
Developing Remote Plug-ins with the
vSphere Client SDK

Update 3
VMware vSphere 8.0
vSphere Client SDK 8.0

You can find the most up-to-date technical documentation on the VMware by Broadcom website at:

https://docs.vmware.com/

VMware by Broadcom
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright
©

 2018-2024 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc.

and/or its subsidiaries. For more information, go to https://www.broadcom.com. All trademarks, trade

names, service marks, and logos referenced herein belong to their respective companies.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 2

https://docs.vmware.com/

Contents

About This Book 6

Revision History 7

1 Using the vSphere Client Remote Plug-in Samples 10
Try the Remote Plug-in Sample Starter 10

Remote Plug-in Sample UI and Server 14

Components in the Remote Plug-in Sample 15

Build the vSphere Client Remote Plug-in Sample 16

Find the SSL Thumbprint and GUID of vCenter Server 18

Start the Remote Plug-in Server 19

Get Thumbprint or Certificate of Remote Plug-in Server 20

Register the vSphere Client Remote Plug-in Sample 21

Viewing the vSphere Client Remote Plug-in Sample 24

Remote Plug-in Sample Directory Structure 35

2 Remote Plug-in Architecture in the vSphere Client 37
Components of the vSphere Client Architecture 37

vCenter Server Configurations 38

Communication Paths in Remote Plug-in Architecture 39

Communications Among UI Components in the vSphere Client 40

Client-Server Communications with Remote Plug-ins 41

Security Concepts for Remote Plug-ins 41

3 Creating a Remote Plug-in for the vSphere Client 43
Code Components for a vSphere Client Remote Plug-in 43

Deployment Requirements for a vSphere Client Remote Plug-in 44

Using Auxiliary Plug-in Servers 45

vSphere Client Plug-in Registration Tool 46

Sample Manifest File for a Remote Plug-in 49

4 Deploying Remote Plug-ins for the vSphere Client 50
Remote Plug-in Life Cycle 50

Remote Plug-in Deployment 51

Plug-In Caching 51

Remote Plugin Uninstallation 52

Redeploying Plug-ins During Development 52

Specifying Remote Plug-in Compatibility 53

VMware by Broadcom 3

Remote Plug-in Topologies 55

Remote Plug-in Terminology 56

Visibility of Remote Plug-in Views 56

Remote Plug-in Multi-Instance Support 57

Differentiating Plug-in Instances 60

Custom Topologies 62

Deploying Auxiliary Plug-in Servers 63

Remote Plug-in Deployment Example with Simultaneous Users 63

Remote Plug-in Multi-Version Support 72

Remote Plug-in Multi-Manifest Support 73

5 Choosing Extension Points for vSphere Client Plug-ins 75
Types of Extension Points in the vSphere Client 75

Remote Plug-in Manifest Example 83

6 Dynamic Extensions for Remote Plug-ins 86
Dynamic Extension Use Cases 86

How the vSphere Client Displays Dynamic Extensions 86

Caching Dynamic Extension Visibility 88

Configure Dynamic Extensions 88

Dynamic Extensions Filter Query 97

Example Code for Filtering Dynamic Extensions 99

7 vSphere Client Plug-in User Interface Modules 101
Bootstrapping the JavaScript API 101

vSphere Client JavaScript API: htmlClientSdk Interface 102

vSphere Client JavaScript API: Modal Interface 103

vSphere Client JavaScript API: Application Interface 108

vSphere Client JavaScript API: Event Interface 116

Example Using the modal API 117

8 Using Themes with vSphere Client Plug-ins 119
Using Style Variables in Plug-In CSS 119

Building Output Style Sheets for vSphere Client Plug-Ins 121

Configuring and Loading Theme Style Sheets in vSphere Client Remote Plug-Ins 123

Configuring Theme-Dependent Icons for vSphere Client Remote Plug-ins 126

9 Integrated Solution Installer for the vSphere Client 128
Conceptual Overview of the Preparation Process 128

Preparing a Solution OVF to Use the Integrated Solution Installer 129

Deployment with the Integrated Solution Installer 141

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 4

Integrated Installer Solution Metadata 145

10 Advanced Considerations for Remote Plug-in Servers 152
Registering Auxiliary Plug-in Servers 152

Auxiliary Server Data Paths 154

Communication Paths for Authentication in the Remote Plug-in Server 156

How to Delegate Session Authority to the Plug-in Server 157

Response Codes to session/clone-ticket Request 162

11 Best Practices for vSphere Client Remote Plug-ins 163
Best Practices for Implementing Plug-in Workflows 163

Best Practices for Localization 163

Best Practices for Deploying and Testing Remote Plug-ins 164

Additional Resources 165

12 Troubleshooting Remote Plug–ins for the vSphere Client 166
Plug-in Does Not Appear in vSphere Client 166

Wrong Plug-in URL 167

Troubleshooting: Plug-in Thumbprint Incorrect 168

Manifest Cannot Be Parsed 169

Wrong Plug-in Type 170

Plug-in Marked As Incompatible 170

Plug-in Registered with Incompatible Version 171

Plug-in View is missing in the vSphere Client 172

Missing Entry in the Instance Selector 172

Unable to Change Plug-in Manifest File 172

Troubleshooting: Problems with Registration Script in SDK 173

Plug-in Already Registered 173

Unable To Unregister Plug-in 174

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 5

About This Book

Developing Remote Plug-ins with the vSphere Client SDK provides information about developing
and deploying HTML-5 extensions to the VMware vSphere® Client user interface.

VMware provides various APIs and SDKs for different applications and goals. This documentation
provides information about the extensibility framework of vSphere Client for developers who are
interested in extending the client application with custom functionality.

The vSphere Client SDK

The vSphere Client provides a means for connecting to VMware vCenter Server® systems and
managing objects in the vSphere infrastructure. The vSphere Client is an HTML5-based web
application with a modular architecture that supports plug-in extensions. The vSphere Client SDK
provides tools and examples that help you create custom plug-ins to extend the functionality of
the vSphere Client.

VMware once offered local plug-ins for the vSphere Client SDK, but these are replaced by
remote plug-ins. Remote plug-ins are compatible with VMware cloud, easier to upgrade, more
secure, perform better, and support a wide variety of configurations.

Intended Audience

This information is intended for anyone who wants to extend the vSphere Client with custom
functionality. Users typically are software developers who use HTML and JavaScript to create
graphical user interface components that work with VMware platforms.

VMware by Broadcom 6

Revision History

This book, Developing Remote Plug-ins with the vSphere Client SDK, is updated with each release
of the product or when necessary.

The table below provides an update history of this book.

Revision Description

18 JUN 2024 Release with vSphere 8.0 U3:

n Dynamic actions can be hidden or disabled.

n Add vCenter version parameters and per-vCenter extensions.

n Improvements to extension registration tool.

n Fix functionality of multi-manifest and describe its backward compatibility.

n New feature to define the size of summary view cards.

21 SEP 2023 Release with vSphere 8.0 U2:

n Users can monitor progress of solution installation in the Tasks console.

n No longer necessary to have plugin.json for multi-manifest support.

n Additional properties for vCenter Servers injected into OVF.

n Developers without vim25.jar must obtain it from vSphere Management SDK.

n Plug-in servers can be registered with certificate in addition to or instead of thumbprint.

18 APR 2023 Release with vSphere 8.0 U1:

n New type "separator" can define dividers between menu actions.

n Ability to define multiple summary cards (three later increased to five).

n New property requiredVcVersion available with integrated solution installer.

29 MAR 2023 Update:

n Added solutioninstall API to integrated solution installer chapter.

14 JAN 2023 Corrections:

n Corrected specification for app.ClientViewNavigationOptions.

n Added vCenter Server thumbprint to registration example.

n Removed obsolete material in Best Practices and Troubleshooting chapters.

n Corrected statement about resizing Summary views.

VMware by Broadcom 7

Revision Description

11 OCT 2022 vSphere 8.0 release.

n Change occurrences of 'disable' to 'deactivate'.

n Update documentation to reflect the change to Clarity cards in place of portlets.

n Add advice to label the primary server with type MANIFEST_SERVER in the registration record.

n Add a chapter about the integrated solution installer. See Chapter 9 Integrated Solution Installer for
the vSphere Client.

n Add material about dynamic Summary views. See Chapter 6 Dynamic Extensions for Remote Plug-
ins.

n Add material about using auxiliary servers for dynamic filter queries. See Chapter 6 Dynamic
Extensions for Remote Plug-ins.

n Refresh screenshots in Chapter 5 Choosing Extension Points for vSphere Client Plug-ins and Viewing
the vSphere Client Remote Plug-in Sample.

14 OCT 2021 Streamlined description of remote plug-in sample directory structure.

05 OCT 2021 vSphere Client SDK 7.0 Update 3 release.

n Expanded material on server back end authentication to explain more flexible token exchange and
access feature.

n Improved diagram of authentication communicatons.

n Added MacOS examples to Remote Sample Starter.

n Updated information about SHA-1 deprecation.

n Removed troubleshooting topic about OSGi (inapplicable for remote plug-ins).

n Removed obsolete reference to updateOnBrowserRefresh.

n Noted Administrator role is required for Redeploy feature.

n Removed obsolete references to external Platform Services Controller.

09 MAR 2021 vSphere Client SDK 7.0 Update 2 release.

n Expand information about auxiliary plug-in servers.

n Expand material about plug-in instance handling.

n Corrected final step in using cloneSession() method.

n Improvements to the chapter about using the Remote Plug-in Sample. Added Remote Plug-in Sample
Starter instructions.

n Added screen shots to illustrate UI context for extension points.

06 OCT 2020 vSphere Client SDK 7.0 Update 1 release.

n Dynamic extension support.

n Multiple targets for plug-in actions.

n Add plug-in server logging configuration to server startup command.

n Add production build option to SDK sample.

n Add chapter for best practices.

n Multi-manifest capability to support different versions.

n Expanded material concerning extension points.

n At VMware, we value inclusion. To foster this principle within our customer, partner, and internal
community, we are replacing some of the terminology in our content. We have updated this guide to
remove instances of non-inclusive language.

04 MAY 2020 Cosmetic improvements.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 8

Revision Description

02 APR 2020 vSphere Client SDK 7.0 release.

n Extended and updated JavaScript API.

n SHA-256 thumbprint support.

n Support for auxiliary plug-in servers.

n Support for theme-dependent icons.

n Improved discovery of new plug-ins or updates.

n Plug-in compatibility support.

n Redeploy button in development mode.

20 AUG 2019 vSphere Client SDK 6.7U3 release.

n Corrected MOB URL in Troubleshooting chapter.

n Added Additional Resources chapter.

20 JUN 2019 Minor corrections to Troubleshooting chapter.

30 MAY 2019 Minor updates and corrections.

Added Troubleshooting chapter.

11 APR 2019 Changes for vSphere Client SDK 6.7U2 release.

n Replaced Virgo server with Tomcat server.

n Updated JavaScript API to handle UI themes.

n Added chapter about UI themes.

n Added information about plug-in caching.

n Added information about plug-in handling in linked mode.

n Expanded and improved chapter about running remote plug-in sample.

n Improved information about plug-in deployment.

12 FEB 2019 Minor updates and corrections.

Expanded material about Deployment.

16 OCT 2018 Initial release.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 9

Using the vSphere Client Remote
Plug-in Samples 1
For an introduction to the vSphere Client Remote Plug-in SDK, you can install and run the remote
plug-in sample and the remote plug-in sample starter. The samples illustrate several key features
that you can adapt to develop your own plug-ins.

This chapter assumes that you have access to a vCenter Server instance and a development
machine where you build and run the sample plug-in server.

Read the following topics next:

n Try the Remote Plug-in Sample Starter

n Remote Plug-in Sample UI and Server

n Components in the Remote Plug-in Sample

n Build the vSphere Client Remote Plug-in Sample

n Find the SSL Thumbprint and GUID of vCenter Server

n Start the Remote Plug-in Server

n Get Thumbprint or Certificate of Remote Plug-in Server

n Register the vSphere Client Remote Plug-in Sample

n Viewing the vSphere Client Remote Plug-in Sample

n Remote Plug-in Sample Directory Structure

Try the Remote Plug-in Sample Starter

Build and run the remote plug-in sample starter for a quick introduction to the process of
deploying and viewing a remote plug-in for the vSphere Client.

The plug-in sample starter demonstrates a very simple plug-in that serves only static HTML
content. This is the easiest way to be introduced to the remote plug-in environment, including
only a few components that extend the vSphere Client user interface with a full-screen view
available for plug-in content.

VMware by Broadcom 10

What To Do First

Check the dependencies on your development machine:

n Java Development Kit 8

n Maven 3

Install the vSphere Client SDK:

1 Download the SDK from https://code.vmware.com/sdk/client

2 In a shell window, unzip the SDK file:

PowerShell:

PS C:\> Get-Item vsphere-client-sdk-*zip |
 Foreach-Object { Expand-Archive -Path $_ -DestinationPath C:\ }

MacOS:

Downloads % unzip vsphere-client-sdk-*zip -d ~

Generate a Plug-in Server Certificate

1 Generate an SSL certificate and a JKS key store for the remote plug-in server using Java's
keytool certificate management utility.

PowerShell example:

PS C:\> keytool -genkeypair -alias plugin-server -keyalg RSA -keysize 4096 `
-storetype JKS -keystore keystore.jks -storepass "remote.plugin" -keypass "remote.plugin" `
-dname "CN=mydevbox"

MacOS example:

Downloads % keytool -genkeypair -alias plugin-server -keyalg RSA -keysize 4096 \
-storetype JKS -keystore keystore.jks -storepass "remote.plugin" -keypass "remote.plugin" \
-dname "CN=mydevbox"

Note Do not change the values of arguments to the keytool utility, except the value

mydevbox in the -dname "CN=mydevbox" argument. The value mydevbox must be replaced

by the IP address or the DNS name of the machine on which the remote plug-in server will
run. The value is significant because vCenter Server will check whether the Common Name
(CN) field value of the remote plug-in server certificate matches the host through which
remote plug-in resources are served.

2 Replace the default keystore in the Remote Plug-in Sample Starter code with the newly
generated one:

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 11

https://code.vmware.com/sdk/client

PowerShell example:

PS C:\> Move-Item -Path "keystore.jks" -Destination `
 "html-client-sdk\samples\remote-plugin-sample-starter\src\main\resources\keystore.jks" `
 -Force

MacOS example:

Downloads % mv -f keystore.jks \
 ~/html-client-sdk/samples/remote-plugin-sample-starter/src/main/resources/keystore.jks

Build the Remote Plug-in Sample Starter

1 Navigate to the sample starter directory:

PowerShell example:

PS C:\> cd html-client-sdk/samples/remote-plugin-sample-starter

MacOS example:

Downloads % cd ~/html-client-sdk/samples/remote-plugin-sample-starter

2 Issue the Maven build command:

PowerShell example:

PS C:\html-client-sdk\samples\remote-plugin-sample-starter> mvn clean install

MacOS example:

remote-plugin-sample-starter % mvn clean install

Start the Remote Plug-in Sample Starter

1 Navigate to the target directory:

PowerShell example:

PS C:\html-client-sdk\samples\remote-plugin-sample-starter> cd target

MacOS example:

remote-plugin-sample-starter % cd target

2 Issue the Java command to run the plug-in server:

PowerShell example:

PS C:\html-client-sdk\samples\remote-plugin-sample-starter\target> `
java -jar (Get-ChildItem remote-plugin*.jar -Name | Select-Object -first 1)

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 12

MacOS example:

target % java -jar remote-plugin-sample-starter-*.jar

3 Use a browser to verify that the remote plug-in server can supply its manifest. Enter the
following URL:

https://localhost:8443/sample-ui/plugin.json

Leave the browser window open for the next step.

Save the Certificate or Fingerprint of the Plug-in Server

1 Find the security certificate and/or fingerprint of the plug-in server.

In Chrome browser for example, click the padlock icon next to the URL at the top of
the browser window. Then click Connection is secure > Certificate is valid. You can copy
the SHA-256 Fingerprint or Thumbprint (depending on the browser) from there. For the
certificate, click Details > Export.

2 Paste the SHA-256 fingerprint into a file, or save the certificate as a PEM file with .cer suffix.

vCenter Server expects the fingerprint (thumbprint) to contain colon-separated character
pairs. As of vSphere 8.0 U3, the registration script changes unseparated or space-separated
character pairs into the expected format.

For PEM, select base64-encoded ASCII, single certificate. In the plug-in server certificate,
check that the server host name is specified according to subjectAltName extension (RFC
2818, Section 3.1 Server Identity).

Register the Remote Plug-in Sample Starter

1 Navigate to the directory containing the registration script:

PowerShell example:

PS C:\html-client-sdk\samples\remote-plugin-sample-starter\target> `
cd 'C:\html-client-sdk\tools\vCenter plugin registration\prebuilt'

MacOS example:

target % cd ~/html-client-sdk/tools/vCenter\ plugin\ registration/prebuilt

2 Run the registration script for the plug-in. Use the name of your vCenter Server
instance in the URL and use valid credentials to authenticate. Enter the password for
administrator@vsphere.local when prompted.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 13

PowerShell example:

PS C:\html-client-sdk\tools\vCenter plugin registration\prebuilt> `
 .\extension-registration.bat `
 -action registerPlugin -remote `
 -url https://myvcenter.example.com/sdk `
 -username administrator@vsphere.local `
 -key com.vmware.sample.remote.starter -version 1.0.0 `
 -pluginUrl https://mydevbox:8443/sample-ui/plugin.json `
 -serverThumbprint 19:FD:2B:0E:62:5E:0E:10:FF:24:34:7A:81:F1:D5:33:`
19:A7:22:A0:DA:33:27:07:90:0F:8E:8D:72:F1:BD:F1 `
 -serverCertificateFile C:\plugin-server.cer `
 -c 'Example, Inc.' -n 'Remote Plug-in' -s 'This is a sample plug-in'

MacOS example:

prebuilt % ./extension-registration.sh \
 -action registerPlugin -remote \
 -url https://myvcenter.example.com/sdk \
 -username administrator@vsphere.local \
 -key com.vmware.sample.remote.starter -version 1.0.0 \
 -pluginUrl https://mydevbox:8443/sample-ui/plugin.json \
 -serverThumbprint 19:FD:2B:0E:62:5E:0E:10:FF:24:34:7A:81:F1:D5:33:\
19:A7:22:A0:DA:33:27:07:90:0F:8E:8D:72:F1:BD:F1 \
 -serverCertificateFile /tmp/plugin-server.cer \
 -c 'Example, Inc.' -n 'Remote Plug-in' -s 'This is a sample plug-in' -insecure

When registering the plug-in, it's highly recommended to provide the SSL certificate of the plug-
in server in addition to the thumbprint of the SSL certificate of the plug-in server. Performing
a full SSL certificate check during SSL handshake is more secure than performing an SSL
certificate thumbprint check. Furthermore, in future vSphere releases, support for SSL certificate
thumbprints will be dropped and full SSL certificates will be required.

View the Plug-in User Interface

1 Connect a web browser to the vCenter Server instance and log in to the vSphere Client.
Example URL:

https://myvcenter.example.com/ui/

2 Navigate to the Home screen (for example, use ctrl-alt-home) or the Shortcut screen.

3 In the object navigator pane on the left of the home screen, click on the remote plug-in
sample starter.

The vSphere Client displays a plug-in welcome screen.

Remote Plug-in Sample UI and Server

The remote plug-in sample demonstrates a secure, efficient, remote plug-in that was developed
according to recommended practices. The sample supports a Global View extension to the

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 14

https://myvcenter.example.com/ui/

vSphere Client. The user interface component creates a modal dialog, views that extend vSphere
inventory objects, and examples of using a card to extend a Summary view.

The user interface code also shows how to:

n Initialize the Client API.

n Retrieve session authentication information and pass it to the plug-in server.

n Perform a data retrieval request to the plug-in server.

n Define a context action for a VirtualMachine object.

The plug-in server code shows how to:

n Respond to a data retrieval or modification request.

n Clone and cache a user session with a vCenter Server.

The remote plug-in sample does the following actions:

n Creates a global view.

n Opens a modal dialog.

n Authenticates to vCenter Server.

n Performs a data retrieval call.

n Creates a relation between a Chassis object and a HostSystem object.

n Creates several views that extend context object views.

n Defines an action on a VirtualMachine context object.

Components in the Remote Plug-in Sample

The remote plug-in sample in the vSphere Client SDK shows how to design and implement,
deploy and register a remote plug-in. The sample is functionally simple, to focus on displaying the
infrastructure rather than the business logic.

The sample remote plug-in package contains several components:

n The user interface is written in JavaScript and Angular, using Clarity design components to
maintain compatibility with the vSphere Client user interface.

n The sample plug-in server is written in Java, but Java is not a requirement. The server
includes the following:

n In-memory data storage for fictitious Chassis objects.

n Controller logic to handle user interface requests for Chassis objects and vSphere
HostSystem objects.

n Service interfaces for operations on both kinds of objects.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 15

n A library layer to interface to vCenter Server, including logic to handle delegated
authentication.

n The plugin.json file specifies the vSphere Client extension points that the plug-in extends.

n The spring-context.xml file contains the Spring bean definitions for the plug-in server.

n The pom.xml file specifies how Maven will install dependencies and build the plug-in

deliverable.

n The application.properties file specifies properties that the Spring application server uses

to deploy the plug-in server.

The following diagram illustrates the basic architecture of the remote plug-in sample, when
installed in a simple vSphere environment.

Figure 1-1. Remote Plug-in Sample Environment

dev-box.example.com
vcsa-host.example.com

web
Browser

sample
plug-in server

extension
registration

tool

Log into vSphere Client at
https://vcsa-host.example.com

Fetch plug-in manifest and views from
https://vcsa-host.example.com

Call vSphere APIs on
https://vcsa-host.example.com/sdk
https://vcsa-host.example.com/api/ui

Register download URL of plug-in manifest at
https://dev-box.example.com:8443/sample-ui/plugin.json

Build the vSphere Client Remote Plug-in Sample

You build the remote plug-in sample with a Maven build directed by the sample's pom.xml file.

After you download the vSphere Client SDK, you must build the remote plug-in sample before
you can run it.

1 Generate an SSL certificate and a JKS key store for the remote plug-in server using Java's
keytool certificate management utility:

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 16

PowerShell example:

PS C:\> keytool -genkeypair -alias plugin-server -keyalg RSA -keysize 4096 `
-storetype JKS -keystore keystore.jks -storepass "remote.plugin" -keypass "remote.plugin" `
-dname "CN=mydevbox"

MacOS example:

Downloads % keytool -genkeypair -alias plugin-server -keyalg RSA -keysize 4096 \
-storetype JKS -keystore keystore.jks -storepass "remote.plugin" -keypass "remote.plugin" \
-dname "CN=mydevbox"

Note Do not change the values of the arguments of keytool utility except the value

mydevbox in the -dname "CN=mydevbox" argument. The value mydevbox must be replaced

with the IP address or the DNS name of the machine on which the remote plug-in server will
run. The value is significant because vCenter Server will check whether the Common Name
(CN) field value of the remote plug-in server certificate matches the host through which
remote plug-in resources are served.

2 Replace the default key store in the Remote Plug-in Sample code with the newly generated
one.

PowerShell example:

PS C:\> Move-Item -Path "keystore.jks" -Destination \
"html-client-sdk\samples\remote-plugin-sample\src\main\resources\keystore.jks" -Force

MacOs example:

Downloads % mv -f keystore.jks \
 ~/html-client-sdk/samples/remote-plugin-sample/src/main/resources/keystore.jks

3 Navigate to the sample directory:

PowerShell example:

PS C:\> cd html-client-sdk/samples/remote-plugin-sample

MacOS example:

Downloads % cd ~/html-client-sdk/samples/remote-plugin-sample

4 Install the Web Services API library into the local Maven repository:

mvn validate

5 Build the sample:

mvn clean install

For production builds, substitute mvn clean install -Dproduction.build=true in step 5.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 17

Prerequisites

Before building the remote plug-in sample, you must have the following:

n You need Java 8 to compile the code for this sample.

n You need Maven 3 to build the plug-in package.

n Download the SDK and unzip it. See Remote Plug-in Sample Directory Structure for
information about the structure of the SDK archive.

Results

These steps install the Web Services API library into the local Maven repository, download and
build the sample executable, download the Clarity design system, and build the JAR file that
contains the sample components. The sample is a Spring Boot Application that will start an
embedded Tomcat server when you run the sample in a command shell.

Choose a production build for the client code to run more efficiently. Choose a development
build for a better debugging experience.

What to do next

After you build the remote plug-in sample, you need to locate authentication information, start
the plug-in server, and register the plug-in with vCenter Server.

Find the SSL Thumbprint and GUID of vCenter Server

Before you start the remote plug-in server, you need to find the certificate thumbprint
(fingerprint) and GUID of the vCenter Server where you want to register the plug-in.

Prerequisites

vCenter Server must be running while you do this procedure.

Procedure

1 Connect a browser to the vCenter Server.

The URL for vCenter Server looks similar to this: https://vcenter-1.example.com

The browser displays a launch screen, with a small padlock icon in the address field.

2 Click LAUNCH VSPHERE CLIENT (HTML5) and log in to the vSphere Client.

The browser displays the default Hosts and Clusters view.

3 If you connected to a vCenter Server instance in an extended linked mode environment, you
must select the chosen vCenter Server instance in the navigation pane on the left of the
vSphere Client screen.

The URL in the browser address box contains an embedded managed object reference,
similar to the following:

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 18

Folder:group-d1:56d373bd-4163-44f9-a872-9adabb008ca9. This is an extended managed

object reference that ends with the GUID of the vCenter Server instance. The GUID is a string
of 32 hexadecimal digits, organized in groups of 4, 8, or 12 digits, separated by hyphens.

4 Copy the 32 hexadecimal digits of the GUID, along with the inset hyphens, and save this into
a shell variable or a text file.

You will use the GUID when you start the plug-in server.

5 Click the padlock icon in the browser address field to access a certificate information window.

The browser displays a brief summary of browser properties.

6 Click Details to display more certificate information.

The browser displays full details of the vCenter Server certificate.

7 Scroll through the certificate details to find the SHA-256 fingerprint.

The SHA-256 fingerprint is a string of 64 hexadecimal digits, usually in pairs separated by
spaces or other non-alphanumeric delimiters.

8 Select the fingerprint string and copy it to a text file.

9 Edit the text file to remove all spaces or other delimiters from the fingerprint string.

You now have a string of 64 contiguous hexadecimal digits. This is the thumbprint of the
vCenter Server instance.

What to do next

The thumbprint and GUID of the vCenter Server instance are needed to start the remote plug-in
server. After starting you will determine the plug-in server's certificate thumbprint.

Start the Remote Plug-in Server

The remote plug-in sample has an embedded Spring Boot application server. You can start the
server by using a Java command with arguments that configure the server to communicate with
a vCenter Server instance. This is the vCenter Server instance with which you will register the
plug-in.

Prerequisites

n Before you can run the remote plug-in sample, you must have built the SDK sample code.

n Before you run the remote plug-in sample, choose the vCenter Server where you will register
the plug-in.

n Collect the following information about the vCenter Server instance:

n Fully qualified domain name

n Port number for Web Services API access

n Certificate thumbprint

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 19

Procedure

1 In a shell window, change to the root directory of the remote plug-in sample.

cd sdk/samples/remote-plugin-sample

2 Run the JAR file in the target directory.

The command to run the plug-in JAR file requires several arguments, including the
thumbprint, GUID, DNS name, and HTTPS port number of the vCenter Server instance.
You can also specify --logging.path, which creates a subdirectory (if it does not already

exist) and stores server log files in the subdirectory. Use a command similar to the following
example, but substitute the details that pertain to your vCenter Server:

java -jar target/remote-plugin-sample-7.0.1.00000.jar \
 --logging.path=logdir \
 --vcenter.guid=223b94f2-af15-4613-5d1a-a278b19abc09 \
 --vcenter.thumbprint=274172e07a754b9811a4fb5fc45384a79a5c258d13fa1667185016f28685fc54 \
 --vcenter.fqdn=vcenter-1.example.com --vcenter.port=443

Results

The plug-in application server runs. It might take a few minutes to initialize, and the console
displays a number of output lines. When the server is ready, the console displays two lines
saying Tomcat started and Started SpringbootApplication.

Example:

2021-02-25 04:36:49.442 INFO 76 --- [main]
 o.s.b.w.embedded.tomcat.TomcatWebServer : Tomcat started on port(s): 8443
 (https) with context path '/sample-ui'
2021-02-25 04:36:49.442 INFO 76 --- [main]
 c.v.sample.remote.SpringBootApplication : Started SpringBootApplication in
 34.752 seconds (JVM running for 36.127)

What to do next

If you have not yet registered the plug-in with a vCenter Server, find the plug-in server
thumbprint and use it to register the plug-in. Registration enables the plug-in to render global
views and object-specific views for objects managed by the vCenter Server instance.

Get Thumbprint or Certificate of Remote Plug-in Server

The remote plug-in sample has an embedded application server with a self-signed certificate that
is used for encrypted communications. The certificate and its thumbprint are stored in a Java
keystore file.

To register a remote plug-in with vCenter Server, you need to determine the thumbprint of the
plug-in application server, or save its security certificate, which you then use in arguments to the
registration command.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 20

Prerequisites

n Start the server.

n Find the server's port number. The default port number is 8443. You can configure a different
port number in the application.properties file.

Procedure

1 Connect a browser to the application server, for example using the URL of the plug-in
manifest.

The default URL for the manifest file is https://localhost:8443/sample-ui/plugin.json.

2 Examine the certificate presented by the application server.

This step depends on the browser. In Firefox for example, you click the padlock icon next
to the URL, then select Connection secure > More information > View Certificate. The
thumbprint is the field labelled SHA-256 and the certificate can be downloaded by the PEM
(cert) link.

Note A SHA-1 fingerprint is also supported, but SHA-1 is deprecated in favor of SHA-256.

3 Save the thumbprint in a text file, or save the PEM certificate in a file with .cer suffix.

vCenter Server expects the thumbprint (fingerprint) to contain colon-separated character
pairs. As of vSphere 8.0 U3, the registration script changes unseparated or space-separated
character pairs into the expected format.

What to do next

Use the application server thumbprint or PEM certificate when you register the plug-in with
vCenter Server.

Register the vSphere Client Remote Plug-in Sample

Before you can view the remote plug-in sample in the vSphere Client, you must register
it with a vCenter Server instance to which you want to connect. The vSphere Client SDK
contains a vCenter Server plug-in registration tool that registers a plug-in with a vCenter Server
ExtensionManager.

You have installed the SDK, built the sample, and are ready to run the remote plug-in.

Prerequisites

n Start the server.

n If needed, start vCenter Server.

n If needed, change permissions on the plug-in registration tool to allow execute access.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 21

n Collect the following information to prepare the registration command:

n The host name or IP address of the machine where you are running the sample plug-in
server. This address must be accessible to the vCenter Server instance so that it can
download the plug-in manifest file.

n The port number where the plug-in server receives HTTPS requests. The sample serves
port 8443 by default. The port must be open on the firewall of your development
machine and accessible to the vCenter Server.

n The host name or IP address of the vCenter Server where you want to register the
remote plug-in sample.

n The username and password of a vSphere user who has permission to access the
ExtensionManager on the vCenter Server where you want to register the remote
plug-in sample. For example, administrator@vsphere.local normally has the necessary

Extension.Register permission.

n The SHA-256 thumbprint or SSL certificate of the plug-in server, so that vCenter Server
can retrieve the plug-in manifest file. With a certificate, check that the host name in the
plug-in server certificate is specified according to subjectAltName extension (RFC 2818,
Section 3.1 Server Identity).

Note vCenter Server expects the thumbprint (fingerprint) to contain colon-separated
character pairs. As of vSphere 8.0 U3, the registration script changes unseparated or
space-separated character pairs into the expected format.

n The version number of the remote plug-in sample.

n The key of the remote plug-in sample, defined in the plug-in manifest, plugin.name by

default.

n Path from plug-in web server root to the plug-in manifest file, /sample-ui/plugin.json by

default.

n Location of JSON files for taskList, faultList, privilegeList, and resourceList.

For more information about the registration tool, see vSphere Client Plug-in Registration Tool.

Procedure

1 In a command terminal or shell, change directory to the prebuilt folder, which contains an

extension-registration.bat script for Windows, and an extension-registration.sh
script for Unix or Linux.

cd html-client-sdk/tools/*plugin*/prebuilt

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 22

2 Run the extension-registration script appropriate for your operating system, specifying the
prerequisite parameters.

For a Unix or Linux shell, use this syntax:

path2json=../../../samples/remote-plugin-sample/registration/resources
./extension-registration.sh -action registerPlugin -remote \
-url https://myvcenter/sdk \
-username administrator@vsphere.local -password 'mysecret' \
-key com.vmware.sample.remote -version 1.0.0 \
-pluginUrl https://mydevbox:8443/sample-ui/plugin.json \
-serverThumbprint 19:FD:2B:0E:62:5E:0E:10:FF:24:34:7A:81:F1:D5:33:\
19:A7:22:A0:DA:33:27:07:90:0F:8E:8D:72:F1:BD:F1 \
-serverCertificateFile /tmp/plugin-server.cer \
-c 'Example, Inc.' -n 'Remote Plug-in' -s 'This is a sample plug-in' \
--faultList $path2json/faultList.json --privilegeList $path2json/privilegeList.json \
--resourceList $path2json/resourceList.json --taskList $path2json/taskList.json

For a DOS command shell, use this syntax:

set path2json=..\..\..\samples\remote-plugin-sample\registration\resources
.\extension-registration.bat -action registerPlugin -remote ^
-url https://myvcenter/sdk ^
-username administrator@vsphere.local -password "mysecret" ^
-key com.vmware.sample.remote -version 1.0.0 ^
-pluginUrl https://mydevbox:8443/sample-ui/plugin.json ^
-serverThumbprint 19:FD:2B:0E:62:5E:0E:10:FF:24:34:7A:81:F1:D5:33:^
19:A7:22:A0:DA:33:27:07:90:0F:8E:8D:72:F1:BD:F1 ^
-serverCertificateFile C:\plugin-server.cer ^
-c "Example, Inc." -n "Remote Plug-in" -s "This is a sample plug-in" ^
--faultList %path2json%\faultList.json --privilegeList %path2json%\privilegeList.json ^
--resourceList %path2json%\resourceList.json --taskList %path2json%\taskList.json

For a PowerShell prompt, use this syntax:

Set-Variable path2json ..\..\..\samples\remote-plugin-sample\registration\resources
.\extension-registration.bat -action registerPlugin -remote `
-url https://myvcenter/sdk `
-username administrator@vsphere.local -password 'mysecret' `
-key com.vmware.sample.remote -version 1.0.0 `
-pluginUrl https://mydevbox:8443/sample-ui/plugin.json `
-serverThumbprint 19:FD:2B:0E:62:5E:0E:10:FF:24:34:7A:81:F1:D5:33:`
19:A7:22:A0:DA:33:27:07:90:0F:8E:8D:72:F1:BD:F1 `
-serverCertificateFile C:\plugin-server.cer `
-c 'Example, Inc.' -n 'Remote Plug-in' -s 'This is a sample plug-in' `
--faultList $path2json\faultList.json --privilegeList $path2json\privilegeList.json `
--resourceList $path2json\resourceList.json --taskList $path2json\taskList.json

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 23

If a password contains special characters, use appropriate escape sequences for your shell.

Note When registering the plug-in, it's highly recommended to provide the SSL certificate
of the plug-in server in addition to the thumbprint of the SSL certificate of the plug-in server.
Performing a full SSL certificate check during SSL handshake is more secure than performing
an SSL certificate thumbprint check. Furthermore, in future vSphere releases, support for SSL
certificate thumbprints will be dropped and full SSL certificates will be required.

Results

The registration script displays a message that the plug-in is "successfully registered in vCenter."

An Extension record is added in the ExtensionManager of the vCenter Server instance.

What to do next

In a web browser, connect to the vCenter Server URL and verify that the remote plug-in displays
a Global View.

Viewing the vSphere Client Remote Plug-in Sample

After you build and register the remote plug-in sample, you can view it in the vSphere Client.

To view the remote plug-in sample, you must run the plug-in server and register it with the
vCenter Server instance to which you connect your browser and run the vSphere Client.

To view the plug-in user interface, open a browser window and connect to the vCenter Server
instance where you registered the plug-in. Use the fully qualified domain name of the vCenter
Server to match the server certificate. From the welcome screen you can launch the vSphere
Client.

Figure 1-2. vCenter Server Welcome Screen

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 24

After you select LAUNCH VSPHERE CLIENT and authenticate with vCenter Server, the vSphere
Client displays the home page with an SDK Remote Plugin link in the object navigator pane on
the left. The link leads to the remote plug-in global view.

The plug-in global view includes the following subviews:

n A welcome page is the default page for the global view.

n A settings page allows you to change the number of items displayed in the Chassis List page.

n A Chassis List page displays summary information about the Chassis objects currently in the
store. The Chassis store is initialized with several random Chassis objects for display. On the
Chassis List page you can do the following actions:

n Edit the Chassis object properties in a modal dialog.

n Display related Host objects.

n Display the Monitor subview or the Configure subview.

The code that supports these actions demonstrates how to use a modal dialog, how to create,
delete, and update Chassis objects, and how to make calls to the plug-in server and the vCenter
Server. The following illustrations show some of the features of the global view.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 25

Figure 1-3. Selecting the Sample Plug-in Global View in the Navigation Pane

The Global View extension point is specified by the following lines from the manifest file,
plugin.json:

"global": {
 "view": {
 "navigationId": "entrypoint",
 "uri": "index.html#/entry-point",
 "navigationVisible": false
 }
}

The Global View content is specified in the file entry.point.component.html.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 26

Figure 1-4. Sample Plug-in Global View Welcome Page

Figure 1-5. Sample Plug-in Global View Chassis List Page

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 27

Figure 1-6. Sample Plug-in Edit Chassis Dialog

Figure 1-7. Sample Plug-in Chassis with Related Host

In addition to the global view and its subviews, the remote plug-in sample provides views that
show how to extend the vSphere VirtualMachine object. It also shows the use of a card within the
Summary view.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 28

Figure 1-8. Card Extending the VirtualMachine Summary View

The VirtualMachine Summary View extension point is specified by the following lines from the
manifest file, plugin.json:

"objects": {
 "VirtualMachine": {
 "summary": {
 "view": {
 "uri": "index.html#/vm-card",
 }
 },
 ...
 }
}

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 29

Figure 1-9. Extending the VirtualMachine Monitor View

The VirtualMachine Monitor View extension point is specified by the following lines from the
manifest file, plugin.json:

"objects": {
 "VirtualMachine": {
 ...
 "monitor": {
 "views": {
 "navigationId": "vmMonitor",
 "labelKey": "vm.monitor.view.title",
 "uri": "index.html#/vm-monitor",
 }
 }
 }
}

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 30

Figure 1-10. Extending the VirtualMachine Configure View

The VirtualMachine Configure View extension point is specified by the following lines from the
manifest file, plugin.json:

"objects": {
 "VirtualMachine": {
 "configure": {
 "dynamicUri": "dynamicItems/vm/configure",
 "views": {
 "navigationId": "vmConfigureView",
 "labelKey": "vm.configure.view.title",
 "uri": "index.html#vm-congfigure",
 "dynamic": true
 }
 }
 }
}

Note The Configure View is dynamic, which means that its appearance is conditional. For more
information about dynamic views, see Chapter 6 Dynamic Extensions for Remote Plug-ins.

The remote plug-in sample shows how to add an action item to a context menu for a
VirtualMachine object. You can see how this appears in the following illustration.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 31

Figure 1-11. Action Added to VirtualMachine Context Menu

The VirtualMachine context menu extension point is specified by the following lines from the
manifest file, plugin.json:

"objects": {
 "VirtualMachine": {
 "menu": {
 "dynamicUri": "dynamicItems/vm/actions",
 "actions": {
 "labelKey": "RemoteSample:vm.action.label",

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 32

 "icon": {
 "name": "action-vm"
 },
 "trigger": {
 "type"; "modal",
 "uri": "index.html#/vm-action-modal",
 "titleKey": "vm.action.model.title",
 "size": {
 "width": 600,
 "height": 205
 }
 },
 "acceptMultipleTargets": true,
 "dynamic": true
 }
 }
 }
}

The remote plug-in sample displays a HostSystem Summary view and a HostSystem Monitor
view also. The Summary view shows the number of related Chassis objects. You click the number
to reach the Monitor view. The Monitor view displays a datagrid listing all available Chassis
objects. To create a relation between a HostSystem and a Chassis object, select the check box
beside the Chassis object and click Update.

Figure 1-12. Card Extending the HostSystem Summary View

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 33

The HostSystem Summary View extension point is specified by the following lines from the
manifest file, plugin.json:

"objects": {
 "HostSystem": {
 "summary": {
 "view": {
 "uri": "index.html#/host-card"
 }
 }
 }
}

Figure 1-13. Extending the HostSystem Monitor View

The HostSystem Monitor View extension point is specified by the following lines from the
manifest file, plugin.json:

"objects": {
 "HostSystem": {
 "monitor": {
 "views": [

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 34

 {
 "navigationId": "hostMonitor",
 "labelKey": "host.monitor.view.title",
 "uri": "index.html#/host-monitor"
 }
]
 }
 }
}

Remote Plug-in Sample Directory Structure

The remote plug-in sample code is organized as a Maven project. You can locate certain
important files in the project as follows.

Top-Level Directory

Figure 1-14. Remote Plug-in Sample Top-Level Directory

The top-level directory, remote-plugin-sample, is located within the html-client-sdk/
samples directory of the SDK zip file.

n The libs subdirectory contains the external library vim25.jar, which must be installed as a

local dependency during the project build and deploy process. The library allows access to
vSphere managed objects. In vSphere 8.0 U2 the vim25.jar library was deleted from the

Client SDK, so developers who don't have it must find it in the vSphere Management SDK.

n Nested inside the src directory you can find a java directory, which contains Java source

files for the sample plug-in server, at java/com/vmware/sample/remote/*.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 35

n Also nested inside the src directory you can find a ui directory, which contains source code

for the sample plug-in UI, at ui/src/app/{model, service, views}/*.

n To build the project, use the pom.xml file in the top-level directory of the remote plug-in

sample, html-client-sdk/samples/remote-plugin-sample/pom.xml.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 36

Remote Plug-in Architecture in
the vSphere Client 2
The vSphere Client remote plug-in architecture is designed to integrate plug-in functionality into
the vSphere Client without the need to run inside vCenter Server. This provides plug-in isolation
and enables scale-out of plug-ins that operate in large vSphere environments. The remote plug-in
architecture provides the following benefits:

n Your plug-in is protected from interference by unstable or compromised plug-ins loaded in
the same vSphere Client.

n An incompatible plug-in does not interfere with vCenter Server operation.

n Plug-in compatibility is robust across vCenter Server upgrades.

n You can deploy a number of plug-in versions within the same vSphere environment. Your
remote plug-in user interface needs to communicate with only a single back-end server.

n The topology of deployed plug-ins is well defined and easy to troubleshoot.

Read the following topics next:

n Components of the vSphere Client Architecture

n vCenter Server Configurations

n Communication Paths in Remote Plug-in Architecture

n Communications Among UI Components in the vSphere Client

n Client-Server Communications with Remote Plug-ins

n Security Concepts for Remote Plug-ins

Components of the vSphere Client Architecture

The vSphere Client architecture enables administrators to manage vSphere environments of
varying scale and complexity with a single user interface. It supports environments ranging from
a single vCenter Server to a number of vCenter Server instances in Enhanced Linked Mode or
Hybrid Linked Mode.

The user interface component runs in a browser, managing and displaying HTML5 views. It
communicates with the vsphere-ui service, requesting HTML and Javascript files with vSphere
inventory data, authenticating as needed. The user interface also manages a sandbox for each
active plug-in and provides client library services to the plug-in user interface.

VMware by Broadcom 37

The vsphere-ui service is an OSGi Java application server that runs on every vCenter Server
node. The vsphere-ui service communicates with all of the services provided by vCenter Server
by using a variety of API styles and protocols. The vsphere-ui service maintains an authenticated
session connection as a client of each of the services.

The vsphere-ui service also provides REST and Web Sockets APIs to the vSphere Client user
interface running in the browser. The service supports authentication for users of the vSphere
Client by redirecting the browser to a login user interface provided by the VMware vCenter
Single Sign-on service.

vCenter Server Configurations

Remote plug-ins can operate in linked mode configurations of vCenter Server as well as in single
vCenter Server instances. Illustrations in this chapter show the components and communication
paths for both kinds of configuration.

The following illustration shows a single vCenter Server communicating with a web browser.

Figure 2-1. vCenter Server and Web Browser Communicatiions

vSphere UI

Browser

Static
Resources

Loaded

Static
Resources
Loaded

REST Others
SOAP

REST
APIs

Web
SocketsHTTPS

HTTPS

WS-Trust

Redirected to

VMware-STSD
Service

PSC
Services

Platform Services
Controller

RHTTP Proxy

vsphere-ui
Service

vCenter
Services

vCenter 0
Data Center

WEBSSO UI

In a linked mode configuration, the vsphere-ui service handles delegation of requests to the
linked vCenter Server instances, using the same protocols that it uses when communicating with
its own services..

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 38

Communication Paths in Remote Plug-in Architecture

This diagram shows some of the communication paths between a plug-in, its user interface, and
the vCenter Server to which the user interface is connected.

On the front end, the vsphere-ui service downloads and parses the plug-in manifest and serves
UI components to the browser, including references to plug-in components, which are served by
the plug-in server. These paths use simple HTTPS communications.

The back-end communication paths between the plug-in server and the vCenter Server Web
Services API use SOAP messages over HTTPS. These communications are described in more
detail in Communication Paths for Authentication in the Remote Plug-in Server.

Figure 2-2. A Simplified View of Remote Plug-in Architecture

static resources
HTML, CSS, JS

vSphere Client UI

vsphere-ui service

vCenter Server

Browser

Extension
Manager

Other Managed
Objects

Web Services API

static resources
HTML, CSS, JS

Plug-in Server

Plug-in UI

Manifest File

Business Logic6

1

3

2 4 5

The circled numbers identify the following data paths:

1. The remote plug-in installer registers the plug-in manifest file with the vCenter Server Extension
Manager, by using the Web Services API.

2. A web browser downloads user interface elements of the vSphere Client from the vsphere-ui
service in vCenter Server.

3. The vsphere-ui service downloads and parses the plug-in manifest file to determine where the
plug-in extends the user interface.

4. The browser downloads user interface elements of the plug-in from the plug-in server.

5. The plug-in user interface requests data from the plug-in server.

6. The plug-in server uses the Web Services API to interact with vCenter Server.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 39

Communications Among UI Components in the vSphere
Client

The vSphere Client user interface loads both its own components and the components belonging
to the plug-in user interface. The vsphere-ui service reads the plug-in manifest file to determine
where it should insert plug-in components in the user interface.

The user interface components loaded in the browser are organized as shown in the following
diagram.

Figure 2-3. User Interface with a Sandboxed Plug-in

vSphere UI Plug-in
Sandbox

Client
Library

Plug-in
UI

Browser

1 2 3

Plug-in IFrame

Paths:

1 Internal JavaScript methods

2 window.postMessage() method in browser

3 Public JavaScript methods

The plug-in user interface operates within its own iFrame, isolated from other plug-ins. The plug-
in loads a copy of the vSphere Client JavaScript API client library, which is its sole connection to
other client code. The plug-in code communicates with the client library code using JavaScript
method calls.

The client library communicates with the sandbox component that the vSphere Client provides
to interface with the plug-in UI components. The communication with the sandbox uses the
browser's window.postMessage() API. This makes it possible for the iFrame and its parent window

to be loaded from different origins.

Note In the vSphere 6.7 Update 1 release of the vSphere Client, the iFrame and its parent
window share the same origin. Do not depend on this to remain the same in future releases. In
cloud environments, the iFrame is loaded from a secondary host.

The plug-in sandbox communicates with other components of the vSphere Client user interface
by using internal Javascript APIs.

If the vSphere Client has more than one plug-in active, each plug-in is allocated its own sandbox,
and operates within its own iFrame, as shown in the following illustration.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 40

Figure 2-4. User Interface with Two Plug-ins in Separate Sandboxes

vSphere UI

Plug-in
Sandbox

Client
Library

Plug-in
UI

Browser

1 2 3

Plug-in IFrame

Plug-in
Sandbox

Client
Library

Plug-in
UI

1

2 3

Plug-in IFrame

Paths:

1 Internal JavaScript methods

2 window.postMessage() method in browser

3 Public JavaScript methods

In this case, each plug-in UI communicates with its own back-end server.

Client-Server Communications with Remote Plug-ins

Client requests to back-end services are handled in a similar way for plug-in user interface
components and vSphere Client user interface components.

A plug-in sandbox runs outside the plug-in iFrame. The sandbox component, along with the rest
of the vSphere Client user interface components, sends requests to the vsphere-ui service of
the vCenter Server instance that the browser connected to. Service requests use REST and Web
sockets over HTTPS. All requests pass through the vCenter Server reverse proxy, which routes
them to the correct server components.

A plug-in user interface sends service requests to the plug-in back end, using any RPC style on
top of the HTTPS transport protocol. All requests pass through the vCenter Server reverse proxy,
which routes them to the plug-in server. The proxy routing is configured at the time the plug-in
is installed; it simplifies dealing with self-signed certificates, and avoids problems with cross-origin
resource access.

Security Concepts for Remote Plug-ins

Remote plug-ins typically use the HTTP protocol as a transport for requests, whether using REST
or SOAP requests. Authentication methods vary, depending on the target endpoint.

Client-side sessions with REST endpoints are tracked with a session token passed in a custom
HTTP header named webClientSessionId. Server-side sessions with SOAP endpoints are tracked

with a cookie-based session ID.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 41

A plug-in developer can choose what form of authentication suits the plug-in server component.
A best practice is to authenticate by using the session token that the plug-in user interface can
get from the client library.

To use the client-side session token, the plug-in server sends the token to a specific REST
endpoint of the vsphere-ui service. The vsphere-ui service verifies the authenticating token, and
then returns a session clone ticket. The plug-in server uses the clone ticket with the vSphere Web
Services API to obtain a SOAP session. The authentication process is described in more detail in
Chapter 10 Advanced Considerations for Remote Plug-in Servers.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 42

Creating a Remote Plug-in for the
vSphere Client 3
This chapter outlines how to create your own remote plug-in for the vSphere Client. The goal is
to illustrate the entire process using simple components. Other chapters deal with some of the
steps in more detail.

To create a remote plug-in, you need both front-end components and back-end components.
The front-end components constitute a user interface based on HTML 5. The back-end
components include a web server and business logic in support of the front end.

For the front end of your plug-in, you can choose any JavaScript-compatible language. The
Remote Plug-in Sample in the vSphere Client SDK uses Angular and Clarity. A best practice is to
use Clarity elements to harmonize with the look and feel of the vSphere Client.

For the back end, you can choose any language and any web server. The SDK samples are
written in Java and built with Maven, but there is no restriction on the language or tools that
you use for back-end development. The SDK samples use Tomcat as a web server because it is
bundled with Spring.

Read the following topics next:

n Code Components for a vSphere Client Remote Plug-in

n Deployment Requirements for a vSphere Client Remote Plug-in

n Using Auxiliary Plug-in Servers

n vSphere Client Plug-in Registration Tool

n Sample Manifest File for a Remote Plug-in

Code Components for a vSphere Client Remote Plug-in

A remote plug-in for the vSphere Client includes several code components that you create.

To create code for a complete plug-in, you must do the following:

n Choose the extension points where your user interface views will extend the vSphere Client.

n Create front-end views that provide the user interfaces for data access.

n Create back-end controllers that interface between services and user interface views.

n Create models for your logical data objects.

VMware by Broadcom 43

n Create back-end services that translate between data models and the objects in storage that
back the models.

n Import vim25.jar, which as of vSphere 8.0 U2 is available only in the vSphere Management

SDK, to access the Web Services SDK. The vim25 library provides RPC access to the

PropertyCollector, used to retrieve properties of vCenter Server managed objects.

Deployment Requirements for a vSphere Client Remote
Plug-in

To prepare a remote plug-in for deployment, you must prepare at least one file and launch one
or more processes. The simplest plug-in can be implemented with a single back-end server and a
plug-in manifest file that describes the extension views and other details about the plug-in.

Deployment of a remote plug-in takes place at run time, but you must make preparations in
advance. You need to do the following to prepare for plug-in deployment:

n Run a web server that provides plug-in components on demand.

n Run your plug-in server binary. The plug-in server runs on a virtual or physical machine of
your choice, but it must be the same machine as the web server.

n Prepare a plug-in manifest file, plugin.json, that specifies the plug-in components. See also

Sample Manifest File for a Remote Plug-in The manifest file must be accessible by HTTPS, on
the same machine as the web server.

n Register your plug-in with a vCenter Server instance. You can register either by using the
registration script in the SDK or by writing your own registration tool. In either case, you need
the URL and credentials to access the vCenter Server instance. You also need the security
certificate or thumbprint of your plug-in manifest server, and the URL of your plug-in manifest
file. The connection should be secure HTTP (HTTPS).

Note For production installations, a best practice is to create a registration tool that does not
expose vCenter Server credentials on the command line.

Note When registering the plug-in, it's highly recommended to provide the SSL certificate
of the plug-in server in addition to the thumbprint of the SSL certificate of the plug-in server.
Performing a full SSL certificate check during SSL handshake is more secure than performing
an SSL certificate thumbprint check. Furthermore, in future vSphere releases, support for SSL
certificate thumbprints will be dropped and full SSL certificates will be required.

To register a plug-in by using the script in the SDK, you use the registerPlugin function of the

extension-registration script. The script arguments are demonstrated in the following example.

./extension-registration.sh -action registerPlugin -remote \
-url https://myvcenter/sdk \
-username administrator@vsphere.local -password mysecret \
-key com.mycompany.myplugin -version 1.0.0 \
-pluginUrl https://mydevbox:8443/myplugin/plugin.json \

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 44

-serverThumbprint 19:FD:2B:0E:62:5E:0E:10:FF:24:34:7A:81:F1:D5:33:\
19:A7:22:A0:DA:33:27:07:90:0F:8E:8D:72:F1:BD:F1 \
-serverCertificateFile /tmp/plugin-server.cer \
-vCenterServerThumbprint 2A:0E:3C:1F:73:6F:1F:21:00:35:45:8B:92:02:E6:44:\
2A:B8:33:B1:EB:44:38:18:A1:10:9F:9E:83:02:CE:02 \
-c 'Example, Inc.' -n 'Remote Plug-in' -s 'This is a remote plug-in'

To register a plug-in by means of your own tool, you must create an Extension type record in

the ExtensionManager managed object. The Extension record must describe the plug-in manifest

server in two places: client[0] and server[0]. These two array entries are similar in several

properties, but have important differences:

n The client array, which has type ExtensionClientInfo[], contains the plug-in version in the

first element. This is required so that the vSphere Client can manage plug-ins correctly.

n The client array must have a type property with a value of vsphere-client-remote in the

first element.

n The server array, which has type ExtensionServerInfo[], must have a type property

with any value you choose in the first element. A best practice is to assign the value
MANIFEST_SERVER to the first element of the array, to identify the manifest server for the

plug-in.

n To support HTTPS connections, the server array must have either serverThumbprint or

serverCertificateFile or both in the first element. Property serverThumbprint takes the

value of the SHA-256 hash of the server certificate, while serverCertificateFile takes the

value of the PEM-encoded server certificate (string).

Note HTTP connections are not recommended for production use with the vSphere Client.

Both the client array and the server array must have the same value in the url property of the

first array element. The value must be the URL of the plug-in manifest server.

For information about the plug-in manifest, see Sample Manifest File for a Remote Plug-in. For
information about auxiliary plug-in processes, see Using Auxiliary Plug-in Servers. For information
about the plug-in registration script, see vSphere Client Plug-in Registration Tool.

Using Auxiliary Plug-in Servers

A remote plug-in package must include a primary server that serves the plug-in manifest file. A
plug-in can also include auxiliary servers that serve other plug-in resources.

Plug-in packages must be downloaded with secure HTTP (HTTPS) protocol.

You might want to design a plug-in with auxiliary servers for several reasons:

n To provide load balancing

n To separate performance tiers

n To manage security risks

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 45

n To localize database access

n To take advantage of different coding languages or frameworks

n To facilitate re-implementation

For more information about auxiliary servers, see Chapter 10 Advanced Considerations for
Remote Plug-in Servers.

vSphere Client Plug-in Registration Tool

The vSphere Client SDK contains a plug-in registration tool that manages plug-in extension
registration records in the vCenter Server ExtensionManager. The tool registers, unregisters, and
updates the registration record of a plug-in.

Plug-in Registration Script

To register a plug-in, use this registration script in the SDK. It's a wrapper for a Java tool, which
opens a session with a vCenter Server instance using the VMware Web Services API.

tools/vCenter plugin registration/prebuilt/extension-registration.sh

Plug-in Registration Script Syntax

The arguments of the registration script function as follows:

n -action (required) can be one of:

n registerPlugin

n updatePlugin

n unregisterPlugin

n isPluginRegistered

n -c or -company is the name of the plug-in vendor.

n -insecure bypasses security checks on the vCenter Server certificate. This is not

recommended for a production environment.

n -k or -key (required) is an identification string for the plug-in. The plug-in registration record

in the vCenter Server ExtensionManager contains this identification.

n -local (default) is used to register or update a local plug-in. See also -remote.

n -n or -name is a user-friendly identification string for the plug-in.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 46

n -p or -password (required) authenticates the vCenter Server user account. See also

-username.

n -ps or -pluginServers is a string that contains a JSON array of objects that specify

endpoints for auxiliary services belonging to the plug-in. Each endpoint object must contain
a url property to enable connections to the endpoint. The scheme must specify HTTP or

HTTPS as the protocol. To support HTTPS connections to an endpoint, at least one of the
fields serverThumbprint or serverCertificateFile must be set in the endpoint object. HTTP

connections are not recommended for production use with the vSphere Client. The type
property, required for auxiliary servers, is a service registration identifier string by which the
plug-in front end can discover a needed endpoint.

Choice and optional properties that can also be present in the object are:

n serverThumbprint is the thumbprint (fingerprint) of the auxiliary server's SSL certificate.

See constraints for the -st argument below.

n serverCertificateFile is the path of the auxiliary server's SSL certificate on the local

filesystem. See constraints for the -scf argument below. The certificate of the auxiliary

server must contain the host name specified according to subjectAltName extension (RFC
2818, Section 3.1 Server Identity).

n label (not currently used)

n summary is a brief description of the auxiliary server.

n company is the name of the plug-in server vendor.

n adminEmail

n -pu or -pluginUrl (required to register a plug-in) is the URL of the plug-in manifest served

by the plug-in back end. The scheme must specify HTTP or HTTPS as the protocol. The path
segment of the -pluginUrl must be specified relative to the directory where you run the

plug-in server. **

n -remote (required for a remote plug-in) is used to register or update a remote plug-in. See

also -local.

n -s or -summary is a brief description of the plug-in.

n -show or -showInSolutionManager specifies that the plug-in will appear in the Solutions list

of the Administration panel.

n -st or -serverThumbprint is the SHA-256 signature of the plug-in back-end server

certificate. Character pairs should be separated by colon separators.

n -scf or -serverCertificateFile is the path on the local filesystem of the plug-in manifest

server's SSL certificate file, in PEM or DER format. The certificate of a plug-in server record
must contain the host name of the plug-in server in its subjectAltName extension as per RFC

2818, Section 3.1 Server Identity.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 47

n -u or -username (required) identifies a vCenter Server user account that has permission to

write to the vCenter Server ExtensionManager. See also -password.

n -url (required) is the URL of the /sdk resource of the vCenter Server. Use the

fully qualified domain name of the vCenter Server instance. For example: https://my-
vcsa.example.com/sdk

n -v or -version (required) identifies the plug-in version.

n -vct or --vcenterServerThumbprint supplies the certificate thumbprint for the vCenter

Server instance. You can use this in development environments when the certificate is self-
signed or otherwise not recognized by the browser.

n -eventList - path to the event list JSON file, relative to the file system root of the manifest

server. The file should contain a JSON formatted array of event infos. Each object in the
array must specify the eventId of the event. In addition, an optional XML descriptor for the
EventType can be specified.

n -faultList - path to the fault list JSON file, relative to the file system root of the manifest

server. The file should contain a JSON formatted array of fault infos. Each object in the array
must specify the faultId of the fault.

n -privilegeList - path to the privilege list JSON file, relative to the file system root of the

manifest server. The file should contain a JSON formatted array of privilege group objects.
Each object in the array must specify the groupId of the privilege group and the privileges in
that group. Each object in the privileges array must specify an privilegeId of the privilege.

n -resourceList - path to the resource list JSON file, relative to the file system root of the

manifest server. The file should contain a JSON formatted object, where the keys are locales
(for example 'en', 'fr', 'de' ..) and the values are objects with a key to be localized and the
value is the localizable message.

n -taskList - path to the tasks list JSON file, relative to the file system root of the manifest

server. The file should contain a JSON formatted array of task infos. Each object in the array
must specify the taskId of the task.

** To support HTTPS connections to the plug-in manifest server, at least one of the fields
serverThumbprint or serverCertificateFile must be set in the endpoint object. Insecure HTTP

connections are not recommended for production use with the vSphere Client.

Note When registering a plug-in, it's highly recommended to provide SSL certificates of the
plug-in servers in addition to the thumbprints of the SSL certificates of the plug-in servers.
Performing a full SSL certificate check during SSL handshake is more secure than performing
an SSL certificate thumbprint check. Furthermore, in future vSphere releases, support for SSL
certificate thumbprints will be dropped and full SSL certificates will be required.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 48

Sample Manifest File for a Remote Plug-in

The following sample manifest file contains the minimum elements required for a simple plug-in.

{
 "manifestVersion" : "1.0.0",
 "requirements": {
 "plugin.api.version": "1.0.0"
 },
 "configuration": {
 "nameKey": "plugin.name",
 "icon": {
 "name": "main"
 }
 },
 "definitions": {
 "i18n": {
 "locales": ["en-US"],
 "definitions": {
 "plugin.name": {
 "en-US": "Hello World"
 }
 }
 }
 },
 "global": {
 "view": {
 "uri": "index.html"
 }
 }
}

Note The URIs specified in the manifest file are relative to the location of the manifest file itself.
That is, the directory containing plugin.json should be considered the server root directory for

plug-in resources.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 49

Deploying Remote Plug-ins for the
vSphere Client 4
A remote plug-in must be deployed by the vSphere Client before it can be used. Deployment
is the process of preparing components of vCenter Server to accept communications from the
plug-in and to display plug-in views in the browser. Developers have a choice of deployment
topologies, as explained later in this chapter.

Read the following topics next:

n Remote Plug-in Life Cycle

n Remote Plug-in Deployment

n Plug-In Caching

n Remote Plugin Uninstallation

n Redeploying Plug-ins During Development

n Specifying Remote Plug-in Compatibility

n Remote Plug-in Topologies

Remote Plug-in Life Cycle

Remote plug-in content becomes visible in the vSphere Client after you prepare and register the
plug-in with a vCenter Server instance.

The plug-in displays when you connect a browser to the vSphere Client URL of a vCenter Server
instance, or of a vCenter Server linked to the instance where the plug-in is registered, and log in.

A remote plug-in has the following life cycle stages:

Build

The plug-in developer assembles necessary resources and builds the package(s) to
implement the remote plug-in.

Run

The plug-in developer starts the plug-in manifest server.

Registration

VMware by Broadcom 50

The plug-in developer registers the plug-in as a vCenter Server extension, using the
ExtensionManager managed object of the vCenter Server instance.

Discovery

A vCenter Server instance discovers a new plug-in registration, or a new version registration.

Deployment

A vCenter Server instance downloads the plug-in manifest file, verifies certification and
compatibility, and configures its reverse proxy to route server requests.

Use

The browser downloads plug-in resources from a back-end server into an iFrame of the
vSphere Client user interface, and the plug-in user interface operates in conjunction with the
back-end server or servers.

Uninstallation

The developer unregisters the plug-in, and all linked vCenter Server instances delete the
routing configuration.

Remote Plug-in Deployment

When the vSphere Client discovers a remote plug-in, it schedules the plugin for deployment.
vCenter Server takes the following steps to deploy a remote plug-in in the vSphere Client:

n Download the remote plug-in manifest, plugin.json, from the location specified in the

ClientInfo property registered in the ExtensionManager. When you use the extension-

registration script provided in the SDK this is the value of the -pu or -pluginUrl argument.

vCenter Server downloads your plug-in manifest into /etc/vmware/vsphere-ui/vc-packages/
vsphere-client-serenity/your_plugin_name-your_plugin_version.

n Parse the plug-in manifest to determine whether its specified version and environment are
compatible with deployment on this vCenter Server instance.

n Parse the plug-in manifest to determine what views will be shown in the user interface, and
add them to an internal extension point table.

n Configure the vCenter Server reverse HTTP proxy to route plug-in UI traffic to the remote
plug-in server or servers.

After these steps complete successfully, the vSphere Client user interface displays a notification
that the remote plug-in is installed.

Plug-In Caching

When the vSphere Client installs a plug-in, it downloads the plug-in manifest file and caches it.
The cached copy is re-used whenever the vsphere-ui process restarts.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 51

After a plug-in has been unregistered, the vsphere-ui service detects the change immediately.
The cached copy of the plug-in manifest is deleted from the cache.

When a plug-in is upgraded, the vsphere-ui service detects the change as soon as the plug-in
registration entry is updated with a new version number. At that time, the old plug-in version
is undeployed, the cached copy of the manifest is removed, and the new plug-in version is
deployed.

If plug-in resources are upgraded without changing the version number, such as when
developing a plug-in, the vsphere-ui service does not detect the change. To deploy plug-in
changes during development, use pluginDeveloperMode to enable the Redeploy button in the

user interface. For more information, see Redeploying Plug-ins During Development.

Remote Plugin Uninstallation

Unregistering a plug-in package from vCenter Server causes the vSphere Client service to delete
the plug-in from the environment. A vCenter Server instance notifies all linked vCenter Server
instances as soon as the plug-in is unregistered. The linked vCenter Server instances undeploy
the plug-in, by using the following steps:

n Delete the plug-in from internal extension point tables.

n Delete the plug-in's reverse proxy routing rules.

n Delete the plug-in's manifest from cache.

While the process of uninstallation takes place, the vSphere Client UI does not wait for the
process to complete. You might need to refresh the browser window after the vSphere Client
displays a notification that the uninstallation is complete.

Redeploying Plug-ins During Development

The vSphere Client service discovers new remote plug-ins as soon as they are registered with
any linked vCenter Server instance. Some later changes to the registration record can cause
redeployment of the plug-in. To bypass the need to change the registration record during plug-in
development, you can trigger redeployment of plug-in changes by using the Redeploy feature.

When you are developing and testing a plug-in, you can trigger redeployment frequently by
using the Redeploy button, without the need to make changes to the extension registration

record. After the Redeploy button is enabled, it is visible in the Client Plug-Ins window, where

it applies to any selected plug-in. The button causes vCenter Server to undeploy the selected
plug-in, and then deploy it again based on the same registration record.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 52

Figure 4-1. Redeploy feature in Plugin Developer Mode

To enable the Redeploy button, set pluginDeveloperMode by appending the query parameter

pluginDeveloperMode=true to any URL loaded into the browser window. For example, the URL

could be the following:

https://vcenter-server-fqdn/ui/?pluginDeveloperMode=true

When you set pluginDeveloperMode, it remains in effect until you browse to a URL that contains

the query parameter pluginDeveloperMode=false, or until you refresh the browser window while

the browser address field does not include pluginDeveloperMode=true.

Note The Redeploy button requires the Plugin.Management privilege, which is available by

default to all users who have the Administrator role.

Specifying Remote Plug-in Compatibility

The vSphere Client provides a way to specify compatibility between remote plug-ins and vCenter
Server versions, and also compatibility with public cloud and private cloud environments.

When a remote plug-in is registered with a vCenter Server instance, each linked instance is
notified. Each notified instance responds by checking compatibility constraints specified in the
plug-in manifest. The constraints determine whether the notified instance will involve the plug-in
in future requests that access vSphere resources on the registration instance.

Each notified instance must satisfy client constraints, and the registration instance must satisfy
server constraints, to enable plug-in traffic. If both sides meet the constraint conditions, the
notified instance deploys the plug-in for future connections to the registration instance.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 53

Deployment includes configuring extension point metadata to deploy plug-in views in the
vSphere Client user interface, and setting proxy rules to forward view requests to the plug-in
server. This applies to views that access vSphere resources that the vCenter Server manages.

In the plug-in manifest file you can specify two points of control for plug-in compatibility. First,
you can control whether any vCenter Server instance is compatible with the plug-in's user
interface views. You specify this with the vsphere.client property. Second, you can control

whether the plug-in is compatible with a vCenter Server instance where it is registered. You
specify this with the vcenter.server property.

For example, if your plug-in is compatible with only an on-premises vCenter Server, you should
specify that limitation in the vcenter.server object in the manifest. If the plug-in is registered

in a cloud environment by mistake, vsphere-ui will refuse to deploy it. Or if your plug-in is
incompatible with vSphere Client versions before 8.0, you should specify a minimum version of
8.0 in the vsphere.client manifest object. If a user connects to an earlier version vCenter Server,

the client refuses to display any view served by the plug-in.

To specify compatibility constraints, modify the requirements object in the remote plug-in

manifest file. The following nested objects are available to specify compatibility:

n vcenter.server

Use this object to specify environments and versions of vCenter Server on which the plug-in
can be deployed. You can specify these properties:

n environments

A specifier array for vCenter Servers. If property environments is specified in object

vcenter.server, the plug-in can only be deployed there. If this property is absent, the

plug-in can be deployed from any vCenter Server it is registered with. Legal values:

n onprem

n cloud

n version

A string containing a version or range of versions for vCenter Server instances where the
plug-in can be registered and deployed. Legal formats:

n version = a single compatible version string

n [version, version] = an inclusive range of compatible versions

n (version, version) = an exclusive range of compatible versions

n [version,) = a minimum version

n (, version) = all prior versions

where version is an integer or a series of dot-separated integers: n[.n[.n[.n]]]

Although bracket and parenthesis look unmatched, "[" is inclusive and "(" is exclusive. For
example [8.0, 9.0) means everything from 8.0 up to but not including 9.0.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 54

A best practice is to specify the form [version, version) to indicate compatibility that begins at

one major release and includes all minor releases up to, but not including, the next major release.

The version property in this context applies to a vCenter Server instance with which a remote

plug-in is registered. If a version constraint is present in the vcenter.server object, vsphere-ui
processes in all linked vCenter Server instances will verify that the registration instance satisfies
the version constraint. If it does not, vsphere-ui will not deploy the plug-in for connections to the

registration instance of vCenter Server. If the version property is absent, any vsphere-ui is free

to deploy the plug-in if other compatibility constraints are satisfied.

n vsphere.client

Use this object to specify environments and versions of vSphere Client that can display the
views served by the plug-in. When the plug-in is registered on one vCenter Server instance,
and a user connects to a second vCenter Server instance, the vsphere-ui of the second

instance will display plug-in views for resources managed by the registration instance only if
the second instance satisfies the vsphere.client compatibility requirements.

n environments

A specifier array for vCenter Servers. If property environments is specified in object

vcenter.server, the plug-in can only be deployed there. If this property is absent, the

plug-in can be deployed from any vCenter Server it is registered with. Legal values:

n onprem

n gateway

n cloud

n version

A string containing a version or range of versions for vSphere environments. If the
version property is present in the vsphere.client object, it limits the versions that can

deploy the plug-in to access resources on a vCenter Server instance where the plug-in is
registered. Legal formats are:

n version = a single compatible version string

n [version, version] = an inclusive range of compatible versions

n (version, version) = an exclusive range of compatible versions

n [version,) = a minimum version

n (, version) = all prior versions

where version is an integer or a series of dot-separated integers: n[.n[.n[.n]]]

Remote Plug-in Topologies

Enhanced linked mode (ELM) enables you to manage all linked vCenter Server instances from a
single vSphere Client connected to any one of the linked vCenter Server instances. The way that

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 55

the vSphere Client visualizes the vSphere resources on a vCenter Server instance depends on the
set of remote plug-ins installed on that instance. The topology of remote plug-ins is the overall
configuration of plug-ins that determines how the vSphere Client interacts with the resources on
different vCenter Server instances.

Remote Plug-in Terminology

The following terms are useful to understand concepts in this chapter.

n Plug-in – A product that extends the vSphere user interface with additional functionality.

n Plug-in Version – The version of the plug-in specified at the time of registration.

n Plug-in Instance – A plug-in server registered with a vCenter Server instance. The plug-in
instance is defined by the plug-in product, version, and plug-in manifest URL.

n Plug-in UI – The part of the plug-in loaded inside an iFrame within the vSphere Client UI in the
browser.

n Plug-in Server – A back-end process to which the plug-in UI talks.

n Plug-in Manifest Server – The plug-in process that serves the plug-in manifest file.

n Plug-in Auxiliary Server – A plug-in process that serves some plug-in resources, but not the
manifest file.

Visibility of Remote Plug-in Views

In an Enhanced Linked Mode (ELM) environment, the vSphere Client is capable of loading views
from plug-in instances registered with any of the linked vCenter Server instances. For this
example, suppose you are working with three linked vCenter Server instances: VC1, VC2, VC3.
You register instances of plug-in A with VC1 and VC2, but not with VC3.

When you register plug-in A with VC1, and again with VC2, all three linked vCenter Server
instances discover the registrations. Assume that plug-in A has no configured version or
environment constraints, so deployment can proceed freely on all three vCenter Server
instances. Plug-in views are visible in your vSphere Client only when appropriate, as defined
by these rules:

n Global views are always present in the vSphere Client, regardless of which linked instance of
vCenter Server you connect to. A plug-in instance selector enables you to choose between
plug-in servers. For example, if you connect to VC3 you can choose between the global
views of plug-in A instances registered with VC1 and VC2.

n The visibility of an object-specific plug-in view depends on which vCenter Server instance
manages the object. When you select an object managed by a given vCenter Server instance,
you have access to object-specific views served by the plug-ins registered with that vCenter
Server instance. For example, if you connect to VC3 and select an object managed by VC1,
the vSphere Client displays the object-specific view served by plug-in A. However, if you
connect to VC1 and select an object managed by VC3, the vSphere Client does not display
the object-specific view because VC3 has no instance of plug-in A registered.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 56

n Plug-in visibility can also be limited by version differences between the plug-in and your
vSphere Client. For example, suppose you connect to VC3 and select an object managed by
VC2, but the instance of plug-in A registered with VC2 uses a new method not recognized by
the older version of the JavaScript API served by VC3. Your version of the vSphere Client is
unable to display the view served by plug-in A.

Note To avoid run-time issues with incompatible software versions, configure compatibility
constraints as described in Specifying Remote Plug-in Compatibility.

Remote Plug-in Multi-Instance Support

The remote plug-in architecture allows for multiple instances of the same remote plug-in to
be deployed within an ELM environment. Instances of a remote plug-in provide distinct server
processes that can be completely equivalent in function or can implement different versions
of the plug-in functionality. The illustrations that follow show characteristics of some possible
topologies.

For example, consider an ELM environment with three vCenter Server instances. Suppose that
the following extension registration commands are issued:

./extension-registration.sh -action registerPlugin -url https://vc1.example.com/sdk -u
"Administrator@vsphere.local" -p 'Admin!23' -c 'Example, Inc.' -n 'Remote Plugin Test'
-s 'A test plugin demonstrating plugin instances' -k com.example.remoteplugin.test
-pu "https://pluginserver1.example.com/path/to/plugin.json" -v "1.0.0" -st
plugin1_server_thumbprint -remote

./extension-registration.sh -action registerPlugin -url https://vc2.example.com/sdk -u
"Administrator@vsphere.local" -p 'Admin!23' -c 'Example, Inc.' -n 'Remote Plugin Test'
-s 'A test plugin demonstrating plugin instances' -k com.example.remoteplugin.test
-pu "https://pluginserver2.example.com/path/to/plugin.json" -v "1.0.0" -st
plugin2_server_thumbprint -remote

./extension-registration.sh -action registerPlugin -url https://vc3.example.com/sdk -u
"Administrator@vsphere.local" -p 'Admin!23' -c 'Example, Inc.' -n 'Remote Plugin Test'
-s 'A test plugin demonstrating plugin instances' -k com.example.remoteplugin.test
-pu "https://pluginserver3.example.com/path/to/plugin.json" -v "1.0.0" -st
plugin3_server_thumbprint -remote

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 57

Figure 4-2. One Plug-in instance per vCenter Server

UI

VC2 VC3VC1

Plug-in A-
instance 2

Plug-in A-
instance 3

Plug-in A-
instance 1

This topology has three instances of PluginA, such that the first plug-in server is registered with
VC1, the second is registered with VC2, and the third server is registered with VC3. These plug-in
servers are completely equivalent in function: the plug-in manifests that they host and the plug-in
specific bits they run are identical. Because each server has a different URL for its manifest file,
they are three separate instances of PluginA.

Object views will be loaded from the plug-in instance connected with the vCenter Server instance
that the object belongs to. For example, if the plug-in declares a card on the VM summary page,
then browsing VMs on VC2 will load the card from the second plug-in server, and browsing VMs
on VC3 will load the card from the third plug-in server. Calls to the plug-in back end will be routed
to the corresponding plug-in server instance.

Global views, however, will be aggregated in a single global view with an additional instance
selector component that allows the user to choose between the global views of the different
instances. A sample instance selector is shown below:

Figure 4-3. Selector for Single Plug-in Instance per vCenter Server

The instance selector shown above displays three back-end servers that represent the three
instances of PluginA with version 1.0.0. The Plugin Instance column displays the IP address or
fully qualified domain name of each plug-in instance, and the vCenter Server column displays the
vCenter Server that each plug-in instance is connected to. Switching between the items in this
drop-down will load the global view of the remote plug-in with version "1.0.0" from the specified
plug-in instance.

An alternative topology, which could be considered for a data center with lower access volume,
might configure a single shared plug-in instance like this:

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 58

./extension-registration.sh -action registerPlugin -url https://vc1.example.com/sdk -u
"Administrator@vsphere.local" -p 'Admin!23' -c 'Example, Inc.' -n 'Remote Plugin Test'
-s 'A test plugin demonstrating plugin instances' -k com.example.remoteplugin.test
-pu "https://pluginserver1.example.com/path/to/plugin.json" -v "1.0.0" -st
plugin1_server_thumbprint -remote

./extension-registration.sh -action registerPlugin -url https://vc2.example.com/sdk -u
"Administrator@vsphere.local" -p 'Admin!23' -c 'Example, Inc.' -n 'Remote Plugin Test'
-s 'A test plugin demonstrating plugin instances' -k com.example.remoteplugin.test
-pu "https://pluginserver1.example.com/path/to/plugin.json" -v "1.0.0" -st
plugin1_server_thumbprint -remote

./extension-registration.sh -action registerPlugin -url https://vc3.example.com/sdk -u
"Administrator@vsphere.local" -p 'Admin!23' -c 'Example, Inc.' -n 'Remote Plugin Test'
-s 'A test plugin demonstrating plugin instances' -k com.example.remoteplugin.test
-pu "https://pluginserver1.example.com/path/to/plugin.json" -v "1.0.0" -st
plugin1_server_thumbprint -remote

Figure 4-4. Singleton Plug-in Instance for Link Group

UI

VC2 VC3VC1

Plug-in A-
only instance

The plug-in is registered with all linked instances of vCenter Server. All registrations have the
same plug-in ID, version, and manifest URL, so this is considered a single instance. All plug-in
object specific views will be loaded from this one plug-in server. Because no other versions of the
same remote plug-in are present in the environment the global view will contain a single item that
represents the global view of the singleton instance, as shown in the following example selector:

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 59

Figure 4-5. Selector for Singleton Plug-in

With this topology, the plug-in can be upgraded to a newer version for an entire link group
by replacing a single process. However, a singleton plug-in works best in a homogenous
environment. In an environment that contain sdifferent versions of vCenter Server, the singleton
plug-in might need to handle different API versions.

Similarly, if you upgrade an instance of vCenter Server in a singleton plug-in configuration,
the plug-in could become incompatible or could fail entirely. For more flexible version support,
consider using multiple-instance topologies instead.

Differentiating Plug-in Instances

When the vSphere Client checks the vCenter Server's Extension Manager for new remote plug-
ins it also checks for new instances of a remote plug-in. If the vSphere Client finds two extension
registrations in two different vCenter Server instances such that the extension ID and extension
version are the same but the plug-in manifest URL (ExtensionClientInfo.url) is different, then these
two extensions are considered to be different instances of the same remote plug-in. If the plug-in
manifest URL is also the same for both registrations, both vCenter Server instances share the
same plug-in instance.

For example, consider an ELM environment with three vCenter Server instances. Suppose that
the following extension registration commands are issued:

./extension-registration.sh -action registerPlugin -url https://vc1.example.com/sdk -u
"Administrator@vsphere.local" -p 'Admin!23' -c 'Example, Inc.' -n 'Remote Plugin Test'
-s 'A test plugin demonstrating plugin instances' -k com.example.remoteplugin.test
-pu "https://pluginserver1.example.com/path/to/plugin.json" -v "1.0.0" -st
plugin1_server_thumbprint -remote

./extension-registration.sh -action registerPlugin -url https://vc2.example.com/sdk -u
"Administrator@vsphere.local" -p 'Admin!23' -c 'Example, Inc.' -n 'Remote Plugin Test'
-s 'A test plugin demonstrating plugin instances' -k com.example.remoteplugin.test
-pu "https://pluginserver1.example.com/path/to/plugin.json" -v "1.0.0" -st
plugin1_server_thumbprint -remote

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 60

Both VC1 and VC2 have the same plug-in manifest, and thus the same plug-in server. This is
considered to be a single plug-in instance, registered with two vCenter Server instances.

Figure 4-6. Partial Coverage by Singleton Plug-in

UI

VC2 VC3VC1

Plug-in A-
only instance

In this topology, browsers connected to VC1 or VC2 will see the same object-specific views. In a
global view context, a browser connected to any of the linked vCenter Server instances displays
a view selector that enables the user to choose a path to the plug-in server. Both VC1 and VC2
provide a proxy route to the same plug-in instance.

Now suppose that we register the following extension in VC3:

./extension-registration.sh -action registerPlugin -url https://vc3.example.com/sdk -u
"Administrator@vsphere.local" -p 'Admin!23' -c 'Example, Inc.' -n 'Remote Plugin Test'
-s 'A test plugin demonstrating plugin instances' -k com.example.remoteplugin.test
-pu "https://pluginserver2.example.com/path/to/plugin.json" -v "1.0.0" -st
plugin2_server_thumbprint -remote

The extension registered in VC3 has the same ID and version as the one registered in
VC1 and VC2 but has a different manifest URL. When the extension is registered, the
vSphere Client will detect that this is a different instance of the remote plugin with ID
com.example.remoteplugin.test, version 1.0.0. The UI will show the following behavior:

n Object-specific views declared by plug-in instance 2 (registered in VC3) will be shown for the
corresponding objects from VC3. However, the views declared by instance 1 (registered in
VC1 and VC2) will be shown for objects from VC1 and VC2.

n For global views, a single entry point in the object navigator displays a plug-in instance view
selector where the user will be able to switch between the global views supplied by either of
the two plug-in instances.

Different plug-in instances can also have different plug-in versions. For example, consider an
ELM environment with three vCenter Server instances. Suppose that the following extension
registration commands are issued:

./extension-registration.sh -action registerPlugin -url https://vc1.example.com/sdk -u
"Administrator@vsphere.local" -p 'Admin!23' -c 'Example, Inc.' -n 'Remote Plugin Test'
-s 'A test plugin demonstrating plugin instances' -k com.example.remoteplugin.test
-pu "https://pluginserver1.example.com/path/to/plugin.json" -v "1.0.0" -st
plugin1_server_thumbprint -remote

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 61

./extension-registration.sh -action registerPlugin -url https://vc2.example.com/sdk -u
"Administrator@vsphere.local" -p 'Admin!23' -c 'Example, Inc.' -n 'Remote Plugin Test'
-s 'A test plugin demonstrating plugin instances' -k com.example.remoteplugin.test
-pu "https://pluginserver1.example.com/path/to/plugin.json" -v "1.0.0" -st
plugin1_server_thumbprint -remote

./extension-registration.sh -action registerPlugin -url https://vc3.example.com/sdk -u
"Administrator@vsphere.local" -p 'Admin!23' -c 'Example, Inc.' -n 'Remote Plugin Test'
-s 'A test plugin demonstrating plugin instances' -k com.example.remoteplugin.test
-pu "https://pluginserver2.example.com/path/to/plugin.json" -v "2.0.0" -st
plugin2_server_thumbprint -remote

In this topology, VC1 and VC2 are running with a single instance of the plug-in, at version 1.0.0,
while VC3 is running with a second instance of the plug-in, at version 2.0.0.

Figure 4-7. Remote Plug-in Version Differentiation

UI

VC2 VC3VC1

Plug-in A-
instance 1

Plug-in A-
instance 2

The newer version might have support for new features, such as changes in the API. This
capability allows a plug-in to support custom features for some managed objects. It also can
help to facilitate testing and rolling upgrades.

Custom Topologies

You can design your plug-in with any topology which may be appropriate for your needs. The
following limitations apply:

n At most one remote plug-in instance with a given extension ID can be registered per vCenter
Server

n Remote plug-in registrations with different extension IDs are considered different plug-ins.

n Remote plug-in registrations with the same extension ID but different manifest file locations
are considered different instances of the same plug-in. In the case of multiple instances,
any object-specific view is loaded by the plug-in server instance that is registered with the
vCenter Server instance that manages the object. The view makes back-end calls to the
server instance that loaded it.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 62

n Remote plug-in registrations with the same extension ID and the same manifest file location
are considered a single instance. That instance serves all the vCenter Server instances with
which it is registered. Any object-specific view is loaded by the single plug-in server instance
that is registered with all the vCenter Server instances.

n Remote plug-ins with the same extension ID and different manifest file locations can also
have different versions. In that case, any object-specific view is loaded by the instance that
is registered with the vCenter Server instance that manages the object. The details of an
object-specific view might differ, depending on the version of the plug-in that is registered
with the vCenter Server instance. The view makes back-end calls to the server instance that
loaded it.

n If an object is managed by a vCenter Server instance that has no instance of the plug-in
registered, then no object-specific view is displayed for that plug-in.

n In case of multiple instances, a single global view will be displayed for the remote plug-in,
aggregating the global views of all plug-in instances, and a plug-in view selector allows for
switching between the global view content from the different instances.

Deploying Auxiliary Plug-in Servers

When you divide plug-in features between several auxiliary servers, you register each server with
a string identifier that indicates the service it provides. Any plug-in server can locate a service it
needs by using the service identifier to look up the service endpoint URL in the extension registry
record.

When vCenter Server deploys a remote plug-in, it caches the plug-in manifest and configures a
routing rule for the reverse HTTP proxy, which directs UI traffic to the manifest server process. If
the plug-in includes auxiliary servers, vCenter Server also creates rules to route UI traffic to the
auxiliary servers.

VCenter Server maintains a mapping of service identifiers to proxy URLs. Plug-in code that
runs in the browser can access that mapping by using the getPluginBackendInfo() method.

The resulting data allows the JavaScript code to determine the proxy URLs for the services it
needs. For more information about getPluginBackendInfo(), see vSphere Client JavaScript API:

Application Interface.

For more information about registerirg auxiliary plug-in servers, see Registering Auxiliary Plug-in
Servers.

Remote Plug-in Deployment Example with Simultaneous Users

After being detected, a remote plug-in will be scheduled for deployment in the vSphere Client.
The deployment of a remote plug-in, on a high level, consists of the following stages:

n vCenter Server downloads the remote plug-in manifest.

n vCenter Server parses the plug-in manifest.

n vCenter Server configures the VMware reverse HTTP proxy to route plug-in UI traffic.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 63

After these stages complete successfully, the vSphere Client UI displays a notification message
that the remote plug-in is installed.

This example shows in more detail how the deployment process works, in a situation involving
three users simultaneously accessing the data center. The initial state consists of the following:

n Three vCenter Server instances in an ELM environment: vCENTER-0, vCENTER-1, and
vCENTER-2.

n Three users are accessing the data center: Alpha, Blue, and Claire.

n Blue and Claire are already browsing the vSphere UI loaded from vCENTER-0

n Blue is looking at the summary page of VM-1 managed by vCENTER-1.

n Claire is looking at the summary page of VM-2 managed by vCENTER-2.

n Alpha is about to install a plug-in from Example Company:

VM-1 VM-2

vCenter-1

A B C

vCenter-0

vsphere-ui
vCenter-2

1 Alpha installs and configures the back-end server for the ExampleCo plug-in:

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 64

VM-1 VM-2

vCenter-1

install plugin
server

A B C

vCenter-0

vsphere-ui

‘ExampleCo’
Plugin Server

vCenter-2

1

2 Alpha registers the ExampleCo plug-in with the vCENTER-1 ExtensionManager by using

Example Company's plug-in installer:

VM-1 VM-2

vCenter-1

install plugin
server

register plugin

A B C

vCenter-0

vsphere-ui

‘ExampleCo’
Plugin Server

vCenter-2

Plugin Installer

1

2

3 The plug-in registration triggers notifications to all linked vCenter Server instances:

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 65

4 The vsphere-ui service in each vCenter Server instance downloads the plug-in manifest

JSON of the ExampleCo plug-in from the plug-in manifest URL in the extension registration

record:

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 66

VM-1 VM-2

vCenter-1

install plugin
server

register plugin

get
plugin

manifest

plugin.json

plugin.json

A B C

vCenter-0

vsphere-uivsphere-ui vsphere-ui

‘ExampleCo’
Plugin Server

vCenter-2

Plugin Installer

1

2

3

4 4 4

4

4 4

5 The vsphere-ui service in vCENTER-0 sends notifications to currently logged in vSphere Client

users (Blue and Claire). Each user sees a blue notification banner at the top of the screen:

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 67

VM-1 VM-2

vCenter-1

install plugin
server

register plugin

get
plugin

manifest

plugin.json

plugin.json

A B C

vCenter-0

vsphere-uivsphere-ui vsphere-ui

‘ExampleCo’
Plugin Server

vCenter-2

Plugin Installer

1

2

3

4 4 4

4

4 4

5 5

6 When Blue refreshes the vSphere Client UI in the browser, the ExampleCo plug-in is loaded

for this user. The plug-in adds a card that extends the summary page of VMs. Because VM-1
is managed by vCENTER-1, which has the ExampleCo plug-in registered, Blue sees the newly

added card:

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 68

VM-1 VM-2

vCenter-1

install plugin
server

register plugin

get
plugin

manifest

plugin.json

plugin.json

A B C

vCenter-0

vsphere-uivsphere-ui vsphere-ui

‘ExampleCo’
Plugin Server

vCenter-2

Plugin Installer

1

2

3

4 4 4

4

4 4

56 5

refresh
browser

7 When Claire refreshes the vSphere Client UI in the browser, the ExampleCo plug-in can now

be loaded for this user. However, Claire is looking at VM-2, which is managed by vCENTER-2.

Because vCENTER-2 does not have the ExampleCo plug-in registered, Claire does not see the

newly added card.

If Claire later navigates to a VM on vCENTER-1, the vSphere Client will display the card added

by the ExampleCo plug-in.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 69

VM-1 VM-2

vCenter-1

install plugin
server

register plugin

get
plugin

manifest

plugin.json

plugin.json

A B C

vCenter-0

vsphere-uivsphere-ui vsphere-ui

‘ExampleCo’
Plugin Server

vCenter-2

Plugin Installer

1

2

3

4 4 4

4

4 4

56 75refresh
browser

refresh
browser

8 Alpha logs in to the vSphere UI connected to VCENTER-0:

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 70

VM-1 VM-2

vCenter-1

install plugin
server

register plugin

get
plugin

manifest

plugin.json

refresh
browser

login

plugin.json

A B C

vCenter-0

vsphere-uivsphere-ui vsphere-ui

‘ExampleCo’
Plugin Server

vCenter-2

Plugin Installer

1

2

3

4 4 4

4

4 4

56 78 5

9 Alpha has completed the login and has loaded the vSphere Client UI, which displays the home
screen of the vSphere Client. VCENTER-0 deployed the ExampleCo plug-in prior to the login, so

Alpha sees the new home page menu item and the shortcut link immediately:

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 71

VM-1 VM-2

vCenter-1

install plugin
server

register plugin

get
plugin

manifest

plugin.json

refresh
browser

login

plugin.json

A B C

vCenter-0

vsphere-uivsphere-ui vsphere-ui

‘ExampleCo’
Plugin Server

vCenter-2

Plugin Installer

1

2

3

4 4 4

4

4 4

56 78 5

Remote Plug-in Multi-Version Support

Unlike local plug-ins, the remote plug-in architecture allows for co-existence of remote plug-ins
with the same ID but different versions.

Consider an ELM environment with three vCenter Server instances and the following plug-in
registrations:

./extension-registration.sh -action registerPlugin -url https://vcenter-ip-or-fqdn-
of-vc1/sdk -u "Administrator@vsphere.local" -p 'Admin!23' -c 'Example, Inc.' -n
'ExampleCo' -s 'A test plugin demonstrating plugin instances' -k com.example.exampleco
-pu "https://my-remote-plugin-server-version-1/path-to/plugin.json" -v "1.0.0" -st
plugin_server_1_thumbprint -remote

./extension-registration.sh -action registerPlugin -url https://vcenter-ip-or-fqdn-
of-vc2/sdk -u "Administrator@vsphere.local" -p 'Admin!23' -c 'Example, Inc.' -n
'ExampleCo' -s 'A test plugin demonstrating plugin instances' -k com.example.exampleco
-pu "https://my-remote-plugin-server-version-2/path-to/plugin.json" -v "2.0.1" -st
plugin_server_2_thumbprint -remote

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 72

./extension-registration.sh -action registerPlugin -url https://vcenter-ip-or-fqdn-
of-vc3/sdk -u "Administrator@vsphere.local" -p 'Admin!23' -c 'Example, Inc.' -n
'ExampleCo' -s 'A test plugin demonstrating plugin instances' -k com.example.exampleco
-pu "https://my-remote-plugin-server-version-3/path-to/plugin.json" -v "3.2.0" -st
plugin_server_3_thumbprint -remote

These commands register three extensions (one in each of the three vCenter Servers) with the
same ID (com.example.exampleco) but different versions - version 1.0.0 on VC1, version 2.0.1 on

VC2 and version 3.2.0 on VC3. These are three different versions of the remote plug-in with ID

com.example.exampleco. When you log in to the UI you will see the following:

n Object views declared by plug-in com.example.exampleco version 1.0.0 will be shown on

applicable objects from VC1. Calls to the plug-in back-end server will be routed to the plug-in
server dedicated to version 1.0.0 of the plugin.

n Object views declared by plug-in com.example.exampleco version 2.0.1 will be shown on

applicable objects from VC2. Calls to the plug-in back-end server will be routed to the plug-in
server dedicated to version 2.0.1 of the plug-in.

n Object views declared by plug-in com.example.exampleco version 3.2.0 will be shown on

applicable objects from VC3. Calls to the plug-in back-end server will be routed to the plug-in
server dedicated to version 3.2.0 of the plug-in.

n There will be a single entry point in the object navigator that will take the user to a plug-in
instance/version selector view where the user will be able to switch between the global views
of the different versions and instances of the remote plug-in.

Remote Plug-in Multi-Manifest Support

You can create a remote plug-in capable of supporting different vSphere Client feature sets. To
deploy this plug-in, you specify different manifest files to match the feature sets. The vSphere
Client will choose a manifest compatible with the schema it supports.

You should use the multi-manifest feature when you want a single plug-in version to
support different feature sets in the vSphere Client or different capabilities in the JavaScript
API. The plug-in user interface code can check the existence of API methods or invoke
app.getClientInfo() to determine which feature set the vSphere Client makes available.

Before 8.0 U3, it was possible for a multi manifest with a vsphere.client and/or vcenter.server
requirements specification to be parsed and chosen for deployment, despite being incompatible
with vSphere Client and/or vCenter Server requirements. This caused the plug-in to appear as
Incompatible.

As of vSphere 8.0 U3, plug-in environment requirements are processed as part of plug-in
manifest parsing and if they are not satisfied, parsing of the current file fails, causing the platform
to try the subsequent plug-in manifest file in the queue.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 73

Start by creating two or more manifest files, each conforming to the schema of a supported
feature set. For instance, plugin-80.json excludes a feature deprecated in vSphere Client

7.0, while plugin-70.json includes that feature. After you test your manifest files separately,

create a list of their file names as a JSON object named manifests and store it in a file named

plugin-multi-manifest.json:

{
 "manifestVersion": "1.0.0",
 "manifests": [
 "plugin-80.json",
 "plugin-70.json",
 "plugin-67.json"
]
}

The manifests object conforms to a separate multi-manifest schema, such that the manifest

parser treats it as an ordered list. The parser tries to validate each manifest file in turn for
compatibility with vsphere-ui. The first file that conforms to the parser's standard manifest

schema is the manifest that the vSphere Client uses for the plug-in.

Then create a zip file containing the plugin-multi-manifest.json file and the supported

manifest files for different feature sets that the plug-in supports. All the files must be at the root
of the zip file, rather than in subdirectories. The zip file can have any name you choose.

Finally, register the plug-in with a vCenter Server instance. Use the name of the zip file as the
--pluginUrl argument to the registration script or as the client.url property in the vCenter

Server extension record that your registration tool creates.

Note Multi-manifest support was added in vSphere 7.0 U1. To support versions before 7.0 U1
and a multi-manifest after 7.0 U1, you must add a manifest for all versions before 7.0 U1 in a
plugin.json and place it inside of the Zip archive. This way, versions before 7.0 U1 use the

plugin.json whereas versions after 7.0 U1 process the multi-manifest JSON. The first one that

is parsed correctly will be used.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 74

Choosing Extension Points for
vSphere Client Plug-ins 5
The vSphere Client supports adding content at key extension points in the user interface. A
plug-in developer can insert custom views that present objects and functions not provided by
vSphere.

The available extension points closely follow the navigation experience in the vSphere Client,
which facilitates a clear mapping of a plug-in to the views and workflows it owns. The extension
points operate at a high level to allow the developer maximum creative space and flexibility.

Read the following topics next:

n Types of Extension Points in the vSphere Client

n Remote Plug-in Manifest Example

Types of Extension Points in the vSphere Client

The vSphere Client provides a number of integration points that plug-ins can extend. These
integration points are also known as extension points, where the developer can define extensions
that integrate into the vSphere Client user interface. The extension points are designed to allow
maximum flexibility for a plug-in while minimizing the potential impact on other plug-ins running
concurrently.

Action and View Extensions

The vSphere Client offers two broad classes of extensions: views and actions. Views give direct
access to part of the user interface, where the plug-in can define custom displays and controls.
Actions generally trigger messaging and business logic.

Views and actions are specified in the plug-in manifest file because they are anchored to controls
in the vSphere Client user interface. Actions are realized in the user interface by means of modal
dialogs that the user activates by choosing from the plug-in submenu of the vSphere Client
global actions menu. Alternatively, headless actions, without a dialog, can navigate directly to
other plug-in views. The user activates a view by navigating to a page or a tab that has a plug-in
view extension defined for that context.

VMware by Broadcom 75

When a view extension activates, the plug-in receives an iFrame context within which it is free
to operate, given certain restrictions such as not accessing the iFrame parent or other DOM
elements outside the iFrame. The plug-in has access to a JavaScript API that it can use to interact
with processes outside the iFrame in a managed way. These interactions include retrieval of the
reverse proxy endpoints and authenticating the back-end server.

The JavaScript API also provides methods for the plug-in to offer to the user actions that are
anchored to controls within the plug-in iFrame. These actions do not appear in the global actions
menu, so they are not described in the plug-in manifest file. For more information, see vSphere
Client JavaScript API: Modal Interface.

Extension Types

Extensions are separated into groups by the inventory context selection, and sub-groups by the
purpose of the user interface element. The extension points are grouped as follows:

n Global extension points

These are plug-in UI elements that have global scope. Their context is the entire plug-in,
rather than a particular inventory object.

n View

This is a single global UI element that can consume a large section of the vSphere Client
real estate. When multiple global pages are required, they should be implemented within
this single global view. Navigation between the nested pages must be handled by the
plug-in front end.

For example, this includes configuration pages or status dashboards. The following
illustration shows the screen context for a global view.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 76

Figure 5-1. Global View Extension

n Object extension points

These are plug-in UI elements within the scope of the currently selected context object in the
inventory. They are defined per object type and displayed only for the selected object. Their
views can include other inventory objects or external objects, as long as there is a logical
relevance to the current object.

n Summary Section View

A Summary section view extension creates a small box in the object's Summary view
tab. The box uses the Clarity card template. It should contain primarily simple name-
value data. Optionally it can contain action buttons or links to more detailed Monitor or
Configure pages.

For example, this could be a view for a selected host that shows the following:

n The number of virtual machines that need backup.

n A button that backs up all virtual machines that need backup.

n A link to a Monitor view that lists all virtual machines that need backup, and allows a
user to back them up separately.

The following illustration shows the screen context for a VirtualMachine object Summary
section view.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 77

Figure 5-2. VirtualMachine Summary Section View Context

Summary section view extensions have fixed height but variable width. If you need
more space, you can either select "large" width, create multiple cards in the object's
Summary view tab, or link from a Summary view card to a Monitor view that contains
more information.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 78

You can create up to five cards in an object's Summary view tab. Each card can have its
own title and its own icon. If the title is not specified, it defaults to the plug-in name. If the
icon is not specified, it defaults to the plug-in icon.

All cards share a single dynamicUri, if used. For more information about dynamicUri, see

Chapter 6 Dynamic Extensions for Remote Plug-ins.

Specify a single card for the Summary view with the following syntax in the manifest:

...
 "summary": {
 "view": {
 "uri": "index.html?view-host-card"
 }
 }
...

Specify multiple cards for the Summary view with the following syntax in the manifest. As
of vSphere 8.0 U3, card width may be specified as small, medium, or large.

...
 "summary": {
 "views": [
 {
 "id": "vmCard1",
 "titleKey": "Title 1",
 "icon": {
 "name": "icon_card1"
 },
 "size": {
 "width": "small"
 },
 "uri": "index.html?view-host-card-card1"
 },
 {
 "id": "vmCard2",
 "titleKey": "Title 2",
 "icon": {
 "name": "icon_card2"
 },
 "size": {
 "width": "large"
 },
 "uri": "index.html?view-host-card-card2"
 }
]
 }
...

n Monitor Views

This comprises a single Monitor category with one or more views. It can contain detailed
monitoring and maintenance data and workflows relevant to the current object.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 79

For example, you could use a Monitor view to show the backup status of all virtual
machines on a selected host.

The following illustration shows the screen context for an Object Monitor view

Figure 5-3. Object Monitor View Screen Context

n Configure Views

This comprises a single Configure category with one or more views. It can contain
detailed configuration data and workflows relevant to the current object.

For example, it could show a list of virtual machines on a selected host that should be
backed up.

The following illustration shows the screen context for an Object Configure view

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 80

Figure 5-4. Object Configure View Screen Context

n Menu

This is a single plug-in solution menu with one or more actions. It contains actions that
apply to the currently selected object, either navigating directly to a different view of the
plug-in or else allowing user input in a modal dialog before the action runs. For example,
you could use a Menu action to back up all virtual machines on a selected host.

The following illustration shows the screen context for a Menu Action.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 81

Figure 5-5. Menu Action Screen Context

A plug-in solution submenu can contain horizontal separators, which allow you to group
menu choices. To insert a separator into the submenu, insert the following element into
the menu.actions array:

{ "type": "separator" },

Note Separator elements at the beginning or end of the menu.actions array are ignored.

A pair of adjacent separator elements produces only a single separator displayed on the
screen.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 82

Menu actions can also apply to a set of selected objects, under the following conditions:

n All selected objects are managed by the same vCenter Server instance.

n All selected objects have the same type, such as HostSystem or VirtualMachine.

n The plug-in manifest specifies acceptsMultipleTargets in the configuration for the

selected object type.

If all of these conditions are true when you select multiple objects, you can apply a menu
action to all of the selected objects. If any of the conditions is untrue, for instance, if you
select both a VirtualMachine object and a HostSystem object, the menu shows no actions

for the plug-in.

To enable selecting multiple targets, set acceptsMultipleTargets to true in the menu

action configuration for the type or types that should allow it. For example, a
configuration for HostSystem objects could contain the following lines:

...
 "objects": { ...
 "HostSystem": { ...
 "menu": {
 "actions": [
 {
 "id": "TakeAction",
 "labelkey": "Take action",
 "acceptsMultipleTargets": true,
 "trigger": {
 "type": "modal",
 ...

Note Headless actions that navigate to a different view for the same object and served
by the same remote plug-in are also supported. Specify these headless actions by setting
the trigger.type to "navigation".

Remote Plug-in Manifest Example

The following JSON code is an example of a plug-in manifest file that demonstrates how to
specify some of the vSphere Client SDK extension points for your plug-in.

{
 "manifestVersion": "1.0.0",
 "requirements": {
 "plugin.api.version": "1.0.0"
 },
 "configuration": {
 "nameKey": "My Plugin"
 },
 "global": {
 "view": {

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 83

 "navigationId": "myGlobalViewId",
 "uri": "myplugin/globalView.html",
 "navigationVisible": false
 }
 },
 "objects": {
 "Datacenter": {
 "summary": {
 "view": {
 "uri": "myplugin/summary.html",
 "icon": {
 "name": "main"
 }
 }
 },
 "monitor": {
 "views": [
 {
 "navigationId": "myview1",
 "labelKey": "category.view1",
 "uri": "myplugin/view1.html"
 }
]
 },
 "configure": {
 "views": [
 {
 "navigationId": "myview1",
 "labelKey": "category.view1",
 "uri": "myplugin/view1.html"
 }
]
 },
 "menu": {
 "actions": [
 {
 "labelKey": "action1",
 "icon": {
 "name": "action-1"
 },
 "trigger": {
 "type": "modal",
 "uri": "myplugin/modal-action.html",
 "titleKey": "myplugin modal title",
 "accessibilityTitleKey": "myplugin modal accessibility title",
 "size": {
 "height": 250,
 "width": 600
 }
 }
 },
 {
 "type": "separator"
 },
 {

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 84

 "labelKey": "Action2",
 "icon": {
 "name": "action-2"
 },
 "trigger": {
 "type": "navigation",
 "targetViewId": "myGlobalViewId"
 }
 }
]
 }
 }
 },
 "definitions": {
 "iconSpriteSheet": {
 "uri": "myplugin/images/icon-sprite.png",
 "definitions": {
 "main": {
 "x": 0,
 "y": 0
 }
 }
 },
 "i18n": {
 "locales": [
 "en-US",
 "de-DE",
 "fr-FR"
],
 "definitions": {
 "category.view1": {
 "en-US": "Monitor View 2",
 "de-DE": "Monitoransicht 2",
 "fr-FR": "Vue Surveiller 2"
 }
 }
 }
 }
}

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 85

Dynamic Extensions for Remote
Plug-ins 6
By default, plug-in views and menu items display in the vSphere Client user interface
unconditionally. The vSphere Client supports a Service Provider Interface (SPI) that allows plug-in
servers to filter views or menu items so they display conditionally. Conditional extensions are
known as dynamic extensions.

Dynamic extensions are supported for Summary, Monitor, and Configure views, and for Menu
actions. The vSphere Client SDK does not currently support dynamic extensions for Global views.

Read the following topics next:

n Dynamic Extension Use Cases

n How the vSphere Client Displays Dynamic Extensions

n Caching Dynamic Extension Visibility

n Configure Dynamic Extensions

n Dynamic Extensions Filter Query

n Example Code for Filtering Dynamic Extensions

Dynamic Extension Use Cases

The vSphere Client supports dynamic extensions for remote plug-ins with an SPI that allows a
plug-in server to determine at run time which views display in the vSphere Client user interface.
This allows the plug-in to use any basis for the decision.

The dynamic extension SPI gives you flexibility to choose and implement your own filter
processing in the plug-in server. For example, a plug-in could choose to display or hide an
extension based on user authorization or object state.

How the vSphere Client Displays Dynamic Extensions

The vSphere Client determines whether to show a dynamic extension by asking a plug-in server
at the time the context makes the extension relevant. The vSphere Client identifies the relevant
extensions and sends a request to each plug-in server that makes visibility choices for the
relevant extensions. Each plug-in server collects the information needed to decide whether

VMware by Broadcom 86

to hide or show its extensions, and responds with its visibility choice for each of its relevant
extensions.

As of vSphere 8.0 U3, dynamic plug-in actions can be hidden or disabled depending on response
from the plug-in server, which can return items with two properties: visible or relevant.

n Setting the visible property to false has a different effect on actions than on Cards, Monitor

or Configure views. For Cards, Monitor views, or Configure views, visible=false means that

the view is not shown at all. For actions, visible=false makes the action visible but disabled.

n Setting the relevant property to false makes the action disappear from the menu. The

relevant property is not required because it is true by default. All actions are deemed

relevant and get enabled or disabled by the visible property. To remove an action, the

plug-in should return a response with relevant=false and visible=false.

Dynamic Views

While the vSphere Client waits for answers, it might display views associated with static
extensions, as well as indications that it is waiting for more data. If a plug-in has any dynamic
extensions that are relevant in the current context, the vSphere Client will display the plug-in
category name in the items list, with a spinner beside it indicating that the display is not yet
complete. The vSphere Client will not display the view names in the plug-in category until the list
has stabilized.

Dynamic Cards

If a card on the Summary tab is configured to be dynamic, the vSphere Client queries the
associated plug-in server for visibility choices. The Summary tab displays only static cards while
the vSphere Client waits for a response. After the response arrives, the vSphere Client adds to
the display any dynamic cards that the response indicates should be visible.

Dynamic Actions

If a plug-in has dynamic action extensions in the Action menu, the vSphere Client creates place-
holders in the menu until the plug-in response indicates whether or not the plug-in actions should
be visible. While waiting for a response, the vSphere Client displays the plug-in name in the
Actions menu, and puts a brief message in the plug-in submenu that indicates the client code is
still loading information. When the plug-in response indicates that an action should be visible, the
vSphere Client enables the action in the plug-in submenu. As of 8.0 U3, the plug-in can disable an
action with visible=false or remove it with relevant=false also.

Direct Links to Dynamic Views

If a user clicks a link to a dynamic view, the vSphere Client might need to query the plug-in
server for the view's visibility. While waiting for the response, the vSphere Client might open an
iFrame for the dynamic view, with only a spinner and a message that the view is not yet ready.
If the response indicates that the dynamic view should be hidden, the vSphere Client displays a
message saying that the view is not available.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 87

Direct Links to Static Views

If a user clicks a link to a static view, the vSphere Client displays the static view immediately. If
there are also dynamic views that might apply, the client code marks the plug-in name in the
category list with a spinner while it queries the plug-in server for its visibility choices.

Time-outs

In case the plug-in server does not return a timely response, the vSphere Client will time out and
cancel the request. When the vSphere Client times out a request for dynamic extension visibility,
it assumes the extension should be hidden.

Caching Dynamic Extension Visibility

When the user navigates to a context (such as a Monitor tab) that has the potential to show
dynamic extensions, the client code queries the dynamicUri for filter choices. The plug-in server

returns its visibility choices for the dynamic extensions that apply to the user context. The client
code caches the dynamic view choices to speed navigation between the views that pertain to
the active vSphere object.

The client code caches visibility choices for only those dynamic views that apply to the current
object. For example, if the user navigates to a virtual machine's Monitor tab and the plug-in
server returns visibility choices for both a view on the Monitor tab and a view on the Configure
tab that apply to the current virtual machine, the client code caches choices for both tabs. The
client code does not cache visibility choices for dynamic actions.

The visibility choices for the current object generally remain in cache as long as the user
navigates only to tabs for that object. The client code empties the cache when the user navigates
to a different vSphere object. Then the client builds up the cache for dynamic views that pertain
to the new object.

Note The global refresh button clears the cache and queries the applicable dynamicUri for filter

choices.

Configure Dynamic Extensions

You configure dynamic extensions for your plug-in by using properties in the plugin.json
manifest file. These properties identify the dynamic extensions and provide SPI endpoints for
queries from the client code.

Dynamic Monitor and Configure extensions are configured in the same way. Dynamic Summary
extensions and dynamic Menu extensions are similar. Where the steps differ, the examples show
the differences.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 88

Procedure

1 Edit the manifest file, plugin.json.

{ "manifestVersion": "1.0.0",
 "requirements": {"plugin.api.version": "1.0.0"}
 ...

2 Within the objects object, locate the type of vSphere managed object for which the plug-in

can supply a dynamic extension.

{ "manifestVersion": "1.0.0",
 "requirements": {"plugin.api.version": "1.0.0"}
 ...
 "objects": { ...
 "VirtualMachine": {
 ...

3 Within the managed object type, locate the extension type for which the plug-in can supply a
dynamic extension.

Option Description

For a dynamic extension in the
Summary tab.

...
 "objects": { ...
 "VirtualMachine": { ...
 "summary": {
 ...

For a dynamic extension in the
Monitor tab.

...
 "objects": { ...
 "VirtualMachine": { ...
 "monitor": {
 ...

For a dynamic extension in the
Configure tab.

...
 "objects": { ...
 "VirtualMachine": { ...
 "configure": {
 ...

For a dynamic extension in the
Actions menu.

...
 "objects": { ...
 "VirtualMachine": { ...
 "menu": {
 ...

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 89

4 Within the object representing the extension type object, add a dynamicUri property to

identify the endpoint where the client code will query the plug-in server for its filter choices.

If the plug-in manifest server will supply filter choices, you can specify a string containing the
URI path. If an auxiliary server will supply filter choices, specify a JSON object containing a
path property (type string) and a serverType property (type string), where the serverType
corresponds to the ServerInfo.type property in the Extension Manager registration record.

The serverType value maps to the auxiliary server base URI that the user interface code uses

to construct the endpoint for the dynamic extension filter query.

Note When you register an auxiliary server that will supply filter choices, its ServerInfo.url
property in the Extension record must end with a slash (/). See Registering Auxiliary Plug-in

Servers.

Option Description

For a dynamic extension in the
Summary tab.

...
 "objects": { ...
 "VirtualMachine": { ...
 "summary": {
 "dynamicUri": "rest/dynamics/vm/summary",
 ...

(if an auxiliary server handles filter
queries)

...
 "objects": { ...
 "VirtualMachine": { ...
 "summary": {
 "dynamicUri": {
 "serverType": "DYNAMIC_AUX_SERVER",
 "path": "rest/dynamics/vm/summary"
 }, ...

For a dynamic extension in the
Monitor tab.

...
 "objects": { ...
 "VirtualMachine": { ...
 "monitor": {
 "dynamicUri": "rest/dynamics/vm/monitor",
 ...

(if an auxiliary server handles filter
queries)

...
 "objects": { ...
 "VirtualMachine": { ...
 "monitor": {
 "dynamicUri": {
 "serverType": "DYNAMIC_AUX_SERVER",
 "path": "rest/dynamics/vm/monitor"
 },
 ...

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 90

Option Description

For a dynamic extension in the
Configure tab.

...
 "objects": { ...
 "VirtualMachine": { ...
 "configure": {
 "dynamicUri": "rest/dynamics/vm/configure",
 ...

(if an auxiliary server handles filter
queries)

...
 "objects": { ...
 "VirtualMachine": { ...
 "configure": {
 "dynamicUri": {
 "serverType": "DYNAMIC_AUX_SERVER",
 "path": "rest/dynamics/vm/configure"
 },
 ...

For a dynamic extension in the
Actions menu.

...
 "objects": { ...
 "VirtualMachine": { ...
 "menu": {
 "dynamicUri": "rest/dynamics/vm/actions",
 ...

(if an auxiliary server handles filter
queries)

...
 "objects": { ...
 "VirtualMachine": { ...
 "menu": {
 "dynamicUri": {
 "serverType": "DYNAMIC_AUX_SERVER",
 "path": "rest/dynamics/vm/actions"
 },
 ...

For more information about the ServerInfo.type property, see Registering Auxiliary Plug-in

Servers.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 91

5 At the same level as the dynamicUri property, locate the views array or the view object (for

Summary extensions), the views array (for Monitor or Configure extensions) or the actions
array (for Menu extensions)

Option Description

For a single dynamic extension in
the Summary tab.

...
 "objects": { ...
 "VirtualMachine": { ...
 "summary": {
 "dynamicUri": "rest/dynamics/vm/summary",
 "view": {
 ...

For multiple dynamic extensions in
the Summary tab.

...
 "objects": { ...
 "VirtualMachine": { ...
 "summary": {
 "dynamicUri": "rest/dynamics/vm/summary",
 "views": [
 ...
]
 }
 ...

For a dynamic extension in the
Monitor tab.

...
 "objects": { ...
 "VirtualMachine": { ...
 "monitor": {
 "dynamicUri": "rest/dynamics/vm/monitor",
 "views": [
 ...

For a dynamic extension in the
Configure tab.

...
 "objects": { ...
 "VirtualMachine": { ...
 "configure": {
 "dynamicUri": "rest/dynamics/vm/configure",
 "views": [
 ...

For a dynamic extension in the
Actions menu.

...
 "objects": { ...
 "VirtualMachine": { ...
 "menu": {
 "dynamicUri": "rest/dynamics/vm/actions",
 "actions": [
 ...

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 92

6 To each view or action that will be treated as dynamic, add the dynamic property.

Option Description

For a single dynamic extension in
the Summary tab.

...
 "objects": { ...
 "VirtualMachine": { ...
 "summary": {
 "dynamicUri": "rest/dynamics/vm/summary",
 "view": {
 "dynamic": true
 ...

For multiple dynamic extensions in
the Summary tab.

...
 "objects": { ...
 "VirtualMachine": { ...
 "summary": {
 "dynamicUri": "rest/dynamics/vm/summary",
 "views": [
 {
 "dynamic": true,
 ...
 },
 {
 "dynamic": true,
 ...
 }
]
 }
 ...

For a dynamic extension in the
Monitor tab.

...
 "objects": { ...
 "VirtualMachine": { ...
 "monitor": {
 "dynamicUri": "rest/dynamics/vm/monitor",
 "views": [
 {
 "dynamic": true,
 ...

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 93

Option Description

For a dynamic extension in the
Configure tab.

...
 "objects": { ...
 "VirtualMachine": { ...
 "configure": {
 "dynamicUri": "rest/dynamics/vm/configure",
 "views": [
 {
 "dynamic": true,
 ...

For a dynamic extension in the
Actions menu.

...
 "objects": { ...
 "VirtualMachine": { ...
 "menu": {
 "dynamicUri": "rest/dynamics/vm/actions",
 "actions": [
 {
 "dynamic": true,
 ...

7 Add an id property to each Summary card or Menu action, and a navigationId to each

Monitor or Configure view, if not already present.

Option Description

For a single dynamic extension in
the Summary tab.

...
 "objects": { ...
 "VirtualMachine": { ...
 "summary": {
 "dynamicUri": "rest/dynamics/vm/summary",
 "view": {
 "dynamic": true
 "id": "vmSummaryCard",
 ...

For multiple dynamic extensions in
the Summary tab.

...
 "objects": { ...
 "VirtualMachine": { ...
 "summary": {
 "dynamicUri": "rest/dynamics/vm/summary",
 "views": [
 {
 "dynamic": true,
 "id": "summary-card-1",
 ...
 },
 {
 "dynamic": true,
 "id": "summary-card-2",
 ...
 }
]
 }
 ...

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 94

Option Description

For a dynamic extension in the
Monitor tab.

...
 "objects": { ...
 "VirtualMachine": { ...
 "monitor": {
 "dynamicUri": "rest/dynamics/vm/monitor",
 "views": [
 {
 "dynamic": true,
 "navigationId": "MonitorDynView",
 ...

For a dynamic extension in the
Configure tab.

...
 "objects": { ...
 "VirtualMachine": { ...
 "configure": {
 "dynamicUri": "rest/dynamics/vm/configure",
 "views": [
 {
 "dynamic": true,
 "navigationId": "ConfigureDynView",
 ...

For a dynamic extension in the
Actions menu.

...
 "objects": { ...
 "VirtualMachine": { ...
 "menu": {
 "dynamicUri": "rest/dynamics/vm/actions",
 "actions": [
 {
 "dynamic": true,
 "id": "TakeAction",
 ...

A navigationId or id string is required to identify the dynamic view or action in the plug-in

server's response to a filter query.

Results

The following example shows a plugin.json file with a dynamic Summary card, a dynamic

Monitor view, a fixed Configure view, and a dynamic action. The dynamic Summary view is
filtered by the manifest server, which is the default when a specific server is not named. The
dynamic Monitor view is filtered by the the manifest server, configured with an explicit reference.
The dynamic menu action is filtered by an auxiliary server.

Example: plugin.json With Dynamic Extensions

{ "manifestVersion": "1.0.0",
 "requirements": {"plugin.api.version": "1.0.0"},
 "configuration": {
 "nameKey": "Dynamic Extension Manifest Example"
 }
 "objects": {
 "VirtualMachine": {
 "summary": {

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 95

 "dynamicUri": "rest/dynamics/vm/summary",
 "view": {
 "dynamic": true
 "id": "vmSummaryCard",
 "uri": "index.html#vm-portlet",
 }
 },
 "monitor": {
 "dynamicUri": {
 "serverType": "MANIFEST_SERVER",
 "path": "rest/dynamics/vm/monitor"
 },
 "views": [
 {
 "dynamic": true,
 "navigationId": "MonitorDynView",
 "uri": "rest/views/vm/monitor/index.html"
 }
],
 "configure": {
 "views": [
 {
 "navigationId": "ConfigureFixView",
 "uri": "rest/views/vm/configure/index.html"
 },
 "menu": {
 "dynamicUri": {
 "serverType": "DYNAMIC_AUX_SERVER",
 "path": "rest/dynamics/vm/actions"
 },
 "actions": [
 {
 "dynamic": true,
 "id": "TakeAction",
 "labelKey": "Take action",
 "trigger": {
 "type": "modal",
 "uri": "rest/actions/vm/action1.html"
 }
 }
]
 }
 }
 }
}

What to do next

Implement server-side code to handle filter queries at the endpoints that you configured in the
manifest file. For more information about filter queries, see Dynamic Extensions Filter Query.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 96

Dynamic Extensions Filter Query

The vsphere-ui process parses the plug-in manifest when the plug-in is registered wih the

Extension Manager of vCenter Server, and stores the information as long as the plug-in remains
registered. When a user navigates to a Summary tab, Monitor tab, or Configure tab, or when a
user clicks the Actions menu, the user interface code in the browser sends a filter query to a
plug-in server to determine its choices for dynamic extensions. The plug-in server responds with
a visibility choice for each dynamic extension that applies in the current context.

An example message sequence for a filter query is illustrated in the following diagram.

vCenter
Server

plugin
server

plugin
manifest

VM1
Monitor

tab

register plugin

read

browser

click tab

render tab

fetch page content

query dynamic views

query VM1

properties

dynamic views response

render vmMon1

forwarded by
reverse proxy

manifest

read
manifest

Notes about the sequence diagram:

n Reading the manifest file is not part of the filter query sequence. The diagram includes the
manifest fragment for context.

n The variable proxy-base in the endpoint URL refers to the proxied plug-in server base URL

that the client code prefixes to the dynamicUri in the manifest file. All client queries to the

plug-in server pass through the reverse proxy for security reasons. For more information, see
Client-Server Communications with Remote Plug-ins.

The client filter query consists of an HTTPS POST request to a dynamicUri endpoint specified in

the plug-in manifest file. The client code chooses the URL configured for the vSphere object type
and the extension type that are currently active in the user interface.

Tip A best practice is to maintain a different endpoint for each extension type (Summary,
Monitor, Configure, or Menu) and return visibility choices (true or false) for only the relevant

dynamic extensions.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 97

The request header contains:

n The body type specifications ('application/json' for both request and response).

n HTTP cache control settings.

n Identity and authentication headers:

n Node ID (unused)

n The vsphere-ui endpoint URL This tells the plug-in server which vCenter Server manages
the context objects.

n The session token for the client's authentication with the vsphere-ui endpoint. This allows
the plug-in server to authenticate with vCenter Server to retrieve properties needed to
make filtering choices.

For example:

 'content-type': 'application/json',
 'Accept': 'application/json',
 'Cache-Control': 'no-cache, no-store, max-age=0',
 vmware-api-session-id: c621c819-4f65-1b02-2214-c7ac159ad4d4
 vmware-api-ui-endpoint-url: https://93.184.216.34/api/ui
 vmware-api-ui-node-id: 6079314c-d525-43a1-8a54-735f5417f11e

The request body contains:

n The API version of the filter query protocol, used to negotiate message format with the
plug-in server.

n The locale code.

n A list of object IDs for the current context objects. For dynamic actions, the list of object IDs
may be any length. For dynamic views, the list may contain only the object ID that pertains to
the Summary tab or Monitor tab or Configure tab that the client is rendering.

For example:

 apiVersion: "1.0.0"
 objectIds: ["urn:vmomi:VirtualMachine:vm-1005:27a09c68-d1d6-4fe2-a28f-616949f30930"]
 locale: "en-US"

The response from the plug-in server must be a single anonymous JSON object that contains:

n The latest version of the filter query protocol that the server is prepared to handle, used to
negotiate message format with the client.

n A list of dynamic items, where each item is an object that contains:

n The id or navigationId of a dynamic view or the id of a dynamic menu action. A

navigationId value is assigned to the id property in the response object.

n Boolean values visible to control whether the dynamic extension displays in the user

interface, and (as of 8.0 U3) relevant to control whether to remove it from the interface.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 98

For example:

 {
 apiVersion: "1.0.0",
 dynamicItems:
 [
 {
 id: "MonitorDynView",
 visible: true,
 relevant: true
 },
 {
 id: "DeleteAction",
 visible: false,
 relevant: false
 }
]
 }

Example Code for Filtering Dynamic Extensions

Plug-ins that support dynamic extensions must implement the SPI that the client code uses to
determine which dynamic extensions to display in the browser. The plug-in server can use any
criterion chosen by the plug-in developer. The following example illustrates server code that uses
two kinds of criteria to decide whether dynamic extensions should be visible..

Two useful criteria for filtering dynamic extensions are properties of vSphere objects and the
authorization level of the vSphere Client user. This example tests the run state of a virtual
machine and the user's authorization with respect to the virtual machine.

This example depends on a manifest file that configures two dynamic extensions. One extension
provides a dynamic Monitor view of a virtual machine. The other extension provides a dynamic
Menu action to run a virtual machine.

The following example code illustrates a controller that serves dynamic extension endpoints.
The controller accesses the JSON in the request body by using the DynamicItemsRequestModel
object passed in for the specific REST endpoint.

package com.example.remote.controllers;
import java.util.ArrayList;
import java.util.List;
import org.springframework.http.MediaType;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.RestController;

import com.vmware.sample.remote.model.DynamicItem;
import com.vmware.sample.remote.model.DynamicItemsRequestModel;
import com.vmware.sample.remote.model.PluginServerDynamicItemsResponse;
import com.vmware.sample.remote.vim25.services.AuthorizationService;

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 99

/**
* Provide public endpoints for vSphere Client to query about
* UI visibility for dynamic views/actions.
*/
@RestController
@RequestMapping(value = "/dynamicItems",
 method = RequestMethod.POST,
 consumes = MediaType.APPLICATION_JSON_VALUE,
 produces = MediaType.APPLICATION_JSON_VALUE)
public class DynamicItemsController {
 private static final String MANAGE_VM_PRIVILEGE =
"com.vmware.sample.remote.1.0.0.ManageVm";
 private final AuthorizationService authorizationService;
 private final VmRunstateService vmRunstateService;

 public DynamicItemsController(final AuthorizationService authorizationService) {
 this.authorizationService = authorizationService;
 this.vmRunstateService = vmRunstateService;
 }

 /* This action should be visible if user has authorization. */
 @RequestMapping(value = "/vm/actions")
 public PluginServerDynamicItemsResponse retrieveVmActions(
 @RequestBody DynamicItemsRequestModel payload) {
 final boolean hasPrivilege = authorizationService
 .hasPrivilege(payload.objectIds, MANAGE_VM_PRIVILEGE);
 final List<DynamicItem> dynamicItems = new ArrayList<>();
 dynamicItems.add(new DynamicItem("TakeAction", hasPrivilege));
 return new PluginServerDynamicItemsResponse("1.0.0", dynamicItems);
 }

 /* This VM view should be visible only if it is NOT currently running. */
 @RequestMapping(value = "/vm/monitor")
 public PluginServerDynamicItemsResponse retrieveVmMonitorViews(
 @RequestBody DynamicItemsRequestModel payload) {
 final String objectId = payload.objectIds.get(0);
 final boolean makeVisible = !isVmStateRunning(objectId));
 final List<DynamicItem> dynamicItems = new ArrayList<>();
 dynamicItems.add(new DynamicItem("MonitorDynView", makeVisible));
 return new PluginServerDynamicItemsResponse("1.0.0", dynamicItems);
 }
}

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 100

vSphere Client Plug-in User
Interface Modules 7
The vSphere Client provides several JavaScript interfaces that your plug-in can use to
communicate with the vSphere Client platform. These JavaScript methods are documented here
as if they have TypeScript signatures, but they run as pure JavaScript, and all complex types are
plain old JavaScript objects.

The plug-in web application runs in a separate iFrame which is part of the vSphere Client. The
iFrame content is rendered from the web application server of the plug-in back end.

Note Do not access the window.parent, which belongs to the vSphere Client. Do not access the

internal JavaScript or CSS resources of the vSphere Client. Such access is unsupported and could
cause your plug-in to fail in a future release of the vSphere Client.

Read the following topics next:

n Bootstrapping the JavaScript API

n vSphere Client JavaScript API: htmlClientSdk Interface

n vSphere Client JavaScript API: Modal Interface

n vSphere Client JavaScript API: Application Interface

n vSphere Client JavaScript API: Event Interface

n Example Using the modal API

Bootstrapping the JavaScript API

The vSphere Client loads plug-in resources in a tenant iFrame. The plug-in must load a thin
JavaScript library to support communication with the parent window in the vSphere Client. The
library implements a JavaScript API that the plug-in front-end code uses to manage resources
outside its iFrame.

To bootstrap the Client Library the following script should be added to all HTML pages in the
plug-in:

<script type="text/javascript"src="/api/ui/htmlClientSdk.js"></script>

VMware by Broadcom 101

After you load the script, you initialize the htmlClientSdk object, by invoking the

htmlClientSdk.initialize() method. Before you initialize, you can only invoke the methods of

the htmlClientSdk interface. After you initialize the htmlClientSdk object, you can invoke any of

the methods in the JavaScript API.

If you use frameworks such as jQuery, or zone.js with Angular, you only need to initialize the
htmlClientSdk object once. You should initialize as early as possible, so that the htmlClientSdk
functions will be available to all plug-in user interface components.

Note Do not use any communication method not provided by the APIs. Do not access any
internal JavaScript or CSS resources of the vSphere Client. Doing so is unsupported because
the implementation of the htmlClientSdk functions can change in future releases of the vSphere

Client.

vSphere Client JavaScript API: htmlClientSdk Interface

The htmlClientSdk object provides access to all the JavaScript API interfaces. You load and
initialize the htmlClientSdk first in your plug-in views.

htmlClientSdk.getProxiedPluginServerOrigin()
Signature htmlClientSdk.getProxiedPluginServerOrigin():string

Description Returns a proxy URL for the plug-in manifest server root. The URL contains the protocol, domain, and port
of the vCenter Server, with a proxy path that routes to the plug-in manifest server root. This URL is useful to
set a root-relative base tag for relative URLs in a front-end framework such as Angular. This method can be

safely called before the SDK has been initialized.

htmlClientSdk.initialize()
Signature htmlClientSdk.initialize(callback:function):void

Description Initializes the htmlClientSdk object and invokes the callback function when initialization is complete
and the other JavaScript interfaces are available. After the first call, subsequent calls act to register
additional callbacks.

Parameter:
callback

The optional callback function must have the following signature:

function callback():void
The callback function has access to all the functions in the JavaScript API. You use the callback to code
logic for initializing plug-in state.

htmlClientSdk.isInitialized()
Signature htmlClientSdk.isInitialized():boolean

Description Tests whether the htmlClientSdk object has been initialized.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 102

vSphere Client JavaScript API: Modal Interface

The modal interface enables your plug-in to manage modal dialog windows.

Note This SDK uses the Structured Clone Algorithm, which has limitations as described in the
Mozilla Developer Network (MDN) web doc. Limitations affect Modal, Confirmation Modal, and
Shared Modal APIs.

modal.AlertLevel
Description Enum:

n SUCCESS
n INFO
n WARNING
n DANGER
Clarity adds a standard icon, depending on the alert level. See https://v2.clarity.design/
alerts.

Used by: modal.ConfirmationModalConfig

modal.ButtonStyle
Description Enum:

n SUCCESS
n INFO
n WARNING
n DANGER
Clarity adds default CSS tags, depending on the action importance:

n btn-success
n btn-primary
n btn-warning
n btn-danger
For examples of Clarity button styling, see the Solid Buttons illustrations at https://

v2.clarity.design/buttons/#examples.

Used by: modal.ModalButton

modal.ButtonType
Description Enum:

n PRIMARY
n SECONDARY
Clarity styles PRIMARY buttons with greater emphasis. See https://v2.clarity.design/
buttons.

Used by: modal.ModalButton

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 103

https://v2.clarity.design/alerts
https://v2.clarity.design/alerts
https://v2.clarity.design/buttons/#examples
https://v2.clarity.design/buttons/#examples
https://v2.clarity.design/buttons
https://v2.clarity.design/buttons

modal.close()
Signature Closes the modal dialog box in the parent iFrame.

Description Optional data that will be passed to callback function specified by onClosed property at

dialog open.

Parameter: data Optional data that will be passed to callback function specified by onClosed property at

dialog open.

Note No data is passed to the callback function if the user clicks the dialog close box.

modal.ConfirmationModalConfig
Description Specifies the properties of a confirmation modal dialog box.

Property Type Required? Notes

content string yes Confirmation message displayed in the
dialog.

buttons modal.ModalButton[] yes Buttons displayed in the dialog footer.
(min 1, max 4)

title string no Dialog main title. May not contain an icon.
(default='')

AccessibilityTitle string no Used when dialog title is not displayed,
such as in a wizard dialog.

size modal.ModalSize no Width of the dialog box. (Default width is
chosen by Clarity. Height is fixed.)

closable boolean no Whether the dialog displays a close
button. (default=true)

onClosed function(result:any):
void

no Function runs when user closes the dialog.
If modal.close() is called, its parameter is

in turn passed to the onClosed() function.

secondaryTitle string no Optional subtitle for the dialog.

alertLevel modal.AlertLevel no Causes Clarity to add an icon to the dialog.

Used by: modal.openConfirmationModal()

modal.DynamicModalConfig
Description Specifies values for some properties of a modal dialog box.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 104

Property Type Required? Notes

title string no Dialog title. May not contain an icon.

(If not present, no change to dialog title.)

accessibilityTitle string no Used when dialog title is not displayed,
such as in a wizard dialog.

height number no Dialog height, specified in pixels. (If not
present, no change to dialog height.)

Used by: modal.setOptions()

modal.getCustomData()
Signature modal.getCustomData():any

Description Returns the customData object provided when a modal dialog box was opened, or null if no

customData object was provided.

modal.getSharedModalsMap()
Signature modal.getSharedModalsMap(targetPluginId:string, callback:function):void

Description Creates listings of modal dialog boxes shared by a specific plug-in and accessible to the
calling plug-in.

The callback function must have the following signature:

function callback(sharedModalsMap:modal.SharedModalsMap):void

modal.ModalButton
Description Describes button properties.

Property Type Required? Notes

label string yes

type modal.ButtonType no

style modal.ButtonStyle no

callback function(): void no

Used by: modal.ConfirmationModalConfig

modal.ModalConfig
Description Specifies the properties of a modal dialog box.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 105

Property Type Required? Notes

url string yes Location of HTML content for the dialog.

title string no Dialog title. May not contain an icon.
(default='')

accessibilityTitle string no Used when dialog title is not displayed,
such as in a wizard dialog.

size (width:number,
height:number)

no Specify in pixels. Default is chosen
by Clarity. See https://v2.clarity.design/
modals.

closable boolean no Whether the dialog displays a close
button. (default=true)

onClosed function(result:any):
void

no Function runs when the dialog closes. If
modal.close() is called, its parameter is in

turn passed to the onClosed() function.

Function runs when the dialog closes. If
modal.close() is called, its parameter is in

turn passed to the onClosed() function.

customData any no Data the calling module passes to the
dialog.

contextObjects any[] no IDs of relevant objects the calling module
passes to the dialog.

Used by: modal.open()

modal.ModalSize
Description Width of a modal dialog box.

Property Type Required? Notes

width number yes Specified in pixels.

Used by: modal.ConfirmationModalConfig

modal.open()
Signature modal.open(configObj:modal.ModalConfig):void

Description Opens a modal dialog box specified by the configObj parameter.

Parameter: configObj Specifies the properties of this modal dialog box.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 106

https://v2.clarity.design/modals
https://v2.clarity.design/modals

modal.openConfirmationModal()
Signature modal.openConfirmationModal(configObj:modal.ConfirmationModalConfig):void

Description Opens a lightweight modal dialog box designed to present information and confirmation
buttons.

Parameter: configObj Specifies the properties of this modal dialog box.

modal.openSharedModal()
Signature modal.openSharedModal(configObj:modal.SharedModalConfig):void

Description Opens a modal dialog box that is defined and shared by another plug-in.

modal.SharedModalConfig
Description Specifies the properties for opening a shared modal dialog.

Property Type Required? Notes

pluginId string yes ID of the plug-in that defines the dialog.

sharedModalId string yes ID of the shared modal dialog.

vcGuid string yes The GUID of the vCenter Server instance
where the plug-in that defines the dialog is
registered.

objectId string no

onClosed function(result:any):voi
d

no Function runs when user closes the dialog.
If modal.close() is called, its parameter is

in turn passed to the onClosed() function.

contextObjects any[] no IDs of relevant objects the calling module
passes to the dialog.

customData any no Additional data the calling module passes
to the dialog.

Used by: modal.openSharedModal()

modal.setOptions()
Signature modal.setOptions(configObj:modal.DynamicModalConfig):void

Description Called by the parent view to modify some properties for a modal dialog box in the parent
iFrame.

Parameter: configObj Specifies values for some dialog box properties.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 107

modal.SharedModalsMap
Description Information about modal dialog boxes shared by a specific plug-in instance registered

with one or more vCenter Server instances.

Property Type Required? Notes

sharedModalsInfoByVcGuid [VcGuid:string]:modal.Vc
SharedModalsInfo

yes Map of modal dialog boxes shared by a
plug-in instance, listed by each vCester
Server instance where the plug-in is
registered.

sharedModalsInfoByVcObje
cts

no Reserved for future use.

Used by: modal.getSharedModalsMap()

modal.VcSharedModalsInfo
Description Information about modal dialog boxes shared by a plug-in instance registered with a

specific vCenter Server instance.

Property Type Required? Notes

pluginVersion string yes The plug-in version registered with the
vCenter Server instance.

sharedModalsIds string[] yes List of modal dialog boxes shared by the
plug-in.

Used by: modal.SharedModalsMap

vSphere Client JavaScript API: Application Interface

The app interface provides context object information and helps your plug-in navigate and

control the vSphere Client user interface.

app.ApiEndpoints
Description Holds a nested object that contains the parsed elements of the plug-in URL.

Property Type Required? Notes

uiApiEndpoint app.UiApiEndpoint info only

Used by: app.getApiEndpoints()

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 108

app.ClientInfo
Description Documents type and version of vSphere Client.

Property Type Required? Notes

type string info only The vSphere Client type (must be HTML).

version string info only The vSphere Client version string.

Used by: app.getClientInfo()

app.ClientViewNavigationOptions
Description Specifies a destination view that is owned by the vSphere Client.

Property Type Required? Notes

targetviewid string no Navigation ID of the destination view.

n administration.ceip
n cluster.configure.settings.drs
n cluster.configure.settings.ha
n cluster.configure.settings.quickstart
n cluster.monitor.allIsues
n folder.configure.keyProviders
n host.configure.networking.physicalAdapters
n host.summary
n namespace.storage.persistentVolumeClaims
n network.summary
n profilesAndPolicies.vmStoragePolicies
n vm.monitor.performance.overview
n vm.summary
n folder.configure.settings.general
n workload.platform.supervisor.summary

objectid string no ID of any object associated with the view. (For a global
view, this field is not required.).

Used by app.navigateToClientView()

app.formatDateTime()
Signature app.formatDateTime(instant:number, options:app.PluginDateTimeFormatOptions):string

Description Returns a formatted string that contains a human-readable representation of the instant
parameter. The instant parameter holds the number of milliseconds since the start of 1

January 1970 UTC.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 109

app.getApiEndpoints()
Signature app.getApiEndpoints():app.ApiEndpoints

Description Returns the URLs of the vsphere-ui service API endpoints available to plug-ins. For an example,
see the sample remote plug-ins available in the vSphere Client SDK.

app.getClientInfo()
Signature app.getClientInfo():app.ClientInfo

Description Returns type and version info for the vSphere Client.

app.getClientLocale()
Signature app.getClientLocale():string

Description Returns the current locale of the vSphere Client.

app.getContextObjects()
Signature app.getContextObjects():any[]

Description Returns the IDs of the current context objects, depending on the view or dialog from which
the method is called.

Return value:
for global view

Returns empty array. Global views have no associated vSphere objects.

for vSphere object

Returns a context item for the associated vSphere object.

for dialog opened by modal.open()

If dialog opened by htmlClientSdk.modal.open(), returns value of

configObj.contextObjects (or empty array, if contextObjects undefined)

for dialog opened by plugin.json actions

If dialog opened by action defined in plugin.json, returns an array of action targets.

A context item is a JavaScript object containing a single property, id:string. This is the ID

of the associated vSphere object.

app.getNavigationData()
Signature app.getNavigationData():any

Description Returns the custom data passed to the view by the app.navigateTo(). (If no custom data

passed, returns null.)

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 110

app.getPluginBackendInfo()

Note Applies to remote plug-ins only.

Signature app.getPluginBackendInfo(callback:function):void

Description Creates listings of service endpoints registered for the running plug-in instance, enabling
plug-in front ends to use the vCenter Server ExtensionManager as a service registry.

The callback function must have the following signature:

Function callback(backendInfo:app.PluginBackendInfo):void

If the method throws an exception, the callback parameter will be null.

app.getRemotePluginNavigationMap()
Signature app.getRemotePluginNavigationMap(targetPluginId:string, callback:function):void

Description Returns view IDs that belong to a plug-in specified by the targetPluginId parameter. If the

targetPluginId is not the ID of the caller, the method returns IDs of only the public views
for the target plug-in. Returns information for all vCenter Server instances where the target
plug-in is registered and enabled.

The callback function must have the following signature:

function callback(navigationInfo:app.RemotePluginNavigationMap):void

If the method throws an exception, the callback parameter will be null.

app.getSessionInfo()
Signature app.getSessionInfo(callback:function):void

Description Retrieves and processes information about the client's authentication session.

The callback function must have the following signature:

function callback(info:app.SessionInfo):void

If the method throws an exception, the callback parameter will be null.

app.getTheme()
Signature app.getTheme():app.PluginTheme

Description Retrieves information about the UI theme that is currently selected.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 111

app.navigateTo()
Signature app.navigateTo(configObj:app.NavigationOptions):void

Description Navigates to a specified view, and optionally passes custom data to the view.

Parameter: configObj Specifies the destination view and custom data.

app.navigateToClientView()
Signature app.navigateTo(configObj:app.ClientViewNavigationOptions):void

Description Navigates to a specified vSphere Client view.

Parameter: configObj Specifies the destination view.

app.navigateToRemotePluginView()
Signature app.navigateTo(configObj:app.RemotePluginViewNavigationOptions):void

Description Navigates to a view implemented by another remote plug-in, or by another instance of the
same plug-in deployed by a different vCenter Server instance. Optionally passes custom
data to the view.

Parameter: configObj Specifies the destination view and custom data.

Note A best practice is to call app.getRemotePluginViewNavigationMap() before this procedure,
to ensure that the navigation target is registered and enabled.

app.NavigationOptions
Description Specifies a destination view and custom data for the view.

Property Type Required? Notes

targetViewId string no Navigation ID of the destination view. (For a remote plug-
in, this property must identify a view created by the same
plug-in.) Omit this to navigate to the last-used view of the
object specified by objectId.

objectId string no ID of any object associated with the view. Omit this to
navigate to a global view.

customData any no A custom data structure passed to the view.

Used by: app.navigateTo()

app.PluginBackendInfo

Note Applies to remote plug-ins only.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 112

Description Contains two objects that list endpoint descriptors available to a given plug-in instance.

Property Type Required? Notes

allPluginBackendServers Array<app.P
luginBacken
dServerInfo
>

info only A list of plug-in server endpoint descriptors registered for
a given plug-in instance. The list includes all registrations
within the same link group. The list is unordered and
contains no duplicates.

backendServersPerVc {[vcGuid:st
ring]:Array
<app.Plugin
BackendServ
erInfo>}

info only A one-to-many mapping: vCenter Server GUID to a list
of plug-in server endpoint descriptors registered with the
vCenter Server instance on behalf of the running plug-in
instance.

Used by: app.getPluginBackendInfo()

app.PluginBackendServerInfo

Note Applies to remote plug-ins only.

Description A descriptor for a plug-in server endpoint registered for a plug-in instance. Choose the
server by the type value, then form a resource URL from the endpoint descriptor. To

access a resource belonging to the server, prefix the proxiedBaseUrl value to the root-

relative path of the resource on the plug-in server: /<proxiedBaseUrl>/<path to resource
from server root>

Property Type Required? Notes

proxiedBaseUrl string info only The path component of the server root URL, as seen on
the reverse proxy service port.

type string info only The type of the server, as specified in its registration

record (Extension data object) with a vCenter Server

instance. Plug-ins can use this property to identify
auxiliary servers that are part of the same plug-in
instance. For more information, see Using Auxiliary Plug-in
Servers.

Used by: app.PluginBackendInfo

app.PluginDateTimeFormatOptions
Description Specifies which part of a timestamp to format.

Property Type Required? Notes

format string no

(default: DATE_AND_TIME)
Possible values:

n DATE
n TIME
n DATE_AND_TIME

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 113

Used by: app.formatDateTime()

app.PluginTheme
Description Indicates a choice of UI theme.

Property Type Required? Notes

name string info only Possible values: light or dark.

Used by: app.getTheme()

app.QueryParam
Description Holds a single query parameter of a URL.

Property Type Required? Notes

name string info only Name of query parameter, as in ?name=value.

value string info only Value of query parameter, as in ?name=value.

Used by: app.UiApiEndpoint

app.refreshPluginItemsState()
Signature app.refreshPluginItemsState():void

Description Triggers the refresh of all dynamic UI content hosted by the current plug-in. For example,
the plug-in introduces a view that is dynamically filtered based on a property value of some
object. If the property value is changed by the plug-in using the public vSphere APIs, then
the plug-in must call this API to signal the UI to re-evaluate the state of the initiator's plug-in
related items.

app.RemotePluginNavigationMap
Description Lists remote plug-in destination views, belonging to a single vCenter Server instance,

that are exposed by plug-ins using the isPublic property in the plug-in manifest.

Use the map key as the value of the vcGuid property in the parameter to

app.navigateToRemotePluginView().

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 114

Property Type Required? Notes

navigationInfoByVcGuid Map<string,
app.RemotePluginVcNavigationInf
o>

info only A one-to-many mapping of
vCenter Server instances to view
IDs that are served by a specified
plug-in instance registered with
each vCenter Server instance. Each
map entry contains the GUID
of a vCenter Server instance
within the same link group, and
a corresponding list of view
descriptors.

Used by: app.getRemotePluginNavigationMap()

app.RemotePluginVcNavigationInfo
Description Descriptor for views served by a given plug-in. Use a view ID as the value of the

targetViewId property in the parameter to app.navigateToRemotePluginView()

Property Type Required? Notes

pluginVersion string info only The version of a plug-in instance registered with a given
vCenter Server instance.

viewIds string[] info only All the view IDs, served by a given plug-in instance, that
are accessible to the current plug-in instance.

Used by: app.RemotePluginNavigationMap

app.RemotePluginViewNavigationOptions
Description Specifies a destination view served by a different plug-in instance, and custom data for

the view.

Property Type Required? Notes

pluginId string yes ID of the plug-in that owns the destination view.

targetViewId string yes Navigation ID of the destination
view. Use only values returned by
htmlClientSdk.app.getRemotePluginNavigationMap() in

the viewsIds array.

vcGuid string yes The GUID of the vCenter Server instance that determines
the context for the target view. If objectId is specified,

the object must be managed by the specified vCenter
Server instance.

objectId string no ID of any object associated with the view. (For a global
view, this field is not required.)

customData any no A custom data structure passed to the view.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 115

Used by: app.navigateToRemotePluginView()

app.SessionInfo
Description Holds information about the current session of the vSphere Client.

Property Type Required? Notes

sessionToken string info only Identifier of the plug-in authentication session with
vCenter Server.

nodeId string info only Reserved for internal use only.

Used by: app.getSessionInfo()

app.UiApiEndpoint
Description Holds the parsed elements of a plug-in URL.

Property Type Required? Notes

origin string info only <protocol>://<hostname><port>

pathname string info only

queryParams Array<app.QueryParam> info only <name>=<value>

fullUrl string info only <origin>/<pathname>?<queryParams>

Used by: app.ApiEndpoints

vSphere Client JavaScript API: Event Interface

The event interface helps your plug-in with event management.

event.onDateTimeFormatChanged()
Signature event.onDateTimeFormatChanged(callback:function):void

Description Registers an event handler for changes to the datetime format preferences in the vSphere
Client.

Parameter: callback A reference to a function that responds to changes in datetime preferences.

The callback function must have the following signature:

function callback():void

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 116

event.onGlobalRefresh()
Signature event.onGlobalRefresh(callback:function):void

Description Registers a global refresh handler that the vSphere Client will call when the Global Refresh
button is clicked.

Parameter: callback A reference to a global refresh handler.

The callback function must have the following signature:

function callback():void

event.onThemeChanged()
Signature event.onThemeChanged(callback:function):void

Description Registers an event handler that the vSphere Client will call when the vSphere Client changes
the current theme.

Parameter: callback A reference to a theme change handler.

The callback function must have the following signature:

function callback(theme:app.PluginTheme):void

The theme parameter identifies the new vSphere Client theme.

Example Using the modal API

This example shows some basic features of the modal interface of the Client API.

modal.html

<html>
 <head>
 <script src="http://code.jquery.com/jquery-latest.min.js"
 type="text/javascript"></script>
 <script src="/api/ui/htmlClientSdk.js"
 type="text/javascript"></script>
 <script type='text/javascript'>
 function handler(event)
 {
 var choice = $('input[name=heads_or_tails]:checked').val();
 htmlClientSdk.modal.setOptions({title: choice});
 settimeout(function(){htmlClientSdk.modal.close(choice);}, 3000);
 }
 </script>
 </head>
 <body>
 <form name='flip' onSubmit='return handler()'>
 <p><input type='radio' name='heads_or_tails' value='HEADS' />HEADS</p>
 <p><input type='radio' name='heads_or_tails' value='TAILS' />TAILS</p>
 <input type='submit' name='submit' value='Submit' />

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 117

 </form>
 </body>
</html>

modal.js

flipper = function(){
 # Select correct answer.
 correct = ['heads', 'tails'][2*Math.random()-1];

 # Create callback function.
 checker = function(choice){
 var correct = htmlClientSdk.modal.getCustomData();
 if (choice === correct) {
 alert('You chose wisely.');
 } else {
 alert('Sorry, you lose.');
 }}

 # Configure modal dialog.
 var config ={
 url: "example/dialog.html",
 title: 'Choose!',
 size: { width: 490, height: 240 },
 onClosed: checker,
 customData: correct}

 # Open modal dialog.
 htmlClientSdk.modal.open(config);
}

Initialize Javascript API.
$(document).ready(htmlClientSdk.initialize(flipper));

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 118

Using Themes with vSphere Client
Plug-ins 8
The vSphere Client SDK provides the means for a plug-in to integrate with the themes supported
by the vSphere Client. Modifying a plug-in to support themes requires changes to the plug-in
style sheets and front-end code to switch style sheets whenever the user changes the theme in
the vSphere Client.

To integrate with the vSphere Client themes, a plug-in uses these methods of the JavaScript API:

n app.getTheme()

n event.onThemeChanged(callback)

To prepare your code for a theme change, you must identify and isolate theme-dependent styles
and icons, then create variables with which to manage the style changes and overrides.You can
merge your styles with the standard Clarity styles to improve performance. Finally, you can use
examples in this book to load new styles in response to user theme changes.

The following procedures assume that the plug-in's front-end code is built using Angular and
Clarity Design System. For other frameworks and build tools, the approach is similar but you will
need to adapt the approach to suit the chosen tools. The examples in this guide are based on the
HTML Plug-in Sample provided as part of the vSphere Client SDK.

Read the following topics next:

n Using Style Variables in Plug-In CSS

n Building Output Style Sheets for vSphere Client Plug-Ins

n Configuring and Loading Theme Style Sheets in vSphere Client Remote Plug-Ins

n Configuring Theme-Dependent Icons for vSphere Client Remote Plug-ins

Using Style Variables in Plug-In CSS

If a plug-in uses custom styles that depend on the theme colors, the plug-in style sheets (CSS
or SASS or LESS) need to be parameterized. This enables the plug-in to adapt when the user
switches themes in the vSphere Client user interface.

VMware by Broadcom 119

In this procedure you copy any custom colors that depend on the current theme into variables
in separate style sheets that are specific to the light or dark theme. You replace the colors

in the original style sheets with instances of CSS variables. This is done to avoid style sheet
duplication and to easily integrate theming with any custom Angular components the plug-in
has defined. For more information about CSS variables, see https://developer.mozilla.org/en-US/
docs/Web/CSS/Using_CSS_variables.

Prerequisites

Ensure that the plug-in's Clarity version supports the dark theme. The first Clarity version to

support the dark theme is 0.10.16.

Procedure

1 Identify any theme-dependent colors or styles in your plug-in.

2 Factor out theme-dependent colors or styles into two new style sheets as CSS variables.

The SDK includes the following sample file at html-client-sdk/samples/remote-plugin-
sample/src/main/ui/src/styles-light.css.

:root {
 --border-color: rgb(204, 204, 204);
 --overlay-color: rgba(255, 255, 255, 0.2);
 --info-icon-color: darkblue;
 }

The SDK includes the following sample file at html-client-sdk/samples/remote-plugin-
sample/src/main/ui/src/styles-dark.css.

:root {
 --border-color: rgb(72, 87, 100);
 --overlay-color: rgba(0, 0, 0, 0.2);
 --info-icon-color: darkblue;
 }

3 Replace the theme-dependent colors or styles in the original style sheets with variable
references.

The SDK includes the following code in the sample file at html-client-sdk/samples/
remote-plugin-sample/src/main/ui/src/app/views/list/list.component.scss.

.splitter {
 flex: 0 0 auto;
 width: 1px;
 margin: 0 20px;
 background-color: var(--border-color);
 }

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 120

https://developer.mozilla.org/en-US/docs/Web/CSS/Using_CSS_variables
https://developer.mozilla.org/en-US/docs/Web/CSS/Using_CSS_variables

4 For Internet Explorer 11, which does not include support for CSS variables, include a polyfill
library to provide support for CSS variables.

The vSphere Client SDK includes a remote plug-in sample that uses css-vars-ponyfill.

The following example is borrowed from html-client-sdk/samples/remote-plugin-
sample/src/main/ui/src/index.html.

<script type="text/javascript" src="scripts/css-vars-ponyfill.js"></script>

What to do next

n Configure theme-dependent icons in the plug-in manifest file.

n Use the modified input style sheets to build the output style sheets for your plug-in.

Building Output Style Sheets for vSphere Client Plug-Ins

After you isolate theme-dependent colors or styles as CSS variables, you can merge the resulting
style sheets with the standard Clarity styles to produce a set of output style sheets for optimized
performance.

Angular applications which use webpack and angular-cli place the style sheet declarations inline

by default, when in development mode. Inline style declarations interfere with dynamic CSS
loading. When you build the output style sheets, always configure the build to output and use
external CSS:

To build external style sheets, add the --extract-css parameter to the ng build command.

The vSphere Client SDK has examples of this usage in html-client-sdk/samples/remote-
plugin-sample/src/main/ui/package.json.

You must deactivate any output file name hashing in the development and production builds.
Otherwise the names of the style sheet files will change whenever the code changes, and the
plug-in will not be able to load them.

To deactivate file name hashing when you build style sheets, use this syntax: ng build --prod
--output-hashing none.

Prerequisites

Refactor the input style sheets for the plug-in so that they isolate theme-dependent colors and
styles in separate style sheets as CSS variables.

Procedure

1 Create a base output style sheet that is independent of the themes.

The base style sheet contains the Clarity icons style sheet and the base input style sheet for
the plug-in, which uses CSS variables. The vSphere Client SDK builds this output style sheet
by using Angular to compile the SCSS.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 121

The following example comes from the vSphere Client SDK file html-client-sdk/samples/
remote-plugin-sample/src/main/ui/angular-cli.json.

"styles": [
 {
 "input": "../node_modules/clarity-icons/clarity-icons.min.css",
 "output": "styles",
 "lazy": true
 },
 {
 "input": "styles.css",
 "output": "styles",
 "lazy": true
 }
 ...
]

This step combines the contents
of html-client-sdk/samples/remote-plugin-sample/src/main/ui/node_modules/
remote-plugin-sample/src/main/ui/styles.css and html-client-sdk/samples/
remote-plugin-sample/src/main/ui/styles.css into html-client-sdk/samples/
remote-plugin-sample/target/classes/ui/styles.bundle.css.

2 Create an output style sheet file for the light theme.

This style sheet includes the Clarity style sheet for the light theme and the plug-in style

sheet for the light theme, which contains the CSS variable definitions for the light theme.

The following example comes from the vSphere Client SDK file html-client-sdk/samples/
remote-plugin-sample/src/main/ui/angular-cli.json.

"styles": [
 ...
 {
 "input": "../node_modules/clarity-ui/clarity-ui.min.css",
 "output": "theme-light",
 "lazy": true
 },
 {
 "input": "styles-light.css",
 "output": "theme-light",
 "lazy": true
 }
 ...
]

This step combines the contents of html-client-sdk/samples/remote-
plugin-sample/src/main/ui/node_modules/clarity-ui/clarity-ui.min.css and
html-client-sdk/samples/remote-plugin-sample/src/main/ui/styles-light.css
into html-client-sdk/samples/remote-plugin-sample/target/classes/ui/theme-
light.bundle.css.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 122

3 Create an output style sheet file for the dark theme.

This style sheet includes the Clarity style sheet for the dark theme and the plug-in style sheet

for the dark theme, which contains the CSS variable definitions for the dark theme.

The following example comes from the vSphere Client SDK file html-client-sdk/samples/
remote-plugin-sample/src/main/ui/.angular-cli.json.

"styles": [
 ...
 {
 "input": "../node_modules/clarity-ui/clarity-ui-dark.min.css",
 "output": "theme-dark",
 "lazy": true
 },
 {
 "input": "styles-dark.css",
 "output": "theme-dark",
 "lazy": true
 }
 ...
]

This step combines the contents of html-client-sdk/samples/remote-plugin-
sample/src/main/ui/node_modules/clarity-ui/clarity-ui-dark.min.css and html-
client-sdk/samples/remote-plugin-sample/src/main/ui/src/styles-dark.css
into html-client-sdk/samples/remote-plugin-sample/target/classes/ui/theme-
dark.bundle.css.

What to do next

Write front-end code to load style sheets that match the theme selected by the user.

Configuring and Loading Theme Style Sheets in vSphere
Client Remote Plug-Ins

After you compile the output style sheets for your plug-in user interface, you write front-end
code to load the style sheets that cause your plug-in to conform to the style selected in the
vSphere Client.

Prerequisites

n Refactor the input style sheets for the plug-in so that they isolate theme-dependent colors
and styles in separate style sheets as CSS variables.

n Configure theme-dependent icons in the plug-in manifest file.

n Build output style sheets into a base style sheet and a style sheet for each theme.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 123

Procedure

1 Load and configure polyfill libraries to provide CSS variable support in Internet Explorer 11.

If you use css-vars-ponyfill, consider whether to configure options to create a

MutationObserver and whether to remove CSS rulesets and declarations that do not
reference a CSS custom property value. For more information about configuring css-vars-
ponyfill, see https://github.com/jhildenbiddle/css-vars-ponyfill/tree/v1.17.1#optionswatch

and https://github.com/jhildenbiddle/css-vars-ponyfill/tree/v1.17.1#optionsonlyvars.

The vSphere Client SDK includes a remote plug-in sample that uses css-vars-ponyfill. The

following example is borrowed from the file html-client-sdk/samples/remote-plugin-
sample/src/main/ui/src/index.html.

<script type="text/javascript" src="scripts/css-vars-ponyfill.js"></
script>
// Initialize CSS vars to configure polyfill.
cssVars({
 watch: true,
 onlyVars: true
});

The following example is borrowed from the file html-client-sdk/samples/remote-
plugin-sample/src/main/ui/.angular-cli.json.

 "assets": [
 "assets",
 {
 "glob":
 "css-vars-ponyfill.js",
 "input": "../node_modules/css-vars-ponyfill/dist/",
 "output": "scripts/
 },
 …
]

2 Load the base style sheet initially.

The following example is borrowed from html-client-sdk/samples/remote-plugin-
sample//src/main/ui/src/index.html.

<link rel="stylesheet" type="text/css" href="styles.bundle.css">

3 Load and initialize the vSphere Client JavaScript API.

<script type="text/javascript" src="/api/ui/htmlClientSdk.js"></script>
<script type="text/javascript">
 htmlClientSdk.initialize(init_plugin_view());
</script>

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 124

https://github.com/jhildenbiddle/css-vars-ponyfill/tree/v1.17.1#optionswatch
https://github.com/jhildenbiddle/css-vars-ponyfill/tree/v1.17.1#optionsonlyvars

For examples in the SDK, see html-client-sdk/samples/remote-plugin-
sample//src/main/ui/src/index.html and html-client-sdk/samples/remote-
plugin-sample//src/main/ui/src/app/app.component.ts.

4 Load the style sheet for the current theme initially and whenever the style changes.

The following example is adapted from html-client-sdk/samples/remote-plugin-
sample/src/main/ui/src/app/app.component.ts.

if (this.globalService.htmlClientSdk.app.getTheme &&
 this.globalService.htmlClientSdk.event.onThemeChanged) {
 this.loadTheme(true, this.globalService.htmlClientSdk.app.getTheme());
 this.globalService.htmlClientSdk.event.onThemeChanged(
 this.loadTheme.bind(this, false));
 } else {
 this.loadTheme(true, { name: 'light' });
 }

private loadTheme(firstLoad: boolean, theme: any): void {
 let themeName: string = theme.name;
 let supportedThemeNames: string[] = ['light', 'dark'];
 if (supportedThemeNames.indexOf(themeName) === -1) {
 themeName = supportedThemeNames[0];
 }
 let styleSheetLinkElement =
 (<HTMLLinkElement> document.getElementById('theme-stylesheet-link'));
 let themeCssUrl = `theme-${themeName}.bundle.css`;

 if (firstLoad) {
 let initialThemeLoadCompleteListener = (event: Event) => {
 this.initialThemeLoadComplete = true;
 styleSheetLinkElement.removeEventListener('load',
 initialThemeLoadCompleteListener);
 styleSheetLinkElement.removeEventListener('error',
 initialThemeLoadCompleteListener);
 };

 styleSheetLinkElement.addEventListener('load',
 initialThemeLoadCompleteListener);
 styleSheetLinkElement.addEventListener('error',
 initialThemeLoadCompleteListener);
 }

 styleSheetLinkElement.setAttribute("href", themeCssUrl);
 document.documentElement.setAttribute("data-theme", themeName);
}

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 125

Configuring Theme-Dependent Icons for vSphere Client
Remote Plug-ins

When you refactor style sheets for your plug-in to accommodate theme changes, you can also
specify icons suited for alternative themes. You specify theme-dependent icons in the plug-in
manifest file.

Configuring theme-dependent icons is an optional step that can improve the user experience
after a theme change.

Procedure

1 Edit the plug-in manifest file, plugin.json, and locate the iconSpriteSheet property at the

second level of the JSON, within the definitions property.

...
"definitions": {
 "iconSpriteSheet": {
 "uri" : "assets/images/sprites.png",
 "definitions": {
 "main" : {
 "x": 0,
 "y": 96
 }
 }
 },
 "i18n": {
 "locales": ["en-US"],
 "definitions": {
 "plugin.name": {
 "en-US": "Theme Example"
 }
 }
 }
},
...

2 Within the iconSpriteSheet property, add a themeOverrides property that maps each

theme name to a URI and the coordinates of its theme-dependent icons.

The structure of each theme property inside the themeOverrides property is identical to the

structure of the iconSpriteSheet property, which contains a uri and a definitions property.

...
"definitions": {
 "iconSpriteSheet": {
 "uri" : "assets/images/sprites.png",
 "definitions": {
 "main" : {
 "x": 0,
 "y": 96
 }

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 126

 },
 "themeOverrides": {
 "dark": {
 "uri": "assets/images/sprites_dark.png",
 "definitions": {
 "main": {
 "x": 0,
 "y": 96
 }
 }
 }
 },
 "i18n": {
 "locales": ["en-US"],
 "definitions": {
 "plugin.name": {
 "en-US": "Theme Example"
 }
 }
 }
},
...

A best practice is to maintain a separate style sheet for each theme, with corresponding
icons in the same positions. When you do this, you do not need to override the default
coordinates, and you can omit the definitions from the themeOverrides element.

3 Save your changes and close the manifest file.

What to do next

Write front-end code to load style sheets that match the theme selected by the user.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 127

Integrated Solution Installer for
the vSphere Client 9
When you create a plug-in server encapsulated in an Open Virtual Format package (OVF), you
can configure the OVF to automate the registration of the plug-in. This avoids the need to create
a custom registration tool or to use the manual registration script in the SDK.

Read the following topics next:

n Conceptual Overview of the Preparation Process

n Deployment with the Integrated Solution Installer

n Integrated Installer Solution Metadata

Conceptual Overview of the Preparation Process

A self-registering plug-in solution requires the coordination of several software functions. The
following procedure shows how to prepare an OVF package for self-registration by installing
needed software and configuring metadata that guides the registration process when the virtual
machine first starts up after deployment to a vCenter Server instance.

In brief, these are the needed software and metadata components:

n The virtual machine needs a web application server. The following instructions show how to
install the Remote Sample Starter from the vSphere Client SDK, which you can customize
to support your application. Alternatively, you could install nginx or another server that is

capable of serving the plug-in manifest during the registration process.

n The virtual machine needs VMware Tools installed. VMware Tools provides the mechanism
to inject environmental parameters into the virtual machine. The following instructions begin
with downloading a Photon OS virtual machine that has VMware Tools already installed. If
you choose a different virtual machine as a starting point, you might need to install VMware
Tools.

n The virtual machine also needs files that run during startup to assemble the environmental
parameters and send a registration request to vCenter Server. Sample registration files
intended for a Linux guest OS are provided in the vSphere Client SDK. A bash script queries
VMware Tools for the parameters needed to build the registration request and launch a
Python program to do the registration.

VMware by Broadcom 128

n The registration request includes solution identifying details. During deployment of the OVF
files, the vSphere Client passes these details to the guest OS by means of VMware Tools..

Figure 9-1. Preparing the Solution OVF for the Integrated Installer

Solution VM

startup files

vmtoolsd

plugin server

Solution Metadata
(.ovf file)

1.
2.
3.

VMware Tools

web application
server

rc.local
vsphere_ui_request.py

solutionId
pluginId
vCenterSupport

1

2

3
4

Preparing a Solution OVF to Use the Integrated Solution Installer

You can prepare a virtual machine with software and configuration metadata that work in
conjunction with the vSphere Client to register a plug-in solution when the virtual machine starts
up in a production environment.

Prerequisites

n vCenter Server 6.7 or later.

n An OVA package that contains a virtual machine with virtual hardware version 11 or later.
PhotonOS, as used in this procedure, is recommended.

n root or administrator access to the guest operating system.

n (If you choose to use Docker to download nginx) access to the Docker Hub.

Outline of Steps to Prepare a Plug-in Server for Self-Registration and Installation

1 Acquire the OVA File for Photon OS, virtual hardware version 11

2 Use the vSphere Client to Install the OVA in a vSphere Environment

3 Configure vApp Options for deployment in a production environment

4 Configure Solution Properties in the OVF

5 Run the virtual machine and Set the root Password in the Guest OS

6 Install Your Web Application Server in the Guest OS

7 Install VMware Tools if needed

8 Copy Startup Files into the Guest OS to the /etc/rc.d/ directory

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 129

9 Export a New OVF Template

10 Deploy the OVF template in a production environment

When a user deploys a virtual machine from the finished OVF template, the virtual machine starts
the plug-in web server in the guest OS and registers it with vCenter Server.

Acquire the OVA File for Photon OS

Photon OS is an open-source, security-hardened, enterprise-grade Linux distribution designed
for Cloud and Edge applications.

You can download a Photon OS OVA with virtual hardware v11 from https://github.com/vmware/
photon/wiki/Downloading-Photon-OS

Figure 9-2. Download Photon OS from GitHub

Install the OVA in a vSphere Environment

You need to install the virtual machine in an environment where you can modify its configuration
and make some changes in the guest OS. To install the OVA, use the Deploy OVF Template
wizard in the vSphere Client.

1 Right-click any inventory object that is a valid parent object of a virtual machine, such as a
data center, folder, cluster, resource pool, or host.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 130

https://github.com/vmware/photon/wiki/Downloading-Photon-OS
https://github.com/vmware/photon/wiki/Downloading-Photon-OS

2 Select Deploy OVF Template.

3 In the first step of the wizard, Select an OVF template, choose Local file.

4 Click UPLOAD FILES and choose the OVA file you downloaded.

5 Click NEXT and complete the Deploy OVF Template wizard.

Figure 9-3. The Deploy OVF Template wizard

Configure vApp Options

After you install the virtual machine in your development environment, you configure certain
vApp properties that will affect the virtual machine when it is deployed to a production
environment.

1 Navigate to the deployed virtual machine name in the navigation pane on the left.

2 Click the Configure tab.

3 Select Settings > vApp Options.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 131

Figure 9-4. Settings > VApp Options

4 Click the EDIT button near the top of the VApp Options panel.

The Edit vApp Options panel contains three tabs: IP Allocation, vApp Details, and Details.

On the IP Allocation tab, select network constraints for the virtual machine.

n In the Authoring section, choose one or both of the network protocols (IPv4, IPv6, or
both) for the vApp production environment. The choices you make in the Authoring section
constrain the choices available in the Deployment section.

If you select OVF Environment in the Authoring
section...

Choose IP pool settings in the Deployment section.

If you choose DHCP in the Authoring section... DHCP service must be available on the vSphere
networks where the vApp will be deployed.

If you make no selections in the Authoring section... IP addresses must be assigned manually when the
vApp is deployed.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 132

Figure 9-5. Selecting IP Allocation Choices

On the OVF Details tab of the Edit vApp Options window, in the OVF environment
transport section, enable VMware Tools. When the virtual machine is deployed in a production
environment, it will use VMware Tools to read solution properties that were configured in the
OVF template. These properties will be injected into the plug-in registration request.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 133

Figure 9-6. Selecting OVF Details

On the Details tab of the Edit vApp Options window, specify a vendor-supplied product name for
the plug-in solution.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 134

Figure 9-7. Entering Vendor Information

Configure Solution Properties in the OVF

When the virtual machine starts as a plug-in in a production environment, it needs to register
itself with vCenter Server. Before you deploy the plug-in, you must configure the OVF template
with several solution properties that will be injected into the registration record during startup.
These include the solution ID, the plug-in ID, and other properties.

1 Navigate to the deployed virtual machine name in the navigation pane on the left

2 Power off the virtual machine if it is powered on.

3 Select the Configure tab in the selection pane on the left.

4 Select Settings > vApp Options.

5 In the vApp Options pane, scroll down to the Properties section.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 135

Figure 9-8. Adding VApp Properties

Click ADD to add each new property. Configure the OVF environment with required properties,
as shown in the following table. Default values are required, and must match the choice list value.

Note Optional values and best practices are described in Integrated Installer Solution Metadata.

Property Key Type Example Choice List Example Default Value

vmw.vsphereui.solutioninsta
ll.solutionId

string choice "com.example.solution.id" com.example.solution.id

Choice list contains a single vendor-defined element. For example: "com.example.solution.id"

vmw.vsphereui.solutioninsta
ll.pluginId

string choice "com.example.plugin.id" com.example.plugin.id

Choice list contains a single vendor-defined element. For example: "com.example.plugin.id". Value may be same as
solution ID.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 136

Property Key Type Example Choice List Example Default Value

vmw.vsphereui.solutioninsta
ll.vCenterSupport

string choice "Single" Single

Choice list contains either "Single" or "Multiple" to indicate whether the solution supports one or many vCenter Server
instances.

Note Property keys are case sensitive.

Note The OVF properties will be assigned values the next time the virtual machine is powered
on. The values must be assigned before you export the OVF template.

For more information about these properties and other optional properties, see Integrated
Installer Solution Metadata.

Upgrade VM Compatibility

To be sure that the guest OS will be supported by the host when it is deployed, upgrade
compatibility to ESXi 6.7 Update 2 and later.

1 Power off the virtual machine, if running.

2 From the ACTIONS menu, choose Compatibility > Upgrade VM Compatibility.

Figure 9-9. Upgrading Compatibility for the Virtual Machine

3 In the Configure VM Compatibility dialog, choose ESXi 6.7 U2 and later from the Compatible
with pop-up menu.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 137

Figure 9-10. Upgrade VM Compatibility Dialog

Set the root Password in the Guest OS

When you download the OVA, the root password for the guest OS is insecure. You must change
the password before you deploy the virtual machine in a production environment.

1 Power on the virtual machine.

2 Open a Web Console or Remote Console window to the guest OS.

n The default root password for the Photon OS guest OS is changeme.

3 Set a new, secure, root password.

n Make a note of the new password, in case you need to update the software or alter the
configuration in the future.

Install Your Web Application Server in the Guest OS

The virtual machine needs a plug-in server to handle REST queries from the plug-in user
interface. You can install the SDK sample starter or other web server, according to your
preference.

To install the remote plug-in sample starter provided in the vSphere Client SDK:

1 Customize the sample starter as needed for your solution.

2 Build the remote-plugin-sample-starter from the SDK.

See Build the Remote Plug-in Sample Starter.

3 Copy the remote-plugin-sample-starter-VERSION.jar into the guest OS. (for this example, we
use the /root/ folder of the VM).

cd /root
scp myuserid@mydevbox.example.com:/html-client-sdk/samples/remote-plugin-sample-starter/
target/*.jar .

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 138

Install VMware Tools

If you are using the Photon OS OVA downloaded from github as described in the first step of this
procedure, VMware Tools is already installed in the guest. Otherwise, you might need to install
VMware Tools manually. In the vSphere Client Hosts and Clusters view, right-click your virtual
machine and select Guest OS > Install VMware Tools. For more detailed instructions, see the
knowledge base article https://kb.vmware.com/s/article/2004754.

Copy Startup Files into the Guest OS

When the virtual machine starts up in a production environment, it needs to run startup scripts to
register itself with vCenter Server. You must install the scripts in the Linux guest OS before you
deploy the virtual machine in a production environment.

1 Copy the files rc.local and vsphere_ui_request.py from the SDK directory /samples/
solutioninstall/ to the directory /etc/rc.d/ in the guest OS.

cd /etc/rc.d
scp myuserid@mydevbox.example.com:/html-client-sdk/samples/solutioninstall/rc.local .
scp myuserid@mydevbox.example.com:/html-client-sdk/samples/solutioninstall/
vsphere_ui_request.py .

2 Set execute permissions on the files in the guest OS.

chmod +x /etc/rc.d/rc.local
chmod +x /etc/rc.d/vsphere_ui_request.py

When you deploy the virtual machine as a plug-in in vCenter Server, the guest OS runs
rc.local, which in turn runs vsphere_ui_request.py. The request script uses VMware Tools

to read the solution properties, then builds a registration request and sends it to vCenter Server.

If you install a web server other than the remote plug-in sample starter, you can customize
rc.local, which is a bash script, or write your own script along similar lines. The script does the

following actions:

n Reads solution metadata

n Installs a JDK

n Opens a firewall port for incoming HTTPS requests

n Starts the web server

n Launches vsphere_ui_request.py to send the plug-in registration request

Note: If you customize the script, it is important that the vCenter Server thumbprint is verified as
part of making the request to the vSphere UI.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 139

https://kb.vmware.com/s/article/2004754

Export a New OVF Template

After you configure VMware Tools, install the startup script, configure injectable solution
properties, and install your plug-in web server, you can export the virtual machine as an OVF
template that is available to deploy in your production environment.

1 Power off the virtual machine.

2 Export the virtual machine as an OVF, using the Template > Export OVF Template action.

In the Export OVF Template dialog, supply a name and description for the template.

Figure 9-11. Exporting an OVF Template

Related Resources

n PhotonOS documentation: https://vmware.github.io/photon/docs/

n nginx downloads: https://hub.docker.com/_/nginx/

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 140

https://vmware.github.io/photon/docs/
https://hub.docker.com/_/nginx/

Deployment with the Integrated Solution Installer

After you complete the configuration steps and export the virtual machine as an OVF template, it
is ready to install as a plug-in server in your production environment.

Deploy the OVF template in a production environment

1 If you prepared the virtual machine in a development environment, copy the OVF file to a
location accessible to your production system.

2 Use the vSphere Client, connected to your production system, to add the OVF file to your
plug-in deployment.

n Navigate to Administration > Client Plugins and click the ADD button to install and launch
the plug-in in the vCenter Server environment.

3 There is a specific solution installation task in the Tasks console. As of vSphere 8.0 U2, the
specific solution install task shows its progress and can be cancelled.

Figure 9-12. Remote Sample Starter Plug-in After Deployment

When the plug-in server deploys to the destination compute resource, the vSphere Client
inserts additional connection properties into the OVF. When the virtual machine starts up, these
properties enable the plug-in server to connect and authenticate with vCenter Server for the
self-registration operation.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 141

Start
plugin
server

Solution VM

startup files

vmtoolsd

plugin server

Solution Metadata
(.ovf file)

solutionId
pluginId
vCenterSupport

vCenter Server

vsphere-ui
browser

vpxd

Deploy OVF in
production environment

11

5

7

8

2

1

4

6

3

9

10

Place VM files

endpoint
thumbprint
token

Inject run-time
connection
properties

Power on VM

Request
metadata

Read
metadata

POST
registration

request

RegisterExtension()

Open HTTPS
port

Notify client
to recognize

plugin

Injected OVF Properties

Here are properties injected into the OVF:

n solutionInstall.token – Solution install token to ensure trust. A simple base64 token that

is issued by vSphere UI, cached and then validated upon receiving a request from the newly
deployed Solution Manager. It has 30 minutes timeout after the VM has been deployed and is
one-time use.

n solutionInstall.postDeployData.endpoint – Endpoint to call back after solution appliance is

deployed.

n solutionInstall.postDeployData.thumbprint – Server thumbprint of the endpoint to call

back after solution appliance is deployed. Must be verified when making a call to the
endpoint.

Since vSphere 8.0 U2 (<index> = zero indicates first vCenter and increases to N-1):

n solutionInstall.targetVcenterServers.count – number of associated vCenter Servers

n solutionInstall.targetVcenterServers.<index>.hostname – vCenter FQDN

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 142

n solutionInstall.targetVcenterServers.<index>.guid – vCenter GUID

n solutionInstall.targetVcenterServers.<index>.thumbprint – vCenter thumbprint

As of vSphere 8.0 U3:

n solutionInstall.targetVcenterServers.<index>.version – vCenter version number

n solutionInstall.postDeployData.version – Version of the endpoint to call back after

solution appliance is deployed (vSphere Client version).

Solution Install API

The solution's appliance VM is responsible for providing information to the vSphere Client
about its plug-in extension. Once the special parameters are injected and the VM is
powered on, the vSphere Client waits to receive a call from the solution appliance on the
solutionInstall.postDeployData.endpoint (that is, vCenterIP/api/ui/solutioninstall). The

solutionInstall.token should also be present in the headers (solution-install-token header)

of the request. Endpoint definition:

POST /api/ui/solutioninstall

Header Value Summary

solution-install-token String One-off base64-encoded token issued by vSphere UI, used to establish trust

Body payload JSON follows. For more details, see data object Extension in the Web Services
API Reference. All fields down to serverThumbprint are required, including ones not so listed in

the API reference, such as company, client, and server. Description summary is displayed in the

Client Plug-ins view; label is currently not used. Server type and adminEmail are optional. If the

solution should be available in the Solution Manager UI, set shownInSolutionManager true. Format

of privilegeList and resourceList module are as prescribed in the Extension data object. If you

want to add use cases and payload types later, set additionalProperties true.

{
 "vcenterExtensions": [
 {
 "extension": {
 "key": "<plugin id>",
 "version" : "<plugin version in format a.b.c.d>",
 "company" : "<company name>",
 "description" : {
 "label": "<plugin extension name>",
 "summary": "<plugin extension summary>"
 },
 "client": [
 { "type" : "vsphere-client-remote",
 "url": "<plugin manifest uri>" },
 ...
],
 "server": [
 { "url": "<server1 uri>",

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 143

 "serverThumbprint": "<server1 thumbprint>",
 "type": "<server purpose type>"
 "adminEmail": "<email>" },
 ...
],
 "shownInSolutionManager": <true|false>,
 "faultList": [
 { "faultID": "<fault-id>" },
 { "faultID": "<fault-id>" }
],
 "taskList": [
 { "taskID": "<task-id>" },
 { "taskID": "<task-id>" }
],
 "eventList": [
 { "eventID": "<event-id>" },
 { "eventID": "<event-id>" }
],
 "privilegeList": [
 { "privID": "<priv-group-name>.<priv-id>",
 "privGroupName": "<priv-group-name>" },
 { "privID": "<priv-group-name>.<priv-id>",
 "privGroupName": "<priv-group-name>" }
],
 "resourceList": [
 { "data": [
 { "key": "key-1", "value": "value-1" },
 { "key": "key-2", "value": "value-2" }],
 "locale": "EN_US",
 "module": "<module>"
 }
]
 },
 ...
 additionalProperties: true
 }
]
}

As of vSphere 8.0 U3, body payload vcenterExtensionsPerGuid indicates which extensions to

register for a given vCenter GUID. You can specify a list of extensions for each vCenter and have
different extensions for every vCenter if desired. Be sure to provide extensions for every vCenter
that a user can select. Body payload vcenterExtensionsPerGuid extends vcenterExtensions – do

not use both. Similar format is encapsulated in GUID designation.

{
 "vcenterExtensionsPerGuid": {
 "vc-guid01": [
 "extension" section similar to vcenterExtensions
]
 "vc-guid02": [

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 144

 "extension" section like vcenterExtensions
]
 }
}

Integrated Installer Solution Metadata

When you prepare an OVF for a plug-in solution, the metadata available to the virtual machine
includes solution properties that control how the virtual machine registers itself with a vCenter
Server instance. These properties, with their subproperties and recommended practices, are as
follows.

vmw.vsphereui.solutioninstall.solutionId

Subproperty Required? Value Best Practice

Category no vendor-defined vSphere Client Plugin
Configuration (read-only)

Purpose: Distinguish groups of related properties

Label no vendor-defined Solution ID

Purpose: User-friendly property label

Key class ID no

Key ID Fixed value vmw.vsphereui.solutionin
stall.solutionId

Purpose: Unique property identifier

Key instance ID no

Description no vendor-defined Include vendor
identification

Purpose: User-friendly brief description of solution purpose

Static property yes true (checked)

Purpose: Distinguish a fixed property of the solution

Type Fixed value String choice

Purpose: Data format

User configurable Fixed value true (checked)

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 145

Subproperty Required? Value Best Practice

Choice list yes vendor-defined Reverse domain name
notation, in quotes, single
value

Purpose: Uniquely identify solution (for single plug-in solution can be same as plug-in ID)

Default value yes vendor-defined Value from choice list

Purpose: Assign ID value to deployed solution

vmw.vsphereui.solutioninstall.pluginId

Subproperty Required? Value Best Practice

Category no vendor-defined vSphere Client Plugin
Configuration (Read-only)

Purpose: Distinguesh groups of related properties

Label no vendor-defined Plugin ID

Purpose: User-friendly property label

Key class ID no

Key ID Fixed value vmw.vsphereui.solutionin
stall.pluginId

Purpose: Unique property identifier

Key instance ID no

Description no vendor-defined Include vendor
identification

Purpose: User-friendly brief description of plug-in or solution purpose

Static property yes true (checked)

Purpose: Distinguish a fixed property of the solution

Type Fixed value String choice

Purpose: Data format

User configurable Fixed value true (checked)

Choice list yes vendor-defined Reverse domain name
notation, in quotes, single
value

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 146

Subproperty Required? Value Best Practice

Purpose: Uniquely identify plug-in

Default value yes vendor-defined Value from choice list

Purpose: Assign ID value to deployed plug-in

vmw.vsphereui.solutioninstall.vCenterSupport

Subproperty Required? Value Best Practice

Category no vendor-defined vSphere Client Plugin
Configuration (Read-only)

Purpose: Distinguesh groups of related properties

Label no vendor-defined vCenter Servers
registration support

Purpose: User-friendly property label

Key class ID no

Key ID Fixed value vmw.vsphereui.solutionin
stall.vCenterSupport

Purpose: Unique property identifier

Key instance ID no

Description no vendor-defined Include link to solution
documentation

Purpose: User-friendly brief description of plug-in topology

Static property yes true (checked)

Purpose: Distinguish a fixed property of the solution

Type Fixed value String choice

Purpose: Data format

User configurable Fixed value true (checked)

Choice list yes 'Single' or 'Multiple' Specify 'Multiple' if

shared server-side context
or low request volume

Purpose: 'Single' restricts plug-in to registering with a single vCenter Server instance

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 147

Subproperty Required? Value Best Practice

Default value yes vendor-defined Value from choice list

Purpose: Assign chosen value to deployed plug-in

vmw.vsphereui.solutioninstall.requiredVcVersion

Note As of vSphere 8.0 U1. Neither vSphere 8.0 nor vSphere 7.0 U3 support this property.

(optional property)

Subproperty Required? Value Best Practice

Category no vendor-defined vSphere Client Plugin
Configuration (Read-only)

Purpose: Distinguish groups of related properties

Label no vendor-defined vCenter Servers Minimum
Version

Purpose: User-friendly property label

Key class ID no

Key ID Fixed value vmw.vsphereui.solutionin
stall.requiredVcVersion

Purpose: Unique property identifier

Key instance ID no

Description no vendor-defined Include link to solution
documentation

Purpose: User-friendly brief explanation of reason for minimum version

Static property yes true (checked)

Purpose: Distinguish a fixed property of the solution

Type Fixed value String choice

Purpose: Data format

User configurable Fixed value true (checked)

Choice list yes vendor-defined

Purpose: Specify the minimum vCenter Server version that can support this plug-in

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 148

Subproperty Required? Value Best Practice

Default value yes vendor-defined Value from choice list

Purpose: Assign chosen value to deployed plug-in

vmw.vsphereui.solutioninstall.legacyExtensionId

(optional property)

Subproperty Required? Value Best Practice

Category no vendor-defined vSphere Client Plugin
Configuration (Read-only)

Purpose: Distinguesh groups of related properties

Label no vendor-defined Legacy Extension ID

Purpose: User-friendly property label

Key class ID no

Key ID Fixed value vmw.vsphereui.solutionin
stall.legacyExtensionId

Purpose: Unique property identifier

Key instance ID no

Description no vendor-defined Include vendor
identification, link to
documentation

Purpose: Brief description of legacy plug-in replacement strategy

Static property yes true (checked)

Purpose: Distinguish a fixed property of the solution

Type Fixed value String choice

Purpose: Data format

User configurable Fixed value true (checked)

Choice list yes vendor-defined Reverse domain name
notation, in quotes, single
value

Purpose: Identify the plug-in that this plug-in replaces; facilitate check for legacy plug-in
already installed

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 149

Subproperty Required? Value Best Practice

Default value yes vendor-defined Value from choice list

Purpose: Assign chosen value to deployed plug-in

vmw.vsphereui.solutioninstall.preventInstallationWhenLegacyExtens
ion

(optional property)

Subproperty Required? Value Best Practice

Category no vendor-defined vSphere Client Plugin
Configuration (Read-only)

Purpose: Distinguish groups of related properties

Label no vendor-defined Prevent installation if
legacy extension

Purpose: User-friendly property label

Key class ID no

Key ID Fixed value vmw.vsphereui.solutionin
stall.preventInstallatio

nWhenLegacyExtension

Purpose: Unique property identifier

Key instance ID no

Description no vendor-defined Include vendor
identification, link to
documentation

Purpose: Brief description of legacy plug-in replacement strategy

Static property yes true (checked)

Purpose: Distinguish a fixed property of the solution

Type Fixed value String choice

Purpose: Data format

User configurable Fixed value true (checked)

Choice list Fixed value 'true' or 'false'

Purpose: Indicate condition for replacing legacy plug already installed

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 150

Subproperty Required? Value Best Practice

Default value yes vendor-defined Value from choice list

Purpose: Assign chosen value to deployed plug-in

Plug-in Properties XML Example

An example of the <ProductSection> of an OVF file, containing the three required plug-in

properties with example values, follows:

 <ProductSection>
 <Info>Information about the installed software</Info>
 <Product>Photonique</Product>
 <Vendor>Example Inc.</Vendor>
 <Version>4.0</Version>
 <FullVersion>4.0</FullVersion>
 <Category>vSphere Client Plugin Configuration (Read-only)</Category>
 <Property ovf:qualifiers="ValueMap{"Single"}" ovf:userConfigurable="true"
ovf:value="Single" ovf:type="string" ovf:key="vmw.vsphereui.solutioninstall.vCenterSupport">
 <Label>vCenter Servers registration support</Label>
 <Description/>
 </Property>
 <Property ovf:qualifiers="ValueMap{"com.example.solution.id"}"
ovf:userConfigurable="true" ovf:value="com.example.solution.id" ovf:type="string"
ovf:key="vmw.vsphereui.solutioninstall.solutionId">
 <Label>Solution ID</Label>
 <Description/>
 </Property>
 <Property ovf:qualifiers="ValueMap{"com.example.plugin.id"}"
ovf:userConfigurable="true" ovf:value="com.example.plugin.id" ovf:type="string"
ovf:key="vmw.vsphereui.solutioninstall.pluginId">
 <Label>Plugin ID</Label>
 <Description/>
 </Property>
 </ProductSection>

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 151

Advanced Considerations for
Remote Plug-in Servers 10
A remote plug-in for the vSphere Client has both a server portion and a user interface portion.
You can use any coding language or framework you choose for the server portion. Your plug-in
server must generally provide the following functionality:

n A web application server for both plug-in manifest file and plug-in user interface files.

n A fixed Service Provider Interface that responds to vSphere Client requests for dynamic view
content such as menus.

n Data access and computation services on behalf of the plug-in user interface, if needed.

n Session cloning service to authenticate with the vCenter Server Web Services API, if needed.

Read the following topics next:

n Registering Auxiliary Plug-in Servers

n Auxiliary Server Data Paths

n Communication Paths for Authentication in the Remote Plug-in Server

n How to Delegate Session Authority to the Plug-in Server

Registering Auxiliary Plug-in Servers

When you register a plug-in with a vCenter Server instance, information about the plug-in server
is stored in an Extension record with the ExtensionManager. Registration information includes

endpoint addresses of the plug-in's primary server and of any auxiliary servers that the plug-in
comprises.

The Extension record stores descriptors for the plug-in servers in the server property, which is

an array of ServerInfo objects. The first element of the array represents the manifest server.

All other array elements represent auxiliary servers, in any order. Several properties of the
ServerInfo object must be set in specific ways:

type

Contains a service identifier, which is a string value chosen by the developer. The string
enables client code to distinguish between auxiliary servers.

VMware by Broadcom 152

A best practice is to assign the value MANIFEST_SERVER to the first element of the array, to

identify the manifest server for the plug-in.

url

Contains the server endpoint address. The vCenter Server reverse proxy translates the server
endpoints into proxy endpoints, which the JavaScript API makes available to front-end code.
In the descriptor for the primary server, which also serves the manifest file, the url property

must contain the full path to the plug-in manifest file. Relative URLs for HTML content resolve
relative to the directory that contains the manifest.

Note In the descriptor for an auxiliary server that supplies filter choices for dynamic
extensions, the uri property must end with a slash ('/'). See Configure Dynamic Extensions.

serverThumbprint

Each server descriptor must contain either the thumbprint or the server certificate (below) or
both.

serverCertificate

The SSL certificate for the server endpoint in strict PEM format (string). In the plug-in server
certificate, the server host name must be specified according to subjectAltName extension
(RFC 2818, Section 3.1 Server Identity).

Note When registering a plug-in, it's highly recommended to provide SSL certificates of the
plug-in servers in addition to the thumbprints of the SSL certificates of the plug-in servers.
Performing a full SSL certificate check during SSL handshake is more secure than performing
an SSL certificate thumbprint check. Furthermore, in future vSphere releases, support for SSL
certificate thumbprints will be dropped and full SSL certificates will be required.

In addition to the server property, the Extension record contains a client property, which is

an array of ClientInfo objects. When you register the plug-in, you use the first element of this

array as a descriptor for the plug-in as a whole. Three properties of the descriptor must be set in
specific ways:

type

Must contain the value 'vsphere-client-remote'

url

Must contain URL of the plug-in manifest file, which must match the url property in the first

ServerInfo record.

version

Must contain a developer-assigned version string, which distinguishes a new plug-in version
from a new plug-in instance of the same version. The version string must be an integer or a
series of dot-separated integers: n[.n[.n[.n]]]

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 153

The following illustration shows some of the basic structure of the Extension record used to
register a plug-in.

Figure 10-1. Plug-in Registration Data

client[]

server[]

client[]

server[]

0

1

2

0

extensionList[n]

type

url

serverThumbprint

type

url

serverCertificate

type

url

serverThumbprint

type

url

='MANIFEST_SERVER'

='https://p1.example.com/plugin.json'

='https://p1a1.example.com/rest'

='https://p1a2.example.com/rest'

='vc'

='chassis'

=manifest server thumbprint

version ='1.0.0'

='vsphere-client-remote'

version ='1.0.0'

key ='com.example.p1'

description ='example plugin'

='https://p1.example.com/plugin.json'

serverCertificate

=server certificate in strict PEM format

=server certificate in strict PEM format

=server thumbprint

For information about how to register auxiliary plug-in servers by using the registration tool in the
SDK, see vSphere Client Plug-in Registration Tool.

Auxiliary Server Data Paths

When a plug-in includes auxiliary servers, the auxiliary servers must be registered with vCenter
Server, in the same Extension record as the primary server. When the plug-in user interface
sends a request to an auxiliary server, the request passes through the vCenter Server reverse
proxy, so that the browser treats it as having the same origin as the primary server.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 154

The following illustration shows a hypothetical use of auxiliary plug-in servers that provide
specific services supplemental to the functions of the primary server. The primary server
provides the overall plug-in configuration in the manifest file, as well as the HTML components for
the plug-in user interface. Separate concerns are handled by the auxiliary servers.

Figure 10-2. Auxiliary Server Data Paths

plugin UI

reverse
proxy

Manifest
server

plugin.json

static HTML

vsphere-ui

DB

VC1

vCenter
Server 2

vCenter
Server 3

https://vc1.example.com/
p1-example-com/ui.html

Extension.server[0].type='MANIFEST_SERVER'

P1

business
logic

business
logic

Extension.server[1].type='vc'

P1A1

Chassis DB

Extension.server[2].type='chassis'

P1A2

https://p1.example.com/ui.html

https://vc3.example.com/sdk/vimService

https://vc1.example.com/
p1a1-example-com/rest/vc/list

https://vc1.example.com/
p1a2-example-com/rest/chassis/list

https://p1a2.example.com/rest/chassis/list

vpxd

https://p1a1.example.com
/rest/vc/list

vSphere
Client UI

https://vc2.example.com/sdk/vimService

https://vc1.example.com/sdk/vimService

This hypothetical plug-in implements a Chassis abstraction, which represents a physical enclosure
that contains a number of blade servers. The blades run instances of vCenter Server. The plug-in
user interface presents a Chassis and its vCenter Server instances as related objects in the
inventory.

Auxiliary server 1 (P1A1, in orange) interfaces with the vCenter Server instances and data centers
encompassed by the plug-in. The auxiliary server uses the Web Services API to collect data
from the vCenter Server instances, which it returns to the plug-in user interface. The plug-in user
interface uses instance-specific data to supplement graphic and tabular displays in the UI.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 155

Auxiliary server 2 (P1A2, in orange) maintains a high-performance interface to a database of
Chassis objects and links to related objects that represent the physical blades and VMware
products that run on them. The plug-in uses this data to fill out a display of Chassis objects with
related blades, vCenter Server instances, and other managed entities that populate VMware data
centers.

Communication Paths for Authentication in the Remote
Plug-in Server

The remote plug-in server operates outside the vCenter Server instance, and must authenticate
with the Web Services API to identify and authorize its access to vSphere resources. The
authentication procedure requires several steps, summarized below.

The plug-in user interface communicates with the vsphere-ui service through a plug-in sandbox

in the browser. The plug-in sandbox uses the vSphere Client session token to authenticate with
the vsphere-ui service in vCenter Server. The plug-in server needs to get a SOAP client session

token to authenticate its operations with the Web Services API. The following diagram shows the
basic communication paths involved in converting the vSphere Client session token to a plug-in
server SOAP session token.

Figure 10-3. Plug-in Server Communication Paths for Authentication

Browser

Plug-in Server

vSphere Client UI

Plug-in UIPlug-in Sandbox

vsphere-ui service

vCenter Server

Managed Objects

Web Services API

REST, authenticated by
plug-in session token

authenticated
by client session token HTTPS, authenticated by

plug-in session token

SOAP, authenticated
by session cookie

JavaScript
Library

1

1

2

3

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 156

Cloning a session consists of three stages of interactions involving the plug-in server:

1 The plug-in user interface retrieves its session ID and the GUID of the context object, then
sends them to the plug-in server.

2 The plug-in server sends a REST request to vCenter Server to acquire a ticket that allows it to
clone the user session.

3 The plug-in server sends a SOAP request to vCenter Server to clone the user session and
acquire a new session ID.

These interactions are described in more detail in How to Delegate Session Authority to the
Plug-in Server.

How to Delegate Session Authority to the Plug-in Server

When a plug-in server communicates with vCenter Server, it must authenticate to act on behalf
of the user. This procedure shows how to delegate authority from the plug-in client code, running
in a browser, to the remote plug-in server.

Before the plug-in server can establish a session with a vCenter Server, it must know the
endpoint attributes for that instance. A best practice is to maintain a configuration file, for each
plug-in server, that stores the attributes for each vCenter Server instance where the plug-in is
registered. For example, a JSON representation of endpoint attributes might look similar to this:

{
 "vc1-guid": {
 "fqdn": "vc1.example.com",
 "thumbprint": "vc1-thumbprint",
 "port": 443
 },
 "vc2-guid": {
 "fqdn": "vc2.example.com",
 "thumbprint": "vc2-thumbprint",
 "port": 443
 }
}

In its simplest form, the delegation procedure involves communications between a plug-in front
end and its sandbox environment, between the plug-in front end and the plug-in back end,
and between the back end and an instance of vCenter Server. In some situations, two or
three vCenter Server instances participate in the delegation procedure. The following orientation
diagram shows all the processes that might work together to delegate session authority securely
to the plug-in back end.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 157

BrowservSphere Client
UI

Plug-in UI Plug-in
Sandbox

VC 1

vsphere-ui

rproxy

vpxd

VC 2

vsphere-ui

rproxy

vpxd

VC 3

vsphere-ui

rproxy

vpxd

Plug-in Server

Plug-in Backend

Plug-in Config Service

Registered VC
configuration

VC GUID

FQDN

Port

Thumbprint

Use the following steps to delegate authority from the plug-in front end code to the plug-in
server. The plug-in server can use this procedure to establish a session with any vCenter Server
instance in the same ELM link group.

1 The plug-in user interface calls the app.getSessioninfo() method in the client JavaScript

library, which in turn contacts the plug-in sandbox to request session information. The
sandbox returns an object containing a sessionToken string, which contains a new plug-in

session token that can be used for authentication by the plug-in server. The token represents
the authority of the session the user established between the vSphere Client and the vCenter
Server instance to which it is connected.

Plug-in
SandboxPlug-in UI

VC 1

vsphere - ui

rproxy
getSessionInfo()

2 The plug-in user interface calls the app.getContextObjects() method in the client JavaScript

library, which returns the ID of the object currently selected in the vSphere Client. The object
ID is appended with the GUID of the vCenter Server instance that manages the object. The
vCenter Server GUID is the substring following the last colon separator (:).

Plug-in
SandboxPlug-in UI

getContextObjects()

=

Note If a global view is active instead of an object view, app.getContextObjects() returns an

empty list.

3 The plug-in user interface extracts both the session key and the vCenter Server GUID, then
sends them to the plug-in server, using a custom API.

Note If no GUID is available, the plug-in user interface sends only the session key.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 158

Plug-in UI

VC 1

vsphere-ui

rproxytoken guid

vpxd
Plug-in Server

Plug-in Backend

4 The plug-in back end builds a REST request to the vsphere-ui service of a vCenter Server
instance. The request contains the following:

n A POST verb

n The clone-ticket endpoint path: /api/ui/vcenter/session/clone-ticket

n The Content-type and Accept headers both set to application/json.

n A custom header named vmware-api-session-id, with the session token as its value

n A JSON object body, containing a vc-guid property whose value is the GUID of the

vCenter Server instance

The request will look similar to this:

POST /api/ui/vcenter/session/clone-ticket
Content-type: application/json
Accept: application/json
vmware-api-session-id: 12345678

{
 "vc_guid": "223b94f2-af15-4613-5d1a-a278b19abc09"
}

5 The plug-in back end sends the REST request to the clone-ticket REST endpoint of any
vCenter Server instance, by using the endpoint attributes in the plug-in server configuration
data.

VC 1

vsphere-ui

rproxy

clone-ticket

acquireCloneTicket()

session_clone_ticket

vpxd

Plug-in Server

Plug-in Backend

In some cases, this can trigger extra back-end communications before the plug-in back end
receives a reply. For example:

a The plug-in back end might be sending the request to a vCenter Server instance that
does not hold the user session, particularly if the user's browser is connected to an
instance with which the plug-in is not registered. In that case, the reverse HTTP proxy
forwards the request to the vCenter Server instance that holds the user session.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 159

In the following diagram, the browser is connected to VC1, which serves the vSphere
Client in the browser. The plug-in back end chooses to contact VC2 with the clone-ticket
request. VC2 forwards the request to VC1, which holds the session key.

.

VC 1

vsphere-ui

vsphere-ui

rhttpproxy

rhttpproxy

vpxd

VC 2

clone-ticket

acquireCloneTicket()

vpxd

Plug-in Backend

b The context object the user selected might be on a third vCenter Server instance. In that
case, the vSphere Client back end (the vsphere-ui process) issues a Web Services API
call to the vCenter Server instance identified by the GUID in the clone-ticket request.
The vsphere-ui process uses the acquireCloneTicket() method of the SessionManager

managed object to request delegation of session authority to the process that presents
the ticket to the vCenter Server instance.

In the following diagram, VC2 forwards the clone-ticket request to VC1, which holds the
session with the vSphere Client in the browser. VC1 discovers that the context object is
managed by VC3, so VC1 requests a clone ticket that will allow the plug-in back end to
authenticate with VC3.

VC 1

vsphere-ui

vsphere-ui

rhttpproxy

rhttpproxy

vpxd

VC 2

vpxd

vsphere-ui

rhttpproxy VC 3

acquire CloneTicket()

vpxd

Plug-in Backend

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 160

c The call chain returns the ticket to the plug-in back end. The ticket gives the plug-in back
end a means to establish a Web Services session with VC3.

VC 1

vsphere-ui

vsphere-ui

rhttpproxy

rhttpproxy

vpxd

VC 2

vpxd

vSphere-ui

rhttpproxy VC 3

session_clone_ticket

session_clone_ticket

vpxd

Plug-in Backend

The clone ticket is valid for the Web Services API of the vCenter Server instance associated
with the context object. This is a single-use key to authenticate a call to the SessionManager.

The response will look similar to this:

{
 "session_clone_ticket": "cst-VCT-82cbd981-5f52-0a67-fe55-d995a7347f82--tp-B6-BC-CB-
B8-59-89-C0-F2-E4-F0-C2-91-8F-28-C1-DE-10-5E-24-69"
}

6 The plug-in back end constructs a SOAP request to obtain a regular session ID from the Web
Services API, by using the cloneSession() operation on the Session Manager.

session_clone_ticket

The code for the SOAP request will be similar to this Java example:

VimService vimService = new VimService();
VimPortType client = vimService.getVimPort();
ManagedObjectReference siRef = new ManagedObjectReference();
siRef.setType("ServiceInstance");
siRef.setValue("Serviceinstance");
ServiceInstance si = client.createStub(ServiceInstance.class, siRef);
ServiceInstanceContent sic = si.RetrieveContent();
SessionManager mgr = client.createStub(SessionManager.class, sic.getSessionManager());
UserSession wsSession = mgr.cloneSession(sessionCloneTicket);

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 161

7 The cloneSession() method retrieves a new multi-use session key and applies it to the

linked VimPort object. Subsequent SOAP requests sent by means of the same VimPort object

authenticate with the new session key.

vsphere-ui

rhttpproxy VC 3

vpxd

cloneSession()

VimPort += session key

Plug-in Backend

Response Codes to session/clone-ticket Request

The REST request for a clone-ticket from the vsphere-ui service can produce the following
response codes.

Table 10-1. Response Codes to clone-ticket Request

Response
Code Description

201 Session clone ticket was successfully created and returned.

The body type is application/json, and the response body has this format:

{
"session_clone_ticket": "string"
}

401 The request is not properly authenticated.

403 The remote plug-in is not registered with the vCenter Server instance identified by the specified
UUID.

404 There is no vCenter Server instance identified by the specified UUID.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 162

Best Practices for vSphere Client
Remote Plug-ins 11
Sections below give tips on implementing, localizing, and deploying remote client plug-ins.

Read the following topics next:

n Best Practices for Implementing Plug-in Workflows

n Best Practices for Localization

n Best Practices for Deploying and Testing Remote Plug-ins

n Additional Resources

Best Practices for Implementing Plug-in Workflows

The following practices are recommended to ensure that your plug-in is stable and performs well.

n If you need to temporarily store data, use the browser cache or your own back-end server.

n Do not send calls to the topmost browser window, window.top, or to the parent object of

your current window, window.parent.

n To increase security of your extensions, limit the users who can access your plug-ins, and
control user access to your extensions based on their privileges. For example, you can make
your extensions available only to users who have privileges to create or delete Datastore
objects. For more information, see Dynamic Extension Use Cases.

Best Practices for Localization

For a partner's remote client plug-in to pass certification for vSphere 8.0, it must support all
locales that vCenter supports, as below. Language localizations should be done during the
development cycle to prevent delay during the certification process.

n en_US

n de_DE

n es_ES

n fr_FR

n ja_JP

VMware by Broadcom 163

n ko_KR

n zh_CN

n zh_TW

n it_IT

Best Practices for Deploying and Testing Remote Plug-ins

Apply the following advice to minimize difficulties when you deploy your plug-in or plug-ins.

n To prevent deployment issues when you try to deploy a new version of a registered plug-in,
make sure that you modify the version property of your plug-in extension.

n To prevent deployment issues when you try to deploy a plug-in with the same version, make
sure that you unregister the plug-in by removing the plug-in as a vCenter Server extension.
You must also manually delete the cached files of the plug-in that are stored in one of the
following locations:

Environment Location of Cached Packages

vCenter Server Appliance /etc/vmware/vsphere-ui/vc-packages/vsphere-client-serenity/

n To avoid performance issues, make sure that your plug-in has only one version registered
with the vCenter Server. You must not change the value of the key property of the vCenter
Server Extension data object between releases.

n To verify the deployment of your plug-in and monitor for any issues related to your plug-in,
see one or more of the following resources:

n The Administration > Client Plug-ins view in the vSphere Client.

n The Download Plugin task in the Tasks console.

n The Deploy Plugin task in the Tasks console.

n The Tomcat Server log files.

You can find the Tomcat server log files in one of the following locations:

Environment Tomcat Log Files Location

vCenter Server Appliance 8.0 installation vSphere Client /var/log/vmware/vsphere-ui/logs/

The vsphere_client_virgo.log file contains the log information that the Tomcat server

generates. Problems usually start with the [ERROR] tag. Use your plug-in name or the bundle

symbolic name to detect errors caused by your plug-in.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 164

Additional Resources

The following additional resources can help you to design or upgrade your plug-ins for the
vSphere Client.

UX Design Guidelines for vSphere Client
Plug-ins

Provides details on vSphere Client plug-in extensibility and UX
recommendations.

vSphere Client SDK Forum A community forum for questions on plug-in development and SDK topics.

HOL-1911-07: Hands On Lab on building a
vSphere Client Plug-in

Guides the plug-in developer through all the stages of developing a local
plug-in.

Upgrading Plug-ins from vSphere 6.5 to
vSphere 6.7

Explains Spring upgrade requirements for plug-ins and how to adapt plug-
ins to support all release versions.

Virgo Application Server Replacement Provides information about the replacement of the Virgo application server
with a standard Tomcat server.

vSphere Client Remote Plug-in Extensions
Reference

Provides details on the remote plug-in manifest JSON format.

vSphere Client Plug-in Manifest
Conversion Tool

Migrates a local plug-in XML manifest to a remote plug-in JSON manifest.

JavaScript API Migration Guide Migrates a plug-in with Bridge JavaScript APIs to a plug-in with new
JavaScript APIs.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 165

https://code.vmware.com/web/standards-h5
https://code.vmware.com/web/standards-h5
https://code.vmware.com/forums/4974/vsphere-web-client-sdk
https://labs.hol.vmware.com/HOL/catalogs/lab/4747
https://labs.hol.vmware.com/HOL/catalogs/lab/4747
https://vdc-download.vmware.com/vmwb-repository/dcr-public/61b87113-48f8-46a5-8849-b052c8cc31e2/f26401df-3f9b-41c4-9804-3fa1796426d8/upgrade_to_6.7_compatibility.pdf
https://vdc-download.vmware.com/vmwb-repository/dcr-public/61b87113-48f8-46a5-8849-b052c8cc31e2/f26401df-3f9b-41c4-9804-3fa1796426d8/upgrade_to_6.7_compatibility.pdf
https://vdc-download.vmware.com/vmwb-repository/dcr-public/ccf65117-db35-49b0-9ed5-4e875af97dd1/82ba7bab-50e1-45df-8f92-7dfa034ac226/vSphere-Client-67-U2-Virgo-Server-Replacement.pdf
https://vdc-download.vmware.com/vmwb-repository/dcr-public/158d4b12-3175-4913-8da3-a0a7b2b58a5b/2b52b8aa-7006-45a6-a517-c6b069f01e8e/extension_ref.html
https://vdc-download.vmware.com/vmwb-repository/dcr-public/158d4b12-3175-4913-8da3-a0a7b2b58a5b/2b52b8aa-7006-45a6-a517-c6b069f01e8e/extension_ref.html
https://vdc-download.vmware.com/vmwb-repository/dcr-public/71b1e327-e62d-4ba1-a02c-f69ea3dca904/943bf57a-8606-4ec0-a157-e7d45fb2ac51/plugin_manifest_conversion_tool.html
https://vdc-download.vmware.com/vmwb-repository/dcr-public/71b1e327-e62d-4ba1-a02c-f69ea3dca904/943bf57a-8606-4ec0-a157-e7d45fb2ac51/plugin_manifest_conversion_tool.html
https://vdc-download.vmware.com/vmwb-repository/dcr-public/2e8015c4-5848-44ee-8473-a77feadb9c3a/aa3773f9-62bf-476a-8703-4ce7f1e990be/Migration-To-JS-APIs.html

Troubleshooting Remote Plug–ins
for the vSphere Client 12
These topics describe common problems that users see when deploying and operating remote
plug-ins. The topics describe characteristic symptoms and recommend solutions.

Some problems might be hard to distinguish because of similar symptoms. For example, several
different underlying problems can cause a situation where a plug-in user interface fails to display.
If a troubleshooting topic matches your symptom but the troubleshooting advice does not lead
to a matching cause or a working solution, check other topics for similar symptoms.

Read the following topics next:

n Plug-in Does Not Appear in vSphere Client

n Missing Entry in the Instance Selector

n Unable to Change Plug-in Manifest File

n Troubleshooting: Problems with Registration Script in SDK

Plug-in Does Not Appear in vSphere Client

The plug-in does not appear in the vSphere Client.

Problem

One or more of these symptoms is evident:

n A plug-in does not appear in the object navigator.

n A plug-in view does not display in the browser.

Cause

Several causes can prevent a plug-in from appearing. Try the following troubleshooting topics:

n Plug-in Manifest URL Unreachable

n Troubleshooting: Plug-in Thumbprint Incorrect

n Manifest Cannot Be Parsed

n Plug-in Already Registered

n Wrong Plug-in Type

VMware by Broadcom 166

n Plug-in Marked As Incompatible

n Plug-in Registered with Incompatible Version

n Plug-in View is missing in the vSphere Client

Wrong Plug-in URL

The remote plug-in does not display in the vSphere Client user interface.

Problem

The plug-in does not appear in the object navigator, but it is listed in the vSphere Client under
Admin > Client plugins.

Cause

This problem can occur if the plug-in URL is not reachable. The plug-in registration command
might have supplied an incorrect value for the extension.url property, which causes

deployment to fail.

Note vCenter Server supports only the HTTP protocol for the plug-in URL. Secure HTTP (HTTPS)
is recommended for production environments.

To verify the cause, use one of the following methods:

n In the Management UI, find the plug-in in the list under Admin > Client plugins. Next to the
list entry, look for a signpost which contains an error message saying that the plug-in failed to
download:

Error downloading plug-in. Make sure that the URL is reachable and the registered
thumbprint is correct.

n If you do not find the signpost, you can search for the sample name in the log file
at /var/log/vmware/vsphere-ui/logs/vsphere-client-virgo.log to find an error

message.

Solution

1 Connect a web browser to the Managed Object Browser (MOB) of the vCenter Server with
which you attempted to register the plug-in.

The MOB URL is https://vcenter_server_FQDN/mob.

2 To view the ServiceContent data object click the content link.

3 To view the ExtensionManager managed object click the ExtensionManager link.

4 In the extensionList values, search for the extension key that you used to register the plug-in.

The more... link enables you to see more of the list of extension keys.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 167

5 Check that the client.url property is correct and specifies HTTP or HTTPS.

Enter the URL in a browser address bar and verify that the browser displays the contents of
the plugin.json file.

If the URL used in the registration command was correct, check the thumbprint by using the
topic Troubleshooting: Plug-in Thumbprint Incorrect.

6 If the URL used in the registration command was incorrect, reregister the plug-in as follows:

a Unregister the plug-in.

You can use the registration tool in the SDK to unregistor a plug-in. For syntax
information, see vSphere Client Plug-in Registration Tool.

b Repeat the plug-in registration step with the correct URL.

Troubleshooting: Plug-in Thumbprint Incorrect

The remote plug-in does not display in the vSphere Client user interface.

Problem

The plug-in does not appear in the object navigator, but it is listed in the vSphere Client under
Admin > Client plugins.

Cause

This problem can occur if the extension.thumbprint is not valid. The plug-in registration

command might have supplied an incorrect server thumbprint, which causes deployment to fail.

To verify the cause, use one of the following methods:

n In the Management UI, find the plug-in in the list under Admin > Client plugins. Next to the
list entry, look for a signpost which contains an error message saying that the plug-in failed to
download:

Error downloading plug-in. Make sure that the URL is reachable and the registered
thumbprint is correct.

n If you do not find the signpost, you can search for the sample name in the log file
at /var/log/vmware/vsphere-ui/logs/vsphere-client-virgo.log to find an error

message.

Solution

1 Connect a web browser to the Managed Object Browser (MOB) of the vCenter Server with
which you attempted to register the plug-in.

The MOB URL is https://vcenter_server_FQDN/mob.

2 To view the ServiceContent data object click the content link.

3 To view the ExtensionManager managed object click the ExtensionManager link.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 168

4 In the extensionList values, search for the extension key that you used to register the plug-in.

The more... link enables you to see more of the list of extension keys.

5 Check that the server.serverThumbprint property is correct.

n The thumbprint (fingerprint) should match the characters shown in the plug-in server
certificate. To find the plug-in server thumbprint, see Get Thumbprint or Certificate of
Remote Plug-in Server. Character pairs should be colon separated.

n Check for hidden characters.

n Pairs of digits must be separated by colon separators.

n You can register the plug-in using a SHA-256 fingerprint or a SHA-1 fingerprint. A best
practice is to use SHA-256, which is more secure. SHA-1 is deprecated in favor of
SHA-256.

If the thumbprint is correct, check the URL by using the topic Wrong Plug-in URL.

6 If the thumbprint used in the registration command was incorrect, reregister the plug-in as
follows:

a Unregister the plug-in.

You can use the registration tool in the SDK to unregistor a plug-in. For syntax
information, see vSphere Client Plug-in Registration Tool.

b Repeat the plug-in registration step with the correct thumbprint.

Manifest Cannot Be Parsed

The remote plug-in does not display in the vSphere Client user interface.

Problem

The plug-in does not appear in the object navigator, but it is listed in the vSphere Client under
Admin > Client plugins.

Cause

The plug-in manifest file is not valid and the plug-in deployment fails due to unsuccessful schema
validation.

You can distinguish this problem by searching for this error message in the vsphere-client-
virgo.log:

Ignoring plugin extension.key because its JSON manifest could not be parsed.

Solution

1 According to the exception, locate the failure in the plug-in manifest file.

2 Trigger another plug-in discovery/deployment cycle. If the redeployment functionality is not
enabled, restart the vSphere Client service, vsphere-ui, to get the new plug-in manifest file
changes.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 169

3 Verify that the plug-in has been deployed, if not look for other errors in the plug-in manifest
file.

Wrong Plug-in Type

The remote plug-in does not display in the vSphere Client user interface.

Problem

The plug-in does not appear in the object navigator, but it is listed in the vSphere Client under
Admin > Client plugins.

Cause

The plug-in was not registered correctly as a remote plug-in, which causes the vSphere Client to
assume that it is a local plug-in. When the vSphere Client tries to download the plug-in manifest,
it expects a .zip file but finds a .json file instead.

You can verify the cause of the problem by searching the vsphere-client-virgo.log file for

an error message saying that the vSphere Client did not find a ZIP file at the plug-in manifest
location:

Couldn't open plugin zip file when trying to verify the signature of plugin
extension.key:extension.version java.util.zip.ZipException: error in opening zip file.

Solution

1 On the machine that runs the plug-in server, change to the directory that contains the plug-in
manifest.

For example: cd samples/remote-plugin-sample/target/classes/static

2 Unregister the plug-in.

For example: $tools/extension-registration.sh -action unregisterPlugin -k
sample.plugin -url https://vc-svr.example.com/sdk -u administrator@vsphere.local -p
secret

3 Reregister the plug-in, specifying that it is a remote plug-in.

For example, you can use the plug-in registration tool in the SDK: $tools/extension-
registration.sh -action registerPlugin -remote -k sample.plugin -v 1.0.0 -url
https://vc-svr.example.com/sdk -u administrator@vsphere.local -p $secret -pluginUrl
$pluginurl -serverThumbprint $thumbprint -c 'Example Inc.' -n 'Example Plug-in' -s
'This plug-in is registered with the remote keyword.'

Plug-in Marked As Incompatible

The remote plug-in does not display in the vSphere Client user interface.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 170

Problem

The plug-in does not appear in the object navigator, but it is listed in the vSphere Client under
Admin > Client plugins.

Cause

The plug-in is marked as incompatible in the compatibility matrix and is filtered out.

Note Plug-ins can be marked as incompatible with wild characters. The plug-in itself might not
be marked as incompatible, but it matches a pattern in the compatibility matrix.

In the Management UI there is a signpost for the plug-in which contains an error message saying
that the plug-in is marked as incompatible and can not be deployed:

The plug-in does not claim compatibility with the current vSphere Client version. Check plug-in's
interoperability matrix.

Solution

1 Open the /etc/vmware/vsphere-ui/compatibility-matrix.xml.

2 Mark the plug-in with extension.key as compatible by adding: <PluginPackage
id="extension.key" status="compatible"/>.

Plug-in Registered with Incompatible Version

The remote plug-in does not display in the vSphere Client user interface.

Problem

The plug-in does not appear in the object navigator, but it is listed in the vSphere Client under
Admin > Client plugins.

Cause

The plug-in did not deploy because the extension.version is not well formatted.

The vsphere-client-virgo.log file contains an error message saying that the plug-in version is

not well formatted:

DEPLOYMENT_FAILED: Error deploying plugin package extension.key:extension.version. Reason:
Deployment error. java.lang.NumberFormatException: For input string: "some string".

Solution

u Verify that the extension.version is in the format "A.B.C.D", where:

n A, B, C, and D are numbers.

n A is mandatory.

n B, C, and D are optional.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 171

The following examples form valid version strings:

n "1"

n "2.3"

n "5.4.2"

n "12.3.22.4"

Plug-in View is missing in the vSphere Client

A specific view is missing in the vSphere Client.

Problem

Navigating to some extension point shows Page Not Found.

Cause

The view was not loaded by the vSphere Client.

Solution

Verify that the view URL is correctly defined in the plug-in manifest file.

Verify directly that the URL is reachable from the plug-in server, bypassing the vCenter Server
reverse proxy.

Missing Entry in the Instance Selector

A plug-in instance is missing from an Instance Selector.

Cause

This problem can occur only in an ELM environment, where multiple vCenter Server instances are
linked. The plug-in instance entry is missing because the plug-in from the vCenter Server instance
did not download or deploy the plug-in correctly.

Solution

u Verify that the plug-in is registered with the vCenter Server instance.

u Use other troubleshooting topics in Plug-in Does Not Appear in vSphere Client to find out
why the plug-in did not download or deploy.

Unable to Change Plug-in Manifest File

The vSphere Client does not respond to changes in a remote plug-in manifest file.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 172

Problem

After a plug-in fails to deploy due to an invalid plug-in manifest file, the vSphere Client marks it
as broken and does not attempt to retry the download even if the plug-in manifest file is later
updated on the plug-in server.

Cause

After download the plug-ins are cached locally and a new download will happen if the
cached manifest file is deleted. This is expected production workflow. However, development
environments require additional configuration to avoid the cached plug-in manifest files.

Solution

Use the Redeploy feature to bypass the plug-in cache during development. For more
information, see Redeploying Plug-ins During Development.

Troubleshooting: Problems with Registration Script in SDK

The vSphere Client SDK provides a script that you can use to register plug-ins during
development. Errors in the registration command can cause several kinds of plug-in failures. Most
plug-in registration failures go undetected until run time, but some failures cause the registration
script to report an error.

Plug-in Already Registered

The remote plug-in registration script fails.

Problem

The plug-in registration script reports an error. If you overlook the error, the plug-in does not
appear in the object navigator and the plug-in is not listed in the vSphere Client under Admin >
Client plugins.

Cause

The extension key was previously registered with the Extension Manager. The Extension
Manager rejects a new registration with a duplicate value in the extension key property.

The extension-registration.sh or extension-registration.bat script reports a message similar

to the following:

Client received SOAP Fault from server: A specified parameter was not correct:
extension.key

Solution

1 Connect a web browser to the Managed Object Browser (MOB) of the vCenter Server with
which you attempted to register the plug-in.

The MOB URL is https://vcenter_server_FQDN/mob.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 173

2 To view the ServiceContent data object click the content link.

3 To view the ExtensionManager managed object click the ExtensionManager link.

4 In the extensionList values, search for the extension key that you used in your registration
command.

The more... link enables you to see more of the list of extension keys.

5 If you find the extension key in use, use a different key or unregister the extension key before
you retry the extension registration script.

Unable To Unregister Plug-in

A plug-in unregistration command fails.

Problem

You use the plug-in registration tool to unregister a plug-in, but the tool reports a failure to
unregister the plug-in.

Cause

The --key argument did not match the extension.key property of the registration record in the

ExtensionManager.

Solution

1 Use the --action unregisterPlugin argument with a key that matches the key you used

to register the plug-in. If you no longer have access to the registration command you used,
you can find the extension key value from the registration record in the ExtensionManager by
using the following procedure.

a Connect a web browser to the Managed Object Browser (MOB) of the vCenter Server
with which you attempted to register the plug-in.

The MOB URL is https://vcenter_server_FQDN/mob.

b To view the ServiceContent data object click the content link.

c Click the ExtensionManager link to view the ExtensionManager managed object.

d In the extensionList values, search for the extension key that you used in your
registration command.

The more... link enables you to see more of the list of extension keys.

e Locate the extension.key property of the registration record for your plug-in.

2 Retry the unregistration command, supplying a corrected --key argument.

Developing Remote Plug-ins with the vSphere Client SDK

VMware by Broadcom 174

	Developing Remote Plug-ins with the vSphere Client SDK
	Contents
	About This Book
	Revision History
	Using the vSphere Client Remote Plug-in Samples
	Try the Remote Plug-in Sample Starter
	Remote Plug-in Sample UI and Server
	Components in the Remote Plug-in Sample
	Build the vSphere Client Remote Plug-in Sample
	Find the SSL Thumbprint and GUID of vCenter Server
	Start the Remote Plug-in Server
	Get Thumbprint or Certificate of Remote Plug-in Server
	Register the vSphere Client Remote Plug-in Sample
	Viewing the vSphere Client Remote Plug-in Sample
	Remote Plug-in Sample Directory Structure

	Remote Plug-in Architecture in the vSphere Client
	Components of the vSphere Client Architecture
	vCenter Server Configurations
	Communication Paths in Remote Plug-in Architecture
	Communications Among UI Components in the vSphere Client
	Client-Server Communications with Remote Plug-ins
	Security Concepts for Remote Plug-ins

	Creating a Remote Plug-in for the vSphere Client
	Code Components for a vSphere Client Remote Plug-in
	Deployment Requirements for a vSphere Client Remote Plug-in
	Using Auxiliary Plug-in Servers
	vSphere Client Plug-in Registration Tool
	Sample Manifest File for a Remote Plug-in

	Deploying Remote Plug-ins for the vSphere Client
	Remote Plug-in Life Cycle
	Remote Plug-in Deployment
	Plug-In Caching
	Remote Plugin Uninstallation
	Redeploying Plug-ins During Development
	Specifying Remote Plug-in Compatibility
	Remote Plug-in Topologies
	Remote Plug-in Terminology
	Visibility of Remote Plug-in Views
	Remote Plug-in Multi-Instance Support
	Differentiating Plug-in Instances
	Custom Topologies
	Deploying Auxiliary Plug-in Servers
	Remote Plug-in Deployment Example with Simultaneous Users
	Remote Plug-in Multi-Version Support
	Remote Plug-in Multi-Manifest Support

	Choosing Extension Points for vSphere Client Plug-ins
	Types of Extension Points in the vSphere Client
	Remote Plug-in Manifest Example

	Dynamic Extensions for Remote Plug-ins
	Dynamic Extension Use Cases
	How the vSphere Client Displays Dynamic Extensions
	Caching Dynamic Extension Visibility
	Configure Dynamic Extensions
	Dynamic Extensions Filter Query
	Example Code for Filtering Dynamic Extensions

	vSphere Client Plug-in User Interface Modules
	Bootstrapping the JavaScript API
	vSphere Client JavaScript API: htmlClientSdk Interface
	vSphere Client JavaScript API: Modal Interface
	vSphere Client JavaScript API: Application Interface
	vSphere Client JavaScript API: Event Interface
	Example Using the modal API

	Using Themes with vSphere Client Plug-ins
	Using Style Variables in Plug-In CSS
	Building Output Style Sheets for vSphere Client Plug-Ins
	Configuring and Loading Theme Style Sheets in vSphere Client Remote Plug-Ins
	Configuring Theme-Dependent Icons for vSphere Client Remote Plug-ins

	Integrated Solution Installer for the vSphere Client
	Conceptual Overview of the Preparation Process
	Preparing a Solution OVF to Use the Integrated Solution Installer

	Deployment with the Integrated Solution Installer
	Integrated Installer Solution Metadata

	Advanced Considerations for Remote Plug-in Servers
	Registering Auxiliary Plug-in Servers
	Auxiliary Server Data Paths
	Communication Paths for Authentication in the Remote Plug-in Server
	How to Delegate Session Authority to the Plug-in Server
	Response Codes to session/clone-ticket Request

	Best Practices for vSphere Client Remote Plug-ins
	Best Practices for Implementing Plug-in Workflows
	Best Practices for Localization
	Best Practices for Deploying and Testing Remote Plug-ins
	Additional Resources

	Troubleshooting Remote Plug–ins for the vSphere Client
	Plug-in Does Not Appear in vSphere Client
	Wrong Plug-in URL
	Troubleshooting: Plug-in Thumbprint Incorrect
	Manifest Cannot Be Parsed
	Wrong Plug-in Type
	Plug-in Marked As Incompatible
	Plug-in Registered with Incompatible Version
	Plug-in View is missing in the vSphere Client

	Missing Entry in the Instance Selector
	Unable to Change Plug-in Manifest File
	Troubleshooting: Problems with Registration Script in SDK
	Plug-in Already Registered
	Unable To Unregister Plug-in

