
Developing a Web
Services Client for
VMware vRealize
Orchestrator
vRealize Orchestrator 7.4

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 2

You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

If you have comments about this documentation, submit your feedback to

docfeedback@vmware.com

Copyright © 2008–2018 VMware, Inc. All rights reserved. Copyright and trademark information.

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

https://docs.vmware.com/
mailto:docfeedback@vmware.com
http://pubs.vmware.com/copyright-trademark.html

Contents

Developing a Web Services Client for VMware vRealize Orchestrator 5

1 Developing a Web Services Client 6

2 Using the vRealize Orchestrator REST API 7

Authenticating Against Orchestrator and Third-Party Systems 8

Using vCenter Single Sign-On Authentication with the Orchestrator REST API 8

Accessing the Reference Documentation for the Orchestrator REST API 13

Using the Java REST SDK 13

Operations with Workflows 14

Find a Workflow and Retrieve Its Definition 15

Run a Workflow 18

Run a Workflow After Validating Its Input Parameters Against the Workflow Presentation 20

Interacting with a Workflow While It Runs 23

Retrieve a Workflow's Interactions 30

Access a Workflow's Schema 31

Working with Tasks 31

Create a Task 31

Modify a Task 33

Check the State of a Task 33

Finding Objects in the Orchestrator Inventory 34

Find Objects by Type and ID 34

Find Objects by Relations 36

Apply Filters 37

Importing and Exporting Orchestrator Objects 37

Import a Workflow 37

Export a Workflow 38

Import an Action 38

Export an Action 38

Import a Package 39

Export a Package 40

Import a Resource 41

Export a Resource 41

Import a Configuration Element 42

Export a Configuration Element 42

Deleting Orchestrator Objects 42

Delete a Workflow 42

Delete an Action 43

VMware, Inc. 3

Delete a Package 43

Delete a Resource 44

Delete a Configuration Element 44

Setting Permissions on Orchestrator Objects 45

REST API Permissions 45

Retrieve the Permissions of a Workflow 45

Delete the Permissions of a Workflow 46

Set the Permissions for a Workflow 46

Retrieve the Permissions of an Action 47

Delete the Permissions of an Action 47

Set the Permissions for an Action 47

Retrieve the Permissions of a Package 48

Delete the Permissions of a Package 48

Set the Permissions for a Package 49

Retrieve the Permissions of a Resource 49

Delete the Permissions of a Resource 50

Set the Permissions for a Resource 50

Retrieve the Permissions of a Configuration Element 50

Delete the Permissions of a Configuration Element 51

Set the Permissions for a Configuration Element 51

Performing Operations with Plug-Ins 52

Retrieve Information About Plug-Ins 52

Import a Plug-In 52

Export a Plug-In 53

Enable or Disable a Plug-In 53

Performing Server Configuration Operations 54

Retrieve Information About the Orchestrator Server Configuration 54

Import Orchestrator Server Configuration 54

Export Orchestrator Server Configuration 54

Performing Tagging Operations 55

Tag an Object 55

Untag an Object 56

List Object Tags 56

List Tagged Objects by Type 57

List Tag Owners 57

List Tags by Users 57

List Tags by Users Filtered by Tag Name 58

Remove Tags by Users 58

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 4

Developing a Web Services Client for
VMware vRealize Orchestrator

Developing a Web Services Client for VMware vRealize Orchestrator provides information about
developing a Web services client for VMware® vRealize Orchestrator.

Orchestrator provides a Web services API so that you can develop applications to access and use
workflows through the Web. Orchestrator provides a representational state transfer (REST) API that you
can use to perform various operations over workflows.

Intended Audience
This information is intended for Web application developers who want to access the Orchestrator
processes across a network, through the RESTful Web service.

VMware, Inc. 5

Developing a Web Services
Client 1
VMware vRealize Orchestrator provides Web services APIs so that you can develop applications to
access workflows through the Web. The main purpose of the Orchestrator Web services APIs is to allow
you to integrate Orchestrator workflows in custom Web-based applications.

Orchestrator provides a Web services API that is based on a representational state transfer (REST) API.
The Orchestrator REST API exposes the objects in the Orchestrator inventory and the inventories of the
installed plug-ins as resources that you can access at predefined URLs. HTTP requests at these URLs
result in triggering operations over workflows. The Orchestrator REST API exposes inventory objects as
resources through a set of RESTful Web services that you can use to retrieve the definitions of workflows,
run workflows, check the status of the running workflows, cancel workflow runs, process waiting user
interactions, retrieve the presentation of workflows, and so on.

VMware, Inc. 6

Using the vRealize Orchestrator
REST API 2
The Orchestrator REST API provides functionality that allows you to communicate with the Orchestrator
server directly through HTTP and perform various workflow-related operations over workflows.

The Orchestrator REST API exposes the objects from the inventories of the Orchestrator server and the
installed plug-ins as resources at predefined URLs. You make HTTP calls at these URLs to trigger
operations in Orchestrator. In this way, you can perform various tasks over workflows:

n Run a workflow, schedule a workflow, retrieve the runs of a workflow, answer to a user interaction,
and cancel a workflow run.

n Retrieve details about a workflow such as its input and output parameters and its presentation.

n Retrieve details about a workflow run, such as its state, generated logs, start date, and end date.

n Browse the inventories of Orchestrator and the installed plug-ins.

n Import and export workflows, actions, and packages.

By using the Orchestrator REST API you can easily integrate Orchestrator workflows in custom
applications that you can build in any programing language.

The Orchestrator REST API also provides eTag support as well as a mechanism for caching of response
data.

This chapter includes the following topics:

n Authenticating Against Orchestrator and Third-Party Systems

n Accessing the Reference Documentation for the Orchestrator REST API

n Using the Java REST SDK

n Operations with Workflows

n Working with Tasks

n Finding Objects in the Orchestrator Inventory

n Importing and Exporting Orchestrator Objects

n Deleting Orchestrator Objects

n Setting Permissions on Orchestrator Objects

n Performing Operations with Plug-Ins

VMware, Inc. 7

n Performing Server Configuration Operations

n Performing Tagging Operations

Authenticating Against Orchestrator and Third-Party
Systems
You must authenticate against Orchestrator in the HTTP requests that you make through the Orchestrator
REST API. If you use the Orchestrator REST API to access resources on a third-party system, such as
vCenter Server or vRealize Automation, you must authenticate against that system as well.

For example, to access all workflows in the Orchestrator inventory, you must authenticate against
Orchestrator. However, to run a workflow against vCenter Server, you must authenticate against
Orchestrator and vCenter Server.

Depending on whether you configure Orchestrator with vRealize Automation or vSphere as an
authentication provider, the authentication scheme for the Orchestrator REST API is different. If
Orchestrator uses vCenter Single Sign-On, depending on your configuration, you can authenticate by
using a holder-of-key token issued by the vCenter Single Sign-On server. If Orchestrator is configured
with vRealize Automation, you can authenticate through an OAuth bearer access token.

If you make HTTP requests at the top-level URL of the Orchestrator REST API, you do not need to
authenticate against Orchestrator. The top level URL of the Orchestrator REST API is
https://orchestrator_host:port/vco/api/.

Note The default port number for the external Orchestrator is 8281. The default port number for the
Orchestrator instance that is embedded in vRealize Automation is 443.

A GET request at the top-level URL of the REST API returns URLs to all resources that are accessible
through the API. To make HTTP requests at these URLs, you must authenticate against Orchestrator.

Using vCenter Single Sign-On Authentication with the
Orchestrator REST API
If Orchestrator is configured with the vCenter Single Sign-On Server by using the vSphere Authentication
mode, you need a principal holder-of-key token to access system objects in Orchestrator through the
Orchestrator REST API. To access vCenter Server or third-party systems that use the vCenter Single
Sign-On Server through the Orchestrator server, you need a delegate holder-of-key token for
Orchestrator and your principal token.

If Orchestrator is configured with the vCenter Single Sign-On Server, you must authenticate by using valid
credentials and Orchestrator manages the holder-of-key token.

Accessing System Objects in Orchestrator
You can access system objects in Orchestrator at the URLs of the Inventory and the Catalog services of
the REST API.

n https://orchestrator_host:port/vco/api/inventory/System/

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 8

n https://orchestrator_host:port/vco/api/catalog/System/

When you access system objects in Orchestrator, you pass your principal holder-of-key token in the
Authorization header of HTTP requests that you make to the Inventory or the Catalog service.

For example, to retrieve all system objects of type Workflow, you make a GET request at
https://orchestrator_host:port/vco/api/catalog/System/Workflow/. To authenticate against Orchestrator, you
need to pass your principal holder-of-key token in the Authorization header of the request.

Accessing Objects in Third-Party Systems
To perform operations in third-party systems that are registered with the vCenter Single Sign-On Server
through the Orchestrator REST API, you must authenticate against Orchestrator and the third-party
system. You include two headers in the HTTP calls that you make through the Orchestrator REST API.

n Authorization. You must pass your principal holder-of-key token in this header.

n VCOAuthorization. You must pass a delegate holder-of-key token for Orchestrator in this header.
You must acquire the delegate token for Orchestrator from the vCenter Single Sign-On Server.
Orchestrator uses the delegate token to authenticate against the third-party system on your behalf.

For example, to run a workflow that uses a virtual machine through the Orchestrator REST API, you
access resources both in Orchestrator and in vCenter Server. To authenticate against Orchestrator and
vCenter Server, you must pass your principal holder-of-key token in the Authorization header of the
request that you make, and the delegate token in the VCOAuthorization header. In this way, you
authenticate against Orchestrator with your principal token and Orchestrator authenticates on your behalf
against vCenter Server with the delegate token.

The vCenter Single Sign-On Server treats Orchestrator as a solution, and every solution is registered with
a unique user name with the vCenter Single Sign-On Server. You request a delegate token for
Orchestrator by passing the solution user name of Orchestrator and a principal holder-of-key token to the
vCenter Single Sign-On Server. The token that the vCenter Single Sign-On Server issues is a delegate
holder-of-key token for Orchestrator to authenticate on your behalf against third-party systems.

Example: Obtain a Session in vCenter Single Sign-On Mode
The following example code obtains a session in vCenter Single Sign-On mode.

URI uri = URI.create("https://orchestrator-server:8281/vco/api");

VcoSessionFactory sessionFactory = new DefaultVcoSessionFactory(uri);

//provide the address of the vCenter Single Sign-On server

URI ssoUri = URI.create("https://sso-server:7444/ims/STSService?wsdl");

//set the tokens to be valid for an hour

long lifeTimeSeconds = 60 * 60;

//create a factory for vCenter Single Sign-On tokens

SsoAuthenticator sso = new SsoAuthenticator(URI ssoUri, URI adminUri, VcoSessionFactory

vcoSessionFactory, long lifeTimeSeconds);

//provide vCenter Single Sign-On credentials

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 9

SsoAuthentication authentication = sso.createSsoAuthentication("username", "password");

VcoSession session = sessionFactory.newSession(authentication);

//use session here

Get the Solution User Name of Orchestrator
The vCenter Single Sign-On Server treats Orchestrator as a solution, and every solution is registered with
a unique user name with the vCenter Single Sign-On Server. To be able to request a delegate holder-of-
key token for Orchestrator from the vCenter Single Sign-On Server, you need the solution user name of
Orchestrator.

Prerequisites

Verify that you have a valid principal holder-of-key token that the vCenter Single Sign-On Server issued.

Procedure

1 Make a GET request at the URL of the solution user name of Orchestrator:

GET https://{orchestrator_host}:{port}/vco/api/users/

2 Provide your principal holder-of-key token in the Authorization header of the request.

The <user solution-user=" OrchestratorSolutionUserName"/> element of the response contains
the solution user name of Orchestrator. The following is an example of a solution user name of
Orchestrator.

<user xmlns="http://www.vmware.com/vco" admin-rights="true" solution-

user="vCO-15d98795afa5b0d6f47ee3aeab3">

What to do next

Use the solution user name of Orchestrator and your principal holder-of-key token to request a delegate
holder-of-key token from the vCenter Single Sign-On Server.

Using vRealize Orchestrator REST API SDK with Configured vRealize
Automation Authentication
You can use REST API SDK with a configured vRA authentication in a multi-tenant or a single-tenant
environment.

To obtain an authentication token (Oauth2.0) required for the code below, see the vRO REST API
authorization using Oauth2.0 Authentication (2148518) KB article.

Note Obtain a Session in vRealize Automation Authentication Mode

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 10

https://kb.vmware.com/s/article/2148518
https://kb.vmware.com/s/article/2148518

The following example code obtains a session in vRealize Automation Authentication mode in both a
single tenant and a multi-tenant environment.

n If multi-tenancy is not enabled:

URI uri = URI.create("https://orchestrator-server:8283/vco/api");

VcoSessionFactory sessionFactory = new DefaultVcoSessionFactory(uri);

String token =

"eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJqdGkiOiJjNzg4NWNiYS1hZTFmLTRiM2UtYmYyYi04ZmRmNzY3N"

+

"GZiZWEiLCJwcm4iOiJhZG1pbmlzdHJhdG9yQFZTUEhFUkUuTE9DQUwiLCJkb21haW4iOiJ2c3BoZXJlLmxvY2FsIiwidXNlcl9

pZCI6Ij"

+

"MiLCJhdXRoX3RpbWUiOjE1MDIyMDIxMTAsImlzcyI6Imh0dHBzOi8vc2YtMjktMTAtMjkuc29mLW1idS5lbmcudm13YXJlLmN"

+

"vbS9TQUFTL3QvdnNwaGVyZS5sb2NhbC9hdXRoIiwiYXVkIjoiaHR0cHM6Ly9zZi0yOS0xMC0yOS5zb2YtbWJ1LmVuZy52bXdhc

mUuY29tL"

+

"1NBQVMvdC92c3BoZXJlLmxvY2FsL2F1dGgvb2F1dGh0b2tlbiIsImN0eCI6Ilt7XCJtdGRcIjpcInVybjpvYXNpczpuYW1lczp

"

+

"0YzpTQU1MOjIuMDphYzpjbGFzc2VzOlBhc3N3b3JkUHJvdGVjdGVkVHJhbnNwb3J0XCIsXCJpYXRcIjoxNTAyMjAyMTEwLFwia

WRcIjoxM"

+

"n1dIiwic2NwIjoidXNlciIsImlkcCI6IjAiLCJlbWwiOiJhZG1pbmlzdHJhdG9yQHNmLTI5LTEwLTI5LnNvZi1tYnUuZW5nLnZ

"

+

"td2FyZS5jb20iLCJjaWQiOiJjYWZlX2NsaS1yRlJlNEx6bURnIiwiZGlkIjoiIiwid2lkIjoiIiwiZXhwIjoxNTAyMjMwOTEwL

CJpYXQiOj"

+

"E1MDIyMDIxMTAsInN1YiI6IjQ1ZjQwNWUzLTNlNTgtNGJmZC1hNzMwLTQ1MjU4OWIxOGUxNyIsInBybl90eXBlIjoiVVNFUiJ9

."

+ "G9gEQPtmEH5jYab-

IlTK8NFYcwc3JZCEEjsmpUSH6oxLmZKEf-1JbsysBVH4ufqmGah3GMvmy6PUiTTamLRLFkCLwa50OQCQ-qgKutZl21R"

+ "m740qBKLhmBB0NQg19ysMAVJNSxapFzirmWurF_5CKpv4WM7Y8H_bY9iNmDKQTXI";

//provide OAuth2 token obtained in step 1 here

Authentication auth = new OAuthTokenAuthentication(token);

VcoSession session = sessionFactory.newSession(auth);

//Use the session here

n If multi-tenancy is enabled:

n For users from regular tenants:

URI uri = URI.create("https://orchestrator-server:8283/vco/api");

VcoSessionFactory sessionFactory = new DefaultVcoSessionFactory(uri);

String token =

"eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJqdGkiOiJjNzg4NWNiYS1hZTFmLTRiM2UtYmYyYi04ZmRmNzY3N"

+

"GZiZWEiLCJwcm4iOiJhZG1pbmlzdHJhdG9yQFZTUEhFUkUuTE9DQUwiLCJkb21haW4iOiJ2c3BoZXJlLmxvY2FsIiwidXN

lcl9pZCI6Ij"

+

"MiLCJhdXRoX3RpbWUiOjE1MDIyMDIxMTAsImlzcyI6Imh0dHBzOi8vc2YtMjktMTAtMjkuc29mLW1idS5lbmcudm13YXJl

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 11

LmN"

+

"vbS9TQUFTL3QvdnNwaGVyZS5sb2NhbC9hdXRoIiwiYXVkIjoiaHR0cHM6Ly9zZi0yOS0xMC0yOS5zb2YtbWJ1LmVuZy52b

XdhcmUuY29tL"

+

"1NBQVMvdC92c3BoZXJlLmxvY2FsL2F1dGgvb2F1dGh0b2tlbiIsImN0eCI6Ilt7XCJtdGRcIjpcInVybjpvYXNpczpuYW1

lczp"

+

"0YzpTQU1MOjIuMDphYzpjbGFzc2VzOlBhc3N3b3JkUHJvdGVjdGVkVHJhbnNwb3J0XCIsXCJpYXRcIjoxNTAyMjAyMTEwL

FwiaWRcIjoxM"

+

"n1dIiwic2NwIjoidXNlciIsImlkcCI6IjAiLCJlbWwiOiJhZG1pbmlzdHJhdG9yQHNmLTI5LTEwLTI5LnNvZi1tYnUuZW5

nLnZ"

+

"td2FyZS5jb20iLCJjaWQiOiJjYWZlX2NsaS1yRlJlNEx6bURnIiwiZGlkIjoiIiwid2lkIjoiIiwiZXhwIjoxNTAyMjMwO

TEwLCJpYXQiOj"

+

"E1MDIyMDIxMTAsInN1YiI6IjQ1ZjQwNWUzLTNlNTgtNGJmZC1hNzMwLTQ1MjU4OWIxOGUxNyIsInBybl90eXBlIjoiVVNF

UiJ9."

+ "G9gEQPtmEH5jYab-

IlTK8NFYcwc3JZCEEjsmpUSH6oxLmZKEf-1JbsysBVH4ufqmGah3GMvmy6PUiTTamLRLFkCLwa50OQCQ-qgKutZl21R"

+ "m740qBKLhmBB0NQg19ysMAVJNSxapFzirmWurF_5CKpv4WM7Y8H_bY9iNmDKQTXI";

//provide OAuth2 token obtained in step 1 here

Authentication auth = new OAuthTokenAuthentication(token);

VcoSession session = sessionFactory.newSession(auth);

//The operations will be executed in the scope of the tenant authenticated with the token

above.

//Use the session below

n For solution users:

Solution users can work in their own tenant scope and in the scope of regular tenants. They can
override the scope of the operations they perform.

URI uri = URI.create("https://orchestrator-server:8283/vco/api");

VcoSessionFactory sessionFactory = new DefaultVcoSessionFactory(uri);

exapmle

String token =

"eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJqdGkiOiJjNzg4NWNiYS1hZTFmLTRiM2UtYmYyYi04ZmRmNzY3N"

+

"GZiZWEiLCJwcm4iOiJhZG1pbmlzdHJhdG9yQFZTUEhFUkUuTE9DQUwiLCJkb21haW4iOiJ2c3BoZXJlLmxvY2FsIiwidXN

lcl9pZCI6Ij"

+

"MiLCJhdXRoX3RpbWUiOjE1MDIyMDIxMTAsImlzcyI6Imh0dHBzOi8vc2YtMjktMTAtMjkuc29mLW1idS5lbmcudm13YXJl

LmN"

+

"vbS9TQUFTL3QvdnNwaGVyZS5sb2NhbC9hdXRoIiwiYXVkIjoiaHR0cHM6Ly9zZi0yOS0xMC0yOS5zb2YtbWJ1LmVuZy52b

XdhcmUuY29tL"

+

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 12

"1NBQVMvdC92c3BoZXJlLmxvY2FsL2F1dGgvb2F1dGh0b2tlbiIsImN0eCI6Ilt7XCJtdGRcIjpcInVybjpvYXNpczpuYW1

lczp"

+

"0YzpTQU1MOjIuMDphYzpjbGFzc2VzOlBhc3N3b3JkUHJvdGVjdGVkVHJhbnNwb3J0XCIsXCJpYXRcIjoxNTAyMjAyMTEwL

FwiaWRcIjoxM"

+

"n1dIiwic2NwIjoidXNlciIsImlkcCI6IjAiLCJlbWwiOiJhZG1pbmlzdHJhdG9yQHNmLTI5LTEwLTI5LnNvZi1tYnUuZW5

nLnZ"

+

"td2FyZS5jb20iLCJjaWQiOiJjYWZlX2NsaS1yRlJlNEx6bURnIiwiZGlkIjoiIiwid2lkIjoiIiwiZXhwIjoxNTAyMjMwO

TEwLCJpYXQiOj"

+

"E1MDIyMDIxMTAsInN1YiI6IjQ1ZjQwNWUzLTNlNTgtNGJmZC1hNzMwLTQ1MjU4OWIxOGUxNyIsInBybl90eXBlIjoiVVNF

UiJ9."

+ "G9gEQPtmEH5jYab-

IlTK8NFYcwc3JZCEEjsmpUSH6oxLmZKEf-1JbsysBVH4ufqmGah3GMvmy6PUiTTamLRLFkCLwa50OQCQ-qgKutZl21R"

+ "m740qBKLhmBB0NQg19ysMAVJNSxapFzirmWurF_5CKpv4WM7Y8H_bY9iNmDKQTXI";

//provide OAuth2 token obtained in step 1 here

Authentication auth = new OAuthTokenAuthentication(token);

// By default each tenant works in its tenant scope. However, solution users can overrde the

tenant in which they performa a given operation:

// Here, users of SDK should provide a value that is meanningful to their context.

String overrideWithTenant = "nonSolutionUserTenant";

VcoSession session = sessionFactory.newSession(auth, overrideWithTenant);

//Use session below

Accessing the Reference Documentation for the
Orchestrator REST API
The reference documentation for the Orchestrator REST API contains information about the RESTful
Web services of the API, the data model that is applicable for the API, the response codes that are valid
for the API, code examples, and so on.

The reference documentation of the Orchestrator REST API is installed together with Orchestrator. The
reference documentation is available at https://orchestrator_host:port/vco/api/docs/.

The official Swagger specification is available at https://swagger.io/specification/.

Using the Java REST SDK
You can use a Java SDK library to call operations on the Orchestrator REST API in Java applications and
work directly with objects.

Every RESTful Web service of the Orchestrator REST SDK has a wrapping Java class with methods that
correspond to the operations that can be run by using the service.

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 13

https://swagger.io/specification/

The Java REST SDK is installed together with Orchestrator. The Java REST SDK artifacts are available
at the following locations.

Note You can only access the artifacts if you have deployed the Orchestrator Appliance.

n https://orchestrator_host:port/vco-repo/com/vmware/o11n/o11n-rest-client/

n https://orchestrator_host:port/vco-repo/com/vmware/o11n/o11n-rest-client-examples/

n https://orchestrator_host:port/vco-repo/com/vmware/o11n/o11n-rest-client-services/

n https://orchestrator_host:port/vco-repo/com/vmware/o11n/o11n-rest-client-stubs/

Example: Run a Workflow and Wait for Its Completion
The following example code runs a workflow and waits for it to complete.

//start a new session to Orchestrator by using specified credentials

VcoSession session = DefaultVcoSessionFactory.newLdapSession(new URI("https://orchestrator-server:

8281/vco/api/"), "username", "password");

//create the services

WorkflowService workflowService = new WorkflowService(session);

ExecutionService executionService = new ExecutionService(session);

//find a workflow by ID

Workflow workflow = workflowService.getWorkflow("1231235");

//create an ExecutionContext from the user's input

ExecutionContext context = new ExecutionContextBuilder().addParam("name", "Jerry").addParam("age",

18).build();

//run the workflow

WorkflowExecution execution = executionService.execute(workflow, context);

//wait for the workflow to reach the user interaction state, checking every 500 milliseconds

execution = executionService.awaitState(execution, 500, 10, WorkflowExecutionState.CANCELED,

WorkflowExecutionState.FAILED, WorkflowExecutionState.COMPLETED);

String nameParamValue = new ParameterExtractor().fromTheOutputOf(execution).extractString("name");

System.out.println("workflow was executed with 'name' input set to" + nameParamValue);

Operations with Workflows
The Orchestrator REST API provides Web services that you can use to perform various operations with
workflows.

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 14

Find a Workflow and Retrieve Its Definition
To be able to perform any kind of operation with a workflow, you must find that workflow in the
Orchestrator inventory and retrieve its definition. The definition lists the workflow input and output
parameters, and contains links to the available workflow runs, the workflow presentation, and other
objects.

Prerequisites

Verify that you have imported the sample workflows package in Orchestrator. The package is included in
the Orchestrator sample applications ZIP file that you can download from the Orchestrator documentation
page.

Procedure

1 Find the inventory item of the workflow.

n If you have the full name of the workflow or a key word from the name, make a GET request at the
URL of the Workflow service by applying a filter:

GET https://{orchestrator_host}:{port}/vco/api/workflows?conditions=name={workflowFullName}

GET https://{orchestrator_host}:{port}/vco/api/workflows?conditions=name~{keyWord}

n Search for the workflow through the Catalog or the Inventory service by making a GET request at
the URL that is an entry point for the workflow inventory items:

GET https://{orchestrator_host}:{port}/vco/api/catalog/System/Workflow/

GET https://{orchestrator_host}:{port}/vco/api/inventory/System/Workflows/

2 Retrieve the inventory item of the workflow by making a GET request at its URL:

GET https://{orchestrator_host}:{port}/vco/api/catalog/System/Workflow/{workflowID}/

3 Retrieve the definition of the workflow by making a GET request at the URL of the definition:

GET https://{orchestrator_host}:{port}/vco/api/workflows/{workflowID}/

Example: Search for the Send Hello Workflow
You can find the Send Hello workflow and retrieve its definition:

1 To find the Send Hello workflow, make a GET request at the URL of the Workflow service by applying
a filter:

GET https://localhost:8281/vco/api/workflows?conditions=name~Hello

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 15

You receive a list of the workflows that contain Hello in their names:

<xml version="1.0" encoding="UTF-8" standalone="yes">

<inventory-items xmlns="http://www.vmware.com/vco" total="2">

 <link rel="down"

 href="https://localhost:

8281/vco/api/catalog/System/Workflow/CF808080808080808080808080808080E6808080013086668236014a0614d1

6e1/">

 <attributes>

 <attribute name="id"

value="CF808080808080808080808080808080E6808080013086668236014a0614d16e1"/>

 <attribute name="canExecute" value="true" />

 <attribute name="description" value="" />

 <attribute name="name" value="Interactive Hello World" />

 <attribute name="type" value="Workflow"/>

 <attribute name="canEdit" value="true"/>

 </attributes>

 </link>

 <link rel="down"

 href="https://localhost:

8281/vco/api/catalog/System/Workflow/CF808080808080808080808080808080DA808080013086668236014a0614d1

6e1/">

 <attributes>

 <attribute name="id"

value="CF808080808080808080808080808080DA808080013086668236014a0614d16e1"/>

 <attribute name="canExecute" value="true" />

 <attribute name="description" value="" />

 <attribute name="name" value="Send Hello" />

 <attribute name="type" value="Workflow"/>

 <attribute name="canEdit" value="true"/>

 </attributes>

 </link>

</inventory-items>

2 Make a GET request at the URL of the inventory item of the Send Hello workflow:

GET https://localhost:

8281/vco/api/catalog/System/Workflow/CF808080808080808080808080808080DA808080013086668236014a0614d1

6e1/

You receive the inventory item of the Send Hello workflow in the response body:

<xml version="1.0" encoding="UTF-8" standalone="yes">

<inventory-item xmlns="http://www.vmware.com/vco"

 href="https://localhost:

8281/vco/api/catalog/System/Workflow/CF808080808080808080808080808080DA808080013086668236014a0614d1

6e1/">

 <relations>

 <link rel="down"

 href="https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/" />

 </relations>

 <attributes>

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 16

 <attribute name="id"

value="CF808080808080808080808080808080DA808080013086668236014a0614d16e1"/>

 <attribute name="canExecute" value="true" />

 <attribute name="description" value="" />

 <attribute name="name" value="Send Hello" />

 <attribute name="type" value="Workflow"/>

 <attribute name="canEdit" value="true"/>

 </attributes>

</inventory-item>

3 To retrieve the workflow's definition make a GET request at its URL:

GET https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/

You receive the definition of the Send Hello workflow in the response body:

<xml version="1.0" encoding="UTF-8" standalone="yes">

<workflow xmlns="http://www.vmware.com/vco" customized-icon="false"

 href="https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/">

 <relations>

 <link rel="up"

 href="https://localhost:8281/vco/api/inventory/System/Workflows/Samples/HelloWorld/" />

 <link rel="add"

 href="https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/execution

s/" />

 <link rel="down"

 href="https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/execution

s/" />

 <link rel="down"

 href="https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/presentati

on/" />

 <link rel="down"

 href="https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/tasks/" />

 <link rel="down"

 href="https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/icon/" />

 </relations>

 <input-parameters>

 <parameter name="name" type="string" />

 </input-parameters>

 <output-parameters>

 <parameter name="message" type="string" />

 </output-parameters>

 <name>Send Hello</name>

 <description></description>

</workflow>

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 17

Run a Workflow
You run a workflow through the Orchestrator REST API by creating a new execution object for a particular
workflow.

Prerequisites

Verify that you have imported the sample workflows package in Orchestrator. The package is included in
the Orchestrator sample applications ZIP file that you can download from the Orchestrator documentation
page.

Procedure

1 Retrieve the definition of the workflow that you want to run by making a GET request at the URL of the
definition:

GET http://{orchestrator_host}:{port}/vco/api/workflows/{workflowID}/

You receive the definition of the workflow in the response body of the request. In the workflow
definition, you can view the input parameters of the workflow, the workflow description, and other
information.

2 Make a POST request at the URL that holds the execution objects of the workflow:

POST https://{orchestrator_host}:{port}/vco/api/workflows/{workflowID}/executions/

3 Provide values for the input parameters of the workflow in an execution-context element in the
request body.

If you provide an empty execution-context in the request body, the workflow runs with default
values for its input parameters, if any.

If the POST request is successful, you receive the status code 202 with an empty response body and a
link to the newly created execution object in the Location header.

Example: Run the Send Hello Workflow
You can retrieve the definition of the Send Hello workflow and run it.

1 Make a GET request at the URL that holds the definition of the Send Hello workflow:

GET https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 18

You receive the workflow definition in the response body of the request:

<xml version="1.0" encoding="UTF-8" standalone="yes">

<workflow xmlns="http://www.vmware.com/vco" customized-icon="false"

 href="https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/">

 <relations>

 <link rel="up"

 href="https://localhost:8281/vco/api/inventory/System/Workflows/Samples/HelloWorld/" />

 <link rel="add"

 href="https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/execution

s/" />

 <link rel="down"

 href="https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/execution

s/" />

 <link rel="down"

 href="https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/presentati

on/" />

 <link rel="down"

 href="https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/tasks/" />

 <link rel="down"

 href="https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/icon/" />

 </relations>

 <input-parameters>

 <parameter name="name" type="string" />

 </input-parameters>

 <output-parameters>

 <parameter name="message" type="string" />

 </output-parameters>

 <name>Send Hello</name>

 <description></description>

</workflow>

2 Make a POST request at the URL that holds the execution objects for the workflow:

POST https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/execution

s/

Pass values for the input parameters in an execution-context element in the request body:

<execution-context xmlns="http://www.vmware.com/vco">

 <parameters>

 <parameter name="name" type="string">

 <string>John Smith</string>

 </parameter>

 </parameters>

</execution-context>

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 19

Run a Workflow After Validating Its Input Parameters Against the
Workflow Presentation
The presentation of a workflow can define constraints for the values that you can pass to the input
parameters of the workflow, such as a predefined list of values or a certain range of values. To ensure
that the workflow runs successfully, you must validate the values that you pass to the input parameters of
the workflow against the definition of the workflow presentation.

When you integrate workflows in custom applications, you might need to create a wizard where you enter
values for the input parameters of the workflow when you run it. By using the Workflow Presentation
service, you can instantiate the presentation of a workflow and pass values for its input parameters in
parts that correspond to the different screens of the wizard. You can validate the values that you pass to
the input parameters against the constraints that are defined in the workflow presentation.

Prerequisites

Verify that you have imported the sample workflows package in Orchestrator. The package is included in
the Orchestrator sample applications ZIP file that you can download from the Orchestrator documentation
page.

Procedure

1 Retrieve the definition of the workflow that you want to run by making a GET request at the URL that
contains the workflow definition:

GET https://{orchestrator_host}:{port}/vco/api/workflows/{workflowID}/

You receive the definition of the workflow in the response body of the request. In the workflow
definition, you can view the input parameters of the workflow, the workflow description and other
information.

2 Retrieve the definition of the workflow presentation by making a GET request at its URL:

GET https://{orchestrator_host}:{port}/vco/api/workflows/{workflowID}/presentation/

3 In the response body of the request, examine the definition of the workflow presentation for any
constraints of the values that you can pass to the input parameters.

For example, an input parameter can have a predefined list of values to choose from.

4 Instantiate the workflow presentation by making a POST request at the URL of the presentation
instances:

POST https://{orchestrator_host}:{port}/vco/api/workflows/{workflowID}/presentation/instances/

5 Provide an execution-context element in the request body to instantiate the presentation.

You can pass an empty execution-context or pass an execution-context with values only for
some of the input parameters.

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 20

6 To pass values to the input parameters in parts, make as many POST or PUT requests as needed at
the URL that holds the presentation instance:

PUT https://{orchestrator_host}:

{port}/vco/api/workflows/{workflowID}/presentation/instances/{executionID}/

7 Review the response body of the POST or PUT request that you made.

If the values that you passed to the input parameters are valid, you find a valid="true" attribute in
the execution tag. If the presentation is valid, you can take the values that are listed in the out-
parameters element of the response, and pass them as values to the input parameters when you
run the workflow.

8 If the values for the input parameters are valid, run the workflow by making a POST request at the
URL that holds the workflow executions:

POST https://{orchestrator_host}:{port}/vco/api/workflows/{workflowID}/executions/

9 Provide the valid values to the input parameters of the workflow in an execution-context element.

Example: Run the Send Hello Workflow by Validating Its Input Parameters
You can run the Send Hello workflow by validating its input parameters against the definitions of its
presentation.

1 Make a GET request at the URL that holds the definition of the Send Hello workflow:

GET https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/

You receive the workflow definition in the response body of the request:

<xml version="1.0" encoding="UTF-8" standalone="yes">

<workflow xmlns="http://www.vmware.com/vco" customized-icon="false"

 href="https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/">

 <relations>

 <link rel="up"

 href="https://localhost:8281/vco/api/inventory/System/Workflows/Samples/HelloWorld/" />

 <link rel="add"

 href="https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/execution

s/" />

 <link rel="down"

 href="https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/execution

s/" />

 <link rel="down"

 href="https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/presentati

on/" />

 <link rel="down"

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 21

 href="https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/tasks/" />

 <link rel="down"

 href="https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/icon/" />

 </relations>

 <input-parameters>

 <parameter name="name" type="string" />

 </input-parameters>

 <output-parameters>

 <parameter name="message" type="string" />

 </output-parameters>

 <name>Send Hello</name>

 <description></description>

</workflow>

2 Make a GET request at the URL that holds the definition of the workflow presentation:

GET https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/presentati

on/

3 Make a POST request at the URL that holds the execution instances of the workflow presentation:

POST https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/presentati

on/instances/

Provide an empty execution-context so that just to instantiate the presentation without providing
any values for the input parameters:

<execution-context xmlns="http://www.vmware.com/vco"/>

The response body contains error messages attached to every field, indicating that the values for the
input parameters are invalid.

.......

<fields>

 <field type="string" hidden="false" id="name">

 <display-name>name</display-name>

 <description>name</description>

 <messages>

 <message severity="ERROR" code="VCO-CNS0002">

 <Summary>

 The minimum number of characters allowed for this field is 3.0

 </Summary>

 </message>

 </messages>

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 22

 <constraints>

 <number-range max="15.0" min="3.0" />

 </constraints>

.......

4 Make a POST request at the URL that holds the particular presentation instance:

POST https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/presentati

on/instances/888080808080808080808080808080803F8080800132145338690643f66a027ec/

In the request body, provide values for the input parameters:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

 <execution-context xmlns="http://www.vmware.com/vco">

 <parameters>

 <parameter name="name" type="string">

 <string>John Smith</string>

 </parameter>

 </parameters>

</execution-context>

In the response body of the request, you can check whether the values of the input parameters are
valid:

<execution started-by="vcoadmin" valid="true".....>

5 If the presentation is valid, run the workflow by making a POST request at the URL that holds the
workflow executions:

POST https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/execution

s/

In the request body, pass values to the input parameters of the workflow. Use the same values that
are returned as output parameters of the workflow presentation, or directly use the request body of
the last POST request that you made to the workflow presentation.

Interacting with a Workflow While It Runs
The Orchestrator REST API allows you to perform various operations with a workflow during its run. You
can get the status of a running workflow, answer to a waiting user interaction, and cancel a workflow run.

Get Workflow Run Objects and Check the Workflow Status
You can get information about the runs of a workflow, such as the start and end dates, the state of the
run, and the values for the input parameters. You can also get logs that are generated for a workflow run.

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 23

Prerequisites

Verify that you have imported the sample workflows package in Orchestrator. The package is included in
the Orchestrator sample applications ZIP file that you can download from the Orchestrator documentation
page.

Procedure

1 Retrieve the definition of the workflow whose status you want to check by making a GET request at
the URL of the workflow:

GET https://{orchestrator_host}:{port}/vco/api/workflows/{workflowID}/

You receive the definition of the workflow in the response body of the request. The workflow definition
contains a link to the execution instances of the workflow.

2 Retrieve the available execution instances of the workflow by making a GET request at their URL:

GET https://{orchestrator_host}:{port}/vco/api/workflows/{workflowID}/executions/

The response body of the request lists the available execution instances of the workflow where you
can view the start and end dates of every workflow run as well their status and initiator.

3 (Optional) To get more details about a particular run of the workflow, make a GET request at the URL
of that run:

GET https://{orchestrator_host}:{port}/vco/api/workflows/{workflowID}/executions/{executionID}/

In the response body of the request, you receive the XML representation of the particular workflow
run. You can check the values of the input parameters that are passed for this run, the user who
initiated the run, the start and end dates, as well as the state of the run.

4 (Optional) To retrieve the logs that are generated for the workflow run, make a GET request at the
URL that holds the logs:

GET https://{orchestrator_host}:

{port}/vco/api/workflows/{workflowID}/executions/{executionID}/logs/

5 (Optional) To retrieve additional information about the state of the run, make a GET request at the URL
that holds the state of the workflow:

GET https://{orchestrator_host}:

{port}/vco/api/workflows/{workflowID}/executions/{executionID}/state/

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 24

Example: Get the Runs of the Send Hello Workflow and Check the State of a Particular Run

If you have run the Send Hello workflow, you can get the available execution objects and check details
about them.

1 Get the definition of the Send Hello workflow by making a GET request at the URL that holds the
definition:

GET https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/

2 Get the available runs of the workflow by making a GET request at the URL that holds the execution
objects for the workflow:

GET https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/execution

s/

3 From the response body of the request, select a workflow run and make a GET request to retrieve it:

GET https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/execution

s/888080808080808080808080808080803A8080800132145338690643f66a027ec/

The response body contains the XML representation of the workflow run with the specified ID, where
you can check details about that run:

.......

<input-parameters>

 <parameter name="name" type="string">

 <string>John Smith</string>

 </parameter>

</input-parameters>

<output-parameters>

 <parameter name="message" type="string">

 <string>Hello, John Smith!</string>

 </parameter>

</output-parameters>

<start-date>2012-01-31T14:28:40.223+03:00</start-date>

<end-date>2012-01-31T14:28:40.410+03:00</end-date>

<started-by>vcoadmin</started-by>

<name>Send Hello</name>

......

Answer to a Waiting User Interaction
You can answer to a waiting user interaction of a workflow run by using the Orchestrator REST API.

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 25

Prerequisites

Verify that you have imported the sample workflows package in Orchestrator. The package is included in
the Orchestrator sample applications ZIP file that you can download from the Orchestrator documentation
page.

Procedure

1 Retrieve the list of all user interaction objects by making a GET request at the URL that holds the
available user interaction objects, or by filtering only the waiting user interactions:

URL Description

https://orchestrator_host:port/vco/api/c
atalog/System/UserInteraction

Holds the available user interaction objects in Orchestrator

https://orchestrator_host:port/vco/api/c
atalog/System/UserInteraction?
status=0

Filters only the waiting user interaction objects.

You receive a list of the available user interaction objects. User interactions that are waiting have an
attribute with name state and value waiting.

2 Make a GET request at the URL that holds the inventory item of the waiting user interaction to which
you want to answer:

GET https://{orchestrator_host}:{port}/vco/api/catalog/System/UserInteraction/{userInteractionID}/

The inventory item contains a link to the user interaction instance.The user interaction instance is
associated with a particular workflow run.

3 Make a POST request at the URL of the user interaction instance for the particular workflow execution:

POST https://{orchestrator_host}:

{port}/vco/api/workflows/{workflowID}/executions/{executionID}/interaction/

4 Provide values for the input parameters of the user interaction in an execution-context element in
the request body.

The REST API returns a 204 status when you answer to a user interaction successfully.

Example: Answer to the User Interaction of the Interactive Hello World Workflow

You can run the Interactive Hello World sample workflow and answer to its user interaction.

1 Search for the waiting user interaction of the workflow by making GET request at the endpoint for the
user interaction objects of the Catalog service:

GET https://localhost:8281/vco/api/catalog/System/UserInteraction?status=0

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 26

2 Locate the user interaction inventory object for the Interactive Hello World workflow and make a GET
request at its URL:

GET https://localhost:

8281/vco/api/catalog/System/UserInteraction/888080808080808080808080808080805A808080013214533869064

3f66a027ec/

3 Make a POST request at the URL of the user interation objects for the currently running workflow
execution:

POST https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080E6808080013086668236014a0614d16e1/execution

s/88808080808080808080808080808080578080800132145338690643f66a027ec/interaction/

Provide a value for the input parameter in the request body:

<execution-context xmlns="http://www.vmware.com/vco">

 <parameters>

 <parameter name="name" type="string">

 <string>John Smith</string>

 </parameter>

 </parameters>

</execution-context>

Answer to a User Interaction After Validating Input Parameters
The presentation of a user interaction might define constraints for the values that you can pass to the
input parameters of the workflow. When you answer to a user interaction, you can validate the values that
you pass to the input parameters against the constraints that are defined in the presentation of the user
interaction.

Prerequisites

Verify that you have imported the sample workflows package in Orchestrator. The package is included in
the Orchestrator sample applications ZIP file that you can download from the Orchestrator documentation
page.

Procedure

1 Retrieve the list of all user interaction objects by making a GET request at the URL that holds the
available user interaction objects, or by filtering only the waiting user interactions:

URL Description

https://orchestrator_host:port/vco/api/c
atalog/System/UserInteraction

Holds the available user interaction objects in Orchestrator.

https://orchestrator_host:port/vco/api/c
atalog/System/UserInteraction?
status=0

Filters only the waiting user interaction objects.

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 27

You receive a list of the available user interaction objects. User interactions that are waiting have an
attribute with name state and value waiting.

2 Make a GET request at the URL that holds the inventory item of the waiting user interaction that you
want to answer:

GET https://{orchestrator_host}:{port}/vco/api/catalog/System/UserInteraction/{userInteractionID}/

The response body contains a link to the user interaction instance. The user interaction instance is
associated with a particular workflow run.

3 Make a GET request at the URL of the user interaction instance:

GET https://{orchestrator_host}:

{port}/vco/api/workflows/{workflowID}/executions/{executionID}/interaction/

In the response body, you find a down link to the presentation of the user interaction.

4 Make a GET request at the URL of the presentation of the user interaction:

GET https://{orchestrator_host}:

{port}/vco/api/workflows/{workflowID}/executions/{executionID}/interaction/presentation/

You receive the definition of the user interaction presentation in the response body.

5 In the presentation definition, check for constraints of the values that you can pass to the input
parameters.

6 Run the user interation presentation by making a POST request at the URL where the instances of the
presentation reside:

POST https://{orchestrator_host}:

{port}/vco/api/workflows/{workflowID}/executions/{executionID}/interaction/presentation/instances/

7 In the request body, provide values for the input parameters in an execution-context element.

In the response body, you receive the instance of the user interaction presentation. If the values that
you passed to the input parameters are valid, you find a valid="true" attribute in the execution
element. In the output-parameters element, you find the valid values for the input parameters that
you can use to answer to the user interaction.

8 Answer to the user interaction by making a POST request at the URL where the user interaction
instance resides:

POST https://{orchestrator_host}:

{port}/vco/api/workflows/{workflowID}/executions/{executionID}/interaction/

9 In the request body, pass an execution-context context with the values for the input parameters.

You can use the same request body as the one for the POST request that you made at the URL for the
user interaction presentation.

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 28

If the last request is successful, you receive a status code 204 and an empty response body.

Example: Answer to the User Interaction of the Interactive Hello World Workflow by
Validating Input Parameters

You can answer to the user interaction of the Interactive Hello World workflow by validating the values of
the input parameters against the constraints that are defined in the presentation of the user interaction.

1 Search for the waiting user interactions of the workflow by making a GET request at the endpoint for
the user interaction objects of the Catalog service:

GET https://localhost:8281/vco/api/catalog/System/UserInteraction?status=0

2 Locate the user interaction inventory object for the Interactive Hello World workflow and make a GET
request at its URL:

GET https://localhost:

8281/vco/api/catalog/System/UserInteraction/888080808080808080808080808080805A808080013214533869064

3f66a027ec/

3 Make a GET request at the URL of the user interaction instance:

GET https://localhost:

8281/vco/api/catalog/System/UserInteraction/888080808080808080808080808080805A808080013214533869064

3f66a027ec/interaction/

4 Make a GET request at the URL of the user interaction presentation:

GET https://localhost:

8281/vco/api/catalog/System/UserInteraction/888080808080808080808080808080805A808080013214533869064

3f66a027ec/interaction/presentation/

The presentation defines the input parameter as mandatory, and contains a constraint for the length
of the string that you can pass.

5 Make a POST request at the URL that holds the instances of the user interaction presentation:

POST https://localhost:

8281/vco/api/catalog/System/UserInteraction/888080808080808080808080808080805A808080013214533869064

3f66a027ec/interaction/presentation/instances/

Provide a value for the input parameter in the request body:

<execution-context xmlns="http://www.vmware.com/vco">

 <parameters>

 <parameter name="name" type="string">

 <string>John Smith</string>

 </parameter>

 </parameters>

</execution-context>

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 29

The execution element of the response body contains a valid="true" attribute, indicating that the
input parameter value is valid against the constraints in the user interaction presentation. The valid
value is listed in the output-parameters element:

............

<output-parameters>

 <parameter name="name" type="string">

 <string>John Smith</string>

 </parameter>

</output-parameters>

............

6 Make a POST request at the URL of the user interaction instance by passing the same request body
as in the POST request in step 5.

POST https://localhost:

8281/vco/api/catalog/System/UserInteraction/888080808080808080808080808080805A808080013214533869064

3f66a027ec/interaction/

Cancel a Workflow Run
You can cancel the run of a workflow by using the Orchestrator REST API.

Procedure

1 Retrieve the definition of the workflow by making a GET request at the URL of the workflow's
definition:

GET https://{orchestrator_host}:{port}/vco/api/workflows/{workflowID}/

The workflow definition contains a link to the available execution objects of the workflow.

2 Get the available workflow runs by making a GET request to the URL that holds the available
execution objects for the workflow:

GET https://{orchestrator_host}:{port}/vco/api/workflows/{workflowID}/executions/

3 From the list of the available workflow executions, select the one that you want to cancel and make a
DELETE request at its URL:

DELETE https://{orchestrator_host}:

{port}/vco/api/workflows/{workflowID}/executions/{executionID}/state

Retrieve a Workflow's Interactions
You can retrieve the list of all user interactions for a workflow by using the Orchestrator REST API.

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 30

Procedure

1 Retrieve the definition of the workflow by making a GET request at the URL of the workflow's
definition:

GET https://{orchestrator_host}:{port}/vco/api/workflows/{workflowID}/

2 Get the list of workflow interactions by making a GET request to the URL of the workflow's
interactions:

GET https://{orchestrator_host}:{port}/vco/api/workflows/{workflowID}/interactions/

If the GET request is successful, you receive the status code 200 and a list of all user interactions
available for the workflow.

Access a Workflow's Schema
You can access the schema image of a workflow by using the Orchestrator REST API.

Procedure

1 Retrieve the definition of the workflow by making a GET request at the URL of the workflow's
definition:

GET https://{orchestrator_host}:{port}/vco/api/workflows/{workflowID}/

2 Get the workflow's schema image by making a GET request to the URL of the workflow's schema:

GET https://{orchestrator_host}:{port}/vco/api/workflows/{workflowID}/schema/

If the GET request is successful, you receive the status code 200 and the binary data of the image,
representing the workflow schema. The response content type is set to a correct media type, for example
Content-Type:image/png.

Working with Tasks
Using the Task service of the Orchestrator REST API, you can perform any operation that is related to
managing tasks in Orchestrator. You can create a task for scheduling a workflow, modify the properties of
an already existing task, delete a task, and so on.

The maximum number of scheduled tasks supported by Orchestrator is 50.

Create a Task
You can create a task for scheduling a workflow by using the Orchestrator REST API.

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 31

Prerequisites

Verify that you have imported the sample workflows package in Orchestrator. The package is included in
the Orchestrator sample applications ZIP file that you can download from the Orchestrator documentation
page.

Procedure

1 Retrieve the definition of the workflow for which you want to create a task by making a GET request at
the URL of the workflow:

GET https://{orchestrator_host}:{port}/vco/api/workflows/{workflowID}/

In the workflow definition you can view the name and the ID of the workflow, as well as its input
parameters.

2 To create a new task for the workflow, make a POST request at the URL of the Task service:

POST https://{orchestrator_host}:{port}/vco/api/tasks/

3 In the request body, provide the parameters for the new task in a task element.

If the request is successful, the API responds with status code 202 and an empty response body.

Example: Create a Task for the Send Hello Workflow
You can create a task that schedules the Send Hello workflow to run on the fifteenth minute of every hour
starting from a specific date.

1 Make a GET request at the URL of the Send Hello workflow to retrieve its definition:

GET https://localhost:

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/

2 Make a POST request at the URL of the Task service by providing the parameters of the new task in
the request body:

POST https://localhost:8281/vco/api/tasks/

<task xmlns="http://www.vmware.com/vco">

 <name>Send Hello Task</name>

 <recurrence-cycle>every-hours</recurrence-cycle>

 <recurrence-start-date>2012-01-31T11:00:00+00:00</recurrence-start-date>

 <recurrence-end-date>2012-02-05T11:00:00+00:00</recurrence-end-date>

 <recurrence-pattern>15:15</recurrence-pattern>

 <input-parameters>

 <parameter name="name" type="string">

 <string>John Smith</string>

 </parameter>

 </input-parameters>

 <workflow href="https://localhost:

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 32

8281/vco/api/workflows/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/">

 <name>Send Hello</name>

 </workflow>

 <start-mode>normal</start-mode>

</task>

Modify a Task
You can change the properties of an existing task by using the Orchestrator REST API.

You can only add new scheduling properties to a task or change the values of the already existing
properties. If you want to replace the scheduling properties of a task, you must delete the task and create
a new one.

Prerequisites

Verify that you have imported the sample workflows package in Orchestrator. The package is included in
the Orchestrator sample applications ZIP file that you can download from the Orchestrator documentation
page.

Procedure

1 Make a GET request at the URL of the task that you want to modify:

GET https://{orchestrator_host}:{port}/vco/api/tasks/{task ID}/

2 Check the properties of the task in the response body of the request.

3 To modify the task, make a POST request at the URL of the task by providing the new properties of the
task in a task-data element in the request body.

If the POST request is successful, the API reruns a status code 200 and the updated task in the response
body.

Example: Update the Send Hello Example Task
You can update the start and the end dates of a task. You can modify the example task that is introduced
in Create a Task. You must make a POST request at the URL of the task by providing the new start and
end dates in the request body:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>

<task-data xmlns="http://www.vmware.com/vco">

 <recurrence-start-date>2012-02-01T14:00:00+02:00</recurrence-start-date>

 <recurrence-end-date>2012-02-05T14:00:00+02:00</recurrence-end-date>

</task-data>

Check the State of a Task
You can check the state of the currently available tasks or check the state for all execution instancess of a
certain task.

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 33

Prerequisites

Verify that you have imported the sample workflows package in Orchestrator. The package is included in
the Orchestrator sample applications ZIP file that you can download from the Orchestrator documentation
page.

Procedure

n To check the status of all currently available tasks, make a GET request at the URL of the Task
service:

GET https://{orchestrator_host}:{port}/vco/api/tasks/

The response body contains the definitions of the currently available tasks in Orchestrator. The state
of every task is available in an attribute element, whose name is state. Respectively, the value for
the element can be finished, pending, running and so on.

n To check the status of all executions of a certain task, make a GET request at the URL where the task
executions reside:

GET https://{orchestrator_host}:{port}/vco/api/tasks/{taskID}/executions/

You receive a list of the available executions for the task in the response body. The state of every
execution is available in the state element of the task execution object.

Finding Objects in the Orchestrator Inventory
You can find any object in the Orchestrator inventory by using the Catalog or the Inventory services. You
can access only a certain subset of objects by applying filter parameters at the end of the URLs where
you make HTTP requets.

You can use the Catalog service to find objects in the Orchestrator inventory that are of a certain type, or
retrieve a specific object by its type and ID. For example, you can retrieve all objects that are of type
workflow or action, or can retrieve a specific workflow or action.

The Inventory service allows you to browse the Orchestrator inventory by parent-child relations. Using the
Inventory service, you can access objects that are available at a specific location in the Orchestrator
inventory. For example, you can retrieve all workflows for Datacenter management by browsing to their
location in the Orchestrator inventory, that is Library/vCenter/Datacenter.

Every service from the Orchestrator REST API supports filter parameters that you can add at the end of
URLs when making HTTP requests. Using the filter parameters, you can narrow the results that you
receive in the response body of a request at a specific URL.

Find Objects by Type and ID
You can use the Catalog service of the REST API to find objects in Orchestrator by type and ID.

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 34

Prerequisites

Verify that you have imported the sample workflows package in Orchestrator. The package is included in
the Orchestrator sample applications ZIP file that you can download from the Orchestrator documentation
page.

Procedure

1 Make a GET request at the URL of the Catalog Service:

GET https://{orchestrator_host}:{port}/vco/api/catalog/

The response body of the request contains down links to the catalog entry points of the plug-ins that
expose inventories in Orchestrator as well as to the system objects in Orchestrator:

n
https://{orchestrator_host}:{port}/vco/api/catalog/{plug-in namespace}/

n
https://{orchestrator_host}:{port}/vco/api/catalog/System/

2 To access objects that a plug-in exposes or the system objects in Orchestrator, make a GET request
at the URL of the catalog entry point for the plug-in or at the URL where the system objects in
Orchestrator reside.

The response body of the request contains links to the types of objects that are exposed.

3 Make a GET request at the URL of the type of object that you want to access.

GET https://{orchestrator_host}:{port}/vco/api/catalog/{namespace}/{objectType}/

4 Make a GET request at the URL of the specific object that you want to find:

GET https://{orchestrator_host}:{port}/vco/api/catalog/{namespace}/{objectType}/{objectID}/

Example: Find the Send Hello Workflow
You can find the sample Send Hello workflow by using the Catalog Service.

1 Make a GET request at the URL of the Catalog Service:

GET https://localhost:8281/vco/api/catalog/

2 Make a GET request at the URL where all system objects in Orchestrator are located:

GET https://localhost:8281/vco/api/catalog/System/

3 Make a GET request at the URL where all workflows reside:

GET https://localhost:8281/vco/api/catalog/Workflow/

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 35

4 Make a GET request at the URL of the Send Hello workflow:

GET https://localhost:

8281/vco/api/catalog/Workflow/CF808080808080808080808080808080DA808080013086668236014a0614d16e1/

Find Objects by Relations
You can use the Inventory service of the Orchestrator REST to browse the Orchestrator and the plug-in
inventories as a hierarchy.

Prerequisites

Verify that you have imported the sample workflows package in Orchestrator. The package is included in
the Orchestrator sample applications ZIP file that you can download from the Orchestrator documentation
page.

Procedure

1 Make a GET request at the URL of the Inventory service:

GET https://{orchestrator_host}:{port}/vco/api/inventory/

The response body contains down links to the registered inventories of the installed plug-ins as well
as to the system objects in Orchestrator under System.

2 Make a GET request at the down link of the inventory that you want to access.

3 Make a GET requests at the up and down links for the items in the inventory until you reach the object
that you want to find.

Example: Find the Send Hello Workflow
You can browse the Orchestrator Inventory to find the Send Hello workflow.

1 Make a GET request at the URL of the Inventory service:

GET https://localhost:8281/vco/api/inventory/

2 Make a GET request at the URL where the system objects in Orchestrator reside:

GET https://localhost:8281/vco/api/inventory/System/

3 Make a GET request at the URL where all workflows in Orchestrator reside:

GET https://localhost:8281/vco/api/inventory/System/Workflows/

4 Make a GET request at the URL of the Samples workflow category:

GET https://localhost:8281/vco/api/inventory/System/Workflows/Samples/

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 36

5 Use the down link for the Hello World workflow category where to locate the Send Hello workflow.

Apply Filters
The services of the Orchestrator REST API support additional URL parameters that allow you to narrow
the objects that HTTP requests to the API return.

Different query parameters are supported for every URL to a resource that you can access through the
REST API. To learn which query parameters are applicable to a URL, see the vRealize Orchestrator
REST API reference documentation.

Procedure

u To narrow the results from a request at a certain URL, apply filters at the end of the URL:

URL?filter_1& filter_2&filter_3&....&filter_N. Every filter contains query parameters that are valid for
the relevant URL. For information about the valid query parameters for every URL, see the
Orchestrator REST API reference documentation.

Example: Filter Workflows
If you look for workflows that contain a specific word in their name, for example datastore, you can apply
the following filter in a request to the Catalog Service:

GET https://localhost:8281/vco/api/catalog/System/Workflow?conditions=name~datastore

To limit the amount of the workflows that are returned to a certain number, for example five, apply an
additional filter to the request:

GET https://localhost:8281/vco/api/catalog/System/Workflow?conditions=name~datastore&maxResult=5

Importing and Exporting Orchestrator Objects
The Orchestrator REST API provides Web services that you can use to import and export workflows,
actions, packages, resources, and configuration elements.

Import a Workflow
You can import a workflow by using the Orchestrator REST API.

Depending on the library of your REST client application, you can use custom code that defines the
properties of the workflow.

Prerequisites

The workflow binary content should be available as multi-part content. For details, see RFC 2387.

Procedure

1 In a REST client application, add request headers to define the properties of the workflow that you
want to import.

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 37

2 Make a POST request at the URL of the workflow objects:

POST http://{orchestrator_host}:{port}/vco/api/workflows/

If the POST request is successful, you receive the status code 202.

Export a Workflow
You can export a workflow by using the Orchestrator REST API and download the workflow as a file.

Procedure

1 In a REST client application, add a request header with the following values.

n Name: accept

n Value: application/zip

2 Make a GET request at the URL of the workflow that you want to export:

GET http://{orchestrator_host}:{port}/vco/api/workflows/{workflowID}/

If the GET request is successful, you receive the status code 200. The workflow binary content is available
as an attachment with a default file name workflow_name.workflow. You can save the file with a REST
client application.

Import an Action
You can import an action by using the Orchestrator REST API.

Depending on the library of your REST client application, you can use custom code that defines the
properties of the action.

Prerequisites

The action binary content should be available as multi-part content. For details, see RFC 2387.

Procedure

1 In a REST client application, add request headers to define the properties of the action that you want
to import.

2 Make a POST request at the URL of the action objects:

POST http://{orchestrator_host}:{port}/vco/api/actions/

If the POST request is successful, you receive the status code 202.

Export an Action
You can export an action by using the Orchestrator REST API and download the action as a file.

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 38

Procedure

1 In a REST client application, add a request header with the following values.

n Name: accept

n Value: application/zip

2 Make a GET request at the URL of the action that you want to export:

GET http://{orchestrator_host}:{port}/vco/api/actions/{actionID}/

If the GET request is successful, you receive the status code 200. The action binary content is available as
an attachment with a default file name action_name.action. You can save the file with a REST client
application.

Import a Package
You can import a package by using the Orchestrator REST API.

Depending on the library of your REST client application, you can use custom code that defines the
properties of the package.

By default, if you import an Orchestrator package with a duplicate name, the existing package is not
overwritten. You can specify whether to overwrite existing packages by using a parameter in the request.

By default, Orchestrator packages are imported with the attribute values of configuration elements. You
can import a package without attribute values by using a parameter in the request.

By default, tags contained in Orchestrator packages are imported, but if the same tags already exist on
the Orchestrator server, the values of existing tags are preserved. You can specify whether existing tag
values are preserved by using parameters in the request.

Prerequisites

The package binary content should be available as multi-part content. For details, see RFC 2387.

Procedure

1 In a REST client application, add request headers to define the properties of the package that you
want to import.

2 Make a POST request at the URL of the package objects:

POST http://{orchestrator_host}:{port}/vco/api/packages/

3 (Optional) To import a package and overwrite an existing package with the same name, use the
overwrite parameter in the POST request:

POST http://{orchestrator_host}:{port}/vco/api/packages/?overwrite=true

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 39

4 (Optional) To import a package without the attribute values of the configuration elements from the
package, use the importConfigurationAttributeValues parameter in the POST request:

POST http://{orchestrator_host}:{port}/vco/api/packages/?importConfigurationAttributeValues=false

5 (Optional) To import a package without the tags that it contains, use the tagImportMode parameter in
the POST request:

POST http://{orchestrator_host}:{port}/vco/api/packages/?tagImportMode=DoNotImport

6 (Optional) To import a package with the tags that it contains and overwrite existing tag values, use the
tagImportMode parameter in the POST request:

POST http://{orchestrator_host}:{port}/vco/api/packages/?

tagImportMode=ImportAndOverwriteExistingValue

If the POST request is successful, you receive the status code 202.

Export a Package
You can export a package by using the Orchestrator REST API and download the package as a file.

By default, Orchestrator packages are exported with attribute values of configuration elements and global
tags. You can export a package without attribute values or global tags by using parameters in the request.
You can also specify a custom name for the package file that you download.

Procedure

1 In a REST client application, add a request header with the following values.

n Name: accept

n Value: application/zip

2 Make a GET request at the URL of the package that you want to export:

GET http://{orchestrator_host}:{port}/vco/api/packages/{package_name}/

3 (Optional) To set a custom name for the exported package, use the packageName parameter in the
GET request:

GET http://{orchestrator_host}:{port}/vco/api/packages/{package_name}/?packageName={custom_name}

4 (Optional) To export a package without the attribute values of the configuration elements from the
package, use the exportConfigurationAttributeValues parameter in the GET request:

GET http://{orchestrator_host}:{port}/vco/api/packages/{package_name}/?

exportConfigurationAttributeValues=false

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 40

5 (Optional) To export a package without global tags, use the exportGlobalTags parameter in the GET
request:

GET http://{orchestrator_host}:{port}/vco/api/packages/{package_name}/?exportGlobalTags=false

If the GET request is successful, you receive the status code 200. The package binary content is available
as an attachment with a default file name package_name.package. You can save the file with a REST
client application.

Import a Resource
You can import a resource by using the Orchestrator REST API.

Depending on the library of your REST client application, you can use custom code that defines the
properties of the resource.

Prerequisites

The resource binary content should be available as multi-part content. For details, see RFC 2387.

Procedure

1 In a REST client application, add request headers to define the properties of the resource that you
want to import.

2 Make a POST request at the URL of the resource objects:

POST http://{orchestrator_host}:{port}/vco/api/resources/

If the POST request is successful, you receive the status code 202.

Export a Resource
You can export a resource by using the Orchestrator REST API.

Procedure

1 In a REST client application, add a request header with the following values.

n Name: accept

n Value: application/octet-stream

2 Make a GET request at the URL of the resource that you want to export:

GET http://{orchestrator_host}:{port}/vco/api/resources/{resourceID}/

If the GET request is successful, you receive the status code 200. The content of the resource is available
in the response body.

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 41

Import a Configuration Element
You can import a configuration element by using the Orchestrator REST API.

Depending on the library of your REST client application, you can use custom code that defines the
properties of the configuration element.

Prerequisites

The configuration element binary content should be available as multi-part content. For details, see RFC
2387.

Procedure

1 In a REST client application, add request headers to define the properties of the configuration
element that you want to import.

2 Make a POST request at the URL of the configuration element objects:

POST http://{orchestrator_host}:{port}/vco/api/configurations/

If the POST request is successful, you receive the status code 202.

Export a Configuration Element
You can export a configuration element by using the Orchestrator REST API.

Procedure

1 In a REST client application, add a request header with the following values.

n Name: accept

n Value: application/vcoobject+xml

2 Make a GET request at the URL of the configuration element that you want to export:

GET http://{orchestrator_host}:{port}/vco/api/configurations/{configuration_elementID}/

If the GET request is successful, you receive the status code 200. The configuration element content is
available in the response body.

Deleting Orchestrator Objects
The Orchestrator REST API provides Web services that you can use to delete workflows, actions,
packages, resources, and configuration elements.

Delete a Workflow
You can delete a workflow by using the Orchestrator REST API.

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 42

Procedure

1 Make a GET request and retrieve the ID of the workflow from the list of returned workflows:

GET http://{orchestrator_host}:{port}/vco/api/workflows/

2 Make a DELETE request at the URL of the workflow:

DELETE http://{orchestrator_host}:{port}/vco/api/workflows/{workflowID}/

If the DELETE request is successful, you receive the status code 200, and the response body is empty.

Delete an Action
You can delete an action by using the Orchestrator REST API.

Procedure

1 Make a GET request and retrieve the ID of the action from the list of returned actions:

GET http://{orchestrator_host}:{port}/vco/api/actions/

2 Make a DELETE request at the URL of the action:

DELETE http://{orchestrator_host}:{port}/vco/api/actions/{actionID}/

If the DELETE request is successful, you receive the status code 200, and the response body is empty.

Delete a Package
You can delete a package by using the Orchestrator REST API.

When you delete a package, the elements from the package are not deleted. If you want to delete the
content of a package, you must provide an option parameter.

Procedure

1 Make a GET request and retrieve the name of the package from the list of returned packages:

GET http://{orchestrator_host}:{port}/vco/api/packages/

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 43

2 Make a DELETE request at the URL of the package, and if you want to delete elements from the
package, provide an option parameter at the end of the request:

DELETE http://{orchestrator_host}:{port}/vco/api/packages/{package_name}/?option={parameter}

Parameter Description

deletePackage Only the package is deleted, while its content is retained.

deletePackageWithContent The package and all its content is deleted. If other packages share elements with
the deleted package, the shared elements are deleted from the other packages.

deletePackageKeepingShared The package and the content that is not shared is deleted. Elements that are
shared with other packages are not deleted.

If you do not provide an option parameter, the default deletePackage parameter is used.

If the DELETE request is successful, you receive the status code 200, and the response body is empty.

Delete a Resource
You can delete a resource by using the Orchestrator REST API.

Procedure

1 Make a GET request and retrieve the ID of the resource from the list of returned resources:

GET http://{orchestrator_host}:{port}/vco/api/resources/

2 Make a DELETE request at the URL of the resource:

DELETE http://{orchestrator_host}:{port}/vco/api/resources/{resourceID}/

If the DELETE request is successful, you receive the status code 200, and the response body is empty.

Delete a Configuration Element
You can delete a configuration element by using the Orchestrator REST API.

Procedure

1 Make a GET request and retrieve the ID of the configuration element from the list of returned
configuration elements:

GET http://{orchestrator_host}:{port}/vco/api/configurations/

2 Make a DELETE request at the URL of the configuration element:

DELETE http://{orchestrator_host}:{port}/vco/api/configurations/{configuration_elementID}/

If the DELETE request is successful, you receive the status code 200, and the response body is empty.

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 44

Setting Permissions on Orchestrator Objects
You can set custom permissions for an Orchestrator object by using the REST API. To set the
permissions, you must make a POST request at the URL of the object's permissions and define the
permissions in the request body.

You can also use the Orchestrator REST API to retrieve information about an object's permissions or
delete the existing permissions.

REST API Permissions
When you set permissions by using the Orchestrator REST API, you must use a set of characters to
define the permissions.

You can define the permissions for an element by including a sequence of characters in the <rights> tag
of the request body of a POST request .

The characters that you can use to set permissions through the Orchestrator REST API have specific
meanings.

Table 2‑1. Orchestrator REST API Permissions Character Set

Character Description

r Gives view permissions.

x Gives execute permissions.

i Gives inspect permissions.

c Gives edit permissions.

a Gives administrative permissions.

Example: Syntax for Setting Permissions
You can use the following example syntax in the request body of a POST request at the URL of an
Orchestrator element's permissions.

<permissions xmlns="http://www.vmware.com/vco">

 <permission>

 <principal>cn=vcousers,ou=vco,dc=appliance</principal>

 <rights>ric</rights>

 </permission>

</permissions>

By setting ric permissions in the <rights> tag of the request body, you allow members of the vcousers
user group to view, inspect, and edit the Orchestrator element.

Retrieve the Permissions of a Workflow
You can retrieve information about the permissions of a workflow by using the Orchestrator REST API.

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 45

Procedure

1 Make a GET request and retrieve the ID of the workflow from the list of returned workflows:

GET http://{orchestrator_host}:{port}/vco/api/workflows/

2 Make a GET request at the URL of the workflow's permissions:

GET http://{orchestrator_host}:{port}/vco/api/workflows/{workflowID}/permissions/

If the GET request is successful, you receive the status code 200. Information about the workflow's
permissions is available in the response body.

Delete the Permissions of a Workflow
You can delete the permissions of a workflow by using the Orchestrator REST API. You can delete the
existing permissions of a workflow before you set new permissions.

Procedure

1 Make a GET request and retrieve the ID of the workflow from the list of returned workflows:

GET http://{orchestrator_host}:{port}/vco/api/workflows/

2 Make a DELETE request at the URL of the workflow's permissions:

DELETE http://{orchestrator_host}:{port}/vco/api/workflows/{workflowID}/permissions/

If the DELETE request is successful, you receive the status code 204, and the response body is empty.

Set the Permissions for a Workflow
You can set the permissions for a workflow by using the Orchestrator REST API.

Prerequisites

Review the types of permissions that you can set and the syntax that you can use in the request body.
See REST API Permissions.

Procedure

1 Make a GET request and retrieve the ID of the workflow from the list of returned workflows:

GET http://{orchestrator_host}:{port}/vco/api/workflows/

2 In a REST client application, add request headers to define the properties of the workflow for which
you want to set permissions.

3 In the request body, specify the permissions that you want to set.

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 46

4 Make a POST request at the URL of the workflow's permissions:

POST http://{orchestrator_host}:{port}/vco/api/workflows/{workflowID}/permissions/

If the POST request is successful, you receive the status code 201. Information about the workflow's
permissions is available in the response body.

Retrieve the Permissions of an Action
You can retrieve information about the permissions of an action by using the Orchestrator REST API.

Procedure

1 Make a GET request and retrieve the ID of the action from the list of returned actions:

GET http://{orchestrator_host}:{port}/vco/api/actions/

2 Make a GET request at the URL of the action's permissions:

GET http://{orchestrator_host}:{port}/vco/api/actions/{actionID}/permissions/

If the GET request is successful, you receive the status code 200. Information about the action's
permissions is available in the response body.

Delete the Permissions of an Action
You can delete the permissions of an action by using the Orchestrator REST API. You can delete the
existing permissions of an action before you set new permissions.

Procedure

1 Make a GET request and retrieve the ID of the action from the list of returned actions:

GET http://{orchestrator_host}:{port}/vco/api/actions/

2 Make a DELETE request at the URL of the action's permissions:

DELETE http://{orchestrator_host}:{port}/vco/api/actions/{actionID}/permissions/

If the DELETE request is successful, you receive the status code 204, and the response body is empty.

Set the Permissions for an Action
You can set the permissions for an action by using the Orchestrator REST API.

Prerequisites

Review the types of permissions that you can set and the syntax that you can use in the request body.
See REST API Permissions.

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 47

Procedure

1 Make a GET request and retrieve the ID of the action from the list of returned actions:

GET http://{orchestrator_host}:{port}/vco/api/actions/

2 In a REST client application, add request headers to define the properties of the action for which you
want to set permissions.

3 In the request body, specify the permissions that you want to set.

4 Make a POST request at the URL of the action's permissions:

POST http://{orchestrator_host}:{port}/vco/api/actions/{actionID}/permissions/

If the POST request is successful, you receive the status code 201. Information about the action's
permissions is available in the response body.

Retrieve the Permissions of a Package
You can retrieve information about the permissions of a package by using the Orchestrator REST API.

Procedure

1 Make a GET request and retrieve the name of the package from the list of returned packages:

GET http://{orchestrator_host}:{port}/vco/api/packages/

2 Make a GET request at the URL of the package's permissions:

GET http://{orchestrator_host}:{port}/vco/api/packages/{package_name}/permissions/

If the GET request is successful, you receive the status code 200. Information about the package's
permissions is available in the response body.

Delete the Permissions of a Package
You can delete the permissions of a package by using the Orchestrator REST API. You can delete the
existing permissions of a package before you set new permissions.

Procedure

1 Make a GET request and retrieve the name of the package from the list of returned packages:

GET http://{orchestrator_host}:{port}/vco/api/packages/

2 Make a DELETE request at the URL of the package's permissions:

DELETE http://{orchestrator_host}:{port}/vco/api/packages/{package_name}/permissions/

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 48

If the DELETE request is successful, you receive the status code 204, and the response body is empty.

Set the Permissions for a Package
You can set the permissions for a package by using the Orchestrator REST API.

Prerequisites

Review the types of permissions that you can set and the syntax that you can use in the request body.
See REST API Permissions.

Procedure

1 Make a GET request and retrieve the name of the package from the list of returned packages:

GET http://{orchestrator_host}:{port}/vco/api/packages/

2 In a REST client application, add request headers to define the properties of the package for which
you want to set permissions.

3 In the request body, specify the permissions that you want to set.

4 Make a POST request at the URL of the package's permissions:

POST http://{orchestrator_host}:{port}/vco/api/packages/{package_name}/permissions/

If the POST request is successful, you receive the status code 201. Information about the package's
permissions is available in the response body.

Retrieve the Permissions of a Resource
You can retrieve information about the permissions of a resource by using the Orchestrator REST API.

Procedure

1 Make a GET request and retrieve the ID of the resource from the list of returned resources:

GET http://{orchestrator_host}:{port}/vco/api/resources/

2 Make a GET request at the URL of the resource's permissions:

GET http://{orchestrator_host}:{port}/vco/api/resources/{resourceID}/permissions/

If the GET request is successful, you receive the status code 200. Information about the resource's
permissions is available in the response body.

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 49

Delete the Permissions of a Resource
You can delete the permissions of a resource by using the Orchestrator REST API. You can delete the
existing permissions of a resource before you set new permissions.

Procedure

1 Make a GET request and retrieve the ID of the resource from the list of returned resources:

GET http://{orchestrator_host}:{port}/vco/api/resources/

2 Make a DELETE request at the URL of the resource's permissions:

DELETE http://{orchestrator_host}:{port}/vco/api/resources/{resourceID}/permissions/

If the DELETE request is successful, you receive the status code 204, and the response body is empty.

Set the Permissions for a Resource
You can set the permissions for a resource by using the Orchestrator REST API.

Prerequisites

Review the types of permissions that you can set and the syntax that you can use in the request body.
See REST API Permissions.

Procedure

1 Make a GET request and retrieve the ID of the resource from the list of returned resources:

GET http://{orchestrator_host}:{port}/vco/api/resources/

2 In a REST client application, add request headers to define the properties of the resource for which
you want to set permissions.

3 In the request body, specify the permissions that you want to set.

4 Make a POST request at the URL of the resource's permissions:

POST http://{orchestrator_host}:{port}/vco/api/resources/{resourceID}/permissions/

If the POST request is successful, you receive the status code 201. Information about the resource's
permissions is available in the response body.

Retrieve the Permissions of a Configuration Element
You can retrieve information about the permissions of a configuration element by using the Orchestrator
REST API.

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 50

Procedure

1 Make a GET request and retrieve the ID of the configuration element from the list of returned
configuration elements:

GET http://{orchestrator_host}:{port}/vco/api/configurations/

2 Make a GET request at the URL of the configuration element's permissions:

GET http://{orchestrator_host}:{port}/vco/api/configurations/{configuration_elementID}/permissions/

If the GET request is successful, you receive the status code 200. Information about the configuration
element's permissions is available in the response body.

Delete the Permissions of a Configuration Element
You can delete the permissions of a configuration element by using the Orchestrator REST API. You can
delete the existing permissions of a configuration element before you set new permissions.

Procedure

1 Make a GET request and retrieve the ID of the configuration element from the list of returned
configuration elements:

GET http://{orchestrator_host}:{port}/vco/api/configurations/

2 Make a DELETE request at the URL of the configuration element's permissions:

DELETE http://{orchestrator_host}:

{port}/vco/api/configurations/{configuration_elementID}/permissions/

If the DELETE request is successful, you receive the status code 204, and the response body is empty.

Set the Permissions for a Configuration Element
You can set the permissions for a configuration element by using the Orchestrator REST API.

Prerequisites

Review the types of permissions that you can set and the syntax that you can use in the request body.
See REST API Permissions.

Procedure

1 Make a GET request and retrieve the ID of the configuration element from the list of returned
configuration elements:

GET http://{orchestrator_host}:{port}/vco/api/configurations/

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 51

2 In a REST client application, add request headers to define the properties of the configuration
element for which you want to set permissions.

3 In the request body, specify the permissions that you want to set.

4 Make a POST request at the URL of the configuration element's permissions:

POST http://{orchestrator_host}:

{port}/vco/api/configurations/{configuration_elementID}/permissions/

If the POST request is successful, you receive the status code 201. Information about the configuration
element's permissions is available in the response body.

Performing Operations with Plug-Ins
The Orchestrator REST API provides Web services that you can use to perform various operations with
plug-ins.

Retrieve Information About Plug-Ins
You can retrieve metadata information for all installed plug-ins by using the Orchestrator REST API.

Procedure

1 In a REST client application, add request headers to define the properties of the plug-ins.

2 Make a GET request at the URL of the plug-in objects:

GET http://{orchestrator_host}:{port}/vco/api/plugins/

If the GET request is successful, you receive the status code 200.

Import a Plug-In
You can import a plug-in by using the Orchestrator REST API.

Depending on the library of your REST client application, you can use a custom code that defines the
properties of the plug-in.

Note You cannot import a plug-in if a plug-in with the same name is already installed.

Prerequisites

The plug-in binary content should be available as multi-part content. For details, see RFC 2387.

Procedure

1 In a REST client application, add request headers to define the properties of the plug-in that you want
to import.

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 52

2 Make a POST request at the URL of the plug-in objects:

POST http://{orchestrator_host}:{port}/vco/api/plugins/

If the POST request is successful, you receive the status code 200.

Export a Plug-In
You can export a plug-in by using the Orchestrator REST API.

Procedure

1 In a REST client application, add a request header with the following values.

n Name: accept

n Value: application/dar

2 Make a GET request at the URL of the plug-in that you want to export:

GET http://{orchestrator_host}:{port}/vco/api/plugins/{plug-in_name}/

If the GET request is successful, you receive the status code 200. The plug-in content is available in the
response body.

Enable or Disable a Plug-In
You can enable or disable a plug-in by using the Orchestrator REST API.

You can change the state of a plug-in from enabled to disabled, or from disabled to enabled, by making a
PUT request at the URL of the plug-in. You can check the current state of a plug-in by retrieving
information about the Orchestrator plug-ins. See Retrieve Information About Plug-Ins.

Prerequisites

The plug-in binary content should be available as multi-part content. For details, see RFC 2387.

Procedure

1 In a REST client application, add request headers to define the properties of the plug-in that you want
to enable or disable.

2 Make a PUT request at the URL of the plug-in that you want to enable or disable:

PUT http://{orchestrator_host}:{port}/vco/api/plugins/{plug-in_name}/state/

If the PUT request is successful, you receive the status code 200.

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 53

Performing Server Configuration Operations
The Orchestrator REST API provides Web services that you can use to perform various operations
related to the Orchestrator server configuration.

Retrieve Information About the Orchestrator Server Configuration
You can retrieve information about the Orchestrator server configuration by using the Orchestrator REST
API.

Procedure

1 In a REST client application, add request headers to define the properties of the server for which you
want to retrieve information.

2 Make a GET request at the URL of the plug-in objects:

GET http://{orchestrator_host}:{port}/vco/api/server-configuration/

If the GET request is successful, you receive the status code 200.

Import Orchestrator Server Configuration
You can import a saved configuration by using the Orchestrator REST API.

Prerequisites

The configuration binary content should be available as multi-part content. For details, see RFC 2387.

Procedure

1 In a REST client application, add a request header with the following values.

n Name: content-type

n Value: multipart/form-data

2 Make a POST request at the URL of the server configuration:

POST http://{orchestrator_host}:{port}/vco/api/server-configuration/

If the POST request is successful, you receive the status code 200.

Export Orchestrator Server Configuration
You can export the server configuration by using the Orchestrator REST API.

Prerequisites

The configuration binary content should be available as multi-part content. For details, see RFC 2387.

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 54

Procedure

1 In a REST client application, add a request header with the following values.

n Name: content-type

n Value: multipart/form-data

2 Add another request header with the following values.

n Name: accept

n Value: */*

3 Make a POST request at the URL of the server configuration:

POST http://{orchestrator_host}:{port}/vco/api/server-configuration/

If the POST request is successful, you receive the status code 200.

Performing Tagging Operations
The Orchestrator REST API provides Web services that you can use to perform various operations to
make objects more searchable by using tags in Orchestrator.

You can make objects more searchable by attaching tags to them. Tags are strings with length between 3
and 64 characters and must contain no whitespace characters.

You can add global and private tags. Global tags are visible to all Orchestrator users and private tags are
visible only to the user who created them. Global tags can be created and removed only by users with
administrative privileges.

Tag an Object
You can assign tags to an object by using the Orchestrator REST API.

You can create both private and global tags. You specify whether the tag is private or global in the body of
the request.

Note To create global tags, you must be logged in as a user with administrative privileges.

You can also assign a value to the tag that you create. The value is an optional parameter that you can
use to filter tags.

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 55

Procedure

1 Define the request body by using the following syntax.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<tag-instance xmlns="http://www.vmware.com/vco" global="false">

 <name>tag_name</name>

 <value>tag_value</value>

</tag-instance>

Note You can create a global tag by setting the global variable to "true".

2 Make a POST request at the URL of the object:

POST http://{orchestrator_host}:{port}/vco/api/catalog/{namespace}/{objectType}/{objectId}/tags

If the POST request is successful, you receive the status code 200.

Untag an Object
You can remove tags assigned to an object by using the Orchestrator REST API.

You can remove both private and global tags.

Note To remove global tags, you must be logged in as a user with administrative privileges.

Procedure

u Make a DELETE request to remove private or global tags.

n To remove a private tag, make a DELETE request at the URL of the object by using the following
syntax:

DELETE http://{orchestrator_host}:

{port}/vco/api/catalog/{namespace}/{objectType}/{objectId}/tag/{tag_name}

n To remove a global tag, make a DELETE request at the URL of the object by using the following
syntax:

DELETE http://{orchestrator_host}:

{port}/vco/api/catalog/{namespace}/{objectType}/{objectId}/tag/:{tag_name}

If the DELETE request is successful, you receive the status code 200.

List Object Tags
You can retrieve a list of tags assigned to an object by using the Orchestrator REST API.

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 56

Procedure

u Make a GET request at the URL of the object:

GET http://{orchestrator_host}:{port}/vco/api/catalog/{namespace}/{objectType}/{objectId}/tags

If the GET request is successful, you receive the status code 200.

List Tagged Objects by Type
You can use the Orchestrator REST API to retrieve a list of objects tagged with a specific tag and filter
them by object type.

Procedure

u Make a GET request at the URL of the object type:

GET http://{orchestrator_host}:{port}/vco/api/catalog/{namespace}/{objectType}/?

tags=tag1&tags=:tag2=value

If the GET request is successful, you receive the status code 200.

List Tag Owners
You can retrieve a list of tag owners by using the Orchestrator REST API. Tag owners are users who
have created at least one tag.

Procedure

u Make a GET request at the following URL:

GET http://{orchestrator_host}:{port}/vco/api/tags

If the GET request is successful, you receive the status code 200. The list that you retrieve contains users
who have created at least one tag. Global tags are listed under the system user name __GLOBAL__.

List Tags by Users
You can use the Orchestrator REST API to retrieve a list of tags created by a specific user.

You can also retrieve global tags. Global tags are listed under the system user name __GLOBAL__.

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 57

Procedure

u Make a GET request at the URL of the user.

n To retrieve a list of the tags created by a specific user, make a GET request by using the following
syntax:

GET http://{orchestrator_host}:{port}/vco/api/tags/{user_name}

n To retrieve a list of global tags, make a GET request by using the following syntax:

GET http://{orchestrator_host}:{port}/vco/api/tags/__GLOBAL__

If the GET request is successful, you receive the status code 200.

List Tags by Users Filtered by Tag Name
You can use the Orchestrator REST API to retrieve a list of tag instances created by a specific user and
filter the tags by tag name.

You can also retrieve global tag instances. Global tags are listed under the system user name
__GLOBAL__.

Procedure

u Make a GET request at the URL of the user.

n To retrieve a filtered list of the tag instances created by a specific user, make a GET request by
using the following syntax:

GET http://{orchestrator_host}:{port}/vco/api/tags/{user_name}/{tag_name}

n To retrieve a filtered list of global tag instances, make a GET request by using the following syntax:

GET http://{orchestrator_host}:{port}/vco/api/tags/__GLOBAL__/{tag_name}

If the GET request is successful, you receive the status code 200. The information that you retrieve
contains a reference to the tagged object, tag name, tag value, and an indication whether the tag instance
is global or private.

Remove Tags by Users
You can use the Orchestrator REST API to remove all tags created by a specific user.

You can also remove global tags. Global tags are listed under the system user name __GLOBAL__.

Note To remove global tags, you must be logged in as a user with administrative privileges.

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 58

Procedure

u Make a DELETE request at the URL of the user.

n To remove the tags created by a specific user, make a DELETE request by using the following
syntax:

DELETE http://{orchestrator_host}:{port}/vco/api/tags/{user_name}

n To remove the global tags, make a DELETE request by using the following syntax:

DELETE http://{orchestrator_host}:{port}/vco/api/tags/__GLOBAL__

If the DELETE request is successful, you receive the status code 204.

Developing a Web Services Client for VMware vRealize Orchestrator

VMware, Inc. 59

	Developing a Web Services Client for VMware vRealize Orchestrator
	Contents
	Developing a Web Services Client for VMware vRealize Orchestrator
	Developing a Web Services Client
	Using the vRealize Orchestrator REST API
	Authenticating Against Orchestrator and Third-Party Systems
	Using vCenter Single Sign-On Authentication with the Orchestrator REST API
	Get the Solution User Name of Orchestrator
	Using vRealize Orchestrator REST API SDK with Configured vRealize Automation Authentication

	Accessing the Reference Documentation for the Orchestrator REST API
	Using the Java REST SDK
	Operations with Workflows
	Find a Workflow and Retrieve Its Definition
	Run a Workflow
	Run a Workflow After Validating Its Input Parameters Against the Workflow Presentation
	Interacting with a Workflow While It Runs
	Get Workflow Run Objects and Check the Workflow Status
	Answer to a Waiting User Interaction
	Answer to a User Interaction After Validating Input Parameters
	Cancel a Workflow Run

	Retrieve a Workflow's Interactions
	Access a Workflow's Schema

	Working with Tasks
	Create a Task
	Modify a Task
	Check the State of a Task

	Finding Objects in the Orchestrator Inventory
	Find Objects by Type and ID
	Find Objects by Relations
	Apply Filters

	Importing and Exporting Orchestrator Objects
	Import a Workflow
	Export a Workflow
	Import an Action
	Export an Action
	Import a Package
	Export a Package
	Import a Resource
	Export a Resource
	Import a Configuration Element
	Export a Configuration Element

	Deleting Orchestrator Objects
	Delete a Workflow
	Delete an Action
	Delete a Package
	Delete a Resource
	Delete a Configuration Element

	Setting Permissions on Orchestrator Objects
	REST API Permissions
	Retrieve the Permissions of a Workflow
	Delete the Permissions of a Workflow
	Set the Permissions for a Workflow
	Retrieve the Permissions of an Action
	Delete the Permissions of an Action
	Set the Permissions for an Action
	Retrieve the Permissions of a Package
	Delete the Permissions of a Package
	Set the Permissions for a Package
	Retrieve the Permissions of a Resource
	Delete the Permissions of a Resource
	Set the Permissions for a Resource
	Retrieve the Permissions of a Configuration Element
	Delete the Permissions of a Configuration Element
	Set the Permissions for a Configuration Element

	Performing Operations with Plug-Ins
	Retrieve Information About Plug-Ins
	Import a Plug-In
	Export a Plug-In
	Enable or Disable a Plug-In

	Performing Server Configuration Operations
	Retrieve Information About the Orchestrator Server Configuration
	Import Orchestrator Server Configuration
	Export Orchestrator Server Configuration

	Performing Tagging Operations
	Tag an Object
	Untag an Object
	List Object Tags
	List Tagged Objects by Type
	List Tag Owners
	List Tags by Users
	List Tags by Users Filtered by Tag Name
	Remove Tags by Users

