 _vcUtils = vcUtils;

 _agentConfigInfo4x = new AgentConfigInfo();
 _agentConfigInfo50 = new AgentConfigInfo();

 [...]
}

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 56

2 Create AgentConfigInfo instances for each type of ESX agent that the ESX agency deploys.

Your solution can define ESX agents for ESXi 6.7 and for ESXi 7.0.

public AgentHandler([...]) {
 [...]
 _agentConfigInfo67 = new AgentConfigInfo();
 _agentConfigInfo70 = new AgentConfigInfo();
 [...]
}

3 Set the URLs to the OVF files from which the solution deploys ESX agent virtual machines by
calling the AgentConfigInfo.setOvfPackageUrl() method.

Your solution can construct the URLs to OVF files from information that you set in the
mysolution.properties file.

public MyAgentHandler([...]) {
 [...]

 _agentConfigInfo67.setOvfPackageUrl(urlPrefix + ovfUrl4x);
 _agentConfigInfo70.setOvfPackageUrl(urlPrefix + ovfUrl50);

 [...]
 }

4 (Optional) Set the URLs to the optional VIB files from which the solution adds functions to
ESXi by calling the AgentConfigInfo.setVibUrl() method.

Your solution can construct the URLs to VIB files from information that you set in the
mysolution.properties file.

public MyAgentHandler([...]) {
 [...]

 _agentConfigInfo4x.setOvfPackageUrl(urlPrefix + ovfUrl4x);
 _agentConfigInfo50.setOvfPackageUrl(urlPrefix + ovfUrl50);

 if (deployVibs) {
 _agentConfigInfo67.setVibUrl(urlPrefix + vibUrl4x);
 _agentConfigInfo70.setVibUrl(urlPrefix + vibUrl50);

 [...]
 }
}

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 57

5 Set any OVF environment properties that the solution requires by creating an instance of the
AgentOvfEnvironmentInfo object and passing it to the AgentConfigInfo object for each ESX

agent.

Your solution can set some dummy properties in the eamri-webapp.xml file.

public MyAgentHandler([...]) {
 [...]
 AgentOvfEnvironmentInfo ovfEnv = new AgentOvfEnvironmentInfo();
 for (final Map.Entry<String, String> entry : ovfEnvironment.entrySet()) {
 ovfEnv.getOvfProperty().add(new AgentOvfEnvironmentInfoOvfProperty() {
 {
 setKey(entry.getKey());
 setValue(entry.getValue());
 }
 });
 }
 _agentConfigInfo67.setOvfEnvironment(ovfEnv);
 _agentConfigInfo70.setOvfEnvironment(ovfEnv);
 [...]
}

6 Create an instance of AgencyConfigInfo to define the ESX agency that the solution deploys.

public MyAgentHandler([...]) {
 [...]

 _agencyConfigInfo = new AgencyConfigInfo();
 [...]
}

7 Provide names for the ESX agency and the ESX agents by calling the
AgencyConfigInfo.setAgencyName() and setAgentName() methods.

Your solution can name the ESX agency and the ESX agents My Service.

public MyAgentHandler([...]) {
 [...]

 _agencyConfigInfo = new AgencyConfigInfo();
 _agencyConfigInfo.setAgencyName("My Service");
 _agencyConfigInfo.setAgentName("My Service");
 [...]
}

8 Add an array of ESX agent configurations to the ESX agency configuration by calling the
AgencyConfigInfo.getAgentConfig() method.

public MyAgentHandler([...]) {
 [...]

 _agencyConfigInfo = new AgencyConfigInfo();
 _agencyConfigInfo.setAgencyName("My Service");

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 58

 _agencyConfigInfo.setAgentName("My Service");
 _agencyConfigInfo.getAgentConfig().add(_agentConfigInfo4x);
 _agencyConfigInfo.getAgentConfig().add(_agentConfigInfo50);
 [...]
}

9 Set the scope of the ESX Agency by calling the AgencyConfigInfo.setScope() method.

Users of your solution can set the scope of the ESX agency by selecting ESXi hosts from your
solution Configuration page. Consequently, the scope is empty until your solution updates it
according to the user interaction.

public MyAgentHandler([...]) {
 [...]
 _agencyConfigInfo.setScope(null);
 [...]
}

Results

You set the configuration properties for an ESX agency and the ESX agents that it contains.

What to do next

Call the createAgency() method to create the ESX agency.

Create an ESX Agency

You create an ESX agency by calling the EsxAgentManager.createAgency() method. You must

specify ESX agent configurations for each version of ESXi on which you deploy ESX agents.

When you call the EsxAgentManager.createAgency() method you must pass it an

AgencyConfigInfo object and a string to define the initial goal state of the ESX agents that

the agency deploys. The initialGoalState property informs ESX Agent Manager of the state in

which to deploy ESX agent virtual machines when the solution first runs.

You can define a function that creates an ESX agency in a MyAgentHandler.java class.

Prerequisites

Download the vSphere ESX Agent Manager SDK.

Procedure

1 Establish a connection to the ESX Agent Manager running in vCenter Server.

The MyAgentHandler.java can implement the MyEamConnection.java class to connect to

vCenter Server and ESX Agent Manager.

public void setup(MyEamConnection myeamConnection) {
 assert myeamConnection != null;
 _myeamConnection = myeamConnection;

 ManagedObjectReference eamRef = _myeamConnection.getEsxAgentManager();

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 59

 EamPortType stub = _myeamConnection.getStub();

 [...]
}

2 Create an ESX agency by calling the EsxAgentManager.createAgency() method.

The MyAgentHandler.java class checks whether any ESX agencies are already running,

and if not calls the EsxAgentManager.createAgency() method. MyAgentHandler.java passes

to the EsxAgentManager.createAgency() method the ManagedObjectReference object for the

ESX Agent Manager instance running in vCenter Server, eamRef. MyAgentHandler.java also

passes to createAgency() the AgencyConfigInfo object that defines the configuration of the

ESX agency. The MyAgentHandler.java class sets the initial goal state of the ESX agency to

ENABLED.

public void setup(MyEamConnection myeamConnection) {
 assert myeamConnection != null;
 _myeamConnection = myeamConnection;

 ManagedObjectReference eamRef = _myeamConnection.getEsxAgentManager();
 EamPortType stub = _myeamConnection.getStub();
 try {
 List<ManagedObjectReference> agencyRefs = stub.queryAgency(eamRef);
 if (agencyRefs != null && agencyRefs.size() > 0) {
 _agency = agencyRefs.get(0);
 } else {
 _agency = stub.createAgency(eamRef,
 _agencyConfigInfo,
 EamObjectRuntimeInfoGoalState.ENABLED.toString()
 .toLowerCase());
 }
[...]
}

3 Call the Agency.queryConfig() method to verify the configuration of the ESX agency and

report any issues with the configuration.

public void setup(MyEamConnection myeamConnection) {
 [...]
 _agencyConfigInfo = stub.queryConfig(_agency);
 _isSetup = true;
 } catch (RuntimeFaultFaultMsg e) {
 _log.error(e, e);
 } catch (InvalidAgencyScopeFaultMsg e) {
 _log.error(e, e);
 } catch (InvalidAgentConfigurationFaultMsg e) {
 _log.error(e, e);
 } catch (InvalidUrlFaultMsg e) {
 _log.error(e, e);
 }
}

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 60

4 Call the Agency.agencyQueryRuntime() method to return the status of the ESX agency.

The Agency.agencyQueryRuntime() method returns an EamObjectRuntimeInfo object that

contains the goal state of the agency, its current status, and a list of any problems that
the agency has encountered.

public EamObjectRuntimeInfo getRuntime() throws RuntimeFaultFaultMsg {
 waitForSetup();
 return _eamConnection.getStub().agencyQueryRuntime(_agency);
}

Results

You created an ESX agency that a solution can deploy on ESXi hosts.

Update the Agency Scope of a Solution

You define the ESX agency scope of a solution by passing the managed object references
(MoRefs) of the vSphere compute resources to the solution.

You set the initial ESX agency scope in the scope property of the AgencyConfigInfo object. You

can change the scope when a solution runs by calling the Agency.update() method. For example,

in your solution, a user can select the ESXi hosts on which to run the solution from a list on
the solution Configuration page. The solution can update the scope of the sample ESX agency
according to the hosts that the user selects.

Your solution can define a function to update the scope of the ESX agency in the
MyAgentHandler.java class.

Prerequisites

n Download the vSphere ESX Agent Manager SDK.

n Verify that you have set up and started your solution in an application server.

Procedure

1 Write a function that implements the vSphere Web Services API to detect compute resources
on which to run the solution.

Your solution can provide a helper class, MyVcUtils.java, that defines functions to

obtain the compute resources on which to run the solution. MyAgentHandler.java calls

the MyVcUtils.getComputeResources() method to obtain a list of ManagedObjectReference
objects for the ESXi hosts running in vCenter Server.

public void updateConfig(String[] updates) throws RuntimeFaultFaultMsg {
 waitForSetup();

 boolean changed = false;
 Map<String, ManagedObjectReference> crs = _myvcUtils.getComputeResources();

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 61

2 Add the ManagedObjectReference objects for the compute resources to a HashSet that

defines the ESX agency scope.

The MyAgentHandler.java class adds the list of ManagedObjectReference objects that the

MyVcUtils.getComputeResources() method returns to the existing scope and updates the list

if additional compute resources are present.

 Set<ManagedObjectReference> newScope = new HashSet<ManagedObjectReference>();

 for (String update : updates) {
 String[] kv = update.split("=", 2);
 if (kv[0].equals("scope")) {
 try {
 ManagedObjectReference cr = crs.get(kv[1]);
 if (cr == null) {
 continue;
 }
 ManagedObjectReference moRef = new ManagedObjectReference();
 moRef.setType(cr.getType());
 moRef.setValue(cr.getValue());
 newScope.add(moRef);
 }
 catch (NullPointerException e) {
 // ignore
 }
 }
 }

3 Create an AgencyComputeResourceScope instance to contain the scope HashSet.

 AgencyComputeResourceScope scopeDO = (AgencyComputeResourceScope)
_agencyConfigInfo.getScope();
 Set<ManagedObjectReference> oldScope = new
HashSet<ManagedObjectReference>(scopeDO.getComputeResource());

4 Compare the old scope to the new scope to establish whether any compute resources have
been added or removed.

The MyAgentHandler.java class compares the size of the new scope to the initial scope and

adds any new compute resources to the HashSet of ManagedObjectReference objects.

 if (!oldScope.containsAll(newScope) || oldScope.size() != newScope.size()) {
 AgencyComputeResourceScope scope = new AgencyComputeResourceScope();
 scope.getComputeResource().addAll(newScope);
 agencyConfigInfo.setScope(scope);
 changed = true;
 }

5 If the new scope differs from the old scope, call Agency.update() to add the new scope to

the ESX agency.

 if (changed) {
 assert _agency != null;

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 62

 try {
 _eamConnection.getStub().update(_agency, agencyConfigInfo);
 } catch (Exception e) {
 _log.error("Failed to update agency. Reason: " + e.getMessage());
 }
 updateConfiguration();
 }
}

Results

You defined a function in a solution to detect changes of scope and to update an ESX agency.

Change the Goal State of an Agency

A solution can change the goal state of its ESX agencies while the solution is running. For
example, when a solution starts, the goal state of its ESX agencies can be ENABLED. If the solution

includes a function to remove ESX agencies, when this function runs, the goal state of the ESX
agency changes to UNDEPLOYED.

You call the Agency.enable(), Agency.disable(), and Agency.uninstall() methods to change

the goal state of an ESX agency. Calling these methods changes the status of the ESX agency to
yellow until the agency reaches the desired state, in which case the status changes to green. If
the ESX agency cannot achieve the goal state, the status changes to red.

Your solution can define a function to change the goal state of its ESX agencies in the
MyAgentHandler.java class. Your solution can change the goal state of its ESX agency when

users select ESXi hosts on which to run the solution, and when they uninstall the solution.

Prerequisites

n Download the vSphere ESX Agent Manager SDK.

n Verify that you have set up and started your solution in an application server.

Procedure

1 Get the current goal state of the ESX agency by calling the
EamObjectRuntimeInfo.getGoalState() method.

Your solution can define a function in the MyAgentHandler.java class to obtain the current

goal state from the solution.

public void updateGoalState(String params) throws RuntimeFaultFaultMsg,
 NotFoundFaultMsg {
 String[] kv = params.split("=", 2);
 assert kv[0].equals("goalState");

 String goalState = kv[1];
 String currentGoalState = getRuntime().getGoalState().toString();

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 63

2 Call the Agency.enable(), Agency.disable(), and Agency.uninstall() methods to set the

ESX agency in the new goal state.

Your solution can call the appropriate methods to set the ESX agencies to the goal state. If
the goal state is UNINSTALLED, the solution calls the cleanup() method that MyManager.java
defines to remove the ESX agencies and uninstall the solution.

 if (goalState.equals(currentGoalState)) {
 return;
 }

 if (goalState.equals(EamObjectRuntimeInfoGoalState.ENABLED.toString()
 .toLowerCase())) {
 enable();
 } else if (goalState.equals(EamObjectRuntimeInfoGoalState.DISABLED.toString()
 .toLowerCase())) {
 disable();
 } else {
 assert goalState.equals(EamObjectRuntimeInfoGoalState.UNINSTALLED.toString()
 .toLowerCase());
 _unregistered = true;
 MyManager.getInstance().cleanup();
 }
}

Results

You changed the goal state of an ESX agency while the solution is running.

Delete an ESX Agency

A solution can delete an ESX agency by calling the Agency.destroyAgency() method on the

Agency object.

Typically, before deleting an ESX agency, a solution firsts call the EsxAgentManager.uninstall()
method to put the agency in the uninstalled state. The solution tracks the progress of
EsxAgentManager.uninstall() and only calls destroyAgency() to remove the ESX agency when

the status of the ESX agency is green.

If your solution does not need to track the removal of the ESX agency and its ESX agents, you
can call destroyAgency() without first calling uninstall(). ESX Agent Manager removes the ESX

agency and all of the ESX agents without tracking the status of the uninstallation process.

Alternatively, disconnecting the solution from vCenter Server by calling the
ExtensionManager.unregisterExtension() method removes all ESX agencies and ESX agents.

Prerequisites

Download the vSphere ESX Agent Manager SDK.

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 64

Procedure

1 Call the Agency.disable() method to disable the ESX agency.

Calling the Agency.disable() method powers off the ESX agent virtual machines, but does

not undeploy them.

Your solution can call the Agency.disable() method in the MyAgentHandler.java class.

public void disable() throws RuntimeFaultFaultMsg {
 waitForSetup();
 _myeamConnection.getStub().disable(_myagency);
}

2 Call the Agency.uninstall() method to put the ESX agency in the uninstalled state.

Calling the Agency.uninstall() method uninstalls all the ESX agents in the ESX agency.

Your solution can call the Agency.uninstall() method in the MyAgentHandler.java class.

public void uninstall() throws RuntimeFaultFaultMsg {
 waitForSetup();
 _myeamConnection.getStub().uninstall(_myagency);
}

3 Delete the ESX agency and ESX agents.

Option Description

Call the Agency.destroyAgency()
method on the Agency object.

Deletes the agency and its ESX agents, but the solution remains registered
with ExtensionManager.

Call the
ExtensionManager.unregisterExtens
ion() method on the Extension
object.

Unregisters the solution from vCenter Server, which uninstalls the solution
and deletes the ESX agency and its ESX agents.

Your solution can delete the ESX agency by calling the
ExtensionManager.unregisterExtension() method in the MyManager.java class.

public void cleanup() throws NotFoundFaultMsg, RuntimeFaultFaultMsg {
 if (_myeamConnection != null) {
 _myeamConnection.disconnect();
 }

 _myvimConnection.getStub().unregisterExtension(_myvimConnection.getExtensionManager(),
 EXTENSION_KEY);
}

Results

You defined a function to delete an ESX agency from a solution.

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 65

Resolve ESX Agent Issues

ESX Agent Manager can detect issues in the ESX agents that solutions deploy. Solutions can try
to resolve issues when the status of an ESX agency or an ESX agent is set to red.

You obtain the issues that affect an ESX agency or agent by using the EventManager to listen for

issues.

A solution can try to resolve issues by calling the EamObject.resolve(Issue[]) method on an

individual ESX agent, in which case ESX Agent Manager tries to resolve the issues. The solution
can also call EamObject.resolveAll() on an ESX agency, in which case ESX Agent Manager

attempts to resolve all the issues on all the ESX agents that the ESX agency deploys.

Prerequisites

n Download the vSphere ESX Agent Manager SDK.

n Verify that you have set up and started your solution in an application server.

Procedure

1 Obtain the unique identifiers of issues by calling the Issue.getKey() method.

Your solution can define a method that calls the Issue.getKey() method in the

MyAgentHandler.java class.

public String getIssueId(Issue issue) {
 return Integer.toString(issue.getKey());
}

2 Call the Agent.getRuntime() method to obtain an EamObjectRuntimeInfo object for a running

ESX agent.

Your solution can implement Agency.getRuntime() in a method that checks for a running ESX

agency and obtains the runtime information for that ESX agency.

public Issue getIssue(String issueId) throws RuntimeFaultFaultMsg {
 waitForSetup();
 EamObjectRuntimeInfo runtime = getRuntime();
 assert runtime != null;
 [...]
}

3 Call the EamObject.queryIssue() method to obtain the list of issues affecting an ESX agency

from the runtime of that ESX agency.

Your solution can add any issues that it discovers for the ESX agency to a List object, and

returns the issues with their issue identifiers.

public Issue getIssue(String issueId) throws RuntimeFaultFaultMsg {
 waitForSetup();
 EamObjectRuntimeInfo runtime = getRuntime();
 assert runtime != null;

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 66

 List<Issue> issues = _myeamConnection.getStub().queryIssue(_myagency, null);
 if (issues == null) {
 return null;
 }
 for (Issue issue : issues) {
 if (getIssueId(issue).equals(issueId)) {
 return issue;
 }
 }
 return null;
}

4 Call the EamObject.resolveAll() method to resolve all issues with ESX agents running in an

ESX agency.

Your solution can call the resolveAll() method on the Agency object that the

MyAgentHandler.java class creates.

public void resolveAll() throws RuntimeFaultFaultMsg {
 waitForSetup();
 _myeamConnection.getStub().resolveAll(_myagency);
}

5 Call the EamObject.resolve() method to resolve a specific issue with an ESX agent.

Your solution can call the resolve() method on the issue identifier that the getIssue()
method returns, and generates a list of unknown issues that the solution cannot resolve.

public void resolve(String issueId) throws NumberFormatException,
 RuntimeFaultFaultMsg {
 waitForSetup();
 List<Integer> unknownIssueIds = _myeamConnection.getStub()
 .resolve(_myagency,

Collections.singletonList(Integer.parseInt(issueId)));
 if (unknownIssueIds != null) {
 _log.error("Failed to resolve issue:" + issueId);
 }
}

Results

You called the methods from the ESX Agent Manager API to obtain issues and attempt to resolve
them.

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 67

Integrating an Extension with the
vCenter Extension vService 6
The vCenter Extension vService simplifies the installation and deployment of extensions. By
integrating an extension with the vCenter Extension vService you can deploy extensions from
the vSphere Client without having to enter the connection parameters of the vCenter Server on
which you install the extension, or provide the login credentials for that vCenter Server instance.

The vCenter Extension vService performs the following functions for solutions that you integrate
with it.

n Provides the extension with the connection parameters of the vCenter Server instance.

n Registers the extension certificate with vCenter Server.

For example, to deploy your solution you can provide the IP address and login credentials in
the mysolution.properties file, which requires you to update the solution for every vCenter

Server instance on which you install it. By integrating an extension with the vCenter Extension
vService, you avoid this manual step.

n Integrate a Virtual Machine with the vCenter Extension vService

To integrate a virtual machine with the vCenter Extension vService, you must deliver
the extension in an Open Virtualization Format (OVF) package, add sections to the OVF
descriptor file, and provide in the guest operating system a script that connects to the
vCenter Extension vService.

n Deploy an Extension in the vSphere Client By Using the vCenter Extension vService

If you configure the virtual machine that runs an extension to use the vCenter Extension
vService, you can deploy the extension directly in the vSphere Client.

n vCenter Extension vService XML Schema

The vCenter Extension vService XML Schema defines the <vServiceEnvironmentSection> in

the OVF environment of the virtual machine that contains the extension. It also defines the
RegisterExtension function that registers the extension with vCenter Server.

Integrate a Virtual Machine with the vCenter Extension
vService

To integrate a virtual machine with the vCenter Extension vService, you must deliver the
extension in an Open Virtualization Format (OVF) package, add sections to the OVF descriptor

VMware, Inc. 68

file, and provide in the guest operating system a script that connects to the vCenter Extension
vService.

Procedure

1 Configure the OVF Descriptor File

To integrate an extension with the vCenter Extension vService, you must add a section to
the Open Virtualization Format (OVF) descriptor file that contains the virtual machine.

2 Provide a Script in the Extension Virtual Machine to Register as a vCenter Extension

You must write a script that you run in the virtual machine that contains the extension.

Configure the OVF Descriptor File

To integrate an extension with the vCenter Extension vService, you must add a section to the
Open Virtualization Format (OVF) descriptor file that contains the virtual machine.

Including a <vServiceDependencySection> element in the OVF descriptor file of the virtual

machine informs vCenter Server that this virtual machine depends on the vCenter Extension
vService.

When you deploy a virtual machine by using OVF, vCenter Server generates an OVF
environment XML document for the virtual machine. The OVF environment is a secure one-way
communication channel between vCenter Server and the guest OS of the virtual machine. To use
this feature you must enable OVF environment transport in the OVF descriptor of your virtual
machine. The vCenter Extension vService makes the OVF environment available to the virtual
machine in an ISO image that it locates in the first CD-ROM drive of the virtual machine.

The vCenter Extension vService uses the OVF environment to pass connection parameters to
the guest operating system in the virtual machine. The vCenter Extension vService adds a
<vServiceEnvironmentSection> element to the OVF environment of the virtual machine. The

<vServiceEnvironmentSection> element contains the following connection parameters that a

script running within the guest operating system requires to register with vCenter Server as an
extension.

n Communication parameters that allow the virtual machine to make a secure connection to the
vCenter Extension vService Guest API:

n HTTPS URL to the vCenter Extension vService Guest API.

n Authentication token that authenticates the virtual machine with the vCenter Extension
vService.

n SSL thumbprint of an X509 certificate that the vCenter Extension vService uses to
establish a secure HTTPS connection with the virtual machine.

n Communication parameters that allow the guest operating system to make a secure
connection to vCenter Server:

n IP address of the vCenter Server instance

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 69

n SSL thumbprint of the X509 certificate that vCenter Server uses to make a secure HTTPS
connection to the virtual machine

n HTTP port on which the vCenter Server is reachable

n HTTPS port on which the vCenter Server is reachable

n Managed object reference of the virtual machine in vCenter Server

Important The <vServiceEnvironmentSection> element contains sensitive data. Take special

care within the guest operating system to prevent other users from accessing it. When the
connection to vCenter Server is established, the guest operating system no longer needs the
OVF environment so you should eject the CD-ROM. Ejecting the CD-ROM deletes the OVF
environment from the datastore.

Prerequisites

You have developed an extension running in a virtual machine that you deliver using OVF.

Procedure

1 Add a <vServiceDependencySection> element to the OVF descriptor file for the virtual

machine.

You nest the <vServiceDependencySection> element in the <VirtualSystem> element.

<Envelope>
 [...]
 <VirtualSystem>
 [...]
 <vmw:vServiceDependencySection>
 </vmw:vServiceDependencySection>
 [...]
 </VirtualSystem>
 [...]
</Envelope>

2 Add the URLs to the standard OVF and VMware OVF schemas.

<vmw:vServiceDependencySection xmlns:ovf="http://schemas.dmtf.org/ovf/envelope/1"
 xmlns:vmw="http://www.vmware.com/schema/ovf">
</vmw:vServiceDependencySection>

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 70

3 Set the ovf:required attribute.

Option Description

ovf:required="true" Users can only deploy the OVF on vCenter Server 5.x. Users cannot power
on the virtual machine if it is not bound to the vCenter Extension vService.

ovf:required="false" Users can deploy the OVF vCenter Server 4.x and 5.x, but the virtual
machine only integrates with the vCenter Extension vService in vCenter
Server 5.x.

<vmw:vServiceDependencySection xmlns:ovf="http://schemas.dmtf.org/ovf/envelope/1"
 xmlns:vmw="http://www.vmware.com/schema/ovf"
 ovf:required="true"
 vmw:id="installation" >
</vmw:vServiceDependencySection>

4 Set the type of the dependency to com.vmware.vservice.extension, to bind the extension to

the vCenter Extension vService.

<vmw:vServiceDependencySection xmlns:ovf="http://schemas.dmtf.org/ovf/envelope/1"
 xmlns:vmw="http://www.vmware.com/schema/ovf"
 ovf:required="true"
 vmw:id="installation" >
 <Info>A vService dependency</ovf:Info>
 <vmw:Type>com.vmware.vservice.extension</vmw:Type>
</vmw:vServiceDependencySection>

5 Provide a name and a description for the vService dependency, that appears in vService
Manager.

<vmw:vServiceDependencySection xmlns:ovf="http://schemas.dmtf.org/ovf/envelope/1"
 xmlns:vmw="http://www.vmware.com/schema/ovf"
 ovf:required="true"
 vmw:id="installation" >
 <ovf:Info>A vService dependency</ovf:Info>
 <vmw:Type>com.vmware.vservice.extension</vmw:Type>
 <vmw:Name>dependency_name</vmw:Name>
 <vmw:Description>dependency_description</vmw:Description>
 <vmw:Configuration />
</vmw:vServiceDependencySection>

6 Enable OVF environment transport by setting the ovf:transport attribute of the

<VirtualHardwareSection> element to iso.

<Envelope>
 [...]
 <VirtualSystem>
 [...]
 <VirtualHardwareSection ovf:transport="iso">
 [...]
 </VirtualHardwareSection>

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 71

 [...]
 </VirtualSystem>
 [...]
</Envelope>

Results

You configured the OVF file for a extension to bind the extension to the vCenter Extension
vService and to make the connection information for the vCenter Server instance available over
OVF transport.

Example: vService Dependency Section in the OVF Descriptor File

The following code extract shows an example of a <vServiceDependencySection> element in an

OVF descriptor file.

<vmw:vServiceDependencySection xmlns:ovf="http://schemas.dmtf.org/ovf/envelope/1"
 xmlns:vmw="http://www.vmware.com/schema/ovf"
 ovf:required="true"
 vmw:id="installation" >
 <Info>A vService dependency</Info>
 <vmw:Type>com.vmware.vservice.extension</vmw:Type>
 <vmw:Name>vCenter Extension Installation</vmw:Name>
 <vmw:Description>
 This appliance requires a binding to the vCenter Extension vService,
 which allows it to register automatically as a vCenter Extension at runtime.
 </vmw:Description>
 <vmw:Configuration />
</vmw:vServiceDependencySection>

Provide a Script in the Extension Virtual Machine to Register as a
vCenter Extension

You must write a script that you run in the virtual machine that contains the extension.

The script reads the URL of the vCenter Extension vService Guest API, SSL thumbprint, and
authentication token in the <vServiceEnvironmentSection> element of the Open Virtualization

Format (OVF) environment XML file. The script authenticates itself with the vCenter Extension
vService using the authentication token from the vService environment, generates a self-signed
certificate, and sends the extension key and certificate to the RegisterExtension function from

the vCenter Extension vService Guest API.

The script that you run in the guest operating system of the virtual machine must perform the
following functions.

Prerequisites

n You have developed an extension running in a virtual machine that you deliver using OVF.

n You have configured the OVF descriptor file of the extension to depend on the vCenter
Extension vService and enabled OVF transport.

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 72

Procedure

1 Parse the <vServiceEnvironmentSection> section in the OVF environment file.

2 Create a self-signed X509 certificate.

For example, create the certificate by using OpenSSL.

3 Send an HTTP POST request to the vCenter Extension vService.

The script obtains the URL to the vCenter Extension vService from the
<vServiceEnvironmentSection>.

4 Include in the HTTP header the authentication token value from the

<vServiceEnvironmentSection> element of the OVF environment file.

"evs-token: Token value"

5 Verify that the SSL thumbprint of the server-side certificate of the HTTPS connection is the
same as that of the X509Thumbprint value from the <vServiceEnvironmentSection> element

of the OVF environment file.

6 In the body of the HTTP POST request, pass the extension key of the extension and the PEM

encoding of the certificate to the RegisterExtension function from the vCenter Extension

vService Guest API.

<RegisterExtension xmlns="http://www.vmware.com/schema/vservice/ExtensionVService">
 <Key>com.mycompany.extensionkey</Key>
 <Certificate>
 -----BEGIN CERTIFICATE-----
 MIICRTCCAa4CCQDC/hX5KA9rSzANBgkqhkiG9w0BAQUFADBnMQswCQYDVQQGEwIu
 LjEKMAgGA1UECBMBLjEKMAgGA1UEBxMBLjEPMA0GA1UEChMGVk13YXJlMQowCAYD
 VQQLEwEuMREwDwYDVQQDEwhFVlMgZGVtbzEQMA4GCSqGSIb3DQEJARYBLjAeFw0x
 MDA3MDYwNzUwNTVaFw0xMDA4MDUwNzUwNTVaMGcxCzAJBgNVBAYTAi4uMQowCAYD
 VQQIEwEuMQowCAYDVQQHEwEuMQ8wDQYDVQQKEwZWTXdhcmUxCjAIBgNVBAsTAS4x
 ETAPBgNVBAMTCEVWUyBkZW1vMRAwDgYJKoZIhvcNAQkBFgEuMIGfMA0GCSqGSIb3
 DQEBAQUAA4GNADCBiQKBgQC4/XVcMhvNixk35iWl3nn1KHVSgUE18TuQBj7spNUc
 y506RmV8BR847jg9fHl7aErShOQ8RT/EuEEUGey4U1dB2pSocoYldtp2r4g/Lcew
 ZuuyQh2+MC0YzeFe+nyxBDHa0BGUId0dQH9nrjyboW/kNIrWfDkXnxxtq6pQAmFw
 +QIDAQABMA0GCSqGSIb3DQEBBQUAA4GBAElC68z59fuicYUa4fGWBuXNxzb+uqWF
 +cnf78lctBY1pr1DcEedhyww2SYbaGh/xGCc1zqO5kqYhIexQbN/2Vxaol9lJc/n
 vRfQRCp+HaIFTJMu4mVZ2GsYSp/tZSGgiBBQAUXqCLxFQr0eQ29b9rj4Q3/1N+7i
 hbVOln67TOBZ
 -----END CERTIFICATE-----
 </Certificate>
</RegisterExtension>

Results

The vCenter Extension vService calls the RegisterExtension function and registers the extension

with vCenter Server.

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 73

Example: vServiceEnvironmentSection in the OVF Environment XML File

If you add a vService dependency in an OVF descriptor from which you deploy an extension, the
vCenter Extension vService generates and adds a <vServiceEnvironmentSection> element to the

OVF environment of the virtual machine that it deploys.

<ve:vServiceEnvironmentSection xmlns:ve="http://www.vmware.com/schema/ovfenv"
 xmlns:evs="http://www.vmware.com/schema/vservice/
ExtensionVService"
 ve:bound="true" ve:id="installation"
 ve:type="com.vmware.vservice.extension">
 <evs:GuestApi>
 <evs:URL>https://192.168.1.42/vsm/extensionService</evs:URL>
 <evs:Token>1efc34a14232f81a245b9e8172f7a383fdeab312</evs:Token>
 <evs:X509Thumbprint>2b:04:e6:7d:8c:7b:73:70:d4:29:32:ed:96:11:2b:ae:b4:a0:28:78</
evs:X509Thumbprint>
 </evs:GuestApi>
 <evs:VCenterApi>
 <evs:IP>192.168.1.42</evs:IP>
 <evs:X509Thumbprint>2b:04:e6:7d:8c:7b:73:70:d4:29:32:ed:96:11:2b:ae:b4:a0:28:78</
evs:X509Thumbprint>
 <evs:HttpPort>80</evs:HttpPort>
 <evs:HttpsPort>443</evs:HttpsPort>
 <evs:SelfMoRef>VirtualMachine:vm-246</evs:SelfMoRef>
 </evs:VCenterApi>
</ve:vServiceEnvironmentSection>

Deploy an Extension in the vSphere Client By Using the
vCenter Extension vService

If you configure the virtual machine that runs an extension to use the vCenter Extension vService,
you can deploy the extension directly in the vSphere Client.

Prerequisites

n You have developed an extension running in a virtual machine that you deliver using OVF.

n You have configured the OVF descriptor file of the extension to depend on the vCenter
Extension vService and enabled OVF transport.

n You have provided a script in the virtual machine that runs the extension that reads the OVF
environment file to obtain the connection parameters from the vCenter Extension vService
and uses them to register as an extension with vCenter Server.

Procedure

1 Log in to the vSphere Client.

2 Select Menu > Hosts and Clusters.

3 Select the host.

4 From the Actions pull-down menu, select Deploy OVF Template.

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 74

5 Type the URL to the OVF file from which to deploy the extension.

6 Select a host, datastore, disk format, and network on which to run the extension.

Results

You deployed an extension from OVF by using the vCenter Extension vService.

vCenter Extension vService XML Schema

The vCenter Extension vService XML Schema defines the <vServiceEnvironmentSection> in

the OVF environment of the virtual machine that contains the extension. It also defines the
RegisterExtension function that registers the extension with vCenter Server.

<?xml version="1.0"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:evs="http://www.vmware.com/schema/vservice/ExtensionVService"
 targetNamespace="http://www.vmware.com/schema/vservice/ExtensionVService"
 elementFormDefault="qualified" attributeFormDefault="qualified">

 <!-- RegisterExtension_Type:
 The command type used in the guest API when registering as a
 vCenter extension.
 -->
 <complexType name="RegisterExtension_Type">
 <sequence>
 <!-- The key of the extension to register -->
 <element name="Key" type="string" />
 <!-- The PEM-encoded certificate of the extension to register -->
 <element name="Certificate" type="string" />
 <any processContents="lax" minOccurs="0" maxOccurs="unbounded" />
 </sequence>
 <anyAttribute namespace="##any" processContents="lax"/>
 </complexType>

 <element name="RegisterExtension" type="evs:RegisterExtension_Type" />

 <!-- GuestApi: Contains information for the guest software about how to connect to the
 Extension vService.
 -->
 <element name="GuestApi">
 <complexType>
 <sequence>
 <!-- The URL of the Extension vService guest API -->
 <element name="URL" type="anyURI" />
 <!-- Authentication token for the Extension vService guest API -->
 <element name="Token" type="string" />
 <!-- The X509 thumbprint of the Extension vService server
 certificate.
 -->
 <element name="X509Thumbprint" type="string" />
 <any processContents="lax" minOccurs="0" maxOccurs="unbounded" />
 </sequence>

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 75

 <anyAttribute namespace="##any" processContents="lax"/>
 </complexType>
 </element>

 <!-- VCenterApi:
 Contains information for the guest software about how to connect
 to vCenter Server.
 -->

 <element name="VCenterApi">
 <complexType>
 <sequence>
 <!-- The IP address of the vCenter server -->
 <element name="IP" type="string" />
 <!-- The X509 thumbprint of the vCenter server certificate -->
 <element name="X509Thumbprint" type="string" />
 <!-- The HTTP port of the vCenter server -->
 <element name="HttpPort" type="int" />
 <!-- The HTTPS port of the vCenter server -->
 <element name="HttpsPort" type="int" />
 <!--
 The managed object reference of this virtual machine
 in the vCenter server
 -->
 <element name="SelfMoRef" type="string" />
 <any processContents="lax" minOccurs="0" maxOccurs="unbounded" />
 </sequence>
 <anyAttribute namespace="##any" processContents="lax"/>
 </complexType>
 </element>
</schema>

Developing and Deploying vSphere Solutions, vServices, and ESX Agents

VMware, Inc. 76

	Developing and Deploying vSphere Solutions, vServices, and ESX Agents
	Contents
	Developing and Deploying vSphere Solutions, vServices, and ESXi Agents
	Introduction to vSphere Solution Development
	Download the vSphere ESX Agent Manager SDK
	Overview of the vSphere Extension APIs
	Introducing the vCenter Server Extensions
	Standard Tabs in the vCenter Server Extensions

	Introducing vSphere ESX Agents and Agencies
	Introducing vSphere ESX Agent Manager
	Introducing vServices
	Introducing vService Manager
	Introducing the vCenter Extension vService

	Creating vSphere Solutions
	Contents and Structure of an Extension
	Key Objects in the vSphere API for Extension and Solution Development

	Register an Extension with vCenter Server
	Create the Program that Manages the Extension
	Connect the Extension to vCenter Server
	Set the Extension Key
	Set the Extension Product Information
	Set the Extension Name and Localization Resources
	Identify the Virtual Machines or vApps that an Extension Manages
	Operations that Trigger Warnings from Extensions

	Set the Types of the Virtual Machines or vApps that the Extension Manages
	Set the Description for a Type of Virtual Machine or vApp that a Solution Manages
	Unregister the Extension from vCenter Server

	SDK Objects for Integration with vCenter Server Extensions
	Properties of the Extension Data Object That Relate to the vCenter Server Extensions
	vCenter Server Extensions Data Objects

	Integrate a Solution with vCenter Server Extensions
	Add a Solution to vCenter Server Extensions
	Set the Icon for a Type of Virtual Machine or vApp That an Extension Manages
	How to Add Tabs to a Solution
	Set Up Health Monitoring for a Solution
	Solution Health XML Schema

	Integrating Solutions with vSphere ESX Agent Manager
	Benefits of Integrating Solutions with ESX Agent Manager
	Overview of vSphere ESX Agent Manager Architecture
	Configuration Components of ESX Agencies
	ESX Agency Scope
	ESX Agency Goal State
	ESX Agency Status
	Status of ESX Agency Scope Changes

	Requirements for Integrating a Solution with ESX Agent Manager
	Authenticating Against ESX Agent Manager
	Availability of ESX Agent Virtual Machines
	Monitoring and Resolving ESX Agent Issues
	Remediation of Issues by ESX Agent Manager

	Integrate a Solution with ESX Agent Manager
	Connect a Solution to ESX Agent Manager
	Configure an ESX Agency and ESX Agents
	Create an ESX Agency
	Update the Agency Scope of a Solution
	Change the Goal State of an Agency
	Delete an ESX Agency
	Resolve ESX Agent Issues

	Integrating an Extension with the vCenter Extension vService
	Integrate a Virtual Machine with the vCenter Extension vService
	Configure the OVF Descriptor File
	Provide a Script in the Extension Virtual Machine to Register as a vCenter Extension

	Deploy an Extension in the vSphere Client By Using the vCenter Extension vService
	vCenter Extension vService XML Schema

