
Developing a Web
Services Client for
VMware vCenter
Orchestrator
vRealize Orchestrator 5.5.1

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 2

You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

If you have comments about this documentation, submit your feedback to

docfeedback@vmware.com

Copyright © 2008–2014 VMware, Inc. All rights reserved. Copyright and trademark information.

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

https://docs.vmware.com/
mailto:docfeedback@vmware.com
http://pubs.vmware.com/copyright-trademark.html

Contents

Developing Web Services Client for VMware vCenter Orchestrator 7

Updated Information 8

1 Developing a Web Services Client 9

2 Using the vCenter Orchestrator REST API 10

Authenticating Against Orchestrator and Third-Party Systems 11

Using vCenter Single Sign-On Authentication with the Orchestrator REST API 11

Using LDAP Authentication with the Orchestrator REST API 13

Accessing the Reference Documentation for the Orchestrator REST API 14

Using the Java REST SDK 14

Operations with Workflows 15

Find a Workflow and Retrieve Its Definition 15

Run a Workflow 18

Run a Workflow After Validating Its Input Parameters Against the Workflow Presentation 20

Interacting with a Workflow While It Runs 24

Retrieve a Workflow's Interactions 31

Access a Workflow's Schema 32

Working with Tasks 32

Create a Task 32

Modify a Task 33

Check the State of a Task 34

Finding Objects in the Orchestrator Inventory 35

Find Objects by Type and ID 35

Find Objects by Relations 36

Apply Filters 37

Importing and Exporting Orchestrator Objects 38

Import a Workflow 38

Export a Workflow 39

Import an Action 39

Export an Action 39

Import a Package 40

Export a Package 41

Import a Resource 42

Export a Resource 42

Import a Configuration Element 42

Export a Configuration Element 43

VMware, Inc. 3

Deleting Orchestrator Objects 43

Delete a Workflow 43

Delete an Action 44

Delete a Package 44

Delete a Resource 45

Delete a Configuration Element 45

Setting Permissions on Orchestrator Objects 45

REST API Permissions 46

Retrieve the Permissions of a Workflow 46

Delete the Permissions of a Workflow 47

Set the Permissions for a Workflow 47

Retrieve the Permissions of an Action 48

Delete the Permissions of an Action 48

Set the Permissions for an Action 48

Retrieve the Permissions of a Package 49

Delete the Permissions of a Package 49

Set the Permissions for a Package 50

Retrieve the Permissions of a Resource 50

Delete the Permissions of a Resource 51

Set the Permissions for a Resource 51

Retrieve the Permissions of a Configuration Element 52

Delete the Permissions of a Configuration Element 52

Set the Permissions for a Configuration Element 52

Performing Operations with Plug-Ins 53

Retrieve Information About Plug-Ins 53

Import a Plug-In 53

Export a Plug-In 54

Enable or Disable a Plug-In 54

Performing Server Configuration Operations 55

Retrieve Information About the Orchestrator Server Configuration 55

Import Orchestrator Server Configuration 55

Export Orchestrator Server Configuration 55

Performing Tagging Operations 56

Tag an Object 56

Untag an Object 57

List Object Tags 58

List Tagged Objects by Type 58

List Tag Owners 58

List Tags by Users 58

List Tags by Users Filtered by Tag Name 59

Remove Tags by Users 59

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 4

3 Writing a Client Application for the Orchestrator SOAP Service 61
Process for Creating an Orchestrator Web Service Client Application 61

Web Service Endpoint 63

Generating the Orchestrator Web Service Stubs 63

Accessing the Server from Web Service Clients 64

Create a Web Service Client 64

Connect to the Orchestrator Web Service 66

Find Objects in the Orchestrator Server 67

Find Objects by Using the find Operation 67

Find Objects by Using the findForId Operation 69

Find Objects by Using the findRelation Operation 70

Find Workflows in the Orchestrator Server 71

Find Workflows by Using the getAllWorkflows Operation 71

Retrieve the ID of a Workflow 72

Find Workflows by Using the getWorkflowsWithName Operation 72

Find Workflows by Using the getWorkflowForID Operation 73

Run Workflows from a Web Service Client 73

Interact with a Workflow While it Runs 75

Obtain Workflow Results 77

Time Zones and Running Workflows Through Web Services 78

Web Service Application Examples 79

4 Web Service API Object Reference 80

FinderResult Object 80

ModuleInfo Object 81

Property Object 82

QueryResult Object 82

Workflow Object 83

WorkflowParameter Object 84

WorkflowToken Object 85

WorkflowTokenAttribute Object 87

5 Web Service API Operation Reference 89

answerWorkflowInput Operation 90

cancelWorkflow Operation 91

echo Operation 91

echoWorkflow Operation 92

executeWorkflow Operation 92

find Operation 93

findForId Operation 94

findRelation Operation 95

getAllPlugins Operation 98

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 5

getAllWorkflows Operation 98

getWorkflowForId Operation 99

getWorkflowInputForId Operation 99

getWorkflowInputForWorkflowTokenId Operation 100

getWorkflowsWithName Operation 100

getWorkflowTokenBusinessState Operation 101

getWorkflowTokenForId Operation 102

getWorkflowTokenResult Operation 102

getWorkflowTokenStatus Operation 103

hasChildrenInRelation Operation 104

hasRights Operation 106

sendCustomEvent Operation 106

simpleExecuteWorkflow Operation 108

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 6

Developing Web Services Client for
VMware vCenter Orchestrator

Developing Web Services Client for VMware vCenter Orchestrator provides information about developing
a Web services client for VMware® vCenter Orchestrator.

Orchestrator provides Web services APIs so that you can develop applications to access and use
workflows through the Web. Orchestrator provides a representational state transfer (REST) API as well as
a simple object access protocol (SOAP) service that you can use to perform various operations over
workflows.

Intended Audience
This information is intended for Web application developers who want to access the Orchestrator
processes across a network, through technologies such as SOAP and RESTful Web services.

VMware, Inc. 7

Updated Information

Developing a Web Services Client for VMware vCenter Orchestrator is updated with each release of the
product or when necessary.

This table provides the update history of Developing a Web Services Client for VMware vCenter
Orchestrator.

Revision Description

EN-001342-01 Added information about the location of Java REST SDK artifacts in Using the Java REST SDK.

EN-001342-00 Initial release.

VMware, Inc. 8

Developing a Web Services
Client 1
VMware vCenter Orchestrator provides Web services APIs so that you can develop applications to
access workflows through the Web. The main purpose of the Orchestrator Web services APIs is to allow
you to integrate Orchestrator workflows in custom Web-based applications.

Orchestrator provides Web services APIs that are based on two types of technologies:

n A representational state transfer (REST) API. The Orchestrator REST API exposes the objects in the
Orchestrator inventory and the inventories of the installed plug-ins as resources that you can access
at predefined URLs. HTTP requests at these URLs result in triggering operations over workflows. The
Orchestrator REST API exposes inventory objects as resources through a set of RESTful Web
services that you can use to retrieve the definitions of workflows, run workflows, check the status of
the running workflows, cancel workflow runs, process waiting user interactions, retrieve the
presentation of workflows, and so on.

n A simple object access protocol (SOAP) service. The Orchestrator SOAP service API provides a set
of Web service definition language (WSDL) object type definitions and a set of Web service
operations, that obtain workflows, run workflows, refresh workflow states, and obtain their output
parameter values. You can also use the SOAP service to implement tree viewers, based on the
relations between objects obtained from plug-ins. The API has few complex object types and
relatively few operations.

VMware, Inc. 9

Using the vCenter Orchestrator
REST API 2
The Orchestrator REST API provides functionality that allows you to communicate with the Orchestrator
server directly through HTTP and perform various workflow-related operations over workflows.

The Orchestrator REST API exposes the objects from the inventories of the Orchestrator server and the
installed plug-ins as resources at predefined URLs. You make HTTP calls at these URLs to trigger
operations in Orchestrator. In this way, you can perform various tasks over workflows:

n Run a workflow, schedule a workflow, retrieve the runs of a workflow, answer to a user interaction,
and cancel a workflow run.

n Retrieve details about a workflow such as its input and output parameters and its presentation.

n Retrieve details about a workflow run, such as its state, generated logs, start date, and end date.

n Browse the inventories of Orchestrator and the installed plug-ins.

n Import and export workflows, actions, and packages.

By using the Orchestrator REST API you can easily integrate Orchestrator workflows in custom
applications that you can build in any programing language.

The Orchestrator REST API also provides eTag support as well as a mechanism for caching of response
data.

This section includes the following topics:

n Authenticating Against Orchestrator and Third-Party Systems

n Accessing the Reference Documentation for the Orchestrator REST API

n Using the Java REST SDK

n Operations with Workflows

n Working with Tasks

n Finding Objects in the Orchestrator Inventory

n Importing and Exporting Orchestrator Objects

n Deleting Orchestrator Objects

n Setting Permissions on Orchestrator Objects

n Performing Operations with Plug-Ins

VMware, Inc. 10

n Performing Server Configuration Operations

n Performing Tagging Operations

Authenticating Against Orchestrator and Third-Party
Systems
You must authenticate against Orchestrator in the HTTP requests that you make through the Orchestrator
REST API. If you use the Orchestrator REST API to access resources on a third-party system, such as
vCenter Server, you must authenticate against that system as well.

For example, to access all workflows in the Orchestrator inventory, you must authenticate against
Orchestrator. However, to run a workflow in vCenter Server, you must authenticate against Orchestrator
and vCenter Server.

Depending on whether you configure Orchestrator with LDAP or with vCenter Single Sign-On, the
authentication scheme for the Orchestrator REST API is different. If Orchestrator uses LDAP, you must
authenticate by using valid credentials. If Orchestrator uses vCenter Single Sign-On, you must
authenticate by using a holder-of-key token issued by the vCenter Single Sign-On Server.

If you make HTTP requests at the top-level URL of the Orchestrator REST API, you do not need to
authenticate against Orchestrator. The top level URL of the Orchestrator REST API is
https://vcoHost:port/vco/api/.

Note The default port number is 8281.

A GET request at the top level URL of the REST API returns URLs to all resources that are accessible
through the API. To make HTTP requests at these URLs, you must authenticate against Orchestrator or
the third-party system where the resources are located.

Using vCenter Single Sign-On Authentication with the
Orchestrator REST API
If Orchestrator is configured with the vCenter Single Sign-On Server, you need a principal holder-of-key
token to access system objects in Orchestrator through the vCO REST API. To access vCenter Server or
third-party systems that use the vCenter Single Sign-On Server through the Orchestrator server, you
need a delegate holder-of-key token for Orchestrator and your principal token.

Accessing System Objects in Orchestrator
You can access system objects in Orchestrator at the URLs of the Inventory and the Catalog services of
the REST API.

n https://vcoHost:port/vco/api/inventory/System/

n https://vcoHost:port/vco/api/catalog/System/

When you access system objects in Orchestrator, you pass your principal holder-of-key token in the
Authorization header of HTTP requests that you make to the Inventory or the Catalog service.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 11

For example, to retrieve all system objects of type Workflow, you make a GET request at
https://vcoHost:port/vco/api/catalog/System/Workflow/. To authenticate against Orchestrator, you need to
pass your principal holder-of-key token in the Authorization header of the request.

Accessing Objects in Third-Party Systems
To perform operations in third-party systems that are registered with the vCenter Single Sign-On Server
through the Orchestrator REST API, you must authenticate against Orchestrator and the third-party
system. You include two headers in the HTTP calls that you make through the Orchestrator REST API.

n Authorization. You must pass your principal holder-of-key token in this header.

n VCOAuthorization. You must pass a delegate holder-of-key token for Orchestrator in this header.
You must acquire the delegate token for Orchestrator from the vCenter Single Sign-On Server.
Orchestrator uses the delegate token to authenticate against the third-party system on your behalf.

For example, to run a workflow that uses a virtual machine through the Orchestrator REST API, you
access resources both in Orchestrator and in vCenter Server. To authenticate against Orchestrator and
vCenter Server, you must pass your principal holder-of-key token in the Authorization header of the
request that you make, and the delegate token in the VCOAuthorization header. In this way, you
authenticate against Orchestrator with your principal token and Orchestrator authenticates on your behalf
against vCenter Server with the delegate token.

The vCenter Single Sign-On Server treats Orchestrator as a solution, and every solution is registered with
a unique user name with the vCenter Single Sign-On Server. You request a delegate token for
Orchestrator by passing the solution user name of Orchestrator and a principal holder-of-key token to the
vCenter Single Sign-On Server. The token that the vCenter Single Sign-On Server issues is a delegate
holder-of-key token for Orchestrator to authenticate on your behalf against third-party systems.

Example: Obtain a Session in vCenter Single Sign-On Mode
The following example code obtains a session in vCenter Single Sign-On mode.

URI uri = URI.create("https://vco-server:8283/vco/api");

VcoSessionFactory sessionFactory = new DefaultVcoSessionFactory(uri);

//provide the address of the vCenter Single Sign-On server

URI ssoUri = URI.create("https://sso-server:7444/ims/STSService?wsdl");

//set the tokens to be valid for an hour

long lifeTimeSeconds = 60 * 60;

//create a factory for vCenter Single Sign-On tokens

SsoAuthenticator sso = new SsoAuthenticator(ssoUri, sessionFactory, lifeTimeSeconds);

//provide vCenter Single Sign-On credentials

SsoAuthentication authentication = sso.createSsoAuthentication("username", "password");

VcoSession session = sessionFactory.newSession(authentication);

//use session here

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 12

Get the Solution User Name of Orchestrator
The vCenter Single Sign-On Server treats Orchestrator as a solution, and every solution is registered with
a unique user name with the vCenter Single Sign-On Server. To be able to request a delegate holder-of-
key token for Orchestrator from the vCenter Single Sign-On Server, you need the solution user name of
Orchestrator.

Prerequisites

Verify that you have a valid principal holder-of-key token that the vCenter Single Sign-On Server issued.

Procedure

1 Make a GET request at the URL of the solution user name of Orchestrator:

GET https://{vcoHost}:{port}/vco/api/users/

2 Provide your principal holder-of-key token in the Authorization header of the request.

The <user solution-user="vCOSolutionUserName"/> element of the response contains the solution
user name of Orchestrator. The following is an example of a solution user name of Orchestrator.

<user xmlns="http://www.vmware.com/vco" solution-user="vCO-133acc26ff78e5695b102146326" admin-

rights="true"/>

What to do next

Use the solution user name of Orchestrator and your principal holder-of-key token to request a delegate
holder-of-key token from the vCenter Single Sign-On Server.

Using LDAP Authentication with the Orchestrator REST API
You must apply the Basic HTTP Authentication scheme if Orchestrator is configured with LDAP, or if you
use the Orchestrator server to access a third-party system that is configured with LDAP.

The Basic HTTP Authentication scheme allows you to authenticate against Orchestrator or a third-party
system by including an Authorization header in the API calls that you make. You must provide base64-
encoded credentials in the Authorization header. Orchestrator uses the same credentials to
authenticate on your behalf against third-party systems that are configured with LDAP.

For details about the Basic HTTP Authentication, see RFC 2617.

Example: Obtain a Session in LDAP Mode
The following example code obtains a session in LDAP mode.

URI uri = URI.create("https://vco-server:8283/vco/api");

VcoSessionFactory sessionFactory = new DefaultVcoSessionFactory(uri);

//provide LDAP credentials

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 13

Authentication auth = new UsernamePasswordAuthentication("username", "password");

VcoSession session = sessionFactory.newSession(auth);

//use session here

Accessing the Reference Documentation for the
Orchestrator REST API
The reference documentation for the Orchestrator REST API contains information about the RESTful
Web services of the API, the data model that is applicable for the API, the response codes that are valid
for the API, code examples, and so on.

The reference documentation of the Orchestrator REST API is installed together with Orchestrator. The
reference documentation is available at https://vcoHost:port/vco/api/docs/.

Using the Java REST SDK
You can use a Java SDK library to call operations on the Orchestrator REST API in Java applications and
work directly with objects.

Every RESTful Web service of the Orchestrator REST SDK has a wrapping Java class with methods that
correspond to the operations that can be run by using the service.

The Java REST SDK is installed together with Orchestrator. The Java REST SDK artifacts are available
at the following locations.

Note You can only access the artifacts if you have deployed the Orchestrator Appliance.

n https://orchestrator_host:port/vco-repo/com/vmware/o11n/o11n-rest-client/

n https://orchestrator_host:port/vco-repo/com/vmware/o11n/o11n-rest-client-examples/

n https://orchestrator_host:port/vco-repo/com/vmware/o11n/o11n-rest-client-services/

n https://orchestrator_host:port/vco-repo/com/vmware/o11n/o11n-rest-client-stubs/

Example: Run a Workflow and Wait for Its Completion
The following example code runs a workflow and waits for it to complete.

//start a new session to Orchestrator by using specified credentials

VcoSession session = DefaultVcoSessionFactory.newLdapSession(new URI("https://orchestrator-server:

8281/vco/api/"), "username", "password");

//create the services

WorkflowService workflowService = new WorkflowService(session);

ExecutionService executionService = new ExecutionService(session);

//find a workflow by ID

Workflow workflow = workflowService.getWorkflow("1231235");

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 14

//create an ExecutionContext from the user's input

ExecutionContext context = new ExecutionContextBuilder().addParam("name", "Jerry").addParam("age",

18).build();

//run the workflow

WorkflowExecution execution = executionService.execute(workflow, context);

//wait for the workflow to reach the user interaction state, checking every 500 milliseconds

execution = executionService.awaitState(execution, 500, 10, WorkflowExecutionState.CANCELED,

WorkflowExecutionState.FAILED, WorkflowExecutionState.COMPLETED);

String nameParamValue = new ParameterExtractor().fromTheOutputOf(execution).extractString("name");

System.out.println("workflow was executed with 'name' input set to" + nameParamValue);

Operations with Workflows
The Orchestrator REST API provides Web services that you can use to perform various operations with
workflows.

Find a Workflow and Retrieve Its Definition
To be able to perform any kind of operation with a workflow, you must find that workflow in the
Orchestrator inventory and retrieve its definition. The definition lists the workflow input and output
parameters, and contains links to the available workflow runs, the workflow presentation, and other
objects.

Prerequisites

Verify that you have imported the sample workflows package in Orchestrator. The package is included in
the Orchestrator sample applications ZIP file that you can download from the Orchestrator documentation
page.

Procedure

1 Find the inventory item of the workflow.

n If you have the full name of the workflow or a key word from the name, make a GET request at the
URL of the Workflow service by applying a filter:

GET https://{vcoHost}:{port}/vco/api/workflows?conditions=name={workflowFullName}

GET https://{vcoHost}:{port}/vco/api/workflows?conditions=name~{keyWord}

n Search for the workflow through the Catalog or the Inventory service by making a GET request at
the URL that is an entry point for the workflow inventory items:

GET https://{vcoHost}:{port}/vco/api/catalog/System/Workflow/

GET https://{vcoHost}:{port}/vco/api/inventory/System/Workflows/

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 15

2 Retrieve the inventory item of the workflow by making a GET request at its URL:

GET https://{vcoHost}:{port}/vco/api/catalog/System/Workflow/{workflowID}/

3 Retrieve the definition of the workflow by making a GET request at the URL of the definition:

GET https://{vcoHost}:{port}/vco/api/workflows/{workflowID}/

Example: Search for the Send Hello Workflow
You can find the Send Hello workflow and retrieve its definition:

1 To find the Send Hello workflow, make a GET request at the URL of the Workflow service by applying
a filter:

GET https://localhost:8281/vco/api/workflows?conditions=name~Hello

You receive a list of the workflows that contain Hello in their names:

<xml version="1.0" encoding="UTF-8" standalone="yes">

<inventory-items xmlns="http://www.vmware.com/vco" total="2">

 <link rel="down"

 href="https://localhost:

8281/vco/api/catalog/System/Workflow/CF808080808080808080808080808080E6808080013086668236014a0614d1

6e1/">

 <attributes>

 <attribute name="id"

value="CF808080808080808080808080808080E6808080013086668236014a0614d16e1"/>

 <attribute name="canExecute" value="true" />

 <attribute name="description" value="" />

 <attribute name="name" value="Interactive Hello World" />

 <attribute name="type" value="Workflow"/>

 <attribute name="canEdit" value="true"/>

 </attributes>

 </link>

 <link rel="down"

 href="https://localhost:

8281/vco/api/catalog/System/Workflow/CF808080808080808080808080808080DA808080013086668236014a0614d1

6e1/">

 <attributes>

 <attribute name="id"

value="CF808080808080808080808080808080DA808080013086668236014a0614d16e1"/>

 <attribute name="canExecute" value="true" />

 <attribute name="description" value="" />

 <attribute name="name" value="Send Hello" />

 <attribute name="type" value="Workflow"/>

 <attribute name="canEdit" value="true"/>

 </attributes>

 </link>

</inventory-items>

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 16

2 Make a GET request at the URL of the inventory item of the Send Hello workflow:

GET https://localhost:

8281/vco/api/catalog/System/Workflow/CF808080808080808080808080808080DA808080013086668236014a0614d1

6e1/

You receive the inventory item of the Send Hello workflow in the response body:

<xml version="1.0" encoding="UTF-8" standalone="yes">

<inventory-item xmlns="http://www.vmware.com/vco"

 href="https://localhost:

8281/vco/api/catalog/System/Workflow/CF808080808080808080808080808080DA808080013086668236014a0614d1

6e1/">

 <relations>

 <link rel="down"

 href="https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/" />

 </relations>

 <attributes>

 <attribute name="id"

value="CF808080808080808080808080808080DA808080013086668236014a0614d16e1"/>

 <attribute name="canExecute" value="true" />

 <attribute name="description" value="" />

 <attribute name="name" value="Send Hello" />

 <attribute name="type" value="Workflow"/>

 <attribute name="canEdit" value="true"/>

 </attributes>

</inventory-item>

3 To retrieve the workflow's definition make a GET request at its URL:

GET https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/

You receive the definition of the Send Hello workflow in the response body:

<xml version="1.0" encoding="UTF-8" standalone="yes">

<workflow xmlns="http://www.vmware.com/vco" customized-icon="false"

 href="https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/">

 <relations>

 <link rel="up"

 href="https://localhost:8281/vco/api/inventory/System/Workflows/Samples/HelloWorld/" />

 <link rel="add"

 href="https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/execution

s/" />

 <link rel="down"

 href="https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/execution

s/" />

 <link rel="down"

 href="https://localhost:

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 17

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/presentati

on/" />

 <link rel="down"

 href="https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/tasks/" />

 <link rel="down"

 href="https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/icon/" />

 </relations>

 <input-parameters>

 <parameter name="name" type="string" />

 </input-parameters>

 <output-parameters>

 <parameter name="message" type="string" />

 </output-parameters>

 <name>Send Hello</name>

 <description></description>

</workflow>

Run a Workflow
You run a workflow through the Orchestrator REST API by creating a new execution object for a particular
workflow.

Prerequisites

Verify that you have imported the sample workflows package in Orchestrator. The package is included in
the Orchestrator sample applications ZIP file that you can download from the Orchestrator documentation
page.

Procedure

1 Retrieve the definition of the workflow that you want to run by making a GET request at the URL of the
definition:

GET http://{vcoHost}:{port}/vco/api/workflows/{workflowID}/

You receive the definition of the workflow in the response body of the request. In the workflow
definition, you can view the input parameters of the workflow, the workflow description, and other
information.

2 Make a POST request at the URL that holds the execution objects of the workflow:

POST https://{vcoHost}:{port}/vco/api/workflows/{workflowID}/executions/

3 Provide values for the input parameters of the workflow in an execution-context element in the
request body.

If you provide an empty execution-context in the request body, the workflow runs with default
values for its input parameters, if any.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 18

If the POST request is successful, you receive the status code 202 with an empty response body and a
link to the newly created execution object in the Location header.

Example: Run the Send Hello Workflow
You can retrieve the definition of the Send Hello workflow and run it.

1 Make a GET request at the URL that holds the definition of the Send Hello workflow:

GET https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/

You receive the workflow definition in the response body of the request:

<xml version="1.0" encoding="UTF-8" standalone="yes">

<workflow xmlns="http://www.vmware.com/vco" customized-icon="false"

 href="https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/">

 <relations>

 <link rel="up"

 href="https://localhost:8281/vco/api/inventory/System/Workflows/Samples/HelloWorld/" />

 <link rel="add"

 href="https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/execution

s/" />

 <link rel="down"

 href="https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/execution

s/" />

 <link rel="down"

 href="https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/presentati

on/" />

 <link rel="down"

 href="https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/tasks/" />

 <link rel="down"

 href="https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/icon/" />

 </relations>

 <input-parameters>

 <parameter name="name" type="string" />

 </input-parameters>

 <output-parameters>

 <parameter name="message" type="string" />

 </output-parameters>

 <name>Send Hello</name>

 <description></description>

</workflow>

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 19

2 Make a POST request at the URL that holds the execution objects for the workflow:

POST https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/execution

s/

Pass values for the input parameters in an execution-context element in the request body:

<execution-context xmlns="http://www.vmware.com/vco">

 <parameters>

 <parameter name="name" type="string">

 <string>John Smith</string>

 </parameter>

 </parameters>

</execution-context>

Run a Workflow After Validating Its Input Parameters Against the
Workflow Presentation
The presentation of a workflow can define constraints for the values that you can pass to the input
parameters of the workflow, such as a predefined list of values or a certain range of values. To ensure
that the workflow runs successfully, you must validate the values that you pass to the input parameters of
the workflow against the definition of the workflow presentation.

When you integrate workflows in custom applications, you might need to create a wizard where you enter
values for the input parameters of the workflow when you run it. By using the Workflow Presentation
service, you can instantiate the presentation of a workflow and pass values for its input parameters in
parts that correspond to the different screens of the wizard. You can validate the values that you pass to
the input parameters against the constraints that are defined in the workflow presentation.

Prerequisites

Verify that you have imported the sample workflows package in Orchestrator. The package is included in
the Orchestrator sample applications ZIP file that you can download from the Orchestrator documentation
page.

Procedure

1 Retrieve the definition of the workflow that you want to run by making a GET request at the URL that
contains the workflow definition:

GET https://{vcoHost}:{port}/vco/api/workflows/{workflowID}/

You receive the definition of the workflow in the response body of the request. In the workflow
definition, you can view the input parameters of the workflow, the workflow description and other
information.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 20

2 Retrieve the definition of the workflow presentation by making a GET request at its URL:

GET https://{vco host}:{port}/vco/api/workflows/{workflowID}/presentation/

3 In the response body of the request, examine the definition of the workflow presentation for any
constraints of the values that you can pass to the input parameters.

For example, an input parameter can have a predefined list of values to choose from.

4 Instantiate the workflow presentation by making a POST request at the URL of the presentation
instances:

POST https://{vcoHost}:{port}/vco/api/workflows/{workflowID}/presentation/instances/

5 Provide an execution-context element in the request body to instantiate the presentation.

You can pass an empty execution-context or pass an execution-context with values only for
some of the input parameters.

6 To pass values to the input parameters in parts, make as many POST or PUT requests as needed at
the URL that holds the presentation instance:

PUT https://{vcoHost}:{port}/vco/api/workflows/{workflowID}/presentation/instances/{executionID}/

7 Review the response body of the POST or PUT request that you made.

If the values that you passed to the input parameters are valid, you find a valid="true" attribute in
the execution tag. If the presentation is valid, you can take the values that are listed in the out-
parameters element of the response, and pass them as values to the input parameters when you
run the workflow.

8 If the values for the input parameters are valid, run the workflow by making a POST request at the
URL that holds the workflow executions:

POST https://{vcoHost}:{port}/vco/api/workflows/{workflowID}/executions/

9 Provide the valid values to the input parameters of the workflow in an execution-context element.

Example: Run the Send Hello Workflow by Validating Its Input Parameters
You can run the Send Hello workflow by validating its input parameters against the definitions of its
presentation.

1 Make a GET request at the URL that holds the definition of the Send Hello workflow:

GET https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 21

You receive the workflow definition in the response body of the request:

<xml version="1.0" encoding="UTF-8" standalone="yes">

<workflow xmlns="http://www.vmware.com/vco" customized-icon="false"

 href="https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/">

 <relations>

 <link rel="up"

 href="https://localhost:8281/vco/api/inventory/System/Workflows/Samples/HelloWorld/" />

 <link rel="add"

 href="https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/execution

s/" />

 <link rel="down"

 href="https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/execution

s/" />

 <link rel="down"

 href="https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/presentati

on/" />

 <link rel="down"

 href="https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/tasks/" />

 <link rel="down"

 href="https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/icon/" />

 </relations>

 <input-parameters>

 <parameter name="name" type="string" />

 </input-parameters>

 <output-parameters>

 <parameter name="message" type="string" />

 </output-parameters>

 <name>Send Hello</name>

 <description></description>

</workflow>

2 Make a GET request at the URL that holds the definition of the workflow presentation:

GET https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/presentati

on/

3 Make a POST request at the URL that holds the execution instances of the workflow presentation:

POST https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/presentati

on/instances/

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 22

Provide an empty execution-context so that just to instantiate the presentation without providing
any values for the input parameters:

<execution-context xmlns="http://www.vmware.com/vco"/>

The response body contains error messages attached to every field, indicating that the values for the
input parameters are invalid.

.......

<fields>

 <field type="string" hidden="false" id="name">

 <display-name>name</display-name>

 <description>name</description>

 <messages>

 <message severity="ERROR" code="VCO-CNS0002">

 <Summary>

 The minimum number of characters allowed for this field is 3.0

 </Summary>

 </message>

 </messages>

 <constraints>

 <number-range max="15.0" min="3.0" />

 </constraints>

.......

4 Make a POST request at the URL that holds the particular presentation instance:

POST https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/presentati

on/instances/888080808080808080808080808080803F8080800132145338690643f66a027ec/

In the request body, provide values for the input parameters:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

 <execution-context xmlns="http://www.vmware.com/vco">

 <parameters>

 <parameter name="name" type="string">

 <string>John Smith</string>

 </parameter>

 </parameters>

</execution-context>

In the response body of the request, you can check whether the values of the input parameters are
valid:

<execution started-by="vcoadmin" valid="true".....>

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 23

5 If the presentation is valid, run the workflow by making a POST request at the URL that holds the
workflow executions:

POST https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/execution

s/

In the request body, pass values to the input parameters of the workflow. Use the same values that
are returned as output parameters of the workflow presentation, or directly use the request body of
the last POST request that you made to the workflow presentation.

Interacting with a Workflow While It Runs
The Orchestrator REST API allows you to perform various operations with a workflow during its run. You
can get the status of a running workflow, answer to a waiting user interaction, and cancel a workflow run.

Get Workflow Run Objects and Check the Workflow Status
You can get information about the runs of a workflow, such as the start and end dates, the state of the
run, and the values for the input parameters. You can also get logs that are generated for a workflow run.

Prerequisites

Verify that you have imported the sample workflows package in Orchestrator. The package is included in
the Orchestrator sample applications ZIP file that you can download from the Orchestrator documentation
page.

Procedure

1 Retrieve the definition of the workflow whose status you want to check by making a GET request at
the URL of the workflow:

GET https://{vcoHost}:{port}/vco/api/workflows/{workflowID}/

You receive the definition of the workflow in the response body of the request. The workflow definition
contains a link to the execution instances of the workflow.

2 Retrieve the available execution instances of the workflow by making a GET request at their URL:

GET https://{vcoHost}:{port}/vco/api/workflows/{workflowID}/executions/

The response body of the request lists the available execution instances of the workflow where you
can view the start and end dates of every workflow run as well their status and initiator.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 24

3 (Optional) To get more details about a particular run of the workflow, make a GET request at the URL
of that run:

GET https://{vcoHost}:{port}/vco/api/workflows/{workflowID}/executions/{executionID}/

In the response body of the request, you receive the XML representation of the particular workflow
run. You can check the values of the input parameters that are passed for this run, the user who
initiated the run, the start and end dates, as well as the state of the run.

4 (Optional) To retrieve the logs that are generated for the workflow run, make a GET request at the
URL that holds the logs:

GET https://{vcoHost}:{port}/vco/api/workflows/{workflowID}/executions/{executionID}/logs/

5 (Optional) To retrieve additional information about the state of the run, make a GET request at the URL
that holds the state of the workflow:

GET https://{vcoHost}:{port}/vco/api/workflows/{workflowID}/executions/{executionID}/state/

Example: Get the Runs of the Send Hello Workflow and Check the State of a Particular Run

If you have run the Send Hello workflow, you can get the available execution objects and check details
about them.

1 Get the definition of the Send Hello workflow by making a GET request at the URL that holds the
definition:

GET https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/

2 Get the available runs of the workflow by making a GET request at the URL that holds the execution
objects for the workflow:

GET https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/execution

s/

3 From the response body of the request, select a workflow run and make a GET request to retrieve it:

GET https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/execution

s/888080808080808080808080808080803A8080800132145338690643f66a027ec/

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 25

The response body contains the XML representation of the workflow run with the specified ID, where
you can check details about that run:

.......

<input-parameters>

 <parameter name="name" type="string">

 <string>John Smith</string>

 </parameter>

</input-parameters>

<output-parameters>

 <parameter name="message" type="string">

 <string>Hello, John Smith!</string>

 </parameter>

</output-parameters>

<start-date>2012-01-31T14:28:40.223+03:00</start-date>

<end-date>2012-01-31T14:28:40.410+03:00</end-date>

<started-by>vcoadmin</started-by>

<name>Send Hello</name>

......

Answer to a Waiting User Interaction
You can answer to a waiting user interaction of a workflow run by using the Orchestrator REST API.

Prerequisites

Verify that you have imported the sample workflows package in Orchestrator. The package is included in
the Orchestrator sample applications ZIP file that you can download from the Orchestrator documentation
page.

Procedure

1 Retrieve the list of all user interaction objects by making a GET request at the URL that holds the
available user interaction objects, or by filtering only the waiting user interactions:

URL Description

https://vcoHost:port/vco/api/catalog/Sy
stem/UserInteraction

Holds the available user interaction objects in Orchestrator

https://vcoHost:port/vco/api/catalog/Sy
stem/UserInteraction?status=0

Filters only the waiting user interaction objects.

You receive a list of the available user interaction objects. User interactions that are waiting have an
attribute with name state and value waiting.

2 Make a GET request at the URL that holds the inventory item of the waiting user interaction to which
you want to answer:

GET https://{vcoHost}:{port}/vco/api/catalog/System/UserInteraction/{userInteractionID}/

The inventory item contains a link to the user interaction instance.The user interaction instance is
associated with a particular workflow run.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 26

3 Make a POST request at the URL of the user interaction instance for the particular workflow execution:

POST https://{vcoHost}:{port}/vco/api/workflows/{workflowID}/executions/{executionID}/interaction/

4 Provide values for the input parameters of the user interaction in an execution-context element in
the request body.

The REST API returns a 204 status when you answer to a user interaction successfully.

Example: Answer to the User Interaction of the Interactive Hello World Workflow

You can run the Interactive Hello World sample workflow and answer to its user interaction.

1 Search for the waiting user interaction of the workflow by making GET request at the endpoint for the
user interaction objects of the Catalog service:

GET https://localhost:8281/vco/api/catalog/System/UserInteraction?status=0

2 Locate the user interaction inventory object for the Interactive Hello World workflow and make a GET
request at its URL:

GET https://localhost:

8281/vco/api/catalog/System/UserInteraction/888080808080808080808080808080805A808080013214533869064

3f66a027ec/

3 Make a POST request at the URL of the user interation objects for the currently running workflow
execution:

POST https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080E6808080013086668236014a0614d16e1/execution

s/88808080808080808080808080808080578080800132145338690643f66a027ec/interaction/

Provide a value for the input parameter in the request body:

<execution-context xmlns="http://www.vmware.com/vco">

 <parameters>

 <parameter name="name" type="string">

 <string>John Smith</string>

 </parameter>

 </parameters>

</execution-context>

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 27

Answer to a User Interaction After Validating Input Parameters
The presentation of a user interaction might define constraints for the values that you can pass to the
input parameters of the workflow. When you answer to a user interaction, you can validate the values that
you pass to the input parameters against the constraints that are defined in the presentation of the user
interaction.

Prerequisites

Verify that you have imported the sample workflows package in Orchestrator. The package is included in
the Orchestrator sample applications ZIP file that you can download from the Orchestrator documentation
page.

Procedure

1 Retrieve the list of all user interaction objects by making a GET request at the URL that holds the
available user interaction objects, or by filtering only the waiting user interactions:

URL Description

https://vco
host:port/vco/api/catalog/System/UserI
nteraction

Holds the available user interaction objects in Orchestrator.

https://vco
host:port/vco/api/catalog/System/UserI
nteraction?status=0

Filters only the waiting user interaction objects.

You receive a list of the available user interaction objects. User interactions that are waiting have an
attribute with name state and value waiting.

2 Make a GET request at the URL that holds the inventory item of the waiting user interaction that you
want to answer:

GET https://{vcoHost}:{port}/vco/api/catalog/System/UserInteraction/{userInteractionID}/

The response body contains a link to the user interaction instance. The user interaction instance is
associated with a particular workflow run.

3 Make a GET request at the URL of the user interaction instance:

GET https://{vcoHost}:{port}/vco/api/workflows/{workflowID}/executions/{executionID}/interaction/

In the response body, you find a down link to the presentation of the user interaction.

4 Make a GET request at the URL of the presentation of the user interaction:

GET https://{vcoHost}:

{port}/vco/api/workflows/{workflowID}/executions/{executionID}/interaction/presentation/

You receive the definition of the user interaction presentation in the response body.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 28

5 In the presentation definition, check for constraints of the values that you can pass to the input
parameters.

6 Run the user interation presentation by making a POST request at the URL where the instances of the
presentation reside:

POST https://{vcoHost}:

{port}/vco/api/workflows/{workflowID}/executions/{executionID}/interaction/presentation/instances/

7 In the request body, provide values for the input parameters in an execution-context element.

In the response body, you receive the instance of the user interaction presentation. If the values that
you passed to the input parameters are valid, you find a valid="true" attribute in the execution
element. In the out-parameters element, you find the valid values for the input parameters that you
can use to answer to the user interaction.

8 Answer to the user interaction by making a POST request at the URL where the user interaction
instance resides:

POST https://{vcoHost}:{port}/vco/api/workflows/{workflowID}/executions/{executionID}/interaction/

9 In the request body, pass an execution-context context with the values for the input parameters.

You can use the same request body as the one for the POST request that you made at the URL for the
user interaction presentation.

If the last request is successful, you receive a status code 204 and an empty response body.

Example: Answer to the User Interaction of the Interactive Hello World Workflow by
Validating Input Parameters

You can answer to the user interaction of the Interactive Hello World workflow by validating the values of
the input parameters against the constraints that are defined in the presentation of the user interaction.

1 Search for the waiting user interactions of the workflow by making a GET request at the endpoint for
the user interaction objects of the Catalog service:

GET https://localhost:8281/vco/api/catalog/System/UserInteraction?status=0

2 Locate the user interaction inventory object for the Interactive Hello World workflow and make a GET
request at its URL:

GET https://localhost:

8281/vco/api/catalog/System/UserInteraction/888080808080808080808080808080805A808080013214533869064

3f66a027ec/

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 29

3 Make a GET request at the URL of the user interaction instance:

GET https://localhost:

8281/vco/api/catalog/System/UserInteraction/888080808080808080808080808080805A808080013214533869064

3f66a027ec/interaction/

4 Make a GET request at the URL of the user interaction presentation:

GET https://localhost:

8281/vco/api/catalog/System/UserInteraction/888080808080808080808080808080805A808080013214533869064

3f66a027ec/interaction/presentation/

The presentation defines the input parameter as mandatory, and contains a constraint for the length
of the string that you can pass.

5 Make a POST request at the URL that holds the instances of the user interaction presentation:

POST https://localhost:

8281/vco/api/catalog/System/UserInteraction/888080808080808080808080808080805A808080013214533869064

3f66a027ec/interaction/presentation/instances/

Provide a value for the input parameter in the request body:

<execution-context xmlns="http://www.vmware.com/vco">

 <parameters>

 <parameter name="name" type="string">

 <string>John Smith</string>

 </parameter>

 </parameters>

</execution-context>

The execution element of the response body contains a valid="true" attribute, indicating that the
input parameter value is valid against the constraints in the user interaction presentation. The valid
value is listed in the output-parameters element:

............

<output-parameters>

 <parameter name="name" type="string">

 <string>John Smith</string>

 </parameter>

</output-parameters>

............

6 Make a POST request at the URL of the user interaction instance by passing the same request body
as in the POST request in step 5.

POST https://localhost:

8281/vco/api/catalog/System/UserInteraction/888080808080808080808080808080805A808080013214533869064

3f66a027ec/interaction/

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 30

Cancel a Workflow Run
You can cancel the run of a workflow by using the Orchestrator REST API.

Procedure

1 Retrieve the definition of the workflow by making a GET request at the URL of the workflow's
definition:

GET https://{vcoHost}:{port}/vco/api/workflows/{workflowID}/

The workflow definition contains a link to the available execution objects of the workflow.

2 Get the available workflow runs by making a GET request to the URL that holds the available
execution objects for the workflow:

GET https://{vcoHost}:{port}/vco/api/workflows/{workflowID}/executions/

3 From the list of the available workflow executions, select the one that you want to cancel and make a
DELETE request at its URL:

DELETE https://{vcoHost}:{port}/vco/api/workflows/{workflowID}/executions/{executionID}/

Retrieve a Workflow's Interactions
You can retrieve the list of all user interactions for a workflow by using the Orchestrator REST API.

Procedure

1 Retrieve the definition of the workflow by making a GET request at the URL of the workflow's
definition:

GET https://{vcoHost}:{port}/vco/api/workflows/{workflowID}/

2 Get the list of workflow interactions by making a GET request to the URL of the workflow's
interactions:

GET https://{vcoHost}:{port}/vco/api/workflows/{workflowID}/interactions/

If the GET request is successful, you receive the status code 200 and a list of all user interactions
available for the workflow.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 31

Access a Workflow's Schema
You can access the schema image of a workflow by using the Orchestrator REST API.

Procedure

1 Retrieve the definition of the workflow by making a GET request at the URL of the workflow's
definition:

GET https://{vcoHost}:{port}/vco/api/workflows/{workflowID}/

2 Get the workflow's schema image by making a GET request to the URL of the workflow's schema:

GET https://{vcoHost}:{port}/vco/api/workflows/{workflowID}/schema/

If the GET request is successful, you receive the status code 200 and the icon's schema image binary
data. The response content type is set to a correct media type, for example Content-Type:image/png.

Working with Tasks
Using the Task service of the Orchestrator REST API, you can perform any operation that is related to
managing tasks in Orchestrator. You can create a task for scheduling a workflow, modify the properties of
an already existing task, delete a task, and so on.

The maximum number of scheduled tasks supported by Orchestrator is 50.

Create a Task
You can create a task for scheduling a workflow by using the Orchestrator REST API.

Prerequisites

Verify that you have imported the sample workflows package in Orchestrator. The package is included in
the Orchestrator sample applications ZIP file that you can download from the Orchestrator documentation
page.

Procedure

1 Retrieve the definition of the workflow for which you want to create a task by making a GET request at
the URL of the workflow:

GET https://{vcoHost}:{port}/vco/api/workflows/{workflowID}/

In the workflow definition you can view the name and the ID of the workflow, as well as its input
parameters.

2 To create a new task for the workflow, make a POST request at the URL of the Task service:

POST https://{vcoHost}:{port}/vco/api/tasks/

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 32

3 In the request body, provide the parameters for the new task in a task element.

If the request is successful, the API responds with status code 202 and an empty response body.

Example: Create a Task for the Send Hello Workflow
You can create a task that schedules the Send Hello workflow to run on the fifteenth minute of every hour
starting from a specific date.

1 Make a GET request at the URL of the Send Hello workflow to retrieve its definition:

GET https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/

2 Make a POST request at the URL of the Task service by providing the parameters of the new task in
the request body:

POST https://localhost:8281/vco/api/tasks/

<task xmlns="http://www.vmware.com/vco">

 <name>Send Hello Task</name>

 <recurrence-cycle>every-hours</recurrence-cycle>

 <recurrence-start-date>2012-01-31T11:00:00+00:00</recurrence-start-date>

 <recurrence-end-date>2012-02-05T11:00:00+00:00</recurrence-end-date>

 <recurrence-pattern>15:15</recurrence-pattern>

 <input-parameters>

 <parameter name="name" type="string">

 <string>John Smith</string>

 </parameter>

 </input-parameters>

 <workflow href="https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/">

 <name>Send Hello</name>

 </workflow>

 <start-mode>normal</start-mode>

</task>

Modify a Task
You can change the properties of an existing task by using the Orchestrator REST API.

You can only add new scheduling properties to a task or change the values of the already existing
properties. If you want to replace the scheduling properties of a task, you must delete the task and create
a new one.

Prerequisites

Verify that you have imported the sample workflows package in Orchestrator. The package is included in
the Orchestrator sample applications ZIP file that you can download from the Orchestrator documentation
page.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 33

Procedure

1 Make a GET request at the URL of the task that you want to modify:

GET https://{vcoHost}:{port}/vco/api/tasks/{task ID}/

2 Check the properties of the task in the response body of the request.

3 To modify the task, make a POST request at the URL of the task by providing the new properties of the
task in a task-data element in the request body.

If the POST request is successful, the API reruns a status code 200 and the updated task in the response
body.

Example: Update the Send Hello Example Task
You can update the start and the end dates of a task. You can modify the example task that is introduced
in Create a Task. You must make a POST request at the URL of the task by providing the new start and
end dates in the request body:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>

<task-data xmlns="http://www.vmware.com/vco">

 <recurrence-start-date>2012-02-01T14:00:00+02:00</recurrence-start-date>

 <recurrence-end-date>2012-02-05T14:00:00+02:00</recurrence-end-date>

</task-data>

Check the State of a Task
You can check the state of the currently available tasks or check the state for all execution instancess of a
certain task.

Prerequisites

Verify that you have imported the sample workflows package in Orchestrator. The package is included in
the Orchestrator sample applications ZIP file that you can download from the Orchestrator documentation
page.

Procedure

n To check the status of all currently available tasks, make a GET request at the URL of the Task
service:

GET https://{vcoHost}:{port}/vco/api/tasks/

The response body contains the definitions of the currently available tasks in Orchestrator. The state
of every task is available in an attribute element, whose name is state. Respectively, the value for
the element can be finished, pending, running and so on.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 34

n To check the status of all executions of a certain task, make a GET request at the URL where the task
executions reside:

GET https://{vcoHost}:{port}/vco/api/tasks/{taskID}/executions/

You receive a list of the available executions for the task in the response body. The state of every
execution is available in the state element of the task execution object.

Finding Objects in the Orchestrator Inventory
You can find any object in the Orchestrator inventory by using the Catalog or the Inventory services. You
can access only a certain subset of objects by applying filter parameters at the end of the URLs where
you make HTTP requets.

You can use the Catalog service to find objects in the Orchestrator inventory that are of a certain type, or
retrieve a specific object by its type and ID. For example, you can retrieve all objects that are of type
workflow or action, or can retrieve a specific workflow or action.

The Inventory service allows you to browse the Orchestrator inventory by parent-child relations. Using the
Inventory service, you can access objects that are available at a specific location in the Orchestrator
inventory. For example, you can retrieve all workflows for Datacenter management by browsing to their
location in the Orchestrator inventory, that is Library/vCenter/Datacenter.

Every service from the Orchestrator REST API supports filter parameters that you can add at the end of
URLs when making HTTP requests. Using the filter parameters, you can narrow the results that you
receive in the response body of a request at a specific URL.

Find Objects by Type and ID
You can use the Catalog service of the REST API to find objects in Orchestrator by type and ID.

Prerequisites

Verify that you have imported the sample workflows package in Orchestrator. The package is included in
the Orchestrator sample applications ZIP file that you can download from the Orchestrator documentation
page.

Procedure

1 Make a GET request at the URL of the Catalog Service:

GET https://{vcoHost}:{port}/vco/api/catalog/

The response body of the request contains down links to the catalog entry points of the plug-ins that
expose inventories in Orchestrator as well as to the system objects in Orchestrator:

n
https://{vcoHost}:{port}/vco/api/catalog/{plug-in namespace}/

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 35

n
https://{vcoHost}:{port}/vco/api/catalog/System/

2 To access objects that a plug-in exposes or the system objects in Orchestrator, make a GET request
at the URL of the catalog entry point for the plug-in or at the URL where the system objects in
Orchestrator reside.

The response body of the request contains links to the types of objects that are exposed.

3 Make GET request at the URL of the type of object that you want to access.

GET https://{vcoHost}:{port}/vco/api/catalog/{namespace}/{objectType}/

4 Make a GET request at the URL of the specific object that you want to find:

GET https://{vcoHost}:{port}/vco/api/catalog/{namespace}/{objectType}/{objectID}/

Example: Find the Send Hello Workflow
You can find the sample Send Hello workflow by using the Catalog Service.

1 Make a GET request at the URL of the Catalog Service:

GET https://localhost:8281/vco/api/catalog/

2 Make a GET request at the URL where all system objects in Orchestrator are located:

GET https://localhost:8281/vco/api/catalog/System/

3 Make GET request at the URL where all workflows reside:

GET https://localhost:8281/vco/api/catalog/Workflow/

4 Make GET request at the URL of the Send Hello workflow:

GET https://localhost:

8281/vco/api/catalog/Workflow/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/

Find Objects by Relations
You can use the Inventory service of the Orchestrator REST to browse the Orchestrator and the plug-in
inventories as a hierarchy.

Prerequisites

Verify that you have imported the sample workflows package in Orchestrator. The package is included in
the Orchestrator sample applications ZIP file that you can download from the Orchestrator documentation
page.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 36

Procedure

1 Make a GET request at the URL of the Inventory service:

GET https://{vcoHost}:{port}/vco/api/inventory/

The response body contains down links to the registered inventories of the installed plug-ins as well
as to the system objects in Orchestrator under System.

2 Make a GET request at the down link of the inventory that you want to access.

3 Make GET requests at the up and down links for the items in the inventory until you reach the object
that you want to find.

Example: Find the Send Hello Workflow
You can browse the Orchestrator Inventory to find the Send Hello workflow.

1 Make a GET request at the URL of the Inventory service:

GET https://localhost:8281/vco/api/inventory/

2 Make a GET request at the URL where the system objects in Orchestrator reside:

GET https://localhost:8281/vco/api/inventory/System/

3 Make GET request at the URL where all workflows in Orchestrator reside:

GET https://localhost:8281/vco/api/inventory/System/Workflows/

4 Make a GET request at the URL of the Samples workflow category:

GET https://localhost:8281/vco/api/inventory/System/Workflows/Samples/

5 Use the down link for the Hello World workflow category where to locate the Send Hello workflow.

Apply Filters
The services of the Orchestrator REST API support additional URL parameters that allow you to narrow
the objects that HTTP requests to the API return.

Different query parameters are supported for every URL to a resource that you can access through the
REST API. To learn which query parameters are applicable to a URL, see the vCenter Orchestrator REST
API reference documentation.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 37

Procedure

u To narrow the results from a request at a certain URL, apply filters at the end of the URL:

URL?filter_1& filter_2&filter_3&....&filter_N. Every filter contains query parameters that are valid for
the relevant URL. For information about the valid query parameters for every URL, see the
Orchestrator REST API reference documentation.

Example: Filter Workflows
If you look for workflows that contain a specific word in their name, for example datastore, you can apply
the following filter in a request to the Catalog Service:

GET https://localhost:8281/vco/api/catalog/System/Workflow?conditions=name~datastore

To limit the amount of the workflows that are returned to a certain number, for example five, apply an
additional filter to the request:

GET https://localhost:8281/vco/api/catalog/System/Workflow?conditions=name~datastore&maxResult=5

Importing and Exporting Orchestrator Objects
The Orchestrator REST API provides Web services that you can use to import and export workflows,
actions, packages, resources, and configuration elements.

Import a Workflow
You can import a workflow by using the Orchestrator REST API.

Depending on the library of your REST client application, you can use custom code that defines the
properties of the workflow.

Prerequisites

The workflow binary content should be available as multi-part content. For details, see RFC-2387.

Procedure

1 In a REST client application, add request headers to define the properties of the workflow that you
want to import.

2 Make a POST request at the URL of the workflow objects:

POST http://{vcoHost}:{port}/vco/api/workflows/

If the POST request is successful, you receive the status code 202.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 38

Export a Workflow
You can export a workflow by using the Orchestrator REST API and download the workflow as a file.

Procedure

1 In a REST client application, add a request header with the following values.

n Name: accept

n Value: application/zip

2 Make a GET request at the URL of the workflow that you want to export:

GET http://{vcoHost}:{port}/vco/api/workflows/{workflowID}/

If the GET request is successful, you receive the status code 200. The workflow binary content is available
as an attachment with a default file name workflow_name.workflow. You can save the file with a REST
client application.

Import an Action
You can import an action by using the Orchestrator REST API.

Depending on the library of your REST client application, you can use custom code that defines the
properties of the action.

Prerequisites

The action binary content should be available as multi-part content. For details, see RFC-2387.

Procedure

1 In a REST client application, add request headers to define the properties of the action that you want
to import.

2 Make a POST request at the URL of the action objects:

POST http://{vcoHost}:{port}/vco/api/actions/

If the POST request is successful, you receive the status code 202.

Export an Action
You can export an action by using the Orchestrator REST API and download the action as a file.

Procedure

1 In a REST client application, add a request header with the following values.

n Name: accept

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 39

n Value: application/zip

2 Make a GET request at the URL of the action that you want to export:

GET http://{vcoHost}:{port}/vco/api/actions/{actionID}/

If the GET request is successful, you receive the status code 200. The action binary content is available as
an attachment with a default file name action_name.action. You can save the file with a REST client
application.

Import a Package
You can import a package by using the Orchestrator REST API.

Depending on the library of your REST client application, you can use custom code that defines the
properties of the package.

By default, if you import an Orchestrator package with a duplicate name, the existing package is not
overwritten. You can specify whether to overwrite existing packages by using a parameter in the request.

By default, Orchestrator packages are imported with the attribute values of configuration elements. You
can import a package without attribute values by using a parameter in the request.

By default, tags contained in Orchestrator packages are imported, but if the same tags already exist on
the Orchestrator server, the values of existing tags are preserved. You can specify whether existing tag
values are preserved by using parameters in the request.

Prerequisites

The package binary content should be available as multi-part content. For details, see RFC-2387.

Procedure

1 In a REST client application, add request headers to define the properties of the package that you
want to import.

2 Make a POST request at the URL of the package objects:

POST http://{vcoHost}:{port}/vco/api/packages/

3 (Optional) To import a package and overwrite an existing package with the same name, use the
overwrite parameter in the POST request:

POST http://{vcoHost}:{port}/vco/api/packages/?overwrite=true

4 (Optional) To import a package without the attribute values of the configuration elements from the
package, use the importConfigurationAttributeValues parameter in the POST request:

POST http://{vcoHost}:{port}/vco/api/packages/?importConfigurationAttributeValues=false

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 40

5 (Optional) To import a package without the tags that it contains, use the tagImportMode parameter in
the POST request:

POST http://{vcoHost}:{port}/vco/api/packages/?tagImportMode=DoNotImport

6 (Optional) To import a package with the tags that it contains and overwrite existing tag values, use the
tagImportMode parameter in the POST request:

POST http://{vcoHost}:{port}/vco/api/packages/?tagImportMode=ImportAndOverwriteExistingValue

If the POST request is successful, you receive the status code 202.

Export a Package
You can export a package by using the Orchestrator REST API and download the package as a file.

By default, Orchestrator packages are exported with attribute values of configuration elements and global
tags. You can export a package without attribute values or global tags by using parameters in the request.
You can also specify a custom name for the package file that you download.

Procedure

1 In a REST client application, add a request header with the following values.

n Name: accept

n Value: application/zip

2 Make a GET request at the URL of the package that you want to export:

GET http://{vcoHost}:{port}/vco/api/packages/{package_name}/

3 (Optional) To set a custom name for the exported package, use the packageName parameter in the
GET request:

GET http://{vcoHost}:{port}/vco/api/packages/{package_name}/?packageName={custom_name}

4 (Optional) To export a package without the attribute values of the configuration elements from the
package, use the exportConfigurationAttributeValues parameter in the GET request:

GET http://{vcoHost}:{port}/vco/api/packages/{package_name}/?

exportConfigurationAttributeValues=false

5 (Optional) To export a package without global tags, use the exportGlobalTags parameter in the GET
request:

GET http://{vcoHost}:{port}/vco/api/packages/{package_name}/?exportGlobalTags=false

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 41

If the GET request is successful, you receive the status code 200. The package binary content is available
as an attachment with a default file name package_name.package. You can save the file with a REST
client application.

Import a Resource
You can import a resource by using the Orchestrator REST API.

Depending on the library of your REST client application, you can use custom code that defines the
properties of the resource.

Prerequisites

The resource binary content should be available as multi-part content. For details, see RFC-2387.

Procedure

1 In a REST client application, add request headers to define the properties of the resource that you
want to import.

2 Make a POST request at the URL of the resource objects:

POST http://{vcoHost}:{port}/vco/api/resources/

If the POST request is successful, you receive the status code 202.

Export a Resource
You can export a resource by using the Orchestrator REST API.

Procedure

1 In a REST client application, add a request header with the following values.

n Name: accept

n Value: application/octet-stream

2 Make a GET request at the URL of the resource that you want to export:

GET http://{vcoHost}:{port}/vco/api/resources/{resourceID}/

If the GET request is successful, you receive the status code 200. The content of the resource is available
in the response body.

Import a Configuration Element
You can import a configuration element by using the Orchestrator REST API.

Depending on the library of your REST client application, you can use custom code that defines the
properties of the configuration element.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 42

Prerequisites

The configuration element binary content should be available as multi-part content. For details, see
RFC-2387.

Procedure

1 In a REST client application, add request headers to define the properties of the configuration
element that you want to import.

2 Make a POST request at the URL of the configuration element objects:

POST http://{vcoHost}:{port}/vco/api/configurations/

If the POST request is successful, you receive the status code 202.

Export a Configuration Element
You can export a configuration element by using the Orchestrator REST API.

Procedure

1 In a REST client application, add a request header with the following values.

n Name: accept

n Value: application/vcoobject+xml

2 Make a GET request at the URL of the configuration element that you want to export:

GET http://{vcoHost}:{port}/vco/api/configurations/{configuration_elementID}/

If the GET request is successful, you receive the status code 200. The configuration element content is
available in the response body.

Deleting Orchestrator Objects
The Orchestrator REST API provides Web services that you can use to delete workflows, actions,
packages, resources, and configuration elements.

Delete a Workflow
You can delete a workflow by using the Orchestrator REST API.

Procedure

1 Make a GET request and retrieve the ID of the workflow from the list of returned workflows:

GET http://{vcoHost}:{port}/vco/api/workflows/

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 43

2 Make a DELETE request at the URL of the workflow:

DELETE http://{vcoHost}:{port}/vco/api/workflows/{workflowID}/

If the DELETE request is successful, you receive the status code 200, and the response body is empty.

Delete an Action
You can delete an action by using the Orchestrator REST API.

Procedure

1 Make a GET request and retrieve the ID of the action from the list of returned actions:

GET http://{vcoHost}:{port}/vco/api/actions/

2 Make a DELETE request at the URL of the action:

DELETE http://{vcoHost}:{port}/vco/api/actions/{actionID}/

If the DELETE request is successful, you receive the status code 200, and the response body is empty.

Delete a Package
You can delete a package by using the Orchestrator REST API.

When you delete a package, the elements from the package are not deleted. If you want to delete the
content of a package, you must provide an option parameter.

Procedure

1 Make a GET request and retrieve the name of the package from the list of returned packages:

GET http://{vcoHost}:{port}/vco/api/packages/

2 Make a DELETE request at the URL of the package, and if you want to delete elements from the
package, provide an option parameter at the end of the request:

DELETE http://{vcoHost}:{port}/vco/api/packages/{package_name}/?option={parameter}

Parameter Description

deletePackage Only the package is deleted, while its content is retained.

deletePackageWithContent The package and all its content is deleted. If other packages share elements with
the deleted package, the shared elements are deleted from the other packages.

deletePackageKeepingShared The package and the content that is not shared is deleted. Elements that are
shared with other packages are not deleted.

If you do not provide an option parameter, the default deletePackage parameter is used.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 44

If the DELETE request is successful, you receive the status code 200, and the response body is empty.

Delete a Resource
You can delete a resource by using the Orchestrator REST API.

Procedure

1 Make a GET request and retrieve the ID of the resource from the list of returned resources:

GET http://{vcoHost}:{port}/vco/api/resources/

2 Make a DELETE request at the URL of the resource:

DELETE http://{vcoHost}:{port}/vco/api/resources/{resourceID}/

If the DELETE request is successful, you receive the status code 200, and the response body is empty.

Delete a Configuration Element
You can delete a configuration element by using the Orchestrator REST API.

Procedure

1 Make a GET request and retrieve the ID of the configuration element from the list of returned
configuration elements:

GET http://{vcoHost}:{port}/vco/api/configurations/

2 Make a DELETE request at the URL of the configuration element:

DELETE http://{vcoHost}:{port}/vco/api/configurations/{configuration_elementID}/

If the DELETE request is successful, you receive the status code 200, and the response body is empty.

Setting Permissions on Orchestrator Objects
You can set custom permissions for an Orchestrator object by using the REST API. To set the
permissions, you must make a POST request at the URL of the object's permissions and define the
permissions in the request body.

You can also use the Orchestrator REST API to retrieve information about an object's permissions or
delete the existing permissions.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 45

REST API Permissions
When you set permissions by using the Orchestrator REST API, you must use a set of characters to
define the permissions.

You can define the permissions for an element by including a sequence of characters in the <rights> tag
of the request body of a POST request .

The characters that you can use to set permissions through the Orchestrator REST API have specific
meanings.

Table 2‑1. Orchestrator REST API Permissions Character Set

Character Description

r Gives view permissions.

x Gives execute permissions.

i Gives inspect permissions.

c Gives edit permissions.

a Gives administrative permissions.

Example: Syntax for Setting Permissions
You can use the following example syntax in the request body of a POST request at the URL of an
Orchestrator element's permissions.

<permissions xmlns="http://www.vmware.com/vco">

 <permission>

 <principal>cn=vcousers,ou=vco,dc=appliance</principal>

 <rights>ric</rights>

 </permission>

</permissions>

By setting ric permissions in the <rights> tag of the request body, you allow members of the vcousers
user group to view, inspect, and edit the Orchestrator element.

Retrieve the Permissions of a Workflow
You can retrieve information about the permissions of a workflow by using the Orchestrator REST API.

Procedure

1 Make a GET request and retrieve the ID of the workflow from the list of returned workflows:

GET http://{vcoHost}:{port}/vco/api/workflows/

2 Make a GET request at the URL of the workflow's permissions:

GET http://{vcoHost}:{port}/vco/api/workflows/{workflowID}/permissions/

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 46

If the GET request is successful, you receive the status code 200. Information about the workflow's
permissions is available in the response body.

Delete the Permissions of a Workflow
You can delete the permissions of a workflow by using the Orchestrator REST API. You can delete the
existing permissions of a workflow before you set new permissions.

Procedure

1 Make a GET request and retrieve the ID of the workflow from the list of returned workflows:

GET http://{vcoHost}:{port}/vco/api/workflows/

2 Make a DELETE request at the URL of the workflow's permissions:

DELETE http://{vcoHost}:{port}/vco/api/workflows/{workflowID}/permissions/

If the DELETE request is successful, you receive the status code 204, and the response body is empty.

Set the Permissions for a Workflow
You can set the permissions for a workflow by using the Orchestrator REST API.

Prerequisites

Review the types of permissions that you can set and the syntax that you can use in the request body.
See REST API Permissions.

Procedure

1 Make a GET request and retrieve the ID of the workflow from the list of returned workflows:

GET http://{vcoHost}:{port}/vco/api/workflows/

2 In a REST client application, add request headers to define the properties of the workflow for which
you want to set permissions.

3 In the request body, specify the permissions that you want to set.

4 Make a POST request at the URL of the workflow's permissions:

POST http://{vcoHost}:{port}/vco/api/workflows/{workflowID}/permissions/

If the POST request is successful, you receive the status code 201. Information about the workflow's
permissions is available in the response body.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 47

Retrieve the Permissions of an Action
You can retrieve information about the permissions of an action by using the Orchestrator REST API.

Procedure

1 Make a GET request and retrieve the ID of the action from the list of returned actions:

GET http://{vcoHost}:{port}/vco/api/actions/

2 Make a GET request at the URL of the action's permissions:

GET http://{vcoHost}:{port}/vco/api/actions/{actionID}/permissions/

If the GET request is successful, you receive the status code 200. Information about the action's
permissions is available in the response body.

Delete the Permissions of an Action
You can delete the permissions of an action by using the Orchestrator REST API. You can delete the
existing permissions of an action before you set new permissions.

Procedure

1 Make a GET request and retrieve the ID of the action from the list of returned actions:

GET http://{vcoHost}:{port}/vco/api/actions/

2 Make a DELETE request at the URL of the action's permissions:

DELETE http://{vcoHost}:{port}/vco/api/actions/{actionID}/permissions/

If the DELETE request is successful, you receive the status code 204, and the response body is empty.

Set the Permissions for an Action
You can set the permissions for an action by using the Orchestrator REST API.

Prerequisites

Review the types of permissions that you can set and the syntax that you can use in the request body.
See REST API Permissions.

Procedure

1 Make a GET request and retrieve the ID of the action from the list of returned actions:

GET http://{vcoHost}:{port}/vco/api/actions/

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 48

2 In a REST client application, add request headers to define the properties of the action for which you
want to set permissions.

3 In the request body, specify the permissions that you want to set.

4 Make a POST request at the URL of the action's permissions:

POST http://{vcoHost}:{port}/vco/api/actions/{actionID}/permissions/

If the POST request is successful, you receive the status code 201. Information about the action's
permissions is available in the response body.

Retrieve the Permissions of a Package
You can retrieve information about the permissions of a package by using the Orchestrator REST API.

Procedure

1 Make a GET request and retrieve the name of the package from the list of returned packages:

GET http://{vcoHost}:{port}/vco/api/packages/

2 Make a GET request at the URL of the package's permissions:

GET http://{vcoHost}:{port}/vco/api/packages/{package_name}/permissions/

If the GET request is successful, you receive the status code 200. Information about the package's
permissions is available in the response body.

Delete the Permissions of a Package
You can delete the permissions of a package by using the Orchestrator REST API. You can delete the
existing permissions of a package before you set new permissions.

Procedure

1 Make a GET request and retrieve the name of the package from the list of returned packages:

GET http://{vcoHost}:{port}/vco/api/packages/

2 Make a DELETE request at the URL of the package's permissions:

DELETE http://{vcoHost}:{port}/vco/api/packages/{package_name}/permissions/

If the DELETE request is successful, you receive the status code 204, and the response body is empty.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 49

Set the Permissions for a Package
You can set the permissions for a package by using the Orchestrator REST API.

Prerequisites

Review the types of permissions that you can set and the syntax that you can use in the request body.
See REST API Permissions.

Procedure

1 Make a GET request and retrieve the name of the package from the list of returned packages:

GET http://{vcoHost}:{port}/vco/api/packages/

2 In a REST client application, add request headers to define the properties of the package for which
you want to set permissions.

3 In the request body, specify the permissions that you want to set.

4 Make a POST request at the URL of the package's permissions:

POST http://{vcoHost}:{port}/vco/api/packages/{package_name}/permissions/

If the POST request is successful, you receive the status code 201. Information about the package's
permissions is available in the response body.

Retrieve the Permissions of a Resource
You can retrieve information about the permissions of a resource by using the Orchestrator REST API.

Procedure

1 Make a GET request and retrieve the ID of the resource from the list of returned resources:

GET http://{vcoHost}:{port}/vco/api/resources/

2 Make a GET request at the URL of the resource's permissions:

GET http://{vcoHost}:{port}/vco/api/resources/{resourceID}/permissions/

If the GET request is successful, you receive the status code 200. Information about the resource's
permissions is available in the response body.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 50

Delete the Permissions of a Resource
You can delete the permissions of a resource by using the Orchestrator REST API. You can delete the
existing permissions of a resource before you set new permissions.

Procedure

1 Make a GET request and retrieve the ID of the resource from the list of returned resources:

GET http://{vcoHost}:{port}/vco/api/resources/

2 Make a DELETE request at the URL of the resource's permissions:

DELETE http://{vcoHost}:{port}/vco/api/resources/{resourceID}/permissions/

If the DELETE request is successful, you receive the status code 204, and the response body is empty.

Set the Permissions for a Resource
You can set the permissions for a resource by using the Orchestrator REST API.

Prerequisites

Review the types of permissions that you can set and the syntax that you can use in the request body.
See REST API Permissions.

Procedure

1 Make a GET request and retrieve the ID of the resource from the list of returned resources:

GET http://{vcoHost}:{port}/vco/api/resources/

2 In a REST client application, add request headers to define the properties of the resource for which
you want to set permissions.

3 In the request body, specify the permissions that you want to set.

4 Make a POST request at the URL of the resource's permissions:

POST http://{vcoHost}:{port}/vco/api/resources/{resourceID}/permissions/

If the POST request is successful, you receive the status code 201. Information about the resource's
permissions is available in the response body.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 51

Retrieve the Permissions of a Configuration Element
You can retrieve information about the permissions of a configuration element by using the Orchestrator
REST API.

Procedure

1 Make a GET request and retrieve the ID of the configuration element from the list of returned
configuration elements:

GET http://{vcoHost}:{port}/vco/api/configurations/

2 Make a GET request at the URL of the configuration element's permissions:

GET http://{vcoHost}:{port}/vco/api/configurations/{configuration_elementID}/permissions/

If the GET request is successful, you receive the status code 200. Information about the configuration
element's permissions is available in the response body.

Delete the Permissions of a Configuration Element
You can delete the permissions of a configuration element by using the Orchestrator REST API. You can
delete the existing permissions of a configuration element before you set new permissions.

Procedure

1 Make a GET request and retrieve the ID of the configuration element from the list of returned
configuration elements:

GET http://{vcoHost}:{port}/vco/api/configurations/

2 Make a DELETE request at the URL of the configuration element's permissions:

DELETE http://{vcoHost}:{port}/vco/api/configurations/{configuration_elementID}/permissions/

If the DELETE request is successful, you receive the status code 204, and the response body is empty.

Set the Permissions for a Configuration Element
You can set the permissions for a configuration element by using the Orchestrator REST API.

Prerequisites

Review the types of permissions that you can set and the syntax that you can use in the request body.
See REST API Permissions.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 52

Procedure

1 Make a GET request and retrieve the ID of the configuration element from the list of returned
configuration elements:

GET http://{vcoHost}:{port}/vco/api/configurations/

2 In a REST client application, add request headers to define the properties of the configuration
element for which you want to set permissions.

3 In the request body, specify the permissions that you want to set.

4 Make a POST request at the URL of the configuration element's permissions:

POST http://{vcoHost}:{port}/vco/api/configurations/{configuration_elementID}/permissions/

If the POST request is successful, you receive the status code 201. Information about the configuration
element's permissions is available in the response body.

Performing Operations with Plug-Ins
The Orchestrator REST API provides Web services that you can use to perform various operations with
plug-ins.

Retrieve Information About Plug-Ins
You can retrieve metadata information for all installed plug-ins by using the Orchestrator REST API.

Procedure

1 In a REST client application, add request headers to define the properties of the plug-ins.

2 Make a GET request at the URL of the plug-in objects:

GET http://{vcoHost}:{port}/vco/api/plugins/

If the GET request is successful, you receive the status code 200.

Import a Plug-In
You can import a plug-in by using the Orchestrator REST API.

Depending on the library of your REST client application, you can use a custom code that defines the
properties of the plug-in.

Note You cannot import a plug-in if a plug-in with the same name is already installed.

Prerequisites

The plug-in binary content should be available as multi-part content. For details, see RFC-2387.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 53

Procedure

1 In a REST client application, add request headers to define the properties of the plug-in that you want
to import.

2 Make a POST request at the URL of the plug-in objects:

POST http://{vcoHost}:{port}/vco/api/plugins/

If the POST request is successful, you receive the status code 200.

Export a Plug-In
You can export a plug-in by using the Orchestrator REST API.

Procedure

1 In a REST client application, add a request header with the following values.

n Name: accept

n Value: application/dar

2 Make a GET request at the URL of the plug-in that you want to export:

GET http://{vcoHost}:{port}/vco/api/plugins/{plug-in_name}/

If the GET request is successful, you receive the status code 200. The plug-in content is available in the
response body.

Enable or Disable a Plug-In
You can enable or disable a plug-in by using the Orchestrator REST API.

You can change the state of a plug-in from enabled to disabled, or from disabled to enabled, by making a
PUT request at the URL of the plug-in. You can check the current state of a plug-in by retrieving
information about the Orchestrator plug-ins. See Retrieve Information About Plug-Ins.

Prerequisites

The plug-in binary content should be available as multi-part content. For details, see RFC-2387.

Procedure

1 In a REST client application, add request headers to define the properties of the plug-in that you want
to enable or disable.

2 Make a PUT request at the URL of the plug-in that you want to enable or disable:

PUT http://{vcoHost}:{port}/vco/api/plugins/{plug-in_name}/state/

If the PUT request is successful, you receive the status code 200.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 54

Performing Server Configuration Operations
The Orchestrator REST API provides Web services that you can use to perform various operations
related to the Orchestrator server configuration.

Retrieve Information About the Orchestrator Server Configuration
You can retrieve information about the Orchestrator server configuration by using the Orchestrator REST
API.

Procedure

1 In a REST client application, add request headers to define the properties of the server for which you
want to retrieve information.

2 Make a GET request at the URL of the plug-in objects:

GET http://{vcoHost}:{port}/vco/api/server-configuration/

If the GET request is successful, you receive the status code 200.

Import Orchestrator Server Configuration
You can import a saved configuration by using the Orchestrator REST API.

Prerequisites

The configuration binary content should be available as multi-part content. For details, see RFC-2387.

Procedure

1 In a REST client application, add a request header with the following values.

n Name: content-type

n Value: multipart/form-data

2 Make a POST request at the URL of the server configuration:

POST http://{vcoHost}:{port}/vco/api/server-configuration/

If the POST request is successful, you receive the status code 200.

Export Orchestrator Server Configuration
You can export the server configuration by using the Orchestrator REST API.

Prerequisites

The configuration binary content should be available as multi-part content. For details, see RFC-2387.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 55

Procedure

1 In a REST client application, add a request header with the following values.

n Name: content-type

n Value: multipart/form-data

2 Add another request header with the following values.

n Name: accept

n Value: */*

3 Make a POST request at the URL of the server configuration:

POST http://{vcoHost}:{port}/vco/api/server-configuration/

If the POST request is successful, you receive the status code 200.

Performing Tagging Operations
The Orchestrator REST API provides Web services that you can use to perform various operations to
make objects more searchable by using tags in Orchestrator.

You can make objects more searchable by attaching tags to them. Tags are strings with length between 3
and 64 characters and must contain no whitespace characters.

You can add global and private tags. Global tags are visible to all Orchestrator users and private tags are
visible only to the user who created them. Global tags can be created and removed only by users with
administrative privileges.

Tag an Object
You can assign tags to an object by using the Orchestrator REST API.

You can create both private and global tags. You specify whether the tag is private or global in the body of
the request.

Note To create global tags, you must be logged in as a user with administrative privileges.

You can also assign a value to the tag that you create. The value is an optional parameter that you can
use to filter tags.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 56

Procedure

1 Define the request body by using the following syntax.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<tag-instance xmlns="http://www.vmware.com/vco" global="false">

 <name>tag_name</name>

 <value>tag_value</value>

</tag-instance>

Note You can create a global tag by setting the global variable to "true".

2 Make a POST request at the URL of the object:

POST http://{vcoHost}:{port}/vco/api/catalog/{namespace}/{objectType}/{objectId}/tags

If the POST request is successful, you receive the status code 200.

Untag an Object
You can remove tags assigned to an object by using the Orchestrator REST API.

You can remove both private and global tags.

Note To remove global tags, you must be logged in as a user with administrative privileges.

Procedure

u Make a DELETE request to remove private or global tags.

n To remove a private tag, make a DELETE request at the URL of the object by using the following
syntax:

DELETE http://{vcoHost}:

{port}/vco/api/catalog/{namespace}/{objectType}/{objectId}/tag/{tag_name}

n To remove a global tag, make a DELETE request at the URL of the object by using the following
syntax:

DELETE http://{vcoHost}:{port}/vco/api/catalog/{namespace}/{objectType}/{objectId}/tag/:

{tag_name}

If the DELETE request is successful, you receive the status code 200.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 57

List Object Tags
You can retrieve a list of tags assigned to an object by using the Orchestrator REST API.

Procedure

u Make a GET request at the URL of the object:

GET http://{vcoHost}:{port}/vco/api/catalog/{namespace}/{objectType}/{objectId}/tags

If the GET request is successful, you receive the status code 200.

List Tagged Objects by Type
You can use the Orchestrator REST API to retrieve a list of objects tagged with a specific tag and filter
them by object type.

Procedure

u Make a GET request at the URL of the object type:

GET http://{vcoHost}:{port}/vco/api/catalog/{namespace}/{objectType}/?tags=tag1&tags=:tag2=value

If the GET request is successful, you receive the status code 200.

List Tag Owners
You can retrieve a list of tag owners by using the Orchestrator REST API. Tag owners are users who
have created at least one tag.

Procedure

u Make a GET request at the following URL:

GET http://{vcoHost}:{port}/vco/api/tags

If the GET request is successful, you receive the status code 200. The list that you retrieve contains users
who have created at least one tag. Global tags are listed under the system user name __GLOBAL__.

List Tags by Users
You can use the Orchestrator REST API to retrieve a list of tags created by a specific user.

You can also retrieve global tags. Global tags are listed under the system user name __GLOBAL__.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 58

Procedure

u Make a GET request at the URL of the user.

n To retrieve a list of the tags created by a specific user, make a GET request by using the following
syntax:

GET http://{vcoHost}:{port}/vco/api/tags/{user_name}

n To retrieve a list of global tags, make a GET request by using the following syntax:

GET http://{vcoHost}:{port}/vco/api/tags/__GLOBAL__

If the GET request is successful, you receive the status code 200.

List Tags by Users Filtered by Tag Name
You can use the Orchestrator REST API to retrieve a list of tag instances created by a specific user and
filter the tags by tag name.

You can also retrieve global tag instances. Global tags are listed under the system user name
__GLOBAL__.

Procedure

u Make a GET request at the URL of the user.

n To retrieve a filtered list of the tag instances created by a specific user, make a GET request by
using the following syntax:

GET http://{vcoHost}:{port}/vco/api/tags/{user_name}/{tag_name}

n To retrieve a filtered list of global tag instances, make a GET request by using the following syntax:

GET http://{vcoHost}:{port}/vco/api/tags/__GLOBAL__/{tag_name}

If the GET request is successful, you receive the status code 200. The information that you retrieve
contains a reference to the tagged object, tag name, tag value, and an indication whether the tag instance
is global or private.

Remove Tags by Users
You can use the Orchestrator REST API to remove all tags created by a specific user.

You can also remove global tags. Global tags are listed under the system user name __GLOBAL__.

Note To remove global tags, you must be logged in as a user with administrative privileges.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 59

Procedure

u Make a DELETE request at the URL of the user.

n To remove the tags created by a specific user, make a DELETE request by using the following
syntax:

DELETE http://{vcoHost}:{port}/vco/api/tags/{user_name}

n To remove the global tags, make a DELETE request by using the following syntax:

DELETE http://{vcoHost}:{port}/vco/api/tags/__GLOBAL__

If the DELETE request is successful, you receive the status code 200.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 60

Writing a Client Application for
the Orchestrator SOAP Service 3
Most applications that use the Orchestrator SOAP service have a common structure. To create a client
application for the Orchestrator SOAP service, you must perform a standard sequence of tasks.

This section includes the following topics:
n Process for Creating an Orchestrator Web Service Client Application

n Web Service Endpoint

n Generating the Orchestrator Web Service Stubs

n Accessing the Server from Web Service Clients

n Create a Web Service Client

n Time Zones and Running Workflows Through Web Services

n Web Service Application Examples

Process for Creating an Orchestrator Web Service Client
Application
Developing a Web services client application follows a broad sequence of stages.

The following figure shows how to create a typical Orchestrator Web service client application.

VMware, Inc. 61

Figure 3‑1. Process for Creating Orchestrator Web Service Applications

Create a VSOWebControl object
to connect to the Web service

HTTP

(Optional) check the connection to
the server using echoWorkflow

(Optional) check for plug-ins using
getAllPlugins

If necessary, find objects to execute workflows upon

Use find to locate an object of a
particular type, that matches a

particular query criterion

Use hasChildrenInRelation and
findRelation to find children of a

particular relation type
Use findForId to Iocate an object

with a particular ID number

Find a workflow

Use getAllWorkflows to list all
workflows

Use getWorkflowsForId to find a
workflow based on its unique ID

Use getWorkflowsWithName to
find workflows with a particular name

(Optional) check whether the current
user has rights to read, execute, or

edit the workflow using hasRights

HTTPS

Define the workflow's
inParameters

Execute the workflow using
executeWorkflow, which creates a

WorkflowToken

Perform different actions while the WorkflowToken executes

Provide runtime input
with

answerWorkflow
Input

Cancel the workflow
using

cancelWorkflow

Send a custom event
using

sendCustomEvent

When the WorkflowToken completes,
check the results with

getWorkflowTokenResult

Display, process, or otherwise act
upon the results of the workflow

Check the status of
the workflow with

getWorkFlowToken
Status

Find other
WorkflowToken

objects using
getWorkFlowToken

ForId

Follow the broad stages of development illustrated to create Orchestrator Web services client applications
that satisfy most of your requirements.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 62

Web Service Endpoint
The Web service endpoint is the port upon which you connect a Web service client to the Orchestrator
server.

You connect to the Orchestrator Web service's endpoint at the following URL, in which
orchestrator_server is the IP address or host name of the host on which the Orchestrator server is
running.

https://orchestrator_server:8281/vco/vmware-vmo-webcontrol/webservice

By default, the Web service runs over HTTPS on port 8281 of the Orchestrator server. Access to the Web
service API requires a valid user name and password on the Orchestrator server.

Generating the Orchestrator Web Service Stubs
You generate client and server stubs from the Orchestrator WSDL.

Orchestrator publishes the WSDL file at the following location.

https://orchestrator_server:8281/vco/vmware-vmo-webcontrol/webservice?WSDL

You generate the Web service client and server stubs by using a Java or .Net code generator. The
Orchestrator Web service supports all WSDL 1.1 parsers. Generating the Web service provides the
following objects.

Note The exact objects that the Orchestrator Web service generates depend on your code generator.
The objects in the following list are those that the Axis 1.4 code generator generates. Other code
generators might generate the objects differently. If the generator that you use generates different objects,
use VSOWebControlService service as the point of access to the other Web service objects.

Table 3‑1. Java classes generated with Axis 1.4

Class Description

VSOWebControl The Web service defines a WSDL port type named
VSOWebControl, through which you access all the Orchestrator
Web service operations.

WebServiceStub The Web service defines client and server side stubs that the
application uses to start the Web service.

VSOWebControlProxy The Web service provides access to the Orchestrator Web
service operations through a proxy.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 63

Table 3‑1. Java classes generated with Axis 1.4 (Continued)

Class Description

VSOWebControlService The VSOWebControlService service is a remote procedure call
(RPC) Service implementation. The VSOWebControlService
service is the point of access to the other Web service objects.

VSOWebControlServiceLocator The VSOWebControlServiceLocator service extends
VSOWebControlService to provide the following operations.
n getwebserviceAddress obtains the endpoint URL for the

Web service.
n getwebservice obtains the client-side stub for the Web

service application and instantiates the VSOWebControl port
type object with the appropriate endpoint URL.

Accessing the Server from Web Service Clients
By default, Orchestrator permits access to workflows from Web service clients. However, the Orchestrator
administrator can configure the server to deny connections from Web service clients.

If the Orchestrator administrator has disabled access to the server from Web service clients, the server
only answers Web service client calls from the echo() and echoWorkflow() methods, for testing
purposes.

The Orchestrator administrator enables and disables access to the server from Web service clients by
setting a system property. For information about setting system properties, see Installing and Configuring
VMware vCenter Orchestrator.

Create a Web Service Client
You can use the Orchestrator Web service API to create a Web service client to connect to the
Orchestrator Server. The Web service connection allows you to access workflows in the Orchestrator
server and perform operations on them.

Prerequisites

You must have generated the Web service client stub from the Orchestrator WSDL definition by using a
code generator.

Procedure

1 Connect to the Orchestrator Web Service

Web service applications use the HTTPS protocol to establish connections to the Orchestrator
server through simple object access protocol (SOAP) binding.

2 Find Objects in the Orchestrator Server

To perform any useful task with a workflow, you must find the objects on which the workflow will run.
The Orchestrator Web service API provides functions for finding objects of all types in the VMware
Infrastructure inventory.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 64

3 Find Objects by Using the find Operation

You can use the find operation to find objects of any type that match a particular search criterion,
that you set in the query parameter.

4 Find Objects by Using the findForId Operation

You can use the findForId operation to find an object if you know a specific object's unique ID.

5 Find Objects by Using the findRelation Operation

You can use the findRelation operation to locate the children of a particular object.

6 Find Workflows in the Orchestrator Server

When you have found the objects with which to interact, you must find the workflows that perform
these interactions.

7 Find Workflows by Using the getAllWorkflows Operation

The getAllWorkflows operation lists all workflows that a user can access as an array of Workflow
objects.

8 Retrieve the ID of a Workflow

Every workflow has a unique ID that you can retrieve by using the Orchestrator client and a text
editor. You need the workflow ID to perform operations over a workflow by using the Orchestrator
SOAP API.

9 Find Workflows by Using the getWorkflowsWithName Operation

If you know the name of a particular workflow, as it is defined in the Orchestrator client, the Web
service application can obtain this workflow using its name or part of its name.

10 Find Workflows by Using the getWorkflowForID Operation

If you know a particular workflow ID, a Web service application can obtain this workflow by using the
getWorkflowForID operation.

11 Run Workflows from a Web Service Client

The main purpose of a Web services client is to run workflows across a network.

12 Interact with a Workflow While it Runs

After the workflow starts, the Web services client can perform various actions in response to events
while the workflow is running.

13 Obtain Workflow Results

After the workflow completes its run, you can retrieve the results by calling the
getWorkflowTokenResult() operation.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 65

Connect to the Orchestrator Web Service
Web service applications use the HTTPS protocol to establish connections to the Orchestrator server
through simple object access protocol (SOAP) binding.

Prerequisites

n Verify that you have generated the Orchestrator Web service client and server stubs from the
Orchestrator WSDL definition.

n Verify that you have created a Web service client application class that implements the
VSOWebControl interface.

Procedure

1 In your Web service client application class, create a VSOWebControl instance that connects to the
Web service endpoint.

The default HTTPS port is 8281. The URL is also a default.

The following example shows how to create a connection to the Web service.

String urlprefix = "https://10.0.0.1:8281/vco" ;

URL url = new URL(urlprefix + "/vmware-vmo-webcontrol/webservice");

vsoWebControl = new VSOWebControlServiceLocator().getwebservice(url);

2 Check the server connections by calling the echo operation.

The following example shows how you can call the echo operation.

vsoWebControl.echo(string);

The call to the echo operation returns the String object that you provided as an argument.

3 (Optional) To check which plug-ins are running on the Orchestrator server, call the getAllPlugins
operation.

The following example shows how you can call the getAllPlugins operation.

ModuleInfo[] modules = vsoWebControl.getAllPlugins(username, password);

The preceding call to the getAllPlugins operation returns an array of ModuleInfo objects, each of
which contains the name and version information about a plug-in running in the Orchestrator server.

You created a connection to the Orchestrator Web service, verified the connection, and established what
technologies plug in to the Orchestrator server.

What to do next

Find objects in the Orchestrator server through the Web service connection.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 66

Find Objects in the Orchestrator Server
To perform any useful task with a workflow, you must find the objects on which the workflow will run. The
Orchestrator Web service API provides functions for finding objects of all types in the VMware
Infrastructure inventory.

Workflows typically run on objects in the vCenter Server. Workflows can also run on objects from outside
the vCenter Server by accessing them through plug-ins.

The operations that the Web service API defines for finding objects are as follows.

n find

n findForId

n findRelation

n hasChildrenInRelation

All of the operations that find objects return FinderResult objects, either individually, as an array, or
embedded in a QueryResult object.

Find Objects by Using the find Operation
You can use the find operation to find objects of any type that match a particular search criterion, that
you set in the query parameter.

The vso.xml file of the plug-in through which you access the object defines the syntax of the query
parameter.

Prerequisites

You must have created a connection to the Orchestrator Web services endpoint in your Web service client
application class.

Procedure

1 Create a QueryResult object by calling the find operation on an object.

The following code example shows how an application can call the find operation to find out how
many virtual machines are accessible by a particular user through the vCenter Server plug-in.

QueryResult queryResult = vsoWebControl.find("VC:VirtualMachine", null,

 <username>, <password>);

 if (queryResult != null) {

 System.out.println("Found " + queryResult.getTotalCount() +

 " objs.");

 FinderResult[] elts = queryResult.getElements();

 finderResult = elts[0];

 displayFinderResult(finderResult);

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 67

 }

 else {

 System.out.println("Found nothing");

 }

According to the query syntax defined by the vCenter Server plug-in, setting the query parameter to
null returns the list of all of the objects of the type specified by the first parameter. The preceding
code example performs the following tasks.

n Gets the list of any VC:VirtualMachine objects in the library.

n Calls the QueryResult object's getTotalCount operation to obtain the total number of
VC:VirtualMachine objects found and print the value.

n Calls the QueryResult object's getElements operation to obtain the details of the objects found
as an array of FinderResult objects.

n Passes the array of FinderResult objects to the internal method displayFinderResult, which
extracts the information.

2 Extract the results from a FinderResult object.

To show, interpret, or process the results in the FinderResult objects that the find operation
returns, you must convey these results to the Web service application.

The following example shows how to extract the results returned in a FinderResult object.

public static void displayFinderResult(FinderResult finderResult) {

 if (finderResult != null) {

 System.out.println("Finder result is of type '"

 + finderResult.getType()

 + "', id '" + finderResult.getId()

 + "' and uri '"

 + finderResult.getDunesUri() + "'");

 System.out.println("And has properties :");

 Property[] props = finderResult.getProperties();

 if (props != null) {

 for (int ii = 0; ii < props.length; ii++) {

 System.out.println("\t" + props[ii].getName() + "="

 + props[ii].getValue());

 }

 }

 }

The example defines an internal method, displayFinderResult, which takes a FinderResult
object and obtains and shows its type, ID, the URI at which it is located, and its properties. You can
use the URI to set arguments when starting or answering workflows. The getType, getId,
getProperties and getDunesUri methods are defined by the FinderResult object.

You found objects in the Orchestrator server that the Web service client can access and run workflows
upon.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 68

What to do next

Implement Web service operations in the client application to find workflows in the Orchestrator server.

Find Objects by Using the findForId Operation
You can use the findForId operation to find an object if you know a specific object's unique ID.

To use findForId, you match a specific type of object to its identifier.

Prerequisites

You must have created a connection to the Orchestrator Web services endpoint in your Web service client
application class.

Procedure

1 Create a FinderResult object by calling the findForId operation on an object.

finderResult = vsoWebControl.findForId("VC:VirtualMachine", "vcenter/vm-xx",

username, password);

In the preceding example, vcenter/vm-xx is the ID of a virtual machine object that the findForID
operation finds.

The findForID operation returns a FinderResult instance directly, rather than creating an array of
FinderResult objects like find. Finding objects by their unique ID always returns only one object.

2 Extract the results from a FinderResult object.

To show, interpret, or process the results in the FinderResult objects that the find operation
returns, you must convey these results to the Web service application.

The following example shows how to extract the results returned in a FinderResult object.

public static void displayFinderResult(FinderResult finderResult) {

 if (finderResult != null) {

 System.out.println("Finder result is of type '"

 + finderResult.getType()

 + "', id '" + finderResult.getId()

 + "' and uri '"

 + finderResult.getDunesUri() + "'");

 System.out.println("And has properties :");

 Property[] props = finderResult.getProperties();

 if (props != null) {

 for (int ii = 0; ii < props.length; ii++) {

 System.out.println("\t" + props[ii].getName() + "="

 + props[ii].getValue());

 }

 }

 }

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 69

The example defines an internal method, displayFinderResult, which takes a FinderResult
object and obtains and shows its type, ID, the URI at which it is located, and its properties. You can
use the URI to set arguments when starting or answering workflows. The getType, getId,
getProperties and getDunesUri methods are defined by the FinderResult object.

You found objects in the Orchestrator server that the Web service client can access and run workflows
upon.

Find Objects by Using the findRelation Operation
You can use the findRelation operation to locate the children of a particular object.

The findRelation operation returns an array of FinderResult objects that correspond to the children
of a particular object.

Prerequisites

You must have created a connection to the Orchestrator Web services endpoint in your Web service client
application class.

Procedure

1 Create an array of FinderResult objects by calling the findRelation operation on an object.

FinderResult[] results = vsoWebControl.findRelation("VC:ComputeResource",

 "vcenter/domain-s114", "getResourcePool()", "username", "password");

The preceding example returns an array of FinderResult objects that match the following criteria.

n The parent element is of the type VC:ComputeResource.

n The parent element's ID is vchost/domain-s114.

n The returned children are related to the parent by the getResourcePool relation, defined by the
Orchestrator vCenter Server plug-in.

2 Extract the results from a FinderResult object.

To show, interpret, or process the results in the FinderResult objects that the find operation
returns, you must convey these results to the Web service application.

The following example shows how to extract the results returned in a FinderResult object.

public static void displayFinderResult(FinderResult finderResult) {

 if (finderResult != null) {

 System.out.println("Finder result is of type '"

 + finderResult.getType()

 + "', id '" + finderResult.getId()

 + "' and uri '"

 + finderResult.getDunesUri() + "'");

 System.out.println("And has properties :");

 Property[] props = finderResult.getProperties();

 if (props != null) {

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 70

 for (int ii = 0; ii < props.length; ii++) {

 System.out.println("\t" + props[ii].getName() + "="

 + props[ii].getValue());

 }

 }

 }

The example defines an internal method, displayFinderResult, which takes a FinderResult
object and obtains and shows its type, ID, the URI at which it is located, and its properties. You can
use the URI to set arguments when starting or answering workflows. The getType, getId,
getProperties and getDunesUri methods are defined by the FinderResult object.

You found objects in the Orchestrator server that the Web service client can access and run workflows
upon.

What to do next

Implement Web service operations in the client application to find workflows in the Orchestrator server.

Find Workflows in the Orchestrator Server
When you have found the objects with which to interact, you must find the workflows that perform these
interactions.

The Orchestrator Web service API includes the following operations to find all the workflows running in a
given environment, to find a workflow with a particular name, or to find workflows with a particular ID.

n getAllWorkflows

n getWorkflowsWithName

n getWorkflowForID

Find Workflows by Using the getAllWorkflows Operation
The getAllWorkflows operation lists all workflows that a user can access as an array of Workflow
objects.

Because the getAllWorkflows operation returns Workflow objects that contain all the information about
a workflow, it is useful for applications that require full information about workflows, such as the workflow's
name, ID, description, parameters, and attributes.

Prerequisites

You must have implemented Web service operations in your client application to find objects in the
Orchestrator server.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 71

Procedure

u Create an array of Workflow objects by calling the getAllWorkflows operation.

Workflow[] workflows = vsoWebControl.getAllWorkflows(username, password);

The preceding code example calls getAllWorkflows to get an array of Workflow objects that the
Web service client can run.

You found workflows in the Orchestrator server that the Web service client can run on objects.

What to do next

Implement operations in the Web services client to run the workflows it finds.

Retrieve the ID of a Workflow
Every workflow has a unique ID that you can retrieve by using the Orchestrator client and a text editor.
You need the workflow ID to perform operations over a workflow by using the Orchestrator SOAP API.

Procedure

1 In the Orchestrator client, select the Workflows view.

2 From the workflow library, select the workflow whose ID you want to retrieve and press Ctrl+C.

3 Open a text editor and press Ctrl+V.

The workflow name and ID appear in the text editor.

Find Workflows by Using the getWorkflowsWithName Operation
If you know the name of a particular workflow, as it is defined in the Orchestrator client, the Web service
application can obtain this workflow using its name or part of its name.

The getWorkflowsWithName operation returns an array of workflows, so you can use it to match several
workflows by using wildcards.

Prerequisites

You must have implemented Web service operations in your client application to find objects in the
Orchestrator server.

Procedure

u Create an array of Workflow objects by calling the getWorkflowsWithName operation.

Workflow[] workflows =

 vsoWebControl.getWorkflowsWithName("Simple user interaction",

 username, password);

The preceding code example calls the getWorkflowsWithName operation to obtain all workflows for
which the name, or part of the name, is Simple user interaction.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 72

You found workflows in the Orchestrator server that the Web service client can run on objects.

What to do next

Implement operations in the Web services client to run the workflows it finds.

Find Workflows by Using the getWorkflowForID Operation
If you know a particular workflow ID, a Web service application can obtain this workflow by using the
getWorkflowForID operation.

The getWorkflowForID operation returns a single Workflow instance, because all workflow IDs are
unique.

Prerequisites

You must have implemented Web service operations in your client application to find objects in the
Orchestrator server.

Procedure

u Create a Workflow object by calling the getWorkflowForID operation.

String workflowId = "1880808080808080808080808080808087808080011713796199469943be4c882";

Workflow workflow = vsoWebControl.getWorkflowForID(workflowId, username, password);

You found a workflow in the Orchestrator server that the Web service client can run on objects.

What to do next

Implement operations in the Web services client to run the workflows it finds.

Run Workflows from a Web Service Client
The main purpose of a Web services client is to run workflows across a network.

Prerequisites

You must have implemented Web service operations in the client to find workflows in the Orchestrator
server.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 73

Procedure

1 (Optional) Check the workflow user permissions by calling the hasRights operation.

You can verify if a user has rights to read, run, or edit a particular workflow using the hasRights
operation. This operation is not mandatory, but checking user rights before you run a workflow can
help prevent exceptions.

String workflowId = "1880808080808080808080808080808087808080011713796199469943be4c882";

Boolean rights = vsoWebControl.hasRights(workflowId, username, password, 'x');

The preceding code example calls the hasRights operation to discover whether the user has the
right to run the workflow identified by workflowId.

If the user has the right to run the workflow, hasRights returns true. Otherwise, hasRights returns
false.

2 Set the workflow attributes in a WorkflowTokenAttribute object.

The Web services client passes WorkflowTokenAttributes arrays to a WorkflowToken object,
which runs the workflow.

WorkflowTokenAttribute[] attributes = new WorkflowTokenAttribute[1];

WorkflowTokenAttribute attribute = new WorkflowTokenAttribute();

attribute.setName("vm");

attribute.setType(finderResult.getType());

attribute.setValue(finderResult.getDunesUri());

attributes[0] = attribute;

The preceding example creates a WorkflowTokenAttribute object, then populates it with the
following information:

n The name of the attribute, in this case, vm.

n The type of attribute, as discovered in a FinderResult object defined elsewhere in the code.

n The attribute value, which in this case is a dunesUri string, signifying that the value specifies an
object accessed through a plug-in.

3 Run the workflow by calling the executeWorkflow operation.

To run a workflow, you pass the workflow attributes to the executeWorkflow operation in the form of
a WorkflowTokenAttribute array.

Running a workflow creates a WorkflowToken object, which represents the instance of the workflow
that runs with the specific input parameters that it receives when it starts.

WorkflowToken token = vsoWebControl.executeWorkflow(workflowId, username, password, attributes);

In the preceding example, the attributes property is the array of WorkflowTokenAttribute
objects created in Step 2.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 74

Sometimes, workflows require input parameters during their run. In these cases, you can provide
attributes through a user interaction while the workflow is running. You can pass attributes to the
workflow during its run using the answerWorkflowInput operation.

You implemented operations in the Web service client that check user permissions, pass attributes to a
workflow, and run the workflow.

What to do next

Implement operations in the Web services client to interact with workflows while they run.

Interact with a Workflow While it Runs
After the workflow starts, the Web services client can perform various actions in response to events while
the workflow is running.

Prerequisites

You must have implemented operations in the Web service client to run workflows in the Orchestrator
server.

Procedure

1 Find running workflows by calling the getWorkflowTokenForId operation.

Calling getWorkflowTokenForId obtains a WorkflowToken object, which contains all of the
information about that specific workflow token.

WorkflowToken onemoretoken = vsoWebControl.getWorkflowTokenForId(workflowTokenId, username,

password);

AllActiveWorkflowTokens[n] = onemoretoken;

The preceding code example obtains a WorkflowToken object from its ID and sets it into an array of
running WorkflowToken objects.

2 Check the status of a workflow token by calling the getWorkFlowTokenStatus operation.

When a workflow runs, an application's main event loop usually concentrates on checking the status
of the workflow at regular intervals. The getWorkflowTokenStatus operation requires an array of
the IDs of the workflow tokens for which it is obtaining the status.

String workflowId = workflows[0].getId();

WorkflowToken token = vsoWebControl.executeWorkflow(workflowId, username, password, null);

String[] tokenIds = { token.getId() };

String tokenStatus = "";

while ("completed".equals(tokenStatus) == false

 && "failed".equals(tokenStatus) == false

 && "canceled".equals(tokenStatus) == false

 && "waiting".equals(tokenStatus) == false) {

 Thread.sleep(1 * 1000); // Wait 1s

 String[] status = vsoWebControl.getWorkflowTokenStatus(tokenIds, username,

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 75

 password);

 tokenStatus = status[0];

 System.out.println("Workflow is still running...(" + tokenStatus + ")");

}

The preceding example obtains the IDs of an array of workflow tokens. It checks the status of a
WorkflowToken by calling getWorkflowTokenStatus().

The preceding example keeps the application updated on the status of the WorkflowToken objects
by checking their state at one second intervals. For example, If the workflow is in the waiting state, it
is waiting for runtime input from the answerWorkflowInput operation.

3 Provide inputs from user interactions by calling the answerWorkflowInput operation.

If a workflow is waiting for user input in the waiting state, an application's event loop can specify that
input at any time. You can create WorkflowTokenAttribute arrays as normal, and then supply them
to a workflow during its run by using the answerWorkflowInput operation. The following example
continues the code from Step 2.

 if ("waiting".equals(tokenStatus) == true) {

 System.out.println("Answering user interaction");

 WorkflowTokenAttribute[] attributes = new WorkflowTokenAttribute[2];

 WorkflowTokenAttribute attribute = null;

 attribute = new WorkflowTokenAttribute();

 attribute.setName("param1");

 attribute.setType("string");

 attribute.setValue("answer1");

 attributes[0] = attribute;

 attribute = new WorkflowTokenAttribute();

 attribute.setName("param2");

 attribute.setType("number");

 attribute.setValue("123");

 attributes[1] = attribute;

 vsoWebControl.answerWorkflowInput(token.getId(), attributes, username,

 password);

 }

In the preceding example, if the workflow is in the waiting state, the application creates two
WorkFlowTokenAttribute objects. The objects call the various WorkFlowTokenAttribute
operations to obtain the attribute values. The process then adds these WorkFlowTokenAttribute
objects into a WorkflowTokenAttribute array.

4 Cancel a workflow by calling the cancelWorkflow operation.

You can cancel a workflow at any time using the cancelWorkflow operation.

vsoWebControl.cancelWorkflow(workflowTokenId, username, password);

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 76

5 Check that the workflow canceled successfully.

Because the cancelWorkflow operation does not return anything, you must obtain the
WorkflowToken status to make sure the workflow canceled successfully, as the following code
example shows.

String[] status = vsoWebControl.getWorkflowTokenStatus(tokenIds, username, password);

if ("canceled".equals(status) == true) {

 System.out.println("Workflow canceled");

}

The Web service client interacts with workflows by finding their status, supplying input parameters from
user interactions, and by canceling the workflows.

What to do next

Implement operations in the Web services client to extract the workflow results.

Obtain Workflow Results
After the workflow completes its run, you can retrieve the results by calling the
getWorkflowTokenResult() operation.

Prerequisites

You must have implemented how workflows start in the Orchestrator server in the Web services client.

Procedure

1 Obtain the results of a running workflow by calling the getWorkflowTokenResult() operation.

The getWorkflowTokenResult() operation stores the results as an array of attributes.

 WorkflowTokenAttribute[] retAttributes =

 vsoWebControl.getWorkflowTokenResult(token.getId(),

 username, password);

The preceding example code obtains the result of a workflow token with a specific identifier.

2 (Optional) Print the workflow results.

WorkflowTokenAttribute resultCode = retAttributes[0];

WorkflowTokenAttribute resultMessage = retAttributes[1];

System.out.println("Workflow output code ... (" + resultCode.getValue() + ")");

System.out.println("Workflow output message... (" + resultMessage.getValue() + ")");

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 77

3 Emit the workflow token's result attributes for display or for use by other applications.

for (int ii = 0; ii < retAttributes.length; ii++) {

 System.out.println("\tName:'" + retAttributes[ii].getName()

 + "' - Type:'" + retAttributes[ii].getType()

 + "' - Value:'" + retAttributes[ii].getValue()

}

The preceding example code prints out the name, type, and value of the workflow token's result
attributes.

You defined a Web services client that finds objects in Orchestrator, runs workflows on them, interacts
with the running workflows, and extracts the results of running those workflows.

Time Zones and Running Workflows Through Web
Services
Running workflows through Web services can lead to erroneous timestamping, if the run request comes
from an application running in a different time zone to the Orchestrator server.

If a workflow takes the time and date as an input parameter, and generates the time and date as output
when it runs, and if this workflow runs through a Web services application, the time and date sent as an
input parameter reflects the time and date of the system on which the Web services application is
running. The time and date that the workflow sends as its output reflects the time and date of the system
on which the Orchestrator server is running. If the Web services application is running in a different time
zone than the Orchestrator server, the time returned by the workflow does not match the time that the
Web services application provided as input when it called executeWorkflow or
getWorkflowTokenResult.

To avoid this problem, you can create a function to compare dates in your Web services application. You
must serialize the date and time, taking the time zone information into account. The following Java code
example shows how to transform a String that Orchestrator returns into a Date object.

public Date dateFromString(String value){

 java.text.DateFormat s_dateFormat = new java.text.SimpleDateFormat("yyyyMMddHHmmssZ");

 Date date = null;

 if (value != null && value.length() > 0) {

 try {

 date = s_dateFormat.parse(value);

 } catch (ParseException e) {

 System.err.println("Converting String to Date : ERROR");

 date = null ;

 }

 }

 return date;

}

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 78

Web Service Application Examples
Orchestrator provides working examples of Web services client applications that provide Web access to
Orchestrator.

You can download the Orchestrator examples ZIP file from the VMware vCenter Orchestrator
Documentation landing page.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 79

Web Service API Object
Reference 4
The Orchestrator Web service API provides a collection of objects that serve as WSDL complex types
and a collection of methods that server as WSDL operations.

This section includes the following topics:

n FinderResult Object

n ModuleInfo Object

n Property Object

n QueryResult Object

n Workflow Object

n WorkflowParameter Object

n WorkflowToken Object

n WorkflowTokenAttribute Object

FinderResult Object
A FinderResult represents an object from the Orchestrator inventory that Orchestrator locates in an
external application by using a plug-in. For example, a FinderResult object can represent a virtual
machine from vCenter Server.

FinderResult objects represent any object that a plug-in registers with Orchestrator in its vso.xml file.
FinderResult objects represent the items, from all installed plug-ins, that you find when you call one of
the find* operations. The items returned can be any type of object that an Orchestrator plug-in defines.
Most workflows require FinderResult instances as input parameters, as most workflows act upon
Orchestrator objects.

You cannot set a FinderResult as a workflow attribute directly. You must set WorkflowTokenAttribute
in workflows instead, which take the type and the dunesUri from FinderResult objects.

The find operation finds objects according to query criteria that the vso.xml file defines. It does not
return FinderResult objects directly, but returns QueryResult objects instead. QueryResult objects
contain arrays of FinderResult objects.

VMware, Inc. 80

The objects searched for can also be identified by ID or by relation using the findForId and
findRelation operations, as the following example shows.

public FinderResult findForId(String type, String id, String username, String password);

public FinderResult[] findRelation(String parentType, String parentId, String relation, String

username, String password);

Note FinderResult is not an Orchestrator scriptable object.

The following table shows the properties of the FinderResult object.

Type Value Description

String type Type of object found.

String id ID of the discovered object.

Array of properties properties A list of the discovered object's properties.

The format of the properties values is
defined by each plug-in in its vso.xml file,
under the FinderResult description.

String dunesUri A string representation of the object.

If a FinderResult object is accessed
through a plug-in, it is identified by a
dunesUri string, rather than by another
type of string or ID. The format of the
dunesUri is as follows.

dunes://service.dunes.ch/CustomS
DKObject?id='<object_ID>'
&dunesName='<plug-
in_name>:<object_type>'

ModuleInfo Object
ModuleInfo stores the name, version, description, and display name attributes for each plug-in. A Web
service application can use these attributes to modify its behavior based on the presence or absence of
certain plug-ins or plug-in versions.

The getAllPlugins operation returns arrays of ModuleInfo objects to list all the plug-ins a user can
access, as the following example shows.

public ModuleInfo[] getAllPlugins(username, password);

The following table shows the properties of the ModuleInfo object.

Type Value Description

String moduleName Name of the plug-in, used as a prefix in
object names.

String moduleVersion Plug-in version.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 81

Type Value Description

String moduleDescription Description of the plug-in.

String moduleDisplayName Plug-in name shown in the Orchestrator
inventory.

Property Object
A Property object represents a key-value pair that describes the properties of an item in the Orchestrator
inventory.

You can obtain a Property object by calling the getProperties operation on a FinderResult object,
as the following example shows.

Property[] props = finderResult.getProperties();

This example method call returns the contents of the FinderResult object's properties attribute.

The following table shows the properties of the Property object.

Type Value Description

String name Property name.

String value Property value.

The format of a property's values is
defined by each plug-in in its vso.xml file,
under the FinderResult description.

QueryResult Object
The QueryResult object represents the results of a find query.

A QueryResult object contains an array of FinderResult objects and a counter. A QueryResult object
is returned by the find operation, as the following example shows.

public QueryResult find(String type, String query, String username,

String password);

The following table shows the properties of the QueryResult object.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 82

Type Value Description

Long totalCount The total number of objects found.

The QueryResult object contains an
array of FinderResult objects. The
vso.xml file for the relevant plug-in sets
the number of FinderResult objects the
query returns. The standard plug-ins that
Orchestrator provides all return an
unlimited number of FinderResult
objects. The totalCount property reports
the total number of FinderResult objects
found. If the value of totalCount is
greater than the number set by the plug-
in, the array of FinderResults returned
does not include all the objects found in
the queried inventory.

FinderResult[] elements An array of FinderResult objects.

Workflow Object
A Workflow object represents an Orchestrator workflow that defines a certain sequence of tasks,
decisions, and operations.

Users with the correct permissions can obtain specific Workflow objects by name or by ID, or they can
obtain all the workflows they have the permission to see.

Orchestrator provides the following operations to obtain Workflow objects.

public Workflow[] getWorkflowsWithName(String workflowName, String username, String password);

public Workflow getWorkflowForId(String workflowId, String username, String password);

public Workflow[] getAllWorkflows(String username, String password);

The following table shows the properties of the Workflow object.

Type Value Description

String id The workflow ID.

The id string is a globally unique ID
string. Workflows that Orchestrator
creates have identifiers that are very large
strings, with a very low probability of
namespace collision.

String name The name of the workflow, as it appears in
the workflow's Name text box in
Orchestrator.

String description A detailed description of what the
workflow does.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 83

Type Value Description

WorkflowParameter[] inParameters The inParameters array is the set of
WorkflowParameter objects that are the
workflow's input parameters. The workflow
can manipulate these input parameters or
use them directly as the input parameters
for tasks and other workflows.

You can set up arbitrary input parameters
to provide any necessary input
parameters. Omitting a required
parameter at runtime causes the workflow
to fail.

WorkflowParameter[] outParameters The outParameters array is the set of
WorkflowParameter objects that result
from running a workflow. This array allows
the workflow to send errors, the names of
any created objects, and other information
as output.

You can set up arbitrary output
parameters to generate any information
that you need.

WorkflowParameter[] attributes The attributes array is a set of
WorkflowParameter objects that
represent constants and preset variables
for a given workflow. Attributes differ from
inParameters because they are intended
to represent environmental constants or
variables, rather than runtime information.

Note You cannot retrieve workflow
attribute values by using the Web service.
You can only retrieve output parameter
values.

WorkflowParameter Object
The WorkflowParameter object defines a parameter in a workflow, for example, an input, an output, or
an attribute.

Workflow developers can set up arbitrary parameters to provide any input parameters or output
parameters that the workflows need. The format of the parameters is defined entirely by the workflow.

The following table shows the properties of the WorkflowParameter object.

Type Value Description

String name The parameter name.

String type The parameter type.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 84

WorkflowToken Object
A WorkflowToken object represents a specific instance of a workflow in the running, waiting,
waiting-signal, canceled, completed or failed state.

You obtain a WorkflowToken object by starting a workflow or by obtaining an existing workflow token by
its ID, as the following method signatures show.

public WorkflowToken executeWorkflow(String workflowId, String username, String password,

WorkflowTokenAttribute[] attributes);

public WorkflowToken getWorkflowTokenForId(String workflowTokenId, String username, String password);

The following table shows the properties of the WorkflowToken object.

Type Value Description

String id The identifier of this particular instance of
a completed workflow.

String title The title of this particular instance of a
completed workflow.

By default, the WorkflowToken title is the
same as the Workflow title, although
some operations do allow you to set a
different WorkflowToken title when you
start the workflow.

String workflowId The identifier of the workflow of which this
WorkflowToken object is a running
instance.

String currentItemName The name of the step in the workflow that
is running at the moment when
getWorkflowTokenForId is called.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 85

Type Value Description

String currentItemState The state of the current step in the
workflow, with the following possible
values:
n running: the step is running
n waiting: the step is waiting for

runtime parameters, which can be
provided by answerWorkflowInput

n waiting-signal: the step is waiting
for an external event from a plug-in

n canceled: the step was canceled by a
user or API-integrated program

n completed: the step has finished
n failed: the step encountered an error

You must run getWorkflowTokenForId
every time you update this value.

Note You should not use
currentItemState. The globalState
property makes currentItemState
redundant.

String globalState The state of the workflow as a whole, with
the following possible values:
n running: the workflow is running
n waiting: the workflow is waiting for

runtime parameters, which can be
provided by answerWorkflowInput

n waiting-signal: the workflow is
waiting for an external event

n canceled: the workflow was canceled
by a user or by an application

n completed: the workflow has finished
n failed: the workflow encountered an

error
n suspended: the workflow run is

paused

The globalState is the state of the
workflow as a whole.

You must run getWorkflowTokenForId
every time you update this value.

String startDate The date and time that this workflow token
started

The startDate value is set at the
moment the workflow starts. When you
obtain a token, its startDate has already
been initialized.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 86

Type Value Description

String endDate Date and time that this workflow token
ended, if the workflow token has finished.

The endDate value is filled in at the
moment the workflow reaches the end of
its run.

The endDate is only set when the
workflow finishes in one of the
completed, failed or canceled states.

String xmlContent Defines input parameters, output
parameters, attributes, and the content of
error messages. The values of the
attributes and parameters are set in CDATA
elements and error messages are set in
<exception> tags, as the following
example shows.

<token>
 <atts>
 <stack>
 <att n='attstr' t='string'
e='n'>
 <!
[CDATA[attribute]]>Attribute
value</att>
 <att n='instr' t='string'
e='n'>
 <![CDATA[]]>Input parameter
value</att>
 <att n='outstr' t='string'
e='n'>
 <![CDATA[]]>Output parameter
value</att>
 </stack>
 </atts>
 <exception encoded='n'>Error
message</exception>
</token>

WorkflowTokenAttribute Object
A WorkflowTokenAttribute object represents an input or output parameter of a running instance of a
workflow.

A WorkflowTokenAttribute is a value that you pass to a predefined WorkflowParameter when a
WorkflowToken begins, or in some cases, at runtime. When you run a workflow, you supply the input
parameters for that particular workflow as WorkflowTokenAttribute objects. The executeWorkflow
operation takes an array of WorkflowTokenAttribute objects as an argument when you call it, as the
following example shows.

public WorkflowToken executeWorkflow(String workflowId, String username,

String password, WorkflowTokenAttribute[] attributes);

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 87

Workflows also use WorkflowTokenAttribute as the output parameter of a run workflow.
WorkflowTokenAttribute contains the results of a completed WorkflowToken created by running
executeWorkflow. You can collect the result of a WorkflowToken, in the form of a
WorkflowTokenAttribute, by calling getWorkflowTokenResult, as the following example shows.

public WorkflowTokenAttribute[] getWorkflowTokenResult(String workflowTokenId,

String username, String password);

You can also pass an array of WorkflowTokenAttribute objects to the answerWorkflowInput
operation to provide input that a workflow token needs while it runs.

public void answerWorkflowInput(String workflowTokenId,

WorkflowTokenAttribute[] answerInputs, String username, String password);

The following table shows the properties of the WorkflowTokenAttribute object.

Type Value Description

String name Name of the input or output parameter

String type Type of input or output parameter

String value The value property represents either the
input or output parameter value for this
particular workflow token, in the form of a
string.

If the type is an array of objects, the
value is a string of the following format:

"#{#<type1>#<value1>#;#<type2>#<
value2>#...}#"

If the value property specifies an object
obtained from a plug-in, then the input or
output parameter value is a dunesUri
string that points to the object in question.
The following example shows the format
of the dunesUri.

dunes://service.dunes.ch/CustomS
DKObject?
id='<object_ID>'&dunesName='<plu
g-in_name>:<object_type>'

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 88

Web Service API Operation
Reference 5
The Orchestrator Web service API provides a collection of methods that server as WSDL operations.

Note Every Web service operation, except echo, echoWorkflow, and sendCustomEvent uses the
Orchestrator user name and password to authenticate the session. The operations throw exceptions if
you use the incorrect username or password.

This section includes the following topics:

n answerWorkflowInput Operation

n cancelWorkflow Operation

n echo Operation

n echoWorkflow Operation

n executeWorkflow Operation

n find Operation

n findForId Operation

n findRelation Operation

n getAllPlugins Operation

n getAllWorkflows Operation

n getWorkflowForId Operation

n getWorkflowInputForId Operation

n getWorkflowInputForWorkflowTokenId Operation

n getWorkflowsWithName Operation

n getWorkflowTokenBusinessState Operation

n getWorkflowTokenForId Operation

n getWorkflowTokenResult Operation

n getWorkflowTokenStatus Operation

n hasChildrenInRelation Operation

VMware, Inc. 89

n hasRights Operation

n sendCustomEvent Operation

n simpleExecuteWorkflow Operation

answerWorkflowInput Operation
The answerWorkflowInput operation passes information from a user or an external application to a
workflow while the workflow is running.

If a running workflow reaches a stage that requires an input from a user action or external application, the
WorkflowToken enters the waiting state until it receives the input from answerWorkflowInput. The
answerWorkflowInput operation provides input in the form of an array of WorkflowTokenAttribute
objects.

The answerWorkflowInput operation is declared as the following example shows.

public void answerWorkflowInput(String workflowTokenId, WorkflowTokenAttribute[] answerInputs, String

username, String password);

The Web service performs only a simple validation of the input attributes you provide for running a
workflow. The Web service verifies only that the attributes that you set in the WorkflowTokenAttribute
objects are of the expected type. The Web service does not perform complex validation to verify that you
set all of the WorkflowTokenAttribute objects' properties correctly. The Web service does not access
the parameter properties that the workflow developer set in the workflow Presentation. If one of the
WorkflowTokenAttribute objects' properties is not set, or if an attribute value is not one that the
workflow expects, the Web service sends the answerWorkflowInput request, with the invalid
WorkflowTokenAttribute object. If a WorkflowTokenAttribute object is invalid, the workflow fails,
entering the failed state without informing the Web service application. Your Web service application
can check whether a workflow runs correctly or fails by calling the getWorkflowTokenStatus operation
during and after the workflow runs.

Type Value Description

String workflowTokenId The ID of a running workflow that is
waiting for input from a user interaction or
external application

Array of WorkflowTokenAttribute
objects

answerInputs The result of the user interaction or
external application, passed as input to
the waiting workflow

String username Orchestrator user name

String password Orchestrator password

Return Value
No return value. Throws an exception if you pass it an invalid parameter.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 90

cancelWorkflow Operation
The cancelWorkflow operation cancels a workflow.

The behavior of the cancelWorkflow operation depends on the workflow that it cancels. A canceled
workflow stops running in the Orchestrator server and enters the canceled state, but the actions that it
has already run or started running do not stop or reverse themselves. For example, if a workflow is
performing a Power On Virtual Machine operation when you cancel it, the virtual machine does not stop
powering on, nor does it power itself off if it has already started.

The cancelWorkflow operation is declared as follows.

public void cancelWorkflow(String workflowTokenId, String username, String password);

Type Value Description

String workflowTokenId The identifier of the running workflow to
cancel

String username Orchestrator user name

String password Orchestrator password

Return Value
No return value. The cancelWorkflow operation returns an exception if you pass it an invalid parameter.

echo Operation
The echo operation tests the connection to the Web service by returning a String message.

The echo operation is declared as follows.

public String echo(String echo);

Type Value Description

String echo An arbitrary String. If the Web service
connection is working correctly, it returns
the String.

Return Value
Returns the same String as you provide as an input parameter.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 91

echoWorkflow Operation
The echoWorkflow operation tests the connection to the Web service by checking serialization.

The echoWorkflow operation provides a useful debugging tool if you are connecting to an older Web
service implementation. Calling this operation verifies the connection to the server by checking that the
serialize and deserialize operations work correctly.

The echoWorkflow operation is declared as follows.

public Workflow echoWorkflow(Workflow workflow);

Type Value Description

Workflow workflow The echoWorkflow operation takes a
Workflow object as a parameter. If the
connection and serialization are working
correctly, it returns the same workflow.

Return Value
Returns the same Workflow object as the object provided as an input parameter.

executeWorkflow Operation
The executeWorkflow operation runs a specified workflow.

The executeWorkflow takes an array of WorkflowTokenAttribute objects as input parameters, which
provide the specific attributes with which this particular workflow instance runs.

The executeWorkflow operation is declared as follows.

public WorkflowToken executeWorkflow(String workflowId, String username, String password,

WorkflowTokenAttribute[] attributes);

Type Value Description

String workflowId The identifier of the workflow to run

String username Orchestrator user name

String password Orchestrator password

Array of WorkflowTokenAttribute
instances

workflowInputs Array of input parameters required to run
the workflow

Return Value
Returns a WorkflowToken object. Returns an exception if you pass it an invalid parameter.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 92

find Operation
The find operation finds elements that correspond to a particular query.

The find operation obtains objects of any type by searching for a particular name. The query results are
provided in the form of a QueryResult object, which contains an array of FinderResult objects with a
total counter. The query itself is passed to find as the second parameter, as the following operation
declaration shows.

public QueryResult find(String type, String query, String username, String password);

The plug-in that contains the objects that you are looking for parses the query. The plug-in defines the
query language that the find operation uses. Consequently, the syntax of the query parameter differs
according to the implementation of the plug-in. Most of the officially supported Orchestrator plug-ins do
not store any objects in the inventory, so they do not expose anything that can be searched for.

The following table describes the find operation query parameter syntax and behavior for each of the
supported Orchestrator plug-ins.

Table 5‑1. Query Syntax of the Orchestrator Plug-Ins

Orchestrator Plug-In Query Parameter Syntax Query Behavior

Database, for example Lifecycle Manager String Searches for object names in SQL
database tables. Orchestrator sets the
search string in a SQL WHERE keyword
search. It searches the primary keys, then
the object IDs in the database.

Enumeration Not applicable Stores nothing in the inventory. You can
find enumerations on each data type that
contains enumeration types.

Jakarta common set Not applicable Stores nothing in the inventory.

JDBC Not applicable Stores nothing in the inventory.

Library Not applicable Stores nothing in the inventory.

Mail Not applicable Stores nothing in the inventory.

SSH If you have configured Orchestrator to
use SSH connections, you can make
queries SSH commands.

Stores nothing in the inventory.

vCenter Server String or null Ignores the query string and returns all
objects of the specified type.

XML Not applicable Stores nothing in the inventory.

When you develop plug-ins, you can define a query language to use find to search for named objects
through the custom plug-in. This definition is not mandatory. The syntax of the query parameter is entirely
dependent on the query language that the plug-in implements. To avoid defining a query language, make
find return all objects, as in the case of the VMware Infrastructure plug-ins.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 93

The size of the array of objects that the QueryResult returns depends on the definition of the plug-in
through which you make the query. For the queries you make through the standard Orchestrator plug-ins,
the array contains an unlimited number of FinderResult objects. Developers of third-party plug-ins,
however, can set a limit on the number of results that the query returns. If the value of totalCount
exceeds the number of objects in the array of FinderResult objects, the array does not include all of the
objects found in the queried inventory. The totalCount property does report the total number of
FinderResult objects found. The totalCount property can be negative, which signifies that the plug-in
cannot determine how many corresponding objects are in the plug-in.

Type Value Description

String type Type of object looked for.

String query The query.

The query is a string enclosed in quotation
marks. Any object of the type specified by
the type parameter with a name that
matches the query string is returned in the
QueryResult object.

String username Orchestrator user name.

String password Orchestrator password.

Return Value
Returns the result of the query as a QueryResult object.

If find fails to match an object, QueryResult.getTotalCount returns 0 and QueryResult.getElement
returns null.

If the server does not recognize the object type or plug-in searched for, find throws an exception. The
find operation also returns an exception if you pass it an invalid parameter.

findForId Operation
The findForId operation searches for a specific FinderResult object according to that FinderResult
object's type and id properties.

You can use the findForId operation to acquire information about FinderResult objects you have
already found by using the other find* operations. For example, you can use the findForId method to
obtain the state of a FinderResult object you found by using the find operation.

The findForId operation is declared as the following example shows.

public FinderResult findForId(String type, String id, String username,

String password);

Type Value Description

String type Type of object looked for.

String id ID of the object looked for.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 94

Type Value Description

String username Orchestrator user name.

String password Orchestrator password.

Return Value
Returns a FinderResult object containing details of the object found. Returns null if you pass it an
invalid parameter.

findRelation Operation
The findRelation operation finds all the children elements in an inventory that belong to a particular
parent or type of parent.

Knowing how a child is related to its parent is useful if you develop tree viewers to view the objects in a
library. The findRelation operation is declared as follows.

public FinderResult[] findRelation(String parentType, String parentId,

String relation, String username, String password);

Type Value Description

String parentType The type of parent object.

The parentType property can be the
name of a plug-in, or it can specify a more
narrowly defined parent. For example, you
can specify the parentType as "VC:" to
obtain the objects at the root of VMware
vCenter Server plug-in, or you can a
specific folder, such as "VC:VmFolder".

String parentId The ID of a particular parent object.

The parentId parameter allows you to
find the children of a specific parent
object, if you know its ID.

String relation The name of the relation.

Calling findRelation returns all children
elements under a parent identified by its
parentId. If you omit the parentId the
parentType is not the root type of the
inventory, the findRelation operation
returns null.

See Relation Types for more information.

String username Orchestrator user name.

String password Orchestrator password.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 95

Relation Types
The relation property types are defined by the plug-ins. The validity of relations depends on the parent
type.

This table lists the relation types defined by each of the standard plug-ins provided by Orchestrator.

Table 5‑2. Standard Orchestrator Relation Types

Plug-In Relation Names Relation Types

Enumerations No relations No relations

Jakarta
Commons Net

No relations No relations

JDBC No relations No relations

Library No relations No relations

Mail No relations No relations

Networking n IpAddress

n IPV4Address

n MacAddressPool

n NetworkDomain

n Proxy

n Subnet

n Range

SSH n File

n Folder

n RootFolder

n SshConnection

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 96

Table 5‑2. Standard Orchestrator Relation Types (Continued)

Plug-In Relation Names Relation Types

vCenter Server n getComputeResource_ClusterComputeResource()

n getComputeResource_ComputeResource()

n getDatacenter()

n getDatastore()

n getDatastoreFolder()

n getFolder()

n getFolder()

n getFolder()

n getFolder()

n getFolder()

n getHost()

n getHostFolder()

n getNetwork()

n getNetworkFolder()

n getNetwork_DistributedVirtualPortgroup()

n getNetwork_Network()

n getOwner()

n getParentFolder()

n getPortgroup()

n getRecentTask()

n getResourcePool()

n getResourcePool_ResourcePool()

n getResourcePool_VirtualApp()

n getRootFolder()

n getSdkConnections()

n getVm()

n getVmFolder()

n getVmSnapshot()

n ClusterComputeResource

n ComputeResource

n Datacenter

n Datastore

n DatastoreFolder

n DatacenterFolder

n DatastoreFolder

n HostFolder

n NetworkFolder

n VmFolder

n HostSystem

n HostFolder

n Network

n NetworkFolder

n DistributedVirtualPortgroup

n Network

n ComputeResource

n VmFolder

n DistributedVirtualPortgroup

n Task

n ResourcePool

n ResourcePool

n VirtualApp

n DatacenterFolder

n SdkConnection

n VirtualMachine

n VmFolder

n VirtualMachineSnapshot

XML No relations No relations

The relation property can also reference relation types specified in each plug-in's vso.xml file. The
following example is an excerpt from the networking plug-in vso.xml file.

[...]

<relations>

 <relation name="Subnet" type="Class:Subnet"/>

 <relation name="Range" type="Class:Range"/>

 <relation name="NetworkDomain" type="Class:NetworkDomain"/>

 <relation name="MacAddressPool" type="Class:MacAddressPool"/>

 </relations>

[...]

In addition to the relation types listed in Table 5‑2, Orchestrator also defines the CHILDREN relation, to
represent all relation types.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 97

Return Value
Returns a list of FinderResult objects.

Returns an exception if no children are found or if you pass it an invalid parameter.

getAllPlugins Operation
The getAllPlugins operation returns the description of all the plug-ins installed in Orchestrator.

Many of the actions that you perform using Orchestrator depend on functions that you enable through
plug-ins. Workflows might depend on the existence of certain custom plug-ins, or on standard plug-ins
that the administrator has disabled. Consequently, you can check that the necessary plug-ins are present
before you run a workflow. Without the necessary plug-ins, some object types used by workflows might
be absent.

The getAllPlugins operation lists all the available plug-ins as an array of ModuleInfo objects. The
ModuleInfo objects store the name, version, description, and name for each plug-in. A Web service
application can use these attributes to modify its behavior based on the presence or absence of certain
plugged-in modules or versions.

The getAllPlugins operation is declared as follows.

public ModuleInfo[] getAllPlugins(username, password);

The following table describes the getAllPlugins operation properties.

Type Value Description

String username Orchestrator user name.

String password Orchestrator password.

Return Value
Returns a list of plug-in descriptions as ModuleInfo objects.

getAllWorkflows Operation
The getAllWorkflows operation finds all available workflows.

The getAllWorkflows operation lists all the workflows available in an Orchestrator server as an array of
Workflow objects. The getAllWorkflows operation is also useful for programs that must list information
about workflows, such as the workflows' names, IDs, and so on. The Workflow objects present all the
relevant information about the workflows.

The getAllWorkflows operation is declared as follows.

public Workflow[] getAllWorkflows(String username, String password);

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 98

Type Value Description

String username Orchestrator user name.

String password Orchestrator password.

Return Value
Returns an array of Workflow objects.

getWorkflowForId Operation
The getWorkflowForId operation retrieves a workflow identified by its unique ID.

If you know the ID of a specific workflow, you can use the getWorkflowForID operation to obtain the
workflow object. Multiple workflows running through different plug-ins might have the same name. The
safest way to obtain workflows is to use the getWorkflowsWithName operation to obtain their ID, rather
than by obtaining them by name.

You can find out a workflow ID by checking the workflow's workflowID property, as the following example
shows.

String workflowId = workflows[0].getId();

The getWorkflowForId operation is declared as follows.

public Workflow getWorkflowForId(String workflowId, String username, String password);

Type Value Description

String workflowId ID of the workflow to retrieve.

String username Orchestrator user name.

String password Orchestrator password.

Return Value
Returns the Workflow object that corresponds to the provided ID. Returns null if you pass it an invalid
parameter.

getWorkflowInputForId Operation
The getWorkflowInputForId operation retrieves the answer to a user interaction for an interactionId
object.

The getWorkflowInputForId operation is declared as follows.

public WorkflowInput getWorkflowInputForId(String id, String username, String password);

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 99

Type Value Description

String id ID of the workflow input to retrieve.

String username Orchestrator user name.

String password Orchestrator password.

Return Value
Returns a WorkflowInput object for a specific workflow input that corresponds to the provided workflow
input ID.

getWorkflowInputForWorkflowTokenId Operation
The getWorkflowInputForWorkflowTokenId operation retrieves the answer to a user interaction for a
workflowTokenId object.

The getWorkflowInputForWorkflowTokenId operation is declared as follows.

public WorkflowInput getWorkflowInputForWorkflowTokenId(String workflowTokenId, String username,

String password);

Type Value Description

String workflowTokenId ID of this run of the workflow.

String username Orchestrator user name.

String password Orchestrator password.

Return Value
Returns a WorkflowInput object for a specific workflow token that corresponds to the provided workflow
token ID.

getWorkflowsWithName Operation
The getWorkflowsWithName operation searches for workflows by their name.

The getWorkflowsWithName operation is declared as follows.

public Workflow[] getWorkflowsWithName(String workflowName, String username, String password);

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 100

If you know the name (or a part of the name) of a particular workflow, you can obtain this workflow by
calling getWorkflowsWithName. The getWorkflowsWithName operation returns an array of workflows,
so it can be used to find several workflows at one time.

Important The getWorkflowsWithName operation is a convenient means of obtaining workflows, but
you should not use it in production applications because workflow names can change. Use the
getWorkflowForId operation rather than the getWorkflowsWithName operation in production
applications.

Type Value Description

String workflowName Name of the workflow to find.

The value of the workflowName property
can be a full name or a wildcard (*), which
returns all the workflows available to the
user. You can also search for partial
names. For example, if you enter *Clone
or Clone* as the workflowName, this
returns all workflows with names that
contain the word Clone.

String username Orchestrator user name.

String password Orchestrator password.

Return Value
Returns an array of Workflow objects that correspond to the provided name or name fragment.
Workflows are returned in an array even if only one workflow is found. Returns null if you pass it an invalid
parameter.

getWorkflowTokenBusinessState Operation
The getWorkflowTokenBusinessState operation retrieves the business state of a workflow token for a
workflowTokenId object.

Activities that are part of the workflow's schema can change the current business state of the workflow.

The getWorkflowTokenBusinessState operation is declared as follows.

public WorkflowToken getWorkflowTokenBusinessState(String workflowTokenId, String username, String

password);

Type Value Description

String workflowTokenId ID of this run of the workflow.

String username Orchestrator user name.

String password Orchestrator password.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 101

Return Value
Returns the business state of a WorkflowToken object for a specific workflow token that corresponds to
the provided workflow token ID.

getWorkflowTokenForId Operation
The getWorkflowTokenForId operation finds the WorkflowToken object for a specific workflow token
ID.

The getWorkflowTokenForId operation is declared as follows.

public WorkflowToken getWorkflowTokenForId(String workflowTokenId, String username,

String password);

Individual threads or functions can run multiple workflows. The getWorkflowTokenForId operation
allows a central process or thread to track the progress of each workflow. Using
getWorkflowTokenForId provides access to all the information about a specific WorkflowToken
because, although checking the token status only requires the ID, it is often useful to obtain all the
information about a given token.

Type Value Description

String workflowTokenId ID of this run of the workflow

String username Orchestrator user name.

String password Orchestrator password.

Return Value
Returns a WorkflowToken object for a specific workflow token that corresponds to the provided workflow
token ID.

getWorkflowTokenResult Operation
The getWorkflowTokenResult operation obtains the result of running a given workflow.

You can view the results that a WorkflowToken object produces by calling getWorkflowTokenResult.
The results of running a workflow are delivered as an array of WorkflowTokenAttribute objects that
contain the output parameters that the workflow set during its run. The structure of the output
WorkflowTokenAttribute objects is the same as the structure of the input parameters passed to the
workflow when it starts. The parameters have a name, type, and value.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 102

You can obtain the results before the workflow finishes. If the workflow has set its output parameters, you
can obtain their values by calling getWorkflowTokenResult while the workflow runs. This method allows
the workflow to communicate its results to external systems while it is still in the running state. You can
also use getWorkflowTokenResult to obtain results from workflows in the failed, waiting, and
canceled states, to show the results of the workflow up to the point it entered a nonrunning or incomplete
state.

Objects of the Any type do not deserialize correctly. You cannot call getWorkflowTokenResult on a
workflow token if one of the token's attributes is of the Any type. If you specify the correct object type, for
example, VC:VirtualMachine, getWorkflowTokenResult returns the correct dunesURI value.

If the object that getWorkflowTokenResult obtains is a plain Java object, you can deserialize it by using
the standard Java API, but to do so you must include the relevant Java class in your classpath. For
example, if the object you obtain is of the type VirtualMachineRuntimeInfo, you must include
VirtualMachineRuntimeInfo.class or o11nplugin-vsphere41.jar in the classpath. You find the
o11nplugin-vsphere41.jar file in install-directory\VMware\Orchestrator\app-
server\server\vmo\tmp\dars\o11nplugin-vsphere41.dar\lib.

The getWorkflowTokenResult operation is declared as follows.

public WorkflowTokenAttribute[] getWorkflowTokenResult(String workflowTokenId,

String username, String password);

Type Value Description

String workflowTokenId ID of this specific run of the workflow

String username Orchestrator user name.

String password Orchestrator password.

Return Value
Returns an array of WorkflowTokenAttribute objects that correspond to the provided workflow token ID
or IDs. Returns null if you pass it an invalid parameter.

getWorkflowTokenStatus Operation
The getWorkflowTokenStatus operation obtains the globalStatus of specific workflow tokens.

The getWorkFlowTokenStatus operation checks the status of a workflow or an array of workflows while
they run. The getWorkFlowTokenStatus operation obtains the globalStatus value from running
WorkflowToken objects, identified by their workflowTokenId. The globalStatus value can be one of
the following.

n running: the workflow is running

n waiting: the workflow is waiting for runtime parameters, which can be provided by
answerWorkflowInput

n waiting-signal: the workflow is waiting for an external event

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 103

n canceled: the workflow was canceled by a user or by an application

n completed: the workflow has finished

n failed: the workflow encountered an error

n suspended: the workflow run is paused

The getWorkflowTokenStatus operation is declared as follows.

public String[] getWorkflowTokenStatus(String[] workflowTokenID, String username,

String password);

Type Value Description

Array of strings workflowTokenId List of workflow token IDs.

String username Orchestrator user name.

String password Orchestrator password.

Return Value
Returns a list of workflow token status values. The returned value is a string array of the globalStatus
of each workflow token, ordered by their workflowTokenID values. Returns null if you pass it an invalid
parameter.

hasChildrenInRelation Operation
The hasChildrenInRelation operation checks whether a given relation type has any children.

In some cases, objects are most easily located through their relationships with other objects. You can
obtain all the objects that relate to another object by a given relation by calling the findRelation
operation on that object. The findRelation operation finds only the relatives of a known object. The
hasChildrenInRelation operation checks for the presence of objects that present a given relation
property. hasChildrenInRelation checks for the presence of objects that are children of other objects
and are related to their parents by a given relation type. For example, a snapshot of a virtual machine is a
child of the original virtual machine. Checking for all virtual machines that are children of other virtual
machines enables you to identify all snapshots.

Knowing how a child is related to its parent is useful if you develop tree viewers to view the objects in the
library. The hasChildrenInRelation operation is declared as follows.

public int hasChildrenInRelation(String parentType, String parentId, String relation, String username,

String password);

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 104

Type Value Description

String parentType Type of parent object. You can narrow the
search by specifying the parent type,
which limits the result to children related
by the given relation to parents of a given
parent type.

This value can be null, in which case
hasChildrenInRelation checks for child
objects related by the specified relation
type to all types of parent.

String parentId ID of a particular parent object.

Specifying the parentId allows you to
check for children related by a given
relation to a particular parent. This check
is useful if a particular parent has large
numbers of children that are related to it
by different relation types. The
findRelation operation returns all of that
parent's children, regardless of the relation
type.hasChildrenInRelation checks for
the presence of only the children related
by the desired relation type.

This value can be null if you call
hasChildrenInRelation on the root
object of the hierarchy of objects.

String relation The type of relation by which children are
related to their parents.

Relation types are specified in the
vso.xml file for each plug-in.

String username Orchestrator user name.

String password Orchestrator password.

Return Value
Returns one of the following values:

1 Yes, children of the specified relation type are present

-1 No, children of the specified relation type are not present

0 Unknown, or an input parameter is invalid

Related Information
For more information, see findRelation Operation.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 105

hasRights Operation
The hasRights operation checks whether a user has permissions to view, edit, and run workflows.

To check the rights that you have on a workflow, you must have permission to view that workflow. If you
have only edit or run permission on a workflow, you cannot view what rights you have on this workflow,
and hasRights returns False.

A Web service application can check those rights by calling the hasRights operation. In the following
example, hasRights checks whether the user has the right to read the workflow.

hasRights(workflowId, username, password, 'r')

Type Value Description

String workflowId The ID of the workflow for which you are
checking a user's rights.

String username Orchestrator user name.

String password Orchestrator password.

Int rights n a: The administrator can change the
rights of the object.

n c: The user can edit the workflow.
n I: The user can inspect the workflow

schema and scripting.
n r: The user can view the workflow (but

not the schema or scripting).
n x: The user can run the workflow.

Note User rights are not cumulative. To
perform all possible tasks on a workflow, a
user must have all of the rights.

Return Value
Returns the following values:

n True if the user has the specified rights on the workflow.

n False if the user does not have the specified rights on the workflow.

The hasRights operation returns an "Unable to find workflow" exception if the workflow does not
exist or if the user calling hasRights does not have permission to view the workflow.

sendCustomEvent Operation
The sendCustomEvent operation synchronizes workflows with external events.

public void sendCustomEvent(String eventName, String serializedProperties);

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 106

The sendCustomEvent operation sends messages from Web service clients to workflows that are waiting
for a particular event to occur before they run. The waiting workflows resume their run when they receive
the message from sendCustomEvent.

A custom event that calls sendCustomEvent to send a message when it occurs can be any script,
workflow, or action that Orchestrator can run. For example, a workflow might use sendCustomEvent to
trigger another workflow that reloads all Orchestrator plug-ins when the sending workflow performs a
specific action while it is running.

The messages that sendCustomEvent sends are simple triggers, the format of which is not exposed to
users. The message triggers the waiting workflow to run at the moment that the server receives it.

Important Access to the sendCustomEvent operation is not protected by a username and password
combination. VMware therefore recommends that you only use this function in secure, internal
deployments. For example, do not use this operation in deployments that operate openly across the
Internet.

Type Value Description

String eventName The eventName property is the name of
the event that a workflow is waiting for
before running. The eventName string you
pass to sendCustomEvent must match
the name of an Event object declared in
the script, action or workflow that defines
the custom event.

String serializedProperties The serializedProperties property
defines the parameters to pass to the
waiting workflow as a series of name-
value pairs. The syntax of
serializedProperties is as follows:

"name1=value1\nname2=value2\nnam
e3=value3"

If the workflow requires no input
parameters, the serializedProperties
property can be null or omitted.

Return Value
No return value informs applications that the sendCustomEvent operation ran successfully.

The sendCustomEvent operation returns an exception if you pass it an invalid parameter.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 107

Receiving Messages from sendCustomEvent
Workflows waiting for a message from sendCustomEvent before they run must declare the event they are
waiting for by calling the System.waitCustomEventUntil operation from the Orchestrator API. The
following example shows two calls to waitCustomEventUntil.

System.waitCustomEventUntil("internal", customEventKey, myDate);

System.waitCustomEventUntil("external", customEventKey, myDate);

The waitCustomEventUntil operation's parameters are as follows.

internal / external The awaited event comes from another workflow (internal) or from a Web
service application (external).

customEventKey The name of the awaited event.

myDate The date until which waitCustomEventUntil waits for a message from
sendCustomEvent.

simpleExecuteWorkflow Operation
The simpleExecuteWorkflow operation uses string attributes to start a workflow.

Important This operation is deprecated since Orchestrator 4.0. Do not use simpleExecuteWorkflow.

Type Value Description

String workflowId ID of the Workflow to be run.

String username Orchestrator user name.

String password Orchestrator password.

String attributes The format for the attributes parameter
is a list of attributes separated by
commas. Because commas are used as
separators, attribute name strings
containing commas are not processed
correctly.

Each attribute is represented by its name,
type, and value, as shown in the following
examples.

Name1,Type1,Value1,Name2,Type2,V
alue2

Return Value
Runs a workflow. Returns a WorkflowToken object.

Developing a Web Services Client for VMware vCenter Orchestrator

VMware, Inc. 108

	Developing a Web Services Client for VMware vCenter Orchestrator
	Contents
	Developing Web Services Client for VMware vCenter Orchestrator
	Updated Information
	Developing a Web Services Client
	Using the vCenter Orchestrator REST API
	Authenticating Against Orchestrator and Third-Party Systems
	Using vCenter Single Sign-On Authentication with the Orchestrator REST API
	Get the Solution User Name of Orchestrator

	Using LDAP Authentication with the Orchestrator REST API

	Accessing the Reference Documentation for the Orchestrator REST API
	Using the Java REST SDK
	Operations with Workflows
	Find a Workflow and Retrieve Its Definition
	Run a Workflow
	Run a Workflow After Validating Its Input Parameters Against the Workflow Presentation
	Interacting with a Workflow While It Runs
	Get Workflow Run Objects and Check the Workflow Status
	Answer to a Waiting User Interaction
	Answer to a User Interaction After Validating Input Parameters
	Cancel a Workflow Run

	Retrieve a Workflow's Interactions
	Access a Workflow's Schema

	Working with Tasks
	Create a Task
	Modify a Task
	Check the State of a Task

	Finding Objects in the Orchestrator Inventory
	Find Objects by Type and ID
	Find Objects by Relations
	Apply Filters

	Importing and Exporting Orchestrator Objects
	Import a Workflow
	Export a Workflow
	Import an Action
	Export an Action
	Import a Package
	Export a Package
	Import a Resource
	Export a Resource
	Import a Configuration Element
	Export a Configuration Element

	Deleting Orchestrator Objects
	Delete a Workflow
	Delete an Action
	Delete a Package
	Delete a Resource
	Delete a Configuration Element

	Setting Permissions on Orchestrator Objects
	REST API Permissions
	Retrieve the Permissions of a Workflow
	Delete the Permissions of a Workflow
	Set the Permissions for a Workflow
	Retrieve the Permissions of an Action
	Delete the Permissions of an Action
	Set the Permissions for an Action
	Retrieve the Permissions of a Package
	Delete the Permissions of a Package
	Set the Permissions for a Package
	Retrieve the Permissions of a Resource
	Delete the Permissions of a Resource
	Set the Permissions for a Resource
	Retrieve the Permissions of a Configuration Element
	Delete the Permissions of a Configuration Element
	Set the Permissions for a Configuration Element

	Performing Operations with Plug-Ins
	Retrieve Information About Plug-Ins
	Import a Plug-In
	Export a Plug-In
	Enable or Disable a Plug-In

	Performing Server Configuration Operations
	Retrieve Information About the Orchestrator Server Configuration
	Import Orchestrator Server Configuration
	Export Orchestrator Server Configuration

	Performing Tagging Operations
	Tag an Object
	Untag an Object
	List Object Tags
	List Tagged Objects by Type
	List Tag Owners
	List Tags by Users
	List Tags by Users Filtered by Tag Name
	Remove Tags by Users

	Writing a Client Application for the Orchestrator SOAP Service
	Process for Creating an Orchestrator Web Service Client Application
	Web Service Endpoint
	Generating the Orchestrator Web Service Stubs
	Accessing the Server from Web Service Clients
	Create a Web Service Client
	Connect to the Orchestrator Web Service
	Find Objects in the Orchestrator Server
	Find Objects by Using the find Operation
	Find Objects by Using the findForId Operation
	Find Objects by Using the findRelation Operation
	Find Workflows in the Orchestrator Server
	Find Workflows by Using the getAllWorkflows Operation
	Retrieve the ID of a Workflow
	Find Workflows by Using the getWorkflowsWithName Operation
	Find Workflows by Using the getWorkflowForID Operation
	Run Workflows from a Web Service Client
	Interact with a Workflow While it Runs
	Obtain Workflow Results

	Time Zones and Running Workflows Through Web Services
	Web Service Application Examples

	Web Service API Object Reference
	FinderResult Object
	ModuleInfo Object
	Property Object
	QueryResult Object
	Workflow Object
	WorkflowParameter Object
	WorkflowToken Object
	WorkflowTokenAttribute Object

	Web Service API Operation Reference
	answerWorkflowInput Operation
	cancelWorkflow Operation
	echo Operation
	echoWorkflow Operation
	executeWorkflow Operation
	find Operation
	findForId Operation
	findRelation Operation
	getAllPlugins Operation
	getAllWorkflows Operation
	getWorkflowForId Operation
	getWorkflowInputForId Operation
	getWorkflowInputForWorkflowTokenId Operation
	getWorkflowsWithName Operation
	getWorkflowTokenBusinessState Operation
	getWorkflowTokenForId Operation
	getWorkflowTokenResult Operation
	getWorkflowTokenStatus Operation
	hasChildrenInRelation Operation
	hasRights Operation
	sendCustomEvent Operation
	simpleExecuteWorkflow Operation

