
Developing with VMware
vRealize Orchestrator
vRealize Orchestrator 7.4

Developing with VMware vRealize Orchestrator

VMware, Inc. 2

You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

If you have comments about this documentation, submit your feedback to

docfeedback@vmware.com

Copyright © 2008–2018 VMware, Inc. All rights reserved. Copyright and trademark information.

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

https://docs.vmware.com/
mailto:docfeedback@vmware.com
http://pubs.vmware.com/copyright-trademark.html

Contents

Developing with VMware vRealize Orchestrator 10

1 Developing Workflows 11

Key Concepts of Workflows 13

Workflow Parameters 13

Workflow Attributes 14

Workflow Schema 14

Workflow Presentation 14

Workflow Tokens 14

Phases in the Workflow Development Process 15

Best Practices for Developing Workflows 15

Access Rights for the Orchestrator Client 16

Testing Workflows During Development 16

Creating and Editing a Workflow 16

Create a Workflow 17

Edit a Workflow 17

Edit a Workflow from the Standard Library 17

Workflow Editor Tabs 18

Provide General Workflow Information 19

Defining Attributes and Parameters 20

Define Workflow Parameters 21

Define Workflow Attributes 22

Attribute and Parameter Naming Restrictions 23

Workflow Schema 23

View Workflow Schema 24

Building a Workflow in the Workflow Schema 25

Schema Elements 28

Schema Element Properties 31

Links and Bindings 34

Decisions 41

Exception Handling 44

Using Error Handlers 45

Foreach Elements and Composite Types 46

Add a Switch Activity to a Workflow 50

Developing Plug-Ins 50

Overview of Plug-Ins 50

Contents and Structure of a Plug-In 59

Orchestrator Plug-In API Reference 63

VMware, Inc. 3

Elements of the vso.xml Plug-In Definition File 74

Best Practices for Orchestrator Plug-In Development 93

Obtaining Input Parameters from Users When a Workflow Starts 108

Creating the Input Parameters Dialog Box In the Presentation Tab 109

Setting Parameter Properties 110

Requesting User Interactions While a Workflow Runs 114

Add a User Interaction to a Workflow 115

Set the User Interaction security.group Attribute 116

Set the timeout.date Attribute to an Absolute Date 117

Calculate a Relative Timeout for User Interactions 118

Set the timeout.date Attribute to a Relative Date 119

Define the External Inputs for a User Interaction 120

Define User Interaction Exception Behavior 121

Create the Input Parameters Dialog Box for the User Interaction 122

Respond to a Request for a User Interaction 123

Calling Workflows Within Workflows 124

Workflow Elements that Call Workflows 125

Call a Workflow Synchronously 127

Call a Workflow Asynchronously 128

Schedule a Workflow 129

Prerequisites for Calling a Remote Workflow from Within Another Workflow 130

Call Several Workflows Simultaneously 131

Running a Workflow on a Selection of Objects 132

Implement the Start Workflows in a Series and Start Workflows in Parallel Workflows 133

Developing Long-Running Workflows 134

Set a Relative Time and Date for Timer-Based Workflows 135

Create a Timer-Based Long-Running Workflow 136

Create a Trigger Object 138

Create a Trigger-Based Long-Running Workflow 139

Configuration Elements 140

Create a Configuration Element 141

Workflow User Permissions 142

Set User Permissions on a Workflow 143

Validating Workflows 143

Validate a Workflow and Fix Validation Errors 144

Debugging Workflows 145

Debug a Workflow 145

Example Workflow Debugging 146

Running Workflows 147

Run a Workflow in the Workflow Editor 147

Run a Workflow 148

Developing with VMware vRealize Orchestrator

VMware, Inc. 4

Resuming a Failed Workflow Run 149

Set the Behavior for Resuming a Failed Workflow Run 149

Set Custom Properties for Resuming Failed Workflow Runs 150

Resume a Failed Workflow Run 151

Generate Workflow Documentation 151

Use Workflow Version History 152

Restore Deleted Workflows 152

Develop a Simple Example Workflow 153

Create the Simple Workflow Example 155

Create the Schema of the Simple Workflow Example 156

Create the Simple Workflow Example Zones 158

Define the Parameters of the Simple Workflow Example 160

Define the Simple Workflow Example Decision Bindings 161

Bind the Action Elements of the Simple Workflow Example 161

Bind the Simple Workflow Example Scripted Task Elements 165

Define the Simple Workflow Example Exception Bindings 173

Set the Read-Write Properties for Attributes of the Simple Workflow Example 174

Set the Simple Workflow Example Parameter Properties 175

Set the Layout of the Simple Workflow Example Input Parameters Dialog Box 176

Validate and Run the Simple Workflow Example 178

Develop a Complex Workflow 179

Create the Complex Workflow Example 180

Create a Custom Action for the Complex Workflow Example 181

Create the Schema of the Complex Workflow Example 183

Create the Complex Workflow Example Zones 185

Define the Parameters of the Complex Workflow Example 186

Define the Bindings for the Complex Workflow Example 187

Set the Complex Workflow Example Attribute Properties 198

Create the Layout of the Complex Workflow Example Input Parameters 199

Validate and Run the Complex Workflow Example 200

2 Scripting 202

Orchestrator Elements that Require Scripting 202

Limitations of the Mozilla Rhino Implementation in Orchestrator 203

Using the Orchestrator Scripting API 204

Access the Scripting Engine from the Workflow Editor 205

Access the Scripting Engine from the Action or Policy Editor 205

Access the Orchestrator API Explorer 206

Use the Orchestrator API Explorer to Find Objects 206

Writing Scripts 207

Add Parameters to Scripts 209

Accessing the Orchestrator Server File System from JavaScript and Workflows 209

Developing with VMware vRealize Orchestrator

VMware, Inc. 5

Accessing Java Classes from JavaScript 210

Accessing Operating System Commands from JavaScript 210

Using XPath Expressions with the vCenter Server Plug-In 211

Using XPath Expressions with the vCenter Server Plug-In 211

Exception Handling Guidelines 212

Orchestrator JavaScript Examples 213

Basic Scripting Examples 214

Email Scripting Examples 216

File System Scripting Examples 217

LDAP Scripting Examples 218

Logging Scripting Examples 218

Networking Scripting Examples 218

Workflow Scripting Examples 219

3 Developing Actions 221

Reusing Actions 221

Access the Actions View 222

Components of the Actions View 222

Creating Actions 222

Create an Action 223

Find Elements That Implement an Action 223

Action Coding Guidelines 224

Use Action Version History 225

Restore Deleted Actions 226

4 Creating Resource Elements 227

View a Resource Element 227

Import an External Object to Use as a Resource Element 228

Edit the Resource Element Information and Access Rights 228

Save a Resource Element to a File 229

Update a Resource Element 230

Add a Resource Element to a Workflow 230

5 Creating Packages 232

Create a Package 232

Set User Permissions on a Package 233

6 Developing Plug-Ins 235

Overview of Plug-Ins 235

Structure of an Orchestrator Plug-In 236

Exposing an External API to Orchestrator 238

Components of a Plug-In 238

Developing with VMware vRealize Orchestrator

VMware, Inc. 6

Role of the vso.xml File 240

Roles of the Plug-In Adapter 240

Roles of the Plug-In Factory 241

Role of Finder Objects 242

Role of Scripting Objects 243

Role of Event Handlers 243

Contents and Structure of a Plug-In 244

Defining the Application Mapping in the vso.xml File 245

Format of the vso.xml Plug-In Definition File 246

Naming Plug-In Objects 246

Plug-In Object Naming Conventions 247

File Structure of the Plug-In 248

Orchestrator Plug-In API Reference 249

IAop Interface 249

IDynamicFinder Interface 250

IPluginAdaptor Interface 250

IPluginEventPublisher Interface 251

IPluginFactory Interface 252

IPluginNotificationHandler Interface 252

IPluginPublisher Interface 253

WebConfigurationAdaptor Interface 253

PluginTrigger Class 254

PluginWatcher Class 255

QueryResult Class 255

SDKFinderProperty Class 256

PluginExecutionException Class 257

PluginOperationException Class 258

HasChildrenResult Enumeration 258

ScriptingAttribute Annotation Type 259

ScriptingFunction Annotation Type 259

ScriptingParameter Annotation Type 260

Elements of the vso.xml Plug-In Definition File 260

module Element 260

description Element 261

deprecated Element 261

url Element 262

installation Element 262

action Element 262

finder-datasources Element 263

finder-datasource Element 263

inventory Element 264

finders Element 265

Developing with VMware vRealize Orchestrator

VMware, Inc. 7

finder Element 265

properties Element 266

property Element 266

relations Element 267

relation Element 268

id Element 268

inventory-children Element 268

relation-link Element 269

events Element 269

trigger Element 269

trigger-properties Element 270

trigger-property Element 270

gauge Element 270

scripting-objects Element 271

object Element 271

constructors Element 272

constructor Element 272

Constructor parameters Element 272

Constructor parameter Element 273

attributes Element 273

attribute Element 273

methods Element 274

method Element 274

example Element 275

code Element 276

Method parameters Element 276

Method parameter Element 276

singleton Element 276

enumerations Element 277

enumeration Element 277

entries Element 278

entry Element 278

Best Practices for Orchestrator Plug-In Development 278

Approaches for Building Orchestrator Plug-Ins 279

Types of Orchestrator Plug-Ins 281

Plug-In Implementation 285

Recommendations for Orchestrator Plug-In Development 289

Documenting Plug-In User Interface Strings and APIs 292

7 Creating Plug-Ins by Using Maven 294

Create an Orchestrator Plug-In with Maven from an Archetype 294

Maven Archetypes 295

Developing with VMware vRealize Orchestrator

VMware, Inc. 8

Maven-Based Plug-In Development Best Practices 295

Developing with VMware vRealize Orchestrator

VMware, Inc. 9

Developing with
VMware vRealize Orchestrator

Developing with VMware vRealize Orchestrator provides information and instructions for developing
custom VMware® vRealize Orchestrator workflows and actions.

In addition, the documentation contains information about the Orchestrator elements that require scripting
and provides JavaScript examples. Developing with VMware vRealize Orchestrator also provides
instructions about how to create resources and packages.

Intended Audience
This information is intended for developers who want to create custom Orchestrator workflows and
actions, as well as custom building blocks.

VMware, Inc. 10

Developing Workflows 1
You develop workflows in the Orchestrator client interface. Workflow development involves using the
workflow editor, the built-in Mozilla Rhino JavaScript scripting engine, and the Orchestrator and vCenter
Server APIs.

n Key Concepts of Workflows

Workflows consist of a schema, attributes, and parameters. The workflow schema is the main
component of a workflow as it defines all the workflow elements and the logical connections
between them. The workflow attributes and parameters are the variables that workflows use to
transfer data. Orchestrator saves a workflow token every time a workflow runs, recording the details
of that specific run of the workflow.

n Phases in the Workflow Development Process

The process for developing a workflow involves a series of phases. You can follow a different
sequence of phases or skip a phase, depending on the type of workflow that you are developing. For
example, you can create a workflow without custom scripting.

n Best Practices for Developing Workflows

VMware recommends several best practices for developing Orchestrator workflows by multiple
users and in a clustered environment.

n Access Rights for the Orchestrator Client

By default, only members of the Orchestrator administrator LDAP group can access the Orchestrator
client.

n Testing Workflows During Development

You can test workflows at any point during the development process, even if you have not completed
the workflow or included an end element.

n Creating and Editing a Workflow

You create workflows in the Orchestrator client and edit them in the workflow editor. The workflow
editor is the IDE of the Orchestrator client for developing workflows.

n Provide General Workflow Information

You provide a workflow name and desription, define attributes and certain aspects of workflow
behavior, set the version number, check the signature, and set user permissions in the General tab
in the workflow editor.

VMware, Inc. 11

n Defining Attributes and Parameters

After you create a workflow, you must define the global attributes, input parameters, and output
parameters of the workflow.

n Workflow Schema

A workflow schema is a graphical representation of a workflow that shows the workflow as a flow
diagram of interconnected workflow elements. The workflow schema defines the logical flow of a
workflow.

n Developing Plug-Ins

Orchestrator allows integration with management and administration solutions through its open plug-
in architecture. You use the Orchestrator client to run and create plug-in workflows and access the
plug-in API.

n Obtaining Input Parameters from Users When a Workflow Starts

If a workflow requires input parameters, it opens a dialog box in which users enter the required input
parameter values when it runs. You can organize the content and layout, or presentation, of this
dialog box in Presentation tab in the workflow editor.

n (Optional) Requesting User Interactions While a Workflow Runs

A workflow can sometimes require additional input parameters from an outside source while it runs.
These input parameters can come from another application or workflow, or the user can provide
them directly.

n Calling Workflows Within Workflows

Workflows can call on other workflows during their run. A workflow can start another workflow either
because it requires the result of the other workflow as an input parameter for its own run, or it can
start a workflow and let it continue its own run independently. Workflows can also start a workflow at
a given time in the future, or start multiple workflows simultaneously.

n Running a Workflow on a Selection of Objects

You can automate repetitive tasks by running a workflow on a selection of objects. For example, you
can create a workflow that takes a snapshot of all the virtual machines in a virtual machine folder, or
you can create a workflow that powers off all the virtual machines on a given host.

n Developing Long-Running Workflows

A workflow in a waiting state consumes system resources because it constantly polls the object from
which it requires a response. If you know that a workflow will potentially wait for a long time before it
receives the response it requires, you can add long-running workflow elements to the workflow.

n Configuration Elements

A configuration element is a list of attributes you can use to configure constants across a whole
Orchestrator server deployment.

n Workflow User Permissions

Orchestrator defines levels of permissions that you can apply to groups to allow or deny them
access to workflows.

Developing with VMware vRealize Orchestrator

VMware, Inc. 12

n Validating Workflows

Orchestrator provides a workflow validation tool. Validating a workflow helps identify errors in the
workflow and checks that the data flows from one element to the next correctly.

n Debugging Workflows

Orchestrator provides a workflow debugging tool. You can debug a workflow to inspect the input and
output parameters and attributes at the start of any activity, replace parameter or attribute values
during a workflow run in edit mode, and resume a workflow from the last failed activity.

n Running Workflows

An Orchestrator workflow runs according to a logical flow of events.

n Resuming a Failed Workflow Run

If a workflow fails, Orchestrator provides an option to resume the workflow run from the last failed
activity.

n Generate Workflow Documentation

You can export documentation in PDF format about a workflow or a workflow folder that you select at
any time.

n Use Workflow Version History

You can use version history to revert a workflow to a previously saved state. You can revert the
workflow state to an earlier or a later workflow version. You can also compare the differences
between the current state of the workflow and a saved version of the workflow.

n Restore Deleted Workflows

You can restore workflows that have been deleted from the workflow library.

n Develop a Simple Example Workflow

Developing a simple example workflow demonstrates the most common steps in the workflow
development process.

n Develop a Complex Workflow

Developing a complex example workflow demonstrates the most common steps in the workflow
development process and more advanced scenarios, such as creating custom decisions and loops.

Key Concepts of Workflows
Workflows consist of a schema, attributes, and parameters. The workflow schema is the main component
of a workflow as it defines all the workflow elements and the logical connections between them. The
workflow attributes and parameters are the variables that workflows use to transfer data. Orchestrator
saves a workflow token every time a workflow runs, recording the details of that specific run of the
workflow.

Workflow Parameters
Workflows receive input parameters and generate output parameters when they run.

Developing with VMware vRealize Orchestrator

VMware, Inc. 13

Input Parameters
Most workflows require a certain set of input parameters to run. An input parameter is an argument that
the workflow processes when it starts. The user, an application, another workflow, or an action passes
input parameters to a workflow for the workflow to process when it starts.

For example, if a workflow resets a virtual machine, the workflow requires as an input parameter the
name of the virtual machine.

Output Parameters
A workflow's output parameters represent the result from the workflow run. Output parameters can
change when a workflow or a workflow element runs. While workflows run, they can receive the output
parameters of other workflows as input parameters.

For example, if a workflow creates a snapshot of a virtual machine, the output parameter for the workflow
is the resulting snapshot.

Workflow Attributes
Workflow elements process data that they receive as input parameters, and set the resulting data as
workflow attributes or output parameters.

Read-only workflow attributes act as global constants for a workflow. Writable attributes act as a
workflow’s global variables.

You can use attributes to transfer data between the elements of a workflow. You can obtain attributes in
the following ways:

n Define attributes when you create a workflow

n Set the output parameter of a workflow element as a workflow attribute

n Inherit attributes from a configuration element

Workflow Schema
A workflow schema is a graphical representation that shows the workflow as a flow diagram of
interconnected workflow elements. The workflow schema is the most important element of a workflow as
it determines its logic.

Workflow Presentation
When users run a workflow, they provide the values for the input parameters of the workflow in the
workflow presentation. When you organize the workflow presentation, consider the type and number of
input parameters of the workflow.

Workflow Tokens
A workflow token represents a workflow that is running or has run.

Developing with VMware vRealize Orchestrator

VMware, Inc. 14

A workflow is an abstract description of a process that defines a generic sequence of steps and a generic
set of required input parameters. When you run a workflow with a set of real input parameters, you
receive an instance of this abstract workflow that behaves according to the specific input parameters you
give it. This specific instance of a completed or a running workflow is called a workflow token.

Workflow Token Attributes
Workflow token attributes are the specific parameters with which a workflow token runs. The workflow
token attributes are an aggregation of the workflow's global attributes and the specific input and output
parameters with which you run the workflow token.

Phases in the Workflow Development Process
The process for developing a workflow involves a series of phases. You can follow a different sequence of
phases or skip a phase, depending on the type of workflow that you are developing. For example, you
can create a workflow without custom scripting.

Generally, you develop a workflow through the following phases.

1 Create a new workflow or create a duplicate of an existing workflow from the standard library.

2 Provide general information about the workflow.

3 Define the input parameters of the workflow.

4 Lay out and link the workflow schema to define the logical flow of the workflow.

5 Bind the input and output parameters of each schema element to workflow attributes.

6 Write the necessary scripts for scriptable task elements or custom decision elements.

7 Create the workflow presentation to define the layout of the input parameters dialog box that the
users see when they run the workflow.

8 Validate the workflow.

Best Practices for Developing Workflows
VMware recommends several best practices for developing Orchestrator workflows by multiple users and
in a clustered environment.

n Each developer has a dedicated test standalone Orchestrator instance for creating and developing
workflows.

n Workflows are saved as maven projects on a shared source code control system.

n To ensure optimal performance of the Orchestrator production deployment, it is best to import
workflows in a scheduled window.

Developing with VMware vRealize Orchestrator

VMware, Inc. 15

n When importing workflows to an Orchestrator cluster, connect the Orchestrator client to one of the
nodes by using their local host name or IP address, instead of the address of the load balancer virtual
server.

Note Any modifications of a workflow take effect with the next workflow run.

Access Rights for the Orchestrator Client
By default, only members of the Orchestrator administrator LDAP group can access the Orchestrator
client.

The Orchestrator administrator can grant access to the Orchestrator client to other user groups by setting
at least the View permission.

To allow you to access the Orchestrator client, the administrator must either add you to the Orchestrator
administrator LDAP group, or set View, Inspect, Edit, Execute, or Admin permissions to a group that
you are a member of.

Testing Workflows During Development
You can test workflows at any point during the development process, even if you have not completed the
workflow or included an end element.

By default, Orchestrator checks that a workflow is valid before you can run it. You can deactivate
automatic validation during workflow development, to run partial workflows for testing purposes.

Note Do not forget to reactivate automatic validation when you finish developing the workflow.

Procedure

1 In the Orchestrator client menu, click Tools > User preferences.

2 Click the Workflows tab.

3 Deselect the Validate workflow before running it check box.

You deactivated automatic workflow validation.

Creating and Editing a Workflow
You create workflows in the Orchestrator client and edit them in the workflow editor. The workflow editor is
the IDE of the Orchestrator client for developing workflows.

You open the workflow editor by editing an existing workflow.

n Create a Workflow

You can create workflows in the workflows hierarchical list of the Orchestrator client.

n Edit a Workflow

You edit a workflow to make changes to an existing workflow or to develop a new empty workflow.

Developing with VMware vRealize Orchestrator

VMware, Inc. 16

n Edit a Workflow from the Standard Library

Orchestrator provides a standard library of workflows that you can use to automate operations in the
virtual infrastructure. The workflows in the standard library are locked in the read-only state.

n Workflow Editor Tabs

The workflow editor consists of tabs on which you edit the components of the workflows.

Create a Workflow
You can create workflows in the workflows hierarchical list of the Orchestrator client.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Workflows view.

3 (Optional) Right-click the root of the workflows hierarchical list, or a folder in the list, and select Add
folder to create a new workflow folder.

4 (Optional) Type the name of the new folder.

5 Right-click the new folder or an existing folder and select New workflow.

6 Name the new workflow and click OK.

A new empty workflow is created in the folder that you chose.

What to do next

You can edit the workflow.

Edit a Workflow
You edit a workflow to make changes to an existing workflow or to develop a new empty workflow.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Workflows view.

3 Expand the workflows hierarchical list to navigate to the workflow that you want to edit.

4 To open the workflow for editing, right-click the workflow and select Edit.

The workflow editor opens the workflow for editing.

Edit a Workflow from the Standard Library
Orchestrator provides a standard library of workflows that you can use to automate operations in the
virtual infrastructure. The workflows in the standard library are locked in the read-only state.

To edit a workflow from the standard library, you must create a duplicate of that workflow. You can edit
duplicate workflows or custom workflows.

Developing with VMware vRealize Orchestrator

VMware, Inc. 17

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Workflows view.

3 (Optional) Right-click the root of the hierarchical list of workflow folders and select New folder to
create a folder to contain the workflow to edit.

4 Expand the Library hierarchical list of standard workflows to navigate to the workflow to edit.

5 Right-click the workflow to edit.

The Edit option is dimmed. The workflow is read-only.

6 Right-click the workflow and select Duplicate workflow.

7 Provide a name for the duplicate workflow.

By default, Orchestrator names the duplicate workflow Copy of workflow_name.

8 Click the Workflow folder value to search for a folder in which to save the duplicate workflow.

Select the folder you created in Step 3. If you did not create a folder, select a folder that is not in the
library of standard workflows.

9 Click Yes or No to copy the workflow version history to the duplicate.

Option Description

Yes The version history of the original workflow is replicated in the duplicate.

No The version of the duplicate reverts to 0.0.0.

10 Click Duplicate to duplicate the workflow.

11 Right-click the duplicate workflow and select Edit.

The workflow editor opens. You can edit the duplicate workflow.

You duplicated a workflow from the standard library. You can edit the duplicate workflow.

Workflow Editor Tabs
The workflow editor consists of tabs on which you edit the components of the workflows.

Developing with VMware vRealize Orchestrator

VMware, Inc. 18

Table 1‑1. Workflow Editor Tabs

Tab Description

General Edit the workflow name, provide a description of what the
workflow does, set the version number, see the user
permissions, define the behavior of the workflow if the
Orchestrator server restarts, and define the workflow's global
attributes.

Inputs Define the parameters that the workflow requires when it runs.
These input parameters are the data that the workflow
processes. The workflow's behavior changes according to these
parameters.

Outputs Define the values that the workflow generates when it completes
its run. Other workflows or actions can use these values when
they run.

Schema Build the workflow. You build the workflow by dragging workflow
schema elements from the workflow palette on the left side of
the Schema tab. Clicking an element in the schema diagram
allows you to define and edit the element's behavior in the
bottom half of the Schema tab.

Presentation Define the layout of the user input dialog box that appears when
users run a workflow. You arrange the parameters and attributes
into presentation steps and groups to ease identification of
parameters in the input parameters dialog box. You define the
constraints on the input parameters that users can provide in the
presentation by setting the parameter properties.

Parameters References View which workflow elements consume the attributes and
parameters in the logical flow of the workflow. This tab also
shows the constraints on these parameters and attributes that
you define in the Presentation tab.

Workflow Tokens View details about each workflow run. This information includes
the workflow's status, the user who ran it, the business status of
the current element, and the time and date when the workflow
started and ended.

Events View information about each individual event that occurs when
the workflow runs. This information includes a description of the
event, the user who triggered it, the type and origin of the event,
and the time and date when it occurred.

Permissions Set the permissions to interact with the workflow for users or
groups of users.

Provide General Workflow Information
You provide a workflow name and desription, define attributes and certain aspects of workflow behavior,
set the version number, check the signature, and set user permissions in the General tab in the workflow
editor.

Developing with VMware vRealize Orchestrator

VMware, Inc. 19

Prerequisites

Open a workflow for editing in the workflow editor.

Procedure

1 Click the General tab in the workflow editor.

2 Click the Version digits to set a version number for the workflow.

The Version Comment dialog box opens.

3 Type a comment for this version of the workflow and click OK.

For example, type Initial creation if you just created the workflow.

A new version of the workflow is created. You can later revert the state of the workflow to this version.

4 Define how the workflow behaves if the Orchestrator server restarts by setting the Server restart
behavior value.

n Leave the default value of Resume workflow run to make the workflow resume at the point at
which its run was interrupted when the server stopped.

n Click Resume workflow run and select Do not resume workflow run (set as FAILED) to
prevent the workflow from restarting if the Orchestrator server restarts.

Prevent the workflow from restarting if the workflow depends on the environment in which it runs. For
example, if a workflow requires a specific vCenter Server and you reconfigure Orchestrator to
connect to a different vCenter Server, restarting the workflow after you restart the Orchestrator server
causes the workflow to fail.

5 Type a detailed description of the workflow in the Description text box.

6 Click Save at the bottom of the workflow editor.

A green message at the bottom left of the workflow editor confirms that you saved your changes.

You defined aspects of the workflow behavior, set the version, and defined the operations that users can
perform on the workflow.

What to do next

You must define the workflow attributes and parameters.

Defining Attributes and Parameters
After you create a workflow, you must define the global attributes, input parameters, and output
parameters of the workflow.

Workflow attributes store data that workflows process internally. Workflow input parameters are data
provided by an outside source, such as a user or another workflow. Workflow output parameters are data
that the workflow delivers when it finishes its run.

n Define Workflow Parameters

You can use input and output parameters to pass data into and out of the workflow.

Developing with VMware vRealize Orchestrator

VMware, Inc. 20

n Define Workflow Attributes

Workflow attributes are the data that workflows process.

n Attribute and Parameter Naming Restrictions

You can use OGNL expressions to determine input parameters dynamically when a workflow runs.
The Orchestrator OGNL parser uses certain keywords during OGNL processing that you cannot use
in workflow attribute or parameter names.

Define Workflow Parameters
You can use input and output parameters to pass data into and out of the workflow.

You can define the parameters of a workflow in the workflow editor. The input parameters are the initial
data that the workflow requires to run. Users provide the values for the input parameters when they run
the workflow. The output parameters are the data the workflow returns when it completes its run.

Prerequisites

Open a workflow for editing in the workflow editor.

Procedure

1 Click the appropriate tab in the workflow editor.

n Click Inputs to create input parameters.

n Click Outputs to create output parameters.

2 Right-click inside the parameters tab and select Add parameter.

3 Click the parameter name to change it.

The default name is arg_in_X for input parameters and arg_out_X for output parameters, where X
is a number.

4 (Optional) To change the value of the parameter type, click the value and select one from the list of
available values.

The value for the parameter type is String by default.

5 Add a description for the parameter in the Description text box.

6 (Optional) If you decide that the parameter should be an attribute rather than a parameter, right-click
the parameter and select Move as attribute to change the parameter into an attribute.

You have defined an input or output parameter for the workflow.

What to do next

After you define the workflow's parameters, build the workflow schema.

Developing with VMware vRealize Orchestrator

VMware, Inc. 21

Define Workflow Attributes
Workflow attributes are the data that workflows process.

Note You can also define workflow attributes in the workflow schema elements when you create the
workflow schema. It is often easier to define an attribute when you create the workflow schema element
that processes it.

Prerequisites

Open a workflow for editing in the workflow editor.

Procedure

1 Click the General tab in the workflow editor.

The attributes pane appears in the bottom half of the General tab.

2 Right-click in the attributes pane and select Add Attribute.

A new attribute appears in the attributes list, with String as its default type.

3 Click the attribute name to change it.

The default name is attX, where X is a number.

Note Workflow attributes must not have the same name as any of the workflow's parameters.

4 Click the attribute type to select a new type from a list of possible values.

The default attribute type is String.

5 Click the attribute value to set or select a value according to the attribute type.

6 Add a description of the attribute in the Description text box.

7 If the attribute is a constant rather than a variable, click the check box to the left of the attribute name
to make its value read-only.

The lock icon identifies the column of read-only check boxes.

8 (Optional) If you decide that the attribute should be an input or output parameter rather than an
attribute, right-click the attribute and select Move as INPUT/OUTPUT parameter to change the
attribute into a parameter.

You defined an attribute for the workflow.

What to do next

You can define the workflow's input and output parameters.

Developing with VMware vRealize Orchestrator

VMware, Inc. 22

Attribute and Parameter Naming Restrictions
You can use OGNL expressions to determine input parameters dynamically when a workflow runs. The
Orchestrator OGNL parser uses certain keywords during OGNL processing that you cannot use in
workflow attribute or parameter names.

Using a reserved OGNL keyword as a prefix to an attribute name does not break OGNL processing. For
example, you can name a parameter trueParameter. Reserved keywords are not case-sensitive.

You cannot use the following keywords in workflow attribute and parameter names.

Table 1‑2. Forbidden Keywords in Attribute and Parameter Names

Forbidden Keyword Forbidden Keyword Forbidden Keyword

n abstract

n back_char_esc

n back_char_literal

n boolean

n byte

n char

n char_literal

n class

n _classResolver

n const

n context

n debugger

n dec_digits

n dec_flt

n default

n delete

n digit

n double

n dynamic_subscript

n enum

n eof

n esc

n exponent

n export

n extends

n false

n final

n flt_literal

n flt_suff

n ident

n implements

n import

n in

n int

n int_literal

n interface

n _keepLastEvaluation

n _lastEvaluation

n letter

n long

n _memberAccess

n native

n package

n private

n public

n root

n short

n static

n string_esc

n string_literal

n synchronized

n this

n _traceEvaluations

n true

n _typeConverter

n volatil

n with

n WithinBackCharLiteral

n WithinCharLiteral

n WithinStringLiteral

Workflow Schema
A workflow schema is a graphical representation of a workflow that shows the workflow as a flow diagram
of interconnected workflow elements. The workflow schema defines the logical flow of a workflow.

n View Workflow Schema

You view the schema of a workflow in the Schema tab for that workflow in the Orchestrator client.

n Building a Workflow in the Workflow Schema

Workflow schemas consist of a sequence of schema elements. Workflow schema elements are the
building blocks of the workflow, and can represent decisions, scripted tasks, actions, exception
handlers, or even other workflows.

Developing with VMware vRealize Orchestrator

VMware, Inc. 23

n Schema Elements

The workflow editor presents the workflow schema elements in menus on the Schema tab. You can
use the schema elements available in the Schema tab to build a workflow.

n Schema Element Properties

Schema elements have properties that you can define and edit in the Schema tab of the workflow
palette.

n Links and Bindings

Links between elements determine the logical flow of the workflow. Bindings populate elements with
data from other elements by binding input and output parameters to workflow attributes.

n Decisions

Workflows can implement decision functions that define different courses of action according to a
Boolean true or false statement.

n Exception Handling

Exception handling catches any errors that occur when a schema element runs. Exception handling
defines how the schema element behaves when the error occurs.

n Using Error Handlers

You can use a standard error handler to define the behavior in case an error occurs in a specific
workflow schema element. You can use a global error handler to define the behavior in case errors
that are not caught by standard error handlers occur.

n Foreach Elements and Composite Types

You can insert a Foreach element in the workflow that you develop to run a subworkflow that iterates
over arrays of parameters or attributes. To improve the understanding and readability of the
workflow, you can group several workflow parameters of different types that are logically connected
in a single type that is called a composite type.

n Add a Switch Activity to a Workflow

You can add a basic switch activity to a workflow schema that defines the switch cases based on
workflow attributes or parameters.

View Workflow Schema
You view the schema of a workflow in the Schema tab for that workflow in the Orchestrator client.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Navigate to a workflow in the workflow hierarchical list.

3 Click the workflow.

Information about that workflow appears in the right pane.

4 Select the Schema tab in the right pane.

Developing with VMware vRealize Orchestrator

VMware, Inc. 24

You see the graphical representation of the workflow.

Building a Workflow in the Workflow Schema
Workflow schemas consist of a sequence of schema elements. Workflow schema elements are the
building blocks of the workflow, and can represent decisions, scripted tasks, actions, exception handlers,
or even other workflows.

You build workflows in the workflow editor by dragging schema elements from the workflow palette on the
left of the workflow editor into the workflow schema diagram.

Edit a Workflow Schema
You build a workflow by creating a sequence of schema elements that define the logical flow of the
workflow.

By default, all elements in the workflow schema are linked. Links between the elements are represented
as arrows. When you add a new element to the workflow schema, you must drag it onto an arrow or an
existing workflow element that is not linked to a next element. After you add workflow elements to the
schema, you can delete existing links and create new links to define the logical flow of the workflow.

You can copy an element or a selection of elements from the schema of an existing workflow to the
schema of the workflow that you are editing. See Copy Workflow Schema Elements.

A workflow schema must have at least one End workflow element, but it can have several.

Prerequisites

Open a workflow for editing in the workflow editor.

Procedure

1 Click the Schema tab in the workflow editor.

2 Drag a schema element from the Generic menu in the left pane, to the workflow schema.

3 Double-click the element you dragged to the workflow schema, type an appropriate name, and press
Enter.

You must provide elements with unique names in the context of the workflow.

You cannot rename Waiting timer, Waiting event, End workflow, or Throw exception elements.

4 (Optional) Right-click an element in the schema and select Copy.

5 (Optional) Right-click at an appropriate position in the schema and select Paste.

Copying and pasting existing schema elements is a quick way of adding similar elements to the
schema. All of the settings of the copied element appear in the pasted element, except for the
business state. Adjust the pasted element settings accordingly.

Developing with VMware vRealize Orchestrator

VMware, Inc. 25

6 Drag schema elements from the Basic, Log, or Network menus to the workflow schema.

You can edit the names of the elements in the Basic, Log, or Network menus. You cannot edit their
scripting.

7 Drag schema elements from the Generic menu to the workflow schema.

When you drag actions or workflows to the workflow schema, a dialog box in which you can search
for the action or workflow to insert appears.

8 In the Filter text box, type the name or part of the name of the workflow or action to insert in the
workflow.

The workflows or actions that match the search appear in the dialog box.

9 Double-click a workflow or action to select it.

You inserted the workflow or action in the workflow schema.

10 Repeat this procedure until you have added all of the required schema elements to the workflow
schema.

What to do next

Define the properties of the elements you added to the workflow schema and link and bind them all
together.

Copy Workflow Schema Elements
You can copy an element or a selection of elements from the schema of an existing workflow to the
schema of the workflow that you are editing.

Prerequisites

Open a workflow for editing in the workflow editor.

Procedure

1 Click the Schema tab in the workflow editor.

2 From the left pane, select the workflow from which you want to copy schema elements.

n Click All Workflows and select the workflow from the hierarchical list of workflows.

n Type the name of the workflow in the search text box and press Enter.

3 Right-click the selected workflow and select Open.

A window displaying the workflow's properties appears.

4 In the workflow's window, click the Schema tab.

5 Select one or more workflow schema elements, right-click the selection, and select Copy.

6 In the Schema tab of the workflow that you are editing, right-click and select Paste.

You copied workflow schema elements from one workflow to another.

Developing with VMware vRealize Orchestrator

VMware, Inc. 26

What to do next

You must link and bind the copied schema elements to the existing workflow schema.

Promote Input and Output Parameters
You can promote the input and output parameters of a child element to the parent workflow.

You can promote a custom attribute that you have defined on the General tab of the workflow editor. You
can promote predefined attributes only by replacing an input parameter with an attribute of matching type.

Note If you promote a predefined attribute and assign a custom value to it, a duplicate attribute is
created to avoid overwriting the value of the original attribute. The duplicate attribute retains the name of
the original attribute and increments the numerical value at the end of the attribute's name.

Prerequisites

Open a workflow for editing in the workflow editor.

Procedure

1 Click the Schema tab in the workflow editor.

2 Add a workflow or an action element to the workflow schema.

The following notification appears at the top of the schema pane.

Do you want to add the activity's parameters as input/output to the current

workflow?

3 On the notification, click Setup.

A pop-up window with the available options appears.

4 Select the mapping type for each input parameter.

Option Description

Input The argument is mapped to an input workflow parameter.

Skip The argument is mapped to a NULL value.

Value The argument is mapped to an attribute with a value that you can set from the
Value column.

5 Select the mapping type for each output parameter.

Option Description

Output The argument is mapped to an output workflow parameter.

Skip The argument is mapped to a NULL value.

Local variable The argument is mapped to an attribute.

6 Click Promote.

You promoted parameters to the parent workflow.

Developing with VMware vRealize Orchestrator

VMware, Inc. 27

Modify Search Results
You use the Search text box to find elements such as workflows or actions. If a search returns a partial
result, you can modify the number of results that the search returns.

When you use the search for an element, a green message box indicates that the search lists all the
results. A yellow message box indicates that the search lists only partial results.

Procedure

1 (Optional) If you are editing a workflow in the workflow editor, click Save and Close to exit the editor.

2 From the Orchestrator client menu, select Tools > User preferences.

3 Click the General tab.

4 Type the number of results for searches to return in the Finder Maximum Size text box.

5 Click Save and Close in the User Preferences dialog box.

You modified the number of results that searches return.

Schema Elements
The workflow editor presents the workflow schema elements in menus on the Schema tab. You can use
the schema elements available in the Schema tab to build a workflow.

Table 1‑3. Schema Elements and Icons

Schema Element
Name Description Icon Location in Workflow Editor

Start Workflow The starting point of the workflow. All workflows
contain this element. A workflow can have only
one start element. Start elements have one
output and no input, and cannot be removed
from the workflow schema.

Always present on the Schema
tab

Scriptable task General purpose tasks you define. You write
JavaScript functions in this element.

The Generic workflow palette

Decision A boolean function. Decision elements take
one input parameter and return either true or
false. The type of decision that the element
makes depends on the type of the input
parameter. Decision elements let the workflow
branch into different directions, depending on
the input parameter the decision element
receives. If the received input parameter
corresponds to an expected value, the
workflow continues along a certain route. If the
input is not the expected value, the workflow
continues on an alternative path.

The Generic workflow palette

Developing with VMware vRealize Orchestrator

VMware, Inc. 28

Table 1‑3. Schema Elements and Icons (Continued)

Schema Element
Name Description Icon Location in Workflow Editor

Custom decision A boolean function. Custom decisions can take
several input parameters and process them
according to custom scripts. Returns either
true or false.

The Generic workflow palette

Decision activity A boolean function. A decision activity runs a
workflow and binds its output parameters to a
true or a false path.

The Generic workflow palette

User interaction Lets users pass new input parameters to the
workflow. You can design how the user
interaction element presents the request for
input parameters and place constraints on the
parameters that users can provide. You can set
permissions to determine which users can
provide the input parameters. When a running
workflow arrives at a user interaction element,
it enters a passive state and prompts the user
for input. You can set a timeout period within
which the users must provide input. The
workflow resumes according to the data the
user passes to it, or returns an exception if the
timeout period expires. While it is waiting for
the user to respond, the workflow token is in
the waiting state.

The Generic workflow palette

Waiting timer Used by long-running workflows. When a
running workflow arrives at a Waiting Timer
element, it enters a passive state. You set an
absolute date at which the workflow resumes
running. While it is waiting for the date, the
workflow token is in the waiting-signal
state.

The Generic workflow palette

Waiting event Used in long-running workflows. When a
running workflow arrives at a Waiting Event
element, it enters a passive state. You define a
trigger event that the workflow awaits before it
resumes running. While it is waiting for the
event, the workflow token is in the waiting-
signal state.

The Generic workflow palette

End workflow The end point of a workflow. You can have
multiple end elements in a schema, to
represent the various possible outcomes of the
workflow. End elements have one input with no
output. When a workflow reaches an End
Workflow element, the workflow token enters
the completed state.

The Generic workflow palette

Developing with VMware vRealize Orchestrator

VMware, Inc. 29

Table 1‑3. Schema Elements and Icons (Continued)

Schema Element
Name Description Icon Location in Workflow Editor

Thrown exception Creates an exception and stops the workflow.
Multiple occurrences of this element can be
present in the workflow schema. Exception
elements have one input parameter, which can
only be of the String type, and have no output
parameter. When a workflow reaches an
Exception element, the workflow token enters
the failed state.

The Generic workflow palette

Workflow note Lets you annotate sections of the workflow.
You can stretch notes to delineate sections of
the workflow. You can change the background
color of the notes to differentiate workflow
zones. Workflow notes provide only visual
information, to help you understand the
schema.

The Generic workflow palette

Action element Calls on an action from the Orchestrator
libraries of actions. When a workflow reaches
an action element, it calls and runs that action.

The Generic workflow palette

Workflow element Starts another workflow synchronously. When
a workflow reaches a Workflow element in its
schema, it runs that workflow as part of its own
process. The original workflow continues only
after the called workflow completes its run.

The Generic workflow palette

Foreach element Runs a workflow on every element from an
array. For example, you can run the Rename
Virtual Machine workflow on all virtual
machines from a folder.

The Generic workflow palette

Asynchronous
workflow

Starts a workflow asynchronously. When a
workflow reaches an asynchronous workflow
element, it starts that workflow and continues
its own run. The original workflow does not wait
for the called workflow to complete.

The Generic workflow palette

Schedule workflow Creates a task to run the workflow at a set
time, and then the workflow continues its run.

The Generic workflow palette

Nested workflows Starts several workflows simultaneously. You
can choose to nest local workflows and remote
workflows that are in a different Orchestrator
server. You can also run workflows with
different credentials. The workflow waits for all
the nested workflows to complete before
continuing its run.

The Generic workflow palette

Developing with VMware vRealize Orchestrator

VMware, Inc. 30

Table 1‑3. Schema Elements and Icons (Continued)

Schema Element
Name Description Icon Location in Workflow Editor

Handle error Handles an error for a specific workflow
element. The workflow can handle the error by
creating an exception, calling another workflow,
or running a custom script.

The Generic workflow palette

Default error handler Handles workflow errors that are not caught by
standard error handlers. You can use any
available schema elements to handle errors.

The Generic workflow palette

Switch Switches to alternative workflow paths, based
on a workflow attribute or parameter.

The Generic workflow palette

Pre-Defined Task Noneditable scripted elements that perform
standard tasks that workflows commonly use.
The following tasks are predefined:

Basic
n Sleep
n Change credential
n Wait until date
n Wait for custom event
n Increase counter
n Decrease counter

Log
n System log
n System warning
n System error
n Server log
n Server warning
n Server error
n System+Server log
n System+Server warning
n System+Server error

Network
n HTTP post
n HTTP get

The Basic, Log, and Network
workflow palettes

Schema Element Properties
Schema elements have properties that you can define and edit in the Schema tab of the workflow palette.

Edit the Global Properties of a Schema Element
You define the global properties of a schema element in the element's Info tab.

Developing with VMware vRealize Orchestrator

VMware, Inc. 31

Prerequisites

Verify that the Schema tab of the workflow editor contains elements.

Procedure

1 Click the Schema tab in the workflow editor.

2 Select an element to edit by clicking the Edit icon ().

A dialog box that lists the properties of the element appears.

3 Click the Info tab.

4 Provide a name for the schema element in the Name text box.

This is the name that appears in the schema element in the workflow schema diagram.

5 From the Interaction drop-down menu, select a description.

The Interaction property allows you to select between standard descriptions of how this element
interacts with objects outside of the workflow. This property is for information only.

6 (Optional) Provide a business status description in the Business Status text box.

The Business Status property is a brief description of what this element does. When a workflow is
running, the workflow token shows the Business Status of each element as it runs. This feature is
useful for tracking workflow status.

7 (Optional) In the Description text box, type a description of the schema element.

Schema Element Properties Tabs
You access the properties of a schema element by clicking on an element that you have dragged into the
workflow schema. The properties of the element appear in tabs at the bottom of the workflow editor.

Different schema elements have different properties tabs.

Table 1‑4. Properties Tabs per Schema Element

Schema Element Property Tab Description Applies to Schema Element Type

Attributes Attributes that elements require
from an external source, such as
the user, an event, or a timer. The
attributes can be a timeout limit, a
time and date, a trigger, or user
credentials.

n User Interaction
n Waiting Event
n Waiting Timer

Decision Defines the decision statement.
The input parameter that the
decision element receives either
matches or does not match the
decision statement, resulting two
possible courses of action.

Decision

Developing with VMware vRealize Orchestrator

VMware, Inc. 32

Table 1‑4. Properties Tabs per Schema Element (Continued)

Schema Element Property Tab Description Applies to Schema Element Type

End Workflow Stops the workflow, either because
the workflow completed
successfully, or because it
encountered an error and returned
an exception.

n End
n Exception

Exception How this schema element
behaves in the event of an
exception.

n Action
n Asynchronous Workflow
n Exception
n Nested Workflows
n Predefined Task
n Schedule Workflow
n Scriptable Task
n User Interaction
n Waiting Event
n Waiting Timer
n Workflow

External Inputs Input parameters that the user
must provide at a certain moment
while the workflow runs.

User Interaction

IN The IN binding for this element.
The IN binding defines the way in
which the schema element
receives input from the element
that precedes it in the workflow.

n Action
n Asynchronous Workflow
n Custom Decision
n Predefined Task
n Schedule Workflow
n Scriptable Task
n Workflow

Info The schema element's general
properties and description. The
information the Info tab displays
depends on the type of schema
element.

n Action
n Asynchronous Workflow
n Custom Decision
n Decision
n Nested Workflows
n Note
n Predefined Task
n Schedule Workflow
n Scriptable Task
n User Interaction
n Waiting Event
n Waiting Timer
n Workflow

Developing with VMware vRealize Orchestrator

VMware, Inc. 33

Table 1‑4. Properties Tabs per Schema Element (Continued)

Schema Element Property Tab Description Applies to Schema Element Type

OUT The OUT binding for this element.
The OUT binding defines the way
in which the schema element
binds output parameters to the
workflow attributes or to the
workflow output parameters.

n Action
n Asynchronous Workflow
n Predefined Task
n Schedule Workflow
n Scriptable Task
n Workflow

Presentation Defines the layout of the input
parameters dialog box the user
sees if the workflow needs user
input while it is running.

User Interaction

Scripting Shows the JavaScript function that
defines the behavior of this
schema element. For
Asynchronous Workflow, Schedule
Workflow, and Action elements
this scripting is read-only. For
scriptable task and custom
decision elements, you edit the
JavaScript in this tab.

n Action
n Asynchronous Workflow
n Custom Decision
n Predefined Task
n Schedule Workflow
n Scriptable Task

Visual Binding Shows a graphical representation
of how the parameters and
attributes of this schema element
bind to the parameters and
attributes of the elements that
come before and after it in the
workflow. This is another
representation of the element's IN
and OUT bindings.

n Action
n Asynchronous Workflow
n Predefined Task
n Schedule Workflow
n Scriptable Task
n Workflow

Workflows Selects the workflows to nest. Nested Workflows

Links and Bindings
Links between elements determine the logical flow of the workflow. Bindings populate elements with data
from other elements by binding input and output parameters to workflow attributes.

To understand links and bindings, you must understand the difference between the logical flow of a
workflow and the data flow of a workflow.

Logical Flow of a Workflow
The logical flow of a workflow is the progression of the workflow from one element to the next in the
schema as the workflow runs. You define the logical flow of the workflow by linking elements in the
schema.

The standard path is the path that the workflow takes through the logical flow if all elements run as
expected. The exception path is the path that the workflow takes through the logical flow if an element
does not run as expected.

Developing with VMware vRealize Orchestrator

VMware, Inc. 34

Different styles of arrows in the workflow schema denote the different paths that the workflow can take
through its logical flow.

n A blue arrow denotes the standard path that the workflow takes from one element to the next.

n A green arrow denotes the path that the workflow takes if a Boolean decision element returns true.

n A red dotted arrow denotes the path that the workflow takes if a Boolean decision element returns
false.

n A red dashed arrow denotes the exception path that the workflow takes if a workflow element does
not run correctly.

The following figure shows an example workflow schema that demonstrates the different paths that
workflows can take.

Figure 1‑1. Different Workflow Paths Through the Logical Flow of the Workflow

This example workflow can take the following paths through its logical flow.

n Standard path, true decision result, no exceptions.

a The decision element returns true.

b The SnapVMsInResourcePool workflow runs successfully.

c The sendHtmlEmail action runs successfully.

d The workflow ends successfully in the completed state.

Developing with VMware vRealize Orchestrator

VMware, Inc. 35

n Standard path, false decision result, no exceptions.

a The decision element returns false.

b The operation the scriptable task element defines runs successfully.

c The sendHtmlEmail action runs successfully.

d The workflow ends successfully in the completed state.

n true decision result, exception.

a The decision element returns true.

b The SnapVMsInResourcePool workflow encounters an error.

c The workflow returns an exception and stops in the failed state.

n false decision result, exception.

a The decision element returns false.

b The operation the Scriptable task element defines encounters an error.

c The workflow returns an exception and stops in the failed state.

Element Links
Links connect schema elements and define the logical flow of the workflow from one element to the next.

Elements can usually set only one outgoing link to another element in the workflow and one exception link
to an element that defines its exception behavior. The outgoing link defines the standard path of the
workflow. The exception link defines the exception path of the workflow. In most cases, a single schema
element can receive incoming standard path links from multiple elements.

The following elements are exceptions to the preceding statements.

n The Start Workflow element cannot receive incoming links and has no exception link.

n Exception elements can receive multiple incoming exception links, and have no outgoing or exception
links.

n Decision elements have two outgoing links that define the paths the workflow takes depending on the
decision's true or false result. Decisions have no exception link.

n End Workflow elements cannot have outgoing links or exception links.

Create Standard Path Links
Standard path links determine the normal run of the workflow.

When you link one element to another, you always link the elements in the order in which they run in the
workflow. You always start from the element that runs first to create a link between two elements.

Prerequisites

n Open a workflow for editing in the workflow editor.

Developing with VMware vRealize Orchestrator

VMware, Inc. 36

n Verify that the Schema tab of the workflow editor contains elements.

Procedure

1 Place the pointer on the element that you want to connect to another element.

A blue and a red arrow appear on the element's right.

2 Place the pointer on the blue arrow.

The blue arrow enlarges.

3 Left-click the blue arrow, hold down the left mouse button, and move the pointer to the target element.

A blue arrow appears between the two elements and a green rectangle appears around the target
element.

4 Release the left mouse button.

The blue arrow remains between the two elements.

A standard path now links the elements.

What to do next

The elements are joined, but you have not defined the data flow. You must define the IN and OUT
bindings to bind incoming and outgoing data to workflow attributes.

Data Flow of a Workflow
The data flow of a workflow is the manner in which workflow element input and output parameters bind to
workflow attributes as each element of the workflow runs. You define the data flow of a workflow by using
schema element bindings.

When an element in the workflow schema runs, it requires data in the form of input parameters. It takes
the data for its input parameters by binding to a workflow attribute that you set when you create the
workflow, or by binding to an attribute that a preceding element in the workflow set when it ran.

The element processes the data, possibly transforms it, and generates the results of its run in the form of
output parameters. The element binds its resulting output parameters to new workflow attributes that it
creates. Other elements in the schema can bind to these new workflow attributes as their input
parameters. The workflow can generate the attributes as its output parameters at the end of its run.

The following figure shows a very simple workflow. The blue arrows represent the element linking and the
logical flow of the workflow. The red lines show the data flow of the workflow.

Developing with VMware vRealize Orchestrator

VMware, Inc. 37

Figure 1‑2. Example of Workflow Data Flow

Input parameters
A

Scriptable
task

Workflow attributes
C

Workflow attributes
E

Scriptable
task

Input parameters
B

Scriptable
task

Workflow attributes
D

Output parameter
F

Scriptable
task

The data flows through the workflow as follows.

1 The workflow starts with input parameters a and b.

2 The first element processes parameter a and binds the result of the processing to workflow attribute
c.

3 The first element processes parameter b and binds the result of the processing to workflow attribute
d.

4 The second element takes workflow attribute c as an input parameter, processes it, and binds the
resulting output parameter to workflow attribute e.

5 The second element takes workflow attribute d as an input parameter, processes it, and generates
output parameter f.

6 The workflow ends and generates workflow attribute f as its output parameter, the result of its run.

Element Bindings
You must bind all workflow element input and output parameters to workflow attributes. Bindings set data
in the elements, and define the output and exception behavior of the elements. Links define the logical
flow of the workflow, whereas bindings define the data flow.

Developing with VMware vRealize Orchestrator

VMware, Inc. 38

To set data in an element, generate output parameters from the element after processing, and handle any
errors that might occur when the element runs, you must set the element binding.

IN bindings Set a schema element's incoming data. You bind the element's local input
parameters to source workflow attributes. The IN tab lists the element's
input parameters in the Local Parameter column. The IN tab lists the
workflow attributes to which the local parameter binds in the Source
Parameter column. The tab also displays the parameter type and a
description of the parameter.

OUT bindings Change workflow attributes and generate output parameters when an
element finishes its run. The OUT tab lists the element's output parameters
in the Local Parameter column. The OUT tab lists the workflow attributes to
which the local parameter binds in the Source Parameter column. The tab
also displays the parameter type and a description of the parameter.

Exception bindings Link to exception handlers if the element encounters an exception when it
runs.

IN bindings read values from the bound source parameter. OUT bindings write values into the bound
source parameter.

You must use IN bindings to bind every attribute or input parameter you use in a schema element to a
workflow attribute. If the element changes the values of the input parameters that it receives when it runs,
you must bind them to a workflow attribute by using an OUT binding. Binding the element's output
parameters to workflow elements lets other elements that follow it in the workflow schema to take those
output parameters as their input parameters.

A common mistake when creating workflows is to not bind output parameter values to reflect the changes
that the element makes to the workflow attributes.

Important When you add an element that requires input and output parameters of a type that you have
already defined in the workflow, Orchestrator sets the bindings to these parameters. You must verify that
the parameters that Orchestrator binds are correct, in case the workflow defines different parameters of
the same type to which the element can bind.

Define Element Bindings
After you link elements to create the logical flow of the workflow, you define element bindings to define
how each element processes the data it receives and generates.

Prerequisites

Verify that you have a workflow schema in the Schema tab of the workflow editor, and that you have
created links between the elements.

Developing with VMware vRealize Orchestrator

VMware, Inc. 39

Procedure

1 Click the Edit icon () of the element on which to set the bindings.

A dialog box that lists the properties of the element appears.

2 Click the IN tab.

The contents of the IN tab depend on the type of element you selected.

n If you selected a predefined task, workflow, or action element, the IN tab lists the possible local
input parameters for that type of element, but the binding is not set.

n If you selected another type of element, you can select from a list of input parameters and
attributes you already defined for the workflow by right-clicking in the IN tab and selecting Bind to
workflow parameter/attribute.

n If the required attribute does not exist yet, you can create it by right-clicking in the IN tab and
selecting Bind to workflow parameter/attribute > Create parameter/attribute in workflow.

3 If an appropriate parameter exists, choose an input parameter to bind, and click the Not set button in
the Source Parameter text box.

A list of possible source parameters and attributes to bind to appears.

4 Choose a source parameter to bind to the local input parameter from the list proposed.

5 (Optional) If you have not defined the source parameter to which to bind, you can create it by clicking
the Create parameter/attribute in workflow link in the parameter selection dialog box.

6 Click the OUT tab.

The contents of the OUT tab depend on the type of element you selected.

n If you selected a predefined task, workflow, or action element, the OUT tab lists the possible local
output parameters for that type of element, but the binding is not set.

n If you selected another type of element, you can select from a list of output parameters and
attributes you defined for the workflow by right-clicking in the OUT tab and selecting Bind to
workflow parameter/attribute.

n If the required attribute does not exist, you can create it by right-clicking in the IN tab and
selecting Bind to workflow parameter/attribute > Create parameter/attribute in workflow.

7 Choose a parameter to bind.

8 Click the Source Parameter > Not set button.

9 Choose a source parameter to bind to the input parameter.

10 (Optional) If you did not define the parameter to which to bind, you can create it by clicking the Create
parameter/attribute in workflow button in the parameter selection dialog box.

You defined the input parameters that the element receives and the output parameters that it generates,
and bound them to workflow attributes and parameters.

Developing with VMware vRealize Orchestrator

VMware, Inc. 40

What to do next

You can create forks in the path of the workflow by defining decisions.

Decisions
Workflows can implement decision functions that define different courses of action according to a Boolean
true or false statement.

Decisions are forks in the workflow. Workflow decisions are made according to inputs provided by you, by
other workflows, by applications, or by the environment in which the workflow is running. The value of the
input parameter that the decision element receives determines which branch of the fork the workflow
takes. For example, a workflow decision might receive the power status of a given virtual machine as its
input. If the virtual machine is powered on, the workflow takes a certain path through its logical flow. If the
virtual machine is powered off, the workflow takes a different path.

Decisions are always Boolean functions. The only possible outcomes for each decision are true or
false.

Custom Decisions
Custom decisions differ from standard decisions in that you define the decision statement in a script.
Custom decisions return true or false according to the statement you define, as the following example
shows.

if (decision_statement){

 return true;

}else{

 return false;

}

Create Decision Element Links
Decision elements differ from other elements in a workflow. They have only true or false output
parameters. Decision elements have no exception linking.

Prerequisites

Verify that the Schema tab of the workflow editor contains elements, including at least one decision
element that is not linked to other elements.

Procedure

1 Place the mouse pointer on a decision element to link it to two other elements that define two
possible branches in the workflow.

A blue arrow and a red arrow appear on the element's right.

Developing with VMware vRealize Orchestrator

VMware, Inc. 41

2 Place the pointer on the blue arrow, and while keeping the left mouse button pressed, move the
pointer to the target element.

A green arrow appears between the two elements and the target element turns green. The green
arrow represents the true path the workflow takes if the input parameter or attribute received by the
decision element matches the decision statement.

3 Release the left mouse button.

The green arrow remains between the two elements. You have defined the path the workflow takes
when the decision element receives the expected value.

4 Place the pointer on the decision element, hold down the left mouse button, and move the pointer to
the target element.

A dotted red arrow appears between the two elements and the target element turns green. The red
arrow represents the false path that the workflow takes if the input parameter or attribute received
by the decision element does not match the decision statement.

5 Release the left mouse button.

The dotted red arrow remains between the two elements. You have defined the path the workflow
takes when the decision element receives unexpected input.

You have defined the possible true or false paths that the workflow takes depending on the input
parameter or attribute the decision element receives.

What to do next

Define the decision statement. See Create Workflow Branches Using Decisions.

Delete a Linked Decision Element
When you delete a linked decision element from a workflow schema, you must specify which workflow
paths to delete.

Prerequisites

Verify that the Schema tab of the workflow editor contains elements, including at least one decision
element with true and false paths.

Procedure

1 Select the decision element and press Delete.

A dialog box with available options appears.

2 Select which decision branch to delete.

Option Description

Success branch The decision element and all elements that follow the true decision path are
deleted from the workflow schema.

Failure branch The decision element and all elements that follow the false decision path are
deleted from the workflow schema.

Developing with VMware vRealize Orchestrator

VMware, Inc. 42

Option Description

Both branches The decision element and all elements that follow both decision paths are deleted
from the workflow schema.

None Only the decision element and its links are deleted from the workflow schema. All
elements that follow both decision paths remain in the workflow schema.

3 Click OK.

Create Workflow Branches Using Decisions
Decision elements are simple Boolean functions that you use to create branches in workflows. Decision
elements determine whether the input received matches the decision statement you set. As a function of
this decision, the workflow continues its course along one of two possible paths.

Prerequisites

Verify that you have a decision element linked to two other elements in the schema in the workflow editor
before you define the decision.

Procedure

1 Click the Edit icon () of the decision element.

A dialog box that lists the properties of the decision element appears.

2 Click the Decision tab in the dialog box.

3 Click the Not Set (NULL) link to select the source input parameter for this decision.

A dialog box that lists all the attributes and input parameters defined in this workflow appears.

4 Select an input parameter from the list by double-clicking it.

5 If you did not define the source parameter to which to bind, create it by clicking the Create
attribute/parameter in workflow link in the parameter selection dialog box.

6 Select a decision statement from the drop-down menu.

The statements that the menu proposes are contextual, and differ according to the type of input
parameter selected.

7 Add a value that you want the decision statement to match.

Depending on the input type and the statement you select, you might see a Not Set (NULL) link in
the value text box. Clicking this link gives you a predefined choice of values. Otherwise, for example
for Strings, this is a text box in which you provide a value.

You defined a statement for the decision element. When the decision element receives the input
parameter, it compares the value of the input parameter to the value in the statement and determines
whether the statement is true or false.

What to do next

You must set how the workflow handles exceptions.

Developing with VMware vRealize Orchestrator

VMware, Inc. 43

Exception Handling
Exception handling catches any errors that occur when a schema element runs. Exception handling
defines how the schema element behaves when the error occurs.

All elements in a workflow, except for decisions and start and end elements, contain a specific output
parameter type that serves only for handling exceptions. If an element encounters an error during its run,
it can send an error signal to an exception handler. Exception handlers catch the error and react
according to the errors they receive. If the exception handlers you define cannot handle a certain error,
you can bind an element's exception output parameter to an Exception element, which ends the workflow
run in the failed state.

Exceptions act as a try and catch sequence within a workflow element. If you do not need to handle a
given exception in an element, you do not have to bind that element's exception output parameter.

The output parameter type for exceptions is always an errorCode object.

Create Exception Bindings
Elements can set bindings that define how the workflow behaves if it encounters an error in that element.

Prerequisites

Verify that the Schema tab of the workflow editor contains elements.

Procedure

1 Place the pointer on the element for which you want to define exception binding.

A red arrow appears on the element's right.

2 Place the pointer on the red arrow until it enlarges, hold down the left mouse button, and drag the red
arrow to the target element.

A red dashed arrow links the two elements. The target element defines the behavior of the workflow if
the element that links to it encounters an error.

3 Click the Edit icon () of the element that links to the exception handling element.

4 Click the Exception tab in the schema element properties tabs.

5 To set the Output exception binding value, click Not set.

n Select a parameter to bind to the exception output parameter from the exception attribute binding
dialog box and click Select.

n Click Create parameter/attribute in workflow to create an exception output parameter.

6 Click the target element that defines the exception handling behavior.

7 Click the IN tab in the schema element properties tabs.

Developing with VMware vRealize Orchestrator

VMware, Inc. 44

8 Click the Bind to workflow parameter/attribute icon ().

The dialog box for selecting the input parameter appears.

9 Select the exception output parameter and click Select.

10 Click the OUT tab for the exception handling element in the schema element properties tabs.

11 Define the behavior of the exception handling element.

n Click the Bind to workflow parameter/attribute icon () to select an output parameter for the
exception handling element to generate.

n Click the Scripting tab and use JavaScript to define the behavior of the exception handling
element.

You defined how the element handles exceptions.

What to do next

You must define how to obtain input parameters from users when they run the workflow.

Using Error Handlers
You can use a standard error handler to define the behavior in case an error occurs in a specific workflow
schema element. You can use a global error handler to define the behavior in case errors that are not
caught by standard error handlers occur.

Add an Error Handler to a Workflow
You can define how errors in a specific workflow element are handled during a workflow run by adding an
error handler to the workflow element. You can add an error handler only to workflow elements that do not
have a specified error path.

Important Workflows that contain a Handle error element are not compatible with Orchestrator 5.5.x or
earlier.

Prerequisites

n Create a workflow.

n Open the workflow for editing in the workflow editor.

n Add some elements to the workflow schema.

Procedure

1 Drag a Handle error element to the appropriate element in the workflow schema.

A dialog box appears.

Developing with VMware vRealize Orchestrator

VMware, Inc. 45

2 From the drop-down menu in the dialog box, select how errors should be handled.

Option Description

Throw exception When an error occurs, an exception is thrown. You can modify the exception
binding.

Call a workflow When an error occurs, a selected workflow runs.

Custom script When an error occurs, a custom script runs.

3 Click Select.

You added an error handler to a workflow. When the workflow reaches this element, it performs the
selected action before ending its run.

Add a Global Error Handler to a Workflow
You can define how errors, which are not caught by standard error handlers, are handled during a
workflow run by adding a global error handler to the workflow schema. You can add one global error
handler to a workflow schema.

Important Workflows that contain a Default error handler element are not compatible with Orchestrator
5.5.x or earlier.

Prerequisites

n Create a workflow.

n Open the workflow for editing in the workflow editor.

n Add some elements to the workflow schema.

Procedure

1 Drag a Default error handler element to the workflow schema.

2 (Optional) Add schema elements between the Default error handler element and the Throw
exception element to specify how global workflow errors are handled.

You added a global error handler to a workflow. When an error that is not caught by standard error
handlers in the workflow occurs, the global error handler performs the specified actions before ending the
workflow run.

Foreach Elements and Composite Types
You can insert a Foreach element in the workflow that you develop to run a subworkflow that iterates over
arrays of parameters or attributes. To improve the understanding and readability of the workflow, you can
group several workflow parameters of different types that are logically connected in a single type that is
called a composite type.

Developing with VMware vRealize Orchestrator

VMware, Inc. 46

Using Foreach Elements
A Foreach element runs a subworkflow iteratively over an array of input parameters or attributes. You can
select the arrays over which the subworkflow is run, and can pass the values for the elements of such an
array when you run the workflow. The subworkflow runs as many times as the number of elements that
you have defined in the array.

If you have a configuration element that contains an array of attributes, you can run a workflow that
iterates over these attributes in a Foreach element.

For example, suppose that you have 10 virtual machines in a folder that you want to rename. To do this,
you must insert a Foreach element in a workflow and define the Rename virtual machine workflow as a
subworkflow in the element. The Rename virtual machine workflow takes two input parameters, a virtual
machine and its new name. You can promote these parameters as input to the current workflow, and as a
result, they become arrays over which the Rename virtual machine workflow will iterate. When you run
your workflow, you can specify the 10 virtual machines in the folder and their new names. Every time the
workflow runs, it takes an element from the array of the virtual machines and an element from the array of
the new names for the virtual machines.

Using Composite Types
A composite type is a group of more than one input parameter or attribute that are connected logically but
are of different types. In a Foreach element, you can bind a group of parameters as a composite value. In
this way, the Foreach element takes the values for the grouped parameters at once in every subsequent
run of the workflow.

For example, suppose that you are about to rename a virtual machine. You need the virtual machine
object and its new name. If you have to rename multiple virtual machines, you need two arrays, one for
the virtual machines and one for their names. These two arrays are not explicitly connected. A composite
type lets you have one array where each element contains both the virtual machine and its new name. In
this way, the connection between those two parameters in case of multiple values is specified explicitly
and not implied by the workflow schema.

Note You cannot run a workflow that contains composite types from the vSphere Web Client.

Define a Foreach Element
If you want to run a subworkflow multiple times by passing different values for its parameters or attributes
in every subsequent run, you can insert a Foreach element in the parent workflow.

When you insert a Foreach element, you must select at least one array over which the Foreach element
iterates. An array element can have different values for each subsequent workflow run.

If the subworkflow has output parameters, you should select the output parameters of the Foreach
element in which to accumulate workflow outputs , so that the subworkflow can iterate over them as well.

Prerequisites

Open a workflow for editing in the workflow editor.

Developing with VMware vRealize Orchestrator

VMware, Inc. 47

Procedure

1 In the workflow editor, select the Schema tab.

2 From the Generic menu, drag a Foreach element in the workflow schema.

3 Select a workflow from the Chooser dialog box.

The following notification appears at the top of the schema pane.

Do you want to add the activity's parameters as input/output to the current

workflow?

4 On the notification, click Setup.

A pop-up window with the available options appears.

5 Select the mapping type for each input parameter.

Option Description

Input The argument is mapped to an input workflow parameter.

Skip The argument is mapped to a NULL value.

Value The argument is mapped to an attribute with a value that you can set from the
Value column.

6 Select the mapping type for each output parameter.

Option Description

Output The argument is mapped to an output workflow parameter.

Skip The argument is mapped to a NULL value.

Local variable The argument is mapped to an attribute.

7 Click Promote.

8 Right-click the Foreach element and select Synchronize > Synchronize presentation.

A confirmation dialog box appears.

9 Click Ok to propagate the presentation of the Foreach element to the current workflow.

A dialog box displays information about the outcome of the operation.

10 On the Inputs tab, verify that the subworkflow's parameters are added as elements of type array.

11 On the Outputs tab, verify that the subworkflow's parameters are added as elements of type array.

You defined a Foreach element in your workflow. The Foreach element runs a workflow that takes as
parameters every element from the array of parameters or attributes that you have defined.

For parameters or attributes that are not defined as arrays, the workflow takes the same value in every
subsequent run.

Developing with VMware vRealize Orchestrator

VMware, Inc. 48

Example: Rename Virtual Machines by Using a Foreach Element

You can use a Foreach element to rename several virtual machines at once. You have to insert a Foreach
element in a workflow and promote the vm and the newName parameters as input to the current workflow.
In this way, when you run the workflow, you specify the virtual machines to rename and the new names
for the virtual machines. The virtual machines are included as elements in the array that you created for
the vm parameter. The new names for the virtual machines are included in the array that you created for
the newName parameter.

Define a Composite Type in a Foreach Element
You can group multiple workflow parameters that are connected logically in a new type that is called a
composite type. You can use a Foreach element to bind a group of parameters as a composite value to
connect several arrays of parameters in a single array.

Prerequisites

n Open a workflow for editing in the workflow editor.

n Verify that you have a Foreach element in your workflow.

Procedure

1 Select the IN or the OUT tab of the Foreach element.

2 Select a local parameter that you want to group with other local parameters in a composite type.

3 Click Bind a group of parameters as composite value at the top of the IN or the OUT tab.

4 In the Bindings pane, select the parameters that you want to group as a composite type.

5 Select Bind as iterator.

You have set the Foreach element to iterate over an array of the composite type.

6 Click Accept.

You defined a composite type and made sure that the workflow will iterate over an array of this composite
type. Parameters that are grouped as a composite type are named
composite_type_name.parameter_name. For example, if you create a snapshots composite type, the
parameters that are group in the type can be snapshots.vm[in-parameter] or snapshots.name[in-
parameter]. Every element from the array of the composite type contains a single instance of every
parameter that you grouped in the composite type.

Example: Rename Virtual Machines

Suppose that you want to rename 10 virtual machines at a time. For this, you insert a Foreach element in
a workflow and select the Rename virtual machine workflow in the element. You create a composite type
to connect the vm and the newName parameters explicitly. You bind the composite type as an iterator, thus
creating a single array that contains both the vm and the newName parameter.

Developing with VMware vRealize Orchestrator

VMware, Inc. 49

Add a Switch Activity to a Workflow
You can add a basic switch activity to a workflow schema that defines the switch cases based on
workflow attributes or parameters.

Every switch activity can have multiple switch cases. Every switch case is defined by a condition related
to an attribute or a parameter. If the condition is fulfilled, the workflow run switches to a corresponding
workflow element that you define. If none of the specified conditions are fulfilled, the workflow run
switches to a default workflow element that you define.

Important Workflows that contain a Switch element are not compatible with Orchestrator 5.5.x or
earlier.

Prerequisites

Verify that the Schema tab of the workflow editor contains elements.

Procedure

1 Drag a Switch element to the appropriate element in the workflow schema.

2 Click the Edit icon () of the Switch element.

3 In the Cases tab, add or delete switch cases.

You can change the priority of switch cases.

4 Define the condition for each switch case.

5 Select the corresponding workflow element for each switch case.

6 Select the default workflow element to switch to.

7 Click Close.

8 Click Save.

You defined the switch case conditions and workflow paths.

Developing Plug-Ins
Orchestrator allows integration with management and administration solutions through its open plug-in
architecture. You use the Orchestrator client to run and create plug-in workflows and access the plug-in
API.

Overview of Plug-Ins
Orchestrator plug-ins must include a standard set of components and must adhere to a standard
architecture. These practices help you to create plug-ins for the widest possible variety of external
technologies.

Developing with VMware vRealize Orchestrator

VMware, Inc. 50

n Structure of an Orchestrator Plug-In

Orchestrator plug-ins have a common structure that consists of various types of layers that
implement specific functionality.

n Exposing an External API to Orchestrator

You expose an API from an external product to the Orchestrator platform by creating an Orchestrator
plug-in. You can create a plug-in for any technology that exposes an API that you can map into
JavaScript objects that Orchestrator can use.

n Components of a Plug-In

Plug-ins are composed of a standard set of components that expose the objects in the plugged-in
technology to the Orchestrator platform.

n Role of the vso.xml File

You use the vso.xml file to map the objects, classes, methods, and attributes of the plugged-in
technology to Orchestrator inventory objects, scripting types, scripting classes, scripting methods,
and attributes. The vso.xml file also defines the configuration and start-up behavior of the plug-in.

n Roles of the Plug-In Adapter

The plug-in adapter is the entry point of the plug-in to the Orchestrator server. The plug-in adapter
serves as the datastore for the plugged-in technology in the Orchestrator server, creates the plug-in
factory, and manages events that occur in the plugged-in technology.

n Roles of the Plug-In Factory

The plug-in factory defines how Orchestrator finds objects in the plugged-in technology and
performs operations on the objects.

n Role of Finder Objects

Finder objects identify and locate specific instances of managed object types in the plugged-in
technology. Orchestrator can modify and interact with objects that it finds in the plugged-in
technology by running workflows on the finder objects.

n Role of Scripting Objects

Scripting objects are JavaScript representations of objects from the plugged-in technology. Scripting
objects from plug-ins appear in the Orchestrator Javascript API and you can use them in scripted
elements in workflows and actions.

n Role of Event Handlers

Events are changes in the states or attributes of the objects that Orchestrator finds in the plugged-in
technology. Orchestrator monitors events by implementing event handlers.

Structure of an Orchestrator Plug-In
Orchestrator plug-ins have a common structure that consists of various types of layers that implement
specific functionality.

The bottom three layers of a Orchestrator plug-in, which are the infrastructure classes, wrapping classes,
and scripting objects, implement the connection between the plugged-in technology and Orchestrator.

Developing with VMware vRealize Orchestrator

VMware, Inc. 51

The user-visible parts of a Orchestrator plug-in are the top three layers, which are actions, building
blocks, and high-level workflows.

Figure 1‑3. Structure of an Orchestrator Plug-In

High level workflow

Building block workflows

Action

Scripting objects

Wrapping classes

Infrastructure classes

Infrastructure classes A set of classes that provide the connection between the plugged-in
technology and Orchestrator. The infrastructure classes include the classes
to implement according to the plug-in definition, such as plug-in factory,
plug-in adaptor, and so on. The infrastructure classes also include the
classes that provide functionality for common tasks and objects such as
helpers, caching, inventory, and so on.

Wrapping classes A set of classes that adapt the object model of the plugged-in technology to
the object model that you want to expose inside Orchestrator.

Scripting objects JavaScript object types that provide access to the wrapping classes,
methods, and attributes in the plugged-in technology. In the vso.xml file,
you define which wrapping classes, attributes, and methods from the
plugged-in technology will be exposed to Orchestrator.

Actions A set of JavaScript functions that you can use directly in workflows and
scripting tasks. Actions can take multiple input parameters and have a
single return value.

Building block
workflows

A set of workflows that cover all generic functionality that you want to
provide with the plug-in. Typically, a building block workflow represents an
operation in the user interface of the orchestrated technology. The building
block workflows can be used directly or can be included inside high-level
workflows.

High-level workflows A set of workflows that cover specific functionality of the plug-in. You can
provide high-level workflows to meet concrete requirements or to show
complex examples of the plug-in usage.

Developing with VMware vRealize Orchestrator

VMware, Inc. 52

Exposing an External API to Orchestrator
You expose an API from an external product to the Orchestrator platform by creating an Orchestrator
plug-in. You can create a plug-in for any technology that exposes an API that you can map into JavaScript
objects that Orchestrator can use.

Plug-ins map Java objects and methods to JavaScript objects that they add to the Orchestrator scripting
API. If an external technology exposes a Java API, you can map the API directly to JavaScript for
Orchestrator to use in workflows and actions.

You can create plug-ins for applications that expose an API in a language other than Java by using WSDL
(Web service definition language), REST (Representational state transfer), or a messaging service to
integrate the exposed API with Java objects. You then map the integrated Java objects to JavaScript for
Orchestrator to use.

The plugged-in technology is independent from Orchestrator. You can create Orchestrator plug-ins for
external products even if you only have access to binary code, for example in Java archives (JAR files),
rather than source code.

Components of a Plug-In
Plug-ins are composed of a standard set of components that expose the objects in the plugged-in
technology to the Orchestrator platform.

The main components of a plug-in are the plug-in adapter, factory, and event implementations. You map
the objects and operations defined in the adapter, factory, and event implementations to Orchestrator
objects in an XML definition file named vso.xml. The vso.xml file maps objects and functions from the
plugged in technology to JavaScript scripting objects that appear in the Orchestrator JavaScript API. The
vso.xml file also maps object types from the plugged-in technology to finders, that appear in the
Orchestrator Inventory tab.

Plug-ins are composed of the following components.

Plug-In Module The plug-in itself, as defined by a set of Java classes, a vso.xml file, and
packages of the workflows and actions that interact with the objects that
you access through the plug-in. The plug-in module is mandatory.

Plug-In Adapter Defines the interface between the plugged-in technology and the
Orchestrator server. The adapter is the entry point of the plug-in to the
Orchestrator platform. The adapter creates the plug-in factory, manages the
loading and unloading of the plug-in, and manages the events that occur on
the objects in the plugged-in technology. The plug-in adapter is mandatory.

Plug-In Factory Defines how Orchestrator finds objects in the plugged-in technology and
performs operations on them. The adapter creates a factory for the client
session that opens between Orchestrator and a plugged-in technology. The
factory allows you either to share a session between all client connections
or to open one session per client connection. The plug-in factory is
mandatory.

Developing with VMware vRealize Orchestrator

VMware, Inc. 53

Configuration Orchestrator does not define a standard way for the plug-in to store its
configuration. You can store configuration information by using Windows
Registries, static configuration files, storing information in a database, or in
XML files. Orchestrator plug-ins can be configured by running configuration
workflows in the Orchestrator client.

Finders Interaction rules that define how Orchestrator locates and represents the
objects in the plugged-in technology. Finders retrieve objects from the set of
objects that the plugged-in technology exposes to Orchestrator. You define
in the vso.xml file the relations between objects to allow you to navigate
through the network of objects. Orchestrator represents the object model of
the plugged-in technology in the Inventory tab. Finders are mandatory if
you want to expose objects in the plugged-in technology to Orchestrator.

Scripting Objects JavaScript object types that provide access to the objects, operations, and
attributes in the plugged-in technology. Scripting objects define how
Orchestrator accesses the object model of the plugged-in technology
through JavaScript. You map the classes and methods of the plugged-in
technology to JavaScript objects in the vso.xml file. You can access the
JavaScript objects in the Orchestrator scripting API and integrate them into
Orchestrator scripted tasks, actions, and workflows. Scripting objects are
mandatory if you want to add scripting types, classes, and methods to the
Orchestrator JavaScript API.

Inventory Instances of objects in the plugged-in technology that Orchestrator locates
by using finders appear in the Inventory view in the Orchestrator client.
You can perform operations on the objects in the inventory by running
workflows on them. The inventory is optional. You can create a plug-in that
only adds scripting types and classes to the Orchestrator JavaScript API
and does not expose any instances of objects in the inventory.

Events Changes in the state of an object in the plugged-in technology. Orchestrator
can listen passively for events that occur in the plugged-in technology.
Orchestrator can also actively trigger events in the plugged-in technology.
Events are optional.

Role of the vso.xml File
You use the vso.xml file to map the objects, classes, methods, and attributes of the plugged-in
technology to Orchestrator inventory objects, scripting types, scripting classes, scripting methods, and
attributes. The vso.xml file also defines the configuration and start-up behavior of the plug-in.

Developing with VMware vRealize Orchestrator

VMware, Inc. 54

The vso.xml file performs the following principal roles.

Start-Up and
Configuration Behavior

Defines the manner in which the plug-in starts and locates any
configuration implementations that the plug-in defines. Loads the plug-in
adapter.

Inventory Objects Defines the types of objects that the plug-in accesses in the plugged-in
technology. The finder methods of the plug-in factory implementation locate
instances of these objects and display them in the Orchestrator inventory.

Scripting Types Adds scripting types to the Orchestrator JavaScript API to represent the
different types of object in the inventory. You can use these scripting types
as input parameters in workflows.

Scripting Classes Adds classes to the Orchestrator JavaScript API that you can use in
scripted elements in workflows, actions, policies, and so on.

Scripting Methods Adds methods to the Orchestrator JavaScript API that you can use in
scripted elements in workflows, actions, policies, and so on.

Scripting Attributes Adds the attributes of the objects in the plugged-in technology to the
Orchestrator JavaScript API that you can use in scripted elements in
workflows, actions, policies, and so on.

Roles of the Plug-In Adapter
The plug-in adapter is the entry point of the plug-in to the Orchestrator server. The plug-in adapter serves
as the datastore for the plugged-in technology in the Orchestrator server, creates the plug-in factory, and
manages events that occur in the plugged-in technology.

To create a plug-in adapter, you create a Java class that implements the IPluginAdaptor interface.

The plug-in adapter class that you create manages the plug-in factory, events, and triggers in the
plugged-in technology. The IPluginAdaptor interface provides methods that you use to perform these
tasks.

The plug-in adapter performs the following principal roles.

Creates a factory The most important role of the plug-in adapter is to load and unload one
plug-in factory instance for every connection from Orchestrator to the
plugged-in technology. The plug-in adapter class calls the
IPluginAdaptor.createPluginFactory() method to create an instance
of a class that implements the IPluginFactory interface.

Manages events The plug-in adapter is the interface between the Orchestrator server and
the plugged-in technology. The plug-in adapter manages the events that
Orchestrator performs or watches for on the objects in the plugged-in
technology. The adapter manages events through event publishers. Event
publishers are instances of the IPluginEventPublisher interface that the
adapter creates by calling the

Developing with VMware vRealize Orchestrator

VMware, Inc. 55

IPluginAdaptor.registerEventPublisher() method. Event publishers
set triggers and gauges on objects in the plugged-in technology, to allow
Orchestrator to launch defined actions if certain events occur on the object,
or if the object's values pass certain thresholds. Similarly, you can define
PluginTrigger and PluginWatcher instances that define events that
Wait Event elements in long-running workflows await.

Sets the plug-in name You provide a name for the plug-in in the vso.xml file. The plug-in adapter
gets this name from the vso.xml file and publishes it in the Orchestrator
client Inventory view.

Installs licenses You can call methods to install any license files that the plugged-in
technology requires in the adapter implement.

For full details of the IPluginAdaptor interface, all of its methods, and all of the other classes of the
plug-in API, see Orchestrator Plug-In API Reference.

Roles of the Plug-In Factory
The plug-in factory defines how Orchestrator finds objects in the plugged-in technology and performs
operations on the objects.

To create the plug-in factory, you must implement and extend the IPluginFactory interface from the
Orchestrator plug-in API. The plug-in factory class that you create defines the finder functions that
Orchestrator uses to access objects in the plugged-in technology. The factory allows the Orchestrator
server to find objects by their ID, by their relation to other objects, or by searching for a query string.

The plug-in factory performs the following principal tasks.

Finds objects You can create functions that find objects according to their name and type.
You find objects by name and type by using the IPluginFactory.find()
method.

Finds objects related to
other objects

You can create functions to find objects that relate to a given object by a
given relation type. You define relations in the vso.xml file. You can also
create finders to find dependent child objects that relate to all parents by a
given relation type. You implement the IPluginFactory.findRelation()
method to find any objects that are related to a given parent object by a
given relation type. You implement the
IPluginFactory.hasChildrenInRelation() method to discover
whether at least one child object exists for a parent instance.

Define queries to find
objects according to
your own criteria

You can create object finders that implement query rules that you define.
You implement the IPluginFactory.findAll() method to find all objects
that satisfy query rules you define when the factory calls this method. You
obtain the results of the findAll() method in a QueryResult object that
contains a list of all of the objects found that match the query rules you
define.

Developing with VMware vRealize Orchestrator

VMware, Inc. 56

For more information about the IPluginFactory interface, all of its methods, and all of the other classes
of the plug-in API, see Orchestrator Plug-In API Reference.

Role of Finder Objects
Finder objects identify and locate specific instances of managed object types in the plugged-in
technology. Orchestrator can modify and interact with objects that it finds in the plugged-in technology by
running workflows on the finder objects.

Every instance of a given managed object type in the plugged-in technology must have a unique identifier
so that Orchestrator finder objects can find them. The plugged-in technology provides the unique
identifiers for the object instances as strings. When a workflow runs, Orchestrator sets the unique
identifiers of the objects that it finds as workflow attribute values. Workflows that require an object of a
given type as an input parameter run on a specific instance of that type of object.

Finder objects that plug-ins add to the Orchestrator JavaScript API have the plug-in name as a prefix. For
example, the VirtualMachine managed object type from the vCenter Server API appears in
Orchestrator as the VC:VirtualMachine JavaScript type.

For example, Orchestrator accesses a specific VC:VirtualMachine instance through the vCenter Server
plug-in by implementing a finder object that uses the id attribute of the virtual machine as its unique
identifier. You can pass this object instance to workflow elements as attribute values.

An Orchestrator plug-in maps the objects from the plugged-in technology to equivalent Orchestrator finder
objects in the <finder> elements in the vso.xml file. The <finder> elements identify the method or
function from the plugged-in technology that obtains the unique identifier for a specific instance of an
object. The <finder> elements also define relations between objects, to find objects by the manner in
which they relate to other objects.

Finder objects appear in the Orchestrator Inventory tab under the plug-in that contains them.

Role of Scripting Objects
Scripting objects are JavaScript representations of objects from the plugged-in technology. Scripting
objects from plug-ins appear in the Orchestrator Javascript API and you can use them in scripted
elements in workflows and actions.

Scripting objects from plug-ins appear in the Orchestrator JavaScript API as JavaScript modules, types,
and classes. Most finder objects have a scripting object representation. The JavaScript classes can add
methods and attributes to the Orchestrator JavaScript API that represent the methods and attributes from
objects from the API of the plugged-in technology. The plugged-in technology provides the
implementations of the objects, types, classes, attributes, and methods independently of Orchestrator.
For example, the vCenter Server plug-in represents all the objects from the vCenter Server API as
JavaScript objects in the Orchestrator JavaScript API, with JavaScript representations of all the classes,
methods and attributes that the vCenter Server API defines. You can use the vCenter Server scripting
classes and the methods and attributes they define in Orchestrator scripted functions.

Developing with VMware vRealize Orchestrator

VMware, Inc. 57

For example, the VirtualMachine managed object type from the vCenter Server API is found by the
VC:VirtualMachine finder and appears in the Orchestrator JavaScript API as the VcVirtualMachine
JavaScript class. The VcVirtualMachine JavaScript class in the Orchestrator JavaScript API defines all
of the same methods and attributes as the VirtualMachine managed object from the vCenter Server
API.

An Orchestrator plug-in maps the objects, types, classes, attributes, and methods from the plugged-in
technology to equivalent Orchestrator JavaScript objects, types, classes, attributes, and methods in the
<scripting-objects> element in the vso.xml file.

Role of Event Handlers
Events are changes in the states or attributes of the objects that Orchestrator finds in the plugged-in
technology. Orchestrator monitors events by implementing event handlers.

Orchestrator plug-ins allow you to monitor events in a plugged-in technology in different ways. The
Orchestrator plug-in API allows you to create the following types of event handlers to monitor events in a
plugged-in technology.

Listeners Passively monitor objects in the plugged-in technology for changes in their
state. The plugged-in technology or the plug-in implementation defines the
events that listeners monitor. Listeners do not initiate events, but notify
Orchestrator when the events occur. Listeners detect events either by
polling the plugged-in technology or by receiving notifications from the
plugged-in technology. When events occur, Orchestrator policies or
workflows that are waiting for the event can react by starting operations in
the Orchestrator server. Listener components are optional.

Policies Monitor certain events in the plugged-in technology and start operations in
the Orchestrator server if the events occur. Policies can monitor policy
triggers and policy gauges. Policy triggers define an event in the plugged-in
technology that, when it occurs, causes a running policy to start an
operation in the Orchestrator server, for example running a workflow. Policy
gauges define ranges of values for the attributes of an object in the
plugged-in technology that, when exceeded, cause Orchestrator to start an
operation. Policies are optional.

Workflow triggers If a running workflow contains a Wait Event element, when it reaches that
element it suspends its run and waits for an event to occur in a plugged-in
technology. Workflow triggers define the events in the plugged-in
technology that Waiting Event elements in workflows await. You register
workflow triggers with watchers. Workflow triggers are optional.

Watchers Watch workflow triggers for a certain event in the plugged-in technology, on
behalf of a Waiting Event element in a workflow. When the event occurs,
the watchers notify any worklows that are waiting for that event. Watchers
are optional.

Developing with VMware vRealize Orchestrator

VMware, Inc. 58

Contents and Structure of a Plug-In
Orchestrator plug-ins must contain a standard set of components and conform to a standard file structure.
For a plug-in to conform to the standard file structure, it must include specific folders and files.

To create an Orchestrator plug-in, you define how Orchestrator accesses and interacts with the objects in
the plugged-in technology. And, you map all of the objects and functions of the plugged-in technology to
corresponding Orchestrator objects and functions in the vso.xml file.

The vso.xml file must include a reference to every type of object or operation to expose to Orchestrator.
Every object that the plug-in finds in the plugged-in technology must have a unique identifier that you
provide. You define the object names in the finder elements and in the object elements in the vso.xml
file.

A plug-in can be delivered as a standard Java archive file (JAR) or a ZIP file, but in either case, the file
must be renamed with a .dar extension.

Note You can use the Orchestrator Control Center to import a DAR file to the Orchestrator server.

n Defining the Application Mapping in the vso.xml File

Objects that you include in the vso.xml file appear as scripting objects in the Orchestrator scripting
API, or as finder objects in the Orchestrator Inventory tab.

n Format of the vso.xml Plug-In Definition File

The vso.xml file defines how the Orchestrator server interacts with the plugged-in technology. You
must include a reference to every type of object or operation to expose to Orchestrator in the
vso.xml file.

n Naming Plug-In Objects

You must provide a unique identifier for every object that the plug-in finds in the plugged-in
technology. You define the object names in the <finder> elements and in the <object> elements in
the vso.xml file.

n Plug-In Object Naming Conventions

You must follow Java class naming conventions when you name all objects in plug-ins.

n File Structure of the Plug-In

A plug-in must conform to a standard file structure and must include certain specific folders and files.
You deliver a plug-in as a standard Java archive (JAR) or ZIP file, that you must rename with
the .dar extension.

Defining the Application Mapping in the vso.xml File
Objects that you include in the vso.xml file appear as scripting objects in the Orchestrator scripting API,
or as finder objects in the Orchestrator Inventory tab.

The vso.xml file provides the following information to the Orchestrator server:

n A version, name, and description for the plug-in

Developing with VMware vRealize Orchestrator

VMware, Inc. 59

n References to the classes of the plugged-in technology and to the associated plug-in adapter

n Initializes the plug-in when the Orchestrator server starts

n Scripting types to represent the types of objects in the plugged-in technology

n The relationships between object types to define how the objects display in the Orchestrator Inventory

n Scripting classes that map the objects and operations in the plugged-in technology to functions and
object types in the Orchestrator JavaScript API

n Enumerations to define a list of constant values that apply to all objects of a certain type

n Events that Orchestrator monitors in the plugged-in technology

The vso.xml file must conform to the XML schema definition of Orchestrator plug-ins. You can access
the schema definition at the VMware support site.

http://www.vmware.com/support/orchestrator/plugin-4-1.xsd

For descriptions of all of the elements of the vso.xml file, see Elements of the vso.xml Plug-In Definition
File.

Format of the vso.xml Plug-In Definition File
The vso.xml file defines how the Orchestrator server interacts with the plugged-in technology. You must
include a reference to every type of object or operation to expose to Orchestrator in the vso.xml file.

Objects that you include in the vso.xml file appear as scripting objects in the Orchestrator scripting API,
or as finder objects in the Orchestrator Inventory tab.

As part of the open architecture and standardized implementation of plug-ins, the vso.xml file must
adhere to a standard format.

The following diagram shows the format of the vso.xml plug-in definition file and how the elements nest
within each other.

Developing with VMware vRealize Orchestrator

VMware, Inc. 60

Figure 1‑4. Format of the vso.xml Plug-In Definition File

Naming Plug-In Objects
You must provide a unique identifier for every object that the plug-in finds in the plugged-in technology.
You define the object names in the <finder> elements and in the <object> elements in the vso.xml
file.

The finder operations that you define in the factory implementation find objects in the plugged-in
technology. When the plug-in finds objects, you can use them in Orchestrator workflows and pass them
from one workflow element to another. The unique identifiers that you provide for the objects allows them
to pass between the elements in a workflow.

The Orchestrator server stores only the type and identifier of each object that it processes, and stores no
information about where or how Orchestrator obtained the object. You must name objects consistently in
the plug-in implementation so that you can track the objects you obtain from plug-ins.

If the Orchestrator server stops while workflows are running, when you restart the server the workflows
resume at the workflow element that was running when the server stopped. The workflow uses the
identifiers to retrieve objects that the element was processing when the server stopped.

Developing with VMware vRealize Orchestrator

VMware, Inc. 61

Plug-In Object Naming Conventions
You must follow Java class naming conventions when you name all objects in plug-ins.

Important Because of the way in which the workflow engine performs data serialization, do not use the
following string sequences in object names. Using these character sequences in object identifiers causes
the workflow engine to parse workflows incorrectly, which can cause unexpected behavior when you run
the workflows.

n #;#

n #,#

n #=#

Use these guidelines when you name objects in plug-ins.

n Use an initial uppercase letter for each word in the name.

n Do not use spaces to separate words.

n For letters, only use the standard characters A to Z and a to z.

n Do not use special characters, such as accents.

n Do not use a number as the first character of a name.

n Where possible, use fewer than 10 characters.

Table 1‑5 shows rules that apply to individual object types.

Table 1‑5. Plug-In Object Naming Rules

Object Type Naming Rules

Plug-In n Defined in the <module> element in the vso.xml file.
n Must adhere to Java class naming conventions.
n Must be unique. You cannot run two plug-ins with the same name in an Orchestrator server.

Finder object n Defined in the <finder> elements in the vso.xml file.
n Must adhere to Java class naming conventions.
n Must be unique in the plug-in.

Orchestrator adds the plug-in name and a colon to the finder object names in the finder object types in
the Orchestrator scripting API. For example, the VirtualMachine object type from the vCenter Server
plug-in appears in the Orchestrator scripting API as VC:VirtualMachine.

Scripting object n Defined in the <scripting-object> elements in the vso.xml file.
n Must adhere to Java class naming conventions.
n Must be unique in the Orchestrator server.
n To avoid confusing scripting objects with finder objects of the same name or with scripting objects

from other plug-ins, always prefix the scripting object name with the name of the plug-in, but do not
add a colon. For example, the VirtualMachine class from the vCenter Server plug-in appears in
the Orchestrator scripting API as the VcVirtualMachine class.

Developing with VMware vRealize Orchestrator

VMware, Inc. 62

File Structure of the Plug-In
A plug-in must conform to a standard file structure and must include certain specific folders and files. You
deliver a plug-in as a standard Java archive (JAR) or ZIP file, that you must rename with the .dar
extension.

The contents of the DAR archive must use the following folder structure and naming conventions.

Table 1‑6. Structure of the DAR Archive

Folders Description

plug-in_name\VSO-INF\ Contains the vso.xml file that defines the mapping of the
objects in the plugged-in technology to Orchestrator objects.

The VSO-INF folder and the vso.xml file are mandatory.

plug-in_name\lib\ Contains the JAR files that contain the binaries of the plugged-in
technology. Also contains JAR files that contain the
implementations of the adapter, factory, notification handlers,
and other interfaces in the plug-in.

The lib folder and JAR files are mandatory.

plug-in_name\resources\ Contains resource files that the plug-in requires. The resources
folder can include the following types of element:
n Image files, to represent the objects of the plug-in in the

Orchestrator Inventory tab.
n Scripts, to define initialization behavior when the plug-in

starts.
n Orchestrator packages, that can contain custom workflows,

actions, and other resources that interact with the objects
that you access by using the plug-in.

You can organize resources in subfolders. For example,
resources\images\, resources\scripts\, or
resources\packages\.

The resources folder is optional.

You use the Orchestrator Control Center to import a DAR file to the Orchestrator server.

Orchestrator Plug-In API Reference
The Orchestrator plug-in API defines Java interfaces and classes to implement and extend when you
develop the IPluginAdaptor and IPluginFactory implementations to create a plug-in.

All classes are contained in the ch.dunes.vso.sdk.api package, unless stated otherwise.

IAop Interface
The IAop interface provides methods to obtain and set properties on objects in the plugged-in technology.

public interface IAop

The IAop interface defines the following methods:

Developing with VMware vRealize Orchestrator

VMware, Inc. 63

Method Returns Description

get(java.lang.String propertyName,

java.lang.Object object,

java.lang.Object sdkObject)

java.lang.Object Obtains a property from a given object in
the plug-in.

set(java.lang.String propertyName,

java.lang.String propertyValue,

java.lang.Object object)

Void Sets a property on a given object in the
plug-in.

IDynamicFinder Interface
The IDynamicFinder interface returns the ID and properties of a finder programmatically, instead
defining the ID and properties in the vso.xml file.

The IDynamicFinder Interface defines the following methods.

Method Returns Description

getIdAccessor(java.lang.String

type)

java.lang.String Provides an OGNL expression to obtain
an object ID programmatically.

getProperties(java.lang.String

type)

java.util.List<SDKFinderProperty

>

Provides a list of object properties
programmatically.

IPluginAdaptor Interface
You implement the IPluginAdaptor interface to manage plug-in factories, events and watchers. The
IPluginAdaptor interface defines an adapter between a plug-in and the Orchestrator server.

IPluginAdaptor instances are resonsible for session management. The IPluginAdaptor Interface
defines the following methods.

Method Returns Description

addWatcher(PluginWatcher watcher) Void Adds a watcher to monitor for a specific
event

createPluginFactory(java.lang.Stri

ng sessionID, java.lang.String

username, java.lang.String

password,

IPluginNotificationHandler

notificationHandler)

IPluginFactory Creates an IPluginFactory instance.
The Orchestrator server uses the factory
to obtain objects from the plugged-in
technology by their ID, by their relation to
other objects, and so on.

The session ID allows you to identify a
running session. For example, a user
could log into two different Orchestrator
clients and run two sessions
simultaneously.

Similarly, starting a workflow creates a
session that is independent from the client
in which the workflow started. A workflow
continues to run even if you close the
Orchestrator client.

installLicenses(PluginLicense[]

licenses)

Void Installs the license information for
standard plug-ins that VMware provides

Developing with VMware vRealize Orchestrator

VMware, Inc. 64

Method Returns Description

registerEventPublisher(java.lang.S

tring type, java.lang.String id,

IPluginEventPublisher publisher)

Void Sets triggers and gauges on an element in
the inventory

removeWatcher(java.lang.String

watcherId)

Void Removes a watcher

setPluginName(java.lang.String

pluginName)

Void Gets the plug-in name from the vso.xml
file

setPluginPublisher(IPluginPublishe

r pluginPublisher)

Void Sets the publisher of the plug-in

uninstallPluginFactory(IPluginFact

ory plugin)

Void Uninstalls a plug-in factory.

unregisterEventPublisher(java.lang

.String type, java.lang.String id,

IPluginEventPublisher publisher)

Void Removes triggers and gauges from an
element in the inventory

IPluginEventPublisher Interface
The IPluginEventPublisher interface publishes gauges and triggers on an event notification bus for
Orchestrator policies to monitor.

You can create IPluginEventPublisher instances directly in the plug-in adaptor implementation or you
can create them in separate event generator classes.

You can implement the IPluginEventPublisher interface to publish events in the plugged-in technology
to the Orchestrator policy engine. You create methods to set policy triggers and gauges on objects in the
plugged-in technology and event listeners to listen for events on those objects.

Policies can implement either gauges or triggers to monitor objects in the plugged-in technology. Policy
gauges monitor the attributes of objects and push an event in the Orchestrator server if the values of the
objects exceed certain limits. Policy triggers monitor objects and push an event in the Orchestrator server
if a defined event occurs on the object. You register policy gauges and triggers with
IPluginEventPublisher instances so that Orchestrator policies can monitor them.

The IPluginEventPublisher Interface defines the following methods.

Developing with VMware vRealize Orchestrator

VMware, Inc. 65

Type Returns Description

pushGauge(java.lang.String type,

java.lang.String id,

java.lang.String gaugeName,

java.lang.String deviceName,

java.lang.Double gaugeValue)

Void Publish a gauge for policies to monitor.
Takes the following parameters:
n type: Type of the object to monitor.
n id: Identifier of the object to monitor.
n gaugeName: Name for this gauge.
n deviceName: Name for the type of

attribute that the gauge monitors.
n gaugeValue: Value for which the

gauge monitors the object.

pushTrigger(java.lang.String type,

java.lang.String id,

java.lang.String triggerName,

java.util.Properties

additionalProperties)

Void Publish a trigger for policies to monitor.
Takes the following parameters:
n type: Type of the object to monitor.
n id: Identifier of the object to monitor.
n triggerName: Name for this trigger.
n additionalProperties: Any

additional properties for the trigger to
monitor.

IPluginFactory Interface
The IPluginAdaptor returns IPluginFactory instances. IPluginFactory instances run commands in
the plugged-in application, and finds objects upon which to perform Orchestrator operations.

The IPluginFactory interface defines the following field:

static final java.lang.String RELATION_CHILDREN

The IPluginFactory interface defines the following methods.

Method Returns Description

executePluginCommand(java.lang.Str

ing cmd)

Void Use the plug-in to run a command.
VMware recommends that you do not use
this method.

find(java.lang.String type,

java.lang.String id)

java.lang.Object Use the plug-in to find an object. Identify
the object by its ID and type.

findAll(java.lang.String type,

java.lang.String query)

QueryResult Use the plug-in to find objects of a certain
type and that match a query string. You
define the syntax of the query in the
IPluginFactory implementation of the
plug-in. If you do not define query syntax,
findAll() returns all objects of the
specified type.

findRelation(java.lang.String

parentType, java.lang.String

parentId, java.lang.String

relationName)

java.util.List Determines whether an object has
children.

Developing with VMware vRealize Orchestrator

VMware, Inc. 66

Method Returns Description

hasChildrenInRelation(java.lang.St

ring parentType, java.lang.String

parentId, java.lang.String

relationName)

HasChildrenResult Finds all children related to a given parent
by a certain relation.

invalidate(java.lang.String type,

java.lang.String id)

Void Invalidate objects by type and ID.

void invalidateAll() Void Invalidate all objects in the cache.

IPluginNotificationHandler Interface
The IPluginNotificationHandler defines methods to notify Orchestrator of different types of event
that occur on the objects Orchestrator accesses through the plug-in.

The IPluginNotificationHandler Interface defines the following methods.

Method Returns Description

getSessionID() java.lang.String Returns the current session ID

notifyElementDeleted(java.lang.Str

ing type, java.lang.String id)

Void Notifies the system that an object with the
given type and ID has been deleted

notifyElementInvalidate(java.lang.

String type, java.lang.String id)

Void Notifies the system that an object's
relations have changed. You can use the
notifyElementInvalidate() method to
notify Orchestrator of all changes in
relations between objects, not only for
relation changes that invalidate an object.
For example, adding a child object to a
parent represents a change in the relation
between the two objects.

notifyElementUpdated(java.lang.Str

ing type, java.lang.String id)

Void Notifies the system that an object's
attributes have been modified

notifyMessage(ch.dunes.vso.sdk.api

.ErrorLevel severity,

java.lang.String type,

java.lang.String id,

java.lang.String message)

Void Publishes an error message related to the
current module

IPluginPublisher Interface
The IPluginPublisher interface publishes a watcher event on an event notification bus for long-running
workflow Wait Event elements to monitor.

When a workflow trigger starts an event in the plugged-in technology, a plug-in watcher that watches that
trigger and that is registered with an IPluginPublisher instance notifies any waiting workflows that the
event has occurred.

The IPluginPublisher Interface defines the following method.

Developing with VMware vRealize Orchestrator

VMware, Inc. 67

Type Value Description

pushWatcherEvent(java.lang.String

id, java.util.Properties

properties)

Void Publish a watcher event on event
notification bus

WebConfigurationAdaptor Interface
The WebConfigurationAdaptor interface implements IConfigurationAdaptor and defines methods
to locate and install a Web application in the configuration tab for a plug-in.

Note The WebConfigurationAdaptor interface is deprecated since Orchestrator 4.1. To add a Web
application to the configuration, implement IConfigurationAdaptor and use the configuration-war
attribute in the vso.xml file to identify the Web application.

The WebConfigurationAdaptor interface defines the following methods.

Method Returns Description

getWebAppContext() String Locates the WAR file of the Web
application for the configuration tab.
Provide the name and path to the WAR
file from the /webapps directory in the
DAR file as a string.

setWebConfiguration(boolean

webConfiguration)

Boolean Determine whether the contents of the
configuration tab are defined by a Web
application.

PluginTrigger Class
The PluginTrigger class creates a trigger module that obtains information about objects and events to
monitor in the plugged-in technology, on behalf of a Wait Event element in a workflow.

The PluginTrigger class defines methods to obtain or set the type and name of the object to monitor,
the nature of the event, and a timeout period.

You create implementations of the PluginTrigger class exclusively for use by Wait Event elements in
workflows. You define policy triggers for Orchestrator policies in classes that define events and implement
the IPluginEventPublisher.pushTrigger() method.

public class PluginTrigger

extends java.lang.Object

implements java.io.Serializable

The PluginTrigger class defines the following methods:

Method Returns Description

getModuleName() java.lang.String Obtains the name of the trigger module.

getProperties() java.util.Properties Obtains a list of properties for the trigger.

Developing with VMware vRealize Orchestrator

VMware, Inc. 68

Method Returns Description

getSdkId() java.lang.String Obtains the ID of the object to monitor in
the plugged-in technology.

getSdkType() java.lang.String Obtains the type of the object to monitor in
the plugged-in technology.

getTimeout() Long Obtains the trigger timeout period.

setModuleName(java.lang.String

moduleName)

Void Sets the name of the trigger module.

setProperties(java.util.Properties

properties)

Void Sets a list of properties for the trigger.

setSdkId(java.lang.String sdkId) Void Sets the ID of the object to monitor in the
plugged-in technology.

setSdkType(java.lang.String

sdkType)

Void Sets the type of the object to monitor in
the plugged-in technology.

setTimeout(long timeout) Void Sets a timeout period in seconds. A
negative value deactivates the timeout.

Constructors

n PluginTrigger()

n PluginTrigger(java.lang.String moduleName, long timeout, java.lang.String

sdkType, java.lang.String sdkId)

PluginWatcher Class
The PluginWatcher class watches a trigger module for a defined event in the plugged-in technology on
behalf of a long-running workflow Wait Event element.

The PluginWatcher class defines a constructor that you can use to create plug-in watcher instances.
The PluginWatcher class defines methods to obtain or set the name of the workflow trigger to watch and
a timeout period.

public class PluginWatcher

extends java.lang.Object

implements java.io.Serializable

The PluginWatcher class defines the following methods:

Method Returns Description

getId() java.lang.String Obtains the ID of the trigger

getModuleName() java.lang.String Obtains the trigger module name

getTimeoutDate() Long Obtains the trigger timeout date

getTrigger() Void Obtains a trigger

Developing with VMware vRealize Orchestrator

VMware, Inc. 69

Method Returns Description

setId(java.lang.String id) Void Sets the ID of the trigger

setTimeoutDate() Void Sets the trigger timeout date

Constructor

PluginWatcher(PluginTrigger trigger)

QueryResult Class
The QueryResult class contains the results of a find query made on the objects Orchestrator accesses
through the plug-in.

public class QueryResult

extends java.lang.Object

implements java.io.Serializable

The totalCount value can be greater than the number of elements the QueryResult returns, if the total
number of results found exceeds the number of results the query returns. The number of results the query
returns is defined in the query syntax in the vso.xml file.

The QueryResult class defines the following methods:

Method Returns Description

addElement(java.lang.Object

element)

Void Adds an element to the QueryResult

addElements(java.util.List

elements)

Void Adds a list of elements to the
QueryResult

getElements() java.util.List Obtains elements from the plugged in
application

getTotalCount() Long Obtains a count of all the elements
available in the plugged in technology

isPartialResult() Boolean Determines whether the result obtained is
complete

removeElement(java.lang.Object

element)

Void Removes an element from the plugged in
technology

setElements(java.util.List

elements)

Void Sets elements in the plugged in
technology

setTotalCount(long totalCount) Void Sets the total number of elements
available in the plugged in technology

Constructors

n QueryResult()

n QueryResult(java.util.List ret)

Developing with VMware vRealize Orchestrator

VMware, Inc. 70

n QueryResult(java.util.List elements, long totalCount)

SDKFinderProperty Class
The SDKFinderProperty class defines methods to obtain and set properties in the objects found in the
plugged in technology by the Orchestrator finder objects. The IDynanmicFinder.getProperties
method returns SDKFinderProperty objects.

public class SDKFinderProperty

extends java.lang.Object

The SDKFinderProperty class defines the following methods:

Method Returns Description

getAttributeName() java.lang.String Obtains an object attribute name

getBeanProperty() java.lang.String Obtains properties from a Java bean

getDescription() java.lang.String Obtains an object description

getDisplayName() java.lang.String Obtains an object display name

getPossibleResultType() java.lang.String Obtains the possible types of result the
finder returns

getPropertyAccessor() java.lang.String Obtains an object property accessor

getPropertyAccessorTree() java.lang.Object Obtains an object property accessor tree

isHidden() Boolean Shows or hides the object

isShowInColumn() Boolean Shows or hides the object in the database
column

isShowInDescription() Boolean Shows or hides the object description

setAttributeName(java.lang.String

attributeName)

Void Sets an object attribute name

setBeanProperty(java.lang.String

beanProperty)

Void Sets properties in a Java bean

setDescription(java.lang.String

description)

Void Sets an object description

setDisplayName(java.lang.String

displayName)

Void Sets an object display name

setHidden(boolean hidden) Void Show or hide the object

setPossibleResultType(java.lang.St

ring possibleResultType)

Void Sets the possible types of result the finder
returns

setPropertyAccessor(java.lang.Stri

ng propertyAccessor)

Void Sets an object property accessor

setPropertyAccessorTree(java.lang.

Object propertyAccessorTree)

Void Sets an object property accessortree

Developing with VMware vRealize Orchestrator

VMware, Inc. 71

Method Returns Description

setShowInColumn(boolean

showInTable)

Void Show or hide the object in the database
column

setShowInDescription(boolean

showInDescription)

Void Show or hide the object description

Constructor

SDKFinderProperty(java.lang.String attributeName, java.lang.String displayName,

java.lang.String beanProperty, java.lang.String propertyAccessor)

PluginExecutionException Class
The PluginExecutionException class returns an error message if the plug-in encounters an exception
when it runs an operation.

public class PluginExecutionException

extends java.lang.Exception

implements java.io.Serializable

The PluginExecutionException class inherits the following methods from class
java.lang.Throwable:

fillInStackTrace, getCause, getLocalizedMessage, getMessage, getStackTrace, initCause,
printStackTrace, printStackTrace, printStackTrace, setStackTrace,
toStringfillInStackTrace, getCause, getLocalizedMessage, getMessage, getStackTrace,
initCause, printStackTrace

Constructor

PluginExecutionException(java.lang.String message)

PluginOperationException Class
The PluginOperationException class handles errors encountered during a plug-in operation.

public class PluginOperationException

extends java.lang.RuntimeException

implements java.io.Serializable

The PluginOperationException class inherits the following methods from class
java.lang.Throwable:

fillInStackTrace, getCause, getLocalizedMessage, getMessage, getStackTrace, initCause,
printStackTrace, printStackTrace, printStackTrace, setStackTrace, toString

Constructor

PluginOperationException(java.lang.String message)

Developing with VMware vRealize Orchestrator

VMware, Inc. 72

HasChildrenResult Enumeration
The HasChildrenResult Enumeration declares whether a given parent has children. The
IPluginFactory.hasChildrenInRelation method returns HasChildrenResult objects.

public enum HasChildrenResult

extends java.lang.Enum<HasChildrenResult>

implements java.io.Serializable

The HasChildrenResult enumeration defines the following constants:

n public static final HasChildrenResult Yes

n public static final HasChildrenResult No

n public static final HasChildrenResult Unknown

The HasChildrenResult enumeration defines the following methods:

Method Returns Description

getValue() int Returns one of the following values:

1 Parent has children

-1 Parent has no children

0 Unknown, or invalid
parameter

valueOf(java.lang.String name) static HasChildrenResult Returns an enumeration constant of this
type with the specified name. The String
must match exactly an identifier used to
declare an enumeration constant of this
type. Do not use whitespace characters in
the enumeration name.

values() static HasChildrenResult[] Returns an array containing the constants
of this enumeration type, in the order they
are declared. This method can iterate over
constants as follows:

for (HasChildrenResult c :
HasChildrenResult.values())
System.out.println(c);

The HasChildrenResult enumeration inherits the following methods from class java.lang.Enum:

clone, compareTo, equals, finalize, getDeclaringClass, hashCode, name, ordinal, toString,
valueOf

Developing with VMware vRealize Orchestrator

VMware, Inc. 73

ScriptingAttribute Annotation Type
The ScriptingAttribute annotation type annotates an attribute from an object in the plugged in
technology for use as a property in scripting.

@Retention(value=RUNTIME)

@Target(value={METHOD,FIELD})

public @interface ScriptingAttribute

The ScriptingAttribute annotation type has the following value:

public abstract java.lang.String value

ScriptingFunction Annotation Type
The ScriptingFunction annotation type annotates a method for use as a property in scripting.

@Retention(value=RUNTIME)

@Target(value={METHOD,CONSTRUCTOR})

public @interface ScriptingFunction

The ScriptingFunction annotation type has the following value:

public abstract java.lang.String value

ScriptingParameter Annotation Type
The ScriptingParameter annotation type annotates a parameter for use as a property in scripting.

@Retention(value=RUNTIME)

@Target(value=PARAMETER)

public @interface ScriptingParameter

The ScriptingParameter annotation type has the following value:

public abstract java.lang.String value

Elements of the vso.xml Plug-In Definition File
The vso.xml file contains a set of standard elements. Some of the elements are mandatory while others
are optional. Each element has attributes that define values for the objects and operations you map to
Orchestrator objects and operations.

Developing with VMware vRealize Orchestrator

VMware, Inc. 74

In addition, elements can have zero or more child elements. A child element further defines the parent
element. The same child element can appear in multiple parent elements. For example, the description
element has no child elements, but appears as a child element for many parent elements: module,
example, trigger, gauge, finder, constructor, method, object, and enumeration.

Each element definition that follows lists its attributes, parents and children.

module Element
A module describes a set of plug-in objects to make available to Orchestrator.

The module contains information about how data from the plugged-in technology maps to Java classes,
versioning, how to deploy the module, and how the plug-in appears in the Orchestrator inventory.

The <module> element is optional. The <module> element has the following attributes:

Attributes Value Description

name String Defines the type of all the <finder>
elements in the plug-in. Mandatory
attribute.

version Number The plug-in version number, for use when
reloading packages in a new version of
the plug-in. Mandatory attribute.

build-number Number The plug-in build number, for use when
reloading packages in a new version of
the plug-in. Mandatory attribute.

image Image file The icon to display in the Orchestrator
Inventory. Mandatory attribute.

display-name String The name that appears in the
Orchestrator Inventory. Optional attribute.

interface-mapping-allowed true or false VMware strongly discourages interface
mapping. Optional attribute.

Table 1‑7. Element Hierarchy

Parent Element Child Elements

None n <description>

n <installation>

n <configuration>

n <finder-datasources>

n <inventory>

n <finders>

n <scripting-objects>

n <enumerations>

Developing with VMware vRealize Orchestrator

VMware, Inc. 75

description Element
The <description> elements provide descriptions of the elements of the plug-in that appear in the API
Explorer documentation.

You add the text that appears in the API Explorer documentation between the <description> and
</description> tags.

The <description> element is optional. The <description> element has no attributes.

Table 1‑8. Element Hierarchy

Parent Elements Child Elements

n <module>

n <example>

n <trigger>

n <gauge>

n <finder>

n <constructor>

n <method>

n <object>

n <enumeration>

None

deprecated Element
The <deprecated> element marks objects and methods that are deprecated in the API Explorer
documentation.

You add the text that appears in the API Explorer documentation between the <deprecated> and
</deprecated> tags.

The <deprecated> element is optional. The <deprecated> element has no attributes.

Table 1‑9. Element Hierarchy

Parent Elements Child Elements

n <method>

n <object>

None

url Element
The <url> element provides a URL that points to external documentation about an object or
enumeration.

You provide the URL between the <url> and </url> tags.

The <url> element is optional. The <url> element has no attributes.

Developing with VMware vRealize Orchestrator

VMware, Inc. 76

Table 1‑10. Element Hierarchy

Parent Elements Child Elements

n <enumeration>

n <object>

None

installation Element
The <installation> element allows you to install a package or run a script when the server starts.

The <installation> element is optional. The <installation> element has the following attributes:

Attributes Value Description

mode always, never, or version Setting the mode value results in the
following behavior when the Orchestrator
server starts:
n The action always runs
n The action never runs
n The action runs when the server

detects a newer version of the plug-in

Mandatory attribute.

Table 1‑11. Element Hierarchy

Parent Element Child Element

<module> <action>

action Element
The <action> element specifies the action that runs when the Orchestrator server starts.

The <action> element attributes provide the path to the Orchestrator package or script that defines the
plug-in's behavior when it starts.

The <action> element is optional. A plug-in can have an unlimited number of <action> elements. The
<action> element has the following attributes.

Attributes Value Description

resource String The path to the Java package or script
from the root of the dar file. Mandatory
attribute.

type install-package or execute-script Either installs the specified Orchestrator
package in the Orchestrator server, or
runs the specified script. Mandatory
attribute.

Developing with VMware vRealize Orchestrator

VMware, Inc. 77

Table 1‑12. Element Hierarchy

Parent Element Child Elements

<installation> None

finder-datasources Element
The <finder-datasources> element is the container for the <finder-datasource> elements.

The <finder-datasources> element is optional. The <finder-datasources> element has no
attributes.

Table 1‑13. Element Hierarchy

Parent Element Child Elements

<module> <finder-datasource>

finder-datasource Element
The <finder-datasource> element points to the Java class file of the IPluginAdaptor implementation
that you create for the plug-in.

You set how Orchestrator accesses the objects of the plugged-in technology in the <finder-
datasource> element. The <finder-datasource> element identifies the Java class of the plug-in
adapter that you create. The plug-in adapter class instantiates the plug-in factory that you create. The
plug-in factory defines the methods that find objects in the plugged-in technology. You can set timeouts in
the <finder-datasource> element for the finder method calls that the factory performs. Different
timeouts apply to the different finder methods from the IPluginFactory interface.

The <finder-datasource> element is optional. A plug-in can have an unlimited number of <finder-
datasources> elements. The <finder-datasource> element has the following attributes.

Attributes Value Description

name String Identifies the data source in the <finder>
element datasource attributes.
Equivalent to an XML id. Mandatory
attribute.

adaptor-class Java class Points to the IPluginAdaptor
implementation you define to create the
plug-in adapter, for example,
com.vmware.plugins.sample.Adaptor.
Mandatory attribute.

concurrent-call true (default) or false Allows multiple users to access the
adapter at the same time. You must set
concurrent-call to false if the plug-in
does not support concurrent calls.
Optional attribute.

Developing with VMware vRealize Orchestrator

VMware, Inc. 78

Attributes Value Description

invoker-mode direct (default) or timeout Sets a timeout on the finder function. If set
to direct, calls to finder functions never
time out. If set to timeout, the
Orchestrator server applies the timeout
period that corresponds to the finder
method. Optional attribute.

anonymous-login-mode never (default) or always Passes or does not pass the user's
username and password to the plug-in.
Optional attribute.

timeout-fetch-relation Number; default 30 seconds Applies to calls from findRelation().
Optional attribute.

timeout-find-all Number; default 60 seconds Applies to calls from findAll(). Optional
attribute.

timeout-find Number; default 60 seconds Applies to calls from find(). Optional
attribute.

timeout-has-children-in-relation Number; default 2 seconds Applies to calls from
findChildrenInRelation(). Optional
attribute.

timeout-execute-plugin-command Number; default 30 seconds Applies to calls from
executePluginCommand(). Optional
attribute.

Table 1‑14. Element Hierarchy

Parent Element Child Elements

<finder-datasources> None

inventory Element
The <inventory> element defines the root of the hierarchical list for the plug-in that appears in the
Orchestrator client Inventory view and object selection dialog boxes.

The <inventory> element does not represent an object in the plugged-in application, but rather
represents the plug-in itself as an object in the Orchestrator scripting API.

The <inventory> element is optional. The <inventory> element has the following attribute.

Attributes Value Description

type An Orchestrator object type The type of the <finder> element that
represents the root of the hierarchy of
objects. Mandatory attribute.

Table 1‑15. Element Hierarchy

Parent Element Child Elements

<module> None

Developing with VMware vRealize Orchestrator

VMware, Inc. 79

finders Element
The <finders> element is the container for all the <finder> elements.

The <finders> element is optional. The <finders> element has no attributes.

Table 1‑16. Element Hierarchy

Parent Element Child Element

<module> <finder>

finder Element
The <finder> element represents in the Orchestrator client a type of object found through the plug-in.

The <finder> element identifies the Java class that defines the object the object finder represents. The
<finder> element defines how the object appears in the Orchestrator client interface. It also identifies the
scripting object that the Orchestrator scripting API defines to represent this object.

Finders act as an interface between object formats used by different types of plugged-in technologies.

The <finder> element is optional. A plug-in can have an unlimited number of <finder> elements. The
<finder> element defines the following attributes:

Attributes Value Description

type An Orchestrator object type Type of object represented by the finder.
Mandatory attribute.

datasource <finder-datasource name> attribute Identifies the Java class that defines the
object by using the datasource refid.
Mandatory attribute.

dynamic-finder Java method Defines a custom finder method you
implement in an IDynamicFinder
instance, to return the ID and properties of
a finder programmatically, instead defining
it in the vso.xml file. Optional attribute.

hidden true or false (default) If true, hides the finder in the
Orchestrator client. Optional attribute.

image Path to a graphic file A 16x16 icon to represent the finder in
hierarchical lists in the Orchestrator client.
Optional attribute.

java-class Name of a Java class The Java class that defines the object the
finder finds and maps to a scripting object.
Optional attribute.

script-object <scripting-object type> attribute The <scripting-object> type, if any, to
which to map this finder. Optional
attribute.

Developing with VMware vRealize Orchestrator

VMware, Inc. 80

Table 1‑17. Element Hierarchy

Parent Element Child Elements

<finders> n <id>

n <description>

n <properties>

n <default-sorting>

n <inventory-children>

n <relations>

n <inventory-tabs>

n <events>

properties Element
The <properties> element is the container for <finder><property> elements.

The <properties> element is optional. The <properties> element has no attributes.

Table 1‑18. Element Hierarchy

Parent Element Child Element

<finder> <property>

property Element
The <property> element maps the found object's properties to Java properties or method calls.

You can call on the methods of the SDKFinderProperty class when you implement the plug-in factory to
obtain properties for the plug-in factory implementation to process.

You can show or hide object properties in the views in the Orchestrator client. You can also use
enumerations to define object properties.

The <property> element is optional. A plug-in can have an unlimited number of <property> elements.
The <property> element has the following attributes.

Attributes Value Description

name Finder name The name the FinderResult uses to
store the element. Mandatory attribute.

display-name Finder name The displayed property name. Optional
attribute.

bean-property Property name You use the bean-property attribute to
identify a property to obtain using get and
set operations. If you identify a property
named MyProperty, the plug-in defines
getMyProperty and setMyProperty
operations.

You set one or the other of bean-
property or property-accessor, but
not both. Optional attribute.

Developing with VMware vRealize Orchestrator

VMware, Inc. 81

Attributes Value Description

property-accessor The method that obtains a property value
from an object

The property-accessor attribute allows
you to define an OGNL expression to
validate an object's properties.

You set one or the other of bean-
property or property-accessor, but
not both. Optional attribute.

show-in-column true (default) or false If true, this property shows in the
Orchestrator client results table. Optional
attribute.

show-in-description true (default) or false If true, this property shows in the object
description. Optional attribute.

hidden true or false (default) If true, this property is hidden in all
cases. Optional attribute.

linked-enumeration Enumeration name Links a finder property to an enumeration.
Optional attribute.

Table 1‑19. Element Hierarchy

Parent Element Child Elements

<properties> Child Elements

relations Element
The <relations> element is the container for <finder><relation> elements.

The <relations> element is optional. The <relations> element has no attributes.

Table 1‑20. Element Hierarchy

Parent Element Child Element

<finder> <relation>

relation Element
The <relation> element defines how objects relate to other objects.

You define the relation name in the <relation> element.

The <relation> element is optional. A plug-in can have an unlimited number of <relation> elements.
The <relation> element has the following attributes.

Developing with VMware vRealize Orchestrator

VMware, Inc. 82

Attributes Value Description

name Relation name A name for this relation. Mandatory
attribute.

type Orchestrator object type The type of the object that relates to
another object by this relation. Mandatory
attribute.

cardinality to-one or to-many Defines the relation between the objects
as one-to-one or one-to-many. Optional
attribute.

Table 1‑21. Element Hierarchy

Parent Element Child Elements

<relations> None

id Element
The <id> element defines a method to obtain the unique ID of the object that the finder identifies.

The <id> element is optional. The <id> element has the following attributes.

Attributes Value Description

accessor Method name The accessor attribute allows you to
define an OGNL expression to validate an
object's properties. Mandatory attribute.

Table 1‑22. Element Hierarchy

Parent Element Child Elements

<finder> None

inventory-children Element
The <inventory-children> element defines the hierarchy of the lists that show the objects in the
Orchestrator client Inventory view and object selection boxes.

The <inventory-children> element is optional. The <inventory-children> element has no
attributes.

Table 1‑23. Element Hierarchy

Parent Element Child Element

<finder> <relation-link>

Developing with VMware vRealize Orchestrator

VMware, Inc. 83

relation-link Element
The <relation-link> element defines the hierarchies between parent and child objects in the
Inventory tab.

The <relation-link> element is optional. A plug-in can have an unlimited number of <relation-
link> elements. The <relation-link> element has the following attribute.

Type Value Description

name Relation name A refid to a relation name. Mandatory
attribute.

Table 1‑24. Element Hierarchy

Parent Element Child Elements

<inventory-children> None

events Element
The <events> element is the container for the <trigger> and <gauge> elements.

The <events> element can contain an unlimited number of triggers or gauges.

The <events> element is optional. The <events> element has no attributes.

Table 1‑25. Element Hierarchy

Parent Element Child Elements

<finder> n <trigger>

n <gauge>

trigger Element
The <trigger> element declares the triggers you can use for this finder. You must implement the
registerEventPublisher() and unregisterEventPublisher() methods of IPluginAdaptor to set
triggers.

The <trigger> element is optional. The <trigger> element has the following attribute.

Type Value Description

name Trigger name A name for this trigger. Mandatory
attribute.

Table 1‑26. Element Hierarchy

Parent Element Child Elements

<events> n <description>

n <trigger-properties>

Developing with VMware vRealize Orchestrator

VMware, Inc. 84

trigger-properties Element
The <trigger-properties> element is the container for the <trigger-property> elements.

The <trigger-properties> element is optional. The <trigger-properties> element has no
attributes.

Table 1‑27. Element Hierarchy

Parent Element Child Element

<trigger> <trigger-property>

trigger-property Element
The <trigger-property> element defines the properties that identify a trigger object.

The <trigger-property> element is optional. A plug-in can have an unlimited number of <trigger-
property> elements. The <trigger-property> element has the following attributes.

Type Value Description

name Trigger name A name for the trigger. Optional attribute.

display-name Trigger name The name that displays in the
Orchestrator client. Optional attribute.

type Trigger type The object type that defines the trigger.
Mandatory attribute.

Table 1‑28. Element Hierarchy

Parent Element Child Elements

<trigger-properties> None

gauge Element
The <gauge> element defines the gauges you can use for this finder. You must implement
theregisterEventPublisher() and unregisterEventPublisher() methods of IPluginAdaptor to
set gauges.

The <gauge> element is optional. A plug-in can have an unlimited number of <gauge> elements. The
<gauge> element has the following attributes.

Type Value Description

name Gauge name A name for the gauge. Mandatory
attribute.

min-value Number Minimum threshold. Optional attribute.

max-value Number Maximum threshold. Optional attribute.

Developing with VMware vRealize Orchestrator

VMware, Inc. 85

Type Value Description

unit Object type Object type that defines the gauge.
Mandatory attribute.

format String The format of the monitored value.
Optional attribute.

Table 1‑29. Element Hierarchy

Parent Element Child Element

<events> <description>

scripting-objects Element
The <scripting-objects> element is the container for the <object> elements.

The <scripting-objects> element is optional. The <scripting-objects> element has no attributes.

Table 1‑30. Element Hierarchy

Parent Element Child Element

<module> <object>

object Element
The <object> element maps the plugged-in technology's constructors, attributes, and methods to
JavaScript object types that the Orchestrator scripting API exposes.

See Naming Plug-In Objects for object naming conventions.

The <object> element is optional. A plug-in can have an unlimited number of <object> elements. The
<object> element has the following attributes.

Type Value Description

script-name JavaScript name Scripting name of the class. Must be
globally unique. Mandatory attribute.

java-class Java class The Java class wrapped by this
JavaScript class. Mandatory attribute.

create true (default) or false If true, you can create a new instance of
this class. Optional attribute.

strict true or false (default) If true, you can only call methods you
annotate or declare in the vso.xml file.
Optional attribute.

is-deprecated true or false (default) If true, the object maps a deprecated
Java class. Optional attribute.

since-version String Version since the Java class is
deprecated. Optional attribute.

Developing with VMware vRealize Orchestrator

VMware, Inc. 86

Table 1‑31. Element Hierarchy

Parent Element Child Elements

<scripting-objects> n <description>

n <deprecated>

n <url>

n <constructors>

n <attributes>

n <methods>

n <singleton>

constructors Element
The <constructors> element is the container for the <object><constructor> elements.

The <constructors> element is optional. The <constructors> element has no attributes.

Table 1‑32. Element Hierarchy

Parent Element Child Element

<object> <constructor>

constructor Element
The <constructor> element defines a constructor method. The <constructor> method produces
documentation in the API Explorer.

The <constructor> element is optional. A plug-in can have an unlimited number of <constructor>
elements. The <constructor> element has no attributes.

Table 1‑33. Element Hierarchy

Parent Element Child Elements

<constructors> n <description>

n <parameters>

Constructor parameters Element
The <parameters> element is the container for the <constructor><parameter> elements.

The <parameters> element is optional. The <parameters> element has no attributes.

Table 1‑34. Element Hierarchy

Parent Element Child Element

<constructor> <parameter>

Developing with VMware vRealize Orchestrator

VMware, Inc. 87

Constructor parameter Element
The <parameter> element defines the constructor's parameters.

The <parameter> element is optional. A plug-in can have an unlimited number of <parameter>
elements. The <parameter> element has the following attributes.

Type Value Description

name String Parameter name to use in API
documentation. Mandatory attribute.

type Orchestrator parameter type Parameter type to use in API
documentation. Mandatory attribute.

is-optional true or false If true, value can be null. Optional
attribute.

since-version String Method version. Optional attribute.

Table 1‑35. Element Hierarchy

Parent Element Child Elements

<parameters> None

attributes Element
The <attributes> element is the container for the <object><attribute> elements.

The <attributes> element is optional. The <attributes> element has no attributes.

Table 1‑36. Element Hierarchy

Parent Element Child Element

<object> <attribute>

attribute Element
The <attribute> element maps the attributes of a Java class from the plugged-in technology to
JavaScript attributes that the Orchestrator JavaScript engine makes available.

The <attribute> element is optional. A plug-in can have an unlimited number of <attribute>
elements. The <attribute> element has the following attributes.

Type Value Description

java-name Java attribute Name of the Java attribute. Mandatory
attribute.

script-name JavaScript object Name of the corresponding JavaScript
object. Mandatory attribute.

Developing with VMware vRealize Orchestrator

VMware, Inc. 88

Type Value Description

return-type String The type of object this attribute returns.
Appears in the API Explorer
documentation. Optional attribute.

Note If the JavaScript return type is
Properties, the supported underlying
Java implementations are
java.util.HashMap and
java.util.Hashtable.

read-only true or false If true, you cannot modify this attribute.
Optional attribute.

is-optional true or false If true, this field can be null. Optional
attribute.

show-in-api true or false If false, this attribute does not appear in
API documentation. Optional attribute.

is-deprecated true or false If true, the object maps a deprecated
attribute. Optional attribute.

since-version Number The version at which the attribute was
deprecated. Optional attribute.

Table 1‑37. Element Hierarchy

Parent Element Child Elements

<attributes> None

methods Element
The <methods> element is the container for the <object><method> elements.

The <methods> element is optional. The <methods> element has no attributes.

Table 1‑38. Element Hierarchy

Parent Element Child Element

<object> <method>

method Element
The <method> element maps a Java method from the plugged-in technology to a JavaScript method that
the Orchestrator JavaScript engine exposes.

The <method> element is optional. A plug-in can have an unlimited number of <method> elements. The
<method> element has the following attributes.

Developing with VMware vRealize Orchestrator

VMware, Inc. 89

Type Value Description

java-name Java method Name of the Java method signature with
argument types in parentheses, for
example, getVms(DataStore).
Mandatory attribute.

script-name JavaScript method Name of the corresponding JavaScript
method. Mandatory attribute.

return-type Java object type The type this method obtains. Optional
attribute.

Note If the JavaScript return type is
Properties, the supported underlying
Java implementations are
java.util.HashMap and
java.util.Hashtable.

static true or false If true, this method is static. Optional
attribute.

show-in-api true or false If false, this method does not appear in
API documentation. Optional attribute.

is-deprecated true or false If true, the object maps a deprecated
method. Optional attribute.

since-version Number The version at which the method was
deprecated. Optional attribute.

Table 1‑39. Element Hierarchy

Parent Element Child Elements

<methods> n <deprecated>

n <description>

n <example>

n <parameters>

example Element
The <example> element allows you to add code examples to Javascript methods that appear in the API
Explorer documentation.

The <example> element is optional. The <example> element has no attributes.

Table 1‑40. Element Hierarchy

Parent Element Child Elements

<method> n <code>

n <description>

Developing with VMware vRealize Orchestrator

VMware, Inc. 90

code Element
The <code> element provides example code that appears in the API Explorer documentation.

You provide the code example between the <code> and </code> tags. The <code> element is optional.
The <code> element has no attributes.

Table 1‑41. Element Hierarchy

Parent Element Child Elements

<example> None

Method parameters Element
The <parameters> element is the container for the <method><parameter> elements.

The <parameters> element is optional. The <parameters> element has no attributes.

Table 1‑42.

Parent Element Child Element

<method> <parameter>

Method parameter Element
The <parameter> element defines the method's input parameters.

The <parameter> element is optional. A plug-in can have an unlimited number of <parameter>
elements. The <parameter> element has the following attributes.

Type Value Description

name String Parameter name. Mandatory attribute.

type Orchestrator parameter type Parameter type. Mandatory attribute.

is-optional true or false If true, value can be null. Optional
attribute.

since-version String Method version. Optional attribute.

Table 1‑43. Element Hierarchy

Parent Element Child Element

<parameters> None

singleton Element
The <singleton> element creates a JavaScript scripting object as a singleton instance.

Developing with VMware vRealize Orchestrator

VMware, Inc. 91

A singleton object behaves in the same way as a static Java class. Singleton objects define generic
objects for the plug-in to use, rather than defining specific instances of objects that Orchestrator accesses
in the plugged-in technology. For example, you can use a singleton object to establish the connection to
the plugged-in technology.

The <singleton> element is optional. The <singleton> element has the following attributes.

Type Value Description

script-name JavaScript object Name of the corresponding JavaScript
object. Mandatory attribute.

datasource Java object The source Java object for this JavaScript
object. Mandatory attribute.

Table 1‑44. Element Hierarchy

Parent Element Child Element

<object> None

enumerations Element
The <enumerations> element is the container for the <enumeration> elements.

The <enumerations> element is optional. The <enumerations> element has no attributes.

Table 1‑45. Element Hierarchy

Parent Element Child Element

<module> <enumeration>

enumeration Element
The <enumeration> element defines common values that apply to all objects of a certain type.

If all objects of a certain type require a certain attribute, and if the range of values for that attribute is
limited, you can define the different values as enumeration entries. For example, if a type of object
requires a color attribute, and if the only available colors are red, blue, and green, you can define three
enumeration entries to define these three color values. You define entries as child elements of the
enumeration element.

The <enumeration> element is optional. A plug-in can have an unlimited number of <enumeration>
elements. The <enumeration> element has the following attribute.

Type Value Description

type Orchestrator object type Enumeration type. Mandatory attribute.

Developing with VMware vRealize Orchestrator

VMware, Inc. 92

Table 1‑46. Element Hierarchy

Parent Element Child Elements

<enumerations> n <url>

n <description>

n <entries>

entries Element
The <entries> element is the container for the <enumeration><entry> elements.

The <entries> element is optional. The <entries> element has no attributes.

Table 1‑47. Element Hierarchy

Parent Element Child Element

<enumeration> <entry>

entry Element
The <entry> element provides a value for an enumeration attribute.

The <entry> element is optional. A plug-in can have an unlimited number of <entry> elements. The
<entry> element has the following attributes.

Type Value Description

id Text The identifier that objects use to set the
enumeration entry as an attribute.
Mandatory attribute.

name Text The entry name. Mandatory attribute.

Table 1‑48. Element Hierarchy

Parent Element Child Elements

<entries> None

Best Practices for Orchestrator Plug-In Development
You can improve certain aspects of the Orchestrator plug-ins that you develop by understanding the
structure and content of plug-ins, as well as by understanding how to avoid specific problems.

n Approaches for Building Orchestrator Plug-Ins

You can use different approaches to build your Orchestrator plug-ins. You can start building a plug-in
layer by layer or you can start building all layers of the plug-in at the same time.

Developing with VMware vRealize Orchestrator

VMware, Inc. 93

n Types of Orchestrator Plug-Ins

By using plug-ins, you can integrate general-purpose libraries or utilities like XML or SSH, as well as
entire systems, such as vCloud Director, with Orchestrator. Depending on the technology that you
integrate with Orchestrator, plug-ins can be categorized as plug-ins for services, or general purpose
plug-ins, and plug-ins for systems.

n Plug-In Implementation

You can use certain helpful practices and techniques when you structure your plug-ins, implement
the required Java classes and JavaScript objects, develop the plug-in workflows and actions, as well
as provide the workflow presentation.

n Recommendations for Orchestrator Plug-In Development

Adhering to certain certain practices when developing the different components of your Orchestrator
plug-ins helps you to improve the quality of the plug-ins.

n Documenting Plug-In User Interface Strings and APIs

When you write user interface (UI) strings for Orchestrator plug-ins and the related API
documentation, follow the accepted rules of style and format.

Approaches for Building Orchestrator Plug-Ins
You can use different approaches to build your Orchestrator plug-ins. You can start building a plug-in
layer by layer or you can start building all layers of the plug-in at the same time.

For information about plug-in layers, see Structure of an Orchestrator Plug-In.

Bottom-Up Plug-In Development

A plug-in can be built layer by layer using bottom-up development approach.

Bottom-up development approach builds the plug-in layer by layer starting from the lower level layers and
continuing with the higher level layers. When this approach is mixed with an interactive and iterative
development approach, then part or whole layer is delivered for each iteration. At the end of the N
iterations the plug-in is completely finished.

Developing with VMware vRealize Orchestrator

VMware, Inc. 94

Figure 1‑5. Bottom-up plug-in development

High level workflow
Iteration n

Iteration 1

Building block workflows

Action

Scripting objects

Wrapping classes

Infrastructure classes

An advantage of the bottom-up plug-in development approach is that development is focused on one
layer at a time.

Consider the following disadvantages of bottom-up plug-in development approach.

n The progress of the plug-in development is difficult to show until some insertions are completed.

n It does not fit very well in an Agile development practices.

The bottom-up development process is considered good enough for small plug-ins, with reduced or non-
existent set of wrapping classes, scripting objects, actions, or workflows.

Top-Down Plug-In Development

A plug-in can be built by slicing it into top-down functionality, using top-down development approach.

When the top-down approach is mixed with an Agile development process, new functionality is delivered
for each iteration. As a result, at the end of the iteration N the plug-in is completely implemented.

Developing with VMware vRealize Orchestrator

VMware, Inc. 95

Figure 1‑6. Top-down plug-in development

High level workflow

Iteration nIteration 1

Building block workflows

Action

Scripting objects

Wrapping classes

Infrastructure classes

The top-down plug-in development approach has the following advantages.

n The progress of the plug-in development is easy to show from the first iteration because new
functionality is completed for each iteration and the plug-in can be released and used after every
iteration.

n Completing a vertical slice of functionality allows for very clearly defined success criteria and
definition of what has been done, as well as better communication between developers, product
management, and quality assurance (QA) engineers.

n Allows the QA engineers to start testing and automating from the beginning of the development
process. Such an approach results in valuable feedback and decreases the overall project delivery
time frame.

A disadvantage of the top-down plug-in development approach is that the development is in progress on
different layers at the same time.

You should apply the top-down plug-in development process for most plug-ins. It is appropriate for plug-
ins with dynamic requirements.

Types of Orchestrator Plug-Ins
By using plug-ins, you can integrate general-purpose libraries or utilities like XML or SSH, as well as
entire systems, such as vCloud Director, with Orchestrator. Depending on the technology that you
integrate with Orchestrator, plug-ins can be categorized as plug-ins for services, or general purpose plug-
ins, and plug-ins for systems.

Plug-Ins for Services

Plug-ins for services or general-purpose plug-ins provide functionality that can be considered as a service
inside Orchestrator.

Developing with VMware vRealize Orchestrator

VMware, Inc. 96

Figure 1‑7. Architecture of plug-ins for services

Orchestrator Plug-In
core

Adaptor Generic
library

System

Service Plug-In

Plug-ins for services expose generic libraries or utilities to Orchestrator, such as XML, SSH, or SOAP. For
example, the following plug-ins that are available in Orchestrator are plug-ins for services.

JDBC plug-in Lets you use any database within a workflow.

Mail plug-in Lets you send emails within a workflow.

SSH plug-in Lets you open SSH connections and run commands within a workflow.

XML plug-in Lets you manage XML documents within a workflow.

Plug-ins for services have the following characteristics.

Complexity Plug-ins for services have low to medium levels of complexity. Plug-ins for
services expose a specific library, or part of a library, inside Orchestrator so
as to provide concrete functionality. For example, the XML plug-in adds an
implementation of a Document Object Model (DOM) XML parser to the
Orchestrator JavaScript API.

Size Plug-ins for services are relatively small in size. They require the same
basic set of classes as for all plug-ins, and other classes that offer new
scripting objects to add new functionality.

Inventory Plug-ins for services require a small inventory of objects to work, or they do
not require an inventory at all. Plug-ins for services have a generic and
small object model, and so, they do not need to show this model inside the
Orchestrator inventory.

Plug-Ins for Systems

Plug-ins for systems connect the Orchestrator workflow engine to an external system so that you can
orchestrate the external system.

Following are examples for plug-ins for systems.

vCenter Server plug-in Lets you manage vCenter Server instances using workflows.

vCloud Director plug-in Lets you interact with a vCloud Director installation within a workflow.

Cisco UCSM plug-in Lets you interact with Cisco entities within a workflow.

Developing with VMware vRealize Orchestrator

VMware, Inc. 97

Following are the main characteristics of plug-ins for systems.

Complexity Plug-ins for systems have a higher level of complexity than general-
purpose plug-ins, because the technologies that they expose are relatively
complex. Plug-ins for systems must represent all the elements of the
external system inside Orchestrator to interact with the external system and
offer its functionality in Orchestrator. If the external system provides an
integration mechanism, you can use it to expose the functionality of the
system in Orchestrator more easily. However, besides representing the
elements of the external system in Orchestrator, plug-ins for systems might
also need to offer high scalability, provide a caching mechanism, deal with
events and notifications, and so on.

Size Plug-ins for system are medium to big in size. Plug-ins for systems require
many classes apart from the basic set of classes because usually they offer
a large number of scripting objects. Plug-ins for systems might require
some other helper and auxiliary classes that will interact with them.

Inventory Usually, plug-ins for systems have a large number of objects, and you must
expose these objects properly in the inventory so that you can locate them
and work with them easily in Orchestrator. Because of the large number of
objects that plug-ins for systems need to expose, you should build auxiliary
tool or a process to auto-generate as much code as possible for the plug-in.
For example, the vCenter Server plug-in provides such a tool.

Plug-Ins for Object-Oriented Systems

Object-oriented systems offer an interaction mechanism that is based on objects and RPC.

The most widely used model for an object-oriented system is the Web service model that uses SOAP.
The objects inside this model have a set of attributes that are related to the state of the objects and offer a
set of remote methods that are invoked on the target system side.

Figure 1‑8. Plug-Ins for Object-Oriented Systems

Orchestrator Plug-In
core

Adaptor System

Object-oriented system Plug-In

Specific
library

e.g.
WSDL

Generation

Developing with VMware vRealize Orchestrator

VMware, Inc. 98

You can consider the following when you implement plug-ins for object-oriented systems.

n If you use SOAP, you can use the WSDL file to generate a set of classes that combine the object
model and the communication mechanism.

n This object model is almost everything that you have to expose inside Orchestrator.

Plug-Ins for Resource-Oriented Systems

Resource-oriented systems provide an interaction mechanism that is based on resources and simple
operations that use HTTP methods.

The most representative model for a resource-oriented system is the REST model, combined for example
with XML. The objects inside this model have a set of attributes that are related to their state. To invoke
methods on the target system (communication mechanism), you must use the standard HTTP methods
such as GET, POST, PUT, and so on, and follow some conventions.

Figure 1‑9. Plug-ins for resource-oriented systems

System

Resource-oriented system Plug-In

Comm.
library

Model
library

e.g.
XSD

Generation

Orchestrator Plug-In
core

Adaptor

You can consider the following when you develop plug-ins for resource-oriented systems.

n If you use REST or only HTTP with XML, you get one or more XML schema files to be able to read
and write messages. From these schemas, you can generate a set of classes that define the object
model. This set of classes only defines the state of the objects because the operations are defined
implicitly with the HTTP methods, for example, as defined in the vCloud Director plug-in, or explicitly
with some specific XML messages, such as the Cisco UCSM plug-in.

n You need to implement the communication mechanism in another set of classes. This set of classes
defines a new object model that interacts with the original object model. The object model for the
communication mechanism consists of objects and methods only.

n You can expose both the original object model and the object model for the communication
mechanism inside Orchestrator. This might add some complexity depending on how both object
models are exposed, and on whether you are merging related objects from both sides (to simulate an
object-oriented system) or keeping them separate.

Developing with VMware vRealize Orchestrator

VMware, Inc. 99

Plug-In Implementation
You can use certain helpful practices and techniques when you structure your plug-ins, implement the
required Java classes and JavaScript objects, develop the plug-in workflows and actions, as well as
provide the workflow presentation.

n Project Structure

You can apply a standard structure for the projects of your Orchestrator plug-ins.

n Project Internals

You can apply certain approaches when implementing your plug-in, for example, cache objects,
bring objects in background, clone objects, and so on. By following such approaches, you can
improve the performance of your plug-ins, avoid concurrency problems, and improve the
responsiveness of the Orchestrator client.

n Workflow Internals

You can implement a workflow to monitor long-time operations that your Orchestrator plug-in
performs.

n Workflows and Actions

To ease the workflow development and usage, you can use certain good practices.

n Workflow Presentation

When you create the presentation of a workflow, you should apply certain structure and rules.

Project Structure

You can apply a standard structure for the projects of your Orchestrator plug-ins.

You can use a standard Maven structure with modules for your plug-in projects to bring clarity in where
every piece of functionality resides.

Table 1‑49. Structure of a Plug-In Project

Module Description

/myAwesomePlugin-plugin The root of the plug-in project.

/o11nplugin-myAwesomePlugin The module that composes the final plug-in DAR file.

/o11nplugin-myAwesomePlugin-config The module that contains the plug-in configuration Web
application. It generates a standard WAR file.

/o11nplugin-myAwesomePlugin-core The module that contains all the classes that implement any of
the standard Orchestrator plug-in interfaces and other auxiliary
classes that they use. It generates a standard JAR file.

/o11nplugin-myAwesomePlugin-model The module that contains all the classes that help you integrate
the third-party technology with Orchestrator through the plug-in.
The classes should not contain any direct reference to the
standard Orchestrator plug-in APIs.

/o11nplugin-myAwesomePlugin-package The module that imports an external Orchestrator package file
with actions and workflows to include it inside the final plug-in
DAR file. The module is optional.

Developing with VMware vRealize Orchestrator

VMware, Inc. 100

Project Internals

You can apply certain approaches when implementing your plug-in, for example, cache objects, bring
objects in background, clone objects, and so on. By following such approaches, you can improve the
performance of your plug-ins, avoid concurrency problems, and improve the responsiveness of the
Orchestrator client.

Cache Objects

Your plug-in can interact with a remote service, and this interaction is provided by local objects that
represent remote objects on the service side. To achieve good performance of the plug-in as well as good
responsiveness of the Orchestrator UI, you can cache the local objects instead of getting them every time
from the remote service. You can consider the scope of the cache, for example, one cache for all the
plug-in clients, one cache per user of the plug-in, and one cache per user of the third-party service. When
implemented, your caching mechanism is integrated with the plug-in interface for finding and invalidating
objects.

Bring Objects in Background

If you have to show large lists of objects in the plug-in inventory and do not have a fast way to retrieve
those objects, you can bring objects in background. You can bring object in background, for example, by
having objects with two states, fake and loaded. Assume that the fake objects are very easy to create
and provide the minimal information that you have to show in the inventory, such as name and ID. Then it
would be possible to always return fake objects, and when all the information (the real object) is really
needed, the using entity or the plug-in can invoke a method load automatically to get the real object. You
can even configure the process of loading objects to start automatically after the fake objects are
returned, to anticipate the actions of the using entity.

Clone Objects to Avoid Concurrency Problems

If you use a cache for your plug-in, you have to clone objects. Use of a cache that always returns the
same instance of an object to every entity that requests it can have unwanted effects. For example, entity
A requests object O, and the entity views the object in the inventory with all its attributes. At the same
time, entity B requests object O as well, and entity A runs a workflow that starts changing the attributes of
object O. At the end of its run, the workflow invokes the object's update method to update the object on
the server side. If entity A and entity B get the same instance of object O, entity A views in the inventory
all the changes that entity B performs, even before the changes are committed on the server side. If the
run goes fine, it should not be a problem, but if the run fails, the attributes of object O for entity A are not
reverted. In such a case, if the cache (the find operations of the plug-in) returns a clone of the object
instead of the same instance all the time, each using entity views and modifies its own copy, avoiding
concurrency issues, at least within Orchestrator.

Notify Changes to Others

Problems might occur when you use a cache and clone objects simultaneously. The biggest one is that
the object that is using entity views might not be the latest version that is available for the object. For
example, if an entity displays the inventory, the objects are loaded once, but at the same time, if another
entity is changing some of the objects, the first entity does not view the changes. To avoid this problem,

Developing with VMware vRealize Orchestrator

VMware, Inc. 101

you can use the PluginWatcher and IPluginPublisher methods from the Orchestrator plug-in API to
notify that something has changed to allow other instances of Orchestrator clients to see the changes.
This also applies to a unique instance of the Orchestrator client when changes from one object from the
inventory affect other objects of the inventory, and they need to be notified too. The operations that are
prone to use notifications are adding, updating, and deleting objects when these objects, or some
properties of these objects, are shown in the inventory.

Enable Finding Any Object at Any Time

You must implement the find method of the IPluginFactory interface to find objects just by type and
ID. The find method can be invoked directly after restarting Orchestrator and resuming a workflow.

Simulate a Query Service if You Do Not Have One

The Orchestrator client can require querying for some objects in specific cases or showing them not as a
tree but as a list or a table, for example. This means that your plug-in must be able to query for some set
of objects at any moment. If the third-party technology offers a query service, you need to adapt and use
this service. Otherwise, you should be able to simulate a query service, despite of the higher complexity
or the lower performance of the solution.

Find Methods Should Not Return Runtime Exceptions

The methods from the IPluginFactory interface that implement the searches inside the plug-in should
not throw controlled or uncontrolled runtime exceptions. This might be the cause of strange validation
error failures when a workflow is running. For example, between two nodes of a workflow, the find
method is invoked if an output from the first node is an input of the second node. At that moment, if the
object is not found because of any runtime exception, you might get no more information than a validation
error in the Orchestrator client. After that, it depends on how the plug-in logs the exceptions in to get more
or less information inside the log files.

Workflow Internals

You can implement a workflow to monitor long-time operations that your Orchestrator plug-in performs.

You can implement a workflow for monitoring long-time running operations such as task monitoring. This
workflow can be based on Orchestrator triggers and waiting events. You must consider that a workflow
that is blocked waiting for a task can be resumed as soon as the Orchestrator server starts. The plug-in
must be able to get all the required information to resume the monitoring process properly.

The monitoring workflow or the task that it can use internally should provide a mechanism to specify the
polling rate and a possible timeout.

The process of debugging a piece of scripting code inside a workflow is not easy, especially if the code
does not invoke any Java code. Because of this, sometimes the only option is to use the logging methods
offered by the default Orchestrator scripting objects.

Workflows and Actions

To ease the workflow development and usage, you can use certain good practices.

Developing with VMware vRealize Orchestrator

VMware, Inc. 102

Start Developing Workflows as Building Blocks

A building block can be a simple workflow that requires a few input parameters and returns a simple
output. If you have a rich set of building blocks, you can create higher-level workflows easily, and you can
offer a better set of tools for composing complex workflows.

Create Higher-Level Workflows Based on Smaller Components

If you have to develop a complex workflow with several inputs and internal steps, you can split it into
smaller and simpler building block workflows and actions.

Create Actions Whenever Possible

You can create actions to achieve additional flexibility when you develop workflows.

n To create complex objects or parameters for scripting methods easily

n To avoid repeating common pieces of code all the time

n To perform UI validations

Workflows Should Invoke Actions Whenever Possible

Actions can be invoked directly as nodes inside the workflow schema. This can keep the workflow
schema simpler, because you do not need to add scripting code blocks to invoke a single action.

Fill In the Expected Information

Provide information for every element of a workflow or an action.

n Provide a description of the workflow or action.

n Provide a description of the input parameters.

n Provide a description of the outputs.

n Provide a description of the attributes for the workflows.

Keep the Version Information Updated

When you version plug-ins, add meaningful comments with information such as major updates to the
plug-in, important implementation details, and so on.

Workflow Presentation

When you create the presentation of a workflow, you should apply certain structure and rules.

Use the following properties for the workflow inputs in the workflow presentation.

Developing with VMware vRealize Orchestrator

VMware, Inc. 103

Table 1‑50. Properties for Workflow Inputs

Properties Usage

Show in Inventory Use this property to help the user to run a workflow from the
inventory view.

Specify a root object to be shown in the chooser Use this property to help the user to select inputs. If the root
object can be refreshed in the presentation, is an attribute, or is
retrieved by an object method, you need to create or set an
appropriate action to refresh the object in the presentation.

Maximum string length Use this property for long strings such as names, descriptions,
file paths, and so on.

Minimum string length Use this property to avoid empty strings from the testing tools.

Custom validation Implement non-simple validations with actions.

Organize the inputs with steps and display group. Such organization helps the user identify and
distinguish all the input parameters of a workflow.

Recommendations for Orchestrator Plug-In Development
Adhering to certain certain practices when developing the different components of your Orchestrator plug-
ins helps you to improve the quality of the plug-ins.

Table 1‑51. Useful Practices in Plug-In Implementation

Component Item Description

General Access to third-party API Plug-ins should provide simplified methods for accessing the third-
party API wherever possible.

Interface Plug-ins should provide a coherent and standard interface for
users, even when the API does not.

Action Scripting objects You should create actions for every creation, modification, deletion,
and all other methods available for a scripting object.

Description The description of an action should describe what the action does
instead of how it works.

Scripting When you use scripting to get the properties or methods of an
object, you can check whether the object value is different from
null or undefined.

Deprecation If an action is deprecated, the comment or the throw statement
should indicate the replacement action, or the action should call a
new replacement action so that solutions that are built on the
deprecated version of the action do not fail.

Workflow User interface operations in the
orchestrated technology

You should create a workflow for every operation that is available in
the user interface of the orchestrated technology.

Description The description of a workflow should describe what the workflow
does instead of how it works.

Presentation property mandatory
input

You must set the mandatory input property for all mandatory
workflow inputs.

Developing with VMware vRealize Orchestrator

VMware, Inc. 104

Table 1‑51. Useful Practices in Plug-In Implementation (Continued)

Component Item Description

Presentation property default
value

If you develop a workflow that configures an entity, the workflow
presentation should load the default configuration values for this
entity. For example, if you develop a workflow that is named Host
Configuration, the presentation of the workflow must load the
default values of the host configuration.

Presentation property Show in
inventory

You must set the Show in inventory property so that you have
contextual workflows on inventory objects.

Presentation property specify a
root parameter

You should use this property in workflows when it is not necessary
to browse the inventory from the tree root .

Workflow validation You must validate workflows and fix all errors.

Object creation All workflows that create a new object should return the new object
as an output parameter.

Deprecation If a workflow is deprecated, the comment or the throw statement
should indicate the replacement workflow, or the deprecated
workflow should call a new replacement workflow to ensure that
solutions that are built on previous versions of the workflow do not
fail.

Inventory Host disconnection If your inventory contains a connection to a host and this host
becomes unavailable, you should indicate that the host is
disconnected. You can do this either by renaming the root object by
appending - disconnected or by removing the tree of objects
underneath this object, in the same manner as the vCloud Director
plug-in does.

Select value as list property An inventory object must be selectable as treeview or a list.

Host manager If the plug-in implements a host object for the target system, then a
parent hostmanager root object should exist with properties for
adding, removing, or editing host properties.

Getting or updating objects If a query service is running on the orchestrated technology, you
should use it for getting multiple objects.

Child discovery If you need to retrieve child objects separately, the retrieval process
must be multithreaded and non-blocking on a single error.

Orchestrator object change All workflows that can change the state of an element in the
inventory must update the inventory to avoid having objects out of
synchronization.

External object change You can use a notification mechanism to notify about changes in
the orchestrated technology that occur as a result of operations that
are performed outside of Orchestrator. In case such operations lead
to removal of objects from the orchestrated technology, you must
refresh the inventory accordingly to avoid failures or loss of data.
For example, if a virtual machine is deleted from vCenter Server,
the vCenter Server plug-in updates the inventory to remove the
object of the removed virtual machine.

Finder object Finder objects should have properties that can be used to
differentiate objects. These are typically the properties that are
present in the user interface.

Developing with VMware vRealize Orchestrator

VMware, Inc. 105

Table 1‑51. Useful Practices in Plug-In Implementation (Continued)

Component Item Description

Scripting object Implementation The equals method must be implemented to insure that ==
operation works on the same object as in some cases the object
might have two instances.

Plug-in object properties Objects that have parent objects should implement a parent
property.

Plug-in object properties Objects that have child objects should implement GET methods that
return arrays of child objects.

Inventory objects Inventory objects should be searchable with Server.find.

All inventory objects should be serializable so they can be used as
input or output attributes in a workflow.

Constructor and methods In most cases, scriptable objects should have either a constructor,
or should be returned by other object attributes or methods.

Object ID Objects that have an ID that is issued from an external system
should use an internal ID to ensure that no ID duplication occurs
when you are orchestrating more than one server.

Searching for objects search or find methods should implement a filter so that the
specified name or ID can be found instead of just all objects. For
example, the Orchestrator server has a Server.FindForId
method that allows finding a plug-in object by its ID. To do this, the
method must be implemented for each findable object in the plug-
in.

Trigger If possible, triggers should be available for objects that change so
that Orchestrator can have policies triggered on various events. For
example, to determine when a new virtual machine is added,
powered on, powered off, and so on, Orchestrator can monitor a
trigger or an event in the vCenter plug-in on the Datacenter
object.

Object properties Objects that reside in other plug-ins should have properties for
being easily converted from one plug-in object to another. For
example, virtual machine objects need to have a moref (managed
object reference ID).

Session manager If you are connecting to a remote server that can have a different
session, the plug-in should implement a shared session and a
session per user.

Trigger Trigger All long operations and blocking methods should be able to start
asynchronously with a task returned, and generate a trigger event
on completion.

Enumerations Enums Enumerations for a given type should have an inventory object that
allows selecting from the different values in the enumeration.

Logging Logs Methods should implement different log levels.

Versioning Plug-in version The plug-in version should follow standards and be updated along
with the plug-in update.

Developing with VMware vRealize Orchestrator

VMware, Inc. 106

Table 1‑51. Useful Practices in Plug-In Implementation (Continued)

Component Item Description

API documentation Methods Methods that are described in the API documentation should never
throw the exception no xyz method / property on an object.
Instead, methods should return null when no properties are
available and be documented with details when these properties
are not available.

vso.xml All objects, methods, and properties must be documented in
vso.xml.

Documenting Plug-In User Interface Strings and APIs
When you write user interface (UI) strings for Orchestrator plug-ins and the related API documentation,
follow the accepted rules of style and format.

General Recommendations

n Use the official names for VMware products involved in the plug-in. For example, use the official
names for the following products and VMware terminology.

Correct Term Do Not Use

vCenter Server VC or vCenter

vCloud Director vCloud

n End all workflow descriptions with a period. For example, Creates a new Organization. is a
workflow description.

n Use a text editor with a spell checker to write the descriptions and then move them to the plug-in.

n Ensure that the name of the plug-in exactly matches the approved third-party product name that it is
associated with.

Workflows and Actions

n Write informative descriptions. One or two sentences are enough for most of the actions and
workflows.

n Higher-level workflows might include more extensive descriptions and comments.

n Start descriptions with a verb, for example, Creates…. Do not use self-referential language like This
workflow creates.

n Put a period at the end of descriptions that are complete sentences.

n Describe what a workflow or action does instead of how it is implemented.

n Workflows and actions usually are included in folders and packages. Include a small description for
these folders and packages as well. For example, a workflow folder can have a description similar to
Set of workflows related to vApp Template management.

Developing with VMware vRealize Orchestrator

VMware, Inc. 107

Parameters of Workflows and Actions

n Start workflow and action descriptions with a descriptive noun phrase, for example, Name of. Do not
use a phrase like It's the name of.

n Do not put a period at the end of parameter and action descriptions. They are not complete
sentences.

n Input parameters of workflows must specify a label with appropriate names in the presentation view.
In many cases, you can combine related inputs in a display group. For example, instead of having
two inputs with the labels Name of the Organization and Full name of the Organization, you can
create a display group with the label Organization and place the inputs Name and Full name in the
Organization group.

n For steps and display groups, add descriptions or comments that appear in the workflow presentation
as well.

Plug-In API

n The documentation of the API refers to all of the documentation in the vso.xml file and the Java
source files.

n For the vso.xml file, use the same rules for the descriptions of finder objects and scripting objects
with their methods that you use for workflows and actions. Descriptions of object attributes and
method parameters use the same rules as the workflow and action parameters.

n Avoid special characters in the vso.xml file and include the descriptions inside a <![CDATA[insert
your description here!]]> tag.

n Use the standard Javadoc style for the Java source files.

Obtaining Input Parameters from Users When a Workflow
Starts
If a workflow requires input parameters, it opens a dialog box in which users enter the required input
parameter values when it runs. You can organize the content and layout, or presentation, of this dialog
box in Presentation tab in the workflow editor.

The way you organize parameters in the Presentation tab translates into the input parameters dialog box
when the workflow runs.

The Presentation tab also allows you to add descriptions of the input parameters to help users when
they provide input parameters. You can also set properties and constraints on parameters in the
Presentation tab to limit the parameters that users provide. If the parameters the user provides do not
meet the constraints you set in the Presentation tab, the workflow will not run.

n Creating the Input Parameters Dialog Box In the Presentation Tab

You define the layout of the dialog box in which users provide input parameters when they run a
workflow in the Presentation tab of the workflow editor.

Developing with VMware vRealize Orchestrator

VMware, Inc. 108

n Setting Parameter Properties

Orchestrator allows you to define properties to qualify the input parameter values that users provide
when they run workflows. The parameter properties you define impose limits on the types and
values of the input parameters the users provide.

Creating the Input Parameters Dialog Box In the Presentation Tab
You define the layout of the dialog box in which users provide input parameters when they run a workflow
in the Presentation tab of the workflow editor.

The Presentation tab allows you to group input parameters into categories and to define the order in
which these categories appear in the input parameters dialog box.

Presentation Descriptions
You can add an associated description for each parameter or group of parameters, which appears in the
input parameters dialog box. The descriptions provide information to the users to help them provide the
correct input parameters. You can enhance the layout of the description text by using HTML formatting.

Defining Presentation Input Steps
By default, the input parameters dialog box lists all the required input parameters in a single list. To help
users enter input parameters, you can define nodes, called input steps, in the presentation tab. Input
steps group input parameters of a similar nature. The input parameters under an input step appear in a
distinct section in the input parameters dialog box when the workflow runs.

Defining Presentation Display Groups
Each input step can have nodes of its own called display groups. The display groups define the order in
which parameter input text boxes appear within their section of the input parameters dialog box. You can
define display groups independently of input steps.

Create the Presentation of the Input Parameters Dialog Box
You create the presentation of the dialog box in which users provide input parameters when they run a
workflow in the Presentation tab in the workflow editor.

Prerequisites

n Open a workflow for editing in the workflow editor.

n Verify that the workflow has a defined list of input parameters.

Procedure

1 In the workflow editor, click the Presentation tab.

By default, all of the workflow's parameters appear under the main Presentation node in the order in
which you create them.

Developing with VMware vRealize Orchestrator

VMware, Inc. 109

2 Right-click the Presentation node and select Create new step.

A New Step node appears under the Presentation node.

3 Provide an appropriate name for the step and press Enter.

This name appears as a section header in the input parameters dialog box when the workflow runs.

4 Click the input step and add a description in the General tab in the bottom half of the Presentation
tab.

This description appears in the input parameters dialog box to provide information to the users to help
them provide the correct input parameters. You can enhance the layout of the description text by
using HTML formatting.

5 Right-click the input step you created and select Create display group.

A New Group node appears under the input step node.

6 Provide an appropriate name for the display group and press Enter.

This name appears as a subsection header in the input parameters dialog box when the workflow
runs.

7 Click the display group and add a description in the General tab in the bottom half of the
Presentation tab.

This description appears in the input parameters dialog box. You can enhance the layout of the
description text by using HTML formatting. You can add a parameter value to a group description by
using an OGNL statement, such as ${#param}.

8 Repeat the preceding steps until you have created all the input steps and display groups to appear in
the input parameters dialog box when the workflow runs.

9 Drag parameters from under the Presentation node to the steps and groups of your choice.

You created the layout of the input parameters dialog box through which users provide input parameter
values when the workflow runs.

What to do next

You must set the parameter properties.

Setting Parameter Properties
Orchestrator allows you to define properties to qualify the input parameter values that users provide when
they run workflows. The parameter properties you define impose limits on the types and values of the
input parameters the users provide.

Every parameter can have several properties. You define an input parameter's properties in the
Properties tab for a given parameter in the Presentation tab.

Parameter properties validate the input parameters and modify the way that text boxes appear in the
input parameters dialog box. Some parameter properties can create dependencies between parameters.

Developing with VMware vRealize Orchestrator

VMware, Inc. 110

Static and Dynamic Parameter Property Values
A parameter property value can be either static or dynamic. Static property values remain constant. If you
set a property value to static, you set or select the property's value from a list that the workflow editor
generates according to the parameter type.

Dynamic property values depend on the value of another parameter or attribute. You define the functions
by which dynamic properties obtain values by using an object graph navigation language (OGNL)
expression. If a dynamic parameter property value depends on the value of another parameter property
value and the other parameter property value changes, the OGNL expression recalculates and changes
the dynamic property value.

Set Parameter Properties
When a workflow starts, it validates input parameter values from users against any parameter properties
that you set.

Prerequisites

n Open a workflow for editing in the workflow editor.

n Verify that the workflow has a defined list of input parameters.

Procedure

1 In the workflow editor, click the Presentation tab.

2 Click a parameter in the Presentation tab.

The parameter's General and Properties tabs appear at the bottom of the Presentation tab.

3 Click the parameter's Properties tab.

4 Right-click in the Properties tab and select Add property.

A dialog box opens, presenting a list of the possible properties for a parameter of the type selected.

5 Select a property from the list presented in the dialog box and click OK.

The property appears in the Properties tab.

6 Under Value, make the property value either static or dynamic by selecting the corresponding symbol
from the drop-down menu.

Option Description

Static property

Dynamic property

7 If you set the property value to static, you select a property value according to the type of parameter

for which you are setting the properties.

Developing with VMware vRealize Orchestrator

VMware, Inc. 111

8 If you set the property value to dynamic, you define the function to obtain the parameter property
value by using an OGNL expression.

The workflow editor provides help writing the OGNL expression.

a Click the icon to obtain a list of all the attributes and parameters defined by the workflow that
this expression can call upon.

b Click the icon to obtain a list of all the actions in the Orchestrator API that return an output
parameter of the type for which you are defining the properties.

Clicking items in the proposed lists of parameters and actions adds them to the OGNL expression.

9 Click Save at the bottom of the workflow editor.

You defined the properties of the workflow's input parameters.

What to do next

Validate and debug the workflow.

Workflow Input Parameter Properties
You can constrain the input parameters that users provide when they run workflows by setting parameter
properties.

The possible properties for each type of parameter are listed in the following table.

Table 1‑52. Workflow Input Parameter Properties

Parameter Property Parameter Type Description

Maximum string length String Sets a maximum length for the parameter.

Minimum string length String Sets a minimum length for the parameter.

Matching regular expression String Validates the input using a regular
expression.

Maximum number value Number Sets a maximum value for the parameter.

Minimum number value Number Sets a minimum value for the parameter.

Number format Number Formats the input for the parameter.

Enumeration Any Specifies an ordered list of possible
values.

Mandatory Any Makes the parameter mandatory.

Choice from another parameter or
attribute

Any Derives possible user inputs from another
parameter. For example, if this parameter
is an SSH:File and a parameter in a
previous step is an SSH:Folder, you can
set this property to limit the possible input
parameter values to files contained in the
SSH:Folder.

Developing with VMware vRealize Orchestrator

VMware, Inc. 112

Table 1‑52. Workflow Input Parameter Properties (Continued)

Parameter Property Parameter Type Description

Predefined list of elements Any Similar to Choice from another
parameter or attribute, but the user can
add a different value to the one derived
from the preceding parameter.

Show parameter input Any Shows or hides a parameter text box in
the presentation dialog box, depending on
the value of a preceding Boolean
parameter.

Hide parameter input Any Similar to Show parameter input but
takes the negative value of a previous
Boolean parameter.

Matching expression Any parameter type obtained from a
plug-in

The input parameter matches a given
expression.

Show in inventory Any parameter type obtained from a
plug-in

If set, you can run the present workflow on
any object of this type by right-clicking it in
the inventory view and selecting Execute
operation.

Specify root object in selector Any parameter type obtained from a
plug-in

Specifies the root object if the selector for
this parameter is a hierarchical list
selector.

Select as Any parameter type obtained from a
plug-in

Use a list or hierarchical list selector to
select the parameter.

Default value Any Default value for this parameter.

Custom validation OGNL scriptable validation If the invocation of the OGNL expression
returns a String, the validation shows this
String as the text of the error result.

Auto start Boolean Starts the workflow automatically.

Mandatory input Boolean Makes this parameter mandatory. The
workflow will not run without it.

Predefined Constant Values for OGNL Expressions
You can use predefined constants when you create OGNL expressions to obtain dynamic parameter
property values.

Orchestrator defines the following constants for use in OGNL expressions.

Table 1‑53. Predefined OGNL Constant Values

Constant Value Description

${#__current} Current value of the custom validation property or matching
expression property

${#__username} User name of the user who started the workflow

${#__userdisplayname} Display name of the user who started the workflow

Developing with VMware vRealize Orchestrator

VMware, Inc. 113

Table 1‑53. Predefined OGNL Constant Values (Continued)

Constant Value Description

${#__serverurl} URL containing the IP address of the server from which the user
starts the workflow. The URL consists of the server IP address
and a lookup port:

{ServerIP}:{lookupPort}

${#__datetime} Current date and time

${#__date} Current date, with time set to 00:00:00

${#__timezone} Current timezone

(Optional) Requesting User Interactions While a
Workflow Runs
A workflow can sometimes require additional input parameters from an outside source while it runs.
These input parameters can come from another application or workflow, or the user can provide them
directly.

For example, if a certain event occurs while a workflow runs, the workflow can request human interaction
to decide what course of action to take. The workflow waits before continuing, either until the user
responds to the request for information, or until the waiting time exceeds a possible timeout period. If the
waiting time exceeds the timeout period, the workflow returns an exception.

The default attributes for user interactions are security.group and timeout.date. When you set the
security.group attribute to a given LDAP user group, you limit the permission to respond to the user
interaction request to members of that user group.

When you set the timeout.date attribute, you set a time and date until which the workflow waits for the
information from the user. You can set an absolute date, or you can create a scripted workflow element to
calculate a time relative to the current time.

Procedure

1 Add a User Interaction to a Workflow

You request input parameters from users during a workflow run by adding a User interaction
schema element to the workflow. When a workflow encounters a User interaction element, it
suspends its run and waits for the user to provide the data that it requires.

2 Set the User Interaction security.group Attribute

The security.group attribute of a user interaction element sets which users or groups of users
have permission to respond to the user interaction.

3 Set the timeout.date Attribute to an Absolute Date

You set the timeout.date attribute for a user interaction to set how long the workflow waits for a
user to respond to a user interaction.

Developing with VMware vRealize Orchestrator

VMware, Inc. 114

4 Calculate a Relative Timeout for User Interactions

You can calculate in a Date object a relative time and date at which a user interaction times out.

5 Set the timeout.date Attribute to a Relative Date

You can set the timeout.date attribute of a User Interaction element to a relative time and date by
binding it to a Date object. You define the object in a scripted function.

6 Define the External Inputs for a User Interaction

You specify the information that users must provide during a workflow run as the input parameters of
a user interaction.

7 Define User Interaction Exception Behavior

If a user does not provide the input parameters within the timeout period, the user interaction returns
an exception. You can define the exception behavior in a scripted function.

8 Create the Input Parameters Dialog Box for the User Interaction

Users provide input parameters during a workflow run in an input parameters dialog box, in the
same way that they provide input parameters when a workflow first starts.

9 Respond to a Request for a User Interaction

Workflows that require interactions from users during their run suspend their run either until the user
provides the required information or until the workflow times out.

Add a User Interaction to a Workflow
You request input parameters from users during a workflow run by adding a User interaction schema
element to the workflow. When a workflow encounters a User interaction element, it suspends its run
and waits for the user to provide the data that it requires.

Prerequisites

n Create a workflow.

n Open the workflow for editing in the workflow editor.

n Add some elements to the workflow schema.

Procedure

1 Drag a User interaction element to the appropriate position in the workflow schema.

2 Click the Edit icon () of the User interaction element.

3 Provide a name and a description for the user interaction in the Info tab and click Close.

4 Click Save.

You added a user interaction element to a workflow. When the workflow reaches this element, it waits for
information from the user before continuing its run.

Developing with VMware vRealize Orchestrator

VMware, Inc. 115

What to do next

Set the security.group attribute of the user interaction to limit permission to respond to the user
interaction to a user or user group. See Set the User Interaction security.group Attribute.

Set the User Interaction security.group Attribute
The security.group attribute of a user interaction element sets which users or groups of users have
permission to respond to the user interaction.

Prerequisites

n Create a workflow.

n Open the workflow for editing in the workflow editor.

n Add some elements and a user interaction to the workflow schema.

n Identify an LDAP user group to respond to the user interaction request.

Procedure

1 Click the Edit icon () of the User Interaction element in the workflow schema.

2 Click the Attributes tab for the user interaction.

3 Click Not set for the security.group source parameter to set which users can respond to the user
interaction.

4 (Optional) Select NULL to allow all users to respond to the request for user interaction.

5 To limit the permission to respond to a specific user or user group, click Create parameter/attribute
in workflow.

The Parameter information dialog box opens.

6 Name the parameter.

7 Select Create workflow ATTRIBUTE with the same name to create the LdapGroup attribute in the
workflow.

8 Click Not set for the parameter value to open the LdapGroup selection box.

9 Type the name of the LDAP user group in the Filter text box.

10 Select the LDAP user group from the list and click Select.

For example, selecting the Administrators group means that only members of that group can
respond to this request for user interaction.

You limited the permission to respond to the user interaction request.

11 Click OK to close the Parameter information dialog box.

You set the security.group attribute for the user interaction.

Developing with VMware vRealize Orchestrator

VMware, Inc. 116

What to do next

Set the timer.date attribute to set the timeout period for the user interaction.

n To set the timeout to an absolute date and time, see Set the timeout.date Attribute to an Absolute
Date.

n To create a function to calculate a timeout that is relative to the current date and time, see Calculate a
Relative Timeout for User Interactions.

Set the timeout.date Attribute to an Absolute Date
You set the timeout.date attribute for a user interaction to set how long the workflow waits for a user to
respond to a user interaction.

You set an absolute time and date in the Date object. When the time on the given date arrives, the
workflow that is waiting for a user interaction times out and ends in the Failed state. For example, you
can set the user interaction to timeout at midday on February 12th. To calculate a timeout that is relative
to the current time and date, see Calculate a Relative Timeout for User Interactions.

Prerequisites

n Open a workflow for editing in the workflow editor.

n Add a user interaction element to the workflow schema.

n Set the security.group attribute for the user interaction.

Procedure

1 Click the Edit icon () of the User Interaction element in the workflow schema.

2 Click the Attributes tab for the user interaction.

3 Click Not set for the timeout.date source parameter to set the timeout parameter value.

4 (Optional) Select NULL to allow the user interaction to set the workflow to wait indefinitely for the user
to respond to the user interaction.

5 Click Create parameter/attribute in workflow to set the workflow to fail after a timeout period.

The Parameter information dialog box opens.

6 Name the parameter.

7 Select Create workflow ATTRIBUTE with the same name to create a Date attribute in the workflow.

8 Click Not set for the parameter Value.

9 Use the calendar to select an absolute date and time until which the workflow waits for the user to
respond.

10 Click OK to close the calendar.

11 Click OK to close the Parameter information dialog box.

Developing with VMware vRealize Orchestrator

VMware, Inc. 117

You set the timeout.date attribute to an absolute date. The workflow times out if the user does not
respond to the user interaction before this time and date.

What to do next

Define the external input parameters that the user interaction requires from the user. See Define the
External Inputs for a User Interaction.

Calculate a Relative Timeout for User Interactions
You can calculate in a Date object a relative time and date at which a user interaction times out.

You can set an absolute time and date in a Date object. When the time on the given date arrives, the
request for a user interaction times out. Alternatively, you can create a workflow element that calculates
and generates a relative Date object according to a function that you define. For example, you can create
a relative Date object that adds 24 hours to the current time.

Prerequisites

n Open a workflow for editing in the workflow editor.

n Add a user interaction element to the workflow schema.

n Set the security.group attribute for the user interaction.

Procedure

1 Drag a Scriptable task element from the Generic menu to the schema of a workflow, before the
element that requires the relative Date object for its timeout.date attribute.

2 Click the Edit icon () of the Scriptable task element in the workflow schema.

3 Provide a name and description for the scripted workflow element in the Info properties tab.

4 Click the OUT properties tab, and click the Bind to workflow parameter/attribute icon ().

5 Click Create parameter/attribute in workflow to create a workflow attribute.

a Name the attribute timerDate.

b Select Date from the list of attribute types.

c Select Create workflow ATTRIBUTE with the same name.

d Leave the attribute value set to Not set, because a scripted function will provide this value.

e Click OK.

6 Click the Scripting tab for the scripted workflow element.

Developing with VMware vRealize Orchestrator

VMware, Inc. 118

7 Define a function to calculate and generate a Date object named timerDate in the scripting pad in
the Scripting tab.

For example, you can create a Date object by implementing the following JavaScript function, in
which the timeout period is a relative delay in milliseconds.

timerDate = new Date();

System.log("Current date : '" + timerDate + "'");

timerDate.setTime(timerDate.getTime() + (86400 * 1000));

System.log("Timer will expire at '" + timerDate + "'");

The preceding example JavaScript function defines a Date object that obtains the current date and
time by using the getTime method and adds 86,400,000 milliseconds, or 24 hours. The Scriptable
Task element generates this value as its output parameter.

8 Click Close.

9 Click Save.

You created a function that calculates a time and date relative to the current time and date and generates
a Date object. A User Interaction element can receive this Date object as an input parameter to set the
timeout period until which it waits for input from the user. When the workflow arrives at the User
Interaction element, it suspends its run and waits either until the user provides the required information,
or for 24 hours before it times out.

What to do next

You must bind the Date object to the User Interaction element's timeout.date parameter. See Set the
timeout.date Attribute to a Relative Date.

Set the timeout.date Attribute to a Relative Date
You can set the timeout.date attribute of a User Interaction element to a relative time and date by
binding it to a Date object. You define the object in a scripted function.

If you create a relative Date object in a scripted function, you can bind the timeout.date attribute of a
user interaction to this Date object. For example, if you bind the timeout.date attribute to a Date object
that adds 24 hours to the current time, the user interaction times out after waiting for 24 hours.

Prerequisites

n Add a user interaction element to the workflow schema.

n Set the security.group attribute for the user interaction.

n Create a scripted function that calculates a relative time and date and encapsulates it in a Date object
in the workflow. See Calculate a Relative Timeout for User Interactions.

Procedure

1 Click the Edit icon () of the User Interaction element in the workflow schema.

Developing with VMware vRealize Orchestrator

VMware, Inc. 119

2 Click the Attributes tab for the user interaction.

3 Click Not set for the timeout.date source parameter to set the timeout parameter value.

4 Select the Date object that encapsulates a relative time and date that you defined in a scripted
function and click Select.

You set the timeout.date attribute to a relative date and time that a scripted function calculates.

What to do next

Define the external input parameters that the user interaction requires from the user. See Define the
External Inputs for a User Interaction.

Define the External Inputs for a User Interaction
You specify the information that users must provide during a workflow run as the input parameters of a
user interaction.

When a workflow reaches a user interaction element, it waits until a user provides the information that the
user interaction requires as its input parameters.

Prerequisites

n Add a user interaction element to the workflow schema.

n Set the security.group attribute for the user interaction.

n Set the timer.date attribute for the user interaction

Procedure

1 Click the Edit icon () of the User Interaction element in the workflow schema.

2 Click the External inputs tab.

3 Click the Bind to workflow parameter/attribute icon () to define the parameters that the user
must provide in the user interaction.

4 (Optional) If you already defined the input parameters in the workflow, select the parameters from the
proposed list.

5 Click Create parameter/attribute in workflow to create a workflow attribute to bind to the input
parameter that the user provides.

6 Give the parameter an appropriate name.

7 Select the input parameter type from the list of types by searching for an object type in the Filter box.

For example, if the user interaction requires the user to provide a virtual machine as an input
parameter, select VC:VirtualMachine.

8 Select Create workflow ATTRIBUTE with the same name to bind the input parameter that the user
provides to a new attribute in the workflow.

Developing with VMware vRealize Orchestrator

VMware, Inc. 120

9 Leave the input parameter value set to Not set.

The user provides this value when they respond to the user interaction during the workflow run.

10 Click OK to close the Parameter information dialog box.

You defined the input parameters that the user provides during a user interaction.

What to do next

Define the exception behavior if the user interaction encounters an error. See Define User Interaction
Exception Behavior.

Define User Interaction Exception Behavior
If a user does not provide the input parameters within the timeout period, the user interaction returns an
exception. You can define the exception behavior in a scripted function.

If you do not define the action for the workflow to take if the user interaction times out, the workflow ends
in the Failed state. Defining the exception behavior is a good workflow development practice.

Prerequisites

n Add a user interaction element to the workflow schema.

n Set the security.group and timer.date attributes for the user interaction.

n Define the external input parameters of the user interaction.

Procedure

1 Click the Edit icon () of the User Interaction element in the workflow schema.

2 Click the Exception tab.

3 Click Not set for the output exception binding.

4 Click Create parameter/attribute in workflow to create an exception attribute to which to bind the
user interaction.

The Parameter information dialog box opens.

5 Create an errorCode attribute.

An errorCode attribute has the following default properties:

n Name: errorCode

n Type: string

n Create: Create workflow ATTRIBUTE with the same name

n Value: Type an appropriate error message.

6 Click OK to close the Parameter information dialog box.

Developing with VMware vRealize Orchestrator

VMware, Inc. 121

7 Drag a scriptable task element over the user interaction element in the workflow schema.

A red dashed arrow, which represents the exception link, appears between the two elements. The
scriptable task element binds automatically to the errorCode attribute from the user interaction.

8 Double-click the scriptable task element and provide an appropriate name.

For example, Log timeout.

9 In the Scripting tab of the scriptable task element, write a JavaScript function to handle the
exception.

For example, to record the timeout in the Orchestrator log, write the following function:

System.log("No response from user. Timed out.");

10 Link and bind the scriptable task element that handles exceptions to the element that follows it in the
workflow.

For example, link and bind the scriptable task element to a Throw exception element to end the
workflow with an error.

You defined the exception behavior if the user interaction times out.

What to do next

Create the dialog box in which users provide input parameters. See Create the Input Parameters Dialog
Box for the User Interaction.

Create the Input Parameters Dialog Box for the User Interaction
Users provide input parameters during a workflow run in an input parameters dialog box, in the same way
that they provide input parameters when a workflow first starts.

You create the layout of the dialog box in the Presentation tab of the user interaction element, not in the
Presentation tab for the whole workflow. The Presentation tab of the whole workflow creates the layout
of the input parameters dialog box that appears when you start a workflow. The Presentation tab of the
user interaction element creates the layout of the input parameters dialog box that opens when a
workflow arrives at a user interaction element during its run.

Prerequisites

n Add a user interaction element to the workflow schema.

n Set the security.group and timer.date attributes for the user interaction.

n Define the external input parameters of the user interaction.

n Define the exception behavior.

Procedure

1 Click the Edit icon () of the User Interaction element in the workflow schema.

Developing with VMware vRealize Orchestrator

VMware, Inc. 122

2 Click the Presentation tab of the user interaction element.

The Presentation tab shows the external input parameters that you created for the user interaction.

3 (Optional) Right-click the Presentation node in the Presentation tab and select Create new step.

Steps allow you to create sections in the dialog box, with descriptions and headings under which you
can organize the input parameters.

4 (Optional) Right-click the Presentation node in the Presentation tab and select Create display
group.

Display groups allow you to sort the order in which input parameters appear in the steps, and allow
you to add sub-headers and instructions to the dialog box.

5 Click an input parameter in the list and add a description of the input parameter in the General tab for
that parameter.

The description text that you type appears as a label in the input parameters dialog box to inform the
user of the information they must provide when they respond to the user interaction.

6 Define input parameter properties.

Input parameter properties allow you to qualify the input parameter values that users can provide, and
to determine parameter values dynamically by using OGNL expressions.

7 Click Save and close to close the workflow editor.

You created the input parameters dialog box in which users provide input parameters to respond to a user
interaction during a workflow run.

What to do next

For information about creating the presentation steps and groups and setting input parameter properties,
see Creating the Input Parameters Dialog Box In the Presentation Tab.

Respond to a Request for a User Interaction
Workflows that require interactions from users during their run suspend their run either until the user
provides the required information or until the workflow times out.

Workflows that require user interactions define which users can provide the required information and
direct the requests for interaction.

Prerequisites

Verify that at least one workflow is in the Waiting for User Interaction state.

Procedure

1 From the drop-down menu in the Orchestrator client, select Run.

2 Click the My Orchestrator view in the Orchestrator client.

Developing with VMware vRealize Orchestrator

VMware, Inc. 123

3 Click the Waiting for Input tab.

The Waiting for Input tab lists the workflows that are waiting for user inputs from you or from
members of your user group that have permission.

4 Double-click a workflow that is waiting for input.

The workflow token that is waiting for input appears in the Workflows hierarchical list with the

following symbol: .

5 Right-click the workflow token and select Answer.

6 Follow the instructions in the input parameters dialog box to provide the information that the workflow
requires.

You provided information to a workflow that was waiting for user input during its run.

Calling Workflows Within Workflows
Workflows can call on other workflows during their run. A workflow can start another workflow either
because it requires the result of the other workflow as an input parameter for its own run, or it can start a
workflow and let it continue its own run independently. Workflows can also start a workflow at a given time
in the future, or start multiple workflows simultaneously.

n Workflow Elements that Call Workflows

There are four ways to call other workflows from within a workflow. Each way of calling a workflow or
workflows is represented by a different workflow schema element.

n Call a Workflow Synchronously

Calling a workflow synchronously runs the called workflow as a part of the run of the calling
workflow. The calling workflow can use the called workflow's output parameters as input parameters
when it runs its subsequent schema elements.

n Call a Workflow Asynchronously

Calling a workflow asynchronously runs the called workflow independently of the calling workflow.
The calling workflow continues its run without waiting for the called workflow to complete.

n Schedule a Workflow

You can call a workflow from a workflow and schedule it to start at a later time and date.

n Prerequisites for Calling a Remote Workflow from Within Another Workflow

If the workflow that you develop calls another workflow that resides on a remote Orchestrator server,
certain prerequisites must be fulfilled so that the remote workflow can run successfully.

n Call Several Workflows Simultaneously

Calling several workflows simultaneously runs the called workflows synchronously as part of the run
of the calling workflow. The calling workflow waits for all of the called workflows to complete before it
continues. The calling workflow can use the results of the called workflows as input parameters
when it runs its subsequent schema elements.

Developing with VMware vRealize Orchestrator

VMware, Inc. 124

Workflow Elements that Call Workflows
There are four ways to call other workflows from within a workflow. Each way of calling a workflow or
workflows is represented by a different workflow schema element.

Synchronous
Workflows

A workflow can start another workflow synchronously. The called workflow
runs as an integral part of the calling workflow's run, and runs in the same
memory space as the calling workflow. The calling workflow starts another
workflow, then waits until the end of the called workflow's run before it starts
running the next element in its schema. Usually, you call a workflow
synchronously because the calling workflow requires the output of the
called workflow as an input parameter for a subsequent schema element.
For example, a workflow can call the Start virtual machine and wait
workflow to start a virtual machine, and then obtain the IP address of this
virtual machine to pass to another element or to a user by email.

Asynchronous
Workflows

A workflow can start a workflow asynchronously. The calling workflow starts
another workflow, but the calling workflow immediately continues running
the next element in its schema, without waiting for the result of the called
workflow. The called workflows run with input parameters that the calling
workflow defines, but the lifecycle of the called workflow is independent
from the lifecycle of the calling workflow. Asynchronous workflows allow
you to create chains of workflows that pass input parameters from one
workflow to the next. For example, a workflow can create various objects
during its run. The workflow can then start asynchronous workflows that
use these objects as input parameters in their own runs. When the original
workflow has started all the required workflows and run its remaining
elements, it ends. However, the asynchronous workflows it started continue
their runs independently of the workflow that started them.

To make the calling workflow wait for the result of the called workflow, either
use a nested workflow or create a scriptable task that retrieves the state of
the workflow token of the called workflow and then retrieves the result of
the workflow when it completes.

Scheduled Workflows A workflow can call a workflow but defer starting that workflow until a later
time and date. The calling workflow then continues its run until it ends.
Calling a scheduled workflow creates a task to start that workflow at the
given time and date. When the calling workflow has run, you can view the
scheduled workflow in the Scheduler and My Orchestrator views in the
Orchestrator client.

Developing with VMware vRealize Orchestrator

VMware, Inc. 125

Scheduled workflows only run once. You can schedule a workflow to run
recurrently by calling the Workflow.scheduleRecurrently method in a
scriptable task element in a synchronous workflow.

Nested Workflows A workflow can start several workflows simultaneously by nesting several
workflows in a single schema element. All the workflows listed in the nested
workflow element start simultaneously when the calling workflow arrives at
the nested workflows element in its schema. Significantly, each nested
workflow starts in a different memory space from the memory space of the
calling workflow. The calling workflow waits until all the nested workflows
have completed their runs before it starts running the next element in its
schema. The calling workflow can thus use the results of the nested
workflows as input parameters when it runs its remaining elements.

Propagate Workflow Changes to other Workflows
If you call a workflow from another workflow, Orchestrator imports the input parameters of the child
workflow in the parent workflow at the moment you add the workflow element to the schema.

If you modify the child workflow after you have added it to another workflow, the parent workflow calls on
the new version of the child workflow, but does not import any new input parameters. To prevent changes
to workflows affecting the behavior of other workflows that call them, Orchestrator does not propagate the
new input parameters automatically to the calling workflows.

To propagate parameters from one workflow to other workflows that call it, you must find the workflows
that call the workflow, and synchronize the workflows manually.

Prerequisites

Verify that you have a workflow that another workflow or workflows call.

Procedure

1 Modify and save a workflow that other workflows call.

2 Close the workflow editor.

3 Navigate to the workflow you changed in the hierarchical list in the Workflows view in the
Orchestrator client.

4 Right-click the workflow, and select References > Find Elements that Use this Element.

A list of workflows that call this workflow appears.

5 Double-click a workflow in the list to highlight it in the Workflows view in the Orchestrator client.

6 Right-click the workflow, and select Edit.

The workflow editor opens.

7 Click the Schema tab in the workflow editor.

Developing with VMware vRealize Orchestrator

VMware, Inc. 126

8 Right-click the workflow element for the changed workflow from the workflow schema and select
Synchronize > Synchronize Parameters.

9 Select Continue in the confirmation dialog box.

10 Save and close the workflow editor.

11 Repeat Step 5 to Step 10 for all the workflows that use the modified workflow.

You propagated a changed workflow to other workflows that call it.

Propagate the Input Parameters and Presentation of a Child Workflow to the
Parent Workflow
If you develop a workflow that calls other workflows, you can propagate the input parameters and the
presentation of the child workflows to the parent workflow.

Procedure

1 From the drop-down menu in the Orchestrator client, select Run.

2 Right-click the workflow that you want to modify and select Edit.

The workflow editor opens.

3 Select the Schema tab.

4 Right-click the element of the child workflow whose input parameters and presentation you want to
propagate to the parent workflow and select Synchronize > Synchronize Presentation.

5 In the confirmation dialog, select OK.

6 (Optional) Repeat Step 4 and Step 5 for all child workflows whose input parameters and presentation
you want to propagate to the parent workflow.

The input parameters of the child workflows are added to the input parameters of the parent workflow.
The presentation of the parent workflow is extended with the presentations of the child workflows.

Call a Workflow Synchronously
Calling a workflow synchronously runs the called workflow as a part of the run of the calling workflow. The
calling workflow can use the called workflow's output parameters as input parameters when it runs its
subsequent schema elements.

You call workflows synchronously from another workflow by using the Workflow element.

Prerequisites

n Open a workflow for editing in the workflow editor.

n Add some elements to the workflow schema.

Developing with VMware vRealize Orchestrator

VMware, Inc. 127

Procedure

1 Drag a Workflow element from the Generic menu to the appropriate position in the workflow
schema.

The Choose workflow selection dialog box appears.

2 Search for ands select the workflow you want and click OK.

If the search returns a partial result, narrow your search criterion or increase the number of search
results from the Tools > User preferences menu in the client.

3 Click the Workflow element to show its properties tabs in the bottom half of the Schema tab.

4 Click the Edit icon () of the Workflow element in the workflow schema.

5 Bind the required input parameters to the workflow in the IN tab of the workflow schema element.

6 Bind the required output parameters to the workflow in the OUT tab of the workflow schema
element's.

7 Define the exception behavior of the workflow in the Exceptions tab.

8 Click Close.

9 Click Save at the bottom of the workflow editor.

You called a workflow synchronously from another workflow. When the workflow reaches the synchronous
workflow during its run, the synchronous workflow starts, and the initial workflow waits for it to complete
before continuing its run.

What to do next

You can call a workflow asynchronously from a workflow.

Call a Workflow Asynchronously
Calling a workflow asynchronously runs the called workflow independently of the calling workflow. The
calling workflow continues its run without waiting for the called workflow to complete.

You call workflows asynchronously from another workflow by using the Asynchronous Workflow
element.

Prerequisites

n Open a workflow for editing in the workflow editor.

n Add some elements to the workflow schema.

Procedure

1 Drag an Asynchronous Workflow element from the Generic menu to the appropriate position in the
workflow schema.

The Choose workflow selection dialog box appears.

Developing with VMware vRealize Orchestrator

VMware, Inc. 128

2 Search for and select the desired workflow from the list and click OK.

3 Click the Edit icon () of the Asynchronous Workflow element in the workflow schema.

4 Bind the required input parameters to the workflow in IN tab of the asynchronous workflow element.

5 Bind the required output parameter in the OUT tab of the asynchronous workflow element.

You can bind the output parameter either to the called workflow, or to that workflow's result.

n Bind to the called workflow to return that workflow as an output parameter

n Bind to the workflow token of the called workflow to return the result of running the called
workflow.

6 Define the exception behavior of the asynchronous workflow element in the Exceptions tab.

7 Click Close.

8 Click Save at the bottom of the workflow editor.

You called a workflow asynchronously from another workflow. When the workflow reaches the
asynchronous workflow during its run, the asynchronous workflow starts, and the initial workflow
continues its run without waiting for the asynchronous workflow to finish.

What to do next

You can schedule a workflow to start at a later time and date.

Schedule a Workflow
You can call a workflow from a workflow and schedule it to start at a later time and date.

You schedule workflows in another workflow by using the Schedule Workflow element.

Prerequisites

n Open a workflow for editing in the workflow editor.

n Add some elements to the workflow schema.

Procedure

1 Drag a Schedule Workflow element from the Generic menu to the appropriate position in the
workflow schema.

2 Search for the workflow to call by typing part of its name in the text box.

3 Select the workflow from the list and click OK.

4 Click the Edit icon () of the Schedule Workflow element in the workflow schema.

5 Click the IN property tab.

A parameter named workflowScheduleDate appears in the list of properties to define, together with
the input parameters of the calling workflow.

Developing with VMware vRealize Orchestrator

VMware, Inc. 129

6 Click Not set for the workflowScheduleDate parameter to set the parameter.

7 Click Create parameter/attribute in workflow to create the parameter and set the parameter value.

8 Click Not set for Value to set the parameter value.

9 Use the calendar that appears to set the date and time to start the scheduled workflow and click OK.

10 Bind the remaining input parameters to the scheduled workflow in the IN tab of the scheduled
workflow element.

11 Bind the required output parameters to the Task object in the OUT tab of the scheduled workflow
element.

12 Define the exception behavior of the scheduled workflow element in the Exceptions tab.

13 Click Close.

14 Click Save at the bottom of the workflow editor.

You scheduled a workflow to start at a given time and date from another workflow.

What to do next

You can call multiple workflows simultaneously from a workflow.

Prerequisites for Calling a Remote Workflow from Within Another
Workflow
If the workflow that you develop calls another workflow that resides on a remote Orchestrator server,
certain prerequisites must be fulfilled so that the remote workflow can run successfully.

n All input parameters of the remote workflow must be resolvable on the remote Orchestrator server.

n All output parameters of the remote workflow must be resolvable on the local Orchestrator server.

To ensure that the parameters of the remote workflow are resolvable, the inventory objects that the
workflow uses must be available both in the remote and the local Orchestrator servers. In case the
remote workflow uses objects from a plug-in, the same plug-in must be available on both Orchestrator
servers. The inventories of the remote plug-in and the local plug-in must be identical. In case the remote
workflow uses system objects in Orchestrator, like workflows and actions, the same workflows and
actions must exist in the inventories of the remote and the local Orchestrator servers.

For example, suppose that you insert the Rename virtual machine workflow in a Nested Workflow
element in the Test workflow that you develop. You want to run the Rename virtual machine workflow in a
remote Orchestrator server. When you run the Test workflow, the Rename virtual machine workflow is
called within the run of the Test workflow. You specify a virtual machine to rename from the inventory of
the local Orchestrator server. Because the Rename virtual machine workflow runs on the remote
Orchestrator server, the same virtual machine must be available in the inventory of that server. Otherwise,
the Rename virtual machine workflow cannot resolve its vm input parameter. Therefore, the vCenter
Server plug-in on the local and the remote Orchestrator servers must be connected to the same vCenter
Server instance.

Developing with VMware vRealize Orchestrator

VMware, Inc. 130

Call Several Workflows Simultaneously
Calling several workflows simultaneously runs the called workflows synchronously as part of the run of
the calling workflow. The calling workflow waits for all of the called workflows to complete before it
continues. The calling workflow can use the results of the called workflows as input parameters when it
runs its subsequent schema elements.

You call several workflows simultaneously from another workflow by using the Nested Workflows
element. You can use nested workflows to run workflows with user credentials that are different from the
credentials of the user of the calling workflow.

Prerequisites

n Open a workflow for editing in the workflow editor.

n Add some elements to the workflow schema.

Procedure

1 Drag a Nested Workflows element from the Action & Workflow menu to the appropriate position in
the workflow schema.

The Choose workflow selection dialog box appears.

2 Search for and select a workflow to start and click OK.

3 Click the Edit icon () of the Nested Workflows element in the workflow schema.

4 Click the Workflows tab.

The workflow you selected in Step 2 appears in the tab.

5 Set the IN and OUT bindings for this workflow in the IN and OUT tabs in the right panel of the
Workflows schema element properties tab.

6 Click the Connection Info tab in the right panel of the Workflows schema element properties tab.

The Connection Info tab allows you to access workflows stored in a different server to the local one,
using the appropriate credentials.

7 To access workflows on a remote server, select Remote and click Not set to provide a host name or
IP address for the remote server.

Note You can use the vRealize Orchestrator Multi-Node plug-in to call workflows on a remote server.

8 Define the credentials with which to access the remote server.

n Select Inherit to use the same credentials as the user who runs the calling workflow.

n Select Dynamic and click Not set to select a set of dynamic credentials that a parameter of the
credentials type defines elsewhere in the workflow.

n Select Static and click Not set to enter the credentials directly.

Developing with VMware vRealize Orchestrator

VMware, Inc. 131

9 Click the Add Workflow button in the Workflows tab to select more workflows to add to the nested
workflow element.

10 Repeat Step 2 to Step 8 to define the settings for each of the workflows you add.

11 Click the nested workflow element in the workflow schema.

The number of workflows nested in the element appears as a numeral on the nested workflows
element.

You called several workflows simultaneously from a workflow.

What to do next

You can define long-running workflows.

Running a Workflow on a Selection of Objects
You can automate repetitive tasks by running a workflow on a selection of objects. For example, you can
create a workflow that takes a snapshot of all the virtual machines in a virtual machine folder, or you can
create a workflow that powers off all the virtual machines on a given host.

You can use one of the following methods to run a workflow on a selection of objects.

n Run the Library > vCenter > Batch > Run a workflow on a selection of objects workflow.

n Create a workflow that calls the Library > Orchestrator > Start workflows in a series or Start
workflows in parallel workflows.

n Create a workflow that obtains an array of objects and runs a workflow on each object in the array in
a loop of workflow elements.

n Run a workflow from JavaScript by calling the Workflow.execute() method in a For loop in a
scripted element in a workflow.

Which method you choose to run a workflow on a selection of objects depends on the workflow to run and
can affect the performance of the workflow. For example, running the Run a workflow on a selection of
objects workflow is the simplest way to run a workflow on multiple objects and requires no workflow
development, but it can only run workflows that take a single input parameter.

Creating a workflow that calls the Start workflows in a series or Start workflows in parallel workflows
allows you to run on multiple objects workflows that take more than one input parameter. The calling
workflow must create a properties array to pass the input parameters to the Start workflows in a series or
Start workflows in parallel workflow. These workflows are only for use in other workflows. Do not run them
directly.

Running a workflow in a For loop in a scripted element is faster than running a workflow in a loop of
workflow elements, but it is less flexible and limits the potential for reuse. Most importantly, running a
workflow in a scripted loop loses the checkpointing that Orchestrator performs when it starts each
element in a workflow run. As a consequence, if the Orchestrator server stops while the scripted loop is

Developing with VMware vRealize Orchestrator

VMware, Inc. 132

running, when the server restarts, the workflow will resume at the beginning of the scripted element,
repeating the whole loop. If the Orchestrator server stops while running a workflow with a loop of workflow
elements, the workflow will resume at the specific element in the loop that was running when the server
stopped.

For more information about the Batch workflows, see Using VMware vRealize Orchestrator Plug-Ins.

How to create a workflow that runs a workflow on an array of objects in a loop of workflow elements is
demonstrated in Develop a Complex Workflow.

How to run a workflow in a scripted For loop is demonstrated in Workflow Scripting Examples.

Implement the Start Workflows in a Series and Start Workflows in
Parallel Workflows
You can use the Start workflows in a series and Start workflows in parallel workflows to run a workflow on
a selection of objects.

You cannot run the Start workflows in a series and Start workflows in parallel workflows directly. You must
include them in another workflow that you create. To use the Start workflows in a series and Start
workflows in parallel workflows to run a workflow on a selection of objects, you must obtain the objects on
which to run the workflow. You pass these objects and any other input parameters that the workflow
requires to the workflow as an array of properties. The Start workflows in a series and Start workflows in
parallel workflows emit the results of running the workflow on the selection of objects as an array of
WorkflowToken objects.

You implement the Start workflows in a series and Start workflows in parallel workflows in the same way.
The Start workflows in a series workflow runs the workflow on each object sequentially. The Start
workflows in parallel workflow runs the workflow on all the objects simultaneously.

Prerequisites

Open a workflow for editing in the workflow editor.

Procedure

1 In the workflow schema, add a scriptable task element or an action to obtain a list of objects on which
to run the workflow.

For example, to run a workflow on all the virtual machines in a virtual machine folder, you can add the
getAllVirtualMachinesByFolder action to the workflow.

2 Link the scripted element or action and bind the input and output of the scripted element or action to
workflow inputs or attributes.

For example, you can bind the vmFolder input of the getAllVirtualMachinesByFolder action to a
workflow input parameter and the actionResult output to a workflow attribute in the calling
workflow.

Developing with VMware vRealize Orchestrator

VMware, Inc. 133

3 Add a scriptable task element to cast the list of objects into a properties array.

For example, if the objects on which to run the workflow are an array of virtual machines, allVMs,
returned by the actionResult output of the getAllVirtualMachinesByFolder action, you can
write the following script to cast the objects into a properties array.

propsArray = new Array();

for each (var vm in allVMs) {

 var prop = new Properties();

 prop.put("vm", vm);

 propsArray.push(prop);

}

4 Bind the inputs and outputs of the scriptable task element to workflow attributes.

In the example scriptable task element in Step 3, you bind the input to the allVMs array of virtual
machines and you create the propsArray output attribute as an array of Properties objects.

5 Add a workflow element to the workflow schema.

6 Select either of the Start workflows in a series or Start workflows in parallel workflows and link the
workflow element to the other elements.

7 Bind the wf input of the Start workflows in a series or Start workflows in parallel workflow to the
workflow to run on the objects.

For example, to remove any snapshots of all the virtual machines returned by the
getAllVirtualMachinesByFolder action, select the Remove all snapshots workflow.

8 Bind the parameters input of the Start workflows in a series or Start workflows in parallel workflow to
the array of Properties objects that contains the objects on which to run the workflow.

For example, bind the parameters input to the propsArray attribute defined in Step 4.

9 (Optional) Bind the workflowTokens output of the Start workflows in a series or Start workflows in
parallel workflow to an attribute in the workflow.

10 (Optional) Continue adding more elements that use the results of running the Start workflows in a
series or Start workflows in parallel workflow.

You created a workflow that uses either of the Start workflows in a series or Start workflows in parallel
workflows to run a workflow on a selection of objects.

Developing Long-Running Workflows
A workflow in a waiting state consumes system resources because it constantly polls the object from
which it requires a response. If you know that a workflow will potentially wait for a long time before it
receives the response it requires, you can add long-running workflow elements to the workflow.

Developing with VMware vRealize Orchestrator

VMware, Inc. 134

Every running workflow consumes a system thread. When a workflow reaches a long-running workflow
element, the long-running workflow element sets the workflow into a passive state. The long-running
workflow element then passes the workflow information to a single thread that polls the system for all
long-running workflow elements running in the server. Rather than each long-running workflow element
constantly attempting to retrieve information from the system, long-running workflow elements remain
passive for a set duration, while the long-running workflow thread polls the system on its behalf.

You set the duration of the wait in one of the following ways:

n Set a timer, encapsulated in a Date object, that suspends the workflow until a certain time and date.
You implement long-running workflow elements that are based on a timer by including a Waiting
Timer element in the schema.

n Define a trigger event, encapsulated in a Trigger object, that restarts the workflow after the trigger
event occurs. You implement long-running workflow elements that are based on a trigger by adding a
Waiting Event element or a User Interaction element in the schema.

Set a Relative Time and Date for Timer-Based Workflows
You can set the timer.date attribute of a Waiting Timer element to a relative time and date by binding it
to a Date object. You define the Date object in a scripted function.

When the time on the given date arrives, the long-running workflow that is based on a timer reactivates
and continues its run. For example, you can set the workflow to reactivate at midday on February 12.
Alternatively, you can create a workflow element that calculates and generates a relative Date object
according to a function that you define. For example, you can create a relative Date object that adds 24
hours to the current time.

Prerequisites

n Create a workflow.

n Open the workflow for editing in the workflow editor.

n Add some elements to the workflow schema.

Procedure

1 Drag a Scriptable task element from the Generic menu to the schema of a workflow, before the
element that requires the relative Date object for its timeout.date attribute.

2 Click the Edit icon () of the Scriptable task element in the workflow schema.

3 Provide a name and description for the scripted workflow element in the Info properties tab.

4 Click the OUT properties tab, and click the Bind to workflow parameter/attribute icon ().

5 Click Create parameter/attribute in workflow to create a workflow attribute.

a Name the attribute timerDate.

b Select Date from the list of attribute types.

Developing with VMware vRealize Orchestrator

VMware, Inc. 135

c Select Create workflow ATTRIBUTE with the same name.

d Leave the attribute value set to Not set, because a scripted function will provide this value.

e Click OK.

6 Click the Scripting tab for the scripted workflow element.

7 Define a function to calculate and generate a Date object named timerDate in the scripting pad in
the Scripting tab.

For example, you can create a Date object by implementing the following JavaScript function, in
which the timeout period is a relative delay in milliseconds.

timerDate = new Date();

System.log("Current date : '" + timerDate + "'");

timerDate.setTime(timerDate.getTime() + (86400 * 1000));

System.log("Timer will expire at '" + timerDate + "'");

The preceding example JavaScript function defines a Date object that obtains the current date and
time by using the getTime method and adds 86,400,000 milliseconds, or 24 hours. The Scriptable
Task element generates this value as its output parameter.

8 Click Close.

9 Click Save.

You created a function that calculates and generates a Date object. A Waiting Timer element can
receive this Date object as an input parameter, to suspend a long-running workflow until the date
encapsulated in this object. When the workflow arrives at the Waiting Timer element, it suspends its run
and waits for 24 hours before continuing.

What to do next

You must add a Waiting Timer element to a workflow to implement a long-running workflow that is based
on a timer.

Create a Timer-Based Long-Running Workflow
If you know a workflow will have to wait for a response from an outside source for a predictable time, you
can implement it as a timer-based long-running workflow. A timer-based long-running workflow waits until
a given time and date before resuming.

You implement a workflow as a timer-based long-running workflow by using the Waiting Timer element.

Prerequisites

n Create a workflow.

n Open the workflow for editing in the workflow editor.

n Add some elements to the workflow schema.

Developing with VMware vRealize Orchestrator

VMware, Inc. 136

Procedure

1 Drag a Waiting Timer element from the Generic menu to the position in the workflow schema at
which to suspend the workflow's run.

If you implement a scriptable task to calculate the time and date, this element must precede the
Waiting Timer element.

2 Click the Edit icon () of the Waiting Timer element in the workflow schema.

3 Provide a description of the reason for implementing the timer in the Info properties tab.

4 Click the Attributes properties tab.

The timer.date parameter appears in the list of attributes.

5 Click the timer.date parameter's Not set button to bind the parameter to an appropriate Date
object.

The Waiting Timer selection dialog box opens, presenting a list of possible bindings.

n Select a predefined Date object from the proposed list, for example one defined by a Scriptable
Task element elsewhere in the workflow.

n Alternatively, create a Date object that sets a specific date and time for the workflow to await.

6 (Optional) Create a Date object that sets a specific date and time that the workflow awaits.

a Click Create parameter/attribute in workflow in the Waiting Timer selection dialog box.

The Parameter information dialog box appears.

b Give the parameter an appropriate name.

c Leave the type set to Date.

d Click Create workflow ATTRIBUTE with the same name.

e Click the Value property's Not set button to set the parameter value.

A calendar appears.

f Use the calendar to set a date and time at which to restart workflow.

g Click OK.

7 Click Close.

8 Click Save at the bottom of the workflow editor.

You defined a timer that suspends a timer-based long-running workflow until a set time and date.

What to do next

You can create a long-running workflow that waits for a trigger event before continuing.

Developing with VMware vRealize Orchestrator

VMware, Inc. 137

Create a Trigger Object
Trigger objects monitor event triggers that plug-ins define. For example, the vCenter Server plug-in
defines these events as Task objects. When the task ends, the trigger sends a message to a waiting
trigger-based long-running workflow element, to restart the workflow.

The time-consuming event for which a trigger-based long-running workflow waits must return a VC:Task
object. For example, the startVM action to start a virtual machine returns a VC:Task object, so that
subsequent elements in a workflow can monitor its progress. A trigger-based long-running workflow's
trigger event requires this VC:Task object as an input parameter.

You create a Trigger object in a JavaScript function in a Scriptable Task element. This Scriptable Task
element can be part of the trigger-based long-running workflow that waits for the trigger event.
Alternatively, it can be part of a different workflow that provides input parameters to the trigger-based
long-running workflow. The trigger function must implement the createEndOfTaskTrigger() method
from the Orchestrator API.

Important You must define a timeout period for all triggers, otherwise the workflow can wait indefinitely.

Prerequisites

n Create a workflow.

n Open the workflow for editing in the workflow editor.

n Add some elements to the workflow schema.

n In the workflow, declare a VC:Task object as an attribute or input parameter, such as a VC:Task
object from a workflow or workflow element that starts or clones a virtual machine.

Procedure

1 Drag a Scriptable Task element from the Generic menu into the schema of a workflow.

One of the elements that precedes the Scriptable Task must generate a VC:Task object as its output
parameter.

2 Click the Edit icon () of the Scriptable task element in the workflow schema.

3 Provide a name and description for the trigger in Info properties tab.

4 Click the IN properties tab.

5 Click the Bind to workflow parameter/attribute icon ().

The input parameter selection dialog box opens.

6 Select or create an input parameter of the type VC:Task.

This VC:Task object represents the time-consuming event that another workflow or element
launches.

Developing with VMware vRealize Orchestrator

VMware, Inc. 138

7 (Optional) Select or create an input parameter of the Number type to define a timeout period in
seconds.

8 Click the OUT properties tab.

9 Click the Bind to workflow parameter/attribute icon ().

The output parameter selection dialog box opens.

10 Create an output parameter with the following properties.

a Create the Name property with the value trigger.

b Create the Type property with the value Trigger.

c Click Create ATTRIBUTE with same name to create the attribute.

d Leave the value as Not set.

11 Define any exception behavior in the Exceptions properties tab.

12 Define a function to generate a Trigger object in the Scripting tab.

For example, you could create a Trigger object by implementing the following JavaScript function.

trigger = task.createEndOfTaskTrigger(timeout);

The createEndOfTaskTrigger() method returns a Trigger object that monitors a VC:Task object
named task.

13 Click Close.

14 Click Save at the bottom of the workflow editor.

You defined a workflow element that creates a trigger event for a trigger-based long-running workflow.
The trigger element generates a Trigger object as its output parameter, to which a Waiting Event
element can bind.

What to do next

You must bind this trigger event to a Waiting Event element in a trigger-based long-running workflow.

Create a Trigger-Based Long-Running Workflow
If you know a workflow will have to wait for a response from an outside source during its run, but do not
know how long that wait will last, you can implement it as a trigger-based long-running workflow. A trigger-
based long-running workflow waits for a defined trigger event to occur before resuming.

You implement a workflow as a trigger-based long-running workflow by using the Waiting Event element.
When the trigger-based long-running workflow arrives at the Waiting Event element, it will suspend its
run and wait in a passive state until it receives a message from the trigger. During the waiting period, the
passive workflow does not consume a thread, but rather the long-running workflow element passes the
workflow information to the single thread that monitors all long-running workflows in the server.

Developing with VMware vRealize Orchestrator

VMware, Inc. 139

Prerequisites

n Create a workflow.

n Open the workflow for editing in the workflow editor.

n Add some elements to the workflow schema.

n Define a trigger event that is encapsulated in a Trigger object.

Procedure

1 Drag a Waiting Event element from the Generic menu to the position in the workflow schema at
which you want to suspend the workflow's run.

The scriptable task that declares the trigger must immediately precede the Waiting Event element.

2 Click the Edit icon () of the Waiting Event element in the workflow schema.

3 Provide a description of the reason for the wait in the Info properties tab.

4 Click the Attributes properties tab.

The trigger.ref parameter appears in the list of attributes.

5 Click the trigger.ref parameter's Not set link to bind the parameter to an appropriate Trigger
object.

The Waiting Event selection dialog box opens, presenting a list of possible parameters to which to
bind.

6 Select a predefined Trigger object from the proposed list.

This Trigger object represents a trigger event that another workflow or workflow element defines.

7 Define any exception behavior in the Exceptions properties tab.

8 Click Close.

9 Click Save at the bottom of the workflow editor.

You defined a workflow element that suspends a trigger-based long-running workflow, that waits for a
specific trigger event before restarting.

What to do next

You can run a workflow.

Configuration Elements
A configuration element is a list of attributes you can use to configure constants across a whole
Orchestrator server deployment.

All the workflows, actions and policies running in a particular Orchestrator server can use the attributes
you set in a configuration element. Setting attributes in configuration elements lets you make the same
attribute values available to all the workflows, actions and policies running in the Orchestrator server.

Developing with VMware vRealize Orchestrator

VMware, Inc. 140

If you create a package containing a workflow, action or policy that uses an attribute from a configuration
element, Orchestrator automatically includes the configuration element in the package. If you import a
package containing a configuration element into another Orchestrator server, you can import the
configuration element attribute values as well. For example, if you create a workflow that requires
attribute values that depend on the Orchestrator server on which it runs, setting those attributes in a
configuration element lets you to export that workflow so that another Orchestrator server can use it.
Configuration elements therefore allow you to exchange workflows, actions and policies between servers
more easily.

Note You cannot import values of a configuration element attribute from a configuration element
exported from Orchestrator 5.1 or earlier.

Create a Configuration Element
Configuration elements allow you to set common attributes across an Orchestrator server. All elements
that are running in the server can call on the attributes you set in a configuration element. Creating
configuration elements allows you to define common attributes once in the server, rather than individually
in each element.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Configurations view.

3 Right-click a folder in the hierarchical list of folders and select New folder to create a new folder.

4 Provide a name for the folder and click Ok.

5 Right-click the folder you created and select New element.

6 Provide a name for the configuration element and click Ok.

The configuration element editor opens.

7 Increment the version number by clicking the version digits in the General tab and providing a version
comment.

8 Provide a description of the configuration element in the Description text box in the General tab.

9 Click the Attributes tab.

10 Click the Add attribute icon () to create a new attribute.

11 Click the attribute values under Name, Type, Value, and Description to set the attribute name, type,
value, and description.

12 Click the Permissions tab.

13 Click the Add access rights icon () to grant permission to access this configuration element to a
group of users.

Developing with VMware vRealize Orchestrator

VMware, Inc. 141

14 Search for a user group in the Filter text box and select the relevant user group from the proposed
list.

15 Check the appropriate check boxes to set the access rights for the selected user group.

You can set the following permissions on the configuration element.

Permission Description

View Users can view the configuration element, but cannot view the schemas or
scripting.

Inspect Users can view the configuration element, including the schemas and scripting.

Admin Users can set permissions on the elements in the configuration element and have
all other permissions.

Execute Users can run the elements in the configuration element.

Edit Users can edit the elements in the configuration element.

16 Click Select.

17 Click Save and close to exit the configuration element editor.

You defined a configuration element that sets common attributes across an Orchestrator server.

What to do next

You can use the configuration element to provide attributes to workflows or actions.

Workflow User Permissions
Orchestrator defines levels of permissions that you can apply to groups to allow or deny them access to
workflows.

View The user can view the elements in the workflow, but cannot view the
schema or scripting.

Inspect The user can view the elements in the workflow, including the schema and
scripting.

Execute The user can run the workflow.

Edit The user can edit the workflow.

Admin The user can set permissions on the workflow and has all other
permissions.

The Admin permission includes the View, Inspect, Edit, and Execute permissions. All the permissions
require the View permission.

If you do not set any permissions on a workflow, the workflow inherits the permissions from the folder that
contains it. If you do set permissions on a workflow, those permissions override the permissions of the
folder that contains it, even if the permissions of the folder are more restrictive.

Developing with VMware vRealize Orchestrator

VMware, Inc. 142

Set User Permissions on a Workflow
You set levels of permission on a workflow to limit the access that user groups can have to that workflow.

You can select the users and user groups for which to set permissions from the Orchestrator LDAP
server.

Prerequisites

n Create a workflow.

n Open the workflow for editing in the workflow editor.

n Add some elements to the workflow schema.

Procedure

1 Click the Permissions tab.

2 Click the Add access rights icon () to define permissions for a new user group.

3 Search for a user group.

The search results contain all the user groups from the Orchestrator LDAP server that match the
search.

4 Select a user group and select the appropriate check boxes to set the level of permissions for this
user group.

To allow a user from this user group to view the workflow, inspect the schema and scripting, run and
edit the workflow, and change the permissions, you must select all check boxes.

5 Click Select.

The user group appears in the permissions list.

6 Click Save and close to exit the editor.

Validating Workflows
Orchestrator provides a workflow validation tool. Validating a workflow helps identify errors in the workflow
and checks that the data flows from one element to the next correctly.

When you validate a workflow, the validation tool creates a list of any errors or warnings. Clicking an error
in the list highlights the workflow element that contains the error.

If you run the validation tool in the workflow editor, the tool provides suggested quick fixes for the errors it
detects. Some quick fixes require you to provide additional information or input parameters. Other quick
fixes resolve the error for you.

Workflow validation checks the data bindings and connections between elements. Workflow validation
does not check the data processing that each element in the workflow performs. Consequently, a valid
workflow can run incorrectly and produce erroneous results if a function in a schema element is incorrect.

Developing with VMware vRealize Orchestrator

VMware, Inc. 143

By default, Orchestrator always performs workflow validation when you run a workflow. You can change
the default validation behavior in the Orchestrator client. See Testing Workflows During Development. For
example, sometimes during workflow development you might want to run a workflow that you know to be
invalid, for testing purposes.

Validate a Workflow and Fix Validation Errors
You must validate a workflow before you can run it. You can validate workflows in either the Orchestrator
client or in the workflow editor. However, you can only fix validation errors if you have opened the
workflow for editing in the workflow editor.

Prerequisites

Verify that you have a complete workflow to validate, with schema elements linked and bindings defined.

Procedure

1 Click the Workflows view.

2 Navigate to a workflow in the Workflows hierarchical list.

3 (Optional) Right-click the workflow and select Validate workflow.

If the workflow is valid, a confirmation message appears. If the workflow is invalid, a list of errors
appears.

4 (Optional) Close the Workflow Validation dialog box.

5 Right-click the workflow and select Edit to open the workflow editor.

6 Click the Schema tab.

7 Click the Validate button in the Schema tab toolbar.

If the workflow is valid, a confirmation message appears. If the workflow is invalid, a list of errors
appears.

8 For an invalid workflow, click an error message.

The validation tool highlights the schema element in which the error occurs by adding a red icon to it.
Where possible, the validation tool displays a quick fix action.

n If you agree with the proposed quick fix action, click it to perform that action.

n If you disagree with the proposed quick fix action, close the Workflow Validation dialog box and fix
the schema element manually.

Important Always check that the fix that Orchestrator proposes is appropriate.

For example, the proposed action might be to delete an unused attribute, when in fact that attribute
might not be bound correctly.

9 Repeat the preceding steps until you have eliminated all validation errors.

You validated a workflow and fixed the validation errors.

Developing with VMware vRealize Orchestrator

VMware, Inc. 144

What to do next

You can run the workflow.

Debugging Workflows
Orchestrator provides a workflow debugging tool. You can debug a workflow to inspect the input and
output parameters and attributes at the start of any activity, replace parameter or attribute values during a
workflow run in edit mode, and resume a workflow from the last failed activity.

You can debug workflows from the standard workflow library and custom workflows. You can debug
custom workflows while developing them in the workflow editor.

Debug a Workflow
You can debug elements of a workflow by adding breakpoints to the elements in the workflow schema.

When a breakpoint is reached, you have several options to continue the debugging process. When you
debug an element from the workflow schema, you can view general information about the workflow run,
modify the workflow variables, and view log messages.

Prerequisites

Log in to the Orchestrator client as a user who can run workflows.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Workflows view.

3 Select a workflow from the workflow library and click the Schema tab.

4 To add breakpoints to the schema elements that you want to debug, right-click a workflow element
and select Toggle breakpoint.

You can enable or disable the toggled breakpoints.

5 Click the Debug workflow icon ().

If the workflow requires input parameters, you must provide them.

6 When the workflow run is paused after it reaches a breakpoint, select one of the available options.

Option Description

 Resume Resumes the workflow run until another breakpoint is reached.

 Step into Lets you step into a workflow element.

Note You cannot step into a nested workflow element when you debug a
workflow in the workflow editor.

Developing with VMware vRealize Orchestrator

VMware, Inc. 145

Option Description

 Step over Steps over the current element in the schema and pauses the workflow run on the
next element.

 Step return Exits the workflow element that you have stepped into.

7 (Optional) From the Breakpoints tab, modify the breakpoints.

You can enable, disable, or remove existing breakpoints.

8 (Optional) From the Variables tab, review the variables.

You can modify the values of some of the variables during the debugging process.

Example Workflow Debugging
You can debug a workflow from the standard workflow library.

For example, if you provide an incorrect recipient address, you can correct the value when you debug the
Example interaction with email workflow.

Prerequisites

Log in to the Orchestrator client as a user who can run Mail workflows.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Workflows view.

3 In the workflows hierarchical list, open Library > Mail.

4 Select the Example interaction with email workflow and click the Schema tab.

5 Right-click the Email Send (Interaction) workflow element and select Toggle breakpoint.

6 Click the Debug workflow icon ().

7 Provide the required information.

a In the Destination address text box, type an incomplete recipient address.

For example, name@company.c.

b Select an LDAP group of users who are authorized to answer the query.

c Click Submit.

8 When the breakpoint is reached, click the Step into icon ().

9 On the Variables tab, verify the values.

10 In the toAddress text box, type the correct recipient address value.

For example, name@company.com.

11 Click the Resume icon () to continue the workflow run.

Developing with VMware vRealize Orchestrator

VMware, Inc. 146

The workflow uses the value that you provided during the debugging process and continues the workflow
run.

Running Workflows
An Orchestrator workflow runs according to a logical flow of events.

When you run a workflow, each schema element in the workflow runs according to the following
sequence.

1 The workflow binds the workflow token attributes and input parameters to the schema element's input
parameters.

2 The schema element runs.

3 The schema element's output parameters are copied to the workflow token attributes and workflow
output parameters.

4 The workflow token attributes and output parameters are stored in the database.

5 The next schema element starts running.

This sequence repeats for each schema element until the end of the workflow.

Workflow Token Check Points
When a workflow runs, each schema element is a check point. After each schema element runs,
Orchestrator stores workflow token attributes in the database, and the next schema element starts
running. If the workflow stops unexpectedly, the next time the Orchestrator server restarts, the currently
active schema element runs again, and the workflow continues from the start of the schema element that
was running when the interruption occurred. However, Orchestrator does not implement transaction
management or a rollback function.

End of Workflow
The workflow ends if the current active schema element is an end element. After the workflow reaches an
end element, other workflows or applications can use the workflow's output parameters.

Run a Workflow in the Workflow Editor
You can run a workflow while you are developing it.

Running a workflow in the workflow editor lets you verify that the workflow runs correctly without
interrupting the development process. You can view log messages that provide information about the
workflow run. If the workflow run returns unexpected results, you can modify the workflow and run it again
without closing the workflow editor.

Prerequisites

n Create a workflow.

n Open the workflow for editing in the workflow editor.

Developing with VMware vRealize Orchestrator

VMware, Inc. 147

n Validate the workflow.

Procedure

1 Click the Schema tab.

2 Click Run.

3 (Optional) Review the messages in the Logs tab.

Run a Workflow
You can perform automated operations in vCenter Server by running workflows from the standard library
or workflows that you create.

For example, you can create a virtual machine by running the Create simple virtual machine workflow.

Prerequisites

Verify that you have configured the vCenter Server plug-in. For details, see Installing and Configuring
VMware vCenter Orchestrator.

Procedure

1 From the drop-down menu in the Orchestrator client, select Run or Design.

2 Click the Workflows view.

3 In the workflows hierarchical list, open Library > vCenter > Virtual machine management > Basic
to navigate to the Create simple virtual machine workflow.

4 Right-click the Create simple virtual machine workflow and select Start workflow.

5 Provide the following information into the Start workflow input parameters dialog box to create a
virtual machine in a vCenter Server connected to Orchestrator.

Option Action

Virtual machine name Name the virtual machine orchestrator-test.

Virtual machine folder a Click Not set for the Virtual machine folder value.

b Select a virtual machine folder from the inventory.

The Select button is inactive until you select an object of the correct type, in
this case, VC:VmFolder.

Size of the new disk in GB Type an appropriate numeric value.

Memory size in MB Type an appropriate numeric value.

Number of virtual CPUs Select an appropriate number of CPUs from the Number of virtual CPUs drop-
down menu.

Virtual machine guest OS Click the Not Set link and select a guest operating system from the list.

Host on which to create the virtual
machine

Click Not set for the Host on which to create the virtual machine value and
navigate through the vCenter Server infrastructure hierarchy to a host machine.

Resource pool Click Not set for the Resource pool value and navigate through the vCenter
Server infrastructure hierarchy to a resource pool.

Developing with VMware vRealize Orchestrator

VMware, Inc. 148

Option Action

The network to connect to Click Not set for the The network to connect to value and select a network.

Press Enter in the Filter text box to see all the available networks.

Datastore in which to store the virtual
machine files

Click Not set for the Datastore in which to store the virtual machine value and
navigate through the vCenter Server infrastructure hierarchy to a datastore.

6 Click Submit to run the workflow.

A workflow token appears under the Create simple virtual machine workflow, showing the workflow
running icon.

7 Click the workflow token to view the status of the workflow as it runs.

8 Click the Events tab in the workflow token view to follow the progress of the workflow token until it
completes.

9 Click the Inventory view.

10 Navigate through the vCenter Server infrastructure hierarchy to the resource pool you defined.

If the virtual machine does not appear in the list, click the refresh button to reload the inventory.

The orchestrator-test virtual machine is present in the resource pool.

11 (Optional) Right-click the orchestrator-test virtual machine in the Inventory view to see a
contextual list of the workflows that you can run on the orchestrator-test virtual machine.

The Create simple virtual machine workflow ran successfully.

What to do next

You can log in vSphere Client and manage the new virtual machine.

Resuming a Failed Workflow Run
If a workflow fails, Orchestrator provides an option to resume the workflow run from the last failed activity.

You can change the parameters of the workflow and attempt to resume it, or retain the parameters and
make changes to external components that affect the workflow run. For example, if a workflow run fails
due to a problem in a third-party system, you can make changes to the system and resume the workflow
run from the failed activity, without changing the workflow parameters and without repeating the
successful activities.

Set the Behavior for Resuming a Failed Workflow Run
You can set the behavior for resuming a failed run for each custom workflow. The default workflows in the
library use the default system setting for resuming a failed workflow run.

You can change the default system behavior by modifying a configuration file. See Set Custom Properties
for Resuming Failed Workflow Runs.

Developing with VMware vRealize Orchestrator

VMware, Inc. 149

Prerequisites

Verify that you have permissions to edit the workflow.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Workflows view.

3 Expand the workflows hierarchical list to navigate to the workflow for which you want to set the
behavior.

4 Right-click the workflow and select Edit.

The workflow editor opens.

5 On the General tab, select an option from the Resume from failed behavior drop-down menu.

Option Description

System default Follows the default behavior.

Enabled If a workflow run fails, a pop-up window displays an option to resume the
workflow run.

Disabled If a workflow run fails, it cannot be resumed.

6 Click Save and close.

Set Custom Properties for Resuming Failed Workflow Runs
By default, Orchestrator is not set up to resume failed workflow runs. You can enable Orchestrator to
resume failed workflow runs and set a custom timeout period after which failed workflow runs cannot be
resumed.

Procedure

1 On the Orchestrator server system, navigate to /etc/vco/app-server/.

2 Open the vmo.properties configuration file in a text editor.

3 Set Orchestrator to resume failed workflow runs by editing the following line in the vmo.properties
file.

com.vmware.vco.engine.execute.resume-from-failed=true

4 Set a custom timeout period for resuming failed workflow runs by editing the following line in the
vmo.properties file.

com.vmware.vco.engine.execute.resume-from-failed.timeout-sec=<seconds>

The value you set overrides the default timeout setting of 86400 seconds.

5 Save the vmo.properties file.

Developing with VMware vRealize Orchestrator

VMware, Inc. 150

6 Restart the Orchestrator server.

Resume a Failed Workflow Run
You can resume a workflow run from the last failed activity, if resuming a failed run is enabled for the
workflow.

When the option for resuming a failed workflow run is enabled, you can change the parameters of the
workflow and try to resume it by using the options in the pop-up window that appears after the workflow
fails. You can also retain the parameters and make changes to external components that affect the
workflow run. If you do not select an option, the workflow run times out and cannot be resumed. For
modifying the timeout period, see Set Custom Properties for Resuming Failed Workflow Runs.

Procedure

1 From the drop-down menu in the pop-up window, select Resume and click Next.

If you select Cancel, the workflow run cannot be resumed later.

2 (Optional) Modify the workflow parameters.

3 Click Submit.

Generate Workflow Documentation
You can export documentation in PDF format about a workflow or a workflow folder that you select at any
time.

The exported document contains detailed information about the selected workflow or the workflows in the
folder. The information about each workflow includes name, version history of the workflow, attributes,
parameter presentation, workflow schema, and workflow actions. In addition, the documentation also
provides the source code for the used actions.

Procedure

1 From the drop-down menu in the Orchestrator client, select Run or Design.

2 Click the Workflows view.

3 Navigate to the workflow or workflow folder for which you want to generate documentation and right-
click it.

4 Select Generate documentation.

5 Browse to locate the folder in which to save the PDF file, provide a file name, and click Save.

The PDF file containing the information about the selected workflow, or the workflows in the folder, is
saved on your system.

Developing with VMware vRealize Orchestrator

VMware, Inc. 151

Use Workflow Version History
You can use version history to revert a workflow to a previously saved state. You can revert the workflow
state to an earlier or a later workflow version. You can also compare the differences between the current
state of the workflow and a saved version of the workflow.

Orchestrator creates a new version history item for each workflow when you increase and save the
workflow version. Subsequent changes to the workflow do not change the current saved version. For
example, when you create a workflow version 1.0.0 and save it, the state of the workflow is stored in the
version history. If you make any changes to the workflow, you can save the workflow state in the
Orchestrator client, but you cannot apply the changes to workflow version 1.0.0. To store the changes in
the version history, you must create a subsequent workflow version and save it. The version history is
kept in the database along with the workflow itself.

When you delete a workflow, Orchestrator marks the element as deleted in the database without deleting
the version history of the element from the database. This way, you can restore deleted workflows. See
Restore Deleted Workflows.

Prerequisites

Open a workflow for editing in the workflow editor.

Procedure

1 Click the General tab in the workflow editor and click Show version history.

2 Select a workflow version and click Diff Against Current to compare the differences.

A window displays the differences between the current workflow version and the selected workflow
version.

3 Select a workflow version and click Revert to restore the state of the workflow.

Caution If you have not saved the current workflow version, it is deleted from the version history
and you cannot revert back to the current version.

The workflow state is reverted to the state of the selected version.

Restore Deleted Workflows
You can restore workflows that have been deleted from the workflow library.

Procedure

1 From the drop-down menu in the Orchestrator client, select Run or Design.

2 Click the Workflows view.

3 Navigate to the workflow folder in which you want to restore deleted workflows.

4 Right-click the folder and select Restore deleted workflows.

Developing with VMware vRealize Orchestrator

VMware, Inc. 152

5 Select the workflow or workflows that you want to restore and click Restore.

The restored workflows appear in the selected folder.

Develop a Simple Example Workflow
Developing a simple example workflow demonstrates the most common steps in the workflow
development process.

The example workflow that you are about to create starts an existing virtual machine in vCenter Server
and sends an email to the administrator to confirm that the virtual machine has started.

The example workflow performs the following tasks:

1 Prompts the user to select a virtual machine to start.

2 Prompts the user for an email address to which it can send notifications.

3 Checks whether the selected virtual machine is already powered on.

4 Sends a request to the vCenter Server instance to start the virtual machine.

5 Waits for vCenter Server to start the virtual machine, and returns an error if the virtual machine fails to
start or if starting the virtual machine takes too long.

6 Waits for vCenter Server to start VMware Tools on the virtual machine, and returns an error if the
virtual machine fails to start or if starting VMware Tools takes too long.

7 Verifies that the virtual machine is running.

8 Sends a notification to the provided email address, informing that the machine has started or that an
error occurred.

The ZIP file of Orchestrator examples available for download from the landing page of the Orchestrator
documentation contains a complete version of the Start VM and Send Email workflow.

The process for developing the example workflow consists of several tasks.

Prerequisites

Before you attempt to develop the simple example workflow, read Key Concepts of Workflows.

Procedure

1 Create the Simple Workflow Example

You must begin the workflow development process by creating the workflow in the Orchestrator
client.

2 Create the Schema of the Simple Workflow Example

You can create a workflow's schema in the workflow editor. The workflow schema contains the
elements that the workflow runs and determines the logical flow of the workflow.

Developing with VMware vRealize Orchestrator

VMware, Inc. 153

3 (Optional) Create the Simple Workflow Example Zones

You can emphasize different zones in workflow by adding workflow notes of different colors.
Creating different workflow zones helps to make complicated workflow schema easier to read and
understand.

4 Define the Parameters of the Simple Workflow Example

In this phase of workflow development, you define the input parameters that the workflow requires to
run. For the example workflow, you need an input parameter for the virtual machine to power on,
and a parameter for the email address of the person to inform about the result of the operation.
When users run the workflow, they will be required to specify the virtual machine to power on and an
email address.

5 Define the Simple Workflow Example Decision Bindings

You bind a workflow's elements together in the Schema tab of the workflow editor. Decision bindings
define how decision elements compare the input parameters received to the decision statement, and
generate output parameters according to whether the input parameters match the decision
statement.

6 Bind the Action Elements of the Simple Workflow Example

You can bind a workflow's elements together in the workflow editor. Bindings define how the action
elements process input parameters and generate output parameters.

7 Bind the Simple Workflow Example Scripted Task Elements

You bind a workflow's elements together in the Schema tab of the workflow editor. Bindings define
how the scripted task elements process input parameters and generate output parameters. You also
bind the scriptable task elements to their JavaScript functions.

8 Define the Simple Workflow Example Exception Bindings

You define exception bindings in the Schema tab in the workflow editor. Exception bindings define
how elements process errors.

9 Set the Read-Write Properties for Attributes of the Simple Workflow Example

You can define whether parameters and attributes are read-only constants or writeable variables.
You can also set limitations on the values that users can provide for input parameters.

10 Set the Simple Workflow Example Parameter Properties

You can set the parameter properties in the workflow editor. Setting the parameter properties affects
the behavior of the parameter, and places constraints on the possible values for that parameter.

11 Set the Layout of the Simple Workflow Example Input Parameters Dialog Box

You create the layout or presentation of the input parameters dialog box in the workflow editor. The
input parameters dialog box opens when users run a workflow that needs input parameters to run.

12 Validate and Run the Simple Workflow Example

After you create a workflow, you can validate it to discover any possible errors. If the workflow
contains no errors, you can run it.

Developing with VMware vRealize Orchestrator

VMware, Inc. 154

Create the Simple Workflow Example
You must begin the workflow development process by creating the workflow in the Orchestrator client.

Prerequisites

Verify that the following components are installed and configured on the system.

n vCenter Server, controlling some virtual machines, at least one of which is powered off

n Access to an SMTP server

n A valid email address

For information about how to install and configure vCenter Server, see the vSphere Installation and Setup
documentation. For information about how to configure Orchestrator to use an SMTP server, see
Installing and Configuring VMware vRealize Orchestrator.

To write a workflow, you must have an Orchestrator user account with at least View, Execute, Inspect,
Edit, and preferably Admin permissions on the server or on the workflow folder in which you are working.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Workflows view.

3 Right-click the root of the workflows list and select Add folder.

4 Name the new folder Workflow Examples and click OK.

5 Right-click the Workflow Examples folder and select New workflow.

6 Name the new workflow Start VM and Send Email and click OK.

The workflow editor opens.

7 In the General tab, click the version number digits to increment the version number.

Because this is the initial creation of the workflow, set the version to 0.0.1.

8 Click the Server restart behavior value in the General tab to set whether the workflow resumes after
a server restart.

9 Type a description of what the workflow does in the Description text box in the General tab.

For example, you can add the following description.

This workflow starts a virtual machine and sends a confirmation email to the

Orchestrator administrator.

10 Click Save at the bottom of the General tab.

You created a workflow called Start VM and Send Email, but you did not define its functions.

Developing with VMware vRealize Orchestrator

VMware, Inc. 155

What to do next

Create the workflow's schema.

Create the Schema of the Simple Workflow Example
You can create a workflow's schema in the workflow editor. The workflow schema contains the elements
that the workflow runs and determines the logical flow of the workflow.

Prerequisites

Complete the following tasks.

n Create the Simple Workflow Example.

n Open the workflow for editing in the workflow editor.

Procedure

1 Click the Schema tab in the workflow editor.

2 From the Generic menu, drag a decision element to the arrow that links the Start element and the
End element in the schema.

3 Double-click the decision element and change its name to VM powered on?.

The decision element corresponds to a boolean function that checks whether the virtual machine is
already powered on.

4 From the Generic menu, drag an action element to the red arrow that links the decision element and
an End element.

The dialog box for action selection appears.

5 Type start in the Filter text box, select the startVM action from the filtered list of actions, and click
Select.

6 Drag the following action elements, one after the other, to the blue arrow that links the startVM action
element to an End element.

vim3WaitTaskEnd Suspends the workflow run and pings an ongoing vCenter Server task at
regular intervals, until that task is finished. The startVM action starts a
virtual machine and the vim3WaitTaskEnd action makes the workflow
wait while the virtual machine starts up. After the virtual machine starts,
the vim3WaitTaskEnd lets the workflow resume.

vim3WaitToolsStarte

d

Suspends the workflow run and waits until VMware Tools starts on the
target virtual machine.

7 From the Generic menu, drag a scriptable task element to the blue arrow that links the
vim3WaitToolsStarted action element to an End element.

8 Double-click the scriptable task element and rename it to OK.

Developing with VMware vRealize Orchestrator

VMware, Inc. 156

9 Drag another scriptable task element to the green arrow that links the VM powered on? decision
element to an End element , and name this scriptable task element Already started.

10 Modify the linking of the Already started scriptable task element.

a Drag the Already started scriptable task element to the left of the startVM action element.

b Delete the blue arrow that connects the Already started scriptable task element to an End
element.

c Link the Already started scriptable task element to the vim3WaitToolsStarted action
element with a blue arrow.

11 From the Generic menu, drag the following scriptable task elements into the schema.

n Drag a scriptable task element to the startVM action element and name the scriptable task
element Start VM Failed.

n Drag a scriptable task element to the vim3WaitTaskEnd action element and name the scriptable
task element Timeout 1.

n Drag a scriptable task element to the vim3WaitToolsStarted action element and name the
scriptable task element Timeout 2.

n Drag a scriptable task element to the blue arrow that links the OK scriptable task element to an
End element, name the new scriptable task element Send Email, and drag it to the right of the OK
scriptable task element.

n Link the Start VM Failed, Timeout 1, and Timeout 2 scriptable task elements to the Send
Email scriptable task element with blue arrows.

n Drag a scriptable task element to the Send Email scriptable task element, name the new
scriptable task element Send Email Failed, drag it to the right of the Timeout 2 scriptable task
element, and link it to the End element with a blue arrow.

12 Drag the End element to the right of the Send Email scriptable task element.

13 Click Save at the bottom of the Schema tab.

The following figure shows the layout of the Start VM and Send Email workflow schema elements.

Developing with VMware vRealize Orchestrator

VMware, Inc. 157

Figure 1‑10. Linking the Elements of the Start VM and Send Email Example Workflow

What to do next

You can highlight different zones in the workflow.

(Optional) Create the Simple Workflow Example Zones
You can emphasize different zones in workflow by adding workflow notes of different colors. Creating
different workflow zones helps to make complicated workflow schema easier to read and understand.

Prerequisites

Complete the following tasks.

n Create the Simple Workflow Example.

n Create the Schema of the Simple Workflow Example.

n Open the workflow for editing in the workflow editor.

Procedure

1 Drag a workflow note element from the Generic menu into the workflow editor.

2 Position the workflow note over the Already started scriptable task element.

Developing with VMware vRealize Orchestrator

VMware, Inc. 158

3 Drag the edges of the workflow note to resize it so that it surrounds the Already started scriptable
task element.

4 Double-click the text and add a description.

For example, Path if virtual machine is already powered on.

5 Press Ctrl+E to select the background color.

6 Repeat the preceding steps to highlight other zones in the workflow.

n Place a note over the vertical sequence of elements from the VM powered on? decision element
to the OK element. Add the description Start VM path.

n Place a note over the startVM failed, both Timeout scriptable task elements and the Send
Email Failed scriptable task element. Add the description Error handling.

n Place a note over the Send Email scriptable task element. Add the description Send email.

The following figure shows what the example workflow zones should look like.

Figure 1‑11. Start VM and Send Email Example Workflow Zones

Initializing

VM powered on?

OK

startVM Start VM failed

vim3WaitTaskEnd Timeout 1

vim3WaitToolsStarted Timeout 2 Send Email Failed

Path if virtual
machine
is already

powered on

Error handling

Send email

Start
VM path

Send Email

What to do next

You must define the workflow's attributes and input and output parameters.

Developing with VMware vRealize Orchestrator

VMware, Inc. 159

Define the Parameters of the Simple Workflow Example
In this phase of workflow development, you define the input parameters that the workflow requires to run.
For the example workflow, you need an input parameter for the virtual machine to power on, and a
parameter for the email address of the person to inform about the result of the operation. When users run
the workflow, they will be required to specify the virtual machine to power on and an email address.

Prerequisites

Complete the following tasks.

n Create the Simple Workflow Example.

n Open the workflow for editing in the workflow editor.

Procedure

1 Click the Inputs tab in the workflow editor.

2 Right-click within the Inputs tab and select Add Parameter.

A parameter named arg_in_0 appears in the Inputs tab.

3 Click arg_in_0.

4 Type the name vm in the Choose Attribute Name dialog box and click OK.

5 Click the Type text box and type vc:virtualm in the search text box in the parameter type dialog
box.

6 Select VC:VirtualMachine from the proposed list of parameter types and click Accept.

7 Add a description of the parameter in the Description text box.

For example, type The virtual machine to power on.

8 Repeat Step 2 through Step 7 to create a second input parameter, with the following values.

n Name: toAddress

n Type: String

n Description: The email address to send the result of this workflow to

9 Click Save at the bottom of the Inputs tab.

You defined the workflow's input parameters.

What to do next

Define the bindings between the element parameters.

Developing with VMware vRealize Orchestrator

VMware, Inc. 160

Define the Simple Workflow Example Decision Bindings
You bind a workflow's elements together in the Schema tab of the workflow editor. Decision bindings
define how decision elements compare the input parameters received to the decision statement, and
generate output parameters according to whether the input parameters match the decision statement.

Prerequisites

Complete the following tasks.

n Create the Simple Workflow Example.

n Create the Schema of the Simple Workflow Example.

n Define the Parameters of the Simple Workflow Example.

n Open the workflow for editing in the workflow editor.

Procedure

1 On the Schema tab, click the Edit icon () of the VM Powered On? decision element.

2 On the Decision tab, click the Not set (NULL) button and select vm as the decision element's input
parameter from the list of proposed parameters.

3 Select the Power State equals statement from the list of decision statements proposed in the drop-
down menu.

A Not set button appears in the value text box, which presents you with a limited choice of possible
values.

4 Select poweredOn.

5 Click Save at the bottom of the workflow editor's Schema tab.

You have defined the true or false statement against which the decision element will compare the value of
the input parameter it receives.

What to do next

You must define the bindings for the other elements in the workflow.

Bind the Action Elements of the Simple Workflow Example
You can bind a workflow's elements together in the workflow editor. Bindings define how the action
elements process input parameters and generate output parameters.

Prerequisites

Complete the following tasks.

n Create the Simple Workflow Example.

n Create the Schema of the Simple Workflow Example.

Developing with VMware vRealize Orchestrator

VMware, Inc. 161

n Define the Parameters of the Simple Workflow Example.

n Define the Simple Workflow Example Decision Bindings.

n Open the workflow for editing in the workflow editor.

Procedure

1 On the Schema tab, click the Edit icon () of the startVM action element.

2 Set the following general information on the Info tab.

Option Action

Interaction Select No External interaction.

Business Status Select the check box and add the text Sending start VM.

Description Leave the text Start / Resume a VM. Return the start task.

3 Click the IN tab.

The IN tab displays the two possible input parameters available to the startVM action, vm and host.

Orchestrator automatically binds the vm parameter to vm[in-parameter] because the startVM
action can only take a VC:VirtualMachine as an input parameter. Orchestrator detects the vm
parameter you defined when you set the workflow input parameters and so binds it to the action
automatically.

4 Set host to NULL.

This is an optional parameter, so you can set it to null. However, if you leave it set to Not set, the
workflow cannot validate.

5 Click the OUT tab.

The default output parameter that all actions generate, actionResult, appears.

6 For the actionResult parameter, click Not set.

7 Click Create parameter/attribute in workflow.

The Parameter information dialog box displays the values that you can set for this output parameter.
The output parameter type for the startVM action is a VC:Task object.

8 Name the parameter powerOnTask and provide a description.

For example, Contains the result of powering on a VM.

9 Click Create workflow ATTRIBUTE with the same name and click OK to exit the Parameter
information dialog box.

10 Repeat the preceding steps to bind the input and output parameters to the vim3WaitTaskEnd and
vim3WaitToolsStarted action elements.

Simple Workflow Example Action Element Bindings lists the bindings for the vim3WaitTaskEnd and
vim3WaitToolsStarted action elements.

Developing with VMware vRealize Orchestrator

VMware, Inc. 162

11 Click Save at the bottom of the workflow editor's Schema tab.

The action elements' input and output parameters are bound to the appropriate parameter types and
values.

What to do next

Bind the scriptable task elements and define their functions.

Simple Workflow Example Action Element Bindings
Bindings define how the simple workflow example's action elements process input and output
parameters.

When defining bindings, Orchestrator presents parameters you have already defined in the workflow as
candidates for binding. If you have not defined the required parameter in the workflow yet, the only
parameter choice is NULL. Click Create parameter/attribute in workflow to create a new parameter.

vim3WaitTaskEnd Action

The vim3WaitTaskEnd action element declares constants to track the progress of a task and a polling
rate. The following table shows the input and output parameter bindings that the vim3WaitTaskEnd
action requires.

Table 1‑54. Binding Values of the vim3WaitTaskEnd Action

Parameter Name Binding Type
Bind to Existing or
Create Parameter? Binding Values

task IN Bind n Local Parameter: powerOnTask
n Source parameter:

task[attribute]

n Type: VC:Task
n Description:

Contains the result of

powering on a VM.

progress IN Create n Local Parameter: progress
n Source parameter:

progress[attribute]

n Type: Boolean
n Value: No (false)
n Description:

Log progress while waiting for

the vCenter Server task to

complete.

Developing with VMware vRealize Orchestrator

VMware, Inc. 163

Table 1‑54. Binding Values of the vim3WaitTaskEnd Action (Continued)

Parameter Name Binding Type
Bind to Existing or
Create Parameter? Binding Values

pollRate IN Create n Local Parameter: pollRate
n Source parameter:

pollRate[attribute]

n Type: number
n Value: 2
n Description:

Polling rate in seconds at

which vim3WaitTaskEnd checks

the advancement of the vCenter

Server task.

actionResult OUT Create n Local Parameter:
actionResult[attribute]

n Source parameter:
returnedManagedObject[attribut

e]

n Type: Any
n Description:

The returned managed object

from the waitTaskEnd action.

vim3WaitToolsStarted Action

The vim3WaitToolsStarted action element waits until VMware Tools have installed on a virtual
machine, and defines a polling rate and a timeout period. The following table shows the input parameter
bindings the vim3WaitToolsStarted action requires.

The vim3WaitToolsStarted action element has no output, so requires no output binding.

Developing with VMware vRealize Orchestrator

VMware, Inc. 164

Table 1‑55. Binding Values of the vim3WaitToolsStarted Action

Parameter Name Binding Type
Bind to Existing or
Create Parameter? Binding Values

vm IN Automatic binding n Local Parameter: vm
n Source parameter: vm[in-

parameter]

n Type: VC:VirtualMachine
n Value: Not editable, variable is not a

workflow attribute.
n Description:

The virtual machine to

start.

pollingRate IN Bind n Local Parameter: pollRate
n Source parameter:

pollRate[attribute]

n Type: number
n Description:

The polling rate in seconds

at which vim3WaitTaskEnd

checks the advancement of

the vCenter server task.

timeout IN Create n Local Parameter: timeout
n Source parameter:

timeout[attribute]

n Type: number
n Value: 10
n Description:

The timeout limit that

vim3WaitToolsStarted waits

before throwing an

exception.

Bind the Simple Workflow Example Scripted Task Elements
You bind a workflow's elements together in the Schema tab of the workflow editor. Bindings define how
the scripted task elements process input parameters and generate output parameters. You also bind the
scriptable task elements to their JavaScript functions.

Prerequisites

Complete the following tasks.

n Create the Simple Workflow Example.

n Create the Schema of the Simple Workflow Example.

n Define the Parameters of the Simple Workflow Example.

n Define the Simple Workflow Example Decision Bindings.

n Open the workflow for editing in the workflow editor.

Developing with VMware vRealize Orchestrator

VMware, Inc. 165

Procedure

1 On the Schema tab, click the Edit icon () of the Already Started scriptable task element.

2 Set the following general information in the Info tab.

Option Action

Interaction Select No External interaction.

Business Status Select the check box and add the text VM already powered on.

Description Leave the text The VM is already powered on, bypassing startVM and
waitTaskEnd, checking if the VM tools are up and running..

3 Click the IN tab.

Because this is a custom scriptable task element, no properties are predefined for you.

4 Click the Bind to workflow parameter/attribute icon ().

5 Select vm from the proposed list of parameters.

6 Leave the OUT and Exception tabs blank.

This element does not generate an output parameter or exception.

7 Click the Scripting tab.

8 Add the following JavaScript function.

//Writes the following event in the Orchestrator database

Server.log("VM '"+ vm.name +"' already started");

9 Repeat the preceding steps to bind the remaining input parameters to the other scriptable task
elements.

Simple Workflow Example Scriptable Task Element Bindings lists the bindings for the Start VM
failed, both Timeout or Error, Send Email Failed, and the OK scriptable task elements.

10 Click Save at the bottom of the workflow editor's Schema tab.

You have bound the scriptable task elements to their input and output parameters and provided the
scripting that defines their function.

What to do next

You must define the exception handling.

Simple Workflow Example Scriptable Task Element Bindings
Bindings define how the simple workflow example's scriptable task elements process input parameters.
You also bind the scriptable task elements to their JavaScript functions.

Developing with VMware vRealize Orchestrator

VMware, Inc. 166

When defining bindings, Orchestrator presents parameters you have already defined in the workflow as
candidates for binding. If you have not defined the required parameter in the workflow yet, the only
parameter choice is NULL. Click Create parameter/attribute in workflow to create a new parameter.

Start VM Failed Scriptable Task

The Start VM Failed scriptable task element handles any exceptions that the startVM action throws by
setting the content of an email notification about the failure to start the virtual machine, and writing the
event in the Orchestrator log.

The following table shows the input and output parameter bindings that the Start VM Failed scriptable
task element requires.

Table 1‑56. Bindings of the Start VM Failed Scriptable Task Element

Parameter Name Binding Type
Bind to Existing or
Create Parameter? Binding Values

vm IN Bind n Local Parameter: vm
n Source parameter: vm[in-

parameter]

n Type: VC:VirtualMachine
n Description:

The virtual machine to power

on.

errorCode IN Create n Local Parameter: errorCode
n Source parameter:

errorCode[attribute]

n Type: string
n Description:

Catch any exceptions while

powering on a VM.

body OUT Create n Local Parameter: body
n Source parameter:

body[attribute]

n Type: string
n Description: The email body

The Start VM Failed scriptable task element performs the following scripted function.

body = "Unable to execute powerOnVM_Task() on VM '"+vm.name+"', exception found: "+errorCode;

//Writes the following event in the Orchestrator database

Server.error("Unable to execute powerOnVM_Task() on VM '"+vm.name+"', exception found: "+errorCode);

Timeout 1 Scriptable Task Element

The Timeout 1 scriptable task element handles any exceptions that the vim3WaitTaskEnd action throws
by setting the content of an email notification about the failure of the task, and writing the event in the
Orchestrator log.

Developing with VMware vRealize Orchestrator

VMware, Inc. 167

The following table shows the input and output parameter bindings that the Timeout 1 scriptable task
element requires.

Table 1‑57. Bindings of the Timeout 1 Scriptable Task Element

Parameter Name Binding Type
Bind to Existing or
Create Parameter? Binding Values

vm IN Bind n Local Parameter: vm
n Source parameter: vm[in-

parameter]

n Type: VC:VirtualMachine
n Description:

The virtual machine to

start.

errorCode IN Bind n Local Parameter: errorCode
n Source parameter:

errorCode[attribute]

n Type: string
n Description:

Catch any exceptions while

powering on a VM.

body OUT Bind n Local Parameter: body
n Source parameter:

body[attribute]

n Type: string
n Description: The email body

The Timeout 1 scriptable task element requires the following scripted function.

body = "Error while waiting for poweredOnVM_Task() to complete on VM '"+vm.name+"', exception found:

"+errorCode;

//Writes the following event in the Orchestrator database

Server.error("Error while waiting for poweredOnVM_Task() to complete on VM '"+vm.name+"', exception

found: "+errorCode);

Timeout 2 Scriptable Task Element

The Timeout 2 scriptable task element handles any exceptions that the vim3WaitToolsStarted action
throws by setting the content of an email notification about the failure of the task, and writing the event in
the Orchestrator log.

The following table shows the input and output parameter bindings that the Timeout 2 scriptable task
element requires.

Developing with VMware vRealize Orchestrator

VMware, Inc. 168

Table 1‑58. Bindings of the Timeout 2 Scriptable Task Element

Parameter Name Binding Type
Bind to Existing or
Create Parameter? Binding Values

vm IN Bind n Local Parameter: vm
n Source parameter: vm[in-

parameter]

n Type: VC:VirtualMachine
n Description:

The virtual machine to power

on.

errorCode IN Bind n Local Parameter: errorCode
n Source parameter:

errorCode[attribute]

n Type: string
n Description:

Catch any exceptions while

powering on a VM.

body OUT Bind n Local Parameter: body
n Source parameter:

body[attribute]

n Type: string
n Description: The email body

The Timeout 2 scriptable task element requires the following scripted function.

body = "Error while waiting for VMware tools to be up on VM '"+vm.name+"', exception found:

"+errorCode;

//Writes the following event in the Orchestrator database

Server.error("Error while waiting for VMware tools to be up on VM '"+vm.name+"', exception found:

"+errorCode);

OK Scriptable Task Element

The OK scriptable task element receives notice that the virtual machine has started successfully, sets the
content of an email notification about the successful start of the virtual machine, and writes the event in
the Orchestrator log.

The following table shows the input and output parameter bindings that the OK scriptable task element
requires.

Developing with VMware vRealize Orchestrator

VMware, Inc. 169

Table 1‑59. Bindings of the OK Scriptable Task Element

Parameter Name Binding Type
Bind to Existing or
Create Parameter? Binding Values

vm IN Bind n Local Parameter: vm
n Source parameter: vm[in-

parameter]

n Type: VC:VirtualMachine
n Description:

The virtual machine to power

on.

body OUT Bind n Local Parameter: body
n Source parameter:

body[attribute]

n Type: string
n Description: The email body

The OK scriptable task element requires the following scripted function.

body = "The VM '"+vm.name+"' has started successfully and is ready for use";

//Writes the following event in the Orchestrator database

Server.log(body);

Send Email Failed Scriptable Task Element

The Send Email Failed scriptable task element receives notice that the sending of the email failed, and
writes the event in the Orchestrator log.

The following table shows the input parameter bindings that the Send Email Failed scriptable task
element requires.

Developing with VMware vRealize Orchestrator

VMware, Inc. 170

Table 1‑60. Bindings of the Send Email Failed Scriptable Task Element

Parameter Name Binding Type
Bind to Existing or
Create Parameter? Binding Values

vm IN Bind n Local Parameter: vm
n Source parameter: vm[in-

parameter]

n Type: VC:VirtualMachine
n Description:

The virtual machine to power

on.

toAddress IN Bind n Local Parameter: toAddress
n Source parameter: toAddress[in-

parameter]

n Type: string
n Description:

The email address of the

person to inform of the

result of this workflow

emailErrorCode IN Create n Local Parameter: emailErrorCode
n Source parameter:

emailErrorCode[attrbute]

n Type: string
n Description:

Catch any exceptions while

sending an email

The Send Email Failed scriptable task element requires the following scripted function.

//Writes the following event in the Orchestrator database

Server.error("Couldn't send result email to '"+toAddress+"' for VM '"+vm.name+"', exception found:

"+emailErrorCode);

Send Email Scriptable Task Element

The purpose of the Start VM and Send Email workflow is to inform an administrator when it starts a virtual
machine. To do so, you must define the scriptable task that sends an email. To send the email, the Send
Email scriptable task element needs an SMTP server, addresses for the sender and recipient of the
email, the email subject, and the email content.

The following table shows the input and output parameter bindings that the Send Email scriptable task
element requires.

Developing with VMware vRealize Orchestrator

VMware, Inc. 171

Table 1‑61. Bindings of the Send Email Scriptable Task Element

Parameter Name Binding Type
Bind to Existing or
Create Parameter? Binding Values

vm IN Bind n Local Parameter: vm
n Source parameter: vm[in-

parameter]

n Type: VC:VirtualMachine
n Description:

The virtual machine to power

on.

toAddress IN Bind n Local Parameter: toAddress
n Source parameter: toAddress[in-

parameter]

n Type: string
n Description:

The email address of the

person to inform of the

result of this workflow

body IN Bind n Local Parameter: body
n Source parameter:

body[attribute]

n Type: string
n Description: The email body

smtpHost IN Create n Local Parameter: smtpHost
n Source parameter:

smtpHost[attribute]

n Type: string
n Description:

The email SMTP server

fromAddress IN Create n Local Parameter: fromAddress
n Source parameter:

fromAddress[attribute]

n Type: string
n Description:

The email address of the

sender

subject IN Create n Local Parameter: subject
n Source parameter:

subject[attribute]

n Type: string
n Description: The email subject

Developing with VMware vRealize Orchestrator

VMware, Inc. 172

The Send Email scriptable task element requires the following scripted function.

//Create an instance of EmailMessage

var myEmailMessage = new EmailMessage() ;

//Apply methods on this instance that populate the email message

myEmailMessage.smtpHost = smtpHost;

myEmailMessage.fromAddress = fromAddress;

myEmailMessage.toAddress = toAddress;

myEmailMessage.subject = subject;

myEmailMessage.addMimePart(body , "text/html");

//Apply the method that sends the email message

myEmailMessage.sendMessage();

System.log("Sent email to '"+toAddress+"'");

Define the Simple Workflow Example Exception Bindings
You define exception bindings in the Schema tab in the workflow editor. Exception bindings define how
elements process errors.

The following elements in the workflow return exceptions: startVM, vim3WaitTaskEnd, Send Email, and
vim3WaitToolsStarted.

Prerequisites

Complete the following tasks.

n Create the Simple Workflow Example.

n Create the Schema of the Simple Workflow Example.

n Define the Parameters of the Simple Workflow Example.

n Define the Simple Workflow Example Decision Bindings.

n Bind the Action Elements of the Simple Workflow Example.

n Bind the Simple Workflow Example Scripted Task Elements.

n Open the workflow for editing in the workflow editor.

Procedure

1 On the Schema tab, click the Edit icon () of the startVM action element.

2 Click the Exception tab.

3 Click the Not set button.

4 Select errorCode from the proposed list.

5 Repeat the preceding steps to set the exception binding to errorCode for both vim3WaitTaskEnd
and vim3WaitToolsStarted.

6 Click the Edit icon () of the Send Email scriptable task element.

Developing with VMware vRealize Orchestrator

VMware, Inc. 173

7 Click the Exception tab.

8 Click the Not set button.

9 Select emailErrorCode from the proposed list.

10 Click Save at the bottom of the workflow editor's Schema tab.

You have defined the exception binding for the elements that return exceptions.

What to do next

You must set the read and write properties on the attributes and parameters.

Set the Read-Write Properties for Attributes of the Simple
Workflow Example
You can define whether parameters and attributes are read-only constants or writeable variables. You can
also set limitations on the values that users can provide for input parameters.

Setting certain parameters to read-only allows other developers to adapt the workflow or to modify it
without breaking the workflow's core function.

Prerequisites

Complete the following tasks.

n Create the Simple Workflow Example.

n Create the Schema of the Simple Workflow Example.

n Define the Parameters of the Simple Workflow Example.

n Define the Simple Workflow Example Decision Bindings.

n Bind the Action Elements of the Simple Workflow Example.

n Bind the Simple Workflow Example Scripted Task Elements.

n Define the Simple Workflow Example Exception Bindings.

n Open the workflow for editing in the workflow editor.

Procedure

1 Click the General tab at the top of the workflow editor.

Under Attributes is a list of all the defined attributes, with check boxes next to each attribute. When
you select these check boxes, you set attributes as read-only.

2 Select the check boxes to make the following attributes read-only constants:

n progress

n pollRate

n timeout

Developing with VMware vRealize Orchestrator

VMware, Inc. 174

n smtpHost

n fromAddress

n subject

You have defined which of the workflow's attributes are constants and which are variables.

What to do next

Set the parameter properties and place constraints on the possible values for that parameter.

Set the Simple Workflow Example Parameter Properties
You can set the parameter properties in the workflow editor. Setting the parameter properties affects the
behavior of the parameter, and places constraints on the possible values for that parameter.

Prerequisites

Complete the following tasks.

n Create the Simple Workflow Example.

n Create the Schema of the Simple Workflow Example.

n Define the Parameters of the Simple Workflow Example.

n Define the Simple Workflow Example Decision Bindings.

n Bind the Action Elements of the Simple Workflow Example.

n Bind the Simple Workflow Example Scripted Task Elements.

n Define the Simple Workflow Example Exception Bindings.

n Open the workflow for editing in the workflow editor.

Procedure

1 Click the Presentation tab in the workflow editor.

The two input parameters you defined for this workflow are listed.

2 Click the (VC:VirtualMachine)vm parameter.

3 Add a description in the General tab in the bottom half of the screen.

For example, type The virtual machine to start.

4 Click the Properties tab in the bottom half of the screen.

On this tab, you can set the properties for the (VC:VirtualMachine)vm parameter.

5 Click the Add property icon ().

Developing with VMware vRealize Orchestrator

VMware, Inc. 175

6 From the list of proposed properties, select the Mandatory input property, click Ok, and set its value
to Yes.

When you enable this property, users cannot run the Start VM and Send Email workflow without
providing a virtual machine to start.

7 Click the Add property icon ().

8 From the list of proposed properties, select Select value as, click Ok, and select list from the list of
possible values.

When you set this property, you set how the user selects the value of the (VC:VirtualMachine)vm
input parameter.

9 Click the (string)toAddress parameter in the top half of the Presentation tab.

10 Add a description in the Description tab in the bottom half of the screen.

For example, type The email address of the person to notify.

11 Click the Properties tab for (string)toAddress and click the Add property icon ().

12 From the list of proposed properties, select the Mandatory input property, click Ok, and set its value
to Yes.

13 Click the Add property icon ().

14 From the list of proposed properties, select Matching regular expression and click Ok.

This property allows you to set constraints on what users can provide as input .

15 Click the Value text box for Matching regular expression and set the constraints to
[a-zA-Z0-9_%-+.]+@[a-zA-Z0-9-.]+\.[a-zA-Z]{2,4}.

Setting these constraints limits user input to characters that are appropriate for email addresses. If
the user tries to input any other character for the email address of the recipient when they start the
workflow, the workflow does not start.

You have made both parameters mandatory, defined how the user can select the virtual machine to start,
and limited the characters that can be input for the recipient's email address.

What to do next

You must create the layout, or presentation, of the input parameters dialog box in which users specify a
workflow's input parameter values when they run it.

Set the Layout of the Simple Workflow Example Input Parameters
Dialog Box
You create the layout or presentation of the input parameters dialog box in the workflow editor. The input
parameters dialog box opens when users run a workflow that needs input parameters to run.

Developing with VMware vRealize Orchestrator

VMware, Inc. 176

Prerequisites

Complete the following tasks.

n Create the Simple Workflow Example.

n Create the Schema of the Simple Workflow Example.

n Define the Parameters of the Simple Workflow Example.

n Define the Simple Workflow Example Decision Bindings.

n Bind the Action Elements of the Simple Workflow Example.

n Bind the Simple Workflow Example Scripted Task Elements.

n Define the Simple Workflow Example Exception Bindings.

n Set the Read-Write Properties for Attributes of the Simple Workflow Example.

n Set the Simple Workflow Example Parameter Properties.

n Open the workflow for editing in the workflow editor.

Procedure

1 Click the Presentation tab in the workflow editor.

2 Right-click the Presentation node in the presentation hierarchical list and select Create display
group.

A New step node and a New group sub-node appear under the Presentation node.

3 Right-click New step and select Delete.

Because this workflow has only two parameters, you do not need multiple layers of display sections in
the input parameters dialog box.

4 Double-click New group to edit the group name and press Enter.

For example, name the display group Virtual Machine.

The text you enter here appears as a heading in the input parameter dialog box when users start the
workflow.

5 In the Description text box of the General tab at the bottom of the Presentation tab, provide a
description for the new display group.

For example, type Select the virtual machine to start.

The text you type here appears as a prompt in the input parameter dialog box when users start the
workflow.

6 Drag the (VC:VirtualMachine)vm parameter under the Virtual Machine display group.

In the input parameters dialog box, a text box in which the user types the virtual machine name will
appear under a Virtual Machine heading.

Developing with VMware vRealize Orchestrator

VMware, Inc. 177

7 Repeat the preceding steps to create a display group for the toAddress parameter, setting the
following properties:

a Create a display group and name it Recipient's Email Address.

b Add a description for the display group, for example,
Enter the email address of the person to notify when this virtual machine is

powered-on.

c Drag the toAddress parameter under the Recipient's Email Address display group.

You have set up the layout of the input parameters dialog box that appears when users run the workflow.

What to do next

You have completed the development of the simple workflow example. You can now validate and run the
workflow.

Validate and Run the Simple Workflow Example
After you create a workflow, you can validate it to discover any possible errors. If the workflow contains no
errors, you can run it.

Prerequisites

Complete the following tasks.

n Create the Simple Workflow Example.

n Create the Schema of the Simple Workflow Example.

n Define the Parameters of the Simple Workflow Example.

n Define the Simple Workflow Example Decision Bindings.

n Bind the Action Elements of the Simple Workflow Example.

n Bind the Simple Workflow Example Scripted Task Elements.

n Define the Simple Workflow Example Exception Bindings.

n Set the Read-Write Properties for Attributes of the Simple Workflow Example.

n Set the Simple Workflow Example Parameter Properties.

n Set the Layout of the Simple Workflow Example Input Parameters Dialog Box.

n Open the workflow for editing in the workflow editor.

Procedure

1 Click Validate in the Schema tab of the workflow editor.

The validation tool locates any errors in the definition of the workflow.

2 After you have eliminated any errors, click Save and Close at the bottom of the workflow editor.

You return to the Orchestrator client.

Developing with VMware vRealize Orchestrator

VMware, Inc. 178

3 Click the Workflows view.

4 Select Workflow Examples > Start VM and Send Email in the workflow hierarchical list.

5 Right-click the Start VM and Send Email workflow and select Start workflow.

The input parameters dialog box opens and prompts you for a virtual machine to start and an email
address to send notifications to.

6 Select a virtual machine to start from the vCenter Server inventory.

7 Type an email address to which to send email notifications.

8 Click Submit to start the workflow.

A workflow token appears under the Start VM and Send Email workflow.

9 Click the workflow token to follow the progress of the workflow as it runs.

If the workflow runs successfully, the virtual machine you selected is in the powered-on state, and the
email recipient you defined receives a confirmation email.

What to do next

You can generate a document in which to review information about the workflow. See Generate Workflow
Documentation.

Develop a Complex Workflow
Developing a complex example workflow demonstrates the most common steps in the workflow
development process and more advanced scenarios, such as creating custom decisions and loops.

In the complex workflow exercise, you develop a workflow that takes a snapshot of all the virtual
machines contained in a given resource pool. The workflow you create will perform the following tasks:

1 Prompts the user for a resource pool that contains the virtual machines of which to take snapshots.

2 Determines whether the resource pool contains running virtual machines.

3 Determines how many running virtual machines the resource contains.

4 Verifies whether an individual virtual machine running in the pool meets specific criteria for a snapshot
to be taken.

5 Takes the snapshot of the virtual machine.

6 Determines whether more virtual machines exist in the pool of which to take snapshots.

7 Repeats the verification and snapshot process until the workflow has taken snapshots of all eligible
virtual machines in the resource pool.

The ZIP file of Orchestrator examples that you can download from the landing page of the Orchestrator
documentation contains a completed version of the Take a Snapshot of All Virtual Machines in a
Resource Pool workflow.

Developing with VMware vRealize Orchestrator

VMware, Inc. 179

Prerequisites

Before you attempt to develop this complex workflow, follow the exercises in Develop a Simple Example
Workflow. The procedures to develop a complex workflow provide the broad steps of the development
process, but are not as detailed as the simple workflow exercises.

Procedure

1 Create the Complex Workflow Example

You must begin the workflow development process by creating the workflow in the Orchestrator
client.

2 Create a Custom Action for the Complex Workflow Example

The Check VM scriptable element calls on an action that does not exist in the Orchestrator API. You
must create the getVMDiskModes action.

3 Create the Schema of the Complex Workflow Example

You can create a workflow's schema in the workflow editor. The workflow schema contains the
elements that the workflow runs, and determines the logical flow of the workflow.

4 (Optional) Create the Complex Workflow Example Zones

Optionally, you can highlight different zones of the workflow by adding workflow notes. Creating
different workflow zones helps to make complicated workflow schema easier to read and
understand.

5 Define the Parameters of the Complex Workflow Example

You define workflow parameters in the workflow editor. The input parameters provide data for the
workflow to process. The output parameters are the data the workflow returns when it completes its
run.

6 Define the Bindings for the Complex Workflow Example

You can bind a workflow's elements together in the workflow editor. Bindings define the data flow of
the workflow. You also bind the scriptable task elements to their JavaScript functions.

7 Set the Complex Workflow Example Attribute Properties

You set the attribute properties in the General tab in the workflow editor.

8 Create the Layout of the Complex Workflow Example Input Parameters

You create the layout, or presentation, of the input parameters dialog box in the Presentation tab of
the workflow editor. The input parameters dialog box opens when users run a workflow, and is the
means by which users enter the input parameters with which the workflow runs.

9 Validate and Run the Complex Workflow Example

After you create a workflow, you can validate it to detect any possible errors. If the workflow contains
no errors, you can run it.

Create the Complex Workflow Example
You must begin the workflow development process by creating the workflow in the Orchestrator client.

Developing with VMware vRealize Orchestrator

VMware, Inc. 180

For information about how to install and configure vCenter Server, see the vSphere Installation and Setup
documentation. For information about how to configure Orchestrator, see Installing and Configuring
VMware vRealize Orchestrator.

Prerequisites

Verify that the following components are installed and configured on the system.

n vCenter Server, controlling a resource pool that contains some virtual machines

n The Workflow Examples folder in the workflows hierarchical list, that you created in Create the
Simple Workflow Example.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Select Workflows > Workflow Examples.

3 Right-click the Workflow Examples folder and select New workflow.

4 Name the new workflow Take a Snapshot of All Virtual Machines in a Resource Pool
and click OK.

The workflow editor opens.

5 On the General tab of the workflow editor, click the version number digits to increment the version
number.

For the initial creation of the workflow, set the version to 0.0.1.

6 Click the Server restart behavior value to set whether the workflow resumes after a server restart.

7 In the Description text box, type a description of what the workflow does.

8 Click Save at the bottom of the General tab.

You created the Take a Snapshot of All Virtual Machines in a Resource Pool workflow.

What to do next

You must create a custom action.

Create a Custom Action for the Complex Workflow Example
The Check VM scriptable element calls on an action that does not exist in the Orchestrator API. You must
create the getVMDiskModes action.

For more detail about creating actions, see Chapter 3 Developing Actions.

Prerequisites

Create the Take a Snapshot of All Virtual Machines in a Resource Pool workflow. See Create the
Complex Workflow Example.

Developing with VMware vRealize Orchestrator

VMware, Inc. 181

Procedure

1 Close the workflow editor by clicking Save and Close.

2 Click the Actions view in the Orchestrator client.

3 Right-click the root of the actions hierarchical list and select New Module.

4 Name the new module com.vmware.example.

5 Right-click the com.vmware.example module and select Add Action.

6 Create an action called getVMDiskModes.

7 Increment the version number in the General tab in the actions editor by clicking the version digits.

8 Add the following description of the action in the General tab.

This action returns an array containing the disk modes of all disks on a VM.

The elements in the array each have one of the following string values:

- persistent

- independent-persistent

- nonpersistent

- independent-nonpersistent

Legacy values:

- undoable

- append

9 Click the Scripting tab.

10 Right-click in the top pane of the Scripting tab and select Add Parameter to create the following
input parameter.

n Name: vm

n Type: VC:VirtualMachine

n Description: The virtual machine for which to return the Disk Modes

11 Add the following scripting in the bottom of the Scripting tab.

The following code returns an array of disk modes for the disks of the virtual machine.

var devicesArray = vm.config.hardware.device;

var retArray = new Array();

if (devicesArray!=null && devicesArray.length!=0) {

 for (i in devicesArray) {

 if (devicesArray[i] instanceof VcVirtualDisk) {

 retArray.push(devicesArray[i].backing.diskMode);

 }

 }

}

return retArray;

12 Click Save and Close to exit the Actions palette.

Developing with VMware vRealize Orchestrator

VMware, Inc. 182

You have defined the custom action the Take a Snapshot of All Virtual Machines in a Resource Pool
workflow requires.

What to do next

Create the workflow's schema.

Create the Schema of the Complex Workflow Example
You can create a workflow's schema in the workflow editor. The workflow schema contains the elements
that the workflow runs, and determines the logical flow of the workflow.

Prerequisites

Complete the following tasks.

n Create the Complex Workflow Example.

n Create a Custom Action for the Complex Workflow Example.

n Open the workflow for editing in the workflow editor.

Procedure

1 Click the Schema tab in the workflow editor.

2 Add the following schema elements to the workflow schema.

Element Type Element Name Position in Schema

Scriptable task Initializing Below the Start element

Decision VMs to Process? Below the Initializing scriptable task element

Scriptable task Pool Has No VMs Below the VMs to Process? custom decision element, linked with a red arrow

Custom decision Remaining VMs? Right of the VMs to Process? custom decision element, linked with a green arrow

Action getVMDiskModes Right of the Remaining VMs? custom decision element, linked with a green arrow

Custom decision Create Snapshot? Right of the getVMDiskModes action element, linked with a blue arrow

Workflow Create a snapshot Above the Create Snapshot? custom decision element, linked with a green arrow

Scriptable task VM Snapshots Left of the Create a snapshot workflow, linked with a blue arrow

Scriptable task Increment Left of the VM Snapshots scriptable task element, linked with a blue arrow

Scriptable task Set Output Right of the Pool Has No VMs scriptable task element, linked with a blue arrow

3 Add a Log Exception scriptable task element.

a Create an exception handling link from the Create a snapshot workflow to an End element.

b Drag a scriptable task element to the red dashed arrow that links the Create a snapshot workflow
to an End element.

Developing with VMware vRealize Orchestrator

VMware, Inc. 183

c Double-click the scriptable task element and rename it to Log Exception.

d Move the Log Exception scriptable task element to above the VM Snapshots scriptable task
element.

4 Unlink all End elements except the End element that is at the right of the Set Output scriptable task
element.

5 Link the remaining elements as described in the following table.

Element Link to Type of Arrow Description

getVMDiskModes action element Log Exception scriptable task
element

Red dashed Exception handling

Create Snapshot? custom decision
element

Increment scriptable task element Red False result

Log Exception scriptable task element Increment scriptable task element Blue Normal workflow
progression

Increment scriptable task element Remaining VMs? custom decision
element

Blue Normal workflow
progression

Remaining VMs? custom decision
element

Set Output scriptable task element Red False result

6 Click Save at the bottom of the Schema tab.

The following figure shows what the linked elements of the Take a Snapshot of All Virtual Machines in a
Resource Pool workflow should look like.

Figure 1‑12. Linking of the Take a Snapshot of All Virtual Machines in a Resource Pool
Example Workflow

Developing with VMware vRealize Orchestrator

VMware, Inc. 184

What to do next

You can optionally define workflow zones by using workflow notes.

(Optional) Create the Complex Workflow Example Zones
Optionally, you can highlight different zones of the workflow by adding workflow notes. Creating different
workflow zones helps to make complicated workflow schema easier to read and understand.

Prerequisites

Complete the following tasks.

n Create the Complex Workflow Example.

n Create the Schema of the Complex Workflow Example.

n Open the workflow for editing in the workflow editor.

Procedure

1 Create the following workflow zones by using workflow notes.

Elements in Zone Description

Start element; Initialize scriptable task;
VMs to Process? custom decision

Get an array of virtual machines from a resource pool, initialize

the counter of the Array and set the first virtual machine to be

treated, if any.

Pool has no VMs scriptable task. Resource pool contains no virtual machines of which to take

snapshots.

VMs remaining? custom decision;
getVMDisksModes action, Create
Snapshot? decision; Create a
snapshot workflow; VM Snapshots
scriptable task; Increment scriptable
task; Log Exception scriptable task

Check whether any virtual machines remain in the resource pool,

check that a virtual machine meets the snapshot criteria, take a

snapshot, then loop until a snapshot has been taken of all the

virtual machines.

Set Output scriptable task; End
element

Generates the resulting array of virtual machines of which

snapshots have been taken.

2 Select a workflow note and press Ctrl+E to select the background color.

3 Click Save at the bottom of the workflow editor Schema tab.

Your workflow zones should look like the following diagram.

Developing with VMware vRealize Orchestrator

VMware, Inc. 185

Figure 1‑13. Schema Diagram for Take Snapshot of all Virtual Machines in a Resource Pool
Example Workflow

Resource pool
contains no virtual
machines of which
to take snapshots.

Get an array of virtual machines
from a resource pool, initialize

the counter of the array and set
the first virtual machine to be

treated, if any.

Initializing

Scriptable task

VMs to Pocess?

Check whether any virtual machines
remain in the resource pool, check that a

virtual machine meets the snapshot criteria,
take a snapshot, then loop until a snapshot
has been taken of all the virtual machines.

Generates the resulting array
of virtual machines of which
snapshots have been taken.

Ignore error if no

Create a Snapshot

Set VMSet VM

Increment Counter

What to do next

You must define the workflow's input and output parameters.

Define the Parameters of the Complex Workflow Example
You define workflow parameters in the workflow editor. The input parameters provide data for the
workflow to process. The output parameters are the data the workflow returns when it completes its run.

Prerequisites

Complete the following tasks.

n Create the Complex Workflow Example.

n Create the Schema of the Complex Workflow Example.

n Open the workflow for editing in the workflow editor.

Procedure

1 Click the Inputs tab in the workflow editor.

Developing with VMware vRealize Orchestrator

VMware, Inc. 186

2 Define the following input parameter.

n Name: resourcePool

n Type: VC:ResourcePool

n Description:
The resource pool containing the virtual machines of which to take snapshots.

3 Click the Outputs tab in the workflow editor.

4 Define the following output parameter.

n Name: snapshotVmArrayOut

n Type: Array/VC:VirtualMachine

n Description: The Array of virtual machines of which snapshots have been taken.

You have defined the workflow's input and output parameters.

What to do next

You must define the bindings between the element parameters.

Define the Bindings for the Complex Workflow Example
You can bind a workflow's elements together in the workflow editor. Bindings define the data flow of the
workflow. You also bind the scriptable task elements to their JavaScript functions.

Prerequisites

Complete the following tasks.

n Create the Complex Workflow Example.

n Create the Schema of the Complex Workflow Example

n Define the Parameters of the Complex Workflow Example

n Review the bindings that you must define. See Complex Workflow Example Bindings.

n Open the workflow for editing in the workflow editor.

Procedure

1 Click the Schema tab in the workflow editor.

2 Define the bindings.

3 Click Save at the bottom of the Schema tab.

All the input and output parameters of the elements are bound to the appropriate parameter types and
values.

What to do next

Set the attribute properties.

Developing with VMware vRealize Orchestrator

VMware, Inc. 187

Complex Workflow Example Bindings
Bindings define how the simple workflow example's action elements process input and output
parameters.

The Take Snapshots of All Virtual Machines in a Resource Pool workflow requires the following input and
output parameter bindings. You also define the JavaScript functions for the scriptable task elements.

In cases in which you bind to existing parameters, the binding inherits the type and description values
from the original parameter.

Initializing Scriptable Task

The Initializing scriptable task element initializes the attributes of the workflow. The following table shows
the input and output parameter bindings that the Initializing scriptable task element requires.

Table 1‑62. Bindings of the Initializing Scriptable Task Element

Parameter Name Binding Type

Bind to Existing
or Create
Parameter? Binding Values

resourcePool IN Bind n Local parameter: resourcePool
n Source parameter:

resourcePool[in-parameter]

n Type: VC:ResourcePool
n Description:

The resource pool containing

the virtual machines of which

to take snapshots

allVMs OUT Create n Local parameter: allVMs
n Source parameter:

allVMs[attribute]

n Type: Array/VC:VirtualMachine
n Description:

The virtual machines in the

resource pool.

numberOfVMs OUT Create n Local parameter: numberOfVMs
n Source parameter:

numberOfVMs[attribute]

n Type: number
n Description:

The number of virtual machines

found in the resourcePool

vmCounter OUT Create n Local parameter: vmCounter
n Source parameter:

vmCounter[attribute]

n Type: number
n Description:

The counter of the virtual

machines inside the array

Developing with VMware vRealize Orchestrator

VMware, Inc. 188

Table 1‑62. Bindings of the Initializing Scriptable Task Element (Continued)

Parameter Name Binding Type

Bind to Existing
or Create
Parameter? Binding Values

vm OUT Create n Local parameter: vm
n Source parameter: vm[attribute]
n Type: VC:VirtualMachine
n Description:

The current virtual machine

having a snapshot taken

snapshotVmArray OUT Create n Local parameter: snapshotVmArray
n Source parameter:

snapshotVmArray[attribute]

n Type: Array/VC:VirtualMachine
n Description:

The Array of virtual machines

of which snapshots have been

taken

The Initialize scriptable task element performs the following scripted function.

//Retrieve an array of virtual machines contained in the specified Resource Pool

allVMs = resourcePool.vm;

//Initialize the size of the Array and the first VM to snapshot

if (allVMs!=null && allVMs.length!=0) {

 numberOfVms = allVMs.length;

 vm = allVMs[0];

} else {

 numberOfVms = 0;

}

//Initialize the VM counter

vmCounter = 0;

//Initializing the array of VM snapshots

snapshotVmArray = new Array();

VMs to Process? Decision Element

The VMs to Process? decision element determines whether any virtual machines of which to take
snapshots exist in the resource pool. The following table shows the bindings that the VMs to Process?
decision element requires.

Developing with VMware vRealize Orchestrator

VMware, Inc. 189

Table 1‑63. Bindings of the VMs to Process? Decision Element

Parameter Name Binding Type

Bind to Existing
or Create
Parameter? Binding Values

numberOfVMs Decision Bind n Source parameter:
numberOfVMs[attribute]

n Decision statement: Greater than
n Value: 0.0
n Description:

The number of virtual machines

found in the resourcePool

Pool Has No VMs Scriptable Task Element

The Pool Has No VMs scriptable task element logs the fact that the resource pool contains no eligible
virtual machines in the Orchestrator database. The following table shows the bindings that the Pool Has
No VMs scriptable task element requires.

Table 1‑64. Bindings of the Pool Has No VMs Scriptable Task Element

Parameter Name Binding Type

Bind to Existing
or Create
Parameter? Binding Values

resourcePool IN Bind n Local parameter: resourcePool
n Source parameter:

resourcePool[in-parameter]

n Type: VC:ResourcePool
n Description:

The resource pool containing

the virtual machines of which

to take snapshots.

The Pool Has No VMs scriptable task element performs the following scripted function.

//Writes the following event in the Orchestrator database

Server.warn("The specified ResourcePool "+resourcePool.name+" does not contain any VMs.");

Remaining VMs? Custom Decision Element

The Remaining VMs? custom decision element determines whether any virtual machines of which to take
snapshots remain in the resource pool. The following table shows the bindings that the Remaining VMs?
custom decision element requires.

Developing with VMware vRealize Orchestrator

VMware, Inc. 190

Table 1‑65. Bindings of the Remaining VMs? Custom Decision Element

Parameter Name Binding Type

Bind to Existing
or Create
Parameter? Binding Values

numberOfVMs IN Bind n Source parameter:
numberOfVMs[attribute]

n Decision statement: Greater than
n Value: 0.0
n Description:

The number of virtual machines

found in the resourcePool

vmCounter IN Bind n Local parameter: vmCounter
n Source parameter:

vmCounter[attribute]

n Type: number
n Description:

The counter of the virtual

machines inside the array

The Remaining VMs? custom decision element performs the following scripted function.

//Checks if the workflow has reached the end of the array of VMs

if (vmCounter < numberOfVms) {

 return true;

} else {

 return false;

}

getVMDisksModes Action Element

The getVMDisksModes action element obtains the modes of the disks running in a virtual machine. The
following table shows the bindings that the getVMDisksModes action element requires.

Developing with VMware vRealize Orchestrator

VMware, Inc. 191

Table 1‑66. Bindings of the getVMDisksModes Action Element

Parameter Name Binding Type

Bind to Existing
or Create
Parameter? Binding Values

vm IN Bind n Local parameter: vm
n Source parameter: vm[attribute]
n Type: VC:VirtualMachine
n Description:

The current virtual machine

having a snapshot taken

actionResult OUT Create n Local parameter: actionResult
n Source parameter:

vmDisksModes[attribute]

n Type: Array/String
n Description:

The current Disks Modes of the

virtual machine

errorCode Exception Create Local parameter: errorCode

Create Snapshot? Custom Decision Element

The Create Snapshot? custom decision element determines whether to take snapshots of virtual
machines, depending on the disk modes of the virtual machines. The following table shows the bindings
that the Create Snapshot? custom decision element requires.

Table 1‑67. Bindings of the Create Snapshot? Decision Element

Parameter Name Binding Type

Bind to Existing
or Create
Parameter? Binding Values

vmDisksMode IN Bind n Local parameter: vmDisksMode
n Source parameter:

vmDisksMode[attribute]

n Type: Array/String
n Description:

The current Disks Modes of the

virtual machine

vm IN Bind n Local parameter: vm
n Source parameter: vm[attribute]
n Type: VC:VirtualMachine
n Description:

The current virtual machine

having a snapshot taken

Developing with VMware vRealize Orchestrator

VMware, Inc. 192

The Create Snapshot? custom decision element custom decision element performs the following scripted
function.

//A snapshot cannot be taken if one of its disks is in independent mode

// (independent-persistent or independent-nonpersistent)

var containsIndependentDisks = false;

if (vmDisksModes!=null && vmDisksModes.length>0) {

 for (i in vmDisksModes) {

 if (vmDisksModes[i].charAt(0)=="i") {

 containsIndependentDisks = true;

 }

 }

} else {

 //if no disk found no need to try to snapshot the VM

 System.warn("Won't snapshot '"+vm.name+"', no disks found");

 return false;

}

if (containsIndependentDisks) {

 System.warn("Won't snapshot '"+vm.name+"', independent disk(s) found");

 return false;

} else {

 System.log("Snapshoting '"+vm.name+"'");

 return true;

}

Create a snapshot Workflow Element

The Create a snapshot workflow element takes snapshots of virtual machines. The following table shows
the bindings that the Create a snapshot workflow element requires.

Table 1‑68. Bindings of the Create a snapshot Workflow Element

Parameter Name Binding Type

Bind to Existing
or Create
Parameter? Binding Values

vm IN Bind n Local parameter: vm
n Source parameter: vm[attribute]
n Type: VC:VirtualMachine
n Description:

An active virtual machine of

which to take a snapshot.

name IN Create n Local parameter: name
n Source parameter:

snapshotName[attribute]

n Type: string
n Description:

The name for this snapshot.

The name does not need to be

unique for this virtual

machine.

Developing with VMware vRealize Orchestrator

VMware, Inc. 193

Table 1‑68. Bindings of the Create a snapshot Workflow Element (Continued)

Parameter Name Binding Type

Bind to Existing
or Create
Parameter? Binding Values

description IN Create n Local parameter: description
n Source parameter:

snapshotDescription[attribute]
n Type: string
n Description:

A description for this

snapshot.

memory IN Create n Local parameter: memory
n Source parameter:

snapshotMemory[attribute]

n Type: Boolean
n Value: no
n Description:

If TRUE, a dump of the

internal state of the virtual

machine (a memory dump) is

included in the snapshot.

quiesce IN Create n Local parameter: quiesce
n Source parameter:

snapshotQuiesce[attribute]

n Type: Boolean
n Value: yes
n Description:

If TRUE and the virtual

machine is powered on when the

snapshot is taken, the VMware

Tools are used to quiesce the

file system in the virtual

machine.

snapshot OUT Create n Local parameter: snapshot
n Source parameter: NULL
n Type: VC:VirtualMachineSnapshot
n Description: The snapshot taken.

errorCode Exception Create Local parameter: errorCode

VM Snapshots Scriptable Task Element

The VM Snapshots scriptable task element adds the snapshots to an array. The following table shows the
bindings that the VM Snapshots scriptable task element requires.

Developing with VMware vRealize Orchestrator

VMware, Inc. 194

Table 1‑69. Bindings of the VM Snapshots Scriptable Task Element

Parameter Name Binding Type

Bind to Existing
or Create
Parameter? Binding Values

vm IN Bind n Local parameter: vm
n Source parameter: vm[attribute]
n Type: VC:VirtualMachine
n Description:

An active virtual machine of

which to take a snapshot.

snapshotVmArray IN Bind n Local parameter: snapshotVmArray
n Source parameter:

snapshotVmArray[attribute]

n Type: Array/VC:VirtualMachine
n Description:

The Array of virtual machines

of which snapshots have been

taken

snapshotVmArray OUT Bind n Local parameter: snapshotVmArray
n Source parameter:

snapshotVmArray[attribute]

n Type: Array/VC:VirtualMachine
n Description:

The Array of virtual machines

of which snapshots have been

taken

The VM Snapshots scriptable task element performs the following scripted function.

//Writes the following event in the Orchestrator database

Server.log("Successfully took snapshot of the VM '"+vm.name);

//Inserts the VM snapshot in an array

snapshotVmArray.push(vm);

Increment Scriptable Task Element

The Increment scriptable task element increments the counter that counts the number of virtual machines
in the array. The following table shows the bindings that the Increment scriptable task element requires.

Developing with VMware vRealize Orchestrator

VMware, Inc. 195

Table 1‑70. Bindings of the Increment Scriptable Task Element

Parameter Name Binding Type

Bind to Existing
or Create
Parameter? Binding Values

vmCounter IN Bind n Local parameter: vmCounter
n Source parameter:

vmCounter[attribute]

n Type: number
n Description:

The counter of the virtual

machines inside the array

allVMs IN Bind n Local parameter: allVMs
n Source parameter:

allVMs[attribute]

n Type: Array/VC:VirtualMachine
n Description:

The virtual machines in the

resource pool.

vmCounter OUT Bind n Local parameter: vmCounter
n Source parameter:

vmCounter[attribute]

n Type: number
n Description:

The counter of the virtual

machines inside the array

vm OUT Bind n Local parameter: vm
n Source parameter: vm[attribute]
n Type: VC:VirtualMachine
n Description:

The current virtual machine

having a snapshot taken

The Increment scriptable task element performs the following scripted function.

//Increases the array VM counter

vmCounter++;

//Sets the next VM to be snapshot in the attribute vm

vm = allVMs[vmCounter];

Log Exception Scriptable Task Element

The Log Exception scriptable task element handles exceptions from the workflow and action elements.
The following table shows the bindings that the Log Exception scriptable task element requires.

Developing with VMware vRealize Orchestrator

VMware, Inc. 196

Table 1‑71. Bindings of the Log Exception Task Element

Parameter Name Binding Type

Bind to Existing
or Create
Parameter? Binding Values

vm IN Bind n Local parameter: vm
n Source parameter: vm[attribute]
n Type: VC:VirtualMachine
n Description:

The current virtual machine

having a snapshot taken

errorCode IN Bind n Local parameter: errorCode
n Source parameter:

errorCode[attribute]

n Type: string
n Description:

An exception caught while

taking a snapshot of a virtual

machine

The Log Exception scriptable task element performs the following scripted function.

//Writes the following event in the Orchestrator database

Server.error("Coudln't snapshot the VM '"+vm.name+"', exception: "+errorCode);

Set Output Scriptable Task Element

The Set Output scriptable generates the workflow's output parameter, that contains the array of virtual
machines of which snapshots have been taken. The following table shows the bindings that the Set
Output scriptable task element requires.

Developing with VMware vRealize Orchestrator

VMware, Inc. 197

Table 1‑72. Bindings of the Set Output Task Element

Parameter Name Binding Type
Bind to Existing or
Create Parameter? Binding Values

snapshotVmArray IN Bind n Local parameter: snapshotVmArray
n Source parameter:

snapshotVmArray[attribute]

n Type: Array/VC:VirtualMachine
n Description:

The Array of virtual machines

of which snapshots have been

taken

snapshotVmArrayOut OUT Bind n Local parameter:
snapshotVmArrayOut

n Source parameter:
snapshotVmArrayOut[out-

parameter]

n Type: Array/VC:VirtualMachine
n Description:

The Array of virtual machines

of which snapshots have been

The Set Output scriptable task element performs the following scripted function.

//Passes the value of the internal attribute to a workflow output parameter

snapshotVmArrayOut = snapshotVmArray;

Set the Complex Workflow Example Attribute Properties
You set the attribute properties in the General tab in the workflow editor.

Prerequisites

Complete the following tasks.

n Create the Complex Workflow Example.

n Create the Schema of the Complex Workflow Example.

n Define the Bindings for the Complex Workflow Example.

n Open the workflow for editing in the workflow editor.

Procedure

1 Click the General tab.

2 Select the read-only check box of the following attributes to make them read-only constants:

n snapshotName

n snapshotDescription

n snapshotMemory

Developing with VMware vRealize Orchestrator

VMware, Inc. 198

n snapshotQuiesce

You have defined which of the workflow's attributes are constants and which are variables.

What to do next

You must create the workflow presentation, which creates the layout of the input parameters dialog box in
which users specify a workflow's input parameter values when they run it.

Create the Layout of the Complex Workflow Example Input
Parameters
You create the layout, or presentation, of the input parameters dialog box in the Presentation tab of the
workflow editor. The input parameters dialog box opens when users run a workflow, and is the means by
which users enter the input parameters with which the workflow runs.

Prerequisites

Complete the following tasks.

n Create the Complex Workflow Example.

n Create the Schema of the Complex Workflow Example.

n Define the Parameters of the Complex Workflow Example.

n Define the Bindings for the Complex Workflow Example.

n Set the Complex Workflow Example Attribute Properties.

n Open the workflow for editing in the workflow editor.

Procedure

1 Click the Presentation tab in the workflow editor.

The Take a Snapshot of All Virtual Machines in a Resource Pool workflow has only one input
parameter, so creating the presentation is straightforward.

2 Right-click the Presentation node in the presentation hierarchical list and select Create display
group.

3 Delete the New step element that appears above the New group element.

4 Double-click the New group element and change the group name to Resource Pool.

5 Provide a description of the Resource Pool display group in the Description text box on the General
tab at the bottom of the Presentation tab.

For example,
Enter the name of the resource pool that contains the virtual machines of which

to take a snapshot.

6 Click the (VC:ResourcePool)resourcePool parameter.

7 Click the Properties tab for (VC:ResourcePool)resourcePool.

Developing with VMware vRealize Orchestrator

VMware, Inc. 199

8 Right-click within the Properties tab and select Add Property > Mandatory input.

9 Right-click within the Properties tab and select Add Property > Select value as.

When you set this property, you set how the user selects the value of the
(VC:ResourcePool)resourcePool input parameter.

10 Drag the (VC:ResourcePool)resourcePool parameter under the Resource Pool display group.

You have created the layout of the dialog box that appears when users run the workflow.

What to do next

You have completed the development of the complex workflow example. You can now validate and run
the workflow.

Validate and Run the Complex Workflow Example
After you create a workflow, you can validate it to detect any possible errors. If the workflow contains no
errors, you can run it.

Prerequisites

Create a workflow, lay out its schema, define the links and bindings, define the parameter properties, and
create the presentation of the input parameters dialog box.

Complete the following tasks.

n Create the Complex Workflow Example.

n Create a Custom Action for the Complex Workflow Example.

n Create the Schema of the Complex Workflow Example.

n Define the Parameters of the Complex Workflow Example.

n Define the Bindings for the Complex Workflow Example.

n Set the Complex Workflow Example Attribute Properties.

n Create the Layout of the Complex Workflow Example Input Parameters.

n Open the workflow for editing in the workflow editor.

Procedure

1 Click Validation in the Schema tab of the workflow editor.

The validation tool detects any errors in the definition of the workflow.

2 After you have eliminated any errors, click Save and Close at the bottom of the workflow editor.

You return to the Orchestrator client.

3 Click the Workflows view.

4 In the workflow hierarchical list, select Workflow Examples > Take a Snapshot of All Virtual
Machines in a Resource Pool.

Developing with VMware vRealize Orchestrator

VMware, Inc. 200

5 Right-click the Take a Snapshot of All Virtual Machines in a Resource Pool workflow and select
Start workflow.

The input parameters dialog box opens and prompts you for a resource pool that contains the virtual
machines of which to take a snapshot.

6 Click Submit to run the workflow.

A workflow token appears under the Take a Snapshot of All Virtual Machines in a Resource Pool
workflow.

7 Click the workflow token to follow the progress of the workflow as it runs.

If the workflow runs successfully, the workflow takes a snapshot of all of the virtual machines in the
selected resource pool.

What to do next

You can generate a document in which to review information about the workflow. See Generate Workflow
Documentation.

Developing with VMware vRealize Orchestrator

VMware, Inc. 201

Scripting 2
Orchestrator uses JavaScript to create building blocks from which you create actions, workflow elements,
and policies that access the APIs of the technologies that you plug into Orchestrator.

Orchestrator uses the Mozilla Rhino 1.7R4 JavaScript engine as its scripting engine. The scripting engine
provides variable type checking, name space management, automatic completion, and exception
handling.

The Orchestrator workflow engine allows you to use basic JavaScript language features, such as if,
loops, arrays, and strings. You can use objects in scripting that the Orchestrator API provides, or objects
from any other API that you import into Orchestrator through a plug-in and that you map to JavaScript
objects. For information about Rhino, see the Mozilla Rhino Web site.

This chapter includes the following topics:
n Orchestrator Elements that Require Scripting

n Limitations of the Mozilla Rhino Implementation in Orchestrator

n Using the Orchestrator Scripting API

n Using XPath Expressions with the vCenter Server Plug-In

n Exception Handling Guidelines

n Orchestrator JavaScript Examples

Orchestrator Elements that Require Scripting
Not all Orchestrator elements require you to write scripts. To provide maximum flexibility to your
applications, you can customize certain elements by adding JavaScript functions.

VMware, Inc. 202

You can add scripts in the following Orchestrator elements.

Actions Actions are scripted functions. You can limit the scripting you write for an
action to a single operation, to maximize the potential for action reuse by
other elements, such as other workflows. Alternatively, an action can
contain many operations, to limit the complexity of workflows, although this
does reduce the capacity for reusing the action.

Policies You set policies by using scripts that watch for trigger events. When the
trigger events occur, policies launch orchestration operations that you
define in scripts.

Workflows The Scriptable Task workflow element allows you to write a custom scripted
operation or sequence of operations that you can use in the workflows. You
also define the Boolean decision statement for custom decision elements in
scripts that return either true or false.

Limitations of the Mozilla Rhino Implementation in
Orchestrator
Orchestrator uses the Mozilla Rhino 1.7R4 JavaScript engine. However, the implementation of Rhino in
Orchestrator presents some limitations.

When writing scripts for workflows, you must consider the following limitations of the Mozilla Rhino
implementation in Orchestrator.

n When a workflow runs, the objects that pass from one workflow element to another are not JavaScript
objects. What is passed from one element to the next is the serialization of a Java object that has a
JavaScript image. As a consequence, you cannot use the whole JavaScript language, but only the
classes that are present in the API Explorer. You cannot pass function objects from one workflow
element to another.

n Orchestrator runs the code in scriptable task elements in a context that is not the Rhino root context.
Orchestrator transparently wraps scriptable task elements and actions into JavaScript functions,
which it then runs. A scriptable task element that contains System.log(this); does not display the
global object this in the same way as a standard Rhino implementation does.

n You can only call actions that return nonserializable objects from scripting, and not from workflows. To
call an action that returns a nonserializable object, you must write a scriptable task element that calls
the action by using the System.getModuleModuleName.action() method.

n Workflow validation does not check whether a workflow attribute type is different from an input type of
an action or subworkflow. If you change the type of a workflow input parameter, for example from
VIM3:VirtualMachine to VC:VirtualMachine, but you do not update any scriptable tasks or
actions that use the original input type, the workflow validates but does not run.

Developing with VMware vRealize Orchestrator

VMware, Inc. 203

Using the Orchestrator Scripting API
The Orchestrator API exposes all of the objects and functions of the technologies, that Orchestrator
accesses through its plug-ins, as JavaScript objects and methods.

For example, you can access JavaScript implementations of the vCenter Server API through the
Orchestrator API, to include vCenter operations in scripted elements that you create. You can also access
JavaScript implementations of objects from all of the other plug-ins you install in the Orchestrator server.
If you create a custom plug-in to a third-party application, you map the objects from its API to JavaScript
objects that the Orchestrator API then exposes.

Procedure

1 Access the Scripting Engine from the Workflow Editor

The Orchestrator scripting engine uses the Mozilla Rhino 1.7R4 JavaScript engine to help you write
scripts for scripted elements in workflows. You access the scripting engine for scripted workflow
elements from the Scripting tab in the workflow editor.

2 Access the Scripting Engine from the Action or Policy Editor

The Orchestrator scripting engine uses the Mozilla Rhino JavaScript engine to help you write scripts
for actions or policies. You access the scripting engine for actions and policies from the Scripting
tabs in the action and policy editors.

3 Access the Orchestrator API Explorer

Orchestrator provides an API Explorer that you can use to search the Orchestrator API and see the
documentation for JavaScript objects that you can use in scripted elements.

4 Use the Orchestrator API Explorer to Find Objects

The Orchestrator API exposes the API of all plugged-in technologies, including the entire vCenter
Server API. The Orchestrator API Explorer helps you find the objects you need to add to scripts.

5 Writing Scripts

The Orchestrator scripting engine helps you to write scripts. Automatic insertion of functions and
automatic completion of lines of scripting accelerates the scripting process and minimizes the
potential for writing errors in scripts.

6 Add Parameters to Scripts

The Orchestrator scripting engine helps you to import available parameters into scripts.

7 Accessing the Orchestrator Server File System from JavaScript and Workflows

Orchestrator limits access to the Orchestrator server file system from JavaScript and Workflows to
specific directories.

8 Accessing Java Classes from JavaScript

By default, Orchestrator restricts JavaScript access to a limited set of Java classes. If you require
JavaScript access to a wider range of Java classes, you must set an Orchestrator system property
to allow this access.

Developing with VMware vRealize Orchestrator

VMware, Inc. 204

9 Accessing Operating System Commands from JavaScript

The Orchestrator API provides a scripting class, Command, that runs commands in the Orchestrator
server host operating system. To prevent unauthorized access to the Orchestrator server host, by
default, Orchestrator applications do not have permission to run the Command class.

Access the Scripting Engine from the Workflow Editor
The Orchestrator scripting engine uses the Mozilla Rhino 1.7R4 JavaScript engine to help you write
scripts for scripted elements in workflows. You access the scripting engine for scripted workflow elements
from the Scripting tab in the workflow editor.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Right-click a workflow in the Workflows view of the Orchestrator client and select Edit.

3 Click the Schema tab in the workflows editor.

4 Add a Scriptable Task element or a Custom Decision element to the workflow schema.

5 Click on the scriptable element's Scripting tab.

You accessed the scripting engine to define the scripted functions of workflow elements. The Scripting
tab allows you to navigate through the API, consult documentation about the objects, search for objects,
and write JavaScript.

What to do next

Search the Orchestrator API using the API Explorer.

Access the Scripting Engine from the Action or Policy Editor
The Orchestrator scripting engine uses the Mozilla Rhino JavaScript engine to help you write scripts for
actions or policies. You access the scripting engine for actions and policies from the Scripting tabs in the
action and policy editors.

Procedure

1 Select an option from the drop-down menu in the Orchestrator client, depending on the type of the
element whose scripting you want to edit.

Option Description

Design Select this option to edit the scripting of an action element.

Run Select this option to edit the scripting of a policy.

2 Right-click an action or policy in the Actions or Policies views and select Edit.

3 Click the Scripting tab in the action or policy editor.

Developing with VMware vRealize Orchestrator

VMware, Inc. 205

You accessed the scripting engine to define the scripted functions of action or policy elements. The
Scripting tab allows you to navigate through the API, consult documentation about the objects, search
for objects, and write JavaScript.

What to do next

Search the Orchestrator API using the API Explorer.

Access the Orchestrator API Explorer
Orchestrator provides an API Explorer that you can use to search the Orchestrator API and see the
documentation for JavaScript objects that you can use in scripted elements.

You can consult an online version of the Scripting API for the vCenter Server plug-in on the Orchestrator
documentation home page.

Procedure

1 Log in to the Orchestrator client.

2 Select Tools > API Explorer.

The API Explorer appears. You can use it to search all the objects and functions of the Orchestrator API.

What to do next

Use the API Explorer to write scripts for scriptable elements.

Use the Orchestrator API Explorer to Find Objects
The Orchestrator API exposes the API of all plugged-in technologies, including the entire vCenter Server
API. The Orchestrator API Explorer helps you find the objects you need to add to scripts.

Prerequisites

Open the API Explorer.

Procedure

1 Enter the name or part of a name of an object in the API Explorer Search text box and click Search.

To limit your search to a particular object type, uncheck or check the Scripting Class, Attributes &
Methods and Types & Enumerations check boxes.

2 Double-click the element in the proposed list.

The object is highlighted in the hierarchical list on the left. A documentation pane under the
hierarchical list presents information about the object.

What to do next

Use the objects you find in scripts.

Developing with VMware vRealize Orchestrator

VMware, Inc. 206

JavaScript Objects in the API Explorer
The Orchestrator API Explorer identifies and groups together the different kinds of JavaScript objects in
the hierarchical tree on the left of the Scripting tab or API Explorer dialog box. The API Explorer uses
icons to help you identify the different kinds of object.

The following table describes the objects of the Orchestrator API and shows their icon.

Table 2‑1. JavaScript Objects in the Orchestrator API

Object Icon in Hierarchical List Description

Type Types

Function set Internal type that contains a set of static
methods

Primitive Primitive types

Object Standard Orchestrator scripting objects

Attribute JavaScript attributes

Method JavaScript methods

Constructor JavaScript constructors

Enumeration JavaScript enumerations

String set String set, default values

Module A collection of actions

Plug-in Image that plug-in defines The APIs that plug-ins expose to
Orchestrator

Writing Scripts
The Orchestrator scripting engine helps you to write scripts. Automatic insertion of functions and
automatic completion of lines of scripting accelerates the scripting process and minimizes the potential for
writing errors in scripts.

Prerequisites

Open a scripted element for editing and click its Scripting tab.

Procedure

1 Navigate through the hierarchical list of objects on the left of the Scripting tab, or use the API
Explorer search function, to select a type, class, or method to add to the script.

2 Right-click the type, class, or method and select Copy.

If the scripting engine does not allow you to copy the element you selected, this object is not possible
in the context of the script.

Developing with VMware vRealize Orchestrator

VMware, Inc. 207

3 Right-click in the scripting pad, and paste the element you copied into the appropriate place in the
script.

The scripting engine enters the element into the script, complete with its constructor and an instance
name.

For example, if you copied the Date object, the scripting engine pastes the following code into the
script.

var myDate = new Date();

4 Copy and paste a method to add to the script.

The scripting engine completes the method call, adding the required attributes.

For example, if you copied the cloneVM() method from the com.vmware.library.vc.vm module,
the scripting engine pastes the following code into the script.

System.getModule("com.vmware.library.vc.vm").cloneVM(vm,folder,name,spec)

The scripting engine highlights those parameters that you already defined in the element. Any
undefined parameters remain unhighlighted.

5 Place the cursor at the end of an element you pasted into the script and press Ctrl+space to select
from a contextual list of possible methods and attributes that the object can call.

Note The automatic completion feature is currently experimental.

You added object and functions to the script.

What to do next

Add parameters to the script.

Color Coding of Scripting Keywords
When you add scripts on the Scripting tab of a scripted workflow element, certain types of keywords
appear in different colors to enhance the readability of the code.

All scripting appears in standard black font unless stated otherwise.

Table 2‑2. Color Coding of Scripting Keywords

Keyword Type Text Color in Scripting Tab

Standard JavaScript keywords, for example if, else, for, and
new

Bold black

Variable declarations, namely var Green

Modifiers in loops, for example in Red

Null variable values Purple

Non-null variable values Green

Developing with VMware vRealize Orchestrator

VMware, Inc. 208

Table 2‑2. Color Coding of Scripting Keywords (Continued)

Keyword Type Text Color in Scripting Tab

Code comments Italic gray

Orchestrator plug-in object types, for example
VC:VirtualMachine or VC:Host

Green

Output text Green

Workflow attributes Pink

Workflow inputs Pink

Workflow outputs Pink

Add Parameters to Scripts
The Orchestrator scripting engine helps you to import available parameters into scripts.

If you have already defined parameters for the element you are editing, they appear as links in the
Scripting tab toolbar.

Prerequisites

A scripted element is open for editing and its Scripting tab is open.

Procedure

1 Move the cursor to the appropriate position in a script in the scripting pad of the Scripting tab.

2 Click the parameter link in the Scripting tab toolbar.

Orchestrator inserts the parameter at the position of the cursor.

3 Insert a parameter with a null value into the script.

If you pass null values to primitive types such as integers, Booleans, and Strings, the Orchestrator
scripting API automatically sets the default value for this argument.

You added parameters to the script.

What to do next

Add access to Java classes in scripts.

Accessing the Orchestrator Server File System from JavaScript
and Workflows
Orchestrator limits access to the Orchestrator server file system from JavaScript and Workflows to
specific directories.

JavaScript functions and workflows only have read, write, and execute permission in the permanent
directory c:\orchestrator.

Developing with VMware vRealize Orchestrator

VMware, Inc. 209

The Orchestrator administrator can modify the folders to which JavaScript functions and workflows have
read, write, and execute access by setting a system property. See Installing and Configuring
VMware vRealize Orchestrator for information about setting system properties.

JavaScript functions and workflows also have read, write, and execute permission in the server system
default temporary I/O folder. Writing to the default temporary I/O folder is the only portable, guaranteed,
and configuration-independent means of accessing the file system with full permissions. However, files
that you write to the temporary I/O folder are lost when you reboot the server.

You obtain the default temporary I/O folder by calling the System.getTempDirectory method in
JavaScript functions.

Access the Server File System Using the System.getTempDirectory Method
As an alternative to writing to the folders on the Orchestrator server system in which the administrator has
set the appropriate permissions, you can write to the default temporary I/O folder.

Orchestrator has full read, write, and execute rights in the default temporary I/O folder by default. You
obtain the default temporary I/O folder by using the System.getTempDirectory method in JavaScript
functions

Procedure

u Include the following code line in JavaScript functions to access the java.io.temp-dir folder.

var tempDir = System.getTempDirectory()

Accessing Java Classes from JavaScript
By default, Orchestrator restricts JavaScript access to a limited set of Java classes. If you require
JavaScript access to a wider range of Java classes, you must set an Orchestrator system property to
allow this access.

By default, the Orchestrator JavaScript engine can access only the classes in the java.util.* package.

The Orchestrator administrator can allow access to other Java classes from JavaScript functions by
setting a system property. See Installing and Configuring VMware vRealize Orchestrator for information
about setting system properties.

Accessing Operating System Commands from JavaScript
The Orchestrator API provides a scripting class, Command, that runs commands in the Orchestrator server
host operating system. To prevent unauthorized access to the Orchestrator server host, by default,
Orchestrator applications do not have permission to run the Command class.

The Orchestrator administrator can allow access to the Command scripting class by setting the
com.vmware.js.allow-local-process=true system property.

Developing with VMware vRealize Orchestrator

VMware, Inc. 210

For information about setting system properties, see the Installing and Configuring VMware vCenter
Orchestrator.

For information about setting system properties, see Installing and Configuring VMware vCenter
Orchestrator.

Using XPath Expressions with the vCenter Server Plug-In
You can use the finder methods in the vCenter Server plug-in to query for vCenter Server inventory
objects. You can use XPath expressions to define search parameters.

The vCenter Server plug-in includes a set of object finder methods such as getAllDatastores(),
getAllResourcePools(), findAllForType(). You can use these methods to access the inventories of
the vCenter Server instances that are connected to your Orchestrator server and search for objects by ID,
name, or other properties.

For performance reasons, the finder methods do not return any properties for the queried objects, unless
you specify a set of properties in the search query.

You can consult an online version of the Scripting API for the vCenter Server plug-in on the Orchestrator
documentation home page.

Important The queries based on XPath expressions might impact the Orchestrator performance
because the finder method returns all objects of a given type on the vCenter Server side and the query
filters are applied on the vCenter Server plug-in side.

Using XPath Expressions with the vCenter Server Plug-In
When you invoke a finder method, you can use expressions based on the XPath query language. The
search returns all the inventory objects that match the XPath expressions. If you want to query for any
properties, you can include them to the search script in the form of a string array.

The following JavaScript example uses the VcPlugin scripting object and an XPath expression to return
the names of all datastore objects that are part of the vCenter Server managed objects and contain the
string ds in their names.

var datastores = VcPlugin.getAllDatastores(null, "xpath:name[contains(.,'ds')]");

for each (datastore in datastores){

 System.log(datastore.name);

 }

The same XPath expression can be invoked by using the Server scripting object and the
findAllForType finder method.

var datastores = Server.findAllForType("VC:Datastore", "xpath:name[contains(.,'ds')]");

for each (datastore in datastores){

 System.log(datastore.name);

 }

Developing with VMware vRealize Orchestrator

VMware, Inc. 211

The following script example returns the names of all host system objects whose ID starts with the digit 1.

var hosts = VcPlugin.getAllHostSystems(null, "xpath:id[starts-with(.,'1')]");

for each (host in hosts){

 System.log(host.name);

}

The following script returns the names and IDs of all data center objects that contain the string DC, in
upper- or lower-case letters, in their names. The script also retrieves the tag property.

var datacenters = VcPlugin.getAllDatacenters(['tag'], "xpath:name[contains(translate(., 'DC', 'dc'),

'dc')]");

for each (datacenter in datacenters){

 System.log(datacenter.name + “ ” + datacenter.id);

}

Exception Handling Guidelines
The Orchestrator implementation of the Mozilla Rhino JavaScript Engine supports exception handling, to
allow you to process errors. You must use the following guidelines when writing exception handlers in
scripts.

n Use the following European Computer Manufacturers Association (ECMA) error types. Use Error as
a generic exception that plug-in functions return, and the following specific error types.

n TypeError

n RangeError

n EvalError

n ReferenceError

n URIError

n SyntaxError

The following example shows a URIError definition.

try {

 ...

 throw new URIError("VirtualMachine with ID 'vm-0056'

 not found on 'vcenter-test-1'") ;

 ...

} catch (e if e instanceof URIError) {

}

n All exceptions that scripts do not catch must be simple string objects of the form
<type>:SPACE<human readable message>, as the following example shows.

throw "ValidationError: The input parameter 'myParam' of type 'string' is too short."

Developing with VMware vRealize Orchestrator

VMware, Inc. 212

n Write human readable messages as clearly as possible.

n Simple string exception type checking must use the following pattern.

try {

 throw "VMwareNoSpaceLeftOnDatastore: Datastore 'myDatastore' has no space left" ;

} catch (e if (typeof(e)=="string" && e.indexOf("VMwareNoSpaceLeftOnDatastore:") == 0)) {

 System.log("No space left on device") ;

 // Do something useful here

}

n Simple string exception type checking, must use the following pattern in scripted elements in
workflows.

if (typeof(errorCode)=="string"

 && errorCode.indexOf("VMwareNoSpaceLeftOnDatastore:")

 == 0) {

 // Do something useful here

}

Orchestrator JavaScript Examples
You can cut, paste, and adapt the Orchestrator JavaScript examples to help you write JavaScripts for
common orchestration tasks.

n Basic Scripting Examples

Workflow scripted elements, actions, and policies require basic scripting of common tasks. You can
cut, paste, and adapt these examples into your scripted elements.

n Email Scripting Examples

Workflow scripted elements can include scripting of common email-related tasks. You can cut, paste,
and adapt these examples into your scripted elements.

n File System Scripting Examples

Workflow scripted elements, actions, and policies require scripting of common file system tasks. You
can cut, paste, and adapt these examples into your scripted elements.

n LDAP Scripting Examples

Workflow scripted elements, actions, and policies require scripting of common LDAP tasks. You can
cut, paste, and adapt these examples into your scripted elements.

n Logging Scripting Examples

Workflow scripted elements, actions, and policies require scripting of common logging tasks. You
can cut, paste, and adapt these examples into your scripted elements.

n Networking Scripting Examples

Workflow scripted elements, actions, and policies require scripting of common networking tasks. You
can cut, paste, and adapt these examples into your scripted elements.

Developing with VMware vRealize Orchestrator

VMware, Inc. 213

n Workflow Scripting Examples

Workflow scripted elements, actions, and policies require scripting examples of common workflow
tasks. You can cut, paste, and adapt these examples into your scripted elements.

Basic Scripting Examples
Workflow scripted elements, actions, and policies require basic scripting of common tasks. You can cut,
paste, and adapt these examples into your scripted elements.

Access XML Documents
The following JavaScript example allows you to access XML documents from JavaScript by using the
ECMAScript for XML (E4X) implementation in the Orchestrator JavaScript API.

Note In addition to implementing E4X in the JavaScript API, Orchestrator also provides a Document
Object Model (DOM) XML implementation in the XML plug-in. For information about the XML plug-in and
its sample workflows, see the Using vRealize Orchestrator Plug-Ins.

var people = <people>

 <person id="1">

 <name>Moe</name>

 </person>

 <person id="2">

 <name>Larry</name>

 </person>

 </people>;

System.log("'people' = " + people);

// built-in XML type

System.log("'people' is of type : " + typeof(people));

// list-like interface System.log("which contains a list of " +

people.person.length() + " persons");

System.log("whose first element is : " + people.person[0]);

// attribute 'id' is mapped to field '@id'

people.person[0].@id='47';

// change Moe's id to 47

// also supports search by constraints

System.log("Moe's id is now : " + people.person.(name=='Moe').@id);

// suppress Moe from the list

delete people.person[0];

System.log("Moe is now removed.");

// new (sub-)document can be built from a string

people.person[1] = new XML("<person id=\"3\"><name>James</name></person>");

System.log("Added James to the list, which is now :");

for each(var person in people..person)

Developing with VMware vRealize Orchestrator

VMware, Inc. 214

for each(var person in people..person){

 System.log("- " + person.name + " (id=" + person.@id + ")");

}

Setting and Obtaining Properties from a Hashtable
The following JavaScript example sets properties in a hashtable and obtains the properties from the
hashtable. In the following example, the key is always a String and the value is an object, a number, a
Boolean, or a String.

var table = new Properties() ;

table.put("myKey",new Date()) ;

// get the object back

var myDate= table.get("myKey") ;

System.log("Date is : "+myDate) ;

Replace the Contents of a String
The following JavaScript example replaces the content of a String and replaces it with new content.

var str1 = "'hello'" ;

var reg = new RegExp("(')", "g");

var str2 = str1.replace(reg,"\\'") ;

System.log(""+str2) ; // result : \'hello\'

Compare Types
The following JavaScript example checks whether an object matches a given object type.

var path = 'myurl/test';

if(typeof(path, string)){

 throw("string");

else {

 throw("other");

}

Run a Command in the Orchestrator Server
The following JavaScript example allows you to run a command line on the Orchestrator server. Use the
same credentials as those used to start the server.

Note Access to the file system is limited by default.

var cmd = new Command("ls -al") ;

cmd.execute(true) ;

System.log(cmd.output) ;

Developing with VMware vRealize Orchestrator

VMware, Inc. 215

Email Scripting Examples
Workflow scripted elements can include scripting of common email-related tasks. You can cut, paste, and
adapt these examples into your scripted elements.

When you run a mail workflow, it uses the default mail server configuration that you set in the Configure
mail workflow. You can override the default values by using input parameters, or by defining custom
values in workflow scripted elements.

Obtain an Email Address
The following JavaScript example obtains the email address of the current owner of a running script.

var emailAddress = Server.getRunningUser().emailAddress ;

Send an Email
The following JavaScript example sends an email to the defined recipient, through an SMTP server, with
the defined content.

var message = new EmailMessage() ;

message.smtpHost = "smtpHost" ;

message.subject= "my subject" ;

message.toAddress = "receiver@vmware.com" ;

message.fromAddress = "sender@vmware.com" ;

message.addMimePart("This is a simple message","text/html") ;

message.sendMessage() ;

Retrieve Email Messages
The following JavaScript example retrieves the messages of an email account, without deleting them, by
using the scripting API provided by the MailClient class.

var myMailClient = new MailClient();

myMailClient.setProtocol(mailProtocol);

if(useSSL){

 myMailClient.enableSSL();

}

myMailClient.connect(mailServer, mailPort, mailUsername, mailPassword);

System.log("Successfully login!");

try {

 myMailClient.openFolder("Inbox");

 var messages = myMailClient.getMessages();

 System.log("Reading messages...!");

 if (messages != null && messages.length > 0) {

 System.log("You have " + messages.length + " email(s) in your inbox");

Developing with VMware vRealize Orchestrator

VMware, Inc. 216

 for (i = 0; i < messages.length; i++) {

 System.log("");

 System.log("-----MSG-------");

 System.log("Headers: ");

 var headerProp = messages[i].getHeaders();

 for each(key in headerProp.keys){

 System.log(key+": "+headerProp.get(key));

 }

 System.log("");

 System.log("Message["+ i +"] with from: " + messages[i].from + " to: " + messages[i].to);

 System.log("Message["+ i +"] with subject: " + messages[i].subject);

 var content = messages[i].getContent();

 System.log("Msg content as string: " + content);

 }

 } else {

 System.warn("No messages found");

 }

} finally {

 myMailClient.closeFolder();

 myMailClient.close();

}

File System Scripting Examples
Workflow scripted elements, actions, and policies require scripting of common file system tasks. You can
cut, paste, and adapt these examples into your scripted elements.

Add Content to a Simple Text File
The following JavaScript example adds content to a text file.

var tempDir = System.getTempDirectory() ;

var fileWriter = new FileWriter(tempDir + "/readme.txt") ;

fileWriter.open() ;

fileWriter.writeLine("File written at : "+new Date()) ;

fileWriter.writeLine("Another line") ;

fileWriter.close() ;

Obtain the Contents of a File
The following JavaScript example obtains the contents of a file from the Orchestrator server host
machine.

var tempDir = System.getTempDirectory() ;

var fileReader = new FileReader(tempDir + "/readme.txt") ;

fileReader.open() ;

var fileContentAsString = fileReader.readAll();

fileReader.close() ;

Developing with VMware vRealize Orchestrator

VMware, Inc. 217

LDAP Scripting Examples
Workflow scripted elements, actions, and policies require scripting of common LDAP tasks. You can cut,
paste, and adapt these examples into your scripted elements.

Convert LDAP Objects to Active Directory Objects
The following JavaScript example converts LDAP group elements to Active Directory user group objects,
and the reverse.

var ldapGroup ;

// convert from ldap element to Microsoft:UserGroup object

var adGroup = ActiveDirectory.search("UserGroup",ldapGroup.commonName) ;

// convert back to LdapGroup element

var ldapElement = Server.getLdapElement(adGroup.distinguishedName) ;

Logging Scripting Examples
Workflow scripted elements, actions, and policies require scripting of common logging tasks. You can cut,
paste, and adapt these examples into your scripted elements.

Persistent Logging
The following JavaScript example creates persistent log entries.

Server.log("This is a persistant message", "enter a long description here");

Server.warn("This is a persistant warning", "enter a long description here");

Server.error("This is a persistant error", "enter a long description here");

Non-Persistent Logging
The following JavaScript example creates non-persistent log entries.

System.log("This is a non-persistant log message");

System.warn("This is a non-persistant log warning");

System.error("This is a non-persistant log error");

Networking Scripting Examples
Workflow scripted elements, actions, and policies require scripting of common networking tasks. You can
cut, paste, and adapt these examples into your scripted elements.

Obtain Text from a URL
The following JavaScript example accesses a URL, obtains text, and converts it to a string.

var url = new URL("http://www.vmware.com") ;

var htmlContentAsString = url.getContent() ;

Developing with VMware vRealize Orchestrator

VMware, Inc. 218

Workflow Scripting Examples
Workflow scripted elements, actions, and policies require scripting examples of common workflow tasks.
You can cut, paste, and adapt these examples into your scripted elements.

Return All Workflows Run by the Current User
The following JavaScript example obtains all workflow runs from the server and checks whether they
belong to the current user.

var allTokens = Server.findAllForType('WorkflowToken');

var currentUser = Server.getCredential().username;

var res = [];

for(var i = 0; i<res.length; i++){

 if(allTokens[i].runningUserName == currentUser){

 res.push(allTokens[i]);

 }

}

return res;

Access the Current Workflow Token
You can access the current workflow token by using the workflow variable. It is an object of type
WorkflowToken that provides access to the current workflow run. The following JavaScript example gets
the ID of the workflow token and its start date.

System.log("Current workflow run ID: " + workflow.id);

System.log("Current workflow run start date: "+workflow.startDate);

Schedule a Workflow
The following JavaScript example starts a workflow with a given set of properties, and then schedules it to
start one hour later.

var workflowToLaunch = myWorkflow ;

// create parameters

var workflowParameters = new Properties() ;

workflowParameters.put("name","John Doe") ;

// change the task name

workflowParameters.put("__taskName","Workflow for John Doe") ;

// create scheduling date one hour in the future

var workflowScheduleDate = new Date() ;

var time = workflowScheduleDate.getTime() + (60*60*1000) ;

workflowScheduleDate.setTime(time) ; var scheduledTask =

workflowToLaunch.schedule(workflowParameters,workflowScheduleDate);

Developing with VMware vRealize Orchestrator

VMware, Inc. 219

Run a Workflow on a Selection of Objects in a Loop
The following JavaScript example takes the array of virtual machines and runs a workflow on each one in
a For loop. VMs and workflowToRun are workflow inputs.

var len=VMs.length;

for (var i=0; i < len; i++)

{

 var VM = VMs[i];

 //var workflowToLaunch = Server.getWorkflowWithId("workflowId");

 var workflowToLaunch = workflowToRun;

 if (workflowToLaunch == null) {

 throw "Workflow not found";

 }

var workflowParameters = new Properties();

workflowParameters.put("vm",VM);

var wfToken = workflowToLaunch.execute(workflowParameters);

System.log ("Ran workflow on " +VM.name);

}

Developing with VMware vRealize Orchestrator

VMware, Inc. 220

Developing Actions 3
Orchestrator provides libraries of predefined actions. Actions represent individual functions that you use
as building blocks in workflows and scripts.

Actions are JavaScript functions. They take multiple input parameters and have a single return value.
They can call on any object in the Orchestrator API, or on objects in any API that you import into
Orchestrator by using a plug-in.

When a workflow runs, an action takes input parameters from the workflow's attributes. These attributes
can be either the workflow's initial input parameters, or attributes that other elements in the workflow set
when they run.

This chapter includes the following topics:

n Reusing Actions

n Access the Actions View

n Components of the Actions View

n Creating Actions

n Use Action Version History

n Restore Deleted Actions

Reusing Actions
When you define an individual function as an action instead of coding it directly into a scriptable task
workflow element, you expose it in the library. When an action is visible in the library, other workflows can
use it.

When you define actions independently from the workflows that call on them, you can update or optimize
the actions more easily. Defining individual actions also allows other workflows to reuse actions. When a
workflow runs, Orchestrator caches each action only the first time that the workflow runs it. Orchestrator
can then reuse the cached action. Caching actions is useful for recursive calls in a workflow, or fast loops.

You can duplicate actions, export them to other workflows or packages, or move them to a different
module in the actions hierarchical list.

VMware, Inc. 221

Access the Actions View
The Orchestrator client interface features an Actions view that provides access to the Orchestrator
server's libraries of actions.

The Actions view of the Orchestrator client interface presents you with a hierarchical list of all the actions
available in the Orchestrator server.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Actions view.

3 Browse the libraries of actions by expanding the nodes of the actions hierarchical list.

You can use the Actions view to view information about the actions in the libraries and create and edit
actions.

Components of the Actions View
When you click an action in the actions hierarchical list, information about that action appears in the
Orchestrator client's right pane.

The Actions view presents four tabs.

General Displays general information about the action, including its name, its
version number, the permissions, and a description.

Scripting Shows the action's return types, input parameters, and the JavaScript code
that defines the action's function.

Events Shows all the events that this action encountered or triggered.

Permissions Shows which users and user groups have permission to access this action.

Creating Actions
You can define individual functions as actions that other elements, such as workflows, can use. Actions
are JavaScript functions with defined input and output parameters and permissions.

n Create an Action

When you define an individual function as an action, instead of coding it directly into a scriptable
task workflow element, you can expose it in the library for other workflows to use.

n Find Elements That Implement an Action

If you edit an action and change its behavior, you might inadvertently break a workflow or application
that implements that action. Orchestrator provides a function to find all of the actions, workflows, or
packages that implement a given element. You can check whether modifying the element affects the
operation of other elements.

Developing with VMware vRealize Orchestrator

VMware, Inc. 222

n Action Coding Guidelines

To optimize the performance of workflows and to maximize the potential to reuse actions, you should
follow some basic coding guidelines when creating actions.

Create an Action
When you define an individual function as an action, instead of coding it directly into a scriptable task
workflow element, you can expose it in the library for other workflows to use.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Actions view.

3 Expand the root of the actions hierarchical list and navigate to the module in which you want to create
the action.

4 Right-click the module and select Add action.

5 Type a name for the action in the text box and click OK.

Your custom action is added to the library of actions.

6 Right-click the action and select Edit.

7 Click the Scripting tab.

8 To change the default return type, click the void link.

9 Add the action input parameters by clicking the arrow icon.

10 Write the action script.

11 Set the action permissions.

12 Click Save and close.

You created a custom action and added the action input parameters.

What to do next

You can use the new custom action in a workflow.

Find Elements That Implement an Action
If you edit an action and change its behavior, you might inadvertently break a workflow or application that
implements that action. Orchestrator provides a function to find all of the actions, workflows, or packages
that implement a given element. You can check whether modifying the element affects the operation of
other elements.

Important The Find Elements that Use this Element function checks all packages, workflows, and
policies, but it does not check in scripts. Consequently, modifying an action might affect an element that
calls this action in a script that the Find Elements that Use this Element function did not identify.

Developing with VMware vRealize Orchestrator

VMware, Inc. 223

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Actions view.

3 Expand the nodes of the actions hierarchical list to navigate to a given action.

4 Right-click the action and select Find Elements that Use this Element.

A dialog box shows all of the elements, such as workflows or packages, that implement this action.

5 Double-click an element in the list of results to show that element in the Orchestrator client.

You located all of the elements that implement an action.

What to do next

You can check whether modifying this element affects any other elements.

Action Coding Guidelines
To optimize the performance of workflows and to maximize the potential to reuse actions, you should
follow some basic coding guidelines when creating actions.

Basic Action Guidelines
When you create an action, you must use basic guidelines.

n Every action must include a description of its role and function.

n Write short, elementary actions and combine them in a workflow.

n Avoid writing actions that perform multiple functions, because this limits the potential for reusing the
action.

n Avoid actions that run for long periods of time. Instead, create a loop in the workflow and include a
Waiting Event or Waiting Timer element after the action element.

n Do not write check points in actions. Workflows set a check point at the start and end of each
element's run.

n Avoid writing loops in an action. Create loops in the workflow instead. If the server restarts, a running
workflow resumes at its last check point, at the start of an element. If you write a loop inside an action
and the server restarts while the workflow is running that action, the workflow resumes at the check
point at the beginning of that action, and the loop starts again from the beginning.

Action Naming Guidelines
Use basic guidelines when you name actions.

n Write action names in English.

n Start action names with a lowercase letter. Use an uppercase letter at the beginning of each
conjoined word in the name. For example, myAction.

Developing with VMware vRealize Orchestrator

VMware, Inc. 224

n Make action names as explicit as possible, so that the function of the action is clear. For example,
backupAllVMsInPool.

n Make module names as explicit as possible.

n Make module names unique.

n Use the inverse Internet address format for module names. For example,
com.vmware.myactions.myAction.

Action Parameter Guidelines
Use basic guidelines when you write action parameter definitions.

n Write parameter names in English.

n Start parameter names with a lowercase letter.

n Make parameter names as explicit as possible.

n Preferably limit parameter names to a single word. If a name must contain more than one word, use
an uppercase letter at the beginning of each conjoined word in the name. For example,
myParameter.

n Use the plural form for parameters that represent an array of objects.

n Make variable names unambiguous, for example, displayName.

n Include a description for each parameter to describe its purpose.

n Do not use an excessive number of parameters in a single action.

Use Action Version History
You can use version history to revert an action to a previous version. You can revert the action state to an
earlier or a later action version. You can also compare the differences between the current state of the
action and a saved version of the action.

Orchestrator creates a new version history item for each action when you increase and save the action
version. Subsequent changes to the action do not change the current version item. For example, when
you create action version 1.0.0 and save it, the state of the action is stored in the database. If you make
any changes to the action, you can save the action state in the Orchestrator client, but you cannot apply
the changes to action version 1.0.0. To store the changes in the database, you must create a subsequent
action version and save it. The version history is kept in the database along with the action itself.

When you delete an action, Orchestrator marks the element as deleted in the database without deleting
the version history of the element from the database. This way, you can restore deleted actions. See
Restore Deleted Actions.

Prerequisites

Open an action for editing.

Developing with VMware vRealize Orchestrator

VMware, Inc. 225

Procedure

1 Click the General tab in the action editor.

2 Click Show version history.

A version history window appears.

3 Select an action version and click Diff Against Current to compare the differences.

A window that displays the differences between the current action version and the selected action
version appears.

4 Select an action version and click Revert to restore the state of the action.

Caution If you have not saved the current action version, it is deleted from the version history and
you cannot revert back to the current version.

The action state is reverted to the state of the selected version.

Restore Deleted Actions
You can restore actions that have been deleted from the library.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Actions view.

3 Navigate to the folder in which you want to restore a deleted action or actions.

4 Right-click the folder and select Restore deleted actions.

5 Select the action or actions that you want to restore and click Restore.

The action or actions appear in the selected folder.

Developing with VMware vRealize Orchestrator

VMware, Inc. 226

Creating Resource Elements 4
Workflows might require objects that you create independently of Orchestrator to be used as attributes. To
use external objects as attributes in workflows, you import them into the Orchestrator server as resource
elements.

Objects that workflows can use as resource elements include image files, scripts, XML templates, HTML
files, and so on. Any workflows that run in the Orchestrator server can use any resource elements that
you import into Orchestrator.

Importing an object into Orchestrator as a resource element lets you make changes to the object in a
single location, and to propagate those changes automatically to all the workflows that use this resource
element.

You can organize resource elements into folders. The maximum size for a resource element is 16MB.

This chapter includes the following topics:

n View a Resource Element

n Import an External Object to Use as a Resource Element

n Edit the Resource Element Information and Access Rights

n Save a Resource Element to a File

n Update a Resource Element

n Add a Resource Element to a Workflow

View a Resource Element
You can view existing resource elements in the Orchestrator client, to examine their contents and
discover which workflows use this resource element.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Resources view.

3 Expand the hierarchical tree viewer to navigate to a resource element.

4 Click a resource element to show information about it in the right pane.

VMware, Inc. 227

5 Click the Viewer tab to display the contents of the resource element.

6 Right-click the resource element and select Find Elements that Use this Element.

Orchestrator lists all the workflows that use this resource element.

What to do next

Import and edit a resource element.

Import an External Object to Use as a Resource Element
Workflows can require objects that you create independently of Orchestrator to be used as attributes. To
use external objects as attributes in workflows, you must import them to the Orchestrator server as
resource elements.

Prerequisites

Verify that you have an image file, script, XML template, HTML file, or other type of object to import.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Resources view.

3 Right-click a resource folder in the hierarchical list or the root and select New folder to create a folder
in which to store the resource element.

4 Right-click the resource folder in which to import the resource element and select Import resources.

5 Select the resource to import and click Open.

Orchestrator adds the resource element to the folder you selected.

You imported a resource element into the Orchestrator server.

What to do next

Edit the general information of the resource element and set the user access permissions.

Edit the Resource Element Information and Access Rights
After you import an object into the Orchestrator server as a resource element, you can edit the resource
element's details and permissions.

Prerequisites

Verify that you have imported an image, script, XML, or HTML file, or any other type of object into
Orchestrator as a resource element.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

Developing with VMware vRealize Orchestrator

VMware, Inc. 228

2 Click the Resources view.

3 Right-click the resource element and select Edit.

4 Click the General tab and set the resource element name, version, and description.

5 Click the Permissions tab and click the Add access rights icon () to define permissions for a user
group.

6 Type a user group name in the Filter text box.

7 Select a user group and click OK.

8 Right-click the user group and select Add access rights.

9 Check the appropriate check boxes to set the level of permissions for this user group and click OK.

Permissions are not cumulative. To allow a user to view the resource element, use it in their
workflows and change the permissions, you must check all check boxes.

10 Click Save and close to exit the editor.

You edited the general information about the resource element and set the user access rights.

What to do next

Save the resource element to a file to update it, or add the resource element to a workflow.

Save a Resource Element to a File
You can save a resource element to a file on your local system. Saving the resource element as a file
allows you to edit it.

You cannot edit a resource element in the Orchestrator client. For example, if the resource element is an
XML configuration file or a script, you must save it locally to modify it.

Prerequisites

Verify that the Orchestrator server contains a resource element that you can save to a file.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Resources view.

3 Right-click the resource element and select Save to file.

4 Make the required modifications to the file.

You saved a resource element to a file.

What to do next

Update the resource element in the Orchestrator server.

Developing with VMware vRealize Orchestrator

VMware, Inc. 229

Update a Resource Element
If you want to update a resource element, you must export it to the file system, edit the exported file with
an appropriate tool, and update the resource element by importing the edited file.

Prerequisites

Verify that you have imported an image, script, XML, or HTML file, or any other type of object into
Orchestrator as a resource element.

Procedure

1 Modify the source file of the resource element in your local system.

2 From the drop-down menu in the Orchestrator client, select Design.

3 Click the Resources view.

4 Navigate through the hierarchical list to the resource element that you have updated.

5 Right-click the resource element and select Update resource.

6 (Optional) Click the Viewer tab to verify that Orchestrator has updated the resource element.

You updated a resource element that the Orchestrator server contains.

Add a Resource Element to a Workflow
Resource elements are external objects that you can import to the Orchestrator server for workflows to
use as attributes when they run. For example, a workflow can use an imported XML file that defines a
map to convert one type of data to another, or a script that defines a function, when it runs.

Prerequisites

Verify that you have the following objects in your Orchestrator server:

n An image, script, XML, or HTML file, or any other type of object imported into Orchestrator as a
resource element.

n A workflow that requires the resource element as an attribute.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Workflows view.

3 Expand the hierarchical tree viewer to navigate to the workflow that requires the resource element as
an attribute.

4 Right-click the workflow and select Edit.

5 On the General tab, in the Attributes pane, click the Add attribute icon ().

6 Click the attribute name and type a new name for the attribute.

Developing with VMware vRealize Orchestrator

VMware, Inc. 230

7 Click Type to set the attribute type.

8 In the Select a type dialog box, type resource in the Filter box to search for an object type.

Option Action

Define a single resource element as an
attribute

Select ResourceElement from the list.

Define a folder that contains multiple
resource elements as an attribute

Select ResourceElementCategory from the list.

9 Click Value and type the name of the resource element or category of resource elements in the Filter

text box.

10 From the proposed list, select the resource element or a folder containing resource elements and
click Select.

11 Click Save and close to exit the editor.

You added a resource element or folder of resource elements as an attribute in a workflow.

Developing with VMware vRealize Orchestrator

VMware, Inc. 231

Creating Packages 5
Packages are used for distributing content from one Orchestrator server to another. Packages can
contain workflows, actions, policy templates, configurations, or resources.

When you add an element to a package, Orchestrator checks for dependencies and adds any dependent
elements to the package. For example, if you add a workflow that uses actions or other workflows,
Orchestrator adds those actions and workflows to the package.

When you import a package, the server compares the versions of the different elements of its contents to
matching local elements. The comparison shows the differences in versions between the local and
imported elements. The administrator can decide whether to import the package, or can select specific
elements to import.

Packages use digital rights management to control how the receiving server can use the contents of the
package. Orchestrator signs packages and encrypts the packages for data protection. Packages can
track which users export and redistribute elements by using X509 certificates.

For more information about using packages, see Using the VMware vRealize Orchestrator Client.
n Create a Package

You can export workflows, policy templates, actions, plug-in references, resources, and configuration
elements in packages. All elements that an element in a package implements are added to the
package automatically, to ensure compatibility between versions. If you do not want to add the
referenced elements, you can delete them in the package editor.

n Set User Permissions on a Package

You set different levels of permission on a package to limit the access that different users or user
groups can have to the contents of that package.

Create a Package
You can export workflows, policy templates, actions, plug-in references, resources, and configuration
elements in packages. All elements that an element in a package implements are added to the package
automatically, to ensure compatibility between versions. If you do not want to add the referenced
elements, you can delete them in the package editor.

Prerequisites

Verify that the Orchestrator server contains elements such as workflows, actions, and policy templates
that you can add to a package.

VMware, Inc. 232

Procedure

1 From the drop-down menu in the Orchestrator client, select Administer.

2 Click the Packages view.

3 Right-click in the left pane and select Add package.

4 Type the name of the new package and click Ok.

The syntax for package names is domain.your_company.folder.package_name.

For example, com.vmware.myfolder.mypackage.

5 Right-click the package and select Edit.

The package editor opens.

6 On the General tab, add a description for the package.

7 On the Workflows tab, add workflows to the package.

n Click Insert Workflows (list search) to search for and select workflows in a selection dialog box.

n Click Insert Workflows (tree browsing) to browse and select folders of workflows from the
hierarchical list.

8 On the Policy Templates, Actions, Configurations, Resources, and Used Plug-Ins tabs, add
policy templates, actions, configuration elements, resource elements, and plug-ins to the package.

9 Click Save and close to exit the editor.

You created a package and added elements to it.

What to do next

Set user permissions for this package.

Set User Permissions on a Package
You set different levels of permission on a package to limit the access that different users or user groups
can have to the contents of that package.

You can select the different users and user groups for which to set permissions from the users and user
groups in the Orchestrator LDAP or vCenter Single Sign-On server. Orchestrator defines levels of
permissions that you can apply to users or groups.

View The user can view the elements in the package, but cannot view the
schemas or scripting.

Inspect The user can view the elements in the package, including the schemas and
scripting.

Edit The user can edit the elements in the package.

Admin The user can set permissions on the elements in the package.

Developing with VMware vRealize Orchestrator

VMware, Inc. 233

Prerequisites

Create a package, open it for editing in the package editor, and add the necessary elements to the
package.

Procedure

1 Click the Permissions tab in the package editor.

2 Click the Add access rights icon () to define permissions for a new user or user group.

3 Search for a user or user group.

The search results show all of the users and user groups that match the search.

4 Select a user or user group.

5 Check the appropriate check boxes to set the level of permissions for this user and click Select.

To allow a user to view the elements, inspect the schema and scripting, run and edit the elements,
and change the permissions, you must check all check boxes.

6 Click Save and close to exit the editor.

You created a package and set the appropriate user permissions.

Developing with VMware vRealize Orchestrator

VMware, Inc. 234

Developing Plug-Ins 6
Orchestrator allows integration with management and administration solutions through its open plug-in
architecture. You use the Orchestrator client to run and create plug-in workflows and access the plug-in
API.

This chapter includes the following topics:

n Overview of Plug-Ins

n Contents and Structure of a Plug-In

n Orchestrator Plug-In API Reference

n Elements of the vso.xml Plug-In Definition File

n Best Practices for Orchestrator Plug-In Development

Overview of Plug-Ins
Orchestrator plug-ins must include a standard set of components and must adhere to a standard
architecture. These practices help you to create plug-ins for the widest possible variety of external
technologies.

n Structure of an Orchestrator Plug-In

Orchestrator plug-ins have a common structure that consists of various types of layers that
implement specific functionality.

n Exposing an External API to Orchestrator

You expose an API from an external product to the Orchestrator platform by creating an Orchestrator
plug-in. You can create a plug-in for any technology that exposes an API that you can map into
JavaScript objects that Orchestrator can use.

n Components of a Plug-In

Plug-ins are composed of a standard set of components that expose the objects in the plugged-in
technology to the Orchestrator platform.

n Role of the vso.xml File

You use the vso.xml file to map the objects, classes, methods, and attributes of the plugged-in
technology to Orchestrator inventory objects, scripting types, scripting classes, scripting methods,
and attributes. The vso.xml file also defines the configuration and start-up behavior of the plug-in.

VMware, Inc. 235

n Roles of the Plug-In Adapter

The plug-in adapter is the entry point of the plug-in to the Orchestrator server. The plug-in adapter
serves as the datastore for the plugged-in technology in the Orchestrator server, creates the plug-in
factory, and manages events that occur in the plugged-in technology.

n Roles of the Plug-In Factory

The plug-in factory defines how Orchestrator finds objects in the plugged-in technology and
performs operations on the objects.

n Role of Finder Objects

Finder objects identify and locate specific instances of managed object types in the plugged-in
technology. Orchestrator can modify and interact with objects that it finds in the plugged-in
technology by running workflows on the finder objects.

n Role of Scripting Objects

Scripting objects are JavaScript representations of objects from the plugged-in technology. Scripting
objects from plug-ins appear in the Orchestrator Javascript API and you can use them in scripted
elements in workflows and actions.

n Role of Event Handlers

Events are changes in the states or attributes of the objects that Orchestrator finds in the plugged-in
technology. Orchestrator monitors events by implementing event handlers.

Structure of an Orchestrator Plug-In
Orchestrator plug-ins have a common structure that consists of various types of layers that implement
specific functionality.

The bottom three layers of a Orchestrator plug-in, which are the infrastructure classes, wrapping classes,
and scripting objects, implement the connection between the plugged-in technology and Orchestrator.

The user-visible parts of a Orchestrator plug-in are the top three layers, which are actions, building
blocks, and high-level workflows.

Developing with VMware vRealize Orchestrator

VMware, Inc. 236

Figure 6‑1. Structure of an Orchestrator Plug-In

High level workflow

Building block workflows

Action

Scripting objects

Wrapping classes

Infrastructure classes

Infrastructure classes A set of classes that provide the connection between the plugged-in
technology and Orchestrator. The infrastructure classes include the classes
to implement according to the plug-in definition, such as plug-in factory,
plug-in adaptor, and so on. The infrastructure classes also include the
classes that provide functionality for common tasks and objects such as
helpers, caching, inventory, and so on.

Wrapping classes A set of classes that adapt the object model of the plugged-in technology to
the object model that you want to expose inside Orchestrator.

Scripting objects JavaScript object types that provide access to the wrapping classes,
methods, and attributes in the plugged-in technology. In the vso.xml file,
you define which wrapping classes, attributes, and methods from the
plugged-in technology will be exposed to Orchestrator.

Actions A set of JavaScript functions that you can use directly in workflows and
scripting tasks. Actions can take multiple input parameters and have a
single return value.

Building block
workflows

A set of workflows that cover all generic functionality that you want to
provide with the plug-in. Typically, a building block workflow represents an
operation in the user interface of the orchestrated technology. The building
block workflows can be used directly or can be included inside high-level
workflows.

High-level workflows A set of workflows that cover specific functionality of the plug-in. You can
provide high-level workflows to meet concrete requirements or to show
complex examples of the plug-in usage.

Developing with VMware vRealize Orchestrator

VMware, Inc. 237

Exposing an External API to Orchestrator
You expose an API from an external product to the Orchestrator platform by creating an Orchestrator
plug-in. You can create a plug-in for any technology that exposes an API that you can map into JavaScript
objects that Orchestrator can use.

Plug-ins map Java objects and methods to JavaScript objects that they add to the Orchestrator scripting
API. If an external technology exposes a Java API, you can map the API directly to JavaScript for
Orchestrator to use in workflows and actions.

You can create plug-ins for applications that expose an API in a language other than Java by using WSDL
(Web service definition language), REST (Representational state transfer), or a messaging service to
integrate the exposed API with Java objects. You then map the integrated Java objects to JavaScript for
Orchestrator to use.

The plugged-in technology is independent from Orchestrator. You can create Orchestrator plug-ins for
external products even if you only have access to binary code, for example in Java archives (JAR files),
rather than source code.

Components of a Plug-In
Plug-ins are composed of a standard set of components that expose the objects in the plugged-in
technology to the Orchestrator platform.

The main components of a plug-in are the plug-in adapter, factory, and event implementations. You map
the objects and operations defined in the adapter, factory, and event implementations to Orchestrator
objects in an XML definition file named vso.xml. The vso.xml file maps objects and functions from the
plugged in technology to JavaScript scripting objects that appear in the Orchestrator JavaScript API. The
vso.xml file also maps object types from the plugged-in technology to finders, that appear in the
Orchestrator Inventory tab.

Plug-ins are composed of the following components.

Plug-In Module The plug-in itself, as defined by a set of Java classes, a vso.xml file, and
packages of the workflows and actions that interact with the objects that
you access through the plug-in. The plug-in module is mandatory.

Plug-In Adapter Defines the interface between the plugged-in technology and the
Orchestrator server. The adapter is the entry point of the plug-in to the
Orchestrator platform. The adapter creates the plug-in factory, manages the
loading and unloading of the plug-in, and manages the events that occur on
the objects in the plugged-in technology. The plug-in adapter is mandatory.

Developing with VMware vRealize Orchestrator

VMware, Inc. 238

Plug-In Factory Defines how Orchestrator finds objects in the plugged-in technology and
performs operations on them. The adapter creates a factory for the client
session that opens between Orchestrator and a plugged-in technology. The
factory allows you either to share a session between all client connections
or to open one session per client connection. The plug-in factory is
mandatory.

Configuration Orchestrator does not define a standard way for the plug-in to store its
configuration. You can store configuration information by using Windows
Registries, static configuration files, storing information in a database, or in
XML files. Orchestrator plug-ins can be configured by running configuration
workflows in the Orchestrator client.

Finders Interaction rules that define how Orchestrator locates and represents the
objects in the plugged-in technology. Finders retrieve objects from the set of
objects that the plugged-in technology exposes to Orchestrator. You define
in the vso.xml file the relations between objects to allow you to navigate
through the network of objects. Orchestrator represents the object model of
the plugged-in technology in the Inventory tab. Finders are mandatory if
you want to expose objects in the plugged-in technology to Orchestrator.

Scripting Objects JavaScript object types that provide access to the objects, operations, and
attributes in the plugged-in technology. Scripting objects define how
Orchestrator accesses the object model of the plugged-in technology
through JavaScript. You map the classes and methods of the plugged-in
technology to JavaScript objects in the vso.xml file. You can access the
JavaScript objects in the Orchestrator scripting API and integrate them into
Orchestrator scripted tasks, actions, and workflows. Scripting objects are
mandatory if you want to add scripting types, classes, and methods to the
Orchestrator JavaScript API.

Inventory Instances of objects in the plugged-in technology that Orchestrator locates
by using finders appear in the Inventory view in the Orchestrator client.
You can perform operations on the objects in the inventory by running
workflows on them. The inventory is optional. You can create a plug-in that
only adds scripting types and classes to the Orchestrator JavaScript API
and does not expose any instances of objects in the inventory.

Events Changes in the state of an object in the plugged-in technology. Orchestrator
can listen passively for events that occur in the plugged-in technology.
Orchestrator can also actively trigger events in the plugged-in technology.
Events are optional.

Developing with VMware vRealize Orchestrator

VMware, Inc. 239

Role of the vso.xml File
You use the vso.xml file to map the objects, classes, methods, and attributes of the plugged-in
technology to Orchestrator inventory objects, scripting types, scripting classes, scripting methods, and
attributes. The vso.xml file also defines the configuration and start-up behavior of the plug-in.

The vso.xml file performs the following principal roles.

Start-Up and
Configuration Behavior

Defines the manner in which the plug-in starts and locates any
configuration implementations that the plug-in defines. Loads the plug-in
adapter.

Inventory Objects Defines the types of objects that the plug-in accesses in the plugged-in
technology. The finder methods of the plug-in factory implementation locate
instances of these objects and display them in the Orchestrator inventory.

Scripting Types Adds scripting types to the Orchestrator JavaScript API to represent the
different types of object in the inventory. You can use these scripting types
as input parameters in workflows.

Scripting Classes Adds classes to the Orchestrator JavaScript API that you can use in
scripted elements in workflows, actions, policies, and so on.

Scripting Methods Adds methods to the Orchestrator JavaScript API that you can use in
scripted elements in workflows, actions, policies, and so on.

Scripting Attributes Adds the attributes of the objects in the plugged-in technology to the
Orchestrator JavaScript API that you can use in scripted elements in
workflows, actions, policies, and so on.

Roles of the Plug-In Adapter
The plug-in adapter is the entry point of the plug-in to the Orchestrator server. The plug-in adapter serves
as the datastore for the plugged-in technology in the Orchestrator server, creates the plug-in factory, and
manages events that occur in the plugged-in technology.

To create a plug-in adapter, you create a Java class that implements the IPluginAdaptor interface.

The plug-in adapter class that you create manages the plug-in factory, events, and triggers in the
plugged-in technology. The IPluginAdaptor interface provides methods that you use to perform these
tasks.

Developing with VMware vRealize Orchestrator

VMware, Inc. 240

The plug-in adapter performs the following principal roles.

Creates a factory The most important role of the plug-in adapter is to load and unload one
plug-in factory instance for every connection from Orchestrator to the
plugged-in technology. The plug-in adapter class calls the
IPluginAdaptor.createPluginFactory() method to create an instance
of a class that implements the IPluginFactory interface.

Manages events The plug-in adapter is the interface between the Orchestrator server and
the plugged-in technology. The plug-in adapter manages the events that
Orchestrator performs or watches for on the objects in the plugged-in
technology. The adapter manages events through event publishers. Event
publishers are instances of the IPluginEventPublisher interface that the
adapter creates by calling the
IPluginAdaptor.registerEventPublisher() method. Event publishers
set triggers and gauges on objects in the plugged-in technology, to allow
Orchestrator to launch defined actions if certain events occur on the object,
or if the object's values pass certain thresholds. Similarly, you can define
PluginTrigger and PluginWatcher instances that define events that
Wait Event elements in long-running workflows await.

Sets the plug-in name You provide a name for the plug-in in the vso.xml file. The plug-in adapter
gets this name from the vso.xml file and publishes it in the Orchestrator
client Inventory view.

Installs licenses You can call methods to install any license files that the plugged-in
technology requires in the adapter implement.

For full details of the IPluginAdaptor interface, all of its methods, and all of the other classes of the
plug-in API, see Orchestrator Plug-In API Reference.

Roles of the Plug-In Factory
The plug-in factory defines how Orchestrator finds objects in the plugged-in technology and performs
operations on the objects.

To create the plug-in factory, you must implement and extend the IPluginFactory interface from the
Orchestrator plug-in API. The plug-in factory class that you create defines the finder functions that
Orchestrator uses to access objects in the plugged-in technology. The factory allows the Orchestrator
server to find objects by their ID, by their relation to other objects, or by searching for a query string.

Developing with VMware vRealize Orchestrator

VMware, Inc. 241

The plug-in factory performs the following principal tasks.

Finds objects You can create functions that find objects according to their name and type.
You find objects by name and type by using the IPluginFactory.find()
method.

Finds objects related to
other objects

You can create functions to find objects that relate to a given object by a
given relation type. You define relations in the vso.xml file. You can also
create finders to find dependent child objects that relate to all parents by a
given relation type. You implement the IPluginFactory.findRelation()
method to find any objects that are related to a given parent object by a
given relation type. You implement the
IPluginFactory.hasChildrenInRelation() method to discover
whether at least one child object exists for a parent instance.

Define queries to find
objects according to
your own criteria

You can create object finders that implement query rules that you define.
You implement the IPluginFactory.findAll() method to find all objects
that satisfy query rules you define when the factory calls this method. You
obtain the results of the findAll() method in a QueryResult object that
contains a list of all of the objects found that match the query rules you
define.

For more information about the IPluginFactory interface, all of its methods, and all of the other classes
of the plug-in API, see Orchestrator Plug-In API Reference.

Role of Finder Objects
Finder objects identify and locate specific instances of managed object types in the plugged-in
technology. Orchestrator can modify and interact with objects that it finds in the plugged-in technology by
running workflows on the finder objects.

Every instance of a given managed object type in the plugged-in technology must have a unique identifier
so that Orchestrator finder objects can find them. The plugged-in technology provides the unique
identifiers for the object instances as strings. When a workflow runs, Orchestrator sets the unique
identifiers of the objects that it finds as workflow attribute values. Workflows that require an object of a
given type as an input parameter run on a specific instance of that type of object.

Finder objects that plug-ins add to the Orchestrator JavaScript API have the plug-in name as a prefix. For
example, the VirtualMachine managed object type from the vCenter Server API appears in
Orchestrator as the VC:VirtualMachine JavaScript type.

For example, Orchestrator accesses a specific VC:VirtualMachine instance through the vCenter Server
plug-in by implementing a finder object that uses the id attribute of the virtual machine as its unique
identifier. You can pass this object instance to workflow elements as attribute values.

Developing with VMware vRealize Orchestrator

VMware, Inc. 242

An Orchestrator plug-in maps the objects from the plugged-in technology to equivalent Orchestrator finder
objects in the <finder> elements in the vso.xml file. The <finder> elements identify the method or
function from the plugged-in technology that obtains the unique identifier for a specific instance of an
object. The <finder> elements also define relations between objects, to find objects by the manner in
which they relate to other objects.

Finder objects appear in the Orchestrator Inventory tab under the plug-in that contains them.

Role of Scripting Objects
Scripting objects are JavaScript representations of objects from the plugged-in technology. Scripting
objects from plug-ins appear in the Orchestrator Javascript API and you can use them in scripted
elements in workflows and actions.

Scripting objects from plug-ins appear in the Orchestrator JavaScript API as JavaScript modules, types,
and classes. Most finder objects have a scripting object representation. The JavaScript classes can add
methods and attributes to the Orchestrator JavaScript API that represent the methods and attributes from
objects from the API of the plugged-in technology. The plugged-in technology provides the
implementations of the objects, types, classes, attributes, and methods independently of Orchestrator.
For example, the vCenter Server plug-in represents all the objects from the vCenter Server API as
JavaScript objects in the Orchestrator JavaScript API, with JavaScript representations of all the classes,
methods and attributes that the vCenter Server API defines. You can use the vCenter Server scripting
classes and the methods and attributes they define in Orchestrator scripted functions.

For example, the VirtualMachine managed object type from the vCenter Server API is found by the
VC:VirtualMachine finder and appears in the Orchestrator JavaScript API as the VcVirtualMachine
JavaScript class. The VcVirtualMachine JavaScript class in the Orchestrator JavaScript API defines all
of the same methods and attributes as the VirtualMachine managed object from the vCenter Server
API.

An Orchestrator plug-in maps the objects, types, classes, attributes, and methods from the plugged-in
technology to equivalent Orchestrator JavaScript objects, types, classes, attributes, and methods in the
<scripting-objects> element in the vso.xml file.

Role of Event Handlers
Events are changes in the states or attributes of the objects that Orchestrator finds in the plugged-in
technology. Orchestrator monitors events by implementing event handlers.

Orchestrator plug-ins allow you to monitor events in a plugged-in technology in different ways. The
Orchestrator plug-in API allows you to create the following types of event handlers to monitor events in a
plugged-in technology.

Listeners Passively monitor objects in the plugged-in technology for changes in their
state. The plugged-in technology or the plug-in implementation defines the
events that listeners monitor. Listeners do not initiate events, but notify
Orchestrator when the events occur. Listeners detect events either by

Developing with VMware vRealize Orchestrator

VMware, Inc. 243

polling the plugged-in technology or by receiving notifications from the
plugged-in technology. When events occur, Orchestrator policies or
workflows that are waiting for the event can react by starting operations in
the Orchestrator server. Listener components are optional.

Policies Monitor certain events in the plugged-in technology and start operations in
the Orchestrator server if the events occur. Policies can monitor policy
triggers and policy gauges. Policy triggers define an event in the plugged-in
technology that, when it occurs, causes a running policy to start an
operation in the Orchestrator server, for example running a workflow. Policy
gauges define ranges of values for the attributes of an object in the
plugged-in technology that, when exceeded, cause Orchestrator to start an
operation. Policies are optional.

Workflow triggers If a running workflow contains a Wait Event element, when it reaches that
element it suspends its run and waits for an event to occur in a plugged-in
technology. Workflow triggers define the events in the plugged-in
technology that Waiting Event elements in workflows await. You register
workflow triggers with watchers. Workflow triggers are optional.

Watchers Watch workflow triggers for a certain event in the plugged-in technology, on
behalf of a Waiting Event element in a workflow. When the event occurs,
the watchers notify any worklows that are waiting for that event. Watchers
are optional.

Contents and Structure of a Plug-In
Orchestrator plug-ins must contain a standard set of components and conform to a standard file structure.
For a plug-in to conform to the standard file structure, it must include specific folders and files.

To create an Orchestrator plug-in, you define how Orchestrator accesses and interacts with the objects in
the plugged-in technology. And, you map all of the objects and functions of the plugged-in technology to
corresponding Orchestrator objects and functions in the vso.xml file.

The vso.xml file must include a reference to every type of object or operation to expose to Orchestrator.
Every object that the plug-in finds in the plugged-in technology must have a unique identifier that you
provide. You define the object names in the finder elements and in the object elements in the vso.xml
file.

A plug-in can be delivered as a standard Java archive file (JAR) or a ZIP file, but in either case, the file
must be renamed with a .dar extension.

Note You can use the Orchestrator Control Center to import a DAR file to the Orchestrator server.

n Defining the Application Mapping in the vso.xml File

Objects that you include in the vso.xml file appear as scripting objects in the Orchestrator scripting
API, or as finder objects in the Orchestrator Inventory tab.

Developing with VMware vRealize Orchestrator

VMware, Inc. 244

n Format of the vso.xml Plug-In Definition File

The vso.xml file defines how the Orchestrator server interacts with the plugged-in technology. You
must include a reference to every type of object or operation to expose to Orchestrator in the
vso.xml file.

n Naming Plug-In Objects

You must provide a unique identifier for every object that the plug-in finds in the plugged-in
technology. You define the object names in the <finder> elements and in the <object> elements in
the vso.xml file.

n Plug-In Object Naming Conventions

You must follow Java class naming conventions when you name all objects in plug-ins.

n File Structure of the Plug-In

A plug-in must conform to a standard file structure and must include certain specific folders and files.
You deliver a plug-in as a standard Java archive (JAR) or ZIP file, that you must rename with
the .dar extension.

Defining the Application Mapping in the vso.xml File
Objects that you include in the vso.xml file appear as scripting objects in the Orchestrator scripting API,
or as finder objects in the Orchestrator Inventory tab.

The vso.xml file provides the following information to the Orchestrator server:

n A version, name, and description for the plug-in

n References to the classes of the plugged-in technology and to the associated plug-in adapter

n Initializes the plug-in when the Orchestrator server starts

n Scripting types to represent the types of objects in the plugged-in technology

n The relationships between object types to define how the objects display in the Orchestrator Inventory

n Scripting classes that map the objects and operations in the plugged-in technology to functions and
object types in the Orchestrator JavaScript API

n Enumerations to define a list of constant values that apply to all objects of a certain type

n Events that Orchestrator monitors in the plugged-in technology

The vso.xml file must conform to the XML schema definition of Orchestrator plug-ins. You can access
the schema definition at the VMware support site.

http://www.vmware.com/support/orchestrator/plugin-4-1.xsd

For descriptions of all of the elements of the vso.xml file, see Elements of the vso.xml Plug-In Definition
File.

Developing with VMware vRealize Orchestrator

VMware, Inc. 245

Format of the vso.xml Plug-In Definition File
The vso.xml file defines how the Orchestrator server interacts with the plugged-in technology. You must
include a reference to every type of object or operation to expose to Orchestrator in the vso.xml file.

Objects that you include in the vso.xml file appear as scripting objects in the Orchestrator scripting API,
or as finder objects in the Orchestrator Inventory tab.

As part of the open architecture and standardized implementation of plug-ins, the vso.xml file must
adhere to a standard format.

The following diagram shows the format of the vso.xml plug-in definition file and how the elements nest
within each other.

Figure 6‑2. Format of the vso.xml Plug-In Definition File

Naming Plug-In Objects
You must provide a unique identifier for every object that the plug-in finds in the plugged-in technology.
You define the object names in the <finder> elements and in the <object> elements in the vso.xml
file.

Developing with VMware vRealize Orchestrator

VMware, Inc. 246

The finder operations that you define in the factory implementation find objects in the plugged-in
technology. When the plug-in finds objects, you can use them in Orchestrator workflows and pass them
from one workflow element to another. The unique identifiers that you provide for the objects allows them
to pass between the elements in a workflow.

The Orchestrator server stores only the type and identifier of each object that it processes, and stores no
information about where or how Orchestrator obtained the object. You must name objects consistently in
the plug-in implementation so that you can track the objects you obtain from plug-ins.

If the Orchestrator server stops while workflows are running, when you restart the server the workflows
resume at the workflow element that was running when the server stopped. The workflow uses the
identifiers to retrieve objects that the element was processing when the server stopped.

Plug-In Object Naming Conventions
You must follow Java class naming conventions when you name all objects in plug-ins.

Important Because of the way in which the workflow engine performs data serialization, do not use the
following string sequences in object names. Using these character sequences in object identifiers causes
the workflow engine to parse workflows incorrectly, which can cause unexpected behavior when you run
the workflows.

n #;#

n #,#

n #=#

Use these guidelines when you name objects in plug-ins.

n Use an initial uppercase letter for each word in the name.

n Do not use spaces to separate words.

n For letters, only use the standard characters A to Z and a to z.

n Do not use special characters, such as accents.

n Do not use a number as the first character of a name.

n Where possible, use fewer than 10 characters.

Table 6‑1 shows rules that apply to individual object types.

Developing with VMware vRealize Orchestrator

VMware, Inc. 247

Table 6‑1. Plug-In Object Naming Rules

Object Type Naming Rules

Plug-In n Defined in the <module> element in the vso.xml file.
n Must adhere to Java class naming conventions.
n Must be unique. You cannot run two plug-ins with the same name in an Orchestrator server.

Finder object n Defined in the <finder> elements in the vso.xml file.
n Must adhere to Java class naming conventions.
n Must be unique in the plug-in.

Orchestrator adds the plug-in name and a colon to the finder object names in the finder object types in
the Orchestrator scripting API. For example, the VirtualMachine object type from the vCenter Server
plug-in appears in the Orchestrator scripting API as VC:VirtualMachine.

Scripting object n Defined in the <scripting-object> elements in the vso.xml file.
n Must adhere to Java class naming conventions.
n Must be unique in the Orchestrator server.
n To avoid confusing scripting objects with finder objects of the same name or with scripting objects

from other plug-ins, always prefix the scripting object name with the name of the plug-in, but do not
add a colon. For example, the VirtualMachine class from the vCenter Server plug-in appears in
the Orchestrator scripting API as the VcVirtualMachine class.

File Structure of the Plug-In
A plug-in must conform to a standard file structure and must include certain specific folders and files. You
deliver a plug-in as a standard Java archive (JAR) or ZIP file, that you must rename with the .dar
extension.

The contents of the DAR archive must use the following folder structure and naming conventions.

Developing with VMware vRealize Orchestrator

VMware, Inc. 248

Table 6‑2. Structure of the DAR Archive

Folders Description

plug-in_name\VSO-INF\ Contains the vso.xml file that defines the mapping of the
objects in the plugged-in technology to Orchestrator objects.

The VSO-INF folder and the vso.xml file are mandatory.

plug-in_name\lib\ Contains the JAR files that contain the binaries of the plugged-in
technology. Also contains JAR files that contain the
implementations of the adapter, factory, notification handlers,
and other interfaces in the plug-in.

The lib folder and JAR files are mandatory.

plug-in_name\resources\ Contains resource files that the plug-in requires. The resources
folder can include the following types of element:
n Image files, to represent the objects of the plug-in in the

Orchestrator Inventory tab.
n Scripts, to define initialization behavior when the plug-in

starts.
n Orchestrator packages, that can contain custom workflows,

actions, and other resources that interact with the objects
that you access by using the plug-in.

You can organize resources in subfolders. For example,
resources\images\, resources\scripts\, or
resources\packages\.

The resources folder is optional.

You use the Orchestrator Control Center to import a DAR file to the Orchestrator server.

Orchestrator Plug-In API Reference
The Orchestrator plug-in API defines Java interfaces and classes to implement and extend when you
develop the IPluginAdaptor and IPluginFactory implementations to create a plug-in.

All classes are contained in the ch.dunes.vso.sdk.api package, unless stated otherwise.

IAop Interface
The IAop interface provides methods to obtain and set properties on objects in the plugged-in technology.

public interface IAop

The IAop interface defines the following methods:

Method Returns Description

get(java.lang.String propertyName,

java.lang.Object object,

java.lang.Object sdkObject)

java.lang.Object Obtains a property from a given object in
the plug-in.

set(java.lang.String propertyName,

java.lang.String propertyValue,

java.lang.Object object)

Void Sets a property on a given object in the
plug-in.

Developing with VMware vRealize Orchestrator

VMware, Inc. 249

IDynamicFinder Interface
The IDynamicFinder interface returns the ID and properties of a finder programmatically, instead
defining the ID and properties in the vso.xml file.

The IDynamicFinder Interface defines the following methods.

Method Returns Description

getIdAccessor(java.lang.String

type)

java.lang.String Provides an OGNL expression to obtain
an object ID programmatically.

getProperties(java.lang.String

type)

java.util.List<SDKFinderProperty

>

Provides a list of object properties
programmatically.

IPluginAdaptor Interface
You implement the IPluginAdaptor interface to manage plug-in factories, events and watchers. The
IPluginAdaptor interface defines an adapter between a plug-in and the Orchestrator server.

IPluginAdaptor instances are resonsible for session management. The IPluginAdaptor Interface
defines the following methods.

Method Returns Description

addWatcher(PluginWatcher watcher) Void Adds a watcher to monitor for a specific
event

createPluginFactory(java.lang.Stri

ng sessionID, java.lang.String

username, java.lang.String

password,

IPluginNotificationHandler

notificationHandler)

IPluginFactory Creates an IPluginFactory instance.
The Orchestrator server uses the factory
to obtain objects from the plugged-in
technology by their ID, by their relation to
other objects, and so on.

The session ID allows you to identify a
running session. For example, a user
could log into two different Orchestrator
clients and run two sessions
simultaneously.

Similarly, starting a workflow creates a
session that is independent from the client
in which the workflow started. A workflow
continues to run even if you close the
Orchestrator client.

installLicenses(PluginLicense[]

licenses)

Void Installs the license information for
standard plug-ins that VMware provides

registerEventPublisher(java.lang.S

tring type, java.lang.String id,

IPluginEventPublisher publisher)

Void Sets triggers and gauges on an element in
the inventory

removeWatcher(java.lang.String

watcherId)

Void Removes a watcher

setPluginName(java.lang.String

pluginName)

Void Gets the plug-in name from the vso.xml
file

Developing with VMware vRealize Orchestrator

VMware, Inc. 250

Method Returns Description

setPluginPublisher(IPluginPublishe

r pluginPublisher)

Void Sets the publisher of the plug-in

uninstallPluginFactory(IPluginFact

ory plugin)

Void Uninstalls a plug-in factory.

unregisterEventPublisher(java.lang

.String type, java.lang.String id,

IPluginEventPublisher publisher)

Void Removes triggers and gauges from an
element in the inventory

IPluginEventPublisher Interface
The IPluginEventPublisher interface publishes gauges and triggers on an event notification bus for
Orchestrator policies to monitor.

You can create IPluginEventPublisher instances directly in the plug-in adaptor implementation or you
can create them in separate event generator classes.

You can implement the IPluginEventPublisher interface to publish events in the plugged-in technology
to the Orchestrator policy engine. You create methods to set policy triggers and gauges on objects in the
plugged-in technology and event listeners to listen for events on those objects.

Policies can implement either gauges or triggers to monitor objects in the plugged-in technology. Policy
gauges monitor the attributes of objects and push an event in the Orchestrator server if the values of the
objects exceed certain limits. Policy triggers monitor objects and push an event in the Orchestrator server
if a defined event occurs on the object. You register policy gauges and triggers with
IPluginEventPublisher instances so that Orchestrator policies can monitor them.

The IPluginEventPublisher Interface defines the following methods.

Type Returns Description

pushGauge(java.lang.String type,

java.lang.String id,

java.lang.String gaugeName,

java.lang.String deviceName,

java.lang.Double gaugeValue)

Void Publish a gauge for policies to monitor.
Takes the following parameters:
n type: Type of the object to monitor.
n id: Identifier of the object to monitor.
n gaugeName: Name for this gauge.
n deviceName: Name for the type of

attribute that the gauge monitors.
n gaugeValue: Value for which the

gauge monitors the object.

pushTrigger(java.lang.String type,

java.lang.String id,

java.lang.String triggerName,

java.util.Properties

additionalProperties)

Void Publish a trigger for policies to monitor.
Takes the following parameters:
n type: Type of the object to monitor.
n id: Identifier of the object to monitor.
n triggerName: Name for this trigger.
n additionalProperties: Any

additional properties for the trigger to
monitor.

Developing with VMware vRealize Orchestrator

VMware, Inc. 251

IPluginFactory Interface
The IPluginAdaptor returns IPluginFactory instances. IPluginFactory instances run commands in
the plugged-in application, and finds objects upon which to perform Orchestrator operations.

The IPluginFactory interface defines the following field:

static final java.lang.String RELATION_CHILDREN

The IPluginFactory interface defines the following methods.

Method Returns Description

executePluginCommand(java.lang.Str

ing cmd)

Void Use the plug-in to run a command.
VMware recommends that you do not use
this method.

find(java.lang.String type,

java.lang.String id)

java.lang.Object Use the plug-in to find an object. Identify
the object by its ID and type.

findAll(java.lang.String type,

java.lang.String query)

QueryResult Use the plug-in to find objects of a certain
type and that match a query string. You
define the syntax of the query in the
IPluginFactory implementation of the
plug-in. If you do not define query syntax,
findAll() returns all objects of the
specified type.

findRelation(java.lang.String

parentType, java.lang.String

parentId, java.lang.String

relationName)

java.util.List Determines whether an object has
children.

hasChildrenInRelation(java.lang.St

ring parentType, java.lang.String

parentId, java.lang.String

relationName)

HasChildrenResult Finds all children related to a given parent
by a certain relation.

invalidate(java.lang.String type,

java.lang.String id)

Void Invalidate objects by type and ID.

void invalidateAll() Void Invalidate all objects in the cache.

IPluginNotificationHandler Interface
The IPluginNotificationHandler defines methods to notify Orchestrator of different types of event
that occur on the objects Orchestrator accesses through the plug-in.

The IPluginNotificationHandler Interface defines the following methods.

Method Returns Description

getSessionID() java.lang.String Returns the current session ID

notifyElementDeleted(java.lang.Str

ing type, java.lang.String id)

Void Notifies the system that an object with the
given type and ID has been deleted

Developing with VMware vRealize Orchestrator

VMware, Inc. 252

Method Returns Description

notifyElementInvalidate(java.lang.

String type, java.lang.String id)

Void Notifies the system that an object's
relations have changed. You can use the
notifyElementInvalidate() method to
notify Orchestrator of all changes in
relations between objects, not only for
relation changes that invalidate an object.
For example, adding a child object to a
parent represents a change in the relation
between the two objects.

notifyElementUpdated(java.lang.Str

ing type, java.lang.String id)

Void Notifies the system that an object's
attributes have been modified

notifyMessage(ch.dunes.vso.sdk.api

.ErrorLevel severity,

java.lang.String type,

java.lang.String id,

java.lang.String message)

Void Publishes an error message related to the
current module

IPluginPublisher Interface
The IPluginPublisher interface publishes a watcher event on an event notification bus for long-running
workflow Wait Event elements to monitor.

When a workflow trigger starts an event in the plugged-in technology, a plug-in watcher that watches that
trigger and that is registered with an IPluginPublisher instance notifies any waiting workflows that the
event has occurred.

The IPluginPublisher Interface defines the following method.

Type Value Description

pushWatcherEvent(java.lang.String

id, java.util.Properties

properties)

Void Publish a watcher event on event
notification bus

WebConfigurationAdaptor Interface
The WebConfigurationAdaptor interface implements IConfigurationAdaptor and defines methods
to locate and install a Web application in the configuration tab for a plug-in.

Note The WebConfigurationAdaptor interface is deprecated since Orchestrator 4.1. To add a Web
application to the configuration, implement IConfigurationAdaptor and use the configuration-war
attribute in the vso.xml file to identify the Web application.

The WebConfigurationAdaptor interface defines the following methods.

Developing with VMware vRealize Orchestrator

VMware, Inc. 253

Method Returns Description

getWebAppContext() String Locates the WAR file of the Web
application for the configuration tab.
Provide the name and path to the WAR
file from the /webapps directory in the
DAR file as a string.

setWebConfiguration(boolean

webConfiguration)

Boolean Determine whether the contents of the
configuration tab are defined by a Web
application.

PluginTrigger Class
The PluginTrigger class creates a trigger module that obtains information about objects and events to
monitor in the plugged-in technology, on behalf of a Wait Event element in a workflow.

The PluginTrigger class defines methods to obtain or set the type and name of the object to monitor,
the nature of the event, and a timeout period.

You create implementations of the PluginTrigger class exclusively for use by Wait Event elements in
workflows. You define policy triggers for Orchestrator policies in classes that define events and implement
the IPluginEventPublisher.pushTrigger() method.

public class PluginTrigger

extends java.lang.Object

implements java.io.Serializable

The PluginTrigger class defines the following methods:

Method Returns Description

getModuleName() java.lang.String Obtains the name of the trigger module.

getProperties() java.util.Properties Obtains a list of properties for the trigger.

getSdkId() java.lang.String Obtains the ID of the object to monitor in
the plugged-in technology.

getSdkType() java.lang.String Obtains the type of the object to monitor in
the plugged-in technology.

getTimeout() Long Obtains the trigger timeout period.

setModuleName(java.lang.String

moduleName)

Void Sets the name of the trigger module.

setProperties(java.util.Properties

properties)

Void Sets a list of properties for the trigger.

setSdkId(java.lang.String sdkId) Void Sets the ID of the object to monitor in the
plugged-in technology.

setSdkType(java.lang.String

sdkType)

Void Sets the type of the object to monitor in
the plugged-in technology.

setTimeout(long timeout) Void Sets a timeout period in seconds. A
negative value deactivates the timeout.

Developing with VMware vRealize Orchestrator

VMware, Inc. 254

Constructors
n PluginTrigger()

n PluginTrigger(java.lang.String moduleName, long timeout, java.lang.String

sdkType, java.lang.String sdkId)

PluginWatcher Class
The PluginWatcher class watches a trigger module for a defined event in the plugged-in technology on
behalf of a long-running workflow Wait Event element.

The PluginWatcher class defines a constructor that you can use to create plug-in watcher instances.
The PluginWatcher class defines methods to obtain or set the name of the workflow trigger to watch and
a timeout period.

public class PluginWatcher

extends java.lang.Object

implements java.io.Serializable

The PluginWatcher class defines the following methods:

Method Returns Description

getId() java.lang.String Obtains the ID of the trigger

getModuleName() java.lang.String Obtains the trigger module name

getTimeoutDate() Long Obtains the trigger timeout date

getTrigger() Void Obtains a trigger

setId(java.lang.String id) Void Sets the ID of the trigger

setTimeoutDate() Void Sets the trigger timeout date

Constructor
PluginWatcher(PluginTrigger trigger)

QueryResult Class
The QueryResult class contains the results of a find query made on the objects Orchestrator accesses
through the plug-in.

public class QueryResult

extends java.lang.Object

implements java.io.Serializable

Developing with VMware vRealize Orchestrator

VMware, Inc. 255

The totalCount value can be greater than the number of elements the QueryResult returns, if the total
number of results found exceeds the number of results the query returns. The number of results the query
returns is defined in the query syntax in the vso.xml file.

The QueryResult class defines the following methods:

Method Returns Description

addElement(java.lang.Object

element)

Void Adds an element to the QueryResult

addElements(java.util.List

elements)

Void Adds a list of elements to the
QueryResult

getElements() java.util.List Obtains elements from the plugged in
application

getTotalCount() Long Obtains a count of all the elements
available in the plugged in technology

isPartialResult() Boolean Determines whether the result obtained is
complete

removeElement(java.lang.Object

element)

Void Removes an element from the plugged in
technology

setElements(java.util.List

elements)

Void Sets elements in the plugged in
technology

setTotalCount(long totalCount) Void Sets the total number of elements
available in the plugged in technology

Constructors
n QueryResult()

n QueryResult(java.util.List ret)

n QueryResult(java.util.List elements, long totalCount)

SDKFinderProperty Class
The SDKFinderProperty class defines methods to obtain and set properties in the objects found in the
plugged in technology by the Orchestrator finder objects. The IDynanmicFinder.getProperties
method returns SDKFinderProperty objects.

public class SDKFinderProperty

extends java.lang.Object

The SDKFinderProperty class defines the following methods:

Method Returns Description

getAttributeName() java.lang.String Obtains an object attribute name

getBeanProperty() java.lang.String Obtains properties from a Java bean

getDescription() java.lang.String Obtains an object description

Developing with VMware vRealize Orchestrator

VMware, Inc. 256

Method Returns Description

getDisplayName() java.lang.String Obtains an object display name

getPossibleResultType() java.lang.String Obtains the possible types of result the
finder returns

getPropertyAccessor() java.lang.String Obtains an object property accessor

getPropertyAccessorTree() java.lang.Object Obtains an object property accessor tree

isHidden() Boolean Shows or hides the object

isShowInColumn() Boolean Shows or hides the object in the database
column

isShowInDescription() Boolean Shows or hides the object description

setAttributeName(java.lang.String

attributeName)

Void Sets an object attribute name

setBeanProperty(java.lang.String

beanProperty)

Void Sets properties in a Java bean

setDescription(java.lang.String

description)

Void Sets an object description

setDisplayName(java.lang.String

displayName)

Void Sets an object display name

setHidden(boolean hidden) Void Show or hide the object

setPossibleResultType(java.lang.St

ring possibleResultType)

Void Sets the possible types of result the finder
returns

setPropertyAccessor(java.lang.Stri

ng propertyAccessor)

Void Sets an object property accessor

setPropertyAccessorTree(java.lang.

Object propertyAccessorTree)

Void Sets an object property accessortree

setShowInColumn(boolean

showInTable)

Void Show or hide the object in the database
column

setShowInDescription(boolean

showInDescription)

Void Show or hide the object description

Constructor
SDKFinderProperty(java.lang.String attributeName, java.lang.String displayName,

java.lang.String beanProperty, java.lang.String propertyAccessor)

PluginExecutionException Class
The PluginExecutionException class returns an error message if the plug-in encounters an exception
when it runs an operation.

public class PluginExecutionException

extends java.lang.Exception

implements java.io.Serializable

Developing with VMware vRealize Orchestrator

VMware, Inc. 257

The PluginExecutionException class inherits the following methods from class
java.lang.Throwable:

fillInStackTrace, getCause, getLocalizedMessage, getMessage, getStackTrace, initCause,
printStackTrace, printStackTrace, printStackTrace, setStackTrace,
toStringfillInStackTrace, getCause, getLocalizedMessage, getMessage, getStackTrace,
initCause, printStackTrace

Constructor
PluginExecutionException(java.lang.String message)

PluginOperationException Class
The PluginOperationException class handles errors encountered during a plug-in operation.

public class PluginOperationException

extends java.lang.RuntimeException

implements java.io.Serializable

The PluginOperationException class inherits the following methods from class
java.lang.Throwable:

fillInStackTrace, getCause, getLocalizedMessage, getMessage, getStackTrace, initCause,
printStackTrace, printStackTrace, printStackTrace, setStackTrace, toString

Constructor
PluginOperationException(java.lang.String message)

HasChildrenResult Enumeration
The HasChildrenResult Enumeration declares whether a given parent has children. The
IPluginFactory.hasChildrenInRelation method returns HasChildrenResult objects.

public enum HasChildrenResult

extends java.lang.Enum<HasChildrenResult>

implements java.io.Serializable

The HasChildrenResult enumeration defines the following constants:

n public static final HasChildrenResult Yes

n public static final HasChildrenResult No

n public static final HasChildrenResult Unknown

The HasChildrenResult enumeration defines the following methods:

Developing with VMware vRealize Orchestrator

VMware, Inc. 258

Method Returns Description

getValue() int Returns one of the following values:

1 Parent has children

-1 Parent has no children

0 Unknown, or invalid
parameter

valueOf(java.lang.String name) static HasChildrenResult Returns an enumeration constant of this
type with the specified name. The String
must match exactly an identifier used to
declare an enumeration constant of this
type. Do not use whitespace characters in
the enumeration name.

values() static HasChildrenResult[] Returns an array containing the constants
of this enumeration type, in the order they
are declared. This method can iterate over
constants as follows:

for (HasChildrenResult c :
HasChildrenResult.values())
System.out.println(c);

The HasChildrenResult enumeration inherits the following methods from class java.lang.Enum:

clone, compareTo, equals, finalize, getDeclaringClass, hashCode, name, ordinal, toString,
valueOf

ScriptingAttribute Annotation Type
The ScriptingAttribute annotation type annotates an attribute from an object in the plugged in
technology for use as a property in scripting.

@Retention(value=RUNTIME)

@Target(value={METHOD,FIELD})

public @interface ScriptingAttribute

The ScriptingAttribute annotation type has the following value:

public abstract java.lang.String value

ScriptingFunction Annotation Type
The ScriptingFunction annotation type annotates a method for use as a property in scripting.

@Retention(value=RUNTIME)

@Target(value={METHOD,CONSTRUCTOR})

public @interface ScriptingFunction

Developing with VMware vRealize Orchestrator

VMware, Inc. 259

The ScriptingFunction annotation type has the following value:

public abstract java.lang.String value

ScriptingParameter Annotation Type
The ScriptingParameter annotation type annotates a parameter for use as a property in scripting.

@Retention(value=RUNTIME)

@Target(value=PARAMETER)

public @interface ScriptingParameter

The ScriptingParameter annotation type has the following value:

public abstract java.lang.String value

Elements of the vso.xml Plug-In Definition File
The vso.xml file contains a set of standard elements. Some of the elements are mandatory while others
are optional. Each element has attributes that define values for the objects and operations you map to
Orchestrator objects and operations.

In addition, elements can have zero or more child elements. A child element further defines the parent
element. The same child element can appear in multiple parent elements. For example, the description
element has no child elements, but appears as a child element for many parent elements: module,
example, trigger, gauge, finder, constructor, method, object, and enumeration.

Each element definition that follows lists its attributes, parents and children.

module Element
A module describes a set of plug-in objects to make available to Orchestrator.

The module contains information about how data from the plugged-in technology maps to Java classes,
versioning, how to deploy the module, and how the plug-in appears in the Orchestrator inventory.

The <module> element is optional. The <module> element has the following attributes:

Attributes Value Description

name String Defines the type of all the <finder>
elements in the plug-in. Mandatory
attribute.

version Number The plug-in version number, for use when
reloading packages in a new version of
the plug-in. Mandatory attribute.

build-number Number The plug-in build number, for use when
reloading packages in a new version of
the plug-in. Mandatory attribute.

Developing with VMware vRealize Orchestrator

VMware, Inc. 260

Attributes Value Description

image Image file The icon to display in the Orchestrator
Inventory. Mandatory attribute.

display-name String The name that appears in the
Orchestrator Inventory. Optional attribute.

interface-mapping-allowed true or false VMware strongly discourages interface
mapping. Optional attribute.

Table 6‑3. Element Hierarchy

Parent Element Child Elements

None n <description>

n <installation>

n <configuration>

n <finder-datasources>

n <inventory>

n <finders>

n <scripting-objects>

n <enumerations>

description Element
The <description> elements provide descriptions of the elements of the plug-in that appear in the API
Explorer documentation.

You add the text that appears in the API Explorer documentation between the <description> and
</description> tags.

The <description> element is optional. The <description> element has no attributes.

Table 6‑4. Element Hierarchy

Parent Elements Child Elements

n <module>

n <example>

n <trigger>

n <gauge>

n <finder>

n <constructor>

n <method>

n <object>

n <enumeration>

None

deprecated Element
The <deprecated> element marks objects and methods that are deprecated in the API Explorer
documentation.

Developing with VMware vRealize Orchestrator

VMware, Inc. 261

You add the text that appears in the API Explorer documentation between the <deprecated> and
</deprecated> tags.

The <deprecated> element is optional. The <deprecated> element has no attributes.

Table 6‑5. Element Hierarchy

Parent Elements Child Elements

n <method>

n <object>

None

url Element
The <url> element provides a URL that points to external documentation about an object or
enumeration.

You provide the URL between the <url> and </url> tags.

The <url> element is optional. The <url> element has no attributes.

Table 6‑6. Element Hierarchy

Parent Elements Child Elements

n <enumeration>

n <object>

None

installation Element
The <installation> element allows you to install a package or run a script when the server starts.

The <installation> element is optional. The <installation> element has the following attributes:

Attributes Value Description

mode always, never, or version Setting the mode value results in the
following behavior when the Orchestrator
server starts:
n The action always runs
n The action never runs
n The action runs when the server

detects a newer version of the plug-in

Mandatory attribute.

Table 6‑7. Element Hierarchy

Parent Element Child Element

<module> <action>

action Element
The <action> element specifies the action that runs when the Orchestrator server starts.

Developing with VMware vRealize Orchestrator

VMware, Inc. 262

The <action> element attributes provide the path to the Orchestrator package or script that defines the
plug-in's behavior when it starts.

The <action> element is optional. A plug-in can have an unlimited number of <action> elements. The
<action> element has the following attributes.

Attributes Value Description

resource String The path to the Java package or script
from the root of the dar file. Mandatory
attribute.

type install-package or execute-script Either installs the specified Orchestrator
package in the Orchestrator server, or
runs the specified script. Mandatory
attribute.

Table 6‑8. Element Hierarchy

Parent Element Child Elements

<installation> None

finder-datasources Element
The <finder-datasources> element is the container for the <finder-datasource> elements.

The <finder-datasources> element is optional. The <finder-datasources> element has no
attributes.

Table 6‑9. Element Hierarchy

Parent Element Child Elements

<module> <finder-datasource>

finder-datasource Element
The <finder-datasource> element points to the Java class file of the IPluginAdaptor implementation
that you create for the plug-in.

You set how Orchestrator accesses the objects of the plugged-in technology in the <finder-
datasource> element. The <finder-datasource> element identifies the Java class of the plug-in
adapter that you create. The plug-in adapter class instantiates the plug-in factory that you create. The
plug-in factory defines the methods that find objects in the plugged-in technology. You can set timeouts in
the <finder-datasource> element for the finder method calls that the factory performs. Different
timeouts apply to the different finder methods from the IPluginFactory interface.

The <finder-datasource> element is optional. A plug-in can have an unlimited number of <finder-
datasources> elements. The <finder-datasource> element has the following attributes.

Developing with VMware vRealize Orchestrator

VMware, Inc. 263

Attributes Value Description

name String Identifies the data source in the <finder>
element datasource attributes.
Equivalent to an XML id. Mandatory
attribute.

adaptor-class Java class Points to the IPluginAdaptor
implementation you define to create the
plug-in adapter, for example,
com.vmware.plugins.sample.Adaptor.
Mandatory attribute.

concurrent-call true (default) or false Allows multiple users to access the
adapter at the same time. You must set
concurrent-call to false if the plug-in
does not support concurrent calls.
Optional attribute.

invoker-mode direct (default) or timeout Sets a timeout on the finder function. If set
to direct, calls to finder functions never
time out. If set to timeout, the
Orchestrator server applies the timeout
period that corresponds to the finder
method. Optional attribute.

anonymous-login-mode never (default) or always Passes or does not pass the user's
username and password to the plug-in.
Optional attribute.

timeout-fetch-relation Number; default 30 seconds Applies to calls from findRelation().
Optional attribute.

timeout-find-all Number; default 60 seconds Applies to calls from findAll(). Optional
attribute.

timeout-find Number; default 60 seconds Applies to calls from find(). Optional
attribute.

timeout-has-children-in-relation Number; default 2 seconds Applies to calls from
findChildrenInRelation(). Optional
attribute.

timeout-execute-plugin-command Number; default 30 seconds Applies to calls from
executePluginCommand(). Optional
attribute.

Table 6‑10. Element Hierarchy

Parent Element Child Elements

<finder-datasources> None

inventory Element
The <inventory> element defines the root of the hierarchical list for the plug-in that appears in the
Orchestrator client Inventory view and object selection dialog boxes.

Developing with VMware vRealize Orchestrator

VMware, Inc. 264

The <inventory> element does not represent an object in the plugged-in application, but rather
represents the plug-in itself as an object in the Orchestrator scripting API.

The <inventory> element is optional. The <inventory> element has the following attribute.

Attributes Value Description

type An Orchestrator object type The type of the <finder> element that
represents the root of the hierarchy of
objects. Mandatory attribute.

Table 6‑11. Element Hierarchy

Parent Element Child Elements

<module> None

finders Element
The <finders> element is the container for all the <finder> elements.

The <finders> element is optional. The <finders> element has no attributes.

Table 6‑12. Element Hierarchy

Parent Element Child Element

<module> <finder>

finder Element
The <finder> element represents in the Orchestrator client a type of object found through the plug-in.

The <finder> element identifies the Java class that defines the object the object finder represents. The
<finder> element defines how the object appears in the Orchestrator client interface. It also identifies the
scripting object that the Orchestrator scripting API defines to represent this object.

Finders act as an interface between object formats used by different types of plugged-in technologies.

The <finder> element is optional. A plug-in can have an unlimited number of <finder> elements. The
<finder> element defines the following attributes:

Attributes Value Description

type An Orchestrator object type Type of object represented by the finder.
Mandatory attribute.

datasource <finder-datasource name> attribute Identifies the Java class that defines the
object by using the datasource refid.
Mandatory attribute.

dynamic-finder Java method Defines a custom finder method you
implement in an IDynamicFinder
instance, to return the ID and properties of
a finder programmatically, instead defining
it in the vso.xml file. Optional attribute.

Developing with VMware vRealize Orchestrator

VMware, Inc. 265

Attributes Value Description

hidden true or false (default) If true, hides the finder in the
Orchestrator client. Optional attribute.

image Path to a graphic file A 16x16 icon to represent the finder in
hierarchical lists in the Orchestrator client.
Optional attribute.

java-class Name of a Java class The Java class that defines the object the
finder finds and maps to a scripting object.
Optional attribute.

script-object <scripting-object type> attribute The <scripting-object> type, if any, to
which to map this finder. Optional
attribute.

Table 6‑13. Element Hierarchy

Parent Element Child Elements

<finders> n <id>

n <description>

n <properties>

n <default-sorting>

n <inventory-children>

n <relations>

n <inventory-tabs>

n <events>

properties Element
The <properties> element is the container for <finder><property> elements.

The <properties> element is optional. The <properties> element has no attributes.

Table 6‑14. Element Hierarchy

Parent Element Child Element

<finder> <property>

property Element
The <property> element maps the found object's properties to Java properties or method calls.

You can call on the methods of the SDKFinderProperty class when you implement the plug-in factory to
obtain properties for the plug-in factory implementation to process.

You can show or hide object properties in the views in the Orchestrator client. You can also use
enumerations to define object properties.

The <property> element is optional. A plug-in can have an unlimited number of <property> elements.
The <property> element has the following attributes.

Developing with VMware vRealize Orchestrator

VMware, Inc. 266

Attributes Value Description

name Finder name The name the FinderResult uses to
store the element. Mandatory attribute.

display-name Finder name The displayed property name. Optional
attribute.

bean-property Property name You use the bean-property attribute to
identify a property to obtain using get and
set operations. If you identify a property
named MyProperty, the plug-in defines
getMyProperty and setMyProperty
operations.

You set one or the other of bean-
property or property-accessor, but
not both. Optional attribute.

property-accessor The method that obtains a property value
from an object

The property-accessor attribute allows
you to define an OGNL expression to
validate an object's properties.

You set one or the other of bean-
property or property-accessor, but
not both. Optional attribute.

show-in-column true (default) or false If true, this property shows in the
Orchestrator client results table. Optional
attribute.

show-in-description true (default) or false If true, this property shows in the object
description. Optional attribute.

hidden true or false (default) If true, this property is hidden in all
cases. Optional attribute.

linked-enumeration Enumeration name Links a finder property to an enumeration.
Optional attribute.

Table 6‑15. Element Hierarchy

Parent Element Child Elements

<properties> Child Elements

relations Element
The <relations> element is the container for <finder><relation> elements.

The <relations> element is optional. The <relations> element has no attributes.

Table 6‑16. Element Hierarchy

Parent Element Child Element

<finder> <relation>

Developing with VMware vRealize Orchestrator

VMware, Inc. 267

relation Element
The <relation> element defines how objects relate to other objects.

You define the relation name in the <relation> element.

The <relation> element is optional. A plug-in can have an unlimited number of <relation> elements.
The <relation> element has the following attributes.

Attributes Value Description

name Relation name A name for this relation. Mandatory
attribute.

type Orchestrator object type The type of the object that relates to
another object by this relation. Mandatory
attribute.

cardinality to-one or to-many Defines the relation between the objects
as one-to-one or one-to-many. Optional
attribute.

Table 6‑17. Element Hierarchy

Parent Element Child Elements

<relations> None

id Element
The <id> element defines a method to obtain the unique ID of the object that the finder identifies.

The <id> element is optional. The <id> element has the following attributes.

Attributes Value Description

accessor Method name The accessor attribute allows you to
define an OGNL expression to validate an
object's properties. Mandatory attribute.

Table 6‑18. Element Hierarchy

Parent Element Child Elements

<finder> None

inventory-children Element
The <inventory-children> element defines the hierarchy of the lists that show the objects in the
Orchestrator client Inventory view and object selection boxes.

The <inventory-children> element is optional. The <inventory-children> element has no
attributes.

Developing with VMware vRealize Orchestrator

VMware, Inc. 268

Table 6‑19. Element Hierarchy

Parent Element Child Element

<finder> <relation-link>

relation-link Element
The <relation-link> element defines the hierarchies between parent and child objects in the
Inventory tab.

The <relation-link> element is optional. A plug-in can have an unlimited number of <relation-
link> elements. The <relation-link> element has the following attribute.

Type Value Description

name Relation name A refid to a relation name. Mandatory
attribute.

Table 6‑20. Element Hierarchy

Parent Element Child Elements

<inventory-children> None

events Element
The <events> element is the container for the <trigger> and <gauge> elements.

The <events> element can contain an unlimited number of triggers or gauges.

The <events> element is optional. The <events> element has no attributes.

Table 6‑21. Element Hierarchy

Parent Element Child Elements

<finder> n <trigger>

n <gauge>

trigger Element
The <trigger> element declares the triggers you can use for this finder. You must implement the
registerEventPublisher() and unregisterEventPublisher() methods of IPluginAdaptor to set
triggers.

The <trigger> element is optional. The <trigger> element has the following attribute.

Type Value Description

name Trigger name A name for this trigger. Mandatory
attribute.

Developing with VMware vRealize Orchestrator

VMware, Inc. 269

Table 6‑22. Element Hierarchy

Parent Element Child Elements

<events> n <description>

n <trigger-properties>

trigger-properties Element
The <trigger-properties> element is the container for the <trigger-property> elements.

The <trigger-properties> element is optional. The <trigger-properties> element has no
attributes.

Table 6‑23. Element Hierarchy

Parent Element Child Element

<trigger> <trigger-property>

trigger-property Element
The <trigger-property> element defines the properties that identify a trigger object.

The <trigger-property> element is optional. A plug-in can have an unlimited number of <trigger-
property> elements. The <trigger-property> element has the following attributes.

Type Value Description

name Trigger name A name for the trigger. Optional attribute.

display-name Trigger name The name that displays in the
Orchestrator client. Optional attribute.

type Trigger type The object type that defines the trigger.
Mandatory attribute.

Table 6‑24. Element Hierarchy

Parent Element Child Elements

<trigger-properties> None

gauge Element
The <gauge> element defines the gauges you can use for this finder. You must implement
theregisterEventPublisher() and unregisterEventPublisher() methods of IPluginAdaptor to
set gauges.

The <gauge> element is optional. A plug-in can have an unlimited number of <gauge> elements. The
<gauge> element has the following attributes.

Developing with VMware vRealize Orchestrator

VMware, Inc. 270

Type Value Description

name Gauge name A name for the gauge. Mandatory
attribute.

min-value Number Minimum threshold. Optional attribute.

max-value Number Maximum threshold. Optional attribute.

unit Object type Object type that defines the gauge.
Mandatory attribute.

format String The format of the monitored value.
Optional attribute.

Table 6‑25. Element Hierarchy

Parent Element Child Element

<events> <description>

scripting-objects Element
The <scripting-objects> element is the container for the <object> elements.

The <scripting-objects> element is optional. The <scripting-objects> element has no attributes.

Table 6‑26. Element Hierarchy

Parent Element Child Element

<module> <object>

object Element
The <object> element maps the plugged-in technology's constructors, attributes, and methods to
JavaScript object types that the Orchestrator scripting API exposes.

See Naming Plug-In Objects for object naming conventions.

The <object> element is optional. A plug-in can have an unlimited number of <object> elements. The
<object> element has the following attributes.

Type Value Description

script-name JavaScript name Scripting name of the class. Must be
globally unique. Mandatory attribute.

java-class Java class The Java class wrapped by this
JavaScript class. Mandatory attribute.

create true (default) or false If true, you can create a new instance of
this class. Optional attribute.

strict true or false (default) If true, you can only call methods you
annotate or declare in the vso.xml file.
Optional attribute.

Developing with VMware vRealize Orchestrator

VMware, Inc. 271

Type Value Description

is-deprecated true or false (default) If true, the object maps a deprecated
Java class. Optional attribute.

since-version String Version since the Java class is
deprecated. Optional attribute.

Table 6‑27. Element Hierarchy

Parent Element Child Elements

<scripting-objects> n <description>

n <deprecated>

n <url>

n <constructors>

n <attributes>

n <methods>

n <singleton>

constructors Element
The <constructors> element is the container for the <object><constructor> elements.

The <constructors> element is optional. The <constructors> element has no attributes.

Table 6‑28. Element Hierarchy

Parent Element Child Element

<object> <constructor>

constructor Element
The <constructor> element defines a constructor method. The <constructor> method produces
documentation in the API Explorer.

The <constructor> element is optional. A plug-in can have an unlimited number of <constructor>
elements. The <constructor> element has no attributes.

Table 6‑29. Element Hierarchy

Parent Element Child Elements

<constructors> n <description>

n <parameters>

Constructor parameters Element
The <parameters> element is the container for the <constructor><parameter> elements.

The <parameters> element is optional. The <parameters> element has no attributes.

Developing with VMware vRealize Orchestrator

VMware, Inc. 272

Table 6‑30. Element Hierarchy

Parent Element Child Element

<constructor> <parameter>

Constructor parameter Element
The <parameter> element defines the constructor's parameters.

The <parameter> element is optional. A plug-in can have an unlimited number of <parameter>
elements. The <parameter> element has the following attributes.

Type Value Description

name String Parameter name to use in API
documentation. Mandatory attribute.

type Orchestrator parameter type Parameter type to use in API
documentation. Mandatory attribute.

is-optional true or false If true, value can be null. Optional
attribute.

since-version String Method version. Optional attribute.

Table 6‑31. Element Hierarchy

Parent Element Child Elements

<parameters> None

attributes Element
The <attributes> element is the container for the <object><attribute> elements.

The <attributes> element is optional. The <attributes> element has no attributes.

Table 6‑32. Element Hierarchy

Parent Element Child Element

<object> <attribute>

attribute Element
The <attribute> element maps the attributes of a Java class from the plugged-in technology to
JavaScript attributes that the Orchestrator JavaScript engine makes available.

The <attribute> element is optional. A plug-in can have an unlimited number of <attribute>
elements. The <attribute> element has the following attributes.

Developing with VMware vRealize Orchestrator

VMware, Inc. 273

Type Value Description

java-name Java attribute Name of the Java attribute. Mandatory
attribute.

script-name JavaScript object Name of the corresponding JavaScript
object. Mandatory attribute.

return-type String The type of object this attribute returns.
Appears in the API Explorer
documentation. Optional attribute.

Note If the JavaScript return type is
Properties, the supported underlying
Java implementations are
java.util.HashMap and
java.util.Hashtable.

read-only true or false If true, you cannot modify this attribute.
Optional attribute.

is-optional true or false If true, this field can be null. Optional
attribute.

show-in-api true or false If false, this attribute does not appear in
API documentation. Optional attribute.

is-deprecated true or false If true, the object maps a deprecated
attribute. Optional attribute.

since-version Number The version at which the attribute was
deprecated. Optional attribute.

Table 6‑33. Element Hierarchy

Parent Element Child Elements

<attributes> None

methods Element
The <methods> element is the container for the <object><method> elements.

The <methods> element is optional. The <methods> element has no attributes.

Table 6‑34. Element Hierarchy

Parent Element Child Element

<object> <method>

method Element
The <method> element maps a Java method from the plugged-in technology to a JavaScript method that
the Orchestrator JavaScript engine exposes.

The <method> element is optional. A plug-in can have an unlimited number of <method> elements. The
<method> element has the following attributes.

Developing with VMware vRealize Orchestrator

VMware, Inc. 274

Type Value Description

java-name Java method Name of the Java method signature with
argument types in parentheses, for
example, getVms(DataStore).
Mandatory attribute.

script-name JavaScript method Name of the corresponding JavaScript
method. Mandatory attribute.

return-type Java object type The type this method obtains. Optional
attribute.

Note If the JavaScript return type is
Properties, the supported underlying
Java implementations are
java.util.HashMap and
java.util.Hashtable.

static true or false If true, this method is static. Optional
attribute.

show-in-api true or false If false, this method does not appear in
API documentation. Optional attribute.

is-deprecated true or false If true, the object maps a deprecated
method. Optional attribute.

since-version Number The version at which the method was
deprecated. Optional attribute.

Table 6‑35. Element Hierarchy

Parent Element Child Elements

<methods> n <deprecated>

n <description>

n <example>

n <parameters>

example Element
The <example> element allows you to add code examples to Javascript methods that appear in the API
Explorer documentation.

The <example> element is optional. The <example> element has no attributes.

Table 6‑36. Element Hierarchy

Parent Element Child Elements

<method> n <code>

n <description>

Developing with VMware vRealize Orchestrator

VMware, Inc. 275

code Element
The <code> element provides example code that appears in the API Explorer documentation.

You provide the code example between the <code> and </code> tags. The <code> element is optional.
The <code> element has no attributes.

Table 6‑37. Element Hierarchy

Parent Element Child Elements

<example> None

Method parameters Element
The <parameters> element is the container for the <method><parameter> elements.

The <parameters> element is optional. The <parameters> element has no attributes.

Table 6‑38.

Parent Element Child Element

<method> <parameter>

Method parameter Element
The <parameter> element defines the method's input parameters.

The <parameter> element is optional. A plug-in can have an unlimited number of <parameter>
elements. The <parameter> element has the following attributes.

Type Value Description

name String Parameter name. Mandatory attribute.

type Orchestrator parameter type Parameter type. Mandatory attribute.

is-optional true or false If true, value can be null. Optional
attribute.

since-version String Method version. Optional attribute.

Table 6‑39. Element Hierarchy

Parent Element Child Element

<parameters> None

singleton Element
The <singleton> element creates a JavaScript scripting object as a singleton instance.

Developing with VMware vRealize Orchestrator

VMware, Inc. 276

A singleton object behaves in the same way as a static Java class. Singleton objects define generic
objects for the plug-in to use, rather than defining specific instances of objects that Orchestrator accesses
in the plugged-in technology. For example, you can use a singleton object to establish the connection to
the plugged-in technology.

The <singleton> element is optional. The <singleton> element has the following attributes.

Type Value Description

script-name JavaScript object Name of the corresponding JavaScript
object. Mandatory attribute.

datasource Java object The source Java object for this JavaScript
object. Mandatory attribute.

Table 6‑40. Element Hierarchy

Parent Element Child Element

<object> None

enumerations Element
The <enumerations> element is the container for the <enumeration> elements.

The <enumerations> element is optional. The <enumerations> element has no attributes.

Table 6‑41. Element Hierarchy

Parent Element Child Element

<module> <enumeration>

enumeration Element
The <enumeration> element defines common values that apply to all objects of a certain type.

If all objects of a certain type require a certain attribute, and if the range of values for that attribute is
limited, you can define the different values as enumeration entries. For example, if a type of object
requires a color attribute, and if the only available colors are red, blue, and green, you can define three
enumeration entries to define these three color values. You define entries as child elements of the
enumeration element.

The <enumeration> element is optional. A plug-in can have an unlimited number of <enumeration>
elements. The <enumeration> element has the following attribute.

Type Value Description

type Orchestrator object type Enumeration type. Mandatory attribute.

Developing with VMware vRealize Orchestrator

VMware, Inc. 277

Table 6‑42. Element Hierarchy

Parent Element Child Elements

<enumerations> n <url>

n <description>

n <entries>

entries Element
The <entries> element is the container for the <enumeration><entry> elements.

The <entries> element is optional. The <entries> element has no attributes.

Table 6‑43. Element Hierarchy

Parent Element Child Element

<enumeration> <entry>

entry Element
The <entry> element provides a value for an enumeration attribute.

The <entry> element is optional. A plug-in can have an unlimited number of <entry> elements. The
<entry> element has the following attributes.

Type Value Description

id Text The identifier that objects use to set the
enumeration entry as an attribute.
Mandatory attribute.

name Text The entry name. Mandatory attribute.

Table 6‑44. Element Hierarchy

Parent Element Child Elements

<entries> None

Best Practices for Orchestrator Plug-In Development
You can improve certain aspects of the Orchestrator plug-ins that you develop by understanding the
structure and content of plug-ins, as well as by understanding how to avoid specific problems.

n Approaches for Building Orchestrator Plug-Ins

You can use different approaches to build your Orchestrator plug-ins. You can start building a plug-in
layer by layer or you can start building all layers of the plug-in at the same time.

Developing with VMware vRealize Orchestrator

VMware, Inc. 278

n Types of Orchestrator Plug-Ins

By using plug-ins, you can integrate general-purpose libraries or utilities like XML or SSH, as well as
entire systems, such as vCloud Director, with Orchestrator. Depending on the technology that you
integrate with Orchestrator, plug-ins can be categorized as plug-ins for services, or general purpose
plug-ins, and plug-ins for systems.

n Plug-In Implementation

You can use certain helpful practices and techniques when you structure your plug-ins, implement
the required Java classes and JavaScript objects, develop the plug-in workflows and actions, as well
as provide the workflow presentation.

n Recommendations for Orchestrator Plug-In Development

Adhering to certain certain practices when developing the different components of your Orchestrator
plug-ins helps you to improve the quality of the plug-ins.

n Documenting Plug-In User Interface Strings and APIs

When you write user interface (UI) strings for Orchestrator plug-ins and the related API
documentation, follow the accepted rules of style and format.

Approaches for Building Orchestrator Plug-Ins
You can use different approaches to build your Orchestrator plug-ins. You can start building a plug-in
layer by layer or you can start building all layers of the plug-in at the same time.

For information about plug-in layers, see Structure of an Orchestrator Plug-In.

Bottom-Up Plug-In Development
A plug-in can be built layer by layer using bottom-up development approach.

Bottom-up development approach builds the plug-in layer by layer starting from the lower level layers and
continuing with the higher level layers. When this approach is mixed with an interactive and iterative
development approach, then part or whole layer is delivered for each iteration. At the end of the N
iterations the plug-in is completely finished.

Developing with VMware vRealize Orchestrator

VMware, Inc. 279

Figure 6‑3. Bottom-up plug-in development

High level workflow
Iteration n

Iteration 1

Building block workflows

Action

Scripting objects

Wrapping classes

Infrastructure classes

An advantage of the bottom-up plug-in development approach is that development is focused on one
layer at a time.

Consider the following disadvantages of bottom-up plug-in development approach.

n The progress of the plug-in development is difficult to show until some insertions are completed.

n It does not fit very well in an Agile development practices.

The bottom-up development process is considered good enough for small plug-ins, with reduced or non-
existent set of wrapping classes, scripting objects, actions, or workflows.

Top-Down Plug-In Development
A plug-in can be built by slicing it into top-down functionality, using top-down development approach.

When the top-down approach is mixed with an Agile development process, new functionality is delivered
for each iteration. As a result, at the end of the iteration N the plug-in is completely implemented.

Developing with VMware vRealize Orchestrator

VMware, Inc. 280

Figure 6‑4. Top-down plug-in development

High level workflow

Iteration nIteration 1

Building block workflows

Action

Scripting objects

Wrapping classes

Infrastructure classes

The top-down plug-in development approach has the following advantages.

n The progress of the plug-in development is easy to show from the first iteration because new
functionality is completed for each iteration and the plug-in can be released and used after every
iteration.

n Completing a vertical slice of functionality allows for very clearly defined success criteria and
definition of what has been done, as well as better communication between developers, product
management, and quality assurance (QA) engineers.

n Allows the QA engineers to start testing and automating from the beginning of the development
process. Such an approach results in valuable feedback and decreases the overall project delivery
time frame.

A disadvantage of the top-down plug-in development approach is that the development is in progress on
different layers at the same time.

You should apply the top-down plug-in development process for most plug-ins. It is appropriate for plug-
ins with dynamic requirements.

Types of Orchestrator Plug-Ins
By using plug-ins, you can integrate general-purpose libraries or utilities like XML or SSH, as well as
entire systems, such as vCloud Director, with Orchestrator. Depending on the technology that you
integrate with Orchestrator, plug-ins can be categorized as plug-ins for services, or general purpose plug-
ins, and plug-ins for systems.

Plug-Ins for Services
Plug-ins for services or general-purpose plug-ins provide functionality that can be considered as a service
inside Orchestrator.

Developing with VMware vRealize Orchestrator

VMware, Inc. 281

Figure 6‑5. Architecture of plug-ins for services

Orchestrator Plug-In
core

Adaptor Generic
library

System

Service Plug-In

Plug-ins for services expose generic libraries or utilities to Orchestrator, such as XML, SSH, or SOAP. For
example, the following plug-ins that are available in Orchestrator are plug-ins for services.

JDBC plug-in Lets you use any database within a workflow.

Mail plug-in Lets you send emails within a workflow.

SSH plug-in Lets you open SSH connections and run commands within a workflow.

XML plug-in Lets you manage XML documents within a workflow.

Plug-ins for services have the following characteristics.

Complexity Plug-ins for services have low to medium levels of complexity. Plug-ins for
services expose a specific library, or part of a library, inside Orchestrator so
as to provide concrete functionality. For example, the XML plug-in adds an
implementation of a Document Object Model (DOM) XML parser to the
Orchestrator JavaScript API.

Size Plug-ins for services are relatively small in size. They require the same
basic set of classes as for all plug-ins, and other classes that offer new
scripting objects to add new functionality.

Inventory Plug-ins for services require a small inventory of objects to work, or they do
not require an inventory at all. Plug-ins for services have a generic and
small object model, and so, they do not need to show this model inside the
Orchestrator inventory.

Plug-Ins for Systems
Plug-ins for systems connect the Orchestrator workflow engine to an external system so that you can
orchestrate the external system.

Following are examples for plug-ins for systems.

vCenter Server plug-in Lets you manage vCenter Server instances using workflows.

vCloud Director plug-in Lets you interact with a vCloud Director installation within a workflow.

Cisco UCSM plug-in Lets you interact with Cisco entities within a workflow.

Developing with VMware vRealize Orchestrator

VMware, Inc. 282

Following are the main characteristics of plug-ins for systems.

Complexity Plug-ins for systems have a higher level of complexity than general-
purpose plug-ins, because the technologies that they expose are relatively
complex. Plug-ins for systems must represent all the elements of the
external system inside Orchestrator to interact with the external system and
offer its functionality in Orchestrator. If the external system provides an
integration mechanism, you can use it to expose the functionality of the
system in Orchestrator more easily. However, besides representing the
elements of the external system in Orchestrator, plug-ins for systems might
also need to offer high scalability, provide a caching mechanism, deal with
events and notifications, and so on.

Size Plug-ins for system are medium to big in size. Plug-ins for systems require
many classes apart from the basic set of classes because usually they offer
a large number of scripting objects. Plug-ins for systems might require
some other helper and auxiliary classes that will interact with them.

Inventory Usually, plug-ins for systems have a large number of objects, and you must
expose these objects properly in the inventory so that you can locate them
and work with them easily in Orchestrator. Because of the large number of
objects that plug-ins for systems need to expose, you should build auxiliary
tool or a process to auto-generate as much code as possible for the plug-in.
For example, the vCenter Server plug-in provides such a tool.

Plug-Ins for Object-Oriented Systems
Object-oriented systems offer an interaction mechanism that is based on objects and RPC.

The most widely used model for an object-oriented system is the Web service model that uses SOAP.
The objects inside this model have a set of attributes that are related to the state of the objects and offer a
set of remote methods that are invoked on the target system side.

Figure 6‑6. Plug-Ins for Object-Oriented Systems

Orchestrator Plug-In
core

Adaptor System

Object-oriented system Plug-In

Specific
library

e.g.
WSDL

Generation

Developing with VMware vRealize Orchestrator

VMware, Inc. 283

You can consider the following when you implement plug-ins for object-oriented systems.

n If you use SOAP, you can use the WSDL file to generate a set of classes that combine the object
model and the communication mechanism.

n This object model is almost everything that you have to expose inside Orchestrator.

Plug-Ins for Resource-Oriented Systems
Resource-oriented systems provide an interaction mechanism that is based on resources and simple
operations that use HTTP methods.

The most representative model for a resource-oriented system is the REST model, combined for example
with XML. The objects inside this model have a set of attributes that are related to their state. To invoke
methods on the target system (communication mechanism), you must use the standard HTTP methods
such as GET, POST, PUT, and so on, and follow some conventions.

Figure 6‑7. Plug-ins for resource-oriented systems

System

Resource-oriented system Plug-In

Comm.
library

Model
library

e.g.
XSD

Generation

Orchestrator Plug-In
core

Adaptor

You can consider the following when you develop plug-ins for resource-oriented systems.

n If you use REST or only HTTP with XML, you get one or more XML schema files to be able to read
and write messages. From these schemas, you can generate a set of classes that define the object
model. This set of classes only defines the state of the objects because the operations are defined
implicitly with the HTTP methods, for example, as defined in the vCloud Director plug-in, or explicitly
with some specific XML messages, such as the Cisco UCSM plug-in.

n You need to implement the communication mechanism in another set of classes. This set of classes
defines a new object model that interacts with the original object model. The object model for the
communication mechanism consists of objects and methods only.

n You can expose both the original object model and the object model for the communication
mechanism inside Orchestrator. This might add some complexity depending on how both object
models are exposed, and on whether you are merging related objects from both sides (to simulate an
object-oriented system) or keeping them separate.

Developing with VMware vRealize Orchestrator

VMware, Inc. 284

Plug-In Implementation
You can use certain helpful practices and techniques when you structure your plug-ins, implement the
required Java classes and JavaScript objects, develop the plug-in workflows and actions, as well as
provide the workflow presentation.

n Project Structure

You can apply a standard structure for the projects of your Orchestrator plug-ins.

n Project Internals

You can apply certain approaches when implementing your plug-in, for example, cache objects,
bring objects in background, clone objects, and so on. By following such approaches, you can
improve the performance of your plug-ins, avoid concurrency problems, and improve the
responsiveness of the Orchestrator client.

n Workflow Internals

You can implement a workflow to monitor long-time operations that your Orchestrator plug-in
performs.

n Workflows and Actions

To ease the workflow development and usage, you can use certain good practices.

n Workflow Presentation

When you create the presentation of a workflow, you should apply certain structure and rules.

Project Structure
You can apply a standard structure for the projects of your Orchestrator plug-ins.

You can use a standard Maven structure with modules for your plug-in projects to bring clarity in where
every piece of functionality resides.

Table 6‑45. Structure of a Plug-In Project

Module Description

/myAwesomePlugin-plugin The root of the plug-in project.

/o11nplugin-myAwesomePlugin The module that composes the final plug-in DAR file.

/o11nplugin-myAwesomePlugin-config The module that contains the plug-in configuration Web
application. It generates a standard WAR file.

/o11nplugin-myAwesomePlugin-core The module that contains all the classes that implement any of
the standard Orchestrator plug-in interfaces and other auxiliary
classes that they use. It generates a standard JAR file.

Developing with VMware vRealize Orchestrator

VMware, Inc. 285

Table 6‑45. Structure of a Plug-In Project (Continued)

Module Description

/o11nplugin-myAwesomePlugin-model The module that contains all the classes that help you integrate
the third-party technology with Orchestrator through the plug-in.
The classes should not contain any direct reference to the
standard Orchestrator plug-in APIs.

/o11nplugin-myAwesomePlugin-package The module that imports an external Orchestrator package file
with actions and workflows to include it inside the final plug-in
DAR file. The module is optional.

Project Internals
You can apply certain approaches when implementing your plug-in, for example, cache objects, bring
objects in background, clone objects, and so on. By following such approaches, you can improve the
performance of your plug-ins, avoid concurrency problems, and improve the responsiveness of the
Orchestrator client.

Cache Objects

Your plug-in can interact with a remote service, and this interaction is provided by local objects that
represent remote objects on the service side. To achieve good performance of the plug-in as well as good
responsiveness of the Orchestrator UI, you can cache the local objects instead of getting them every time
from the remote service. You can consider the scope of the cache, for example, one cache for all the
plug-in clients, one cache per user of the plug-in, and one cache per user of the third-party service. When
implemented, your caching mechanism is integrated with the plug-in interface for finding and invalidating
objects.

Bring Objects in Background

If you have to show large lists of objects in the plug-in inventory and do not have a fast way to retrieve
those objects, you can bring objects in background. You can bring object in background, for example, by
having objects with two states, fake and loaded. Assume that the fake objects are very easy to create
and provide the minimal information that you have to show in the inventory, such as name and ID. Then it
would be possible to always return fake objects, and when all the information (the real object) is really
needed, the using entity or the plug-in can invoke a method load automatically to get the real object. You
can even configure the process of loading objects to start automatically after the fake objects are
returned, to anticipate the actions of the using entity.

Clone Objects to Avoid Concurrency Problems

If you use a cache for your plug-in, you have to clone objects. Use of a cache that always returns the
same instance of an object to every entity that requests it can have unwanted effects. For example, entity
A requests object O, and the entity views the object in the inventory with all its attributes. At the same
time, entity B requests object O as well, and entity A runs a workflow that starts changing the attributes of
object O. At the end of its run, the workflow invokes the object's update method to update the object on
the server side. If entity A and entity B get the same instance of object O, entity A views in the inventory
all the changes that entity B performs, even before the changes are committed on the server side. If the

Developing with VMware vRealize Orchestrator

VMware, Inc. 286

run goes fine, it should not be a problem, but if the run fails, the attributes of object O for entity A are not
reverted. In such a case, if the cache (the find operations of the plug-in) returns a clone of the object
instead of the same instance all the time, each using entity views and modifies its own copy, avoiding
concurrency issues, at least within Orchestrator.

Notify Changes to Others

Problems might occur when you use a cache and clone objects simultaneously. The biggest one is that
the object that is using entity views might not be the latest version that is available for the object. For
example, if an entity displays the inventory, the objects are loaded once, but at the same time, if another
entity is changing some of the objects, the first entity does not view the changes. To avoid this problem,
you can use the PluginWatcher and IPluginPublisher methods from the Orchestrator plug-in API to
notify that something has changed to allow other instances of Orchestrator clients to see the changes.
This also applies to a unique instance of the Orchestrator client when changes from one object from the
inventory affect other objects of the inventory, and they need to be notified too. The operations that are
prone to use notifications are adding, updating, and deleting objects when these objects, or some
properties of these objects, are shown in the inventory.

Enable Finding Any Object at Any Time

You must implement the find method of the IPluginFactory interface to find objects just by type and
ID. The find method can be invoked directly after restarting Orchestrator and resuming a workflow.

Simulate a Query Service if You Do Not Have One

The Orchestrator client can require querying for some objects in specific cases or showing them not as a
tree but as a list or a table, for example. This means that your plug-in must be able to query for some set
of objects at any moment. If the third-party technology offers a query service, you need to adapt and use
this service. Otherwise, you should be able to simulate a query service, despite of the higher complexity
or the lower performance of the solution.

Find Methods Should Not Return Runtime Exceptions

The methods from the IPluginFactory interface that implement the searches inside the plug-in should
not throw controlled or uncontrolled runtime exceptions. This might be the cause of strange validation
error failures when a workflow is running. For example, between two nodes of a workflow, the find
method is invoked if an output from the first node is an input of the second node. At that moment, if the
object is not found because of any runtime exception, you might get no more information than a validation
error in the Orchestrator client. After that, it depends on how the plug-in logs the exceptions in to get more
or less information inside the log files.

Workflow Internals
You can implement a workflow to monitor long-time operations that your Orchestrator plug-in performs.

You can implement a workflow for monitoring long-time running operations such as task monitoring. This
workflow can be based on Orchestrator triggers and waiting events. You must consider that a workflow
that is blocked waiting for a task can be resumed as soon as the Orchestrator server starts. The plug-in
must be able to get all the required information to resume the monitoring process properly.

Developing with VMware vRealize Orchestrator

VMware, Inc. 287

The monitoring workflow or the task that it can use internally should provide a mechanism to specify the
polling rate and a possible timeout.

The process of debugging a piece of scripting code inside a workflow is not easy, especially if the code
does not invoke any Java code. Because of this, sometimes the only option is to use the logging methods
offered by the default Orchestrator scripting objects.

Workflows and Actions
To ease the workflow development and usage, you can use certain good practices.

Start Developing Workflows as Building Blocks

A building block can be a simple workflow that requires a few input parameters and returns a simple
output. If you have a rich set of building blocks, you can create higher-level workflows easily, and you can
offer a better set of tools for composing complex workflows.

Create Higher-Level Workflows Based on Smaller Components

If you have to develop a complex workflow with several inputs and internal steps, you can split it into
smaller and simpler building block workflows and actions.

Create Actions Whenever Possible

You can create actions to achieve additional flexibility when you develop workflows.

n To create complex objects or parameters for scripting methods easily

n To avoid repeating common pieces of code all the time

n To perform UI validations

Workflows Should Invoke Actions Whenever Possible

Actions can be invoked directly as nodes inside the workflow schema. This can keep the workflow
schema simpler, because you do not need to add scripting code blocks to invoke a single action.

Fill In the Expected Information

Provide information for every element of a workflow or an action.

n Provide a description of the workflow or action.

n Provide a description of the input parameters.

n Provide a description of the outputs.

n Provide a description of the attributes for the workflows.

Keep the Version Information Updated

When you version plug-ins, add meaningful comments with information such as major updates to the
plug-in, important implementation details, and so on.

Developing with VMware vRealize Orchestrator

VMware, Inc. 288

Workflow Presentation
When you create the presentation of a workflow, you should apply certain structure and rules.

Use the following properties for the workflow inputs in the workflow presentation.

Table 6‑46. Properties for Workflow Inputs

Properties Usage

Show in Inventory Use this property to help the user to run a workflow from the
inventory view.

Specify a root object to be shown in the chooser Use this property to help the user to select inputs. If the root
object can be refreshed in the presentation, is an attribute, or is
retrieved by an object method, you need to create or set an
appropriate action to refresh the object in the presentation.

Maximum string length Use this property for long strings such as names, descriptions,
file paths, and so on.

Minimum string length Use this property to avoid empty strings from the testing tools.

Custom validation Implement non-simple validations with actions.

Organize the inputs with steps and display group. Such organization helps the user identify and
distinguish all the input parameters of a workflow.

Recommendations for Orchestrator Plug-In Development
Adhering to certain certain practices when developing the different components of your Orchestrator plug-
ins helps you to improve the quality of the plug-ins.

Table 6‑47. Useful Practices in Plug-In Implementation

Component Item Description

General Access to third-party API Plug-ins should provide simplified methods for accessing the third-
party API wherever possible.

Interface Plug-ins should provide a coherent and standard interface for
users, even when the API does not.

Action Scripting objects You should create actions for every creation, modification, deletion,
and all other methods available for a scripting object.

Description The description of an action should describe what the action does
instead of how it works.

Scripting When you use scripting to get the properties or methods of an
object, you can check whether the object value is different from
null or undefined.

Deprecation If an action is deprecated, the comment or the throw statement
should indicate the replacement action, or the action should call a
new replacement action so that solutions that are built on the
deprecated version of the action do not fail.

Workflow User interface operations in the
orchestrated technology

You should create a workflow for every operation that is available in
the user interface of the orchestrated technology.

Developing with VMware vRealize Orchestrator

VMware, Inc. 289

Table 6‑47. Useful Practices in Plug-In Implementation (Continued)

Component Item Description

Description The description of a workflow should describe what the workflow
does instead of how it works.

Presentation property mandatory
input

You must set the mandatory input property for all mandatory
workflow inputs.

Presentation property default
value

If you develop a workflow that configures an entity, the workflow
presentation should load the default configuration values for this
entity. For example, if you develop a workflow that is named Host
Configuration, the presentation of the workflow must load the
default values of the host configuration.

Presentation property Show in
inventory

You must set the Show in inventory property so that you have
contextual workflows on inventory objects.

Presentation property specify a
root parameter

You should use this property in workflows when it is not necessary
to browse the inventory from the tree root .

Workflow validation You must validate workflows and fix all errors.

Object creation All workflows that create a new object should return the new object
as an output parameter.

Deprecation If a workflow is deprecated, the comment or the throw statement
should indicate the replacement workflow, or the deprecated
workflow should call a new replacement workflow to ensure that
solutions that are built on previous versions of the workflow do not
fail.

Inventory Host disconnection If your inventory contains a connection to a host and this host
becomes unavailable, you should indicate that the host is
disconnected. You can do this either by renaming the root object by
appending - disconnected or by removing the tree of objects
underneath this object, in the same manner as the vCloud Director
plug-in does.

Select value as list property An inventory object must be selectable as treeview or a list.

Host manager If the plug-in implements a host object for the target system, then a
parent hostmanager root object should exist with properties for
adding, removing, or editing host properties.

Getting or updating objects If a query service is running on the orchestrated technology, you
should use it for getting multiple objects.

Child discovery If you need to retrieve child objects separately, the retrieval process
must be multithreaded and non-blocking on a single error.

Orchestrator object change All workflows that can change the state of an element in the
inventory must update the inventory to avoid having objects out of
synchronization.

Developing with VMware vRealize Orchestrator

VMware, Inc. 290

Table 6‑47. Useful Practices in Plug-In Implementation (Continued)

Component Item Description

External object change You can use a notification mechanism to notify about changes in
the orchestrated technology that occur as a result of operations that
are performed outside of Orchestrator. In case such operations lead
to removal of objects from the orchestrated technology, you must
refresh the inventory accordingly to avoid failures or loss of data.
For example, if a virtual machine is deleted from vCenter Server,
the vCenter Server plug-in updates the inventory to remove the
object of the removed virtual machine.

Finder object Finder objects should have properties that can be used to
differentiate objects. These are typically the properties that are
present in the user interface.

Scripting object Implementation The equals method must be implemented to insure that ==
operation works on the same object as in some cases the object
might have two instances.

Plug-in object properties Objects that have parent objects should implement a parent
property.

Plug-in object properties Objects that have child objects should implement GET methods that
return arrays of child objects.

Inventory objects Inventory objects should be searchable with Server.find.

All inventory objects should be serializable so they can be used as
input or output attributes in a workflow.

Constructor and methods In most cases, scriptable objects should have either a constructor,
or should be returned by other object attributes or methods.

Object ID Objects that have an ID that is issued from an external system
should use an internal ID to ensure that no ID duplication occurs
when you are orchestrating more than one server.

Searching for objects search or find methods should implement a filter so that the
specified name or ID can be found instead of just all objects. For
example, the Orchestrator server has a Server.FindForId
method that allows finding a plug-in object by its ID. To do this, the
method must be implemented for each findable object in the plug-
in.

Trigger If possible, triggers should be available for objects that change so
that Orchestrator can have policies triggered on various events. For
example, to determine when a new virtual machine is added,
powered on, powered off, and so on, Orchestrator can monitor a
trigger or an event in the vCenter plug-in on the Datacenter
object.

Object properties Objects that reside in other plug-ins should have properties for
being easily converted from one plug-in object to another. For
example, virtual machine objects need to have a moref (managed
object reference ID).

Session manager If you are connecting to a remote server that can have a different
session, the plug-in should implement a shared session and a
session per user.

Developing with VMware vRealize Orchestrator

VMware, Inc. 291

Table 6‑47. Useful Practices in Plug-In Implementation (Continued)

Component Item Description

Trigger Trigger All long operations and blocking methods should be able to start
asynchronously with a task returned, and generate a trigger event
on completion.

Enumerations Enums Enumerations for a given type should have an inventory object that
allows selecting from the different values in the enumeration.

Logging Logs Methods should implement different log levels.

Versioning Plug-in version The plug-in version should follow standards and be updated along
with the plug-in update.

API documentation Methods Methods that are described in the API documentation should never
throw the exception no xyz method / property on an object.
Instead, methods should return null when no properties are
available and be documented with details when these properties
are not available.

vso.xml All objects, methods, and properties must be documented in
vso.xml.

Documenting Plug-In User Interface Strings and APIs
When you write user interface (UI) strings for Orchestrator plug-ins and the related API documentation,
follow the accepted rules of style and format.

General Recommendations
n Use the official names for VMware products involved in the plug-in. For example, use the official

names for the following products and VMware terminology.

Correct Term Do Not Use

vCenter Server VC or vCenter

vCloud Director vCloud

n End all workflow descriptions with a period. For example, Creates a new Organization. is a
workflow description.

n Use a text editor with a spell checker to write the descriptions and then move them to the plug-in.

n Ensure that the name of the plug-in exactly matches the approved third-party product name that it is
associated with.

Workflows and Actions
n Write informative descriptions. One or two sentences are enough for most of the actions and

workflows.

n Higher-level workflows might include more extensive descriptions and comments.

Developing with VMware vRealize Orchestrator

VMware, Inc. 292

n Start descriptions with a verb, for example, Creates…. Do not use self-referential language like This
workflow creates.

n Put a period at the end of descriptions that are complete sentences.

n Describe what a workflow or action does instead of how it is implemented.

n Workflows and actions usually are included in folders and packages. Include a small description for
these folders and packages as well. For example, a workflow folder can have a description similar to
Set of workflows related to vApp Template management.

Parameters of Workflows and Actions
n Start workflow and action descriptions with a descriptive noun phrase, for example, Name of. Do not

use a phrase like It's the name of.

n Do not put a period at the end of parameter and action descriptions. They are not complete
sentences.

n Input parameters of workflows must specify a label with appropriate names in the presentation view.
In many cases, you can combine related inputs in a display group. For example, instead of having
two inputs with the labels Name of the Organization and Full name of the Organization, you can
create a display group with the label Organization and place the inputs Name and Full name in the
Organization group.

n For steps and display groups, add descriptions or comments that appear in the workflow presentation
as well.

Plug-In API
n The documentation of the API refers to all of the documentation in the vso.xml file and the Java

source files.

n For the vso.xml file, use the same rules for the descriptions of finder objects and scripting objects
with their methods that you use for workflows and actions. Descriptions of object attributes and
method parameters use the same rules as the workflow and action parameters.

n Avoid special characters in the vso.xml file and include the descriptions inside a <![CDATA[insert
your description here!]]> tag.

n Use the standard Javadoc style for the Java source files.

Developing with VMware vRealize Orchestrator

VMware, Inc. 293

Creating Plug-Ins by Using
Maven 7
The Orchestrator Appliance provides a repository containing Maven artifacts, which you can use to create
plug-in projects from archetypes.

The repository is hosted at https://orchestrator_server:8281/vco-repo/ or
http://orchestrator_server:8280/vco-repo/, in case your Maven version does not support the
HTTPS protocol. This location is embedded in the pom.xml file of standard Orchestrator Maven plug-in
projects. You can only access the repository if you have deployed the Orchestrator Appliance.

This chapter includes the following topics:

n Create an Orchestrator Plug-In with Maven from an Archetype

n Maven Archetypes

n Maven-Based Plug-In Development Best Practices

Create an Orchestrator Plug-In with Maven from an
Archetype
You can create a standard Orchestrator Maven plug-in from an archetype by running commands in the
command-line interface.

Prerequisites

n Verify that you have installed Orchestrator Appliance 5.5.1 or later.

n Verify that you have installed Apache Maven 3.0.4 or 3.0.5.

Procedure

1 Create a project in interactive mode by choosing an archetype.

mvn archetype:generate -DarchetypeCatalog=https://orchestrator_server:8281/vco-repo/archetype-

catalog.xml -DrepoUrl=https://orchestrator_server:8281/vco-repo -

Dmaven.repo.remote=https://orchestrator_server:8281/vco-repo -Dmaven.wagon.http.ssl.insecure=true -

Dmaven.wagon.http.ssl.allowall=true

Note You can only access the Maven repository if you have deployed the Orchestrator Appliance.

VMware, Inc. 294

2 (Optional) If you cannot access the repository over HTTPS, you can access it over HTTP. If you
access the repository over HTTP or have a valid SSL certificate, you can create a project without
using the -Dmaven.wagon.http.ssl.allowall=true flag.

mvn archetype:generate -DarchetypeCatalog=http://orchestrator_server:8280/vco-repo/archetype-

catalog.xml -DrepoUrl=http://orchestrator_server:8280/vco-repo -

Dmaven.repo.remote=http://orchestrator_server:8280/vco-repo -Dmaven.wagon.http.ssl.insecure=true

3 Navigate to the project directory and build the plug-in.

cd project_dir && mvn clean install -Dmaven.wagon.http.ssl.insecure=true -

Dmaven.wagon.http.ssl.allowall=true

If the build process is successful, the plug-in .dar file is generated in the DAR module's target/
directory.

Maven Archetypes
You can use a set of predefined Maven archetypes as templates for developing Orchestrator plug-ins.

The following table describes the default Maven archetypes available in Orchestrator.

Table 7‑1. Default Maven Archetypes

Archetype Description

com.vmware.o11n:o11n-plugin-archetype-simple com.vmware.o11n:o11n-plugin-archetype-simple

com.vmware.o11n:o11n-package-archetype A content-only Maven project, which can be used to keep
packages in source form for better interaction with RCS, diff,
post-processing, and so on.

com.vmware.o11n:o11n-client-archetype-rest A simple command-line tool, which communicates with the
Orchestrator REST API and calls a workflow.

com.vmware.o11n:o11n-plugin-archetype-inventory A plug-in that demonstrates inventory use. The plug-in
implements a repository, an adapter, and a factory for a single
type. The inventory is stored in a file on a disk.

com.vmware.o11n:o11n-archetype-inventory-annotation A plug-in whose vso.xml descriptor is generated on top of
annotations.

com.vmware.o11n:o11n-archetype-spring A plug-in that uses Spring-based SDK, provides a DI-enabled
environment, and adds higher-level services in comparison to
standard plug-in APIs.

com.vmware.o11n:o11n-plugin-archetype-modeldriven An archetype that generates a plug-in skeleton for building plug-
ins with ModelDriven.

Maven-Based Plug-In Development Best Practices
You can improve the process for delivering Orchestrator plug-ins created with Maven by performing a set
of tasks.

Developing with VMware vRealize Orchestrator

VMware, Inc. 295

Using a Repository Manager
If you are creating plug-ins in a larger organization, use an enterprise repository manager to set up the
default Orchestrator Appliance repository to be added as a proxy repository. Using a central repository
improves management and plug-in project collaboration. When you complete the first build in the new
repository, the repository manager caches the artifacts from the Orchestrator Appliance repository and
you can turn off the default repository.

Locking Workflows
After you verify that all workflows in your plug-in work as expected, lock them to prevent unauthorized
modifications. By locking workflows, you ensure that the basic functions of the plug-in cannot be
compromised. If users must modify a default workflow for a specific purpose, they can create a copy of
the original workflow and edit that copy.

There are two ways to produce release builds with locked workflows.

n Pass the -DallowedMask=vf parameter to Maven.

n Edit the pom.xml and change the value of the allowedMask parameter to vf.

<allowedMask>vf</allowedMask>

Using a Package-Signing Certificate
Use a self-signed certificate or a certificate signed by a Certificate Authority, to ensure the integrity and
authenticity of the plug-ins. Store the certificate in the keystore under the _dunesrsa_alias_ alias, by
importing it with the keytool in the JDK.

There are two ways to specify the path to the keystore file and the keystore password.

n Define the -DkeystoreLocation and -DkeystorePassword command-line parameters for the
MAVEN_OPTS variable.

n Edit the pom.xml file to insert the values manually. For example,

<keystore>path to the keystore file</keystore>

<storepass>keystore password</storepass>

If no keystore is imported, the .package file is signed with the archetype.keystore file.

Developing with VMware vRealize Orchestrator

VMware, Inc. 296

	Developing with VMware vRealize Orchestrator
	Contents
	Developing with VMware vRealize Orchestrator
	Developing Workflows
	Key Concepts of Workflows
	Workflow Parameters
	Workflow Attributes
	Workflow Schema
	Workflow Presentation
	Workflow Tokens

	Phases in the Workflow Development Process
	Best Practices for Developing Workflows
	Access Rights for the Orchestrator Client
	Testing Workflows During Development
	Creating and Editing a Workflow
	Create a Workflow
	Edit a Workflow
	Edit a Workflow from the Standard Library
	Workflow Editor Tabs

	Provide General Workflow Information
	Defining Attributes and Parameters
	Define Workflow Parameters
	Define Workflow Attributes
	Attribute and Parameter Naming Restrictions

	Workflow Schema
	View Workflow Schema
	Building a Workflow in the Workflow Schema
	Edit a Workflow Schema
	Copy Workflow Schema Elements
	Promote Input and Output Parameters
	Modify Search Results

	Schema Elements
	Schema Element Properties
	Edit the Global Properties of a Schema Element
	Schema Element Properties Tabs

	Links and Bindings
	Logical Flow of a Workflow
	Element Links
	Create Standard Path Links
	Data Flow of a Workflow
	Element Bindings
	Define Element Bindings

	Decisions
	Create Decision Element Links
	Delete a Linked Decision Element
	Create Workflow Branches Using Decisions

	Exception Handling
	Create Exception Bindings

	Using Error Handlers
	Add an Error Handler to a Workflow
	Add a Global Error Handler to a Workflow

	Foreach Elements and Composite Types
	Define a Foreach Element
	Define a Composite Type in a Foreach Element

	Add a Switch Activity to a Workflow

	Developing Plug-Ins
	Overview of Plug-Ins
	Structure of an Orchestrator Plug-In
	Exposing an External API to Orchestrator
	Components of a Plug-In
	Role of the vso.xml File
	Roles of the Plug-In Adapter
	Roles of the Plug-In Factory
	Role of Finder Objects
	Role of Scripting Objects
	Role of Event Handlers

	Contents and Structure of a Plug-In
	Defining the Application Mapping in the vso.xml File
	Format of the vso.xml Plug-In Definition File
	Naming Plug-In Objects
	Plug-In Object Naming Conventions
	File Structure of the Plug-In

	Orchestrator Plug-In API Reference
	IAop Interface
	IDynamicFinder Interface
	IPluginAdaptor Interface
	IPluginEventPublisher Interface
	IPluginFactory Interface
	IPluginNotificationHandler Interface
	IPluginPublisher Interface
	WebConfigurationAdaptor Interface
	PluginTrigger Class
	PluginWatcher Class
	QueryResult Class
	SDKFinderProperty Class
	PluginExecutionException Class
	PluginOperationException Class
	HasChildrenResult Enumeration
	ScriptingAttribute Annotation Type
	ScriptingFunction Annotation Type
	ScriptingParameter Annotation Type

	Elements of the vso.xml Plug-In Definition File
	module Element
	description Element
	deprecated Element
	url Element
	installation Element
	action Element
	finder-datasources Element
	finder-datasource Element
	inventory Element
	finders Element
	finder Element
	properties Element
	property Element
	relations Element
	relation Element
	id Element
	inventory-children Element
	relation-link Element
	events Element
	trigger Element
	trigger-properties Element
	trigger-property Element
	gauge Element
	scripting-objects Element
	object Element
	constructors Element
	constructor Element
	Constructor parameters Element
	Constructor parameter Element
	attributes Element
	attribute Element
	methods Element
	method Element
	example Element
	code Element
	Method parameters Element
	Method parameter Element
	singleton Element
	enumerations Element
	enumeration Element
	entries Element
	entry Element

	Best Practices for Orchestrator Plug-In Development
	Approaches for Building Orchestrator Plug-Ins
	Bottom-Up Plug-In Development
	Top-Down Plug-In Development

	Types of Orchestrator Plug-Ins
	Plug-Ins for Services
	Plug-Ins for Systems
	Plug-Ins for Object-Oriented Systems
	Plug-Ins for Resource-Oriented Systems

	Plug-In Implementation
	Project Structure
	Project Internals
	Workflow Internals
	Workflows and Actions
	Workflow Presentation

	Recommendations for Orchestrator Plug-In Development
	Documenting Plug-In User Interface Strings and APIs

	Obtaining Input Parameters from Users When a Workflow Starts
	Creating the Input Parameters Dialog Box In the Presentation Tab
	Create the Presentation of the Input Parameters Dialog Box

	Setting Parameter Properties
	Set Parameter Properties
	Workflow Input Parameter Properties
	Predefined Constant Values for OGNL Expressions

	Requesting User Interactions While a Workflow Runs
	Add a User Interaction to a Workflow
	Set the User Interaction security.group Attribute
	Set the timeout.date Attribute to an Absolute Date
	Calculate a Relative Timeout for User Interactions
	Set the timeout.date Attribute to a Relative Date
	Define the External Inputs for a User Interaction
	Define User Interaction Exception Behavior
	Create the Input Parameters Dialog Box for the User Interaction
	Respond to a Request for a User Interaction

	Calling Workflows Within Workflows
	Workflow Elements that Call Workflows
	Propagate Workflow Changes to other Workflows
	Propagate the Input Parameters and Presentation of a Child Workflow to the Parent Workflow

	Call a Workflow Synchronously
	Call a Workflow Asynchronously
	Schedule a Workflow
	Prerequisites for Calling a Remote Workflow from Within Another Workflow
	Call Several Workflows Simultaneously

	Running a Workflow on a Selection of Objects
	Implement the Start Workflows in a Series and Start Workflows in Parallel Workflows

	Developing Long-Running Workflows
	Set a Relative Time and Date for Timer-Based Workflows
	Create a Timer-Based Long-Running Workflow
	Create a Trigger Object
	Create a Trigger-Based Long-Running Workflow

	Configuration Elements
	Create a Configuration Element

	Workflow User Permissions
	Set User Permissions on a Workflow

	Validating Workflows
	Validate a Workflow and Fix Validation Errors

	Debugging Workflows
	Debug a Workflow
	Example Workflow Debugging

	Running Workflows
	Run a Workflow in the Workflow Editor
	Run a Workflow

	Resuming a Failed Workflow Run
	Set the Behavior for Resuming a Failed Workflow Run
	Set Custom Properties for Resuming Failed Workflow Runs
	Resume a Failed Workflow Run

	Generate Workflow Documentation
	Use Workflow Version History
	Restore Deleted Workflows
	Develop a Simple Example Workflow
	Create the Simple Workflow Example
	Create the Schema of the Simple Workflow Example
	Create the Simple Workflow Example Zones
	Define the Parameters of the Simple Workflow Example
	Define the Simple Workflow Example Decision Bindings
	Bind the Action Elements of the Simple Workflow Example
	Simple Workflow Example Action Element Bindings

	Bind the Simple Workflow Example Scripted Task Elements
	Simple Workflow Example Scriptable Task Element Bindings

	Define the Simple Workflow Example Exception Bindings
	Set the Read-Write Properties for Attributes of the Simple Workflow Example
	Set the Simple Workflow Example Parameter Properties
	Set the Layout of the Simple Workflow Example Input Parameters Dialog Box
	Validate and Run the Simple Workflow Example

	Develop a Complex Workflow
	Create the Complex Workflow Example
	Create a Custom Action for the Complex Workflow Example
	Create the Schema of the Complex Workflow Example
	Create the Complex Workflow Example Zones
	Define the Parameters of the Complex Workflow Example
	Define the Bindings for the Complex Workflow Example
	Complex Workflow Example Bindings

	Set the Complex Workflow Example Attribute Properties
	Create the Layout of the Complex Workflow Example Input Parameters
	Validate and Run the Complex Workflow Example

	Scripting
	Orchestrator Elements that Require Scripting
	Limitations of the Mozilla Rhino Implementation in Orchestrator
	Using the Orchestrator Scripting API
	Access the Scripting Engine from the Workflow Editor
	Access the Scripting Engine from the Action or Policy Editor
	Access the Orchestrator API Explorer
	Use the Orchestrator API Explorer to Find Objects
	JavaScript Objects in the API Explorer

	Writing Scripts
	Color Coding of Scripting Keywords

	Add Parameters to Scripts
	Accessing the Orchestrator Server File System from JavaScript and Workflows
	Access the Server File System Using the System.getTempDirectory Method

	Accessing Java Classes from JavaScript
	Accessing Operating System Commands from JavaScript

	Using XPath Expressions with the vCenter Server Plug-In
	Using XPath Expressions with the vCenter Server Plug-In

	Exception Handling Guidelines
	Orchestrator JavaScript Examples
	Basic Scripting Examples
	Email Scripting Examples
	File System Scripting Examples
	LDAP Scripting Examples
	Logging Scripting Examples
	Networking Scripting Examples
	Workflow Scripting Examples

	Developing Actions
	Reusing Actions
	Access the Actions View
	Components of the Actions View
	Creating Actions
	Create an Action
	Find Elements That Implement an Action
	Action Coding Guidelines
	Basic Action Guidelines
	Action Naming Guidelines
	Action Parameter Guidelines

	Use Action Version History
	Restore Deleted Actions

	Creating Resource Elements
	View a Resource Element
	Import an External Object to Use as a Resource Element
	Edit the Resource Element Information and Access Rights
	Save a Resource Element to a File
	Update a Resource Element
	Add a Resource Element to a Workflow

	Creating Packages
	Create a Package
	Set User Permissions on a Package

	Developing Plug-Ins
	Overview of Plug-Ins
	Structure of an Orchestrator Plug-In
	Exposing an External API to Orchestrator
	Components of a Plug-In
	Role of the vso.xml File
	Roles of the Plug-In Adapter
	Roles of the Plug-In Factory
	Role of Finder Objects
	Role of Scripting Objects
	Role of Event Handlers

	Contents and Structure of a Plug-In
	Defining the Application Mapping in the vso.xml File
	Format of the vso.xml Plug-In Definition File
	Naming Plug-In Objects
	Plug-In Object Naming Conventions
	File Structure of the Plug-In

	Orchestrator Plug-In API Reference
	IAop Interface
	IDynamicFinder Interface
	IPluginAdaptor Interface
	IPluginEventPublisher Interface
	IPluginFactory Interface
	IPluginNotificationHandler Interface
	IPluginPublisher Interface
	WebConfigurationAdaptor Interface
	PluginTrigger Class
	PluginWatcher Class
	QueryResult Class
	SDKFinderProperty Class
	PluginExecutionException Class
	PluginOperationException Class
	HasChildrenResult Enumeration
	ScriptingAttribute Annotation Type
	ScriptingFunction Annotation Type
	ScriptingParameter Annotation Type

	Elements of the vso.xml Plug-In Definition File
	module Element
	description Element
	deprecated Element
	url Element
	installation Element
	action Element
	finder-datasources Element
	finder-datasource Element
	inventory Element
	finders Element
	finder Element
	properties Element
	property Element
	relations Element
	relation Element
	id Element
	inventory-children Element
	relation-link Element
	events Element
	trigger Element
	trigger-properties Element
	trigger-property Element
	gauge Element
	scripting-objects Element
	object Element
	constructors Element
	constructor Element
	Constructor parameters Element
	Constructor parameter Element
	attributes Element
	attribute Element
	methods Element
	method Element
	example Element
	code Element
	Method parameters Element
	Method parameter Element
	singleton Element
	enumerations Element
	enumeration Element
	entries Element
	entry Element

	Best Practices for Orchestrator Plug-In Development
	Approaches for Building Orchestrator Plug-Ins
	Bottom-Up Plug-In Development
	Top-Down Plug-In Development

	Types of Orchestrator Plug-Ins
	Plug-Ins for Services
	Plug-Ins for Systems
	Plug-Ins for Object-Oriented Systems
	Plug-Ins for Resource-Oriented Systems

	Plug-In Implementation
	Project Structure
	Project Internals
	Workflow Internals
	Workflows and Actions
	Workflow Presentation

	Recommendations for Orchestrator Plug-In Development
	Documenting Plug-In User Interface Strings and APIs

	Creating Plug-Ins by Using Maven
	Create an Orchestrator Plug-In with Maven from an Archetype
	Maven Archetypes
	Maven-Based Plug-In Development Best Practices

