Plug-In SDK Guide for vRealize
Orchestrator

Development Guide

TECHNICAL WHITE PAPER
DECEMBER 2016

VERSION 1.0

TECHNICAL WHITE PAPER /1



Table of Contents

OVETVIEW ..ttt et ab e b e s e bbb e s r e s b e b e s b e sab e bt saeenesneennes 3
CONTIGUIALION SEIVICE . ..eveetiiririeetirieetestist ettt ettt ee st e e bt st e e sb e e e s e e sbee b e sbeeseesbesanenseareeanes 3
Creating ConnectionIngo .........cocueiiieiiiiiiiieeee et 4
Creating the Configuration Change LiStener.........ccceveeriiriiirsiinieesieeseenee et 6
CONNECTION PEISISTET ....cuuiiiuiieiieieeteesite sttt ettt ettt sttt sb e e bt e sbe e st e et e beesbeesaeesaeeeas 7
CoNNECtION REPOSIEOTY ...eeuveeuiiriiieiieiieitest ettt sttt et sb e b s esaeeeneees 12
CONNECLION ...ttt s b bt s sa e st besr e e ane b sre s 14
Implement a Cluster Awareness of Configurations...........ccueecverereereneenienesieeseseese e 16
Reading Configuration Files of Other PIug-Ins.........cccccovveiiiiniiniiiniinee e 17
SSL SEIVICE ...ttt e e e 19
Retrieve sslService from Service REZIStIY ....cccuevveeeeririeriiniieieiereeeseeeesc e 20
CAFE GateWaY SCIVICE......uverververereressssssesessssssssessssssssssssssssssssssesssssssssssssssasssssssssssssssssssessens 21
SSO REST CIENE SEIVICE ..euveeuviririeeiiniieeeiiseeire sttt sre s nesre e re s enes 22
Solution AUthentiCatioN SETVICE .....cveerteerierieriiriteeieerieereesteseeseeeteesteesteesaeesaeesasesssessseenseenses 23
Scripting Object CONtribULOT SEIVICE ...cccueerueereiriieiieieeiteestte sttt ettt e sbee st e sreesbe e beennes 24
CAPRET SEIVICE ..uvieiietieeie ettt ettt b e sttt et e b e s b e e s be e st e et e enbeesbeesaeesanenas 26

TECHNICAL WHITEPAPER /2



Overview

The Software Development Kit for Orchestrator plug-ins is a set of libraries and Maven archetypes that are distributed
with every installation of vRealize Orchestrator. The Plug-in SDK provides a collection of interfaces for communicating
with the Orchestrator platform and accessing different services.

Configuration service Stores data as configuration elements, such as host
names, credentials, and others.

SSL service Provides read access to the Trust store of the platform.

CAFE gateway service Provides access to the CAFE services in vRealize
Automation.

SSO REST client service A service that is more generic than the CAFE gateway
service.

Solution authentication service Provides read access to the solution user token.

Scripting object contributor service Makes possible for a plug-in to register scripting objects
at runtime.

Cipher service Encrypts and decrypts strings.

The Plug-in SDK is available as a Maven repository as part of the Orchestrator Appliance. You can access the repository
at https://orchestrator_server IP_or DNS name:8281/vco-repo/.

Configuration Service

Available in version 5.5.1 and later.

The Configuration service is included in the Orchestrator platform with version 5.5.1. This service makes it possible to
store data as a resource. The configuration data consists of key-value pairs and supports String, Password, Integer,
Long, Decimal, and Boolean data types.

The string value serves multiple purposes. For example, if you want to store binary data, such as a keystore, as part of
a configuration, you can encode the data in Base64.

The Configuration service includes two interfaces. If the plug-in uses a Spring context, the interfaces are injected. If the
plug-in does not use Spring, the interfaces are retrieved from the service registry. In this case, you need two more
interfaces to retrieve an instance of the Configuration service.

5.5.1 IEndpointConfigurationService Creates, reads, updates, and stores configurations as
vRealize Orchestrator resources.

TECHNICAL WHITEPAPER /3


https://orchestrator_server_ip_or_dns_name:8281/vco-repo/
https://spring.io/
https://spring.io/

5.5.1 IEndpointConfiguration

Represents a single configuration that is stored as a
vRealize Orchestrator resource.

5.5.1 IServiceRegistryAdaptor An entry point to the IServiceRegistry.
NOTE You should use this interface when the
plug-in is not based on Spring.

5.5.1 IServiceRegistry A service locator that provides Orchestrator services.

FIGURE 1 SHOWS A CLASS DIAGRAM OF A TYPICAL ORCHESTRATOR CONFIGURATION THAT THE CONFIGURATION

SERVICE IMPLEMENTS.

<< ConnectionPersister >>

+findAll() : Connectioninfaf]

+ findByld(Sid) : Connectioninfo

+ save(Connectioninfo) : Connectioninfo

+ delete(Connectioninfo)

+ addChangeListener(ConfigurationChangeListener)

+ removeChangelistener{ConfigurationChangeListener)
+ load()

[

|
| implements
|

DefaultConnectionPersister

- endpointConfigurationService : [EndpointConfigurationService
- listeners : ConfigurationChangelistener]]

- fireConnectionUpdated(Connectioninfo)

- fireConnectionRemoved|{Connectioninfo)

- addConnectioninfoTaConfig(IEndpointConfiguration, Connectionlnfo)
- getConnectioninfo(IEndpointConfiguration) : Connectioninfo

o |+ update(Conectioninfo)

ConnectionRepository
- connections : Connection[]

Connectioninfo

+ name : String

+id : Sid

+uri @ String

+ subscriptionld : String

+ keystorelocation : String
+ keystorePassword : String
+ keystoreContent : byte[]

Connection
- thirdPartyClient : ThirdPartyClient
- connectioninfo : Connectioninfo

+ getDisplayName() : String

+ getThirdPartyClient) : ThirdPartyClient
+ destroy()

- applicationContext : ApplicationContext implements

+ findLiveConnection(Sid) : Connection
+findAll() : Connection[]

- - = = = = 3|t connectionUpdated(Connectioninfo)
+ connectionDeleted{Connectioninfa)

+ afterPropertiesSet()
- createConnection() : Connection

Creating Connectioninfo

ConnectionInfo isasimple plain old Java object (POJO) that holds all data required to create or configure a connection

to a third-party system.

NOTE ConnectionInfo isnotthe actual connection, or scripting object, but rather the data that represents the object.

TECHNICAL WHITEPAPER /4



https://spring.io/

TECHNICAL WHITEPAPER /5




Creating the Configuration Change Listener

The configuration change listener is an extension point of the configuration persister, which is the interface that stores

the data. With the configuration change listener, other components can subscribe to configuration events, such as update
or delete a ConnectionInfo object.

Normally, the Orchestrator plug-ins store all live connections and sessions in the memory, as a self-managed cache. In
this way, you can make sure that only a single instance of a connection or session exists. If another user updates or deletes
this connection instance, by using the ConnectionPersister interface, the cache that stores the live connections or
sessions, enters in an inconsistent state.

You can implement the observer pattern to prevent such a situation.

TECHNICAL WHITEPAPER /6


https://en.wikipedia.org/wiki/Observer_pattern

Connection Persister

ConnectionPersister is a class that creates, reads, updates, and deletes the ConnectionInfo objects.
ConnectionPersister is a wrapper of IEndpointConfigurationService and hides the conversions between
IEndpointConfigurationService and ConnectionInfo.

Defining the Configuration Persister Interface

Implementing the Default Connection Persister Interface

TECHNICAL WHITEPAPER /7



TECHNICAL WHITEPAPER /8




TECHNICAL WHITEPAPER /9




TECHNICAL WHITEPAPER /10




TECHNICAL WHITEPAPER /11




Connection Repository

ConnectionRepository acts as local cache of a plug-in because it keeps all live connections. Any read operation that
is related to a live connection must pass through the ConnectionRepository interface.

TECHNICAL WHITEPAPER /12



TECHNICAL WHITEPAPER /13




The difference between ConnectionPersister and ConnectionRepository is that the persister manages only the
ConnectionInfo POJOs that remain behind the live connections, whereas ConnectionRepository provides the same
instance of a third-party connection. In other words, ConnectionRepository handles connections and
ConnectionPersister handles ConnectionInfo objects.

ConnectionRepository provides two methods - findLiveConnection(..) and findAll (..). If you want to
edit or delete a connection from the repository, you use the ConnectionPersister interface.

When the persister updates or deletes a connection, the change propagates to the repository because
ConnectionRepository is subscribed to update or delete events that ConnectionPersister handles.

Connection

The Connection object that represents a live connection. There must be only a single Connection object instance per
connection. The connection instances are stored in ConnectionRepository,

TECHNICAL WHITEPAPER /14



TECHNICAL WHITEPAPER /15




Implement a Cluster Awareness of Configurations

vRealize Orchestrator instances can work in a cluster, which involves transferring configuration data between the
clustered nodes. When you make a configuration change, for example, add an inventory object on one of the nodes in
the cluster, this change does not automatically propagate to the workflow engines of the rest of the nodes.

The Orchestrator plug-in must contain a code that fulfills a set of requirements.
1. Detect that a change has been applied.

The TEndpointConfigurationService.getVersion () method returns the current version of the configuration data
in the database.

The following code detects the change, by comparing the existing version to the one that is stored in the database.

This check is invoked every time an object that depends on the configuration data is accessed.
2. Ifthe check detects a change, load configuration data.

NOTE The Orchestrator platform caches the IEndpointConfigurationService.getVersion() method. The
caching interval is different depending on the version of Orchestrator.

a.  If the Orchestrator version is 7.0.0 or later, the maximum caching interval is two heart-beat intervals.

For example, if the heart-beat interval is five seconds and a configuration change occurs on Nodel, calling the
getVersion () method on the other nodes returns a cached value for a maximum period of 10 seconds.

b. Ifthe Orchestrator version is earlier than 7.0.0, the platform does not cache the version.

In this case, caching is additionally provided and the TTL (Time To Live) interval is 10 seconds.

IEndpointConfigurationService Implementation

During the plug-in development, you must implement IEndpointConfigurationService in such a way, that the
IEndpointConfigurationService.getVersion () method can work on all versions of Orchestrator.

1. Make sure the plug-in depends on platform version 7.0.0 or later.

2. In the Maven pom.xml file, add a compile-time dependency to the ol1n-plugin-tools artifact, so that the
plug-in package includes the artifact.

TECHNICAL WHITEPAPER /16



3. Implement IEndpointConfigurationService depending on the type of the plug-in.
For Spring-based plug-ins, the name of the component is cachingEndpointConfigurationService.

a.  The name the property must be cachingEndpointConfigurationService.

b.  Add the application content XML to the plug-in.

For plug-ins that are not Spring-based, search the correct version, for example, in the setServiceRegistry method.

4. Reload the configuration data.
By fetching all data through endpointConfiguratonService, find the changed entries on the other nodes.

5. Update the state of the inventory objects according to the loaded configuration data.

Reading Configuration Files of Other Plug-Ins

5.5.1 IEndpointConfigurationService Creates, reads, updates and stores configurations as
vRealize Orchestrator resources.

5.5.1 IEndpointConfiguration Represents a single configuration that is stored as a
vRealize Orchestrator resource.

NOTE Some plug-ins rely on the configuration files of other plug-ins.

With IEndpointConfigurationService, you can retrieve a read-only configuration of another plug-in.

TECHNICAL WHITEPAPER /17



TECHNICAL WHITEPAPER /18




SSL Service

Available in version 5.5.1 and later.

The SSL service is a platform service that provides read-only access to the trust store files of the Orchestrator servers.

Several workflows can write to the Orchestrator trust store. These workflows are part of the Orchestrator platform.

You can use these workflows in the configuration workflows of plug-ins that require establishing an SSL/TLS connection

to the third-party system.

Library > Configuration > SSL Trust Manager >
Import a certificate from URL

Imports a trusted certificate from a remote URL. The certificate
is imported with an automatically generated alias.

Library > Configuration > SSL Trust Manager >
Import a certificate from URL using proxy server

Imports a trusted certificate from a remote URL through a proxy
server. The certificate is imported with an automatically
generated alias.

TECHNICAL WHITEPAPER /19



Library > Configuration > SSL Trust Manager >
Import a certificate from URL with certificate
alias

Imports a trusted certificate from a remote URL. The certificate
is imported with a specified alias.

Library > Configuration > SSL Trust Manager > | Imports a trusted certificate from a file. The file must be in a
Import a trusted certificate from a file DER format.

Retrieve sslService from Service Registry

1. With a plug-in, you invoke the getService () method from IServiceRegistry and retrieve an
ISslService interface.

NOTE If the plug-in is Spring-based, you can define the service dependencies, or auto-wire, ISslService,

2. After you retrieve the ss1Service, assign the service reference as a field.

In this way, the plug-in does not search in the registry, every time it uses the service.
sslService provides two interfaces - SslContext and HostNameVerifier,

3. Create a new Ss1Context object and specify the desired protocol.

4. Create an SSLSocketFactory class.

The factory class creates a socket with some specified options: host, port, autoClose, localAddress, localPort,
and localhost,

5. Set SSLSocketFactory to an HTTPS connection.

TECHNICAL WHITEPAPER /20



6. When a URLConnection is open, use the HostNameVerifier interface.

CAFE Gateway Service

Available in version 5.5.2 and later.

The CAFE gateway service is a limited version of the SSO REST client service that exposes the RestClient class of
the CAFE endpoints.

This service creates a preconfigured RestClient that communicates with the CAFE services in vRealize Automation.
You can access the CAFE gateway service, no matter if the plug-in is Spring-enabled or not.

1.  Access the service.

a. Ifthe plug-in is Spring-enabled:

b. Ifthe plug-in is not Spring-enabled:

2. Builda ScriptingObjectDefinition to read log events from vRealize Automation.

TECHNICAL WHITEPAPER /21



SSO REST Client Service

Available in version 6.0.1 and later.

The SSO REST client service is a more extended version of the CAFE gateway service that exposes the RestClient
class of the CAFE endpoints. With this service, you can specify the host and the root path of the REST client, instead of
just communicating with a CAFE server that is configured as an authentication provider.

You can access the SSO REST client service, no matter if the plug-in is Spring-enabled or not.
1. Access the service.

a. Ifthe plug-in is Spring-enabled:

b. Ifthe plug-in is not Spring-enabled:

TECHNICAL WHITEPAPER /22



2. Create a SAML authentication session.

Solution Authentication Service

Available in version 7.0.0 and later.

The Solution authentication service provides access to the solution user token. The service does not provide a direct
access to the token but creates an authentication object that you can use to construct a REST client that can send requests
to the vRealize Automation APIs.

You can access the Solution authentication service, no matter if the plug-in is Spring-enabled or not.
3. Access the service.

a. Ifthe plug-in is Spring-enabled:

TECHNICAL WHITEPAPER /23



b.

Scripting Object Contributor Service

If the plug-in is not Spring-enabled:

Available in version 7.0.0 and later.

With the Scripting object contributor service, plug-ins can register scripting objects at runtime, without having to restart
the Orchestrator server.

7.0.0 ScriptingObjectsContributor A service endpoint that registers scripting objects at
runtime.

7.0.0 ScriptingObjectDefinition A definition of a scripting object.

7.0.0 ScriptingAttributeDefinition A definition of an attribute of a scripting object.

7.0.0 ScriptingMethodDefinition A definition of a method of a scripting object.

7.0.0 ScriptingConstructorDefinition A definition of a constructor of a scripting object.

1. Access the service.

a.

If the plug-in is Spring-enabled:

TECHNICAL WHITEPAPER /24




b. Ifthe plug-in is not Spring-enabled:

2. Contribute a scripting object with a single attribute.

TECHNICAL WHITEPAPER /25




Cipher Service

The Cipher service uses the Orchestrator encryption algorithms to encrypt and decrypt strings. You can use this service
when a plug-in stores sensitive data.

1. Access the service.

a. Ifthe plug-in is Spring-enabled:

b. Ifthe plug-in is not Spring-enabled:

TECHNICAL WHITEPAPER /26



2. Invoke the encrypt and decrypt methods.

NOTE Ifthe decryption fails, it will fall back to the legacy decryption algorithm that is available in earlier versions of
Orchestrator.

TECHNICAL WHITEPAPER /27



