Reference Architecture

22 FEB 2019
vRealize Operations Manager 7.0
You can find the most up-to-date technical documentation on the VMware website at:
https://docs.vmware.com/
If you have comments about this documentation, submit your feedback to
docfeedback@vmware.com
Contents

1 Reference Architecture Overview 4

2 Best Practices for Deploying vRealize Operations Manager 5

3 Initial Considerations for Deploying vRealize Operations Manager 7

4 Scalability Considerations 10

5 High Availability Considerations 12

6 Adapter and Management Packs Considerations 13

7 Hardware Requirements for Analytic Nodes and Remote Collectors 15

8 Port Requirements for vRealize Operations Manager 16

9 Small Deployment Profile for vRealize Operations Manager 20

10 Medium Deployment Profile for vRealize Operations Manager 22

11 Large Deployment Profile for vRealize Operations Manager 24

12 Extra Large Deployment Profile for vRealize Operations Manager 27
Reference Architecture Overview

The vRealize Operations Manager Reference Architecture Guide provides recommendations for deployment topology, hardware requirements, and interoperability, and scalability for VMware vRealize Operations Manager.

For information about software requirements, installation, and supported platforms see VMware vRealize Operations Manager Documentation.
Best Practices for Deploying vRealize Operations Manager

Implement all best practices when you deploy a production instance of vRealize Operations Manager.

Analytics Nodes

Analytics nodes consist of a master node, replica nodes, and data nodes.

- Deploy analytics nodes in the same vSphere Cluster.
- Deploy analytics nodes on storage of the same type.
- Depending on the size and performance requirements for analytics nodes, apply Storage DRS Anti-Affinity rules to ensure that nodes are on separate datastores.
- Set Storage DRS to manual for all vRealize Operations Manager analytics nodes.
- If you deploy analytics nodes into a highly consolidated vSphere cluster, configure resource reservation to ensure optimal performance. Ensure that the virtual CPU to physical CPU ratio is not negatively impacting the performance of analytic nodes by validating CPU ready time and CPU co-stop.
- Analytics nodes have a high number of vCPUs to ensure performance of the analytics computation that occurs on each node. Monitor CPU Ready time and CPU Co-Stop to ensure that analytics nodes are not competing for CPU capacity.

If the sizing guideline provides several configurations for the same number of objects, use the configuration which has the least number of nodes. For example, if the number of objects is 120,000, configure the node size as 4 extra large nodes instead of 12 large nodes.

Management Packs and Adapters

Various management packs and adapters have specific configuration requirements. Ensure that you are familiar with all prerequisites before you install a solution and configure the adapter instance.
Deployment Formats

- Deploy vRealize Operations Manager with VMware virtual appliance.

Note vRealize Operations Manager 6.5 was the final version of the product to support RHEL installations. vRealize Operations Manager 6.4 was the final version of the product to support Microsoft Windows installations.
Initial Considerations for Deploying vRealize Operations Manager

For the production instance of vRealize Operations Manager to function optimally, your environment must conform to certain configurations. Review and familiarize yourself with these configurations before you deploy a production instance of vRealize Operations Manager.

Sizing

vRealize Operations Manager supports up to 240,000 monitored resources spread across six extra large analytic nodes.

Size your vRealize Operations Manager instance to ensure performance and support. For more information about sizing, see the following KB article 54370.

Environment

Deploy analytic nodes in the same vSphere cluster and use identical or similar hosts and storage. If you cannot deploy analytic nodes in the same vSphere cluster, you must deploy them in the same geographical location. vRealize Operations Manager does not support deploying analytics nodes in multiple geographical locations.

Analytics nodes must be able to communicate with one another always. The following vSphere events might disrupt connectivity.

- vMotion
- Storage vMotion
- High Availability (HA)
- Distributed Resource Scheduler (DRS)

Due to a high level of traffic between analytics nodes, all analytics nodes should be located on the same VLAN and IP subnet, and that VLAN is not stretched between data centers. Latency between analytics nodes cannot exceed 5 milliseconds, and the bandwidth must be equal to or higher than 1 GB per second. It is recommended that bandwidth be 10 GB per second at minimum.

If you deploy analytics nodes in to a highly consolidated vSphere cluster, configure resource reservations. A full analytics node, for example a large analytics node that monitors 10,000 resources, requires one virtual CPU to physical CPU. If you experience performance issues, review the CPU ready and co-stop to determine if the virtual to physical CPU ratio is the cause of
the issues. For more information about how to troubleshoot VM performance and interpret CPU performance metrics, see Troubleshooting a virtual machine that has stopped responding: VMM and Guest CPU usage comparison (1017926).

You can deploy remote collectors behind a firewall. You cannot use NAT between remote collectors and analytics nodes.

Multiple Data Centers

If vRealize Operations Manager is monitoring resources in additional data centers, you must use remote collectors and deploy the remote collectors in the remote data centers. You might need to modify the intervals at which the configured adapters on the remote collector collect information depending on latency.

It is recommended that latency between sites is less than 200ms. When latency exceeds 200ms, it is recommended that you monitor collections to validate that they are completing in less than five minutes. If collections are not completed in this time limit, increase the interval to 10 minutes.

Certificates

A valid certificate signed by a trusted Certificate Authority, private, or public, is an important component when you configure a production instance of vRealize Operations Manager. Configure a Certificate Authority signed certificate against the system before you configure End Point Operations Management agents.

You must include all analytics, remote collectors, and load balancer DNS names in the Subject Alternative Names field of the certificate.

You can configure End Point Operations Management agents to trust the root or intermediate certificate to avoid having to reconfigure all agents if the certificate on the analytics nodes and remote collectors are modified. For more information about root and intermediate certificates, see Specify the End Point Operations Management Agent Setup Properties.

Adapters

It is recommended that you configure adapters to remote collectors in the same data center as the analytics cluster for large and extra large deployment profiles. Configuring adapters to remote collectors improves performance by reducing load on the analytics node. As an example, you might decide to configure an adapter to remote collectors if the total resources on a given analytics node begins to degrade the node’s performance. You might configure the adapter to a large remote collector with the appropriate capacity.

Configure adapters to remote collectors when the number of resources the adapters are monitoring exceeds the capacity of the associated analytics node.
Authentication

You can use the Platform Services Controller for user authentication in vRealize Operations Manager. For more information about deploying a highly available Platform Services Controller instance, see [VMware vCenter Server 6.0 Deployment Guide](#).

Load Balancer

For more information about load balancer configuration, see the *vRealize Operations Manager Load Balancing Guide*.
Scalability Considerations

Configure your initial deployment of vRealize Operations Manager based on anticipated usage.

Analytics Nodes

Analytics nodes consist of a master node, a replica node, and data nodes.

For enterprise deployments of vRealize Operations Manager, deploy all nodes as large or extra large deployments, depending on sizing requirements and your available resources.

Scaling Vertically by Adding Resources

If you deploy analytics nodes in a configuration other than large, you can reconfigure the vCPU and memory. It is recommended to scale up the analytics nodes in the cluster before scaling out the cluster with additional nodes. vRealize Operations Manager supports various node sizes.

Table 4-1. Analytics Nodes Deployment Sizes

<table>
<thead>
<tr>
<th>Node Size</th>
<th>vCPU</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extra small</td>
<td>2</td>
<td>8 GB</td>
</tr>
<tr>
<td>Small</td>
<td>4</td>
<td>16 GB</td>
</tr>
<tr>
<td>Medium</td>
<td>8</td>
<td>32 GB</td>
</tr>
<tr>
<td>Large</td>
<td>16</td>
<td>48 GB</td>
</tr>
<tr>
<td>Extra large</td>
<td>24</td>
<td>128 GB</td>
</tr>
</tbody>
</table>

Scaling Vertically -by Increasing Storage

You can increase storage independently of vCPU and Memory.

To maintain a supported configuration, data nodes deployed in the cluster must be the same node size.

For more information about increasing storage, see the topic, Add Data Disk Space to a vRealize Operations Manager vApp Node. You cannot modify the disks of virtual machines that have a snapshot. You must remove all snapshots before you increase disk size.

Scaling Horizontally (Adding nodes)

vRealize Operations Manager 6.7 supports up to 6 extra large analytic nodes in a cluster.
To maintain a supported configuration, analytics nodes deployed in the cluster must be the same node size.

Remote Collectors

vRealize Operations Manager supports two sizes for remote collectors, standard and large. The maximum number of resources is based on the aggregate resources that are collected for all adapters on the remote collector. In large-scale vRealize Operations Manager monitored environment, you might experience a slow responding UI, and metrics are slow to be displayed. Determine the areas of the environment in which the latency is greater than 20 milliseconds and install a remote collector in those areas.

<table>
<thead>
<tr>
<th>Collector Size</th>
<th>Resources</th>
<th>End Point Operations Management Agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>6000</td>
<td>250</td>
</tr>
<tr>
<td>Large</td>
<td>32,000</td>
<td>2,000</td>
</tr>
</tbody>
</table>

For more information about sizing see the following KB article [54370](#).
High Availability Considerations

High availability creates a replica for the vRealize Operations Manager master node and protects the analytics cluster against the loss of a node.

Cluster Management

Clusters consist of a master node and a replica node.

When you enable High Availability, information is stored in two different analytics nodes within the cluster which consist of a master node, a replica node, or data nodes.

If either the master node or replica node is permanently lost, then you must disable and re-enable high availability to reassign the master role or replica role. This process, which includes a hidden cluster rebalance, can take a long time.

Analytics Nodes

Analytics nodes consist of a master node, replica node, and data nodes.

Enabling High Availability within vRealize Operations Manager is not a disaster recovery solution. Enabling High Availability duplicates data in the system, and doubles the system's compute and capacity requirements.

When you enable high availability, you protect vRealize Operations Manager from data loss in the event that a single node is lost. If two or more nodes are lost, there may be permanent data loss. Deploy all analytics nodes to separate hosts to reduce the chance of data loss in the event that a host fails. You can use DRS anti-affinity rules to ensure that VMs remain on separate hosts.

Remote Collectors

In vRealize Operations Manager 6.1 and later, you can create a collector group. A collector group is a collection of nodes (analytic nodes and remote collectors). You can assign adapters to a collector group, rather than assigning an adapter to a single node.

If the node running the adapter fails, the adapter is automatically moved to another node in the collector group.

Assign all normal adapters to collector groups, and not to individual nodes. Do not deploy hybrid adapters in collector groups. For more information about adapters, see the documentation for the specific adapters.
Adapter and Management Packs Considerations

Adapters and management packs have specific configuration considerations.

Normal Adapters

Normal adapters require one-way communication to the monitored endpoint. Deploy normal adapters into collector groups, which are sized to handle failover.

Following is a sample list of adapters provided by VMware for vRealize Operations Manager. Additional adapters can be found on the VMware Solutions Exchange website.

- VMware vSphere
- Management Pack for NSX for vSphere
- Management Pack for OpenStack
- Management Pack for Storage Devices
- Management Pack for Log Insight

Hybrid Adapters

Hybrid adapters require two-way communication between the adapter and the monitored endpoint.

You must deploy hybrid adapters to a dedicated remote collector. Configure only one hybrid adapter type for each remote collector. You cannot configure hybrid adapters as part of a collector group. For example, two vRealize Operations for Published Applications adapters can exist on the same node, and two vRealize Operations for Horizon adapters can exist on the same node, but a vRealize Operations for Published Applications adapter and a vRealize Operations for Horizon adapter cannot exist on the same node.

Several hybrid adapters are available for vRealize Operations Manager.

- vRealize Operations for Horizon adapter
- vRealize Operations for Published Applications adapter
Management Pack for vRealize Hyperic

End Point Operations Management Adapter

By default, End Point Operations Management adapters are installed on all data nodes. Large and extra large analytic nodes can support 2,500 end point agents and large remote collectors can support 2,000 per node. To reduce ingestion load on the cluster, you can point End Point Operations Management adapters at remote collectors. Assign the dedicated remote collectors to their own collector group, which helps the End Point Operations Management adapter maintain the state of End Point Operations Management resources if a node in the collector group fails.

To reduce the cost of reconfiguring the system, it is recommended that you install End Point Operations Management agents against a DNS entry specific to End Point Operations Management agents if you plan to scale the system beyond a single node.

Remote Collectors Behind a Load Balancer for End Point Operations Management Agents

![Diagram showing remote collectors behind a load balancer](image)
Hardware Requirements for Analytic Nodes and Remote Collectors

Analytics nodes and remote collectors have various hardware requirements for virtual machines and physical machines.

The following table specifies the components to install on each server profile in your deployment, and the required hardware specifications.

Table 7-1. Hardware Requirements for System Components

<table>
<thead>
<tr>
<th>Server Roles</th>
<th>Virtual CPU</th>
<th>Memory</th>
<th>CPU Requirements</th>
<th>Storage Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium analytic node</td>
<td>8 vCPU</td>
<td>32 GB</td>
<td>2.0 Ghz minimum, 2.4 Ghz recommended</td>
<td>1875 IOPS</td>
</tr>
<tr>
<td>Large analytic node</td>
<td>16 vCPU</td>
<td>48 GB</td>
<td>2.0 Ghz minimum, 2.4 Ghz recommended</td>
<td>3750 IOPS</td>
</tr>
<tr>
<td>Standard remote collector</td>
<td>2 vCPU</td>
<td>4 GB</td>
<td>2.0 Ghz minimum, 2.4 Ghz recommended</td>
<td>N/A</td>
</tr>
<tr>
<td>Large remote collector</td>
<td>4 vCPU</td>
<td>16 GB</td>
<td>2.0 Ghz minimum, 2.4 Ghz recommended</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Storage requirements are based on the maximum supported resources for each node.

vRealize Operations Manager has a high CPU requirement. In general, the more physical CPU that you assign to the analytics cluster, the better the performance. You must use a minimum of eight physical CPU dual socket hosts.
Port Requirements for vRealize Operations Manager

vRealize Operations Manager has certain port requirements for its components. All ports specified are default ports.

Port Requirements for vRealize Operations Manager

Port Information for Connectivity from Data Node

Connectivity from the data node within the same cluster.

<table>
<thead>
<tr>
<th>Source</th>
<th>Destination</th>
<th>Port</th>
<th>Protocol</th>
<th>Service Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Node</td>
<td>Remote Collector</td>
<td>443</td>
<td>TCP</td>
<td>HTTPS</td>
</tr>
<tr>
<td>Data Node</td>
<td>Remote Collector</td>
<td>80</td>
<td>TCP</td>
<td>HTTP</td>
</tr>
<tr>
<td>Data Node</td>
<td>Data Node</td>
<td>443</td>
<td>TCP</td>
<td>HTTPS</td>
</tr>
<tr>
<td>Data Node</td>
<td>Data Node</td>
<td>80</td>
<td>TCP</td>
<td>HTTP</td>
</tr>
<tr>
<td>Source</td>
<td>Destination</td>
<td>Port</td>
<td>Protocol</td>
<td>Service Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------</td>
<td>--------</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>Data Node</td>
<td>Master Node</td>
<td>6061</td>
<td>TCP</td>
<td>Communication with Geode Locator on Master</td>
</tr>
<tr>
<td>Data Node</td>
<td>Replica Node</td>
<td>6061</td>
<td>TCP</td>
<td>Communication with Geode Locator on Replica</td>
</tr>
<tr>
<td>Data Node</td>
<td>Data Node</td>
<td>10000</td>
<td>TCP</td>
<td>Communication with Geode server embedded in Analytics process</td>
</tr>
<tr>
<td>Data Node</td>
<td>Data Node</td>
<td>10002-10010</td>
<td>TCP</td>
<td>Geode TCP inter-node failure detection & peer-to-peer TCP communication</td>
</tr>
<tr>
<td>Data Node</td>
<td>Data Node</td>
<td>10002-10010</td>
<td>UDP</td>
<td>Geode unicast UDP messaging</td>
</tr>
<tr>
<td>Data Node</td>
<td>Master Node</td>
<td>20002-20010</td>
<td>TCP</td>
<td>Geode TCP inter-node failure detection & peer-to-peer TCP communication for Master Locator</td>
</tr>
<tr>
<td>Data Node</td>
<td>Master Node</td>
<td>20002-20010</td>
<td>UDP</td>
<td>Geode unicast UDP messaging for Master Locator</td>
</tr>
<tr>
<td>Data Node</td>
<td>Master Node</td>
<td>20002-20010</td>
<td>TCP</td>
<td>Geode TCP inter-node failure detection & peer-to-peer TCP communication for Replica Locator</td>
</tr>
<tr>
<td>Data Node</td>
<td>Master Node</td>
<td>5433</td>
<td>TCP</td>
<td>Communication with Postgres Central DB on Master Node</td>
</tr>
<tr>
<td>Data Node</td>
<td>Replica Node</td>
<td>5433</td>
<td>TCP</td>
<td>Communication with Postgres Central DB on Replica Node</td>
</tr>
<tr>
<td>Data Node</td>
<td>localhost</td>
<td>5432</td>
<td>TCP</td>
<td>Communication with Postgres HIS & Alarm DB</td>
</tr>
<tr>
<td>Data Node</td>
<td>Data Node</td>
<td>7001</td>
<td>TCP</td>
<td>Cassandra inter-node communication</td>
</tr>
<tr>
<td>Data Node</td>
<td>Data Node</td>
<td>9042</td>
<td>TCP</td>
<td>Cassandra client</td>
</tr>
<tr>
<td>Source</td>
<td>Destination</td>
<td>Port</td>
<td>Protocol</td>
<td>Service Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
<td>------</td>
<td>----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Data Node</td>
<td>Master Node</td>
<td>123</td>
<td>UDP</td>
<td>NTP</td>
</tr>
<tr>
<td>Data Node</td>
<td>Replica Node</td>
<td>123</td>
<td>UDP</td>
<td>NTP</td>
</tr>
</tbody>
</table>

Port Information for Connectivity from Remote Collector

Connectivity from the remote collector within the same cluster.

<table>
<thead>
<tr>
<th>Source</th>
<th>Destination</th>
<th>Port</th>
<th>Protocol</th>
<th>Service Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Collector</td>
<td>Master Node</td>
<td>6061</td>
<td>TCP</td>
<td>Communication with Geode Locator on Master</td>
</tr>
<tr>
<td>Remote Collector</td>
<td>Replica Node</td>
<td>6061</td>
<td>TCP</td>
<td>Communication with Geode Locator on Replica</td>
</tr>
<tr>
<td>Remote Collector</td>
<td>Data Node</td>
<td>10000</td>
<td>TCP</td>
<td>Communication with Geode server embedded in Analytics process</td>
</tr>
<tr>
<td>Remote Collector</td>
<td>Data Node</td>
<td>443</td>
<td>TCP</td>
<td>HTTPS</td>
</tr>
<tr>
<td>Remote Collector</td>
<td>Data Node</td>
<td>80</td>
<td>TCP</td>
<td>HTTP</td>
</tr>
<tr>
<td>Remote Collector</td>
<td>Master Node</td>
<td>123</td>
<td>UDP</td>
<td>NTP</td>
</tr>
<tr>
<td>Remote Collector</td>
<td>Replica Node</td>
<td>123</td>
<td>UDP</td>
<td>NTP</td>
</tr>
</tbody>
</table>

Internal Communications

The following components require internal communication.

Table 8-1. Communication From End Point Operations Management Agent to Analytics Node

<table>
<thead>
<tr>
<th>Component</th>
<th>Protocol</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTPS</td>
<td>TCP</td>
<td>443</td>
</tr>
</tbody>
</table>

Table 8-2. Communication From End Point Operations Management Agent to Remote Collector

<table>
<thead>
<tr>
<th>Component</th>
<th>Protocol</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTPS</td>
<td>TCP</td>
<td>443</td>
</tr>
</tbody>
</table>

External Communications

The following components require external communications.
Table 8-3. Communication from Analytics Nodes and Remote Collectors to External Resources

<table>
<thead>
<tr>
<th>Component</th>
<th>Protocol</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform Services Controller</td>
<td>TCP</td>
<td>443</td>
</tr>
<tr>
<td>DNS</td>
<td>TCP, UDP</td>
<td>53</td>
</tr>
<tr>
<td>LDAP</td>
<td>TCP</td>
<td>389</td>
</tr>
<tr>
<td>LDAPS</td>
<td>TCP</td>
<td>636</td>
</tr>
<tr>
<td>GC TCP</td>
<td>TCP</td>
<td>3268, 3269</td>
</tr>
<tr>
<td>NTP</td>
<td>UDP</td>
<td>123</td>
</tr>
<tr>
<td>SMTP</td>
<td>TCP</td>
<td>25</td>
</tr>
<tr>
<td>SNMP</td>
<td>UDP</td>
<td>161</td>
</tr>
<tr>
<td>Adapters</td>
<td>TCP</td>
<td>**</td>
</tr>
<tr>
<td>SSH</td>
<td>TCP</td>
<td>22</td>
</tr>
<tr>
<td>CIM (Common Information Model) Service</td>
<td>TCP</td>
<td>5898</td>
</tr>
</tbody>
</table>

From vCenter to vRealize Operations Manager

<table>
<thead>
<tr>
<th>Component</th>
<th>Protocol</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unicorn Service</td>
<td>REST</td>
<td>443</td>
</tr>
</tbody>
</table>

** Ports required for adapters to communicate with external devices vary based upon the requirements of the device. Consult adapter documentation for required ports.

Note vROPS requires a TCP connection over HTTP via Port 10433 to connect to vSphere 5.x when retrieving inventory tag information.

Note The user interface and administrative interface to vROPS Operations Manager are through Port 443 with a TCP connection. See the topic, Port Requirements for vRealize Operations Manager.
Small Deployment Profile for vRealize Operations Manager

The small deployment profile is intended for systems that manage up to 20,000 resources.

Virtual Appliance Name

The small deployment profile contains a single large analytics node, analytic-1.ra.local.

Deployment Profile Support

The small deployment profile supports the following configuration.

- 20,000 resources
- 2,500 End Point Operations Management agents
- Data retention for six months
- Additional Time Series Retention for 36 months

Additional DNS Entries

You can add additional DNS entries for your organization’s future requirements. If you do not expect your planned deployment to exceed a single node, you can configure End Point Operations Management agents against the analytics nodes.

epops.ra.local -> analytic-1.ra.local

Certificate

The certificate must be signed by a Certificate Authority. The Subject Alternative Name contains the following information.

- DNS Name = epops.refarch.local
- DNS Name = analytic-1.ra.local

This is an example of a small deployment profile.
Table 9-1. Adapter Properties

<table>
<thead>
<tr>
<th>Collector Group</th>
<th>Collector</th>
<th>Adaptor</th>
<th>Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFAULT</td>
<td>analytic-1</td>
<td>A</td>
<td>2,000</td>
</tr>
<tr>
<td>DEFAULT</td>
<td>analytic-1</td>
<td>B</td>
<td>4,000</td>
</tr>
<tr>
<td>DEFAULT</td>
<td>analytic-1</td>
<td>C</td>
<td>2,000</td>
</tr>
<tr>
<td>DEFAULT</td>
<td>analytic-1</td>
<td>D</td>
<td>3,000</td>
</tr>
</tbody>
</table>

vRealize Operations Manager Small Deployment Profile Architecture
The medium deployment profile is intended for systems that manage 68,000 resources, 34,000 of which are enabled for High Availability. In the medium deployment profile, adapters are deployed on the analytics nodes by default. If you experience problems with data ingestion, move these adapters to remote controllers.

Virtual Appliance Names

The medium deployment profile contains eight medium analytics nodes.

- analytic-1.ra.local
- analytic-2.ra.local
- analytic-3.ra.local
- analytic-4.ra.local
- analytic-5.ra.local
- analytic-6.ra.local
- analytic-7.ra.local
- analytic-8.ra.local

Deployment Profile Support

The medium deployment profile supports the following configuration.

- 68,000 total resources, 34,000 enabled for HA
- 9,600 End Point Operations Management agents
- Data retention for six months
- Additional Time Series Retention for 36 months

Load Balanced Addresses

- analytics.ra.local
- epops.ra.local
Certificate

The certificate must be signed by a Certificate Authority. The Subject Alternative Name contains the following information.

- DNS Name = epops.refarch.local
- DNS Name = analytic-1.ra.local

This is an example of a medium deployment profile.

Table 10-1. Adapter Properties

<table>
<thead>
<tr>
<th>Collector Group</th>
<th>Collector</th>
<th>Adaptor</th>
<th>Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFAULT</td>
<td>analytic-1</td>
<td>A</td>
<td>2,000</td>
</tr>
<tr>
<td>DEFAULT</td>
<td>analytic-2</td>
<td>B</td>
<td>4,000</td>
</tr>
<tr>
<td>DEFAULT</td>
<td>analytic-3</td>
<td>C</td>
<td>2,000</td>
</tr>
<tr>
<td>DEFAULT</td>
<td>analytic-4</td>
<td>D</td>
<td>3,000</td>
</tr>
<tr>
<td>DEFAULT</td>
<td>analytic-5</td>
<td>E</td>
<td>1,000</td>
</tr>
<tr>
<td>DEFAULT</td>
<td>analytic-6</td>
<td>F</td>
<td>2,000</td>
</tr>
<tr>
<td>DEFAULT</td>
<td>analytic-7</td>
<td>G</td>
<td>1,500</td>
</tr>
<tr>
<td>DEFAULT</td>
<td>analytic-8</td>
<td>H</td>
<td>4,500</td>
</tr>
</tbody>
</table>

vRealize Operations Manager Medium Deployment Profile

Architecture

[Diagram showing the architecture of the vRealize Operations Manager Medium Deployment Profile]
Large Deployment Profile for vRealize Operations Manager

The large deployment profile is intended for systems that manage 128,000 resources, 64,000 of which are enabled with High Availability. All adapters are deployed to remote controllers in large deployment profiles to offload CPU usage from the analytics cluster.

Virtual Appliance Names

The large deployment profile contains eight large analytics nodes, large remote collectors for adapters, and large remote collectors for End Point Operations Management agents.

- analytic-1.ra.lcoal
- analytic-2.ra.lcoal
- analytic-3.ra.lcoal
- analytic-4.ra.lcoal
- analytic-5.ra.lcoal
- analytic-6.ra.lcoal
- analytic-7.ra.lcoal
- analytic-8.ra.lcoal

Deployment Profile Support

The large deployment profile supports the following configuration.

- 128,000 total resources, 64,000 enabled for HA
- 20,000 End Point Operations Management agents
- Data retention for six months
- Additional Time Series Retention for 36 months

Load Balanced Addresses

- analytics.ra.local
- epops.ra.local
Certificate

The certificate must be signed by a Certificate Authority. The Subject Alternative Name contains the following information.

- DNS Name = analytic.refarch.local
- DNS Name = epops.refarch.local
- DNS Name = analytic-1.ra.local to DNS Name = analytic-8.ra.local
- DNS Name = remote-1.ra.local to DNS Name = remote-N.ra.local
- DNS Name = epops-1.ra.local to DNS Name = epops-N.ra.local

This is an example of a large deployment profile.

Table 11.1. Adapter Properties

<table>
<thead>
<tr>
<th>Collector Group</th>
<th>Remote Collector</th>
<th>Adapter</th>
<th>Resources</th>
<th>End Point Operations Management Agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>remote-1</td>
<td>A</td>
<td>5,000</td>
<td>N/A</td>
</tr>
<tr>
<td>1</td>
<td>remote-2</td>
<td>B</td>
<td>5,000</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>10,000</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>remote-3</td>
<td>C</td>
<td>10,000</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>remote-4</td>
<td>D</td>
<td>5,000</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>remote-5</td>
<td>E</td>
<td>5,000</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>20,000</td>
<td>N/A</td>
</tr>
<tr>
<td>AIM</td>
<td>epops-1</td>
<td>epops</td>
<td>4,800</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td>epops-2</td>
<td>epops</td>
<td>4,800</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>9,600</td>
<td>1,600</td>
</tr>
</tbody>
</table>

If a remote collector is lost from these collector groups, you might have to manually rebalance the adapters to comply with the limit of 32,000 resource for each remote collector.

The estimate of 9,600 resources uses six resources for each End Point Operations Management agent.
vRealize Operations Manager Large Deployment Profile Architecture

- User
- EP Ops Agents
- LB analytics
- LB epops
- AIM Collectors Group
 - Remote Collector eops-1
 - Remote Collector eops-2
- Analytics Cluster
 - Analytic Node analytic-1
 - Analytic Node analytic-2
 - Analytic Node analytic-3
 - Analytic Node analytic-4
 - Analytic Node analytic-5
 - Analytic Node analytic-6
 - Analytic Node analytic-7
 - Analytic Node analytic-8
- Collectors Group 1
 - Remote Collector remote-1
 - Remote Collector remote-2
- Collectors Group 2
 - Remote Collector remote-1
 - Remote Collector remote-2
 - Remote Collector remote-3
- Collector Group 1 Endpoint
- Collector Group 2 Endpoint
Extra Large Deployment Profile
for
vRealize Operations Manager

The extra large deployment profile is intended for systems that manage 240,000 resources, 120,000 of which are enabled for High Availability. This deployment is divided into two data centers and is the maximum supported analytics cluster deployment.

Virtual Appliance Names

The extra large deployment profile contains six extra large analytics nodes, X large remote collectors for adapters, and Y large remote collectors for End Point Operations Management agents.

- analytic-1.ra.local
- analytic-2.ra.local
- analytic-3.ra.local
- analytic-4.ra.local
- analytic-5.ra.local
- analytic-6.ra.local

Deployment Profile Support

- 240,000 total resources, 120,000 enabled for HA
- 20,000 End Point Operations Management agents
- Data retention for six months
- Additional Time Series Retention for 36 months

Load Balanced Addresses

- analytics.ra.local
- epops-a.ra.local
- epops-b.ra.local
Certificate

The certificate must be signed by a Certificate Authority. The Subject Alternative Name contains the following information.

- DNS Name = analytic.refarch.local
- DNS Name = epops-a.refarch.local
- DNS Name = epops-b.refarch.local
- DNS Name = analytic-1.ra.local to analytic-16.ra.local
- DNS Name = remote-1.ra.local to remote-N.ra.local
- DNS Name = epops-1.ra.local to epops-N.ra.local

This is an example of an extra large deployment profile. The adapter in the example provides N-1 redundancy, meaning, if two adapters support 20,000 resources, then a third adapter is added to attain a supported configuration that allows for a single failure.

Table 12-1. Adapter Properties

<table>
<thead>
<tr>
<th>Collector Group</th>
<th>Data Center</th>
<th>Remote Collector</th>
<th>Adapter</th>
<th>Resources</th>
<th>End Point Operations</th>
<th>Management agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>remote-1</td>
<td>A</td>
<td>5,000</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>remote-2</td>
<td>B</td>
<td>5,000</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td>10,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>remote-3</td>
<td>C</td>
<td>2,000</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>remote-3</td>
<td>D</td>
<td>2,000</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>remote-3</td>
<td>E</td>
<td>1,000</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>remote-4</td>
<td>F</td>
<td>7,000</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>remote-5</td>
<td>G</td>
<td>8,000</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>remote-6</td>
<td>H</td>
<td>5,000</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>remote-7</td>
<td>I</td>
<td>6,000</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td>31,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>remote-8</td>
<td>J</td>
<td>10,000</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>remote-9</td>
<td>K</td>
<td>5,000</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>remote-10</td>
<td>L</td>
<td>5,000</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td>20,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIM-1</td>
<td>A</td>
<td>epops-1</td>
<td>epops</td>
<td>8,004</td>
<td>1,334</td>
<td></td>
</tr>
<tr>
<td>AIM-1</td>
<td>A</td>
<td>epops-2</td>
<td>epops</td>
<td>7,998</td>
<td>1,333</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>epops-3</td>
<td>epops</td>
<td>7,998</td>
<td>1,333</td>
<td></td>
</tr>
</tbody>
</table>
Table 12-1. Adapter Properties (Continued)

<table>
<thead>
<tr>
<th>Collector Group</th>
<th>Data Center</th>
<th>Remote Collector</th>
<th>Adapter</th>
<th>Resources</th>
<th>End Point Operations Management agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIM-2</td>
<td>B</td>
<td>epops-4</td>
<td>epops</td>
<td>8,004</td>
<td>1,334</td>
</tr>
<tr>
<td>AIM-2</td>
<td>B</td>
<td>epops-5</td>
<td>epops</td>
<td>7,998</td>
<td>1,333</td>
</tr>
<tr>
<td>AIM-2</td>
<td>B</td>
<td>epops-6</td>
<td>epops</td>
<td>7,998</td>
<td>1,333</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>24,000</td>
<td>4,000</td>
</tr>
</tbody>
</table>

If a remote collector is lost from these collector groups, you might have to manually rebalance the adapters to comply with the limit of 32,000 resource for each remote collector.

The estimate of 24,000 resources for AIM-1 and AIM-2 collector groups uses six resources for each End Point Operations Management agent.

vRealize Operations Manager Extra Large Deployment Profile Architecture - Data Center A
vRealize Operations Manager Extra Large Deployment Profile Architecture - Data Center B

Data Center B EP Ops Agents

LB epops-b

AIM-2 Collectors Group
- Remote Collector epops-4
- Remote Collector epops-6

200 ms latency

Data Center A Analytics Cluster

Collector Group 3

Collector Group 3 Endpoint

Collectors Group 3
- Remote Collector remote-8 J
- Remote Collector remote-9 K
- Remote Collector remote-10 L

200 ms latency