
Using and Managing vRealize
Automation Code Stream

14 December 2022
vRealize Automation 8.4

You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright
©

 2022 VMware, Inc. All rights reserved. Copyright and trademark information.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 2

https://docs.vmware.com/
https://docs.vmware.com/copyright-trademark.html

Contents

1 What is vRealize Automation Code Stream and how does it work 5

2 Setting up to model my release process 10
How do I add a project 15

How do I manage user access and approvals 16

What are user operations and approvals 24

3 Creating and using pipelines 26
How do I run a pipeline and see results 29

What task types are available 34

How do I do use variable bindings in pipelines 38

How do I use variable bindings in a condition task to run or stop a pipeline 47

What variables and expressions can I use when binding pipeline tasks 50

How do I send notifications about my pipeline 67

How do I create a Jira ticket when a pipeline task fails 69

How do I roll back my deployment 72

4 Planning to natively build, integrate, and deliver your code 79
Planning a CICD native build before using the smart pipeline template 79

Planning a CI native build before using the smart pipeline template 87

Planning a CD native build before using the smart pipeline template 88

Planning a CICD native build before manually adding tasks 89

Planning for rollback 96

5 Tutorials 99
How do I continuously integrate code from my GitHub or GitLab repository into my pipeline 100

How do I automate the release of an application that I deploy from a YAML cloud template 106

How do I automate the release of an application to a Kubernetes cluster 113

How do I deploy my application to my Blue-Green deployment 121

How do I integrate my own build, test, and deploy tools 125

How do I use the resource properties of a cloud template task in my next task 136

How do I use a REST API to integrate with other applications 140

6 Connecting to endpoints 146
What are Endpoints 146

How do I integrate with Jenkins 148

How do I integrate with Git 155

How do I integrate with Gerrit 157

VMware, Inc. 3

How do I integrate with vRealize Orchestrator 161

7 Triggering pipelines 167
How do I use the Docker trigger to run a continuous delivery pipeline 167

How do I use the Git trigger to run a pipeline 176

How do I use the Gerrit trigger to run a pipeline 183

8 Monitoring pipelines 191
What does the pipeline dashboard show me 191

How do I use custom dashboards to track key performance indicators 194

9 Learn more 197
What is Search 197

More resources for Administrators and Developers 203

Using and Managing vRealize Automation Code Stream

VMware, Inc. 4

What is vRealize Automation Code
Stream and how does it work 1
vRealize Automation Code Stream™ is a continuous integration and continuous delivery (CICD)
tool. By creating pipelines that model the software release process in your DevOps lifecycle, you
build the code infrastructure that delivers your software rapidly and continuously.

When you use vRealize Automation Code Stream to deliver your software, you integrate two
of the most important parts of your DevOps lifecycle: your release process and your developer
tools. After the initial setup, which integrates vRealize Automation Code Stream with your existing
development tools, the pipelines automate your entire DevOps lifecycle.

Starting with vRealize Automation 8.2, Blueprints are called VMware Cloud Templates.

You create a pipeline that builds, tests, and releases your software. vRealize Automation Code
Stream uses that pipeline to progress your software from the source code repository, through
testing, and on to production.

VMware, Inc. 5

Application YAML
or Cloud Assembly cloud template

Repository
Git Deployed App or

Cloud Template
On Kubernetes

K8S cluster

 CICD Pipeline

Development Test Acceptance
Test Production

Build,
Configure

Build,
Configure,

Raise Issue
Build,

Configure

Build, Configure,
Raise Issue,

Use Dashboards

Git Jenkins

Bamboo

Code Stream
Build

Bamboo

JIRA

Email

Code Stream
Build

Jenkins

JIRA

Kubernetes

Docker

 Code Stream with Git repository

You can learn more about planning your continuous integration and continuous delivery pipelines
at Chapter 4 Planning to natively build, integrate, and deliver your code in vRealize Automation
Code Stream .

How vRealize Automation Code Stream Administrators use
vRealize Automation Code Stream

As an administrator, you create endpoints and ensure that working instances are available
for developers. You can create, trigger, and manage pipelines, and more. You have the
Administrator role, as described in How do I manage user access and approvals in vRealize

Automation Code Stream.

Table 1-1. How vRealize Automation Code Stream Administrators support developers

To support developers... Here's what you can do...

Provide and manage
environments.

Create environments for developers to test and deploy their code.

n Track status and send email notifications.

n Keep your developers productive by ensuring that their environments continuously
work.

To find out more, see More resources for vRealize Automation Code Stream
Administrators and Developers.

Also see Chapter 5 Tutorials for using vRealize Automation Code Stream.

Provide endpoints. Ensure that developers have working instances of endpoints that can connect to their
pipelines.

Provide integrations with
other services.

Ensure that integrations to other services are working.

To find out more, see vRealize Automation documentation.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 6

http://docs.vmware.com/en/vRealize-Automation/index.html

Table 1-1. How vRealize Automation Code Stream Administrators support developers (continued)

To support developers... Here's what you can do...

Create pipelines. Create pipelines that model release processes.

To find out more, see Chapter 3 Creating and using pipelines in vRealize Automation
Code Stream.

Trigger pipelines. Ensure that pipelines run when events occur.

n To trigger a standalone, continuous delivery (CD) pipeline whenever a build artifact
is created or updated, use the Docker trigger.

n To trigger a pipeline when a developer commits changes to their code, use the Git
trigger.

n To trigger a pipeline when developers review code, merge, and more, use the Gerrit
trigger.

n To run a standalone continuous delivery (CD) pipeline whenever a build artifact is
created or updated, use the Docker trigger.

To find out more, see Chapter 7 Triggering pipelines in vRealize Automation Code
Stream.

Manage pipelines and
approvals.

Stay up-to-date on pipelines.

n View pipeline status, and see who ran the pipelines.

n View approvals on pipeline executions, and manage approvals for active and
inactive pipeline executions.

To find out more, see What are user operations and approvals in vRealize Automation
Code Stream.

Also, see How do I use custom dashboards to track key performance indicators for my
pipeline in vRealize Automation Code Stream.

Monitor developer
environments.

Create custom dashboards that monitor pipeline status, trends, metrics, and key
indicators. Use the custom dashboards to monitor pipelines that pass or fail in developer
environments. You can also identify and report on under used resources, and free up
resources.

You can also see:

n How long a pipeline ran before it succeeded.

n How long a pipeline waited for approval, and notify the user who must approve it.

n Stages and tasks that fail most often.

n Stages and tasks that take the most time to run.

n Releases that development teams have in progress.

n Applications that succeeded in being deployed and released.

To find out more, see Chapter 8 Monitoring pipelines in vRealize Automation Code
Stream.

Troubleshoot problems. Troubleshoot and resolve pipeline failures in developer environments.

n Identify and resolve problems in continuous integration and continuous delivery
environments (CICD).

n Use the pipeline dashboards and create custom dashboards to see more. See
Chapter 8 Monitoring pipelines in vRealize Automation Code Stream.

Also, see Chapter 2 Setting up vRealize Automation Code Stream to model my release
process.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 7

vRealize Automation Code Stream is part of vRealize Automation. vRealize Automation Code
Stream integrates with:

n Use vRealize Automation Cloud Assembly to deploy cloud templates.

n Use vRealize Automation Service Broker to get cloud templates from the catalog.

To learn about other things you can do, see VMware vRealize Automation Documentation.

How Developers Use vRealize Automation Code Stream

As a developer, you use vRealize Automation Code Stream to build and run pipelines, and monitor
pipeline activity on the dashboards. You have the User role, as described in How do I manage user

access and approvals in vRealize Automation Code Stream.

After you run a pipeline, you'll want to know:

n If your code succeeded through all stages of the pipeline. To find out, observe the results in
the pipeline executions.

n What to do if the pipeline failed, and what caused the failure. To find out, observe the top
errors in the pipeline dashboards.

Table 1-2. Developers who use vRealize Automation Code Stream

To integrate and
release your code Here's what you do

Build pipelines. Test and deploy your code.

Update your code when a pipeline fails.

Connect your pipeline to
endpoints.

Connect the tasks in your pipeline to endpoints, such as a GitHub repository.

Run pipelines. Add a user operation approval task so that another user can approve your pipeline at specific
points.

View dashboards. View the results on the pipeline dashboard. You can see trends, history, failures, and more.

For more information about getting started, see Getting Started with VMware Code Stream.

Find more documentation in the In-product Support panel

If you don’t find the information you need here, you can get more help in the product.

n Click and read the signposts and tooltips in the user interface to get the context-specific
information that you need where and when you need it.

n Open the In-product support panel and read the topics that appear for the active user
interface page. You can also search in the panel to get answers to questions.

More on Webhooks

Using and Managing vRealize Automation Code Stream

VMware, Inc. 8

https://docs.vmware.com/en/vRealize-Automation/index.html
http://docs.vmware.com/en/vRealize-Automation/8.0/Getting-Started-CodeStream/GUID-D137AB85-F66C-4A90-A710-66605FD0355B.html

You can create multiple webhooks for different branches by using the same Git endpoint and
providing different values for the branch name in the webhook configuration page. To create
another webhook for another branch in the same Git repository, you don't need to clone the
Git endpoint multiple times for multiple branches. Instead, you provide the branch name in the
webhook, which allows you to reuse the Git endpoint. If the branch in the Git webhook is the same
as the branch in the endpoint, you don't need to provide branch name in the Git webhook page.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 9

Setting up vRealize Automation
Code Stream to model my release
process

2
To model your release process, you create a pipeline that represents the stages, tasks, and
approvals that you normally use for releasing your software. vRealize Automation Code Stream
then automates the process that builds, tests, approves, and deploys your code.

Now that you have everything for modeling your software release process, here's how you do it in
vRealize Automation Code Stream.

Prerequisites

n Verify whether any endpoints are already available. In vRealize Automation Code Stream, click
Endpoints.

n Learn about native ways that you can build and deploy your code. See Chapter 4 Planning to
natively build, integrate, and deliver your code in vRealize Automation Code Stream .

n Determine whether some of the resources that you will use in your pipeline must be marked as
restricted. See How do I manage user access and approvals in VMware Code Stream.

n If you have the user role or the viewer role instead of the administrator role, determine who is
the administrator for your vRealize Automation Code Stream instance.

Procedure

1 Examine the projects available in vRealize Automation Code Stream and select one that is right
for you.

n If no projects appear, ask a vRealize Automation Code Stream administrator who can
create a project and make you a member of the project. See How do I add a project in
vRealize Automation Code Stream.

n If you are not a member of any projects listed, ask a vRealize Automation Code Stream
administrator who can add you as a member of a project.

VMware, Inc. 10

http://docs.vmware.com/en/VMware-Code-Stream/services/Using-and-Managing-CodeStream/GUID-8EDC8310-232D-45FB-8C02-E4FB25687177.html

2 Add any new endpoints that you need for your pipeline.

For example, you might need Git, Jenkins, Code Stream Build, Kubernetes, and Jira.

3 Create variables so that you can reuse values in your pipeline tasks.

To constrain the resources used in your pipelines, such as a host machine, use restricted
variables. You can restrict the pipeline from continuing to run until another user explicitly
approves it.

Administrators can create secret variables and restricted variables. Users can create secret
variables.

You can reuse a variable as many times as you want across multiple pipelines. For example, a
variable that defines a host machine can be HostIPAddress. To use the variable in a pipeline

task, you enter ${var.HostIPAddress}.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 11

4 If you are an administrator, mark any endpoints and variables that are vital to your business as
restricted resources.

When a user who is not an administrator attempts to run a pipeline that includes a
restricted resource, the pipeline stops at the task that uses the restricted resource. Then, an
administrator must resume the pipeline.

5 Plan the build strategy for your native CICD, CI, or CD pipeline.

Before you create a pipeline that continuously integrates (CI) and continuously deploys (CD)
your code, plan your build strategy. The build plan helps you determine what vRealize
Automation Code Stream needs so that it can natively build, integrate, test, and deploy your
code.

How to create a vRealize Automation
Code Stream native build Results in this build strategy

Use one of the smart pipeline
templates.

n Builds all the stages and tasks for you.

n Clones the source repository.

n Builds and tests your code.

n Containerizes your code for deployment.

n Populates the pipeline task steps based on your selections.

Add stages and tasks manually. You add stages, add tasks, and enter the information that populates them.

6 Create your pipeline by using a smart pipeline template, or by manually add stages and tasks

to the pipeline.

Then, you mark any resources as restricted. Add approvals where needed. Apply any regular,
restricted, or secret variables. Add any bindings between tasks.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 12

7 Validate, enable, and run your pipeline.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 13

8 View the pipeline executions.

9 To track status and key performance indicators (KPIs), use the pipeline dashboards, and create
any custom dashboards.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 14

Results

You created a pipeline that you can use in the selected project.

You can also export your pipeline YAML, then import it and reuse it in other projects.

What to do next

Learn about use cases that you might want to apply in your environment. See Chapter 5 Tutorials
for using vRealize Automation Code Stream.

How do I add a project in vRealize Automation Code Stream

You create a project and add administrators and members to it. Project members can use features
such as creating a pipeline and adding an endpoint. To create, delete, or update a project for a
development team, you must be a vRealize Automation Code Stream administrator.

A project must exist before you can create a pipeline. When you create a pipeline, you select a
project that groups all your pipeline information together. Definitions for endpoints and variables
also depend on an existing project.

Prerequisites

n Verify that you have the vRealize Automation Code Stream administrator role. See What are
Roles in vRealize Automation Code Stream.

If you do not have the vRealize Automation Code Stream administrator role, but you have
vRealize Automation Cloud Assembly administrator role, you can create, update, or delete
projects in the vRealize Automation Cloud Assembly UI. See "How do I add a project for my
vRealize Automation Cloud Assembly development team" in Using and Managing vRealize
Automation Cloud Assembly.

n If you are adding Active Directory groups to projects, verify that you configured Active
Directory groups for your organization. See "How do I edit group role assignments in vRealize
Automation" in Administering vRealize Automation. If the groups are not synchronized, they
are not available when you try to add them to a project.

Procedure

1 Select Projects, and click New Project.

2 Enter the project name.

3 Click Create.

4 Select the card for the newly created project, and click Open.

5 Click the Users tab and add users and assign roles.

n The project administrator can add members.

n The project member who has a service role can use services.

n The project viewer can see projects but cannot create, update, or delete them.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 15

For more information about project roles, see How do I manage user access and approvals in
vRealize Automation Code Stream.

6 Click Save.

What to do next

Add endpoints and pipelines that use the project. See and Chapter 6 Connecting vRealize
Automation Code Stream to endpoints and Chapter 3 Creating and using pipelines in vRealize
Automation Code Stream.

After you create a pipeline, the name of the project that groups all your pipeline information
together appears on pipeline cards and pipeline execution cards.

How do I manage user access and approvals in vRealize
Automation Code Stream

vRealize Automation Code Stream provides several ways to ensure that users have the
appropriate authorization and consent to work with pipelines that release your software
applications.

Each member on a team has an assigned role, which gives specific permissions on pipelines,
endpoints, and dashboards, and the ability to mark resources as restricted.

User operations and approvals enable you to control when a pipeline runs and must stop for an
approval. Your role determines whether you can resume a pipeline, and run pipelines that include
restricted endpoints or variables.

Use secret variables to hide and encrypt sensitive information. Use restricted variable for strings,
passwords, and URLs that must be hidden and encrypted, and to restrict use in executions. For
example, use a secret variable for a password or URL. You can use secret and restricted variables
in any type of task in your pipeline.

What are Roles in vRealize Automation Code Stream

Depending on your role in vRealize Automation Code Stream, you can perform certain actions
and access certain areas. For example, your role might enable you to create, update, and run
pipelines. Or, you might only have permission to view pipelines.

All actions except restricted means this role has permission to perform create, read,

update, and delete actions on entities except for restricted variables and endpoints.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 16

Table 2-1. Service and Project level access permissions in vRealize Automation Code Stream

vRealize Automation Code Stream Roles

Access levels
Code Stream
Administrator

Code Stream
Developer

Code Stream
Executor

Code Stream
Viewer

Code Stream
User

vRealize
Automation Code
Stream service
level access

All Actions All actions except
restricted

Execution actions Read only None

Project level
access: Project
Admin

All Actions All Actions All Actions All Actions All Actions

Project level
access: Project
Member

All Actions All actions except
restricted

All actions except
restricted

All actions except
restricted

All actions except
restricted

Project level
access: Project
Viewer

All Actions All actions except
restricted

Execution actions Read only Read only

Users who have the Project Admin role can perform all actions on projects where they are a
Project administrator.

A Project administrator can create, read, update, and delete pipelines, variables, endpoints,
dashboards, triggers, and start a pipeline that includes restricted endpoints or variables if these
resources are in the project where the user is a Project administrator.

Users who have the Service Viewer role can see all the information that is available to the
administrator. They cannot take any action unless an administrator makes them a project
administrator or a project member. If the user is affiliated with a project, they have the permissions
related to the role. The project viewer would not extend their permissions the way that the
administrator or member role does. This role is read-only across all projects.

If you have read permissions in a project, you can still see restricted resources.

n To see restricted endpoints, which display a lock icon on the endpoint card, click Configure >
Endpoints.

n To see restricted and secret variables, which display RESTRICTED or SECRET in the Type
column, click Configure > Variables.

Table 2-2. vRealize Automation Code Stream service role capabilities

UI
Context Capabilities

Code Stream
Administrator
role

Code
Stream
Developer
role

Code Stream
Executor role

Code
Stream
Viewer
role

Code
Stream
User role

Pipelines

View pipelines Yes Yes Yes Yes

Create pipelines Yes Yes

Using and Managing vRealize Automation Code Stream

VMware, Inc. 17

Table 2-2. vRealize Automation Code Stream service role capabilities (continued)

UI
Context Capabilities

Code Stream
Administrator
role

Code
Stream
Developer
role

Code Stream
Executor role

Code
Stream
Viewer
role

Code
Stream
User role

Run pipelines Yes Yes Yes

Run pipelines that include
restricted endpoints or
variables

Yes

Update pipelines Yes Yes

Delete pipelines Yes Yes

Pipeline
Executio
ns

View pipeline executions Yes Yes Yes Yes

Resume, pause, and cancel
pipeline executions

Yes Yes Yes

Resume pipelines that stop
for approval on restricted
resources

Yes

Custom
Integratio
ns

Create custom integrations Yes Yes

Read custom integrations Yes Yes Yes Yes

Update custom integrations Yes Yes

Endpoint
s

View executions Yes Yes Yes Yes

Create executions Yes Yes

Update executions Yes Yes

Delete executions Yes Yes

Mark
resources
as
restricted

Mark an endpoint or
variable as restricted

Yes

Dashboar
ds

Using and Managing vRealize Automation Code Stream

VMware, Inc. 18

Table 2-2. vRealize Automation Code Stream service role capabilities (continued)

UI
Context Capabilities

Code Stream
Administrator
role

Code
Stream
Developer
role

Code Stream
Executor role

Code
Stream
Viewer
role

Code
Stream
User role

View dashboards Yes Yes Yes Yes

Create dashboards Yes Yes

Update dashboards Yes Yes

Delete dashboards Yes Yes

Custom roles and permissions in vRealize Automation Code Stream

You can create custom roles in vRealize Automation Cloud Assembly that extend privileges to
users who work with pipelines. When you create a custom role for vRealize Automation Code
Stream pipelines, you select one or more Pipeline permissions.

Select the minimal number of Pipeline permissions required for users who will be assigned this
custom role.

When a user is assigned to a project and given a role in that project, and that user is assigned
a custom role that includes one or more Pipeline permissions, they can perform all the actions
that the permissions allow. For example, they can create restricted variables, manage restricted
pipelines, create and manage custom integrations, and more.

Table 2-3. Pipeline permissions that you can assign to custom roles

Pipeline
Permissio
n

Code
Stream
Administr
ator

Code
Stream
Developer

Code
Stream
Executor

Code
Stream
Viewer

Code
Stream
User

Project
Administr
ator

Project
Member

Project
Viewer

Manage
Pipelines

Yes Yes Yes Yes

Manage
Restricted
Pipelines

Yes Yes

Manage
Custom
Integration
s

Yes Yes

Execute
Pipelines

Yes Yes Yes Yes Yes

Execute
Restricted
Pipelines

Yes Yes

Using and Managing vRealize Automation Code Stream

VMware, Inc. 19

Table 2-3. Pipeline permissions that you can assign to custom roles (continued)

Pipeline
Permissio
n

Code
Stream
Administr
ator

Code
Stream
Developer

Code
Stream
Executor

Code
Stream
Viewer

Code
Stream
User

Project
Administr
ator

Project
Member

Project
Viewer

Manage
Executions

Yes Yes

Read. This
permission
is not
visible.

Yes Yes Yes Yes Yes Yes Yes

Table 2-4. How you can use Pipeline permissions with custom roles

Permission What you can do

Manage Pipelines n Create, update, delete, clone pipelines.

n Release and unrelease pipelines to VMware Service Broker.

n Create, update, and delete endpoints.

n Create, update, and delete regular and secret variables.

n Create, clone, update, and delete a Gerrit listener.

n Connect and disconnect a Gerrit listener.

n Create, clone, update, delete a Gerrit trigger.

n Create, update, and delete a Git webhook.

n Create, update, and delete a Docker webhook.

n Use smart pipeline templates to create pipelines.

n Import pipelines from YAML, and export them to YAML.

n Create, update, and delete custom dashboards.

n Read all custom integrations.

n Read all restricted endpoints and variables, but cannot view their values.

Manage Restricted
Pipelines

n Create, update, and delete endpoints.

n Mark endpoints as restricted, update restricted endpoints, and delete them.

n Create, update, and delete regular and secret variables.

n Create, update, and delete restricted variables.

n All permissions that you can do with Manage Pipelines.

Manage Custom
Integrations

n Create and update custom integrations.

n Version and release custom integrations.

n Delete and deprecate custom integration versions.

n Delete custom integrations.

Execute Pipelines n Run pipelines.

n Pause, resume, and cancel pipeline executions.

n Rerun pipeline executions.

n Resume, rerun, and manually trigger a Gerrit trigger event.

n Approve a user operation, and can do batch approvals of user operations.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 20

Table 2-4. How you can use Pipeline permissions with custom roles (continued)

Permission What you can do

Execute Restricted
Pipelines

n Run pipelines.

n Pause, resume, cancel, and delete pipeline executions.

n Rerun pipeline executions.

n Sync a running pipeline execution.

n Force delete a running pipeline execution.

n Resume, rerun, delete, and manually trigger a Gerrit trigger event.

n Resolve restricted items and continue the pipeline execution.

n Switch user context and continue the pipeline execution after a User Operation task
approval.

n All permissions that you can do with Execute Pipelines.

Manage Executions n Run pipelines.

n Pause, resume, cancel, and delete pipeline executions.

n Rerun pipeline executions.

n Resume, rerun, delete, and manually trigger a Gerrit trigger event.

n All permissions that you can do with Execute Pipelines.

Custom roles can include combinations of permissions. These permissions are organized into
groups of capabilities that enable users to manage or run pipelines, with and without restricted
resources. These permissions represent all the capabilities that each role can perform in vRealize
Automation Code Stream.

For example, if you create a custom role and include the permission called Manage Restricted
Pipelines, users who have the vRealize Automation Code Stream Developer role can:

n Create, update, and delete endpoints.

n Mark endpoints as restricted, update restricted endpoints, and delete them.

n Create, update, and delete regular and secret variables.

n Create, update, and delete restricted variables.

Table 2-5. Example combinations of Pipeline permissions in custom roles

Number of
Permissions
Assigned to
Custom Role Examples of Combined Permissions How to use this combination

Single
permission

Execute Pipelines

Two permissions Manage Pipelines and Execute Pipelines

Three
permissions

Manage Pipelines and Execute Pipelines and
Execute Restricted Pipelines

Manage Pipelines and Manage Custom
Integrations and Execute Restricted Pipelines

This combination might apply to a vRealize
Automation Code Stream Developer role but
be limited to the projects where the user is a
member.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 21

Table 2-5. Example combinations of Pipeline permissions in custom roles (continued)

Number of
Permissions
Assigned to
Custom Role Examples of Combined Permissions How to use this combination

Manage Pipelines and Manage Custom
Integrations and Manage Executions

This combination might apply to a vRealize
Automation Code Stream Administrator but
limited to the projects where user is a
member.

Manage Pipelines, Manage Restricted Pipelines,
and Manage Custom Integrations

With this combination, a user has full
permissions and can create and delete
anything in vRealize Automation Code
Stream.

If you have the Administrator role

As an administrator, you can create custom integrations, endpoints, variables, triggers, pipelines,
and dashboards.

Projects enable pipelines to access infrastructure resources. Administrators create projects so that
users can group pipelines, endpoints, and dashboards together. Users then select the project in
their pipelines. Each project includes an administrator and users with assigned roles.

With the Administrator role, you can mark endpoints and variables as restricted resources, and
you can run pipelines that use restricted resources. If a non-administrative user runs the pipeline
that includes a restricted endpoint or variable, the pipeline will stop at the task where the
restricted variable is used, and an administrator must resume the pipeline.

As an administrator, you can also request that pipelines be published in vRealize Automation
Service Broker.

If you have the Developer role

You can work with pipelines like an administrator can, except that you cannot work with restricted
endpoints or variables.

If you run a pipeline that uses restricted endpoints or variables, the pipeline only runs up to the
task that uses the restricted resource. Then, it stops, and a vRealize Automation Code Stream
administrator or project administrator must resume the pipeline.

If you have the User role

You can access vRealize Automation Code Stream, but do not have any privileges as the other
roles provide.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 22

If you have the Viewer role

You can see the same resources that an administrator sees, such as pipelines, endpoints, pipeline
executions, dashboards, custom integrations, and triggers, but you cannot create, update, or
delete them. To perform actions, the Viewer role must also be given the project administrator or
project member role.

Users who have the Viewer role can see projects. They can also see restricted endpoints and
restricted variables, but cannot see the detailed information about them.

If you have the Executor role

You can run pipelines and take action on user operation tasks. You can also resume, pause, and
cancel pipeline executions. But, you cannot modify pipelines.

How do I assign and update roles

To assign and update roles for other users, you must be an administrator.

1 To see the active users and their roles, in vRealize Automation, click the nine dots at the upper
right.

2 Click Identity & Access Management.

3 To display user names and roles, click Active Users.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 23

4 To add roles for a user, or change their roles, click the check box next to the user name, and
click Edit Roles.

5 When you add or change user roles, you can also add access to services.

6 To save your changes, click Save.

What are user operations and approvals in vRealize
Automation Code Stream

The User Operations area displays pipeline runs that need approval. The required approver can
either approve or reject the pipeline run.

When you create a pipeline, you might need to add an approval to a pipeline if:

n A team member needs to review your code.

n Another user needs to confirm a build artifact.

n You must ensure that all testing is complete.

n A task uses a resource that an administrator marked as restricted, and the task needs
approval.

n The pipeline will release software to production.

To determine whether to approve a pipeline task, the required approver must have permission
and expertise.

When you add a User Operation task, you can set the expiration timeout in days, hours, or
minutes. For example, you might need the required user to approve the pipeline in 30 minutes. If
they don't approve it in 30 minutes, the pipeline fails as expected.

If you enable sending Email notifications, the User Operation task only sends notifications to
approvers who have full email addresses, and not to approver names that are not in an email
format.

After the required user approves the task:

n The pending pipeline execution can continue.

n When the pipeline continues, any previous pending requests for approval of that same user
operation task are canceled.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 24

In the User Operations area, items to approve or reject appear as active or inactive items. Each
item maps to a user operation task in a pipeline.

n Active Items wait for the approver who must review the task, and approve or reject it. If you
are a user who is on the approver list, you can expand the user operation row, and click
Accept or Reject.

n Inactive Items were approved or rejected. If a user rejected the user operation, or if the
approval on the task timed out, it can no longer be approved.

The Index# is a unique six-character alphanumeric string that you can use as a filter to search for a
particular approval.

Pipeline approvals also appear in the Executions area.

n Pipelines that are waiting for approval indicate their status as waiting.

n Other states include queued, completed, and failed.

n If your pipeline is in a wait state, the required approver must approve your pipeline task.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 25

Creating and using pipelines in
vRealize Automation Code Stream 3
You can use vRealize Automation Code Stream to model your build, test, and deploy process.
With vRealize Automation Code Stream, you set up the infrastructure that supports your release
cycle and create pipelines that model your software release activities. vRealize Automation Code
Stream delivers your software from development code, through testing, and deploys it to your
production instances.

Each pipeline includes stages and tasks. Stages represent your development phases, and tasks
perform the required actions that deliver your software application through the stages.

What are Pipelines in vRealize Automation Code Stream

A pipeline is a continuous integration and continuous delivery model of your software release
process. It releases your software from source code, through testing, to production. It includes a
sequence of stages that include tasks that represent the activities in your software release cycle.
Your software application flows from one stage to the next through the pipeline.

You add endpoints so that the tasks in your pipeline can connect to data sources, repositories, or
notification systems.

Creating Pipelines

You can create a pipeline by starting with a blank canvas, using a smart pipeline template, or by
importing YAML code.

n Use the blank canvas. For an example, see Planning a CICD native build in vRealize
Automation Code Stream before manually adding tasks.

n Use a smart pipeline template. For an example, see Chapter 4 Planning to natively build,
integrate, and deliver your code in vRealize Automation Code Stream .

n Import YAML code. Click Pipelines > Import. In the Import dialog box, select the YAML file or
enter the YAML code, and click Import.

When you use the blank canvas to create a pipeline, you add stages, tasks, and approvals. The
pipeline automates the process that builds, tests, deploys, and releases your application. The tasks
in each stage run actions that build, test, and release your code through each stage.

VMware, Inc. 26

Table 3-1. Example pipeline stages and uses

Example stage Examples of what you can do

Development In a development stage, you can provision a machine, retrieve an artifact, add a build task that
creates a Docker host for continuous integration of your code, and more.

For example:

n To plan and create a continuous integration (CI) build, which delivers your code by using the
native build capability in vRealize Automation Code Stream, see Planning a CI native build in
vRealize Automation Code Stream before using the smart pipeline template.

Test In a test stage, you can add a Jenkins task to test your software application, and include
post-processing test tools such as JUnit and JaCoCo, and more.

For example:

n Integrate vRealize Automation Code Stream with Jenkins, and run a Jenkins job in your
pipeline, which builds and tests your source code. See How do I integrate vRealize
Automation Code Stream with Jenkins.

n Create custom scripts that extend the capability of vRealize Automation Code Stream to
integrate with your own build, test, and deploy tools. See How do I integrate my own build,
test, and deploy tools with vRealize Automation Code Stream.

n Track trends on post-processing for a continuous integration (CI) pipeline. See How do
I use custom dashboards to track key performance indicators for my pipeline in vRealize
Automation Code Stream.

Production In a production stage, you can integrate a cloud template in vRealize Automation Cloud
Assembly that provisions your infrastructure, deploys your software to a Kubernetes cluster,
and more.

For example:

n To see example stages for development and production, which can deploy your software
application in your own Blue-Green deployment model, see How do I deploy my application
in vRealize Automation Code Stream to my Blue-Green deployment.

n To integrate a cloud template into your pipeline, see How do I automate the release of an
application that I deploy from a YAML cloud template in vRealize Automation Code Stream.
You can also add a deployment task that runs a script to deploy the application.

n To automate the deployment of your software applications to a Kubernetes cluster, How
do I automate the release of an application in vRealize Automation Code Stream to a
Kubernetes cluster.

n To integrate code into your pipeline and deploy your build image, see How do I
continuously integrate code from my GitHub or GitLab repository into my pipeline in
vRealize Automation Code Stream.

You can export your pipeline as a YAML file. Click Pipelines, click a pipeline card, then click
Actions > Export.

Approving pipelines

You can obtain an approval from another team member at specific points in your pipeline.

n To require approval on a pipeline by including a user operation task in a pipeline, see How
do I run a pipeline and see results. This task sends an email notification to the user who must

Using and Managing vRealize Automation Code Stream

VMware, Inc. 27

review it. The reviewer must either approve or reject the approval before the pipeline can
continue to run. If the User Operation task has an expiration timeout set in days, hours, or
minutes, the required user must approve the pipeline before the task expires. Otherwise, the
pipeline fails as expected.

n In any stage of a pipeline, if a task or stage fails, you can have vRealize Automation Code
Stream create a Jira ticket. See How do I create a Jira ticket in vRealize Automation Code
Stream when a pipeline task fails.

Triggering pipelines

Pipelines can trigger when developers check their code into the repository, or review code, or
when it identifies a new or updated build artifact.

n To integrate vRealize Automation Code Stream with the Git lifecycle, and trigger a pipeline
when developers update their code, use the Git trigger. See How do I use the Git trigger in
vRealize Automation Code Stream to run a pipeline.

n To integrate vRealize Automation Code Stream with the Gerrit code review lifecycle, and
trigger a pipeline on code reviews, use the Gerrit trigger. See How do I use the Gerrit trigger in
vRealize Automation Code Stream to run a pipeline.

n To trigger a pipeline when a Docker build artifact is created or updated, use the Docker
trigger. See How do I use the Docker trigger in vRealize Automation Code Stream to run a
continuous delivery pipeline.

For more information about the triggers that vRealize Automation Code Stream supports, see
Chapter 7 Triggering pipelines in vRealize Automation Code Stream.

This chapter includes the following topics:

n How do I run a pipeline and see results

n What types of tasks are available in vRealize Automation Code Stream

n How do I use variable bindings in vRealize Automation Code Stream pipelines

n How do I use variable bindings in a condition task to run or stop a pipeline in vRealize
Automation Code Stream

n What variables and expressions can I use when binding pipeline tasks in vRealize Automation
Code Stream

n How do I send notifications about my pipeline in vRealize Automation Code Stream

n How do I create a Jira ticket in vRealize Automation Code Stream when a pipeline task fails

n How do I roll back my deployment in vRealize Automation Code Stream

Using and Managing vRealize Automation Code Stream

VMware, Inc. 28

How do I run a pipeline and see results

You can run a pipeline from the pipeline card, in pipeline edit mode, and from the pipeline
execution. You can also use the available triggers to have vRealize Automation Code Stream run a
pipeline when certain events occur.

When all the stages and tasks in your pipeline are valid, the pipeline is ready to be released, run,
or triggered.

To run or trigger your pipeline using vRealize Automation Code Stream, you can enable and run
the pipeline either from the pipeline card, or while you are in the pipeline. Then, you can view the
pipeline execution to confirm that the pipeline built, tested, and deployed your code.

When a pipeline execution is in progress, you can delete the execution if you are an administrator
or a non-admin user.

n Administrator: To delete a pipeline execution when it is running, click Executions. On the
execution to delete, click Actions > Delete.

n Non-admin user: To delete a running pipeline execution, click Executions, and click Alt Shift d.

When a pipeline execution is in progress and appears to be stuck, an administrator can refresh the
execution from the Executions page or the Execution details page.

n Executions page: Click Executions. On the execution to refresh, click Actions > Sync.

n Execution details page: Click Executions, click the link to the execution details, and click
Actions > Sync.

To run a pipeline when specific events occur, use the triggers.

n Git trigger can run a pipeline when developers update code.

n Gerrit trigger can run a pipeline when code reviews occur.

n Docker trigger can run a pipeline when an artifact is created in a Docker registry.

n The curl command can have Jenkins run a pipeline after a Jenkins build finishes.

For more information about using the triggers, see Chapter 7 Triggering pipelines in vRealize
Automation Code Stream.

The following procedure shows you how to run a pipeline from the pipeline card, view executions,
see execution details, and use the actions. It also shows you how to release a pipeline so that you
can add it to vRealize Automation Service Broker.

Prerequisites

n Verify that one or more pipelines are created. See the examples in Chapter 5 Tutorials for
using vRealize Automation Code Stream.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 29

Procedure

1 Enable your pipeline.

To run or release a pipeline, you must enable it first.

a Click Pipelines.

b On your pipeline card, click Actions > Enable.

You can also enable your pipeline while you are in the pipeline. If your pipeline is already
enabled, Run is active, and the Actions menu displays Disable.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 30

2 (Optional) Release your pipeline.

If you want to make your pipeline available as a catalog item in vRealize Automation Service
Broker, you must release it in vRealize Automation Code Stream.

a Click Pipelines.

b On your pipeline card, click Actions > Release.

You can also release your pipeline while you are in the pipeline.

After you release the pipeline, you open vRealize Automation Service Broker to add
the pipeline as a catalog item and run it. See how to add vRealize Automation Code
Stream pipelines to the vRealize Automation Service Broker catalog in Using and Managing
VMware Service Broker.

Note If the pipeline requires more that 120 minutes to run, provide an approximate
execution time as a request timeout value. To set or review the request timeout
for a project, open vRealize Automation Service Broker as administrator and select
Infrastructure > Projects. Click your project name and then click Provisioning.

If the request timeout value is not set, an execution that requires more than 120 minutes
to run appears as failed with a callback timeout request error. However, the pipeline
execution is not affected.

3 On the pipeline card, click Run.

4 To view the pipeline as it runs, click Executions.

The pipeline runs each stage in sequence, and the pipeline execution displays a status icon for
each stage. If the pipeline includes a user operation task, a user must approve the task for the
pipeline to continue to run. When a user operation task is used, the pipeline stops running and
waits for the required user to approve the task.

For example, you might use the user operation task to approve the deployment of code to a
production environment.

If the User Operation task has an expiration timeout set in days, hours, or minutes, the
required user must approve the pipeline before the task expires. Otherwise, the pipeline fails
as expected.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 31

5 To see the pipeline stage that is waiting for user approval, click the status icon for the stage.

6 To see the details for the task, click the task.

After the required user approves the task, a user who has the appropriate role must resume
the pipeline. For required roles, see How do I manage user access and approvals in vRealize
Automation Code Stream.

If an execution fails, you must triage and fix the cause of the failure. Then, go to the execution,
and click Actions > Re-run.

You can resume primary pipeline executions and nested executions.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 32

7 From the pipeline execution, you can click Actions to view the pipeline, and select an action
such as Pause, Cancel, and more. When a pipeline execution is in progress, if you are an
administer you can delete or sync the pipeline execution. If you are a non-admin user, you can
delete a running pipeline.

8 To navigate easily between executions and see the details for a task, click Executions, and
click a pipeline run. Then, click the tab at the top and select the pipeline run.

Results

Congratulations! You ran a pipeline, examined the pipeline execution, and viewed a user operation
task that required approval for the pipeline to continue to run. You also used the Actions menu in
the pipeline execution to return to the pipeline model so that you can make any required changes.

What to do next

To learn more about using vRealize Automation Code Stream to automate your software release
cycle, see Chapter 5 Tutorials for using vRealize Automation Code Stream.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 33

What types of tasks are available in vRealize Automation
Code Stream

When you configure your pipeline, you add specific types of tasks that the pipeline runs for the
actions you need. Each task type integrates with another application and enables your pipeline as
it builds, tests, and delivers your applications.

To run your pipeline, whether you must pull artifacts from a repository for deployment, run a
remote script, or require approval on a user operation from a team member, vRealize Automation
Code Stream has the type of task for you!

Before you use a task in your pipeline, verify that the corresponding endpoint is available.

Table 3-2. Obtain an approval or set a decision point

Type of task What it does Examples and details

User Operation A User Operation task enables a required approval
that controls when a pipeline runs and must stop
for an approval.

See How do I run a pipeline and
see results. and How do I manage
user access and approvals in vRealize
Automation Code Stream.

Condition Adds a decision point, which determines whether
the pipeline continues to run, or stops, based on
condition expressions. When the condition is true,
the pipeline runs successive tasks. When false, the
pipeline stops.

See How do I use variable bindings
in a condition task to run or stop a
pipeline in vRealize Automation Code
Stream.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 34

Table 3-3. Automate continuous integration and deployment

Type of task What it does Examples and details

Cloud template Deploys an automation cloud template from
GitHub and provisions an application, and
automates the continuous integration and
continuous delivery (CICD) of that cloud template
for your deployment.

See How do I automate the release
of an application that I deploy from
a YAML cloud template in vRealize
Automation Code Stream.

The cloud template parameters
appear after you first select Create
or Update, then select Cloud
Template and Version. You can add
these elements, which accommodate
variable bindings, to the input text
areas in the cloud template task:

n Integer

n Enumeration string

n Boolean

n Array variable

When you use variable binding in the
input, be aware of these exceptions.
For enumerations, you must select an
enumeration value from a fixed set.
For Boolean values, you must enter
the value in the input text area.

The cloud template parameter
appears in the cloud template task
when a cloud template in vRealize
Automation Cloud Assembly includes
input variables. For example, if a cloud
template has an input type of Integer,

you can enter the integer directly or as
a variable by using variable binding.

CI The CI task enables continuous integration of your
code into your pipeline by pulling a Docker build
image from a registry endpoint, and deploying it to
a Kubernetes cluster.

See Planning a CICD native build
in vRealize Automation Code Stream
before using the smart pipeline
template.

Custom The Custom task integrates vRealize Automation
Code Stream with your own build, test, and deploy
tools.

See How do I integrate my own build,
test, and deploy tools with vRealize
Automation Code Stream.

Kubernetes Automate the deployment of your software
applications to Kubernetes clusters on AWS.

See How do I automate the release of
an application in vRealize Automation
Code Stream to a Kubernetes cluster.

Pipeline Nests a pipeline in a primary pipeline. When a
pipeline is nested, it behaves as a task in the
primary pipeline.

On the Task tab of the primary pipeline, you can
easily navigate to the nested pipeline by clicking
the link to it. The nested pipeline opens in a new
browser tab.

To find nested pipelines in Executions,
enter nested in the search area.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 35

Table 3-4. Integrate development, test, and deployment applications

Task type... What it does... Examples and details...

Bamboo Interacts with a Bamboo continuous integration
(CI) server, which continuously builds, tests, and
integrates software in preparation for deployment,
and triggers code builds when developers commit
changes. It exposes the artifact locations that the
Bamboo build produces so that the task can output
the parameters for other tasks to use for build and
deployment.

Connect to a Bamboo server endpoint
and start a Bamboo build plan from
your pipeline.

Jenkins Triggers Jenkins jobs that build and test your
source code, runs test cases, and can use custom
scripts.

See How do I integrate vRealize
Automation Code Stream with
Jenkins.

TFS Allows you to connect your pipeline to Team
Foundation Server to manage and invoke build
projects, including configured jobs that build and
test your code.

vRealize Automation Code Stream
supports Team Foundation Server
2013 and 2015.

vRO Extends the capability of vRealize Automation
Code Stream by running predefined or custom
workflows in vRealize Orchestrator.

See How do I integrate vRealize
Automation Code Stream with
vRealize Orchestrator.

Table 3-5. Integrate other applications through an API

Task type... What it does... Examples and details...

REST Integrates vRealize Automation Code Stream with
other applications that use a REST API so that
you can continuously develop and deliver software
applications that interact with each other.

See How do I use a REST API to
integrate vRealize Automation Code
Stream with other applications.

Poll Invokes a REST API and polls it until the pipeline
task meets the exit criteria and completes.

See How do I use a REST API to
integrate vRealize Automation Code
Stream with other applications.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 36

Table 3-6. Run remote and user-defined scripts

Type of task What it does Examples and details

PowerShell With the PowerShell task, vRealize Automation
Code Streamcan run script commands on a remote
host. For example, a script can automate test tasks,
and run administrative types of commands.

The script can be remote or user-defined. It can
connect over HTTP or HTTPS, and can use TLS.

The Windows host must have the winrm
service configured, and winrm must have

MaxShellsPerUser and MaxMemoryPerShellMB
configured.

To run a PowerShell task, you must have an active
session to the remote Windows host.

PowerShell Command Line Length

If you enter a base64 PowerShell command, be
aware that you must calculate the overall command
length.

The vRealize Automation Code Stream pipeline
encodes and wraps a base64 PowerShell command
in another command, which increases the overall
length of the command.

The maximum length allowed for a PowerShell
winrm command is 8192 bytes. The command

length limit is lower for the PowerShell task when
it is encoded and wrapped. As a result, you must
calculate the command length before you enter the
PowerShell command.

The command length limit for the vRealize
Automation Code Stream PowerShell task depends
on the base64 encoded length of the original
command. The command length is calculated as
follows.

3 * (length of original command / 4)) -
(numberOfPaddingCharacters) + 77 (Length of
Write-output command)
The command length for vRealize Automation
Code Stream must be less than the maximum limit
of 8192.

When you configure
MaxShellsPerUser and

MaxMemoryPerShellMB:

n The acceptable value for
MaxShellsPerUser is 500 for

50 concurrent pipelines, with 5
PowerShell tasks for each pipeline.
To set the value, run: winrm
set winrm/config/winrs
'@{MaxShellsPerUser="500"}'

n The acceptable memory value for
MaxMemoryPerShellMB is 2048.

To set the value, run: winrm set
winrm/config/winrs
'@{MaxMemoryPerShellMB="204
8"}'

The script writes the output to a
response file that another pipeline can
consume.

SSH The SSH task allows the Bash shell script task
to run script commands on a remote host. For
example, a script can automate test tasks, and run
administrative types of commands.

The script can be remote or user-defined. It can
connect over HTTP or HTTPS, and requires a
private key or password.

The SSH service must be configured on the Linux
host, and the SSHD configuration of MaxSessions
must be set to 50.

The script can be remote or user-
defined. For example, a script might
resemble:

message="Hello World" echo
$message
The script writes the output to a
response file that another pipeline can
consume.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 37

How do I use variable bindings in vRealize Automation Code
Stream pipelines

Binding a pipeline task means that you create a dependency for the task when the pipeline runs.
You can create a binding for a pipeline task in several ways. You can bind a task to another task,
bind it to a variable and expression, or bind it to a condition.

How to apply dollar bindings to cloud template variables in a cloud
template task

You can apply dollar bindings to cloud template variables in a vRealize Automation Code Stream
pipeline cloud template task. The way you modify the variables in vRealize Automation Code
Stream depends on the coding of the variable properties in the cloud template.

If you must use dollar bindings in a cloud template task, but the current version of the cloud
template that you're using in the cloud template task doesn't allow it, modify the cloud template in
vRealize Automation Cloud Assembly and deploy a new version. Then, use the new cloud template
version in your cloud template task, and add the dollar bindings where needed.

To apply dollar bindings on the types of properties that the vRealize Automation Cloud Assembly
cloud template provides, you must have the correct permissions.

n You must have the same role as the person who created the cloud template deployment in
vRealize Automation Cloud Assembly.

n The person who models the pipeline and the person who runs the pipeline might be two
different users and might have different roles.

n If a developer has the vRealize Automation Code Stream Executor role and models the
pipeline, the developer must also have the same vRealize Automation Cloud Assembly role
of the person who deployed the cloud template. For example, the required role might be
vRealize Automation Cloud Assembly administrator.

n Only the person who models the pipeline can create the pipeline and create the deployment
because they have permission.

To use an API token in the cloud template task:

n The person who models the pipeline can give an API token to another user who has the
vRealize Automation Code Stream Executor role. Then, when the Executor runs the pipeline, it
uses the API token and the credentials that the API token creates.

n When a user enters the API token in the cloud template task, it creates the credentials that the
pipeline requires.

n To encrypt the API token value, click Create Variable.

n If you don't create a variable for the API token, and use it in the cloud template task, the API
token value appears in plain text.

To apply dollar bindings to cloud template variables in a cloud template task, follow these steps.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 38

You start with a cloud template that has input variable properties defined, such as integerVar,

stringVar, flavorVar, BooleanVar, objectVar, and arrayVar. You can find the image properties

defined in the resources section. The properties in the cloud template code might resemble:

formatVersion: 1
inputs:
 integerVar:
 type: integer
 encrypted: false
 default: 1
 stringVar:
 type: string
 encrypted: false
 default: bkix
 flavorVar:
 type: string
 encrypted: false
 default: medium
 BooleanVar:
 type: boolean
 encrypted: false
 default: true
 objectVar:
 type: object
 encrypted: false
 default:
 bkix2: bkix2
 arrayVar:
 type: array
 encrypted: false
 default:
 - '1'
 - '2'
resources:
 Cloud_Machine_1:
 type: Cloud.Machine
 properties:
 image: ubuntu
 flavor: micro
 count: '${input.integerVar}'

You can use dollar sign variables ($) for image and flavor. For example:

resources:
 Cloud_Machine_1:
 type: Cloud.Machine
 properties:
 input: '${input.image}'
 flavor: '${input.flavor}'

To use a cloud template in a vRealize Automation Code Stream pipeline, and add dollar bindings
to it, follow these steps.

1 In vRealize Automation Code Stream, click Pipelines > Blank Canvas.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 39

2 Add a Cloud template task to the pipeline.

3 In the Cloud template task, for Cloud template source select Cloud Assembly Cloud
Templates, enter the cloud template name, and select the cloud template version.

4 Notice that you can enter an API token, which provides credentials for the pipeline. To create a
variable that encrypts the API token in the cloud template task, click Create Variable.

5 In the Parameter and Value table that appears, notice the parameter values. The default value
for flavor is small and the default value for image is ubuntu.

6 Let's say that you must change the cloud template in vRealize Automation Cloud Assembly.
For example, you:

a Set the flavor so that it uses a property of type array. vRealize Automation Cloud

Assembly allows comma-separated values for Flavor when the type is array.

b Click Deploy.

c On the Deployment Type page, enter a deployment name, and select the version of the
cloud template.

d On the Deployment Inputs page, you can define one or more values for Flavor.

e Notice that the Deployment inputs include all the variables defined in your cloud template
code, and appear as defined in the cloud template code. For example: Integer Var,

String Var, Flavor Var, Boolean Var, Object Var, and Array Var. String Var and Flavor
Var are string values, and Boolean Var is a check box.

f Click Deploy.

7 In vRealize Automation Code Stream, select the new version of the cloud template, and enter
values in the Parameter and Value table. Cloud templates support the following types of
parameters, which enable vRealize Automation Code Stream bindings by using dollar sign
variables. Slight differences exist between the user interface of the vRealize Automation Code
Stream cloud template task and the user interface of the vRealize Automation Cloud Assembly
cloud template. Depending on the coding of a cloud template in vRealize Automation Cloud
Assembly, entering values in the cloud template task in vRealize Automation Code Stream
might not be allowed.

a For flavorVar, if the cloud template defined the type as string or array, enter a string or a
comma-separated value array. An example array resembles test, test.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 40

b For BooleanVar, in the drop-down menu select true or false. Or, to
use a variable binding, enter $ and select a variable binding from the

list.

c For objectVar, enter the value with curly brackets and quotation marks in this format:
{"bkix":"bkix":}.

d The objectVar will be passed to the cloud template, and can be used in various ways
depending on the cloud template. It allows a string format for a JSON object, and you can
add key-value pairs as comma-separated values in the key-value table. You can enter plain
text for a JSON object, or a key-value pair as a normal stringified format for JSON.

e For arrayVar, enter the comma-separated input value as an array in this format:
["1","2"].

8 In the pipeline, you can bind an input parameter to an array.

a Click the Input tab.

b Enter a name for the input. For example, arrayInput.

c In the Parameter and Value table, click in arrayVar and enter ${input.arrayInput}.

d After you save the pipeline and enable it, when the pipeline runs, you must provide an
array input value. For example, enter ["1","2"] and click Run.

Now you have learned how to use dollar sign ($) variable bindings in a cloud template in a vRealize
Automation Code Stream pipeline cloud template task.

How to pass a parameter to a pipeline when it runs

You can add input parameters to your pipeline to have vRealize Automation Code Stream pass
them to the pipeline. Then, when the pipeline runs, a user must enter the value for the input
parameter. When you add output parameters to your pipeline, the pipeline tasks can use the
output value from a task. vRealize Automation Code Stream supports using parameters in many
ways that support your own pipeline needs.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 41

For example, to prompt a user for the URL to their Git server when a pipeline with a REST task
runs, you can bind the REST task to a Git server URL.

To create the variable binding, you add a URL binding variable to the REST task. When the
pipeline runs and reaches the REST task, a user must enter their URL to the Git server. Here's how
you would create the binding:

1 In your pipeline, click the Input tab.

2 To set the parameter, for Auto inject parameters click Git.

The list of Git parameters appears, and includes GIT_SERVER_URL. If you must use a default
value for the Git server URL, edit this parameter.

3 Click Model, and click your REST task.

4 On the Task tab, in the URL area, enter $, then select input and GIT_SERVER_URL.

The entry resembles: ${input.GIT_SERVER_URL}

5 To verify the integrity of the variable binding for the task, click Validate Task.

vRealize Automation Code Stream indicates that the task validated successfully.

6 When the pipeline runs the REST task, a user must enter the URL of the Git server. Otherwise,
the task does not finish running.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 42

How to bind two pipeline tasks by creating input and output
parameters

When you bind tasks together, you add a binding variable to the input configuration of the
receiving task. Then, when the pipeline runs, a user replaces the binding variable with the required
input.

To bind pipeline tasks together, you use the dollar sign variable ($) in the input parameters and
output parameters. This example shows you how.

Let's say you need your pipeline to call a URL in a REST task, and output a response. To call the
URL and output the response, you include both input and output parameters in your REST task.
You also need a user who can approve the task, and include a User Operations task for another
user who can approve it when the pipeline runs. This example shows you how to use expressions
in the input and output parameters, and have the pipeline wait for approval on the task.

1 In your pipeline, click the Input tab.

2 Leave the Auto inject parameters as None.

3 Click Add, and enter the parameter name, value, and description, and click OK. For example:

a Enter a URL name.

b Enter the value: {Stage0.Task3.input.http://www.docs.vmware.com}

c Enter a description.

4 Click the Output tab, click Add, and enter the output parameter name and mapping.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 43

a Enter a unique output parameter name.

b Click in the Reference area, and enter $.

c Enter the task output mapping by selecting the options as they pop up. Select the Stage0,
select Task3, select output, and select responseCode. Then, click OK.

5 Save your pipeline.

6 From the Actions menu, click Run.

7 Click Actions > View executions.

8 Click the pipeline execution, and examine the input parameters and output parameters that
you defined.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 44

9 To approve the pipeline, click User Operations, and view the list of approvals on the Active
Items tab. Or, stay in the Executions, click the task, and click Approve.

10 To enable the Approve and Reject buttons, click the check box next to the execution.

11 To see the details, expand the drop-down arrow.

12 To approve the task, click APPROVE, enter a reason, and click OK.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 45

13 Click Executions and watch the pipeline continue.

14 If the pipeline fails, correct any errors, then save the pipeline and run it again.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 46

How do I learn more about variables and expressions

To see details about using variables and expressions when you bind pipeline tasks, see What
variables and expressions can I use when binding pipeline tasks in vRealize Automation Code
Stream.

To learn how to use the pipeline task output with a condition variable binding, see How do I use
variable bindings in a condition task to run or stop a pipeline in vRealize Automation Code Stream.

How do I use variable bindings in a condition task to run or
stop a pipeline in vRealize Automation Code Stream

You can have the output of a task in your pipeline determine whether the pipeline runs or stops
based on a condition that you supply. To pass or fail the pipeline based on the task output, you
use the Condition task.

You use the Condition task as a decision point in your pipeline. By using the Condition task with
a condition expression that you provide, you can evaluate any properties in your pipeline, stages,
and tasks.

The result of the Condition task determines whether the next task in the pipeline runs.

n A true condition allows the pipeline run continue.

n A false condition stops the pipeline.

For examples of how to use the output value of one task as the input to the next task by
binding the tasks together with a Condition task, see How do I use variable bindings in vRealize
Automation Code Stream pipelines.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 47

Table 3-7. How the Condition task and its condition expression relate to the pipeline

Condition task What it affects What it does

Condition task Pipeline The Condition task determines whether the pipeline runs or stops at that
point, based on whether the task output is true or false.

Condition expression Condition task
output

When the pipeline runs, the condition expression that you include in
the Condition task produces a true or false output status. For example,
a condition expression can require the Condition task output status as
Completed, or use a build number of 74.

The condition expression appears on the Task tab in the Condition task.

The Condition task differs in function and behavior from the On Condition setting in other types of
tasks.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 48

In other types of tasks, the On Condition determines whether the current task runs, rather than
successive tasks, based on the evaluation of its precondition expression of true or false. The
condition expression for the On Condition setting produces a true or false output status for the
current task when the pipeline runs. The On Condition setting appears on the Task tab with its
own condition expression.

This example uses the Condition task.

Prerequisites

n Verify that a pipeline exists, and that it includes stages and tasks.

Procedure

1 In your pipeline, determine the decision point where the Condition task must appear.

2 Add the Condition task before the task that depends on its status of pass or fail.

3 Add a condition expression to the Condition task.

For example: "${Stage1.task1.output.status}" == "COMPLETED" || $
{input.buildNumber} == 74

4 Validate the task.

5 Save the pipeline, then enable and run it.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 49

Results

Watch the pipeline executions and notice whether the pipeline continues running, or stops at the
Condition task.

What to do next

If you roll back a pipeline deployment, you can also use the Condition task. For example, in
a rollback pipeline, the Condition task helps vRealize Automation Code Stream mark a pipeline
failure based on the condition expression, and can trigger a single rollback flow for various failure
types.

To roll back a deployment, see How do I roll back my deployment in vRealize Automation Code
Stream.

What variables and expressions can I use when binding
pipeline tasks in vRealize Automation Code Stream

With variables and expressions, you can use input parameters and output parameters with your
pipeline tasks. The parameters you enter bind your pipeline task to one or more variables,
expressions, or conditions, and determine the pipeline behavior when it runs.

Pipelines can run simple or complex software delivery solutions

When you bind pipeline tasks together, you can include default and complex expressions. As a
result, your pipeline can run simple or complex software delivery solutions.

To create the parameters in your pipeline, click the Input or Output tab, and add a variable by
entering the dollar sign $ and an expression. For example, this parameter is used as a task input

that calls a URL: ${Stage0.Task3.input.URL}.

The format for variable bindings uses syntax components called scopes and keys. The SCOPE
defines the context as input or output, and the KEY defines the details. In the parameter example

${Stage0.Task3.input.URL}, the input is the SCOPE and the URL is the KEY.

Output properties of any task can resolve to any number of nested levels of variable binding.

To learn more about using variable bindings in pipelines, see How do I use variable bindings in
vRealize Automation Code Stream pipelines.

Using dollar expressions with scopes and keys to bind pipeline tasks

You can bind pipeline tasks together by using expressions in dollar sign variables. You enter
expressions as ${SCOPE.KEY.<PATH>}.

To determine the behavior of a pipeline task, in each expression, SCOPE is the context that vRealize

Automation Code Stream uses. The scope looks for a KEY, which defines the detail for the action

that the task takes. When the value for KEY is a nested object, you can provide an optional PATH.

These examples describe SCOPE and KEY, and show you how you can use them in your pipeline.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 50

Table 3-8. Using SCOPE and KEY

SCOPE
Purpose of expression and
example KEY

How to use SCOPE and
KEY in your pipeline

input Input properties of a
pipeline:

${input.input1}

Name of the input property To refer to the input
property of a pipeline in a
task, use this format:

tasks:
 mytask:
 type: REST
 input:
 url: $
{input.url}
 action: get

input:
 url: https://
www.vmware.com

output Output properties of a
pipeline:

${output.output1}

Name of the output
property

To refer to an output
property for sending a
notification, use this format:

notifications:
 email:
 - endpoint:
MyEmailEndpoint
 subject:
"Deployment
Successful"
 event: COMPLETED
 to:
 -
user@example.org
 body: |
 Pipeline
deployed
the service
successfully.
Refer $
{output.serviceURL}

Using and Managing vRealize Automation Code Stream

VMware, Inc. 51

Table 3-8. Using SCOPE and KEY (continued)

SCOPE
Purpose of expression and
example KEY

How to use SCOPE and
KEY in your pipeline

task input Input to a task:

$
{MY_STAGE.MY_TASK.input.
SOMETHING}

Indicates the input of a task
in a notification

When a Jenkins job starts,
it can refer to the name
of the job triggered from
the task input. In this case,
send a notification by using
this format:

notifications:
 email:
 - endpoint:
MyEmailEndpoint
 stage: MY_STAGE
 task: MY_TASK
 subject:
"Build Started"
 event: STARTED
 to:
 -
user@example.org
 body: |
 Jenkins job $
{MY_STAGE.MY_TASK.i
nput.job} started
for commit id $
{input.COMMITID}.

task output Output of a task:

$
{MY_STAGE.MY_TASK.output
.SOMETHING}

Indicates the output of a
task in a subsequent task

To refer to the output of
pipeline task 1 in task 2, use
this format:

taskOrder:
 - task1
 - task2
tasks:
 task1:
 type: REST
 input:
 action: get
 url: https://
www.example.org/api
/status
 task2:
 type: REST
 input:
 action: post
 url: https://
status.internal.exa
mple.org/api/
activity
 payload: $
{MY_STAGE.task1.out
put.responseBody}

Using and Managing vRealize Automation Code Stream

VMware, Inc. 52

Table 3-8. Using SCOPE and KEY (continued)

SCOPE
Purpose of expression and
example KEY

How to use SCOPE and
KEY in your pipeline

var Variable:

${var.myVariable}
Refer to variable in an
endpoint

To refer to a secret variable
in an endpoint for a
password, use this format:

project: MyProject
kind: ENDPOINT
name:
MyJenkinsServer
type: jenkins
properties:
 url: https://
jenkins.example.com
 username:
jenkinsUser
 password: $
{var.jenkinsPasswor
d}

var Variable:

${var.myVariable}
Refer to variable in a
pipeline

To refer to variable in
a pipeline URL, use this
format:

tasks:
 task1:
 type: REST
 input:
 action: get
 url: $
{var.MY_SERVER_URL}

task status Status of a task:

$
{MY_STAGE.MY_TASK.status
}
$
{MY_STAGE.MY_TASK.status
Message}

stage status Status of a stage:

${MY_STAGE.status}
$
{MY_STAGE.statusMessage}

Default Expressions

You can use variables with expressions in your pipeline. This summary includes the default
expressions that you can use.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 53

Expression Description

${comments} Comments provided when at pipeline execution request.

${duration} Duration of the pipeline execution.

${endTime} End time of the pipeline execution in UTC, if concluded.

${executedOn} Same as the start time, the starting time of the pipeline execution in UTC.

${executionId} ID of the pipeline execution.

${executionUrl} URL that navigates to the pipeline execution in the user interface.

${name} Name of the pipeline.

${requestBy} Name of the user who requested the execution.

${stageName} Name of the current stage, when used in the scope of a stage.

${startTime} Starting time of the pipeline execution in UTC.

${status} Status of the execution.

${statusMessage} Status message of the pipeline execution.

${taskName} Name of the current task, when used at a task input or notification.

Using SCOPE and KEY in pipeline tasks

You can use expressions with any of the supported pipeline tasks. These examples show you how
to define the SCOPE and KEY, and confirm the syntax. The code examples use MY_STAGE and MY_TASK
as the pipeline stage and task names.

To find out more about available tasks, see What types of tasks are available in vRealize
Automation Code Stream.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 54

Table 3-9. Gating tasks

Task Scope Key How to use SCOPE and KEY in the task

User Operation

Input summary: Summary of the request

for the User Operation

description: Description of the

request for the User Operation

approvers: List of approver email

addresses, where each entry can
be a variable with a comma, or use
a semi-colon for separate emails

approverGroups: List of approver

group addresses for the platform
and identity

sendemail: Optionally sends an

email notification upon request or
response when set to true

expirationInDays: Number of days

that represents the expiry time of
the request

${MY_STAGE.MY_TASK.input.summary}
${MY_STAGE.MY_TASK.input.description}
${MY_STAGE.MY_TASK.input.approvers}
$
{MY_STAGE.MY_TASK.input.approverGroups}
${MY_STAGE.MY_TASK.input.sendemail}
$
{MY_STAGE.MY_TASK.input.expirationInDay
s}

Output index: Six-digit hexadecimal string

that represents the request

respondedBy: Account name of the

person who approved/rejected the
User Operation

respondedByEmail: Email address

of the person who responded

comments: Comments provided

during response

${MY_STAGE.MY_TASK.output.index}
${MY_STAGE.MY_TASK.output.respondedBy}
$
{MY_STAGE.MY_TASK.output.respondedByEma
il}
${MY_STAGE.MY_TASK.output.comments}

Condition

Input condition: Condition to evaluate.

When the condition evaluates to
true, it marks the task as complete,
whereas other responses fail the
task

${MY_STAGE.MY_TASK.input.condition}

Output result: Result upon evaluation ${MY_STAGE.MY_TASK.output.response}

Using and Managing vRealize Automation Code Stream

VMware, Inc. 55

Table 3-10. Pipeline tasks

Task Scope Key How to use SCOPE and KEY in the task

Pipeline

Input name: Name of the pipeline to run

inputProperties: Input properties to

pass to the nested pipeline execution

${MY_STAGE.MY_TASK.input.name}
${MY_STAGE.MY_TASK.input.inputProperties} #

Refer to all properties

$
{MY_STAGE.MY_TASK.input.inputProperties.inpu
t1} # Refer to value of input1

Output executionStatus: Status of the pipeline

execution

executionIndex: Index of the pipeline

execution

outputProperties: Output properties of a

pipeline execution

${MY_STAGE.MY_TASK.output.executionStatus}
${MY_STAGE.MY_TASK.output.executionIndex}
${MY_STAGE.MY_TASK.output.outputProperties}
Refer to all properties

$
{MY_STAGE.MY_TASK.output.outputProperties.ou
tput1} # Refer to value of output1

Table 3-11. Automate continuous integration tasks

Task Scope Key How to use SCOPE and KEY in the task

CI

Input steps: A set of strings, which

represent commands to run

export: Environment variables to

preserve after running the steps

artifacts: Paths of artifacts to

preserve in the shared path

process: Set of configuration

elements for JUnit, JaCoCo,
Checkstyle, FindBugs processing

${MY_STAGE.MY_TASK.input.steps}
${MY_STAGE.MY_TASK.input.export}
${MY_STAGE.MY_TASK.input.artifacts}
${MY_STAGE.MY_TASK.input.process}
$
{MY_STAGE.MY_TASK.input.process[0].path
} # Refer to path of the first configuration

Output exports: Key-value pair,

which represents the exported
environment variables from the
input export
artifacts: Path of successfully

preserved artifacts

processResponse: Set of processed

results for the input process

${MY_STAGE.MY_TASK.output.exports} #

Refer to all exports

$
{MY_STAGE.MY_TASK.output.exports.myvar}
Refer to value of myvar
${MY_STAGE.MY_TASK.output.artifacts}
$
{MY_STAGE.MY_TASK.output.processRespons
e}
$
{MY_STAGE.MY_TASK.output.processRespons
e[0].result} # Result of the first process

configuration

Custom

Using and Managing vRealize Automation Code Stream

VMware, Inc. 56

Table 3-11. Automate continuous integration tasks (continued)

Task Scope Key How to use SCOPE and KEY in the task

Input name: Name of the custom

integration

version: A version of the custom

integration, released or deprecated

properties: Properties to send to

the custom integration

${MY_STAGE.MY_TASK.input.name}
${MY_STAGE.MY_TASK.input.version}
${MY_STAGE.MY_TASK.input.properties}
#Refer to all properties

$
{MY_STAGE.MY_TASK.input.properties.prop
erty1} #Refer to value of property1

Output properties: Output properties from

the custom integration response

${MY_STAGE.MY_TASK.output.properties}
#Refer to all properties

$
{MY_STAGE.MY_TASK.output.properties.pro
perty1} #Refer to value of property1

Using and Managing vRealize Automation Code Stream

VMware, Inc. 57

Table 3-12. Automate continuous deployment tasks: Cloud template

Task Scope Key How to use SCOPE and KEY in the task

Cloud template

Input action: One

of createDeployment,
updateDeployment,
deleteDeployment,
rollbackDeployment

blueprintInputParams: Used

for the create deployment
and update deployment
actions

allowDestroy: Machines can

be destroyed in the update
deployment process.

CREATE_DEPLOYMENT

n blueprintName: Name of

the cloud template

n blueprintVersion:

Version of the cloud
template

OR

n fileUrl: URL of the

remote cloud template
YAML, after selecting a
GIT server.

UPDATE_DEPLOYMENT

Any of these combinations:

n blueprintName: Name of

the cloud template

n blueprintVersion:

Version of the cloud
template

OR

n fileUrl: URL of the

remote cloud template
YAML, after selecting a
GIT server.

n deploymentId: ID of the

deployment

OR

n deploymentName: Name of

the deployment

DELETE_DEPLOYMENT

n deploymentId: ID of the

deployment

Using and Managing vRealize Automation Code Stream

VMware, Inc. 58

Table 3-12. Automate continuous deployment tasks: Cloud template (continued)

Task Scope Key How to use SCOPE and KEY in the task

OR

n deploymentName: Name of

the deployment

ROLLBACK_DEPLOYMENT

Any of these combinations:

n deploymentId: ID of the

deployment

OR

n deploymentName: Name of

the deployment

n blueprintName: Name of

the cloud template

n rollbackVersion: Version

to roll back to

Output Parameters that can bind to other tasks or to the
output of a pipeline:

n Deployment Name can be accessed as $
{Stage0.Task0.output.deploymentName}

n Deployment Id can be accessed as $
{Stage0.Task0.output.deploymentId}

n Deployment Details is a complex object, and
internal details can be accessed by using the
JSON results.

To access any property, use the dot operator to
follow the JSON hierarchy. For example, to access
the address of resource Cloud_Machine_1[0], the $
binding is:

$
{Stage0.Task0.output.deploymentDetails.re
sources['Cloud_Machine_1[0]'].address}
Similarly, for the flavor, the $ binding is:

$
{Stage0.Task0.output.deploymentDetails.re
sources['Cloud_Machine_1[0]'].flavor}
In the vRealize Automation Code Stream user
interface, you can obtain the $ bindings for any
property.

1 In the task output property area, click VIEW
OUTPUT JSON.

2 To find the $ binding, enter any property.

3 Click the search icon, which displays the
corresponding $ binding.

Example JSON output:

Using and Managing vRealize Automation Code Stream

VMware, Inc. 59

Sample deployment details object:

{
 "id": "6a031f92-d0fa-42c8-bc9e-3b260ee2f65b",
 "name": "deployment_6a031f92-d0fa-42c8-bc9e-3b260ee2f65b",
 "description": "Pipeline Service triggered operation",
 "orgId": "434f6917-4e34-4537-b6c0-3bf3638a71bc",
 "blueprintId": "8d1dd801-3a32-4f3b-adde-27f8163dfe6f",
 "blueprintVersion": "1",
 "createdAt": "2020-08-27T13:50:24.546215Z",
 "createdBy": "user@vmware.com",
 "lastUpdatedAt": "2020-08-27T13:52:50.674957Z",
 "lastUpdatedBy": "user@vmware.com",
 "inputs": {},
 "simulated": false,
 "projectId": "267f8448-d26f-4b65-b310-9212adb3c455",
 "resources": {
 "Cloud_Machine_1[0]": {
 "id": "/resources/compute/1606fbcd-40e5-4edc-ab85-7b559aa986ad",
 "name": "Cloud_Machine_1[0]",
 "powerState": "ON",
 "address": "10.108.79.33",
 "resourceLink": "/resources/compute/1606fbcd-40e5-4edc-ab85-7b559aa986ad",
 "componentTypeId": "Cloud.vSphere.Machine",
 "endpointType": "vsphere",
 "resourceName": "Cloud_Machine_1-mcm110615-146929827053",
 "resourceId": "1606fbcd-40e5-4edc-ab85-7b559aa986ad",
 "resourceDescLink": "/resources/compute-descriptions/1952d1d3-15f0-4574-
ae42-4fbf8a87d4cc",
 "zone": "Automation / Vms",
 "countIndex": "0",
 "image": "ubuntu",
 "count": "1",
 "flavor": "small",
 "region": "MYBU",
 "_clusterAllocationSize": "1",
 "osType": "LINUX",
 "componentType": "Cloud.vSphere.Machine",
 "account": "bha"
 }

Using and Managing vRealize Automation Code Stream

VMware, Inc. 60

 },
 "status": "CREATE_SUCCESSFUL",
 "deploymentURI": "https://api.yourenv.com/automation-ui/#/deployment-ui;ash=/deployment/
6a031f92-d0fa-42c8-bc9e-3b260ee2f65b"
}

Table 3-13. Automate continuous deployment tasks: Kubernetes

Task Scope Key How to use SCOPE and KEY in the task

Kubernetes

Input action: One of GET, CREATE, APPLY,

DELETE, ROLLBACK

n timeout: Overall timeout for any action

n filterByLabel: Additional label to filter on

for action GET using K8S labelSelector

GET, CREATE, DELETE, APPLY

n yaml: Inline YAML to process and send to

Kubernetes

n parameters: KEY, VALUE pair - Replace $
$KEY with VALUE in the in-line YAML input

area

n filePath: Relative path from the SCM Git

endpoint, if provided, from which to fetch
the YAML

n scmConstants: KEY, VALUE pair - Replace

$${KEY} with VALUE in the YAML fetched

over SCM.

n continueOnConflict: When set to true, if

a resource is already present, the task
continues.

ROLLBACK

n resourceType: Resource type to roll back

n resourceName: Resource name to roll back

n namespace: Namespace where the rollback

must be performed

n revision: Revision to roll back to

${MY_STAGE.MY_TASK.input.action}
#Determines the action to perform.

${MY_STAGE.MY_TASK.input.timeout}
${MY_STAGE.MY_TASK.input.filterByLabel}

${MY_STAGE.MY_TASK.input.yaml}
${MY_STAGE.MY_TASK.input.parameters}
${MY_STAGE.MY_TASK.input.filePath}
${MY_STAGE.MY_TASK.input.scmConstants}
$
{MY_STAGE.MY_TASK.input.continueOnConfl
ict}

${MY_STAGE.MY_TASK.input.resourceType}
${MY_STAGE.MY_TASK.input.resourceName}
${MY_STAGE.MY_TASK.input.namespace}
${MY_STAGE.MY_TASK.input.revision}

Output response: Captures the entire response

response.<RESOURCE>: Resource corresponds

to configMaps, deployments, endpoints,
ingresses, jobs, namespaces, pods,
replicaSets, replicationControllers, secrets,
services, statefulSets, nodes, loadBalancers.

response.<RESOURCE>.<KEY>: The key

corresponds to one of apiVersion, kind,
metadata, spec

${MY_STAGE.MY_TASK.output.response}
${MY_STAGE.MY_TASK.output.response.}

Using and Managing vRealize Automation Code Stream

VMware, Inc. 61

Table 3-14. Integrate development, test, and deployment applications

Task Scope Key How to use SCOPE and KEY in the task

Bamboo

Input plan: Name of the plan

planKey: Plan key

variables: Variables to be

passed to the plan

parameters: Parameters to be

passed to the plan

${MY_STAGE.MY_TASK.input.plan}
${MY_STAGE.MY_TASK.input.planKey}
${MY_STAGE.MY_TASK.input.variables}
${MY_STAGE.MY_TASK.input.parameters} # Refer to all

parameters

${MY_STAGE.MY_TASK.input.parameters.param1} # Refer to

value of param1

Output resultUrl: URL of the resulting

build

buildResultKey: Key of the

resulting build

buildNumber: Build Number

buildTestSummary: Summary of

the tests that ran

successfulTestCount: test

result passed

failedTestCount: test result

failed

skippedTestCount: test result

skipped

artifacts: Artifacts from the

build

${MY_STAGE.MY_TASK.output.resultUrl}
${MY_STAGE.MY_TASK.output.buildResultKey}
${MY_STAGE.MY_TASK.output.buildNumber}
${MY_STAGE.MY_TASK.output.buildTestSummary} # Refer to

all results

${MY_STAGE.MY_TASK.output.successfulTestCount} #

Refer to the specific test count

${MY_STAGE.MY_TASK.output.buildNumber}

Jenkins

Input job: Name of the Jenkins job

parameters: Parameters to be

passed to the job

${MY_STAGE.MY_TASK.input.job}
${MY_STAGE.MY_TASK.input.parameters} # Refer to all

parameters

${MY_STAGE.MY_TASK.input.parameters.param1} # Refer to

value of a parameter

Output job: Name of the Jenkins job

jobId: ID of the resulting job,

such as 1234

jobStatus: Status in Jenkins

jobResults: Collection of test/

code coverage results

jobUrl: URL of the resulting job

run

${MY_STAGE.MY_TASK.output.job}
${MY_STAGE.MY_TASK.output.jobId}
${MY_STAGE.MY_TASK.output.jobStatus}
${MY_STAGE.MY_TASK.output.jobResults} # Refer to all

results

${MY_STAGE.MY_TASK.output.jobResults.junitResponse} #

Refer to JUnit results

${MY_STAGE.MY_TASK.output.jobResults.jacocoRespose} #

Refer to JaCoCo results

${MY_STAGE.MY_TASK.output.jobUrl}

TFS

Using and Managing vRealize Automation Code Stream

VMware, Inc. 62

Table 3-14. Integrate development, test, and deployment applications (continued)

Task Scope Key How to use SCOPE and KEY in the task

Input projectCollection: Project

collection from TFS

teamProject: Selected project

from the available collection

buildDefinitionId: Build

Definition ID to run

${MY_STAGE.MY_TASK.input.projectCollection}

${MY_STAGE.MY_TASK.input.teamProject}
${MY_STAGE.MY_TASK.input.buildDefinitionId}

Output buildId: Resulting build ID

buildUrl: URL to visit the build

summary

logUrl: URL to visit for logs

dropLocation: Drop location of

artifacts if any

${MY_STAGE.MY_TASK.output.buildId}
${MY_STAGE.MY_TASK.output.buildUrl}
${MY_STAGE.MY_TASK.output.logUrl}
${MY_STAGE.MY_TASK.output.dropLocation}

vRO

Input workflowId: ID of the workflow

to be run

parameters: Parameters to be

passed to the workflow

${MY_STAGE.MY_TASK.input.workflowId}
${MY_STAGE.MY_TASK.input.parameters}

Output workflowExecutionId: ID of the

workflow execution

properties: Output properties

from the workflow execution

${MY_STAGE.MY_TASK.output.workflowExecutionId}
${MY_STAGE.MY_TASK.output.properties}

Table 3-15. Integrate other applications through an API

Task Scope Key How to use SCOPE and KEY in the task

REST

Input url: URL to call

action: HTTP method to use

headers: HTTP headers to pass

payload: Request payload

fingerprint: Fingerprint to match

for a URL that is https

allowAllCerts: When set to true,

can be any certificate that has a URL
of https

${MY_STAGE.MY_TASK.input.url}
${MY_STAGE.MY_TASK.input.action}
${MY_STAGE.MY_TASK.input.headers}
${MY_STAGE.MY_TASK.input.payload}
${MY_STAGE.MY_TASK.input.fingerprint}
${MY_STAGE.MY_TASK.input.allowAllCerts}

Using and Managing vRealize Automation Code Stream

VMware, Inc. 63

Table 3-15. Integrate other applications through an API (continued)

Task Scope Key How to use SCOPE and KEY in the task

Output responseCode: HTTP response code

responseHeaders: HTTP response

headers

responseBody: String format of

response received

responseJson: Traversable response

if the content-type is application/
json

${MY_STAGE.MY_TASK.output.responseCode}
${MY_STAGE.MY_TASK.output.responseHeaders}
$
{MY_STAGE.MY_TASK.output.responseHeaders.heade
r1} # Refer to response header 'header1'

${MY_STAGE.MY_TASK.output.responseBody}
${MY_STAGE.MY_TASK.output.responseJson} # Refer

to response as JSON

${MY_STAGE.MY_TASK.output.responseJson.a.b.c}
Refer to nested object following the a.b.c JSON
path in response

Poll

Input url: URL to call

headers: HTTP headers to pass

exitCriteria: Criteria to meet to for

the task to succeed or fail. A key-
value pair of 'success' → Expression,
'failure' → Expression

pollCount: Number of iterations to

perform

pollIntervalSeconds: Number of

seconds to wait between each
iteration

ignoreFailure: When set to true,

ignores intermediate response
failures

fingerprint: Fingerprint to match

for a URL that is https

allowAllCerts: When set to true,

can be any certificate that has a URL
of https

${MY_STAGE.MY_TASK.input.url}
${MY_STAGE.MY_TASK.input.headers}
${MY_STAGE.MY_TASK.input.exitCriteria}
${MY_STAGE.MY_TASK.input.pollCount}
${MY_STAGE.MY_TASK.input.pollIntervalSeconds}
${MY_STAGE.MY_TASK.input.ignoreFailure}
${MY_STAGE.MY_TASK.input.fingerprint}
${MY_STAGE.MY_TASK.input.allowAllCerts}

Output responseCode: HTTP response code

responseBody: String format of

response received

responseJson: Traversable response

if the content-type is application/
json

${MY_STAGE.MY_TASK.output.responseCode}
${MY_STAGE.MY_TASK.output.responseBody}
${MY_STAGE.MY_TASK.output.responseJson} #
Refer to response as JSON

Using and Managing vRealize Automation Code Stream

VMware, Inc. 64

Table 3-16. Run remote and user-defined scripts

Task Scope Key How to use SCOPE and KEY in the task

PowerShell
To run a PowerShell task, you must:

n Have an active session to a remote Windows host.

n If you intend to enter a base64 PowerShell command, calculate the overall command length first. For details, see
What types of tasks are available in vRealize Automation Code Stream.

Input host: IP address or hostname

of the machine

username: User name to use to

connect

password: Password to use to

connect

useTLS: Attempt https

connection

trustCert: When set to true,

trusts self-signed certificates

script: Script to run

workingDirectory: Directory

path to switch to before
running the script

environmentVariables: A key-

value pair of environment
variable to set

arguments: Arguments to pass

to the script

${MY_STAGE.MY_TASK.input.host}
${MY_STAGE.MY_TASK.input.username}
${MY_STAGE.MY_TASK.input.password}
${MY_STAGE.MY_TASK.input.useTLS}
${MY_STAGE.MY_TASK.input.trustCert}
${MY_STAGE.MY_TASK.input.script}
$
{MY_STAGE.MY_TASK.input.workingDirectory
}
$
{MY_STAGE.MY_TASK.input.environmentVaria
bles}
${MY_STAGE.MY_TASK.input.arguments}

Output response: Content of the file
$SCRIPT_RESPONSE_FILE
responseFilePath: Value of
$SCRIPT_RESPONSE_FILE
exitCode: Process exit code

logFilePath: Path to file

containing stdout

errorFilePath: Path to file

containing stderr

${MY_STAGE.MY_TASK.output.response}
$
{MY_STAGE.MY_TASK.output.responseFilePat
h}
${MY_STAGE.MY_TASK.output.exitCode}
${MY_STAGE.MY_TASK.output.logFilePath}
${MY_STAGE.MY_TASK.output.errorFilePath}

SSH

Using and Managing vRealize Automation Code Stream

VMware, Inc. 65

Table 3-16. Run remote and user-defined scripts (continued)

Task Scope Key How to use SCOPE and KEY in the task

Input host: IP address or hostname

of the machine

username: User name to use to

connect

password: Password to use to

connect (optionally can use
privateKey)

privateKey: PrivateKey to use

to connect

passphrase: Optional

passphrase to unlock
privateKey

script: Script to run

workingDirectory: Directory

path to switch to before
running the script

environmentVariables: Key-

value pair of the environment
variable to set

${MY_STAGE.MY_TASK.input.host}
${MY_STAGE.MY_TASK.input.username}
${MY_STAGE.MY_TASK.input.password}
${MY_STAGE.MY_TASK.input.privateKey}
${MY_STAGE.MY_TASK.input.passphrase}
${MY_STAGE.MY_TASK.input.script}
$
{MY_STAGE.MY_TASK.input.workingDirectory
}
$
{MY_STAGE.MY_TASK.input.environmentVaria
bles}

Output response: Content of the file
$SCRIPT_RESPONSE_FILE
responseFilePath: Value of
$SCRIPT_RESPONSE_FILE
exitCode: Process exit code

logFilePath: Path to file

containing stdout

errorFilePath: Path to file

containing stderr

${MY_STAGE.MY_TASK.output.response}
$
{MY_STAGE.MY_TASK.output.responseFilePat
h}
${MY_STAGE.MY_TASK.output.exitCode}
${MY_STAGE.MY_TASK.output.logFilePath}
${MY_STAGE.MY_TASK.output.errorFilePath}

How to use a variable binding between tasks

This example shows you how to use variable bindings in your pipeline tasks.

Table 3-17. Sample syntax formats

Example Syntax

To use a task output value
for pipeline notifications and
pipeline output properties

${<Stage Key>.<Task Key>.output.<Task output key>}

To refer to the previous task
output value as an input for the
current task

${<Previous/Current Stage key>.<Previous task key not in current Task
group>.output.<task output key>}

Using and Managing vRealize Automation Code Stream

VMware, Inc. 66

To learn more

To learn more about binding variables in tasks, see:

n How do I use variable bindings in vRealize Automation Code Stream pipelines

n How do I use variable bindings in a condition task to run or stop a pipeline in vRealize
Automation Code Stream

n What types of tasks are available in vRealize Automation Code Stream

How do I send notifications about my pipeline in vRealize
Automation Code Stream

Notifications are ways to communicate with your teams and let them know the status of your
pipelines in vRealize Automation Code Stream.

To send notifications when a pipeline runs, you can configure vRealize Automation Code Stream
notifications based on the status of the entire pipeline, stage, or task.

n An email notification sends an email on:

n Pipeline completion, waiting, failure, cancelation, or start.

n Stage completion, failure, or start.

n Task completion, waiting, failure, or start.

n A ticket notification creates a ticket and assigns it to a team member on:

n Pipeline failure or completion.

n Stage failure.

n Task failure.

n A webhook notification sends a request to another application on:

n Pipeline failure, completion, waiting, cancelation, or start.

n Stage failure, completion, or start.

n Task failure, completion, waiting, or start.

For example, you can configure an email notification on a user operation task to obtain approval
at a specific point in your pipeline. When the pipeline runs, this task sends email to the person
who must approve the task. If the User Operation task has an expiration timeout set in days, hours,
or minutes, the required user must approve the pipeline before the task expires. Otherwise, the
pipeline fails as expected.

To create a Jira ticket when a pipeline task fails, you can configure a notification. Or, to send a
request to a Slack channel about the status of a pipeline based on the pipeline event, you can
configure a webhook notification.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 67

You can use variables in all types of notifications. For example, you can use ${var} in the URL of a

Webhook notification.

Prerequisites

n Verify that one or more pipelines are created. See the use cases in Chapter 5 Tutorials for
using vRealize Automation Code Stream.

n To send email notifications, confirm that you can access a working email server. For help, see
your administrator.

n To create tickets, such as a Jira ticket, confirm that the endpoint exists. See What are
Endpoints in vRealize Automation Code Stream .

n To send a notification based on an integration, you create a webhook notification. Then, you
confirm that the webhook is added and working. You can use notifications with applications
such as Slack, GitHub, or GitLab.

Procedure

1 Open a pipeline.

2 To create a notification for the overall pipeline status, or the status of a stage or task:

To create a notification for: What you do:

Pipeline status Click a blank area on the pipeline canvas.

Status of a stage Click a blank area in a stage of the pipeline.

Status of a task Click a task in a stage of the pipeline.

3 Click the Notifications tab.

4 Click Add, select the type of notification, and configure the notification details.

5 To create a Slack notification when a pipeline succeeds, create a webhook notification.

a Select Webhook.

b To configure the Slack notification, enter the information.

c Click Save.

d When the pipeline runs, the Slack channel receives the notification of the pipeline status.
For example, users might see the following on the Slack channel:

Codestream APP [12:01 AM]
Tested by User1 - Staging Pipeline 'User1-Pipeline', Pipeline ID
'e9b5884d809ce2755728177f70f8a' succeeded

Using and Managing vRealize Automation Code Stream

VMware, Inc. 68

6 To create a Jira ticket, configure the ticket information.

a Select Ticket.

b To configure the Jira notification, enter the information.

c Click Save.

Results

Congratulations! You learned that you can create various types of notifications in several areas of
your pipeline in vRealize Automation Code Stream.

What to do next

For a detailed example of how to create a notification, see How do I create a Jira ticket in vRealize
Automation Code Stream when a pipeline task fails.

How do I create a Jira ticket in vRealize Automation Code
Stream when a pipeline task fails

If a stage or task in your pipeline fails, you can have vRealize Automation Code Stream create a
Jira ticket. You can assign the ticket to the person who must resolve the problem. You can also
create a ticket when the pipeline is waiting, or when it succeeds.

You can add and configure notifications on a task, stage, or pipeline. vRealize Automation Code
Stream creates the ticket based on the status of the task, stage, or pipeline where you add the
notification. For example, if an endpoint is not available, you can have vRealize Automation Code
Stream create a Jira ticket for the task that fails because it cannot connect to the endpoint.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 69

You can also create notifications when your pipeline succeeds. For example, you can inform your
QA team about pipelines that succeed so that they can confirm the build and run a different test
pipeline. Or, you can inform your performance team so that they can measure the performance of
the pipeline and prepare for an update to staging or production.

To notify a user when a task or
stage fails, click the task or stage

and configure the ticket notification.
Pipeline > Task or Stage

> Notifications > Add > Ticket

To notify a user when a pipeline
fails or is waiting, click in

a blank area on the pipeline canvas,
and configure the ticket notification.

Pipeline > Canvas area > Notifications
> Add > Ticket > On Pipeline Failure

Configure the notification. For
example, for a JIRA ticket,

select the endpoint,
project, and issue type. Then,

enter the contact and summary
information.

Save the pipeline. Then,
enable and run it.

Change a task or stage to use data
that will make the pipeline fail

when it runs.

Save the pipeline, and run it again.

Confirm that the task or stage
failed, and created a ticket.
Pipelines > Executions

In Code Stream, create a
pipeline and add a stage and a task.

Pipelines > New Pipeline

Correct the change, and
save the pipeline.

Run the pipeline again to
confirm that it succeeds.

Pipeline > Run

This example creates a Jira ticket when a pipeline task fails.

Prerequisites

n Verify that you have a valid Jira account and can log in to your Jira instance.

n Verify that a Jira endpoint exists, and is working.

Procedure

1 In your pipeline, click a task.

2 In the task configuration area, click Notifications.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 70

3 Click Add, and configure the ticket information.

a Click Ticket.

b Select the Jira endpoint.

c Enter the Jira project and type of issue.

d Enter the email address for the person who receives the ticket.

e Enter a summary and description of the ticket, then click Save.

4 Save the pipeline, then enable and run it.

5 Test the ticket.

a Change the task information to include data that makes the task fail.

b Save the pipeline, and run it again.

c Click Executions, and confirm that the pipeline failed.

d In the execution, confirm that vRealize Automation Code Stream created the ticket and
sent it.

e Change the task information back to correct it, then run the pipeline again and ensure that
it succeeds.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 71

Results

Congratulations! You had vRealize Automation Code Stream create a Jira ticket when the pipeline
task failed, and assigned it to the person who was required to solve it.

What to do next

Continue to add notifications to alert your team about your pipelines.

How do I roll back my deployment in vRealize Automation
Code Stream

You configure rollback as a pipeline with tasks that return your deployment to a previous stable
state following a failure in a deployment pipeline. To roll back if a failure occurs, you attach the
rollback pipeline to tasks or stages.

Depending upon your role, your reasons for rollback might vary.

n As a release engineer, I want vRealize Automation Code Stream to verify success during a
release so that I can know whether to continue with the release or roll back. Possible failures
include task failure, a rejection in UserOps, exceeding the metrics threshold.

n As an environment owner, I want to redeploy a previous release so that I can quickly get an
environment back to a known-good state.

n As an environment owner, I want to support roll back of a Blue-Green deployment so that I can
minimize downtime from failed releases.

When you use a smart pipeline template to create a CD pipeline with the rollback option clicked,
rollback is automatically added to tasks in the pipeline. In this use case, you will use the smart
pipeline template to define rollback for an application deployment to a Kubernetes cluster using
the rolling upgrade deployment model. The smart pipeline template creates a deployment pipeline
and one or more rollback pipelines.

n In the deployment pipeline, rollback is required if Update Deployment or Verify Deployment
tasks fail.

n In the rollback pipeline, deployment is updated with an old image.

You can also manually create a rollback pipeline using a blank template. Before creating a
rollback pipeline, you will want to plan your rollback flow. For more background information about
rollback, see Planning for rollback in vRealize Automation Code Stream.

Prerequisites

n Verify that you are a member of a project in vRealize Automation Code Stream. If you are not,
ask a vRealize Automation Code Stream administrator to add you as a member of a project.
See How do I add a project in vRealize Automation Code Stream.

n Set up the Kubernetes clusters where your pipeline will deploy your application. Set up one
development cluster and one production cluster.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 72

n Verify that you have a Docker registry setup.

n Identify a project that will group all your work, including your pipeline, endpoints, and
dashboards.

n Familiarize yourself with the CD smart template as described in the CD portion of Planning
a CICD native build in vRealize Automation Code Stream before using the smart pipeline
template, for example:

n Create the Kubernetes development and production endpoints that deploy your
application image to the Kubernetes clusters.

n Prepare the Kubernetes YAML file that creates the Namespace, Service, and Deployment.
If you need to download an image from a privately-owned repository, the YAML file must
include a section with the Docker config Secret.

Procedure

1 Click Pipelines > New Pipeline > Smart Template > Continuous Delivery.

2 Enter the information in the smart pipeline template.

a Select a project.

b Enter a pipeline name such as RollingUpgrade-Example.

c Select the environments for your application. To add rollback to your deployment, you
must select Prod.

d Click Select, choose a Kubernetes YAML file, and click Process.

The smart pipeline template displays the available services and deployment environments.

e Select the service that the pipeline will use for the deployment.

f Select the cluster endpoints for the Dev environment and the Prod environment.

g For the Image source, select Pipeline runtime input.

h For the Deployment model, select Rolling Upgrade.

i Click Rollback.

j Provide the Health check URL.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 73

3 To create the pipeline named RollbackUpgrade-Example, click Create.

The pipeline named RollbackUpgrade-Example appears, and the rollback icon appears on
tasks that can roll back in the Development stage and the Production stage.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 74

4 Close the pipeline.

On the Pipelines page, the pipeline that you created appears, and a new pipeline for each
stage in your pipeline appears.

n RollingUpgrade-Example. vRealize Automation Code Stream deactivates the pipeline that
you created by default, which ensures that you review it before you run it.

n RollingUpgrade-Example_Dev_Rollback. Failure of tasks in the development stage, such
as Create service, Create secret, Create deployment, and Verify deployment invoke
this rollback development pipeline. To ensure the rollback of development tasks, vRealize
Automation Code Stream enables the rollback development pipeline by default.

n RollingUpgrade-Example_Prod_Rollback. Failure of tasks in the production stage, such
as Deploy phase 1, Verify phase 1, Deploy Rollout phase, Finish Rollout phase, and
Verify rollout phase invoke this rollback production pipeline. To ensure the rollback
of production tasks, vRealize Automation Code Stream enables the rollback production
pipeline by default.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 75

5 Enable and run the pipeline you created.

When you start the run, vRealize Automation Code Stream prompts you for input parameters.
You provide the image and tag for the endpoint in the Docker repository that you are using.

6 On the Executions page, select Actions > View Execution and watch the pipeline execution.

The pipeline starts RUNNING and moves through the Development stage tasks. If the
pipeline fails to run a task during the Development stage, the pipeline named RollingUpgrade-
Example_Dev_Rollback triggers and rolls back the deployment, and the pipeline status
changes to ROLLING_BACK.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 76

After rollback, the Executions page lists two RollingUpgrade-Example pipeline executions.

n The pipeline you created rolled back and displays ROLLBACK_COMPLETED.

n The rollback development pipeline that triggered and performed the rollback displays
COMPLETED.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 77

Results

Congratulations! You successfully defined a pipeline with rollback and watched vRealize
Automation Code Stream roll back the pipeline at the point of failure.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 78

Planning to natively build,
integrate, and deliver your code in
vRealize Automation Code Stream

4
Before you have vRealize Automation Code Stream build, integrate, and deliver your code by
using the native capability that creates a CICD, CI, or CD pipeline for you, plan your native build.
Then, you can create your pipeline by using one of the smart pipeline templates, or by manually
adding stages and tasks.

To plan for your continuous integration and continuous delivery build, we included several
examples that show you how. These plans describe the prerequisites and overviews that can help
you prepare and use the native build capability effectively when you build your pipelines.

This chapter includes the following topics:

n Planning a CICD native build in vRealize Automation Code Stream before using the smart
pipeline template

n Planning a CI native build in vRealize Automation Code Stream before using the smart pipeline
template

n Planning a CD native build in vRealize Automation Code Stream before using the smart
pipeline template

n Planning a CICD native build in vRealize Automation Code Stream before manually adding
tasks

n Planning for rollback in vRealize Automation Code Stream

Planning a CICD native build in vRealize Automation Code
Stream before using the smart pipeline template

To create a continuous integration and continuous delivery (CICD) pipeline in vRealize Automation
Code Stream, you can use the CICD smart pipeline template. To plan your CICD native build, you
gather the information you need to fill out the smart pipeline template before you use it to create
the pipeline in this example plan.

After you enter the information in the smart pipeline template and save it, the template creates a
pipeline that includes stages and tasks. It also indicates where to deploy your image based on the
environment types you select, such as Dev and Prod. The pipeline will publish your Docker image,
and perform the actions required to run it. After your pipeline runs, you can monitor trends across
the pipeline executions.

VMware, Inc. 79

To create a CICD pipeline, you need to plan for both the continuous integration (CI) and
continuous delivery (CD) stages of your pipeline.

When a pipeline includes an image from Docker Hub, you must ensure that the image has
cURL embedded before you run the pipeline. When the pipeline runs, vRealize Automation Code
Stream downloads a binary file that uses cURL to run commands.

Planning the Continuous Integration (CI) stage

To plan the CI stage of your pipeline, you'll set up the external and internal requirements, and
determine the information to enter in the CI portion of the smart pipeline template. Here is a
summary.

Endpoints and repositories that you'll need:

n A Git source code repository where your developers check in code. vRealize Automation Code
Stream pulls the latest code into the pipeline when developers commit changes.

n A Git endpoint for the repository where the developer source code resides.

n A Docker endpoint for the Docker build host that will run the build commands inside a
container.

n A Kubernetes endpoint so that vRealize Automation Code Stream can deploy your image to a
Kubernetes cluster.

n A Builder image that creates the container on which the continuous integration tests run.

n An Image Registry endpoint so that the Docker build host can pull the builder image from it.

You'll need access to a project. The project groups all your work, including your pipeline,
endpoints, and dashboards. Verify that you are a member of a project in vRealize Automation
Code Stream. If you are not, ask a vRealize Automation Code Stream administrator to add you as a
member of a project. See How do I add a project in vRealize Automation Code Stream.

You'll need a Git webhook that enables vRealize Automation Code Stream to use the Git trigger to
trigger your pipeline when developers commit code changes. See How do I use the Git trigger in
vRealize Automation Code Stream to run a pipeline.

Your build toolsets:

n Your build type, such as Maven.

n All the post-process build tools that you use, such as JUnit, JaCoCo, Checkstyle, and
FindBugs.

Your publishing tool:

n A tool such as Docker that will deploy your build container.

n An image tag, which is either the commit ID or the build number.

Your build workspace:

n A Docker build host, which is the Docker endpoint.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 80

n An Image Registry. The CI part of the pipeline pulls the image from the selected registry
endpoint. The container runs the CI tasks, and deploys your image. If the registry needs
credentials, you must first create an Image Registry endpoint, then select it here so that the
host can pull the image from the registry.

n URL for the builder image that creates the container on which the continuous integration tasks
run.

Planning the Continuous Delivery (CD) stage

To plan the CD stage of your pipeline, you'll set up the external and internal requirements, and
determine the information to enter in the CD portion of the smart pipeline template.

Endpoints that you'll need:

n A Kubernetes endpoint so that vRealize Automation Code Stream can deploy your image to a
Kubernetes cluster.

Environment types and files:

n All the environment types where vRealize Automation Code Stream will deploy your
application, such as Dev and Prod. The smart pipeline template creates the stages and tasks in
your pipeline based on the environment types you select.

Table 4-1. Pipeline stages that the CICD smart pipeline template creates

Pipeline content What it does

Build-Publish stage Builds and tests your code, creates the builder image, and publishes the image to your
Docker host.

Development stage Uses a development Amazon Web Services (AWS) cluster to create and deploy your
image. In this stage, you can create a namespace on the cluster, and create a secret
key.

Production stage Uses a production version of the VMware Tanzu Kubernetes Grid Integrated Edition
(formerly known as VMware Enterprise PKS) to deploy your image to a production
Kubernetes cluster.

n A Kubernetes YAML file that you select in the CD section of the CICD smart pipeline template.

The Kubernetes YAML file includes three required sections for Namespace, Service, and
Deployment and one optional section for Secret. If you plan to create a pipeline by
downloading an image from a privately-owned repository, you must include a section with
the Docker config Secret. If the pipeline you create only uses publicly available images, no
secret is required. The following sample YAML file includes four sections.

apiVersion: v1
kind: Namespace
metadata:
 name: codestream
 namespace: codestream

apiVersion: v1

Using and Managing vRealize Automation Code Stream

VMware, Inc. 81

data:
 .dockerconfigjson:
eyJhdXRocyI6eyJodHRwczovL2luZ1234567890lci5pby92MS8iOnsidXNlcm5hbWUiOiJhdXRvbWF0aW9uYmV0YSI
sInBhc3N3b3JkIjoiVk13YXJlQDEyMyIsImVtYWlsIjoiYXV0b21hdGlvbmJldGF1c2VyQGdtYWlsLmNvbSIsImF1dG
giOiJZWFYwYjIxaGRHbHZibUpsZEdFNlZrMTNZWEpsUURFeU13PT0ifX19
kind: Secret
metadata:
 name: dockerhub-secret
 namespace: codestream
type: kubernetes.io/dockerconfigjson

apiVersion: v1
kind: Service
metadata:
 name: codestream-demo
 namespace: codestream
 labels:
 app: codestream-demo
spec:
 ports:
 - port: 80
 selector:
 app: codestream-demo
 tier: frontend
 type: LoadBalancer

apiVersion: apps/v1
kind: Deployment
metadata:
 name: codestream-demo
 namespace: codestream
 labels:
 app: codestream-demo
spec:
 replicas: 10
 selector:
 matchLabels:
 app: codestream-demo
 tier: frontend
 template:
 metadata:
 labels:
 app: codestream-demo
 tier: frontend
 spec:
 containers:
 - name: codestream-demo
 image: automationbeta/codestream-demo:01
 ports:

Using and Managing vRealize Automation Code Stream

VMware, Inc. 82

 - containerPort: 80
 name: codestream-demo
 imagePullSecrets:
 - name: dockerhub-secret

Note The Kubernetes YAML file is also used in the CD smart pipeline template, such as in the
following use case examples:

n How do I deploy my application in vRealize Automation Code Stream to my Blue-Green
deployment

n How do I roll back my deployment in vRealize Automation Code Stream

n How do I use the Docker trigger in vRealize Automation Code Stream to run a continuous
delivery pipeline

To apply the file in the Smart Template, click Select and select the Kubernetes YAML file. Then
click Process. The smart pipeline template displays the available services and deployment
environments. You select a service, the cluster endpoint, and the deployment strategy. For
example, to use the Canary deployment model, select Canary and enter a percentage for the
deployment phase.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 83

How you'll create the CICD pipeline by using the smart pipeline
template

After you gather all the information and set up what you need, here's how you'll create a pipeline
from the CICD smart pipeline template.

In Pipelines, you'll select New Pipeline > Smart Templates.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 84

You'll select the CICD smart pipeline template.

You will fill out the template, and save the pipeline with the stages that it creates. If you need to
make any final changes, you can edit the pipeline and save it.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 85

Then, you will enable the pipeline and run it. After it runs, here are some things that you can look
for:

n Verify that your pipeline succeeded. Click Executions, and search for your pipeline. If it failed,
correct any errors and run it again.

n Verify that the Git webhook is operating correctly. The Git Activity tab displays the events.
Click Triggers > Git > Activity.

n Look at the pipeline dashboard and examine the trends. Click Dashboards, and search for
your pipeline dashboard. You can also create a custom dashboard to report on additional
KPIs.

For a detailed example, see How do I continuously integrate code from my GitHub or GitLab
repository into my pipeline in vRealize Automation Code Stream.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 86

Planning a CI native build in vRealize Automation Code
Stream before using the smart pipeline template

To create a continuous integration (CI) pipeline in VMware Code Stream, you can use the CI smart
pipeline template. To plan your CI native build, you'll gather the information you need to fill out
the smart pipeline template before you use it to create the pipeline in this example plan.

When you fill out the smart pipeline template, it creates a CI pipeline in your repository, and
performs the actions required to run it. After your pipeline runs, you can monitor trends across the
pipeline executions.

To plan your build before you use the CI smart pipeline template, you'll gather the information for
your build, then follow the CI portion of Planning a CICD native build in vRealize Automation Code
Stream before using the smart pipeline template.

After you gather all the information and set up what you need, here's how you'll create a pipeline
from the CI smart pipeline template.

In Pipelines, you'll select Smart Templates.

You'll select the CI smart pipeline template.

To save the pipeline with the stages that it creates, you fill out the template, and click Create.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 87

You can edit the pipeline to make any final changes that you might need. Then, you can enable the
pipeline and run it. After the pipeline runs, here are some things to look for:

n Verify that your pipeline succeeded. Click Executions, and search for your pipeline. If it failed,
correct any errors and run it again.

n Verify that the Git webhook is operating correctly. The Git Activity tab displays the events.
Click Triggers > Git > Activity.

n Look at the pipeline dashboard and examine the trends. Click Dashboards, and search for
your pipeline dashboard. You can also create a custom dashboard to report on additional
KPIs.

For a detailed example, see How do I continuously integrate code from my GitHub or GitLab
repository into my pipeline in vRealize Automation Code Stream.

Planning a CD native build in vRealize Automation Code
Stream before using the smart pipeline template

To create a continuous delivery (CD) pipeline in vRealize Automation Code Stream, you can use
the CD smart pipeline template. To plan your CD native build, you'll gather the information you
need to fill out the smart pipeline template before you use it to create the pipeline in this example
plan.

When you fill out the smart pipeline template, it creates a CD pipeline in your repository, and
performs the actions required to run it. After your pipeline runs, you can monitor trends across the
pipeline executions.

To plan your build before you use the CD smart pipeline template, you will:

n Identify a project that will group all your work, including your pipeline, endpoints, and
dashboards.

n Gather the information for your build as described in the CD portion of Planning a CICD
native build in vRealize Automation Code Stream before using the smart pipeline template, for
example:

n Add a Kubernetes endpoint where vRealize Automation Code Stream will deploy the
container.

n Prepare the Kubernetes YAML file that creates the Namespace, Service, and Deployment.
If you need to download an image from a privately-owned repository, the YAML file must
include a section with the Docker config Secret.

After you gather all the information and set up what you need, here's how you'll create a pipeline
from the CD smart pipeline template.

In Pipelines, you'll select Smart Templates.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 88

You'll select the CD smart pipeline template.

You'll fill out the template, and enter a name for the pipeline, then click Create to save the pipeline
with the stages that it creates.

You can edit the pipeline to make any final changes that you might need. Then, you can enable the
pipeline and run it. After the pipeline runs, here are some things to look for:

n Verify that your pipeline succeeded. Click Executions, and search for your pipeline. If it failed,
correct any errors and run it again.

n Verify that the Git webhook is operating correctly. The Git Activity tab displays the events.
Click Triggers > Git > Activity.

n Look at the pipeline dashboard and examine the trends. Click Dashboards, and search for
your pipeline dashboard. You can also create a custom dashboard to report on additional
KPIs.

For a detailed example, see How do I continuously integrate code from my GitHub or GitLab
repository into my pipeline in vRealize Automation Code Stream.

Planning a CICD native build in vRealize Automation Code
Stream before manually adding tasks

To create a continuous integration and continuous delivery (CICD) pipeline in vRealize Automation
Code Stream, you can manually add stages and tasks. To plan your CICD native build, you'll gather
the information you need, then create a pipeline and manually add stages and tasks to it.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 89

You will need to plan for both the continuous integration (CI) and continuous delivery (CD) stages
of your pipeline. After you create your pipeline and run it, you can monitor trends across the
pipeline executions.

To plan the CI and CD stages of your pipeline, you'll verify that all the requirements are met before
you create your pipeline.

Planning the external and internal requirements

To create a pipeline from this example plan, you will use a Docker host, a Git repository, Maven,
and several post-process build tools.

Endpoints and repositories that you'll need:

n A Git source code repository where your developers check in code. vRealize Automation Code
Stream pulls the latest code into the pipeline when developers commit changes.

n A Docker endpoint for the Docker build host that will run the build commands inside a
container.

n A Kubernetes endpoint so that vRealize Automation Code Stream can deploy your image to a
Kubernetes cluster.

n A Builder image that creates the container on which the continuous integration tests run.

n An Image Registry endpoint so that the Docker build host can pull the builder image from it.

You'll need access to a project. The project groups all your work, including your pipeline,
endpoints, and dashboards. Verify that you are a member of a project in vRealize Automation
Code Stream. If you are not, ask a vRealize Automation Code Stream administrator to add you as a
member of a project. See How do I add a project in vRealize Automation Code Stream.

You'll need a Git webhook that enables vRealize Automation Code Stream to use the Git trigger to
trigger your pipeline when developers commit code changes. See How do I use the Git trigger in
vRealize Automation Code Stream to run a pipeline.

How you'll create the CICD pipeline and configure the workspace

You'll need to create the pipeline, then configure the workspace, pipeline input parameters, and
tasks.

To create the pipeline, you'll click Pipelines > New Pipeline > Blank Canvas.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 90

On the Workspace tab, enter the continuous integration information:

n Include your Docker build host.

n Enter the URL for your builder image.

n Select the image registry endpoint so that the pipeline can pull the image from it. The
container runs the CI tasks and deploys your image. If the registry needs credentials, you
must first create the Image Registry endpoint, then select it here so that the host can pull the
image from the registry.

n Add the artifacts that must be cached. For a build to succeed, artifacts such as directories
are downloaded as dependencies. The cache is the location where these artifacts reside. For
example, dependent artifacts can include the .m2 directory for Maven, and the node_modules
directory for Node.js. These directories are cached across pipeline executions to save time
during builds.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 91

On the Input tab, configure the pipeline input parameters.

n If your pipeline will use input parameters from a Git, Gerrit, or Docker trigger event, select the
trigger type for Auto inject parameters. Events can include Change Subject for Gerrit or Git, or
Event Owner Name for Docker. If your pipeline will not use any input parameters passed from
the event, leave Auto inject parameters set to None.

n To apply a value and description to a pipeline input parameter, click the three vertical dots,
and click Edit. The value you enter is used as input to tasks, stages, or notifications.

n To add a pipeline input parameter, click Add. For example, you might add approvers to

display a default value for every execution, but which you can override with a different
approver at runtime.

n To add or remove an injected parameter, click Add/Remove Injected Parameter. For
example, remove an unused parameter to reduce clutter on the results page and only display
the input parameters that are used.

Configure the pipeline to test your code:

n Add and configure a CI task.

n Include steps to run mvn test on your code.

n To identify any problems after the task runs, run post-process build tools, such as JUnit and
JaCoCo, FindBugs, and Checkstyle.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 92

Configure the pipeline to build your code:

n Add and configure a CI task.

n Include steps that run mvn clean install on your code.

n Include the location and the JAR filename so that it preserves your artifact.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 93

Configure the pipeline to publish your image to your Docker host:

n Add and configure a CI task.

n Add steps that will commit, export, build, and push your image.

n Add the export key of IMAGE for the next task to consume.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 94

After you configure the workspace, input parameters, test tasks, and build tasks, save your
pipeline.

How to enable and run your pipeline

After you configure your pipeline with stages and tasks, you can save and enable the pipeline.

Then, wait for the pipeline to run and finish, then verify that it succeeded. If it failed, correct any
errors and run it again.

After the pipeline succeeds, here are some things you might want to confirm:

n Examine the pipeline execution and view the results of the task steps.

n In the workspace of the pipeline execution, locate the details about your container and the
cloned Git repository.

n In the workspace, look at the results of your post-process tools and check for errors, code
coverage, bugs, and style issues.

n Confirm that your artifact is preserved. Also confirm that the image was exported with the
IMAGE name and value.

n Go to your Docker repository and verify that the pipeline published your container.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 95

For a detailed example that shows how vRealize Automation Code Stream continuously integrates
your code, see How do I continuously integrate code from my GitHub or GitLab repository into my
pipeline in vRealize Automation Code Stream.

Planning for rollback in vRealize Automation Code Stream

If a pipeline execution fails, you can use rollback to return your environment to a previously stable
state. To use rollback, plan a rollback flow and understand how to implement it.

A rollback flow prescribes the steps required to reverse a failure in deployment. The flow takes the
form of a rollback pipeline that includes one or more sequential tasks which vary depending on
the type of deployment that executed and failed. For example, the deployment and rollback of a
traditional application is different from the deployment and rollback of a container application.

To return to a good deployment state, a rollback pipeline typically includes tasks to:

n Clean up states or environments.

n Run a user-specified script to revert changes.

n Deploy a previous revision of a deployment.

To add rollback to an existing deployment pipeline, you attach the rollback pipeline to the tasks
or stages in the deployment pipeline that you want to roll back before you run your deployment
pipeline.

How do I configure rollback

To configure rollback in your deployment, you need to:

n Create a deployment pipeline.

n Identify potential failure points in the deployment pipeline that will trigger rollback so that you
can attach your rollback pipeline. For example, you might attach your rollback pipeline to a
condition or poll task type in the deployment pipeline that checks whether a previous task
completed successfully. For information on condition tasks, see How do I use variable bindings
in a condition task to run or stop a pipeline in vRealize Automation Code Stream.

n Determine the scope of failure that will trigger the rollback pipeline such as a task or stage
failure. You can also attach rollback to a stage.

n Decide what rollback task or tasks to execute in the event of a failure. You'll create your
rollback pipeline with those tasks.

You can manually create a rollback pipeline, or vRealize Automation Code Stream can create one
for you.

n Using a blank canvas, you can manually create a rollback pipeline that follows a flow in parallel
to an existing deployment pipeline. Then you attach the rollback pipeline to one or more tasks
in the deployment pipeline that trigger rollback on failure.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 96

n Using a smart pipeline template, you can configure a deployment pipeline with the rollback
action. Then, vRealize Automation Code Stream automatically creates one or more default
rollback pipelines with predefined tasks that roll back the deployment on failure.

For a detailed example on how to configure a CD pipeline with rollback by using a smart pipeline
template, see How do I roll back my deployment in vRealize Automation Code Stream.

What happens if my deployment pipeline has multiple tasks or stages
with rollback

If you have multiple tasks or tasks and stages with rollback added, be aware that the rollback
sequence varies.

Table 4-2. Determining rollback sequence

If you add rollback to... When does roll back occur...

Parallel tasks If one of the parallel tasks fails, roll back for that task
occurs after all the parallel tasks have completed or failed.
Rollback does not occur immediately after the task fails.

Both the task within a stage, and the stage If a task fails, the task rollback runs. If the task is in a group
of parallel tasks, the task rollback runs after all the parallel
tasks have completed or failed. After the task rollback
completes or fails to complete, the stage rollback runs.

Consider a pipeline that has:

n A production stage with rollback.

n A group of parallel tasks, each task with its own rollback.

The task named UPD Deploy US has the rollback pipeline RB_Deploy_US. If UPD Deploy US
fails, the rollback follows the flow defined in the RB_Deploy_US pipeline.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 97

If UPD Deploy US fails, the RB_Deploy_US pipeline runs after UPD Deploy UK and UPD Deploy
AU have also completed or failed. Rollback does not occur immediately after UPD Deploy US fails.
And because the production stage also has rollback, after the RB_Deploy_US pipeline runs, the
stage rollback pipeline runs.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 98

Tutorials for using vRealize
Automation Code Stream 5
vRealize Automation Code Stream models and supports your DevOps release lifecycle, and
continuously tests and releases your applications to development environments and production
environments.

You already set up everything you need so that you can use vRealize Automation Code Stream.
See Chapter 2 Setting up vRealize Automation Code Stream to model my release process.

Now, you can create pipelines that automate the build and test of developer code before you
release it to production. You can have vRealize Automation Code Stream deploy container-based
or traditional applications.

Table 5-1. Using vRealize Automation Code Stream in your DevOps lifecycle

Features Examples of what you can do

Use the native
build capability
in vRealize
Automation Code
Stream.

Create CICD, CI, and CD pipelines that continuously integrate, containerize, and deliver your
code.

n Use a smart pipeline template that creates a pipeline for you.

n Manually add stages and tasks to a pipeline.

Release your
applications, and
automate releases.

Integrate and release your applications in various ways.

n Continuously integrate your code from a GitHub or a GitLab repository into your pipeline.

n Integrate a Docker Host to run CI tasks as documented in this blog article Creating a Docker
host for vRealize Automation Code Stream.

n Automate the deployment of your application by using a YAML cloud template.

n Automate the deployment of your application to a Kubernetes cluster.

n Release your application to a Blue-Green deployment.

n Integrate vRealize Automation Code Stream with your own build, test, and deploy tools.

n Use a REST API that integrates vRealize Automation Code Stream with other applications.

Track trends,
metrics, and
key performance
indicators (KPIs).

Create custom dashboards and gain insight about the performance of your pipelines.

Resolve problems. When a pipeline execution fails, have vRealize Automation Code Stream create a JIRA ticket.

This chapter includes the following topics:

n How do I continuously integrate code from my GitHub or GitLab repository into my pipeline in
vRealize Automation Code Stream

VMware, Inc. 99

https://blogs.vmware.com/management/2020/08/creating-a-docker-host-for-vra-code-stream.html
https://blogs.vmware.com/management/2020/08/creating-a-docker-host-for-vra-code-stream.html

n How do I automate the release of an application that I deploy from a YAML cloud template in
vRealize Automation Code Stream

n How do I automate the release of an application in vRealize Automation Code Stream to a
Kubernetes cluster

n How do I deploy my application in vRealize Automation Code Stream to my Blue-Green
deployment

n How do I integrate my own build, test, and deploy tools with vRealize Automation Code
Stream

n How do I use the resource properties of a cloud template task in my next task

n How do I use a REST API to integrate vRealize Automation Code Stream with other
applications

How do I continuously integrate code from my GitHub or
GitLab repository into my pipeline in vRealize Automation
Code Stream

As a developer, you want to continuously integrate your code from a GitHub repository or a
GitLab Enterprise repository. Whenever your developers update their code and commit changes
to the repository, vRealize Automation Code Stream can listen for those changes, and trigger the
pipeline.

To have vRealize Automation Code Stream trigger your pipeline on code changes, you use the
Git trigger. vRealize Automation Code Stream then triggers your pipeline every time you commit
changes to your code.

To build your code, you'll use a Docker host. You use JUnit and JaCoCo as your test framework
tools, which run unit tests and code coverage, and you will include them in your pipeline.

Then you can use the continuous integration smart pipeline template that creates a continuous
integration pipeline that builds, tests, and deploys your code to your project team Kubernetes
cluster on AWS. To store the code dependency artifacts for your continuous integration task,
which can save time in code builds, you can use a cache.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 100

In the pipeline task that builds and tests your code, you can include several continuous integration
steps. These steps can reside in the same working directory where vRealize Automation Code
Stream clones the source code when the pipeline triggers.

To deploy your code to the Kubernetes cluster, you can use a Kubernetes task in your pipeline.
You must then enable and run your pipeline. Then, make a change to your code in the repository,
and watch the pipeline trigger. To monitor and report on your pipeline trends after your pipeline
runs, use the dashboards.

The following flowchart shows the workflow that you can take if you use a smart pipeline template
to create your pipeline, or build the pipeline manually.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 101

Figure 5-1. Workflow that uses a smart pipeline template or creates a pipeline manually

Prepare to create a pipeline
that natively builds, tests, and

continuously integrates
your code.

Verify that all prerequisites
are met. See the user

documentation.

Answer native CI build and
test questions: source code
repo, build toolsets, publish

tool, and build image
workspace. The CI smart

template captures
common build configuration

on the Workspace tab.

Set up notifications for Slack or
Email to notify users about
code quality or other alerts.

Save your pipeline.

Use the canvas to
create your CI pipeline.

Pipelines >
New Pipeline > Blank Canvas

To build, test, and deploy
 your application, click the

stage and drag the continuous
integration (CI) task to it.

Configure the CI task with
the native CI build information

from your planning.

Add steps to integrate your
code, paths to the dependency

artifacts, the export location,
and the test framework: JUnit,

JaCoCo, FindBugs, Checkstyle.
Pipelines > Pipeline > CI Task >

Task tab

Add the Docker host, build image,
container registry, working

directory, Git clone, and cache.
Pipelines > Pipeline >

Workspace tab

Save your pipeline.
Then, enable and run it.

Use the
smart

template to
create your CI pipeline?

Pipelines > New Pipeline >
Smart Template >

CI template

Make any further changes to
the pipeline to be specific to

your needs.
Then, enable and run it.

Yes

No

Monitor the pipeline
dashboard to track KPIs,

code coverage, state of your
application, status of changesets,
or state of your DevOps projects.

Take action or report
on the status.

In the following example, to create a continuous integration pipeline that continuously integrates
your code into your pipeline, you use the continuous integration smart pipeline template.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 102

Optionally, you can manually create the pipeline, and add stages and tasks to it. For more
information about planning a continuous integration build and manually creating the pipeline, see
Planning a CICD native build in vRealize Automation Code Stream before manually adding tasks.

Prerequisites

n Plan for your continuous integration build. See Planning a CI native build in vRealize
Automation Code Stream before using the smart pipeline template.

n Verify that a GitLab source code repository exists. For help, see your vRealize Automation
Code Stream administrator.

n Add a Git endpoint. For an example, see How do I use the Git trigger in vRealize Automation
Code Stream to run a pipeline.

n To have vRealize Automation Code Stream listen for changes in your GitHub repository or
your GitLab repository, and trigger a pipeline when changes occur, add a webhook. For an
example, see How do I use the Git trigger in vRealize Automation Code Stream to run a
pipeline.

n Add a Docker host endpoint, which creates a container for the continuous integration task
that multiple continuous integration tasks can use. For more information about endpoints, see
What are Endpoints in vRealize Automation Code Stream .

n Obtain the image URL, the build host, and the URL for the build image. For help, see your
vRealize Automation Code Stream administrator.

n Verify that you use JUnit and JaCoCo for your test framework tools.

n Set up an external instance for your continuous integration build: Jenkins, TFS, or Bamboo.
The Kubernetes plug-in deploys your code. For help, see your vRealize Automation Code
Stream administrator.

Procedure

1 Follow the prerequisites.

2 To create the pipeline by using the smart pipeline template, open the continuous integration
smart pipeline template and fill out the form.

a Click Pipelines > New Pipeline > Smart Template > Continuous Integration.

b Answer the questions in the template about your source code repository, build toolsets,
publishing tool, and the build image workspace.

c Add Slack notifications or Email notifications for your team.

d To have the smart pipeline template create the pipeline, click Create.

e To make any further changes to the pipeline, click Edit, make your changes, and click
Save.

f Enable the pipeline and run it.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 103

3 To create the pipeline manually, add stages and tasks to the canvas, and include your native
continuous integration build information in the continuous integration task.

a Click Pipelines > New Pipeline > Blank Canvas.

b Click the stage, then drag the several continuous integration tasks from the navigation
pane to the stage.

c To configure the continuous integration task, click it, and click the Task tab.

d Add the steps that continuously integrate your code.

e Include the paths to the dependency artifacts.

f Add the export location.

g Add the test framework tools that you'll use.

h Add the Docker host and build image.

i Add the container registry, working directory, and cache.

j Save the pipeline, then enable it.

4 Make a change to your code in your GitHub repository or GitLab repository.

The Git trigger activates your pipeline, which starts to run.

5 To verify that the code change triggered the pipeline, click Triggers > Git > Activity.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 104

6 To view the execution for your pipeline, click Executions, and verify that the steps created and
exported your build image.

7 To monitor the pipeline dashboard so that you can track KPIs and trends, click Dashboards >
Pipeline Dashboards.

Results

Congratulations! You created a pipeline that continuously integrates your code from a GitHub
repository or GitLab repository into your pipeline, and deploys your build image.

What to do next

To learn more, see More resources for vRealize Automation Code Stream Administrators and
Developers.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 105

How do I automate the release of an application that I
deploy from a YAML cloud template in vRealize Automation
Code Stream

As a developer, you need a pipeline that fetches an automation cloud template from an on-
premises GitHub instance every time you commit a change. You need the pipeline to deploy a
WordPress application to either Amazon Web Services (AWS) EC2 or a data center. vRealize
Automation Code Stream calls the cloud template from the pipeline and automates the continuous
integration and continuous delivery (CICD) of that cloud template to deploy your application.

To create and trigger your pipeline, you'll need a VMware Cloud Template.

For Cloud template source in your vRealize Automation Code Stream cloud template task, you
can select either:

n Cloud Assembly template as the source control. In this case, you do not need a GitLab or
GitHub repository.

n Source Control if you use GitLab or GitHub for source control. In this case, you must have a Git
webhook and trigger the pipeline through the webhook.

If you have a YAML cloud template in your GitHub repository, and want to use that cloud template
in your pipeline, here's what you'll need to do.

1 In vRealize Automation Cloud Assembly, push the cloud template to your GitHub repository.

2 In vRealize Automation Code Stream, create a Git endpoint. Then, create a Git webhook that
uses your Git endpoint and your pipeline.

3 To trigger your pipeline, update any file in your GitHub repository and commit your change.

If you don't have a YAML cloud template in your GitHub repository, and want to use a cloud
template from source control, use this procedure to learn how. It shows you how to create a
cloud template for a WordPress application, and trigger it from an on-premises GitHub repository.
Whenever you make a change to the YAML cloud template, the pipeline triggers and automates
the release of your application.

n In vRealize Automation Cloud Assembly, you'll add a cloud account, add a cloud zone, and
create the cloud template.

n In vRealize Automation Code Stream, you'll add an endpoint for the on-premises GitHub
repository that hosts your cloud template. Then, you'll add the cloud template to your pipeline.

This use case example shows you how to use a cloud template from an on-premises GitHub
repository.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 106

In Cloud Assembly,
create a cloud template.

Cloud Assembly >
Cloud Templates > New

Open the Cloud Assembly
documentation in

docs.vmware.com,
and copy the complete YAML

for the WordPress cloud template.

In the cloud template code pane,
paste the YAML code,

and save the cloud template.

In Code Stream,
create an endpoint for your

on-premises GitHub repository.
Endpoints > New Endpoint

> Git

Create an Email endpoint,
and validate it.
Endpoints >

New Endpoint > Email

Create a pipeline.
Pipelines > New Pipeline

> Blank Canvas

Create a stage for
development tasks. Then, add

a task that deploys the machine
with your cloud template YAML,

and a task that
destroys the machine.

Create a stage for production
tasks. Add a task to require an

approval to push the
application to production, and a

task to deploy and configure
the machine that includes

your cloud template YAML.

Save the pipeline,
then enable and run it.

Add Email notifications for
pipeline success and failure.
Notifications > Add > Email

In GitHub, open the cloud template
YAML code, change the size
of the instance used for the

WordPress application,
and save the file.

Run your pipeline again.

In your deployment,
verify that the size of the

WordPress instance is updated.

You automated the release
of your application that deployed

through your pipeline
when you updated the

cloud template YAML code.

Prerequisites

n Add a cloud account and a cloud zone in your vRealize Automation Cloud Assembly
infrastructure. See the vRealize Automation Cloud Assembly documentation.

n To create your cloud template in the following procedure, copy the WordPress YAML code to
your clipboard. See the cloud template YAML code in the WordPress use case in the vRealize
Automation Cloud Assembly documentation.

n Add the YAML code for the WordPress application to your GitHub instance.

n Add a webhook for the Git trigger so that your pipeline can pull your YAML code whenever
you commit changes to it. In vRealize Automation Code Stream, click Triggers > Git >
Webhooks for Git.

n To work with a cloud template task, you must have any of the vRealize Automation Cloud
Assembly roles.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 107

Procedure

1 In vRealize Automation Cloud Assembly, follow these steps.

a Click VMware Cloud Templates, then create a cloud template and a deployment for the
WordPress application.

b Paste the WordPress YAML code that you copied to your clipboard into your cloud
template, and deploy it.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 108

2 In vRealize Automation Code Stream, create endpoints.

a Create a Git endpoint for your on-premises GitHub repository where your YAML file
resides.

b Add an Email endpoint that can notify users about the pipeline status when it runs.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 109

3 Create a pipeline, and add notifications for pipeline success and failure.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 110

4 Add a stage for development, and add a cloud template task.

a Add a cloud template task that deploys the machine, and configure the task to use the
cloud template YAML for the WordPress application.

resources:
 DBTier:
 type: Cloud.Machine
 properties:
 name: mysql
 image: 'ubuntu-16'
 flavor: 'small'
 constraints:
 - tag: zone:dev
 WebTier:
 type: Cloud.Machine
 properties:
 name: wordpress
 image: 'ubuntu-16'
 flavor: 'small'
 constraints:
 - tag: zone:dev
 WP-Network-Private:
 type: Cloud.Network
 properties:
 name: WP-Network-Private
 networkType: existing
 constraints:
 - tag: 'type:isolated-net'
 - tag: 'zone:dev'

b Add a cloud template task that destroys the machine to free up resources.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 111

5 Add a stage for production, and include approval and deployment tasks.

a Add a User Operation task to require approval to push the WordPress application to
production.

b Add a cloud template task to deploy the machine and configure it with the cloud template
YAML for the WordPress application.

When you select Create, the deployment name must be unique. If you leave the name
blank, vRealize Automation Code Stream assigns it a unique random name.

Here's what you must know if you select Rollback in your own use case: If you select the
Rollback action and enter a Rollback Version, the version must be in the form of n-X.

For example, n-1, n-2, n-3, and so on. If you create and update the deployment in any

location other than vRealize Automation Code Stream, rollback is allowed.

When you log in to vRealize Automation Code Stream, it gets a user token, which is valid
for 30 minutes. For long-running pipeline durations, when the task prior to the cloud
template task takes 30 minutes or more to run, the user token expires. As a result, the
cloud template task fails.

To ensure that your pipeline can run longer than 30 minutes, you can enter an optional API
token. When vRealize Automation Code Stream invokes the cloud template, the API token
persists and the cloud template task continues to use the API token.

When you use the API token as a variable, it is encrypted. Otherwise, it is used as plain
text.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 112

6 Run the pipeline.

To verify that each task completed successfully, click the task in the execution, and examine
the status in the deployment details to see detailed resource information.

7 In GitHub, modify the flavor of the WordPress server instance from small to medium.

When you commit changes, the pipeline triggers. It pulls your updated code from the GitHub
repository and builds your application.

WebTier:
 type: Cloud.Machine
 properties:
 name: wordpress
 image: 'ubuntu-16'
 flavor: 'medium'
 constraints:
 - tag: zone:dev

8 Run the pipeline again, verify that it succeeded, and that it changed the flavor of the
WordPress instance from small to medium.

Results

Congratulations! You automated the release of your application that you deployed from a YAML
cloud template.

What to do next

To learn more about how you can use vRealize Automation Code Stream, see Chapter 5 Tutorials
for using vRealize Automation Code Stream.

For additional references, see More resources for vRealize Automation Code Stream
Administrators and Developers.

How do I automate the release of an application in vRealize
Automation Code Stream to a Kubernetes cluster

As a vRealize Automation Code Stream administrator or developer, you can use vRealize
Automation Code Stream and VMware Tanzu Kubernetes Grid Integrated Edition (formerly known
as VMware Enterprise PKS) to automate the deployment of your software applications to a
Kubernetes cluster. This use case mentions other methods that you can use to automate the
release of your application.

In this use case, you will create a pipeline that includes two stages, and will use Jenkins to build
and deploy your application.

n The first stage is for development. It uses Jenkins to pull your code from a branch in your
GitHub repository, then build, test, and publish it.

n The second stage is for deployment. It runs a user operation task that requires approval from
key users before the pipeline can deploy your application to your Kubernetes cluster.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 113

The development tools, deployment instances, and pipeline YAML file must be available so that
your pipeline can build, test, publish, and deploy your application. The pipeline will deploy your
application to development and production instances of Kubernetes clusters on AWS.

To build, test, and publish
your code, create a Jenkins

endpoint, which will pull code
from your GitHub repository.
Endpoints > New Endpoint

> Jenkins

Create a Kubernetes endpoint
for your development cluster.
Endpoints > New Endpoint

> K8S

Create a Kubernetes endpoint
for your production cluster.

Endpoints > New Endpoint
> K8S

Create a pipeline that will
automate the deployment of

your application.
Pipelines > New Pipeline >

Blank Canvas

Set the pipeline input parameter
Auto inject properties to Git.

Pipeline > Input tab

Add the property named
GIT_COMMIT_ID, and
click the star next to it.
Pipeline > Input tab

Add two email notifications:
one for pipeline success,

and one for pipeline failure.
Pipeline > Notifications > Add

Add a stage for Development,
and add Jenkins tasks that
will build, test, and publish

your code.

Add a stage for Deployment,
then add a user operation task
for approval of the deployment,

and a K8S task that will
deploy your code.

Create a webhook for the
Git trigger to trigger

your pipeline on code check-ins.
Triggers > Git > New

Webhook for Git

Go to your GitHub instance,
and configure the settings for the

webhook.

In your GitHub repository,
change your pipeline YAML
file, and commit the change.

In Code Stream,
confirm that the commit
triggered the pipeline.

Triggers > Git > Activity

In your pipeline, verify
that your change appears.

Your pipeline received the
commit ID from GitHub and

triggered the pipeline.

Other methods that automate the release of your application:

n Instead of building your application by using Jenkins, you can use the vRealize Automation
Code Stream native build capability and a Docker build host.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 114

n Instead of deploying your application to a Kubernetes cluster, you could deploy it to an
Amazon Web Services (AWS) cluster.

For more information about using the vRealize Automation Code Stream native build capability
and a Docker host, see:

n Planning a CICD native build in vRealize Automation Code Stream before using the smart
pipeline template

n Planning a CICD native build in vRealize Automation Code Stream before manually adding
tasks

Prerequisites

n Verify that the application code to be deployed resides in a working GitHub repository.

n Verify that you have a working instance of Jenkins.

n Verify that you have a working email server.

n In vRealize Automation Code Stream, create an email endpoint that connects to your email
server.

n Set up two Kubernetes clusters on Amazon Web Services (AWS), for development and
production, where your pipeline will deploy your application.

n Verify that the GitHub repository contains the YAML code for your pipeline, and alternatively a
YAML file that defines the metadata and specifications for your environment.

Procedure

1 In vRealize Automation Code Stream, click Endpoints > New Endpoint, and create a Jenkins
endpoint that you will use in your pipeline to pull code from your GitHub repository.

2 To create Kubernetes endpoints, click New Endpoint.

a Create an endpoint for your development Kubernetes cluster.

b Create an endpoint for your production Kubernetes cluster.

The URL for your Kubernetes cluster might or might not include a port number.

For example:

https://10.111.222.333:6443
https://api.kubernetesserver.fa2c1d78-9f00-4e30-8268-4ab81862080d.k8s-
user.com

Using and Managing vRealize Automation Code Stream

VMware, Inc. 115

3 Create a pipeline that deploys a container of your application, such as Wordpress, to your
development Kubernetes cluster, and set the input properties for the pipeline.

a To allow your pipeline to recognize a code commit in GitHub that will trigger the pipeline,
in the pipeline click the Input tab and select Auto inject properties.

b Add the property named GIT_COMMIT_ID, and click the star to it.

When the pipeline runs, the pipeline execution will display the commit ID that the Git
trigger returns.

4 Add notifications to send an Email when the pipeline succeeds or fails.

a In the pipeline, click the Notifications tab, and click Add.

b To add an email notification when the pipeline finishes running, select Email, and select
Completes. Then, select the email server, enter email addresses, and click Save.

c To add another email notification for a pipeline failure, select Fails, and click Save.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 116

5 Add a development stage to your pipeline, and add tasks that build, test, and publish your
application. Then, validate each task.

a To build your application, add a Jenkins task that uses the Jenkins endpoint, and runs a
build job from the Jenkins server. Then, for the pipeline to pull your code, enter the Git
branch in this form: ${input.GIT_BRANCH_NAME}

b To test your application, add a Jenkins task that uses the same Jenkins endpoint, and runs
a test job from the Jenkins server. Then, enter the same Git branch.

c To publish your application, add a Jenkins task that uses the same Jenkins endpoint, and
runs a publish job from the Jenkins server. Then, enter the same Git branch.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 117

6 Add a deployment stage to your pipeline, then add a task that requires an approval for
deployment of your application, and another task that deploys the application to your
Kubernetes cluster. Then, validate each task.

a To require an approval on the deployment of your application, add a User Operation task,
add Email addresses for the users who must approve it, and enter a message. Then,
enable Send email.

b To deploy your application, add a Kubernetes task. Then, in the Kubernetes task
properties, select your development Kubernetes cluster, select the Create action, and
select the Local Definition payload source. Then select your local YAML file.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 118

7 Add a Git webhook that enables vRealize Automation Code Stream to use the Git trigger,
which triggers your pipeline when developers commit their code.

8 To test your pipeline, go to your GitHub repository, update your application YAML file, and
commit the change.

a In vRealize Automation Code Stream, verify that the commit appears.

a Click Triggers > Git > Activity.

b Look for the trigger of your pipeline.

c Click Dashboards > Pipeline Dashboards.

d On your pipeline dashboard, find the GIT_COMMIT_ID in the latest successful change
area.

9 Check your pipeline code and verify that the change appears.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 119

Results

Congratulations! You automated the deployment of your software application to your Kubernetes
cluster.

Example: Example pipeline YAML that deploys an application to a
Kubernetes cluster
For the type of pipeline used in this example, the YAML resembles the following code:

apiVersion: v1
kind: Namespace
metadata:
 name: ${input.GIT_BRANCH_NAME}
 namespace: ${input.GIT_BRANCH_NAME}

apiVersion: v1
data:
 .dockercfg:
eyJzeW1waG9ueS10YW5nby1iZXRhMi5qZnJvZy5pbyI6eyJ1c2VybmFtZSI6InRhbmdvLWJldGEyIiwicGFzc3dvcmQiOi
JhRGstcmVOLW1UQi1IejciLCJlbWFpbCI6InRhbmdvLWJldGEyQHZtd2FyZS5jb20iLCJhdXRoIjoiZEdGdVoyOHRZbVYw
WVRJNllVUnJMWEpsVGkxdFZFSXRTSG8zIn19
kind: Secret
metadata:
 name: jfrog
 namespace: ${input.GIT_BRANCH_NAME}
type: kubernetes.io/dockercfg

apiVersion: v1
kind: Service
metadata:
 name: codestream
 namespace: ${input.GIT_BRANCH_NAME}
 labels:
 app: codestream
spec:
 ports:
 - port: 80
 selector:
 app: codestream
 tier: frontend
 type: LoadBalancer

apiVersion: extensions/v1
kind: Deployment
metadata:
 name: codestream
 namespace: ${input.GIT_BRANCH_NAME}
 labels:
 app: codestream
spec:
 selector:
 matchLabels:
 app: codestream

Using and Managing vRealize Automation Code Stream

VMware, Inc. 120

 tier: frontend
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: codestream
 tier: frontend
 spec:
 containers:
 - name: codestream
 image: cas.jfrog.io/codestream:${input.GIT_BRANCH_NAME}-${Dev.PublishApp.output.jobId}
 ports:
 - containerPort: 80
 name: codestream
 imagePullSecrets:
 - name: jfrog

What to do next

To deploy your software application to your production Kubernetes cluster, perform the steps
again and select your production cluster.

To learn more about integrating vRealize Automation Code Stream with Jenkins, see How do I
integrate vRealize Automation Code Stream with Jenkins.

How do I deploy my application in vRealize Automation
Code Stream to my Blue-Green deployment

Blue-Green is a deployment model that uses two Docker hosts that you deploy and configure
identically in a Kubernetes cluster. With the Blue and Green deployment model, you reduce the
downtime that can occur in your environment when your pipelines in vRealize Automation Code
Stream deploy your applications.

The Blue and Green instances in your deployment model each serve a different purpose. Only one
instance at a time accepts the live traffic that deploys your application, and each instance accepts
that traffic at specific times. The Blue instance receives the first version of your application, and the
Green instance receives the second.

The load balancer in your Blue-Green environment determines which route the live traffic takes
as it deploys your application. By using the Blue-Green model, your environment remains
operational, users don't notice any downtime, and your pipeline continuously integrates and
deploys your application to your production environment.

The pipeline that you create in vRealize Automation Code Stream represents your Blue-Green
deployment model in two stages. One stage is for development, and the other stage is for
production.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 121

Table 5-2. Development stage tasks for Blue-Green deployment

Task type Task

Kubernetes Create a namespace for your Blue-Green deployment.

Kubernetes Create a secret key for Docker Hub.

Kubernetes Create the service used to deploy the application.

Kubernetes Create the Blue deployment.

Poll Verify the Blue deployment.

Kubernetes Remove the namespace.

Table 5-3. Production stage tasks for Blue-Green deployment

Task type Task

Kubernetes Green gets the service details from Blue.

Kubernetes Get the details for the Green replica set.

Kubernetes Create the Green deployment, and use the secret key to pull the container image.

Kubernetes Update the service.

Poll Verify that the deployment succeeded on the production URL.

Kubernetes Finish the Blue deployment.

Kubernetes Remove the Blue deployment.

To deploy your application in your own Blue-Green deployment model, you create a pipeline in
vRealize Automation Code Stream that includes two stages. The first stage includes the Blue tasks
that deploy your application to the Blue instance, and the second stage includes Green tasks that
deploy your application to the Green instance.

You can create your pipeline by using the CICD smart pipeline template. The template creates
your pipeline stages and tasks for you, and includes the deployment selections.

If you create your pipeline manually, you must plan your pipeline stages. For an example, see
Planning a CICD native build in vRealize Automation Code Stream before manually adding tasks.

In this example, you use the CICD smart pipeline template to create your Blue-Green pipeline.

Prerequisites

n Verify that you can access a working Kubernetes cluster on AWS.

n Verify that you set up a Blue-Green deployment environment, and configured your Blue and
Green instances to be identical.

n Create a Kubernetes endpoint in vRealize Automation Code Stream that deploys your
application image to the Kubernetes cluster on AWS.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 122

n Familiarize yourself with using the CICD smart pipeline template. See Planning a CICD native
build in vRealize Automation Code Stream before using the smart pipeline template.

Procedure

1 Click Pipelines > New Pipeline > Smart Templates > CI/CD template.

2 Enter the information for the CI portion of the CICD smart pipeline template, and click Next.

For help, see Planning a CICD native build in vRealize Automation Code Stream before using
the smart pipeline template.

3 Complete the CD portion of the smart pipeline template

a Select the environments for your application deployment. For example, Dev and Prod.

b Select the service that the pipeline will use for the deployment.

c In the Deployment area, select the cluster endpoint for the Dev environment and the Prod
environment.

d For the Production deployment model, select Blue-Green, and click Create.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 123

Results

Congratulations! You used the smart pipeline template to create a pipeline that deploys your
application to your Blue-Green instances in your Kubernetes production cluster on AWS.

Example: Example YAML code for some Blue-Green Deployment
Tasks
The YAML code that appears in Kubernetes pipeline tasks for your Blue-Green deployment might
resemble the following examples that create the Namespace, Service, and Deployment. If you
need to download an image from a privately-owned repository, the YAML file must include a
section with the Docker config Secret. See the CD portion of Planning a CICD native build in
vRealize Automation Code Stream before using the smart pipeline template.

After the smart pipeline template creates your pipeline, you can modify the tasks as needed for
your own deployment.

YAML code to create an example namespace:

apiVersion: v1
kind: Namespace
metadata:
 name: codestream-82855
 namespace: codestream-82855

YAML code to create an example service:

apiVersion: v1
kind: Service
metadata:
 labels:
 app: codestream-demo
 name: codestream-demo
 namespace: bluegreen-799584
spec:
 minReadySeconds: 0
 ports:
 - port: 80
 selector:
 app: codestream-demo
 tier: frontend
 type: LoadBalancer

YAML code to create an example deployment:

apiVersion: extensions/v1
kind: Deployment
metadata:
 labels:
 app: codestream-demo
 name: codestream-demo
 namespace: bluegreen-799584
spec:

Using and Managing vRealize Automation Code Stream

VMware, Inc. 124

 minReadySeconds: 0
 replicas: 1
 selector:
 matchLabels:
 app: codestream-demo
 tier: frontend
 template:
 metadata:
 labels:
 app: codestream-demo
 tier: frontend
 spec:
 containers:
 - image: ${input.image}:${input.tag}
 name: codestream-demo
 ports:
 - containerPort: 80
 name: codestream-demo
 imagePullSecrets:
 - name: jfrog-2
 minReadySeconds: 0

What to do next

To learn more about how you can use vRealize Automation Code Stream, see Chapter 5 Tutorials
for using vRealize Automation Code Stream.

To roll back a deployment, see How do I roll back my deployment in vRealize Automation Code
Stream.

For additional references, see More resources for vRealize Automation Code Stream
Administrators and Developers.

How do I integrate my own build, test, and deploy tools with
vRealize Automation Code Stream

As a DevOps administrator or developer, you can create custom scripts that extend the capability
of vRealize Automation Code Stream. With your script, you can integrate vRealize Automation
Code Stream with your own Continuous Integration (CI) and Continuous Delivery (CD) tools and
APIs that build, test, and deploy your applications. Custom scripts are especially useful if you do
not expose your application APIs publicly.

Your custom script can do almost anything you need to integrate with your build, test, and deploy
tools. For example, it can work with the workspace in your pipeline to support CI tasks that build
and test your application, and CD tasks that deploy your application. It can send a message to
Slack when a pipeline finishes, and much more.

You write your custom script in one of the supported languages. In the script, you include your
business logic, and define inputs and outputs. Output types can include number, string, text, and
password. You can create multiple versions of a custom script with different business logic, input,
and output.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 125

You have your pipeline run a version of your script in a custom task. The scripts that you create
reside in your vRealize Automation Code Stream instance.

When a pipeline uses a custom integration, if you attempt to delete the custom integration, an
error message appears and indicates that you cannot delete it.

Deleting a custom integration removes all versions of your custom script. If you have an existing
pipeline with a custom task that uses any version of the script, that pipeline will fail. To ensure that
existing pipelines do not fail, you can deprecate and withdraw the version of your script that you
no longer want used. If no pipeline is using that version, you can delete it.

Table 5-4. What you do after you write your custom script

What you do... More information about this action...

Add a custom task to your pipeline. The custom task:

n Runs on the same container as other CI tasks in your pipeline.

n Includes input and output variables that your script populates before the
pipeline runs the custom task.

n Supports multiple data types and various types of meta data that you
define as inputs and outputs in your script.

Select your script in the custom task. You declare the input and output properties in the script.

Save your pipeline, then enable and run
it.

When the pipeline runs, the custom task calls the version of the script
specified and runs the business logic in it, which integrates your build, test,
and deploy tool with vRealize Automation Code Stream.

After your pipeline runs, look at the
executions.

Verify that the pipeline delivered the results you expected.

When you use a custom task that calls a Custom Integration version, you can include custom
environment variables as name-value pairs on the pipeline Workspace tab. When the builder
image creates the workspace container that runs the CI task and deploys your image, vRealize
Automation Code Stream passes the environment variables to that container.

For example, when your vRealize Automation Code Stream instance requires a Web proxy, and
you use a Docker host to create a container for a custom integration, vRealize Automation Code
Stream runs the pipeline and passes the Web proxy setting variables to that container.

Table 5-5. Example environment variable name-value pairs

Name Value

HTTPS_PROXY http://10.0.0.255:1234

https_proxy http://10.0.0.255:1234

NO_PROXY 10.0.0.32, *.dept.vsphere.local

no_proxy 10.0.0.32, *.dept.vsphere.local

HTTP_PROXY http://10.0.0.254:1234

Using and Managing vRealize Automation Code Stream

VMware, Inc. 126

Table 5-5. Example environment variable name-value pairs (continued)

Name Value

http_proxy http://10.0.0.254:1234

PATH /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

Name-value pairs appear in the user interface like this:

This example creates a custom integration that connects vRealize Automation Code Stream to
your Slack instance, and posts a message to a Slack channel.

Prerequisites

n To write your custom script, verify that you have one of these languages: Python 2, Python 3,
Node.js, or any of these shell languages: Bash, sh, or zsh.

n Generate a container image by using the Node.js or Python runtime that is installed.

Procedure

1 Create the custom integration.

a Click Custom Integrations > New, and enter a relevant name.

b Select the preferred runtime environment.

c Click Create.

Your script opens, and displays the code, which includes the required runtime
environment. For example, runtime: "nodejs". The script must include the runtime, which

the builder image uses, so that the custom task that you add to your pipeline succeeds
when the pipeline runs. Otherwise, the custom task fails.

The main areas of your custom integration YAML include the runtime, code, input properties,
and output properties. This procedure explains various types and syntax.

Custom integration YAML
keys Description

runtime Task runtime environment where vRealize Automation Code Stream runs the code,
which can be one of these case-insensitive strings:

n nodejs

n python2

n python3

n shell

If nothing is provided, shell is the assumed default.

code Custom business logic to run as part of the custom task.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 127

Custom integration YAML
keys Description

inputProperties Array of input properties to capture as part of the custom task configuration. These
properties are normally used in the code.

outputProperties Array of output properties you can export from the custom task to propagate to the
pipeline.

2 Declare the input properties in your script by using the available data types and meta data.

The input properties are passed in as context to your script in the code: section of the YAML.

Custom task YAML
input keys Description Required

type Types of input to render:

n text
n textarea
n number
n checkbox
n password
n select

Yes

name Name or string of the input to the custom task, which gets injected
into the custom integration YAML code. Must be unique for each
input property defined for a custom integration.

Yes

title Text string label of the input property for the custom task on the
pipeline model canvas. If left empty, name is used by default.

No

required Determines whether a user must enter the input property when they
configure the custom task. Set to true or false. When true, if a user
does not provide a value when they configure the custom task on the
pipeline canvas, the state of the task remains as unconfigured.

No

placeHolder Default text for the input property entry area when no value is
present. Maps to the html placeholder attribute. Only supported for
certain input property types.

No

defaultValue Default value that populates the input property entry area when the
custom task renders on the pipeline model page.

No

bindable Determines whether the input property accepts dollar sign variables
when modeling the custom task on the pipeline canvas. Adds the $
indicator next to the title. Only supported for certain input property
types.

No

labelMessage String that acts as a help tooltip for users. Adds a tooltip icon i next to
the input title.

No

Using and Managing vRealize Automation Code Stream

VMware, Inc. 128

Custom task YAML
input keys Description Required

enum Takes in an array of values that displays the select input property
options. Only supported only for certain input property types.

When a user selects an option, and saves it for the custom task, the
value of inputProperty corresponds to this value and appears in the
custom task modeling.

For example, the value 2015.

n 2015

n 2016

n 2017

n 2018

n 2019

n 2020

No

options Takes in an array of objects by using optionKey and optionValue.

n optionKey. Value propagated to the code section of the task.

n optionValue. String that displays the option in the user interface.

Only supported only for certain input property types.

Options:

optionKey: key1. When selected and saved for the custom task, the
value of this inputProperty corresponds to key1 in the code section.

optionValue: 'Label for 1'. Display value for key1 in the user interface,
and does not appear anywhere else for the custom task.

optionKey: key2

optionValue: 'Label for 2'

optionKey: key3

optionValue: 'Label for 3'

No

minimum Takes in a number that acts as the minimum value that is valid for this
input property. Only supported for number type input property.

No

maximum Takes in a number that acts as the maximum value that is valid for this
input property. Only supported for number type input property.

No

Table 5-6. Supported data types and meta data for custom scripts

Supported data types Supported meta data for input

n String

n Text

n List: as a list of any type

n Map: as map[string]any

n Secure: rendered as password text box, encrypted
when you save the custom task

n Number

n Boolean: appears as text boxes

n URL: same as string, with additional validation

n Selection, radio button

n type: One of String | Text ...

n default: Default value

n options: List or a map of options, to be used with
selection or radio button

n min: Minimum value or size

n max: Maximum value or size

n title: Detailed name of the text box

n placeHolder: UI placeholder

n description: Becomes a tool tip

Using and Managing vRealize Automation Code Stream

VMware, Inc. 129

For example:

inputProperties:
 - name: message
 type: text
 title: Message
 placeHolder: Message for Slack Channel
 defaultValue: Hello Slack
 bindable: true
 labelInfo: true
 labelMessage: This message is posted to the Slack channel link provided in the
code

3 Declare the output properties in your script.

The script captures output properties from the business logic code: section of your script,

where you declare the context for the output.

When the pipeline runs, you can enter the response code for the task output. For example,
200.

Keys that vRealize Automation Code Stream supports for each outputProperty.

key Description

type Currently includes a single value of label.

name Key that the code block of the custom integration YAML emits.

title Label in the user interface that displays outputProperty.

For example:

outputProperties:
 - name: statusCode
 type: label
 title: Status Code

4 To interact with the input and output of your custom script, get an input property or set an
output property by using context.

For an input property: (context.getInput("key"))
For an output property: (context.setOutput("key", "value"))
For Node.js:

var context = require("./context.js")
var message = context.getInput("message");
//Your Business logic
context.setOutput("statusCode", 200);

Using and Managing vRealize Automation Code Stream

VMware, Inc. 130

For Python:

from context import getInput, setOutput
message = getInput('message')
//Your Business logic
setOutput('statusCode', '200')

For Shell:

Input, Output properties are environment variables
echo ${message} # Prints the input message
//Your Business logic
export statusCode=200 # Sets output property statusCode

5 In the code: section, declare all the business logic for your custom integration.

For example, with the Node.js runtime environment:

code: |
 var https = require('https');
 var context = require("./context.js")

 //Get the entered message from task config page and assign it to message var
 var message = context.getInput("message");
 var slackPayload = JSON.stringify(
 {
 text: message
 });

 const options = {
 hostname: 'hooks.slack.com',
 port: 443,
 path: '/YOUR_SLACK_WEBHOOK_PATH',
 method: 'POST',
 headers: {
 'Content-Type': 'application/json',
 'Content-Length': Buffer.byteLength(slackPayload)
 }
 };

 // Makes a https request and sets the output with statusCode which
 // will be displayed in task result page after execution
 const req = https.request(options, (res) => {
 context.setOutput("statusCode", res.statusCode);
 });

 req.on('error', (e) => {
 console.error(e);
 });
 req.write(slackPayload);
 req.end();

Using and Managing vRealize Automation Code Stream

VMware, Inc. 131

6 Before you version and release your custom integration script, download the context file for
Python or Node.js and test the business logic that you included in your script.

a Place the pointer in the script, then click the context file button at the top of the canvas.
For example, if your script is in Python click CONTEXT.PY.

b Modify the file and save it.

c On your development system, run and test your custom script with the help of the context
file.

7 Apply a version to your custom integration script.

a Click Version.

b Enter the version information.

c Click Release Version so that you can select the script in your custom task.

d To create the version, click Create.

8 To save the script, click Save.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 132

9 In your pipeline, configure the workspace.

a Click the Workspace tab.

b Select the Docker host and the builder image URL.

10 Add a custom task to your pipeline, and configure it.

a Click the Model tab.

b Add a task, select the type as Custom, and enter a relevant name.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 133

c Select your custom integration script and version.

d To display a custom message in Slack, enter the message text.

Any text you enter overrides the defaultValue in your custom integration script. For

example:

11 Save and enable your pipeline.

a Click Save.

b On the Pipeline tab, click Enable pipeline so that the circle moves to the right.

12 Run your pipeline.

a Click Run.

b Look at the pipeline execution.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 134

c Confirm that the output includes the expected status code, response code, status, and
declared output.

You defined statusCode as an output property. For example, a statusCode of 200 might

indicate a successful Slack post, and a responseCode of 0 might indicate that the script

succeeded without error.

d To confirm the output in the execution logs, click Executions, click the link to your pipeline,
click the task, and look at the logged data. For example:

Using and Managing vRealize Automation Code Stream

VMware, Inc. 135

13 If an error occurs, troubleshoot the problem and run the pipeline again.

For example, if a file or module in the base image is missing, you must create another
base image that includes the missing file. Then, provide the Docker file, and push the image
through the pipeline.

Results

Congratulations! You created a custom integration script that connects vRealize Automation Code
Stream to your Slack instance, and posts a message to a Slack channel.

What to do next

Continue to create custom integrations to support using custom tasks in your pipelines, so that
you can extend the capability of vRealize Automation Code Stream in the automation of your
software release lifecycle.

How do I use the resource properties of a cloud template
task in my next task

When you use a cloud template task in vRealize Automation Code Stream, a common question is
how to use the output of that task in a subsequent task in your pipeline. To use the output of a
cloud template task, such as a cloud machine, you must know how to find the resource properties
in the deployment details of the cloud template task, and the IP address of the cloud machine.

For example, the deployment details of a VMware Cloud Template include the cloud machine
resource and its IP address. In your pipeline, you can use the cloud machine and IP address as a
variable to bind a cloud template task to a REST task.

The method that you use to find the IP address for the cloud machine is not typical, because
the deployment of the VMware Cloud Template must finish before the deployment details are
available. Then, you can use the resources from the VMware Cloud Template deployment to bind
your pipeline tasks.

n The resource properties that appear in a cloud template task in your pipeline are defined in the
VMware Cloud Template in vRealize Automation Cloud Assembly.

n You might not know when a deployment of that cloud template finished.

n A cloud template task in vRealize Automation Code Stream can only display the output
properties of the VMware Cloud Template after the deployment finished.

This example can be especially useful if you are deploying an application and invoking various
APIs. For example, if you use a cloud template task that calls a VMware Cloud Template, which
deploys a Wordpress application with a REST API, you can locate the IP address of the deployed
machine in the deployment details, and use the API to test it.

The cloud template task supports you to use variable binding by displaying the type ahead auto fill
details. It is up to you how you bind the variable.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 136

This example shows you how to:

n Find the deployment details and resource properties for your cloud template task in a pipeline
that ran and succeeded.

n Find the cloud machine IP address in the resources section of the deployment details.

n Add a REST task subsequent to the cloud template task in your pipeline.

n Bind the cloud template task to the REST task by using the cloud machine IP address in the
URL of the REST task.

n Run your pipeline and watch the binding work from the cloud template task to the REST task.

Prerequisites

n Verify that you have a working VMware Cloud Template that is versioned.

n Verify that the deployment of the VMware Cloud Template succeeded in vRealize Automation
Cloud Assembly.

n Verify that you have a pipeline that includes a cloud template task that uses that VMware
Cloud Template.

n Verify that your pipeline ran and succeeded.

Procedure

1 In your pipeline, locate the IP address of the cloud machine in the resources section of your
cloud template task deployment details.

a Click Actions > View executions.

b In a pipeline run that succeeded, click the link to the pipeline execution.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 137

c Under the pipeline name, click the link to the Task.

d In the Output area, locate the Deployment details.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 138

e In the resources section of the deployment details, locate the cloud machine name.

You will include the syntax for the cloud machine name in the URL of your REST task.

f To find the binding expression for the output property of the cloud template task, click
VIEW OUTPUT JSON, search for the address property, and locate the cloud machine IP
address.

The binding expression appears below the property and search icon in the JSON output.

The address resource property displays the cloud machine IP address. For example:

"resources": {
 "Cloud_Machine_1[0]": {
 "name": "Cloud_Machine_1[0]",
 "powerState": "ON",
 "address": "10.108.79.51",
 "resourceName": "Cloud_Machine_1-mcm187515-152919380820"

2 Return to your pipeline model, and enter the URL in your REST task.

a Click Actions > View Pipeline.

b Click the REST task.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 139

c In the REST Request URL area, enter $, select the Stage, Task, output,

deploymentDetails, and enter resources.

The ability to type ahead with auto fill is available up to the point that you must enter
resources.

d Enter the rest of the cloud machine resource from the deployment details as:
{'Cloud_Machine_1[0]'].address}

For the cloud machine entry, you must use the square bracket notation as shown.

The complete URL format is: $
{Stage0.Task0.output.deploymentDetails.resources{'Cloud_Machine_1[0]'].address}

3 Run your pipeline and watch the REST task use the cloud machine and IP address from the
output of your cloud template task as the URL to test.

Results

Congratulations! You found the cloud machine name and IP address in the deployment details and
JSON output of a cloud template task, and used them to bind your cloud template task output to
your REST task URL input in your pipeline.

What to do next

Continue to explore using binding variables from resources in the cloud template task with other
tasks in your pipeline.

How do I use a REST API to integrate vRealize Automation
Code Stream with other applications

vRealize Automation Code Stream provides a REST plug-in, which allows you to integrate vRealize
Automation Code Stream with other applications that use a REST API so that you can continuously
develop and deliver software applications that must interact with each other. The REST plug-in
invokes an API, which sends and receives information between vRealize Automation Code Stream
and another application.

With the REST plug-in, you can:

n Integrate external REST API-based systems into a vRealize Automation Code Stream pipeline.

n Integrate a vRealize Automation Code Stream pipeline as part of the flow of external systems.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 140

The REST plug-in works with any REST API, and supports GET, POST, PUT, PATCH, and DELETE
methods to send or receive information between vRealize Automation Code Stream and other
applications.

Table 5-7. Preparing a pipeline to communicate over the REST API

What you do What happens as a result

Add a REST task to your pipeline. The REST task communicates information between applications, and can provide
status information for a successive task in the pipeline stage.

In the REST task, select the REST
action and include the URL.

The pipeline task calls the URL when the pipeline runs.

For POST, PUT, and PATCH actions, you must include a payload. In the payload,
you can bind your pipeline and task properties when the pipeline runs.

Consider this example. Example use of the REST plug-in:

You can add a REST task to create a tag on a Git commit for a build, and have the
task post a request to get the check-in ID from the repository. The task can send
a payload to your repository and create a tag for the build, and the repository can
return the response with the tag.

Similar to using the REST plug-in to invoke an API, you can include a Poll task in your pipeline to
invoke a REST API and poll it until it completes and the pipeline task meets the exit criteria.

You can also use REST APIs to import and export a pipeline, and use the example scripts to run a
pipeline.

This procedure gets a simple URL.

Procedure

1 To create a pipeline, click Pipelines > New Pipeline > Blank Canvas.

2 In your pipeline stage, click + Sequential Task.

3 In the task pane, add the REST task:

a Enter a name for the task.

b In the Type drop-down menu, select REST.

c In the REST Request area, select GET.

To have the REST task request data from another application, you select the GET method.
To send data to another application, you select the POST method.

d Enter the URL that identifies the REST API endpoint. For example, https://
www.google.com.

For a REST task to import data from another application, you can include
the payload variable. For example, for an import action, you can enter $
{Stage0.export.responseBody}. If the response data size exceeds 5 MB, the REST task

might fail.

e To provide authorization for the task, click Add Headers and enter a header key and value.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 141

4 To save your pipeline, click Save.

5 On the pipeline tab, click Enable pipeline.

6 Click Save, then click Close.

7 Click Run.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 142

8 To watch the pipeline run, click Executions.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 143

9 To verify that the REST task returns the information you expect, examine the pipeline
execution and the task results.

a After the pipeline completes, to confirm that the other application returned the data you
requested, click the link to the pipeline execution.

b Click the REST task in the pipeline.

c In the pipeline execution, click the task, observe the task details, and verify that the REST
task returned the expected results.

The task details display the response code, body, header keys, and values.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 144

10 To see the JSON output, click VIEW OUTPUT JSON.

Results

Congratulations! You configured a REST task that invoked a REST API and sent information
between vRealize Automation Code Stream and another application by using the REST plug-in.

What to do next

Continue to use REST tasks in your pipelines to run commands and integrate vRealize Automation
Code Stream with other applications so that you can develop and deliver your software
applications. Consider using poll tasks that poll the API until it completes, and the pipeline task
meets the exit criteria.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 145

Connecting vRealize Automation
Code Stream to endpoints 6
vRealize Automation Code Stream integrates with development tools through plug-ins. Supported
plug-ins include Jenkins, Bamboo, vRealize Operations, Bugzilla, Team Foundation Server, Git,
and more.

You can also develop your own plug-ins that integrate vRealize Automation Code Stream with
other development applications.

To integrate vRealize Automation Code Stream with Jira, you do not need an external plug-
in, because vRealize Automation Code Stream includes the Jira ticket creation capability as a
notification type. To create Jira tickets on pipeline status, you must add a Jira endpoint.

This chapter includes the following topics:

n What are Endpoints in vRealize Automation Code Stream

n How do I integrate vRealize Automation Code Stream with Jenkins

n How do I integrate vRealize Automation Code Stream with Git

n How do I integrate vRealize Automation Code Stream with Gerrit

n How do I integrate vRealize Automation Code Stream with vRealize Orchestrator

What are Endpoints in vRealize Automation Code Stream

An endpoint is an instance of a DevOps application that connects to vRealize Automation Code
Stream and provides data for your pipelines to run, such as a data source, repository, or
notification system.

Your role in vRealize Automation Code Stream determines how you use endpoints.

n Administrators and developers can create, update, delete, and view endpoints.

n Administrators can mark an endpoint as restricted, and run pipelines that use restricted
endpoints.

n Users who have the viewer role can see endpoints, but cannot create, update, or delete them.

For more information, see How do I manage user access and approvals in vRealize Automation
Code Stream.

VMware, Inc. 146

To connect vRealize Automation Code Stream to an endpoint, you add a task in your pipeline and
configure it so that it communicates with the endpoint. To verify that vRealize Automation Code
Stream can connect to the endpoint, click Validate. Then, when you run the pipeline, your pipeline
task connects to the endpoint to run the task.

For information about the task types that use these endpoints, see What types of tasks are
available in vRealize Automation Code Stream.

Table 6-1. Endpoints that vRealize Automation Code Stream supports

Endpoint What it provides
Versions
supported Requirements

Bamboo Creates build plans. 6.9.*

Docker Native builds can use Docker hosts for
deployment.

When a pipeline includes an image
from Docker Hub, you must ensure
that the image has cURL embedded
before you run the pipeline. When the
pipeline runs, vRealize Automation
Code Stream downloads a binary file
that uses cURL to run commands.

Docker Registry Registers container images so that a Docker
build host can pull images.

2.7.1

Gerrit Connects to a Gerrit server for reviews and
trigger

2.14.*

Git Triggers pipelines when developers update
code and check it in to the repository.

Git Hub
Enterprise
2.1.8

Git Lab
Enterprise
11.9.12-ee

Jenkins Builds code artifacts. 1.6.* and
2.*

Jira Creates a Jira ticket when a pipeline task
fails.

8.3.*

Kubernetes Automates the steps that deploy, scale, and
manage containerized applications.

1.9.*

PowerShell Create tasks that run PowerShell scripts on
Windows or Linux machines.

4 and 5

SSH Create tasks that run SSH scripts on
Windows or Linux machines.

7.0

TFS, Team
Foundation
Server

Manages source code, automated builds,
testing, and related activities.

2015 and
2017

vRealize
Orchestrator

Arranges and automates the workflows in
your build process.

7.* and 8.*

Using and Managing vRealize Automation Code Stream

VMware, Inc. 147

Example YAML code for a GitHub endpoint

This example YAML code defines a GitHub endpoint that you can refer to in a Git task.

name: github-k8s
tags: [
]
kind: ENDPOINT
properties:
 serverType: GitHub
 repoURL: https://github.com/autouser/testrepok8s
 branch: master
 userName: autouser
 password: encryptedpassword
 privateToken: ''
description: ''
type: scm:git
isLocked: false

How do I integrate vRealize Automation Code Stream with
Jenkins

vRealize Automation Code Stream provides a Jenkins plug-in, which triggers Jenkins jobs that
build and test your source code. The Jenkins plug-in runs test cases, and can use custom scripts.

To run a Jenkins job in your pipeline, you use a Jenkins server, and add the Jenkins endpoint in
vRealize Automation Code Stream. Then, you create a pipeline and add a Jenkins task to it.

When you use the Jenkins task and a Jenkins endpoint in vRealize Automation Code Stream,
you can create a pipeline that supports multi-branch jobs in Jenkins. The multi-branch job
includes individual jobs in each branch of a Git repository. When you create pipelines in vRealize
Automation Code Stream that support multi-branch jobs:

n The Jenkins task can run Jenkins jobs that reside in multiple folders on the Jenkins server.

n You can override the folder path in the Jenkins task configuration so that it uses a different
folder path, which overrides the default path defined in the Jenkins endpoint in vRealize
Automation Code Stream.

n Multi-branch pipelines in vRealize Automation Code Stream detect Jenkins job files of
type .groovy in a Git repository or a GitHub repository, and start creating jobs for each

branch that it scans in the repository.

n You can override the default path defined in the Jenkins endpoint with a path provided in the
Jenkins task configuration, and run a job and pipeline that is associated with any branch inside
a main Jenkins job.

Prerequisites

n Set up a Jenkins server that runs version 1.561 or later.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 148

n Verify that you are a member of a project in vRealize Automation Code Stream. If you are not
a member, ask a vRealize Automation Code Stream administrator to add you as a member of a
project. See How do I add a project in vRealize Automation Code Stream.

n Verify that a job exists on the Jenkins server so that your pipeline task can run it.

Procedure

1 Add and validate a Jenkins endpoint.

a Click Endpoints > New Endpoint.

b Select a project, and for the type of endpoint select Jenkins. Then, enter a name and a
description.

c If this endpoint is a business-critical component in your infrastructure, enable Mark as
restricted.

d Enter the URL for the Jenkins server.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 149

e Enter the user name and password to log in to the Jenkins server. Then, enter the
remaining information.

Table 6-2. Remaining information for the Jenkins endpoint

Endpoint entry Description

Folder Path Path for the folder that groups your jobs. Jenkins can run all jobs in the folder. You can
create sub folders. For example:

n folder_1 can include job_1
n folder_1 can include folder_2, which can include job_2
When you create an endpoint for folder_1, the folder path is job/folder_1, and the

endpoint only lists job_1.

To obtain the list of jobs in the child folder named folder_2, you must create another

endpoint that uses the folder path as /job/folder_1/job/folder_2/.

Folder Path
for multi-branch
Jenkins jobs

To support multi-branch Jenkins jobs, in the Jenkins task, you enter the full path that
includes the Jenkins server URL and the complete job path. When you include a folder
path in the Jenkins task, that path overrides the path that appears in the Jenkins
endpoint. With the custom folder path in the Jenkins task, vRealize Automation Code
Stream only displays jobs that are present in that folder.

n For example: https://server.yourcompany.com/job/project
n If the pipeline must also trigger the main Jenkins job, use: https://

server.yourcompany.com/job/project/job/main

URL Host URL of the Jenkins server. Enter the URL in the form of protocol://host:port.

For example: http://192.10.121.13:8080

Polling Interval Interval duration for vRealize Automation Code Stream to poll the Jenkins server for
updates.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 150

Table 6-2. Remaining information for the Jenkins endpoint (continued)

Endpoint entry Description

Request Retry
Count

Number of times to retry the scheduled build request for the Jenkins server.

Retry Wait Time Number of seconds to wait before retrying the build request for the Jenkins server.

f Click Validate, and verify that the endpoint connects to vRealize Automation Code Stream.
If it does not connect, correct any errors, then click Save.

2 To build your code, create a pipeline, and add a task that uses your Jenkins endpoint.

a Click Pipelines > New Pipeline > Blank Canvas.

b Click the default stage.

c In the Task area, enter a name for the task.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 151

d Select the task type as Jenkins.

e Select the Jenkins endpoint that you created.

f From the drop-down menu, select a job from the Jenkins server that your pipeline will run.

g Enter the parameters for the job.

h Enter the authentication token for the Jenkins job.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 152

3 Enable and run your pipeline, and view the pipeline execution.

4 Look at the execution details and status on the pipeline dashboard.

You can identify any failures, and why it failed. You can also see trends about the pipeline
execution durations, completions, and failures.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 153

Results

Congratulations! You integrated vRealize Automation Code Stream with Jenkins by adding an
endpoint, creating a pipeline, and configuring a Jenkins task that builds your code.

Example: Example YAML for a Jenkins build task
For the type of Jenkins build task used in this example, the YAML resembles the following code,
with notifications turned on:

test:
 type: Jenkins
 endpoints:
 jenkinsServer: jenkins
 input:
 job: Add two numbers
 parameters:
 Num1: '23'
 Num2: '23'

What to do next

Review the other sections to learn more. See Chapter 6 Connecting vRealize Automation Code
Stream to endpoints.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 154

How do I integrate vRealize Automation Code Stream with
Git

vRealize Automation Code Stream provides a way to trigger a pipeline if a code change occurs in
your GitHub, GitLab, or Bitbucket repository. The Git trigger uses a Git endpoint on the branch
of the repository that you want to monitor. vRealize Automation Code Stream connects to the Git
endpoint through a webhook.

To define a Git endpoint in vRealize Automation Code Stream, you select a project and enter the
branch of the Git repository where the endpoint is located. The project groups the pipeline with
the endpoint and other related objects. When you choose the project in your webhook definition,
you select the endpoint and pipeline to trigger.

Note If you define a webhook with your endpoint and you later edit the endpoint, you cannot
change the endpoint details in the webhook. To change the endpoint details, you must delete and
redefine the webhook with the endpoint. See How do I use the Git trigger in vRealize Automation
Code Stream to run a pipeline.

You can create multiple webhooks for different branches by using the same Git endpoint and
providing different values for the branch name in the webhook configuration page. To create
another webhook for another branch in the same Git repository, you don't need to clone the
Git endpoint multiple times for multiple branches. Instead, you provide the branch name in the
webhook, which allows you to reuse the Git endpoint. If the branch in the Git webhook is the same
as the branch in the endpoint, you don't need to provide branch name in the Git webhook page.

Prerequisites

n Verify that you can access the GitHub, GitLab, or Bitbucket repository to which you plan to
connect.

n Verify that you are a member of a project in vRealize Automation Code Stream. If you are not,
ask a vRealize Automation Code Stream administrator to add you as a member of a project.
See How do I add a project in vRealize Automation Code Stream.

Procedure

1 Define a Git endpoint.

a Click Endpoints > New Endpoint.

b Select a project, and for the endpoint type select Git. Then, enter a name and description.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 155

c If this endpoint is a business-critical component in your infrastructure, enable Mark as
restricted.

When you use a restricted endpoint in a pipeline, an administrator can run the pipeline and
must approve the pipeline execution. If an endpoint or variable is marked as restricted,
and a non-administrative user triggers the pipeline, the pipeline pauses at that task, and
waits for an administrator to resume it.

A Project administrator can start a pipeline that includes restricted endpoints or variables if
these resources are in the project where the user is a Project administrator.

When a user who is not an administrator attempts to run a pipeline that includes a
restricted resource, the pipeline stops at the task that uses the restricted resource. Then,
an administrator must resume the pipeline.

For more information about restricted resources, and custom roles that include the
permission called Manage Restricted Pipelines, see:

n How do I manage user access and approvals in vRealize Automation Code Stream

n Chapter 2 Setting up vRealize Automation Code Stream to model my release process

d Select one of the supported Git server types.

e Enter the URL for the repository with the API gateway for the server in the path. For
example, enter https://api.github.com/vmware-example/repo-example.

f Enter the branch in the repository where the endpoint is located.

g Select the Authentication type and enter the user name for GitHub, GitLab, or BitBucket.
Then enter the private token that goes with the user name.

n Password. To create a webhook later, you must enter the private token for
the password. Webhooks for Git do not support endpoints created using basic
authentication.

Use secret variables to hide and encrypt sensitive information. Use restricted variable
for strings, passwords, and URLs that must be hidden and encrypted, and to restrict
use in executions. For example, use a secret variable for a password or URL. You can
use secret and restricted variables in any type of task in your pipeline.

n Private token. This token is Git-specific and provides access to a specific action. See
https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html. You can also
create a variable for the private token.

2 Click Validate, and verify that the endpoint connects to vRealize Automation Code Stream.

If it does not connect, correct any errors, then click Create.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 156

https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html

What to do next

To learn more, review the other sections. See How do I use the Git trigger in vRealize Automation
Code Stream to run a pipeline.

How do I integrate vRealize Automation Code Stream with
Gerrit

vRealize Automation Code Streamlets you trigger a pipeline when a code review occurs in your
Gerrit project. The trigger for Gerrit definition includes the Gerrit project and the pipelines that
must run for different event types.

The trigger for Gerrit uses a Gerrit listener on the Gerrit server that you will monitor. To define a
Gerrit endpoint in vRealize Automation Code Stream, you select a project and enter the URL for
the Gerrit server. Then you specify the endpoint when you create a Gerrit listener on that server.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 157

If you are using a Gerrit server as a vRealize Automation Code Stream endpoint in a vRealize
Automation instance that has FIPS enabled, you must verify that your Gerrit configuration file
includes the correct message authentication keys. If the Gerrit server configuration file does not
include the correct message authentication keys, the server cannot start up correctly, and displays
this message: PrivateKey/PassPhrase is incorrect

Prerequisites

n Verify that you can access the Gerrit server to which you plan to connect.

n Verify that you are a member of a project in vRealize Automation Code Stream. If you are not
a member, ask a vRealize Automation Code Stream administrator to add you as a member of a
project. See How do I add a project in vRealize Automation Code Stream.

Procedure

1 Define a Gerrit endpoint.

a Click Configure > Endpoints and click New Endpoint.

b Select a project, and for the type of endpoint, select Gerrit. Then, enter a name and a
description.

c If this endpoint is a business-critical component in your infrastructure, enable Mark as
restricted.

d Enter the URL for the Gerrit server.

You can provide a port number with the URL or leave the value blank to use the default
port.

e Enter a username and password for the Gerrit server.

If the password must be encrypted, click Create Variable and select the type:

n Secret. The password resolves when a user who has any role runs the pipeline.

n Restricted. The password resolves when a user who has the Admin role runs the
pipeline.

For the value, enter the password that must be secure, such as the password of a Jenkins
server.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 158

f For the private key, enter the SSH key used to access the Gerrit server securely.

This key is the RSA private key that resides in the .ssh directory.

g (Optional) If a passphrase is associated with the private key, enter the passphrase.

To encrypt the passphrase, click Create Variable and select the type:

n Secret. The password resolves when a user who has any role runs the pipeline.

n Restricted. The password resolves when a user who has the Admin role runs the
pipeline.

For the value, enter the passphrase that must be secure, such as the passphrase for an
SSH server.

2 Click Validate, and verify that the Gerrit endpoint in vRealize Automation Code Stream
connects to the Gerrit server.

If it does not connect, correct any errors, then click Validate again.

3 Click Create.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 159

4 Verify that the vRealize Automation environment has FIPS enabled, or have your Jenkins job
create the environment with FIPS enabled by using the Jenkins URL.

a To run the command from the command line, connect to your vRealize
Automation 8.x appliance over SSH, and log in as the root user. For
example, connect to your fully qualified domain name URL, such as https://
cava-1-234-567.yourcompanyFQDN.com on port 22, 5480, or 443.

b To check for FIPS on vRealize Automation, run the command vracli security fips.

c Verify that the command returns FIPS mode: strict.

5 If your Gerrit server is an endpoint in a vRealize Automation instance that has FIPS enabled,
ensure that your Gerrit configuration file includes the correct message authentication (MAC)
keys.

a Open Gerrit and create an SSH key pair.

b Locate the Gerrit server configuration file at '$site_path'/etc/gerrit.config.

c Verify that the Gerrit server configuration file includes one or more message authentication
code (MAC) keys, except for hmac-MD5.

Note In FIPS mode, hmac-MD5 is not a supported MAC algorithm. To ensure that the Gerrit

server starts up correctly, the Gerrit server configuration file must exclude this algorithm.
If the Gerrit server does not start up correctly, it displays this message: PrivateKey/
PassPhrase is incorrect

Supported message authentication code (MAC) key names that begin with a plus sign (+)
are enabled. The MAC key names that begin with a hyphen (-) are removed from the list
of default MACs. By default, these supported MACs are available in vRealize Automation
Code Stream for the Gerrit server:

n hmac-md5-96

n hmac-sha1

n hmac-sha1-96

n hmac-sha2-256

n hmac-sha2-512

What to do next

To learn more, review the other sections. See How do I use the Gerrit trigger in vRealize
Automation Code Stream to run a pipeline.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 160

How do I integrate vRealize Automation Code Stream with
vRealize Orchestrator

vRealize Automation Code Stream can integrate with vRealize Orchestrator (vRO) to extend its

capability by running vRO workflows. vRealize Orchestrator includes many predefined workflows

that can integrate with third-party tools. These workflows help to automate and manage your
DevOps processes, automate bulk operations, and more.

For example, you can use a workflow in a vRO task in your pipeline to enable a user, remove

a user, move VMs, integrate with test frameworks to test your code as the pipeline runs,
and much more. You can browse examples of code for vRealize Orchestrator workflows in
code.vmware.com.

With a vRealize Orchestrator workflow, your pipeline can run an action as it builds, tests, and
deploys your application. You can include predefined workflows in your pipeline, or you can
create and use custom workflows. Each workflow includes inputs, tasks, and outputs.

To run a vRO workflow in your pipeline, the workflow must appear in the list of available workflows

in the vRO task that you include in your pipeline.

Before the workflow can appear in the vRO task in your pipeline, an administrator must perform

the following steps in vRealize Orchestrator:

1 Apply the CODESTREAM tag to the vRO workflow.

2 Mark the vRO workflow as global.

Prerequisites

n Verify that as an administrator you can access an on-premises instance of vRealize
Orchestrator. For help, see your own administrator and the vRealize Orchestrator
documentation.

n Verify that you are a member of a project in vRealize Automation Code Stream. If you are not,
ask a vRealize Automation Code Stream administrator to add you as a member of a project.
See How do I add a project in vRealize Automation Code Stream.

n In vRealize Automation Code Stream, create a pipeline and add a stage.

Procedure

1 As an administrator, prepare a vRealize Orchestrator workflow for your pipeline to run.

a In vRealize Orchestrator, find the workflow that you need to use in your pipeline, such as a
workflow to enable a user.

If you need a workflow that does not exist, you can create it.

b In the search bar, enter Tag workflow to find the workflow named Tag workflow.

c On the card named Tag workflow, click Run, which displays the configuration area.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 161

https://code.vmware.com/samples?categories=Sample&tags=vRealize%20Orchestrator
http://docs.vmware.com/en/vRealize-Orchestrator/index.html
http://docs.vmware.com/en/vRealize-Orchestrator/index.html

d In the Tagged workflow text area, enter the name of the workflow to use in your vRealize

Automation Code Stream pipeline, then select it from the list.

e In the Tag and Value text areas, enter CODESTREAM in capital letters.

f Click the check box named Global tag.

g Click Run, which attaches the tag named CODESTREAM to the workflow that you need to

select in your vRealize Automation Code Stream pipeline.

h In the navigation pane, click Workflows and confirm that the tag named CODESTREAM
appears on the workflow card that your pipeline will run.

After you log in to vRealize Automation Code Stream, and add a vRO task to your pipeline,

the tagged workflow appears in the workflow list.

2 In vRealize Automation Code Stream, create an endpoint for your vRealize Orchestrator
instance.

a Click Endpoints > New Endpoint.

b Select a project.

c Enter a relevant name.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 162

d Enter the URL of the vRealize Orchestrator endpoint.

Use this format: https://host-n-01-234.eng.vmware.com:8281
Do not use this format: https://host-n-01-234.eng.vmware.com:8281/vco/api

The URL for a vRealize Orchestrator instance that is onboard the vRealize Automation
appliance, is the FQDN for the appliance without a port or path. For example: https://
vra-appliance.yourdomain.local
For external vRealize Orchestrator appliances starting with vRealize Automation 8.x, the
FQDN for the appliance is https://vro-appliance.yourdomain.local
If a problem occurs when you add the endpoint, you might need to import a YAML
configuration with a SHA-256 certificate fingerprint with the colons removed. For example,
B0:01:A2:72... becomes B001A272.... The sample YAML code resembles:

```
---
project: Demo
kind: ENDPOINT
name: external-vro
description: ''
type: vro
properties:
  url: https://yourVROhost.yourdomain.local
  username: yourusername
  password: yourpassword
  fingerprint: <your_fingerprint>
```

For external vRealize Orchestrator appliances included with vRealize Automation 7.x, the
FQDN for the appliance is https://vro-appliance.yourdomain.local:8281/vco

e Click Accept Certificate in case the URL that you entered needs a certificate.

f Enter the user name and password for the vRealize Orchestrator server.

If you're using a non-local user for authentication, you must omit the domain part of
the user name. For example, to authenticate with svc_vro@yourdomain.local you must

enter svc_vro in the Username text area.

3 Prepare your pipeline to run the vRO task.

a Add a vRO task to your pipeline stage.

b Enter a relevant name.

c In the Workflow Properties area, select the vRealize Orchestrator endpoint.

d Select the workflow that you tagged as CODESTREAM in vRealize Orchestrator.

If you select a custom workflow that you created, you might need to enter the input
parameter values.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 163

e For Execute task, click On condition.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 164

f Enter the conditions that apply when the pipeline runs.

When to run pipeline... Select conditions...

On Condition Runs the pipeline task only if the defined condition is evaluated as true. If
the condition is false, the task is skipped.

The vRO task allows you to include a boolean expression, which uses the

following operands and operators.

n Pipeline variables such as ${pipeline.variableName}. Only use

curly brackets when entering variables.

n Task output variables such as $
{Stage1.task1.machines[0].value.hostIp[0]}.

n Default pipeline binding variables such as ${releasePipelineName}.

n Case insensitive Boolean values such as, true, false, 'true',

'false'.

n Integer or decimal values without quotation marks.

n String values used with single or double quotation marks such as
"test", 'test'.

n String and Numeric types of values such as == Equals and != Not
Equals.

n Relational operators such as >, >=, <, and <=.

n Boolean logic such as && and ||.

n Arithmetic operators such as +, -, *, and /.

n Nested expressions using round brackets.

n Strings that include the literal value ABCD are evaluated as false, and

the task is skipped.

n Unary operators are not supported.

An example condition might be ${Stage1.task1.output} ==
“Passed” || ${pipeline.variableName} == 39

Always If you select Always, the pipeline runs the task without conditions.

g Enter a message for the greeting.

h Click Validate Task, and correct any errors that occur.

4 Save, enable, and run your pipeline.

5 After the pipeline runs, examine the results.

a Click Executions.

b Click the pipeline.

c Click the task.

d Examine the results, input value, and properties.

You can identify the workflow execution ID, who responded to the task and when, and any
comments they included.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 165

Results

Congratulations! You tagged a vRealize Orchestrator workflow for use in vRealize Automation
Code Stream, and added a vRO task in your vRealize Automation Code Stream pipeline so that it

runs a workflow that automates an action in your DevOps environment.

Example: vRO task output format
The output format for a vRO task resembles this example.

[{
 "name": "result",
 "type": "STRING",
 "description": "Result of workflow run.",
 "value": ""
},
{
 "name": "message",
 "type": "STRING",
 "description": "Message",
 "value": ""
}]

What to do next

Continue to include vRO workflow tasks in your pipelines so that you can automate tasks in your

development, test, and production environments.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 166

Triggering pipelines in vRealize
Automation Code Stream 7
You can have vRealize Automation Code Stream trigger a pipeline when certain events occur.

For example:

n The Docker trigger can run a pipeline when a new artifact gets created or updated.

n The trigger for Git can trigger a pipeline when developers update code.

n The trigger for Gerrit can trigger a pipeline when developers review code.

n The curl command can have Jenkins trigger the pipeline after a build completes.

This chapter includes the following topics:

n How do I use the Docker trigger in vRealize Automation Code Stream to run a continuous
delivery pipeline

n How do I use the Git trigger in vRealize Automation Code Stream to run a pipeline

n How do I use the Gerrit trigger in vRealize Automation Code Stream to run a pipeline

How do I use the Docker trigger in vRealize Automation
Code Stream to run a continuous delivery pipeline

As a vRealize Automation Code Stream administrator or developer, you can use the Docker trigger
in vRealize Automation Code Stream. The Docker trigger runs a standalone continuous delivery
(CD) pipeline whenever a build artifact is created or updated. The Docker trigger runs your
CD pipeline, which pushes the new or updated artifact as a container image to a Docker Hub
repository. The CD pipeline can run as part of your automated builds.

For example, to continuously deploy your updated container image through your CD pipeline,
use the Docker trigger. When your container image gets checked into the Docker registry, the
webhook in Docker Hub notifies vRealize Automation Code Stream that the image changed. This
notification triggers the CD pipeline to run with the updated container image, and upload the
image to the Docker Hub repository.

To use the Docker trigger, you perform several steps in vRealize Automation Code Stream.

VMware, Inc. 167

Table 7-1. How to use the Docker trigger

What you do... More information about this action...

Create a Docker registry endpoint. For vRealize Automation Code Stream to trigger your
pipeline, you must have a Docker Registry endpoint. If
the endpoint does not exist, you can select an option
that creates it when you add the webhook for the Docker
trigger.

The Docker registry endpoint includes the URL to the
Docker Hub repository.

Add input parameters to the pipeline that auto inject
Docker parameters when the pipeline runs.

You can inject Docker parameters into the pipeline.
Parameters can include the Docker event owner name,
image, repository name, repository namespace, and tag.

In your CD pipeline, you include input parameters that the
Docker webhook passes to the pipeline before the pipeline
triggers.

Create a Docker webhook. When you create the Docker webhook in vRealize
Automation Code Stream, it also creates a corresponding
webhook in Docker Hub. The Docker webhook in vRealize
Automation Code Stream connects to Docker Hub through
the URL that you include in the webhook.

The webhooks communicate with each other, and trigger
the pipeline when an artifact is created or updated in
Docker Hub.

If you update or delete the Docker webhook in vRealize
Automation Code Stream, the webhook in Docker Hub is
also updated or deleted.

Add and configure a Kubernetes task in your pipeline. When an artifact is created or updated in the Docker
Hub repository, the pipeline triggers. Then, it deploys the
artifact through the pipeline to the Docker host in your
Kubernetes cluster.

Include a local YAML definition in the task. The YAML definition that you apply to the deployment
task includes the Docker container image. If you need to
download an image from a privately-owned repository, the
YAML file must include a section with the Docker config
Secret. See the CD portion of Planning a CICD native
build in vRealize Automation Code Stream before using
the smart pipeline template

When an artifact is created or updated in the Docker Hub repository, the webhook in Docker
Hub notifies the webhook in vRealize Automation Code Stream, which triggers the pipeline. The
following actions occur:

1 Docker Hub sends a POST request to the URL in the webhook.

2 vRealize Automation Code Stream runs the Docker trigger.

3 The Docker trigger starts your CD pipeline.

4 The CD pipeline pushes the artifact to the Docker Hub repository.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 168

5 vRealize Automation Code Stream triggers its Docker webhook, which runs a CD pipeline that
deploys the artifact to your Docker host.

In this example, you create a Docker endpoint and a Docker webhook in vRealize Automation
Code Stream that deploys your application to your development Kubernetes cluster. The steps
include the example code for the payload that Docker posts to the URL in the webhook, the API
code that it uses, and the authentication code with the secure token.

Prerequisites

n Verify that a continuous delivery (CD) pipeline exists in your vRealize Automation Code
Stream instance. Also verify that it includes one or more Kubernetes tasks that deploy your
application. See Chapter 4 Planning to natively build, integrate, and deliver your code in
vRealize Automation Code Stream .

n Verify that you can access an existing Kubernetes cluster where your CD pipeline can deploy
your application for development.

n Verify that you are a member of a project in vRealize Automation Code Stream. If you are not,
ask a vRealize Automation Code Stream administrator to add you as a member of a project.
See How do I add a project in vRealize Automation Code Stream.

Procedure

1 Create a Docker registry endpoint.

a Click Endpoints.

b Click New Endpoint.

c Start typing name of existing project.

d Select the type as Docker Registry.

e Enter a relevant name.

f Select the server type as DockerHub.

g Enter the URL to the Docker Hub repository.

h Enter the name and password that can access the repository.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 169

Using and Managing vRealize Automation Code Stream

VMware, Inc. 170

2 In your CD pipeline, set the input properties to auto inject Docker parameters when the
pipeline runs.

3 Create a Docker webhook.

a Click Triggers > Docker.

b Click New Webhook for Docker.

c Select a project.

d Enter a relevant name.

e Select your Docker registry endpoint.

If the endpoint does not yet exist, click Create Endpoint and create it.

f Select the pipeline with Docker injected parameters for the webhook to trigger. See Step
2.

If the pipeline was configured with custom added input parameters, the Input Parameters
list displays parameters and values. You can enter values for input parameters that will be
passed to the pipeline with the trigger event. Or you can leave the values blank, or use the
default values if defined.

For more information about parameters on the input tab, see How you'll create the CICD
pipeline and configure the workspace.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 171

g Enter the API Token.

The CSP API token authenticates you for external API connections with vRealize
Automation Code Stream. To obtain the API token:

1 Click Generate Token.

2 Enter the email address associated with your user name and password and click
Generate.

The token that you generate is valid for six months. It is also known as a refresh token.

n To keep the token as a variable for future use, click Create Variable, enter a name
for the variable and click Save.

n To keep the token as a text value for future use, click Copy and paste the token into
a text file to save locally.

You can choose to both create a variable and store the token in a text file for future
use.

3 Click Close.

h Enter the build image.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 172

i Enter a tag.

j Click Save.

The webhook card appears with the Docker webhook enabled. If you want to make a
dummy push to the Docker Hub repository without triggering the Docker webhook and
running a pipeline, click Disable.

4 In your CD pipeline, configure your Kubernetes deployment task.

a In the Kubernetes task properties, select your development Kubernetes cluster.

b Select the Create action.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 173

c Select the Local Definition for the payload source.

d Then select your local YAML file.

For example, Docker Hub might post this local YAML definition as the payload to the URL
in the webhook:

{
"callback_url": "https://registry.hub.docker.com/u/svendowideit/testhook/hook/
2141b5bi5i5b02bec211i4eeih0242eg11000a/",
"push_data": {
"images": [
"27d47432a69bca5f2700e4dff7de0388ed65f9d3fb1ec645e2bc24c223dc1cc3",
"51a9c7c1f8bb2fa19bcd09789a34e63f35abb80044bc10196e304f6634cc582c",
"..."
],
"pushed_at": 1.417566161e+09,
"pusher": "trustedbuilder",
"tag": "latest"
},
"repository": {
"comment_count": 0,
"date_created": 1.417494799e+09,
"description": "",
"dockerfile": "#\n# BUILD\u0009\u0009docker build -t svendowideit/apt-
cacher .\n# RUN\u0009\u0009docker run -d -p 3142:3142 -name apt-cacher-
run apt-cacher\n#\n# and then you can run containers with:\n#
\u0009\u0009docker run -t -i -rm -e http_proxy http://192.168.1.2:3142/
debian bash\n#\nFROM\u0009\u0009ubuntu\n\n\nVOLUME\u0009\u0009[\/var/cache/apt-cacher-
ng\]\nRUN\u0009\u0009apt-get update ; apt-get install -yq apt-cacher-ng\n\nEXPOSE
\u0009\u00093142\nCMD\u0009\u0009chmod 777 /var/cache/apt-cacher-ng ; /etc/init.d/apt-
cacher-ng start ; tail -f /var/log/apt-cacher-ng/*\n",
"full_description": "Docker Hub based automated build from a GitHub repo",
"is_official": false,
"is_private": true,
"is_trusted": true,
"name": "testhook",
"namespace": "svendowideit",
"owner": "svendowideit",
"repo_name": "svendowideit/testhook",
"repo_url": "https://registry.hub.docker.com/u/svendowideit/testhook/",
"star_count": 0,
"status": "Active"
}
}

The API that creates the webhook in Docker Hub uses this
form: https://cloud.docker.com/v2/repositories/%3CUSERNAME%3E/%3CREPOSITORY%3E/
webhook_pipeline/

The JSON code body resembles:

{
"name": "demo_webhook",

Using and Managing vRealize Automation Code Stream

VMware, Inc. 174

"webhooks": [
{
"name": "demo_webhook",
"hook_url": "http://www.google.com"
}
]
}

To receive events from the Docker Hub server, the authentication scheme for the
Docker webhook that you create in vRealize Automation Code Stream uses an allowlist
authentication mechanism with a random string token for the webhook. It filters events
based on the secure token, which you can append to hook_url.

vRealize Automation Code Stream can verify any request from the Docker Hub server
by using the configured secure token. For example: hook_url = IP:Port/pipelines/api/
docker-hub-webhooks?secureToken = ""

5 Create a Docker artifact in your Docker Hub repository. Or, update an existing artifact.

6 To confirm that the trigger occurred, and see the activity on the Docker webhook, click
Triggers > Docker > Activity.

7 Click Executions, and observe your pipeline as it runs.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 175

8 Click the running stage and view the tasks as the pipeline runs.

Results

Congratulations! You set up the Docker trigger to run your CD pipeline continuously. Your pipeline
can now upload new and updated Docker artifacts to the Docker Hub repository.

What to do next

Verify that your new or updated artifact is deployed to the Docker host in your development
Kubernetes cluster.

How do I use the Git trigger in vRealize Automation Code
Stream to run a pipeline

As a vRealize Automation Code Stream administrator or developer, you can integrate integrate
vRealize Automation Code Stream with the Git lifecycle by using the Git trigger. When you make
a code change in GitHub, GitLab, or Bitbucket Enterprise, the event communicates with vRealize
Automation Code Stream through a webhook and triggers a pipeline. The webhook works with
GitLab, GitHub, and Bitbucket on-premises enterprise versions when both vRealize Automation
Cloud Assembly and the enterprise version are reachable on the same network.

When you add the webhook for Git in vRealize Automation Code Stream, it also creates a
webhook in the GitHub, GitLab, or the Bitbucket repository. If you update or delete the webhook
later, that action also updates or deletes the webhook in GitHub, GitLab, or Bitbucket.

Your webhook definition must include a Git endpoint on the branch of the repository that you will
monitor. To create the webhook, vRealize Automation Code Stream uses the Git endpoint. If the
endpoint does not exist, you can create it when you add the webhook. This example assumes that
you have a predefined Git endpoint in GitHub.

Note Your Git endpoint must use a private token for authentication. If your Git endpoint uses a
password for basic authentication, you will not be able to create a webhook.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 176

You can create multiple webhooks for different branches by using the same Git endpoint and
providing different values for the branch name in the webhook configuration page. To create
another webhook for another branch in the same Git repository, instead of cloning the Git
endpoint multiple times for multiple branches, you can provide the branch name in the webhook.
This approach allows you to reuse the Git endpoint. If the branch in the Git webhook is the same
as the branch in the endpoint, you don't need to provide branch name in the Git webhook page.

This example shows you how to use the Git trigger with a GitHub repository, but the prerequisites
include preparations required if another Git server type is used.

Prerequisites

n Verify that you are a member of a project in vRealize Automation Code Stream. If you are not,
ask a vRealize Automation Code Stream administrator to add you as a member of a project.
See How do I add a project in vRealize Automation Code Stream.

n Verify that you have a Git endpoint on the GitHub branch you want to monitor. See How do I
integrate vRealize Automation Code Stream with Git.

n Verify that you have rights to create a webhook in the Git repository.

n If configuring a webhook in GitLab, change the default network settings in GitLab enterprise to
enable outbound requests and allow the creation of local webhooks.

Note This change is only required for GitLab enterprise. These settings do not apply to
GitHub or Bitbucket.

a Log in to your GitLab enterprise instance as administrator.

b Go to network settings using a URL such as, http://{gitlab-server}/admin/
application_settings/network.

c Expand Outbound requests and click:

n Allow requests to the local network from web hooks and services.

n Allow requests to the local network from system hook.

n For the pipelines you want to trigger, verify that you have set the input properties to inject Git
parameters when the pipeline runs.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 177

For information about input parameters, see How you'll create the CICD pipeline and
configure the workspace.

Procedure

1 In vRealize Automation Code Stream, click Triggers > Git.

2 Click the Webhooks for Git tab, then click New Webhook for Git.

a Select a project.

b Enter a meaningful name and description for the webhook.

c Select a Git endpoint configured for the branch you want to monitor.

When you create your webhook, the webhook definition includes the current endpoint
details.

n If you later change the Git type, Git server type, or Git repository URL in the endpoint,
the webhook will no longer be able to trigger a pipeline because it will try to access the
Git repository using the original endpoint details. You must delete the webhook and
create it again with the endpoint.

n If you later change the authentication type, username, or private token in the endpoint,
the webhook will continue to work.

Note If you previously created a webhook using a Git endpoint that uses a password for
basic authentication, you must delete and redefine the webhook with a Git endpoint that
uses a private token for authentication.

See How do I integrate vRealize Automation Code Stream with Git.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 178

d (Optional) Enter the branch that you want the webhook to monitor.

If you leave the branch unspecified, the webhook monitors the branch that you configured
for the Git endpoint.

e (Optional) Generate a secret token for the webhook.

If you use a secret token, vRealize Automation Code Stream generates a random string
token for the webhook. Then, when the webhook receives Git event data, it sends the data
with the secret token. vRealize Automation Code Stream uses the information to determine
if the calls are coming from the expected source such as the configured GitHub instance,
repository, and branch. The secret token provides an extra layer of security that is used to
verify that the Git event data is coming from the correct source.

f (Optional) Provide file inclusions or exclusions as conditions for the trigger.

n File inclusions. If any of the files in a commit match the files specified in the inclusion
paths or regex, the pipelines will trigger. With a regex specified, vRealize Automation
Code Stream only triggers the pipelines when filenames in the changeset match the
expression provided. The regex filter is useful when configuring a trigger for multiple
pipelines on a single repository.

n File exclusions. When all the files in a commit match the specified files in the exclusion
paths or regex, the pipelines do not trigger.

n Prioritize exclusions. When toggled on, Prioritize Exclusion ensures that pipelines do
not trigger even if any of the files in a commit match the files specified in the exclusion
paths or regex. The default setting is off.

If conditions meet both the file inclusions and file exclusions, pipelines do not trigger.

In the following example, both file inclusions and file exclusions are conditions for the
trigger.

n For file inclusions, a commit with any change to runtime/src/main/a.java or any

Java file will trigger pipelines configured in the event configuration.

n For file exclusions, a commit with changes only in both files will not trigger the
pipelines configured in the event configurations.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 179

g For the Git event, select a Push or Pull request.

h Enter the API Token.

The CSP API token authenticates you for external API connections with vRealize
Automation Code Stream. To obtain the API token:

1 Click Generate Token.

2 Enter the email address associated with your user name and password and click
Generate.

The token that you generate is valid for six months. It is also known as a refresh token.

n To keep the token as a variable for future use, click Create Variable, enter a name
for the variable and click Save.

n To keep the token as a text value for future use, click Copy and paste the token into
a text file to save locally.

You can choose to both create a variable and store the token in a text file for future
use.

3 Click Close.

i Select the pipeline for the webhook to trigger.

If the pipeline includes custom added input parameters, the Input Parameters list displays
parameters and values. You can enter values for input parameters that pass to the pipeline
with the trigger event. Or, you can leave the values blank, or use the default values if
defined.

For information about Auto inject input parameters for Git triggers, see the Prerequisites.

j Click Create.

The webhook appears as a new card.

3 Click the webhook card.

When the webhook data form reappears, you see a webhook URL added to the top of the
form. The Git webhook connects to the GitHub repository through the webhook URL.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 180

Using and Managing vRealize Automation Code Stream

VMware, Inc. 181

4 In a new browser window, open the GitHub repository that connects through the webhook.

a To see the webhook that you added in vRealize Automation Code Stream, click the
Settings tab and select Webhooks.

At the bottom of the webhooks list, you see the same webhook URL.

b To make a code change, click the Code tab and select a file on the branch. After you edit
the file, commit the change.

c To verify that the webhook URL is working, click the Settings tab and select Webhooks
again.

At the bottom of the webhooks list, a green checkmark appears next to the webhook URL.

5 Return to vRealize Automation Code Stream to view the activity on the Git webhook. Click
Triggers > Git > Activity.

Under Execution Status, verify that the pipeline run has started.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 182

6 Click Executions and track your pipeline as it runs.

To observe the pipeline run, you can press the refresh button.

Results

Congratulations! You successfully used the trigger for Git!

How do I use the Gerrit trigger in vRealize Automation Code
Stream to run a pipeline

As a vRealize Automation Code Stream administrator or developer, you can integrate vRealize
Automation Code Stream with the Gerrit code review lifecycle by using the Gerrit trigger. The
event triggers a pipeline to run when you create a patch set, publish drafts, merge code changes
on the Gerrit project, or directly push changes on the Git branch.

When you add the Gerrit trigger, you select a Gerrit listener, a Gerrit project on the Gerrit server,
and you configure Gerrit events. In this example, you first configure a Gerrit listener, then you use
that listener in a Gerrit trigger with two events on three different pipelines.

Prerequisites

n Verify that you are a member of a project in vRealize Automation Code Stream. If you are not,
ask a vRealize Automation Code Stream administrator to add you as a member of a project.
See How do I add a project in vRealize Automation Code Stream.

n Verify that you have a Gerrit endpoint configured in vRealize Automation Code Stream. See
How do I integrate vRealize Automation Code Stream with Gerrit.

n For pipelines to trigger, verify that you set the input properties of the pipeline as Gerrit, which
allows the pipeline to receive the Gerrit parameters as inputs when the pipeline runs.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 183

For information about input parameters, see How you'll create the CICD pipeline and
configure the workspace.

Procedure

1 In vRealize Automation Code Stream, click Triggers > Gerrit.

2 (Optional) Click the Listeners tab, then click New Listener.

Note If the Gerrit listener that you plan to use for the Gerrit trigger is already defined, skip
this step.

a Select a project.

b Enter a name for the Gerrit listener.

c Select a Gerrit endpoint.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 184

d Enter the API Token.

The CSP API token authenticates you for external API connections with vRealize
Automation Code Stream. To obtain the API token:

1 Click Generate Token.

2 Enter the email address associated with your user name and password and click
Generate.

The token that you generate is valid for six months. It is also known as a refresh token.

n To keep the token as a variable for future use, click Create Variable, enter a name
for the variable and click Save.

n To keep the token as a text value for future use, click Copy and paste the token into
a text file to save locally.

You can choose to both create a variable and store the token in a text file for future
use.

3 Click Close.

If you created a variable, the API token displays the variable name that you entered by
using dollar binding. If you copied the token, the API token displays the masked token.

e To validate the token and endpoint details, click Validate.

Your token expires after 90 days.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 185

f Click Create.

g On the listener card, click Connect.

The listener starts monitoring all activity on the Gerrit server and listens for any enabled
triggers on that server. To stop listening for a trigger on that server, you deactivate the
trigger.

Note To update a Gerrit endpoint that is connected to a listener, you must disconnect the
listener before updating the endpoint.

n Click Configure > Triggers > Gerrit .

n Click the Listeners tab.

n Click Disconnect on the listener that is connected to the endpoint that you want to
update.

3 Click the Triggers tab, then click New Trigger.

4 Select a project on the Gerrit server.

5 Enter a name.

The Gerrit trigger name must be unique.

6 Select a configured Gerrit listener.

By using the Gerrit listener, vRealize Automation Code Stream provides a list of Gerrit projects
that are available on the server.

7 Select a project on the Gerrit server.

8 Enter the branch in the repository that the Gerrit listener will monitor.

9 (Optional) Provide file inclusions or exclusions as conditions for the trigger.

n You provide file inclusions that trigger the pipelines. When any of the files in a commit
match the files specified in the inclusion paths or regex, pipelines trigger. With a regex
specified, vRealize Automation Code Stream only triggers pipelines with filenames in the
changeset that match the expression provided. The regex filter is useful when configuring
a trigger for multiple pipelines on a single repository.

n You provide file exclusions that keep pipelines from triggering. When all the files in a
commit match the files specified in the exclusion paths or regex, the pipelines do not
trigger.

n Prioritize Exclusion, when toggled on, ensures that pipelines do not trigger. The pipelines
won't trigger even if any of the files in a commit match the files specified in the exclusion
paths or regex. The default setting for Prioritize Exclusion is turned off.

If the conditions meet both the file inclusion and the file exclusion, pipelines do not trigger.

In the following example, both the file inclusions and the file exclusions are conditions for the
trigger.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 186

n For file inclusions, a commit that has any change to runtime/src/main/a.java or any

Java file will trigger the pipelines configured in the event configuration.

n For file exclusions, a commit that has changes only in both files will not trigger the
pipelines configured in the event configuration.

10 Click New Configuration.

a For a Gerrit event, select Patchset Created, Draft Published, or Change Merged. Or, for a
direct push to Git that bypasses Gerrit, select Direct Git push.

b Select the pipeline that will trigger.

If the pipeline includes custom added input parameters, the Input Parameters list displays
parameters and values. You can enter values for input parameters to be passed to the
pipeline with the trigger event. Or, you can leave the values blank, or use the default
values.

Note If default values are defined:

n Any values you enter for the input parameters will override the default values defined
in the pipeline model.

n The default values in the trigger configuration will not change if the parameter values in
the pipeline model change.

For information about Auto inject input parameters for Gerrit triggers, see the
Prerequisites.

c For Patchset Created, Draft Published, and Change Merged, some actions appear with
labels by default. You can change the label or add comments. Then, when the pipeline
runs, the label or comment appears on the Activity tab as the Action taken for the
pipeline.

The Gerrit Event configuration allows you to enter comments by using a variable for the
Success comment or Failure comment. For example: ${var.success} and ${var.failure}.

d Click Save.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 187

To add multiple trigger events on multiple pipelines, click New Configuration again.

In the following example, you can see events for three pipelines:

n If a Change Merged event occurs in the Gerrit project, the pipeline named Gerrit-Pipeline
triggers.

n If a Patchset Created event occurs in the Gerrit project, the pipelines named Gerrit-
Trigger-Pipeline and Gerrit-Demo-Pipeline trigger.

11 Click Create.

The Gerrit trigger appears as a new card on the Triggers tab, and is set as Disabled by default.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 188

12 On the trigger card, click Enable.

After you enable the trigger, it can use the Gerrit listener, which starts monitoring events that
occur on the branch of the Gerrit project.

To create a trigger that has the same file inclusion conditions or file exclusion conditions, but
with a different repository than the one you included when you created the trigger, on the
trigger card click Actions > Clone. Then, on the cloned trigger, click Open, and change the
parameters.

Results

Congratulations! You successfully configured a Gerrit trigger with two events on three different
pipelines.

What to do next

After you commit a code change in the Gerrit project, observe the Activity tab for the Gerrit
event in vRealize Automation Code Stream. Verify that the list of activities includes entries that
correspond to every pipeline execution in the trigger configuration.

When an event occurs, only pipelines in the Gerrit trigger that relate to the particular type of
event can run. In this example, if a patch set is created, only the Gerrit-Trigger-Pipeline and the
Gerrit-Demo-Pipeline will run.

Information in the columns on the Activity tab describe each Gerrit trigger event. You can select
the columns that appear by clicking the column icon that appears below the table.

n The Change Subject and Execution columns are empty when the trigger was a direct Git push.

n The Gerrit Trigger column displays the trigger that created the event.

n The Listener column is turned off by default. When you select it, the column displays the
Gerrit listener that received the event. A single listener can appear as associated with multiple
triggers.

n The Trigger Type column is turned off by default. When you select it, the column displays the
type of trigger as AUTOMATIC or MANUAL.

n Other columns include Commit Time, Change#, Status, Message, Action taken, User, Gerrit
project, Branch, and Event.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 189

To control the activity for a completed or failed pipeline run, click the three dots at the left of any
entry on the Activity screen.

n If the pipeline fails to run because of a mistake in the pipeline model or another problem,
correct the mistake and select Re-run, which runs the pipeline again.

n If the pipeline fails to run because of a network connectivity issue or another problem, select
Resume, which restarts the same pipeline execution, and saves run time.

n Use View Execution, which opens the pipeline execution view. See How do I run a pipeline
and see results.

n Use Delete to delete the entry from the Activity screen.

If a Gerrit event fails to trigger a pipeline, you can click Trigger Manually, then select the Gerrit
trigger, enter the Change-Id, and click Run.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 190

Monitoring pipelines in vRealize
Automation Code Stream 8
As a vRealize Automation Code Stream administrator or developer, you need insight about the
performance of your pipelines in vRealize Automation Code Stream. You need to know how
effectively your pipelines release code from development, through testing, and to production.

To gain insight, you use vRealize Automation Code Stream dashboards to monitor the trends and
results of a pipeline execution. You can use the default pipeline dashboards to monitor a single
pipeline, or create custom dashboards to monitor multiple pipelines.

n Pipeline metrics include statistics such as mean times, which are available on the pipeline
dashboard.

n To see metrics across multiple pipelines, use the custom dashboards.

This chapter includes the following topics:

n What does the pipeline dashboard show me in vRealize Automation Code Stream

n How do I use custom dashboards to track key performance indicators for my pipeline in
vRealize Automation Code Stream

What does the pipeline dashboard show me in vRealize
Automation Code Stream

A pipeline dashboard is a view of the results for a specific pipeline that ran, such as trends,
top failures, and successful changes. vRealize Automation Code Stream creates the pipeline
dashboard when you create a pipeline.

The dashboard contains the widgets that display pipeline execution results.

Pipeline Execution Status Counts Widget

You can view the total number of executions of a pipeline over a period of time grouped by
status: Completed, Failed, or Canceled. To see how the pipeline execution status has changed
over longer or shorter periods of time, change the duration on the display.

Pipeline Execution Statistics Widget

The pipeline execution statitstics include the mean times to recover, deliver, or fail a pipeline over
time.

VMware, Inc. 191

The following states apply to all pipeline executions:

n Completed

n Failed

n Waiting

n Running

n Canceled

n Queued

n Not Started

n Rolling Back

n Rollback Completed

n Rollback Failed

n Paused

Table 8-1. Measuring mean times

What gets
measured... What it means...

Average CI Average time spent in the continuous integration phase, measured by time in the CI task type.

Mean time to delivery
(MTTD)

Average duration of all COMPLETED runs over a period of time. D1, D2, and so forth is the
amount of time to deliver each COMPLETED run.

C P F C F RC

MTTD Avg.

D1 D2 D3 D4 D5

C W C F C

Mean time between
deliveries (MTBD)

Average time elapsed between successful deliveries over a period of time. The time elapsed
between two consecutive COMPLETED runs is the time between successful deliveries, such as
BD1, BD2 and so forth. MTBD indicates how often a production environment updates.

C C F C F F

MTBD Avg.

BD1 BD2 BD3 BD4 BD5

C RC C F C

Using and Managing vRealize Automation Code Stream

VMware, Inc. 192

Table 8-1. Measuring mean times (continued)

What gets
measured... What it means...

Mean time to failure
(MTTF)

Average duration of runs that end in FAILED, ROLLBACK_COMPLETED or
ROLLBACK_FAILED states over a period of time. F1, F2, and so forth is the amount of time for
a run to end in FAILURE, ROLLBACK_COMPLETED, or ROLLBACK FAILED.

F C F RC C W

MTTF

F6F1 F2 F3 F4 F5

C F C RF S R F

Avg.

Mean time to recovery
(MTTR)

Average time to recovery from a failure over a period of time. The time to recovery from a
failure is the time elapsed between a run with a final status of FAILED,
ROLLBACK_COMPLETED, or ROLLBACK_FAILED and the next immediate successful run
with a COMPLETED status. R1, R2 and so forth, is the amount of time to recovery after each
FAILED or ROLLBACK_FAILED run.

C C F C F RC

R1 R2 R3

MTTR Avg.

R4

C C F RC C RF C

Top Failed Stages and Tasks Widgets

Two widgets display the top failed stages and tasks in a pipeline. Each measurement reports the
number and percentage of failures for development and post-development environments for each
pipeline and project, averaged over a week or month. You view the top failures to troubleshoot
problems in the release automation process.

For example, you can configure the display for a particular duration such as the last seven days
and note the top failed tasks during that period of time. If you make a change in your environment
or pipeline and run the pipeline again, then check the top failed tasks over a longer duration such
as the last 14 days, the top failed tasks may have changed. With that result, you will know that the
change in your release automation process improved the success rate of your pipeline execution.

Pipeline Execution Duration Trends Widget

Pipeline execution duration trends show the MTTD, MTTF, MTBD, and MTTR, over a period of
time.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 193

Pipeline Execution Trends Widget

Pipeline execution trends show the total daily runs of a pipeline, grouped by status over a period
of time. Except for the current day, most daily aggregation counts only show COMPLETED and
FAILED runs.

How do I use custom dashboards to track key performance
indicators for my pipeline in vRealize Automation Code
Stream

As a vRealize Automation Code Stream administrator of developer, you create the custom
dashboard to display the results you want to see for one or more pipelines that ran. For example,
you can create a project-wide dashboard with KPIs and metrics gathered from multiple pipelines.
If an execution warning or failure is reported, you can use the dashboard to troubleshoot the
failure.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 194

To track trends and key performance indicators for your pipelines by using a custom dashboard,
you add widgets to the dashboard, and configure them to report on your pipelines.

To track execution details
for a pipeline, click any or

all the widgets that report on
executions and changes.

 To track post process testing trends
on code for a continuous integration

(CI) pipeline, click the
test widgets that support your test
tools: JUnit, JaCoCo, FindBugs,

and CheckStyle.

To configure each widget,
click the gear icon, select a
pipeline, select the details
to report, and click Save.

Save the custom dashboard.

Run all the pipelines that
the dashboard uses.

As the pipeline runs, monitor
your custom dashboard
for trends and graphs
of your pipeline KPIs.

To display details about the
pipeline, status, and stages, point

and click the active areas in
each widget on the custom

dashboard.

To track pipeline trends and KPIs,
use a Custom dashboard.
Dashboards > Custom

Dashboards > New Dashboard

Continue to use your custom
dashboard to gain insight on the

performance of your pipeline,
and report the results to your team.

Prerequisites

n Verify that one or more pipelines exist. In the user interface, click Pipelines.

n For the pipelines that you intend to monitor, verify that they ran successfully. Click Executions.

Procedure

1 To create a custom dashboard, click Dashboards > Custom Dashboards > New Dashboard.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 195

2 To customize the dashboard so that it reports on specific trends and key performance
indicators for your pipeline, click a widget.

For example, to display details about the pipeline status, stages, tasks, how long it ran,
and who ran it, click the Execution Details widget. Or, for a continuous integration (CI)
pipeline, you can track the trends on post-processing by using the widgets for JUnit, JaCoCo,
FindBugs, and CheckStyle.

3 Configure each widget that you add.

a On the widget, click the gear icon.

b Select a pipeline, set the available options, and select the columns to display.

c To save the widget configuration, click Save.

d To save the custom dashboard, click Save, and click Close.

4 To display more information about the pipeline, click the active areas on the widgets.

For example, in the Execution Details widget, click an entry in the Status column to display
more information about the pipeline execution. Or, on the Latest Successful Change widget,
to display a summary of the pipeline stage and task, click the active link.

Results

Congratulations! You created a custom dashboard that monitors trends and KPIs for your
pipelines.

What to do next

Continue to monitor the performance of your pipelines in vRealize Automation Code Stream, and
share the results with your manager and teams to continue to improve the process to release your
applications.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 196

Learn more about Code Stream 9
There are many ways for vRealize Automation Code Stream administrators and developers to
learn more about vRealize Automation Code Stream and what it can do for you.

You can use this documentation to learn more about pipelines and their executions, how to add
endpoints, how to add projects, and more.

Understand the permissions that roles provide. Learn how to use restricted resources, and require
approvals on pipelines. See How do I manage user access and approvals in vRealize Automation
Code Stream.

See the value of search by discovering where specific jobs or components are located in your
pipelines, executions, or endpoints.

This chapter includes the following topics:

n What is Search in vRealize Automation Code Stream

n More resources for vRealize Automation Code Stream Administrators and Developers

What is Search in vRealize Automation Code Stream

You use search to find where specific items or other components are located. For example, you
might want to search for activated or deactivated pipelines. Because if a pipeline is deactivated, it
cannot run.

What can I search

You can search in:

n Projects

n Endpoints

n Pipelines

n Executions

n Pipeline Dashboards, Custom Dashboards

n Gerrit Triggers and Servers

n Git Webhooks

VMware, Inc. 197

n Docker Webhooks

You can perform column-based filter search in:

n User Operations

n Variables

n Trigger Activity for Gerrit, Git, and Docker

You can perform grid-based filter search on the Activity page for each trigger.

How does search work

The criteria for search varies depending on the page you are on. Each page has different search
criteria.

Where you
search Criteria to use for search

Pipeline
Dashboards

Project, Name, Description, Tags, Link

Custom
Dashboards

Project, Name, Description, Link (UUID of an item on the dashboard)

Executions Name, Comments, Reason, Tags, Index, Status, Project, Show, Executed by, Executed by me, Link
(UUID of the execution), and Input parameters, Output parameters, or Status message by using this
format: <key>:<value>

Pipelines Name, Description, State, Tags, Created by, Created by me, Updated by, Updated by me, Project

Projects Name, Description

Endpoints Name, Description, Type, Updated by, Project

Gerrit triggers Name, Status, Project

Gerrit servers Name, Server URL, Project

Git Webhooks Name, Server Type, Repo, Branch, Project

Where:

n Link is the UUID of a pipeline, execution, or widget on a dashboard.

n Input parameter, Output parameter, and Status message notation and examples include:

n Notation: input.<inputKey>:<inputValue>

Example: input.GERRIT_CHANGE_OWNER_EMAIL:joe_user

n Notation: output.<outputKey>:<outputValue>

Example: output.BuildNo:29

n Notation: statusMessage:<value>

Example: statusMessage:Execution failed

Using and Managing vRealize Automation Code Stream

VMware, Inc. 198

n Status or state depends on the search page.

n For executions, possible values include: completed, failed, rollback_failed, or canceled.

n For pipelines, possible state values include: enabled, disabled, or released.

n For triggers, possible status values include: enabled or disabled.

n Executed, Created, or Updated by me refers to me, the logged in user.

Search appears at the upper right of every valid page. When you start typing into the search
blank, vRealize Automation Code Stream knows the context of the page and suggests options for
the search.

Methods you can use to search How to enter it

Type a portion of the search parameter.

For example, to add a status filter that lists all the enabled
pipelines, type ena.

To reduce the number of items found, add a filter.

For example, type Tes to add a name filter. The filter

works as an AND with the existing Status:disabled filter to

show only the deactivated pipelines with Tes in the name.

When you add another filter, the remaining options
appear: Name, Description, Tags, Link, Project, and
Updated by.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 199

Methods you can use to search How to enter it

To reduce the number of items displayed, click the filter
icon on properties of a pipeline or a pipeline execution.

n For pipelines, Status, Tags, Project, and Updated by
each have a filter icon.

n For executions, Tags, Executed by, and Status
Message each have a filter icon.

For example on the pipeline card, click the icon to add
the filter for the SmartTemplate tag to the existing filters
for: Status:Enabled, Project:test, Updated by:user and
Tags:Canary.

Use a comma separator to include all items in two
execution states.

For example, type fa,can to create a status filter that

works as an OR to list all failed or canceled executions.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 200

Methods you can use to search How to enter it

Type a number to include all items within an index range.

For example, type 35 and select < to list all executions with

an index number less than 35.

Pipelines that are modeled as tasks become nested
executions and are not listed with all executions by default.

To show nested executions, type nested and select the

Show filter.

How do I save a favorite search

You can save favorite searches to use on each page by clicking the disk icon next to the search
area.

n You save a search by typing the parameters for search and clicking the icon to give the search
a name such as my enabled.

n After saving a search, you click the icon to access the search. You can also select Manage to
rename, delete, or move the search in the list of saved searches.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 201

Searches are tied to your user name and only appear on the pages for which the search applies.
For example, if you saved a search named my enabled for Status:enabled on the pipelines page,

the my enabled search is not available on the Gerrit triggers page, even though Status:enabled is

a valid search for a trigger.

Can I save a favorite pipeline

If you have a favorite pipeline or dashboard, you can pin it so that it always appears at the top of
your pipelines or dashboards page. On the pipeline card, click Actions > Pin.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 202

More resources for vRealize Automation Code Stream
Administrators and Developers

As a vRealize Automation Code Stream administrator or developer, you can learn more about
vRealize Automation Code Stream.

Table 9-1. More resources for administrators

To learn about... See these resources...

Other ways administrators can use vRealize Automation
Code Stream:

n Configure pipelines to automate the testing and
release of cloud native applications.

n Automate and test developer source code, through
testing, to production.

n Configure pipelines for developers to test changes
before they commit them to the primary branch.

n Track key pipeline metrics.

vRealize Automation Code Stream

n vRealize Automation Documentation

n vRealize Automation product website

VMware Hands On

n Use the vRealize Automation Community.

n Use the VMware Learning Zone.

n Search the VMware Blogs.

n Try the VMware Hands On Labs.

Table 9-2. More resources for developers

To learn about... See these resources...

Other ways developers can use vRealize Automation Code
Stream:

n Use public and private registry images to build
environments for new applications or services.

n Set up development environments so that you can
create branches from the latest stable build.

n Update development environments with the latest
code changes and artifacts.

n Test uncommitted code changes against the latest
stable builds of other dependent services.

n Receive a notification when a change committed to a
primary CICD pipeline breaks other services.

vRealize Automation Code Stream

n vRealize Automation Documentation

n vRealize Automation product website

VMware Hands On

n Use the vRealize Automation Community.

n Use the VMware Learning Zone.

n Search the VMware Blogs.

n Try the VMware Hands On Labs.

Using and Managing vRealize Automation Code Stream

VMware, Inc. 203

http://docs.vmware.com/en/vRealize-Automation/index.html
http://www.vmware.com/products/vrealize-automation.html
http://communities.vmware.com/community/vmtn/vcloud-automation-center
http://www.vmware.com/education-services/learning-zone.html
http://blogs.vmware.com/all-vmware-blogs/
http://www.vmware.com/try-vmware/try-hands-on-labs.html
http://docs.vmware.com/en/vRealize-Automation/index.html
http://www.vmware.com/products/vrealize-automation.html
http://communities.vmware.com/community/vmtn/vcloud-automation-center
http://www.vmware.com/education-services/learning-zone.html
http://blogs.vmware.com/all-vmware-blogs/
http://www.vmware.com/try-vmware/try-hands-on-labs.html

	Using and Managing vRealize Automation Code Stream
	Contents
	What is vRealize Automation Code Stream and how does it work
	Setting up to model my release process
	How do I add a project
	How do I manage user access and approvals
	What are user operations and approvals

	Creating and using pipelines
	How do I run a pipeline and see results
	What task types are available
	How do I do use variable bindings in pipelines
	How do I use variable bindings in a condition task to run or stop a pipeline
	What variables and expressions can I use when binding pipeline tasks
	How do I send notifications about my pipeline
	How do I create a Jira ticket when a pipeline task fails
	How do I roll back my deployment

	Planning to natively build, integrate, and deliver your code
	Planning a CICD native build before using the smart pipeline template
	Planning a CI native build before using the smart pipeline template
	Planning a CD native build before using the smart pipeline template
	Planning a CICD native build before manually adding tasks
	Planning for rollback

	Tutorials
	How do I continuously integrate code from my GitHub or GitLab repository into my pipeline
	How do I automate the release of an application that I deploy from a YAML cloud template
	How do I automate the release of an application to a Kubernetes cluster
	How do I deploy my application to my Blue-Green deployment
	How do I integrate my own build, test, and deploy tools
	How do I use the resource properties of a cloud template task in my next task
	How do I use a REST API to integrate with other applications

	Connecting to endpoints
	What are Endpoints
	How do I integrate with Jenkins
	How do I integrate with Git
	How do I integrate with Gerrit
	How do I integrate with vRealize Orchestrator

	Triggering pipelines
	How do I use the Docker trigger to run a continuous delivery pipeline
	How do I use the Git trigger to run a pipeline
	How do I use the Gerrit trigger to run a pipeline

	Monitoring pipelines
	What does the pipeline dashboard show me
	How do I use custom dashboards to track key performance indicators

	Learn more
	What is Search
	More resources for Administrators and Developers

