Using and Managing vRealize
Automation Code Stream

14 December 2022
vRealize Automation 8.5

Using and Managing vRealize Automation Code Stream

You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

VMware, Inc.

3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright © 2022 VMware, Inc. All rights reserved. Copyright and trademark information.

VMware, Inc.

https://docs.vmware.com/
https://docs.vmware.com/copyright-trademark.html

Contents

1 What is vRealize Automation Code Stream and how does it work 5

2 Setting up to model my release process 10

How do | add a project 15
How do | manage user access and approvals 16

What are user operations and approvals 24

3 Creating and using pipelines 26

How do | run a pipeline and see results 29

What task types are available 34

How do | do use variable bindings in pipelines 38

How do | use variable bindings in a condition task to run or stop a pipeline 47
What variables and expressions can | use when binding pipeline tasks 50
How do | send notifications about my pipeline 67

How do | create a Jira ticket when a pipeline task fails 69

How do | roll back my deployment 72

4 Planning to natively build, integrate, and deliver your code 79

Configuring the Pipeline Workspace 79

Planning a CICD native build before using the smart pipeline template 82
Planning a Cl native build before using the smart pipeline template 90
Planning a CD native build before using the smart pipeline template 91
Planning a CICD native build before manually adding tasks 93

Planning for rollback 99

5 Tutorials 102

How do | continuously integrate code from my GitHub or GitLab repository into my pipeline 103
How do | automate the release of an application that | deploy from a YAML cloud template 108
How do | automate the release of an application to a Kubernetes cluster 115

How do | deploy my application to my Blue-Green deployment 123

How do | integrate my own build, test, and deploy tools 128

How do | use the resource properties of a cloud template task in my next task 139

How do | use a REST API to integrate with other applications 143

How do | leverage pipeline as code 148

6 Connecting to endpoints 154

VMware, Inc.

What are Endpoints 154

How do | integrate with Jenkins 156

Using and Managing vRealize Automation Code Stream

How do | integrate with Git 163
How do | integrate with Gerrit 165

How do | integrate with vRealize Orchestrator 169

7 Triggering pipelines 175
How do | use the Docker trigger to run a continuous delivery pipeline 175
How do | use the Git trigger to run a pipeline 184

How do | use the Gerrit trigger to run a pipeline 192

8 Monitoring pipelines 200
What does the pipeline dashboard show me 200

How do | use custom dashboards to track key performance indicators 203
9 Learn more 206

What is Search 206

More resources for Administrators and Developers 212

VMware, Inc.

What is vRealize Automation Code
Stream and how does it work

vRealize Automation Code Stream™ is a continuous integration and continuous delivery (CICD)
tool. By creating pipelines that model the software release process in your DevOps lifecycle, you
build the code infrastructure that delivers your software rapidly and continuously.

viE

1. Developers 2. Code Stream 3. Builds 4. Runs all 5. Deploys

check in code triggers container stages and application

continuously. Cl pipeline. image and approvals in to Kubernetes
tests code. the ClI pipeline. cluster.

GitHub >> Docker Hub S Kubernetes

Code Stream

When you use vRealize Automation Code Stream to deliver your software, you integrate two

of the most important parts of your DevOps lifecycle: your release process and your developer
tools. After the initial setup, which integrates vRealize Automation Code Stream with your existing
development tools, the pipelines automate your entire DevOps lifecycle.

Starting with vRealize Automation 8.2, Blueprints are called VMware Cloud Templates.

You create a pipeline that builds, tests, and releases your software. vRealize Automation Code
Stream uses that pipeline to progress your software from the source code repository, through
testing, and on to production.

VMware, Inc. 5

Using and Managing vRealize Automation Code Stream

Application YAML
or Cloud Assembly cloud template

(>>> Code Stream with Git repository

CICD Pipeline
@_> Acceptance

Repository Test
Git

Production

Deployed App or
Build, Build Build, Configure, Cloud Template

L Configure, : Raise Issue, On Kubernetes
Configure Reice leeue Configure Use Dashboards K8S cluster

Bamboo Kubernetes

Docker

You can learn more about planning your continuous integration and continuous delivery pipelines
at Chapter 4 Planning to natively build, integrate, and deliver your code in vRealize Automation
Code Stream .

How vRealize Automation Code Stream Administrators use
vRealize Automation Code Stream

As an administrator, you create endpoints and ensure that working instances are available
for developers. You can create, trigger, and manage pipelines, and more. You have the
Administrator role, as described in How do | manage user access and approvals in vRealize
Automation Code Stream.

Table 1-1. How vRealize Automation Code Stream Administrators support developers

To support developers... Here's what you can do...
Provide and manage Create environments for developers to test and deploy their code.
environments. m Track status and send email notifications.

m Keep your developers productive by ensuring that their environments continuously
work.

To find out more, see More resources for vRealize Automation Code Stream
Administrators and Developers.

Also see Chapter 5 Tutorials for using vRealize Automation Code Stream.

Provide endpoints. Ensure that developers have working instances of endpoints that can connect to their
pipelines.

Provide integrations with Ensure that integrations to other services are working.

other services. To find out more, see vRealize Automation documentation.

VMware, Inc.

http://docs.vmware.com/en/vRealize-Automation/index.html

Using and Managing vRealize Automation Code Stream

Table 1-1. How vRealize Automation Code Stream Administrators support developers (continued)

To support developers... Here's what you can do...

Create pipelines. Create pipelines that model release processes.

To find out more, see Chapter 3 Creating and using pipelines in vRealize Automation
Code Stream.

Trigger pipelines. Ensure that pipelines run when events occur.

m To trigger a standalone, continuous delivery (CD) pipeline whenever a build artifact
is created or updated, use the Docker trigger.

m To trigger a pipeline when a developer commits changes to their code, use the Git
trigger.

m To trigger a pipeline when developers review code, merge, and more, use the Gerrit
trigger.

m To run a standalone continuous delivery (CD) pipeline whenever a build artifact is
created or updated, use the Docker trigger.

To find out more, see Chapter 7 Triggering pipelines in vRealize Automation Code

Stream.
Manage pipelines and Stay up-to-date on pipelines.
approvals. ® View pipeline status, and see who ran the pipelines.

m View approvals on pipeline executions, and manage approvals for active and
inactive pipeline executions.

To find out more, see What are user operations and approvals in vRealize Automation
Code Stream.

Also, see How do | use custom dashboards to track key performance indicators for my
pipeline in vRealize Automation Code Stream.

Monitor developer Create custom dashboards that monitor pipeline status, trends, metrics, and key

environments. indicators. Use the custom dashboards to monitor pipelines that pass or fail in developer
environments. You can also identify and report on under used resources, and free up
resources.

You can also see:

How long a pipeline ran before it succeeded.

How long a pipeline waited for approval, and notify the user who must approve it.
Stages and tasks that fail most often.

Stages and tasks that take the most time to run.

Releases that development teams have in progress.

Applications that succeeded in being deployed and released.

To find out more, see Chapter 8 Monitoring pipelines in vRealize Automation Code
Stream.

Troubleshoot problems. Troubleshoot and resolve pipeline failures in developer environments.

m |dentify and resolve problems in continuous integration and continuous delivery
environments (CICD).

m Use the pipeline dashboards and create custom dashboards to see more. See
Chapter 8 Monitoring pipelines in vRealize Automation Code Stream.

Also, see Chapter 2 Setting up vRealize Automation Code Stream to model my release
process.

VMware, Inc. 7

Using and Managing vRealize Automation Code Stream

vRealize Automation Code Stream is part of vRealize Automation. vRealize Automation Code
Stream integrates with:

m Use vRealize Automation Cloud Assembly to deploy cloud templates.
m Use vRealize Automation Service Broker to get cloud templates from the catalog.

To learn about other things you can do, see VMware vRealize Automation Documentation.

How Developers Use vRealize Automation Code Stream

As a developer, you use vRealize Automation Code Stream to build and run pipelines, and monitor
pipeline activity on the dashboards. You have the user role, as described in How do | manage user
access and approvals in vRealize Automation Code Stream.

After you run a pipeline, you'll want to know:

m |f your code succeeded through all stages of the pipeline. To find out, observe the results in
the pipeline executions.

= What to do if the pipeline failed, and what caused the failure. To find out, observe the top
errors in the pipeline dashboards.
Table 1-2. Developers who use vRealize Automation Code Stream

To integrate and
release your code Here's what you do

Build pipelines. Test and deploy your code.

Update your code when a pipeline fails.

Connect your pipelineto Connect the tasks in your pipeline to endpoints, such as a GitHub repository.

endpoints.

Run pipelines. Add a user operation approval task so that another user can approve your pipeline at specific
points.

View dashboards. View the results on the pipeline dashboard. You can see trends, history, failures, and more.

For more information about getting started, see Getting Started with VMware Code Stream.

Find more documentation in the In-product Support panel

If you don’t find the information you need here, you can get more help in the product.)

m Click and read the signposts and tooltips in the user interface to get the context-specific
information that you need where and when you need it.

= Open the In-product support panel and read the topics that appear for the active user
interface page. You can also search in the panel to get answers to questions.

More on Webhooks

VMware, Inc. 8

https://docs.vmware.com/en/vRealize-Automation/index.html
http://docs.vmware.com/en/vRealize-Automation/8.0/Getting-Started-CodeStream/GUID-D137AB85-F66C-4A90-A710-66605FD0355B.html

Using and Managing vRealize Automation Code Stream

You can create multiple webhooks for different branches by using the same Git endpoint and
providing different values for the branch name in the webhook configuration page. To create
another webhook for another branch in the same Git repository, you don't need to clone the

Git endpoint multiple times for multiple branches. Instead, you provide the branch name in the
webhook, which allows you to reuse the Git endpoint. If the branch in the Git webhook is the same
as the branch in the endpoint, you don't need to provide branch name in the Git webhook page.

VMware, Inc. 9

Setting up vRealize Automation
Code Stream to model my release
process

To model your release process, you create a pipeline that represents the stages, tasks, and
approvals that you normally use for releasing your software. vRealize Automation Code Stream
then automates the process that builds, tests, approves, and deploys your code.

Now that you have everything for modeling your software release process, here's how you do it in
vRealize Automation Code Stream.

Prerequisites

m Verify whether any endpoints are already available. In vRealize Automation Code Stream, click
Endpoints.

m Learn about native ways that you can build and deploy your code. See Chapter 4 Planning to
natively build, integrate, and deliver your code in vRealize Automation Code Stream .

m Determine whether some of the resources that you will use in your pipeline must be marked as
restricted. See How do | manage user access and approvals in VMware Code Stream.

m |f you have the user role or the viewer role instead of the administrator role, determine who is
the administrator for your vRealize Automation Code Stream instance.

Procedure

1 Examine the projects available in vRealize Automation Code Stream and select one that is right
for you.

m |f no projects appear, ask a vRealize Automation Code Stream administrator who can
create a project and make you a member of the project. See How do | add a project in
VRealize Automation Code Stream.

m |f you are not a member of any projects listed, ask a vRealize Automation Code Stream
administrator who can add you as a member of a project.

VMware, Inc. 10

http://docs.vmware.com/en/VMware-Code-Stream/services/Using-and-Managing-CodeStream/GUID-8EDC8310-232D-45FB-8C02-E4FB25687177.html

Using and Managing vRealize Automation Code Stream

Projects (eren

[+ NEW PROJECT]

¢ SHOBHA-TES.. Fg test
No Description No Description
Administr 1 Administr 3
Members] Members 2
OPEN DELETE OPEN DELETE

2 Add any new endpoints that you need for your pipeline.
For example, you might need Git, Jenkins, Code Stream Build, Kubernetes, and Jira.
3 Create variables so that you can reuse values in your pipeline tasks.

To constrain the resources used in your pipelines, such as a host machine, use restricted
variables. You can restrict the pipeline from continuing to run until another user explicitly
approves it.

Administrators can create secret variables and restricted variables. Users can create secret
variables.

You can reuse a variable as many times as you want across multiple pipelines. For example, a
variable that defines a host machine can be HostIPAddress. To use the variable in a pipeline
task, you enter ${var.HostIPAddress}.

Variables (Gie)

Project T Mame T Typed T walue
Code Stream Test Regular 123

Code Stream Test-Restricte Restricted e
Code Stream Test-Global-name Secrst e

VMware, Inc.

Using and Managing vRealize Automation Code Stream

4

If you are an administrator, mark any endpoints and variables that are vital to your business as
restricted resources.

When a user who is not an administrator attempts to run a pipeline that includes a
restricted resource, the pipeline stops at the task that uses the restricted resource. Then, an
administrator must resume the pipeline.

Plan the build strategy for your native CICD, CI, or CD pipeline.

Before you create a pipeline that continuously integrates (Cl) and continuously deploys (CD)
your code, plan your build strategy. The build plan helps you determine what vRealize
Automation Code Stream needs so that it can natively build, integrate, test, and deploy your
code.

How to create a vRealize Automation

Code Stream native build Results in this build strategy
Use one of the smart pipeline m Builds all the stages and tasks for you.
templates. m Clones the source repository.
m Builds and tests your code.
m Containerizes your code for deployment.
m Populates the pipeline task steps based on your selections.
Add stages and tasks manually. You add stages, add tasks, and enter the information that populates them.

Create your pipeline by using a smart pipeline template, or by manually add stages and tasks
to the pipeline.

Then, you mark any resources as restricted. Add approvals where needed. Apply any regular,
restricted, or secret variables. Add any bindings between tasks.

VMware, Inc.

12

Using and Managing vRealize Automation Code Stream

CICD-SmartTemplate (=) o

7 A & @,
Build-Publish i 0=
@ @ @
Unit-Test Build-App Build-Image
C cl C

Paraller Ta Parallel Task Parallel Task
— Development i B =
(=] (=] (=]
Create Namespace Create Secret Create Service Cre:
K85 KES K85 KBS
Parallel T Parallel -Task Parallel Ta -Pa
— Production Q=
@) ; @ @ @
Get Service Details Prepare Phase 1 Deploy Phase 1 Weri
KBS KBS K85 POLL
Fargllel Ty Parallel Task Parallel Tas Pa

7 Validate, enable, and run your pipeline.

VMware, Inc.

Using and Managing vRealize Automation Code Stream

8 View the pipeline executions.

Executions (Geofm)

NEW EXECUTION

Q

Search

IC

4%

D{g Demo-Jenkins _#

Stages: cx— e—

COMFPLETED

By kr on 09/11/2018 10:32 AM
Execution Completed.

ACTIONS ¥

Input : 8df0d9ald365299f2..
7 Output - NA

1%

D{g Demo-Jenkins.. #

94

Stages. o—— e—

COMPLETED

By kr on 09/11/2018 917 AM

Execution Completed.

ACTIONS ~

Input : 6d82d079aBb8921a9 .
o7 Output - NA

6w

Demo-CICD-S_ #

By dk on 029/1/2018 5:51 AM
Execution failed on task 'Production.Deploy Phase 1. deployments..

) Stages ACTIONS v
Demo-CICD-S.. #51
By dk on 091172018 713 AM o7 Input : NA
G Execution Completed. o7 Output - NA
FAILED Stages ACTIONS +

37 Input ; NA
7 Output - NA

9 To track status and key performance indicators (KPIs), use the pipeline dashboards, and create
any custom dashboards.

U{E CICD-SmartTemplate cone sacx o TEB 140
Execution Status Counts c Latest Successful Change (54
When o CICD-SmartTemplate #46 a day
ago
Comments -
Total:1 Executed d
by
Duration 6m 375 (0%/06/2013 10:21 AM - 09/06,/2018 10:29 AM)
® complsted @ Faled @ Running wiaiting
Recent Executions &
Execution#/Stages Buld-Fubiish Levelspment Hroduction
#46 — — —
#45 — — —
#44 — — —
#43 — — —
#42 — — —
#4 — — —
#40 — — —
£33 — — —
#38 — — —
#37 — —
@ compizted @ Faled @ Running Waiting

VMware, Inc.

14

Using and Managing vRealize Automation Code Stream

Results
You created a pipeline that you can use in the selected project.

You can also export your pipeline YAML, then import it and reuse it in other projects.

What to do next

Learn about use cases that you might want to apply in your environment. See Chapter 5 Tutorials
for using vRealize Automation Code Stream.

How do | add a project in vRealize Automation Code Stream

You create a project and add administrators and members to it. Project members can use features
such as creating a pipeline and adding an endpoint. To create, delete, or update a project for a
development team, you must be a vRealize Automation Code Stream administrator.

A project must exist before you can create a pipeline. When you create a pipeline, you select a
project that groups all your pipeline information together. Definitions for endpoints and variables
also depend on an existing project.

Prerequisites

m Verify that you have the vRealize Automation Code Stream administrator role. See What are
Roles in vRealize Automation Code Stream.

If you do not have the vRealize Automation Code Stream administrator role, but you have
VRealize Automation Cloud Assembly administrator role, you can create, update, or delete
projects in the vRealize Automation Cloud Assembly Ul. See "How do | add a project for my
VRealize Automation Cloud Assembly development team" in Using and Managing vRealize
Automation Cloud Assembly.

m [f you are adding Active Directory groups to projects, verify that you configured Active
Directory groups for your organization. See "How do | edit group role assignments in vRealize
Automation" in Administering vRealize Automation. |f the groups are not synchronized, they
are not available when you try to add them to a project.

Procedure

—

Select Projects, and click New Project.
Enter the project name.
Click Create.

Select the card for the newly created project, and click Open.

a A W N

Click the Users tab and add users and assign roles.
m The project administrator can add members.
m The project member who has a service role can use services.

m The project viewer can see projects but cannot create, update, or delete them.

VMware, Inc. 15

Using and Managing vRealize Automation Code Stream

For more information about project roles, see How do | manage user access and approvals in
VRealize Automation Code Stream.

6 Click Save.

What to do next

Add endpoints and pipelines that use the project. See and Chapter 6 Connecting vRealize
Automation Code Stream to endpoints and Chapter 3 Creating and using pipelines in vRealize
Automation Code Stream.

After you create a pipeline, the name of the project that groups all your pipeline information
together appears on pipeline cards and pipeline execution cards.

How do | manage user access and approvals in vRealize
Automation Code Stream

vRealize Automation Code Stream provides several ways to ensure that users have the
appropriate authorization and consent to work with pipelines that release your software
applications.

Each member on a team has an assigned role, which gives specific permissions on pipelines,
endpoints, and dashboards, and the ability to mark resources as restricted.

User operations and approvals enable you to control when a pipeline runs and must stop for an
approval. Your role determines whether you can resume a pipeline, and run pipelines that include
restricted endpoints or variables.

Use secret variables to hide and encrypt sensitive information. Use restricted variable for strings,
passwords, and URLs that must be hidden and encrypted, and to restrict use in executions. For
example, use a secret variable for a password or URL. You can use secret and restricted variables
in any type of task in your pipeline.

What are Roles in vRealize Automation Code Stream

Depending on your role in vRealize Automation Code Stream, you can perform certain actions
and access certain areas. For example, your role might enable you to create, update, and run
pipelines. Or, you might only have permission to view pipelines.

All actions except restricted means this role has permission to perform create, read,
update, and delete actions on entities except for restricted variables and endpoints.

VMware, Inc. 16

Using and Managing vRealize Automation Code Stream

Table 2-1. Service and Project level access permissions in vRealize Automation Code Stream

VRealize Automation Code Stream Roles

Code Stream

Code Stream

Code Stream

Code Stream

Code Stream

Access levels Administrator Developer Executor Viewer User
vRealize All Actions All actions except Execution actions Read only None
Automation Code restricted

Stream service

level access

Project level All Actions All Actions All Actions All Actions All Actions
access: Project

Admin

Project level All Actions All actions except All actions except All actions except All actions except
access: Project restricted restricted restricted restricted
Member

Project level All Actions All actions except Execution actions Read only Read only

access: Project
Viewer

restricted

Users who have the Project Admin role can perform all actions on projects where they are a

Project administrator.

A Project administrator can create, read, update, and delete pipelines, variables, endpoints,
dashboards, triggers, and start a pipeline that includes restricted endpoints or variables if these
resources are in the project where the user is a Project administrator.

Users who have the Service Viewer role can see all the information that is available to the
administrator. They cannot take any action unless an administrator makes them a project
administrator or a project member. If the user is affiliated with a project, they have the permissions
related to the role. The project viewer would not extend their permissions the way that the
administrator or member role does. This role is read-only across all projects.

If you have read permissions in a project, you can still see restricted resources.

m To see restricted endpoints, which display a lock icon on the endpoint card, click Configure >

Endpoints.

m To see restricted and secret variables, which display RESTRICTED or SECRET in the Type
column, click Configure > Variables.

Table 2-2. vRealize Automation Code Stream service role capabilities

Code Code
Code Stream Stream Stream Code
Ul Administrator Developer Code Stream Viewer Stream
Context Capabilities role role Executor role role User role
Pipelines
View pipelines Yes Yes Yes Yes
Create pipelines Yes Yes

VMware, Inc. 17

Using and Managing vRealize Automation Code Stream

Table 2-2. vRealize Automation Code Stream service role capabilities (continued)

Ul
Context

Pipeline
Executio
ns

Custom
Integratio
ns

Endpoint
s

Mark
resources
as
restricted

Dashboar
ds

VMware, Inc.

Capabilities

Run pipelines

Run pipelines that include
restricted endpoints or
variables

Update pipelines

Delete pipelines

View pipeline executions

Resume, pause, and cancel
pipeline executions

Resume pipelines that stop
for approval on restricted
resources

Create custom integrations

Read custom integrations

Update custom integrations

View executions

Create executions

Update executions

Delete executions

Mark an endpoint or
variable as restricted

Code Stream
Administrator
role

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Code
Stream
Developer
role

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Code Stream
Executor role

Yes

Yes

Yes

Yes

Yes

Code
Stream
Viewer
role

Yes

Yes

Yes

Code
Stream
User role

Using and Managing vRealize Automation Code Stream

Table 2-2. vRealize Automation Code Stream service role capabilities (continued)

Ul
Context

Capabilities

View dashboards

Create dashboards

Update dashboards

Delete dashboards

Code Stream
Administrator

role

Yes

Yes

Yes

Yes

Code

role

Yes

Yes

Yes

Yes

Stream
Developer

Code Stream
Executor role

Yes

Code
Stream
Viewer
role

Yes

Code
Stream
User role

Custom roles and permissions in vRealize Automation Code Stream

You can create custom roles in vRealize Automation Cloud Assembly that extend privileges to
users who work with pipelines. When you create a custom role for vRealize Automation Code

Stream pipelines, you select one or more Pipeline permissions.

Select the minimal number of Pipeline permissions required for users who will be assigned this

custom role.

When a user is assigned to a project and given a role in that project, and that user is assigned
a custom role that includes one or more Pipeline permissions, they can perform all the actions
that the permissions allow. For example, they can create restricted variables, manage restricted

pipelines, create and manage custom integrations, and more.

Table 2-3. Pipeline permissions that you can assign to custom roles

Pipeline
Permissio
n

Manage
Pipelines

Manage
Restricted
Pipelines

Manage
Custom
Integration
s

Execute
Pipelines

Execute
Restricted
Pipelines

VMware, Inc.

Code
Stream
Administr
ator

Yes

Yes

Yes

Yes

Yes

Code
Stream
Developer

Yes

Yes

Yes

Code
Stream
Executor

Yes

Code
Stream
Viewer

Code
Stream
User

Project
Administr
ator

Yes

Yes

Yes

Yes

Project
Member

Yes

Yes

Project
Viewer

Using and Managing vRealize Automation Code Stream

Table 2-3. Pipeline permissions that you can assign to custom roles (continued)

Code
Pipeline Stream
Permissio Administr
n ator
Manage Yes
Executions

Read. This Yes
permission

is not

visible.

Code Code Code Code Project

Stream Stream Stream Stream Administr Project

Developer Executor Viewer User ator Member
Yes

Yes Yes Yes Yes Yes

Table 2-4. How you can use Pipeline permissions with custom roles

Permission

Manage Pipelines

Manage Restricted
Pipelines

Manage Custom
Integrations

Execute Pipelines

VMware, Inc.

What you can do

Create, update, delete, clone pipelines.

Release and unrelease pipelines to VMware Service Broker.
Create, update, and delete endpoints.

Create, update, and delete regular and secret variables.
Create, clone, update, and delete a Gerrit listener.
Connect and disconnect a Gerrit listener.

Create, clone, update, delete a Gerrit trigger.

Create, update, and delete a Git webhook.

Create, update, and delete a Docker webhook.

Use smart pipeline templates to create pipelines.

Import pipelines from YAML, and export them to YAML.
Create, update, and delete custom dashboards.

Read all custom integrations.

Read all restricted endpoints and variables, but cannot view their values.

Create, update, and delete endpoints.
Mark endpoints as restricted, update restricted endpoints, and delete them.
Create, update, and delete regular and secret variables.

Create, update, and delete restricted variables.

All permissions that you can do with Manage Pipelines.

Create and update custom integrations.
Version and release custom integrations.

Delete and deprecate custom integration versions.

Delete custom integrations.

Run pipelines.
Pause, resume, and cancel pipeline executions.
Rerun pipeline executions.

Resume, rerun, and manually trigger a Gerrit trigger event.

Approve a user operation, and can do batch approvals of user operations.

Project
Viewer

Yes

20

Using and Managing vRealize Automation Code Stream

Table 2-4. How you can use Pipeline permissions with custom roles (continued)

Permission

Execute Restricted
Pipelines

Manage Executions

What you can do

Run pipelines.

Rerun pipeline executions.

]
[
]
m Sync a running pipeline execution.
[
]
]
[

approval.

Run pipelines.

Rerun pipeline executions.

Force delete a running pipeline execution.

Pause, resume, cancel, and delete pipeline executions.

Resume, rerun, delete, and manually trigger a Gerrit trigger event.
Resolve restricted items and continue the pipeline execution.

Switch user context and continue the pipeline execution after a User Operation task

All permissions that you can do with Execute Pipelines.

Pause, resume, cancel, and delete pipeline executions.

Resume, rerun, delete, and manually trigger a Gerrit trigger event.

All permissions that you can do with Execute Pipelines.

Custom roles can include combinations of permissions. These permissions are organized into
groups of capabilities that enable users to manage or run pipelines, with and without restricted
resources. These permissions represent all the capabilities that each role can perform in vRealize
Automation Code Stream.

For example, if you create a custom role and include the permission called Manage Restricted
Pipelines, users who have the vRealize Automation Code Stream Developer role can:

m Create, update, and delete endpoints.

m Mark endpoints as restricted, update restricted endpoints, and delete them.

m Create, update, and delete regular and secret variables.

m Create, update, and delete restricted variables.

Table 2-5. Example combinations of Pipeline permissions in custom roles

Number of
Permissions
Assigned to
Custom Role

Single
permission

Two permissions

Three
permissions

VMware, Inc.

Examples of Combined Permissions

Execute Pipelines

Manage Pipelines and Execute Pipelines

Manage Pipelines and Execute Pipelines and
Execute Restricted Pipelines

Manage Pipelines and Manage Custom
Integrations and Execute Restricted Pipelines

How to use this combination

This combination might apply to a vRealize
Automation Code Stream Developer role but
be limited to the projects where the user is a
member.

21

Using and Managing vRealize Automation Code Stream

Table 2-5. Example combinations of Pipeline permissions in custom roles (continued)

Number of
Permissions
Assigned to
Custom Role Examples of Combined Permissions How to use this combination
Manage Pipelines and Manage Custom This combination might apply to a vRealize
Integrations and Manage Executions Automation Code Stream Administrator but
limited to the projects where user is a
member.
Manage Pipelines, Manage Restricted Pipelines, With this combination, a user has full
and Manage Custom Integrations permissions and can create and delete
anything in vRealize Automation Code
Stream.

If you have the Administrator role

As an administrator, you can create custom integrations, endpoints, variables, triggers, pipelines,
and dashboards.

Projects enable pipelines to access infrastructure resources. Administrators create projects so that
users can group pipelines, endpoints, and dashboards together. Users then select the project in
their pipelines. Each project includes an administrator and users with assigned roles.

With the Administrator role, you can mark endpoints and variables as restricted resources, and
you can run pipelines that use restricted resources. If a non-administrative user runs the pipeline
that includes a restricted endpoint or variable, the pipeline will stop at the task where the
restricted variable is used, and an administrator must resume the pipeline.

As an administrator, you can also request that pipelines be published in vRealize Automation
Service Broker.

If you have the Developer role

You can work with pipelines like an administrator can, except that you cannot work with restricted
endpoints or variables.

If you run a pipeline that uses restricted endpoints or variables, the pipeline only runs up to the
task that uses the restricted resource. Then, it stops, and a vRealize Automation Code Stream
administrator or project administrator must resume the pipeline.

If you have the User role

You can access VRealize Automation Code Stream, but do not have any privileges as the other
roles provide.

VMware, Inc. 22

Using and Managing vRealize Automation Code Stream

If you have the Viewer role

You can see the same resources that an administrator sees, such as pipelines, endpoints, pipeline
executions, dashboards, custom integrations, and triggers, but you cannot create, update, or
delete them. To perform actions, the Viewer role must also be given the project administrator or
project member role.

Users who have the Viewer role can see projects. They can also see restricted endpoints and
restricted variables, but cannot see the detailed information about them.

If you have the Executor role

You can run pipelines and take action on user operation tasks. You can also resume, pause, and
cancel pipeline executions. But, you cannot modify pipelines.

How do | assign and update roles
To assign and update roles for other users, you must be an administrator.

1 To see the active users and their roles, in vRealize Automation, click the nine dots at the upper
right.

2 Click Identity & Access Management.
DEFAULT-ORG .

{FLI\ Cloud ¢

ADMINISTRATION

2 Identity & Access Management

MY SERVICES

oud Assembly

Code Stream

(@o Orchestrator

e Broker

3 Todisplay user names and roles, click Active Users.

VMware, Inc. 23

Using and Managing vRealize Automation Code Stream

Identity & Access Management

Active Users Enterprise Groups

Q

Name Username Organization Roles Service Roles

Local Admin admin

4 To add roles for a user, or change their roles, click the check box next to the user name, and
click Edit Roles.

5 When you add or change user roles, you can also add access to services.

6 To save your changes, click Save.

What are user operations and approvals in vRealize
Automation Code Stream

The User Operations area displays pipeline runs that need approval. The required approver can
either approve or reject the pipeline run.

When you create a pipeline, you might need to add an approval to a pipeline if:
m A team member needs to review your code.

m Another user needs to confirm a build artifact.

m You must ensure that all testing is complete.

m A task uses a resource that an administrator marked as restricted, and the task needs
approval.

m The pipeline will release software to production.

To determine whether to approve a pipeline task, the required approver must have permission
and expertise.

When you add a User Operation task, you can set the expiration timeout in days, hours, or
minutes. For example, you might need the required user to approve the pipeline in 30 minutes. If
they don't approve it in 30 minutes, the pipeline fails as expected.

If you enable sending Email notifications, the User Operation task only sends notifications to
approvers who have full email addresses, and not to approver names that are not in an email
format.

After the required user approves the task:
m The pending pipeline execution can continue.

. When the pipeline continues, any previous pending requests for approval of that same user
operation task are canceled.

VMware, Inc. 24

Using and Managing vRealize Automation Code Stream

User Operations GUIDED SETUP
Active Items Inactive ltems
~ APPROVE * REJECT
C
— ~
|_| Index# T Execution T Summary T Requested By T Request Date Approvers T
0 » c07b12 Demo2- Testing fritz Nov 13, 2019, f om
Jenkins-K8s#7 11:32:31 AM
I:I > a0a990 Demo2- Testing fritz Nov 11, 2019, k - om,
Jenkins-K8s#6 1341 PM f mn

v :

User Operation #8f1728

Request Details

Execution Demo-Jenkins-K8s #5

Summary Testing

Approvers ke - m, com

Requested By fritz

Requested On Mowv 11, 2019, 1:22:21 PM

Expires On Nov 14, 2019, 1:22:21 PM

v
] ltems per page 20 W 1-7 of 7 items

In the User Operations area, items to approve or reject appear as active or inactive items. Each
item maps to a user operation task in a pipeline.

m Active Items wait for the approver who must review the task, and approve or reject it. If you
are a user who is on the approver list, you can expand the user operation row, and click
Accept or Reject.

m Inactive Items were approved or rejected. If a user rejected the user operation, or if the
approval on the task timed out, it can no longer be approved.

The Index# is a unique six-character alphanumeric string that you can use as a filter to search for a
particular approval.

Pipeline approvals also appear in the Executions area.
m Pipelines that are waiting for approval indicate their status as waiting.
m Other states include queued, completed, and failed.

m |f your pipeline is in a wait state, the required approver must approve your pipeline task.

VMware, Inc. 25

Creating and using pipelines in
vRealize Automation Code Stream

You can use VRealize Automation Code Stream to model your build, test, and deploy process.
With vRealize Automation Code Stream, you set up the infrastructure that supports your release
cycle and create pipelines that model your software release activities. vRealize Automation Code
Stream delivers your software from development code, through testing, and deploys it to your
production instances.

Each pipeline includes stages and tasks. Stages represent your development phases, and tasks
perform the required actions that deliver your software application through the stages.

What are Pipelines in vRealize Automation Code Stream

A pipeline is a continuous integration and continuous delivery model of your software release
process. It releases your software from source code, through testing, to production. It includes a
sequence of stages that include tasks that represent the activities in your software release cycle.
Your software application flows from one stage to the next through the pipeline.

You add endpoints so that the tasks in your pipeline can connect to data sources, repositories, or
notification systems.

Creating Pipelines
You can create a pipeline by starting with a blank canvas, using a smart pipeline template, or by
importing YAML code.

m Use the blank canvas. For an example, see Planning a CICD native build in vRealize
Automation Code Stream before manually adding tasks.

m Use a smart pipeline template. For an example, see Chapter 4 Planning to natively build,
integrate, and deliver your code in vRealize Automation Code Stream .

m Import YAML code. Click Pipelines > Import. In the Import dialog box, select the YAML file or
enter the YAML code, and click Import.

When you use the blank canvas to create a pipeline, you add stages, tasks, and approvals. The
pipeline automates the process that builds, tests, deploys, and releases your application. The tasks
in each stage run actions that build, test, and release your code through each stage.

VMware, Inc. 26

Using and Managing vRealize Automation Code Stream

Table 3-1. Example pipeline stages and uses

Example stage

Development

Test

Production

Examples of what you can do

In a development stage, you can provision a machine, retrieve an artifact, add a build task that

creates a Docker host for continuous integration of your code, and more.

For example:

To plan and create a continuous integration (Cl) build, which delivers your code by using
the native build capability in vRealize Automation Code Stream, see Planning a continuous
integration native build in vRealize Automation Code Stream before using the smart pipeline
template.

In a test stage, you can add a Jenkins task to test your software application, and include

post-processing test tools such as JUnit and JaCoCo, and more.

For example:

Integrate vRealize Automation Code Stream with Jenkins, and run a Jenkins job in your
pipeline, which builds and tests your source code. See How do | integrate vRealize
Automation Code Stream with Jenkins.

Create custom scripts that extend the capability of vRealize Automation Code Stream to
integrate with your own build, test, and deploy tools. See How do | integrate my own build,
test, and deploy tools with vRealize Automation Code Stream.

Track trends on post-processing for a continuous integration (Cl) pipeline. See How do

| use custom dashboards to track key performance indicators for my pipeline in vRealize
Automation Code Stream.

In a production stage, you can integrate a cloud template in vRealize Automation Cloud
Assembly that provisions your infrastructure, deploys your software to a Kubernetes cluster,
and more.

For example:

To see example stages for development and production, which can deploy your software
application in your own Blue-Green deployment model, see How do | deploy my application
in vRealize Automation Code Stream to my Blue-Green deployment.

To integrate a cloud template into your pipeline, see How do | automate the release of an
application that | deploy from a YAML cloud template in vRealize Automation Code Stream.
You can also add a deployment task that runs a script to deploy the application.

To automate the deployment of your software applications to a Kubernetes cluster, How
do | automate the release of an application in vRealize Automation Code Stream to a
Kubernetes cluster.

To integrate code into your pipeline and deploy your build image, see How do |
continuously integrate code from my GitHub or GitLab repository into my pipeline in
vRealize Automation Code Stream.

You can export your pipeline as a YAML file. Click Pipelines, click a pipeline card, then click

Actions > Export.

Approving pipelines

You can obtain an approval from another team member at specific points in your pipeline.

m To require approval on a pipeline by including a user operation task in a pipeline, see How
do | run a pipeline and see results. This task sends an email notification to the user who must

VMware, Inc.

27

Using and Managing vRealize Automation Code Stream

review it. The reviewer must either approve or reject the approval before the pipeline can
continue to run. If the User Operation task has an expiration timeout set in days, hours, or
minutes, the required user must approve the pipeline before the task expires. Otherwise, the
pipeline fails as expected.

= |In any stage of a pipeline, if a task or stage fails, you can have vRealize Automation Code
Stream create a Jira ticket. See How do | create a Jira ticket in vRealize Automation Code
Stream when a pipeline task fails.

Triggering pipelines
Pipelines can trigger when developers check their code into the repository, or review code, or
when it identifies a new or updated build artifact.

m To integrate vRealize Automation Code Stream with the Git lifecycle, and trigger a pipeline
when developers update their code, use the Git trigger. See How do | use the Git trigger in
vRealize Automation Code Stream to run a pipeline.

m To integrate vRealize Automation Code Stream with the Gerrit code review lifecycle, and
trigger a pipeline on code reviews, use the Gerrit trigger. See How do | use the Gerrit trigger in
VRealize Automation Code Stream to run a pipeline.

m To trigger a pipeline when a Docker build artifact is created or updated, use the Docker
trigger. See How do | use the Docker trigger in vRealize Automation Code Stream to run a
continuous delivery pipeline.

For more information about the triggers that vRealize Automation Code Stream supports, see
Chapter 7 Triggering pipelines in vRealize Automation Code Stream.

This chapter includes the following topics:

m How do | run a pipeline and see results

m What types of tasks are available in vRealize Automation Code Stream

m How do | use variable bindings in vRealize Automation Code Stream pipelines

m How do | use variable bindings in a condition task to run or stop a pipeline in vRealize
Automation Code Stream

m What variables and expressions can | use when binding pipeline tasks in vRealize Automation
Code Stream

m How do | send notifications about my pipeline in vRealize Automation Code Stream
m How do | create a Jira ticket in vRealize Automation Code Stream when a pipeline task fails

m How do | roll back my deployment in vRealize Automation Code Stream

VMware, Inc. 28

Using and Managing vRealize Automation Code Stream

How do | run a pipeline and see results

You can run a pipeline from the pipeline card, in pipeline edit mode, and from the pipeline
execution. You can also use the available triggers to have vRealize Automation Code Stream run a
pipeline when certain events occur.

When all the stages and tasks in your pipeline are valid, the pipeline is ready to be released, run,
or triggered.

To run or trigger your pipeline using vRealize Automation Code Stream, you can enable and run
the pipeline either from the pipeline card, or while you are in the pipeline. Then, you can view the
pipeline execution to confirm that the pipeline built, tested, and deployed your code.

When a pipeline execution is in progress, you can delete the execution if you are an administrator
or a non-admin user.

= Administrator: To delete a pipeline execution when it is running, click Executions. On the
execution to delete, click Actions > Delete.

= Non-admin user: To delete a running pipeline execution, click Executions, and click Alt Shift d.

When a pipeline execution is in progress and appears to be stuck, an administrator can refresh the
execution from the Executions page or the Execution details page.

m Executions page: Click Executions. On the execution to refresh, click Actions > Sync.

m Execution details page: Click Executions, click the link to the execution details, and click
Actions > Sync.

To run a pipeline when specific events occur, use the triggers.

m Git trigger can run a pipeline when developers update code.

m Gerrit trigger can run a pipeline when code reviews occur.

m Docker trigger can run a pipeline when an artifact is created in a Docker registry.

m The curl command or wget command can have Jenkins run a pipeline after a Jenkins build
finishes.

For more information about using the triggers, see Chapter 7 Triggering pipelines in vRealize
Automation Code Stream.

The following procedure shows you how to run a pipeline from the pipeline card, view executions,
see execution details, and use the actions. It also shows you how to release a pipeline so that you
can add it to vRealize Automation Service Broker.

Prerequisites

m Verify that one or more pipelines are created. See the examples in Chapter 5 Tutorials for
using vRealize Automation Code Stream.

VMware, Inc. 29

Using and Managing vRealize Automation Code Stream

Procedure
1 Enable your pipeline.

To run or release a pipeline, you must enable it first.

a Click Pipelines.

b On your pipeline card, click Actions > Enable.

Pipelines (siens)

[+ NEW PIPELINE ¥] [IMPORT

Enable

Demo-Je 1
& testProji Refresh :

View executions

._[. Stati _
[] Upd View dashboard
Clone
2% Jenkin y
Export
Pipeline tha Delete H

0 EXECUTIO View references

Pin

OPEN ACTIONS

You can also enable your pipeline while you are in the pipeline. If your pipeline is already
enabled, Run is active, and the Actions menu displays Disable.

VMware, Inc.

Using and Managing vRealize Automation Code Stream

2 (Optional) Release your pipeline.

If you want to make your pipeline available as a catalog item in vRealize Automation Service
Broker, you must release it in vRealize Automation Code Stream.

a Click Pipelines.
b Onyour pipeline card, click Actions > Release.

You can also release your pipeline while you are in the pipeline.

Demo-Jenkins-K8s (Enased) actions -

@ Workspace il Input g Model I ¢ Disable
Release

Run

StageO

=
TaskO

View execufions

After you release the pipeline, you open vRealize Automation Service Broker to add

the pipeline as a catalog item and run it. See how to add vRealize Automation Code

Stream pipelines to the vRealize Automation Service Broker catalog in Using and Managing
VMware Service Broker.

Note If the pipeline requires more that 120 minutes to run, provide an approximate
execution time as a request timeout value. To set or review the request timeout

for a project, open vRealize Automation Service Broker as administrator and select
Infrastructure > Projects. Click your project name and then click Provisioning.

If the request timeout value is not set, an execution that requires more than 120 minutes
to run appears as failed with a callback timeout request error. However, the pipeline
execution is not affected.

3 On the pipeline card, click Run.
4 To view the pipeline as it runs, click Executions.

The pipeline runs each stage in sequence, and the pipeline execution displays a status icon for
each stage. If the pipeline includes a user operation task, a user must approve the task for the
pipeline to continue to run. When a user operation task is used, the pipeline stops running and
waits for the required user to approve the task.

For example, you might use the user operation task to approve the deployment of code to a
production environment.

If the User Operation task has an expiration timeout set in days, hours, or minutes, the
required user must approve the pipeline before the task expires. Otherwise, the pipeline fails
as expected.

VMware, Inc. 31

Using and Managing vRealize Automation Code Stream

Executions (=Esiem:)

+ NEW EXECUTION

U{g Demo-Jenkin... #100

4%

WAITING Stages: e @ e @
EMREl Stage - Deploy Input : 8b3a29fdf
Deploy. Status : Approve-Deployment hiting for User Action. 17 Qutput : n/a

Execution Waiting for User
Action.

5 To see the pipeline stage that is waiting for user approval, click the status icon for the stage.

{ BACK

offDemo-Jenkins-K8s #100 « wamne 4% actions-

@ Dev Deploy

& Build-Demolpp | & Test-DemoApp | & Publish-DemoApp | Approve-Deployment KEs-aWS
Stage name Deploy
Status WAITING | Approve-Deployment Execution Waiting for User Action.

6 To see the details for the task, click the task.

After the required user approves the task, a user who has the appropriate role must resume
the pipeline. For required roles, see How do | manage user access and approvals in vRealize

Automation Code Stream.

If an execution fails, you must triage and fix the cause of the failure. Then, go to the execution,

and click Actions > Re-run.

You can resume primary pipeline executions and nested executions.

VMware, Inc.

32

Using and Managing vRealize Automation Code Stream

¢ BACK

@ Dev
@ Build-Demoapp | @ Test-DemoApp | @ Publish-Demolpp
Task name Approve-Deployment
Type UserOperation
Stafus WAITING | Execution Waiting for User Action.

Execute Task L

ofjDemo-Jenkins-K8s #100 « wamne 4% actions.

Deploy

Approve-Deployment

Inputs

Summary Demo-Jenkins-KEs is pending deployment for your approva
Description Demo-Jenkins-K&s is pending deployment for your approv;
Users el i

7 From the pipeline execution, you can click Actions to view the pipeline, and select an action
such as Pause, Cancel, and more. When a pipeline execution is in progress, if you are an
administer you can delete or sync the pipeline execution. If you are a non-admin user, you can

delete a running pipeline.

8 To navigate easily between executions and see the details for a task, click Executions, and
click a pipeline run. Then, click the tab at the top and select the pipeline run.

Executions for Demo2-Jenkins-K8s

#6 #5 #4 #3

Stage0

Task(

#2

Results

Congratulations! You ran a pipeline, examined the pipeline execution, and viewed a user operation
task that required approval for the pipeline to continue to run. You also used the Actions menu in
the pipeline execution to return to the pipeline model so that you can make any required changes.

What to do next

To learn more about using vRealize Automation Code Stream to automate your software release
cycle, see Chapter 5 Tutorials for using vRealize Automation Code Stream.

VMware, Inc.

33

Using and Managing vRealize Automation Code Stream

What types of tasks are available in vRealize Automation

Code Stream

When you configure your pipeline, you add specific types of tasks that the pipeline runs for the
actions you need. Each task type integrates with another application and enables your pipeline as

it builds, tests, and delivers your applications.

To run your pipeline, whether you must pull artifacts from a repository for deployment, run a
remote script, or require approval on a user operation from a team member, vRealize Automation

Code Stream has the type of task for you!

Before you use a task in your pipeline, verify that the corresponding endpoint is available.

Table 3-2. Obtain an approval or set a decision point

Type of task What it does

User Operation A User Operation task enables a required approval
that controls when a pipeline runs and must stop
for an approval.

Condition Adds a decision point, which determines whether
the pipeline continues to run, or stops, based on
condition expressions. When the condition is true,
the pipeline runs successive tasks. When false, the
pipeline stops.

VMware, Inc.

Examples and details

See How do | run a pipeline and

see results. and How do | manage
user access and approvals in vRealize
Automation Code Stream.

See How do | use variable bindings
in a condition task to run or stop a
pipeline in vRealize Automation Code
Stream.

34

Using and Managing vRealize Automation Code Stream

Table 3-3. Automate continuous integration and deployment

Type of task

Cloud template

Cl

Custom

Kubernetes

Pipeline

VMware, Inc.

What it does

Deploys an automation cloud template from
GitHub and provisions an application, and
automates the continuous integration and
continuous delivery (CICD) of that cloud template
for your deployment.

The Cl task enables continuous integration of your
code into your pipeline by pulling a Docker build
image from a registry endpoint, and deploying it to
a Kubernetes cluster.

The Custom task integrates vRealize Automation
Code Stream with your own build, test, and deploy
tools.

Automate the deployment of your software
applications to Kubernetes clusters on AWS.

Nests a pipeline in a primary pipeline. When a
pipeline is nested, it behaves as a task in the
primary pipeline.

On the Task tab of the primary pipeline, you can
easily navigate to the nested pipeline by clicking
the link to it. The nested pipeline opens in a new
browser tab.

Examples and details

See How do | automate the release
of an application that | deploy from
a YAML cloud template in vRealize
Automation Code Stream.

The cloud template parameters
appear after you first select Create
or Update, then select Cloud
Template and Version. You can add
these elements, which accommodate
variable bindings, to the input text
areas in the cloud template task:

m |nteger

m Enumeration string

m Boolean

m Array variable

When you use variable binding in the
input, be aware of these exceptions.
For enumerations, you must select an
enumeration value from a fixed set.
For Boolean values, you must enter
the value in the input text area.

The cloud template parameter
appears in the cloud template task
when a cloud template in vRealize
Automation Cloud Assembly includes
input variables. For example, if a cloud
template has an input type of Integer,
you can enter the integer directly or as
a variable by using variable binding.

See Planning a CICD native build

in VRealize Automation Code Stream
before using the smart pipeline
template.

See How do | integrate my own build,
test, and deploy tools with vRealize
Automation Code Stream.

See How do | automate the release of
an application in vRealize Automation
Code Stream to a Kubernetes cluster.

To find nested pipelines in Executions,
enter nested in the search area.

35

Using and Managing vRealize Automation Code Stream

Table 3-4. Integrate development, test, and deployment applications

Task type...

Bamboo

Jenkins

TFS

VRO

What it does...

Interacts with a Bamboo continuous integration
(Cl) server, which continuously builds, tests, and
integrates software in preparation for deployment,
and triggers code builds when developers commit
changes. It exposes the artifact locations that the
Bamboo build produces so that the task can output
the parameters for other tasks to use for build and
deployment.

Triggers Jenkins jobs that build and test your
source code, runs test cases, and can use custom
scripts.

Allows you to connect your pipeline to Team
Foundation Server to manage and invoke build
projects, including configured jobs that build and
test your code.

Extends the capability of vRealize Automation
Code Stream by running predefined or custom
workflows in vRealize Orchestrator.

Table 3-5. Integrate other applications through an API

Task type...

REST

Poll

VMware, Inc.

What it does...

Integrates vRealize Automation Code Stream with
other applications that use a REST API so that

you can continuously develop and deliver software
applications that interact with each other.

Invokes a REST API and polls it until the pipeline
task meets the exit criteria and completes.

A vRealize Automation Code Stream administrator
can set the poll count to a maximum of 10000. The
poll interval must be greater than or equal to 60
seconds.

When you mark the Continue on failure check box,
if the count or interval exceeds these values, the
poll task continues to run.

Examples and details...

Connect to a Bamboo server endpoint

and start a Bamboo build plan from
your pipeline.

See How do | integrate vRealize
Automation Code Stream with
Jenkins.

vRealize Automation Code Stream
supports Team Foundation Server
2013 and 2015.

See How do | integrate vRealize
Automation Code Stream with
vRealize Orchestrator.

Examples and details...

See How do | use a REST API to
integrate vRealize Automation Code
Stream with other applications.

See How do | use a REST API to
integrate vRealize Automation Code
Stream with other applications.

36

Using and Managing vRealize Automation Code Stream

Table 3-6. Run remote and user-defined scripts

Type of task

PowerShell

SSH

VMware, Inc.

What it does

With the PowerShell task, vRealize Automation
Code Streamcan run script commands on a remote
host. For example, a script can automate test tasks,
and run administrative types of commands.

The script can be remote or user-defined. It can
connect over HTTP or HTTPS, and can use TLS.
The Windows host must have the winrm

service configured, and winrm must have
MaxShellsPerUser and MaxMemoryPerShellMB
configured.

To run a PowerShell task, you must have an active
session to the remote Windows host.

PowerShell Command Line Length

If you enter a base64 PowerShell command, be
aware that you must calculate the overall command
length.

The vRealize Automation Code Stream pipeline
encodes and wraps a base64 PowerShell command
in another command, which increases the overall
length of the command.

The maximum length allowed for a PowerShell
winrm command is 8192 bytes. The command
length limit is lower for the PowerShell task when

it is encoded and wrapped. As a result, you must
calculate the command length before you enter the
PowerShell command.

The command length limit for the vRealize
Automation Code Stream PowerShell task depends
on the base64 encoded length of the original
command. The command length is calculated as
follows.

3 * (length of original command / 4)) -
(numberOfPaddingCharacters) + 77 (Length of
Write-output command)

The command length for vRealize Automation
Code Stream must be less than the maximum limit
of 8192.

The SSH task allows the Bash shell script task

to run script commands on a remote host. For
example, a script can automate test tasks, and run
administrative types of commands.

The script can be remote or user-defined. It can
connect over HTTP or HTTPS, and requires a
private key or password.

The SSH service must be configured on the Linux
host, and the SSHD configuration of MaxSessions
must be set to 50.

Examples and details

When you configure
MaxShellsPerUser and
MaxMemoryPerShellMB

m The acceptable value for
MaxShellsPerUser is 500 for
50 concurrent pipelines, with 5
PowerShell tasks for each pipeline.
To set the value, run: winrm
set winrm/config/winrs
'@{MaxShellsPerUser="500"}"

B The acceptable memory value for
MaxMemoryPerShellMB is 2048.
To set the value, run: winrm set
winrm/config/winrs
'@ {MaxMemoryPerShellMB="204
8"}
The script writes the output to a
response file that another pipeline can
consume.

The script can be remote or user-
defined. For example, a script might
resemble:

message="Hello World" echo
Smessage

The script writes the output to a
response file that another pipeline can
consume.

37

Using and Managing vRealize Automation Code Stream

How do | use variable bindings in vRealize Automation Code
Stream pipelines

Binding a pipeline task means that you create a dependency for the task when the pipeline runs.
You can create a binding for a pipeline task in several ways. You can bind a task to another task,
bind it to a variable and expression, or bind it to a condition.

How to apply dollar bindings to cloud template variables in a cloud
template task

You can apply dollar bindings to cloud template variables in a vRealize Automation Code Stream
pipeline cloud template task. The way you modify the variables in vRealize Automation Code
Stream depends on the coding of the variable properties in the cloud template.

If you must use dollar bindings in a cloud template task, but the current version of the cloud
template that you're using in the cloud template task doesn't allow it, modify the cloud template in
VRealize Automation Cloud Assembly and deploy a new version. Then, use the new cloud template
version in your cloud template task, and add the dollar bindings where needed.

To apply dollar bindings on the types of properties that the vRealize Automation Cloud Assembly
cloud template provides, you must have the correct permissions.

® You must have the same role as the person who created the cloud template deployment in
VRealize Automation Cloud Assembly.

m The person who models the pipeline and the person who runs the pipeline might be two
different users and might have different roles.

m |f a developer has the vRealize Automation Code Stream Executor role and models the
pipeline, the developer must also have the same vRealize Automation Cloud Assembly role
of the person who deployed the cloud template. For example, the required role might be
VRealize Automation Cloud Assembly administrator.

= Only the person who models the pipeline can create the pipeline and create the deployment
because they have permission.

To use an API token in the cloud template task:

m The person who models the pipeline can give an API token to another user who has the
VRealize Automation Code Stream Executor role. Then, when the Executor runs the pipeline, it
uses the API token and the credentials that the API token creates.

m When a user enters the API token in the cloud template task, it creates the credentials that the
pipeline requires.

m To encrypt the API token value, click Create Variable.

m |f you don't create a variable for the API token, and use it in the cloud template task, the API
token value appears in plain text.

To apply dollar bindings to cloud template variables in a cloud template task, follow these steps.

VMware, Inc. 38

Using and Managing vRealize Automation Code Stream

You start with a cloud template that has input variable properties defined, such as integervar,
stringVar, flavorVar, BooleanVar, objectVar, and arrayvar. You can find the image properties
defined in the resources section. The properties in the cloud template code might resemble:

formatVersion: 1
inputs:
integerVar:
type: integer
encrypted: false
default: 1
stringVar:
type: string
encrypted: false
default: bkix
flavorvVar:
type: string
encrypted: false
default: medium
BooleanVar:
type: boolean
encrypted: false
default: true
objectVar:
type: object
encrypted: false
default:
bkix2: bkix2
arrayvar:
type: array
encrypted: false
default:
= YqLU
= YU
resources:
Cloud_Machine 1:
type: Cloud.Machine
properties:
image: ubuntu
flavor: micro

count: '${input.integerVar}'

You can use dollar sign variables ($) for image and flavor. For example:

resources:
Cloud Machine 1:
type: Cloud.Machine
properties:
input: '${input.image}"’

flavor: '${input.flavor}"

To use a cloud template in a vRealize Automation Code Stream pipeline, and add dollar bindings
to it, follow these steps.

1 In vRealize Automation Code Stream, click Pipelines > Blank Canvas.

VMware, Inc.

Using and Managing vRealize Automation Code Stream

2 Add a Cloud template task to the pipeline.

3 Inthe Cloud template task, for Cloud template source select Cloud Assembly Cloud
Templates, enter the cloud template name, and select the cloud template version.

4 Notice that you can enter an API token, which provides credentials for the pipeline. To create a
variable that encrypts the API token in the cloud template task, click Create Variable.

5 Inthe Parameter and Value table that appears, notice the parameter values. The default value
for flavor is small and the default value for image is ubuntu.

6 Let's say that you must change the cloud template in vRealize Automation Cloud Assembly.
For example, you:

a Setthe flavor so thatit uses a property of type array. vRealize Automation Cloud
Assembly allows comma-separated values for Flavor when the type is array.

b Click Deploy.

¢ Onthe Deployment Type page, enter a deployment name, and select the version of the
cloud template.

d On the Deployment Inputs page, you can define one or more values for Flavor.

e Notice that the Deployment inputs include all the variables defined in your cloud template
code, and appear as defined in the cloud template code. For example: Integer Var,
String Var, Flavor Var, Boolean Var, Object Var, and Array Var. String Var and Flavor
Var are string values, and Boolean Var is a check box.

f Click Deploy.

7 In vRealize Automation Code Stream, select the new version of the cloud template, and enter
values in the Parameter and Value table. Cloud templates support the following types of
parameters, which enable vRealize Automation Code Stream bindings by using dollar sign
variables. Slight differences exist between the user interface of the vRealize Automation Code
Stream cloud template task and the user interface of the vRealize Automation Cloud Assembly
cloud template. Depending on the coding of a cloud template in vRealize Automation Cloud
Assembly, entering values in the cloud template task in vRealize Automation Code Stream
might not be allowed.

a For flavorVar, if the cloud template defined the type as string or array, enter a string or a
comma-separated value array. An example array resembles test, test.

VMware, Inc. 40

Using and Managing vRealize Automation Code Stream

b For BooleanVar, in the drop-down menu select true or false. Or, to
use a variable binding, enter $ and select a variable binding from the

Faramater Walus
stringvar rai
integeryvar 1
i Var
flavorva rrvadiem
BooleanVar ﬂ 0
a1 ar war
objectVa ot
comments
arrayvar requestBy
axecutionindex
executionid
executionLirl
Output Paramet name
desorption
- 218 Stagel
) I(\ status B s el B W B B e Ll
list

c For objectVar, enter the value with curly brackets and quotation marks in this format:
{"bkix":"bkix":}.

d The objectVar will be passed to the cloud template, and can be used in various ways
depending on the cloud template. It allows a string format for a JSON object, and you can
add key-value pairs as comma-separated values in the key-value table. You can enter plain
text for a JSON object, or a key-value pair as a normal stringified format for JSON.

e For arrayVar, enter the comma-separated input value as an array in this format:
[Hl" , l12ll])

8 Inthe pipeline, you can bind an input parameter to an array.
a Click the Input tab.
b Enter a name for the input. For example, arrayInput.
¢ Inthe Parameter and Value table, click in arrayVar and enter $ {input.arrayInput}.

d After you save the pipeline and enable it, when the pipeline runs, you must provide an
array input value. For example, enter ["1","2"] and click Run.

Now you have learned how to use dollar sign ($) variable bindings in a cloud template in a vRealize
Automation Code Stream pipeline cloud template task.

How to pass a parameter to a pipeline when it runs

You can add input parameters to your pipeline to have vRealize Automation Code Stream pass
them to the pipeline. Then, when the pipeline runs, a user must enter the value for the input
parameter. When you add output parameters to your pipeline, the pipeline tasks can use the
output value from a task. vRealize Automation Code Stream supports using parameters in many
ways that support your own pipeline needs.

VMware, Inc. 41

Using and Managing vRealize Automation Code Stream

For example, to prompt a user for the URL to their Git server when a pipeline with a REST task

runs, you can bind the REST task to a Git server URL.

To create the variable binding, you add a URL binding variable to the REST task. When the
pipeline runs and reaches the REST task, a user must enter their URL to the Git server. Here's how

you would create the binding:

1 Inyour pipeline, click the Input tab.

2 To set the parameter, for Auto inject parameters click Git.

The list of Git parameters appears, and includes GIT_SERVER_URL. If you must use a default

value for the Git server URL, edit this parameter.

3 Click Model, and click your REST task.

4 Onthe Task tab, in the URL area, enter $, then select input and GIT_SERVER_URL.

Task Task3 Motifications Rollback

Task name & Task3

VALIDATE TASK [EmE=

Tyoe REST

Continue on failure []

Executs task © Always () On condition

REST Request

Action GET

URL% $input |

O = I T =T e T =

Agent endpoint GIT_CHAMGE_SUBJECT
GIT_COMMIT_ID
GIT_EVENT_DESCRIPTION
GIT_EVENT_OWMNER_MAME
GIT_EVENT_TIMESTAMP
GIT_REPO_MAME

GIT_SERVER_URL

Headers

Qutput Parameters

r: status :] (responseHeaders j(?::-ﬁ:‘E:-@jf\ responselson J‘||’\ responselods j

The entry resembles: ${input.GIT_SERVER_URL}

5 To verify the integrity of the variable binding for the task, click Validate Task.

vRealize Automation Code Stream indicates that the task validated successfully.

6 When the pipeline runs the REST task, a user must enter the URL of the Git server. Otherwise,

the task does not finish running.

VMware, Inc.

42

Using and Managing vRealize Automation Code Stream

How to bind two pipeline tasks by creating input and output
parameters

When you bind tasks together, you add a binding variable to the input configuration of the
receiving task. Then, when the pipeline runs, a user replaces the binding variable with the required
input.

To bind pipeline tasks together, you use the dollar sign variable ($) in the input parameters and
output parameters. This example shows you how.

Let's say you need your pipeline to call a URL in a REST task, and output a response. To call the
URL and output the response, you include both input and output parameters in your REST task.
You also need a user who can approve the task, and include a User Operations task for another
user who can approve it when the pipeline runs. This example shows you how to use expressions
in the input and output parameters, and have the pipeline wait for approval on the task.

1 Inyour pipeline, click the Input tab.

rest-ix-1 (enabed) AcTions~

m Workspace 48 Input =] Model B Output

Input Parameters @

Auto inject parameters () Gerrit () Git () Docker @ None
ADD
Starred) MName T Value : 4 Description k4
iy LEL [Stage0 Task3.input http:ffwww docs. vmware.com} Docs URL

2 Leave the Auto inject parameters as None.

3 Click Add, and enter the parameter name, value, and description, and click OK. For example:
a Enter a URL name.
b Enter the value: {stage0.Task3.input.http://www.docs.vmware.com}
c Enter a description.

4 Click the Output tab, click Add, and enter the output parameter name and mapping.

VMware, Inc. 43

Using and Managing vRealize Automation Code Stream

Add Pipeline Output Parameter

Mame * RESTResponse

Beferences * ${Stage0 Task3.output.

responseHeaders

responseBody

responsetson I

responseCodse

a Enter a unique output parameter name.

b Click in the Reference area, and enter s.

c Enter the task output mapping by selecting the options as they pop up. Select the StageO,

select Task3, select output, and select responseCode. Then, click OK.

rest_[x_‘| [Enabled :. ACTIOMS

@ \Workspace 48 Input s Model B Cutput
Output Parameters @

ADD

Starred (@) Name T Reference

iy RESTResponse ${StageD Task3.output.responseCods]

Save your pipeline.
From the Actions menu, click Run.

Click Actions > View executions.

0o N o O»

you defined.

VMware, Inc.

Click the pipeline execution, and examine the input parameters and output parameters that

44

Using and Managing vRealize Automation Code Stream

10
n

12

8§ rest-ix-1#2 (WaTe) 00 actions

Stage0
Task2 Task3

Project chirm
Executicn rest-ix-1#2
Status WAITING | 5tage(. Task2: Execution Waiting for User Action.
Updated By
Executed By [. e o IR
Comments Test Vars Expressions
Duration 37 seconds (Feb 4, 2020, 3117-31 PM - Feb 4, 2020, 3:17:42 PM)

Input Parameters w

LIREL {Staged Task3.input httpfwww.docs vmware.com}

Workspace
Mo details available

Output Parameters w

Response tasks['Stagel. Task3']['output responseCode’]

To approve the pipeline, click User Operations, and view the list of approvals on the Active
Items tab. Or, stay in the Executions, click the task, and click Approve.

To enable the Approve and Reject buttons, click the check box next to the execution.
To see the details, expand the drop-down arrow.

To approve the task, click APPROVE, enter a reason, and click OK.

VMware, Inc.

45

Using and Managing vRealize Automation Code Stream

User Operations GUIDED SETUP

Active ltems nactive Items

[-~ APPROVE = REJECT

|] Index# r Execution T

| ¥ | User Operation #f0d252

Request Details

Execution rest-ix-1#2

summary hello

Approvers [P YL rTV e S RI TE: -SYaStee e
Requested By b ortwenr o ek

Requested On Feb 4, 2020, 31740 PM

Expires On Feb 7, 2020, 31740 PM

APPROVE REJECT VIEW DASHEOARD

13 Click Executions and watch the pipeline continue.

Executions (3347itms) GUIDED SETUP

[+ NEW EXECUTION] Q B v _C

B o (CRUNNING) Stages: ACTIONS
.{l rest-i. #3 ———
By e on Felr 4, 2020, 3:.41:05 PM 7 Input : -
0y RUNNING < Output : -

Comments:Testing

14 If the pipeline fails, correct any errors, then save the pipeline and run it again.

VMware, Inc.

46

Using and Managing vRealize Automation Code Stream

Executions (z3stitems) GUIDED SETUP
[+ NEW EXECUTION | Q, B v C
.{. - (" COMPLETED) Stages’ em® e ACTIONS «
. rest-ix-176 —
By e on Feb 5, 2020, 1:28:52 PM v Input : -
Oy Execution Completed. vy Output : -

How do | learn more about variables and expressions

To see details about using variables and expressions when you bind pipeline tasks, see What
variables and expressions can | use when binding pipeline tasks in vRealize Automation Code
Stream.

To learn how to use the pipeline task output with a condition variable binding, see How do | use
variable bindings in a condition task to run or stop a pipeline in vRealize Automation Code Stream.

How do | use variable bindings in a condition task to run or
stop a pipeline in vRealize Automation Code Stream

You can have the output of a task in your pipeline determine whether the pipeline runs or stops
based on a condition that you supply. To pass or fail the pipeline based on the task output, you
use the Condition task.

You use the Condition task as a decision point in your pipeline. By using the Condition task with
a condition expression that you provide, you can evaluate any properties in your pipeline, stages,
and tasks.

The result of the Condition task determines whether the next task in the pipeline runs.
m A true condition allows the pipeline run continue.
m A false condition stops the pipeline.

For examples of how to use the output value of one task as the input to the next task by
binding the tasks together with a Condition task, see How do | use variable bindings in vRealize
Automation Code Stream pipelines.

VMware, Inc. 47

Using and Managing vRealize Automation Code Stream

Table 3-7. How the Condition task and its condition expression relate to the pipeline

Condition task

Condition task

Condition expression

What it affects

Pipeline

Condition task
output

What it does

The Condition task determines whether the pipeline runs or stops at that
point, based on whether the task output is true or false.

When the pipeline runs, the condition expression that you include in
the Condition task produces a true or false output status. For example,
a condition expression can require the Condition task output status as
Completed, or use a build number of 74.

The condition expression appears on the Task tab in the Condition task.

Task :Task2 Notifications Rollback

Task name® * Task2

Type * Condition

Condition Task

Condition s Enter condition expression)

Conditional Expression
An expression, which on evaluation should return true or false

Example’

${Stagel.taskl.output.status} == "COMPLETED"
|| ${input.buildNumber} == 74

Supported constructs:
If the dollar binding evaluates to string, enclose with ' "or ™"
Type Example

Pipeline variables ${input.changeSetNumber} (numeric binding) or

"${input.changeSetOwner}" (string binding)

Task output

${stagel.taskl.output.responseCode} (num binding)
variables

or "${stagel.taskl.output.status}" (string binding)
Boolean values true / false
Numeric values 99 or 123.45 (quotes not allowed)

String values "Tested" or 'Tested'

Relational g <miy e o =
operators

Arithmetic + - %/

operators

Boolean && (logical and), |l (logical or)

The Condition task differs in function and behavior from the On Condition setting in other types of

tasks.

VMware, Inc.

48

Using and Managing vRealize Automation Code Stream

Task :Depioy Phase T Motifications Rollback -0

Task name @ Deploy Phase 1

Type Kas

Continue on failure []

Execute task () Always @ ©On condition

Condition g @

&

In other types of tasks, the On Condition determines whether the current task runs, rather than
successive tasks, based on the evaluation of its precondition expression of true or false. The
condition expression for the On Condition setting produces a true or false output status for the
current task when the pipeline runs. The On Condition setting appears on the Task tab with its
own condition expression.

This example uses the Condition task.

Prerequisites

m Verify that a pipeline exists, and that it includes stages and tasks.

Procedure
1 Inyour pipeline, determine the decision point where the Condition task must appear.
2 Add the Condition task before the task that depends on its status of pass or fail.

3 Add a condition expression to the Condition task.

For example: "${Stagel. taskl.output.status}" == "COMPLETED" || $
{input.buildNumber} == 74
@ Workspace 48 Input »§ Model B Output
» = @, Task :Task? Notifications Rollback ==
StageO o & = Task name® Taskl
fi Type Condition -
Taskl —_—
cenditan H Condition Task
Condition "${Stagel taskl.output status}” == "COMPLETED" ||)
+Parallel Task 4 ${input buildNumber} == 74
4
OQutput Parameters

4 Validate the task.

5 Save the pipeline, then enable and run it.

VMware, Inc.

49

Using and Managing vRealize Automation Code Stream

Results

Watch the pipeline executions and notice whether the pipeline continues running, or stops at the
Condition task.

What to do next

If you roll back a pipeline deployment, you can also use the Condition task. For example, in

a rollback pipeline, the Condition task helps vRealize Automation Code Stream mark a pipeline
failure based on the condition expression, and can trigger a single rollback flow for various failure
types.

To roll back a deployment, see How do | roll back my deployment in vRealize Automation Code
Stream.

What variables and expressions can | use when binding
pipeline tasks in vRealize Automation Code Stream

With variables and expressions, you can use input parameters and output parameters with your
pipeline tasks. The parameters you enter bind your pipeline task to one or more variables,
expressions, or conditions, and determine the pipeline behavior when it runs.

Pipelines can run simple or complex software delivery solutions

When you bind pipeline tasks together, you can include default and complex expressions. As a
result, your pipeline can run simple or complex software delivery solutions.

To create the parameters in your pipeline, click the Input or Output tab, and add a variable by
entering the dollar sign $ and an expression. For example, this parameter is used as a task input
that calls a URL: ${Stage0.Task3.input.URL}.

The format for variable bindings uses syntax components called scopes and keys. The scopE
defines the context as input or output, and the kEy defines the details. In the parameter example
${Stage0.Task3.input.URL}, the input is the scope and the URL is the kEy.

Output properties of any task can resolve to any number of nested levels of variable binding.

To learn more about using variable bindings in pipelines, see How do | use variable bindings in
VRealize Automation Code Stream pipelines.

Using dollar expressions with scopes and keys to bind pipeline tasks

You can bind pipeline tasks together by using expressions in dollar sign variables. You enter
expressions as ${SCOPE.KEY.<PATH>}.

To determine the behavior of a pipeline task, in each expression, scoprk is the context that vRealize
Automation Code Stream uses. The scope looks for a kEy, which defines the detail for the action
that the task takes. When the value for Kty is a nested object, you can provide an optional PATH.

These examples describe scope and Key, and show you how you can use them in your pipeline.

VMware, Inc. 50

Using and Managing vRealize Automation Code Stream

Table 3-8. Using SCOPE and KEY

Purpose of expression and How to use SCOPE and
SCOPE example KEY KEY in your pipeline
input Input properties of a Name of the input property To refer to the input
pipeline: property of a pipeline in a
${input.inputl} task, use this format:
tasks:
mytask:
type: REST
input:
url: $

{input.url}
action: get

input:
url: https://
WWW . vmware . com

output Output properties of a Name of the output To refer to an output
pipeline: property property for sending a
S {output.outputl} notification, use this format:

notifications:
email:
- endpoint:
MyEmailEndpoint
subject:
"Deployment
Successful"
event: COMPLETED
to:
user@example.org
body: |
Pipeline
deployed
the service
successfully.
Refer $
{output.serviceURL}

VMware, Inc.

Using and Managing vRealize Automation Code Stream

Table 3-8. Using SCOPE and KEY (continued)

Purpose of expression and How to use SCOPE and
SCOPE example KEY KEY in your pipeline
task input Input to a task: Indicates the input of atask ~ When a Jenkins job starts,
s in a notification it can refer to the name

{MY_STAGE.MY TASK.input. of the job triggered from

SOMETHING} the task input. In this case,

send a notification by using
this format:

notifications:
email:
- endpoint:

MyEmailEndpoint
stage: MY STAGE
task: MY TASK
subject:

"Build Started"
event: STARTED
to:

user@example.org
body: |

Jenkins job $

{MY STAGE.MY TASK.i

nput.job} started

for commit id $

{input.COMMITID} .

task output Output of a task: Indicates the output of a To refer to the output of
s task in a subsequent task pipeline task 1in task 2, use

{MY STAGE.MY TASK.output this format:

.SOMETHING}
taskOrder:
- taskl
- task2
tasks:
taskl:
type: REST
input:
action: get
url: https://
www.example.org/api
/status
task2:
type: REST
input:
action: post
url: https://
status.internal.exa
mple.org/api/
activity
payload: $
{MY_STAGE.taskl.out
put.responseBody}

VMware, Inc.

Using and Managing vRealize Automation Code Stream

Table 3-8. Using SCOPE and KEY (continued)

SCOPE

var

var

task status

stage status

Purpose of expression and

example KEY
Variable: Refer to variable in an
${var.myVariable} endpoint

Variable: Refer to variable in a
${var.myVariable} pipeline

Status of a task:

S

(MY STAGE.MY TASK.status
}

$
{MY_ STAGE.MY TASK.status

Message}

Status of a stage:
${MY_STAGE.status}

$
{MY_STAGE.statusMessage}

Default Expressions

How to use SCOPE and
KEY in your pipeline

To refer to a secret variable
in an endpoint for a
password, use this format:

project: MyProject
kind: ENDPOINT
name:
MyJenkinsServer
type: jenkins
properties:

url: https://
jenkins.example.com
username:
jenkinsUser
password: $
{var.jenkinsPasswor
d}

To refer to variable in
a pipeline URL, use this
format:

tasks:
taskl:
type: REST
input:
action: get
url: $
{var.MY SERVER URL}

You can use variables with expressions in your pipeline. This summary includes the default
expressions that you can use.

VMware, Inc.

53

Using and Managing vRealize Automation Code Stream

Expression Description

${comments} Comments provided when at pipeline execution request.
${duration} Duration of the pipeline execution.

${endTime} End time of the pipeline execution in UTC, if concluded.
${executedOn} Same as the start time, the starting time of the pipeline execution in UTC.
${executionId} ID of the pipeline execution.

${executionUrl} URL that navigates to the pipeline execution in the user interface.
${name} Name of the pipeline.

${requestBy} Name of the user who requested the execution.

${stageName} Name of the current stage, when used in the scope of a stage.
${startTime} Starting time of the pipeline execution in UTC.

${status} Status of the execution.

${statusMessage} Status message of the pipeline execution.

${taskName} Name of the current task, when used at a task input or notification.

Using SCOPE and KEY in pipeline tasks

You can use expressions with any of the supported pipeline tasks. These examples show you how
to define the scope and key, and confirm the syntax. The code examples use MY STAGE and MY TASK

as the pipeline stage and task names.

To find out more about available tasks, see What types of tasks are available in vRealize
Automation Code Stream.

VMware, Inc.

54

Using and Managing vRealize Automation Code Stream

Table 3-9. Gating tasks

Task

User Operation

Condition

VMware, Inc.

Scope

Input

Output

Input

Output

Key

summary: Summary of the request
for the User Operation

description: Description of the
request for the User Operation

approvers: List of approver email
addresses, where each entry can
be a variable with a comma, or use
a semi-colon for separate emails
approverGroups: List of approver
group addresses for the platform
and identity

sendemail: Optionally sends an
email notification upon request or
response when set to true
expirationInDays: Number of days
that represents the expiry time of
the request

index: Six-digit hexadecimal string
that represents the request
respondedBy: Account name of the
person who approved/rejected the
User Operation

respondedByEmail: Email address
of the person who responded

comments: Comments provided
during response

condition: Condition to evaluate.
When the condition evaluates to
true, it marks the task as complete,
whereas other responses fail the
task

result: Result upon evaluation

How to use SCOPE and KEY in the task

${MY_STAGE.MY_ TASK.input.summary}
${MY STAGE.MY TASK.input.description}
${MY STAGE.MY TASK.input.approvers}

$
{MY STAGE.MY TASK.input.approverGroups}

${MY STAGE.MY TASK.input.sendemail}

$
{MY STAGE.MY TASK.input.expirationInDay

s}

${MY_STAGE.MY_ TASK.output.index}
${MY_STAGE.MY TASK.output.respondedBy}

$
{MY_STAGE.MY_ TASK.output.respondedByEma
il}

${MY_STAGE.MY_ TASK.output.comments}

${MY_STAGE.MY_ TASK.input.condition}

${MY STAGE.MY TASK.output.response}

55

Using and Managing vRealize Automation Code Stream

Table 3-10. Pipeline tasks

Task

Pipeline

Scope

Input

Output

Key

name: Name of the pipeline to run

inputProperties: Input properties to
pass to the nested pipeline execution

$

How to use SCOPE and KEY in the task

${MY_STAGE.MY_TASK.input.name}

${MY STAGE.MY TASK.input.inputProperties} #
Refer to all properties

{MY_STAGE.MY TASK.input.inputProperties.inpu
t1} # Refer to value of inputl

executionStatus: Status of the pipeline
execution

executionIndex: Index of the pipeline
execution

outputProperties: Output properties of a s
pipeline execution

${MY_STAGE.MY TASK.output.executionStatus}
${MY_STAGE.MY_ TASK.output.executionIndex}

${MY_ STAGE.MY TASK.output.outputProperties}
Refer to all properties

{MY_STAGE.MY TASK.output.outputProperties.ou

tputl} # Refer to value of outputi

Table 3-11. Automate continuous integration tasks

Task

Cl

Custom

VMware, Inc.

Scope

Input

Output

Key

steps: A set of strings, which
represent commands to run
export: Environment variables to
preserve after running the steps
artifacts: Paths of artifacts to
preserve in the shared path
process: Set of configuration
elements for JUnit, JaCoCo,
Checkstyle, FindBugs processing

exports: Key-value pair,

which represents the exported
environment variables from the
input export

artifacts: Path of successfully
preserved artifacts
processResponse: Set of processed
results for the input process

How to use SCOPE and KEY in the task

${MY STAGE.MY TASK.input.steps}

${MY_STAGE.MY_ TASK.input.export}
${MY_STAGE.MY_ TASK.input.artifacts}

${MY_STAGE.MY_ TASK.input.process}

$
{MY_ STAGE.MY TASK.input.process[0].path
} # Refer to path of the first configuration

${MY STAGE.MY TASK.output.exports} #
Refer to all exports

$

{MY_ STAGE.MY TASK.output.exports.myvar}
Refer to value of myvar
$(MYisTAGE.MYiTASK.output.artifacts}

$

{MY_STAGE.MY TASK.output.processRespons
e}

$

{MY_STAGE.MY TASK.output.processRespons
e[0].result} # Result of the first process
configuration

56

Using and Managing vRealize Automation Code Stream

Table 3-11. Automate continuous integration tasks (continued)

Task

VMware, Inc.

Scope

Input

Output

Key

name: Name of the custom
integration

version: A version of the custom
integration, released or deprecated
properties: Properties to send to
the custom integration

properties: Output properties from
the custom integration response

How to use SCOPE and KEY in the task

${MY STAGE.MY TASK.input.name}
${MY_STAGE.MY_TASK.input.version}
${MY_STAGE.MY_ TASK.input.properties}
#Refer to all properties

$

{MY_ STAGE.MY TASK.input.properties.prop
ertyl} #Refer to value of propertyl

S{MY STAGE.MY TASK.output.properties}
#Refer to all properties

$

{MY STAGE.MY TASK.output.properties.pro
pertyl} #Refer to value of property1

57

Using and Managing vRealize Automation Code Stream

Table 3-12. Automate continuous deployment tasks: Cloud template

Task Scope Key How to use SCOPE and KEY in the task

Cloud template

Input action: One

of createDeployment,

updateDeployment,

deleteDeployment,

rollbackDeployment

blueprintInputParams: Used

for the create deployment

and update deployment

actions

allowbDestroy: Machines can

be destroyed in the update

deployment process.

CREATE_DEPLOYMENT

B DblueprintName: Name of
the cloud template

B DplueprintVersion:
Version of the cloud
template

OR

m fileurl: URL of the
remote cloud template
YAML, after selecting a
GIT server.

UPDATE_DEPLOYMENT

Any of these combinations:

B DblueprintName: Name of
the cloud template

B blueprintVersion:
Version of the cloud
template

OR

m fileurl: URL of the
remote cloud template
YAML, after selecting a
GIT server.

B deploymentId: ID of the
deployment

B deploymentName: Name of
the deployment

DELETE_DEPLOYMENT

B deploymentid: ID of the
deployment

VMware, Inc.

58

Using and Managing vRealize Automation Code Stream

Table 3-12. Automate continuous deployment tasks: Cloud template (continued)

Task Scope Key

OR

B deploymentName: Name of
the deployment

ROLLBACK_DEPLOYMENT

Any of these combinations:

B deploymentid: ID of the

deployment
OR

B deploymentName: Name of
the deployment

B DblueprintName: Name of
the cloud template

B rollbackvVersion: Version

to roll back to

Output

Example JSON output:

VMware, Inc.

How to use SCOPE and KEY in the task

Parameters that can bind to other tasks or to the

output of a pipeline:

m Deployment Name can be accessed as $
{Stage0.Task0.output.deploymentName}

m Deployment Id can be accessed as $
{Stage0.Task0.output.deploymentId}

m Deployment Details is a complex object, and
internal details can be accessed by using the
JSON results.

To access any property, use the dot operator to

follow the JSON hierarchy. For example, to access

the address of resource Cloud_Machine_1[0], the $
binding is:

$

{Stage0.Task0.output.deploymentDetails.re

sources|['Cloud Machine 1[0]'].address}

Similarly, for the flavor, the $ binding is:
$
{Stage0.Task0.output.deploymentDetails.re
sources|['Cloud Machine_1[0]'].flavor}
In the vRealize Automation Code Stream user
interface, you can obtain the $ bindings for any
property.
1 Inthe task output property area, click VIEW
OUTPUT JSON.
To find the $ binding, enter any property.
Click the search icon, which displays the
corresponding $ binding.

59

Using and Managing vRealize Automation Code Stream

Stage0.Task0.output X

: talse,
"267f8448-d26f-4b65-b318-9212adb3c455",
{

Machine_1[0]": {

19 " /resources/compute/1606fbcd-40eS -4edc-ab85-7b559aa986ad"
20 "Cloud_Machine_1[@]",
21 power ": "ON",
22 ‘address”: “18.108.79.33",
23 'resourcelink”: "/resources/compute/1606fbcd-40e5-4edc-ab85-7b55%aa986ad" ,
24 q nentTypeld": "Cloud,vSphere.Machine",
25 "vsphere”,
26 =" : "Cloud_Machine_1-mcm110615-146929827053",
27 k "1606fbcd-4@e5-4edc-abB5-7b55%aa986ad” ,
28 "resourceDesclink”: "/resources/compute-descriptions/1952d1d3-15f@-4574-aed2
-4fbf8a87décc”,
Path finder
| address

(]

r
| ${Stage0.Task0.output.deploymentDetails.resources['Cloud_Machine_1[0]'].address}

Sample deployment details object:

"id": "6a031£f92-d0fa-42c8-bc9e-3b260ee2f65b",
"name": "deployment 6a031£92-d0fa-42c8-bcSe-3b260ee2f65b",
"description": "Pipeline Service triggered operation",
"orgId": "434£6917-4e34-4537-b6c0-3bf3638a7lbc",
"blueprintId": "8d1dd801-3a32-4f3b-adde-27£8163dfe6f",
"blueprintVersion": "1",
"createdAt": "2020-08-27T13:50:24.5462152",
"createdBy": "user@vmware.com",
"lastUpdatedAt": "2020-08-27T13:52:50.674957z",
"lastUpdatedBy": "user@vmware.com",
"inputs": {},
"simulated": false,
"projectId": "267£8448-d26f-4b65-b310-9212adb3c455",
"resources": {
"Cloud Machine 1[0]": {
"id": "/resources/compute/1606fbcd-40e5-4edc-ab85-7b55%aa986ad",
"name": "Cloud Machine 1[0]",
"powerState": "ON",
"address": "10.108.79.33",
"resourceLink": "/resources/compute/1606fbcd-40e5-4edc-ab85-7b55%aa986ad",
"componentTypeId": "Cloud.vSphere.Machine",
"endpointType": "vsphere",
"resourceName": "Cloud Machine 1-mcml110615-146929827053",
"resourceId": "1606fbcd-40e5-4edc-ab85-7b55%aa986ad",
"resourceDescLink": "/resources/compute-descriptions/1952d1d3-15f0-4574-
ae42-4fbf8a87d4cc",
"zone": "Automation / Vms",
"countIndex": "0O",
"image": "ubuntu",
"count": "1",
"flavor": "small",
"region": "MYBU",
" clusterAllocationSize": "1",
"osType": "LINUX",
"componentType": "Cloud.vSphere.Machine",
"account": "bha"

VMware, Inc.

Using and Managing vRealize Automation Code Stream

b

"status":
"deploymentURI":

"CREATE SUCCESSFUL",

"https://api.yourenv.com/automation-ui/#/deployment-ui;ash=/deployment/

6a031£92-d0fa-42c8-bc9e-3b260ee2f65b"

}

Table 3-13. Automate continuous deployment tasks: Kubernetes

Task

Kubernetes

VMware, Inc.

Scope

Input

Output

Key

action: One of GET, CREATE, APPLY,

DELETE, ROLLBACK

B timeout: Overall timeout for any action

B filterByLabel: Additional label to filter on
for action GET using K8S labelSelector

GET, CREATE, DELETE, APPLY

B yaml: Inline YAML to process and send to
Kubernetes

B parameters: KEY, VALUE pair - Replace $
$KEY with VALUE in the in-line YAML input
area

B filePath: Relative path from the SCM Git
endpoint, if provided, from which to fetch
the YAML

B scmConstants: KEY, VALUE pair - Replace
$${KEY} with VALUE in the YAML fetched
over SCM.

B continueOnConflict: When set to true, if
a resource is already present, the task
continues.

ROLLBACK

B resourceType: Resource type to roll back

B resourceName: Resource name to roll back

B namespace: Namespace where the rollback
must be performed

B revision: Revision to roll back to

response: Captures the entire response

response .<RESOURCE>: Resource corresponds
to configMaps, deployments, endpoints,
ingresses, jobs, namespaces, pods,
replicaSets, replicationControllers, secrets,
services, statefulSets, nodes, loadBalancers.
response.<RESOURCE>.<KEY>: The key
corresponds to one of apiVersion, kind,
metadata, spec

How to use SCOPE and KEY in the task

${MY STAGE.MY TASK.input.action}
#Determines the action to perform.

${MY_STAGE.MY_ TASK.input.timeout}

${MY_STAGE.MY_ TASK.input.filterByLabel}

${MY_ STAGE.MY TASK.input.yaml}

${MY STAGE.MY TASK.input.parameters}
${MY STAGE.MY TASK.input.filePath}
${MY_STAGE.MY_ TASK.input.scmConstants}
$

{MY_STAGE.MY_ TASK.input.continueOnConfl
ict}

${MY_STAGE.MY_ TASK.input.resourceType}
${MY_STAGE.MY_ TASK.input.resourceName}
${MY_STAGE.MY_ TASK.input.namespace}

${MY_STAGE.MY_ TASK.input.revision}

${MY STAGE.MY TASK.output.response}

${MY STAGE.MY TASK.output.response.}

61

Using and Managing vRealize Automation Code Stream

Table 3-14. Integrate development, test, and deployment applications

Task

Bamboo

Jenkins

TFS

VMware, Inc.

Scope

Input

Output

Input

Output

Key

plan: Name of the plan
plankey: Plan key

variables: Variables to be
passed to the plan

parameters: Parameters to be
passed to the plan

resultUrl: URL of the resulting
build

buildResultKey: Key of the
resulting build

buildNumber: Build Number
buildTestSummary: Summary of
the tests that ran
successfulTestCount: test
result passed

failedTestCount: test result
failed

skippedTestCount: test result
skipped

artifacts: Artifacts from the
build

job: Name of the Jenkins job

parameters: Parameters to be
passed to the job

job: Name of the Jenkins job

job1d: ID of the resulting job,
such as 1234

jobStatus: Status in Jenkins
jobResults: Collection of test/
code coverage results

jobUrl: URL of the resulting job
run

How to use SCOPE and KEY in the task

${MY_STAGE.MY_TASK.input.plan}

${MY STAGE.MY TASK.input.planKey}

${MY STAGE.MY TASK.input.variables}

${MY STAGE.MY TASK.input.parameters} # Refer to all
parameters

${MY STAGE.MY TASK.input.parameters.paraml} # Referto
value of param1

${MY_STAGE.MY_ TASK.output.resultUrl}
${MY_STAGE.MY_ TASK.output.buildResultKey}
$ {MY_STAGE.MY_ TASK.output. buildNumber}

${MY STAGE.MY TASK.output.buildTestSummary} # Refer to
all results

${MY_STAGE.MY TASK.output.successfulTestCount} #
Refer to the specific test count

${MY STAGE.MY TASK.output.buildNumber}

${MY_STAGE.MY TASK.input.job}

${MY STAGE.MY TASK.input.parameters} # Refer to all
parameters

${MY STAGE.MY TASK.input.parameters.paraml} # Referto
value of a parameter

${MY_ STAGE.MY TASK.output.job}
${MY STAGE.MY TASK.output.jobId}
${MY STAGE.MY TASK.output.jobStatus}

${MY STAGE.MY TASK.output.jobResults} # Refer to all
results

${MY STAGE.MY TASK.output.jobResults.junitResponse} #
Refer to JUnit results

${MY_ STAGE.MY TASK.output.jobResults.jacocoRespose} #
Refer to JaCoCo results

${MY_STAGE.MY TASK.output.jobUrl}

62

Using and Managing vRealize Automation Code Stream

Table 3-14. Integrate development, test, and deployment applications (continued)

Task

VRO

Scope

Input

Output

Input

Output

Key

projectCollection: Project
collection from TFS

teamProject: Selected project
from the available collection

buildDefinitionId: Build
Definition ID to run

buildid: Resulting build ID
buildurl: URL to visit the build
summary

logUrl: URL to visit for logs

dropLocation: Drop location of
artifacts if any

workflowId: ID of the workflow
to be run

parameters: Parameters to be
passed to the workflow

workflowExecutionId: ID of the
workflow execution
properties: Output properties
from the workflow execution

How to use SCOPE and KEY in the task

${MY STAGE.
${MY STAGE.

${MY STAGE.

${MY STAGE.
${MY STAGE.
${MY STAGE.

${MY_STAGE.

${MY STAGE.

${MY STAGE.

${MY STAGE.

${MY STAGE.

Table 3-15. Integrate other applications through an API

Task

REST

VMware, Inc.

Scope

Input

Key

url: URL to call

action: HTTP method to use

headers: HTTP headers to pass

payload: Request payload

fingerprint: Fingerprint to match

for a URL that is https

MY TASK.
MY TASK.

MY TASK.

MY TASK.
MY TASK.
MY TASK.

MY TASK.

MY TASK.

MY TASK.

MY TASK.

MY TASK.

input.projectCollection}
input.teamProject}

input.buildDefinitionId}

output.buildId}
output.buildUrl}
output.logUrl}

output.dropLocation}

input.workflowId}

input.parameters}

output.workflowExecutionId}

output.properties}

How to use SCOPE and KEY in the task

${MY STAGE.
${MY STAGE.
${MY STAGE.

${MY STAGE.

${MY STAGE.

allowAllCerts: When set to true,
can be any certificate that has a URL

of https

${MY STAGE.

MY TASK.input.url}

MY TASK.input.action}

MY TASK.input.headers}

MY TASK.input.payload}

MY TASK.input.fingerprint}

MY TASK.input.allowAllCerts}

63

Using and Managing vRealize Automation Code Stream

Table 3-15. Integrate other applications through an API (continued)

Task

Poll

VMware, Inc.

Scope

Output

Input

Output

Key

responseCode: HTTP response code

responseHeaders: HTTP response
headers

responseBody: String format of
response received

responseJson: Traversable response
if the content-type is application/
json

url: URL to call
headers: HTTP headers to pass

exitCriteria: Criteria to meet to for
the task to succeed or fail. A key-
value pair of 'success' — Expression,
'failure' — Expression

pollcount: Number of iterations

to perform. A vRealize Automation
Code Stream administrator can set
the poll count to a maximum of
10000.

pollintervalSeconds: Number of
seconds to wait between each
iteration. The poll interval must be
greater than or equal to 60 seconds.
ignoreFailure: When set to true,
ignores intermediate response
failures

fingerprint: Fingerprint to match
for a URL that is https
allowaAllCerts: When set to true,
can be any certificate that has a URL
of https

responseCode: HTTP response code
responseBody: String format of
response received

responseJson. Traversable response

if the content-type is application/
json

How to use SCOPE and KEY in the task

${MY_STAGE.MY_TASK.output.responseCode}
${MY_STAGE.MY_TASK.output.responseHeaders}

$
{MY_STAGE.MY_ TASK.output.responseHeaders.heade
r1} # Refer to response header 'header?'

${MY STAGE.MY TASK.output.responseBody}

${MY STAGE.MY TASK.output.responseJson} # Refer
to response as JSON

${MY_STAGE.MY_ TASK.output.responseJson.a.b.c}
Refer to nested object following the a.b.c JSON
path in response

${MY STAGE.MY TASK.input.url}

${MY STAGE.MY TASK.input.headers}
${MYisTAGE.MYiTASK.input.exitcriteria}
${MY_STAGE.MY_ TASK.input.pollCount}

${MY_ STAGE.MY TASK.input.polllntervalSeconds}
${MY_STAGE.MY_ TASK.input.ignoreFailure}

${MY_ STAGE.MY TASK.input.fingerprint}

${MY STAGE.MY TASK.input.allowAllCerts}

${MY_STAGE.MY_ TASK.output.responseCode}
${MY STAGE.MY TASK.output.responseBody}

${MY STAGE.MY TASK.output.responseJson} #

Refer to response as JSON

64

Using and Managing vRealize Automation Code Stream

Table 3-16. Run remote and user-defined scripts

Task

PowerShell
To run a PowerShell task, you must:

Scope

Key

B Have an active session to a remote Windows host.

How to use SCOPE and KEY in the task

m [f you intend to enter a base64 PowerShell command, calculate the overall command length first. For details, see

What types of tasks are available in vRealize Automation Code Stream.

SSH

VMware, Inc.

Input

Output

host: IP address or hostname
of the machine

username: User name to use to

connect

password: Password to use to
connect

useTLS: Attempt https
connection

trustCert: When set to true,
trusts self-signed certificates
script: Script to run
workingDirectory: Directory
path to switch to before
running the script

environmentVariables: A key-

value pair of environment
variable to set

arguments: Arguments to pass
to the script

response: Content of the file
$SCRIPT_RESPONSE_FILE

responseFilePath: Value of
$SCRIPT7RESPONSE7FILE

exitCode: Process exit code
logFilePath: Path to file
containing stdout
errorFilePath: Path to file
containing stderr

${MY STAGE.MY TASK.input.host}

S{MY STAGE.MY TASK.input.username}
${MY_STAGE.MY_TASK.input.password}
${MY_STAGE.MY_ TASK.input.useTLS}
${MY_STAGE.MY TASK.input.trustCert}
${MY_STAGE.MY TASK.input.script}

$
{MY_STAGE.MY TASK.input.workingDirectory
}
$

{MY STAGE.MY TASK.input.environmentVaria
bles}

${MY_STAGE.MY_ TASK.input.arguments}

${MY_ STAGE.MY TASK.output.response}

$
{MY_STAGE.MY TASK.output.responseFilePat
h}

${MY_STAGE.MY TASK.output.exitCode}
${MY_STAGE.MY TASK.output.logFilePath}

S{MY STAGE.MY TASK.output.errorFilePath}

65

Using and Managing vRealize Automation Code Stream

Table 3-16. Run remote and user-defined scripts (continued)

Task Scope

Input

Output

Key

host: IP address or hostname
of the machine

username: User name to use to
connect

password: Password to use to
connect (optionally can use
privateKey)

privateKey: PrivateKey to use
to connect

passphrase: Optional
passphrase to unlock
privateKey

script: Script to run

workingDirectory: Directory
path to switch to before
running the script
environmentVariables: Key-
value pair of the environment
variable to set

response: Content of the file
$SCRIPT7RESPONSE7FILE

responseFilePath: Value of
$SCRIPT7RESPONSE7FILE

exitCode: Process exit code
logFilePath: Path to file
containing stdout
errorFilePath: Path to file
containing stderr

How to use SCOPE and KEY in the task

${MY STAGE.MY TASK.input.host}
${MY_STAGE.MY_TASK.input.username}
${MY_STAGE.MY TASK.input.password}
${MY STAGE.MY TASK.input.privateKey}
${MY STAGE.MY TASK.input.passphrase}
${MY_STAGE.MY_TASK.input.script}

$
{MY_STAGE.MY TASK.input.workingDirectory
}

$
{MY_STAGE.MY TASK.input.environmentVaria

bles}

${MY STAGE.MY TASK.output.response}

$

{MY_STAGE.MY TASK.output.responseFilePat
h}

${MYisTAGE.MYiTASK.output.exitCode)

${MY STAGE.MY TASK.output.logFilePath}

${MYisTAGE.MYiTASK.output.errorFilePath}

How to use a variable binding between tasks

This example shows you how to use variable bindings in your pipeline tasks.

Table 3-17. Sample syntax formats

Example

To use a task output value
for pipeline notifications and
pipeline output properties

To refer to the previous task
output value as an input for the
current task

VMware, Inc.

Syntax

${<Stage Key>.<Task Key>.output.<Task output key>}

$S{<Previous/Current Stage key>.<Previous task key not in current Task

group>.output.<task output key>}

66

Using and Managing vRealize Automation Code Stream

To learn more
To learn more about binding variables in tasks, see:
s How do | use variable bindings in vRealize Automation Code Stream pipelines

m How do | use variable bindings in a condition task to run or stop a pipeline in vRealize
Automation Code Stream

m What types of tasks are available in vRealize Automation Code Stream

How do | send notifications about my pipeline in vRealize
Automation Code Stream

Notifications are ways to communicate with your teams and let them know the status of your
pipelines in vRealize Automation Code Stream.

To send notifications when a pipeline runs, you can configure vRealize Automation Code Stream
notifications based on the status of the entire pipeline, stage, or task.

= An email notification sends an email on:
m Pipeline completion, waiting, failure, cancelation, or start.
m Stage completion, failure, or start.
m Task completion, waiting, failure, or start.
m A ticket notification creates a ticket and assigns it to a team member on:
m Pipeline failure or completion.
m Stage failure.
m Task failure.
m A webhook notification sends a request to another application on:
m Pipeline failure, completion, waiting, cancelation, or start.
m Stage failure, completion, or start.
m Task failure, completion, waiting, or start.

For example, you can configure an email notification on a user operation task to obtain approval
at a specific point in your pipeline. When the pipeline runs, this task sends email to the person
who must approve the task. If the User Operation task has an expiration timeout set in days, hours,
or minutes, the required user must approve the pipeline before the task expires. Otherwise, the
pipeline fails as expected.

To create a Jira ticket when a pipeline task fails, you can configure a notification. Or, to send a
request to a Slack channel about the status of a pipeline based on the pipeline event, you can
configure a webhook notification.

VMware, Inc. 67

Using and Managing vRealize Automation Code Stream

You can use variables in all types of notifications. For example, you can use ${var} in the URL of a

Webhook notification.

Prerequisites

Verify that one or more pipelines are created. See the use cases in Chapter 5 Tutorials for
using vRealize Automation Code Stream.

To send email notifications, confirm that you can access a working email server. For help, see
your administrator.

To create tickets, such as a Jira ticket, confirm that the endpoint exists. See What are
Endpoints in vRealize Automation Code Stream .

To send a notification based on an integration, you create a webhook notification. Then, you
confirm that the webhook is added and working. You can use notifications with applications
such as Slack, GitHub, or GitLab.

Procedure
1 Open a pipeline.
2 To create a notification for the overall pipeline status, or the status of a stage or task:
To create a notification for: What you do:
Pipeline status Click a blank area on the pipeline canvas.
Status of a stage Click a blank area in a stage of the pipeline.
Status of a task Click a task in a stage of the pipeline.
3 Click the Notifications tab.
4 Click Add, select the type of notification, and configure the notification details.
5 To create a Slack notification when a pipeline succeeds, create a webhook notification.

a Select Webhook.
b To configure the Slack notification, enter the information.
c¢ Click Save.

d When the pipeline runs, the Slack channel receives the notification of the pipeline status.
For example, users might see the following on the Slack channel:

Codestream APP [12:01 AM]
Tested by Userl - Staging Pipeline 'Userl-Pipeline', Pipeline ID
'e9b5884d809ce2755728177£70f8a"' succeeded

VMware, Inc. 68

Using and Managing vRealize Automation Code Stream

6 To create a Jira ticket, configure the ticket information.
a Select Ticket.
b To configure the Jira notification, enter the information.

¢ Click Save.

Notification

Send notification type () Email @ Ticket () Webhook
When pipeline * ° Fails Completes

Jira endpoint * Jira-Motification

Create Ticket

Jira project * YourProject

Issue type * Bug

Assignee * username@yourcompany.com
Summary Fipeline failed

Description & Research and correct

CANCEL SAVE

Results

Congratulations! You learned that you can create various types of notifications in several areas of
your pipeline in vRealize Automation Code Stream.

What to do next

For a detailed example of how to create a notification, see How do | create a Jira ticket in vRealize
Automation Code Stream when a pipeline task fails.

How do | create a Jira ticket in vRealize Automation Code
Stream when a pipeline task fails

If a stage or task in your pipeline fails, you can have vRealize Automation Code Stream create a
Jira ticket. You can assign the ticket to the person who must resolve the problem. You can also
create a ticket when the pipeline is waiting, or when it succeeds.

You can add and configure notifications on a task, stage, or pipeline. vRealize Automation Code
Stream creates the ticket based on the status of the task, stage, or pipeline where you add the
notification. For example, if an endpoint is not available, you can have vRealize Automation Code
Stream create a Jira ticket for the task that fails because it cannot connect to the endpoint.

VMware, Inc. 69

Using and Managing vRealize Automation Code Stream

You can also create notifications when your pipeline succeeds. For example, you can inform your
QA team about pipelines that succeed so that they can confirm the build and run a different test
pipeline. Or, you can inform your performance team so that they can measure the performance of
the pipeline and prepare for an update to staging or production.

In Code Stream, create a
pipeline and add a stage and a task.
Pipelines > New Pipeline

To notify a user when a task or
stage fails, click the task or stage
and configure the ticket notification.
Pipeline > Task or Stage
> Notifications > Add > Ticket

To notify a user when a pipeline
fails or is waiting, click in
a blank area on the pipeline canvas,
and configure the ticket notification.
Pipeline > Canvas area > Notifications
> Add > Ticket > On Pipeline Failure

Configure the notification. For
example, for a JIRA ticket,
select the endpoint,
project, and issue type. Then,
enter the contact and summary
information.

Save the pipeline. Then,
enable and run it.

Change a task or stage to use data
that will make the pipeline fail
when it runs.

Save the pipeline, and run it again.

Confirm that the task or stage
failed, and created a ticket.
Pipelines > Executions

Correct the change, and
save the pipeline.

Run the pipeline again to
confirm that it succeeds.
Pipeline > Run

This example creates a Jira ticket when a pipeline task fails.

Prerequisites

m Verify that you have a valid Jira account and can log in to your Jira instance.

m Verify that a Jira endpoint exists, and is working.

Procedure

1 Inyour pipeline, click a task.

2 Inthe task configuration area, click Notifications.

VMware, Inc.

70

Using and Managing vRealize Automation Code Stream

3 Click Add, and configure the ticket information.

Click Ticket.

Select the Jira endpoint.

Enter the Jira project and type of issue.

Enter the email address for the person who receives the ticket.

Enter a summary and description of the ticket, then click Save.

Notification

Send notification type () Email @ Ticket () Webhook
When task * O Fails
Jira endpoint * TestJira v

Create Ticket

Jira project * YourProject

Issue type * Bug

Assignee * username@yourcompany.com
Summary $ * Cl task failed

Description$ Research and correct

CANCEL SAVE

4 Save the pipeline, then enable and run it.

5 Test the ticket.

a

Change the task information to include data that makes the task fail.
Save the pipeling, and run it again.
Click Executions, and confirm that the pipeline failed.

In the execution, confirm that vRealize Automation Code Stream created the ticket and
sent it.

Change the task information back to correct it, then run the pipeline again and ensure that
it succeeds.

VMware, Inc. 7

Using and Managing vRealize Automation Code Stream

Results

Congratulations! You had vRealize Automation Code Stream create a Jira ticket when the pipeline
task failed, and assigned it to the person who was required to solve it.

What to do next

Continue to add notifications to alert your team about your pipelines.

How do | roll back my deployment in vRealize Automation
Code Stream

You configure rollback as a pipeline with tasks that return your deployment to a previous stable
state following a failure in a deployment pipeline. To roll back if a failure occurs, you attach the
rollback pipeline to tasks or stages.

Depending upon your role, your reasons for rollback might vary.

m As arelease engineer, | want vRealize Automation Code Stream to verify success during a
release so that | can know whether to continue with the release or roll back. Possible failures
include task failure, a rejection in UserOps, exceeding the metrics threshold.

m As an environment owner, | want to redeploy a previous release so that | can quickly get an
environment back to a known-good state.

m As an environment owner, | want to support roll back of a Blue-Green deployment so that | can
minimize downtime from failed releases.

When you use a smart pipeline template to create a CD pipeline with the rollback option clicked,
rollback is automatically added to tasks in the pipeline. In this use case, you will use the smart
pipeline template to define rollback for an application deployment to a Kubernetes cluster using
the rolling upgrade deployment model. The smart pipeline template creates a deployment pipeline
and one or more rollback pipelines.

m |n the deployment pipeline, rollback is required if Update Deployment or Verify Deployment
tasks fail.

m In the rollback pipeline, deployment is updated with an old image.

You can also manually create a rollback pipeline using a blank template. Before creating a
rollback pipeline, you will want to plan your rollback flow. For more background information about
rollback, see Planning for rollback in vRealize Automation Code Stream.

Prerequisites

m Verify that you are a member of a project in vRealize Automation Code Stream. If you are not,
ask a vRealize Automation Code Stream administrator to add you as a member of a project.
See How do | add a project in vRealize Automation Code Stream.

m Set up the Kubernetes clusters where your pipeline will deploy your application. Set up one
development cluster and one production cluster.

VMware, Inc. 72

Using and Managing vRealize Automation Code Stream

m Verify that you have a Docker registry setup.

m |dentify a project that will group all your work, including your pipeline, endpoints, and
dashboards.

m Familiarize yourself with the CD smart template as described in the CD portion of Planning
a CICD native build in vRealize Automation Code Stream before using the smart pipeline
template, for example:

Create the Kubernetes development and production endpoints that deploy your
application image to the Kubernetes clusters.

Prepare the Kubernetes YAML file that creates the Namespace, Service, and Deployment.
If you need to download an image from a privately-owned repository, the YAML file must
include a section with the Docker config Secret.

Procedure

1 Click Pipelines > New Pipeline > Smart Template > Continuous Delivery.

2 Enter the information in the smart pipeline template.

a

b

Select a project.
Enter a pipeline name such as RollingUpgrade-Example.

Select the environments for your application. To add rollback to your deployment, you
must select Prod.

Click Select, choose a Kubernetes YAML file, and click Process.

The smart pipeline template displays the available services and deployment environments.
Select the service that the pipeline will use for the deployment.

Select the cluster endpoints for the Dev environment and the Prod environment.

For the Image source, select Pipeline runtime input.

For the Deployment model, select Rolling Upgrade.

Click Rollback.

Provide the Health check URL.

VMware, Inc. 73

Using and Managing vRealize Automation Code Stream

Smart Template: Continuous Delivery

Endpaint prerequisites @ (Kubernetes) (" Docker Registry)

Project test! @

Fipeling names) RollbackUpgrade-Example

Development Production

ed files:cdTemplate.yaml

Environment @

Kubermetes YAML files

Select service

Deployment name Service Namespace Image
° codestream-demo codestream-demo bgreen symphony-tango-beta2 jfrog.io/codestream-demo
1services
Deployment
Environment Cluster Endpeint Namespace

Development Dev-VKE-Cluster bgreen-596788

Praduction Prod-VKE-Cluster . bareen

.
Image source

Deployment model
Rollback

Health check URL ~

() Docker trigger @y Pipeline runtime input

(O Canary @ Rolling upgrade () Blue-Green

/health-check json

Q
CREATE CANCEL

3 To create the pipeline named RollbackUpgrade-Example, click Create.

The pipeline named RollbackUpgrade-Example appears, and the rollback icon appears on
tasks that can roll back in the Development stage and the Production stage.

VMware, Inc.

74

Using and Managing vRealize Automation Code Stream

RollbackUpgrade-Example (siesa

@ workspace @ input WgModel BF Output
» [F] & Q, Task :Create Secret Notifications Rollback —od
Development i B = Task name @ Create Secret
§ L= Type Kubernetes
Create Namespace Create Secret I Create Sen e —
Kubsmetes Kubsmetes 5 i Kubsmetes < Continue on failure O
Execute task O aways () On condition

Kubernetes Task Properties

Kubernetes cluster Dev-
Timeout (in Mins) 5
Action (O Get @ Create (O Apply (O Delete O
— # Production L Continue on confiict @]
& @ Payload source * (O Source contrel @ Local definition
late " Update Deployment " Verify Deployment
Kubsretes D POLL % Local YAML definition @

1 hpiversion: vi

ol Tas Paraliel Tas 2_ data

- e 3 dockercfz: eylzeWluaGoueslevisnbyliZxRhMiSgZn TvEySpbyleayllc
2VybF 25 T6InRhbmavLWI1dGEY] iwi cGF2c 3dvemQi0i ThRGSt cmvOLW
1UQi11e]cilCI1bWF pbCIEINRhbmdvLWILdGEYQHZEd2Fy 255 b 281 LCY
hdXRol joiZEdGdVoyCHRZEYYWWVRINL 1VUN JMWE psyiskxdF ZFSXRTSGEZ

4 kind: Secret

5 metadata

6" name: jfrog-betaz

7 namespace: bgreen-549938

& type: kubernetes.io/dockercfg

Parameters

Key value

Output Parameters

EDIT CLOSE | Last saved 9 minutes ago

4 Close the pipeline.

On the Pipelines page, the pipeline that you created appears, and a new pipeline for each
stage in your pipeline appears.

m RollingUpgrade-Example. vRealize Automation Code Stream deactivates the pipeline that
you created by default, which ensures that you review it before you run it.

m RollingUpgrade-Example_Dev_Rollback. Failure of tasks in the development stage, such
as Create service, Create secret, Create deployment, and Verify deployment invoke
this rollback development pipeline. To ensure the rollback of development tasks, vRealize
Automation Code Stream enables the rollback development pipeline by default.

m RollingUpgrade-Example_Prod_Rollback. Failure of tasks in the production stage, such
as Deploy phase 1, Verify phase 1, Deploy Rollout phase, Finish Rollout phase, and
Verify rollout phase invoke this rollback production pipeline. To ensure the rollback
of production tasks, vRealize Automation Code Stream enables the rollback production
pipeline by default.

VMware, Inc. 75

Using and Managing vRealize Automation Code Stream

Pipelines G
RollbackUpgrade-Example RollbackUpgrade-Example_Dev_Rollback RollbackUpgrade-Example_Prod_Rollback
2 testl & testl 2 testl
.{l State Disabled pf0 state Enabled ofQ state Enabled
Updated By o Updated By 4l Updated By
0 00 0Dy
No Description No Description No Description
0 EXECUTIONS 0 EXECUTIONS 0 EXECUTIONS
OPEN ACTIONS OPEN RUN ACTIONS ~ OPEN RUN ACTIONS ~

5 Enable and run the pipeline you created.

When you start the run, vRealize Automation Code Stream prompts you for input parameters.
You provide the image and tag for the endpoint in the Docker repository that you are using.

6 On the Executions page, select Actions > View Execution and watch the pipeline execution.

The pipeline starts RUNNING and moves through the Development stage tasks. If the

pipeline fails to run a task during the Development stage, the pipeline named RollingUpgrade-
Example_Dev_Rollback triggers and rolls back the deployment, and the pipeline status
changes to ROLLING_BACK.

VMware, Inc. 76

Using and Managing vRealize Automation Code Stream

{ BACK
[wvRollbackUpgrade-Example #1 (Rounceack) 0w actions v

® Development

@ Create Mamespace | @ Create Secret ‘ @ Create Service ‘ @ Create Deployment ®
Project testl
Execution RollbackUpgrade-Example #1
Status (" ROLLING_BACK) RUNNING
Updated by

Executed by Claro s

Duration 12m 95 186ms (01/11/2019 1:24 PM -)

Input Parameters

image demo-image-cs
tag latest
Workspace

Details not available

Output Parameters v
The Execution did not output any properties

\erify Depl

After rollback, the Executions page lists two RollingUpgrade-Example pipeline executions.

m The pipeline you created rolled back and displays ROLLBACK_COMPLETED.

m The rollback development pipeline that triggered and performed the rollback displays

COMPLETED.

Executions (eosem:)

a
. Stages: mmom
RollbackUpgrade-Example_Dev..#1
By ww.C ON 01/11/2019 1:36 PM
1% Rollback for RollbackUpgrade-Example#] Execution Completed.

Comments:Triggered to rollback Development.Create Deployment of RollbackUpgrade-Example#1

ROLLBACK_COMPLETED Stages: emQmm
RollbackUpgrade-Examples]
BY wiws ON 0112019 1:24 PM
0 Create Deployment ROLLBACK_COMPLETED
VMware, Inc.

77

Using and Managing vRealize Automation Code Stream
Results

Congratulations! You successfully defined a pipeline with rollback and watched vRealize
Automation Code Stream roll back the pipeline at the point of failure.

VMware, Inc.

78

Planning to natively build,
integrate, and deliver your code in
vRealize Automation Code Stream

Before you have vRealize Automation Code Stream build, integrate, and deliver your code by
using the native capability that creates a CICD, ClI, or CD pipeline for you, plan your native build.
Then, you can create your pipeline by using one of the smart pipeline templates, or by manually
adding stages and tasks.

To plan for your continuous integration and continuous delivery build, we included several
examples that show you how. These plans describe the prerequisites and overviews that can help
you prepare and use the native build capability effectively when you build your pipelines.

This chapter includes the following topics:
m Configuring the Pipeline Workspace

m Planning a CICD native build in vRealize Automation Code Stream before using the smart
pipeline template

= Planning a continuous integration native build in vRealize Automation Code Stream before
using the smart pipeline template

m Planning a continuous delivery native build in vRealize Automation Code Stream before using
the smart pipeline template

m Planning a CICD native build in vRealize Automation Code Stream before manually adding
tasks

m Planning for rollback in vRealize Automation Code Stream

Configuring the Pipeline Workspace

To run continuous integration tasks and custom tasks, you must configure a workspace for your
VRealize Automation Code Stream pipeline. The workspace supports Docker and Kubernetes
endpoints. When you configure the pipeline workspace, you must include a builder image.

VMware, Inc.

79

Using and Managing vRealize Automation Code Stream

In the pipeline workspace, you select Docker or Kubernetes, and include the Docker host endpoint
or the Kubernetes host endpoint. The Docker and Kubernetes platforms manage the entire life
cycle of the container that vRealize Automation Code Stream deploys for running the continuous
integration (Cl) task or custom task.

m The Docker workspace requires the Docker host endpoint, builder image URL, image registry,
working directory, cache, environment variables, CPU limit, and memory limit. You can also
create a clone of the Git repository.

m The Kubernetes workspace requires the Kubernetes host endpoint, builder image URL,
image registry, namespace, NodePort, Persistent Volume Claim (PVC), working directory,
environment variables, CPU limit, and memory limit. You can also create a clone of the Git

repository.

The pipeline workspace configuration has many common parameters, and other parameters that
are specific to the type of workspace, as the following table describes.

Table 4-1. Workspace areas, details, and availability

Selection
Type

Host Endpoint

Builder image URL

Image registry

Working directory

Namespace

VMware, Inc.

Description

Type of workspace.

Host endpoint where the continuous integration (Cl)
and custom tasks run.

Name and location of the builder image. A container
is created by using this image on the Docker

host and the Kubernetes cluster. The continuous
integration (CI) tasks and custom tasks run inside this
container.

If the builder image is available in a registry, and if
the registry requires credentials, you must first create
an Image Registry endpoint, then select it here so
that the image can be pulled from the registry.

The working directory is the location inside the
container where the steps of the continuous
integration (CI) task run, and is the location where
the code is cloned when a Git webhook triggers a
pipeline run.

If you do not enter a Namespace, vRealize
Automation Code Stream creates a unique name in
the Kubernetes cluster that you provided.

Details and availability

Available with Docker or Kubernetes.

Available with the Docker workspace
when you select the Docker host
endpoint.

Available with the Kubernetes
workspace when you select the
Kubernetes host endpoint.

Example: fedora:latest

The builder image must have curl or
wget.

Available with the Docker and
Kubernetes workspaces.

Available with Docker or Kubernetes.

Specific to the Kubernetes workspace.

80

Using and Managing vRealize Automation Code Stream

Table 4-1. Workspace areas, details, and availability (continued)

Selection

NodePort

Persistent Volume
Claim

Environment variables

CPU limits

Memory limits

VMware, Inc.

Description

vRealize Automation Code Stream uses NodePort to
communicate with the container running inside the
Kubernetes cluster.

If you do not select a port, vRealize Automation Code
Stream uses an ephemeral port that Kubernetes
assigns. You must ensure that the firewall rules are
configured to allow ingress to the ephemeral port
range (30000-32767).

If you enter a port, you must ensure that another
service in the cluster is not already using it, and that
the port is allowed in the firewall rules.

Provides a way for the Kubernetes workspace to
persist files across pipeline runs. When you provide a
persistent volume claim name, it can store the logs,
artifacts, and cache.

For more information about creating a

persistent volume claim, see the Kubernetes
documentation at https://kubernetes.io/docs/

concepts/storage/persistent-volumes/.

Key-value pairs that are passed here will be available
to all continuous integration (Cl) tasks and custom
tasks in a pipeline when it runs.

Limits for CPU resources for the continuous
integration (Cl) container or custom task container.

Limits for memory for the continuous integration (Cl)
container or custom task container.

Details and availability

Specific to the Kubernetes workspace.

Specific to the Kubernetes workspace.

Available with Docker or Kubernetes.

References to variables can be passed
here.

Environment variables provided in
the workspace are passed to all
continuous integration (CI) tasks and
custom tasks in the pipeline.

If environment variables are not
passed here, those variables must be
explicitly passed to each continuous
integration (Cl) task and custom task
in the pipeline.

The defaultis 1.

The unit is MB.

81

Using and Managing vRealize Automation Code Stream

Table 4-1. Workspace areas, details, and availability (continued)

Selection Description Details and availability
Git clone When you select Git clone, and a Git webhook If Git clone is not enabled, you
invokes the pipeline, the code is cloned into the must configure an additional, explicit
workspace (container). continuous integration (CI) task in the
pipeline to clone the code first, then
perform other steps such as build and
test.
Cache The vRealize Automation Code Stream workspace Specific to type of workspace.

allows you to cache a set of directories or files to
speed up subsequent pipeline runs. Examples of
these directories include .m2 and npm modules. If
you do not require caching of data between pipeline
runs, you do not need to provide a persistent volume

In the Docker workspace, Cache is
achieved by using a shared path in the
Docker host for persisting the cached
data, artifacts, and logs.

In the Kubernetes workspace, you can

claim. use Cache only when you provide

a persistent volume claim. If you do
not provide a persistent volume claim,
Cache is not enabled.

Artifacts such as files or directories in the container
are cached for re-use across pipeline runs. For
example, node modules or .m2 folders can be
cached. Cache accepts a list of paths.

For example:

workspace:
type: K8S
endpoint: K8S-Micro
image: fedora:latest
registry: Docker Registry

path:
cache:
- /path/to/m2
- /path/to/node_modules

When using a Kubernetes endpoint in the pipeline workspace, vRealize Automation Code Stream
creates the necessary Kubernetes resources such as ConfigMap, Secret, and Pod to run the
continuous integration (Cl) task or custom task. vRealize Automation Code Stream communicates
with the container by using the NodePort.

To share data across pipeline runs, you must provide a persistent volume claim, and vRealize
Automation Code Stream will mount the persistent volume claim to the container to store the data,
and use it for subsequent pipeline runs.

Planning a CICD native build in vRealize Automation Code
Stream before using the smart pipeline template

To create a continuous integration and continuous delivery (CICD) pipeline in vRealize Automation
Code Stream, you can use the CICD smart pipeline template. To plan your CICD native build,

you gather the information for the smart pipeline template before you create the pipeline in this
example plan.

To create a CICD pipeline, you must plan for both the continuous integration (Cl) and continuous
delivery (CD) stages of your pipeline.

VMware, Inc. 82

Using and Managing vRealize Automation Code Stream

After you enter the information in the smart pipeline template and save it, the template creates a
pipeline that includes stages and tasks. It also indicates the deployment destination of your image
based on the types of environment you select, such as Dev and Prod. The pipeline will publish
your container image, and perform the actions required that run it. After your pipeline runs, you
can monitor trends across the pipeline executions.

When a pipeline includes an image from Docker Hub, you must ensure that the image has cURL or
wget embedded before you run the pipeline. When the pipeline runs, vRealize Automation Code
Stream downloads a binary file that uses cURL or wget to run commands.

For information about configuring the workspace, see Configuring the Pipeline Workspace.

Planning the Continuous Integration (Cl) stage

To plan the Cl stage of your pipeline, you set up the external and internal requirements, and
determine the information needed for the Cl portion of the smart pipeline template. Here is a
summary.

This example uses a Docker workspace.
Endpoints and repositories that you'll need:

m A Git source code repository where developers check in their code. vRealize Automation Code
Stream pulls the latest code into the pipeline when developers commit changes.

m A Git endpoint for the repository where the developer source code resides.

m A Docker endpoint for the Docker build host that will run the build commands inside a
container.

m A Kubernetes endpoint so that vRealize Automation Code Stream can deploy your image to a
Kubernetes cluster.

m A Builder image that creates the container on which the continuous integration tests run.
m AnImage Registry endpoint so that the Docker build host can pull the builder image from it.

You'll need access to a project. The project groups all your work, including your pipeline,
endpoints, and dashboards. Verify that you are a member of a project in vRealize Automation
Code Stream. If you are not, ask a vRealize Automation Code Stream administrator to add you as a
member of a project. See How do | add a project in vRealize Automation Code Stream.

You'll need a Git webhook that enables vRealize Automation Code Stream to use the Git trigger to
trigger your pipeline when developers commit code changes. See How do | use the Git trigger in
VRealize Automation Code Stream to run a pipeline.

Your build toolsets:
= Your build type, such as Maven.

m All the post-process build tools that you use, such as JUnit, JaCoCo, Checkstyle, and
FindBugs.

VMware, Inc. 83

Using and Managing vRealize Automation Code Stream

Your publishing tool:

m A tool such as Docker that will deploy your build container.

= Animage tag, which is either the commit ID or the build number.
Your build workspace:

m A Docker build host, which is the Docker endpoint.

m An Image Registry. The CI part of the pipeline pulls the image from the selected registry
endpoint. The container runs the Cl tasks, and deploys your image. If the registry needs
credentials, you must create an Image Registry endpoint, then select it here so that the host
can pull the image from the registry.

m URL for the builder image that creates the container on which the continuous integration tasks
run.

Planning the Continuous Delivery (CD) stage

To plan the CD stage of your pipeline, you set up the external and internal requirements, and
determine the information to enter in the CD portion of the smart pipeline template.

Endpoints that you'll need:

m A Kubernetes endpoint so that vRealize Automation Code Stream can deploy your image to a
Kubernetes cluster.

Environment types and files:

m All the environment types where vRealize Automation Code Stream will deploy your
application, such as Dev and Prod. The smart pipeline template creates the stages and tasks in
your pipeline based on the environment types you select.

Table 4-2. Pipeline stages that the CICD smart pipeline template creates

Pipeline content What it does

Build-Publish stage Builds and tests your code, creates the builder image, and publishes the image to your
Docker host.

Development stage Uses a development Amazon Web Services (AWS) cluster to create and deploy your
image. In this stage, you can create a namespace on the cluster, and create a secret
key.

Production stage Uses a production version of the VMware Tanzu Kubernetes Grid Integrated Edition

(formerly known as VMware Enterprise PKS) to deploy your image to a production
Kubernetes cluster.

m A Kubernetes YAML file that you select in the CD section of the CICD smart pipeline template.

VMware, Inc. 84

Using and Managing vRealize Automation Code Stream

The Kubernetes YAML file includes three required sections for Namespace, Service, and
Deployment and one optional section for Secret. If you plan to create a pipeline by
downloading an image from a privately-owned repository, you must include a section with
the Docker config Secret. If the pipeline you create only uses publicly available images, no
secret is required. The following sample YAML file includes four sections.

apivVersion: vl
kind: Namespace
metadata:

name: codestream

namespace: codestream
apivVersion: vl
data:

.dockerconfigjson:
eyJhdXRocyI6eyJodHRwczovL21uz12345678901ci5pby92MS8i0nsidXN1cm5hbWUi0i JhdXRvbWF0aW9uYmVOYST
sInBhc3N3b3JkIjoiVk13YXJIQDEYMyIsImVtYW1lsIjoiYXV0b21hdGlvbmJldGF1c2VyQGdtYWlsImNvbSIsImF1dG
giOiJZWFYwYjIxaGRHbHZibUpsZEdFN1ZrMTNZWEpsUURFeU13PT01£X19
kind: Secret
metadata:

name: dockerhub-secret

namespace: codestream
type: kubernetes.io/dockerconfigjson
apivVersion: vl
kind: Service
metadata:

name: codestream-demo

namespace: codestream

labels:
app: codestream-demo
spec:
ports:
- port: 80

selector:
app: codestream-demo
tier: frontend

type: LoadBalancer
apivVersion: apps/vl
kind: Deployment
metadata:

name: codestream-demo

namespace: codestream

labels:
app: codestream-demo
spec:

replicas: 10

selector:

matchLabels:
app: codestream-demo
tier: frontend
template:
metadata:

VMware, Inc. 85

Using and Managing vRealize Automation Code Stream

labels:
app: codestream-demo
tier: frontend

spec:

containers:

- name: codestream-demo
image: automationbeta/codestream-demo:01
ports:

- containerPort: 80
name: codestream-demo
imagePullSecrets:

- name: dockerhub-secret

Note The Kubernetes YAML file is also used in the CD smart pipeline template, such as in the
following use case examples:

m How do | deploy my application in vRealize Automation Code Stream to my Blue-Green
deployment

m How do | roll back my deployment in vRealize Automation Code Stream

m How do | use the Docker trigger in vRealize Automation Code Stream to run a continuous
delivery pipeline

To apply the file in the Smart Template, click Select and select the Kubernetes YAML file. Then
click Process. The smart pipeline template displays the available services and deployment
environments. You select a service, the cluster endpoint, and the deployment strategy. For
example, to use the Canary deployment model, select Canary and enter a percentage for the
deployment phase.

VMware, Inc. 86

Using and Managing vRealize Automation Code Stream

Step 2 of 2

Environment @

Kubernetes YAML files

Select service

Deployment name

© codestream-demo

Deployment

Environment

Development

Production

Image source

Deployment model

Rollback

Health check URL

Smart Template: CI/CD

Development Production

Processed files:codestream.yami

Service

codestream-demo

Cluster Endpoint

Dev-AWS-Cluster

Namespace

codestream

Namespace

codesiream-454709

Image

https:ffcodestream/Myapp

1services

Prod-AWS-Cluster

codestream

(O) Docker trigger @ Pipeline runtime input

@ Canary () Roling upgrade () Blue-Green

Phase1l 20 %

/health-check json

CREATE BACK CANCEL

To see an example of using the smart pipeline template to create a pipeline for a Blue-Green
deployment, see How do | deploy my application in vRealize Automation Code Stream to my

Blue-Green deployment.

How you'll create the CICD pipeline by using the smart pipeline

template

After you gather all the information and set up what you need, here's how you'll create a pipeline

from the CICD smart pipeline template.

In Pipelines, you'll select New Pipeline > Smart Templates.

VMware, Inc.

87

Using and Managing vRealize Automation Code Stream

Pipelines (C=fm:)

| MNEW PIPELIME *~ | | IMPORT

Blank Canvas

Smart Template o

-@atu*:: Cizabled

0w

ofp

ey

You'll select the CICD smart pipeline

template.

New from Smart Templates

clfco

®7l

Create a CI/CD Pipeline

U

Continuous Integration

@ Create a Continuous Integratic...

Continuous Delivery

e

Create a Continuous Delivery P..

You will fill out the template, and save the pipeline with the stages that it creates. If you need to

make any final changes, you can edit the pipeline and save it.

VMware, Inc.

88

Using and Managing vRealize Automation Code Stream

by

Build-Publish

&
Unit-Test

— Development

" Create Namespace

KB5S

— Production

&
Get Service Details

K&3

CICD-SmartTemplate

o

@
Build-App

<l

" Create Secret

KBS

&
Prepare Phase 1

KBS

&
Build-Image

C

" Create Service

K35

%
Deploy Phase 1

K35

[=

Crei

KBS

Then, you will enable the pipeline and run it. After it runs, here are some things that you can look

for:

m Verify that your pipeline succeeded. Click Executions, and search for your pipeline. If it failed,

correct any errors and run it again.

m Verify that the Git webhook is operating correctly. The Git Activity tab displays the events.

Click Triggers > Git > Activity.

m Look at the pipeline dashboard and examine the trends. Click Dashboards, and search for
your pipeline dashboard. You can also create a custom dashboard to report on additional

KPlIs.

For a detailed example, see How do | continuously integrate code from my GitHub or GitLab
repository into my pipeline in vRealize Automation Code Stream.

VMware, Inc.

Using and Managing vRealize Automation Code Stream

Planning a continuous integration native build in vRealize
Automation Code Stream before using the smart pipeline
template

To create a continuous integration (Cl) pipeline in VMware Code Stream, you can use the
continuous integration smart pipeline template. To plan your continuous integration native build,
you gather the information for the smart pipeline template before you create the pipeline in this
example plan.

When you fill out the smart pipeline template, it creates a continuous integration pipeline in your
repository, and performs the actions so that the pipeline can run. After your pipeline runs, you can
monitor trends across the pipeline executions.

To plan your build before you use the continuous integration smart pipeline template:

m |dentify a project that will group all your work, including your pipeline, endpoints, and
dashboards.

m Gather the information for your build as described in the continuous delivery portion of
Planning a CICD native build in vRealize Automation Code Stream before using the smart
pipeline template.

For example, add a Kubernetes endpoint where vRealize Automation Code Stream will deploy
the container.

Then, you create a pipeline by using the continuous integration smart pipeline template.

In Pipelines, you select Smart Templates.

Pipelines i)

| MEW PIPELIME ™ | | IMPORT
Blank Canvas
Smart Template © D"FD
-@Etﬁ' Dizabled _I:l
0w 2w

You select the continuous integration smart pipeline template.

VMware, Inc. 90

Using and Managing vRealize Automation Code Stream

New from Smart Templates

CI/CD Continuous Integration Continuous Delivery

/] Create a CI/CD Pipeline @ Create a Continuous Integratio.. E\ Create a Continuous Delivery P..

To save the pipeline with the stages that it creates, you fill out the template, and enter a name for
the pipeline. To save the pipeline with the stages that it creates, click Create.

The vRealize Automation Code Stream pipeline workspace supports Docker and Kubernetes for
continuous integration tasks and custom tasks.

For information about configuring the workspace, see Configuring the Pipeline Workspace.

To make any final changes, you can edit the pipeline. Then, you can enable the pipeline and run it.
After the pipeline runs:

m Verify that your pipeline succeeded. Click Executions, and search for your pipeline. If it failed,
correct any errors and run it again.

m Verify that the Git webhook is operating correctly. The Git Activity tab displays the events.
Click Triggers > Git > Activity.

m Look at the pipeline dashboard and examine the trends. Click Dashboards, and search for
your pipeline dashboard. To report on more key performance indicators, you can create a
custom dashboard.

For a detailed example, see How do | continuously integrate code from my GitHub or GitLab
repository into my pipeline in vRealize Automation Code Stream.

Planning a continuous delivery native build in vRealize
Automation Code Stream before using the smart pipeline
template

To create a continuous delivery (CD) pipeline in vRealize Automation Code Stream, you can use
the continuous delivery smart pipeline template. To plan your continuous delivery native build,
you gather the information for the smart pipeline template before you create the pipeline in this
example plan.

When you fill out the smart pipeline template, it creates a continuous delivery pipeline in your
repository, and performs the actions so that the pipeline can run. After your pipeline runs, you can
monitor trends across the pipeline executions.

To plan your build before you use the continuous delivery smart pipeline template:

m |dentify a project that will group all your work, including your pipeline, endpoints, and
dashboards.

VMware, Inc. *l

Using and Managing vRealize Automation Code Stream

m Gather the information for your build as described in the continuous delivery portion of
Planning a CICD native build in vRealize Automation Code Stream before using the smart
pipeline template. For example:

m Add a Kubernetes endpoint where vRealize Automation Code Stream will deploy the
container.

m Prepare the Kubernetes YAML file that creates the Namespace, Service, and Deployment.
To download an image from a privately-owned repository, the YAML file must include a
section with the Docker config Secret.

Then, you create a pipeline by using the continuous delivery smart pipeline template.

In Pipelines, you select Smart Templates.

Pipelines Cefem)

| MNEW PIPELIME *~ | | IMPORT

Blank Canvas

Smart Template © 0
D{D

-®\§L.EZ Cizabled

0 % 2w

You select the continuous delivery smart pipeline template.

New from Smart Templates

CI/CD Continuous Integration Continuous Delivery

@7' Create a CI/CD Pipeline @ Create a Centinuous Integratio.. réj Create a Continuous Delivery P...

You fill out the template, and enter a name for the pipeline. To save the pipeline with the stages
that it creates, click Create.

The vRealize Automation Code Stream pipeline workspace supports Docker and Kubernetes for
continuous integration tasks and custom tasks.

For information about configuring the workspace, see Configuring the Pipeline Workspace.

VMware, Inc.

Using and Managing vRealize Automation Code Stream

To make any final changes, you can edit the pipeline. Then, you can enable the pipeline and run it.
After the pipeline runs:

m Verify that your pipeline succeeded. Click Executions, and search for your pipeline. If it failed,
correct any errors and run it again.

m Verify that the Git webhook is operating correctly. The Git Activity tab displays the events.
Click Triggers > Git > Activity.

m Look at the pipeline dashboard and examine the trends. Click Dashboards, and search for
your pipeline dashboard. To report on more key performance indicators, you can create a
custom dashboard.

For a detailed example, see How do | continuously integrate code from my GitHub or GitLab
repository into my pipeline in vRealize Automation Code Stream.

Planning a CICD native build in vRealize Automation Code
Stream before manually adding tasks

To create a continuous integration and continuous delivery (CICD) pipeline in vRealize Automation
Code Stream, you can manually add stages and tasks. To plan your CICD native build, you'll gather
the information you need, then create a pipeline and manually add stages and tasks to it.

You must plan for both the continuous integration (Cl) and continuous delivery (CD) stages of your
pipeline. After you create your pipeline and run it, you can monitor trends across the pipeline
executions.

When a pipeline includes an image from Docker Hub, you must ensure that the image has cURL or
wget embedded before you run the pipeline. When the pipeline runs, vRealize Automation Code
Stream downloads a binary file that uses cURL or wget to run commands.

The vRealize Automation Code Stream pipeline workspace supports Docker and Kubernetes for
continuous integration tasks and custom tasks.

For information about configuring the workspace, see Configuring the Pipeline Workspace.

Planning the external and internal requirements

To plan the Cl and CD stages of your pipeline, the following requirements indicate what you must
do before you create your pipeline.

This example uses a Docker workspace.

To create a pipeline from this example plan, you will use a Docker host, a Git repository, Maven,
and several post-process build tools.

Endpoints and repositories that you'll need:

m A Git source code repository where developers check in their code. vRealize Automation Code
Stream pulls the latest code into the pipeline when developers commit changes.

VMware, Inc. 93

Using and Managing vRealize Automation Code Stream

m A Docker endpoint for the Docker build host that will run the build commands inside a
container.

m A Builder image that creates the container on which the continuous integration tests run.
m An Image Registry endpoint so that the Docker build host can pull the builder image from it.

You'll need access to a project. The project groups all your work, including your pipeline,
endpoints, and dashboards. Verify that you are a member of a project in vRealize Automation
Code Stream. If you are not, ask a vRealize Automation Code Stream administrator to add you as a
member of a project. See How do | add a project in vRealize Automation Code Stream.

You'll need a Git webhook that enables vRealize Automation Code Stream to use the Git trigger to
trigger your pipeline when developers commit code changes. See How do | use the Git trigger in
VvRealize Automation Code Stream to run a pipeline.

How you'll create the CICD pipeline and configure the workspace

You'll need to create the pipeline, then configure the workspace, pipeline input parameters, and
tasks.

To create the pipeline, you'll click Pipelines > New Pipeline > Blank Canvas.

Pipelines (i)

| MEW PIPELIME ~ || IMPORT

Blank Canvas

5“13@5‘!’36 e [1
t D_[D

Status: Disabled

-

O 2w

On the Workspace tab, enter the continuous integration information:
m Include your Docker build host.
m Enter the URL for your builder image.

m Select the image registry endpoint so that the pipeline can pull the image from it. The
container runs the Cl tasks and deploys your image. If the registry needs credentials, you
must first create the Image Registry endpoint, then select it here so that the host can pull the
image from the registry.

= Add the artifacts that must be cached. For a build to succeed, artifacts such as directories
are downloaded as dependencies. The cache is the location where these artifacts reside. For
example, dependent artifacts can include the .m2 directory for Maven, and the node modules
directory for Node.js. These directories are cached across pipeline executions to save time
during builds.

VMware, Inc. 94

Using and Managing vRealize Automation Code Stream

£l Input @ Workspace =g Mode| Ik Output

Provide details about the centainer and host for running continuous integration tasks.

Type *
© Docker Kubernetes

Host endpoint *
codestream-ci-test

Builder image URLz *
automationbeta/cs-builderlatest

Name and location of the builder image. The Cl tasks run on the container that the image creates

Image registry

Docker Registry

Working directery s

Cache 3

On the Input tab, configure the pipeline input parameters.

If your pipeline will use input parameters from a Git, Gerrit, or Docker trigger event, select the
trigger type for Auto inject parameters. Events can include Change Subject for Gerrit or Git, or
Event Owner Name for Docker. If your pipeline will not use any input parameters passed from

the event, leave Auto inject parameters set to None.

To apply a value and description to a pipeline input parameter, click the three vertical dots,
and click Edit. The value you enter is used as input to tasks, stages, or notifications.

To add a pipeline input parameter, click Add. For example, you might add approvers to
display a default value for every execution, but which you can override with a different

approver at runtime.

To add or remove an injected parameter, click Add/Remove Injected Parameter. For

example, remove an unused parameter to reduce clutter on the results page and only display

the input parameters that are used.

Input] @ Workspace =3 Model Bk Cutput

Input Parameters
T

Auto inject parameters

Gerrit Git Docker) None

ADD
Starred Name Value
g GIT_BRANCH_NAME
77 GIT_CHANGE_SUBJECT
% GIT_COMMIT_ID
7% GIT_EVENT_DESCRIPTION
it GIT_EVENT_OWNER_NAME
75 GIT_EVENT_TIMESTAMP
b GIT_REPO_NAME
5 GIT_SERVER_URL

Description

VMware, Inc.

95

Using and Managing vRealize Automation Code Stream

Configure the pipeline to test your