
Using vRealize Code
Stream
vRealize Code Stream 2.1

Using vRealize Code Stream

VMware, Inc. 2

You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

If you have comments about this documentation, submit your feedback to

docfeedback@vmware.com

Copyright © 2018 VMware, Inc. All rights reserved. Copyright and trademark information.

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

https://docs.vmware.com/
mailto:docfeedback@vmware.com
http://pubs.vmware.com/copyright-trademark.html

Contents

Using vRealize Code Stream 4

1 Introducing vRealize Code Stream 5

Core Architectural Principles 6

Roles and Responsibilities of Personas 7

Integrating vRealize Code Stream with External Systems 8

Key Release Automation Concepts 9

2 Using Release Automation 11

Modeling a Release Pipeline Checklist 11

3 Managing Release Automation 63

Clone a Task 63

Delete a Task or a Cloned Task 64

Copy a Release Pipeline 64

Delete a Release Pipeline 64

4 Viewing Pipeline Execution Reports 66

View the Success Rate of the Executed Pipelines 66

View Failed Pipelines 66

5 Working with the Release Dashboard 68

View the Release Status 68

6 vRealize Code Stream Execution Engine and Plug-in Framework 70

Troubleshooting the Execution Engine 70

7 vRealize Code Stream REST API and Example Scripts 71

Exporting a Release Pipeline 71

Import a Release Pipeline 73

Java Code to Run a Release Pipeline 74

Example Script to Run a Release Pipeline 80

VMware, Inc. 3

Using vRealize Code Stream

Using vRealize Code Stream provides information about how to automate the release of applications,
frequently while using existing tools in the build, development, test, provisioning, and monitoring
environments.

Intended Audience
This information is intended for anyone who wants to automate the release of applications in various
development environments. The information is written for experienced developers and operation teams
who are familiar with release automation.

VMware Technical Publications Glossary
VMware Technical Publications provides a glossary of terms that might be unfamiliar to you. For
definitions of terms as they are used in VMware technical documentation, go to
http://www.vmware.com/support/pubs.

VMware, Inc. 4

http://www.vmware.com/support/pubs

Introducing
vRealize Code Stream 1
vRealize Code Stream automates the software release process by modeling all of the necessary tasks in
pipeline templates.

A release pipeline is a sequence of stages. Each stage is composed of multiple tasks and environments
that the software has to complete before it is released to production. The stages can include
development, functional testing, user acceptance test (UAT), load testing (LT), systems integration testing
(SIT), staging, and production. Release managers can model and build pipelines, and release engineers
can execute pipelines.

Each stage in a pipeline includes a set of activities such as provisioning a machine, retrieving an artifact,
deploying software, running a test, creating a manual task, or running a custom workflow or script. The
software changes are promoted to the next stage in the pipeline when they satisfy a set of rules called
gating rules. The gating rules include testing rules and compliance rules. Gating rules that are associated
with a pipeline are specific to an organization or an application. Users can define gating rules when a
pipeline template is created.

 Introduction to vRealize Code Stream (http://bcove.me/kw7b6zvs)

VMware, Inc. 5

http://bcove.me/kw7b6zvs

Figure 1‑1. Main Components of vRealize Code Stream

Task = Provision

Task = Get Artifacts

Task = Deploy via Script

Task = Run Tests

Stage = DEV

vRealize
Automation

6.1/6.2

Server

Bash Script

Artifactory

Nexus, Yum [...]

Task = Link Servers

Task = Get Artifacts

Task = Run Scripts

Stage = UATTest Pass > 85%

Manual Approval

GATING RULES

DB Server

Bash Script

App Server

Bash Script

Jenkins

Job 1 Job 2 Job 3

Selenium

Dev UAT Code
Stream

Pipeline

CI
Infrastructure

This chapter includes the following topics:

n Core Architectural Principles

n Roles and Responsibilities of Personas

n Integrating vRealize Code Stream with External Systems

n Key Release Automation Concepts

Core Architectural Principles
vRealize Code Stream works with deployment engines such as vRealize Automation (formerly
VMware vCloud Automation Center), vCenter Server, and scripts. Interaction with Chef and Puppet is
also possible through vRealize Automation workflows or through Advanced Service Designer (ASD).

vRealize Code Stream provides extensibility through plug-ins. Both of the approval and extensibility
components are embedded in the vRealize Automation virtual appliance.

For the supported vRealize Code Stream integrations, see Integrating vRealize Code Stream with
External Systems.

Using vRealize Code Stream

VMware, Inc. 6

Deployment Engines
vRealize Code Stream integrates with a number of provisioning and deployment solutions including
vRealize Automation. It can also trigger scripts or vRealize Orchestrator workflows. Support for other
provisioning solutions is delivered by plug-ins that VMware, partners, or users publish.

Testing Frameworks
vRealize Code Stream integrates with Jenkins to trigger Jenkins jobs, including test routines through
plug-in framework.

A Jenkins job can run test cases that are configured for an application. The Test Acceptance Threshold
workflow in the gating rule verifies the results of the Jenkins job and returns the response to the
vRealize Code Stream server. Based on the results of the test and the gating rules that have been
defined, the build either proceeds to the next stage of the release pipeline or it fails.

vRealize Code Stream also integrates with Bamboo and Team Foundation Server.

Approval Systems
vRealize Code Stream uses vRealize Orchestrator plug-ins for integration with approval systems. Manual
approval tasks can be created within the vRealize Automation inbox. vRealize Code Stream can also
integrate with BMC Remedy ITSM, HP Service Manager, ServiceNow, and other ticketing systems. The
approval systems integration requires downloading and installing the appropriate vRealize Orchestrator
plug-in from the VMware Solution Exchange.

Roles and Responsibilities of Personas
A tenant administrator can assign the release manager, release engineer, and the release dashboard
user roles, which are an integral part of release automation.

These roles have various responsibilities when they interact with the product. For information on
configuring additional tenants, see Installation and Configuration guide.

The following table lists the roles and responsibilities of the personas.

Using vRealize Code Stream

VMware, Inc. 7

Table 1‑1. Roles and Responsibilities in vRealize Code Stream

Role Responsibility

Release Manager n View, create, delete, update and publish a dashboard
n Set default dashboard for all users
n View, create, delete and update an endpoint
n View, create, execute, update, and delete a release pipeline
n View release pipeline details
n Perform artifact management administration task

Release Engineer n View, create, update, delete a private dashboard
n Execute a release pipeline
n View endpoint
n View details of a release pipeline
n View release pipeline execution
n Perform artifact management administration task

Integrating vRealize Code Stream with External Systems
vRealize Code Stream includes an extensibility framework that supports modular integrations with
external systems, without changing the core platform.

Based on the type of external system, different mechanisms are recommended.

Figure 1‑2. Supported Integration with External Systems

Using vRealize Code Stream

VMware, Inc. 8

Release Pipeline Integrations
Release pipeline templates support various tasks that can trigger actions in a wide category of systems
such as continuous integration, testing frameworks, or defect tracking systems.

Integrations such Atlassian Bamboo, Jenkins, Microsoft Team Foundation Server, Pivotal Cloud Foundry,
and Bugzilla are supported natively. Others plug-ins can also be integrated by creating custom workflows
using a vRealize Orchestrator.

System Category Integration Mechanism

Repository JFrog Artifactory

Continuous Integration n Atlassian Bamboo
n Jenkins
n Pipelines
n Microsoft Team Foundation Server

Provisioning and configuration management n Pivotal Cloud Foundry
n Script
n vRealize Automation 6
n vRealize Automation 7

Testing frameworks n Atlassian Bamboo
n Jenkins
n Microsoft Team Foundation Server

Defect tracking systems n Bugzilla
n JIRA

vRealize Orchestrator custom workflow is offered as a vRealize Code Stream plug-in. Other integrations
such as Chef, Puppet and JetBrains TeamCity can be done using vRealize Orchestrator workflow.

You can download vRealize Orchestrator plug-ins from the VMware Solution Exchange. The Artifactory
plug-ins are available on the JFrog Web site.

Key Release Automation Concepts
Use the following definitions to help you understand the release pipeline modeling and the artifact
management workflow.

artifact A script or the output of a build process. The script can be deployed or
upgraded in a given stage.

Artifact types can be configuration files, application bits, or third-party
software.

artifact management A service that manages the artifacts over a range of local and remote
repositories.

For example, managing a WAR file stored in the Maven repository.

Using vRealize Code Stream

VMware, Inc. 9

gating rule A set of rules that must be completed before the software changes are
promoted and the next set of tasks starts in the subsequent stage.

The gating rules include testing rules and compliance rules. Gating rules
that are associated with a pipeline are specific to an organization and
applications.

endpoint A plug-in scenario that captures specific configurations of a provider.

pipeline A collection of all the stages or environments in which a software change
has to pass through independently before it is released into production.

For example, development, test, user acceptance test, load test, staging,
and production.

provider Service providers such as Jenkins, Bamboo, Bugzilla, Pivotal Cloud
Foundry, and JIRA that support various tasks.

stage Every stage in the pipeline defines a set of activities.

For example, deploy, test, approval through gating rules, and custom tasks.

task An activity in a given stage.

For example, provision the machines, resolve the artifact, deploy the
artifact, run the test, and so on.

Opening the port in a firewall is a manual task.

reports The reports display pipeline success and failure rate over a period of time.

Using vRealize Code Stream

VMware, Inc. 10

Using Release Automation 2
The software development life cycle includes work phases before it moves to production. As the software
changes move closer to production, the quality checks and approval policies become stringent. This
process is enforced to ensure that no disruptions occur in the production environment.

vRealize Code Stream enables central IT to host and manage new application workloads being driven by
lines of business and development operation teams. Application teams can independently use
vRealize Code Stream to automate and streamline their software release process while continuing to use
their preferred provisioning and deployment tools.

vRealize Code Stream also enables applications or operations teams to model their software release
process in a release pipeline. A release pipeline is a sequence of stages where each stage is composed
of multiple tasks and environments that the software has to pass through before it is released to
production. The stages can include development, functional testing, user acceptance test, load testing,
systems integration testing, staging, and production.

In each stage, teams might also use different kinds of development and management tools. Using
different tools results in needing to build a product that is extensible and that can integrate easily with a
variety of existing tools. To satisfy this need for flexibility, vRealize Code Stream offers a model-driven,
open, and extensible architecture. With its catalog of plug-ins, you can integrate with existing tools,
including build and integration systems, testing frameworks, provisioning, deployment engines, change
management systems, and so on.

Each stage in a pipeline includes a set of activities such as provisioning a machine, retrieving an artifact,
deploying software, running a test, creating a manual task, or running a custom workflow or script. The
software changes are promoted to the next stage in the pipeline when they satisfy a set of rules called
gating rules. The gating rules include testing rules and compliance rules. Gating rules that are associated
with a pipeline are specific to an organization or an application. Users can define gating rules when a
pipeline template is created.

Modeling a Release Pipeline Checklist
A release pipeline is a collection of stages where each stage represents a deployment environment. For
example, the development, test, user acceptance test (UAT), load test (LT), systems integration testing
(SIT), and staging environments that a software change has to pass through independently before it is
released.

Sample Release Pipeline with Stages

VMware, Inc. 11

The number of stages and configuration of each of these stages varies based on the application, and
whether the release is major, minor, patch, or organization release policies.

 Modeling a Release Pipeline Template (http://bcove.me/zgy163u6).

To track your work as you complete the modeling tasks, complete the tasks in the order they are given.

1 Create a Release Pipeline

You can create, edit, view, copy, and delete the release pipeline. You can have multiple stages for a
single release pipeline.

2 Configure a Bamboo Task

When you register a Bamboo Server endpoint, you connect to a Bamboo server to start a build plan
from a release pipeline. You can configure multiple artifacts from a particular plan.

3 Configure a Bugzilla Task

You can execute a pipeline task which creates a Bugzilla task. You can use the output properties of
the Bugzilla task in subsequent tasks in a release pipeline.

4 Configure a Cloud Foundry Server Task

You can use the Cloud Foundry Server task to model a pipeline task connecting to the target Cloud
Foundry server instance to deploy, scale, start, stop, and delete an application . You can also bind
and unbind services to an application.

5 Add a Custom Service Blueprint Task

You can add a Custom Service Blueprint task to add a XaaS blueprint. A service blueprint task
allows you invoke a plug-in available in the vRealize Automation service catalog from a release
pipeline. You can publish a predefined workflow from vRealize Orchestrator to the
vRealize Automation service catalog.

Using vRealize Code Stream

VMware, Inc. 12

http://bcove.me/zgy163u6

6 Configure a Jenkins Task

You can use a test task to test a deployment. When you register a Jenkins Server endpoint, you
connect to a Jenkins server to start a build job from a release pipeline.

7 Configure a JIRA Task

You can create and update JIRA issues in a release pipeline.

8 Add a Script Task

You can use a custom script task to configure bash or powershell scripts and run scripts on any
Linux or Windows machine. After the script runs, you can monitor the script progress and capture
the script response, which you can pass as input to other release pipeline tasks.

9 Configure a Team Foundation Server Task

You can use the Team Foundation Server task to connect to the Team Foundation Server and invoke
configured build and test jobs.

10 Add a VMware Repository Solution Task

An artifact task lets you search for artifacts from Artifactory and the Artifactory in turn connects with
a variety of repositories such as Nexus and Yum.

11 Add a vRealize Automation Task

A provision task provisions machines. You can register a vRealize Automation 6.x or 7.x instance
with vRealize Code Stream to provision infrastructure in a specific environment.

12 Create a Nested Pipeline

You can model a complex pipeline and execute the pipeline in a modular manner by invoking
pipelines within pipelines. You can also view the result of the nested pipeline execution.

13 Add a vRealize Orchestrator Workflow Task

With a vRealize Orchestrator task, you can configure a vRealize Orchestrator to be triggered as part
of the release pipeline process.

14 Configure Gating Rules

Gating rules are a set of criteria that each stage must pass to proceed to the subsequent stage. You
can configure gating rules based on your requirement for a pipeline.

15 Activate and Run a Release Pipeline

You can run a release pipeline that is activated. After you activate the release pipeline, pipeline
modeling is complete and you can run it.

Create a Release Pipeline
You can create, edit, view, copy, and delete the release pipeline. You can have multiple stages for a single
release pipeline.

These pipelines form a single application or a module. You can model a pipeline with multiple stages and
tasks in a stage. You can use each to depict the release cycle for an application or a module.

Using vRealize Code Stream

VMware, Inc. 13

Plug-ins can use binding variables as part of input configurations. These variables are replaced at runtime
with the values where they are placed.

The shared pipeline variable is always preceded by the binding variable. For example, $
{pipeline.PipelineVariable}.

Prerequisites

n Verify that you have available predefined vRealize Automation blueprints, workflows, scripts, or test
jobs that perform tasks that the pipelines trigger.

n Verify that the artifacts in the Artifactory server repository are prepopulated so that you can use the
Artifact Management capabilities.

n Verify that the applicable plug-ins and endpoints are registered. See the Installation and Configuration
guide.

n Familiarize yourself with the input and output details required to create tasks.

Procedure

1 Select Code Stream > Pipelines.

2 Click Add to create a pipeline.

3 Enter a name and description for the pipeline.

4 Click Add to define the input properties for the pipeline.

These properties are required only if you want to pass certain parameters at the time of triggering a
pipeline run. You can reference these parameter values across all stages during modeling. The run
time values are applied during the pipeline run.

Option Description

Name Enter a property name.

Description Enter a description for the property.

Value Enter a property value.

For example, ABC-876541.

5 (Optional) Select the first check box if you want this pipeline to run concurrently.

The pipeline model reuses the same set of virtual machines to deploy a software change. The
concurrent run overwrites the deployed change.

6 (Optional) Select the second check box and provide the Socialcast Webhook Name and Socialcast
Webhook URL to post updates to Socialcast.

The Socialcast updates are useful to collaborate among team members working on releases and to
track pipeline execution status such as pipeline execution start, pause, resume, cancellation, failure,
and completion. A new pipeline execution creates a new status message on the Socialcast group and
the subsequent statuses of the execution are posted as comments to the message. You can engage
yourself in individual threads by adding comments and track the progress of a pipeline execution.

Using vRealize Code Stream

VMware, Inc. 14

The name of the Webhook you provide is the name of the group created for communication in
Socialcast.

You can locate the Webhook URL by navigating to Socialcast > Configured Group > Integrations >
Codestream > Add > Step 5.

Note You must have an administrator privilege for the group configured on Socialcast to add the
integration and copy the Webhook URL.

7 Add the email addresses of recipients who receive event notifications during the pipeline execution.

The email addresses are for the users who have access to the same vRealize Automation appliance.

8 Enter the applicable tags.

A tag is useful in grouping pipeline models or runs.

For example, you can use a tag to filter a pipeline model or run view.

9 Click Stages to continue pipeline creation.

10 Click Add Stage to add multiple stages to this pipeline.

11 Double-click the default stage name and enter a name.

For example, you can create development, test, QE, and production stages.

12 (Optional) Select a stage and drag it to a different place in this pipeline.

For example, if your pipeline consists of development, test, and QE stages, you can move the test
stage after the QE stage.

13 Click Save as Draft to save the pipeline.

14 Create tasks for every pipeline stage.

You can add multiple tasks to a stage and model tasks within a stage to run in parallel. You can drag
and drop tasks to run in parallel. Running a parallel task is limited only within a stage. The Artifact,
Custom, Deploy, Provision, and Test tasks are supported. Certain tasks might depend on tasks that
precede them in the workflow. You can drag tasks up or down depending on the workflow. Tasks are
run sequentially or in parallel depending on how you have modelled the tasks within a stage. You can
configure a task's input to depend on the output from an earlier task. When you add parallel tasks in a
single group and configure the task's input to depend on the output from an earlier task, the variables
from the output of the earlier task belonging to the previous group is always considered.

Configure a Bamboo Task
When you register a Bamboo Server endpoint, you connect to a Bamboo server to start a build plan from
a release pipeline. You can configure multiple artifacts from a particular plan.

The location of the artifacts produced by a Bamboo build can be exposed as an output parameter to allow
other tasks to execute tests on the build and then deploy it.

Using vRealize Code Stream

VMware, Inc. 15

Prerequisites

n Verify that the Bamboo server endpoint is registered. See the Installation and Configuration guide.

n Verify that the Bamboo server version is 5.9.7 or later.

Procedure

1 Click the Code Stream tab.

2 Select an existing pipeline to configure from the Pipeline tab.

3 Select Edit > Stages.

4 Select Add Task.

5 Select Bamboo from the Provider drop-down menu.

6 Enter a name for the task and click OK.

7 Select the new task from the stage column.

8 Confirm to save the pipeline.

9 Select an Execute Task for the release pipeline.

Option Description

Always Runs the release pipeline task without conditions.

On Condition(s) Runs the release pipeline task only if the defined condition is evaluated as true. If
the condition is false, the task is skipped.

A boolean expression using the following operands and operators is supported.
n Pipeline variables such as, ${pipeline.variableName}. Curly brackets are

reserved for specifying pipeline variables.
n Task output variables such as, ${Stage1.task1.machines[0].value.hostIp[0]}
n Default pipeline binding variables such as, ${releasePipelineName}
n Case insensitive Boolean values such as, true, false, 'true', 'false'
n Integer or decimal values without quotes
n String values used with single or double quotes such as, "test", 'test'
n String and Numeric types of values such as, == Equals and != Not Equals
n Relational operators such as, > , >=, <, and <=
n Boolean logic such as, && and ||
n Arithmetic operators such as, +, -, *, and /
n Nested expressions using round brackets
n Strings with literal value ABCD is evaluated as false and the task is skipped.

Unary operators are not supported.

A sample condition, ${Stage1.task1.output} == “Passed” || $
{pipeline.variableName} == 39

10 (Optional) Select the Continue Pipeline execution even if this task fails option .

This option allows the release pipeline to bypass the failed task and continue with the execution
process.

11 Select the endpoint, project, and the Bamboo plan.

Using vRealize Code Stream

VMware, Inc. 16

12 Enter the Bamboo plan input properties.

13 Click Save.

Example: Output Format for a Bamboo Task
The following task output format is an example for a Bamboo task.

[

 {

 "name": "planKey",

 "type": "String",

 "value": “SAM-S2P1”

 },

 {

 "name": "resultUrl",

 "type": "String",

 "value": “http://xx.xxx.xx.xx:xxxx/browse/SAM-S2P1-101”

 },

 {

 "name": "buildNumber",

 "type": "String",

 "value": 101

 },

 {

 "name": "buildTestSummary",

 "type": "String",

 "value": “4 passed”

 },

 {

 "name": "triggerReason",

 "type": "String",

 "value": “Manual run by <USER>”

 },

 {

 "name": "successfulTestCount",

 "type": "String",

 "value": 0

 },

 {

 "name": "failedTestCount",

 "type": "String",

 "value": 0

 },

 {

 "name": "skippedTestCount",

 "type": "String",

 "value": 0

 }

]

Using vRealize Code Stream

VMware, Inc. 17

Configure a Bugzilla Task
You can execute a pipeline task which creates a Bugzilla task. You can use the output properties of the
Bugzilla task in subsequent tasks in a release pipeline.

You can export and import a pipeline model containing a Bugzilla task.

Prerequisites

n Verify that the Bugzila server endpoint is registered. See the Installation and Configuration guide.

n Verify that the Bugzilla server version is 5.0.1 or later.

Procedure

1 Click the Code Stream tab.

2 Select an existing pipeline to configure from the Pipeline tab.

3 Select Edit > Stages.

4 Select Add Task.

5 Select Bugzilla from the Provider drop-down menu.

6 Enter a name for the task and click OK.

7 Select the new task from the stage column.

8 Confirm to save the pipeline.

Using vRealize Code Stream

VMware, Inc. 18

9 Select an Execute Task for the release pipeline.

Option Description

Always Runs the release pipeline task without conditions.

On Condition(s) Runs the release pipeline task only if the defined condition is evaluated as true. If
the condition is false, the task is skipped.

A boolean expression using the following operands and operators is supported.
n Pipeline variables such as, ${pipeline.variableName}. Curly brackets are

reserved for specifying pipeline variables.
n Task output variables such as, ${Stage1.task1.machines[0].value.hostIp[0]}
n Default pipeline binding variables such as, ${releasePipelineName}
n Case insensitive Boolean values such as, true, false, 'true', 'false'
n Integer or decimal values without quotes
n String values used with single or double quotes such as, "test", 'test'
n String and Numeric types of values such as, == Equals and != Not Equals
n Relational operators such as, > , >=, <, and <=
n Boolean logic such as, && and ||
n Arithmetic operators such as, +, -, *, and /
n Nested expressions using round brackets
n Strings with literal value ABCD is evaluated as false and the task is skipped.

Unary operators are not supported.

A sample condition, ${Stage1.task1.output} == “Passed” || $
{pipeline.variableName} == 39

10 (Optional) Select the Continue Pipeline execution even if this task fails option .

This option allows the release pipeline to bypass the failed task and continue with the execution
process.

11 Select the Bugzilla endpoint from the Endpoint drop-down menu.

12 Select the action you want to perform.

You can create or update a bug.

Example: Output Format for a Bugzilla Task
The following task output format is an example for a Bugzilla task.

[

 {

 "name": "id",

 "type": "INTEGER",

 "description": "Bug ID",

 "value": "153"

 },

 {

 "name": "bugURL",

 "type": "STRING",

 "description": "BugUrl",

 "value": "http://bugzilla.example.com/show_bug.cgi?id=153"

 },

Using vRealize Code Stream

VMware, Inc. 19

 {

 "name": "status",

 "type": "STRING",

 "description": "Bug Status",

 "value": "RESOLVED"

 },

 {

 "name": "product",

 "type": "STRING",

 "description": "Product the bug is filed under",

 "value": "vRealize Code Stream"

 },

 {

 "name": "assigned_to",

 "type": "String",

 "description": "Bug Assignee",

 "value": "user@example.com"

 }

]

Create Bug
You can execute a release pipeline model containing a Bugzilla task for creating a bug.

Procedure

1 Click Create Bug and select the product from the Product drop-down menu to create a bug.

2 Select the component from the Component drop-down menu.

3 Enter the Summary.

a Click the text box and enter ${ .

The associated variables appear in the drop-down menu.

b Select the variable.

c (Optional) Enter a period next to the variable to view the task name in the drop-down menu.

d (Optional) Enter a period next to the task name to view the task output or pipeline parameters in
the drop-down menu.

4 Select the severity, version and enter the description.

5 Select the optional fields that you want to add to the bug from the Optional tab.

6 Click Save.

Update Bug
You can edit a bug by providing the Bug ID.

Procedure

1 Click Update Bug and enter the Bug ID to update a bug.

Using vRealize Code Stream

VMware, Inc. 20

2 Update the assignee if you want to change the assignee and enter your comments.

3 Selecting the resolution from the Resolution drop-down menu to resolve the bug.

4 Select the Verified option to verify the bug.

Configure a Cloud Foundry Server Task
You can use the Cloud Foundry Server task to model a pipeline task connecting to the target Cloud
Foundry server instance to deploy, scale, start, stop, and delete an application . You can also bind and
unbind services to an application.

Prerequisites

n Verify that the Cloud Foundry Server endpoint is registered. See the Installation and Configuration
guide.

Procedure

1 Click the Code Stream tab.

2 Select an existing pipeline to configure from the Pipeline tab.

3 Select Edit > Stages.

4 Select Add Task.

5 Select Cloud Foundry from the Provider drop-down menu.

6 Enter a name for the task and click OK.

7 Select the new task from the stage column.

8 Confirm to save the pipeline.

Using vRealize Code Stream

VMware, Inc. 21

9 Select an Execute Task for the release pipeline.

Option Description

Always Runs the release pipeline task without conditions.

On Condition(s) Runs the release pipeline task only if the defined condition is evaluated as true. If
the condition is false, the task is skipped.

A boolean expression using the following operands and operators is supported.
n Pipeline variables such as, ${pipeline.variableName}. Curly brackets are

reserved for specifying pipeline variables.
n Task output variables such as, ${Stage1.task1.machines[0].value.hostIp[0]}
n Default pipeline binding variables such as, ${releasePipelineName}
n Case insensitive Boolean values such as, true, false, 'true', 'false'
n Integer or decimal values without quotes
n String values used with single or double quotes such as, "test", 'test'
n String and Numeric types of values such as, == Equals and != Not Equals
n Relational operators such as, > , >=, <, and <=
n Boolean logic such as, && and ||
n Arithmetic operators such as, +, -, *, and /
n Nested expressions using round brackets
n Strings with literal value ABCD is evaluated as false and the task is skipped.

Unary operators are not supported.

A sample condition, ${Stage1.task1.output} == “Passed” || $
{pipeline.variableName} == 39

10 (Optional) Select the Continue Pipeline execution even if this task fails option .

This option allows the release pipeline to bypass the failed task and continue with the execution
process.

11 Enter the Cloud Foundry properties.

Option Description

Endpoint Provides a list of registered endpoints for Cloud Foundry.

Organization Lists the existing organizations.

Using vRealize Code Stream

VMware, Inc. 22

Option Description

Space Lists the spaces in the selected organization.

Action Lists the tasks such as deploy, scale, start, stop, delete an application available in
a Cloud Foundry instance.

a Select Bind/Unbind Services > Properties.

Option Description

Read from Pipeline/Task property Enter the name of the application or provide variable binding to read from the
pipeline or task property.

Existing Applications Select an existing application.

You can view the name, URL, and the status of the application you have selected from the
Output tab.

b Select Delete an Application > Properties.

Option Description

Read from Pipeline/Task property Enter the name of the application.

Existing Applications Select the name of an existing application.

Delete Route Delete the path or route associated with the application. The route is deleted if
it is not linked to any other application.

You can view the name, URL and the status of the application you have selected from the Output
tab.

Using vRealize Code Stream

VMware, Inc. 23

c Select Deploy Application > Properties.

Option Description

Manifest URL Enter the manifest file URL and click on the Basic Auth link to authenticate
the repository containing the manifest file.

Note Authenticate the URL if you download the artifact from hosting servers
such as an Artifactory server.

User Defined Enter the application name, click Add, and enter the configurable properties
such as disk and memory information, and the number of instances of the
application.

Enter the Artifact URL, which is the path where the application is located in the
repository. For example: http://artifactoryserver.com/artifactory/deb-
local/SampleArtifactory.war.

Click on the Basic Auth link to authenticate the repository containing the
downloadable artifactory.

You can also deploy an application with advanced options where you can
perform the following actions:
n Provide the domain name.
n Select services.
n Select the stack.
n Enter a command. For example: bundle exec rake VERBOSE=true.
n Enter the host URL. For example: http://sample-host.domain.
n Enter the buildpack URL. For example:

https://github.com/cloudfoundry/java-buildpack.git.

Clean up on failure Select the check box if you want to delete the application from the Cloud
Foundry server when the application deployment fails.

You can view the name, URL and the status of the application you have selected from the Output
tab.

Using vRealize Code Stream

VMware, Inc. 24

d Select Scale an Application > Properties.

Option Description

Read from Pipeline/Task property Enter the name of the application or provide variable binding to read from the
pipeline or task property. Enter the memory and disk size. Enter the number of
instances of the application.

Existing Applications Select the name of an existing application, enter the disk and memory
information, and number of instances of the application.

Note You can view information about the memory, disk, and the number of instances from a
pipeline or task property.

You can view the name, URL and the status of the application you have selected from the Output
tab.

e Select Start an Application > Properties.

Option Description

Read from Pipeline/Task property Enter the name of the application or provide variable binding to read from the
pipeline or task property.

Existing Applications Select the name of an existing application.

You can view the name, URL and the status of the application you have selected from the Output
tab.

You can select Stop an Application to stop an application and choose to read from the
pipeline/task property or select an existing application.

12 Click Save.

Example: Task Output Format for a Cloud Foundry Server
The following task output format is an example for a Cloud Foundry Server task to scale, bind, unbind,
stop, start, and delete an application. The output contains status of only one application.

[

 {

 "name": "detailedStatus",

 "type": "JSON",

 "value": {

 " sample-iot-app": {

 "status": "SUCCESS",

 "displayStatus": "Success",

 "appName": " sample-iot-app",

 "appUrl": "sample-iot-app.cf.vca10.pivotal.io",

 }

 }

 }

]

Using vRealize Code Stream

VMware, Inc. 25

The following task output format is an example for a Cloud Foundry Server task to deploy an application.
The output contains status of more than one application.

[

 {

 "name": "detailedStatus",

 "type": "JSON",

 "value": {

 "sample-iot-app": {

 "status": "SUCCESS",

 "displayStatus": "Success",

 "appName": "sample-iot-app",

 "appUrl": "sample-iot-app.cf.vca10.pivotal.io"

 },

 "sample-schedule-app": {

 "status": " SUCCESS ",

 "displayStatus": " Success ",

 "appName": "sample-schedule-app",

 "appUrl": " sample-schedule-app.cf.vca10.pivotal.io"

 }

 }

 }

]

Add a Custom Service Blueprint Task
You can add a Custom Service Blueprint task to add a XaaS blueprint. A service blueprint task allows you
invoke a plug-in available in the vRealize Automation service catalog from a release pipeline. You can
publish a predefined workflow from vRealize Orchestrator to the vRealize Automation service catalog.

The service blueprint task has the following limitations.

n When there are multiple tabs in the service blueprint task form only the active tab is validated, when
you save the task.

n String type output parameter values of published catalog items are supported.

n String, SecureString, and boolean string input parameter values are supported in the task execution
input parameter text box.

n Auto-complete is supported for text boxes that have the gwt-TextBox css property value.

n Form field layout and validation logic cannot be overridden.

n Plug-ins in the service catalog that are only from local vRealize Automation instances can be invoked.

Prerequisites

n Verify that a service blueprint is created and published. See the Installation and Configuration guide.

n Familiarize yourself with the parameter values that are required to configure and use the
vRealize Orchestrator plug-in for Puppet. See the Using the vRealize Orchestrator Puppet Plug-In 1.0
guide.

Using vRealize Code Stream

VMware, Inc. 26

Procedure

1 Click the Code Stream tab.

2 Select an existing pipeline to configure from the Pipeline tab.

3 Select Edit > Stages.

4 Select Add Task.

5 Select Execute Service Blueprints from the Provider drop-down menu.

6 Select a published service blueprint from the drop-down menu.

For example, if you are using the published Puppet plug-in workflow, the endpoint would be Add a
Puppet Master.

7 Enter the Tagged workflow, Tag, Value, and Global tag.

8 Click Save.

Configure the Custom Service Blueprint Task
You can configure the parameter values of the published service blueprints based on Puppet plug-in or
other workflows.

Prerequisites

n Verify that a custom service blueprint task is available in a release pipeline.

n Familiarize yourself with the parameter values that are required to configure and use the
vRealize Orchestrator plug-in for Puppet. See the Using the vRealize Orchestrator Puppet Plug-In 1.0
guide.

Procedure

1 Open a release pipeline.

2 Select the new task from the stage column.

3 Confirm to save the pipeline.

Using vRealize Code Stream

VMware, Inc. 27

4 Select an Execute Task for the release pipeline.

Option Description

Always Runs the release pipeline task without conditions.

On Condition(s) Runs the release pipeline task only if the defined condition is evaluated as true. If
the condition is false, the task is skipped.

A boolean expression using the following operands and operators is supported.
n Pipeline variables such as, ${pipeline.variableName}. Curly brackets are

reserved for specifying pipeline variables.
n Task output variables such as, ${Stage1.task1.machines[0].value.hostIp[0]}
n Default pipeline binding variables such as, ${releasePipelineName}
n Case insensitive Boolean values such as, true, false, 'true', 'false'
n Integer or decimal values without quotes
n String values used with single or double quotes such as, "test", 'test'
n String and Numeric types of values such as, == Equals and != Not Equals
n Relational operators such as, > , >=, <, and <=
n Boolean logic such as, && and ||
n Arithmetic operators such as, +, -, *, and /
n Nested expressions using round brackets
n Strings with literal value ABCD is evaluated as false and the task is skipped.

Unary operators are not supported.

A sample condition, ${Stage1.task1.output} == “Passed” || $
{pipeline.variableName} == 39

5 (Optional) Select the Continue Pipeline execution even if this task fails option .

This option allows the release pipeline to bypass the failed task and continue with the execution
process.

6 Configure the workflow parameters in the release pipeline.

The parameter values for a plug-in workflow depends on the type of the workflow.

For example, you can configure the following Puppet plug-in workflows.

n Add a Puppet Master

n Validate a Puppet Master

n Update a Puppet Master

n Remove a Puppet Master

n Node Management Workflows

n Hiera Workflows

n Manifest Workflows

n Samples Workflows

n Experimental Puppet Plug-In Rake Workflows

Using vRealize Code Stream

VMware, Inc. 28

7 (Optional) Select the script task output to share the output with other tasks in the release pipeline.

The output contains the runtime data that is written to the $SCRIPT_RESPONSE_FILE file.

8 Click Save.

Example: Task Output Format for a Custom Service Blueprint

The following task output format is an example for a custom service blueprint task.

[

 {

 "description": "master",

 "name": "master",

 "value": "",

 "type": "Puppet:Master"

 },

 {

 "description": "workflowExecutionId",

 "name": "workflowExecutionId",

 "value": "8af0d1274f72d384014fb05beec144a9",

 "type": "STRING"

 },

 {

 "description": "workflowId",

 "name": "workflowId",

 "value": "0ddc5db0-2c43-46af-93cd-b3507fb0fc5b",

 "type": "STRING"

 },

 {

 "description": "__asd_requestedBy",

 "name": "__asd_requestedBy",

 "value": "test@.test.com",

 "type": "STRING"

 },

 {

 "description": "__asd_requestedFor",

 "name": "__asd_requestedFor",

 "value": "test@.test.com",

 "type": "STRING"

 },

 {

 "description": "workflowName",

 "name": "workflowName",

 "value": "Add a Puppet Master",

 "type": "STRING"

 },

 {

 "description": "__asd_tenantRef",

 "name": "__asd_tenantRef",

 "value": "qe",

 "type": "STRING"

 },

 {

 "description": "__asd_subtenantRef",

Using vRealize Code Stream

VMware, Inc. 29

 "name": "__asd_subtenantRef",

 "value": "4f9adef5-f09e-408b-8427-57cbc18e8e90",

 "type": "STRING"

 },

 {

 "description": "__asd_catalogRequestId",

 "name": "__asd_catalogRequestId",

 "value": "8af0d1274f72d384014fb05bd2bb44a3_96bdad96-91b3-4306-a255-be8049fbe2f2",

 "type": "STRING"

 }

]

Configure a Jenkins Task
You can use a test task to test a deployment. When you register a Jenkins Server endpoint, you connect
to a Jenkins server to start a build job from a release pipeline.

Note If you have existing artifacts in the Jenkins server you cannot access them from
vRealize Code Stream.

If you configure a Jenkins test job to fail if test failures occur, then the release pipeline also fails.

Prerequisites

n Verify that the Jenkins server endpoint is registered. See the Installation and Configuration guide.

n Verify that the Jenkins server version is 1.561 or later.

Procedure

1 Click the Code Stream tab.

2 Select an existing pipeline to configure from the Pipeline tab.

3 Select Edit > Stages.

4 Select Add Task.

5 Select Jenkins from the Provider drop-down menu.

6 Enter a name for the test task and click OK.

7 Select the new task from the stage column.

8 Confirm to save the pipeline.

Using vRealize Code Stream

VMware, Inc. 30

9 Select an Execute Task for the release pipeline.

Option Description

Always Runs the release pipeline task without conditions.

On Condition(s) Runs the release pipeline task only if the defined condition is evaluated as true. If
the condition is false, the task is skipped.

A boolean expression using the following operands and operators is supported.
n Pipeline variables such as, ${pipeline.variableName}. Curly brackets are

reserved for specifying pipeline variables.
n Task output variables such as, ${Stage1.task1.machines[0].value.hostIp[0]}
n Default pipeline binding variables such as, ${releasePipelineName}
n Case insensitive Boolean values such as, true, false, 'true', 'false'
n Integer or decimal values without quotes
n String values used with single or double quotes such as, "test", 'test'
n String and Numeric types of values such as, == Equals and != Not Equals
n Relational operators such as, > , >=, <, and <=
n Boolean logic such as, && and ||
n Arithmetic operators such as, +, -, *, and /
n Nested expressions using round brackets
n Strings with literal value ABCD is evaluated as false and the task is skipped.

Unary operators are not supported.

A sample condition, ${Stage1.task1.output} == “Passed” || $
{pipeline.variableName} == 39

10 (Optional) Select the Continue Pipeline execution even if this task fails option .

This option allows the release pipeline to bypass the failed task and continue with the execution
process.

11 Select the Jenkins job from the Jobs drop-down menu.

12 Select the Jenkins server endpoint you registered from the drop-down menu.

13 Enter the Jenkins job input properties.

a Click the text box and enter ${.

The associated variables appear in the drop-down menu.

b Select the variable.

c (Optional) Enter a period next to the variable to view the task name in the drop-down menu.

d (Optional) Enter a period next to the task name to view the task output or pipeline parameters in
the drop-down menu.

For example, the input property variable can be ${StageName.test.JobName}.

14 Click Save.

Using vRealize Code Stream

VMware, Inc. 31

Example: Output Format for a Jenkins Task
The following task output format is an example for a test task.

[

 {

 "name": "buildId",

 "type": "STRING",

 "description": "Build Id",

 "value": "4"

 },

 {

 "name": "jobUrl",

 "type": "STRING",

 "description": "Job Url",

 "value": "http://198.51.100.13:8080/job/dummy/4"

 },

 {

 "name": "estimatedDuration",

 "type": "NUMBER",

 "description": "Estimation time to complete the build",

 "value": "2332343"

 },

 {

 "name": "jobName",

 "type": "STRING",

 "description": "Job Name",

 "value": "dummy"

 },

 {

 "name": "testResult",

 "type": "JSON",

 "description": "Job Name",

 "value": {

 "totalCount": 40,

 "skipCount": 0,

 "failureCount": 0,

 "successCount": 40

 }

 }

]

Configure a JIRA Task
You can create and update JIRA issues in a release pipeline.

You can create and update JIRA issues in a release pipeline.

Prerequisites

n Verify that the JIRA server endpoint is registered. See the Installation and Configuration guide.

n Verify that the JIRA server version is 6.3 or later.

Using vRealize Code Stream

VMware, Inc. 32

Procedure

1 Click the Code Stream tab.

2 Select an existing pipeline to configure from the Pipeline tab.

3 Select Edit > Stages.

4 Select Add Task.

5 Select JIRA from the Provider drop-down menu.

6 Enter a name for the task and click OK.

7 Select the new task from the stage column.

8 Confirm to save the pipeline.

9 Click the task you created.

10 Select an Execute Task for the release pipeline.

Option Description

Always Runs the release pipeline task without conditions.

On Condition(s) Runs the release pipeline task only if the defined condition is evaluated as true. If
the condition is false, the task is skipped.

A boolean expression using the following operands and operators is supported.
n Pipeline variables such as, ${pipeline.variableName}. Curly brackets are

reserved for specifying pipeline variables.
n Task output variables such as, ${Stage1.task1.machines[0].value.hostIp[0]}
n Default pipeline binding variables such as, ${releasePipelineName}
n Case insensitive Boolean values such as, true, false, 'true', 'false'
n Integer or decimal values without quotes
n String values used with single or double quotes such as, "test", 'test'
n String and Numeric types of values such as, == Equals and != Not Equals
n Relational operators such as, > , >=, <, and <=
n Boolean logic such as, && and ||
n Arithmetic operators such as, +, -, *, and /
n Nested expressions using round brackets
n Strings with literal value ABCD is evaluated as false and the task is skipped.

Unary operators are not supported.

A sample condition, ${Stage1.task1.output} == “Passed” || $
{pipeline.variableName} == 39

11 (Optional) Select the Continue Pipeline execution even if this task fails option .

This option allows the release pipeline to bypass the failed task and continue with the execution
process.

12 Select the JIRA endpoint from the Endpoint drop-down menu.

Using vRealize Code Stream

VMware, Inc. 33

13 Select the action you want to perform.

Option Description

Create Issue Execute a release pipeline model containing a JIRA task for creating an issue.

Update Issue Edit the issue by providing the Issue ID.

14 Select the project and issue type.

Based on the project and issue type you select, the input properties in the required and optional tabs
vary.

15 Enter the description, summary, and the reporter name.

16 Click Save.

17 Click Execute to run the release pipeline.

18 Click the executed pipeline.

Task Result displays the Issue number, Assignee, Issue status, Project, and URL. The URL redirects
you to the issue in detail.

19 Enter the JIRA issue number to update the existing issue.

You can also select assignee, transition, resolution (if configured), and enter your comments.

20 Click Save.

Example: Output Format for a JIRA Task
The following task output format is an example for a test task.

[

 {

 "name": "issueNumber",

 "type": "String",

 "description": "Issue Number",

 "value": "VSD-1"

 },

 {

 "name": "assignee",

 "type": "String",

 "description": "Assignee",

 "value": "jiraadmin"

 },

 {

 "name": "issueStatus",

 "type": "String",

 "description": "Issue Status",

 "value": "Resolved"

 },

 {

 "name": "project",

 "type": "String",

Using vRealize Code Stream

VMware, Inc. 34

 "description": "Project",

 "value": "Project-1"

 }

]

Add a Script Task
You can use a custom script task to configure bash or powershell scripts and run scripts on any Linux or
Windows machine. After the script runs, you can monitor the script progress and capture the script
response, which you can pass as input to other release pipeline tasks.

Prerequisites

n Verify that you defined and configured the plug-ins. An instance of this plug-in must be created in
vRealize Orchestrator to enable the plug-ins in the pipeline. See the Installation and Configuration
guide.

n Verify the following for Bash script orchestration:

n SSH service is configured on the Linux host.

n Verify SSHD configuration MaxSessions is 50.

n Verify the following for Powershell script orchestration:

n Winrm service is configured on the Windows host.

n Verify winrm is configured for MaxShellsPerUser and MaxMemoryPerShellMB.

Procedure

1 Click the Code Stream tab.

2 Select an existing pipeline to configure from the Pipeline tab.

3 Select Edit > Stages.

4 Select Add Task.

5 Select Script from the Provider drop-down menu.

6 Enter a name for this custom task and click OK.

7 Select the new task from the stage column.

8 Confirm to save the pipeline.

Using vRealize Code Stream

VMware, Inc. 35

9 Select an Execute Task for the release pipeline.

Option Description

Always Runs the release pipeline task without conditions.

On Condition(s) Runs the release pipeline task only if the defined condition is evaluated as true. If
the condition is false, the task is skipped.

A boolean expression using the following operands and operators is supported.
n Pipeline variables such as, ${pipeline.variableName}. Curly brackets are

reserved for specifying pipeline variables.
n Task output variables such as, ${Stage1.task1.machines[0].value.hostIp[0]}
n Default pipeline binding variables such as, ${releasePipelineName}
n Case insensitive Boolean values such as, true, false, 'true', 'false'
n Integer or decimal values without quotes
n String values used with single or double quotes such as, "test", 'test'
n String and Numeric types of values such as, == Equals and != Not Equals
n Relational operators such as, > , >=, <, and <=
n Boolean logic such as, && and ||
n Arithmetic operators such as, +, -, *, and /
n Nested expressions using round brackets
n Strings with literal value ABCD is evaluated as false and the task is skipped.

Unary operators are not supported.

A sample condition, ${Stage1.task1.output} == “Passed” || $
{pipeline.variableName} == 39

10 (Optional) Select the Continue Pipeline execution even if this task fails option .

This option allows the release pipeline to bypass the failed task and continue with the execution
process.

After a custom script task runs, the EXECUTION_ID_FOLDER run folder containing logFile and
exitStatusFile is created in the following paths mentioned below:

Bash Script Location

Remote script <CODESTREAM_FOLDER_PATH>/<ScriptName>

Example: /var/tmp/codestream/demo/f8e27157-792f-428e-8bbd-f88ac106ddd2

Inline script <CODESTREAM_FOLDER_PATH>/user_defined_script

Example: /var/tmp/codestream/user_defined_script/e05606b8-8acb-43c7-9293-a465e86cc3fe

Powershell
Script Location

Remote script <CODESTREAM_FOLDER_PATH>/<ScriptName>

Example: C:\Users\fritz\AppData\Local\Temp\codestream\demo\f8e27157-792f-428e-8bbd-
f88ac106ddd2

Inline script <CODESTREAM_FOLDER_PATH>/user_defined_script

Example:
C:\Users\fritz\AppData\Local\Temp\codestream\user_defined_script\e05606b8-8acb-43c7-9293-

a465e86cc3fe

Using vRealize Code Stream

VMware, Inc. 36

Following are the Script plugin system properties, which can be configured on the vRealize Code Stream
appliance:

Table 2‑1. Bash Script

Property Name Descriptiton Default Value

fms.bundle.script.bash.codestream.f
older

Configure path for codestream
folder where script execution
folder will be created.

/var/tmp/codestream/

fms.bundle.script.bash.log.snippet.li
nes

Configure number of lines for the
log snippet displayed in script
response.

50

fms.bundle.script.bash.log.snippet.li
ne.length

Configure the maximum
characters per log line after which
the log will be truncated.

1024

fms.bundle.script.bash.upload.chun
k.bytes

For inline script, the data is
uploaded in chunks and this
property is used to configure
chunk size.

1024 * 50

Table 2‑2. Powershell Script

Property Name Descriptiton Default Value

fms.bundle.script.powershell.codest
ream.folder

Configure path for codestream
folder where script execution
folder will be created.

C:\Users\<User_Name>\AppData\Local\Temp\code

stream\

fms.bundle.script.powershell.log.sni
ppet.lines

Configure number of lines for the
log snippet displayed in script
response.

50

fms.bundle.script.powershell.log.sni
ppet.line.length

Configure the maximum
characters per log line after which
the log will be truncated.

1024

fms.bundle.script.powershell.upload
.chunk.bytes

For inline script, the data is
uploaded in chunks and this
property is used to configure
chunk size.

1024 * 50

Configure the General Tab
A script task allows you to configure input variables for a script as a simple key-value pair. The variable
name should match the variable being used in the script when you configure a general input variable to
customize the script.

Pipeline variables are runtime variables that are output from a previous task and are available for
consumption by other tasks. The jayway/JsonPath property format is supported.

Using vRealize Code Stream

VMware, Inc. 37

You can use the ${VAR} notation to have a task consume parameters that are available as pipeline
runtime variables or the output produced from other tasks. You can select task output variables when you
configure the release pipeline. The status variable is set by default to be shared by all of the tasks in the
release pipeline. When these variables need to be consumed as a direct input for a field in the user
interface, you can set them as BUILD_ID = 123, where 123 is the value of ${BUILD_ID}. The variable
must be consumed as ${BUILD_ID}.

When this variable is consumed as vcac-123.war, where 123 is pulled from ${BUILD_ID}, it must be
consumed as vcac-${BUILD_ID}.war.

Prerequisites

n Verify that a script task is available in a release pipeline.

n Verify that your script exists on a remote host that is configured in the script task. The script must
have executable permission for a remote user to run it.

n Verify that the folder where the remote script exists has permission to allow a file to be created.

n Familiarize yourself with using task output variables. See Create a Release Pipeline.

Procedure

1 Open a release pipeline.

2 Select the new task from the stage column.

3 Confirm to save the pipeline.

Using vRealize Code Stream

VMware, Inc. 38

4 Select an Execute on Host type and add the applicable details.

Option Description

User defined hosts Enter one or more IP Addresses, DNS hostname, or release pipeline input
variables as one of the valid hosts.

For example, the input variable machine_ip can be 198.51.100.13. The user
defined host can also have $machine_ip with static hostname and IP Address.

Read From Pipeline or Task Property Provide a task output variable shared by another task or pipeline variable and
apply filter criteria to restrict the script to run only on selected hosts.

The pipeline variables are specified on the page before the modeling page. The
run time values are applied when the release pipeline runs.

For example, the task output variable $
{StageName.TaskName.status.outputConfig.host} is bound and shared by all of
the hosts. The status variable is set by default to be shared by all of the tasks in
the release pipeline.

To differentiate between a pipeline variable and a task output variable, the
pipeline variable is always preceded by the constant variable. For example, $
{pipeline.PipelineVariable}.

Filter Criteria Set one of the following criteria from the drop-down menu.
n ALL HOSTS. Run the script on all of the hosts that the host group variable

gives.
n STARTS WITH. From the host group, filter machines whose names start with

the prefix as given by the user. The filter search criteria is case sensitive.
n ENDS WITH. Filter machines whose names end with the suffix as given by

the user.
n EXACT MATCH. Run the script only on the machine whose name exactly

matches the DNS hostname or IP Address.

5 Type the host user name and password for a remote connection to the host.

6 Select a Bash or PowerShell script from the drop-down menu.

7 Select the script type.

Option Description

Remote Script File Specify the script file name and the path that already resides on the remote host.

An example file path for a Bash script is /home/test/template/test.sh.

User Defined Script Specify the inline Bash or PowerShell script to be executed on the remote host..

Inline scripts enable dynamic creation and execution of a user-defined script on
the remote host at the time of pipeline execution.

An example of Bash inline script:

message="Hello World"
echo $message

8 Enter the working directory path from where the script has to be executed.

Using vRealize Code Stream

VMware, Inc. 39

9 Configure the command-line arguments.

The command-line arguments can be variables or binding variables. If the argument value has a
space, enclose the value in double quotation marks.

${pipeline.buildNo} 10 2000 300 "test application"

You can view the resolved values of the command-line arguments in the task results after the custom
script task runs in the release pipeline.

10 (Optional) Select the script task output to share the output with other tasks in the release pipeline.

The output contains the runtime data that is written to the $SCRIPT_RESPONSE_FILE file.

11 Click Save.

Example: Task Output Format for a Custom Script Task

The following task output format is an example for a custom script task.

[

 {

 "description": "Host Response",

 "name": "198.51.100.13",

 "value": "Sample Response of Linux Host 01. Sample Response of Linux Host 01.",

 "type": "STRING"

 },

 {

 "description": "Host Response",

 "name": "198.51.100.13",

 "value": "Sample Response of Linux Host 02. Sample Response of Linux Host 02.",

 "type": "STRING"

 }

]

Configure the Advanced Tab
You use the artifact parameters to map artifacts to a script task to enable the script to download artifacts
from a repository to the host.

Prerequisites

n Verify that a script task is available in a release pipeline.

n Verify that an artifact task is configured and the artifact output property is shared. See Add a VMware
Repository Solution Task.

Procedure

1 Open a release pipeline.

2 Select the script task from the stage column.

3 Click the Advanced tab.

Using vRealize Code Stream

VMware, Inc. 40

4 Type the artifact group variable.

${StageName.TaskName.ARTIFACT_OUTPUT}

This variable is generated as part of the artifact output from the existing artifact task.

An example of an artifact group variable, ${Dev.Artifact.ARTIFACT_OUTPUT}.

5 Click Add to define the Artifact input parameters.

Option Description

Parameter Name Name of the Shell variable referring to an artifact in the script.

An example parameter name is artifact_config.

Parameter Value Artifact name defined in the artifact group.

An example parameter value is CodeStream_JAR.

6 Select Download URL or Repository URL from the drop-down menu.

The script calls the download URL or the repository URL for an artifact by mapping an artifact input
property.

7 Click Add to define the Other input.

Option Description

Parameter Name Name of the other Shell variable defined in the script.

An example parameter name is portNumber or buidID.

Parameter Value Value for the Shell variable.

An example parameter value is 800.

8 Click Save.

Example: Example Scripts for a Custom Script Task

The following example shows a script that configures a vRealize Automation application.

$ cat configureAppServer.sh

echo "Configure app server";

echo "VCAC Application Download URL: $VCAC_APP_DOWNLOAD_URL";

wget -O $VCAC_APP_DOWNLOAD_URL

echo "Configuring VCAC application";

echo "Starting application on port: $APLICATION_PORT";

MACHINE_IP = ifconfig | sed -En 's/127.0.0.1//;s/.*inet (addr:)?(([0-9]*\.)(3)[0-9]*).*/\2/p'

printf "Application URL: $MACHINE_IP:$APPLICATION_PORT/vcac/" > $SCRIPT_RESPONSE_FILE

Using vRealize Code Stream

VMware, Inc. 41

The script refers to the VCAC_APP_DOWNLOAD_URL environment variable to determine what version
of the VCAC artifact to download from the repository. The artifact input parameter to the script should be
the VCAC_APP_DOWNLOAD_URL parameter.

wget -O VCAC_APP_DOWNLOAD_URL

echo "Configuring VCAC application";

For the script to be able to share data with other release pipeline tasks, the contents must be written in a
response file. The response file contents are stored in the script output variable.

MACHINE_IP = ifconfig | sed -En 's/127.0.0.1//;s/.*inet (addr:)?(([0-9]*\.){3}[0-9]*).*/\2/p'

printf "Application URL: $MACHINE_IP/vcac/" > $SCRIPT_RESPONSE_FILE

Configure a Team Foundation Server Task
You can use the Team Foundation Server task to connect to the Team Foundation Server and invoke
configured build and test jobs.

Prerequisites

n Verify that the Team Foundation Server endpoint is registered. See the Installation and Configuration
guide.

n Verify that the Team Foundation Server project collection, team projects, and build definitions are
configured.

Procedure

1 Click the Code Stream tab.

2 Select an existing pipeline to configure from the Pipeline tab.

3 Select Edit > Stages.

4 Select Add Task.

5 Select Team Foundation Server from the Provider drop-down menu.

6 Enter a name for the custom task and click OK.

7 Select the new task from the stage column.

8 Confirm to save the pipeline.

Using vRealize Code Stream

VMware, Inc. 42

9 Select an Execute Task for the release pipeline.

Option Description

Always Runs the release pipeline task without conditions.

On Condition(s) Runs the release pipeline task only if the defined condition is evaluated as true. If
the condition is false, the task is skipped.

A boolean expression using the following operands and operators is supported.
n Pipeline variables such as, ${pipeline.variableName}. Curly brackets are

reserved for specifying pipeline variables.
n Task output variables such as, ${Stage1.task1.machines[0].value.hostIp[0]}
n Default pipeline binding variables such as, ${releasePipelineName}
n Case insensitive Boolean values such as, true, false, 'true', 'false'
n Integer or decimal values without quotes
n String values used with single or double quotes such as, "test", 'test'
n String and Numeric types of values such as, == Equals and != Not Equals
n Relational operators such as, > , >=, <, and <=
n Boolean logic such as, && and ||
n Arithmetic operators such as, +, -, *, and /
n Nested expressions using round brackets
n Strings with literal value ABCD is evaluated as false and the task is skipped.

Unary operators are not supported.

A sample condition, ${Stage1.task1.output} == “Passed” || $
{pipeline.variableName} == 39

10 (Optional) Select the Continue Pipeline execution even if this task fails option .

This option allows the release pipeline to bypass the failed task and continue with the execution
process.

11 Configure the Team Foundation Server properties.

Option Description

Endpoint Provides the registered Team Foundation Server endpoint.

Project Collection Provides a list of existing Team Foundation Server project collections.

Team Project Lists the existing team projects on the Team Foundation Server.

Build Priority Defines the level of priority on when the build runs.

Build Definition Provides a search capability for build definitions with automatic complete.

When you select the build definition the associated arguments and properties are
populated from Team Foundation Server.

12 Select one or more Team Foundation Server job output properties to expose to other tasks in the

release pipeline.

For example, you can expose the Team Foundation Server build ID and build URL in a deploy task.

Using vRealize Code Stream

VMware, Inc. 43

Example: Task Output Format for a Team Foundation Server
The following task output format is an example for a Team Foundation Server task.

[

 {

 "name": "buildId",

 "displayName": "Build Id",

 "value": "823",

 "displayValue": null

 },

 {

 "name": "dropLocation",

 "displayName": "Drop Location",

 "value": "#/70869/drop",

 "displayValue": null

 },

 {

 "name": "logUrl",

 "displayName": "Build Summary Url",

 "value":

"http://19.126.10.35:8080/tfs/TFSTestCollection/ConsoleApplication/_build#buildUri=vstfs:///Build/Buil

d/893&_a=summary",

 "displayValue": "http://19.126.10.35:8080/tfs/TFSTestCollection/ConsoleApplication/summary"

 },

 {

 "name": "buildUrl",

 "displayName": "Build Summary Url",

 "value":

"http://19.126.10.35:8080/tfs/TFSTestCollection/ConsoleApplication/_build#buildUri=vstfs:///Build/Buil

d/893&_a=summary",

 "displayValue": "http://19.126.10.35:8080/tfs/TFSTestCollection/ConsoleApplication/summary"

 },

 {

 "name": "failedTestsCount",

 "displayName": "Number Of Failed Tests",

 "value": "3",

 "displayValue": null

 }

]

Add a VMware Repository Solution Task
An artifact task lets you search for artifacts from Artifactory and the Artifactory in turn connects with a
variety of repositories such as Nexus and Yum.

You can search artifacts from Artifactory and the Artifactory in turn acts as an interface with a variety of
repositories such as Nexus and Yum. When you include an artifact task in a stage, you can run a pipeline
execution every time you develop new code that affects that artifact. The search output parameter from
varied source repositories is always the same, which includes a repository name, a download URL, and
size information, if available.

Using vRealize Code Stream

VMware, Inc. 44

Prerequisites

n Verify that a pipeline is available. See Create a Release Pipeline.

n Verify that an Artifactory server is registered. See the Installation and Configuration guide.

Procedure

1 Click the Code Stream tab.

2 Select an existing pipeline to configure from the Pipeline tab.

3 Select Edit > Stages.

4 Select Add Task.

5 Select the VMware Repository Solution from the Provider drop-down menu.

6 Enter an artifact task name and click OK.

7 Select the new task from the stage column.

8 Confirm to save the pipeline.

9 Select an Execute Task for the release pipeline.

Option Description

Always Runs the release pipeline task without conditions.

On Condition(s) Runs the release pipeline task only if the defined condition is evaluated as true. If
the condition is false, the task is skipped.

A boolean expression using the following operands and operators is supported.
n Pipeline variables such as, ${pipeline.variableName}. Curly brackets are

reserved for specifying pipeline variables.
n Task output variables such as, ${Stage1.task1.machines[0].value.hostIp[0]}
n Default pipeline binding variables such as, ${releasePipelineName}
n Case insensitive Boolean values such as, true, false, 'true', 'false'
n Integer or decimal values without quotes
n String values used with single or double quotes such as, "test", 'test'
n String and Numeric types of values such as, == Equals and != Not Equals
n Relational operators such as, > , >=, <, and <=
n Boolean logic such as, && and ||
n Arithmetic operators such as, +, -, *, and /
n Nested expressions using round brackets
n Strings with literal value ABCD is evaluated as false and the task is skipped.

Unary operators are not supported.

A sample condition, ${Stage1.task1.output} == “Passed” || $
{pipeline.variableName} == 39

10 (Optional) Select the Continue Pipeline execution even if this task fails option .

This option allows the release pipeline to bypass the failed task and continue with the execution
process.

Using vRealize Code Stream

VMware, Inc. 45

Search Artifacts from the Artifactory Repository
You can enter a few search parameters to locate and filter the pertinent artifacts from the Artifcatory
repository.

Prerequisites

Verify that you have an existing artifact task. See Add a VMware Repository Solution Task.

Procedure

1 Open an existing artifact task.

2 Select Add By Search.

3 Select a repository from the drop-down menu.

Using vRealize Code Stream

VMware, Inc. 46

4 Determine a search type and add the search parameters.

The search type depends on your repository and artifact.

For example, you can use the gavc search type to search for the Maven artifacts.

Search Type Description and Sample Search Parameters

gavc Provide a group ID, artifact ID, version ID, or classifier parameters for the search
on local repositories.

Note On remote repositories the search requires a group ID, artifact ID, and
version ID. You can not use the wild card character asterisk (*) as a search
parameter.

n The group ID is the organization that published the artifact.

For example, org.springframework.
n The artifact ID is the identifier of the artifact.

For example, travel.
n The version ID parameter supports the LATEST and version-SNAPSHOT

keywords.

For example, enter 4.1-SNAPSHOT to get the snapshot of a version.

The classifier is optional and supports the wild card character asterisk (*). For
example, release*, *release*, or *.

When you start a gavc search type from an Artifactory repository, the search
result displays all of the files with the same artifact name and different extensions.
You can narrow the search results with the pattern search type instead.

pattern Provide the artifact name or path parameters for the search on local repositories.

Note On remote repositories the search requires the complete artifact path. The
artifact name is optional.

n The name parameter supports the wild card character asterisk (*).

For example, test*, test.*, *.jar, or *.
n The path parameter supports the wild card character asterisk (*) for local

repositories.

For example, path/*/release searches under the path directory in
the /test/release and /dev/release folders for the artifacts only in those folders.

Each wildcard (*) represents one level in the folder structure.

Using vRealize Code Stream

VMware, Inc. 47

Search Type Description and Sample Search Parameters

properties Defined in the Artifactory server to tag artifacts with custom user properties.

These properties can be any string values. An artifact can have multiple
properties and these properties can have multiple values. You can use these
properties instead of the actual group ID, version, or specific path to locate an
artifact in the repository.

For example, the Property field can be artifactory.licenses and the Value field
can be BSD .

Note The properties search function does not work on remote repositories. You
can cache artifacts or locally tag the artifacts to use this search function.

build You can not create an artifact in the Artifactory user interface. You must push a
build from your CI server to the Artifactory user interface.
n The build Name is the name of the job that is run on your CI system.

For example, Jenkins-release.
n The build Number supports the LATEST or a build status keyword .

For example, you can search for builds with the Prod status.
n The name lets you filter an artifact from the list of artifacts in a specific build.

For example, public-API.jar or public-*.jar

Note The build search function does not work on remote repositories.

5 Enter a temporary value in the Value text box if you use a variable as a search parameter and click
Search.

The variable is applied during the artifact configuration for the property and the temporary value is
ignored.

For example, for a gavc search type, if you use ${LATEST} as the version variable, which could be
different when you run the pipeline, you must add the current version, such as 2.1 in the temporary
value .

If the search shows that an artifact does not exist, verify that the search parameters are accurate.

6 Select one or more artifacts from the search results and click Add.

7 Click Validate to verify that the artifact exists in the repository.

If a variable is assigned as an artifact property, then the validation fails. You can replace the variable
with an artifact property value and validate.

8 Select one or more artifact output properties to expose to other tasks in the pipeline.

For example, you can select to expose the artifact output and the status results in a custom task.

9 Click Save.

Add Artifacts by Name to the Artifact Task
You can specify the name of an artifact and provide the property values for the artifact task.

Using vRealize Code Stream

VMware, Inc. 48

Prerequisites

Verify that you have an existing artifact task. See Add a VMware Repository Solution Task.

Procedure

1 Open an existing artifact task.

2 Select Add By Name.

3 Select a repository from the drop-down menu.

4 Determine a search type and add the search parameters.

The search type depends on your repository and artifact.

For example, you can use the gavc search type to search for the Maven artifacts.

Search Type Description and Sample Search Parameters

gavc Provide a group ID, artifact ID, version ID, or classifier parameters for the search
on local repositories.

Note On remote repositories the search requires a group ID, artifact ID, and
version ID. You can not use the wild card character asterisk (*) as a search
parameter.

n The group ID is the organization that published the artifact.

For example, org.springframework.
n The artifact ID is the identifier of the artifact.

For example, travel.
n The version ID parameter supports the LATEST and version-SNAPSHOT

keywords.

For example, enter 4.1-SNAPSHOT to get the snapshot of a version.

The classifier is optional and supports the wild card character asterisk (*). For
example, release*, *release*, or *.

When you start a gavc search type from an Artifactory repository, the search
result displays all of the files with the same artifact name and different extensions.
You can narrow the search results with the pattern search type instead.

pattern Provide the artifact name or path parameters for the search on local repositories.

Note On remote repositories the search requires the complete artifact path. The
artifact name is optional.

n The name parameter supports the wild card character asterisk (*).

For example, test*, test.*, *.jar, or *.
n The path parameter supports the wild card character asterisk (*) for local

repositories.

For example, path/*/release searches under the path directory in
the /test/release and /dev/release folders for the artifacts only in those folders.

Each wildcard (*) represents one level in the folder structure.

Using vRealize Code Stream

VMware, Inc. 49

Search Type Description and Sample Search Parameters

properties Defined in the Artifactory server to tag artifacts with custom user properties.

These properties can be any string values. An artifact can have multiple
properties and these properties can have multiple values. You can use these
properties instead of the actual group ID, version, or specific path to locate an
artifact in the repository.

For example, the Property field can be artifactory.licenses and the Value field
can be BSD .

Note The properties search function does not work on remote repositories. You
can cache artifacts or locally tag the artifacts to use this search function.

build You can not create an artifact in the Artifactory user interface. You must push a
build from your CI server to the Artifactory user interface.
n The build Name is the name of the job that is run on your CI system.

For example, Jenkins-release.
n The build Number supports the LATEST or a build status keyword .

For example, you can search for builds with the Prod status.
n The name lets you filter an artifact from the list of artifacts in a specific build.

For example, public-API.jar or public-*.jar

Note The build search function does not work on remote repositories.

5 Enter the artifact name and click Add.

6 Click Validate to verify that the artifact exists in the repository.

If a variable is assigned as an artifact property, then the validation fails. You can replace the variable
with an artifact property value and validate.

7 Select one or more artifact output properties to expose to other tasks in the pipeline.

For example, you can select to expose the artifact output and the status results in a custom task.

8 Click Save.

Add a vRealize Automation Task
A provision task provisions machines. You can register a vRealize Automation 6.x or 7.x instance with
vRealize Code Stream to provision infrastructure in a specific environment.

vRealize Code Stream can also start multiple vRealize Automation instances. You can create machines
from a single machine blueprint for a provision task. The task output is an array of machines.

Prerequisites

n Verify that the vRealize Automation server endpoint is registered. See the Installation and
Configuration guide.

n Verify that you completed the following tasks in vRealize Automation 6.2.x or 7.x to add an endpoint
in vRealize Code Stream.

n Choosing an Endpoint Scenario see IaaS Configuration for Virtual Platforms.

Using vRealize Code Stream

VMware, Inc. 50

n Create a Fabric Group see IaaS Configuration for Virtual Platforms.

n Create a Business Group see IaaS Configuration for Virtual Platforms.

n Create a Reservation see IaaS Configuration for Virtual Platforms.

n Create a Reservation Policy see IaaS Configuration for Physical Machines.

n Create a Network Profile see IaaS Integration for Multi-Machine Services.

n Create a Blueprint see IaaS Configuration for Virtual Platforms.

n Publish a Blueprint see IaaS Configuration for Virtual Platforms.

n Verify that the vRealize Automation catalog item is assigned to a service.

The service must be added to the entitlement for the Business group proxy user.

Procedure

1 Click the Code Stream tab.

2 Select an existing pipeline to configure from the Pipeline tab.

3 Select Edit > Stages.

4 Select Add Task.

5 Select vRealize Automation 6 from the Provider drop-down menu.

6 Select vRealize Automation server endpoint you registered.

7 Enter a name for the provision task and click OK.

8 Select the new task from the stage column.

9 Confirm to save the pipeline.

Using vRealize Code Stream

VMware, Inc. 51

10 Select an Execute Task for the release pipeline.

Option Description

Always Runs the release pipeline task without conditions.

On Condition(s) Runs the release pipeline task only if the defined condition is evaluated as true. If
the condition is false, the task is skipped.

A boolean expression using the following operands and operators is supported.
n Pipeline variables such as, ${pipeline.variableName}. Curly brackets are

reserved for specifying pipeline variables.
n Task output variables such as, ${Stage1.task1.machines[0].value.hostIp[0]}
n Default pipeline binding variables such as, ${releasePipelineName}
n Case insensitive Boolean values such as, true, false, 'true', 'false'
n Integer or decimal values without quotes
n String values used with single or double quotes such as, "test", 'test'
n String and Numeric types of values such as, == Equals and != Not Equals
n Relational operators such as, > , >=, <, and <=
n Boolean logic such as, && and ||
n Arithmetic operators such as, +, -, *, and /
n Nested expressions using round brackets
n Strings with literal value ABCD is evaluated as false and the task is skipped.

Unary operators are not supported.

A sample condition, ${Stage1.task1.output} == “Passed” || $
{pipeline.variableName} == 39

11 (Optional) Select the Continue Pipeline execution even if this task fails option .

This option allows the release pipeline to bypass the failed task and continue with the execution
process.

12 Select the endpoint from the Endpoint drop-down menu.

13 Select the published vRealize Automation blueprint from the Blueprint drop-down menu.

14 Enter the machine properties.

Option Description

Number of /Machines Enter the number of machines to be provisioned and the configuration details.

Lease (Days) and other machine
details

Enter the Lease (Days), Number of CPUs, Memory, Storage values, and
Description.

Note An existing machine blueprint configuration can overwrite the values
specified here.

Owner Select Logged In User to allow the user currently logged in to run the release
pipeline.

Select Enter Owner or Bind to allow a different user to log in, configure the
machine, and provision it when the release pipeline is run. You must enter the
login credential information of that user.

Using vRealize Code Stream

VMware, Inc. 52

15 (Optional) Select to share the machine output information with other tasks during the release pipeline
execution.

This output contains details of the machines successfully provisioned by this task. You can use this
variable in succeeding tasks to retrieve the machine details.

16 Click Save.

Example: Task Output Format for a vRealize Automation Task
The following task output format is an example for a provisioning task.

[

 {

 "name": "vcac-prov01",

 "value": {

 "memory": 1024,

 "machineId": "f9ee3f71-c5d0-4138-9520-24e15e376d13",

 "hostIp": ["10.72.12.56"],

 "cpu": 1,

 "endLease": 1410478627000,

 "storageSize": 4,

 "startLease": 1410392227000,

 "blueprintId":" f9ee3f71-c5d0-4138-3476-24e15e376f36",

 "provider":"iaas-service"

 },

 "type": "MACHINE"

 }

]

Request a Machine Blueprint
You can request blueprints and customize machine components to provision a machine or a stack of
machines.

You can modify the properties for blueprints configured in vRealize Automation and view the task results.

Prerequisites

You need to install and configure the vRealize Automation IaaS feature and create a blueprint for your
vSphere machine component.

Note vRealize Automation 6.x and 7.x are supported and you can select separate tasks and configure
distinct endpoints in the vRealize Automation Properties pane when you configure the task.

Procedure

1 Click the Code Stream tab.

2 Select an existing pipeline to configure from the Pipeline tab.

3 Select Edit > Stages.

4 Select a task and select vRealize Automation 7 from the Provider drop-down menu.

Using vRealize Code Stream

VMware, Inc. 53

5 Select the endpoint and the blueprint to view the components.

The catalog API provides all component information, which you can modify after logging in to
vRealize Automation. You can set constraints or machine resource information such as number of
CPUs and storage. You can also choose to display or hide any custom property in the request form
and submit the changes to the blueprint. If you modify any information in vRealize Automation, a
message displays to indicate that you modified the blueprint.

6 Click the General tab and provide the number of deployments and the number of lease days.

7 Click the Advanced tab to provision the selected blueprint.

The vRealize Automation API provides an instance of the blueprint. You can view all components of
the blueprint, configuration items, and data nodes. The input property of the available fields such as
machine components is validated.

8 Select Save, activate the pipeline, and click Execute.

You can view the status and details of the request on the vRealize Automation Request tab while the
server processes your request.

9 After the pipeline execution is complete, select the task to view the output property.

The Machines output property displays all the output properties of the machines provisioned in the
blueprint, and the Resources output property displays all resources provisioned by the request.

Create a Nested Pipeline
You can model a complex pipeline and execute the pipeline in a modular manner by invoking pipelines
within pipelines. You can also view the result of the nested pipeline execution.

The nested pipelines allow you to model complex release pipelines by managing pipelines as tasks.

Prerequisites

Verify that you have available predefined release pipelines.

Procedure

1 Create a master release pipeline.

2 Add a stage or add multiple stages to this pipeline and include tasks.

3 Add a new task, select vRealize Code Stream as the provider and enter the name of the task.

4 Select the new task from the stage column.

5 Confirm to save the pipeline.

Using vRealize Code Stream

VMware, Inc. 54

6 Select an Execute Task for the release pipeline.

Option Description

Always Runs the release pipeline task without conditions.

On Condition(s) Runs the release pipeline task only if the defined condition is evaluated as true. If
the condition is false, the task is skipped.

A boolean expression using the following operands and operators is supported.
n Pipeline variables such as, ${pipeline.variableName}. Curly brackets are

reserved for specifying pipeline variables.
n Task output variables such as, ${Stage1.task1.machines[0].value.hostIp[0]}
n Default pipeline binding variables such as, ${releasePipelineName}
n Case insensitive Boolean values such as, true, false, 'true', 'false'
n Integer or decimal values without quotes
n String values used with single or double quotes such as, "test", 'test'
n String and Numeric types of values such as, == Equals and != Not Equals
n Relational operators such as, > , >=, <, and <=
n Boolean logic such as, && and ||
n Arithmetic operators such as, +, -, *, and /
n Nested expressions using round brackets
n Strings with literal value ABCD is evaluated as false and the task is skipped.

Unary operators are not supported.

A sample condition, ${Stage1.task1.output} == “Passed” || $
{pipeline.variableName} == 39

7 (Optional) Select the Continue Pipeline execution even if this task fails option .

This option allows the release pipeline to bypass the failed task and continue with the execution
process.

8 Click the task you created.

9 Select the pipeline from the Pipeline drop-down menu to configure the selected pipeline as a task.

You can override the input parameters to enable the child pipeline to run with the new values instead
of the configured values.

10 Click the Output tab, select the output properties that you want to publish and provide the custom
alias name.

Only the values that you select for publishing are considered in the master pipeline execution.

11 Click Save.

12 Repeat steps 3-5 to configure pipelines for each task.

13 Click Execute to run the master release pipeline.

14 Click the Pipeline Executions tab.

The status of each invoked pipeline is displayed.

15 Select the master release pipeline and click the task to view the details of the pipeline task.

Using vRealize Code Stream

VMware, Inc. 55

16 Click the Pipeline Detail button to view the details of the task modeled in the pipeline.

You can also view the details in the Dashboard tab.

Add a vRealize Orchestrator Workflow Task
With a vRealize Orchestrator task, you can configure a vRealize Orchestrator to be triggered as part of
the release pipeline process.

Prerequisites

Verify that you created a workflow and tagged it with the vRCS_CUSTOM keyword in the
vRealize Orchestrator Workflow Designer.

Procedure

1 Click the Code Stream tab.

2 Select an existing pipeline to configure from the Pipeline tab.

3 Select Edit > Stages.

4 Select Add Task.

5 Select vRealize Orchestrator Workflow from the Provider drop-down menu.

6 Enter a name for the custom task and click OK.

7 Select the new task from the stage column.

8 Confirm to save the pipeline.

Using vRealize Code Stream

VMware, Inc. 56

9 Select an Execute Task for the release pipeline.

Option Description

Always Runs the release pipeline task without conditions.

On Condition(s) Runs the release pipeline task only if the defined condition is evaluated as true. If
the condition is false, the task is skipped.

A boolean expression using the following operands and operators is supported.
n Pipeline variables such as, ${pipeline.variableName}. Curly brackets are

reserved for specifying pipeline variables.
n Task output variables such as, ${Stage1.task1.machines[0].value.hostIp[0]}
n Default pipeline binding variables such as, ${releasePipelineName}
n Case insensitive Boolean values such as, true, false, 'true', 'false'
n Integer or decimal values without quotes
n String values used with single or double quotes such as, "test", 'test'
n String and Numeric types of values such as, == Equals and != Not Equals
n Relational operators such as, > , >=, <, and <=
n Boolean logic such as, && and ||
n Arithmetic operators such as, +, -, *, and /
n Nested expressions using round brackets
n Strings with literal value ABCD is evaluated as false and the task is skipped.

Unary operators are not supported.

A sample condition, ${Stage1.task1.output} == “Passed” || $
{pipeline.variableName} == 39

10 (Optional) Select the Continue Pipeline execution even if this task fails option .

This option allows the release pipeline to bypass the failed task and continue with the execution
process.

11 Select the workflow name from the drop-down menu.

12 Enter the input parameters.

For example, enter vsphere.local\administrators for the Task Group DN Name and enter the
task details.

13 Click Save.

Example: Task Output Format for a vRealize Orchestrator Workflow Task
The following task output format is an example for a custom workflow task.

[{

 "name": "result",

 "type": "STRING",

 "description": "Result of workflow run.",

 "value": ""

},

{

 "name": "message",

Using vRealize Code Stream

VMware, Inc. 57

 "type": "STRING",

 "description": "Message",

 "value": ""

}]

Add a vRealize Orchestrator External Task
You can create a vRealize Orchestrator task to connect to a remote instance of vRealize Orchestrator and
run workflows residing in the external orchestrator .

Prerequisites

n Verify that the vRealize Orchestrator external endpoint is registered.

n Verify that you created a workflow and tagged it with the vRCS_CUSTOM keyword in the
vRealize Orchestrator Workflow Designer.

Procedure

1 Click the Code Stream tab.

2 Select an existing pipeline to configure from the Pipeline tab.

3 Select Edit > Stages.

4 Select Add Task.

5 Select vRealize Orchestrator External from the Provider drop-down menu.

6 Enter a name for the custom task and click OK.

7 Select the new task from the stage column.

8 Confirm to save the pipeline.

Using vRealize Code Stream

VMware, Inc. 58

9 Select an Execute Task for the release pipeline.

Option Description

Always Runs the release pipeline task without conditions.

On Condition(s) Runs the release pipeline task only if the defined condition is evaluated as true. If
the condition is false, the task is skipped.

A boolean expression using the following operands and operators is supported.
n Pipeline variables such as, ${pipeline.variableName}. Curly brackets are

reserved for specifying pipeline variables.
n Task output variables such as, ${Stage1.task1.machines[0].value.hostIp[0]}
n Default pipeline binding variables such as, ${releasePipelineName}
n Case insensitive Boolean values such as, true, false, 'true', 'false'
n Integer or decimal values without quotes
n String values used with single or double quotes such as, "test", 'test'
n String and Numeric types of values such as, == Equals and != Not Equals
n Relational operators such as, > , >=, <, and <=
n Boolean logic such as, && and ||
n Arithmetic operators such as, +, -, *, and /
n Nested expressions using round brackets
n Strings with literal value ABCD is evaluated as false and the task is skipped.

Unary operators are not supported.

A sample condition, ${Stage1.task1.output} == “Passed” || $
{pipeline.variableName} == 39

10 (Optional) Select the Continue Pipeline execution even if this task fails option .

This option allows the release pipeline to bypass the failed task and continue with the execution
process.

11 Select the endpoint from the Endpoint drop-down menu.

12 Select the Workflow from the drop-down menu and provide the values for the input parameters.

13 Click Save.

Example: Task Output Format for a vRealize Orchestrator External Task

The following task output format is an example for a custom workflow task.

[{

 "name": "result",

 "type": "STRING",

 "description": "Result of workflow run.",

 "value": ""

},

{

 "name": "message",

 "type": "STRING",

 "description": "Message",

 "value": ""

}]

Using vRealize Code Stream

VMware, Inc. 59

Configure Gating Rules
Gating rules are a set of criteria that each stage must pass to proceed to the subsequent stage. You can
configure gating rules based on your requirement for a pipeline.

If the gating rule is not configured, then the process proceeds to the next stage regardless of the outcome
of tasks in the current stage. The workflows are tagged as vRCS_GATING_RULE and are listed in the
drop-down menu.

A workflow is depicted as a sequence of operations. The workflow consists of an orchestrated and
repeatable pattern of business activity enabled by the systematic organization of resources into
processes that transform materials, provide services, or process information.

The default workflows are Approval and Test Acceptance Threshold. For information on how you can
register vRO workflow for a gating rule, see Installation and Configuration guide.

Table 2‑3. Default Workflows

Workflow Description

Approval This workflow is tagged with a vRCS_GATING_RULE tag.

You must provide the approval group DN value and the approval
message for a stage to continue or stop. The appropriate user
receives an email to approve or reject this workflow. After the
user submits or rejects the notification that appears in My Inbox,
the workflow either continues or stops.

Test Acceptance Threshold This workflow is tagged with a vRCS_GATING_RULE tag.

You must provide the threshold percentage value and the test
result for a task to succeed the gating rule to the next level. This
workflow accepts the test result from a Jenkins test task. Based
on the configured threshold for passed tests criteria, it allows the
pipeline run to proceed to the subsequent stage.

Prerequisites

n Verify that the last task of a stage is a test, custom script, or custom workflow.

n Verify that a custom script output is converted to create a JSON and then passed to the gating rule.

The Jenkins output can be passed directly to the gating rule, as the following example shows.

{

"totalCount": 40,

"skipCount": 0,

"failureCount": 0,

"successCount": 40

}

Procedure

1 Click the Code Stream tab.

2 Select an existing pipeline to configure from the Pipeline tab.

Using vRealize Code Stream

VMware, Inc. 60

3 Select Edit > Stages.

4
Click the Gating Rule icon () next to a stage.

5 Select If outcome of a vRealize Orchestrator workflow is successful to create the gating rule.

6 Select the appropriate workflow from the drop-down menu.

a Enter the approval group DN value, vsphere.local\administrators, in the Approval text box.

You can also edit the approval message. DN is any valid DN name that is configured in the
identity store tied to vRealize Automation.

b Enter the threshold percentage and the test result value in the Test Acceptance Threshold text
box.

7 Click Save.

Activate and Run a Release Pipeline
You can run a release pipeline that is activated. After you activate the release pipeline, pipeline modeling
is complete and you can run it.

You can view a release pipeline run on the Pipeline Executions tab. The draft state signifies that the
Release Manager is still modeling the release pipeline.

Multilevel information is provided during the release pipeline run.

n Level 1.Status at release pipeline level which is the description of the current activity.

n Level 2. Status at the task or stage level that displays the current task progress and the executed task
status.

n Level 3. Provides detailed information at task level.

Prerequisites

n Verify that a release pipeline is created in a draft state. See Create a Release Pipeline.

n Verify that predefined vRealize Automation blueprints, workflows, and scripts are created, and test
jobs that perform tasks that the pipeline can trigger.

n Verify that artifacts are available in the Artifactory server repository to use the vRealize Code Stream
Artifact Management capabilities.

Procedure

1 Click the Code Stream tab.

2 Select an existing pipeline to configure from the Pipeline tab.

3 Click Activate to create a vRealize Orchestrator workflow.

Every time a pipeline is activated, a new version of the pipeline is created.

A list of the available pipelines appears.

Using vRealize Code Stream

VMware, Inc. 61

4 Select the pipeline.

5 Click Execute.

The Execute Pipeline dialog box appears.

6 Enter the description and properties.

7 Click OK to run a release pipeline.

Note If you are running a pipeline with Team Foundation Server 2015 (TFS), you can cancel the
pipeline execution and view the status of the configured build in the server. If you are running a
pipeline with TFS 2013 and cancel the pipeline execution, the pipeline is marked as cancelled, but the
configured build in the TFS server will still display the status of the pipeline as completed.

Using vRealize Code Stream

VMware, Inc. 62

Managing Release Automation 3
After you execute a release pipeline, you can monitor the status from the Dashboard home page. You can
also delete a task, duplicate a pipeline, or delete a pipeline from the Code Stream tab.

This chapter includes the following topics:

n Clone a Task

n Delete a Task or a Cloned Task

n Copy a Release Pipeline

n Delete a Release Pipeline

Clone a Task
You can include multiple tasks with the same configuration in your pipeline by creating a task and cloning
it. You can place the cloned task in the same stage or move it to a different stage of the pipeline.

You cannot have multiple cloned tasks with the same name in a stage.

Prerequisites

Verify that you have an existing task. See Create a Release Pipeline.

Procedure

1 Click the Code Stream tab.

2 Select an existing pipeline to configure from the Pipeline tab.

3 Select Edit > Stages.

4 Click the gear icon () next to the task in a stage.

5 Click Clone.

A clone task appears in the stage.

6 Drag the cloned task to another stage or place it in the same stage.

You can reorganize the order of the cloned task in a stage.

7 Confirm to save the pipeline.

VMware, Inc. 63

Delete a Task or a Cloned Task
You can delete any task or cloned task in a stage that is not required in the pipeline. Deleting a task might
affect the subsequent tasks that refer to the output of that task.

Prerequisites

Verify that you have an existing task. See Create a Release Pipeline.

Procedure

1 Click the Code Stream tab.

2 Select an existing pipeline to configure from the Pipeline tab.

3 Select Edit > Stages.

4 Click the gear icon () next to the task in a stage.

5 Click Delete.

Copy a Release Pipeline
Copying or cloning a release pipeline creates the replica of a release pipeline with a different release
pipeline name. This replication creates a release pipeline without affecting the existing release pipeline
model. The configuration of the source and target release pipelines does not change.

Prerequisites

Verify that you have created a release pipeline. See Create a Release Pipeline.

Procedure

1 Select the pipeline to copy on the Pipelines tab.

2 Click Copy.

The Copy Pipeline window appears.

3 Enter an appropriate name for the release pipeline replica.

4 Enter the description for the release pipeline .

5 Click OK.

A copy of the release pipeline is created and is listed on the Pipelines tab. You can edit this release
pipeline to make further modifications.

Delete a Release Pipeline
Deleting a release pipeline removes the pipeline from the pipeline model.

Using vRealize Code Stream

VMware, Inc. 64

Prerequisites

Verify that you have an existing release pipeline. See Create a Release Pipeline.

Procedure

1 Select the pipeline to delete on the Pipelines tab.

2 Click Delete.

A confirmation message appears.

3 Click Yes to delete the selected release pipeline.

Using vRealize Code Stream

VMware, Inc. 65

Viewing Pipeline Execution
Reports 4
You can determine key business metrics for your application release by viewing the reports of the
successfully executed release pipelines and analyzing the failed pipelines.

This chapter includes the following topics:

n View the Success Rate of the Executed Pipelines

n View Failed Pipelines

View the Success Rate of the Executed Pipelines
You can view a consolidated report of release pipeline executions displayed at predefined intervals to
indicate the tasks that fail and make informed decisions about the release progress.

Procedure

1 Select Code Stream > Reports.

2 Select Pipeline success Rate from the Report drop-down menu.

3 Select the executed pipeline from the Pipeline drop-down menu.

4 Select the duration of time from the Time drop-down menu to view the reports for the selected time
period.

5 Click View to view a pie chart with execution details of the selected pipeline.

You can click the green sector to view the pipelines successfully executed. You can also view the
input parameters, status, and execution start time for each execution displayed in the table. You can
click the red sector of the pie chart to determine the failed pipeline executions. The failure message
containing failed stage, failed task and reason for failure is displayed in the corresponding table.

6 Click the Clear Selection link to reset your selection .

View Failed Pipelines
You can analyze and determine the details of the top five failed tasks or five most failed tasks
corresponding to top five failed stages in a release pipeline for the selected time period. You can also
determine the frequency of failures.

VMware, Inc. 66

Procedure

1 Select Code Stream > Reports.

2 Select Pipeline Failure Analysis from the Reports drop-down menu.

3 Select the pipeline from the Pipeline drop-down menu.

4 Select the duration of time from the Time drop-down menu to view the reports for the selected time
period.

5 Click View to view bar charts and the reasons for failure.

6 Click the bar representing the failed stage to view the corresponding top five failed tasks.

7 Click the bar representing the failed task to view the time of failure and corresponding failure
messages.

8 Click the Clear Selection link to reset your selection .

Using vRealize Code Stream

VMware, Inc. 67

Working with the Release
Dashboard 5
The release dashboard provides an end-to-end status summary of executions of one or more master
pipelines. You can customize your selection and save your preference to view the status on subsequent
login.

The dashboard provides a summary of the pipeline details, and the status of the related machines and
artifacts. You can view each artifact in the pipeline and associated pipelines to verify that the pipeline did
not fail because of that artifact. You can select one or more input parameters for the selected pipelines on
the dashboard to understand the context of a specific execution. The dashboard remains private until you
publish your dashboard. You must have the role of a Release Manager to publish a dashboard and save it
as a default dashboard for other users.

Release Engineer
As a Release Engineer, you can :

n create a dashboard that is displayed in My dashboard.

n set a default dashboard.

n modify or delete dashboards.

Release Manager
As a Release Manager, you can:

n create a dashboard that is displayed in My dashboard.

n set a default dashboard.

n modify or delete dashboards.

n publish a dashboard to other users in the tenant, which is displayed under Published dashboard
and make the dashboard as default dashboard to the user.

View the Release Status
You can view the details of execution of any task from the dashboard, and then execute failed or canceled
pipelines from the pipeline execution.

VMware, Inc. 68

The dashboard displays the execution date, detailed status, overall status, execution ID, and comments
of a release pipeline.

Procedure

1 Select Code Stream > Dashboard > NEW.

2 Enter the Name of the dashboard.

3 Select the pipeline from the Add pipeline to Dashboard drop-down menu.

4 Click Save.

You can now view the dashboard and publish it to other users based on your role.

5 Click the status button in the Detailed Status column to view the task result.

Each button represents the task in a stage. If you have multiple stages, the buttons are separated by
a gating rule icon.

6 Click MODIFY and select the Publish check box to publish the dashboard for all users to view the
dashboard.

You can select multiple pipelines and add them to your dashboard using the Add pipeline to
Dashboard option and delete the pipelines using the REMOVE GRID option. You can also make the
published dashboard a default dashboard by selecting the Tenant Default check box. If you select
the Tenant Default check box, the selected dashboard is published.

7 (Optional) Click the drop-down arrow in any column header to customize your view for each release
pipeline.

8 Click Save to save your dashboard.

Using vRealize Code Stream

VMware, Inc. 69

vRealize Code Stream Execution
Engine and Plug-in Framework 6
The vRealize Code Stream execution engine enables integrations with various external systems through
a plug-in framework. The execution engine saves endpoint settings and is used during pipeline modeling
to query external systems for available options, and during pipeline executions to execute commands on
external systems.

The execution engine runs as a Linux service named tekton-server on the virtual appliance (VA).

Troubleshooting the Execution Engine
You can access plug-in logs, perform backup, and restore execution engine runtime data and endpoint
settings.

You can access the execution engine and plug-in logs from /var/log/vmware/tekton.

If you want to backup and restore vRealize Code Stream execution engine runtime data and endpoint
settings, use the location /storage/db/tekton/9000.

If you are unable to view the providers in the Provider drop-down menu, perform the following:

Procedure

1 Ensure that the execution engine is running.

2 Execute the following on the console of the server:

a service tekton-server status to check the status of the service.

b service tekton-server restart to restart the service.

VMware, Inc. 70

vRealize Code Stream REST API
and Example Scripts 7
You can use REST APIs to import and export release pipeline models between vRealize Code Stream
appliances.

A pipeline exported from versions 2.0 and 2.1 can be imported to 2.1. You can also use the provided
example scripts to run a release pipeline.

For more information on supported API, open the URL https://<VA-IP>/component-registry/services/docs
and select release-management from the drop-down menu.

This chapter includes the following topics:
n Exporting a Release Pipeline

n Import a Release Pipeline

n Java Code to Run a Release Pipeline

n Example Script to Run a Release Pipeline

Exporting a Release Pipeline
You can export and later import a release pipeline model so that users do not have to recreate an existing
release pipeline.

When you use a REST API to export a release pipeline model, the latest version of the model is exported.

Note You can export the release pipeline model by specifying the release pipeline name.

HTTP Method
GET

URI Syntax

/release-management-service/api/release-pipelines/{ReleasePipelineName}?action=export

VMware, Inc. 71

Response
The release pipeline model can be exported to an XML format by specifying the HTTP Accept Header as
application/xml. JSON (application/json) is the default response format.

The password value is removed during the export process.

{

 "metadata": {

 "pluginInstances": {

 "instance": [

]

 }

 },

 "model": {

 "name": "export",

 "modelVersion": "2.1",

 "notificationList": "",

 "version": 1,

 "tags": {

 "tag": [

]

 },

 "pipelineParams": {

 "property": [

]

 },

 "stages": {

 "stage": [{

 "name": "Stage0",

 "index": 0,

 "tasks": {

 "task": [{

 "index": 0,

 "name": "sample-task",

 "plugin": {

 "provider": "vrcs.jenkins:build_job",

 "category": "ALL"

 },

 "inputProperties": {

 "property": [{

 "name": "jobName",

 "type": "String",

 "value": "sample",

 "description": "jobName",

 "additional": false

 }, {

 "name": "jobParameters",

 "type": "JSON[]",

 "value": "[]",

Using vRealize Code Stream

VMware, Inc. 72

 "description": "jobParameters",

 "additional": false

 }, {

 "name": "jenkinsServer",

 "type": "vrcs.jenkins:JenkinsServer",

 "value": "${racks['vrcs.jenkins:JenkinsServer@sample-jenkins-

endpoint']}",

 "description": "jenkinsServer",

 "additional": false

 }]

 },

 "outputProperties": {

 "property": []

 },

 "conditionalExpression": "",

 "continueOnFailure": false,

 "dependsOn": [

]

 }]

 }

 }]

 },

 "concurrentExecutionsSupported": true

 }

}

Import a Release Pipeline
You can import a release pipeline model to avoid recreating a release pipeline.

Pipelines exported from vRealize Code Stream 2.0 and 2.1 appliances can be imported.

If the release pipeline is using configured endpoint, configured them on the appliance before you import
the release pipeline. If an endpoint is not configured on the appliance, you receive an error message.

HTTP Method
POST

URI Syntax

/release-management-service/api/release-pipelines?action=import&overwrite=false

The overwrite value is set to false by default and is optional. When the overwrite value is set to true, the
imported release pipeline model overwrites the existing pipeline with the same name.

Response
The imported release pipeline model can be in the XML or JSON format depending on whether the HTTP
Content-Type header is set to application/json or application/xml.

Using vRealize Code Stream

VMware, Inc. 73

The imported pipeline is always in the draft state.

<release-pipeline-import-response>

 <id>da6019bf-eee2-483d-87b3-2d7752289dda</id>

 <status>rp01 import successful</status>

<release-pipeline-import-response>

Existing Release Pipeline Name Response
The imported release pipeline model name exists.

<errors>

 <error code="18142">

 <message>Importing Release pipeline failed.</message>

 <systemMessage>The pipeline name Sample Pipeline already exists. Please rename the pipeline or

use the overwrite option</systemMessage>

 </error>

</errors>

Java Code to Run a Release Pipeline
You can use Java code to query and run release pipelines programmatically. The Java code must be
packaged with open source dependencies.

Example Java Script

package samples;

import com.google.gson.Gson;

import org.apache.http.Header;

import org.apache.http.HttpResponse;

import org.apache.http.client.HttpClient;

import org.apache.http.client.methods.HttpGet;

import org.apache.http.client.methods.HttpPost;

import org.apache.http.conn.ClientConnectionManager;

import org.apache.http.conn.scheme.Scheme;

import org.apache.http.conn.scheme.SchemeRegistry;

import org.apache.http.conn.ssl.SSLSocketFactory;

import org.apache.http.conn.ssl.TrustStrategy;

import org.apache.http.entity.StringEntity;

import org.apache.http.impl.client.DefaultHttpClient;

import org.apache.http.impl.conn.BasicClientConnectionManager;

import org.apache.http.message.BasicHeader;

import org.apache.http.protocol.HTTP;

import java.io.BufferedReader;

import java.io.InputStream;

import java.io.InputStreamReader;

import java.security.cert.CertificateException;

import java.security.cert.X509Certificate;

import java.util.ArrayList;

Using vRealize Code Stream

VMware, Inc. 74

import java.util.List;

/**

* Sample Java class to invoke REST APIs on Release pipeline

*

*/

public class PipelineApiHelper {

private String username;

private String password;

private String tenant;

private String serverHost;

private Gson gson = new Gson();

private static String FETCH_TOKEN_URL_TEMPLATE = "https://%s/identity/api/tokens";

private static String TRIGGER_EXECUTION_URL_TEMPLATE = "https://%s/release-management-

service/api/release-pipelines/%s/executions";

private static String FETCH_PIPELINE_INFO_URL_TEMPLATE = "https://%s/release-management-

service/api/release-pipelines?name=%s";

private static ClientConnectionManager connectionManager;

/**

* Sample helper class to fetch pipeline info and trigger an execution

*

* @param serverhost Code Stream server host name

* @param username login credentials

* @param password login credentials

* @param tenant tenant id for the user

*/

public PipelineApiHelper(String serverhost, String username, String password, String tenant) {

this.username = username;

this.password = password;

this.tenant = tenant;

this.serverHost = serverhost;

}

/**

* Trigger a pipeline execution

*

* @param pipelineName name of the pipeline to execute

* @param pipelineParamsJson JSON string for the pipeline execution

* pipeline param JSON is the input required for the pipeline execution.

* for a single pipeline parameter 'token', the JSON input would look like:

* Eg: {"description":"test run","pipelineParams":[{"name":"token","type":"STRING","value":"4321"}]}

*/

public void triggerPipelineExecution(String pipelineName, String pipelineParamsJson) {

//A SSO token is required to make any calls to the Code Stream server. Token can be obtained easily by

passing the credentials as follows

final String token = fetchToken();

List<Header> headers = getCommonHeaders();

headers.add(new BasicHeader("Authorization", "Bearer " + token));

try {

//fetch the pipeline id

Using vRealize Code Stream

VMware, Inc. 75

InputStream pipelineRespStream = getRequest(String.format(FETCH_PIPELINE_INFO_URL_TEMPLATE,

serverHost, pipelineName),

headers);

BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(pipelineRespStream));

//response contains the pipeline info (containing the id)

PipelineInfoWrapper pInfo = gson.fromJson(bufferedReader, PipelineInfoWrapper.class);

//trigger the pipeline execution with the pipeline id and pipeline params

InputStream is = postRequest(String.format(TRIGGER_EXECUTION_URL_TEMPLATE, serverHost,

pInfo.getContent().get(0).getId()),

headers,

pipelineParamsJson);

bufferedReader.close();

bufferedReader = new BufferedReader(new InputStreamReader(is));

String response;

System.out.println("Response:");

while ((response = bufferedReader.readLine()) != null) {

System.out.print(response);

}

System.out.println("===");

} catch (Exception ex) {

System.out.println("Error triggering pipeline: " + ex.getMessage());

}

System.out.println("Pipeline execution triggered !");

}

/**

* Fetch SSO Token from Identity server

* @return token

*/

private String fetchToken() {

//POST username,password,tenant to fetch token API

TokenRequest tokenRequest = new TokenRequest();

tokenRequest.setUsername(username);

tokenRequest.setPassword(password);

tokenRequest.setTenant(tenant);

String token = null;

try {

InputStream is = postRequest(String.format(FETCH_TOKEN_URL_TEMPLATE, serverHost),

getCommonHeaders(),

gson.toJson(tokenRequest));

BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(is));

TokenResponse tokenResponse = gson.fromJson(bufferedReader, TokenResponse.class);

if (tokenResponse != null) {

token = tokenResponse.getId();

}

} catch (Exception ex) {

System.out.println("Error fetching token: " + ex.getMessage());

}

return token;

}

Using vRealize Code Stream

VMware, Inc. 76

/**

* Construct the common headers required for the API calls

*

* @return

*/

private List<Header> getCommonHeaders() {

List<Header> headers = new ArrayList<Header>(){{

add(new BasicHeader(HTTP.CONTENT_TYPE, "application/json"));

add(new BasicHeader("Accept", "application/json"));

}};

return headers;

}

/**

* Helper method for Http POST request

* @param url

* @param headers

* @param requestBody

* @return

* @throws Exception

*/

private InputStream postRequest(String url, List<Header> headers, String requestBody) throws Exception

{

HttpClient httpClient = new DefaultHttpClient(getConnManager());

HttpPost post = new HttpPost(url);

post.setEntity(new StringEntity(requestBody));

Header[] headersArray = headers.toArray(new Header[headers.size()]);

post.setHeaders(headersArray);

HttpResponse response = httpClient.execute(post);

if (null != response && response.getStatusLine().getStatusCode()/100 == 2) {

return response.getEntity().getContent();

} else {

return null;

}

}

/**

* Helper method for http GET request

* @param url

* @param headers

* @return

* @throws Exception

*/

private InputStream getRequest(String url, List<Header> headers) throws Exception {

HttpClient httpClient = new DefaultHttpClient(getConnManager());

HttpGet get = new HttpGet(url);

Header[] headersArray = headers.toArray(new Header[headers.size()]);

get.setHeaders(headersArray);

HttpResponse response = httpClient.execute(get);

if (null != response && response.getStatusLine().getStatusCode()/100 == 2) {

return response.getEntity().getContent();

} else {

Using vRealize Code Stream

VMware, Inc. 77

return null;

}

}

/**

* Construct a connection manager

* Note: This sample method ignores the SSL certificates. Ignoring them may not be something that you

intend.

* @return

* @throws Exception

*/

private static ClientConnectionManager getConnManager() throws Exception {

if (connectionManager == null) {

SSLSocketFactory sslSocketFactory = new SSLSocketFactory(new TrustStrategy() {

public boolean isTrusted(

final X509Certificate[] chain, String authType) throws CertificateException {

return true;

}

});

Scheme httpsScheme = new Scheme("https", 443, sslSocketFactory);

SchemeRegistry schemeRegistry = new SchemeRegistry();

schemeRegistry.register(httpsScheme);

connectionManager = new BasicClientConnectionManager(schemeRegistry);

}

return connectionManager;

}

public static void main(String[] args) {

PipelineApiHelper helper = new PipelineApiHelper("test.com", "test@test.com", "password", "sample");

helper.triggerPipelineExecution("PipelineName", "{\"id\":\"\",\"description\":\"test

run\",\"pipelineParams\":[{\"name\":\"token\",\"type\":\"STRING\",\"value\":\"4321\"}]}");

}

}

class TokenResponse {

String expires;

String id;

String tenant;

public String getId() {

return id;

}

public String getExpires() {

return expires;

}

public String getTenant() {

return tenant;

}

public void setExpires(String expires) {

this.expires = expires;

}

Using vRealize Code Stream

VMware, Inc. 78

public void setId(String id) {

this.id = id;

}

public void setTenant(String tenant) {

this.tenant = tenant;

}

}

class TokenRequest {

String username;

String password;

String tenant;

public String getUsername() {

return username;

}

public void setUsername(String username) {

this.username = username;

}

public String getPassword() {

return password;

}

public void setPassword(String password) {

this.password = password;

}

public String getTenant() {

return tenant;

}

public void setTenant(String tenant) {

this.tenant = tenant;

}

}

class PipelineInfoWrapper {

List<PipelineInfo> content;

public List<PipelineInfo> getContent() {

return content;

}

public void setContent(List<PipelineInfo> content) {

this.content = content;

}

}

class PipelineInfo {

String id;

Using vRealize Code Stream

VMware, Inc. 79

public String getId() {

return id;

}

public void setId(String id) {

this.id = id;

}

}

Example Script to Run a Release Pipeline
You can use the example script to query and run release pipelines programmatically. The script code has
no dependencies.

Example Script

#!/bin/bash

echo "#### Sample script to query and trigger a pipeline execution ####"

#Server host address refers to the host on which Code Stream server is setup. Eg: codestream.abc.com

read -p "vRealize Code Stream Server Host: " server_host

#user name and password with which you login on Code Stream server Eg: jane.doe@abc.com

read -p "Username: " username

read -p "Password: " password

#tenant name can be obtained from your system administrator if not known already

read -p "Tenant: " tenant

echo "---"

#fetch the pipeline details and subsequently trigger an execution

#enter the pipeline name for which you want to trigger an execution

read -p "Release pipeline name:" pipeline_name

#pipeline param JSON is the input required for the pipeline execution. for a single pipeline parameter

'token', the JSON input would look like:

Eg: {"description":"test run","pipelineParams":[{"name":"token","type":"STRING","value":"4321"}]}

read -p "Enter the pipeline param JSON:" pipeline_params

#A SSO token is required to make any calls to the Code Stream server. Token can be obtained easily by

passing the credentials as follows

host_url="https://$server_host/identity/api/tokens"

response=$(curl -s -X POST -H 'Content-Type: application/json' -H 'Accept: application/json' --

insecure -d '{"username": "'"$username"'", "password": "'"$password"'", "tenant": "'"$tenant"'"}'

$host_url)

#token can be extracted from the JSON response as follows

token=`echo $response | sed -n 's/.*"id":"\([^}]*\)",.*}/\1/p'`

#with the token obtained, subsequent calls can be made to the code stream server (a token has an

expiry so renewal might be required if the same token is reused beyond expiry)

pipeline_fetch_url="https://$server_host/release-management-service/api/release-pipelines?name=

$pipeline_name"

response=$(curl -s -X GET -H "Content-Type: application/json" -H "Accept: application/json" -H

Using vRealize Code Stream

VMware, Inc. 80

"Authorization: Bearer $token" -k $pipeline_fetch_url)

pipeline_id=`echo $response | sed -n 's/.*"id":"\([^"]*\)",.*stages.*/\1/p'`

#echo "pipeline id: $pipeline_id"

#with the pipeline id, an execution can be triggered as follows

execute_pipeline_url="https://$server_host/release-management-service/api/release-

pipelines/$pipeline_id/executions"

echo "executing pipeline:$pipeline_name :[$pipeline_id]"

response=$(curl -s -X POST -H "Content-Type: application/json" -H "Accept: application/json" -H

"Authorization: Bearer $token" -k -d "$pipeline_params" $execute_pipeline_url)

echo "Response to execute pipeline => $response"

Using vRealize Code Stream

VMware, Inc. 81

	Using vRealize Code Stream
	Contents
	Using vRealize Code Stream
	Introducing vRealize Code Stream
	Core Architectural Principles
	Roles and Responsibilities of Personas
	Integrating vRealize Code Stream with External Systems
	Key Release Automation Concepts

	Using Release Automation
	Modeling a Release Pipeline Checklist
	Create a Release Pipeline
	Configure a Bamboo Task
	Configure a Bugzilla Task
	Create Bug
	Update Bug

	Configure a Cloud Foundry Server Task
	Add a Custom Service Blueprint Task
	Configure the Custom Service Blueprint Task

	Configure a Jenkins Task
	Configure a JIRA Task
	Add a Script Task
	Configure the General Tab
	Configure the Advanced Tab

	Configure a Team Foundation Server Task
	Add a VMware Repository Solution Task
	Search Artifacts from the Artifactory Repository
	Add Artifacts by Name to the Artifact Task

	Add a vRealize Automation Task
	Request a Machine Blueprint

	Create a Nested Pipeline
	Add a vRealize Orchestrator Workflow Task
	Add a vRealize Orchestrator External Task

	Configure Gating Rules
	Activate and Run a Release Pipeline

	Managing Release Automation
	Clone a Task
	Delete a Task or a Cloned Task
	Copy a Release Pipeline
	Delete a Release Pipeline

	Viewing Pipeline Execution Reports
	View the Success Rate of the Executed Pipelines
	View Failed Pipelines

	Working with the Release Dashboard
	View the Release Status

	vRealize Code Stream Execution Engine and Plug-in Framework
	Troubleshooting the Execution Engine

	vRealize Code Stream REST API and Example Scripts
	Exporting a Release Pipeline
	Import a Release Pipeline
	Java Code to Run a Release Pipeline
	Example Script to Run a Release Pipeline

