Using and Managing vRealize
Automation Code Stream

14 December 2022
vRealize Automation 8.7

Using and Managing vRealize Automation Code Stream

You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

VMware, Inc.

3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright © 2022 VMware, Inc. All rights reserved. Copyright and trademark information.

VMware, Inc.

https://docs.vmware.com/
https://docs.vmware.com/copyright-trademark.html

Contents

1 Whatis Code Stream and how does it work 5

2 Setting up to model my release process 9
How do | add a project 14
How do | manage user access and approvals 15

What are user operations and approvals 23

3 Creating and using pipelines 25
How do | run a pipeline and see results 27
What task types are available 33
How do | do use variable bindings in pipelines 38
How do | use variable bindings in a condition task to run or stop a pipeline 47
What variables and expressions can | use when binding pipeline tasks 50
How do | send notifications about my pipeline 67
How do | create a Jira ticket when a pipeline task fails 69

How do | roll back my deployment 72

4 Planning to natively build, integrate, and deliver your code 79
Configuring the Pipeline Workspace 79
Planning a CICD native build before using the smart pipeline template 82
Planning a Cl native build before using the smart pipeline template 90
Planning a CD native build before using the smart pipeline template 91
Planning a CICD native build before manually adding tasks 93
Planning for rollback 99

5 Tutorials 102
How do | continuously integrate code from my GitHub or GitLab repository into my pipeline 103
How do | automate the release of an application that | deploy from a YAML cloud template 107
How do | automate the release of an application to a Kubernetes cluster 115
How do | deploy my application to my Blue-Green deployment 123
How do | integrate my own build, test, and deploy tools 128
How do | use the resource properties of a cloud template task in my next task 139
How do | use a REST API to integrate with other applications 143

How do | leverage pipeline as code 148
6 Connecting to endpoints 154

What are Endpoints 154

How do | integrate with Jenkins 156

VMware, Inc. 3

Using and Managing vRealize Automation Code Stream

How do | integrate with Git 163
How do | integrate with Gerrit 165

How do | integrate with vRealize Orchestrator 168

7 Triggering pipelines 174
How do | use the Docker trigger to run a continuous delivery pipeline 174
How do | use the Git trigger to run a pipeline 183

How do | use the Gerrit trigger to run a pipeline 190

8 Monitoring pipelines 199
What does the pipeline dashboard show me 199

How do | use custom dashboards to track key performance indicators 202
9 Learn more 205

What is Search 205

More resources for Administrators and Developers 210

VMware, Inc.

What is Code Stream and how
does it work

VRealize Automation Code Stream™ is a continuous integration and continuous delivery (CICD)
tool. By creating pipelines that model the software release process in your DevOps lifecycle, you
build the code infrastructure that delivers your software rapidly and continuously.

viE

1. Developers 2. Code Stream 3. Builds 4. Runs all 5. Deploys

check in code triggers container stages and application

continuously. Cl pipeline. image and approvals in to Kubernetes
tests code. the ClI pipeline. cluster.

GitHub >> Docker Hub : S Kubernetes

Code Stream

When you use Code Stream to deliver your software, you integrate two of the most important
parts of your DevOps lifecycle: your release process and your developer tools. After the initial
setup, which integrates Code Stream with your existing development tools, the pipelines automate
your entire DevOps lifecycle.

Starting with vRealize Automation 8.2, Blueprints are called VMware Cloud Templates.

You create a pipeline that builds, tests, and releases your software. Code Stream uses that
pipeline to progress your software from the source code repository, through testing, and on to
production.

VMware, Inc. 5

Using and Managing vRealize Automation Code Stream

Application YAML

or Cloud Assembly cloud template

Repository
Git

Configure

Bamboo

(>>> Code Stream with Git repository

CICD Pipeline

Acceptance

Tost Production

Deployed App or
Build, . Build, Configure, Cloud Template
Configure Bulltsl Raise Issue
: . Configure 0 On Kubernetes
Raise Issue Use Dashboards K8S cluster

Kubernetes

Docker

You can learn more about planning your continuous integration and continuous delivery pipelines
at Chapter 4 Planning to natively build, integrate, and deliver your code in Code Stream .

How Code Stream Administrators use Code Stream

As an administrator, you create endpoints and ensure that working instances are available
for developers. You can create, trigger, and manage pipelines, and more. You have the
Administrator role, as described in How do | manage user access and approvals in Code Stream.

Table 1-1. How Code Stream Administrators support developers

To support developers...

Provide and manage
environments.

Provide endpoints.

Provide integrations with
other services.

Create pipelines.

VMware, Inc.

Here's what you can do...

Create environments for developers to test and deploy their code.
m Track status and send email notifications.

m Keep your developers productive by ensuring that their environments continuously
work.

To find out more, see More resources for Code Stream Administrators and Developers.

Also see Chapter 5 Tutorials for using Code Stream.

Ensure that developers have working instances of endpoints that can connect to their
pipelines.

Ensure that integrations to other services are working.

To find out more, see VMware Cloud Services documentation.

Create pipelines that model release processes.

To find out more, see Chapter 3 Creating and using pipelines in Code Stream.

http://docs.vmware.com/en/vRealize-Automation/index.html

Using and Managing vRealize Automation Code Stream

Table 1-1. How Code Stream Administrators support developers (continued)

To support developers...

Trigger pipelines.

Manage pipelines and
approvals.

Monitor developer
environments.

Troubleshoot problems.

Here's what you can do...

Ensure that pipelines run when events occur.

m To trigger a standalone, continuous delivery (CD) pipeline whenever a build artifact
is created or updated, use the Docker trigger.

m To trigger a pipeline when a developer commits changes to their code, use the Git
trigger.

m To trigger a pipeline when developers review code, merge, and more, use the Gerrit
trigger.

m To run a standalone continuous delivery (CD) pipeline whenever a build artifact is
created or updated, use the Docker trigger.

To find out more, see Chapter 7 Triggering pipelines in Code Stream.

Stay up-to-date on pipelines.
m View pipeline status, and see who ran the pipelines.

m View approvals on pipeline executions, and manage approvals for active and
inactive pipeline executions.

To find out more, see What are user operations and approvals in Code Stream.

Also, see How do | use custom dashboards to track key performance indicators for my
pipeline in Code Stream.

Create custom dashboards that monitor pipeline status, trends, metrics, and key
indicators. Use the custom dashboards to monitor pipelines that pass or fail in developer
environments. You can also identify and report on under used resources, and free up
resources.

You can also see:

How long a pipeline ran before it succeeded.

How long a pipeline waited for approval, and notify the user who must approve it.
Stages and tasks that fail most often.

Stages and tasks that take the most time to run.

Releases that development teams have in progress.

Applications that succeeded in being deployed and released.

To find out more, see Chapter 8 Monitoring pipelines in Code Stream.

Troubleshoot and resolve pipeline failures in developer environments.

m [dentify and resolve problems in continuous integration and continuous delivery
environments (CICD).

m Use the pipeline dashboards and create custom dashboards to see more. See
Chapter 8 Monitoring pipelines in Code Stream.

Also, see Chapter 2 Setting up Code Stream to model my release process.

Code Stream is part of VMware Cloud Services.

m Use Cloud Assembly to deploy cloud templates.

m Use Service Broker to get cloud templates from the catalog.

To learn about other things you can do, see VMware vRealize Automation Documentation.

VMware, Inc.

https://docs.vmware.com/en/vRealize-Automation/index.html

Using and Managing vRealize Automation Code Stream

How Developers Use Code Stream

As a developer, you use Code Stream to build and run pipelines, and monitor pipeline activity
on the dashboards. You have the user role, as described in How do | manage user access and

approvals in Code Stream.
After you run a pipeline, you'll want to know:

m |f your code succeeded through all stages of the pipeline. To find out, observe the results in
the pipeline executions.

= What to do if the pipeline failed, and what caused the failure. To find out, observe the top
errors in the pipeline dashboards.
Table 1-2. Developers who use Code Stream

To integrate and
release your code Here's what you do

Build pipelines. Test and deploy your code.
Update your code when a pipeline fails.

Connect your pipelineto Connect the tasks in your pipeline to endpoints, such as a GitHub repository.
endpoints.

Run pipelines. Add a user operation approval task so that another user can approve your pipeline at specific
points.
View dashboards. View the results on the pipeline dashboard. You can see trends, history, failures, and more.

For more information about getting started, see Getting Started with VMware Code Stream.

Find more documentation in the In-product Support panel

If you don’t find the information you need here, you can get more help in the product.)

m Click and read the signposts and tooltips in the user interface to get the context-specific
information that you need where and when you need it.

= Open the In-product support panel and read the topics that appear for the active user
interface page. You can also search in the panel to get answers to questions.

More on Webhooks

You can create multiple webhooks for different branches by using the same Git endpoint and
providing different values for the branch name in the webhook configuration page. To create
another webhook for another branch in the same Git repository, you don't need to clone the

Git endpoint multiple times for multiple branches. Instead, you provide the branch name in the
webhook, which allows you to reuse the Git endpoint. If the branch in the Git webhook is the same
as the branch in the endpoint, you don't need to provide branch name in the Git webhook page.

VMware, Inc. 8

http://docs.vmware.com/en/vRealize-Automation/8.0/Getting-Started-CodeStream/GUID-D137AB85-F66C-4A90-A710-66605FD0355B.html

Setting up Code Stream to model
my release process

To model your release process, you create a pipeline that represents the stages, tasks, and
approvals that you normally use for releasing your software. Code Stream then automates the
process that builds, tests, approves, and deploys your code.

Now that you have everything for modeling your software release process, here's how you do it in
Code Stream.

Prerequisites
m Verify whether any endpoints are already available. In Code Stream, click Endpoints.

m Learn about native ways that you can build and deploy your code. See Chapter 4 Planning to
natively build, integrate, and deliver your code in Code Stream .

m Determine whether some of the resources that you will use in your pipeline must be marked as
restricted. See How do | manage user access and approvals in VMware Code Stream.

m If you have the user role or the viewer role instead of the administrator role, determine who is
the administrator for your Code Stream instance.

Procedure
1 Examine the projects available in Code Stream and select one that is right for you.

m If no projects appear, ask a Code Stream administrator who can create a project and make
you a member of the project. See How do | add a project in Code Stream.

m If you are not a member of any projects listed, ask a Code Stream administrator who can
add you as a member of a project.

VMware, Inc. 9

http://docs.vmware.com/en/VMware-Code-Stream/services/Using-and-Managing-CodeStream/GUID-8EDC8310-232D-45FB-8C02-E4FB25687177.html

Using and Managing vRealize Automation Code Stream

Projects (eren

[+ NEW PROJECT]

¢ SHOBHA-TES.. Fg test
No Description No Description
Administr 1 Administr 3
Members] Members 2
OPEN DELETE OPEN DELETE

2 Add any new endpoints that you need for your pipeline.
For example, you might need Git, Jenkins, Code Stream Build, Kubernetes, and Jira.
3 Create variables so that you can reuse values in your pipeline tasks.

To constrain the resources used in your pipelines, such as a host machine, use restricted
variables. You can restrict the pipeline from continuing to run until another user explicitly
approves it.

Administrators can create secret variables and restricted variables. Users can create secret
variables.

You can reuse a variable as many times as you want across multiple pipelines. For example, a
variable that defines a host machine can be HostIPAddress. To use the variable in a pipeline
task, you enter ${var.HostIPAddress}.

Variables (Gie)

Project T Mame T Typed T walue
Code Stream Test Regular 123

Code Stream Test-Restricte Restricted e
Code Stream Test-Global-name Secrst e

VMware, Inc.

Using and Managing vRealize Automation Code Stream

4 If you are an administrator, mark any endpoints and variables that are vital to your business as
restricted resources.

When a user who is not an administrator attempts to run a pipeline that includes a
restricted resource, the pipeline stops at the task that uses the restricted resource. Then, an
administrator must resume the pipeline.

5 Plan the build strategy for your native CICD, ClI, or CD pipeline.

Before you create a pipeline that continuously integrates (Cl) and continuously deploys (CD)
your code, plan your build strategy. The build plan helps you determine what Code Stream
needs so that it can natively build, integrate, test, and deploy your code.

How to create a Code Stream native

build Results in this build strategy
Use one of the smart pipeline m Builds all the stages and tasks for you.
templates. m Clones the source repository.
® Builds and tests your code.
m Containerizes your code for deployment.
m Populates the pipeline task steps based on your selections.
Add stages and tasks manually. You add stages, add tasks, and enter the information that populates them.

6 Create your pipeline by using a smart pipeline template, or by manually add stages and tasks
to the pipeline.

Then, you mark any resources as restricted. Add approvals where needed. Apply any regular,
restricted, or secret variables. Add any bindings between tasks.

VMware, Inc.

n

Using and Managing vRealize Automation Code Stream

CICD-SmartTemplate (=) o

7 A & @,
Build-Publish i 0=
@ @ @
Unit-Test Build-App Build-Image
C cl C

Paraller Ta Parallel Task Parallel Task
— Development i B =
(=] (=] (=]
Create Namespace Create Secret Create Service Cre:
K85 KES K85 KBS
Parallel T Parallel -Task Parallel Ta -Pa
— Production Q=
@) ; @ @ @
Get Service Details Prepare Phase 1 Deploy Phase 1 Weri
KBS KBS K85 POLL
Fargllel Ty Parallel Task Parallel Tas Pa

7 Validate, enable, and run your pipeline.

VMware, Inc.

Using and Managing vRealize Automation Code Stream

8 View the pipeline executions.

Executions (Geofm)

NEW EXECUTION

Q

Search

IC

4%

D{g Demo-Jenkins _#

Stages: cx— e—

COMFPLETED

By kr on 09/11/2018 10:32 AM
Execution Completed.

ACTIONS ¥

Input : 8df0d9ald365299f2..
7 Output - NA

1%

D{g Demo-Jenkins.. #

94

Stages. o—— e—

COMPLETED

By kr on 09/11/2018 917 AM

Execution Completed.

ACTIONS ~

Input : 6d82d079aBb8921a9 .
o7 Output - NA

6w

Demo-CICD-S_ #

By dk on 029/1/2018 5:51 AM
Execution failed on task 'Production.Deploy Phase 1. deployments..

) Stages ACTIONS v
Demo-CICD-S.. #51
By dk on 091172018 713 AM o7 Input : NA
G Execution Completed. o7 Output - NA
FAILED Stages ACTIONS +

37 Input ; NA
7 Output - NA

9 To track status and key performance indicators (KPIs), use the pipeline dashboards, and create
any custom dashboards.

U{E CICD-SmartTemplate cone sacx o TEB 140
Execution Status Counts c Latest Successful Change (54
When o CICD-SmartTemplate #46 a day
ago
Comments -
Total:1 Executed d
by
Duration 6m 375 (0%/06/2013 10:21 AM - 09/06,/2018 10:29 AM)
® complsted @ Faled @ Running wiaiting
Recent Executions &
Execution#/Stages Buld-Fubiish Levelspment Hroduction
#46 — — —
#45 — — —
#44 — — —
#43 — — —
#42 — — —
#4 — — —
#40 — — —
£33 — — —
#38 — — —
#37 — —
@ compizted @ Faled @ Running Waiting

VMware, Inc.

13

Using and Managing vRealize Automation Code Stream

Results
You created a pipeline that you can use in the selected project.

You can also export your pipeline YAML, then import it and reuse it in other projects.

What to do next

Learn about use cases that you might want to apply in your environment. See Chapter 5 Tutorials
for using Code Stream.

How do | add a project in Code Stream

You create a project and add administrators and members to it. Project members can use features
such as creating a pipeline and adding an endpoint. To create, delete, or update a project for a
development team, you must be a Code Stream administrator.

A project must exist before you can create a pipeline. When you create a pipeline, you select a
project that groups all your pipeline information together. Definitions for endpoints and variables
also depend on an existing project.

Prerequisites
m Verify that you have the Code Stream administrator role. See What are Roles in Code Stream.

If you do not have the Code Stream administrator role, but you have Cloud Assembly
administrator role, you can create, update, or delete projects in the Cloud Assembly Ul. See
"How do | add a project for my Cloud Assembly development team" in Using and Managing
vRealize Automation Cloud Assembly.

m [f you are adding Active Directory groups to projects, verify that you configured Active
Directory groups for your organization. See "How do | enable Active Directory groups in
vRealize Automation for projects" in Administering vRealize Automation. If the groups are not
synchronized, they are not available when you try to add them to a project.

Procedure

—

Select Projects, and click New Project.
Enter the project name.
Click Create.

Select the card for the newly created project, and click Open.

a » W N

Click the Users tab and add users and assign roles.
m The project administrator can add members.
m The project member who has a service role can use services.

m The project viewer can see projects but cannot create, update, or delete them.

For more information about project roles, see How do | manage user access and approvals in
Code Stream.

VMware, Inc. 14

Using and Managing vRealize Automation Code Stream

6 Click Save.

What to do next

Add endpoints and pipelines that use the project. See and Chapter 6 Connecting Code Stream to
endpoints and Chapter 3 Creating and using pipelines in Code Stream.

After you create a pipeline, the name of the project that groups all your pipeline information
together appears on pipeline cards and pipeline execution cards.

How do | manage user access and approvals in Code Stream

Code Stream provides several ways to ensure that users have the appropriate authorization and
consent to work with pipelines that release your software applications.

Each member on a team has an assigned role, which gives specific permissions on pipelines,
endpoints, and dashboards, and the ability to mark resources as restricted.

User operations and approvals enable you to control when a pipeline runs and must stop for an
approval. Your role determines whether you can resume a pipeline, and run pipelines that include
restricted endpoints or variables.

Use secret variables to hide and encrypt sensitive information. Use restricted variable for strings,
passwords, and URLs that must be hidden and encrypted, and to restrict use in executions. For
example, use a secret variable for a password or URL. You can use secret and restricted variables
in any type of task in your pipeline.

What are Roles in Code Stream

Depending on your role in Code Stream, you can perform certain actions and access certain areas.
For example, your role might enable you to create, update, and run pipelines. Or, you might only
have permission to view pipelines.

All actions except restricted means this role has permission to perform create, read,
update, and delete actions on entities except for restricted variables and endpoints.

Table 2-1. Service and Project level access permissions in Code Stream

Code Stream Roles

Code Stream Code Stream Code Stream Code Stream Code Stream
Access levels Administrator Developer Executor Viewer User
Code Stream All Actions All actions except Execution actions Read only None
service level restricted
access
Project level All Actions All Actions All Actions All Actions All Actions
access: Project
Admin

VMware, Inc. 15

Using and Managing vRealize Automation Code Stream

Table 2-1. Service and Project level access permissions in Code Stream (continued)

Code Stream Roles

Code Stream Code Stream Code Stream Code Stream Code Stream
Access levels Administrator Developer Executor Viewer User
Project level All Actions All actions except All actions except All actions except All actions except
access: Project restricted restricted restricted restricted
Member
Project level All Actions All actions except Execution actions Read only Read only
access: Project restricted
Viewer

Users who have the Project Admin role can perform all actions on projects where they are a
Project administrator.

A Project administrator can create, read, update, and delete pipelines, variables, endpoints,
dashboards, triggers, and start a pipeline that includes restricted endpoints or variables if these
resources are in the project where the user is a Project administrator.

Users who have the Service Viewer role can see all the information that is available to the
administrator. They cannot take any action unless an administrator makes them a project
administrator or a project member. If the user is affiliated with a project, they have the permissions
related to the role. The project viewer would not extend their permissions the way that the
administrator or member role does. This role is read-only across all projects.

If you have read permissions in a project, you can still see restricted resources.

m To see restricted endpoints, which display a lock icon on the endpoint card, click Configure >
Endpoints.

m To see restricted and secret variables, which display RESTRICTED or SECRET in the Type
column, click Configure > Variables.

Table 2-2. Code Stream service role capabilities

Code Code
Code Stream Stream Stream Code
Administrator Developer Code Stream Viewer Stream
Ul Context Capabilities role role Executor role role User role
Pipelines
View pipelines Yes Yes Yes Yes
Create Yes Yes
pipelines
Run pipelines Yes Yes Yes
Run pipelines Yes
that include
restricted
endpoints or
variables

VMware, Inc. 16

Using and Managing vRealize Automation Code Stream

Table 2-2. Code Stream service role capabilities (continued)

Ul Context

Pipeline Executions

Custom Integrations

Endpoints

Mark resources as
restricted

VMware, Inc.

Capabilities

Update
pipelines

Delete
pipelines

View pipeline
executions

Resume,
pause, and
cancel pipeline
executions

Resume
pipelines that
stop for
approval on
restricted
resources

Create custom
integrations

Read custom
integrations

Update custom
integrations

View
executions

Create
executions

Update
executions

Delete
executions

Mark an
endpoint or
variable as
restricted

Code Stream
Administrator
role

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Code
Stream
Developer
role

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Code Stream
Executor role

Yes

Yes

Yes

Yes

Code
Stream
Viewer
role

Yes

Yes

Yes

Code
Stream
User role

Using and Managing vRealize Automation Code Stream

Table 2-2. Code Stream service role capabilities (continued)

Code Code
Code Stream Stream Stream Code
Administrator Developer Code Stream Viewer Stream
Ul Context Capabilities role role Executor role role User role
Dashboards
View Yes Yes Yes Yes
dashboards
Create Yes Yes
dashboards
Update Yes Yes
dashboards
Delete Yes Yes
dashboards

Custom roles and permissions in Code Stream

You can create custom roles in Cloud Assembly that extend privileges to users who work with
pipelines. When you create a custom role for Code Stream pipelines, you select one or more
Pipeline permissions.

Select the minimal number of Pipeline permissions required for users who will be assigned this

custom role.

When a user is assigned to a project and given a role in that project, and that user is assigned

a custom role that includes one or more Pipeline permissions, they can perform all the actions
that the permissions allow. For example, they can create restricted variables, manage restricted
pipelines, create and manage custom integrations, and more.

Table 2-3. Pipeline permissions that you can assign to custom roles

Code
Stream Code Code Code Code Project
Pipeline Administr Stream Stream Stream Stream Administr Project Project
Permission ator Developer Executor Viewer User ator Member Viewer
Manage Yes Yes Yes Yes
Pipelines
Manage Yes Yes
Restricted
Pipelines
Manage Yes Yes
Custom
Integrations
Execute Yes Yes Yes Yes Yes
Pipelines
Execute Yes Yes
Restricted
Pipelines

VMware, Inc.

Using and Managing vRealize Automation Code Stream

Table 2-3. Pipeline permissions that you can assign to custom roles (continued)

Code
Stream
Pipeline Administr
Permission ator
Manage Yes
Executions
Read. This Yes
permission is
not visible.

Code Code Code Code Project

Stream Stream Stream Stream Administr Project

Developer Executor Viewer User ator Member
Yes

Yes Yes Yes Yes Yes

Table 2-4. How you can use Pipeline permissions with custom roles

Permission

Manage Pipelines

Manage Restricted
Pipelines

Manage Custom
Integrations

Execute Pipelines

VMware, Inc.

What you can do

Create, update, delete, clone pipelines.

Release and unrelease pipelines to VMware Service Broker.
Create, update, and delete endpoints.

Create, update, and delete regular and secret variables.
Create, clone, update, and delete a Gerrit listener.
Connect and disconnect a Gerrit listener.

Create, clone, update, delete a Gerrit trigger.

Create, update, and delete a Git webhook.

Create, update, and delete a Docker webhook.

Use smart pipeline templates to create pipelines.

Import pipelines from YAML, and export them to YAML.
Create, update, and delete custom dashboards.

Read all custom integrations.

Read all restricted endpoints and variables, but cannot view their values.

Create, update, and delete endpoints.

Mark endpoints as restricted, update restricted endpoints, and delete them.
Create, update, and delete regular and secret variables.

Create, update, and delete restricted variables.

All permissions that you can do with Manage Pipelines.

Create and update custom integrations.
Version and release custom integrations.
Delete and deprecate custom integration versions.

Delete custom integrations.

Run pipelines.

Pause, resume, and cancel pipeline executions.

Rerun pipeline executions.

Resume, rerun, and manually trigger a Gerrit trigger event.

Approve a user operation, and can do batch approvals of user operations.

Project
Viewer

Yes

Using and Managing vRealize Automation Code Stream

Table 2-4. How you can use Pipeline permissions with custom roles (continued)

Permission

Execute Restricted
Pipelines

Manage Executions

What you can do

Run pipelines.

Rerun pipeline executions.

]
[
]
m Sync a running pipeline execution.
[
]
]
[

approval.

Run pipelines.

Rerun pipeline executions.

Force delete a running pipeline execution.

Pause, resume, cancel, and delete pipeline executions.

Resume, rerun, delete, and manually trigger a Gerrit trigger event.
Resolve restricted items and continue the pipeline execution.

Switch user context and continue the pipeline execution after a User Operation task

All permissions that you can do with Execute Pipelines.

Pause, resume, cancel, and delete pipeline executions.

Resume, rerun, delete, and manually trigger a Gerrit trigger event.

All permissions that you can do with Execute Pipelines.

Custom roles can include combinations of permissions. These permissions are organized into
groups of capabilities that enable users to manage or run pipelines, with and without restricted
resources. These permissions represent all the capabilities that each role can perform in Code

Stream.

For example, if you create a custom role and include the permission called Manage Restricted
Pipelines, users who have the Code Stream Developer role can:

m Create, update, and delete endpoints.

m Mark endpoints as restricted, update restricted endpoints, and delete them.

m Create, update, and delete regular and secret variables.

m Create, update, and delete restricted variables.

Table 2-5. Example combinations of Pipeline permissions in custom roles

Number of
Permissions
Assigned to
Custom Role

Single
permission

Two permissions

Three
permissions

VMware, Inc.

Examples of Combined Permissions

Execute Pipelines

Manage Pipelines and Execute Pipelines

Manage Pipelines and Execute Pipelines and
Execute Restricted Pipelines

Manage Pipelines and Manage Custom
Integrations and Execute Restricted Pipelines

How to use this combination

This combination might apply to a Code
Stream Developer role but be limited to the
projects where the user is a member.

20

Using and Managing vRealize Automation Code Stream

Table 2-5. Example combinations of Pipeline permissions in custom roles (continued)

Number of

Permissions

Assigned to

Custom Role Examples of Combined Permissions How to use this combination
Manage Pipelines and Manage Custom This combination might apply to a Code
Integrations and Manage Executions Stream Administrator but limited to the

projects where user is a member.

Manage Pipelines, Manage Restricted Pipelines, With this combination, a user has full
and Manage Custom Integrations permissions and can create and delete
anything in Code Stream.

If you have the Administrator role

As an administrator, you can create custom integrations, endpoints, variables, triggers, pipelines,
and dashboards.

Projects enable pipelines to access infrastructure resources. Administrators create projects so that
users can group pipelines, endpoints, and dashboards together. Users then select the project in
their pipelines. Each project includes an administrator and users with assigned roles.

With the Administrator role, you can mark endpoints and variables as restricted resources, and
you can run pipelines that use restricted resources. If a non-administrative user runs the pipeline
that includes a restricted endpoint or variable, the pipeline will stop at the task where the
restricted variable is used, and an administrator must resume the pipeline.

As an administrator, you can also request that pipelines be published in vRealize Automation
Service Broker.

If you have the Developer role

You can work with pipelines like an administrator can, except that you cannot work with restricted
endpoints or variables.

If you run a pipeline that uses restricted endpoints or variables, the pipeline only runs up to the
task that uses the restricted resource. Then, it stops, and a Code Stream administrator or project
administrator must resume the pipeline.

If you have the User role

You can access Code Stream, but do not have any privileges as the other roles provide.

If you have the Viewer role

You can see the same resources that an administrator sees, such as pipelines, endpoints, pipeline
executions, dashboards, custom integrations, and triggers, but you cannot create, update, or
delete them. To perform actions, the Viewer role must also be given the project administrator or
project member role.

VMware, Inc. 21

Using and Managing vRealize Automation Code Stream

Users who have the Viewer role can see projects. They can also see restricted endpoints and

restricted variables, but cannot see the detailed information about them.

If you have the Executor role

You can run pipelines and take action on user operation tasks. You can also resume, pause, and

cancel pipeline executions. But, you cannot modify pipelines.

How do | assign and update roles

To assign and update roles for other users, you must be an administrator.

1 To see the active users and their roles, in vRealize Automation, click the nine dots at the upper

right.

2 Click Identity & Access Management.

DEFAULT:

Cloud

ADMINISTRATION

3 Todisplay user names and roles, click Active Users.

Identity & Access Management
Active Users Enterprise Groups
O,
|:| Name Username Organization Roles
O Local Admin admin

Service Roles

4 To add roles for a user, or change their roles, click the check box next to the user name, and

click Edit Roles.
5 When you add or change user roles, you can also add access to services.

6 To save your changes, click Save.

VMware, Inc.

22

Using and Managing vRealize Automation Code Stream

What are user operations and approvals in Code Stream

The User Operations area displays pipeline runs that need approval. The required approver can
either approve or reject the pipeline run.

When you create a pipeline, you might need to add an approval to a pipeline if:
m A team member needs to review your code.

= Another user needs to confirm a build artifact.

m You must ensure that all testing is complete.

m A task uses a resource that an administrator marked as restricted, and the task needs
approval.

m The pipeline will release software to production.

To determine whether to approve a pipeline task, the required approver must have permission
and expertise.

When you add a User Operation task, you can set the expiration timeout in days, hours, or
minutes. For example, you might need the required user to approve the pipeline in 30 minutes. If
they don't approve it in 30 minutes, the pipeline fails as expected.

If you enable sending Email notifications, the User Operation task only sends notifications to
approvers who have full email addresses, and not to approver names that are not in an email
format.

After the required user approves the task:
m The pending pipeline execution can continue.

= When the pipeline continues, any previous pending requests for approval of that same user
operation task are canceled.

VMware, Inc. 23

Using and Managing vRealize Automation Code Stream

User Operations GUIDED SETUP
Active Items Inactive ltems
~ APPROVE * REJECT
C
— ~
|_| Index# T Execution T Summary T Requested By T Request Date Approvers T
0 » c07b12 Demo2- Testing fritz Nov 13, 2019, f om
Jenkins-K8s#7 11:32:31 AM
I:I > a0a990 Demo2- Testing fritz Nov 11, 2019, k - om,
Jenkins-K8s#6 1341 PM f mn

v :

User Operation #8f1728

Request Details

Execution Demo-Jenkins-K8s #5

Summary Testing

Approvers ke - m, com

Requested By fritz

Requested On Mowv 11, 2019, 1:22:21 PM

Expires On Nov 14, 2019, 1:22:21 PM

v
] ltems per page 20 W 1-7 of 7 items

In the User Operations area, items to approve or reject appear as active or inactive items. Each
item maps to a user operation task in a pipeline.

m Active Items wait for the approver who must review the task, and approve or reject it. If you
are a user who is on the approver list, you can expand the user operation row, and click
Accept or Reject.

m Inactive Items were approved or rejected. If a user rejected the user operation, or if the
approval on the task timed out, it can no longer be approved.

The Index# is a unique six-character alphanumeric string that you can use as a filter to search for a
particular approval.

Pipeline approvals also appear in the Executions area.
m Pipelines that are waiting for approval indicate their status as waiting.
m Other states include queued, completed, and failed.

m |f your pipeline is in a wait state, the required approver must approve your pipeline task.

VMware, Inc. 24

Creating and using pipelines in
Code Stream

You can use VRealize Automation Code Stream to model your build, test, and deploy process.
With vRealize Automation Code Stream, you set up the infrastructure that supports your release
cycle and create pipelines that model your software release activities. vRealize Automation Code
Stream delivers your software from development code, through testing, and deploys it to your
production instances.

Each pipeline includes stages and tasks. Stages represent your development phases, and tasks
perform the required actions that deliver your software application through the stages.

What are Pipelines in vRealize Automation Code Stream

A pipeline is a continuous integration and continuous delivery model of your software release
process. It releases your software from source code, through testing, to production. It includes a
sequence of stages that include tasks that represent the activities in your software release cycle.
Your software application flows from one stage to the next through the pipeline.

You add endpoints so that the tasks in your pipeline can connect to data sources, repositories, or
notification systems.

Creating Pipelines
You can create a pipeline by starting with a blank canvas, using a smart pipeline template, or by
importing YAML code.

m Use the blank canvas. For an example, see Planning a CICD native build in Code Stream
before manually adding tasks.

m Use a smart pipeline template. For an example, see Chapter 4 Planning to natively build,
integrate, and deliver your code in Code Stream .

= Import YAML code. Click Pipelines > Import. In the Import dialog box, select the YAML file or
enter the YAML code, and click Import.

When you use the blank canvas to create a pipeline, you add stages, tasks, and approvals. The
pipeline automates the process that builds, tests, deploys, and releases your application. The tasks
in each stage run actions that build, test, and release your code through each stage.

VMware, Inc. 25

Using and Managing vRealize Automation Code Stream

Table 3-1. Example pipeline stages and uses

Example stage

Development

Test

Production

Examples of what you can do

In a development stage, you can provision a machine, retrieve an artifact, add a build task that
creates a Docker host for continuous integration of your code, and more.

For example:

m To plan and create a continuous integration (Cl) build, which delivers your code by using
the native build capability in vRealize Automation Code Stream, see Planning a continuous
integration native build in Code Stream before using the smart pipeline template.

In a test stage, you can add a Jenkins task to test your software application, and include

post-processing test tools such as JUnit and JaCoCo, and more.

For example:

B |ntegrate vRealize Automation Code Stream with Jenkins, and run a Jenkins job in your
pipeline, which builds and tests your source code. See How do | integrate Code Stream with
Jenkins.

m Create custom scripts that extend the capability of vRealize Automation Code Stream to
integrate with your own build, test, and deploy tools. See How do | integrate my own build,
test, and deploy tools with Code Stream.

m Track trends on post-processing for a continuous integration (Cl) pipeline. See How do | use
custom dashboards to track key performance indicators for my pipeline in Code Stream.

In a production stage, you can integrate a cloud template in Cloud Assembly that provisions
your infrastructure, deploys your software to a Kubernetes cluster, and more.

For example:

m To see example stages for development and production, which can deploy your software
application in your own Blue-Green deployment model, see How do | deploy my application
in Code Stream to my Blue-Green deployment.

m To integrate a cloud template into your pipeline, see How do | automate the release of an
application that | deploy from a YAML cloud template in Code Stream. You can also add a
deployment task that runs a script to deploy the application.

m To automate the deployment of your software applications to a Kubernetes cluster, How do
| automate the release of an application in Code Stream to a Kubernetes cluster.

m To integrate code into your pipeline and deploy your build image, see How do |
continuously integrate code from my GitHub or GitLab repository into my pipeline in Code
Stream.

You can export your pipeline as a YAML file. Click Pipelines, click a pipeline card, then click

Actions > Export.

Approving pipelines

You can obtain an approval from another team member at specific points in your pipeline.

\Y

To require approval on a pipeline by including a user operation task in a pipeline, see How
do | run a pipeline and see results. This task sends an email notification to the user who must
review it. The reviewer must either approve or reject the approval before the pipeline can
continue to run. If the User Operation task has an expiration timeout set in days, hours, or
minutes, the required user must approve the pipeline before the task expires. Otherwise, the
pipeline fails as expected.

Mware, Inc.

26

Using and Managing vRealize Automation Code Stream

= |In any stage of a pipeline, if a task or stage fails, you can have vRealize Automation Code
Stream create a Jira ticket. See How do | create a Jira ticket in Code Stream when a pipeline
task fails.

Triggering pipelines
Pipelines can trigger when developers check their code into the repository, or review code, or
when it identifies a new or updated build artifact.

m To integrate vRealize Automation Code Stream with the Git lifecycle, and trigger a pipeline
when developers update their code, use the Git trigger. See How do | use the Git trigger in
Code Stream to run a pipeline.

m To integrate vRealize Automation Code Stream with the Gerrit code review lifecycle, and
trigger a pipeline on code reviews, use the Gerrit trigger. See How do | use the Gerrit trigger in
Code Stream to run a pipeline.

m To trigger a pipeline when a Docker build artifact is created or updated, use the Docker
trigger. See How do | use the Docker trigger in Code Stream to run a continuous delivery
pipeline.

For more information about the triggers that vRealize Automation Code Stream supports, see
Chapter 7 Triggering pipelines in Code Stream.

This chapter includes the following topics:

m How do | run a pipeline and see results

m What types of tasks are available in Code Stream

m How do | use variable bindings in Code Stream pipelines

m How do | use variable bindings in a condition task to run or stop a pipeline in Code Stream
m What variables and expressions can | use when binding pipeline tasks in Code Stream

m How do | send notifications about my pipeline in Code Stream

m How do | create a Jira ticket in Code Stream when a pipeline task fails

m How do | roll back my deployment in Code Stream

How do | run a pipeline and see results

You can run a pipeline from the pipeline card, in pipeline edit mode, and from the pipeline
execution. You can also use the available triggers to have Code Stream run a pipeline when certain
events occur.

When all the stages and tasks in your pipeline are valid, the pipeline is ready to be released, run,
or triggered.

VMware, Inc. 27

Using and Managing vRealize Automation Code Stream

To run or trigger your pipeline using Code Stream, you can enable and run the pipeline either from
the pipeline card, or while you are in the pipeline. Then, you can view the pipeline execution to
confirm that the pipeline built, tested, and deployed your code.

When a pipeline execution is in progress, you can delete the execution if you are an administrator
or a non-admin user.

= Administrator: To delete a pipeline execution when it is running, click Executions. On the
execution to delete, click Actions > Delete.

= Non-admin user: To delete a running pipeline execution, click Executions, and click Alt Shift d.

When a pipeline execution is in progress and appears to be stuck, an administrator can refresh the
execution from the Executions page or the Execution details page.

m Executions page: Click Executions. On the execution to refresh, click Actions > Sync.

m Execution details page: Click Executions, click the link to the execution details, and click
Actions > Sync.

To run a pipeline when specific events occur, use the triggers.

m Git trigger can run a pipeline when developers update code.

m Gerrit trigger can run a pipeline when code reviews occur.

m Docker trigger can run a pipeline when an artifact is created in a Docker registry.

m The curl command or wget command can have Jenkins run a pipeline after a Jenkins build
finishes.

For more information about using the triggers, see Chapter 7 Triggering pipelines in Code Stream.

The following procedure shows you how to run a pipeline from the pipeline card, view executions,
see execution details, and use the actions. It also shows you how to release a pipeline so that you
can add it to vRealize Automation Service Broker.

Prerequisites

m Verify that one or more pipelines are created. See the examples in Chapter 5 Tutorials for
using Code Stream.

VMware, Inc. 28

Using and Managing vRealize Automation Code Stream

Procedure
1 Enable your pipeline.

To run or release a pipeline, you must enable it first.

a Click Pipelines.

b On your pipeline card, click Actions > Enable.

Pipelines (siens)

[+ NEW PIPELINE ¥] [IMPORT

Enable

Demo-Je 1
& testProji Refresh :

View executions

._[. Stati _
[] Upd View dashboard
Clone
2% Jenkin y
Export
Pipeline tha Delete H

0 EXECUTIO View references

Pin

OPEN ACTIONS

You can also enable your pipeline while you are in the pipeline. If your pipeline is already
enabled, Run is active, and the Actions menu displays Disable.

VMware, Inc.

Using and Managing vRealize Automation Code Stream

2 (Optional) Release your pipeline.

If you want to make your pipeline available as a catalog item in vRealize Automation Service
Broker, you must release it in Code Stream.

a Click Pipelines.
b Onyour pipeline card, click Actions > Release.

You can also release your pipeline while you are in the pipeline.

Demo-Jenkins-K8s (Enased) actions -

@ Workspace il Input g Model I ¢ Disable
Release

Run

StageO

View execufions

=
TaskO

After you release the pipeline, you open Service Broker to add the pipeline as a catalog
item and run it. See how to add Code Stream pipelines to the Service Broker catalog in
Using and Managing VVMware Service Broker.

Note If the pipeline requires more that 120 minutes to run, provide an approximate
execution time as a request timeout value. To set or review the request timeout for a
project, open Service Broker as administrator and select Infrastructure > Projects. Click
your project name and then click Provisioning.

If the request timeout value is not set, an execution that requires more than 120 minutes
to run appears as failed with a callback timeout request error. However, the pipeline
execution is not affected.

3 On the pipeline card, click Run.

4 To view the pipeline as it runs, click Executions.

The pipeline runs each stage in sequence, and the pipeline execution displays a status icon for
each stage. If the pipeline includes a user operation task, a user must approve the task for the
pipeline to continue to run. When a user operation task is used, the pipeline stops running and

waits for the required user to approve the task.

For example, you might use the user operation task to approve the deployment of code to a
production environment.

If the User Operation task has an expiration timeout set in days, hours, or minutes, the
required user must approve the pipeline before the task expires. Otherwise, the pipeline fails
as expected.

VMware, Inc.

30

Using and Managing vRealize Automation Code Stream

Executions (=Esiem:)

+ NEW EXECUTION

U{g Demo-Jenkin... #100

4%

WAITING Stages: e @ e @
EMREl Stage - Deploy Input : 8b3a29fdf
Deploy. Status : Approve-Deployment hiting for User Action. 17 Qutput : n/a

Execution Waiting for User
Action.

5 To see the pipeline stage that is waiting for user approval, click the status icon for the stage.

{ BACK

offDemo-Jenkins-K8s #100 « wamne 4% actions-

@ Dev Deploy

& Build-Demolpp | & Test-DemoApp | & Publish-DemoApp | Approve-Deployment KEs-aWS
Stage name Deploy
Status WAITING | Approve-Deployment Execution Waiting for User Action.

6 To see the details for the task, click the task.

After the required user approves the task, a user who has the appropriate role must resume

the pipeline. For required roles, see How do | manage user access and approvals in Code

Stream.

If an execution fails, you must triage and fix the cause of the failure. Then, go to the execution,

and click Actions > Re-run.

You can resume primary pipeline executions and nested executions.

VMware, Inc.

31

Using and Managing vRealize Automation Code Stream

¢ BACK

@ Dev
@ Build-Demoapp | @ Test-DemoApp | @ Publish-Demolpp
Task name Approve-Deployment
Type UserOperation
Stafus WAITING | Execution Waiting for User Action.

Execute Task L

ofjDemo-Jenkins-K8s #100 « wamne 4% actions.

Deploy

Approve-Deployment

Inputs

Summary Demo-Jenkins-KEs is pending deployment for your approva
Description Demo-Jenkins-K&s is pending deployment for your approv;
Users el i

7 From the pipeline execution, you can click Actions to view the pipeline, and select an action
such as Pause, Cancel, and more. When a pipeline execution is in progress, if you are an
administer you can delete or sync the pipeline execution. If you are a non-admin user, you can

delete a running pipeline.

8 To navigate easily between executions and see the details for a task, click Executions, and
click a pipeline run. Then, click the tab at the top and select the pipeline run.

Executions for Demo2-Jenkins-K8s

#6 #5 #4 #3

Stage0

Task(

#2

Results

Congratulations! You ran a pipeline, examined the pipeline execution, and viewed a user operation
task that required approval for the pipeline to continue to run. You also used the Actions menu in
the pipeline execution to return to the pipeline model so that you can make any required changes.

What to do next

To learn more about using Code Stream to automate your software release cycle, see Chapter 5

Tutorials for using Code Stream.

VMware, Inc.

32

U

sing and Managing vRealize Automation Code Stream

What types of tasks are available in Code Stream

When you configure your pipeline, you add specific types of tasks that the pipeline runs for the
actions you need. Each task type integrates with another application and enables your pipeline as
it builds, tests, and delivers your applications.

To run your pipeline, whether you must pull artifacts from a repository for deployment, run a
remote script, or require approval on a user operation from a team member, Code Stream has the
type of task for you!

Code Stream supports canceling a pipeline run on various types of tasks. When you click Cancel
on a pipeline execution, the task, stage, or entire pipeline enters the canceling state and cancels
the pipeline run.

Code Stream allows you to cancel the pipeline run on a task, stage, or the entire pipeline when

u

sing these tasks:
Jenkins
SSH
PowerShell
User Operation
Pipeline
Cloud template
VRO

POLL

Code Stream does not propagate the cancel behavior to third-party systems for these tasks: Cl,
Custom Integration, or Kubernetes. Code Stream marks the task as canceled and immediately
stops fetching the status without waiting for the task to finish. The task might complete or fail on
the third-party system but immediately stops running in Code Stream when you click Cancel.

Before you use a task in your pipeline, verify that the corresponding endpoint is available.

Table 3-2. Obtain an approval or set a decision point

\Y

Type of task What it does

User Operation A User Operation task enables a required approval
that controls when a pipeline runs and must stop
for an approval.

Condition Adds a decision point, which determines whether
the pipeline continues to run, or stops, based on
condition expressions. When the condition is true,
the pipeline runs successive tasks. When false, the
pipeline stops.

Mware, Inc.

Examples and details

See How do | run a pipeline and see
results. and How do | manage user

access and approvals in Code Stream.

See How do | use variable bindings
in a condition task to run or stop a
pipeline in Code Stream.

33

Using and Managing vRealize Automation Code Stream

Table 3-3. Automate continuous integration and deployment

Type of task

Cloud template

Cl

Custom

VMware, Inc.

What it does

Deploys an automation cloud template from
GitHub and provisions an application, and
automates the continuous integration and
continuous delivery (CICD) of that cloud template
for your deployment.

The Cl task enables continuous integration of your
code into your pipeline by pulling a Docker build
image from a registry endpoint, and deploying it to
a Kubernetes cluster.

The Cl task displays 100 lines of the log as output,
and displays 500 lines when you download the
logs.

The Cl tasks requires ephemeral ports 32768 to
61000.

The Custom task integrates Code Stream with your
own build, test, and deploy tools.

Examples and details

See How do | automate the release
of an application that | deploy from a
YAML cloud template in Code Stream.

The cloud template parameters
appear after you first select Create
or Update, then select Cloud
Template and Version. You can add
these elements, which accommodate
variable bindings, to the input text
areas in the cloud template task:

m [nteger

m Enumeration string
m Boolean

m Array variable

When you use variable binding in the
input, be aware of these exceptions.
For enumerations, you must select an
enumeration value from a fixed set.
For Boolean values, you must enter
the value in the input text area.

The cloud template parameter
appears in the cloud template task
when a cloud template in Cloud
Assembly includes input variables. For
example, if a cloud template has an
input type of Integer, you can enter
the integer directly or as a variable by
using variable binding.

See Planning a CICD native build in
Code Stream before using the smart
pipeline template.

See How do | integrate my own
build, test, and deploy tools with Code
Stream.

34

Using and Managing vRealize Automation Code Stream

Table 3-3. Automate continuous integration and deployment (continued)

Type of task What it does

Kubernetes Automate the deployment of your software
applications to Kubernetes clusters on AWS.

Pipeline Nests a pipeline in a primary pipeline. When a

pipeline is nested, it behaves as a task in the
primary pipeline.

On the Task tab of the primary pipeline, you can
easily navigate to the nested pipeline by clicking
the link to it. The nested pipeline opens in a new
browser tab.

Examples and details

See How do | automate the release
of an application in Code Stream to a
Kubernetes cluster.

To find nested pipelines in Executions,
enter nested in the search area.

Table 3-4. Integrate development, test, and deployment applications

Task type... What it does...

Bamboo Interacts with a Bamboo continuous integration
(CI) server, which continuously builds, tests, and
integrates software in preparation for deployment,
and triggers code builds when developers commit
changes. It exposes the artifact locations that the
Bamboo build produces so that the task can output
the parameters for other tasks to use for build and

deployment.

Jenkins Triggers Jenkins jobs that build and test your
source code, runs test cases, and can use custom

scripts.

TFS Allows you to connect your pipeline to Team
Foundation Server to manage and invoke build
projects, including configured jobs that build and

test your code.

VRO Extends the capability of Code Stream by running
predefined or custom workflows in vRealize

Orchestrator.

Code Stream supports basic authentication

and token-based authentication for vRealize
Orchestrator. Code Stream uses the API token to
authenticate and validate the vRealize Orchestrator
cluster. With token-based authentication, Code
Stream supports vRealize Orchestrator endpoints
that use a Cloud Extensibility Proxy. As a result,

in Code Stream you can trigger workflows with a
VRealize Orchestrator endpoint that uses the Cloud
Extensibility Proxy.

VMware, Inc.

Examples and details...

Connect to a Bamboo server endpoint
and start a Bamboo build plan from
your pipeline.

See How do | integrate Code Stream
with Jenkins.

For versions of Team Foundation
Server that Code Stream supports, see
What are Endpoints in Code Stream .

See How do | integrate Code Stream
with vRealize Orchestrator.

35

Using and Managing vRealize Automation Code Stream

Table 3-5. Integrate other applications through an API

Task type...

REST

Poll

VMware, Inc.

What it does...

Integrates Code Stream with other applications
that use a REST API so that you can continuously
develop and deliver software applications that
interact with each other.

Invokes a REST API and polls it until the pipeline
task meets the exit criteria and completes.

A Code Stream administrator can set the poll count
to a maximum of 10000. The poll interval must be
greater than or equal to 60 seconds.

When you mark the Continue on failure check box,
if the count or interval exceeds these values, the
poll task continues to run.

POLL Iteration Count: Appears in the pipeline
execution and displays the number of times the
POLL task requested a response from the URL. For
example, if the POLL input is 65 and the actual
times the POLL request ran is 4, the iteration count
in the pipeline execution output would display 4
(out of 65).

Examples and details...

See How do | use a REST API to
integrate Code Stream with other
applications.

See How do | use a REST API to
integrate Code Stream with other
applications.

36

Using and Managing vRealize Automation Code Stream

Table 3-6. Run remote and user-defined scripts

Type of task

PowerShell

SSH

VMware, Inc.

What it does

With the PowerShell task, Code Streamcan run
script commands on a remote host. For example,
a script can automate test tasks, and run
administrative types of commands.

The script can be remote or user-defined. It can
connect over HTTP or HTTPS, and can use TLS.
The Windows host must have the winrm

service configured, and winrm must have
MaxShellsPerUser and MaxMemoryPerShellMB
configured.

To run a PowerShell task, you must have an active
session to the remote Windows host.

PowerShell Command Line Length

If you enter a base64 PowerShell command, be
aware that you must calculate the overall command
length.

The Code Stream pipeline encodes and wraps

a base64 PowerShell command in another
command, which increases the overall length of the
command.

The maximum length allowed for a PowerShell
winrm command is 8192 bytes. The command
length limit is lower for the PowerShell task when

it is encoded and wrapped. As a result, you must
calculate the command length before you enter the
PowerShell command.

The command length limit for the Code Stream
PowerShell task depends on the base64 encoded
length of the original command. The command
length is calculated as follows.

3 * (length of original command / 4)) -
(numberOfPaddingCharacters) + 77 (Length of
Write-output command)

The command length for Code Stream must be less
than the maximum limit of 8192.

The SSH task allows the Bash shell script task

to run script commands on a remote host. For
example, a script can automate test tasks, and run
administrative types of commands.

The script can be remote or user-defined. It can
connect over HTTP or HTTPS, and requires a
private key or password.

The SSH service must be configured on the Linux
host, and the SSHD configuration of MaxSessions
must be set to 50.

Examples and details

When you configure
MaxShellsPerUser and
MaxMemoryPerShellMB

m The acceptable value for
MaxShellsPerUser is 500 for
50 concurrent pipelines, with 5
PowerShell tasks for each pipeline.
To set the value, run: winrm
set winrm/config/winrs
'@{MaxShellsPerUser="500"}"

B The acceptable memory value for
MaxMemoryPerShellMB is 2048.
To set the value, run: winrm set
winrm/config/winrs
'@ {MaxMemoryPerShellMB="204
8"}
The script writes the output to a
response file that another pipeline can
consume.

The script can be remote or user-
defined. For example, a script might
resemble:

message="Hello World" echo
Smessage

The script writes the output to a
response file that another pipeline can
consume.

37

Using and Managing vRealize Automation Code Stream

Table 3-6. Run remote and user-defined scripts (continued)

Type of task What it does Examples and details

If you run many SSH tasks concurrently, increase
the MaxSessions and MaxOpenSessions On the

SSH host. Do not use your vRealize Automation
instance as the SSH host if you need to modify the
MaxSessions and MaxOpenSessions configuration
settings.

How do | use variable bindings in Code Stream pipelines

Binding a pipeline task means that you create a dependency for the task when the pipeline runs.
You can create a binding for a pipeline task in several ways. You can bind a task to another task,
bind it to a variable and expression, or bind it to a condition.

How to apply dollar bindings to cloud template variables in a cloud
template task

You can apply dollar bindings to cloud template variables in a Code Stream pipeline cloud
template task. The way you modify the variables in Code Stream depends on the coding of the
variable properties in the cloud template.

If you must use dollar bindings in a cloud template task, but the current version of the cloud
template that you're using in the cloud template task doesn't allow it, modify the cloud template
in Cloud Assembly and deploy a new version. Then, use the new cloud template version in your
cloud template task, and add the dollar bindings where needed.

To apply dollar bindings on the types of properties that the Cloud Assembly cloud template
provides, you must have the correct permissions.

® You must have the same role as the person who created the cloud template deployment in
Cloud Assembly.

m The person who models the pipeline and the person who runs the pipeline might be two
different users and might have different roles.

m |f a developer has the Code Stream Executor role and models the pipeline, the developer must
also have the same Cloud Assembly role of the person who deployed the cloud template. For
example, the required role might be Cloud Assembly administrator.

m Only the person who models the pipeline can create the pipeline and create the deployment
because they have permission.

To use an API token in the cloud template task:

m The person who models the pipeline can give an API token to another user who has the Code
Stream Executor role. Then, when the Executor runs the pipeline, it uses the API token and the
credentials that the API token creates.

VMware, Inc.

38

Using and Managing vRealize Automation Code Stream

m When a user enters the API token in the cloud template task, it creates the credentials that the

pipeline requires.
m To encrypt the API token value, click Create Variable.

m [f you don't create a variable for the API token, and use it in the cloud template task, the API
token value appears in plain text.

To apply dollar bindings to cloud template variables in a cloud template task, follow these steps.

You start with a cloud template that has input variable properties defined, such as integervar,
stringVar, flavorVar, BooleanVar, objectVar, and arrayvar. You can find the image properties
defined in the resources section. The properties in the cloud template code might resemble:

formatVersion: 1
inputs:
integerVar:
type: integer
encrypted: false
default: 1
stringVar:
type: string
encrypted: false
default: bkix
flavorVar:
type: string
encrypted: false
default: medium
BooleanVar:
type: boolean
encrypted: false
default: true
objectVar:
type: object
encrypted: false
default:
bkix2: bkix2
arrayvar:
type: array
encrypted: false
default:
= Yq U
= YU
resources:
Cloud_Machine 1:
type: Cloud.Machine
properties:
image: ubuntu
flavor: micro

count: '${input.integerVar}'

VMware, Inc.

39

Using and Managing vRealize Automation Code Stream

You can use dollar sign variables ($) for image and flavor. For example:

resources:

Cloud Machine 1:
type: Cloud.Machine

properties:
input: '${input.image}’
flavor: '${input.flavor}'

To use a cloud template in a Code Stream pipeline, and add dollar bindings to it, follow these
steps.

1
2

In Code Stream, click Pipelines > Blank Canvas.
Add a Cloud template task to the pipeline.

In the Cloud template task, for Cloud template source select Cloud Assembly Cloud
Templates, enter the cloud template name, and select the cloud template version.

Notice that you can enter an API token, which provides credentials for the pipeline. To create a
variable that encrypts the API token in the cloud template task, click Create Variable.

In the Parameter and Value table that appears, notice the parameter values. The default value
for flavor is small and the default value for image is ubuntu.

Let's say that you must change the cloud template in Cloud Assembly. For example, you:

a Setthe flavor so thatit uses a property of type array. Cloud Assembly allows comma-
separated values for Flavor when the type is array.

b Click Deploy.

c Onthe Deployment Type page, enter a deployment name, and select the version of the
cloud template.

d On the Deployment Inputs page, you can define one or more values for Flavor.

e Notice that the Deployment inputs include all the variables defined in your cloud template
code, and appear as defined in the cloud template code. For example: Integer Var,
String Var, Flavor Var, Boolean Var, Object Var, and Array Var. String Var and Flavor
var are string values, and Boolean Var is a check box.

f Click Deploy.

In Code Stream, select the new version of the cloud template, and enter values in the
Parameter and Value table. Cloud templates support the following types of parameters, which
enable Code Stream bindings by using dollar sign variables. Slight differences exist between
the user interface of the Code Stream cloud template task and the user interface of the Cloud
Assembly cloud template. Depending on the coding of a cloud template in Cloud Assembly,
entering values in the cloud template task in Code Stream might not be allowed.

a For flavorVar, if the cloud template defined the type as string or array, enter a string or a
comma-separated value array. An example array resembles test, test.

VMware, Inc. 40

Using and Managing vRealize Automation Code Stream

b For BooleanVar, in the drop-down menu select true or false. Or, to
use a variable binding, enter $ and select a variable binding from the

Faramater Walus
stringvar rai
integeryvar 1
BT)
flavorva rrvadiem
BooleanVar ﬂ 0
a1 ar war
objectVa ot
comments
arrayvar requestBy
axecutionindex
executionid
executionLirl
Output Paramet name
desorption
o e Slage0
) I(\ status) [ceploy M | oy e e e e
list

c For objectVar, enter the value with curly brackets and quotation marks in this format:
{"bkix":"bkix":}.

d The objectVar will be passed to the cloud template, and can be used in various ways
depending on the cloud template. It allows a string format for a JSON object, and you can
add key-value pairs as comma-separated values in the key-value table. You can enter plain
text for a JSON object, or a key-value pair as a normal stringified format for JSON.

e For arrayVar, enter the comma-separated input value as an array in this format:
[Hl" , l12ll])

8 Inthe pipeline, you can bind an input parameter to an array.
a Click the Input tab.
b Enter a name for the input. For example, arrayInput.
¢ Inthe Parameter and Value table, click in arrayVar and enter $ {input.arrayInput}.

d After you save the pipeline and enable it, when the pipeline runs, you must provide an
array input value. For example, enter ["1","2"] and click Run.

Now you have learned how to use dollar sign ($) variable bindings in a cloud template in a Code
Stream pipeline cloud template task.

How to pass a parameter to a pipeline when it runs

You can add input parameters to your pipeline to have Code Stream pass them to the pipeline.
Then, when the pipeline runs, a user must enter the value for the input parameter. When you add
output parameters to your pipeline, the pipeline tasks can use the output value from a task. Code
Stream supports using parameters in many ways that support your own pipeline needs.

For example, to prompt a user for the URL to their Git server when a pipeline with a REST task
runs, you can bind the REST task to a Git server URL.

VMware, Inc. 41

Using and Managing vRealize Automation Code Stream

To create the variable binding, you add a URL binding variable to the REST task. When the
pipeline runs and reaches the REST task, a user must enter their URL to the Git server. Here's how

you would create the binding:
1 Inyour pipeline, click the Input tab.

2 To set the parameter, for Auto inject parameters click Git.

The list of Git parameters appears, and includes GIT_SERVER_URL. If you must use a default

value for the Git server URL, edit this parameter.

3 Click Model, and click your REST task.

4 Onthe Task tab, in the URL area, enter $, then select input and GIT_SERVER_URL.

Task Task3 Motifications Rollback

Task name@ * Task3

VALIDATE TASK [EmE=

Type * REST

Continue on failure []

Executs task @ Always () ©n condition

REST Request

Action

URL %

GET

$input |

Agent endpoint

Headers

O = I T =T e T =

GIT_CHANGE_SUBJECT
GIT_COMMIT_ID

GIT_EVENT_DESCRIPTION
GIT_EVENT_CWHNER_MNAME
GIT_EVENT_TIMESTAMP
GIT_REPO_MAME

Qutput Parameters
GIT_SERVER_URL

r: status :] (responseHeaders :lli?ﬂ::--ﬁfE:-@jf\ responseJson J‘||’\ responseCode j

The entry resembles: ${input.GIT_SERVER_URL}

5 To verify the integrity of the variable binding for the task, click Validate Task.

Code Stream indicates that the task validated successfully.

6 When the pipeline runs the REST task, a user must enter the URL of the Git server. Otherwise,

the task does not finish running.

VMware, Inc.

42

Using and Managing vRealize Automation Code Stream

How to bind two pipeline tasks by creating input and output
parameters

When you bind tasks together, you add a binding variable to the input configuration of the
receiving task. Then, when the pipeline runs, a user replaces the binding variable with the required
input.

To bind pipeline tasks together, you use the dollar sign variable ($) in the input parameters and
output parameters. This example shows you how.

Let's say you need your pipeline to call a URL in a REST task, and output a response. To call the
URL and output the response, you include both input and output parameters in your REST task.
You also need a user who can approve the task, and include a User Operations task for another
user who can approve it when the pipeline runs. This example shows you how to use expressions
in the input and output parameters, and have the pipeline wait for approval on the task.

1 Inyour pipeline, click the Input tab.

rest-ix-1 (enabed) AcTions~

m Workspace 48 Input =] Model B Output

Input Parameters @

Auto inject parameters () Gerrit () Git () Docker @ None
ADD
Starred) MName T Value : 4 Description k4
iy LEL [Stage0 Task3.input http:ffwww docs. vmware.com} Docs URL

2 Leave the Auto inject parameters as None.

3 Click Add, and enter the parameter name, value, and description, and click OK. For example:
a Enter a URL name.
b Enter the value: {stage0.Task3.input.http://www.docs.vmware.com}
c Enter a description.

4 Click the Output tab, click Add, and enter the output parameter name and mapping.

VMware, Inc. 43

Using and Managing vRealize Automation Code Stream

Add Pipeline Output Parameter

Mame * RESTResponse

Beferences * ${Stage0 Task3.output.

responseHeaders

responseBody

responsetson I

responseCodse

a Enter a unique output parameter name.

b Click in the Reference area, and enter s.

c Enter the task output mapping by selecting the options as they pop up. Select the StageO,

select Task3, select output, and select responseCode. Then, click OK.

rest_[x_‘| [Enabled :. ACTIOMS

@ \Workspace 48 Input s Model B Cutput
Output Parameters @

ADD

Starred (@) Name T Reference

iy RESTResponse ${StageD Task3.output.responseCods]

Save your pipeline.
From the Actions menu, click Run.

Click Actions > View executions.

0o N o O»

you defined.

VMware, Inc.

Click the pipeline execution, and examine the input parameters and output parameters that

44

Using and Managing vRealize Automation Code Stream

10
n

12

8§ rest-ix-1#2 (WaTe) 00 actions

Stage0
Task2 Task3

Project chirm
Executicn rest-ix-1#2
Status WAITING | 5tage(. Task2: Execution Waiting for User Action.
Updated By
Executed By [. e o IR
Comments Test Vars Expressions
Duration 37 seconds (Feb 4, 2020, 3117-31 PM - Feb 4, 2020, 3:17:42 PM)

Input Parameters w

LIREL {Staged Task3.input httpfwww.docs vmware.com}

Workspace
Mo details available

Output Parameters w

Response tasks['Stagel. Task3']['output responseCode’]

To approve the pipeline, click User Operations, and view the list of approvals on the Active
Items tab. Or, stay in the Executions, click the task, and click Approve.

To enable the Approve and Reject buttons, click the check box next to the execution.
To see the details, expand the drop-down arrow.

To approve the task, click APPROVE, enter a reason, and click OK.

VMware, Inc.

45

Using and Managing vRealize Automation Code Stream

User Operations GUIDED SETUP

Active ltems nactive Items

[-~ APPROVE = REJECT

|] Index# r Execution T

| ¥ | User Operation #f0d252

Request Details

Execution rest-ix-1#2

summary hello

Approvers [P YL rTV e S RI TE: -SYaStee e
Requested By b ortwenr o ek

Requested On Feb 4, 2020, 31740 PM

Expires On Feb 7, 2020, 31740 PM

APPROVE REJECT VIEW DASHEOARD

13 Click Executions and watch the pipeline continue.

Executions (3347itms) GUIDED SETUP

[+ NEW EXECUTION] Q B v _C

B o (CRUNNING) Stages: ACTIONS
.{l rest-i. #3 ———
By e on Felr 4, 2020, 3:.41:05 PM 7 Input : -
0y RUNNING < Output : -

Comments:Testing

14 If the pipeline fails, correct any errors, then save the pipeline and run it again.

VMware, Inc.

46

Using and Managing vRealize Automation Code Stream

[+ NEW EXECUTION | (o} B v C

Executions (z3siiens) GUIDED SETUP

e

f i (CoMPLETED) Stages: em@mm ACTIONS v
.-[. rest-ix-1£6 —
By e on Feb 5, 2020, 1:28:52 PM v Input : -
Oy Execution Completed. 1 Output : -

How do | learn more about variables and expressions

To see details about using variables and expressions when you bind pipeline tasks, see What
variables and expressions can | use when binding pipeline tasks in Code Stream.

To learn how to use the pipeline task output with a condition variable binding, see How do | use
variable bindings in a condition task to run or stop a pipeline in Code Stream.

How do | use variable bindings in a condition task to run or
stop a pipeline in Code Stream

You can have the output of a task in your pipeline determine whether the pipeline runs or stops
based on a condition that you supply. To pass or fail the pipeline based on the task output, you
use the Condition task.

You use the Condition task as a decision point in your pipeline. By using the Condition task with
a condition expression that you provide, you can evaluate any properties in your pipeline, stages,
and tasks.

The result of the Condition task determines whether the next task in the pipeline runs.
m A true condition allows the pipeline run continue.
m A false condition stops the pipeline.

For examples of how to use the output value of one task as the input to the next task by binding
the tasks together with a Condition task, see How do | use variable bindings in Code Stream
pipelines.

VMware, Inc.

47

Using and Managing vRealize Automation Code Stream

Table 3-7. How the Condition task and its condition expression relate to the pipeline

Condition task

Condition task

Condition expression

What it affects

Pipeline

Condition task
output

What it does

The Condition task determines whether the pipeline runs or stops at that
point, based on whether the task output is true or false.

When the pipeline runs, the condition expression that you include in
the Condition task produces a true or false output status. For example,
a condition expression can require the Condition task output status as
Completed, or use a build number of 74.

The condition expression appears on the Task tab in the Condition task.

Task :Task2 Notifications Rollback

Task name® * Task2

Type * Condition

Condition Task

Condition s Enter condition expression)

Conditional Expression
An expression, which on evaluation should return true or false

Example’

${Stagel.taskl.output.status} == "COMPLETED"
|| ${input.buildNumber} == 74

Supported constructs:
If the dollar binding evaluates to string, enclose with ' "or ™"
Type Example

Pipeline variables ${input.changeSetNumber} (numeric binding) or

"${input.changeSetOwner}" (string binding)

Task output

${stagel.taskl.output.responseCode} (num binding)
variables

or "${stagel.taskl.output.status}" (string binding)
Boolean values true / false
Numeric values 99 or 123.45 (quotes not allowed)

String values "Tested" or 'Tested'

Relational g <miy e o =
operators

Arithmetic + - %/

operators

Boolean && (logical and), |l (logical or)

The Condition task differs in function and behavior from the On Condition setting in other types of

tasks.

VMware, Inc.

48

Using and Managing vRealize Automation Code Stream

Task :Depioy Phase T Motifications Rollback -0

Task name @ Deploy Phase 1

Type Kas

Continue on failure []

Execute task () Always @ ©On condition

Condition g @

&

In other types of tasks, the On Condition determines whether the current task runs, rather than
successive tasks, based on the evaluation of its precondition expression of true or false. The
condition expression for the On Condition setting produces a true or false output status for the
current task when the pipeline runs. The On Condition setting appears on the Task tab with its
own condition expression.

This example uses the Condition task.

Prerequisites

m Verify that a pipeline exists, and that it includes stages and tasks.

Procedure
1 Inyour pipeline, determine the decision point where the Condition task must appear.
2 Add the Condition task before the task that depends on its status of pass or fail.

3 Add a condition expression to the Condition task.

For example: "${Stagel. taskl.output.status}" == "COMPLETED" || $
{input.buildNumber} == 74
@ Workspace 48 Input »§ Model B Output
» = @, Task :Task? Notifications Rollback ==
StageO o & = Task name® Taskl
fi Type Condition -
Taskl —_—
cenditan H Condition Task
Condition "${Stagel taskl.output status}” == "COMPLETED" ||)
+Parallel Task 4 ${input buildNumber} == 74
4
OQutput Parameters

4 Validate the task.

5 Save the pipeline, then enable and run it.

VMware, Inc.

49

Using and Managing vRealize Automation Code Stream

Results

Watch the pipeline executions and notice whether the pipeline continues running, or stops at the
Condition task.

What to do next

If you roll back a pipeline deployment, you can also use the Condition task. For example, in a
rollback pipeline, the Condition task helps Code Stream mark a pipeline failure based on the
condition expression, and can trigger a single rollback flow for various failure types.

To roll back a deployment, see How do | roll back my deployment in Code Stream.

What variables and expressions can | use when binding
pipeline tasks in Code Stream

With variables and expressions, you can use input parameters and output parameters with your
pipeline tasks. The parameters you enter bind your pipeline task to one or more variables,
expressions, or conditions, and determine the pipeline behavior when it runs.

Pipelines can run simple or complex software delivery solutions

When you bind pipeline tasks together, you can include default and complex expressions. As a
result, your pipeline can run simple or complex software delivery solutions.

To create the parameters in your pipeline, click the Input or Output tab, and add a variable by
entering the dollar sign $ and an expression. For example, this parameter is used as a task input
that calls a URL: ${Stage0.Task3.input.URL}.

The format for variable bindings uses syntax components called scopes and keys. The scopE
defines the context as input or output, and the kEy defines the details. In the parameter example
${Stage0.Task3.input.URL}, the input is the scope and the URL is the kEy.

Output properties of any task can resolve to any number of nested levels of variable binding.

To learn more about using variable bindings in pipelines, see How do | use variable bindings in
Code Stream pipelines.

Using dollar expressions with scopes and keys to bind pipeline tasks

You can bind pipeline tasks together by using expressions in dollar sign variables. You enter
expressions as ${SCOPE.KEY.<PATH>}.

To determine the behavior of a pipeline task, in each expression, scopk is the context that Code
Stream uses. The scope looks for a KEY, which defines the detail for the action that the task takes.
When the value for KEY is a nested object, you can provide an optional PATH.

These examples describe scope and Key, and show you how you can use them in your pipeline.

VMware, Inc.

Using and Managing vRealize Automation Code Stream

Table 3-8. Using SCOPE and KEY

Purpose of expression and How to use SCOPE and
SCOPE example KEY KEY in your pipeline
input Input properties of a Name of the input property To refer to the input
pipeline: property of a pipeline in a
${input.inputl} task, use this format:
tasks:
mytask:
type: REST
input:
url: $

{input.url}
action: get

input:
url: https://
WWW . vmware . com

output Output properties of a Name of the output To refer to an output
pipeline: property property for sending a
S {output.outputl} notification, use this format:

notifications:
email:
- endpoint:
MyEmailEndpoint
subject:
"Deployment
Successful"
event: COMPLETED
to:
user@example.org
body: |
Pipeline
deployed
the service
successfully.
Refer $
{output.serviceURL}

VMware, Inc.

Using and Managing vRealize Automation Code Stream

Table 3-8. Using SCOPE and KEY (continued)

Purpose of expression and How to use SCOPE and
SCOPE example KEY KEY in your pipeline
task input Input to a task: Indicates the input of atask ~ When a Jenkins job starts,
s in a notification it can refer to the name

{MY_STAGE.MY TASK.input. of the job triggered from

SOMETHING} the task input. In this case,

send a notification by using
this format:

notifications:
email:
- endpoint:

MyEmailEndpoint
stage: MY STAGE
task: MY TASK
subject:

"Build Started"
event: STARTED
to:

user@example.org
body: |

Jenkins job $

{MY STAGE.MY TASK.i

nput.job} started

for commit id $

{input.COMMITID} .

task output Output of a task: Indicates the output of a To refer to the output of
s task in a subsequent task pipeline task 1in task 2, use

{MY STAGE.MY TASK.output this format:

.SOMETHING}
taskOrder:
- taskl
- task2
tasks:
taskl:
type: REST
input:
action: get
url: https://
www.example.org/api
/status
task2:
type: REST
input:
action: post
url: https://
status.internal.exa
mple.org/api/
activity
payload: $
{MY_STAGE.taskl.out
put.responseBody}

VMware, Inc.

Using and Managing vRealize Automation Code Stream

Table 3-8. Using SCOPE and KEY (continued)

SCOPE

var

var

task status

stage status

Purpose of expression and

example KEY
Variable: Refer to variable in an
${var.myVariable} endpoint

Variable: Refer to variable in a
${var.myVariable} pipeline

Status of a task:

S

(MY STAGE.MY TASK.status
}

$
{MY_ STAGE.MY TASK.status

Message}

Status of a stage:
${MY_STAGE.status}

$
{MY_STAGE.statusMessage}

Default Expressions

How to use SCOPE and
KEY in your pipeline

To refer to a secret variable
in an endpoint for a
password, use this format:

project: MyProject
kind: ENDPOINT
name:
MyJenkinsServer
type: jenkins
properties:

url: https://
jenkins.example.com
username:
jenkinsUser
password: $
{var.jenkinsPasswor
d}

To refer to variable in
a pipeline URL, use this
format:

tasks:
taskl:
type: REST
input:
action: get
url: $
{var.MY SERVER URL}

You can use variables with expressions in your pipeline. This summary includes the default
expressions that you can use.

VMware, Inc.

53

Using and Managing vRealize Automation Code Stream

Expression Description

${comments} Comments provided when at pipeline execution request.
${duration} Duration of the pipeline execution.

${endTime} End time of the pipeline execution in UTC, if concluded.
${executedOn} Same as the start time, the starting time of the pipeline execution in UTC.
${executionId} ID of the pipeline execution.

${executionUrl} URL that navigates to the pipeline execution in the user interface.
${name} Name of the pipeline.

${requestBy} Name of the user who requested the execution.

${stageName} Name of the current stage, when used in the scope of a stage.
${startTime} Starting time of the pipeline execution in UTC.

${status} Status of the execution.

${statusMessage} Status message of the pipeline execution.

${taskName} Name of the current task, when used at a task input or notification.

Using SCOPE and KEY in pipeline tasks

You can use expressions with any of the supported pipeline tasks. These examples show you how
to define the scope and key, and confirm the syntax. The code examples use MY STAGE and MY TASK

as the pipeline stage and task names.

To find out more about available tasks, see What types of tasks are available in Code Stream.

VMware, Inc.

54

Using and Managing vRealize Automation Code Stream

Table 3-9. Gating tasks

Task

User Operation

Condition

VMware, Inc.

Scope

Input

Output

Input

Output

Key

summary: Summary of the request
for the User Operation

description: Description of the
request for the User Operation

approvers: List of approver email
addresses, where each entry can
be a variable with a comma, or use
a semi-colon for separate emails
approverGroups: List of approver
group addresses for the platform
and identity

sendemail: Optionally sends an
email notification upon request or
response when set to true
expirationInDays: Number of days
that represents the expiry time of
the request

index: Six-digit hexadecimal string
that represents the request
respondedBy: Account name of the
person who approved/rejected the
User Operation

respondedByEmail: Email address
of the person who responded

comments: Comments provided
during response

condition: Condition to evaluate.
When the condition evaluates to
true, it marks the task as complete,
whereas other responses fail the
task

result: Result upon evaluation

How to use SCOPE and KEY in the task

${MY_STAGE.MY_ TASK.input.summary}
${MY STAGE.MY TASK.input.description}
${MY STAGE.MY TASK.input.approvers}

$
{MY STAGE.MY TASK.input.approverGroups}

${MY STAGE.MY TASK.input.sendemail}

$
{MY STAGE.MY TASK.input.expirationInDay

s}

${MY_STAGE.MY_ TASK.output.index}
${MY_STAGE.MY TASK.output.respondedBy}

$
{MY_STAGE.MY_ TASK.output.respondedByEma
il}

${MY_STAGE.MY_ TASK.output.comments}

${MY_STAGE.MY_ TASK.input.condition}

${MY STAGE.MY TASK.output.response}

55

Using and Managing vRealize Automation Code Stream

Table 3-10. Pipeline tasks

Task

Pipeline

Scope

Input

Output

Key

name: Name of the pipeline to run

inputProperties: Input properties to
pass to the nested pipeline execution

$

How to use SCOPE and KEY in the task

${MY_STAGE.MY_TASK.input.name}

${MY STAGE.MY TASK.input.inputProperties} #
Refer to all properties

{MY_STAGE.MY TASK.input.inputProperties.inpu
t1} # Refer to value of inputl

executionStatus: Status of the pipeline
execution

executionIndex: Index of the pipeline
execution

outputProperties: Output properties of a s
pipeline execution

${MY_STAGE.MY TASK.output.executionStatus}
${MY_STAGE.MY_ TASK.output.executionIndex}

${MY_ STAGE.MY TASK.output.outputProperties}
Refer to all properties

{MY_STAGE.MY TASK.output.outputProperties.ou

tputl} # Refer to value of outputi

Table 3-11. Automate continuous integration tasks

Task

Cl

Custom

VMware, Inc.

Scope

Input

Output

Key

steps: A set of strings, which
represent commands to run
export: Environment variables to
preserve after running the steps
artifacts: Paths of artifacts to
preserve in the shared path
process: Set of configuration
elements for JUnit, JaCoCo,
Checkstyle, FindBugs processing

exports: Key-value pair,

which represents the exported
environment variables from the
input export

artifacts: Path of successfully
preserved artifacts
processResponse: Set of processed
results for the input process

How to use SCOPE and KEY in the task

${MY STAGE.MY TASK.input.steps}

${MY_STAGE.MY_ TASK.input.export}
${MY_STAGE.MY_ TASK.input.artifacts}

${MY_STAGE.MY_ TASK.input.process}

$
{MY_ STAGE.MY TASK.input.process[0].path
} # Refer to path of the first configuration

${MY STAGE.MY TASK.output.exports} #
Refer to all exports

$

{MY_ STAGE.MY TASK.output.exports.myvar}
Refer to value of myvar
$(MYisTAGE.MYiTASK.output.artifacts}

$

{MY_STAGE.MY TASK.output.processRespons
e}

$

{MY_STAGE.MY TASK.output.processRespons
e[0].result} # Result of the first process
configuration

56

Using and Managing vRealize Automation Code Stream

Table 3-11. Automate continuous integration tasks (continued)

Task

VMware, Inc.

Scope

Input

Output

Key

name: Name of the custom
integration

version: A version of the custom
integration, released or deprecated
properties: Properties to send to
the custom integration

properties: Output properties from
the custom integration response

How to use SCOPE and KEY in the task

${MY STAGE.MY TASK.input.name}
${MY_STAGE.MY_TASK.input.version}
${MY_STAGE.MY_ TASK.input.properties}
#Refer to all properties

$

{MY_ STAGE.MY TASK.input.properties.prop
ertyl} #Refer to value of propertyl

S{MY STAGE.MY TASK.output.properties}
#Refer to all properties

$

{MY STAGE.MY TASK.output.properties.pro
pertyl} #Refer to value of property1

57

Using and Managing vRealize Automation Code Stream

Table 3-12. Automate continuous deployment tasks: Cloud template

Task Scope Key How to use SCOPE and KEY in the task

Cloud template

Input action: One

of createDeployment,

updateDeployment,

deleteDeployment,

rollbackDeployment

blueprintInputParams: Used

for the create deployment

and update deployment

actions

allowbDestroy: Machines can

be destroyed in the update

deployment process.

CREATE_DEPLOYMENT

B DblueprintName: Name of
the cloud template

B DplueprintVersion:
Version of the cloud
template

OR

m fileurl: URL of the
remote cloud template
YAML, after selecting a
GIT server.

UPDATE_DEPLOYMENT

Any of these combinations:

B DblueprintName: Name of
the cloud template

B blueprintVersion:
Version of the cloud
template

OR

m fileurl: URL of the
remote cloud template
YAML, after selecting a
GIT server.

B deploymentId: ID of the
deployment

B deploymentName: Name of
the deployment

DELETE_DEPLOYMENT

B deploymentid: ID of the
deployment

VMware, Inc.

58

Using and Managing vRealize Automation Code Stream

Table 3-12. Automate continuous deployment tasks: Cloud template (continued)

Task Scope Key

OR

B deploymentName: Name of
the deployment

ROLLBACK_DEPLOYMENT

Any of these combinations:

B deploymentid: ID of the

deployment
OR

B deploymentName: Name of
the deployment

B DblueprintName: Name of
the cloud template

B rollbackvVersion: Version

to roll back to

Output

Example JSON output:

VMware, Inc.

How to use SCOPE and KEY in the task

Parameters that can bind to other tasks or to the

output of a pipeline:

m Deployment Name can be accessed as $
{Stage0.Task0.output.deploymentName}

m Deployment Id can be accessed as $
{Stage0.Task0.output.deploymentId}

m Deployment Details is a complex object, and
internal details can be accessed by using the
JSON results.

To access any property, use the dot operator to

follow the JSON hierarchy. For example, to access

the address of resource Cloud_Machine_1[0], the $
binding is:

$

{Stage0.Task0.output.deploymentDetails.re

sources|['Cloud Machine 1[0]'].address}

Similarly, for the flavor, the $ binding is:

$
{Stage0.Task0.output.deploymentDetails.re
sources|['Cloud Machine_1[0]'].flavor}

In the Code Stream user interface, you can obtain
the $ bindings for any property.

1 Inthe task output property area, click VIEW
OUTPUT JSON.

To find the $ binding, enter any property.

Click the search icon, which displays the
corresponding $ binding.

59

Using and Managing vRealize Automation Code Stream

Stage0.Task0.output X

: talse,
"267f8448-d26f-4b65-b318-9212adb3c455",
{

Machine_1[0]": {

19 " /resources/compute/1606fbcd-40eS -4edc-ab85-7b559aa986ad"
20 "Cloud_Machine_1[@]",
21 power ": "ON",
22 ‘address”: “18.108.79.33",
23 'resourcelink”: "/resources/compute/1606fbcd-40e5-4edc-ab85-7b55%aa986ad" ,
24 q nentTypeld": "Cloud,vSphere.Machine",
25 "vsphere”,
26 =" : "Cloud_Machine_1-mcm110615-146929827053",
27 k "1606fbcd-4@e5-4edc-abB5-7b55%aa986ad” ,
28 "resourceDesclink”: "/resources/compute-descriptions/1952d1d3-15f@-4574-aed2
-4fbf8a87décc”,
Path finder
| address

(]

r
| ${Stage0.Task0.output.deploymentDetails.resources['Cloud_Machine_1[0]'].address}

Sample deployment details object:

"id": "6a031£f92-d0fa-42c8-bc9e-3b260ee2f65b",
"name": "deployment 6a031£92-d0fa-42c8-bcSe-3b260ee2f65b",
"description": "Pipeline Service triggered operation",
"orgId": "434£6917-4e34-4537-b6c0-3bf3638a7lbc",
"blueprintId": "8d1dd801-3a32-4f3b-adde-27£8163dfe6f",
"blueprintVersion": "1",
"createdAt": "2020-08-27T13:50:24.5462152",
"createdBy": "user@vmware.com",
"lastUpdatedAt": "2020-08-27T13:52:50.674957z",
"lastUpdatedBy": "user@vmware.com",
"inputs": {},
"simulated": false,
"projectId": "267£8448-d26f-4b65-b310-9212adb3c455",
"resources": {
"Cloud Machine 1[0]": {
"id": "/resources/compute/1606fbcd-40e5-4edc-ab85-7b55%aa986ad",
"name": "Cloud Machine 1[0]",
"powerState": "ON",
"address": "10.108.79.33",
"resourceLink": "/resources/compute/1606fbcd-40e5-4edc-ab85-7b55%aa986ad",
"componentTypeId": "Cloud.vSphere.Machine",
"endpointType": "vsphere",
"resourceName": "Cloud Machine 1-mcml110615-146929827053",
"resourceId": "1606fbcd-40e5-4edc-ab85-7b55%aa986ad",
"resourceDescLink": "/resources/compute-descriptions/1952d1d3-15f0-4574-
ae42-4fbf8a87d4cc",
"zone": "Automation / Vms",
"countIndex": "0O",
"image": "ubuntu",
"count": "1",
"flavor": "small",
"region": "MYBU",
" clusterAllocationSize": "1",
"osType": "LINUX",
"componentType": "Cloud.vSphere.Machine",
"account": "bha"

VMware, Inc.

Using and Managing vRealize Automation Code Stream

b

"status":
"deploymentURI":

"CREATE SUCCESSFUL",

"https://api.yourenv.com/automation-ui/#/deployment-ui;ash=/deployment/

6a031£92-d0fa-42c8-bc9e-3b260ee2f65b"

}

Table 3-13. Automate continuous deployment tasks: Kubernetes

Task

Kubernetes

VMware, Inc.

Scope

Input

Output

Key

action: One of GET, CREATE, APPLY,

DELETE, ROLLBACK

B timeout: Overall timeout for any action

B filterByLabel: Additional label to filter on
for action GET using K8S labelSelector

GET, CREATE, DELETE, APPLY

B yaml: Inline YAML to process and send to
Kubernetes

B parameters: KEY, VALUE pair - Replace $
$KEY with VALUE in the in-line YAML input
area

B filePath: Relative path from the SCM Git
endpoint, if provided, from which to fetch
the YAML

B scmConstants: KEY, VALUE pair - Replace
$${KEY} with VALUE in the YAML fetched
over SCM.

B continueOnConflict: When set to true, if
a resource is already present, the task
continues.

ROLLBACK

B resourceType: Resource type to roll back

B resourceName: Resource name to roll back

B namespace: Namespace where the rollback
must be performed

B revision: Revision to roll back to

response: Captures the entire response

response .<RESOURCE>: Resource corresponds
to configMaps, deployments, endpoints,
ingresses, jobs, namespaces, pods,
replicaSets, replicationControllers, secrets,
services, statefulSets, nodes, loadBalancers.
response.<RESOURCE>.<KEY>: The key
corresponds to one of apiVersion, kind,
metadata, spec

How to use SCOPE and KEY in the task

${MY STAGE.MY TASK.input.action}
#Determines the action to perform.

${MY_STAGE.MY_ TASK.input.timeout}

${MY_STAGE.MY_ TASK.input.filterByLabel}

${MY_ STAGE.MY TASK.input.yaml}

${MY STAGE.MY TASK.input.parameters}
${MY STAGE.MY TASK.input.filePath}
${MY_STAGE.MY_ TASK.input.scmConstants}
$

{MY_STAGE.MY_ TASK.input.continueOnConfl
ict}

${MY_STAGE.MY_ TASK.input.resourceType}
${MY_STAGE.MY_ TASK.input.resourceName}
${MY_STAGE.MY_ TASK.input.namespace}

${MY_STAGE.MY_ TASK.input.revision}

${MY STAGE.MY TASK.output.response}

${MY STAGE.MY TASK.output.response.}

61

Using and Managing vRealize Automation Code Stream

Table 3-14. Integrate development, test, and deployment applications

Task

Bamboo

Jenkins

TFS

VMware, Inc.

Scope

Input

Output

Input

Output

Key

plan: Name of the plan
plankey: Plan key

variables: Variables to be
passed to the plan

parameters: Parameters to be
passed to the plan

resultUrl: URL of the resulting
build

buildResultKey: Key of the
resulting build

buildNumber: Build Number
buildTestSummary: Summary of
the tests that ran
successfulTestCount: test
result passed

failedTestCount: test result
failed

skippedTestCount: test result
skipped

artifacts: Artifacts from the
build

job: Name of the Jenkins job

parameters: Parameters to be
passed to the job

job: Name of the Jenkins job

job1d: ID of the resulting job,
such as 1234

jobStatus: Status in Jenkins
jobResults: Collection of test/
code coverage results

jobUrl: URL of the resulting job
run

How to use SCOPE and KEY in the task

${MY_STAGE.MY_TASK.input.plan}

${MY STAGE.MY TASK.input.planKey}

${MY STAGE.MY TASK.input.variables}

${MY STAGE.MY TASK.input.parameters} # Refer to all
parameters

${MY STAGE.MY TASK.input.parameters.paraml} # Referto
value of param1

${MY_STAGE.MY_ TASK.output.resultUrl}
${MY_STAGE.MY_ TASK.output.buildResultKey}
$ {MY_STAGE.MY_ TASK.output. buildNumber}

${MY STAGE.MY TASK.output.buildTestSummary} # Refer to
all results

${MY_STAGE.MY TASK.output.successfulTestCount} #
Refer to the specific test count

${MY STAGE.MY TASK.output.buildNumber}

${MY_STAGE.MY TASK.input.job}

${MY STAGE.MY TASK.input.parameters} # Refer to all
parameters

${MY STAGE.MY TASK.input.parameters.paraml} # Referto
value of a parameter

${MY_ STAGE.MY TASK.output.job}
${MY STAGE.MY TASK.output.jobId}
${MY STAGE.MY TASK.output.jobStatus}

${MY STAGE.MY TASK.output.jobResults} # Refer to all
results

${MY STAGE.MY TASK.output.jobResults.junitResponse} #
Refer to JUnit results

${MY_ STAGE.MY TASK.output.jobResults.jacocoRespose} #
Refer to JaCoCo results

${MY_STAGE.MY TASK.output.jobUrl}

62

Using and Managing vRealize Automation Code Stream

Table 3-14. Integrate development, test, and deployment applications (continued)

Task

VRO

Scope

Input

Output

Input

Output

Key

projectCollection: Project
collection from TFS

teamProject: Selected project
from the available collection

buildDefinitionId: Build
Definition ID to run

buildid: Resulting build ID
buildurl: URL to visit the build
summary

logUrl: URL to visit for logs

dropLocation: Drop location of
artifacts if any

workflowId: ID of the workflow
to be run

parameters: Parameters to be
passed to the workflow

workflowExecutionId: ID of the
workflow execution
properties: Output properties
from the workflow execution

How to use SCOPE and KEY in the task

${MY STAGE.
${MY STAGE.

${MY STAGE.

${MY STAGE.
${MY STAGE.
${MY STAGE.

${MY_STAGE.

${MY STAGE.

${MY STAGE.

${MY STAGE.

${MY STAGE.

Table 3-15. Integrate other applications through an API

Task

REST

VMware, Inc.

Scope

Input

Key

url: URL to call

action: HTTP method to use

headers: HTTP headers to pass

payload: Request payload

fingerprint: Fingerprint to match

for a URL that is https

MY TASK.
MY TASK.

MY TASK.

MY TASK.
MY TASK.
MY TASK.

MY TASK.

MY TASK.

MY TASK.

MY TASK.

MY TASK.

input.projectCollection}
input.teamProject}

input.buildDefinitionId}

output.buildId}
output.buildUrl}
output.logUrl}

output.dropLocation}

input.workflowId}

input.parameters}

output.workflowExecutionId}

output.properties}

How to use SCOPE and KEY in the task

${MY STAGE.
${MY STAGE.
${MY STAGE.

${MY STAGE.

${MY STAGE.

allowAllCerts: When set to true,
can be any certificate that has a URL

of https

${MY STAGE.

MY TASK.input.url}

MY TASK.input.action}

MY TASK.input.headers}

MY TASK.input.payload}

MY TASK.input.fingerprint}

MY TASK.input.allowAllCerts}

63

Using and Managing vRealize Automation Code Stream

Table 3-15. Integrate other applications through an API (continued)

Task

Poll

VMware, Inc.

Scope

Output

Input

Output

Key

responseCode: HTTP response code

responseHeaders: HTTP response
headers

responseBody: String format of
response received

responseJson: Traversable response
if the content-type is application/
json

url: URL to call
headers: HTTP headers to pass

exitCriteria: Criteria to meet to for
the task to succeed or fail. A key-
value pair of 'success' — Expression,
'failure' — Expression

pollcount: Number of iterations

to perform. A Code Stream
administrator can set the poll count
to a maximum of 10000.
pollintervalSeconds: Number of
seconds to wait between each
iteration. The poll interval must be
greater than or equal to 60 seconds.
ignoreFailure: When set to true,
ignores intermediate response
failures

fingerprint: Fingerprint to match
for a URL that is https
allowaAllCerts: When set to true,
can be any certificate that has a URL
of https

responseCode: HTTP response code
responseBody: String format of
response received

responseJson. Traversable response

if the content-type is application/
json

How to use SCOPE and KEY in the task

${MY_STAGE.MY_TASK.output.responseCode}
${MY_STAGE.MY_TASK.output.responseHeaders}

$
{MY_STAGE.MY_ TASK.output.responseHeaders.heade
r1} # Refer to response header 'header?'

${MY STAGE.MY TASK.output.responseBody}

${MY STAGE.MY TASK.output.responseJson} # Refer
to response as JSON

${MY_STAGE.MY_ TASK.output.responseJson.a.b.c}
Refer to nested object following the a.b.c JSON
path in response

${MY STAGE.MY TASK.input.url}

${MY STAGE.MY TASK.input.headers}
${MYisTAGE.MYiTASK.input.exitcriteria}
${MY_STAGE.MY_ TASK.input.pollCount}

${MY_ STAGE.MY TASK.input.polllntervalSeconds}
${MY_STAGE.MY_ TASK.input.ignoreFailure}

${MY_ STAGE.MY TASK.input.fingerprint}

${MY STAGE.MY TASK.input.allowAllCerts}

${MY_STAGE.MY_ TASK.output.responseCode}
${MY STAGE.MY TASK.output.responseBody}

${MY STAGE.MY TASK.output.responseJson} #

Refer to response as JSON

64

Using and Managing vRealize Automation Code Stream

Table 3-16. Run remote and user-defined scripts

Task

PowerShell
To run a PowerShell task, you must:

Scope

Key

B Have an active session to a remote Windows host.

How to use SCOPE and KEY in the task

m [f you intend to enter a base64 PowerShell command, calculate the overall command length first. For details, see
What types of tasks are available in Code Stream.

SSH

VMware, Inc.

Input

Output

host: IP address or hostname
of the machine

username: User name to use to

connect

password: Password to use to
connect

useTLS: Attempt https
connection

trustCert: When set to true,
trusts self-signed certificates
script: Script to run
workingDirectory: Directory
path to switch to before
running the script

environmentVariables: A key-

value pair of environment
variable to set

arguments: Arguments to pass
to the script

response: Content of the file
$SCRIPT_RESPONSE_FILE

responseFilePath: Value of
$SCRIPT7RESPONSE7FILE

exitCode: Process exit code
logFilePath: Path to file
containing stdout
errorFilePath: Path to file
containing stderr

${MY STAGE.MY TASK.input.host}

S{MY STAGE.MY TASK.input.username}
${MY_STAGE.MY_TASK.input.password}
${MY_STAGE.MY_ TASK.input.useTLS}
${MY_STAGE.MY TASK.input.trustCert}
${MY_STAGE.MY TASK.input.script}

$
{MY_STAGE.MY TASK.input.workingDirectory
}
$

{MY STAGE.MY TASK.input.environmentVaria
bles}

${MY_STAGE.MY_ TASK.input.arguments}

${MY_ STAGE.MY TASK.output.response}

$
{MY_STAGE.MY TASK.output.responseFilePat
h}

${MY_STAGE.MY TASK.output.exitCode}
${MY_STAGE.MY TASK.output.logFilePath}

S{MY STAGE.MY TASK.output.errorFilePath}

65

Using and Managing vRealize Automation Code Stream

Table 3-16. Run remote and user-defined scripts (continued)

Task Scope

Input

Output

Key

host: IP address or hostname
of the machine

username: User name to use to
connect

password: Password to use to
connect (optionally can use
privateKey)

privateKey: PrivateKey to use
to connect

passphrase: Optional
passphrase to unlock
privateKey

script: Script to run

workingDirectory: Directory
path to switch to before
running the script
environmentVariables: Key-
value pair of the environment
variable to set

response: Content of the file
$SCRIPT7RESPONSE7FILE

responseFilePath: Value of
$SCRIPT7RESPONSE7FILE

exitCode: Process exit code
logFilePath: Path to file
containing stdout
errorFilePath: Path to file
containing stderr

How to use SCOPE and KEY in the task

${MY STAGE.MY TASK.input.host}
${MY_STAGE.MY_TASK.input.username}
${MY_STAGE.MY TASK.input.password}
${MY STAGE.MY TASK.input.privateKey}
${MY STAGE.MY TASK.input.passphrase}
${MY_STAGE.MY_TASK.input.script}

$
{MY_STAGE.MY TASK.input.workingDirectory
}

$
{MY_STAGE.MY TASK.input.environmentVaria

bles}

${MY STAGE.MY TASK.output.response}

$

{MY_STAGE.MY TASK.output.responseFilePat
h}

${MYisTAGE.MYiTASK.output.exitCode)

${MY STAGE.MY TASK.output.logFilePath}

${MYisTAGE.MYiTASK.output.errorFilePath}

How to use a variable binding between tasks

This example shows you how to use variable bindings in your pipeline tasks.

Table 3-17. Sample syntax formats

Example

To use a task output value
for pipeline notifications and
pipeline output properties

To refer to the previous task
output value as an input for the
current task

VMware, Inc.

Syntax

${<Stage Key>.<Task Key>.output.<Task output key>}

$S{<Previous/Current Stage key>.<Previous task key not in current Task

group>.output.<task output key>}

66

Using and Managing vRealize Automation Code Stream

To learn more

To learn more about binding variables in tasks, see:

m How do | use variable bindings in Code Stream pipelines

m How do | use variable bindings in a condition task to run or stop a pipeline in Code Stream

m What types of tasks are available in Code Stream

How do | send notifications about my pipeline in Code
Stream

Notifications are ways to communicate with your teams and let them know the status of your
pipelines in Code Stream.

To send notifications when a pipeline runs, you can configure Code Stream notifications based on
the status of the entire pipeline, stage, or task.

m An email notification sends an email on:
m Pipeline completion, waiting, failure, cancelation, or start.
m Stage completion, failure, or start.
m Task completion, waiting, failure, or start.
m A ticket notification creates a ticket and assigns it to a team member on:
m Pipeline failure or completion.
m Stage failure.
m Task failure.
m A webhook notification sends a request to another application on:
m Pipeline failure, completion, waiting, cancelation, or start.
m Stage failure, completion, or start.
m Task failure, completion, waiting, or start.

For example, you can configure an email notification on a user operation task to obtain approval
at a specific point in your pipeline. When the pipeline runs, this task sends email to the person
who must approve the task. If the User Operation task has an expiration timeout set in days, hours,
or minutes, the required user must approve the pipeline before the task expires. Otherwise, the
pipeline fails as expected.

To create a Jira ticket when a pipeline task fails, you can configure a notification. Or, to send a
request to a Slack channel about the status of a pipeline based on the pipeline event, you can
configure a webhook notification.

You can use variables in all types of notifications. For example, you can use ${var} in the URL of a
Webhook notification.

VMware, Inc. 67

Using and Managing vRealize Automation Code Stream

Prerequisites

Verify that one or more pipelines are created. See the use cases in Chapter 5 Tutorials for
using Code Stream.

To send email notifications, confirm that you can access a working email server. For help, see
your administrator.

To create tickets, such as a Jira ticket, confirm that the endpoint exists. See What are
Endpoints in Code Stream .

To send a notification based on an integration, you create a webhook notification. Then, you
confirm that the webhook is added and working. You can use notifications with applications
such as Slack, GitHub, or GitLab.

Procedure
1 Open a pipeline.
2 To create a notification for the overall pipeline status, or the status of a stage or task:
To create a notification for: What you do:
Pipeline status Click a blank area on the pipeline canvas.
Status of a stage Click a blank area in a stage of the pipeline.
Status of a task Click a task in a stage of the pipeline.
3 Click the Notifications tab.
4 Click Add, select the type of notification, and configure the notification details.
5 To create a Slack notification when a pipeline succeeds, create a webhook notification.

a Select Webhook.
b To configure the Slack notification, enter the information.
¢ Click Save.

d When the pipeline runs, the Slack channel receives the notification of the pipeline status.
For example, users might see the following on the Slack channel:

Codestream APP [12:01 AM]
Tested by Userl - Staging Pipeline 'Userl-Pipeline', Pipeline ID
'e905884d809ce2755728177£70f8a"' succeeded

VMware, Inc. 68

Using and Managing vRealize Automation Code Stream

6 To create a Jira ticket, configure the ticket information.
a Select Ticket.
b To configure the Jira notification, enter the information.

¢ Click Save.

Notification

Send notification type () Email @ Ticket () Webhook
When pipeline * ° Fails Completes

Jira endpoint * Jira-Motification

Create Ticket

Jira project * YourProject

Issue type * Bug

Assignee * username@yourcompany.com
Summary Fipeline failed

Description & Research and correct

CANCEL SAVE

Results

Congratulations! You learned that you can create various types of notifications in several areas of
your pipeline in Code Stream.

What to do next

For a detailed example of how to create a notification, see How do | create a Jira ticket in Code
Stream when a pipeline task fails.

How do | create a Jira ticket in Code Stream when a pipeline
task fails

If a stage or task in your pipeline fails, you can have Code Stream create a Jira ticket. You can
assign the ticket to the person who must resolve the problem. You can also create a ticket when
the pipeline is waiting, or when it succeeds.

You can add and configure notifications on a task, stage, or pipeline. Code Stream creates the
ticket based on the status of the task, stage, or pipeline where you add the notification. For
example, if an endpoint is not available, you can have Code Stream create a Jira ticket for the task
that fails because it cannot connect to the endpoint.

VMware, Inc. 69

Using and Managing vRealize Automation Code Stream

You can also create notifications when your pipeline succeeds. For example, you can inform your
QA team about pipelines that succeed so that they can confirm the build and run a different test
pipeline. Or, you can inform your performance team so that they can measure the performance of
the pipeline and prepare for an update to staging or production.

In Code Stream, create a
pipeline and add a stage and a task.
Pipelines > New Pipeline

To notify a user when a task or
stage fails, click the task or stage
and configure the ticket notification.
Pipeline > Task or Stage
> Notifications > Add > Ticket

To notify a user when a pipeline
fails or is waiting, click in
a blank area on the pipeline canvas,
and configure the ticket notification.
Pipeline > Canvas area > Notifications
> Add > Ticket > On Pipeline Failure

Configure the notification. For
example, for a JIRA ticket,
select the endpoint,
project, and issue type. Then,
enter the contact and summary
information.

Save the pipeline. Then,
enable and run it.

Change a task or stage to use data
that will make the pipeline fail
when it runs.

Save the pipeline, and run it again.

Confirm that the task or stage
failed, and created a ticket.
Pipelines > Executions

Correct the change, and
save the pipeline.

Run the pipeline again to
confirm that it succeeds.
Pipeline > Run

This example creates a Jira ticket when a pipeline task fails.

Prerequisites

m Verify that you have a valid Jira account and can log in to your Jira instance.

m Verify that a Jira endpoint exists, and is working.

Procedure

1 Inyour pipeline, click a task.

2 Inthe task configuration area, click Notifications.

VMware, Inc.

70

Using and Managing vRealize Automation Code Stream

3 Click Add, and configure the ticket information.

Click Ticket.

Select the Jira endpoint.

Enter the Jira project and type of issue.

Enter the email address for the person who receives the ticket.

Enter a summary and description of the ticket, then click Save.

Notification

Send notification type () Email @ Ticket () Webhook
When task * O Fails
Jira endpoint * TestJira v

Create Ticket

Jira project * YourProject

Issue type * Bug

Assignee * username@yourcompany.com
Summary $ * Cl task failed

Description$ Research and correct

CANCEL SAVE

4 Save the pipeline, then enable and run it.

5 Test the ticket.

a

Change the task information to include data that makes the task fail.
Save the pipeling, and run it again.

Click Executions, and confirm that the pipeline failed.

In the execution, confirm that Code Stream created the ticket and sent it.

Change the task information back to correct it, then run the pipeline again and ensure that
it succeeds.

VMware, Inc. 7

Using and Managing vRealize Automation Code Stream

Results

Congratulations! You had Code Stream create a Jira ticket when the pipeline task failed, and
assigned it to the person who was required to solve it.

What to do next

Continue to add notifications to alert your team about your pipelines.

How do | roll back my deployment in Code Stream

You configure rollback as a pipeline with tasks that return your deployment to a previous stable
state following a failure in a deployment pipeline. To roll back if a failure occurs, you attach the
rollback pipeline to tasks or stages.

Depending upon your role, your reasons for rollback might vary.

m As arelease engineer, | want Code Stream to verify success during a release so that | can
know whether to continue with the release or roll back. Possible failures include task failure, a
rejection in UserOps, exceeding the metrics threshold.

m As an environment owner, | want to redeploy a previous release so that | can quickly get an
environment back to a known-good state.

m As an environment owner, | want to support roll back of a Blue-Green deployment so that | can
minimize downtime from failed releases.

When you use a smart pipeline template to create a CD pipeline with the rollback option clicked,
rollback is automatically added to tasks in the pipeline. In this use case, you will use the smart
pipeline template to define rollback for an application deployment to a Kubernetes cluster using
the rolling upgrade deployment model. The smart pipeline template creates a deployment pipeline
and one or more rollback pipelines.

m In the deployment pipeline, rollback is required if Update Deployment or Verify Deployment
tasks fail.

m In the rollback pipeline, deployment is updated with an old image.

You can also manually create a rollback pipeline using a blank template. Before creating a
rollback pipeline, you will want to plan your rollback flow. For more background information about
rollback, see Planning for rollback in Code Stream.

Prerequisites

m Verify that you are a member of a project in Code Stream. If you are not, ask a Code Stream
administrator to add you as a member of a project. See How do | add a project in Code
Stream.

m Set up the Kubernetes clusters where your pipeline will deploy your application. Set up one
development cluster and one production cluster.

m Verify that you have a Docker registry setup.

VMware, Inc. 72

Using and Managing vRealize Automation Code Stream

m |dentify a project that will group all your work, including your pipeline, endpoints, and
dashboards.

m Familiarize yourself with the CD smart template as described in the CD portion of Planning a
CICD native build in Code Stream before using the smart pipeline template, for example:

Create the Kubernetes development and production endpoints that deploy your
application image to the Kubernetes clusters.

Prepare the Kubernetes YAML file that creates the Namespace, Service, and Deployment.
If you need to download an image from a privately-owned repository, the YAML file must
include a section with the Docker config Secret.

Procedure

1 Click Pipelines > New Pipeline > Smart Template > Continuous Delivery.

2 Enter the information in the smart pipeline template.

a

b

Select a project.
Enter a pipeline name such as RollingUpgrade-Example.

Select the environments for your application. To add rollback to your deployment, you
must select Prod.

Click Select, choose a Kubernetes YAML file, and click Process.

The smart pipeline template displays the available services and deployment environments.
Select the service that the pipeline will use for the deployment.

Select the cluster endpoints for the Dev environment and the Prod environment.

For the Image source, select Pipeline runtime input.

For the Deployment model, select Rolling Upgrade.

Click Rollback.

Provide the Health check URL.

VMware, Inc. 73

Using and Managing vRealize Automation Code Stream

Smart Template: Continuous Delivery

Endpaint prerequisites @ (Kubernetes) (" Docker Registry)

Project test! @

Fipeling names) RollbackUpgrade-Example

Development Production

ed files:cdTemplate.yaml

Environment @

Kubermetes YAML files

Select service

Deployment name Service Namespace Image
° codestream-demo codestream-demo bgreen symphony-tango-beta2 jfrog.io/codestream-demo
1services
Deployment
Environment Cluster Endpeint Namespace

Development Dev-VKE-Cluster bgreen-596788

Praduction Prod-VKE-Cluster . bareen

.
Image source

Deployment model
Rollback

Health check URL ~

() Docker trigger @y Pipeline runtime input

(O Canary @ Rolling upgrade () Blue-Green

/health-check json

Q
CREATE CANCEL

3 To create the pipeline named RollbackUpgrade-Example, click Create.

The pipeline named RollbackUpgrade-Example appears, and the rollback icon appears on
tasks that can roll back in the Development stage and the Production stage.

VMware, Inc.

74

Using and Managing vRealize Automation Code Stream

RollbackUpgrade-Example (siesa

@ Workspace @ input wg Model P Output
» & & Q,
Development o @
@
Create Namespace Create Sen
Kubemetes Kubemetes
— # Production [=

late " Update Deployment " Verify Deployment

Kubsmetes S POLL 5

EDIT CLOSE | Last saved 9 minutes ago

VALIDATE TASK [mi=]

Task :Create Secret Notifications Rollback =
Task name @ Create Secret
Type Kubemetes

Centinue on failure O

Execute task O aways () On condition

Kubernetes Task Properties

Kubernetes cluster Dev-WKe-Cluster

Timeout (in Mins) 5

Action (O Get @ Create O Del
Continue on conflict \)

Payload source * (O Source contrel @ Local definition

Local YAML definition @

1 Bpiversion: vi
data

37 dockercfz: eylzeWlWaGSueS18vwWSnbyliZXRRMiSqZnlvZySphyleeylic
2VybFtZ5161nRkhbmdvLk1dGEY] iwicGFzc3dvemQi0i JhRGSt omvOLW
1UQi1Tejcil CI1biFpbCIEInRhbmdvLWI1dGEYQHZ td2Fy 255 jb28iLCD
hdXRol joiZ EdGdVoyTHRZDVYWWVR INL1VUN IMRE psViGkxdF ZF SXRTSGEZ

Ims
4 kind: Secret
5, metadata
& name: jfrog-beta?
7 namespace: bgreen-549938
& type: kubernetes.io/dockercfg

Parameters

Output Parameters

value

4 Close the pipeline.

On the Pipelines page, the pipeline that you created appears, and a new pipeline for each

stage in your pipeline appears.

m RollingUpgrade-Example. Code Stream deactivates the pipeline that you created by

default, which ensures that you review it before you run it.

m RollingUpgrade-Example_Dev_Rollback. Failure of tasks in the development stage, such

as Create service, Create secret, Create deployment, and Verify deployment invoke this
rollback development pipeline. To ensure the rollback of development tasks, Code Stream
enables the rollback development pipeline by default.

m RollingUpgrade-Example_Prod_Rollback. Failure of tasks in the production stage, such
as Deploy phase 1, Verify phase 1, Deploy Rollout phase, Finish Rollout phase, and
Verify rollout phase invoke this rollback production pipeline. To ensure the rollback of
production tasks, Code Stream enables the rollback production pipeline by default.

VMware, Inc.

75

Using and Managing vRealize Automation Code Stream

Pipelines G

+ NEW PIPELINE ¥ IMPORT

RollbackUpgrade-Example

2 testl

.{l State Disabled
Updated By

LR
No Description

0 EXECUTIONS

OPEN ACTIONS

RollbackUpgrade-Example_Dev_Rollback

pf0 state Enabled
Updated By

[
No Description

0 EXECUTIONS

OPEN RUN ACTIONS ~

RollbackUpgrade-Example_Prod_Rollback

2 testl

ofQ state Enabled
Updated By

o
No Description

0 EXECUTIONS

OPEN RUN ACTIONS >

5 Enable and run the pipeline you created.

When you start the run, Code Stream prompts you for input parameters. You provide the
image and tag for the endpoint in the Docker repository that you are using.

6 On the Executions page, select Actions > View Execution and watch the pipeline execution.

The pipeline starts RUNNING and moves through the Development stage tasks. If the
pipeline fails to run a task during the Development stage, the pipeline named RollingUpgrade-
Example_Dev_Rollback triggers and rolls back the deployment, and the pipeline status

changes to ROLLING_BACK.

VMware, Inc.

76

Using and Managing vRealize Automation Code Stream

{ BACK
[wvRollbackUpgrade-Example #1 (Rounceack) 0w actions v

® Development

@ Create Mamespace | @ Create Secret ‘ @ Create Service ‘ @ Create Deployment ®
Project testl
Execution RollbackUpgrade-Example #1
Status (" ROLLING_BACK) RUNNING
Updated by

Executed by Claro s

Duration 12m 95 186ms (01/11/2019 1:24 PM -)

Input Parameters

image demo-image-cs
tag latest
Workspace

Details not available

Output Parameters v
The Execution did not output any properties

\erify Depl

After rollback, the Executions page lists two RollingUpgrade-Example pipeline executions.

m The pipeline you created rolled back and displays ROLLBACK_COMPLETED.

m The rollback development pipeline that triggered and performed the rollback displays

COMPLETED.

Executions (eosem:)

a
. Stages: mmom
RollbackUpgrade-Example_Dev..#1
By ww.C ON 01/11/2019 1:36 PM
1% Rollback for RollbackUpgrade-Example#] Execution Completed.

Comments:Triggered to rollback Development.Create Deployment of RollbackUpgrade-Example#1

ROLLBACK_COMPLETED Stages: emQmm
RollbackUpgrade-Examples]
BY wiws ON 0112019 1:24 PM
0 Create Deployment ROLLBACK_COMPLETED
VMware, Inc.

77

Using and Managing vRealize Automation Code Stream

Results

Congratulations! You successfully defined a pipeline with rollback and watched Code Stream roll
back the pipeline at the point of failure.

VMware, Inc.

78

Planning to natively build,
integrate, and deliver your code in
Code Stream

Before you have Code Stream build, integrate, and deliver your code by using the native capability
that creates a CICD, ClI, or CD pipeline for you, plan your native build. Then, you can create your
pipeline by using one of the smart pipeline templates, or by manually adding stages and tasks.

To plan for your continuous integration and continuous delivery build, we included several
examples that show you how. These plans describe the prerequisites and overviews that can help
you prepare and use the native build capability effectively when you build your pipelines.

This chapter includes the following topics:
m Configuring the Pipeline Workspace
m Planning a CICD native build in Code Stream before using the smart pipeline template

m Planning a continuous integration native build in Code Stream before using the smart pipeline
template

m Planning a continuous delivery native build in Code Stream before using the smart pipeline
template

m Planning a CICD native build in Code Stream before manually adding tasks

m Planning for rollback in Code Stream

Configuring the Pipeline Workspace

To run continuous integration tasks and custom tasks, you must configure a workspace for your
Code Stream pipeline.

In the pipeline workspace, select the Type as Docker or Kubernetes, and provide the respective
endpoint. The Docker and Kubernetes platforms manage the entire life cycle of the container that
Code Stream deploys for running the continuous integration (Cl) task or custom task.

m The Docker workspace requires the Docker host endpoint, builder image URL, image registry,
working directory, cache, environment variables, CPU limit, and memory limit. You can also
create a clone of the Git repository.

VMware, Inc. 79

Using and Managing vRealize Automation Code Stream

m The Kubernetes workspace requires the Kubernetes API endpoint, builder image URL,
image registry, namespace, NodePort, Persistent Volume Claim (PVC), working directory,
environment variables, CPU limit, and memory limit. You can also create a clone of the Git

repository.

The pipeline workspace configuration has many common parameters, and other parameters that
are specific to the type of workspace, as the following table describes.

Table 4-1. Workspace areas, details, and availability

Selection
Type

Host Endpoint

Builder image URL

Image registry

Working directory

Namespace

Proxy

VMware, Inc.

Description

Type of workspace.

Host endpoint where the continuous integration (Cl)
and custom tasks run.

Name and location of the builder image. A container
gets created by using this image on the Docker

host and the Kubernetes cluster. The continuous
integration (CI) tasks and custom tasks run inside this
container.

If the builder image is available in a registry, and if
the registry requires credentials, you must create an
Image Registry endpoint, then select it here so that
the image can be pulled from the registry.

The working directory is the location inside the
container where the steps of the continuous
integration (CI) task run, and is the location where
the code gets cloned when a Git webhook triggers a
pipeline run.

If you do not enter a Namespace, Code Stream
creates a unique name in the Kubernetes cluster that
you provided.

To communicate with the workspace pod in the
Kubernetes cluster, Code Stream deploys a single
proxy instance in the namespace codestream-proxy
for each Kubernetes cluster. You can select either
the NodePort or LoadBalancer type, based on the
cluster configuration.

Which option you select depends on the nature of
the deployed Kubernetes cluster.

m Typically, if the Kubernetes API server URL that

gets specified in the endpoint is exposed through

one of the primary nodes, select NodePort.

m |f the Kubernetes API server URL is exposed by a
Load Balancer, such as with Amazon EKS (Elastic
Kubernetes Service), select LoadBalancer.

Details and availability

Available with Docker or Kubernetes.

Available with the Docker workspace
when you select the Docker host
endpoint.

Available with the Kubernetes
workspace when you select the
Kubernetes APl endpoint.

Example: fedora:latest

The builder image must have curl or

wget.

Available with the Docker and
Kubernetes workspaces.

Available with Docker or Kubernetes.

Specific to the Kubernetes workspace.

80

Using and Managing vRealize Automation Code Stream

Table 4-1. Workspace areas, details, and availability (continued)

Selection

NodePort

Persistent Volume
Claim

Environment variables

CPU limits

Memory limits

VMware, Inc.

Description

Code Stream uses NodePort to communicate with
the container running inside the Kubernetes cluster.

If you do not select a port, Code Stream uses an
ephemeral port that Kubernetes assigns. You must
ensure that the configuration of firewall rules allows
ingress to the ephemeral port range (30000-32767).
If you enter a port, you must ensure that another
service in the cluster is not already using it, and that
the firewall rules allow the port.

Provides a way for the Kubernetes workspace to
persist files across pipeline runs. When you provide a
persistent volume claim name, it can store the logs,
artifacts, and cache.

For more information about creating a

persistent volume claim, see the Kubernetes
documentation at https://kubernetes.io/docs/

concepts/storage/persistent-volumes/.

Key-value pairs that get passed here will be available
to all continuous integration (Cl) tasks and custom
tasks in a pipeline when it runs.

Limits for CPU resources for the continuous
integration (Cl) container or custom task container.

Limits for memory for the continuous integration (Cl)
container or custom task container.

Details and availability

Specific to the Kubernetes workspace.

Specific to the Kubernetes workspace.

Available with Docker or Kubernetes.

References to variables can be passed
here.

Environment variables provided in
the workspace get passed to all
continuous integration (CI) tasks and
custom tasks in the pipeline.

If environment variables do not get
passed here, those variables must be
explicitly passed to each continuous
integration (Cl) task and custom task
in the pipeline.

The defaultis 1.

The unit is MB.

81

Using and Managing vRealize Automation Code Stream

Table 4-1. Workspace areas, details, and availability (continued)

Selection

Git clone

Cache

Description

When you select Git clone, and a Git webhook
invokes the pipeline, the code gets cloned into the
workspace (container).

The Code Stream workspace allows you to cache a
set of directories or files to speed up subsequent
pipeline runs. Examples of these directories

include .m2 and npm modules. If you do not require
caching of data between pipeline runs, a persistent
volume claim is not necessary.

Artifacts such as files or directories in the container
get cached for re-use across pipeline runs. For
example, node modules or .m2 folders can be
cached. Cache accepts a list of paths.

For example:

workspace:

type: K8S
endpoint: K8S-Micro
image: fedora:latest
registry: Docker Registry
path: "'
cache:

- /path/to/m2

- /path/to/node_modules

Details and availability

If you do not enable Git clone,

you must configure another, explicit
continuous integration (CI) task in the
pipeline to clone the code first, then
perform other steps such as build and
test.

Specific to type of workspace.

In the Docker workspace, you achieve
the Cache by using a shared path

in the Docker host for persisting the
cached data, artifacts, and logs.

In the Kubernetes workspace, to
enable the use of Cache, you must
provide a persistent volume claim.
Otherwise, Cache is unavailable.

When using a Kubernetes API endpoint in the pipeline workspace, Code Stream creates the
necessary Kubernetes resources such as ConfigMap, Secret, and Pod to run the continuous
integration (ClI) task or custom task. Code Stream communicates with the container by using the

NodePort.

To share data across pipeline runs, you must provide a persistent volume claim, and Code Stream
will mount the persistent volume claim to the container to store the data, and use it for subsequent

pipeline runs.

Planning a CICD native build in Code Stream before using
the smart pipeline template

To create a continuous integration and continuous delivery (CICD) pipeline in Code Stream,
you can use the CICD smart pipeline template. To plan your CICD native build, you gather the
information for the smart pipeline template before you create the pipeline in this example plan.

To create a CICD pipeline, you must plan for both the continuous integration (Cl) and continuous
delivery (CD) stages of your pipeline.

VMware, Inc.

82

Using and Managing vRealize Automation Code Stream

After you enter the information in the smart pipeline template and save it, the template creates a
pipeline that includes stages and tasks. It also indicates the deployment destination of your image
based on the types of environment you select, such as Dev and Prod. The pipeline will publish
your container image, and perform the actions required that run it. After your pipeline runs, you
can monitor trends across the pipeline executions.

When a pipeline includes an image from Docker Hub, you must ensure that the image has cURL or
wget embedded before you run the pipeline. When the pipeline runs, Code Stream downloads a
binary file that uses cURL or wget to run commands.

For information about configuring the workspace, see Configuring the Pipeline Workspace.

Planning the Continuous Integration (Cl) stage

To plan the Cl stage of your pipeline, you set up the external and internal requirements, and
determine the information needed for the Cl portion of the smart pipeline template. Here is a
summary.

This example uses a Docker workspace.
Endpoints and repositories that you'll need:

m A Git source code repository where developers check in their code. Code Stream pulls the
latest code into the pipeline when developers commit changes.

m A Git endpoint for the repository where the developer source code resides.

m A Docker endpoint for the Docker build host that will run the build commands inside a
container.

m A Kubernetes endpoint so that Code Stream can deploy your image to a Kubernetes cluster.
m A Builder image that creates the container on which the continuous integration tests run.
m An Image Registry endpoint so that the Docker build host can pull the builder image from it.

You'll need access to a project. The project groups all your work, including your pipeline,
endpoints, and dashboards. Verify that you are a member of a project in Code Stream. If you

are not, ask a Code Stream administrator to add you as a member of a project. See How do | add a
project in Code Stream.

You'll need a Git webhook that enables Code Stream to use the Git trigger to trigger your pipeline
when developers commit code changes. See How do | use the Git trigger in Code Stream to run a
pipeline.

Your build toolsets:
m Your build type, such as Maven.

m All the post-process build tools that you use, such as JUnit, JaCoCo, Checkstyle, and
FindBugs.

Your publishing tool:

m A tool such as Docker that will deploy your build container.

VMware, Inc. 83

Using and Managing vRealize Automation Code Stream

= Animage tag, which is either the commit ID or the build number.
Your build workspace:
m A Docker build host, which is the Docker endpoint.

m AnImage Registry. The CI part of the pipeline pulls the image from the selected registry
endpoint. The container runs the Cl tasks, and deploys your image. If the registry needs
credentials, you must create an Image Registry endpoint, then select it here so that the host
can pull the image from the registry.

m URL for the builder image that creates the container on which the continuous integration tasks
run.

Planning the Continuous Delivery (CD) stage

To plan the CD stage of your pipeline, you set up the external and internal requirements, and
determine the information to enter in the CD portion of the smart pipeline template.

Endpoints that you'll need:
m A Kubernetes endpoint so that Code Stream can deploy your image to a Kubernetes cluster.
Environment types and files:

m All the environment types where Code Stream will deploy your application, such as Dev and
Prod. The smart pipeline template creates the stages and tasks in your pipeline based on the
environment types you select.

Table 4-2. Pipeline stages that the CICD smart pipeline template creates

Pipeline content What it does

Build-Publish stage Builds and tests your code, creates the builder image, and publishes the image to your
Docker host.

Development stage Uses a development Amazon Web Services (AWS) cluster to create and deploy your
image. In this stage, you can create a namespace on the cluster, and create a secret
key.

Production stage Uses a production version of the VMware Tanzu Kubernetes Grid Integrated Edition

(formerly known as VMware Enterprise PKS) to deploy your image to a production
Kubernetes cluster.

m A Kubernetes YAML file that you select in the CD section of the CICD smart pipeline template.

The Kubernetes YAML file includes three required sections for Namespace, Service, and
Deployment and one optional section for Secret. If you plan to create a pipeline by
downloading an image from a privately-owned repository, you must include a section with
the Docker config Secret. If the pipeline you create only uses publicly available images, no
secret is required. The following sample YAML file includes four sections.

apiVersion: vl

kind: Namespace
metadata:

VMware, Inc. 84

Using and Managing vRealize Automation Code Stream

name: codestream
namespace: codestream
apiVersion: vl
data:

.dockerconfigjson:

eyJhdXRocyI6eyJodHRwczovL21uz12345678901ci5pby92MS8i0OnsidXN1cm5hbWUi0i JThdXRVOWEO0aWouYmvVOYST
sInBhc3N3b3JkIjoiVk1l3YXJIQODEYyMyIsImVEtYW1lsIjoiYXV0b21hdGlvbmIldGF1c2VyQGdtYWlsLmNvbSIsImF1dG

giOiJZWFYwYjIxaGRHbHZibUpsZEdFN1ZrMTNZWEpsUURFeUl13PT0i£X19

kind: Secret
metadata:
name: dockerhub-secret
namespace: codestream
type: kubernetes.io/dockerconfigjson
apiVersion: vl
kind: Service
metadata:
name: codestream-demo
namespace: codestream
labels:
app: codestream-demo
spec:
ports:
- port: 80
selector:
app: codestream-demo
tier: frontend
type: LoadBalancer
apiVersion: apps/vl
kind: Deployment
metadata:
name: codestream-demo
namespace: codestream
labels:
app: codestream-demo
spec:
replicas: 10
selector:
matchLabels:
app: codestream-demo
tier: frontend
template:
metadata:
labels:
app: codestream-demo
tier: frontend
spec:
containers:

- name: codestream-demo

image: automationbeta/codestream-demo:

ports:

VMware, Inc.

01

85

Using and Managing vRealize Automation Code Stream

- containerPort: 80
name: codestream-demo
imagePullSecrets:

- name: dockerhub-secret

Note The Kubernetes YAML file is also used in the CD smart pipeline template, such as in the
following use case examples:

m How do | deploy my application in Code Stream to my Blue-Green deployment

m How do | roll back my deployment in Code Stream

m How do | use the Docker trigger in Code Stream to run a continuous delivery pipeline

To apply the file in the Smart Template, click Select and select the Kubernetes YAML file. Then
click Process. The smart pipeline template displays the available services and deployment
environments. You select a service, the cluster endpoint, and the deployment strategy. For

example, to use the Canary deployment model, select Canary and enter a percentage for the
deployment phase.

VMware, Inc. 86

Using and Managing vRealize Automation Code Stream

Step 2 of 2

Environment @

Kubernetes YAML files

Select service

Deployment name

© codestream-demo

Deployment

Environment

Development

Production

Image source

Deployment model

Rollback

Health check URL

Smart Template: CI/CD

Development Production

Processed files:codestream.yami

Service

codestream-demo

Cluster Endpoint

Dev-AWS-Cluster

Namespace

codestream

Image

https:ffcodestream/Myapp

1services

Namespace

codesiream-454709

Prod-AWS-Cluster

codestream

(O) Docker trigger @ Pipeline runtime input

@ Canary () Roling upgrade () Blue-Green

Phase1l 20 %

/health-check json

CREATE BACK CANCEL

To see an example of using the smart pipeline template to create a pipeline for a Blue-Green

deployment, see How do | deploy my application in Code Stream to my Blue-Green deployment.

How you'll create the CICD pipeline by using the smart pipeline

template

After you gather all the information and set up what you need, here's how you'll create a pipeline

from the CICD smart pipeline template.

In Pipelines, you'll select New Pipeline > Smart Templates.

VMware, Inc.

87

Using and Managing vRealize Automation Code Stream

Pipelines (C=fm:)

| MNEW PIPELIME *~ | | IMPORT

Blank Canvas

Smart Template o

-@atu*:: Cizabled

0w

ofp

ey

You'll select the CICD smart pipeline

template.

New from Smart Templates

clfco

®7l

Create a CI/CD Pipeline

U

Continuous Integration

@ Create a Continuous Integratic...

Continuous Delivery

e

Create a Continuous Delivery P..

You will fill out the template, and save the pipeline with the stages that it creates. If you need to

make any final changes, you can edit the pipeline and save it.

VMware, Inc.

88

Using and Managing vRealize Automation Code Stream

by

Build-Publish

&
Unit-Test

— Development

" Create Namespace

KB5S

— Production

&
Get Service Details

K&3

CICD-SmartTemplate

o

@
Build-App

<l

" Create Secret

KBS

&
Prepare Phase 1

KBS

&
Build-Image

C

" Create Service

K35

%
Deploy Phase 1

K35

[=

Crei

KBS

Then, you will enable the pipeline and run it. After it runs, here are some things that you can look

for:

m Verify that your pipeline succeeded. Click Executions, and search for your pipeline. If it failed,

correct any errors and run it again.

m Verify that the Git webhook is operating correctly. The Git Activity tab displays the events.

Click Triggers > Git > Activity.

m Look at the pipeline dashboard and examine the trends. Click Dashboards, and search for
your pipeline dashboard. You can also create a custom dashboard to report on additional

KPlIs.

For a detailed example, see How do | continuously integrate code from my GitHub or GitLab
repository into my pipeline in Code Stream.

VMware, Inc.

Using and Managing vRealize Automation Code Stream

Planning a continuous integration native build in Code
Stream before using the smart pipeline template

To create a continuous integration (Cl) pipeline in VMware Code Stream, you can use the
continuous integration smart pipeline template. To plan your continuous integration native build,
you gather the information for the smart pipeline template before you create the pipeline in this
example plan.

When you fill out the smart pipeline template, it creates a continuous integration pipeline in your
repository, and performs the actions so that the pipeline can run. After your pipeline runs, you can
monitor trends across the pipeline executions.

To plan your build before you use the continuous integration smart pipeline template:

m |dentify a project that will group all your work, including your pipeline, endpoints, and
dashboards.

m Gather the information for your build as described in the continuous delivery portion of
Planning a CICD native build in Code Stream before using the smart pipeline template.

For example, add a Kubernetes endpoint where Code Stream will deploy the container.
Then, you create a pipeline by using the continuous integration smart pipeline template.

In Pipelines, you select Smart Templates.

Pipelines (zfem)

| MEW PIPELIME * | | IMPORT
Blank Canvas
Smart Template © D‘[D
-@!EL?Z DCizabled D
0 % L ™

You select the continuous integration smart pipeline template.

New from Smart Templates

CI/CD Continuous Integration Continuous Delivery

/] Create a CI/CD Pipeline @ Create a Continuous Integratio.. E\ Create a Continuous Delivery P..

VMware, Inc. 90

Using and Managing vRealize Automation Code Stream

To save the pipeline with the stages that it creates, you fill out the template, and enter a name for
the pipeline. To save the pipeline with the stages that it creates, click Create.

The Code Stream pipeline workspace supports Docker and Kubernetes for continuous integration
tasks and custom tasks.

For information about configuring the workspace, see Configuring the Pipeline Workspace.

To make any final changes, you can edit the pipeline. Then, you can enable the pipeline and run it.
After the pipeline runs:

m Verify that your pipeline succeeded. Click Executions, and search for your pipeline. If it failed,
correct any errors and run it again.

m Verify that the Git webhook is operating correctly. The Git Activity tab displays the events.
Click Triggers > Git > Activity.

m Look at the pipeline dashboard and examine the trends. Click Dashboards, and search for
your pipeline dashboard. To report on more key performance indicators, you can create a
custom dashboard.

For a detailed example, see How do | continuously integrate code from my GitHub or GitLab
repository into my pipeline in Code Stream.

Planning a continuous delivery native build in Code Stream
before using the smart pipeline template

To create a continuous delivery (CD) pipeline in Code Stream, you can use the continuous delivery
smart pipeline template. To plan your continuous delivery native build, you gather the information
for the smart pipeline template before you create the pipeline in this example plan.

When you fill out the smart pipeline template, it creates a continuous delivery pipeline in your
repository, and performs the actions so that the pipeline can run. After your pipeline runs, you can
monitor trends across the pipeline executions.

To plan your build before you use the continuous delivery smart pipeline template:

m |dentify a project that will group all your work, including your pipeline, endpoints, and
dashboards.

m Gather the information for your build as described in the continuous delivery portion of
Planning a CICD native build in Code Stream before using the smart pipeline template. For
example:

m Add a Kubernetes endpoint where Code Stream will deploy the container.

m Prepare the Kubernetes YAML file that creates the Namespace, Service, and Deployment.
To download an image from a privately-owned repository, the YAML file must include a
section with the Docker config Secret.

Then, you create a pipeline by using the continuous delivery smart pipeline template.

In Pipelines, you select Smart Templates.

VMware, Inc. *l

Using and Managing vRealize Automation Code Stream

Pipelines Cefem)

| MNEW PIPELIME *~ | | IMPORT

Blank Canvas

Smart Template © D‘[D
-®\§L.EZ Cizabled D

0w ey

You select the continuous delivery smart pipeline template.

New from Smart Templates

CI/CD Continuous Integration Continuous Delivery

@7' Create a CI/CD Pipeline @ Create a Centinuous Integratic.. r\ Create a Continuous Delivery P

You fill out the template, and enter a name for the pipeline. To save the pipeline with the stages
that it creates, click Create.

The Code Stream pipeline workspace supports Docker and Kubernetes for continuous integration
tasks and custom tasks.

For information about configuring the workspace, see Configuring the Pipeline Workspace.

To make any final changes, you can edit the pipeline. Then, you can enable the pipeline and run it.
After the pipeline runs:

m Verify that your pipeline succeeded. Click Executions, and search for your pipeline. If it failed,
correct any errors and run it again.

m Verify that the Git webhook is operating correctly. The Git Activity tab displays the events.
Click Triggers > Git > Activity.

m Look at the pipeline dashboard and examine the trends. Click Dashboards, and search for
your pipeline dashboard. To report on more key performance indicators, you can create a
custom dashboard.

For a detailed example, see How do | continuously integrate code from my GitHub or GitLab
repository into my pipeline in Code Stream.

VMware, Inc. 92

Using and Managing vRealize Automation Code Stream

Planning a CICD native build in Code Stream before
manually adding tasks

To create a continuous integration and continuous delivery (CICD) pipeline in Code Stream, you
can manually add stages and tasks. To plan your CICD native build, you'll gather the information
you need, then create a pipeline and manually add stages and tasks to it.

You must plan for both the continuous integration (Cl) and continuous delivery (CD) stages of your
pipeline. After you create your pipeline and run it, you can monitor trends across the pipeline
executions.

When a pipeline includes an image from Docker Hub, you must ensure that the image has cURL or
wget embedded before you run the pipeline. When the pipeline runs, Code Stream downloads a
binary file that uses cURL or wget to run commands.

The Code Stream pipeline workspace supports Docker and Kubernetes for continuous integration
tasks and custom tasks.

For information about configuring the workspace, see Configuring the Pipeline Workspace.

Planning the external and internal requirements

To plan the Cl and CD stages of your pipeline, the following requirements indicate what you must
do before you create your pipeline.

This example uses a Docker workspace.

To create a pipeline from this example plan, you will use a Docker host, a Git repository, Maven,
and several post-process build tools.

Endpoints and repositories that you'll need:

m A Git source code repository where developers check in their code. Code Stream pulls the
latest code into the pipeline when developers commit changes.

m A Docker endpoint for the Docker build host that will run the build commands inside a
container.

m A Builder image that creates the container on which the continuous integration tests run.
m An Image Registry endpoint so that the Docker build host can pull the builder image from it.

You'll need access to a project. The project groups all your work, including your pipeline,
endpoints, and dashboards. Verify that you are a member of a project in Code Stream. If you

are not, ask a Code Stream administrator to add you as a member of a project. See How do | add a
project in Code Stream.

You'll need a Git webhook that enables Code Stream to use the Git trigger to trigger your pipeline
when developers commit code changes. See How do | use the Git trigger in Code Stream to run a
pipeline.

VMware, Inc. 93

Using and Managing vRealize Automation Code Stream

How you'll create the CICD pipeline and configure the workspace

You'll need to create the pipeline, then configure the workspace, pipeline input parameters, and

tasks.

To create the pipeline, you'll click Pipelines > New Pipeline > Blank Canvas.

Pipelines (i)

| MEW PIPELIME *~ | IMPCRT

Blank Canvas

5“13@51’:1'3 e B O
t D{D

— c

Gtatus: Disabled

0% 2%

On the Workspace tab, enter the continuous integration information:
m Include your Docker build host.

m Enter the URL for your builder image.

m Select the image registry endpoint so that the pipeline can pull the image from it. The
container runs the Cl tasks and deploys your image. If the registry needs credentials, you
must first create the Image Registry endpoint, then select it here so that the host can pull the

image from the registry.

m Add the artifacts that must be cached. For a build to succeed, artifacts such as directories
are downloaded as dependencies. The cache is the location where these artifacts reside. For
example, dependent artifacts can include the .m2 directory for Maven, and the node modules
directory for Node.js. These directories are cached across pipeline executions to save time
during builds.

VMware, Inc.

94

Using and Managing vRealize Automation Code Stream

£l Input @ Workspace =g Mode| Ik Output

Provide details about the centainer and host for running continuous integration tasks.

Type *
© Docker Kubernetes

Host endpoint *
codestream-ci-test

Builder image URLz *
automationbeta/cs-builderlatest

Name and location of the builder image. The Cl tasks run on the container that the image creates

Image registry

Docker Registry

Working directery s

Cache 3

On the Input tab, configure the pipeline input parameters.

If your pipeline will use input parameters from a Git, Gerrit, or Docker trigger event, select the
trigger type for Auto inject parameters. Events can include Change Subject for Gerrit or Git, or
Event Owner Name for Docker. If your pipeline will not use any input parameters passed from

the event, leave Auto inject parameters set to None.

To apply a value and description to a pipeline input parameter, click the three vertical dots,
and click Edit. The value you enter is used as input to tasks, stages, or notifications.

To add a pipeline input parameter, click Add. For example, you might add approvers to
display a default value for every execution, but which you can override with a different

approver at runtime.

To add or remove an injected parameter, click Add/Remove Injected Parameter. For

example, remove an unused parameter to reduce clutter on the results page and only display

the input parameters that are used.

Input] @ Workspace =3 Model Bk Cutput

Input Parameters
T

Auto inject parameters

Gerrit Git Docker) None

ADD
Starred Name Value
g GIT_BRANCH_NAME
77 GIT_CHANGE_SUBJECT
% GIT_COMMIT_ID
7% GIT_EVENT_DESCRIPTION
it GIT_EVENT_OWNER_NAME
75 GIT_EVENT_TIMESTAMP
b GIT_REPO_NAME
5 GIT_SERVER_URL

Description

VMware, Inc.

95

Using and Managing vRealize Automation Code Stream

Configure the pipeline to test your code:
= Add and configure a Cl task.
m Include steps to run mvn test On your code.

m To identify any problems after the task runs, run post-process build tools, such as JUnit and
JaCoCo, FindBugs, and Checkstyle.

Task name Unit-Test
Type

Precondition

Continue on failure
Continuous Integration

Steps 4

Preserve artifacts]

Export

Junit

JaCoCo

FindBugs

Checkstyle

Configure the pipeline to build your code:
m Add and configure a Cl task.
m Include steps that run mvn clean install Oon your code.

m Include the location and the JAR filename so that it preserves your artifact.

VMware, Inc.

Using and Managing vRealize Automation Code Stream

Task name

Type

Precondition

Continue on failure
Continuous Integration

Stepss

Preserve artifacts o
Export
JUnit Junit
p—— e

JaCaCo

L]
FindBugs

L]
Checkstyle

L]

Configure the pipeline to publish your image to your Docker host:
m Add and configure a Cl task.
m Add steps that will commit, export, build, and push your image.

m Add the export key of IMAGE for the next task to consume.

VMware, Inc.

Using and Managing vRealize Automation Code Stream

Task name Build-image

Type

Precondition

Continue on failure
Continuous Integration

Steps

Preserve artifacts [+]

Export

Junit

JaCoCo

FindBugs

Checkstyle

After you configure the workspace, input parameters, test tasks, and build tasks, save your
pipeline.

How to enable and run your pipeline

After you configure your pipeline with stages and tasks, you can save and enable the pipeline.

Then, wait for the pipeline to run and finish, then verify that it succeeded. If it failed, correct any
errors and run it again.

After the pipeline succeeds, here are some things you might want to confirm:
m Examine the pipeline execution and view the results of the task steps.

m In the workspace of the pipeline execution, locate the details about your container and the
cloned Git repository.

m In the workspace, look at the results of your post-process tools and check for errors, code
coverage, bugs, and style issues.

m Confirm that your artifact is preserved. Also confirm that the image was exported with the
IMAGE name and value.

m Go to your Docker repository and verify that the pipeline published your container.

For a detailed example that shows how Code Stream continuously integrates your code, see How
do | continuously integrate code from my GitHub or GitLab repository into my pipeline in Code
Stream.

VMware, Inc. 98

Using and Managing vRealize Automation Code Stream

Planning for rollback in Code Stream

If a pipeline execution fails, you can use rollback to return your environment to a previously stable
state. To use rollback, plan a rollback flow and understand how to implement it.

A rollback flow prescribes the steps required to reverse a failure in deployment. The flow takes the
form of a rollback pipeline that includes one or more sequential tasks which vary depending on
the type of deployment that executed and failed. For example, the deployment and rollback of a
traditional application is different from the deployment and rollback of a container application.

To return to a good deployment state, a rollback pipeline typically includes tasks to:
m Clean up states or environments.

m Run a user-specified script to revert changes.

m Deploy a previous revision of a deployment.

To add rollback to an existing deployment pipeline, you attach the rollback pipeline to the tasks
or stages in the deployment pipeline that you want to roll back before you run your deployment
pipeline.

How do | configure rollback

To configure rollback in your deployment, you need to:
m Create a deployment pipeline.

m |dentify potential failure points in the deployment pipeline that will trigger rollback so that you
can attach your rollback pipeline. For example, you might attach your rollback pipeline to a
condition or poll task type in the deployment pipeline that checks whether a previous task
completed successfully. For information on condition tasks, see How do | use variable bindings
in a condition task to run or stop a pipeline in Code Stream.

m Determine the scope of failure that will trigger the rollback pipeline such as a task or stage
failure. You can also attach rollback to a stage.

m Decide what rollback task or tasks to execute in the event of a failure. You'll create your
rollback pipeline with those tasks.

You can manually create a rollback pipeline, or Code Stream can create one for you.

m Using a blank canvas, you can manually create a rollback pipeline that follows a flow in parallel
to an existing deployment pipeline. Then you attach the rollback pipeline to one or more tasks
in the deployment pipeline that trigger rollback on failure.

m Using a smart pipeline template, you can configure a deployment pipeline with the rollback
action. Then, Code Stream automatically creates one or more default rollback pipelines with
predefined tasks that roll back the deployment on failure.

For a detailed example on how to configure a CD pipeline with rollback by using a smart pipeline
template, see How do | roll back my deployment in Code Stream.

VMware, Inc. 99

Using and Managing vRealize Automation Code Stream

What happens if my deployment pipeline has multiple tasks or stages
with rollback

If you have multiple tasks or tasks and stages with rollback added, be aware that the rollback

sequence varies.
Table 4-3. Determining rollback sequence

If you add rollback to... When does roll back occur...

Parallel tasks If one of the parallel tasks fails, roll back for that task
occurs after all the parallel tasks have completed or failed.
Rollback does not occur immediately after the task fails.

Both the task within a stage, and the stage If a task fails, the task rollback runs. If the task is in a group
of parallel tasks, the task rollback runs after all the parallel
tasks have completed or failed. After the task rollback
completes or fails to complete, the stage rollback runs.

Consider a pipeline that has:
m A production stage with rollback.

m A group of parallel tasks, each task with its own rollback.

The task named UPD Deploy US has the rollback pipeline RB_Deploy_US. If UPD Deploy US
fails, the rollback follows the flow defined in the RB_Deploy_US pipeline.

VMware, Inc. 100

Using and Managing vRealize Automation Code Stream

RollbackUpgrade-Example (emssea)

@ Workspace il Input =z Model Ik Cutput
» 9 C =4 Q, Task :UPD Deploy US ~ Notifications Rollback® - OB
— # Production © @ @ & Pipeline® RB_Deploy_US ®

Kubernstes <3

T UPD Deploy US

g Update UPD Deplay UK

Kubernetes <

UPD Deploy AU

Kubernetes <

SAVE l RUN l [CLOSE l Last saved 12 days ago

If UPD Deploy US fails, the RB_Deploy_US pipeline runs after UPD Deploy UK and UPD Deploy
AU have also completed or failed. Rollback does not occur immediately after UPD Deploy US fails.
And because the production stage also has rollback, after the RB_Deploy_US pipeline runs, the

stage rollback pipeline runs.

VMware, Inc. 101

Tutorials for using Code Stream

Code Stream models and supports your DevOps release lifecycle, and continuously tests and
releases your applications to development environments and production environments.

You already set up everything you need so that you can use Code Stream. See Chapter 2 Setting
up Code Stream to model my release process.

Now, you can create pipelines that automate the build and test of developer code before
you release it to production. You can have Code Stream deploy container-based or traditional

applications.

Table 5-1. Using Code Stream in your DevOps lifecycle

Features

Use the native
build capability in
Code Stream.

Release your
applications and

automate releases.

Track trends,
metrics, and
key performance
indicators (KPIs).

Resolve problems.

Examples of what you can do

Create Continuous Integration and Delivery (CICD), Continuous Integration (Cl), and Continuous

Delivery (CD) pipelines that continuously integrate, containerize, and deliver your code.

Use a smart pipeline template that creates a pipeline for you.

Manually add stages and tasks to a pipeline.

Integrate and release your applications in various ways.

Continuously integrate your code from a GitHub or a GitLab repository into your pipeline.

Integrate a Docker Host to run Continuous Integration tasks as documented in this blog article
Creating a Docker host for vRealize Automation Code Stream.

Automate the deployment of your application by using a YAML cloud template.
Automate the deployment of your application to a Kubernetes cluster.

Release your application to a Blue-Green deployment.

Integrate Code Stream with your own build, test, and deploy tools.

Use a REST API that integrates Code Stream with other applications.

Create custom dashboards and gain insight about the performance of your pipelines.

When a pipeline run fails, have Code Stream create a Jira ticket.

This chapter includes the following topics:

m How do | continuously integrate code from my GitHub or GitLab repository into my pipeline in

Code Stream

VMware, Inc.

102

https://blogs.vmware.com/management/2020/08/creating-a-docker-host-for-vra-code-stream.html

Using and Managing vRealize Automation Code Stream

m How do | automate the release of an application that | deploy from a YAML cloud template in
Code Stream

m How do | automate the release of an application in Code Stream to a Kubernetes cluster
m How do | deploy my application in Code Stream to my Blue-Green deployment

m How do | integrate my own build, test, and deploy tools with Code Stream

m How do | use the resource properties of a cloud template task in my next task

m How do | use a REST API to integrate Code Stream with other applications

m How do | leverage pipeline as code in Code Stream

How do | continuously integrate code from my GitHub or
GitLab repository into my pipeline in Code Stream

As a developer, you want to continuously integrate your code from a GitHub repository or a
GitLab Enterprise repository. Whenever your developers update their code and commit changes
to the repository, Code Stream can listen for those changes, and trigger the pipeline.

viE

1. Developers 2. Code Stream 3. Builds 4. Runs all 5. Deploys

check in code triggers container stages and application

continuously. Cl pipeline. image and approvals in to Kubernetes
tests code. the ClI pipeline. cluster.

GitHub >> Docker Hub = o Kubernetes

Code Stream

To have Code Stream trigger your pipeline on code changes, you use the Git trigger. Code Stream
then triggers your pipeline every time you commit changes to your code.

The Code Stream pipeline workspace supports Docker and Kubernetes for continuous integration
tasks and custom tasks.

For more information about configuring the workspace, see Configuring the Pipeline Workspace.

The following flowchart shows the workflow that you can take if you use a smart pipeline template
to create your pipeline, or build the pipeline manually.

VMware, Inc. 103

Using and Managing vRealize Automation Code Stream

Figure 5-1. Workflow that uses a smart pipeline template or creates a pipeline manually

Prepare to create a pipeline
that natively builds, tests, and
continuously integrates
your code.

Verify that all prerequisites
are met. See the user
documentation.

Use the
smart
template to
create your Cl pipeline?
Pipelines > New Pipeline >
Smart Template >
Cl template

Answer native Cl build and
test questions: source code
repo, build toolsets, publish
tool, and build image
workspace. The Cl smart
template captures
common build configuration
on the Workspace tab.

Set up notifications for Slack or
Email to notify users about
code quality or other alerts.

Save your pipeline.

Make any further changes to
the pipeline to be specific to
your needs.

Then, enable and run it.

Use the canvas to Configure the Cl task with
create your Cl pipeline. the native CI build information

Pipelines > from your planning.
New Pipeline > Blank Canvas

Add steps to integrate your
code, paths to the dependency
artifacts, the export location,
and the test framework: JUnit,
JaCoCo, FindBugs, Checkstyle.
Pipelines > Pipeline > Cl Task >
Task tab

To build, test, and deploy
your application, click the
stage and drag the continuous
integration (Cl) task to it.

Add the Docker host, build image,
container registry, working
directory, Git clone, and cache.
Pipelines > Pipeline >
Workspace tab

Save your pipeline.
Then, enable and run it.

Monitor the pipeline
dashboard to track KPls,
code coverage, state of your
application, status of changesets,

or state of your DevOps projects.

Take action or report
on the status.

The following example uses a Docker workspace.

VMware, Inc.

Using and Managing vRealize Automation Code Stream

To build your code, you use a Docker host. You use JUnit and JaCoCo as your test framework
tools, which run unit tests and code coverage, and you include them in your pipeline.

Then you can use the continuous integration smart pipeline template that creates a continuous
integration pipeline that builds, tests, and deploys your code to your project team Kubernetes
cluster on AWS. To store the code dependency artifacts for your continuous integration task,
which can save time in code builds, you can use a cache.

In the pipeline task that builds and tests your code, you can include several continuous integration
steps. These steps can reside in the same working directory where Code Stream clones the source
code when the pipeline triggers.

To deploy your code to the Kubernetes cluster, you can use a Kubernetes task in your pipeline.
You must then enable and run your pipeline. Then, make a change to your code in the repository,
and watch the pipeline trigger. To monitor and report on your pipeline trends after your pipeline
runs, use the dashboards.

In the following example, to create a continuous integration pipeline that continuously integrates
your code into your pipeline, you use the continuous integration smart pipeline template. This
example uses a Docker workspace.

Optionally, you can manually create the pipeline, and add stages and tasks to it. For more
information about planning a continuous integration build and manually creating the pipeline, see
Planning a CICD native build in Code Stream before manually adding tasks.

Prerequisites

m Plan for your continuous integration build. See Planning a continuous integration native build
in Code Stream before using the smart pipeline template.

m Verify that a GitLab source code repository exists. For help, see your Code Stream
administrator.

= Add a Git endpoint. For an example, see How do | use the Git trigger in Code Stream to run a
pipeline.

m To have Code Stream listen for changes in your GitHub repository or your GitLab repository,
and trigger a pipeline when changes occur, add a webhook. For an example, see How do | use
the Git trigger in Code Stream to run a pipeline.

= Add a Docker host endpoint, which creates a container for the continuous integration task
that multiple continuous integration tasks can use. For more information about endpoints, see
What are Endpoints in Code Stream .

= Obtain the image URL, the build host, and the URL for the build image. For help, see your
Code Stream administrator.

m Verify that you use JUnit and JaCoCo for your test framework tools.

m Set up an external instance for your continuous integration build: Jenkins, TFS, or Bamboo.
The Kubernetes plug-in deploys your code. For help, see your Code Stream administrator.

VMware, Inc. 105

Using and Managing vRealize Automation Code Stream

Procedure

1 Follow the prerequisites.

2 To create the pipeline by using the smart pipeline template, open the continuous integration
smart pipeline template and fill out the form.

a

b

.I:

Click Pipelines > New Pipeline > Smart Template > Continuous Integration.

Answer the questions in the template about your source code repository, build toolsets,
publishing tool, and the build image workspace.

Add Slack notifications or Email notifications for your team.
To have the smart pipeline template create the pipeline, click Create.

To make any further changes to the pipeline, click Edit, make your changes, and click
Save.

Enable the pipeline and run it.

3 To create the pipeline manually, add stages and tasks to the canvas, and include your native
continuous integration build information in the continuous integration task.

a

b

j

Click Pipelines > New Pipeline > Blank Canvas.

Click the stage, then drag the several continuous integration tasks from the navigation
pane to the stage.

To configure the continuous integration task, click it, and click the Task tab.
Add the steps that continuously integrate your code.

Include the paths to the dependency artifacts.

Add the export location.

Add the test framework tools that you'll use.

Add the Docker host and build image.

Add the container registry, working directory, and cache.

Save the pipeline, then enable it.

4 Make a change to your code in your GitHub repository or GitLab repository.

The Git trigger activates your pipeline, which starts to run.

5 To verify that the code change triggered the pipeline, click Triggers > Git > Activity.

VMware, Inc. 106

Using and Managing vRealize Automation Code Stream

6 To view the execution for your pipeline, click Executions, and verify that the steps created and
exported your build image.

« < BACK
{7 Dashboards

[Executions

£ User Operations

& Create Service & Create Dey en
olf Pipelines
i Manage W
Task name Build-lmage WIEW QUTPUT JSON
Endpoints
Type
riables
. - Status
[> Triggers ~
Duraticn

Centinue On Failure

Execute Task

Result

Steps
+set e
+ cd demo-project
+ export MAGE=automationbeta/dem -smart-template-51'
+ export DOCKER_HOST: 1821121, 243
ker login --username=; password=
WARNING! Using --password via the CLI is insecure. Use --password-stdin
r password will be stored unencrypted in froot/ docker/config.json.
ntial helper to remove this warning. See

cker.com/engine/reference/commandline/login/#credentials-store

cd-smart-template-51 —file /docker/Dockerfile

Preserved Artifacts
Exports
Exported WValue
MAGE tomation/ci T ter &5
Process | ess results available
Input>

7 To monitor the pipeline dashboard so that you can track KPIs and trends, click Dashboards >
Pipeline Dashboards.

Results

Congratulations! You created a pipeline that continuously integrates your code from a GitHub
repository or GitLab repository into your pipeline, and deploys your build image.

What to do next

To learn more, see More resources for Code Stream Administrators and Developers.

How do | automate the release of an application that |
deploy from a YAML cloud template in Code Stream

As a developer, you need a pipeline that fetches an automation cloud template from an on-
premises GitHub instance every time you commit a change. You need the pipeline to deploy
a WordPress application to either Amazon Web Services (AWS) EC2 or a data center. Code

VMware, Inc. 107

Using and Managing vRealize Automation Code Stream

Stream calls the cloud template from the pipeline and automates the continuous integration and
continuous delivery (CICD) of that cloud template to deploy your application.

To create and trigger your pipeline, you'll need a VMware Cloud Template.
For Cloud template source in your Code Stream cloud template task, you can select either:

= Cloud Assembly template as the source control. In this case, you do not need a GitLab or
GitHub repository.

m Source Control if you use GitLab or GitHub for source control. In this case, you must have a Git
webhook and trigger the pipeline through the webhook.

If you have a YAML cloud template in your GitHub repository, and want to use that cloud template
in your pipeline, here's what you'll need to do.

1 In Cloud Assembly, push the cloud template to your GitHub repository.

2 In Code Stream, create a Git endpoint. Then, create a Git webhook that uses your Git endpoint
and your pipeline.

3 To trigger your pipeline, update any file in your GitHub repository and commit your change.

If you don't have a YAML cloud template in your GitHub repository, and want to use a cloud

template from source control, use this procedure to learn how. It shows you how to create a

cloud template for a WordPress application, and trigger it from an on-premises GitHub repository.

Whenever you make a change to the YAML cloud template, the pipeline triggers and automates
the release of your application.

= In Cloud Assembly, you'll add a cloud account, add a cloud zone, and create the cloud
template.

m In Code Stream, you'll add an endpoint for the on-premises GitHub repository that hosts your
cloud template. Then, you'll add the cloud template to your pipeline.

This use case example shows you how to use a cloud template from an on-premises GitHub
repository.

VMware, Inc. 108

Using and Managing vRealize Automation Code Stream

In Cloud Assembly,
create a cloud template.
Cloud Assembly >
Cloud Templates > New

Open the Cloud Assembly
documentation in
docs.vmware.com,
and copy the complete YAML

for the WordPress cloud template.

In the cloud template code pane,
paste the YAML code,
and save the cloud template.

In Code Stream,
create an endpoint for your
on-premises GitHub repository.
Endpoints > New Endpoint
> Git

Create an Email endpoint,
and validate it.
Endpoints >
New Endpoint > Email

Prerequisites

Create a pipeline.
Pipelines > New Pipeline
> Blank Canvas

Create a stage for
development tasks. Then, add
a task that deploys the machine
with your cloud template YAML,
and a task that
destroys the machine.

Create a stage for production
tasks. Add a task to require an
approval to push the
application to production, and a
task to deploy and configure
the machine that includes
your cloud template YAML.

Save the pipeline,
then enable and run it.

Add Email notifications for
pipeline success and failure.
Notifications > Add > Email

In GitHub, open the cloud template
YAML code, change the size
of the instance used for the
WordPress application,
and save the file.

Run your pipeline again.

In your deployment,
verify that the size of the
WordPress instance is updated.

You automated the release
of your application that deployed
through your pipeline
when you updated the
cloud template YAML code.

m Add a cloud account and a cloud zone in your vRealize Automation Cloud Assembly
infrastructure. See the vRealize Automation Cloud Assembly documentation.

m To create your cloud template in the following procedure, copy the WordPress YAML code to
your clipboard. See the cloud template YAML code in the WordPress use case in the vRealize
Automation Cloud Assembly documentation.

= Add the YAML code for the WordPress application to your GitHub instance.

m Add a webhook for the Git trigger so that your pipeline can pull your YAML code whenever
you commit changes to it. In Code Stream, click Triggers > Git > Webhooks for Git.

m To work with a cloud template task, you must have any of the Cloud Assembly roles.

VMware, Inc.

109

Using and Managing vRealize Automation Code Stream

Procedure

1 In Cloud Assembly, follow these steps.

a Click VMware Cloud Templates, then create a cloud template and a deployment for the

WordPress application.

b Paste the WordPress YAML code that you copied to your clipboard into your cloud
template, and deploy it.

Ll

4

Wordpress-CT-Test serrines

+ Cloud Agnostic

& Machine
& Network
of Load Balancer

3 Volume

~ vSphere

@ Machine
@ Network
B Disk

v AWS

@ Instance
A Volume

w Kinesis

@@ Kinesis Fire
-

3

WERSION HISTORY

(3 DBTier

tag:zon.

ACTIONS ~

S CoBEx @6

(1 WebTier

tag:zon

@ WP-Netwaork-P...

4

@ VERSION CLOSE | Last saved 5 minutes ago

»

1~ resources:

2.

DBTier:
type: Cloud.Machine
properties:
name: mysgl
image: 'ubuntu-18'
flavor: “small®
constraints:
tag: zone:dev
WebTier:
type: Cloud.Machine
properties:
name: wordpress
image: 'ubuntu-16'
‘small’

type: Cloud.Network
properties:

name: WP-Network-Private

networkType: existing
constraints:

- tag: "type:isolated-net'

- tag: "zone:dev"

.

VMware, Inc.

10

Using and Managing vRealize Automation Code Stream

2 In Code Stream, create endpoints.

a Create a Git endpoint for your on-premises GitHub repository where your YAML file
resides.

b Add an Email endpoint that can notify users about the pipeline status when it runs.

Add Endpoint

Project *
Type *
Mame °

Description

Mark as restricted
Sender's Address
Encryption Method *
Outbound Host *
Outbound Port *
Outbound Protocol *
Cutbound Username

Cutbound Password

Codestream

Email

&7

() non-restricted

I T O

L
;
i

CANMCEL

VMware, Inc.

m

Using and Managing vRealize Automation Code Stream

3 Create a pipeline, and add notifications for pipeline success and failure.

Notification

Send notification type

When pipeline

Email server @ *
Send Email

To® s *
Subjects *

Body© 5 *

© Email () Ticket () Webhook
© completes () Is waiting () Fails () Is cancelled
—Select Email server-- b

Email IDs of recipients

() starts to run

Email Subject

1

CANCEL SAVE

VMware, Inc.

12

Using and Managing vRealize Automation Code Stream

4 Add a stage for development, and add a cloud template task.

a Add a cloud template task that deploys the machine, and configure the task to use the
cloud template YAML for the WordPress application.

resources:
DBTier:
type: Cloud.Machine
properties:
name: mysql
image: 'ubuntu-16'
flavor: 'small'
constraints:
- tag: zone:dev
WebTier:
type: Cloud.Machine
properties:
name: wordpress
image: 'ubuntu-16'
flavor: 'small'
constraints:
- tag: zone:dev
WP-Network-Private:
type: Cloud.Network
properties:
name: WP-Network-Private
networkType: existing
constraints:
- tag: 'type:isolated-net'
- tag: 'zone:dev'

b Add a cloud template task that destroys the machine to free up resources.

VMware, Inc.

n3

Using and Managing vRealize Automation Code Stream

5 Add a stage for production, and include approval and deployment tasks.

a Add a User Operation task to require approval to push the WordPress application to
production.

b Add a cloud template task to deploy the machine and configure it with the cloud template
YAML for the WordPress application.

When you select Create, the deployment name must be unique. If you leave the name
blank, Code Stream assigns it a unique random name.

Here's what you must know if you select Rollback in your own use case: If you select the
Rollback action and enter a Rollback Version, the version must be in the form of n-X.
For example, n-1, n-2, n-3, and so on. If you create and update the deployment in any
location other than Code Stream, rollback is allowed.

When you log in to Code Stream, it gets a user token, which is valid for 30 minutes. For
long-running pipeline durations, when the task prior to the cloud template task takes 30
minutes or more to run, the user token expires. As a result, the cloud template task fails.
To ensure that your pipeline can run longer than 30 minutes, you can enter an optional
API token. When Code Stream invokes the cloud template, the API token persists and the
cloud template task continues to use the API token.

When you use the API token as a variable, it is encrypted. Otherwise, it is used as plain
text.

Task :Deploy CT Notifications Rollback _ o g

Task name @ * Deploy CT

Type * VMware cloud template

Continue on failure O

Execute task © Aways () On condition

Deployment Task

Action * © cCreate () Update () Delete () Rollback
API token 5 API token Q9
Deployment Name = Enter deployment name

Cloud template source ° WMware cloud templates Source Control
Cloud template * --Select template-- ~

Version * --Select template Version--

Output Parameters

VMware, Inc. 14

Using and Managing vRealize Automation Code Stream

6 Run the pipeline.

To verify that each task completed successfully, click the task in the execution, and examine
the status in the deployment details to see detailed resource information.

7 In GitHub, modify the flavor of the WordPress server instance from small tO medium.

When you commit changes, the pipeline triggers. It pulls your updated code from the GitHub
repository and builds your application.

WebTier:
type: Cloud.Machine
properties:
name: wordpress
image: 'ubuntu-16'
flavor: 'medium'
constraints:

- tag: zone:dev

8 Run the pipeline again, verify that it succeeded, and that it changed the flavor of the
WordPress instance from small to medium.

Results

Congratulations! You automated the release of your application that you deployed from a YAML

cloud template.

What to do next

To learn more about how you can use Code Stream, see Chapter 5 Tutorials for using Code
Stream.

For additional references, see More resources for Code Stream Administrators and Developers.

How do | automate the release of an application in Code
Stream to a Kubernetes cluster

As a Code Stream administrator or developer, you can use Code Stream and VMware Tanzu
Kubernetes Grid Integrated Edition (formerly known as VMware Enterprise PKS) to automate the
deployment of your software applications to a Kubernetes cluster. This use case mentions other
methods that you can use to automate the release of your application.

In this use case, you will create a pipeline that includes two stages, and will use Jenkins to build
and deploy your application.

m The first stage is for development. It uses Jenkins to pull your code from a branch in your
GitHub repository, then build, test, and publish it.

m The second stage is for deployment. It runs a user operation task that requires approval from
key users before the pipeline can deploy your application to your Kubernetes cluster.

VMware, Inc. 115

Using and Managing vRealize Automation Code Stream

When using a Kubernetes API endpoint in the pipeline workspace, Code Stream creates the
necessary Kubernetes resources such as ConfigMap, Secret, and Pod to run the continuous
integration (Cl) task or custom task. Code Stream communicates with the container by using the
NodePort.

To share data across pipeline runs, you must provide a persistent volume claim, and Code Stream
will mount the persistent volume claim to the container to store the data, and use it for subsequent
pipeline runs.

The Code Stream pipeline workspace supports Docker and Kubernetes for continuous integration
tasks and custom tasks.

For more information about configuring the workspace, see Configuring the Pipeline Workspace.

viE

1. Pipeline uses 2. Code Stream 3. Developers 4. Check-ins 5. The pipeline
Jenkins to build, runs pipeline update and and Git webhook K8S task deploys
test, and publish stages, tasks, check in their trigger the the application
your code. and approvals. code. pipeline, and to your Kubernetes
return the Git cluster.
commit ID.

P

Code Stream

Kubernetes

Jenkins

The development tools, deployment instances, and pipeline YAML file must be available so that
your pipeline can build, test, publish, and deploy your application. The pipeline will deploy your
application to development and production instances of Kubernetes clusters on AWS.

VMware, Inc. 16

Using and Managing vRealize Automation Code Stream

To build, test, and publish
your code, create a Jenkins
endpoint, which will pull code
from your GitHub repository.
Endpoints > New Endpoint
> Jenkins

Create a Kubernetes endpoint

for your development cluster.

Endpoints > New Endpoint
> K8S

Create a Kubernetes endpoint
for your production cluster.
Endpoints > New Endpoint
> K8S

Create a pipeline that will
automate the deployment of
your application.
Pipelines > New Pipeline >
Blank Canvas

Set the pipeline input parameter
Auto inject properties to Git.
Pipeline > Input tab

Other methods that automate the release of your application:

Add the property named
GIT_COMMIT_ID, and
click the star next to it.

Pipeline > Input tab

Add two email notifications:
one for pipeline success,
and one for pipeline failure.
Pipeline > Notifications > Add

Add a stage for Development,
and add Jenkins tasks that
will build, test, and publish

your code.

Add a stage for Deployment,
then add a user operation task
for approval of the deployment,

and a K8S task that will
deploy your code.

Create a webhook for the
Git trigger to trigger
your pipeline on code check-ins.
Triggers > Git > New
Webhook for Git

Go to your GitHub instance,
and configure the settings for the
webhook.

In your GitHub repository,
change your pipeline YAML
file, and commit the change.

In Code Stream,
confirm that the commit
triggered the pipeline.
Triggers > Git > Activity

In your pipeline, verify
that your change appears.

Your pipeline received the
commit ID from GitHub and
triggered the pipeline.

m Instead of building your application by using Jenkins, you can use the Code Stream native
build capability and a Docker build host.

m Instead of deploying your application to a Kubernetes cluster, you could deploy it to an
Amazon Web Services (AWS) cluster.

For more information about using the Code Stream native build capability and a Docker host, see:

m Planning a CICD native build in Code Stream before using the smart pipeline template

m Planning a CICD native build in Code Stream before manually adding tasks

Prerequisites

m Verify that the application code to deploy resides in a working GitHub repository.

m Verify that you have a working instance of Jenkins.

m Verify that you have a working email server.

m In Code Stream, create an email endpoint that connects to your email server.

m Set up two Kubernetes clusters on Amazon Web Services (AWS), for development and

production, where your pipeline will deploy your application.

VMware, Inc.

Using and Managing vRealize Automation Code Stream

m Verify that the GitHub repository contains the YAML code for your pipeline, and alternatively a
YAML file that defines the metadata and specifications for your environment.

Procedure

1 In Code Stream, click Endpoints > New Endpoint, and create a Jenkins endpoint that you will
use in your pipeline to pull code from your GitHub repository.

2 To create Kubernetes endpoints, click New Endpoint.

a Create an endpoint for your development Kubernetes cluster.

b Create an endpoint for your production Kubernetes cluster.

The URL for your Kubernetes cluster might or might not include a port number.

For example:

https://10.111.222.333:6443
https://api.kubernetesserver.fa2cld78-9£f00-4e30-8268-4ab81862080d.k8s~-

user.com

3 Create a pipeline that deploys a container of your application, such as Wordpress, to your
development Kubernetes cluster, and set the input properties for the pipeline.

a To allow your pipeline to recognize a code commit in GitHub that will trigger the pipeline,
in the pipeline click the Input tab and select Auto inject properties.

b Add the property named GIT_COMMIT_ID, and click the star next to it.

When the pipeline runs, the pipeline execution will display the commit ID that the Git

trigger returns.

Jenkins-K8s (Emabea) @

Dev

@
Test-DemoApp

©
Build-DemoApp.
iins Jenking

— Deploy

@
Approve-Deployment

»

w0

Pipeline Input Output Notifications Cl Workspace @
Pipeline Input Parameters @

Auto inject properties () Gerrit @ Git () None

Starred @ Name r Value

o GIT_BRANCH_NAME

T GIT_CHANGE_SUBJECT
GIT_COMMIT_ID

1 GIT_EVENT_DESCRIPTION

P GIT_EVENT_OWNER_NAME

T GIT_EVENT_TIMESTAMP

T GIT_REPC_NAME

e GIT_SERVER_URL

escription

8Input parameters

.

VMware, Inc.

18

Using and Managing vRealize Automation Code Stream

4 Add notifications to send an Email when the pipeline succeeds or fails.

a Inthe pipeline, click the Notifications tab, and click Add.
b To add an email notification when the pipeline finishes running, select Email, and select
Completes. Then, select the email server, enter email addresses, and click Save.

¢ To add another email notification for a pipeline failure, select Fails, and click Save.

Notification

Send notification type © Email () Ticket () Webhook

When pipeline © completes () Iswaiting () Fails () Is cancelled () Starts to run

Email server @ * --Select Email server-- ~

Send Email

To@ s * Email IDs of recipients

Subjects * Email Subject

Body® 5 * T

CANCEL SAVE

5 Add a development stage to your pipeline, and add tasks that build, test, and publish your
application. Then, validate each task.

a

To build your application, add a Jenkins task that uses the Jenkins endpoint, and runs a
build job from the Jenkins server. Then, for the pipeline to pull your code, enter the Git
branch in this form: $ {input.GIT_BRANCH NAME}

To test your application, add a Jenkins task that uses the same Jenkins endpoint, and runs
a test job from the Jenkins server. Then, enter the same Git branch.

To publish your application, add a Jenkins task that uses the same Jenkins endpoint, and
runs a publish job from the Jenkins server. Then, enter the same Git branch.

VMware, Inc. 19

Using and Managing vRealize Automation Code Stream

Jenkins-K8s (CEEDE
» Ea b (S} Task :Build-DemoApp Notifications _og
Dev oo Task name @ Build-DemoApp
Build-DemoApp 0 Test-DemoApp Publish-DemoApp Type Jenking
o L i e Continue On Failure u]
dller Tais Paraliel Tas ¢ Parallel Tas Execute Task © Aways () On Congition
Jenkins Job
Endpoint Jenkins
— | Deploy 2] Job Build-DemoApp
@ @ atage branchMName ${input GIT_BRANCH_NAME}
Output Parameters

6 Add a deployment stage to your pipeline, then add a task that requires an approval for
deployment of your application, and another task that deploys the application to your
Kubernetes cluster. Then, validate each task.

a Torequire an approval on the deployment of your application, add a User Operation task,
add Email addresses for the users who must approve it, and enter a message. Then,
enable Send email.

b To deploy your application, add a Kubernetes task. Then, in the Kubernetes task
properties, select your development Kubernetes cluster, select the Create action, and
select the Local Definition payload source. Then select your local YAML file.

VMware, Inc. 120

Using and Managing vRealize Automation Code Stream

7 Add a Git webhook that enables Code Stream to use the Git trigger, which triggers your
pipeline when developers commit their code.

Git

Activity Webhooks for Git

Secret token@ * Eexrpiimoning fw dialauos mpldigmi - GENERATE

Webhook URL @ https ... - - _vmware.com fpipeline/api/git-webhook-listeners/d4c4b028047&
Project Code Stream
MName * rnuser-Demo-WH
Description Description

s
Endpoint tpm-GitHub
Branch @ master

File @

Inclusions —Select— ~ Value [+]

Exclusions —Select— ~ Value [+]

Prioritize Exclusion @]

Trigger

For Git © PUSH () PULL REQUEST

APl token * SRR RRRRRRERRRRRRRRRRRRRRRRNS 9 [CREATE VARIABLE] | GENERATE TOKEN
Pipeline * Jenkins-K8s ®

Comments

8 To test your pipeline, go to your GitHub repository, update your application YAML file, and

commit the change.

a In Code Stream, verify that the commit appears.

a Click Triggers > Git > Activity.
b Look for the trigger of your pipeline.

c Click Dashboards > Pipeline Dashboards.

d On your pipeline dashboard, find the GIT_COMMIT_ID in the latest successful change

area.

9 Check your pipeline code and verify that the change appears.

VMware, Inc.

121

Using and Managing vRealize Automation Code Stream

Results

Congratulations! You automated the deployment of your software application to your Kubernetes
cluster.

Example: Example pipeline YAML that deploys an application to a
Kubernetes cluster

For the type of pipeline used in this example, the YAML resembles the following code:

apiVersion: vl
kind: Namespace
metadata:

name: ${input.GIT7BRANCH7NAME}

namespace: ${input.GIT_ BRANCH NAME}
apiVersion: vl
data:

.dockercfg:
eyJzeWlwaG9ueS10YW5nbyliZXRhMi5gqZnJvZy5SpbyléeyJlc2VybmFtZSI6InRhbmdvLWI1ldGEyIiwicGFzc3dvemQioi
JhRGstcmVOLW1UQi1IejciLCJI1bWFpbCI6InRhbmdvLWJI1dGEYQHZtd2FyZS57b20iLCJhdXRoIjoiZEAGAVoyOHRZbVYw
WVRIN11VUNIMWEpsVGkxdFZFSXRTSG8zInl9
kind: Secret
metadata:

name: Jjfrog

namespace: ${input.GIT_ BRANCH NAME}
type: kubernetes.io/dockercfg
apiVersion: vl
kind: Service
metadata:

name: codestream

namespace: ${input.GIT_ BRANCH NAME}

labels:

app: codestream
spec:

ports:

- port: 80
selector:

app: codestream

tier: frontend

type: LoadBalancer
apivVersion: extensions/vl
kind: Deployment
metadata:

name: codestream

namespace: ${input.GIT_ BRANCH NAME}

labels:

app: codestream
spec:

selector:

matchLabels:

app: codestream

VMware, Inc. 122

Using and Managing vRealize Automation Code Stream

tier: frontend
strategy:
type: Recreate
template:
metadata:

labels:
app: codestream
tier: frontend

spec:

containers:

- name: codestream
image: cas.jfrog.io/codestream:${input.GIT BRANCH NAME}-${Dev.PublishApp.output.jobId}
ports:

- containerPort: 80
name: codestream
imagePullSecrets:

- name: jfrog

What to do next

To deploy your software application to your production Kubernetes cluster, perform the steps
again and select your production cluster.

To learn more about integrating Code Stream with Jenkins, see How do | integrate Code Stream
with Jenkins.

How do | deploy my application in Code Stream to my Blue-
Green deployment

Blue-Green is a deployment model that uses two Docker hosts that you deploy and configure
identically in a Kubernetes cluster. With the Blue and Green deployment model, you reduce the
downtime that can occur in your environment when your pipelines in Code Stream deploy your
applications.

The Blue and Green instances in your deployment model each serve a different purpose. Only one
instance at a time accepts the live traffic that deploys your application, and each instance accepts
that traffic at specific times. The Blue instance receives the first version of your application, and the
Green instance receives the second.

The load balancer in your Blue-Green environment determines which route the live traffic takes
as it deploys your application. By using the Blue-Green model, your environment remains
operational, users don't notice any downtime, and your pipeline continuously integrates and
deploys your application to your production environment.

The pipeline that you create in Code Stream represents your Blue-Green deployment model in two
stages. One stage is for development, and the other stage is for production.

The Code Stream pipeline workspace supports Docker and Kubernetes for continuous integration
tasks and custom tasks.

VMware, Inc. 123

Using and Managing vRealize Automation Code Stream

For information about configuring the workspace, see Configuring the Pipeline Workspace.

Table 5-2. Development stage tasks for Blue-Green deployment

Task type Task

Kubernetes Create a namespace for your Blue-Green deployment.
Kubernetes Create a secret key for Docker Hub.

Kubernetes Create the service used to deploy the application.
Kubernetes Create the Blue deployment.

Poll Verify the Blue deployment.

Kubernetes Remove the namespace.

Table 5-3. Production stage tasks for Blue-Green deployment

Task type Task

Kubernetes Green gets the service details from Blue.

Kubernetes Get the details for the Green replica set.

Kubernetes Create the Green deployment, and use the secret key to pull the container image.
Kubernetes Update the service.

Poll Verify that the deployment succeeded on the production URL.

Kubernetes Finish the Blue deployment.

Kubernetes Remove the Blue deployment.

To deploy your application in your own Blue-Green deployment model, you create a pipeline in
Code Stream that includes two stages. The first stage includes the Blue tasks that deploy your
application to the Blue instance, and the second stage includes Green tasks that deploy your
application to the Green instance.

You can create your pipeline by using the CICD smart pipeline template. The template creates
your pipeline stages and tasks for you, and includes the deployment selections.

If you create your pipeline manually, you must plan your pipeline stages. For an example, see
Planning a CICD native build in Code Stream before manually adding tasks.

In this example, you use the CICD smart pipeline template to create your Blue-Green pipeline.
Prerequisites

m Verify that you can access a working Kubernetes cluster on AWS.

m Verify that you set up a Blue-Green deployment environment, and configured your Blue and
Green instances to be identical.

VMware, Inc. 124

Using and Managing vRealize Automation Code Stream

m Create a Kubernetes endpoint in Code Stream that deploys your application image to the
Kubernetes cluster on AWS.

m Familiarize yourself with using the CICD smart pipeline template. See Planning a CICD native
build in Code Stream before using the smart pipeline template.

Procedure
1 Click Pipelines > New Pipeline > Smart Templates > CI/CD template.
2 Enter the information for the CI portion of the CICD smart pipeline template, and click Next.

For help, see Planning a CICD native build in Code Stream before using the smart pipeline
template.

3 Complete the CD portion of the smart pipeline template
a Select the environments for your application deployment. For example, Dev and Prod.
b Select the service that the pipeline will use for the deployment.

¢ Inthe Deployment area, select the cluster endpoint for the Dev environment and the Prod
environment.

d For the Production deployment model, select Blue-Green, and click Create.

VMware, Inc. 125

Using and Managing vRealize Automation Code Stream

Smart Template: CI/CD

Step 2 of 2
Environment @

K8s YAML files

Select service

Deployment name

© codestream-demo

Deployment

Environment

Dev

Prod

Prod deployment maodel

Health check URL

Dev Prod

ISR Process |

Processed files:codestream.yamil

Service

codestream-demo

Cluster Endpoint

Dev-AWS-Cluster

Namespace

codaestream

Image

https:/codestream/Myapp

Namespace

codestream-139606

Prod-AWS-Cluster

codestream

(O Canary () Rolling Upgrade) Blue-Green

CREATE BACK CANCEL

.

Results

Congratulations! You used the smart pipeline template to create a pipeline that deploys your

application to your Blue-Green instances in your Kubernetes production cluster on AWS.

Example: Example YAML code for some Blue-Green Deployment
Tasks

The YAML code that appears in Kubernetes pipeline tasks for your Blue-Green deployment might
resemble the following examples that create the Namespace, Service, and Deployment. If you
need to download an image from a privately-owned repository, the YAML file must include a
section with the Docker config Secret. See the CD portion of Planning a CICD native build in Code

Stream before using the smart pipeline template.

After the smart pipeline template creates your pipeline, you can modify the tasks as needed for

your own deployment.

YAML code to create an example namespace:

apiVersion: vl

kind:

VMware,

Namespace

Inc.

126

Using and Managing vRealize Automation Code Stream

metadata:
name: codestream-82855

namespace: codestream-82855

YAML code to create an example service:

apivVersion: vl
kind: Service
metadata:
labels:
app: codestream-demo
name: codestream-demo
namespace: bluegreen-799584
spec:
minReadySeconds: 0
ports:
- port: 80
selector:
app: codestream-demo
tier: frontend

type: LoadBalancer

YAML code to create an example deployment:

apiVersion: extensions/vl
kind: Deployment
metadata:
labels:
app: codestream-demo
name: codestream-demo
namespace: bluegreen-799584
spec:
minReadySeconds: 0
replicas: 1
selector:
matchLabels:

app: codestream-demo

tier: frontend

template:
metadata:

labels:
app: codestream-demo
tier: frontend

spec:

containers:

- image: ${input.image}:${input.tag}
name: codestream-demo
ports:

- containerPort: 80
name: codestream-demo
imagePullSecrets:

- name: jfrog-2

minReadySeconds: 0

VMware, Inc. 127

Using and Managing vRealize Automation Code Stream

What to do next

To learn more about how you can use Code Stream, see Chapter 5 Tutorials for using Code
Stream.

To roll back a deployment, see How do | roll back my deployment in Code Stream.

For additional references, see More resources for Code Stream Administrators and Developers.

How do | integrate my own build, test, and deploy tools with
Code Stream

As a DevOps administrator or developer, you can create custom scripts that extend the capability
of Code Stream.

With your script, you can integrate Code Stream with your own Continuous Integration (Cl) and
Continuous Delivery (CD) tools and APIs that build, test, and deploy your applications. Custom
scripts are especially useful if you do not expose your application APIs publicly.

Your custom script can do almost anything you need for your build, test, and deploy tools
integrate with Code Stream. For example, your script can work with your pipeline workspace to
support continuous integration tasks that build and test your application, and continuous delivery
tasks that deploy your application. It can send a message to Slack when a pipeline finishes, and
much more.

The Code Stream pipeline workspace supports Docker and Kubernetes for continuous integration
tasks and custom tasks.

For more information about configuring the workspace, see Configuring the Pipeline Workspace.

You write your custom script in one of the supported languages. In the script, you include your
business logic, and define inputs and outputs. Output types can include number, string, text, and
password. You can create multiple versions of a custom script with different business logic, input,
and output.

You have your pipeline run a version of your script in a custom task. The scripts that you create
reside in your Code Stream instance.

When a pipeline uses a custom integration, if you attempt to delete the custom integration, an
error message appears and indicates that you cannot delete it.

Deleting a custom integration removes all versions of your custom script. If you have an existing
pipeline with a custom task that uses any version of the script, that pipeline will fail. To ensure that
existing pipelines do not fail, you can deprecate and withdraw the version of your script that you
no longer want used. If no pipeline is using that version, you can delete it.

VMware, Inc. 128

Using and Managing vRealize Automation Code Stream

Table 5-4. What you do after you write your custom script

What you do... More information about this action...

Add a custom task to your pipeline. The custom task:
B Runs on the same container as other Cl tasks in your pipeline.

® Includes input and output variables that your script populates before the
pipeline runs the custom task.

m Supports multiple data types and various types of meta data that you
define as inputs and outputs in your script.

Select your script in the custom task. You declare the input and output properties in the script.

Save your pipeline, then enable and run When the pipeline runs, the custom task calls the version of the script
it. specified and runs the business logic in it, which integrates your build, test,
and deploy tool with Code Stream.

After your pipeline runs, look at the Verify that the pipeline delivered the results you expected.
executions.

When you use a custom task that calls a Custom Integration version, you can include custom
environment variables as name-value pairs on the pipeline Workspace tab. When the builder
image creates the workspace container that runs the Cl task and deploys your image, Code
Stream passes the environment variables to that container.

For example, when your Code Stream instance requires a Web proxy, and you use a Docker host
to create a container for a custom integration, Code Stream runs the pipeline and passes the Web
proxy setting variables to that container.

Table 5-5. Example environment variable name-value pairs

Name Value

HTTPS_PROXY http://10.0.0.255:1234

https_ proxy http://10.0.0.255:1234

NO_PROXY 10.0.0.32, *.dept.vsphere.local

NO_ proxy 10.0.0.32, *.dept.vsphere.local

HTTP_PROXY http://10.0.0.254:1234

http_ proxy http://10.0.0.254:1234

PATH /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

Name-value pairs appear in the user interface like this:

Environment variables https_proxy
hittp/10.0.0.255:1234 (-]

PATH
Jusr/local/sbin:/usr/local/bin-fusr/sbin: /usr/bin:/sbin:/bin on

intainer creation

Provide environment variables to pass fo

VMware, Inc. 129

Using and Managing vRealize Automation Code Stream

This example creates a custom integration that connects Code Stream to your Slack instance, and
posts a message to a Slack channel.

Prerequisites

m To write your custom script, verify that you have one of these languages: Python 2, Python 3,
Node.js, or any of the shell languages: Bash, sh, or zsh.

m Generate a container image by using the installed Node.js or the Python runtime.

Procedure

1 Create the custom integration.
a Click Custom Integrations > New, and enter a relevant name.
b Select the preferred runtime environment.
¢ Click Create.

Your script opens, and displays the code, which includes the required runtime
environment. For example, runtime: "nodejs". The script must include the runtime, which
the builder image uses, so that the custom task that you add to your pipeline succeeds
when the pipeline runs. Otherwise, the custom task fails.

The main areas of your custom integration YAML include the runtime, code, input properties,
and output properties. This procedure explains various types and syntax.

Custom integration YAML
keys Description

runtime Task runtime environment where Code Stream runs the code, which can be one of
these case-insensitive strings:
m nodejs
m python2
m python3
m shell

If nothing is provided, shell is the assumed default.

code Custom business logic to run as part of the custom task.

inputProperties Array of input properties to capture as part of the custom task configuration. These
properties are normally used in the code.

outputProperties Array of output properties you can export from the custom task to propagate to the
pipeline.

2 Declare the input properties in your script by using the available data types and meta data.

The input properties are passed in as context to your script in the code: section of the YAML.

VMware, Inc. 130

Using and Managing vRealize Automation Code Stream

Custom task YAML
input keys

type

name

title

required

placeHolder

defaultValue

bindable

labelMessage

enum

VMware, Inc.

Description

Types of input to render:
B text

B textarea

B number

B checkbox

B password

B select

Name or string of the input to the custom task, which gets injected
into the custom integration YAML code. Must be unique for each
input property defined for a custom integration.

Text string label of the input property for the custom task on the
pipeline model canvas. If left empty, name is used by default.

Determines whether a user must enter the input property when they
configure the custom task. Set to true or false. When true, if a user
does not provide a value when they configure the custom task on the
pipeline canvas, the state of the task remains as unconfigured.

Default text for the input property entry area when no value is
present. Maps to the html placeholder attribute. Only supported for
certain input property types.

Default value that populates the input property entry area when the
custom task renders on the pipeline model page.

Determines whether the input property accepts dollar sign variables
when modeling the custom task on the pipeline canvas. Adds the $
indicator next to the title. Only supported for certain input property

types.

String that acts as a help tooltip for users. Adds a tooltip icon i next to
the input title.

Takes in an array of values that displays the select input property
options. Only supported only for certain input property types.

When a user selects an option, and saves it for the custom task, the
value of inputProperty corresponds to this value and appears in the
custom task modeling.

For example, the value 2015.
2015
2016
2017
2018
2019
2020

Required

Yes

Yes

No

No

No

No

No

131

Using and Managing vRealize Automation Code Stream

Custom task YAML
input keys

options

Description Required

Takes in an array of objects by using optionKey and optionValue. No
m optionKey. Value propagated to the code section of the task.

m optionValue. String that displays the option in the user interface.

Only supported only for certain input property types.

Options:

optionKey: keyl. When selected and saved for the custom task, the

value of this inputProperty corresponds to key1 in the code section.

optionValue: 'Label for 1'. Display value for key1 in the user interface,

minimum

maximum

and does not appear anywhere else for the custom task.

optionKey: key2
optionValue: 'Label for 2'
optionKey: key3

optionValue: 'Label for 3'

Takes in a number that acts as the minimum value that is valid for this No

input property. Only supported for number type input property.

Takes in a number that acts as the maximum value that is valid for this No

input property. Only supported for number type input property.

Table 5-6. Supported data types and meta data for custom scripts

Supported data types

Supported meta data for input

String m type: One of String | Text ...

Text m default: Default value

List: as a list of any type m options: List or a map of options, to be used with
Map: as map[stringlany selection or radio button

Secure: rendered as password text box, encrypted = min: Minimum value or size

when you save the custom task B max: Maximum value or size

Number B title: Detailed name of the text box

Boolean: appears as text boxes m placeHolder: Ul placeholder

URL: same as string, with additional validation m description: Becomes a tool tip

Selection, radio button

For example:

inputProperties:

— hame:

type:
title:

message
text
Message
placeHolder:
defaultValue:
bindable:
labellInfo:
labelMessage:

Hello Slack
true

true

code

VMware, Inc.

Message for Slack Channel

This message is posted to the Slack channel link provided in the

132

Using and Managing vRealize Automation Code Stream

3 Declare the output properties in your script.
The script captures output properties from the business logic code: section of your script,
where you declare the context for the output.

When the pipeline runs, you can enter the response code for the task output. For example,
200.

Keys that Code Stream supports for each outputProperty.

key Description

type Currently includes a single value of 1label.

name Key that the code block of the custom integration YAML emits.
title Label in the user interface that displays outputProperty.

For example:

outputProperties:
- name: statusCode
type: label
title: Status Code

4 To interact with the input and output of your custom script, get an input property or set an
output property by using context.

For an input property: (context.getInput ("key"))
For an output property: (context.setOutput ("key", "value"))
For Node.js:

var context = require("./context.js")

var message = context.getInput ("message");

//Your Business logic
context.setOutput ("statusCode", 200);

For Python:

from context import getInput, setOutput
message = getInput ('message')

//Your Business logic

setOutput ('statusCode', '200")

For Shell:

Input, Output properties are environment variables
echo ${message} # Prints the input message

//Your Business logic

export statusCode=200 # Sets output property statusCode

VMware, Inc. 133

Using and Managing vRealize Automation Code Stream

5 Inthe code: section, declare all the business logic for your custom integration.

For example, with the Node.js runtime environment:

code: |
var https = require('https'):;

var context = require("./context.js")

//Get the entered message from task config page and assign it to message var
var message = context.getInput ("message");
var slackPayload = JSON.stringify(

{

text: message

}) i

const options = {

hostname: 'hooks.slack.com',

port: 443,

path: '/YOUR SLACK WEBHOOK PATH',

method: 'POST',

headers: {
'Content-Type': 'application/json',
'Content-Length': Buffer.bytelength (slackPayload)

}i

// Makes a https request and sets the output with statusCode which
// will be displayed in task result page after execution
const req = https.request (options, (res) => {
context.setOutput ("statusCode", res.statusCode);
1) ;

req.on('error', (e) => {
console.error (e) ;

1)
req.write (slackPayload);
reqg.end();

6 Before you version and release your custom integration script, download the context file for
Python or Node.js and test the business logic that you included in your script.

a Place the pointer in the script, then click the context file button at the top of the canvas.
For example, if your script is in Python click CONTEXT.PY.

b Modify the file and save it.

¢ On your development system, run and test your custom script with the help of the context
file.

7 Apply a version to your custom integration script.
a Click Version.

b Enter the version information.

VMware, Inc. 134

Using and Managing vRealize Automation Code Stream

c Click Release Version so that you can select the script in your custom task.

d To create the version, click Create.

Creating Version

Version * 1.0
Drescription Mew
Change Log Mew for 1.0
Release Version m L.

CAMCEL CREATE

8 To save the script, click Save.

9 Inyour pipeline, configure the workspace.

This example uses a Docker workspace.

VMware, Inc.

135

Using and Managing vRealize Automation Code Stream

a Click the Workspace tab.

b Select the Docker host and the builder image URL.

Demo-customTask-nodejs =)

B Workspace
Workspace @

Host@ *

Builder image URL@ *

mage registry @

Working directory @

Cache @

Git clone

8§ Model B Output

Docker-saas

nodelatest

--Select Container Registry Endpoint--

f this pipeline links to Git through a webhook, the pipeline triggers on Git events. For
Cl tasks, the linked Git repository, which receives details from the Git webhook,

automatically clones the workspace.

10 Add a custom task to your pipeline, and configure it.

a Click the Model tab.

b Add a task, select the type as Custom, and enter a relevant name.

VMware, Inc.

136

Using and Managing vRealize Automation Code Stream

c Select your custom integration script and version.
d To display a custom message in Slack, enter the message text.

Any text you enter overrides the defaultvalue in your custom integration script. For
example:

CustomTask-IX (Enases)

@ Workspace 48 Input #] Model B Output
» & Q Task :TaskO Notifications Roliback OB

Stage0 @O = Task name® Tasko

I p Type * Custom v
TaskO H i —

continue en faiure ‘:l

Exacute task © Always () On condition
+Parallel Task -

Custom Task

Task samplel
wersion version-shell .
Shell Message @ 3 Hello Slack

Cutput Parameters

(responseCode) (properties)

Stage

11 Save and enable your pipeline.

a Click Save.

b On the Pipeline tab, click Enable pipeline so that the circle moves to the right.
12 Run your pipeline.

a Click Run.

b Look at the pipeline execution.

VMware, Inc. 137

Using and Managing vRealize Automation Code Stream

Confirm that the output includes the expected status code, response code, status, and

For example, a statusCode of 200 might

indicate a successful Slack post, and a responseCode of 0 might indicate that the script

C
declared output.
You defined statusCode as an output property.
succeeded without error.

d

To confirm the output in the execution logs, click Executions, click the link to your pipeline,

click the task, and look at the logged data. For example:

T

ACK

m

{

o{gcustom-int-demo #5 C

| & Taski |

Task name
Type

=

statu

5 [
Duration
Continue on failure

Execute task

Cutput

[
L]

statusCode

=

Response code

+ node -r
Logs

OMPLETED | O %

ACTIONS ¥

{21

.foontext.js app.js

VMware, Inc.

138

Using and Managing vRealize Automation Code Stream

13 If an error occurs, troubleshoot the problem and run the pipeline again.

For example, if a file or module in the base image is missing, you must create another
base image that includes the missing file. Then, provide the Docker file, and push the image
through the pipeline.

Results

Congratulations! You created a custom integration script that connects Code Stream to your Slack
instance, and posts a message to a Slack channel.

What to do next

Continue to create custom integrations to support using custom tasks in your pipelines, so that
you can extend the capability of Code Stream in the automation of your software release lifecycle.

How do | use the resource properties of a cloud template
task in my next task

When you use a cloud template task in Code Stream, a common question is how to use the output
of that task in a subsequent task in your pipeline. To use the output of a cloud template task, such
as a cloud machine, you must know how to find the resource properties in the deployment details
of the cloud template task, and the IP address of the cloud machine.

For example, the deployment details of a VMware Cloud Template include the cloud machine
resource and its IP address. In your pipeline, you can use the cloud machine and IP address as a
variable to bind a cloud template task to a REST task.

The method that you use to find the IP address for the cloud machine is not typical, because

the deployment of the VMware Cloud Template must finish before the deployment details are
available. Then, you can use the resources from the VMware Cloud Template deployment to bind
your pipeline tasks.

m The resource properties that appear in a cloud template task in your pipeline are defined in the
VMware Cloud Template in Cloud Assembly.

® You might not know when a deployment of that cloud template finished.

m A cloud template task in Code Stream can only display the output properties of the VMware
Cloud Template after the deployment finished.

This example can be especially useful if you are deploying an application and invoking various
APIs. For example, if you use a cloud template task that calls a VMware Cloud Template, which
deploys a Wordpress application with a REST API, you can locate the IP address of the deployed
machine in the deployment details, and use the API to test it.

The cloud template task supports you to use variable binding by displaying the type ahead auto fill
details. It is up to you how you bind the variable.

VMware, Inc. 139

Using and Managing vRealize Automation Code Stream

This example shows you how to:

Find the deployment details and resource properties for your cloud template task in a pipeline
that ran and succeeded.

Find the cloud machine IP address in the resources section of the deployment details.
Add a REST task subsequent to the cloud template task in your pipeline.

Bind the cloud template task to the REST task by using the cloud machine IP address in the
URL of the REST task.

Run your pipeline and watch the binding work from the cloud template task to the REST task.

Prerequisites

= Verify that you have a working VMware Cloud Template that is versioned.

m Verify that the deployment of the VMware Cloud Template succeeded in Cloud Assembly.

m Verify that you have a pipeline that includes a cloud template task that uses that VMware
Cloud Template.

m Verify that your pipeline ran and succeeded.

Procedure

1 Inyour pipeline, locate the IP address of the cloud machine in the resources section of your

cloud template task deployment details.
a Click Actions > View executions.

b In a pipeline run that succeeded, click the link to the pipeline execution.

EXE‘CUUOHS (items) GUIDED SETUP
Show | Nested Executions Pipeline Link | 5e94a7bf-5578-40€9-98bf-ba6bade8753f C
Q. =
@
D{D pipelinebp-IX#1 ((coMpLETED) Stages: G ACTIONS v
0 X . .
By @vmware.com . on Nov 4, 2020, 2:36:04 PM ¢ Input : -
© 0 Tags Execution Completed ¥ Output - -

Comments:test

¢ Under the pipeline name, click the link to the Task.

< BACK ¥ #l
0 3 o e ryr— .
- COMPLETED -
ofp pipelinebp-IX #1 (cowrerEs) actons
® Stage0
@ Tasko ‘
Project bhawesh
Execution pipelinebp-IX #1
Status (compLETED)
Message Execution Completed.

VMware, Inc. 140

Using and Managing vRealize Automation Code Stream

d Inthe Output area, locate the Deployment details.

Type

Status

Message

Duration

Qutput

StageO

Task0

Task name

Precondition

Deployment
deployment_c7185¢47-1¢12-40¢5-9451-cbbbc4b16c39

U{E p|pe||nebp—|x Hf1 (CcompEmED) AcTionsw

TaskQ VIEW QUTPUT JSON
VMware cloud template

P p—

§ COMPLETED)

Execution Completed.

O milliseconds (Nov 4, 2020, 2:36:13 PM - N

Continue on failure Ne

Deployment details

Input

Action

Create Deployment

Cloud template

1~ { p
2 "id": 7185c47-1c12-48c5-9451-cbbbcdblecBa”, blawe=k
3 "name": “"deployment_c7185¢c47-1c12-48c5-9451 Cloud template version
-cbbbc4b16c89”,
4 “description”: "Pipeline Service triggered operation”, 4
5 “orgld”: "434f6917-4e34-4537-b6c@-3bf3638a71bc",
6 "blueprintId”: "8d1dd8@1-3232-4F3b-adde-2778163dfelf",
7 "blueprintVersion": "4",
8 "createdAt”: "2028-11-84T21:36:14.508838Z",
9 "createdBy": "kernb@vmware.com",
1e "lastUpdatedAt": "2028-11-94T721:52:45.2438287",
11 edBy": “kernb@wmare.com”,
12 RS
13 simulated": false,
14 UprojectId”: "287fB448-d26F-4065-b318-9212adb3c455",
15~ "resources": {
16 - "Cloud_Machine_1[@]": {
17 "id": "/resources/compute/f5aB46f3-c97c-4145-9e28
-951c36bd721c",
18 “name”: "Cloud_Machine_1[8]" |
13 “powerState”: "ON™.

VMware, Inc.

141

Using and Managing vRealize Automation Code Stream

e Inthe resources section of the deployment details, locate the cloud machine name.

You will include the syntax for the cloud machine name in the URL of your REST task.

f Tofind the binding expression for the output property of the cloud template task, click
VIEW OUTPUT JSON, search for the address property, and locate the cloud machine IP
address.

The binding expression appears below the property and search icon in the JSON output.

Stage0.TaskO.output

18~ ine_1[@]": {

13 fresources/compute/f5a846f3-c97¢-4145-9e28-951c36bd721c",

20 : "Cloud_Machine_1[@]",

21 - erStat 'ON"

22 “address": 128.79.51",‘

23 “resourcelinl ources/compute/f5a846f3-c97c-4145-9e28-951c36bd721c",
24 "compenentTy) Cloud.vSphere.Machine”,

25 "endpointT sphere

26 "resourceham "Cloud_Machine_l1-mcm187515-152919380820",

27 "resourcel 588461 3-c97c-4145-9e28-951c36bd721c",

28 ": "/resources/compute-descriptions/fcb270b@-34bd-4b27-bcdb-Thfcc78bed23",
29 "

38

31

32

Path finder address

${Stage0.Task0.output.deploymentDetails.resources['Cloud_Machine_1[0]'].address}
${Stage0.Task0.output.deploymentDetails.resources['Cloud_Machine_1[0]'].networks[0].address}

X

The address resource property displays the cloud machine IP address. For example:

2 Return to your pipeline model, and enter the URL in your REST task.

a C
b C

VMware, Inc.

"resources": {
"Cloud Machine 1[0]": {
"name": "Cloud Machine 1[0]",
"powerState": "ON",

"address": "10.108.79.51",

"resourceName": "Cloud Machine 1-mcml187515-152919380820"

lick Actions > View Pipeline.

lick the REST task.

142

Using and Managing vRealize Automation Code Stream

¢ Inthe REST Request URL area, enter $, select the Stage, Task, output,
deploymentDetails, and enter resources.

The ability to type ahead with auto fill is available up to the point that you must enter

resources.

d Enter the rest of the cloud machine resource from the deployment details as:
{'Cloud Machine 1[0]'].address}

@ Workspace il Input 3 Model B Cutput

= = ¥ & - Task ‘Taskl Notifications Rollback _aoB

i StageO

Continue on failure [l
Tasko

k<

VMware cloud template]

REST Request

Parallel Task Parallel Task Action * GET

URL:S * ask0 output deploymentDetails} rEsources('CIoud_Machme_‘\[o]'],a(ldress}{

For the cloud machine entry, you must use the square bracket notation as shown.

The complete URL format is: $
{stage0.Task0.output.deploymentDetails.resources{'Cloud Machine 1[0]'].address}

3 Run your pipeline and watch the REST task use the cloud machine and IP address from the
output of your cloud template task as the URL to test.

Results

Congratulations! You found the cloud machine name and IP address in the deployment details and
JSON output of a cloud template task, and used them to bind your cloud template task output to
your REST task URL input in your pipeline.

What to do next

Continue to explore using binding variables from resources in the cloud template task with other
tasks in your pipeline.

How do | use a REST API to integrate Code Stream with
other applications

Code Stream provides a REST plug-in, which allows you to integrate Code Stream with other
applications that use a REST API so that you can continuously develop and deliver software
applications that must interact with each other. The REST plug-in invokes an API, which sends and
receives information between Code Stream and another application.

With the REST plug-in, you can:
m Integrate external REST API-based systems into a Code Stream pipeline.
m Integrate a Code Stream pipeline as part of the flow of external systems.

The REST plug-in works with any REST API, and supports GET, POST, PUT, PATCH, and DELETE
methods to send or receive information between Code Stream and other applications.

VMware, Inc. 143

Using and Managing vRealize Automation Code Stream

Table 5-7. Preparing a pipeline to communicate over the REST API

What you do What happens as a result

Add a REST task to your pipeline. The REST task communicates information between applications, and can provide
status information for a successive task in the pipeline stage.

In the REST task, select the REST The pipeline task calls the URL when the pipeline runs.

action and include the URL. For POST, PUT, and PATCH actions, you must include a payload. In the payload,
you can bind your pipeline and task properties when the pipeline runs.

Consider this example. Example use of the REST plug-in:

You can add a REST task to create a tag on a Git commit for a build, and have the
task post a request to get the check-in ID from the repository. The task can send
a payload to your repository and create a tag for the build, and the repository can
return the response with the tag.

Similar to using the REST plug-in to invoke an API, you can include a Poll task in your pipeline to
invoke a REST API and poll it until it completes and the pipeline task meets the exit criteria.

You can also use REST APIs to import and export a pipeline, and use the example scripts to run a
pipeline.

This procedure gets a simple URL.

Procedure
1 To create a pipeline, click Pipelines > New Pipeline > Blank Canvas.
2 Inyour pipeline stage, click + Sequential Task.
3 Inthe task pane, add the REST task:
a Enter a name for the task.
b Inthe Type drop-down menu, select REST.
¢ Inthe REST Request area, select GET.

To have the REST task request data from another application, you select the GET method.
To send data to another application, you select the POST method.

d Enter the URL that identifies the REST API endpoint. For example, https://

www.google.com.

For a REST task to import data from another application, you can include

the payload variable. For example, for an import action, you can enter s
{Stage0.export.responseBody}. If the response data size exceeds 5 MB, the REST task
might fail.

e To provide authorization for the task, click Add Headers and enter a header key and value.

VMware, Inc. 144

Using and Managing vRealize Automation Code Stream

Test (Eaved)

@ Workspace 4 Input] Model B Output
— S}
StageO o0
Tasko
REST
* i+ Sequential Task

+Parallel Task

Task -TaskO Notifications

Taskname® *
Type *
Continue on failure

Execute task

REST Request
Action *
URLS *

Agent endpoint

Rollback

TaskQ

VALIDATE TASK -y =]

REST
O

@ Always () On condition

--Select Agent endpoint—- -

7 C

Stage Headers Accept application/json (-]
Content-Type application/json [-X+]
Qutput Parameters
Last savedt en hour ago
To save your pipeline, click Save.
5 On the pipeline tab, click Enable pipeline.
Test (Enaved)
@ Workspace 8 Input »§ Model B Output
» =4 Q, Pipeline Notifications =g =
StageO R Praject Project-1
© TaskD Pipeline name * Test
REST T
. Enable pipeline @ [@]
+ Parallel Task Concurrency & * 10
Description
P

lcon ‘G, [cHance | [Remoue

Tags® Ent

6 Click Save, then click Close.
lick Run.
145

VMware, Inc.

Using and Managing vRealize Automation Code Stream

8 To watch the pipeline run, click Executions.

Executions (oiems)
a v|c

- » (T RUNNING) Stages: e ACTIONS ~
(- est# e
-
By system-user on 11/26/2013 3:11 PM % Input - n/fa
0% RUNNING <% Output - n/a

VMware, Inc. 146

Using and Managing vRealize Automation Code Stream

9 To verify that the REST task returns the information you expect, examine the pipeline
execution and the task results.

a After the pipeline completes, to confirm that the other application returned the data you
requested, click the link to the pipeline execution.

b Click the REST task in the pipeline.

¢ Inthe pipeline execution, click the task, observe the task details, and verify that the REST
task returned the expected results.

The task details display the response code, body, header keys, and values.

< BACK

@ Stageo

@ Task0 l

Task name

Type

Status

Duration

Continue on failure
Execute task
Response

Code

Body

Headers

‘-I:I;Test ff2 ((COMPLETED) OW ACTIONS v

TaskQ VIEW QUTPUT JSON
REST
(COMPLETED) Execution Completed.

15 (11/26/2018 3:45 PM - 11/26/2018 3:45 PM)

200

"<!doctype html»<html itemscope=\"\" itemtype=\"http://schema.org/WebPage\" lang=\"en-IMN\"><head»<meta content=\"text/
html; charset=UTF-8\" http-equiv=\"Content-Type\"><meta content=\"/images /branding/googleg/1x/googleg_standard_color_1

28dp.png\" itemprop=
e={kEI:"cnfali6KpIIeViuwXx-aloDA' ,kEXPI: '@,1353747,57,58,1150,454,303,1017,1128,286,698,527,730,142,184, 293,132, 278,428,
35@,30,524,27,275,401,457,118,114,56,164,2336158, 235,32,45,23,6,1,329219,1294,12383,4855,19577,13114, 8163, 7885, 867,685
6,636,2239,3232,5281,1108, 3335, 2,2, 4685, 2196, 369,1212, 2182,4133,1372, 224, 887, 1331, 26@, 1928, 2714,1367,573,835, 284,2,57

mage\,"><title>Google< /title><script nonce=\"alkiw/ydugkGraCHUEQ0Gzg==\">(function(){window.googl

9,727,612,1828,58,2,2,2,189,1108,1712, 28,2584, 4082, 1693, 664,630, 8, 30,1278, 773, 276,1230, 689,134, 978,438, 2487 ,85@, 525, 2
2,599,5,2,2,1963,538, 3,1959, 185, 465,556,905 ,1378, 966,942,108, 334,139, 1198, 154, 386, 8,103, 81,7, 3, 25,463, 620, 20, 089, 406,
458,1847,93,676,536,427,269,1456,1, 2833,313,876,412,2,557, 73,1483, 698,59, 318, 273,188, 167,323,744, 11,1119, 38,363,557,4
38,135,145,155,497,2,718,383,5978,487,47,1080,901,387,422, 659, 359, 8,59, 32,416, 283,9,1,211, 2,468, 25,68, 386, 282,528,307,
2,67,3e,13,1,255,122,143,217,37,628,255,1,1125, 264, 28,7,2,479,241,129,43, 200, 188,481,709, 29,57, 201, 337,65, 97,167, 82,24
7,1@9,104%9,14,758,7,127,179,9,21,261,1413, 5977597, 12,1861, 581,134, 43, 5097424, 99, 2800895 , 4, 1572, 549, 332, 445,1,2,80,1,98
@,583,6,367,1,8,1,2,2132,1,1,1,1,1,414,1,748,141,297,169, 301, 24, 2,8, 96,58, 2,47, 22307501 " , authuser: @, kscs: ' c9cI1BFO_cnf
BlEKp] IeVkuwdix-aLoDA" ,kGL: 'IN" }; google.kHL="en-IN";}}();google.time=Function{){return{new Date).getTime()}; (function()

{google.lc=[];google.1i=@;google.getEI=function({a){for (var b;al&(!a.getAttribute||!(b=a.getAttribute(\"eid\"})});)a=

-p

Header Key Header Value
X-Frame-Options SAMECRIGIN
Transfer-Encoding chunked
Cache-Control private, max-age=0
Server gws

i S LTI 11, =ma4 A 20 Do

VMware, Inc.

147

Using and Managing vRealize Automation Code Stream

10 To see the JSON output, click VIEW OUTPUT JSON.

Stage0.TaskO.output X

1=

2~ "responseHeaders™: {

3 "¥-Frame-Options": "SAMECRIGIN",

2 "Transfer-Encoding": “chunked",

5 "Cache-cContrel”: "private, max-age=0",

B "Server": "gws",

7 "AlE-Sve™: "quic=\":443\"; ma=2592800; v=\"44,43,35,35\"",

8 "set-Cookie™: "MID=148
=RTUKVIVhygaKwAZR1 S8y CCSEWEWos Y Fn oW FQINSFNASDaV rXUmSB 1 8P YKMX1Z_zRNp3usXTEMpd7 ¥ 1gRUOSTMETC7cTERDD
Umonj3cTppHe3PHIXIPEHNTSZEWeb3 cXtjVIhVo1S85ezVXaTSRYFCE8E_XIHZIEKgESuWL1aE; expires=Tue, 28-May-2819
22:45:86 GMT; path=/; domain=.google.com; Hittponly",

g "Expires": "-1",

18 "PIP": "CP=\"Thisz is not a P3P policy! See g.co/p3phelp for more info.\"",

11 "X-¥55-Protection”: "1; mode=block™,

12 “"Date": "Mon, 26 Now 2818 22:45:86 GMT",

13 "Comtent-Type”: “"text/miml; charset=IS0-8853-1"

14 T

15 "responseBody”: "<l!doctype himl><html itemscepe=\"\" itemtype=\"http://schema.org/wWebPage\" lang=\"en-IN\"

Path finder Enter key Q

»chead»<meta content=\"text/html; charset=uTF-s\" http-equiv=\"content-Type\"><meta content=\"/images
fbranding/googleg/1x/googleg_standard_color_123dp.png\" itemprop=\"image\"»<titlex>Google</titler«script
nonce=\"aMww/ydugkeraCcHUsQQGEzg==\">(function{){window.google={kEI: 'cnfeWeKpIIevkuXx-aLcDA" ,KEXPI: '8
»,1353747,57,52,1150,454,383,1e17,1128,286,698,527,738,142,184,2%3,132,278,4208,358,38,524,27,275,401 ,457
,11@,114,55,164,2336158,235,32,45,23,6,1,329219, 1234, 12383, 4855, 19577, 13114,5163, 7885, 867, 6856, 636, 2239
,3232,5281,1188,33325,2,32,46085,2196,269,1212,2182 ,41232,1372,224,887,1331,26@8,1028,2714,1367,573, 835,284
,2,573,727,612,1820,58,2,2,2,189,1188,1712, 28,2584, 482, 1693, 564,630, 5, 380,1270, 773,276, 1238, 609,134,978
,43@,2487,858,525,22,599,5,2,2,1963,528,3, 1959, 185,465,556, 985, 1375, 966,942,185 ,334,138,1198, 154,386, 8
,1ee3,81,7,3,25,452,628,29,989,4086,458,1847,93, 676,536,427, 269, 1456,1, 2833, 312, 876,412,2,557, 73,1483
,638,59,318,273,1038,167,323, 744,181, 1119, 38, 363,557,438, 135,145, 155,457, 2, 718, 383, 978, 487, 47, 1858, 981
,387,422,659,359,8,59,32,416,283,9,1, 211, 2,468, 25,68, 386,282 528,387, 2,67,38,13,1, 255,122,143, 217,37
,628,255,1,1125,264,28,7,2,479,241,129,43, 28e, 188,481,789, 29,57, 201, 337,65,97, 167, 82, 247,189,1843,14

Results

Congratulations! You configured a REST task that invoked a REST API and sent information
between Code Stream and another application by using the REST plug-in.

What to do next

Continue to use REST tasks in your pipelines to run commands and integrate Code Stream with
other applications so that you can develop and deliver your software applications. Consider using
poll tasks that poll the API until it completes, and the pipeline task meets the exit criteria.

How do | leverage pipeline as code in Code Stream

As a DevOps administrator or developer, you might want to create a pipeline in Code Stream by
using YAML code, instead of using the user interface. When you create pipelines as code, you can
use any editor and insert comments in the pipeline code.

In your pipeline code, you can refer to external configurations such as environment variables
and security credentials. When you update variables that you use in your pipeline code, you can
update them without having to update the pipeline code.

You can use the pipeline YAML code as a template to clone and create other pipelines, and share
the templates with others.

VMware, Inc.

148

Using and Managing vRealize Automation Code Stream

You can store your pipeline code templates in a source control repository, which versions them
and tracks updates. By using a source control system, you can easily back up your pipeline code,
and restore it if needed.

Prerequisites
m Verify that you have a code editor.

m |f you plan to store your pipeline code in a source control repository, verify that you can access
a working instance.

Procedure
1 Inyour code editor, create a file.
2 Copy and paste the sample pipeline code, and update it to reflect your specific pipeline needs.

3 Toinclude an endpoint to your pipeline code, copy and paste the example endpoint code, and
update it to reflect your endpoint.

When using a Kubernetes API endpoint in the pipeline workspace, Code Stream creates the
necessary Kubernetes resources such as ConfigMap, Secret, and Pod to run the continuous
integration (CI) task or custom task. Code Stream communicates with the container by using
the NodePort.

The Code Stream pipeline workspace supports Docker and Kubernetes for continuous
integration tasks and custom tasks.

For more information about configuring the workspace, see Configuring the Pipeline
Workspace.

4 Save the code.
5 To store and version your pipeline code, check the code into your source control repository.

6 When you create a continuous integration and delivery pipeline, you must import the
Kubernetes YAML file.

To import the Kubernetes YAML file, select it in the Continuous Delivery area of the smart
pipeline template, and click Process. Or, use the API.

Results

By using the code examples, you created the YAML code that represents your pipeline and
endpoints.

Example: Example YAML code for a pipeline and endpoints

This example YAML code includes sections that represent the workspace for the Code Stream
native build, stages, tasks, notifications, and more in a pipeline.

VMware, Inc. 149

Using and Managing vRealize Automation Code Stream

For examples of code for supported plug-ins, see Chapter 6 Connecting Code Stream to
endpoints

kind: PIPELINE
name: myPipelineName
tags:

- tagl

- tagz

Ready for execution

enabled: false

#Max number of concurrent executions

concurrency: 10

#Input Properties
input:
inputl: '30'
input2: 'Hello'

#Output Properties

output:
BuildNo: 'S${Dev.taskl.buildNo}"
Image: '${Dev.taskl.image}'

#Workspace Definition
ciWorkspace:
image: docker:maven-latest
path: /var/tmp
endpoint: my-k8s
cache:
- ~/.m2

Starred Properties
starred:
input: inputl
output: outputl

Stages in order of execution
stageOrder:

— Dev

- QA

- Prod

Task Definition Section
stages:
Dev:
taskOrder:
- Taskl, Task6
- Task2 Long, Task Long Long
- Taskb
tasks:
Taskl:

VMware, Inc. 150

Using and Managing vRealize Automation Code Stream

type: jenkins
ignoreFailure: false
preCondition: "'
endpoints:
jenkinsServer: myJenkins
input:
job: Add Two Numbers
parameters:
numberl: 10
number2: 20
Task2:
type: blah
repeats like Taskl above
QA:
taskOrder:
- TaskA
- TaskB
tasks:
TaskA:
type: ssh
ignoreFailure: false
preCondition: "'
input:
host: x.y.z.w
username: abcd
password: ${var.mypassword}
script: >
echo "Hello, remote server"
TaskB:
type: blah
repeats like TaskA above

Notificatons Section
notifications:

email:

- stage: Dev #optional ; if not found - use pipeline scope

task: Taskl #optional; if not found use stage scope

event: SUCCESS
endpoint: default

to:
- user@yourcompany.com
- abc@yourcompany.com
subject: 'Pipeline ${name} has completed successfully'

body: 'Pipeline ${name} has completed successfully'

jira:

- stage: QA #optional ; if not found - use pipeline scope

task: TaskA #optional; if not found use stage scope

event: FAILURE

endpoint: myJiraServer

issuetype: Bug

project: Test

assignee: abc

summary: 'Pipeline ${name} has failed'

description: |-

VMware, Inc.

151

Using and Managing vRealize Automation Code Stream

Pipeline ${name} has failed

Reason - ${resultsText}
webhook:
- stage: QA #optional ; if not found - use pipeline scope

task: TaskB #optional; if not found use stage scope
event: FAILURE
agent: my-remote-agent
url: 'http://www.abc.com'
headers: #requestHeaders: '{"build no":"123","header2":"456"}"'
Content-Type: application/json
Accept: application/json
payload: |-
Pipeline ${name} has failed

Reason - ${resultsJson}

This YAML code represents an example Jenkins endpoint.

name: My-Jenkins
tags:
- My-Jenkins
- Jenkins
kind: ENDPOINT
properties:
offline: true
pollInterval: 15.0
retryWaitSeconds: 60.0
retryCount: 5.0
url: http://urlname.yourcompany.com:8080
description: Jenkins test server
type: your.jenkins:JenkinsServer
isLocked: false

This YAML code represents an example Kubernetes endpoint.

name: my-k8s
tags: [
]
kind: ENDPOINT
properties:
kubernetesURL: https://urlname.examplelocation.amazonaws.com
userName: admin
password: encryptedpassword
description: "'
type: kubernetes:KubernetesServer

isLocked: false

VMware, Inc.

Using and Managing vRealize Automation Code Stream
What to do next

Run your pipeline, and make any adjustments as needed. See How do | run a pipeline and see
results.

VMware, Inc. 153

Connecting Code Stream to
endpoints

Code Stream integrates with development tools through plug-ins. Supported plug-ins include
Jenkins, Bamboo, vRealize Operations, Bugzilla, Team Foundation Server, Git, and more.

You can also develop your own plug-ins that integrate Code Stream with other development
applications.

To integrate Code Stream with Jira, you do not need an external plug-in, because Code Stream
includes the Jira ticket creation capability as a notification type. To create Jira tickets on pipeline
status, you must add a Jira endpoint.

This chapter includes the following topics:

m What are Endpoints in Code Stream

m How do | integrate Code Stream with Jenkins
m How do | integrate Code Stream with Git

m How do | integrate Code Stream with Gerrit

m How do | integrate Code Stream with vRealize Orchestrator

What are Endpoints in Code Stream

An endpoint is an instance of a DevOps application that connects to Code Stream and provides
data for your pipelines to run, such as a data source, repository, or notification system.

Your role in Code Stream determines how you use endpoints.
m Administrators and developers can create, update, delete, and view endpoints.

m Administrators can mark an endpoint as restricted, and run pipelines that use restricted
endpoints.

m Users who have the viewer role can see endpoints, but cannot create, update, or delete them.
For more information, see How do | manage user access and approvals in Code Stream.

To connect Code Stream to an endpoint, follow these steps.

1 Add atask in your pipeline

2 Configure the task so that it communicates with the endpoint.

VMware, Inc. 154

Using and Managing vRealize Automation Code Stream

3 Verify that Code Stream can connect to the endpoint by clicking Validate.

4 Then, when you run the pipeline, the task connects to the endpoint so that it can run the task.

For information about the task types that use these endpoints, see What types of tasks are
available in Code Stream.

Table 6-1. Endpoints that Code Stream supports

Endpoint

Bamboo

Docker

Docker Registry

Gerrit

Git

Jenkins

Jira

Kubernetes

PowerShell

SSH

VMware, Inc.

What it provides

Creates build plans.

Native builds can use Docker hosts for
deployment.

Registers container images so that a Docker
build host can pull images.

Connects to a Gerrit server for reviews and
trigger

Triggers pipelines when developers update
code and check it in to the repository.

Builds code artifacts.

Creates a Jira ticket when a pipeline task
fails.

Automates the steps that deploy, scale, and
manage containerized applications.

Create tasks that run PowerShell scripts on
Windows or Linux machines.

Create tasks that run SSH scripts on
Windows or Linux machines.

Versions
supported

6.9.%

271

2.14.%

Git Hub
Enterprise
2.1.8

Git Lab
Enterprise
11.9.12-ee

1.6.* and
2.*

8.3.%

All versions
supported
for Cloud
Assembly
8.4 and
later

1.18 for
Cloud
Assembly
8.3 and
prior

4 and 5

7.0

Requirements

When a pipeline includes an image
from Docker Hub, you must ensure
that the image has cURL or wget
embedded before you run the
pipeline. When the pipeline runs,
Code Stream downloads a binary
file that uses cURL or wget to run
commands.

When using a Kubernetes API
endpoint in the pipeline workspace,
Code Stream creates the necessary
Kubernetes resources such as
ConfigMap, Secret, and Pod to

run the continuous integration (Cl)
task or custom task. Code Stream
communicates with the container by
using the NodePort.

For more information about
configuring the workspace, see

Configuring the Pipeline Workspace.

155

Using and Managing vRealize Automation Code Stream

Table 6-1. Endpoints that Code Stream supports (continued)

Versions
Endpoint What it provides supported Requirements
TFS, Team Manages source code, automated builds, 2015 and
Foundation testing, and related activities. 2017
Server
VRealize Arranges and automates the workflows in 7. and 8.*
Orchestrator your build process.

Example YAML code for a GitHub endpoint

This example YAML code defines a GitHub endpoint that you can refer to in a Git task.

name: github-k8s
tags: [
1
kind: ENDPOINT
properties:
serverType: GitHub
repoURL: https://github.com/autouser/testrepok8s
branch: master
userName: autouser
password: encryptedpassword

privateToken: ''

description: ''

type: scm:git
isLocked: false

How do | integrate Code Stream with Jenkins

Code Stream provides a Jenkins plug-in, which triggers Jenkins jobs that build and test your
source code. The Jenkins plug-in runs test cases, and can use custom scripts.

To run a Jenkins job in your pipeline, you use a Jenkins server, and add the Jenkins endpoint in
Code Stream. Then, you create a pipeline and add a Jenkins task to it.

When you use the Jenkins task and a Jenkins endpoint in Code Stream, you can create a pipeline
that supports multi-branch jobs in Jenkins. The multi-branch job includes individual jobs in each
branch of a Git repository. When you create pipelines in Code Stream that support multi-branch
jobs:

m The Jenkins task can run Jenkins jobs that reside in multiple folders on the Jenkins server.

m You can override the folder path in the Jenkins task configuration so that it uses a different
folder path, which overrides the default path defined in the Jenkins endpoint in Code Stream.

VMware, Inc. 156

Using and Managing vRealize Automation Code Stream

Multi-branch pipelines in Code Stream detect Jenkins job files of type .groovy in a Git
repository or a GitHub repository, and start creating jobs for each branch that it scans in the
repository.

You can override the default path defined in the Jenkins endpoint with a path provided in the
Jenkins task configuration, and run a job and pipeline that is associated with any branch inside
a main Jenkins job.

Prerequisites

Set up a Jenkins server that runs version 1.561 or later.

Verify that you are a member of a project in Code Stream. If you are not a member, ask a Code
Stream administrator to add you as a member of a project. See How do | add a project in Code
Stream.

Verify that a job exists on the Jenkins server so that your pipeline task can run it.

Procedure

1

Add and validate a Jenkins endpoint.
a Click Endpoints > New Endpoint.

b Select a project, and for the type of endpoint select Jenkins. Then, enter a name and a
description.

c Ifthis endpoint is a business-critical component in your infrastructure, enable Mark as
restricted.

d Enter the URL for the Jenkins server.

VMware, Inc. 157

Using and Managing vRealize Automation Code Stream

e Enter the user name and password to log in to the Jenkins server. Then, enter the
remaining information.

Table 6-2. Remaining information for the Jenkins endpoint

Endpoint entry

Folder Path

Folder Path
for multi-branch
Jenkins jobs

URL

Polling Interval

VMware, Inc.

Description

Path for the folder that groups your jobs. Jenkins can run all jobs in the folder. You can
create sub folders. For example:

B folder 1 caninclude job 1

B folder 1 caninclude folder 2, which caninclude job 2

When you create an endpoint for folder 1, the folder pathis job/folder 1, andthe
endpoint only lists job 1.

To obtain the list of jobs in the child folder named folder 2, you must create another
endpoint that uses the folder path as /job/folder 1/job/folder 2/.

To support multi-branch Jenkins jobs, in the Jenkins task, you enter the full path that
includes the Jenkins server URL and the complete job path. When you include a folder
path in the Jenkins task, that path overrides the path that appears in the Jenkins
endpoint. With the custom folder path in the Jenkins task, Code Stream only displays
jobs that are present in that folder.

B For example: https://server.yourcompany.com/job/project

m [f the pipeline must also trigger the main Jenkins job, use: https://

server.yourcompany.com/job/project/job/main

Host URL of the Jenkins server. Enter the URL in the form of protocol://host:port.

For example: http://192.10.121.13:8080

Interval duration for Code Stream to poll the Jenkins server for updates.

158

Using and Managing vRealize Automation Code Stream

f

Table 6-2. Remaining information for the Jenkins endpoint (continued)

Endpoint entry

Request Retry
Count

Retry Wait Time

Description

Number of times to retry the scheduled build request for the Jenkins server.

Number of seconds to wait before retrying the build request for the Jenkins server.

Click Validate, and verify that the endpoint connects to Code Stream. If it does not
connect, correct any errors, then click Save.

Project
Type
Mame *

Description

URL *
Username

Password

Folder Path

Mark restricted

Poll Interval (sec) *

Request Retries *

Edit Endpoint

Retry Wait Time (sec) *

festl

Jenkins

ad

¥ ron-restricted

http(s)f<server_url=<port>

username

Enter password

@ | CREATE vARIABLE

fiob/DevFolder/

15

5

60

SAVE ‘ VALIDATE ‘ ‘ CAMCEL ‘

2 To build your code, create a pipeline, and add a task that uses your Jenkins endpoint.

a

Click Pipelines > New Pipeline > Blank Canvas.

b Click the default stage.

C

In the Task area, enter a name for the task.

VMware, Inc.

159

Using and Managing vRealize Automation Code Stream

d Select the task type as Jenkins.

e Select the Jenkins endpoint that you created.

f From the drop-down menu, select a job from the Jenkins server that your pipeline will run.
g Enter the parameters for the job.

h Enter the authentication token for the Jenkins job.

=)

Build and Deploy (Ee=be)

» = e, Task :Build Notifications =
= Task name @ * Build
Type * Jenkins y

Continue On Failure O

Execute Task © Always () On Condition
B Jenkins
- Parallet Task

Endpoint 23

Job * add_numiers

Numi g 22

MNum2 g 22

+5Stage
Token

Output Parameters

VMware, Inc. 160

Using and Managing vRealize Automation Code Stream

3 Enable and run your pipeline, and view the pipeline execution.

< BACK

s{§Build and Deploy #28 (@wees) 0w actions -

Continue On Failure

Execute Task 4

Key

junitResponse. failCount
junitResponse skipCount
JunitResponse totalCount
junitResponse. successCount

JacocoResponse lineCoverage

jacocoResponse.classCoverage

Jenkins Job

Endpoint aa

Jab Mame add_numbers

Job ID 1428

Jab URL httpd. .. o T D D I I
Job Result

Stagel
|© Buid . _
' . @ Approval for Deployment ‘ @ Deployment ‘ @ Wait for application to start
& Test J J
Task name Build VIEW QUTPUT JSON
Type Jenkins
Status Execution Completed.
Duration s (08/06/2018 12:27 AM - 08/06/2018 12:27 AM)

<~ 2 Zfjobfadd_numbers/1428/

Value

o o o o o o

4 Look at the execution details and status on the pipeline dashboard.

You can identify any failures, and why it failed. You can also see trends about the pipeline

execution durations, completions, and failures.

VMware, Inc.

161

Using and Managing vRealize Automation Code Stream

Execution Details

Execution# v Status

#29 FAILED
#28 (COMFLETED)
#27 (" COMPLETED)
#26 FAILED
#25 [COMPLETED)
#24 (COMPLETED)
523 FAILED

#{§ Build and Deploy aoe s

Status Message

Execution failed on task 'Stage0.Deployment’.
namespaces "prodl” already exists

Execution Completed
Execution Completed

Execution failed on task 'Stage0.Deployment’.
Conflict

Execution Completed
Execution Completed

Execution failed on task 'Stage0.Approval for
Denlovment'. User Oneration reouest has been

0 > 0 e O

Duration

58s

4m 553

Updated On
08/19 10:49PM
08/06 12:30AM
08/06 12:24AM
08/06 1219AM
08/06 12:07AM
08/05 1:59PM

08/06 12:03AM

7D

14D

Results

Congratulations! You integrated Code Stream with Jenkins by adding an endpoint, creating a

pipeline, and configuring a Jenkins task that builds your code.

Example: Example YAML for a Jenkins build task

For the type of Jenkins build task used in this example, the YAML resembles the following code,

with notifications turned on:

test:
type: Jenkins

endpoints:

jenkinsServer: jenkins

input:

job: Add two numbers

parameters:
Numl: '23'
Num2: '23'

What to do next

Review the other sections to learn more

VMware, Inc.

. See Chapter 6 Connecting Code Stream to endpoints.

162

Using and Managing vRealize Automation Code Stream

How do | integrate Code Stream with Git

Code Stream provides a way to trigger a pipeline if a code change occurs in your GitHub, GitLab,
or Bitbucket repository. The Git trigger uses a Git endpoint on the branch of the repository that
you want to monitor. Code Stream connects to the Git endpoint through a webhook.

To define a Git endpoint in Code Stream, you select a project and enter the branch of the Git
repository where the endpoint is located. The project groups the pipeline with the endpoint and
other related objects. When you choose the project in your webhook definition, you select the
endpoint and pipeline to trigger.

Note If you define a webhook with your endpoint and you later edit the endpoint, you cannot
change the endpoint details in the webhook. To change the endpoint details, you must delete and
redefine the webhook with the endpoint. See How do | use the Git trigger in Code Stream to run a
pipeline.

You can create multiple webhooks for different branches by using the same Git endpoint and
providing different values for the branch name in the webhook configuration page. To create
another webhook for another branch in the same Git repository, you don't need to clone the

Git endpoint multiple times for multiple branches. Instead, you provide the branch name in the
webhook, which allows you to reuse the Git endpoint. If the branch in the Git webhook is the same
as the branch in the endpoint, you don't need to provide branch name in the Git webhook page.

Prerequisites

m Verify that you can access the GitHub, GitLab, or Bitbucket repository to which you plan to
connect.

m Verify that you are a member of a project in Code Stream. If you are not, ask a Code Stream
administrator to add you as a member of a project. See How do | add a project in Code
Stream.

Procedure
1 Define a Git endpoint.
a Click Endpoints > New Endpoint.

b Select a project, and for the endpoint type select Git. Then, enter a name and description.

VMware, Inc. 163

Using and Managing vRealize Automation Code Stream

c Ifthis endpoint is a business-critical component in your infrastructure, enable Mark as
restricted.

When you use a restricted endpoint in a pipeline, an administrator can run the pipeline and
must approve the pipeline execution. If an endpoint or variable is marked as restricted,
and a non-administrative user triggers the pipeline, the pipeline pauses at that task, and
waits for an administrator to resume it.

A Project administrator can start a pipeline that includes restricted endpoints or variables if
these resources are in the project where the user is a Project administrator.

When a user who is not an administrator attempts to run a pipeline that includes a
restricted resource, the pipeline stops at the task that uses the restricted resource. Then,
an administrator must resume the pipeline.

For more information about restricted resources, and custom roles that include the
permission called Manage Restricted Pipelines, see:

m How do | manage user access and approvals in Code Stream
m Chapter 2 Setting up Code Stream to model my release process
d Select one of the supported Git server types.

e Enter the URL for the repository with the APl gateway for the server in the path. For
example:

For GitHub, enter: https://api.github.com/vmware-example/repo-example

For BitBucket, enter: https://api.bitbucket.org/{user}/{repo
name} or http(s) : //{bitbucket-enterprise-server}/rest/api/1l.0/users/

{username}/repos/{repo name}
f Enter the branch in the repository where the endpoint is located.

g Select the Authentication type and enter the user name for GitHub, GitLab, or BitBucket.
Then enter the private token that goes with the user name.

m Password. To create a webhook later, you must enter the private token for
the password. Webhooks for Git do not support endpoints created using basic
authentication.

Use secret variables to hide and encrypt sensitive information. Use restricted variable
for strings, passwords, and URLs that must be hidden and encrypted, and to restrict
use in executions. For example, use a secret variable for a password or URL. You can
use secret and restricted variables in any type of task in your pipeline.

m Private token. This token is Git-specific and provides access to a specific action. See
https://docs.gitlab.com/ee/user/profile/personal _access_tokens.html. You can also
create a variable for the private token.

2 Click Validate, and verify that the endpoint connects to Code Stream.

If it does not connect, correct any errors, then click Create.

VMware, Inc. 164

https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html

Using and Managing vRealize Automation Code Stream

New endpoint

Project * test ®

Type * GIT v

Name * DemoApp-Git

Description Git example branch

Mark restricted C’ non-restricted

Git Server Type * GitHub ~

Repo URL® * https:/fapigithub.com/vmware-example/repo-example
Branch * master

Authentication Type * Password ~

Username * ExamplelUser

Password * DOOOCCoeC @ | creatE variaBLE
‘ VALIDATE ‘ ‘ CANCEL ‘

What to do next

To learn more, review the other sections. See How do | use the Git trigger in Code Stream to run a
pipeline.

How do | integrate Code Stream with Gerrit

Code Stream lets you trigger a pipeline when a code review occurs in your Gerrit project. The
trigger for Gerrit definition includes the Gerrit project and the pipelines that must run for different
event types.

The trigger for Gerrit uses a Gerrit listener on the Gerrit server that you will monitor. To define a
Gerrit endpoint in Code Stream, you select a project and enter the URL for the Gerrit server. Then
you specify the endpoint when you create a Gerrit listener on that server.

If you are using a Gerrit server as a Code Stream endpoint in a vRealize Automation instance that
has FIPS enabled, you must verify that your Gerrit configuration file includes the correct message
authentication keys. If the Gerrit server configuration file does not include the correct message

authentication keys, the server cannot start up correctly, and displays this message: privateKey/

PassPhrase is incorrect

VMware, Inc. 165

Using and Managing vRealize Automation Code Stream

Prerequisites
m Verify that you can access the Gerrit server to which you plan to connect.

m Verify that you are a member of a project in Code Stream. If you are not a member, ask a Code
Stream administrator to add you as a member of a project. See How do | add a project in Code
Stream.

Procedure
1 Define a Gerrit endpoint.
a Click Configure > Endpoints and click New Endpoint.

b Select a project, and for the type of endpoint, select Gerrit. Then, enter a name and a
description.

c Ifthis endpoint is a business-critical component in your infrastructure, enable Mark as
restricted.

d Enter the URL for the Gerrit server.

To use the default port, you can provide a port number with the URL or leave the value
blank.

e Enter a username and password for the Gerrit server.
If the password must be encrypted, click Create Variable and select the type:
m Secret. The password resolves when a user who has any role runs the pipeline.

m Restricted. The password resolves when a user who has the Admin role runs the
pipeline.

For the value, enter the password that must be secure, such as the password of a Jenkins
server.

f For the private key, enter the SSH key used to access the Gerrit server securely.
This key is the RSA private key that resides in the . ssh directory.

g (Optional) If a passphrase is associated with the private key, enter the passphrase.
To encrypt the passphrase, click Create Variable and select the type:
m Secret. The password resolves when a user who has any role runs the pipeline.

m Restricted. The password resolves when a user who has the Admin role runs the
pipeline.

For the value, enter the passphrase that must be secure, such as the passphrase for an
SSH server.

2 Click Validate, and verify that the Gerrit endpoint in Code Stream connects to the Gerrit
server.

If it does not connect, correct any errors, then click Validate again.

VMware, Inc. 166

Using and Managing vRealize Automation Code Stream

New endpoint

Project
Type
Name *

Description

Mark restricted
URL
Username *

Password *

Private Key *

Pass Phrase @

test
Gerrit

Gerrit-Demo-Endpoint

B non-restricted

http:/fexample-gerrit mycompany.com:8080

CS_user

AESASRRSAARRRRARRRRRRRRRRRRRR 9 [CREATE VARIABLE

-—-BEGIMN RSA PRIVATE KEY-—-
Proc-Type: 4 ENCRYFTED
DEK-Info: AES-128-CBC FOOCEOBG526AFGTDCT7ADCDOSE2DBFE2

sensee @ | creATE vamiaBLE

CREATE | VALIDATE ‘ | CANCEL ‘

3 Click Create.

4 Verify that the vRealize Automation environment has FIPS enabled, or have your Jenkins job

create the environment with FIPS enabled by using the Jenkins URL.

a Torunthe command from the command line, connect to your vRealize
Automation 8.x appliance over SSH, and log in as the root user. For

example, connect to your fully qualified domain name URL, such as https://

cava-1-234-567.yourcompanyFQDN.com on port 22, 5480, or 443.

b To check for FIPS on vRealize Automation, run the command vracli security fips.

¢ Verify that the command returns FIPS mode: strict.

VMware, Inc.

167

Using and Managing vRealize Automation Code Stream

5 If your Gerrit server is an endpoint in a vRealize Automation instance that has FIPS enabled,
ensure that your Gerrit configuration file includes the correct message authentication (MAC)
keys.

a Open Gerrit and create an SSH key pair.
b Locate the Gerrit server configuration file at ' $site path'/etc/gerrit.config.
c Verify that the Gerrit server configuration file includes one or more message authentication

code (MACQ) keys, except for hmac-MD5.

Note In FIPS mode, hmac-MD5 is not a supported MAC algorithm. To ensure that the Gerrit
server starts up correctly, the Gerrit server configuration file must exclude this algorithm.
If the Gerrit server does not start up correctly, it displays this message: privateKey/

PassPhrase is incorrect

Supported message authentication code (MAC) key names that begin with a plus sign (+)
are enabled. The MAC key names that begin with a hyphen (-) are removed from the list
of default MACs. By default, these supported MACs are available in Code Stream for the
Gerrit server:

B hmac-md5-96

m hmac-shal

B hmac-shal-96
B hmac-sha2-256

®m hmac-sha2-512

What to do next

To learn more, review the other sections. See How do | use the Gerrit trigger in Code Stream to
run a pipeline.

How do | integrate Code Stream with vRealize Orchestrator

Code Stream can integrate with vRealize Orchestrator (vR0O) to extend its capability by running
vRO workflows. vRealize Orchestrator includes many predefined workflows that can integrate
with third-party tools. These workflows help to automate and manage your DevOps processes,
automate bulk operations, and more.

For example, you can use a workflow in a vRO task in your pipeline to enable a user, remove
a user, move VMs, integrate with test frameworks to test your code as the pipeline runs,
and much more. You can browse examples of code for vRealize Orchestrator workflows in
code.vmware.com.

With a vRealize Orchestrator workflow, your pipeline can run an action as it builds, tests, and
deploys your application. You can include predefined workflows in your pipeline, or you can
create and use custom workflows. Each workflow includes inputs, tasks, and outputs.

VMware, Inc. 168

https://code.vmware.com/samples?categories=Sample&tags=vRealize%20Orchestrator

Using and Managing vRealize Automation Code Stream

To run a vRO workflow in your pipeline, the workflow must appear in the list of available workflows

in the vRO task that you include in your pipeline.

Before the workflow can appear in the vRO task in your pipeline, an administrator must perform

the following steps in vRealize Orchestrator:

1 Apply the CODESTREAM tag to the vRO workflow.

2 Mark the vRO workflow as global.

Prerequisites

m Verify that as an administrator you can access an on-premises instance of vRealize
Orchestrator. For help, see your own administrator and the vRealize Orchestrator
documentation.

m Verify that you are a member of a project in Code Stream. If you are not, ask a Code Stream
administrator to add you as a member of a project. See How do | add a project in Code
Stream.

m In Code Stream, create a pipeline and add a stage.

Procedure

1 As an administrator, prepare a vRealize Orchestrator workflow for your pipeline to run.

a

In vRealize Orchestrator, find the workflow that you need to use in your pipeline, such as a
workflow to enable a user.

If you need a workflow that does not exist, you can create it.
In the search bar, enter Tag workflow to find the workflow named Tag workflow.
On the card named Tag workflow, click Run, which displays the configuration area.

In the Tagged workflow text area, enter the name of the workflow to use in your Code
Stream pipeline, then select it from the list.

In the Tag and Value text areas, enter CODESTREAM in capital letters.
Click the check box named Global tag.

Click Run, which attaches the tag named CODESTREAM to the workflow that you need to
select in your Code Stream pipeline.

In the navigation pane, click Workflows and confirm that the tag named CODESTREAM
appears on the workflow card that your pipeline will run.

After you log in to Code Stream, and add a vRO task to your pipeline, the tagged workflow
appears in the workflow list.

2 In Code Stream, create an endpoint for your vRealize Orchestrator instance.

a

b

Click Endpoints > New Endpoint.

Select a project.

VMware, Inc. 169

http://docs.vmware.com/en/vRealize-Orchestrator/index.html
http://docs.vmware.com/en/vRealize-Orchestrator/index.html

Using and Managing vRealize Automation Code Stream

¢ Enter arelevant name.
d Enter the URL of the vRealize Orchestrator endpoint.

Use this format: https://vro-appliance.yourdomain.local: 8281

Do not use this format: https://vro-appliance.yourdomain.local:8281/vco/api

The URL for a vRealize Orchestrator instance that is embedded in the vRealize Automation
appliance, is the FQDN for the appliance without a port. For example: https://vra-
appliance.yourdomain.local/vco

For external vRealize Orchestrator appliances starting with vRealize Automation 8.x, the
FQDN for the appliance is https://vro-appliance.yourdomain. local

For external vRealize Orchestrator appliances included with vRealize Automation 7.x, the
FQDN for the appliance is https://vro-appliance.yourdomain.local:8281/vco

If a problem occurs when you add the endpoint, you might need to import a YAML
configuration with a SHA-256 certificate fingerprint with the colons removed. For example,
B0:01:A2:72... becomes B001A272. ... The sample YAML code resembles:

project: Demo

kind: ENDPOINT

name: external-vro

description: "'

type: vro

properties:
url: https://yourVROhost.yourdomain.local
username: yourusername
password: yourpassword

fingerprint: <your fingerprint>

e Click Accept Certificate in case the URL that you entered needs a certificate.
f Enter the user name and password for the vRealize Orchestrator server.

If you're using a non-local user for authentication, you must omit the domain part of
the user name. For example, to authenticate with sve_vro@Qyourdomain.local you must
enter sve_vro in the Username text area.

3 Prepare your pipeline to run the vRO task.
a Add a vRO task to your pipeline stage.
b Enter a relevant name.
¢ Inthe Workflow Properties area, select the vRealize Orchestrator endpoint.
d Select the workflow that you tagged as CODESTREAM in vRealize Orchestrator.

If you select a custom workflow that you created, you might need to enter the input
parameter values.

VMware, Inc. 170

Using and Managing vRealize Automation Code Stream

e For Execute task, click On condition.

Task wRO workflow

Task namsi@ *
Type *

Duration

Continue on failure
Execute task

Condition %

Workflow Properties

Endpaint
Workflow
Greeting

Qutput Parameters

(: status 31 [C properties :)

Motifications

Raollback

vRO workflow

VALIDATE TASK [EE=E=]

() Always @ On condition

L

&

b

vROER W
Test "
Hello!

VMware, Inc.

m

Using and Managing vRealize Automation Code Stream

f Enter the conditions that apply when the pipeline runs.

When to run pipeline... Select conditions...

On Condition Runs the pipeline task only if the defined condition is evaluated as true. If
the condition is false, the task is skipped.

The vRO task allows you to include a boolean expression, which uses the

following operands and operators.

Pipeline variables such as $ {pipeline.variableName}. Only use
curly brackets when entering variables.

Task output variables such as s

{Stagel.taskl.machines[0] .value.hostIp[0]}.

Default pipeline binding variables such as s {releasePipelineName}.
Case insensitive Boolean values such as, true, false, '"true',
'false'.

Integer or decimal values without quotation marks.

String values used with single or double quotation marks such as
"test", "test'.

String and Numeric types of values such as == Equals and != Not
Equals.

Relational operators such as >, >=, <, and <=.

Boolean logic such as «& and | |.

Arithmetic operators such as +, -, *, and /.

Nested expressions using round brackets.

Strings that include the literal value ABCD are evaluated as false, and
the task is skipped.

Unary operators are not supported.

An example condition might be $ {Stagel.taskl.output} ==

“Passed” || ${pipeline.variableName} == 39

Always If you select Always, the pipeline runs the task without conditions.

g Enter a message for the greeting.

h Click Validate Task, and correct any errors that occur.

4 Save, enable, and run your pipeline.

5 After the pipeline runs, examine the results.

a Click Executions.
b Click the pipeline.

c Click the task.

d Examine the results, input value, and properties.

You can identify the workflow execution ID, who responded to the task and when, and any

comments they included.

VMware, Inc.

172

Using and Managing vRealize Automation Code Stream

Results

Congratulations! You tagged a vRealize Orchestrator workflow for use in Code Stream, and added
a vRO task in your Code Stream pipeline so that it runs a workflow that automates an action in your
DevOps environment.

Example: VRO task output format

The output format for a vRO task resembles this example.

[{

"name": "result",
"type": "STRING",
"description": "Result of workflow run.",
"Value": nn
}I
{
"name": "message",
"type": "STRING",
"description": "Message",
"Value": nn

}H]

What to do next

Continue to include vRO workflow tasks in your pipelines so that you can automate tasks in your
development, test, and production environments.

VMware, Inc. 173

Triggering pipelines in Code
Stream

You can have Code Stream trigger a pipeline when certain events occur.

For example:

m The Docker trigger can run a pipeline when a new artifact gets created or updated.

m The trigger for Git can trigger a pipeline when developers update code.

m The trigger for Gerrit can trigger a pipeline when developers review code.

This chapter includes the following topics:

m How do | use the Docker trigger in Code Stream to run a continuous delivery pipeline
m How do | use the Git trigger in Code Stream to run a pipeline

m How do | use the Gerrit trigger in Code Stream to run a pipeline

How do | use the Docker trigger in Code Stream to run a
continuous delivery pipeline

As a Code Stream administrator or developer, you can use the Docker trigger in Code Stream.
The Docker trigger runs a standalone continuous delivery (CD) pipeline whenever a build artifact is
created or updated. The Docker trigger runs your CD pipeline, which pushes the new or updated
artifact as a container image to a Docker Hub repository. The CD pipeline can run as part of your
automated builds.

For example, to continuously deploy your updated container image through your CD pipeline,

use the Docker trigger. When your container image gets checked into the Docker registry, the
webhook in Docker Hub notifies Code Stream that the image changed. This notification triggers
the CD pipeline to run with the updated container image, and upload the image to the Docker Hub
repository.

To use the Docker trigger, you perform several steps in Code Stream.

VMware, Inc. 174

Using and Managing vRealize Automation Code Stream

Table 7-1. How to use the Docker trigger

What you do...

Create a Docker registry endpoint.

Add input parameters to the pipeline that auto inject
Docker parameters when the pipeline runs.

Create a Docker webhook.

Add and configure a Kubernetes task in your pipeline.

Include a local YAML definition in the task.

More information about this action...

For Code Stream to trigger your pipeline, you must have
a Docker Registry endpoint. If the endpoint does not exist,
you can select an option that creates it when you add the
webhook for the Docker trigger.

The Docker registry endpoint includes the URL to the
Docker Hub repository.

You can inject Docker parameters into the pipeline.
Parameters can include the Docker event owner name,
image, repository name, repository namespace, and tag.
In your CD pipeline, you include input parameters that the
Docker webhook passes to the pipeline before the pipeline
triggers.

When you create the Docker webhook in Code Stream, it
also creates a corresponding webhook in Docker Hub. The
Docker webhook in Code Stream connects to Docker Hub
through the URL that you include in the webhook.

The webhooks communicate with each other, and trigger
the pipeline when an artifact is created or updated in
Docker Hub.

If you update or delete the Docker webhook in Code
Stream, the webhook in Docker Hub is also updated or
deleted.

When an artifact is created or updated in the Docker

Hub repository, the pipeline triggers. Then, it deploys the
artifact through the pipeline to the Docker host in your
Kubernetes cluster.

The YAML definition that you apply to the deployment
task includes the Docker container image. If you need to
download an image from a privately-owned repository, the
YAML file must include a section with the Docker config
Secret. See the CD portion of Planning a CICD native build
in Code Stream before using the smart pipeline template

When an artifact is created or updated in the Docker Hub repository, the webhook in Docker Hub
notifies the webhook in Code Stream, which triggers the pipeline. The following actions occur:

1 Docker Hub sends a POST request to the URL in the webhook.

Code Stream runs the Docker trigger.

The Docker trigger starts your CD pipeline.

2
3
4 The CD pipeline pushes the artifact to the Docker Hub repository.
5

Code Stream triggers its Docker webhook, which runs a CD pipeline that deploys the artifact to

your Docker host.

VMware, Inc.

175

Using and Managing vRealize Automation Code Stream

In this example, you create a Docker endpoint and a Docker webhook in Code Stream that

deploys your application to your development Kubernetes cluster. The steps include the example
code for the payload that Docker posts to the URL in the webhook, the API code that it uses, and
the authentication code with the secure token.

Prerequisites

m Verify that a continuous delivery (CD) pipeline exists in your Code Stream instance. Also verify

that it includes one or more Kubernetes tasks that deploy your application. See Chapter 4
Planning to natively build, integrate, and deliver your code in Code Stream .

m Verify that you can access an existing Kubernetes cluster where your CD pipeline can deploy

your application for development.

m Verify that you are a member of a project in Code Stream. If you are not, ask a Code Stream
administrator to add you as a member of a project. See How do | add a project in Code

Stream.

Procedure

1 Create a Docker registry endpoint.

a

b

Click Endpoints.

Click New Endpoint.

Start typing name of existing project.
Select the type as Docker Registry.
Enter a relevant name.

Select the server type as DockerHub.

Enter the URL to the Docker Hub repository.

Enter the name and password that can access the repository.

VMware, Inc.

176

Using and Managing vRealize Automation Code Stream

New endpoint

Project *
Type *
Name *

Description

Mark restricted
Server type *

Repo URL *

Username *

Password *

O, AWS_PGProj
Docker Registry

dockerhub-endpoint

(3 non-restricted

DockerHub

https://hub.docker.com/repository/docker/automation/cs-builder

ACCEPT CERTIFICATE

admin

[CREATE VARIABLE]

CANCEL

VMware, Inc.

177

Using and Managing vRealize Automation Code Stream

2 Inyour CD pipeline, set the input properties to auto inject Docker parameters when the

pipeline runs.

e,
Sm—1 | Enabled |

@ VWorkspace 48 Input =] Model B Output

Input Parameters @

Auto inject parameters () Gerrit () Git) Docker
ADD ADD/REMOVE INJECTED PARAMETERS]
Starred (1) Mame
oy DOCKER_EVENT_OWNER_MAME
Ry DOCKER_IMAGE
Y DOCKER_REPO_NAME

DOCKER_REPO_NAMESPACE
DOCKER_TAG

Lr Lp

() None

3 Create a Docker webhook.
a Click Triggers > Docker.
b Click New Webhook for Docker.
c Select a project.
d Enter arelevant name.

e Select your Docker registry endpoint.

If the endpoint does not yet exist, click Create Endpoint and create it.

f Select the pipeline with Docker injected parameters for the webhook to trigger. See Step

2.

If the pipeline was configured with custom added input parameters, the Input Parameters
list displays parameters and values. You can enter values for input parameters that will be
passed to the pipeline with the trigger event. Or you can leave the values blank, or use the

default values if defined.

For more information about parameters on the input tab, see How you'll create the CICD

pipeline and configure the workspace.

VMware, Inc.

178

Using and Managing vRealize Automation Code Stream

g Enter the API Token.

The CSP API token authenticates you for external APl connections with Code Stream. To
obtain the API token:

1 Click Generate Token.

2 Enter the email address associated with your user name and password and click
Generate.

The token that you generate is valid for six months. It is also known as a refresh token.

m To keep the token as a variable for future use, click Create Variable, enter a name
for the variable and click Save.

m To keep the token as a text value for future use, click Copy and paste the token into
a text file to save locally.

You can choose to both create a variable and store the token in a text file for future
use.

3 Click Close.

h Enter the build image.

VMware, Inc. 179

Using and Managing vRealize Automation Code Stream

i Enteratag.
Docker
Activity Webhooks for Docker
Webhook URL D https:{fi m fcodestream/api/registry-webhook-listeners/54bd030d
Project test
Mame * sm-1-Docker-WH
Description Docker m trigger for sm-1
Docker Registry Docker-Register-Endpoint
Pipeline * sm-1 (€3]
APl token * MM EAREEANRRRRRddRRaRRRRaS g [CREATE VARIABLE] I GENERATE TOKEN
Image @ Image
Tag® Tags
j Click Save.

The webhook card appears with the Docker webhook enabled. If you want to make a
dummy push to the Docker Hub repository without triggering the Docker webhook and
running a pipeline, click Disable.

4 Inyour CD pipeline, configure your Kubernetes deployment task.
a Inthe Kubernetes task properties, select your development Kubernetes cluster.

b Select the Create action.

VMware, Inc. 180

Using and Managing vRealize Automation Code Stream

c Select the Local Definition for the payload source.

d Then select your local YAML file.

For example, Docker Hub might post this local YAML definition as the payload to the URL

in the webhook:

{

"callback url": "https://registry.hub.docker.com/u/svendowideit/testhook/hook/
2141b5bi5i5b02bec211i4eeih0242egl1000a/",

"push data": {

"images": [
"27d47432a69bcab5f2700e4dff7de0388ed65£9d3fblec645e2bc24c223dclcc3”,
"51a9¢c7clf8bb2fal9bcd09789a34e63£35abb80044bcl10196e304£6634cc582c",

"pushed at": 1.417566161e+09,

"pusher": "trustedbuilder",

"tag": "latest"

by

"repository": {

"comment count": 0,

"date created": 1.417494799%e+09,

"description": "",

"dockerfile": "#\n# BUILD\u0009\u0009docker build -t svendowideit/apt-

cacher .\n# RUN\u0009\u0009docker run -d -p 3142:3142 -name apt-cacher-

run apt-cacher\n#\n# and then you can run containers with:\n#

\u0009\u0009docker run -t -i -rm -e http proxy http://192.168.1.2:3142/

debian bash\n#\nFROM\u0009\u0009ubuntu\n\n\nVOLUME\u0009\u0009[\/var/cache/apt-cacher—
ng\]\nRUN\u0009\u0009%apt-get update ; apt-get install -yg apt-cacher-ng\n\nEXPOSE
\u0009\u00093142\nCMD\u0009\u0009chmod 777 /var/cache/apt-cacher-ng ; /etc/init.d/apt-
cacher-ng start ; tail -f /var/log/apt-cacher-ng/*\n",

"full description": "Docker Hub based automated build from a GitHub repo",
"is official": false,
"is private": true,

"is trusted": true,

"name": "testhook",

"namespace": "svendowideit",

"owner": "svendowideit",

"repo name": "svendowideit/testhook",

"repo url": "https://registry.hub.docker.com/u/svendowideit/testhook/",
"star count": 0,

"status": "Active"

}
}

The API that creates the webhook in Docker Hub uses this
form: https://cloud.docker.com/v2/repositories/%$3CUSERNAME%3E/$3CREPOSITORY%3E/

webhook pipeline/

The JSON code body resembles:

{

"name": "demo_webhook",

VMware, Inc.

181

Using and Managing vRealize Automation Code Stream

"webhooks": [

{

"name": "demo_webhook",

"hook url": "http://www.google.com"
}

]

}

To receive events from the Docker Hub server, the authentication scheme for the Docker

webhook that you create in Code Stream uses an allowlist authentication mechanism with
a random string token for the webhook. It filters events based on the secure token, which

you can append to hook url.

Code Stream can verify any request from the Docker Hub server by using the configured

secure token. For example: hook url

secureToken = ""

IP:Port/pipelines/api/docker-hub-webhooks?

5 Create a Docker artifact in your Docker Hub repository. Or, update an existing artifact.

6 To confirm that the trigger occurred, and see the activity on the Docker webhook, click

Triggers > Docker > Activity.

Docker

Activity Webhooks for Docker

GUIDED SETUP

Q

Commit Time ‘Webhook o Image T Tag T Owner T Repository v Pipeline T Execution Status T
01/08/2019 10:58 AM dti-Docker-WH admin/repa:sl sl admin repo
01/08/2019 10:58 AM fuxd-Docker-WH admin/repo:sl sl admin repo
01/09/2019 10:59 AM test-do-Docker-WH admin/repo:sl s1 admin repo
01/09/2019 10:59 AM sm-Docker-WH admin/repasl sl admin repo
01/09/2019 10:59 AM t-token-Docker-WH admin/repo:si 51 admin repo FAILED
01/09/209 10:57 AM dti-Docker-WH admin/repo:st sl admin repo
01/09/2019 10:57 AM sm-Docker-WH admin/repa:st s01 admin repo
01/09/2019 10:57 &AM test-do-Docker-WH admin/repa:s0 s01 admin repo
01/09/2019 10:57 AM fuxd-Docker-WH admin/repa:s0 501 admin repo
7 Click Executions, and observe your pipeline as it runs.
Executions (#7items) GUIDED SETUP
& v|C
(RUNNING) Stages: —w— ACTIONS

SM-T-IX#1 (

O RUNNING

By k on 01/09/2019 2:41 PM

7 Input : n/a
¢ Cutput : n/a

VMware, Inc.

182

Using and Managing vRealize Automation Code Stream

8 Click the running stage and view the tasks as the pipeline runs.

< BACK
sm_‘|_|)(##1 (RUNNING) OW ACTIONS v

@ Development

& Create Namespace | @ Create Secret & Create Service @ Create Deployment Verify Deployment Delete Namespace
Stage name Development
Status L RUNNING) RUNNING

Results

Congratulations! You set up the Docker trigger to run your CD pipeline continuously. Your pipeline
can now upload new and updated Docker artifacts to the Docker Hub repository.

What to do next

Verify that your new or updated artifact is deployed to the Docker host in your development
Kubernetes cluster.

How do | use the Git trigger in Code Stream to run a pipeline

As a Code Stream administrator or developer, you can integrate Code Stream with the Git life
cycle by using the Git trigger. When you make a code change in GitHub, GitLab, or Bitbucket
Enterprise, the event communicates with Code Stream through a webhook and triggers a pipeline.
The webhook works with GitLab, GitHub, and Bitbucket on-premises enterprise versions when
both Cloud Assembly and the enterprise version are reachable on the same network.

When you add the webhook for Git in Code Stream, it also creates a webhook in the GitHub,
GitLab, or the Bitbucket repository. If you update or delete the webhook later, that action also
updates or deletes the webhook in GitHub, GitLab, or Bitbucket.

Your webhook definition must include a Git endpoint on the branch of the repository that you

will monitor. To create the webhook, Code Stream uses the Git endpoint. If the endpoint does
not exist, you can create it when you add the webhook. This example assumes that you have a
predefined Git endpoint in GitHub.

Note To create a webhook your Git endpoint must use a private token for authentication, it
cannot use a password.

You can create multiple webhooks for different branches by using the same Git endpoint and
providing different values for the branch name in the webhook configuration page. To create
another webhook for another branch in the same Git repository, you don't need to clone the

Git endpoint multiple times for multiple branches. Instead, you provide the branch name in the
webhook, which allows you to reuse the Git endpoint. If the branch in the Git webhook is the same
as the branch in the endpoint, you don't need to provide branch name in the Git webhook page.

VMware, Inc. 183

Using and Managing vRealize Automation Code Stream

This example shows you how to use the Git trigger with a GitHub repository, but the prerequisites
include preparations required if another Git server type is used.

Prerequisites

Verify that you are a member of a project in Code Stream. If you are not, ask a Code Stream
administrator to add you as a member of a project. See How do | add a project in Code
Stream.

Verify that you have a Git endpoint on the GitHub branch you want to monitor. See How do |
integrate Code Stream with Git.

Verify that you have rights to create a webhook in the Git repository.
If configuring a webhook in GitLab, change the default network settings in GitLab enterprise to

enable outbound requests and allow the creation of local webhooks.

Note This change is only required for GitLab enterprise. These settings do not apply to
GitHub or Bitbucket.

a Loginto your GitLab enterprise instance as administrator.

b Go to network settings using a URL such as, http://{gitlab-server}/admin/

application settings/network.

¢ Expand Outbound requests and click:
m Allow requests to the local network from web hooks and services.
m Allow requests to the local network from system hook.

For the pipelines you want to trigger, verify that you have set the input properties to inject Git
parameters when the pipeline runs.

Build and Deploy Geses)

@ Workspace 1 input #§ Model B Output

Input Parameters @

Auto inject parameters Gerrit @) Git Docker () None
ADD ADD/REMOVE INJECTED PARAMETERS]
Starred @ Name

GIT_BRANCH_NAME
GIT_CHANGE_SUBJECT
GIT_COMMIT_ID
GIT_EVENT_DESCRIPTION

GIT_EVENT_OWNER

GIT_EVENT_TIMESTAMP
GIT_REPO_NAME
GIT_SERVER_URL

For information about input parameters, see How you'll create the CICD pipeline and
configure the workspace.

VMware, Inc. 184

Using and Managing vRealize Automation Code Stream

Procedure

1 In Code Stream, click Triggers > Git.

2 Click the Webhooks for Git tab, then click New Webhook for Git.

a

Select a project.

b Enter a meaningful name and description for the webhook.

C

Select a Git endpoint configured for the branch you want to monitor.

When you create your webhook, the webhook definition includes the current endpoint
details.

m |f you later change the Git type, Git server type, or Git repository URL in the endpoint,
the webhook will no longer be able to trigger a pipeline because it will try to access the
Git repository using the original endpoint details. You must delete the webhook and
create it again with the endpoint.

m |f you later change the authentication type, username, or private token in the endpoint,
the webhook will continue to work.

m |f you are using a BitBucket repository, the URL for the repository
must be in one of these formats: https://api.bitbucket.org/{user}/
{repo name} Or http(s)://{bitbucket-enterprise-server}/rest/api/1.0/users/

{username}/repos/{repo name}.

Note If you previously created a webhook using a Git endpoint that uses a password for
basic authentication, you must delete and redefine the webhook with a Git endpoint that
uses a private token for authentication.

See How do | integrate Code Stream with Git.
(Optional) Enter the branch that you want the webhook to monitor.

If you leave the branch unspecified, the webhook monitors the branch that you configured
for the Git endpoint.

(Optional) Generate a secret token for the webhook.

If you use a secret token, Code Stream generates a random string token for the webhook.
Then, when the webhook receives Git event data, it sends the data with the secret token.
Code Stream uses the information to determine if the calls are coming from the expected
source such as the configured GitHub instance, repository, and branch. The secret token
provides an extra layer of security that is used to verify that the Git event data is coming
from the correct source.

VMware, Inc. 185

Using and Managing vRealize Automation Code Stream

f (Optional) Provide file inclusions or exclusions as conditions for the trigger.

File inclusions. If any of the files in a commit match the files specified in the inclusion
paths or regex, the commit triggers the pipelines. With a regex specified, Code Stream
only triggers the pipelines when filenames in the changeset match the expression
provided. The regex filter is useful when configuring a trigger for multiple pipelines on
a single repository.

File exclusions. When all the files in a commit match the specified files in the exclusion
paths or regex, the pipelines do not trigger.

Prioritize exclusions. When toggled on, Prioritize Exclusion ensures that pipelines do
not trigger even if any of the files in a commit match the files specified in the exclusion
paths or regex. The default setting is off.

If conditions meet both the file inclusions and file exclusions, pipelines do not trigger.

In the following example, both file inclusions and file exclusions are conditions for the

trigger.
File @
Inclusions PLAIN w runtime/src/main/a.java o
REGEX v ([az AZ/az AZD) @ ©
Exclusions PLAIM w runtime/pom.xmi o
PLAIN w runtime/demao.yaml (- +)
Prioritize Exclusion ()

For file inclusions, a commit with any change to runtime/src/main/a.java or any
Java file will trigger pipelines configured in the event configuration.

For file exclusions, a commit with changes only in both files will not trigger the
pipelines configured in the event configurations.

g For the Git event, select a Push or Pull request.

VMware, Inc.

186

Using and Managing vRealize Automation Code Stream

h Enter the API Token.
The CSP API token authenticates you for external APl connections with Code Stream. To
obtain the API token:
1 Click Generate Token.

2 Enter the email address associated with your user name and password and click
Generate.

The token that you generate is valid for six months. It is also known as a refresh token.

m To keep the token as a variable for future use, click Create Variable, enter a name
for the variable and click Save.

m To keep the token as a text value for future use, click Copy and paste the token into
a text file to save locally.

You can choose to both create a variable and store the token in a text file for future
use.

3 Click Close.
i Select the pipeline for the webhook to trigger.

If the pipeline includes custom added input parameters, the Input Parameters list displays
parameters and values. You can enter values for input parameters that pass to the pipeline
with the trigger event. Or, you can leave the values blank, or use the default values if
defined.

For information about Auto inject input parameters for Git triggers, see the Prerequisites.
j Click Create.
The webhook appears as a new card.
3 Click the webhook card.

When the webhook data form reappears, you see a webhook URL added to the top of the
form. The Git webhook connects to the GitHub repository through the webhook URL.

VMware, Inc. 187

Using and Managing vRealize Automation Code Stream

Git

Activity Webhooks for Git

Webhook URL @ https:ffce om/codestream/api/git-webhook-listeners/963b2287-5271-4e0
Project test

Name * test-webhook

Description Description

Endpoint DemoApp-Git

Branch @ master

Secret token@ * GYHOCBWZx4dUnd7Y/KABH/BOkts=

File @

Inclusions -Select-- v Value (+]

Exclusions —Select— v Value [+]

Prioritize Exclusion »

Trigger

For Git © PUSH () PULL REQUEST

APl token * R EAREN NS RRRERNRRRRRRRRRRARE 9 ’ CREATE VARIABLE] [GEMNERATE TOKEN
Pipeline * CICD-2 €3]

Comments

Execution trigger delay @ 1 EI

SAVE CANCEL

VMware, Inc. 188

Using and Managing vRealize Automation Code Stream

4 In a new browser window, open the GitHub repository that connects through the webhook.

a To see the webhook that you added in Code Stream, click the Settings tab and select
Webhooks.

At the bottom of the webhooks list, you see the same webhook URL.

& GitHub, Inc. [US] | https:{/github.com/vmware fdemo-project/settings/hooks

Pull requests Issues Marketplace Explore

1 vmware- /demo-project private @Watch> 9 HrStar 0 YFork 1
Code Issues 0 Pull requests 1 Projects @ Wiki Insights £} Settings
Options Webhooks Add webhoak

Collaboraters & teams
Webhooks allow external services to be notified when certain events happen. When the specified events happen,

Branches we'll send & POST request to each of the URLS you provide. Learn mare in our Webhooks Guide.
We will also send events from this repositery to your organization webhooks.
Webhooks P ik “
Integrations & services A htpeswww.mgmt.cloud veware.com/pipeline api/git ligt /6b72a0a947d7527557130... {push)
Edit Delete
Deploy keys

A http://127.0.0.1:9000/pipeline/apilgit-webhook-listeners/321db4 34c802da755717c2d4d3418 fpush)
Edit Delete

A http:10.5.107.126:9000 pipeline/api/git-webhook-listeners/331dba34c802da755717e932e7678 (push)
Edit Delete

A http:i/10,6.107.126:8000/pipeline/api/git-webhook-listeners{331db434c802da756717ealedBFA0 (oush)

Edit Delete
A http:)10.5.107.126:9000/pi apifgit isteners/331dbA34cB802da755717ead4573d40 (push)
Edit Delete

A http:10.5.107.126:9000 pipeline/spi/git-webhaok-listeners/331db434c802da755717e0 2164840 (push)

Edit Delete
A hupsiapl.mgmt sipeline/api/git-webhook-listeners/2437334a3a31 207 357 BfacbefBl... (push)
Edit Delete

b To make a code change, click the Code tab and select a file on the branch. After you edit
the file, commit the change.

c To verify that the webhook URL is working, click the Settings tab and select Webhooks
again.

At the bottom of the webhooks list, a green checkmark appears next to the webhook URL.

« hitps:/fapi.mgmit sipeling/api/git-waebhook-listeners/24973342aa 91107 557 8faebef8l ... (push)

Edit Delete

5 Return to Code Stream to view the activity on the Git webhook. Click Triggers > Git > Activity.

Under Execution Status, verify that the pipeline run has started.

VMware, Inc. 189

Using and Managing vRealize Automation Code Stream

Glt GUIDED SETUP
Activity Webhooks for Git
&
Commit Time Commitip ¥ Webhook v Change Subject ¥ Owner v Branch v Repository ¥ Events v Execution ¥ Execution Status
éejz‘a.\dzc 19 ack63c0058. test-webhook Update index html etauser master demo-praject PUSH -

6 Click Executions and track your pipeline as it runs.

To observe the pipeline run, you can press refresh.

|Executions (iems

[wew execumion | S ez
. RUNNING | Stages: — ACTIONS v
|-[= CICD-2#1 -
By etauser Jan 15, 2019 9:42 PM Input : adc63c058eaciGecefe973bd0
2% RUNNING 7 Output : NA

Results

Congratulations! You successfully used the trigger for Git!

How do | use the Gerrit trigger in Code Stream to run a
pipeline

As a Code Stream administrator or developer, you can integrate Code Stream with the Gerrit code
review lifecycle by using the Gerrit trigger. The event triggers a pipeline to run when you create a

patch set, publish drafts, merge code changes on the Gerrit project, or directly push changes on
the Git branch.

When you add the Gerrit trigger, you select a Gerrit listener, a Gerrit project on the Gerrit server,
and you configure Gerrit events. In this example, you first configure a Gerrit listener, then you use
that listener in a Gerrit trigger with two events on three different pipelines.

Prerequisites

m Verify that you are a member of a project in Code Stream. If you are not, ask a Code Stream
administrator to add you as a member of a project. See How do | add a project in Code
Stream.

m Verify that you have a Gerrit endpoint configured in Code Stream. See How do | integrate
Code Stream with Gerrit.

m Verify that you know your Gerrit release version.

m For pipelines to trigger, verify that you set the input properties of the pipeline as Gerrit, which
allows the pipeline to receive the Gerrit parameters as inputs when the pipeline runs.

VMware, Inc. 190

Using and Managing vRealize Automation Code Stream

BL”Id aﬂd Deploy (" Enabiled

@ Workspace 4 Input »§ Model B Cutput

Input Parameters @

Auto inject parameters © Gerrit Git Docker MNone

[ADD [ADD/REMOVE INJECTED PARAMETERS |

Starred @ Name
o GERRIT_BRANCH
w7 GERRIT_CHANGE_COMMIT_MESSAGE

GERRIT_CHANGE_OWNER_MNAME
'WHMNER_USERNAME

For information about input parameters, see How you'll create the CICD pipeline and

configure the workspace.

Procedure

1 In Code Stream, click Triggers > Gerrit.

2 (Optional) Click the Listeners tab, then click New Listener.

Note If the Gerrit listener that you plan to use for the Gerrit trigger is already defined, skip

this step.

a Select a project.
b Enter a name for the Gerrit listener.

c Select a Gerrit endpoint.

VMware, Inc.

191

Using and Managing vRealize Automation Code Stream

d Enter the API Token.

The CSP API token authenticates you for external APl connections with Code Stream. To
obtain the API token:

1 Click Generate Token.

2 Enter the email address associated with your user name and password and click
Generate.

The token that you generate is valid for six months. It is also known as a refresh token.

m To keep the token as a variable for future use, click Create Variable, enter a name
for the variable and click Save.

m To keep the token as a text value for future use, click Copy and paste the token into
a text file to save locally.

You can choose to both create a variable and store the token in a text file for future
use.

3 Click Close.

If you created a variable, the API token displays the variable name that you entered by
using dollar binding. If you copied the token, the API token displays the masked token.

Activity Triggers Listeners

Project * testl ®

Name * Gerrit-Demo-Listener

Endpoint * _co_rpmate—ge_ﬂi;_

APtk = ${var.CSuser API Token} @ [create variasie | [ceneraTe Token |
CREATE l VALIDATE l l CANCEL l

e To validate the token and endpoint details, click Validate.

Your token expires after 90 days.

VMware, Inc. 192

Using and Managing vRealize Automation Code Stream

f Click Create.
g On the listener card, click Connect.

The listener starts monitoring all activity on the Gerrit server and listens for any enabled
triggers on that server. To stop listening for a trigger on that server, you deactivate the
trigger.

Note To update a Gerrit endpoint that is connected to a listener, you must disconnect the
listener before updating the endpoint.

m Click Configure > Triggers > Gerrit .

m Click the Listeners tab.

m Click Disconnect on the listener that is connected to the endpoint that you want to
update.

3 Click the Triggers tab, then click New Trigger.
4 Select a project on the Gerrit server.
5 Enter a name.
The Gerrit trigger name must be unique.
6 Select a configured Gerrit listener.

By using the Gerrit listener, Code Stream provides a list of Gerrit projects that are available on
the server.

7 Select a project on the Gerrit server.
8 Enter the branch in the repository that the Gerrit listener will monitor.
9 (Optional) Provide file inclusions or exclusions as conditions for the trigger.

m You provide file inclusions that trigger the pipelines. When any of the files in a commit
match the files specified in the inclusion paths or regex, pipelines trigger. With a regex
specified, Code Stream only triggers pipelines with filenames in the changeset that match
the expression provided. The regex filter is useful when configuring a trigger for multiple
pipelines on a single repository.

m You provide file exclusions that keep pipelines from triggering. When all the files in a
commit match the files specified in the exclusion paths or regex, the pipelines do not
trigger.

m Prioritize Exclusion, when toggled on, ensures that pipelines do not trigger. The pipelines
won't trigger even if any of the files in a commit match the files specified in the exclusion
paths or regex. The default setting for Prioritize Exclusion is turned off.

If the conditions meet both the file inclusion and the file exclusion, pipelines do not trigger.

In the following example, both the file inclusions and the file exclusions are conditions for the
trigger.

VMware, Inc. 193

Using and Managing vRealize Automation Code Stream

File @

Inclusions PLAIN runtime/src/main/a.java °
REGEX ([a-z A-Z+/Ta-z A-Z])+ @ O

Exclusions PLAIM runtime/pom.xml °
PLAIM runtime/demo . yaml (- N+

Pricritize Exclusion {]

m For file inclusions, a commit that has any change to runtime/src/main/a.java or any
Java file will trigger the pipelines configured in the event configuration.

m For file exclusions, a commit that has changes only in both files will not trigger the
pipelines configured in the event configuration.

10 Click New Configuration.
a For a Gerrit event, select Patchset Created, Draft Published, or Change Merged. Or, for a

direct push to Git that bypasses Gerrit, select Direct Git push.

Note As of Gerrit release version 2.15, draft changes and draft change sets are no longer
supported. So if you are running Gerrit release version 2.15 or later, Draft Published is not
a supported event.

b Select the pipeline that will trigger.

If the pipeline includes custom added input parameters, the Input Parameters list displays
parameters and values. You can enter values for input parameters to be passed to the
pipeline with the trigger event. Or, you can leave the values blank, or use the default
values.

Note If default values are defined:

m Any values you enter for the input parameters will override the default values defined
in the pipeline model.

m The default values in the trigger configuration will not change if the parameter values in
the pipeline model change.

For information about Auto inject input parameters for Gerrit triggers, see the
Prerequisites.

VMware, Inc. 194

Using and Managing vRealize Automation Code Stream

c For Patchset Created, Draft Published, and Change Merged, some actions appear with
labels by default. You can change the label or add comments. Then, when the pipeline
runs, the label or comment appears on the Activity tab as the Action taken for the
pipeline.

The Gerrit Event configuration allows you to enter comments by using a variable for the
Success comment or Failure comment. For example: ${var.success} and ${var.failure}.

d Click Save.
To add multiple trigger events on multiple pipelines, click New Configuration again.

In the following example, you can see events for three pipelines:

m |If a Change Merged event occurs in the Gerrit project, the pipeline named Gerrit-Pipeline
triggers.

m |f a Patchset Created event occurs in the Gerrit project, the pipelines named Gerrit-
Trigger-Pipeline and Gerrit-Demo-Pipeline trigger.

VMware, Inc. 195

Using and Managing vRealize Automation Code Stream

Gerrit GUIDED SETUP
Activity Triggers Listeners

Project testl @

Mame * Gerrit-Demo-Trigger

Gerrit Listener * Gerrit-Demo-Listener A4

Gerrit project ' Gerrit-Demo-Project

Branch) master

File @

Inclusions -- Select Type - value 0

Exclusions -- Select Type - value 0

Pricritize Exclusion ()

NEW COMFIGURATION l

Event Type T Pipeline : 4 Label T
Change Merged Gearrit-Pipeling Werified
Patchset Created Gerrit-Trigger-Pipelins Verified
Patchset Created Gearrit-Demao-Pipeline erified

3 configurations

11 Click Create.
The Gerrit trigger appears as a new card on the Triggers tab, and is set as Disabled by default.
12 On the trigger card, click Enable.

After you enable the trigger, it can use the Gerrit listener, which starts monitoring events that
occur on the branch of the Gerrit project.

To create a trigger that has the same file inclusion conditions or file exclusion conditions, but
with a different repository than the one you included when you created the trigger, on the
trigger card click Actions > Clone. Then, on the cloned trigger, click Open, and change the
parameters.

VMware, Inc. 196

Using and Managing vRealize Automation Code Stream

Results

Congratulations! You successfully configured a Gerrit trigger with two events on three different

pipelines.

What to do next

After you commit a code change in the Gerrit project, observe the Activity tab for the Gerrit event
in Code Stream. Verify that the list of activities includes entries that correspond to every pipeline
execution in the trigger configuration.

When an event occurs, only pipelines in the Gerrit trigger that relate to the particular type of
event can run. In this example, if a patch set is created, only the Gerrit-Trigger-Pipeline and the
Gerrit-Demo-Pipeline will run.

Information in the columns on the Activity tab describe each Gerrit trigger event. You can select
the columns that appear by clicking the column icon that appears below the table.

m The Change Subject and Execution columns are empty when the trigger was a direct Git push.

m The Gerrit Trigger column displays the trigger that created the event.

m The Listener column is turned off by default. When you select it, the column displays the
Gerrit listener that received the event. A single listener can appear as associated with multiple

triggers.

m The Trigger Type column is turned off by default. When you select it, the column displays the
type of trigger as AUTOMATIC or MANUAL.

m Other columns include Commit Time, Change#, Status, Message, Action taken, User, Gerrit
project, Branch, and Event.

Gerrit

Activity Triggers

TRIGGER MANUALLY @

Listeners

Commit Time Change#

19570 /4

19570 /6

[T R
Change Subject
Execution
Status
Message
Action taken
User

Gerrit project
Gerrit Trigger
[] Listener
Branch

Event

SELECT ALL

Show columns X

() Trigger Type v

Change Subject T

TMDummy

TMMDummy

TMDummy

TMMDummy

Execution T Status T

Gerrit-Pipeline #1 (COMPLETED)

Gerrit-Pipeline #2 WAITING

Gerrit-Demo-Pipeline #1 FAILED

Gerrit-Trigger-Pipeline #1 (WAITING

Message T

Execution
Completed

Stage0.TaskO:

Execution
Waiting for
User Action

Stage0.TaskO:

User
Operation
request has
been
rejected by
fritz.

Stage0 . TaskO:

Execution
Waiting for
User Action.

Action taken T

Verified +1

Verified -1

User T

Gerrit project T Gerrit Trigger

testl
Trigger

testl
Trigger

testl
Trigger

testl
Trigger

Items per page

Gerrit-Demo-

Gerrit-Demo-

Gerrit-Demo-

Gerrit-Demo-

GUIDED SETUP

&

Branch T Event

master Change

Merged

Change
Merged

master

master Patchset

created

master Patchset

created

>

20 v 1- 4 of 4items

VMware, Inc.

197

Using and Managing vRealize Automation Code Stream

To control the activity for a completed or failed pipeline run, click the three dots at the left of any
entry on the Activity screen.

m [f the pipeline fails to run because of a mistake in the pipeline model or another problem,
correct the mistake and select Re-run, which runs the pipeline again.

m |f the pipeline fails to run because of a network connectivity issue or another problem, select
Resume, which restarts the same pipeline execution, and saves run time.

= Use View Execution, which opens the pipeline execution view. See How do | run a pipeline
and see results.

m Use Delete to delete the entry from the Activity screen.

If a Gerrit event fails to trigger a pipeline, you can click Trigger Manually, then select the Gerrit
trigger, enter the Change-Id, and click Run.

VMware, Inc.

198

Monitoring pipelines in Code
Stream

As a Code Stream administrator or developer, you need insight about the performance of your
pipelines in Code Stream. You need to know how effectively your pipelines release code from
development, through testing, and to production.

To gain insight, you use Code Stream dashboards to monitor the trends and results of a pipeline
execution. You can use the default pipeline dashboards to monitor a single pipeline, or create
custom dashboards to monitor multiple pipelines.

m Pipeline metrics include statistics such as mean times, which are available on the pipeline
dashboard.

m To see metrics across multiple pipelines, use the custom dashboards.
This chapter includes the following topics:
m What does the pipeline dashboard show me in Code Stream

m How do | use custom dashboards to track key performance indicators for my pipeline in Code
Stream

What does the pipeline dashboard show me in Code Stream

A pipeline dashboard is a view of the results for a specific pipeline that ran, such as trends, top
failures, and successful changes. Code Stream creates the pipeline dashboard when you create a
pipeline.

The dashboard contains the widgets that display pipeline execution results.

Pipeline Execution Status Counts Widget

You can view the total number of executions of a pipeline over a period of time grouped by
status: Completed, Failed, or Canceled. To see how the pipeline execution status has changed
over longer or shorter periods of time, change the duration on the display.

Pipeline Execution Statistics Widget

The pipeline execution statitstics include the mean times to recover, deliver, or fail a pipeline over
time.

VMware, Inc. 199

Using and Managing vRealize Automation Code Stream

The following states apply to all pipeline executions:
s Completed

m Failed

s Waiting

= Running

m Canceled

s Queued

m Not Started

= Rolling Back

m Rollback Completed
m Rollback Failed

m Paused

Table 8-1. Measuring mean times

What gets
measured... What it means...
Average Cl Average time spent in the continuous integration phase, measured by time in the Cl task type.

Mean time to delivery Average duration of all COMPLETED runs over a period of time. D1, D2, and so forth is the
(MTTD) amount of time to deliver each COMPLETED run.

00006060 060
D1 D2 D3 D4 D5

\'
MTTD Avg.
Mean time between Average time elapsed between successful deliveries over a period of time. The time elapsed
deliveries (MTBD) between two consecutive COMPLETED runs is the time between successful deliveries, such as

BD1, BD2 and so forth. MTBD indicates how often a production environment updates.

QQG?GG?@?G@

BD1 BD2 BD4 BD5
(J

MTBD Avg.

VMware, Inc. 200

Using and Managing vRealize Automation Code Stream

Table 8-1. Measuring mean times (continued)

What gets

measured... What it means...

Mean time to failure Average duration of runs that end in FAILED, ROLLBACK_COMPLETED or

(MTTF) ROLLBACK_FAILED states over a period of time. F1, F2, and so forth is the amount of time for

aruntoendin FAILURE, ROLLBACK_COMPLETED, or ROLLBACK FAILED.

00000 00006 +~0
F1 F4 F5

F2 F3 F6

R, .. J

\4
MTTF Avg.

Mean time to recovery Average time to recovery from a failure over a period of time. The time to recovery from a

(MTTR) failure is the time elapsed between a run with a final status of FAILED,
ROLLBACK_COMPLETED, or ROLLBACK_FAILED and the next immediate successful run
with a COMPLETED status. R1, R2 and so forth, is the amount of time to recovery after each
FAILED or ROLLBACK_FAILED run.

0099029000009

\'
MTTR Avg.

Top Failed Stages and Tasks Widgets

Two widgets display the top failed stages and tasks in a pipeline. Each measurement reports the
number and percentage of failures for development and post-development environments for each
pipeline and project, averaged over a week or month. You view the top failures to troubleshoot
problems in the release automation process.

For example, you can configure the display for a particular duration such as the last seven days
and note the top failed tasks during that period of time. If you make a change in your environment
or pipeline and run the pipeline again, then check the top failed tasks over a longer duration such
as the last 14 days, the top failed tasks may have changed. With that result, you will know that the
change in your release automation process improved the success rate of your pipeline execution.

Pipeline Execution Duration Trends Widget

Pipeline execution duration trends show the MTTD, MTTF, MTBD, and MTTR, over a period of
time.

VMware, Inc. 201

Using and Managing vRealize Automation Code Stream

Execution Duration Trends (&

2d 11h:
3d3h+
2d 18h -
2d 10h =
2d 2h o

1d 17h o

Duration

1d 9h =
1d 1h ~
16h 40m +
8h 20m

o+

T T T T T T T T T T T T T T T T T T
n2 716 /20 724 7/28 an B/5 8/a

® w0 @ MTTF @ mTED MTTR

Pipeline Execution Trends Widget

Pipeline execution trends show the total daily runs of a pipeline, grouped by status over a period
of time. Except for the current day, most daily aggregation counts only show COMPLETED and
FAILED runs.

Execution Trends C

fkl.‘l‘m. NIRRT

T T T T T
2 116 20 Tr24 7/28 8/ 8/9

Executions
IS
I

B compLeTen B FareD

How do | use custom dashboards to track key performance
indicators for my pipeline in Code Stream

As a Code Stream administrator of developer, you create the custom dashboard to display the
results you want to see for one or more pipelines that ran. For example, you can create a project-
wide dashboard with KPIs and metrics gathered from multiple pipelines. If an execution warning
or failure is reported, you can use the dashboard to troubleshoot the failure.

To track trends and key performance indicators for your pipelines by using a custom dashboard,
you add widgets to the dashboard, and configure them to report on your pipelines.

VMware, Inc. 202

Using and Managing vRealize Automation Code Stream

To track pipeline trends and KPlIs,
use a Custom dashboard.
Dashboards > Custom
Dashboards > New Dashboard

To track execution details
for a pipeline, click any or
all the widgets that report on
executions and changes.

To track post process testing trends
on code for a continuous integration
(Cl) pipeline, click the
test widgets that support your test
tools: JUnit, JaCoCo, FindBugs,
and CheckStyle.

To configure each widget,
click the gear icon, select a
pipeline, select the details
to report, and click Save.

Save the custom dashboard. —

Prerequisites

Verify that one or more pipelines exist. In the user interface, click Pipelines.

For the pipelines that you intend to monitor, verify that they ran successfully. Click Executions.

Procedure

1

To create a custom dashboard, click Dashboards > Custom Dashboards > New Dashboard.

VMware, Inc.

Run all the pipelines that
the dashboard uses.

As the pipeline runs, monitor
your custom dashboard
for trends and graphs
of your pipeline KPls.

To display details about the
pipeline, status, and stages, point
and click the active areas in
each widget on the custom
dashboard.

Continue to use your custom
dashboard to gain insight on the
performance of your pipeline,
and report the results to your team.

Using and Managing vRealize Automation Code Stream

2 To customize the dashboard so that it reports on specific trends and key performance
indicators for your pipeline, click a widget.

For example, to display details about the pipeline status, stages, tasks, how long it ran,
and who ran it, click the Execution Details widget. Or, for a continuous integration (Cl)
pipeline, you can track the trends on post-processing by using the widgets for JUnit, JaCoCo,
FindBugs, and CheckStyle.

IX KPls EDIT DELETE CLONE BACK

Execution Details

ExecutionID v Executiond - Status T Status Message - Stages Tasks TaskO (Stage0) Duration T
178fa2esf . #2 WAITING Stage0.Task0 15s
Execution
Waiting for User
Action.
5503c1e51.. #1 (" COMPLETED) Execution [] L]] 1h 28m 7s
| — Completed.

3 Configure each widget that you add.

a
b
C

d

On the widget, click the gear icon.
Select a pipeline, set the available options, and select the columns to display.
To save the widget configuration, click Save.

To save the custom dashboard, click Save, and click Close.

4 To display more information about the pipeline, click the active areas on the widgets.

For example, in the Execution Details widget, click an entry in the Status column to display
more information about the pipeline execution. Or, on the Latest Successful Change widget,
to display a summary of the pipeline stage and task, click the active link.

Results

Congratulations! You created a custom dashboard that monitors trends and KPIs for your
pipelines.

What to do next

Continue to monitor the performance of your pipelines in Code Stream, and share the results with
your manager and teams to continue to improve the process to release your applications.

VMware, Inc.

204

Learn more about Code Stream

There are many ways for Code Stream administrators and developers to learn more about Code
Stream and what it can do for you.

You can use this documentation to learn more about pipelines and their executions, how to add
endpoints, how to add projects, and more.

Understand the permissions that roles provide. Learn how to use restricted resources, and require
approvals on pipelines. See How do | manage user access and approvals in Code Stream.

See the value of search by discovering where specific jobs or components are located in your
pipelines, executions, or endpoints.

This chapter includes the following topics:
m Whatis Search in Code Stream

m More resources for Code Stream Administrators and Developers

What is Search in Code Stream

You use search to find where specific items or other components are located. For example, you
might want to search for activated or deactivated pipelines. Because if a pipeline is deactivated, it
cannot run.

What can | search

You can search in:

m Projects

= Endpoints

m Pipelines

m Executions

m Pipeline Dashboards, Custom Dashboards
m Gerrit Triggers and Servers

= Git Webhooks

m Docker Webhooks

VMware, Inc. 205

Using and Managing vRealize Automation Code Stream

You can perform column-based filter search in:

m User Operations

m Variables

m Trigger Activity for Gerrit, Git, and Docker

You can perform grid-based filter search on the Activity page for each trigger.

How does search work

The criteria for search varies depending on the page you are on. Each page has different search

criteria.

Where you
search

Pipeline
Dashboards

Custom
Dashboards

Executions

Pipelines
Projects
Endpoints
Gerrit triggers
Gerrit servers

Git Webhooks

Where:

Criteria to use for search

Project, Name, Description, Tags, Link

Project, Name, Description, Link (UUID of an item on the dashboard)

Name, Comments, Reason, Tags, Index, Status, Project, Show, Executed by, Executed by me, Link
(UUID of the execution), and Input parameters, Output parameters, or Status message by using this
format: <key>:<value>

Name, Description, State, Tags, Created by, Created by me, Updated by, Updated by me, Project
Name, Description

Name, Description, Type, Updated by, Project

Name, Status, Project

Name, Server URL, Project

Name, Server Type, Repo, Branch, Project

m Linkis the UUID of a pipeline, execution, or widget on a dashboard.

m Input parameter, Output parameter, and Status message notation and examples include:

= Notation

Example:
= Notation:
Example:
= Notation:

Example:

VMware, Inc.

I input.<inputKey>:<inputValue>

input.GERRIT CHANGE OWNER_EMAIL:joe user
output.<outputKey>:<outputValue>
output.BuildNo:29

statusMessage:<value>

statusMessage:Execution failed

206

Using and Managing vRealize Automation Code Stream

m Status or state depends on the search page.
m For executions, possible values include: completed, failed, rollback_failed, or canceled.
m For pipelines, possible state values include: enabled, disabled, or released.
m For triggers, possible status values include: enabled or disabled.

m Executed, Created, or Updated by me refers to me, the logged in user.

Search appears at the upper right of every valid page. When you start typing into the search
blank, Code Stream knows the context of the page and suggests options for the search.

Methods you can use to search How to enter it
Type a portion of the search parameter. .
O, ena| E
For example, to add a status filter that lists all the enabled ik
pipelines, type ena.
- Status:Enabled o
MName:ena :I
Description:ena]
Tags:ena
Link:ena

Updated by:ena

To reduce the number of items found, add a filter.
)) Status | Disabled
For example, type Tes to add a name filter. The filter - E ? (

, -

works as an AND with the existing Status:disabled filter to Tes (x)

show only the deactivated pipelines with Tes in the name.

When you add another filter, the remaining options

appear: Name, Description, Tags, Link, Project, and — Name:Tes -

Updated by. L
paatedby | Description:Tes

Tags:Tes :
Link:Tes
Project:SHOBHA-TEST-PRCJ

F Updated by Tes

VMware, Inc. 207

Using and Managing vRealize Automation Code Stream

Methods you can use to search

To reduce the number of items displayed, click the filter

icon on properties of a pipeline or a pipeline execution.

m For pipelines, Status, Tags, Project, and Updated by
each have a filter icon.

m For executions, Tags, Executed by, and Status
Message each have a filter icon.

For example on the pipeline card, click the icon to add

the filter for the SmartTemplate tag to the existing filters

for: Status:Enabled, Project:test, Updated by:user and

Tags:Canary.

Use a comma separator to include all items in two
execution states.

For example, type fa, can to create a status filter that
works as an OR to list all failed or canceled executions.

VMware, Inc.

How to enter it

Status | Emabled Project | test Updated by Tags | Canary
test-nested-ci
Status: Enabled
2% Canary SmartTemplate
I
X
2 Tags
Canary ¥ SmartTemplate
Updated By
3 EXECUTIONS
[x] [x] [x]
OPEN RUN ACTIONS v
O, fa.can| B
Mame:fa,can -
=& Commentsfa,can 5
Reason:fa.can
Jal '
Tags:fa,can
Link:fa,can
= Status'Failed ,Cancelled B
08 5

208

Using and Managing vRealize Automation Code Stream

Methods you can use to search

Type a number to include all items within an index range.

For example, type 35 and select < to list all executions with
an index number less than 35.

Pipelines that are modeled as tasks become nested

executions and are not listed with all executions by default.

To show nested executions, type nested and select the
Show filter.

How do | save a favorite search

You can save favorite searches to use on each page by clicking the disk icon next to the search

area.

How to enter it

Q, 35|
Mame:35
Index:35
50 Index: >35
ny Index: »>=35
Index: <35
Index: <=35
O nested

Show:NestedExecutions
Mame:nested

e Commentsnested

20

nyV Reasonnested
Tags:nested

Link'nested

m You save a search by typing the parameters for search and clicking the icon to give the search

a name such asmy enabled.

m After saving a search, you click the icon to access the search. You can also select Manage to

rename, delete, or move the search in the list of saved searches.

VMware, Inc.

209

Using and Managing vRealize Automation Code Stream

(O |Status | Enabled

® B

Saved searches

0

O%

D{D Test-demo-...

Status: Enabled

my enabled
0

Save search

3q Manage

Searches are tied to your user name and only appear on the pages for which the search applies.
For example, if you saved a search named my enabled for Status:enabled on the pipelines page,
the my enabled search is not available on the Gerrit triggers page, even though Status:enabled is

a valid search for a trigger.

Can | save a favorite pipeline

If you have a favorite pipeline or dashboard, you can pin it so that it always appears at the top of
your pipelines or dashboards page. On the pipeline card, click Actions > Pin.

D_[g test-master-1

St Disable
Release
0
Refresh
F'rc:j ect WView executions
_ Wiew dashboard
No Descript
Clone
Export
Updated ..
Delete
4 EXECUTIOl vfiew references
© Pin
OPEM RUM CTIONS

More resources for Code Stream Administrators and

Developers

As a Code Stream administrator or developer, you can learn more about Code Stream.

VMware, Inc.

210

Using and Managing vRealize Automation Code Stream

Table 9-1. More resources for administrators

To learn about...

Other ways administrators can use Code Stream:

Configure pipelines to automate the testing and
release of cloud native applications.

Automate and test developer source code, through
testing, to production.

Configure pipelines for developers to test changes
before they commit them to the primary branch.

Track key pipeline metrics.

Table 9-2. More resources for developers

To learn about...

Other ways developers can use Code Stream:

Use public and private registry images to build
environments for new applications or services.
Set up development environments so that you can
create branches from the latest stable build.
Update development environments with the latest
code changes and artifacts.

Test uncommitted code changes against the latest
stable builds of other dependent services.

Receive a notification when a change committed to a

primary CICD pipeline breaks other services.

VMware, Inc.

See these resources...

Code Stream

VRealize Automation Documentation

vRealize Automation product website

VMware Hands On

Use the vRealize Automation Community.

Use the VMware Learning Zone.
Search the VMware Blogs.
Try the VMware Hands On Labs.

See these resources...

Code Stream

vRealize Automation Documentation

vRealize Automation product website

VMware Hands On

Use the vRealize Automation Community.

Use the VMware Learning Zone.
Search the VMware Blogs.
Try the VMware Hands On Labs.

2n

http://docs.vmware.com/en/vRealize-Automation/index.html
http://www.vmware.com/products/vrealize-automation.html
http://communities.vmware.com/community/vmtn/vcloud-automation-center
http://www.vmware.com/education-services/learning-zone.html
http://blogs.vmware.com/all-vmware-blogs/
http://www.vmware.com/try-vmware/try-hands-on-labs.html
http://docs.vmware.com/en/vRealize-Automation/index.html
http://www.vmware.com/products/vrealize-automation.html
http://communities.vmware.com/community/vmtn/vcloud-automation-center
http://www.vmware.com/education-services/learning-zone.html
http://blogs.vmware.com/all-vmware-blogs/
http://www.vmware.com/try-vmware/try-hands-on-labs.html

	Using and Managing vRealize Automation Code Stream
	Contents
	What is Code Stream and how does it work
	Setting up to model my release process
	How do I add a project
	How do I manage user access and approvals
	What are user operations and approvals

	Creating and using pipelines
	How do I run a pipeline and see results
	What task types are available
	How do I do use variable bindings in pipelines
	How do I use variable bindings in a condition task to run or stop a pipeline
	What variables and expressions can I use when binding pipeline tasks
	How do I send notifications about my pipeline
	How do I create a Jira ticket when a pipeline task fails
	How do I roll back my deployment

	Planning to natively build, integrate, and deliver your code
	Configuring the Pipeline Workspace
	Planning a CICD native build before using the smart pipeline template
	Planning a CI native build before using the smart pipeline template
	Planning a CD native build before using the smart pipeline template
	Planning a CICD native build before manually adding tasks
	Planning for rollback

	Tutorials
	How do I continuously integrate code from my GitHub or GitLab repository into my pipeline
	How do I automate the release of an application that I deploy from a YAML cloud template
	How do I automate the release of an application to a Kubernetes cluster
	How do I deploy my application to my Blue-Green deployment
	How do I integrate my own build, test, and deploy tools
	How do I use the resource properties of a cloud template task in my next task
	How do I use a REST API to integrate with other applications
	How do I leverage pipeline as code

	Connecting to endpoints
	What are Endpoints
	How do I integrate with Jenkins
	How do I integrate with Git
	How do I integrate with Gerrit
	How do I integrate with vRealize Orchestrator

	Triggering pipelines
	How do I use the Docker trigger to run a continuous delivery pipeline
	How do I use the Git trigger to run a pipeline
	How do I use the Gerrit trigger to run a pipeline

	Monitoring pipelines
	What does the pipeline dashboard show me
	How do I use custom dashboards to track key performance indicators

	Learn more
	What is Search
	More resources for Administrators and Developers

