
VMware Storage Policy
SDK Programming Guide
11 OCT 2022

VMware vSphere 8.0
vCenter Server 8.0
VMware ESXi 8.0

You can find the most up-to-date technical documentation on the VMware by Broadcom website at:

https://docs.vmware.com/

VMware by Broadcom
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright
©

 2013-2022 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc.

and/or its subsidiaries. For more information, go to https://www.broadcom.com. All trademarks, trade

names, service marks, and logos referenced herein belong to their respective companies. Copyright and

trademark information.

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 2

https://docs.vmware.com/
https://docs.vmware.com/copyright-trademark.html
https://docs.vmware.com/copyright-trademark.html

Contents

About This Book 5

1 VMware Storage Policies 7
Storage Capabilities 7

Virtual Machine Storage 8

Storage Capability Profiles 8

Storage Policy Operations 8

Access to the Storage Policy Server 9

Storage Profile Queries 11

VMware Storage Policy SDK 12

VMware Storage Policy SDK Examples 13

2 Storage Policy Server Connection 16
About Storage Policy Server Sessions 16

Establish a Connection with the VMware Storage Policy Server 17

Server URLs for Basic Connection 17

Create the Storage Policy Server Connection 18

Establish the vCenter Session Connection for the Local Instance 19

3 vVol Based Storage Profiles 20
vVol Storage Policy Architecture 20

SPBM Calling Sequence for vVols 20

SPBM Data Objects 21

4 vSAN Based Storage Profiles 23
Create a vSAN Requirements Profile 23

Create an Individual Storage Requirement 24

Create a Storage Profile 25

5 Virtual Machine Storage Profiles 27
Retrieve an Existing Storage Profile from the Server 27

Apply the Storage Profile to a Virtual Machine 28

6 Tag-Based Storage Profiles 30
Creating a Tag-Based Storage Profile 30

Creating a Storage Profile 31

Retrieving Tag Metadata 33

VMware by Broadcom 3

7 Policy Rules 34
Create a Stand-Alone Virtual Disk with an Attached Storage Encryption Policy 34

8 Legacy Storage Profiles 37
VASA 1.0 Storage Capability Upgrade 37

vSphere Web Client User Label Conversion 38

9 vCenter Single Sign-On Client Example 40
vCenter Single Sign-On Token Request Overview 40

Using Handler Methods for SOAP Headers 41

Sending a Request for a Security Token 43

10 vCenter LoginByToken Example 47
vCenter Server Single Sign-On Session 47

HTTP and SOAP Header Handlers 48

LoginByToken Sample Code 49

Saving the vCenter Server Session Cookie 50

Using LoginByToken 51

Restoring the vCenter Server Session Cookie 53

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 4

About This Book

The VMware Storage Policy Programming Guide describes how to use the VMware® Storage
Policy API.

The VMware Storage Policy SDK supports the development of vCenter clients that use storage
profiles for virtual machine configuration. This method of storage administration is called storage
policy based management (SPBM).

Revision History

This book is revised with each release of the product or when necessary. The following table
summarizes significant changes in each version of this book.

Revision Date Description

11 OCT 2022 vSphere 8.0 release. Minor cleanup.

02 APR 2020 Improved illustrations for vSphere 7.0.

17 Apr 2018 Revised for vSphere 6.7 with new chapter about VVol storage profiles.

16 Nov 2016 Revised for vSphere 6.5 with minor updates.

12 Mar 2015 Revised for vSphere 6.0 with new chapters about Tag, VM, and vSAN storage profiles.

12 Sep 2013 First version of this manual for vSphere 5.5 with information about storage profiles.

Intended Audience

This book is intended for anyone who needs to develop applications using the VMware Storage
Policy SDK. An understanding of Web Services technology and some programming background
in Java is required.

Sample Code

The VMware Storage Policy SDK includes Java programs to list storage profiles, view a specific
profile, create a new storage profile, associate a storage profile with a VM (when creating,
cloning, or relocating the VM), check compliance of the VM with its storage profile, and delete a
storage profile.

VMware by Broadcom 5

API Reference

Many of the SPBM interfaces start with the letters Pbm, for policy based management. To find an
API reference information, go to https://code.vmware.com/sdksand click vSphere Management
SDK then click VMware Storage Policy API Reference. There are Pbm interfaces in all categories:
managed objects, data objects, enumerated types, fault types, methods, and so forth.

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 6

https://code.vmware.com/sdks

VMware Storage Policies 1
Storage Policy Based Management (SPBM) helps administrators automate VM provisioning
on appropriate storage devices with requested data services. This avoids laborious manual
provisioning of storage for individual VMs. For object-based datastores like vSAN and VVol,
vendors formulate metadata describing storage traits, and advertise storage capabilities for
profile queries.

Read the following topics next:

n Storage Capabilities

n Virtual Machine Storage

n Storage Capability Profiles

n Storage Policy Operations

n Access to the Storage Policy Server

n Storage Profile Queries

n VMware Storage Policy SDK

Storage Capabilities

The storage provider describes capabilities of a storage array, which the storage policy service
obtains and presents to the administrator to assist with VM provisioning.

On object-oriented datastores such as vSAN and VVol datastores, storage capabilities originate
from software written by the vendor, called a VASA provider. VASA is an abbreviation of
vSphere API for storage awareness. The storage policy service can match storage capabilities
with VM storage policies formulated in vSphere.

For VVol datastores: storage capabilities may include array type, vendor, RAID level,
read latency, write latency, snapshot information, backup frequency, replication, caching,
compression, deduplication, and high availability.

For vSAN datastores: storage capabilities may include RAID type, failures to tolerate, disk stripes
per object, flash read cache, IOPS limit, encryption, compression, and deduplication.

For VMFS and NFS datastores: administrators can select the VMware encryption storage policy.
VM encryption is implemented on the ESXi host rather than on the storage array.

VMware by Broadcom 7

For tag-based policies: administrators can use the vSphere Web Client to define storage policy
tags.

Virtual Machine Storage

Virtual machine configuration and virtual disk data reside in datastores.

Virtual machine configuration is stored in a file with the .vmx file extension. VM home files also

include other files for virtual machine operation, such as a log file (.log), virtual firmware (.nvram),

paging file (.vmem), and snapshot data files (.vmsd).

Virtual machine data is stored in virtual disks, in files with the .vmdk file extension.

Storage policies allow you to distinguish between virtual machine configuration and data files and
to specify storage locations based on the needs of each.

Storage Capability Profiles

To use a storage capability profile, you define storage requirements and associate a virtual
machine with a storage policy. When you create a VM, vCenter Server correlates its VM storage
policy with the storage policy service to determine an appropriate location for VM home and
virtual disk files.

A storage policy consists of a set of subprofiles. Each subprofile defines a set of storage
capabilities, and corresponds to a numbered Rule Set in the vSphere Web Client. Several storage
policies pre-exist in vSphere, including:

n The VM Encryption Policy is a sample storage policy for VM Home and virtual disk encryption.

n The vSAN Default Storage Policy can be easily modified, but is the storage policy used by
default for vSAN datastores.

n The VVol No Requirements Policy allows the storage array, through the VASA provider, to
determine the best placement strategy for VM Home and virtual disks.

In the vSphere Web Client, all of these storage policies, and ones you create, have a Check
Compliance button to verify that virtual machines assigned to that storage policy are correctly
placed on storage devices.

Storage Policy Operations

The Storage Policy API is implemented with Web Services Description Language (WSDL), as an
XML file describing how to communicate with it. The WSDL is usable with toolkit bindings by
many programming languages, including Java.

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 8

SPBM Managed Objects

The Storage Policy API is structured like the vSphere API, and is likewise suitable for Java
programming. Managed object types include the following:

n PbmProfileProfileManager supports operations on virtual machine storage profiles.

n PbmPlacementSolver identifies locations that support requested capabilities for storing virtual

machine files.

n PbmComplianceManager verifies compliance of virtual machine and virtual disk requirement

profiles.

n PbmReplicationManager deals with replication of virtual machine and virtual disk requirement

profiles.

n PbmServiceInstance is the root object of Storage Policy service, created connecting to SPBM.

Storage Policy API and vSphere API

The following table shows the correspondence between SPBM managed objects and vSphere
API methods.

Table 1-1. Storage Policy Operations and Virtual Machine Provisioning

SPBM Operation (Storage Policy API) Virtual Machine Provisioning (vSphere API)

Use the PbmProfileProfileManager
methods to create and update storage
profiles.

Associate storage profiles with virtual machines and virtual
disks. See the description of the vSphere API data object
properties VirtualMachineConfigSpec.vmProfile and

FileBackedVirtualDiskSpec.profile in the vSphere API

Reference. You can also use the vSphere Web Client to
associate a storage profile with a virtual machine or virtual
disk.

Use the PbmPlacementSolver methods to

identify candidate datastores for storage
locations.

Specify the datastores when you create virtual machines and
virtual disks. See the description of the vSphere API data
object properties VirtualMachineFileInfo.vmPathName
and VirtualDeviceFileBackingInfo.datastore in the

vSphere API Reference.

Use the PbmComplianceManager methods

to check compliance between storage
requirements and capabilities.

After you associate a storage profile with a virtual machine
or virtual disk, the Server will identify non-compliance if the
datastore does not satisfy the requirements of the profile.

Access to the Storage Policy Server

You can access the VMware Storage Policy Server by connecting to a vCenter Server system
and obtaining a vCenter session cookie.

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 9

The Storage Policy client API is described in the pbmService.wsdl file that is included in the
VMware Storage Policy SDK. The API defines a set of request operations that you use to
manipulate storage profiles. The VMware Storage Policy SDK includes Java bindings for the
SPBM service WSDL.

To gain access to the Storage Policy Server, your client connects to a vCenter Server system and
obtains the vCenter session cookie. Then you can use the vCenter session cookie to establish the
connection with the Storage Policy Server. See Establish a Connection with the VMware Storage
Policy Server.

After you establish a Storage Policy Server connection, your client uses language-specific
Web Services access objects and the PbmServiceInstance and PbmServiceInstanceContent
objects to access the Storage Policy managed objects and their methods.

The Storage Policy Web Services access objects are language-specific API binding objects
that are generated from the Storage Policy WSDL. The VMware Storage Policy SDK contains
JAXWS bindings to the Storage Policy API. The JAXWS bindings include the PbmService and

PbmPortType Web Services access objects.

n PbmService – Provides access to the PbmPortType object and support for the Storage

Policy Service connection.

n PbmPortType – Provides access to Storage Policy methods.

The following code fragment shows the sequence of calls that you use to obtain access to the
Storage Policy API methods.

Example: Access to Storage Policy API Methods

import com.vmware.pbm.PbmService;
import com.vmware.pbm.PbmPortType;
import com.vmware.pbm.PbmServiceInstanceContent;
[...]
PbmService = new PbmService()
PbmPortType pbmPort = PbmService.getPbmPort()
PbmServiceInstanceContent pbmServiceContent = pbmPort.pbmRetrieveServiceContent

The following figure shows the resulting PbmServiceInstanceContent data object and the

Storage Policy managed objects that provide access to Storage Policy services.

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 10

Figure 1-1. Storage Policy Service Instance Content

The PbmServiceInstanceContent object contains managed object references to the Storage

Policy services. The set of Storage Policy services include the profile manager, placement solver,
and compliance manager.

Service Managed Object Description

Profile Manager PbmProfileProfileManager Create and update VMware storage profiles to define storage
requirements.

Placement Solver PbmPlacementSolver Identify candidate datastores for storage locations.

Compliance Manager PbmComplianceManager Check compliance between storage requirements and capabilities.

Storage Profile Queries

The Storage Policy API includes several methods that you can use to query for profiles and
vSphere entities, such as datastores, virtual machines, and virtual disks.

The following table provides an overview of these methods. For more information, see the
Storage Policy API Reference.

Table 1-2. Storage Profile API Query Methods

Method Description

PbmQueryAssociatedEntities Returns the virtual machine and disks that are associated with the given
storage policies. With empty parameter, returns all virtual machine and
disks that are associated with a storage policy.

PbmQueryAssociatedEntity Returns references to entities associated with the specified profile.

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 11

Table 1-2. Storage Profile API Query Methods (continued)

Method Description

PbmQueryAssociatedProfile Returns profiles associated with the specified entity. The type of profile
is determined by the type of entity that you specify.

n If you specify a datastore, the method returns one or more
capability (resource) profiles.

n If you specify a virtual machine or virtual disk, the method returns
one or more requirement profiles.

PbmQueryAssociatedProfiles Returns PbmQueryProfileResult objects. Each result objet identifies

an entity and one or more profiles. Profile type is determined by entity
type.

n If the entity is a datastore, the result object contains one or more
capability (resource) profiles.

n If the entity is a virtual machine or virtual disk, the result object
contains one or more requirement profiles.

PbmQueryByRollupComplianceStatus Returns all virtual machines for the given rollup compliance status.

PbmQueryDefaultRequirementProfile Returns the default requirement profile ID for the given datastore. For
legacy hubs, returns null.

PbmQueryDefaultRequirementProfiles Returns the default profiles for the given datastores. For legacy
datastores, the defaultProfile is set to null.

PbmQueryMatchingHub (deprecated) Finds matching placement hubs for the specified requirements profile.
Returns only hubs that match the profile. If this method is called for
VVolDefaultProfile, then all VVol containers are returned as matching.

PbmQueryMatchingHubWithSpec (deprecated) Finds matching placement hubs based on a profile creation
specification. This method returns only those hubs that match the
specification.

PbmQueryProfile Returns requirement profiles or resource profiles, or both.

PbmQueryReplicationGroups Returns identifiers for replication groups associated with virtual
machines, virtual disks, or virtual machines and all their disks. If
the query is performed for a virtual machine and all its disks are
virtualMachineAndDisks, an entry per disk and one for the virtual

machine configuration are returned.

PbmQuerySpaceStatsForStorageContainer Retrieves space statistics of a datastore.

VMware Storage Policy SDK

The VMware Storage Policy SDK is distributed as part of the VMware vSphere Management SDK.

When you extract the contents of the distribution, the VMware Storage Policy SDK is located in
the spbm sub-directory.

VMware-vSphere-SDK-build-num
 eam
 sms-sdk
 spbm

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 12

 docs
 java
 JAXWS/samples/javadoc/index.html
 ReferenceGuide
 index.html
 java
 JAXWS
 lib
 samples
 build and run scripts
 wsdl
 pbmService.wsdl
 pbm.wsdl
 ssoclient
 vsphere-ws

The following table shows the locations of the contents of the VMware Storage Policy SDK.

Table 1-3. VMware Storage Policy SDK Contents

VMware Storage Policy SDK Component Location

JAX-WS VMware Storage Policy client binding spbm/java/JAXWS/lib

Java Storage Policy samples spbm/java/JAXWS/samples/com/vmware/spbm/samples/

Java Storage Policy Server connection sample spbm/java/JAXWS/samples/com/vmware/spbm/connection/

VMware Storage Policy API Reference spbm/docs/ReferenceGuide/index.html

Documentation for example code spbm/docs/java/JAXWS/samples/javadoc/index.html

WSDL files spbm/wsdl

VMware Storage Policy SDK Examples

The VMware Storage Policy SDK contains Java examples that show how to create and use
VMware storage policies.

This manual describes examples from the VMware Storage Policy SDK. It also describes
examples from the vCenter Single Sign-On SDK that support the client connection to the Storage
Policy Server. This manual includes the following single sign-on examples:

n Chapter 9 vCenter Single Sign-On Client Example. This example shows how to obtain a
holder-of-key token from the ESXivCenter Single Sign-On Server.

n Chapter 10 vCenter LoginByToken Example. This example shows how to use the token to
login to vCenter Server.

The following table lists the sample files in the VMware Storage Policy SDK.

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 13

Table 1-4. VMware Storage Profile SDK Sample File

Location Examples Description

SDK/spbm/java/JAXWS/samples/com/vmware/spbm/samples/

AboutInfo.java Obtains identifying data about the Storage
Policy Server.

CheckCompliance.java Checks the compliance of profiles associated
with virtual machines and virtual disks.

CreateProfile.java Creates a requirement profile.

CreateVSANProfile.java Creates a new storage profile with one rule-
set based on vSAN capabilities.

DeleteProfile.java Deletes a requirement profile.

EditProfile.java Adds or deletes subprofiles from a tag-based
storage profile.

FcdAssociateProfile.java Attaches a first class disk (FCD) to a virtual
machine and associates the given storage
profile with the FCD.

ListProfiles.java Retrieves all of the storage profiles known to
the system.

ViewProfile.java Prints the contents of a tag-based storage
profile.

VMClone.java Deploys multiple instances of a virtual
machine template to a datacenter. The
clone specification has an associated storage
profile.

VMCreate.java Creates a virtual machine. The virtual machine
configuration specification has an associated
storage profile.

VMRelocate.java Used to relocate a virtual machine's virtual
disks to a datastore compliant with the given
storage profile.

SDK/spbm/java/JAXWS/samples/com/vmware/spbm/connection/

BasicConnection.java Establishes an authenticated session with a
VMware SSO Server, vCenter Server, and
Storage Policy Server.

ConnectedServiceBase.java Connection base class for client application
implementations.

Connection.java Storage Policy sample support; utility class
that sets up a Storage Policy Server
connection.

ConnectionException.java Base exception class for exceptions thrown
by connection classes.

ConnectionMalformedUrlException.java URL exception.

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 14

Table 1-4. VMware Storage Profile SDK Sample File (continued)

Location Examples Description

KeepAlive.java Keep-alive utility class; maintains the vCenter
Server connection.

VcSessionHandler.java Utility class; inserts vCenter session cookie
into SOAP header.

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 15

Storage Policy Server Connection 2
The connection between a Storage Policy client and the Storage Policy Server is based on the
client's connection with a vCenter Server system.

Read the following topics next:

n About Storage Policy Server Sessions

n Establish a Connection with the VMware Storage Policy Server

n Create the Storage Policy Server Connection

n Establish the vCenter Session Connection for the Local Instance

About Storage Policy Server Sessions

A vCenter Server client uses an HTTP session cookie to maintain a persistent connection with
the Server. A Storage Policy client uses the vCenter Server session cookie to establish the
connection with the Storage Policy Server.

A client performs the following operations to establish vCenter Server and Storage Policy Server
sessions.

n Obtain a SAML token from the VMware SSO Server.
See Chapter 9 vCenter Single Sign-On Client Example.

n Use the SAML token to login to the vCenter Server.
See Chapter 10 vCenter LoginByToken Example.

n Use the RetrieveServiceContent method to send the session cookie to the Storage Policy

Server and establish the connection with the Server.

The following figure shows a representation of the server connections and operations involved in
establishing a Storage Policy Server connection.

VMware by Broadcom 16

Figure 2-1. Storage Policy Server Connection

token request

authentication token

vCenter session cookie

SSO Server

vCenter Server

Storage Policy Server

client
application

LoginByToken [token]

[vCenter session cookie]

token

cookie

RetrieveServiceContent

Establish a Connection with the VMware Storage Policy
Server

Use the session cookie from the vCenter Server session to establish the Storage Policy session.
The session cookie represents the authenticated vCenter Server session, which is based on the
SSO token.

The following code fragments establish connections both with the vCenter Server and the
Storage Policy Server. These examples are based on the BasicConnection sample, which is

located in the Storage Policy SDK connection sample directory.

SDK/spbm/java/JAXWS/samples/com/vmware/spbm/connection/BasicConnection.java

The BasicConnection sample uses an instance of the LoginByTokenSample class. See

Chapter 10 vCenter LoginByToken Example. The LoginByToken example saves the HTTP

cookie produced during the intial connection sequence and then restores the cookie after the
vCenter Server connection has been established. Although the LoginByToken example creates

a vCenter Server connection, the BasicConnection sample establishes its own connection with

the vCenter Server. A different implementation might integrate those capabilities to reduce the
number of vCenter Server connections.

Server URLs for Basic Connection

The BasicConnection sample creates connections to three VMware Servers.

n SSO Server

n vCenter Server

n Storage Policy Server

In the example configuration, the SSO and Storage Policy Servers are located on the same
system as the vCenter Server instance. In other configurations, the SSO Server might be located
on a different server.

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 17

Table 2-1. VMware Server URLs

VMware Server URL

vCenter Server https://server-name|IPaddress/sdk/vimService

SSO Server https://server-name|IPaddress/sts/STSService

Storage Policy
Server

https://server-name|IPaddress/pbm

Create the Storage Policy Server Connection

The following code fragment uses a vCenter session cookie to create a Storage Policy Server
session.

1 Extract the actual cookie value from the name=value expression in the cookie string obtained

from the vCenter session connection.

2 Create a PbmService object.

3 Set up a header handler to support adding the vCenter session cookie to the Storage Policy
Server connection.

4 Retrieve the PbmPort object for access to the Storage Policy API methods.

5 Retrieve the request context and set the endpoint to the Storage Policy Server URL.

6 Call the PbmRetrieveServiceContent method to establish the HTTP connection to the

Storage Policy Server.

Example: Storage Policy Server Connection

// 1. Set the extracted cookie in the PbmPortType
//
// Need to extract only the cookie value
String[] tokens = cookieVal.split(";");
tokens = tokens[0].split("=");
String extractedCookie = tokens[1];

// 2. Create a PbmService object.
pbmService = new PbmService();

// 3. Setting the header resolver for adding the VC session cookie to the
// requests for authentication
HeaderHandlerResolver headerResolver = new HeaderHandlerResolver();
headerResolver.addHandler(new VcSessionHandler(extractedCookie));
pbmService.setHandlerResolver(headerResolver);

// 4. Retrieve the PbmPort object for access to the Storage Policy API
pbmPort = pbmService.getPbmPort();

// 5. Set the Storage Policy Server endpoint
Map<String, Object> pbmCtxt = ((BindingProvider) pbmPort).getRequestContext();

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 18

pbmCtxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);
pbmCtxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, spbmurl.toString());

// 6. Retrieve the service content (creates the connection)
pbmServiceContent = pbmPort.pbmRetrieveServiceContent(getPbmServiceInstanceReference());

Establish the vCenter Session Connection for the Local
Instance

The following code fragment sets up the HTTP connection with the vCenter Server instance.

1 Retrieve the VimPort interface. This provides access to the vSphere API methods.

2 Retrieve the request context and set the vCenter Server endpoint address in the request
context.

3 Set the session cookie in the request context. The cookie (cookieVal) is obtained from the

Chapter 10 vCenter LoginByToken Example.

4 Call the RetrieveServiceContent method to establish the HTTP connection with the

vCenter Server instance.

Example: vCenter Server Connection

// 1. Retrieve the VimPort interface.
vimService = new VimService();
vimPort = vimService.getVimPort();

// 2. Retrieve the request context and set the vCenter Server endpoint.
Map<String, Object> ctxt = ((BindingProvider) vimPort).getRequestContext();
ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, vcurl.toString());
ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

// 3. Put the extracted vCenter session cookie into the VimPortType request header.
Map<String, List<String>> headers =
 (Map<String, List<String>>) ctxt.get(MessageContext.HTTP_REQUEST_HEADERS);
if (headers == null) {
 headers = new HashMap<String, List<String>>();
}
headers.put("Cookie", Arrays.asList(cookieVal));
ctxt.put(MessageContext.HTTP_REQUEST_HEADERS, headers);

// 4. Retrieve the vCenter Server service content. (Establishes the HTTP connection)
vimServiceContent = vimPort.retrieveServiceContent(this.getVimServiceInstanceReference());

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 19

vVol Based Storage Profiles 3
Virtual Volumes (vVols) help with granularity in shared storage by providing a way to designate
a specific storage policy for each virtual machine or virtual disk. Vendors formulate metadata
describing their storage arrays, advertise capability profiles in a VASA provider, so SPBM can
query storage capabilities on request. VASA is an abbreviation of vSphere API for storage
awareness.

Read the following topics next:

n vVol Storage Policy Architecture

n SPBM Calling Sequence for vVols

n SPBM Data Objects

vVol Storage Policy Architecture

Storage Policy Based Management (SPBM) helps vSphere and storage administrators automate
the provisioning of virtual machines on shared vVol storage with desired data services.

Storage Management Service (SMS) and SPBM run as part of the Storage Policy Service (SPS),
which is a daemon running in vCenter Server to handle storage subsystems. SPS communicates
with vendor-provided VASA providers, which implement about a dozen SPBM related functions
to advertise storage capabilities and manage storage requests.

On the storage array, a virtual machine comprises a Config vVol with descriptors, a Swap vVol
for memory, and a Data vVol for each virtual disk. Data to and from a storage container flows
through a protocol endpoint, which can support either SAN or NAS protocols. Snapshots, space
efficiency, replication, and other storage features may be handled natively by the storage array.

Typically storage administration involves a set of rule sets where platinum or gold policy offers
the best quality of service, silver policy in the middle, and bronze policy the fewest features.
A vSphere administrator can configure these policies using the vSphere Client connected to
vCenter Server. In vSphere there is a predefined No Requirements policy for vVols.

SPBM Calling Sequence for vVols

When managing vVol storage, SPBM uses a specific calling sequence.

VMware by Broadcom 20

After a VASA provider registers with vSphere, SPBM makes the following calls:

1 queryCapabilityMetadata to get the capability metadata exposed by the VASA provider, for

example RAID level, compression, encryption, caching, or replication.

2 queryResourceMetadata to get a list of available storage resources, expressed as capability

metadata.

3 queryMatchingContainer to get a list of compatible storage containers for a given

policy. The response from the VASA provider refers to resources returned by
the queryResourceMetadata call. There will also be provisioning requests before

queryComplianceResult is called - not by SPBM, but from the ESXi host.

4 queryComplianceResult to check compliance with storage policies.

5 For version 3.0 VASA providers, queryPolicy is called if required to retrieve the Replication

Group ID of the storage device for a vVol. ESXi hosts call it to query the policy of objects in
the namespace so the policy can be applied to related objects.

SPBM Data Objects

SPBM data objects are numerous, and for replication can be complex, but the inheritance
hierarchy is relatively flat. Some important objects are explained below

CapabilityMetadata represents the metadata for a single unique setting as defined by the VASA

provider. A simple setting has one property, while a complex setting has more than one property.

CapabilityMetadata contains the CapabilityId (below), name and description of the capability,

whether it is mandatory when creating a profile, whether the capability should affect placement
and compliance, a key ID for the property, whether multiple constraints are allowed for a
capability instance, and metadata for properties that comprise the capability. All contents but
the first two and last are optional.

CapabilityId contains the unique identifier for a capability within its namespace, and the

namespace to which the capability belongs.

CapabilityInstance contains the CapabilityId (above), an array of constraints on the properties

that comprise the capability, and (as of VASA 3.0) the appropriate line of service for the
capability.

ConstraintInstance contains the property constraints (in PropertyInstance) for a single

occurrence of this capability. All properties must satisfy their respective constraints to be
compliant. PropertyInstance includes the unique identifier for the property, and a value for its

constraint.

The VASA provider is responsible for sending XML descriptions of capability metadata back
to SMS. In the XML capability profiles, the <subProfiles> have a <name>, followed by a

<capability> list, with each capability having an <id> for the <namespace> and a <constraint>

for the <propertyInstance>.

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 21

CapabilityMetadataPerCategory contains an array of CapabilityMetadata (above) and the

category to which the metadata belongs. The category is vendor-supplied; well-known terms
are recommended.

CapabilitySchema describes a capability namespace, as reported by the VASA Provider in

response to the queryCapabilityMetadata call. CapabilitySchema contains vendor information,

namespace information, an array of CapabilityMetadataPerCategory (above), the line of service,

and a schema ID string.

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 22

vSAN Based Storage Profiles 4
Storage requirements are based on storage capabilities available from storage provider, and
vSphere offers vSAN storage capabilities. To create a requirements profile for vSAN capabilities,
you retrieve metadata that describes vSAN capabilities and create a subprofile that expresses
the storage requirements for virtual machine or virtual disk files. To perform these operations,
you connect to the Storage Policy Server

Read the following topics next:

n Create a vSAN Requirements Profile

n Create an Individual Storage Requirement

n Create a Storage Profile

Create a vSAN Requirements Profile

The following example demonstrates how to create a storage requirements profile based on
vSphere vSAN storage capabilities. The example creates a requirement profile for vSAN stripe
width.

The following figure shows the data objects used for a profile specification.

VMware by Broadcom 23

Figure 4-1. Storage Profile Specification

The following example is based on the Storage Policy SDK sample file
CreateVSANProfile.java. This example is divided into two code fragments.

n Create an Individual Storage Requirement – The code fragment is a function that creates a
single storage capability instance for a subprofile (rule).

n Create a Storage Profile – The code fragment builds a profile specification and creates the
profile.

Create an Individual Storage Requirement

The following example builds a property instance for a capability. The property instance
represents a single storage requirement.

The code performs the following steps.

1 Verifies that the capability exists.

2 Creates a property instance for the requirement (PbmCapabilityPropertyInstance).

3 Creates a capability constraint for the property instance
(PbmCapabilityConstraintInstance).

4 Create a capability instance for the constraint and add the subprofile (rule) to the capability.

PbmCapabilityInstance buildCapability(String capabilityName, Object value,
 List<PbmCapabilityMetadataPerCategory> metadata)

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 24

 throws InvalidArgumentFaultMsg {

// Retrieve the metadata for the capability (stripeWidth)
PbmCapabilityMetadata capabilityMeta = PbmUtil.getCapabilityMeta(capabilityName, metadata);
if (capabilityMeta == null)
throw new InvalidArgumentFaultMsg("Specified Capability does not exist", null);

// Create a New Property Instance based on the Stripe Width Capability
PbmCapabilityPropertyInstance prop = new PbmCapabilityPropertyInstance();
prop.setId(capabilityName);
prop.setValue(value);

// Associate Property Instance with a Rule (subprofile)
PbmCapabilityConstraintInstance rule = new PbmCapabilityConstraintInstance();
rule.getPropertyInstance().add(prop);

// Associate Rule (subprofile) with a Capability Instance
PbmCapabilityInstance capability = new PbmCapabilityInstance();
capability.setId(capabilityMeta.getId());
capability.getConstraint().add(rule);

return capability;
}

Create a Storage Profile

The example performs the following operations.

1 Retrieve a reference to the Storage Policy Profile Manger.

2 Verify that there is vSAN Storage Policy support.

3 Retrieve the vSAN storage capability metadata.

4 Add capabilities to be used as requirements.

5 Add the requirement capabilities to a subprofile. A subprofile corresponds to a rule set in the
vSphere Web Client.

6 Specify the subprofile as capability constraints.

7 Build a profile specification.

8 Create the storage profile.

When you create a storage profile, the PbmCreate method returns a profile ID (PbmProfileId).

The Profile Manager maintains a list of profiles. To obtain a profile from the list, use the
PbmQueryProfile and PbmRetrieveContent methods. See Retrieve an Existing Storage Profile

from the Server.

Example: vSAN Storage Profile Creation

// 1: Get PBM Profile Manager & Associated Capability Metadata
spbmsc = connection.getPbmServiceContent();

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 25

ManagedObjectReference profileMgr = spbmsc.getProfileManager();

// 2: Verify that there is vSAN Storage Policy support
Boolean vSanCapabale = false;
List<PbmCapabilityVendorResourceTypeInfo> vendorInfo =
 connection.getPbmPort().pbmFetchVendorInfo(profileMgr, null);
for (PbmCapabilityVendorResourceTypeInfo vendor : vendorInfo)
 for (PbmCapabilityVendorNamespaceInfo vnsi : vendor.getVendorNamespaceInfo())
 if (vnsi.getNamespaceInfo().getNamespace().equals("vSan")) {
 vSanCapabale = true;
 break;
 }

if (!vSanCapabale)
 throw new RuntimeFaultFaultMsg(
"Cannot create storage profile. vSAN Provider not found.", null);

// 3: Get PBM Supported Capability Metadata
List<PbmCapabilityMetadataPerCategory> metadata =
 connection.getPbmPort().pbmFetchCapabilityMetadata(profileMgr,
 PbmUtil.getStorageResourceType(), null);
// 4: Add Provider Specific Capabilities
List<PbmCapabilityInstance> capabilities = new ArrayList<PbmCapabilityInstance>();
capabilities.add(buildCapability("stripeWidth", stripeWidth, metadata));

// 5: Add Capabilities to a RuleSet (subprofile)
PbmCapabilitySubProfile ruleSet = new PbmCapabilitySubProfile();
ruleSet.getCapability().addAll(capabilities);

// 6: Add Rule-Set (subprofile) to Capability Constraints
PbmCapabilitySubProfileConstraints constraints = new PbmCapabilitySubProfileConstraints();
ruleSet.setName("Rule-Set " + (constraints.getSubProfiles().size() + 1));
constraints.getSubProfiles().add(ruleSet);

// 7: Build Capability-Based Profile
PbmCapabilityProfileCreateSpec spec = new PbmCapabilityProfileCreateSpec();
spec.setName(profileName);
spec.setDescription("Storage Profile Created by SDK Samples. Rule based on vSAN capability");
spec.setResourceType(PbmUtil.getStorageResourceType());
spec.setConstraints(constraints);

// 8: Create Storage Profile
PbmProfileId profile = connection.getPbmPort().pbmCreate(profileMgr, spec);
System.out.println("Profile " + profileName + " created with ID: " + profile.getUniqueId());

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 26

Virtual Machine Storage Profiles 5
The Storage Policy Server maintains a list of storage profiles. To apply them, you retrieve an
existing storage profile from the storage policy server, then associate it with a virtual machine.
Code fragments in this chapter are based on sample program VMCreate.java in the Storage

Policy SDK.

Read the following topics next:

n Retrieve an Existing Storage Profile from the Server

n Apply the Storage Profile to a Virtual Machine

Retrieve an Existing Storage Profile from the Server

You can use a script to retrieve an existing storage profile from the storage policy server.

The following code fragment shows the example function getPbmProfileSpec that uses

the PbmQueryProfile and PbmRetrieveContent methods to retrieve storage profiles. In

the context of the Storage Policy SDK example VMCreate.java, the function returns a

VirtualMachineDefinedProfileSpec to be used to configure storage for a virtual machine.

The function performs the following operations:

1 Uses the connection to the Storage Policy Server to retrieve a reference to the Profile
Manager.

2 Calls the PbmQueryProfile method to obtain the list of storage profile identifiers.

3 Calls the PbmRetrieveContent method to obtain the list of storage profiles.

4 Finds the profile that matches the specified profile name.

5 Creates a VirtualMachineDefinedProfileSpec and assigns the identifier from

the named profile to the VirtualMachineDefinedProfileSpec. You use the

VirtualMachineDefinedProfileSpec when you configure the virtual machine. See Apply

the Storage Profile to a Virtual Machine.

Example: Retrieving a Storage Profile

 VirtualMachineDefinedProfileSpec getPbmProfileSpec(String name)
 throws InvalidArgumentFaultMsg, com.vmware.pbm.RuntimeFaultFaultMsg,

VMware by Broadcom 27

 RuntimeFaultFaultMsg {

// 1 Get PBM Profile Manager
 PbmServiceInstanceContent spbmsc = connection.getPbmServiceContent();
 ManagedObjectReference profileMgr = spbmsc.getProfileManager();

// 2 Retrieve the list of profile identifiers.
 List<PbmProfileId> profileIds =
 connection.getPbmPort().pbmQueryProfile(profileMgr,
 PbmUtil.getStorageResourceType(),
 null);

 if (profileIds == null || profileIds.isEmpty())
 throw new RuntimeFaultFaultMsg("No storage Profiles exist.", null);

// 3 Retrieve the list of storage profiles.
 List<PbmProfile> pbmProfiles =
 connection.getPbmPort().pbmRetrieveContent(profileMgr, profileIds);

// 4,5 Find the named profile and create a VirtualMachineDefinedProfileSpec
// that will use the same profile identifier.
 for (PbmProfile pbmProfile : pbmProfiles) {
 if (pbmProfile.getName().equals(name)) {
 PbmCapabilityProfile profile = (PbmCapabilityProfile) pbmProfile;
 VirtualMachineDefinedProfileSpec spbmProfile =
 new VirtualMachineDefinedProfileSpec();

 spbmProfile.setProfileId(profile.getProfileId().getUniqueId());

 return spbmProfile;
 }
 }

// Throw exception if none found
 throw new InvalidArgumentFaultMsg(
 "Specified storage profile name does not exist.", null);
 }

Apply the Storage Profile to a Virtual Machine

To use a storage profile for a virtual machine, specify a VirtualMachineDefinedProfileSpec
object for the VirtualMachineConfigSpec.vmProfile property.

The following code fragment sets the storage profile and creates the virtual machine. The profile
(spbmProfile) is a VirtualMachineDefinedProfileSpec. See Retrieve an Existing Storage

Profile from the Server.

Example: Associating a Storage Profile with a Virtual Machine

[...]
VirtualMachineConfigSpec configSpec = new VirtualMachineConfigSpec();
// Set SPBM profile
configSpec.getVmProfile().add(spbmProfile);

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 28

[...]
ManagedObjectReference taskmor =
 connection.getVimPort().createVMTask(vmFolderMor, vmConfigSpec, resourcepoolmor,
hostmor);

The following figure shows how a storage profile is integrated into a virtual machine
configuration specification. Your client establishes the link between the storage profile
(PbmCapabilityProfile) and the VirtualMachineDefinedProfileSpec by setting the

profileId property in the VirtualMachineDefinedProfileSpec. The Server sets the

profileData property when it configures the virtual machine.

Figure 5-1. Using a Storage Profile for Virtual Machine Provisioning

VirtualMachineConfigSpec

PbmCapabilityProfile vmProfileVirtualMachineDefinedProfileSpec

profileIdprofile

Virtual Machine provisioning
vCenter Server Connection
(CreateVM_Task,
CreateChildVM_Task,
ReconfigVM_Task)

profileData

Storage Profile access Storage Policy Server Connection
(PbmQueryProfile,

PbmRetrieveContent)

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 29

Tag-Based Storage Profiles 6
To use a tag-based storage profile, you assign a storage policy tag to a data center, define a
storage requirement profile based on the tag, and associate the profile with a virtual machine.

Read the following topics next:

n Creating a Tag-Based Storage Profile

n Creating a Storage Profile

n Retrieving Tag Metadata

Creating a Tag-Based Storage Profile

A storage profile specification has associated tag metadata, which you can use to create a
storage profile.

When you create the virtual machine, the vCenter Server instance will use the Storage Policy
Server to resolve the tag reference in the profile and determine a datastore for virtual machine
storage.

n To associate a storage policy tag with a datacenter, use the vSphere Web Client.

n To create a tag-based storage requirements profile, you retrieve metadata associated with
a storage policy tag and create a storage profile that contains identifiers from the tag
metadata.

n To associate the storage profile with a virtual machine, see Apply the Storage Profile to a
Virtual Machine.

A tag-based storage profile involves the following metadata:

n The subprofile capability instance identifier (PbmCapabilityInstance.id) is set to the

storage policy tag metadata identifier (PbmCapabilityMetadata.id).

n The capability property instance (PbmCapabilityPropertyInstance) specifies both an

identifier and a value. Both properties are set to the tag metadata id and allowedValue
properties.

VMware by Broadcom 30

Figure 6-1. Tag-Based Storage Profile Specification

subProfiles

PbmCapabilityProfileCreateSpec

PbmCapabilitySubProfileConstraints

capability
PbmCapabilitySubProfile

PbmCapabilityMetadata

PbmCapabilityPropertyMetadata

PbmCapabilityInstance

constraints

PbmCapabilityPropertyInstance

PbmCapabilityConstraintInstance

propertyMetadata

id

allowedValue value
id

propertyInstance

id
constraint

id

The following example demonstrates how to create a storage requirements profile based on a
storage policy tag. The example is divided into two sections.

n Retrieving Tag Metadata

n Creating a Storage Profile

Creating a Storage Profile

You can create a storage profile based on tag metadata.

The example performs the following operations.

1 Create a property instance with tags from the specified tag category.

2 Associate the property instance with a constraint (rule).

3 Associate the constraint with a capability instance.

4 Add the capability instance to a subprofile (rule set).

5 Add the subprofile to the list of subprofile constraints.

6 Build a profile specification.

7 Create the storage profile.

The following example is based on the Storage Policy SDK sample file CreateProfile.java.

Example: Tag-Based Storage Profile Creation

// Get PBM Profile Manager and PBM Capability Metadata
spbmsc = connection.getPbmServiceContent();
ManagedObjectReference profileMgr = spbmsc.getProfileManager();

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 31

List<PbmCapabilityMetadataPerCategory> metadata =
 connection.getPbmPort().pbmFetchCapabilityMetadata(
profileMgr,PbmUtil.getStorageResourceType(), null);

// Step 1: Create Property Instance with tags from the specified Category
PbmCapabilityMetadata tagCategoryInfo = PbmUtil.getTagCategoryMeta(tagCategoryName, metadata);

// Fetch Property Metadata of the Tag Category
List<PbmCapabilityPropertyMetadata> propMetaList = tagCategoryInfo.getPropertyMetadata();
PbmCapabilityPropertyMetadata propMeta = propMetaList.get(0);

// Create a New Property Instance based on the Tag Category ID
PbmCapabilityPropertyInstance prop = new PbmCapabilityPropertyInstance();
prop.setId(propMeta.getId());

// Fetch Allowed Tag Values Metadata; cast the xsd:any property (allowedValue) to a discrete
set
PbmCapabilityDiscreteSet tagSetMeta = (PbmCapabilityDiscreteSet) propMeta.getAllowedValue();

// Create a New Discrete Set for holding Tag Values
PbmCapabilityDiscreteSet tagSet = new PbmCapabilityDiscreteSet();
for (Object obj : tagSetMeta.getValues()) {
 tagSet.getValues().add(((PbmCapabilityDescription) obj).getValue());
}
prop.setValue(tagSet);

// Step 2: Associate Property Instance with a Rule
PbmCapabilityConstraintInstance rule = new PbmCapabilityConstraintInstance();
rule.getPropertyInstance().add(prop);

// Step 3: Associate Rule with a Capability Instance
PbmCapabilityInstance capability = new PbmCapabilityInstance();
capability.setId(tagCategoryInfo.getId());
capability.getConstraint().add(rule);

// Step 4: Add Rule to a RuleSet
PbmCapabilitySubProfile ruleSet = new PbmCapabilitySubProfile();
ruleSet.getCapability().add(capability);

// Step 5: Add Rule-Set to Capability Constraints
PbmCapabilitySubProfileConstraints constraints = new PbmCapabilitySubProfileConstraints();
ruleSet.setName("Rule-Set " + (constraints.getSubProfiles().size() + 1));
constraints.getSubProfiles().add(ruleSet);

// Step 6: Build Capability-Based Profile
PbmCapabilityProfileCreateSpec spec = new PbmCapabilityProfileCreateSpec();
spec.setName(profileName);
spec.setDescription("Tag Based Storage Profile Created by SDK Samples. Rule based on tags
from Category "
 + tagCategoryName);
spec.setResourceType(PbmUtil.getStorageResourceType());
spec.setConstraints(constraints);

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 32

// Step 7: Create Storage Profile
PbmProfileId profile = connection.getPbmPort().pbmCreate(profileMgr, spec);

Retrieving Tag Metadata

You can retrieve tag metadata for a tag category.

The following example shows a code fragment that retrieves metadata for a tag category. Given
the list of metadata obtained from the Storage Policy Server, the function traverses the list
and returns the metadata associated with the specified category. This function is defined in the
PbmUtil package in the Storage Policy SDK.

Example: getTagCategoryMeta (PbmUtil Package)

public static PbmCapabilityMetadata getTagCategoryMeta(
 String tagCategoryName, List<PbmCapabilityMetadataPerCategory> schema) {
 for (PbmCapabilityMetadataPerCategory cat : schema)
 if (cat.getSubCategory().equals("tag"))
 for (PbmCapabilityMetadata cap : cat.getCapabilityMetadata())
 if (cap.getId().getId().equals(tagCategoryName))
 return cap;
 return null;
 }

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 33

Policy Rules 7
You can create custom storage policy strings to specify policy rules.

Read the following topics next:

n Create a Stand-Alone Virtual Disk with an Attached Storage Encryption Policy

Create a Stand-Alone Virtual Disk with an Attached Storage
Encryption Policy

The following example shows how to format an XML string to specify an I/O filter policy for a
virtual disk.

The format is specific to the current version of the VMware Web Services API. This format might
not be compatible with other API versions.

Prerequisites

n Verify that the name for the policy is user-friendly.

n Verify that the ID string to identify the policy is unique. The ID must be unique among the set
of policies known to SPBM.

Procedure

1 Build the policy <capability> element, which specifies the filter.

<capability>
 <capabilityId>
 <id>vmwarevmcrypt@encryption</id>
 <namespace>IOFILTERS</namespace>
 <constraint></constraint>
 </capabilityId>
</capability>

2 Wrap the <capability> element singly in a <subProfiles> element, adding the rule name.

<subProfiles>
 <capability>
 <capabilityId>
 <id>vmwarevmcrypt@encryption</id>
 <namespace>IOFILTERS</namespace>

VMware by Broadcom 34

 <constraint></constraint>
 </capabilityId>
 </capability>
 <name>Rule-Set 1: IOFILTERS</name>
</subProfiles>

3 Wrap the <subProfiles> element singly in a <constraints> element.

<constraints>
 <subProfiles>
 <capability>
 <capabilityId>
 <id>vmwarevmcrypt@encryption</id>
 <namespace>IOFILTERS</namespace>
 <constraint></constraint>
 </capabilityId>
 </capability>
 <name>Rule-Set 1: IOFILTERS</name>
 </subProfiles>
</constraints>

4 Append profile metadata, such as name and creation date.

<constraints>
 <subProfiles>
 <capability>
 <capabilityId>
 <id>vmwarevmcrypt@encryption</id>
 <namespace>IOFILTERS</namespace>
 <constraint></constraint>
 </capabilityId>
 </capability>
 <name>Rule-Set 1: IOFILTERS</name>
 </subProfiles>
</constraints>
<createdBy>client</createdBy>
<creationTime>1999-12-31T23:59:59Z</creationTime>
<lastUpdatedTime>1999-12-31T23:59:59Z</lastUpdatedTime>
<generationId>1</generationId>
<name>IOfilter-Encrypt</name>

5 Wrap the <constraints> element and metadata in a <storageProfile> element, and

prefix an XML header.

<?xml version='1.0' encoding='UTF-8'?>
<storageProfile xsi:type='StorageProfile'>
 <constraints>
 <subProfiles>
 <capability>
 <capabilityId>
 <id>vmwarevmcrypt@encryption</id>
 <namespace>IOFILTERS</namespace>
 <constraint></constraint>
 </capabilityId>

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 35

 </capability>
 <name>Rule-Set 1: IOFILTERS</name>
 </subProfiles>
 </constraints>
 <createdBy>client</createdBy>
 <creationTime>1999-12-31T23:59:59Z</creationTime>
 <lastUpdatedTime>1999-12-31T23:59:59Z</lastUpdatedTime>
 <generationId>1</generationId>
 <name>IOfilter-Encrypt</name>
 <profileId>I am Unique</profileId>
</storageProfile>

What to do next

You can create a ProfileSpec to contain the XML data. See the vSphere Web Services SDK
Programming Guide.

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 36

Legacy Storage Profiles 8
vSphere 5.0/5.1 systems support limited storage capability and requirement profiles.

In vSphere 5.5 and later, the Storage Policy Server supports more complex storage profiles.
vSphere 5.5 and later upgrade legacy capability and requirement profiles for Storage Policy
Server operations.

Read the following topics next:

n VASA 1.0 Storage Capability Upgrade

n vSphere Web Client User Label Conversion

VASA 1.0 Storage Capability Upgrade

A Storage Policy Server can obtain storage capability data from VASA providers.

In vSphere 5.5, this generally implies VMware vSAN storage capabilities. A Storage Policy Server
can also obtain capability data from a VASA provider that was implemented for the vSphere
5.0/5.1 environment.

The early architecture (vSphere 5.0/5.1) supports a simple expression of storage capability.
A VASA 1.0 provider can advertise one system label per datastore. A system label has an
associated description.

The Storage Policy Server performs a runtime conversion of VASA 1.0 system labels. The Storage
Policy API presents the system label as a storage capability profile. The Server also generates a
capability schema for the storage label. The generated storage capability profile references the
generated schema.

The following figure shows the Storage Policy data objects that are generated from a vSphere
5.0/5.1 legacy profile.

VMware by Broadcom 37

Figure 8-1. Converted Legacy Capability Profile

PbmCapabilityProfile

PbmCapabilitySchema

PbmCapabilitySubProfile

name = “SystemLabel”

capability

PbmCapabilitySubProfileConstraints

subProfiles

5.0/5.1 system label / description

Vendor1Gold / This is our best storage

PbmCapabilityPropertyMetadata
PbmCapabilityInstance

id

PbmCapabilityMetadataUniqueId

id

PbmCapabilityMetadataPerCategory

PbmCapabilityMetadata

propertyMetadata

capabilityMetadata

capabilityMetadataPerCategory

5.5 runtime
conversion

5.5 update
conversion

subCategory = “legacy”

namespaceInfo

vendorInfo

name = “Vendor1Gold”

constraints

[...]

[...]

id

type = XSD_STRING
summary.description =
“This is our best storage”

vSphere Web Client User Label Conversion

A vSphere 5.0/5.1 storage profile can reference user labels displayed in the vSphere Web Client.

Users can associate a datastore with a user label. When you upgrade to vSphere 5.5, any
existing 5.0/5.1 user labels will be converted into datastore tags.

A converted policy profile contains one subprofile for each label referenced by the original
vSphere 5.0/5.1 profile.

n A system label reference is converted to a reference to the appropriate vendor-specific
“legacy system label” capability generated from that label.

n A user label reference is converted to a reference to the appropriate datastore tag
generated from that label.

The following figure shows the conversion of a vSphere 5.0/5.1 profile that references a system
label “Vendor1Gold” and a user label “MyDatastores”. When you upgrade to vSphere 5.5, the
system converts the profile into Storage Policy API elements.

n The legacy system label identifies the original source as a VASA 1.0 provider.

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 38

n The legacy user label identifies the original source as a 5.0/5.1 user label in the vSphere Web
Client.

Figure 8-2. Converted Legacy Requirement Profile

PbmCapabilityProfile

PbmCapabilitySubProfile

capability

PbmCapabilitySubProfileConstraints

subProfiles

5.0/5.1

system label = “Vendor1Gold”
user label = “MyDatastore”

PbmCapabilityInstance

constraint

PbmCapabilityConstraintInstance

propertyInstance

5.5 update
conversion

constraints

[...]

PbmCapabilitySubProfile

capability

PbmCapabilityPropertytInstance

id = “vendor1 legacy system label”

value = “Vendor1Gold”

PbmCapabilityInstance

constraint

PbmCapabilityConstraintInstance

propertyInstance

PbmCapabilityPropertytInstance

id = “legacy user label”

value = “MyDatastore”

[...] [...]

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 39

vCenter Single Sign-On Client
Example 9
This chapter describes a Java example of acquiring a vCenter Single Sign-On security token.

Read the following topics next:

n vCenter Single Sign-On Token Request Overview

n Using Handler Methods for SOAP Headers

n Sending a Request for a Security Token

vCenter Single Sign-On Token Request Overview

The code examples in the following sections show how to use the Issue method to acquire a

holder-of-key security token.

To see an example of using the token to login to a vCenter Server, see Chapter 10 vCenter
LoginByToken Example. The code examples in this chapter are based on the following sample file
located in the vCenter Single Sign-On SDK JAX-WS client samples directory.

.../JAXWS/samples/com/vmware/sso/client/samples/
AcquireHoKTokenByUserCredentialSample.java

The AcquireHoKTokenByUserCredentialSample program creates a token request and calls

the issue method to send the request to a vCenter Single Sign-On Server. The program uses a
sample implementation of Web services message handlers to modify the SOAP security header
for the request message.

This example uses the username-password security policy (STSSecPolicy_UserPwd). This policy

requires that the SOAP security header include a timestamp, username and password, and a
digital signature and certificate. The sample message handlers embed these elements in the
message.

The example performs the following operations.

1 Create a security token service client object (STSService_Service). This object manages

the vCenter Single Sign-On header handlers and it provides access to the vCenter Single
Sign-On client API methods. This example uses the issue method.

2 Create a vCenter Single Sign-On header handler resolver object (HeaderHandlerResolver).

This object acts as a container for the different handlers.

VMware by Broadcom 40

3 Add the handlers for timestamp, user credentials, certificate, and token extraction to the
handler resolver.

4 Add the handler resolver to the security token service.

5 Retrieve the STS port (STS_Service) from the security token service object.

6 Create a security token request.

7 Set the request fields.

8 Set the endpoint in the request context. The endpoint identifies the vCenter Single Sign-On
Server.

9 Call the issue method, passing the token request.

10 Handle the response from the vCenter Single Sign-On server.

Using Handler Methods for SOAP Headers

The VMware vCenter Single Sign-On SDK provides sample code that is an extension of the
JAX-WS XML Web services message handler (javax.xml.ws.handler).

The sample code consists of a set of SOAP header handler methods and a header handler
resolver, to which you add the handler methods. The handler methods insert timestamp, user
credential, and message signature data into the SOAP security header for the request. A handler
method extracts the SAML token from the vCenter Single Sign-On Server response.

The VMware vCenter Single Sign-On client SOAP header handler files are located in the
soaphandlers directory.

SDK/sso/java/JAXWS/samples/com/vmware/sso/client/soaphandlers

To access the SOAP handler implementation, the example code contains the following import
statements.

import com.vmware.sso.client.soaphandlers.HeaderHandlerResolver;
import com.vmware.sso.client.soaphandlers.SSOHeaderHandler;
import com.vmware.sso.client.soaphandlers.SamlTokenExtractionHandler
import com.vmware.sso.client.soaphandlers.TimeStampHandler;
import com.vmware.sso.client.soaphandlers.UserCredentialHandler;
import com.vmware.sso.client.soaphandlers.WsSecurityUserCertificateSignatureHandler;

This example uses the following handler elements.

n HeaderHandlerResolver

n SamlTokenExtractionHandler

n TimestampHandler

n UserCredentialHandler

n WsSecurityUserCertificateSignatureHandler (SSOHeaderHandler)

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 41

The following sequence shows the operations and corresponding Java elements for message
security.

Create an STS service object
(STSService_Service). This object will bind

the handlers to the request and provide access
to the issue method.

STSService_Service

Create a handler resolver object
(HeaderHandlerResolver). This object acts as

a receptacle for the handlers.

HeaderHandlerResolver

Add the header handlers:

n Timestamp – The handler will use system
time to set the timestamp values.

n User credential – The handler requires a
username and a password; it will create a
username token for the supplied values.

n User certificate signature – The handler
requires a private key and an x509
certificate. The handler will use the private
key to sign the body of the SOAP message
(the token request), and it will embed the
certificate in the SOAP security header.

n SAML token extraction – The handler
extracts the SAML token directly from
vCenter Single Sign-On Server response to
avoid token modification by the JAX-WS
bindings.

TimestampHandler

UserCredentialHandler

HeaderHandler Resolver

WsSecurityUserCertificateSignatureHandler
(SSOHeaderHandler)

SamlTokenExtractionHandler

Add the handler resolver to the STS service.
STSService_Service

handlerResolver HeaderHandler Resolver

The following code fragment creates a handler resolver and adds the handler methods to the
handler resolver. After the handlers have been established, the client creates a token request and
calls the Issue method. See Sending a Request for a Security Token.

Important You must perform these steps for message security before retrieving the STS service
port. An example of retrieving the STS service port is shown in Sending a Request for a Security
Token.

/*
 * Instantiate the STS Service
 */
STSService_Service stsService = new STSService_Service();

/*
 * Instantiate the HeaderHandlerResolver.
 */
HeaderHandlerResolver headerResolver = new HeaderHandlerResolver();

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 42

/*
 * Add handlers to insert a timestamp and username token into the SOAP security header
 * and sign the message.
 *
 * -- Timestamp contains the creation and expiration time for the request
 * -- UsernameToken contains the username/password
 * -- Sign the SOAP message using the combination of private key and user certificate.
 *
 * Add the TimeStampHandler
 */
headerResolver.addHandler(new TimeStampHandler());

/*
 * Add the UserCredentialHandler. arg[1] is the username; arg[2] is the password.
 */
UserCredentialHandler ucHandler = new UserCredentialHandler(args[1],args[2]);
headerResolver.addHandler(ucHandler);

/*
 * Add the message signature handler (WsSecurityUserCertificateSignatureHandler);
 * The client is responsible for supplying the private key and certificate.
 */
SSOHeaderHandler ssoHandler = new WsSecurityUserCertificateSignatureHandler(privateKey,
userCert);
headerResolver.addHandler(ssoHandler);

/*
 * Add the token extraction handler (SamlTokenExtractionHandler).
 */
SamlTokenExtractionHandler sbHandler = new SamlTokenExtractionHandler;
headerResolver.addHandler(sbHandler);

/*
 * Set the handlerResolver for the STSService to the HeaderHandlerResolver created above.
 */
stsService.setHandlerResolver(headerResolver);

Sending a Request for a Security Token

After setting up the SOAP header handlers, the example creates a token request and calls the
Issue method.

The following sequence shows the operations and corresponding Java elements.

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 43

Retrieve the STS service port (STSService). The service port

provides access to the vCenter Single Sign-On client API
methods. The vCenter Single Sign-On handler resolver must be
associated with the STS service before you retrieve the service
port. See Using Handler Methods for SOAP Headers.

STSServiceSTSService_Service

Create a token request (RequestSecurityTokenType). Your

vCenter Single Sign-On client will pass the token request to the
Issue method. The Issue method will send the token request

in the body of the SOAP message. This example sets the token
request fields as appropriate for a holder-of-key token request.

RequestSecurityTokenType

Set the token request fields.

n lifetime – Creation and expiration times.

n token type – urn:oasis:names:tc:SAML:2.0:assertion

n request type – http://docs.oasis-open.org/ws-sx/ws-trust/
200512/Issue

n key type – http://docs.oasis-open.org/ws-sx/ws-trust/
200512/PublicKey (for holder-of-key token type)

n signature algorithm – http://www.w3.org/2001/04/xmldsig-
more#rsa-sha256

n renewable status

RequestSecurityTokenType

tokenType

requestType

lifetime

keyType

signatureAlgorithm

renewing

Set the endpoint address for the token request.

STSService Request Context

Call the Issue method. Issue (RequestSecurityTokenType)

STSService

Handle the response from the vCenter Single Sign-On Server. RequestSecurityTokenResponseType

The following example shows Java code that performs these operations.

Example: Acquiring a vCenter Single Sign-On Token – Sending the
Request

/*
 * Retrieve the STSServicePort from the STSService_Service object.
 */
STSService stsPort = stsService.getSTSServicePort();

/*
 * Create a token request object.
 */
RequestSecurityTokenType tokenType = new RequestSecurityTokenType();

/*
 * Create a LifetimeType object.
 */
LifetimeType lifetime = new LifetimeType();

/*
 * Derive the token creation date and time.

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 44

 * Use a GregorianCalendar to establish the current time,
 * then use a DatatypeFactory to map the time data to XML.
 */
DatatypeFactory dtFactory = DatatypeFactory.newInstance();
GregorianCalendar cal = new GregorianCalendar(TimeZone.getTimeZone("GMT"));
XMLGregorianCalendar xmlCalendar = dtFactory.newXMLGregorianCalendar(cal);
AttributedDateTime created = new AttributedDateTime();
created.setValue(xmlCalendar.toXMLFormat());

/*
 * Specify a time interval for token expiration (specified in milliseconds).
 */
AttributedDateTime expires = new AttributedDateTime();
xmlCalendar.add(dtFactory.newDuration(30 * 60 * 1000));
expires.setValue(xmlCalendar.toXMLFormat());

/*
 * Set the created and expires fields in the lifetime object.
 */
lifetime.setCreated(created);
lifetime.setExpires(expires);

/*
 * Set the token request fields.
 */
tokenType.setTokenType("urn:oasis:names:tc:SAML:2.0:assertion");
tokenType.setRequestType("http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue");
tokenType.setLifetime(lifetime);
tokenType.setKeyType("http://docs.oasis-open.org/ws-sx/ws-trust/200512/PublicKey");
tokenType.setSignatureAlgorithm("http://www.w3.org/2001/04/xmldsig-more#rsa-sha256");

/*
 * Specify a token that can be renewed.
 */
RenewingType renewing = new RenewingType();
renewing.setAllow(Boolean.TRUE);
renewing.setOK(Boolean.FALSE); // WS-Trust Profile: MUST be set to false
tokenType.setRenewing(renewing);

/* Get the request context and set the endpoint address. */
Map<String, Object> reqContext = ((BindingProvider) stsPort).getRequestContext();
reqContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, args[0]);

/*
 * Use the STS port to invoke the "issue" method to acquire the token
 * from the vCenter Single Sign-On Server.
 */
RequestSecurityTokenResponseCollectionType issueResponse = stsPort.issue(tokenType);

/*
 * Handle the response - extract the SAML token from the response. The response type
 * contains the token type (SAML token type urn:oasis:names:tc:SAML:2.0:assertion).
 */
RequestSecurityTokenResponseType rstResponse =
issueResponse.getRequestSecurityTokenResponse();

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 45

RequestedSecurityTokenType requestedSecurityToken = rstResponse.getRequestedSecurityToken();

/*
 * Extract the SAML token from the RequestedSecurityTokenType object.
 * The generic token type (Element) corresponds to the type required
 * for the SAML token handler that supports the call to LoginByToken.
 */
Element token = requestedSecurityToken.getAny();

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 46

vCenter LoginByToken Example 10
This chapter describes a Java example of using the LoginByToken method.

Read the following topics next:

n vCenter Server Single Sign-On Session

n Saving the vCenter Server Session Cookie

n Using LoginByToken

n Restoring the vCenter Server Session Cookie

vCenter Server Single Sign-On Session

After you obtain a SAML token from the vCenter Single Sign-On Server, you can use the vSphere
API method LoginByToken to establish a single sign-on session with a vCenter Server instance.

See Chapter 9 vCenter Single Sign-On Client Example for an example of obtaining a vCenter
Single Sign-On token.

At the beginning of a vCenter Single Sign-On session, your client is responsible for the following
tasks:

n Maintain the vCenter session cookie. The vSphere architecture uses an HTTP cookie to
support a persistent connection between a vSphere client and a vCenter Server instance.
During the initial connection, the Server produces a session cookie. Operations during the
login sequence will reset the request context so your client must save this cookie and re-
introduce it at the appropriate times.

n Insert the vCenter Single Sign-On token and a timestamp into the SOAP header of the
LoginByToken message.

The example program uses these general steps.

1 Call the RetrieveServiceContent method to establish an HTTP connection with the

vCenter Server instance and save the HTTP session cookie. The client uses an HTTP header
handler method to extract the cookie from the vCenter Server response.

VMware by Broadcom 47

2 Call the LoginByToken method to authenticate the vCenter session. To send the token

to the vCenter Server instance, the client uses a handler to embed the token and a time
stamp in the SOAP header for the message. To identify the session started with the
RetrieveServiceContent method, the client uses a handler to embed the session cookie

in the HTTP header.

3 Restore the session cookie.

HTTP and SOAP Header Handlers

To use a vCenter Single Sign-On token to login to a vCenter Server instance, the example uses
header handlers to manipulates the HTTP and SOAP header elements of the login request.

After establishing a handler, subsequent requests automatically invoke the handler.

n An extraction handler obtains the HTTP session cookie provided by the vCenter Server
instance. After setting up the handler, a call to the RetrieveServiceContent method will

invoke the handler to extract the cookie from the Server response.

n Insertion handlers put the vCenter Single Sign-On token and a timestamp into the SOAP
header and the session cookie into the HTTP header of the login request.

The following figure shows the use of handlers to manipulate header elements when establishing
a vCenter Single Sign-On session with a vCenter Server instance.

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 48

Figure 10-1. Starting a vCenter Session

Important Every call to the vCenter Server instance will invoke any message handlers that
have been established. The overhead involved in using the SOAP and HTTP message handlers
is not necessary after the session has been established. The example saves the default message
handler before setting up the SOAP and HTTP handlers. After establishing the session, the
example will reset the handler chain and restore the default handler.

The example code also uses multiple calls to the VimPortType.getVimPort method to manage

the request context. The getVimPort method clears the HTTP request context. After each

call to the getVimPort method, the client resets the request context endpoint address to the

vCenter Server URL. After the client has obtained the session cookie, it will restore the cookie in
subsequent requests.

LoginByToken Sample Code

The code examples in the following sections show how to use the LoginByToken method with a

holder-of-key security token.

The code examples are based on the sample code contained in the vCenter Single Sign-On SDK.
The files are located in the Java samples directory (SDK/ssoclient/java/JAXWS/samples).

n LoginByToken sample:

samples/com/vmware/vsphere/samples/LoginByTokenSample.java

n Header cookie handlers:

samples/com/vmware/vsphere/soaphandlers/HeaderCookieHandler.java

samples/com/vmware/vsphere/soaphandlers/HeaderCookieExtractionHandler.java

n SOAP header handlers. These are the same handlers that are used in Chapter 10 vCenter
LoginByToken Example. The SOAP handler files are located in the vCenter Single Sign-On
client soaphandlers directory:

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 49

samples/com/vmware/sso/client/soaphandlers

Saving the vCenter Server Session Cookie

The code fragment in this section establishes an HTTP session with the vCenter Server instance
and saves the HTTP session cookie.

The following sequence describes these steps and shows the corresponding objects and
methods.

Use the getHandlerResolver method to

save the default message handler. To use
the HTTP and SOAP message handlers, you
must first save the default message handler
so that you can restore it after login. The
HTTP and SOAP message handlers impose
overhead that is unnecessary after login.

VimService.getHandlerResolver()

Set the cookie handler.
The HeaderCookieExtractionHandler
method retrieves the HTTP cookie.

HeaderHandler Resolver

VimService

HeaderCookieExtractionHandler

Get the VIM port. The VIM port provides
access to the vSphere API methods,
including the LoginByToken method.

VimPortTypeVimService

Set the request context endpoint address to
the vCenter Server URL. Request ContextVimService

Retrieve the ServiceContent. This method

establishes the HTTP connection and sets
the session cookie.

VimPortType ServiceContent

Extract the cookie and save it for later use. HeaderCookieExtractionHandler.getCookie ()

The following example shows Java code that saves the session cookie.

Example: Saving the vCenter Server Session Cookie

/*
 * The example uses a SAML token (obtained from a vCenter Single Sign-On Server)
 * and the vCenter Server URL.
 * The following declarations indicate the datatypes; the token datatype (Element) corresponds
 * to the token datatype returned by the vCenter Single Sign-On Server.
 *
 * Element token; -- from vCenter Single Sign-On Server
 * String vcServerUrl; -- identifies vCenter Server
 *
 * First, save the default message handler.

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 50

 */

HandlerResolver defaultHandler = vimService.getHandlerResolver();

/*
 * Create a VIM service object.
 */
vimService = new VimService();

/*
 * Construct a managed object reference for the ServiceInstance.
 */
ManagedObjectReference SVC_INST_REF = new ManagedObjectReference();
SVC_INST_REF.setType("ServiceInstance");
SVC_INST_REF.setValue("ServiceInstance");

/*
 * Create a handler resolver.
 * Create a cookie extraction handler and add it to the handler resolver.
 * Set the VIM service handler resolver.
 */
HeaderCookieExtractionHandler cookieExtractor = new HeaderCookieExtractionHandler();
HeaderHandlerResolver handlerResolver = new HeaderHandlerResolver();
handlerResolver.addHandler(cookieExtractor);
vimService.setHandlerResolver(handlerResolver);

/*
 * Get the VIM port for access to vSphere API methods. This call clears the request context.
 */
vimPort = vimService.getVimPort();

/*
 * Get the request context and set the connection endpoint.
 */
Map<String, Object> ctxt = ((BindingProvider) vimPort).getRequestContext();
ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, vcServerUrl);
ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

/*
 * Retrieve the ServiceContent. This call establishes the HTTP connection.
 */
serviceContent = vimPort.retrieveServiceContent(SVC_INST_REF);

/*
 * Save the HTTP cookie.
 */
String cookie = cookieExtractor.getCookie();

Using LoginByToken

The code fragment in this section sets up the message handlers and calls the LoginByToken
method.

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 51

The following sequence describes the steps and shows the corresponding objects and methods.

Create a new HeaderHandlerResolver.
Then set the message security handlers
for cookie insertion and for inserting the
SAML token and credentials in the SOAP
header.

HeaderHandler Resolver

WsSecurityUserCertificateSignatureHandler (key, certificate, ID)

TimestampHandler

SamlTokenHandler (SAML token)

HeaderCookieHandler (session cookie)

Get the VIM port.

VimPortTypeVimService

Set the connection endpoint in the HTTP
request context. Request ContextVimService

Call the LoginByToken method. The

method invocation executes the handlers
to insert the elements into the message
headers. The method authenticates the
session referenced by the session cookie.

VimPortType.LoginByToken ()

The following examples shows Java code that calls the LoginByToken method.

Example: Using LoginByToken

/*
 * Create a handler resolver and add the handlers.
 */
HeaderHandlerResolver handlerResolver = new HeaderHandlerResolver();
handlerResolver.addHandler(new TimeStampHandler());
handlerResolver.addHandler(new SamlTokenHandler(token));
handlerResolver.addHandler(new HeaderCookieHandler(cookie));
handlerResolver.addHandler(new WsSecuritySignatureAssertionHandler(
 userCert.getPrivateKey(),
 userCert.getUserCert(),
 Utils.getNodeProperty(token, "ID")));
vimService.setHandlerResolver(handlerResolver);

/*
 * Get the Vim port; this call clears the request context.
 */
vimPort = vimService.getVimPort();

/*
 * Retrieve the request context and set the server URL.
 */
Map<String, Object> ctxt = ((BindingProvider) vimPort).getRequestContext();
ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, vcServerUrl);
ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

/*

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 52

 * Call LoginByToken.
 */
UserSession us = vimPort.loginByToken(serviceContent.getSessionManager(), null);

Restoring the vCenter Server Session Cookie

After you log in, you must restore the standard vCenter session context.

The code fragment in this section restores the default message handler and the session cookie.
As the cookie handler has been replaced by the default handler, the client resets the session
cookie by calling request context methods to access the context fields directly. The following
sequence describes these steps and shows the corresponding objects and methods.

Restore the default message handler.
The handlers used for LoginByToken
are not used in subsequent calls to the
vSphere API.

VimService.setHandlerResolver ()

Get the VIM port.

VimPortTypeVimService

Set the connection endpoint in the HTTP
request context.

Request ContextVimService

Set the HTTP request header (vCenter
session cookie).

RequestContext.get ()

RequestContext.put ()

The following example shows Java code that restores the vCenter session. This code requires
the vCenter URL and the cookie and default handler that were retrieved before login. See
LoginByToken Sample Code.

Example: Restoring the vCenter Server Session

/*
 * Reset the default handler. This overwrites the existing handlers, effectively removing
them.
 */
vimService.setHandlerResolver(defaultHandler);
vimPort = vimService.getVimPort();

/*
 * Restore the connection endpoint in the request context.
 */
// Set the validated session cookie and set it in the header for once,
// JAXWS will maintain that cookie for all the subsequent requests

Map<String, Object> ctxt = ((BindingProvider) vimPort).getRequestContext();
ctxt.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, vcServerUrl);

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 53

ctxt.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

/*
 * Reset the cookie in the request context.
 */
Map<String, List<String>> headers = (Map<String, List<String>>)
ctxt.get(MessageContext.HTTP_REQUEST_HEADERS);
if (headers == null) {
 headers = new HashMap<String, List<String>>();
}
headers.put("Cookie", Arrays.asList(cookie));
ctxt.put(MessageContext.HTTP_REQUEST_HEADERS, headers);

VMware Storage Policy SDK Programming Guide

VMware by Broadcom 54

	VMware Storage Policy SDK Programming Guide
	Contents
	About This Book
	VMware Storage Policies
	Storage Capabilities
	Virtual Machine Storage
	Storage Capability Profiles
	Storage Policy Operations
	Access to the Storage Policy Server
	Storage Profile Queries
	VMware Storage Policy SDK
	VMware Storage Policy SDK Examples

	Storage Policy Server Connection
	About Storage Policy Server Sessions
	Establish a Connection with the VMware Storage Policy Server
	Server URLs for Basic Connection

	Create the Storage Policy Server Connection
	Establish the vCenter Session Connection for the Local Instance

	vVol Based Storage Profiles
	vVol Storage Policy Architecture
	SPBM Calling Sequence for vVols
	SPBM Data Objects

	vSAN Based Storage Profiles
	Create a vSAN Requirements Profile
	Create an Individual Storage Requirement
	Create a Storage Profile

	Virtual Machine Storage Profiles
	Retrieve an Existing Storage Profile from the Server
	Apply the Storage Profile to a Virtual Machine

	Tag-Based Storage Profiles
	Creating a Tag-Based Storage Profile
	Creating a Storage Profile
	Retrieving Tag Metadata

	Policy Rules
	Create a Stand-Alone Virtual Disk with an Attached Storage Encryption Policy

	Legacy Storage Profiles
	VASA 1.0 Storage Capability Upgrade
	vSphere Web Client User Label Conversion

	vCenter Single Sign-On Client Example
	vCenter Single Sign-On Token Request Overview
	Using Handler Methods for SOAP Headers
	Sending a Request for a Security Token

	vCenter LoginByToken Example
	vCenter Server Single Sign-On Session
	HTTP and SOAP Header Handlers
	LoginByToken Sample Code

	Saving the vCenter Server Session Cookie
	Using LoginByToken
	Restoring the vCenter Server Session Cookie

